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ABSTRACT 

Capture fisheries provide the world with a healthy source of protein than can have 

minimal environmental impacts if harvested sustainably. Negative environmental impacts 

of capture fisheries include; overexploitation, modification of food webs, mortality of non

target species, habitat alteration and biodiversity loss. A mitigation technique often used 

to reduce ecological impacts of fishing without compromising commercial catches is gear 

modification. This thesis explores modification of two gear types; shrimp trawl and turbot 

longline. Modifications were made to shrimp trawl footgear to reduce habitat alteration 

and to turbot longline gear to reduce Greenland shark bycatch. Testing of modified with 

traditional gears demonstrated that the modified gears with reduced ecological impacts 

did not negatively affect commercial catches. The 200 lb monofilament gangion is 

recommended for commercial testing by turbot longline fishers in Cumberland Sound; 

however the aligned shrimp trawl requires further modifications due to unexpected 

increases in turbot bycatch compared to the traditional trawl. 
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CHAPTER 1: INTRODUCTION 

1.1 Importance of Maintaining Capture Fisheries 

The importance of maintaining global food sources including capture fisheries , 

aquaculture and agriculture is greater now than ever. With human population growth 

estimated to reach over 9 billion by 2050 (UN, 2009) and uncertainty regarding how 

climate change will impact food security, proper management of the earth 's natural 

resources is important. Fisheries, including wild capture and aquaculture provide 148 

million tonnes of food to the world ' s population, representing 16.6% of global dietary 

protein intake (F AO, 20 12). The reliance on capture fisheries for the consumption of 

protein in developing countries however is 27% which is almost twice that of the global 

average (Allison et al. , 2009). With increasing demand for food in the foreseeable future 

and a worsening state of world marine fisheries , practicing sustainable fishing will be 

necessary if fisheries are to continue to be a major provider of protein (F AO, 20 12). The 

most recent estimates suggest that > 80% of global fish stocks are fully or overexploited 

and it is generally accepted that there are no new major fishing grounds to be exploited 

(Godfray et al. , 20 I 0). Since stocks produce less when systematically overexploited 

(Garcia and de Leiva Moreno, 2003), taking every precaution to ensure sustainable 

fishing will not only result in healthier marine ecosystems, but also provide more fish. 

Fisheries management should focus on fishing sustainably, efficiently and being aware of 

the ecological links in marine food webs to ensure the abundance of marine fishes. 



Consuming fish protein is a healthier choice for the environment and consumer 

than other types of protein (Hilborn, 2011 ; F AO, 20 12) . Sustainable fish ing of wild stocks 

has a smaller ecological footpri nt than does farming poultry, pork or beef, and the 

agriculture needed to support production (Hilborn, 2011 ). Food production for capture 

fisheries is more energy efficient on average than agriculture as more edible protein is 

produced for the same amount of greenhouse gas input (Hilborn, 2011) . The agricultural 

sector accounts for 22% of global total emissions, with livestock production accounting 

for nearly 80% of this sector's emissions, substantially contributing to climate change 

(Michael et al. , 2007) . In capture fisheries there are fewer environmental impacts on 

habitat and more ecosystem properties are preserved compared with the transformation of 

terrestrial habitat into agricultural land (Hilborn, 2011 ). In addition, fish consumption is a 

healthier food choice than meat with many nutritional benefits that contribute to well

being. Fish is low in saturated fats, carbohydrates and cholesterol. It provides many 

micronutrients including vitamins A, B and D as well as minerals such as calcium, iodine, 

z inc, iron and selenium (F AO, 20 12). It is a source of omega 3 fatty acids and there is 

evidence of beneficial effects in relation to coronary heart disease, age-related macular 

degeneration and mental health (F AO, 20 12). Further, fish consumption has benefits for 

growth and development, especia lly for chi ldren and pregnant women as it aids in brain 

development (F AO, 20 12). Although some risk of contaminants such as mercury, dioxins 

and polychlorinated biphenyls (PCBs) exist with the consumption of some fish species, 

the benefits of fish intake exceed the potential risks (Mozaffarian and Rimm, 2006). 

Eating meat is associated with many adverse health effects such as; heart disease, obesity 

and colorecta l cancer (Michael et al. , 2007). In addition, consuming poultry, pork or beef 
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can be harmful or even fatal due to bacteria and parasites which can be contained in 

products made from these animals such as; Salmonella spp., trichinosis or Escherichia 

coli (E.coli). With increasing pressure on ecosystems by anthropogenic activities caused 

by rapid human population growth, if managed properly, capture fisheries can provide a 

valuable, healthy source of protein with minimal environmental and biological impacts 

compared to other sources. 

1.2 Negative Ecological Impacts of Capture Fisheries 

Although capture fisheries have fewer environmental impacts on habitat and 

ecosystems compared to the production of livestock, negative impacts do result from 

fishing activities. These include; overexploitation, modification of food webs, mortality of 

non-target species, habitat alteration and biodiversity loss (Rogers and Laffoley, 2011 ; 

Frid and Paramor, 20 12). 

Overexploitation or overfishing occurs when more fish are harvested than can be 

replaced naturally by reproduction within the population and a reduction in population 

size occurs. There are two types of overfishing; recruitment and growth overfishing 

(NRC, 2002). Recruitment overfishing is described as when overfishing results in a 

reduction in spawning biomass to such an extent that future recruitment is compromised. 

Growth overfishing is described as when fish are caught before they grow large enough to 

achieve maximum yield per recruit (NRC, 2002). If overexploitation is maintained over a 

number of years, stock collapse may ensue with dramatic drops in abundance. Stock 
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collapse increases the chance of local extinction as smaller populations are subjected to 

Allee effects, described as a reduction in fitness associated with a declining number of 

conspecifics in a population (Stephens et al. , 1999). Overexploitation is thought to have 

the ability to change population parameters as fishing mortality behaves as a selective 

pressure, favouring smaller body size and earlier age at maturity. These changes are often 

associated with a loss of genetic diversity and can be irreversible even with the cessation 

of fishing activities (Hutchings and Fraser, 2008). Stock collapse can result in 

modification of food webs and ecosystem shifts. The niche that was occupied by the 

collapsed stock is filled by a similar species or trophic cascades can result affecting the 

entire marine community (Frank et al. , 2005). Thus overexploitation directly reduces the 

abundance, spawning potential and possibly population parameters and genetic diversity 

of the target species (Garcia eta!. , 2003), but also indirectly results in ecosystem shifts 

and modification of food webs. These effects can lead to negative social and economic 

consequences for those dependent on marine ecosystems for their livelihood, an estimated 

I 0-12% of the world ' s population (FAO, 20 12) . 

Mortality of non-target species in the form of discards or bycatch is a consequence 

of many fishing operations. Bycatch is a result of unselective fishing methods. Although 

internationally there is debate on the exact definition of bycatch (F AO, 2008), it is 

broadly defined as the incidental catch of unwanted organisms. Bycatch is discarded at 

sea or kept and can be categorized as regulatory or economic (Chuenpagdee et al. , 2003). 

Economic bycatch are those species or sizes that are discarded because they are of li ttle or 

no economic value (Chuenpagdee et al., 2003). Regulatory bycatch are marketable 
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species/sizes that are discarded because of management regulations in place, such as size 

limits, allocations and seasons (Chuenpagdee eta!., 2003). It has been estimated that a 

quarter of the total world catch is bycatch (Cook, 2003). Discard rates are the highest for 

crustaceans and flatfish fisheries , intermediate for large pelagic and roundfish fisheries, 

and lowest for small pelagic fisheries (Cook, 2003). Additionally, mortality of target or 

non-target species can occur from fishing operations where individuals are killed through 

interactions with fishing gear, although they may not necessari ly be brought on board the 

vessel. This type of mortality, known as unaccounted fish ing mortality can be difficult to 

estimate. The capture and mortality of non-target species from capture fisheries can have 

several ecosystem effects. It can reduce the abundance of large individuals, increase the 

abundance of small individuals, lower total biomass reducing productivity and favour the 

increase of scavengers. 

Habitat in regard to aquatic species is defined as spawning grounds, nursery, 

rearing, food supply, migration and other areas on which species depend directly or 

indirectly in order to carry out life processes (DFO, 20 1 0). The unique assemblage of 

sediment types, bed forms and biological structures found within a defined area 

determines habitat type. The degree of overall habitat damage caused by fishing practices 

is highly variable depending on gear type (He and Winger, 2010). Active fishing gears 

have the greatest habitat impacts, where as passive or fixed gears can have minimal 

impact (Gascoigne and Wi llsteed, 2009; Chuenpagdee et al. , 2003). 

There are three general fishing gear categories; active, mobile, and passive or 

fixed (Gascoigne and Wi llsteed, 2009). Active gears are those that are towed across the 
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seabed. This category includes dredges and trawls. Passive or fixed gears are those that 

are placed on the seabed and do not move until lifted by the fishing vessel. Some 

examples include gillnets, traps and demersal longlines. Mobile gears are intermediate 

between active and passive gears. Mobile gears are those that involve movement of the 

fishing vessel to deploy but are not actively towed such as seines. 

Habitat damage associated with fishing gears includes damage to living seafloor 

structures and alteration to geologic structures. Living seafloor structures include sessile, 

epibenthic organisms like corals and sponges. These organisms are often classified as 

ecosystem engineers because of their habitat forming role and contribution to habitat 

complexity (Schwinghamer eta!., 1996; RC, 2002). These structures provide refuge and 

food for various benthic invertebrate and fish species (Auster eta!., 1996). Benthjc 

geologic structures include substrate types such as boulders, cobble, gravel, sand and 

mud. Changes to substrate can affect the functional type of organisms able to survive 

there, thus disturbance to geologic structure can result in ecosystem assemblage shifts. 

With the destruction of living seafloor and geologic structures; habitat complexity and 

structural diversity is reduced (NRC, 2002). This can have consequences on species 

richness in habitats that experience interactions with fishing gears. 

1.3 Mitigation Options for Reducing Negative Impacts of Capture Fisheries 

The risk of overfishing can be minimized by fishing sustainably, following the 

precautionary approach and harvesting less than the maximum sustainable yield. To 
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minimize the mortality of non-target species and habitat alteration caused by fishing 

activities, several options are possible; changing the spatial and temporal components of 

the particular fishing operation, the establishment of closed areas or area restrictions, 

introducing bycatch quotas, reduction of fishing effort, implementing gear substitutions or 

gear modifications (NRC, 2002; ICES, 2000). 

1.3.1 Gear Modifications 

Gear modifications are a favoured mitigation technique for reducing bycatch or 

habitat effects for business minded fishers who would like the ability for continued 

economical capture of available stocks without substantial increases in harvesting costs or 

decreases in commercial catch rates. Methods that can affect economic return such as 

reducing fi shing effort or gear substi tutions are much less desired by fishers and 

ultimately have a hard time being accepted and successful in commercial fish ing 

industries without legal mandates. 

Different types of gear modifications are used depending on the sustainability 

issue. To reduce the capture of non-target species, often modifications which improve 

gear selectivity are used. These modifications are designed to take advantage of either 

morphological or behavioural differences between target and non-target species which are 

used to separate them during the catching process (Winger, 2008). If habitat damage is a 

concern, modifications include reducing the pressure exerted on the seabed by the gear or 

reducing total contact area of the gear with the seabed. 
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1.3.1.1 Example of Successful Gear Modification, the Nordmore Grid 

An example of a highly successful gear modification used to reduce the capture of 

non-target species is the Nordm0re grid (Fig. 1.1 ). In shrimp fisheries, bycatch of 

commercially important juvenile and sub-adult fish is especially concerning as it may 

have effects on recruitment, biomass and stock yields that form other fisheries 

(Broadhurst, 2000). The ordm0re grid bycatch reduction device takes advantage of the 

morphological difference between shrimp and larger bycatch species. The rigid 

rectangular sorting grid was invented by a Norwegian shrimp fisher originally trying to 

exclude jellyfish bycatch (Gi llett, 2008). It was developed in 1989-1 990 and is effective 

in reducing bycatch by 60-90% while maintaining commercial catch rates of shrimp 

(Broadhurst, 2000). The original design consists of a guiding funnel positioned in front of 

the codend (trawl component, back of the net where catch accumulates) which directs the 

catch to the base ofthe sorting grid made of longitudinally oriented bars (Broadhurst, 

2000). Small organisms fit through the bar spacings and pass through the grid into the 

codend, while larger individuals are directed upwards to an opening in the top of the trawl 

where they can escape. The Nordm0re grid has been adapted to many shrimp fisheries 

around the world and numerous countries have made the use of the grid mandatory, 

including Canada (Hickey et al. , 1993). In several instances fishers had adopted the grid 

before it became mandatory, voluntarily implementing the gear change due its economic 

benefits. With the reduction of bycatch, there is reduced time needed to sort bycatch, less 

shrimp are broken and catch per unit effort is increased, all while shrimp catches remain 
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the same as without the grid. This win-win situation for sustainability and fishers is the 

key for gear mod ifications to become commercially successful. 

1.4 Thesis Outline 

The objective of this thesis was to test gear modifications designed to improve 

fishery sustainability using comparative fishing techniques in situ. Increased 

sustainability was achieved by reducing negative ecological impacts ofbycatch or habitat 

damage. Modifications for two separate gears and fisheries were tested and each 

comprises a chapter of this thesis. 

The first experimental chapter (Chapter 2) investigates a modification to an 

inshore northern shrimp (Panda/us borealis) trawl designed to have reduced contact area 

with the seabed. Through flume tank trials conducted at the Fisheries and Marine Institute 

of Memorial University in St. John ' s, the modified (aligned) trawl was shown to have less 

contact area with the seabed compared to the traditional trawl. The purpose of the study 

was to test the following hypotheses, the aligned and traditional trawl are not different in 

terms of(i) shrimp catch rate or (ii) size, (iii) the percent of total catch made up ofthe 

most abundant bycatch species, as well as (iv) the sizes of these major bycatch species 

captured. These hypotheses were investigated through comparative at-sea fishing trials 

conducted between trawl types on the north-western coast ofNewfoundland. Commercial 

catch and bycatch composition, size and catch rates were compared between paired tows 

of each treatment. To compare these parameters between treatments, !-tests and 
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Kolomogrov-Smiroff tests were conducted. Commercial catch rates were significantly 

higher with the modified trawl compared to the traditional trawl without affecting the size 

of shrimp caught. Out of the most abundant bycatch species, the proportion of cape! in 

(Mallotus villosus) was not significantly different between trawl types, however the 

proportion of catch composed of turbot (Reinhardtius hippoglossoides) was significantly 

higher with the aligned trawl. I discuss possible reasons for these findings as well as 

limitations to this study. 

The second experimental chapter (Chapter 3) investigates modifications to 

longline gear aimed to reduce Greenland shark (Somniosus microcephalus) bycatch 

without affecting commercial catches of turbot (Reinhardtius hippoglossoides) within the 

Cumberland Sound fishery. The modification investigated was changing gangion 

breaking strength and material. Four gangion treatments were tested through experimental 

longline fishing in the Cumberland Sound, Nunavut, Canada. This included a 200 lb 

multifilament braided nylon gangion used as the control, and three experimental gangions 

made of monofilament. The experimental monofi lament gangions had breaking strengths 

of 50 lb, 100 lb or 200 lb. Catch labels were used to quantify catch and indicate hook 

condition upon haulback of longline gear. Using catch label frequencies for each 

treatment per I 00 hooks, one way Analysis of Variance tests were used to determine if 

the frequency of catch labels and size of turbot was significantly different between 

gangion treatments. Monofilament gangions were found to have lower catch rates of 

Green land shark and higher rates of hook loss. Turbot catches or size was not 
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significantly different among treatments. I discuss the possible reasons for these findings 

as well as the gangion best suited for the Cumberland Sound turbot longline fishery. 
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1.6 Figures 

Figure \.\ . Bottom trawl equipped with a Nordm0re grid ; a bycatch reduction device used 
in shrimp trawl fisheries (Graham, 2006). 
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CHAPTER 2: COMPARATIVE FISHING TO DETERMINE THE 
COMMERCIAL VIABILITY OF A LOW IMPACT SHRIMP BOTTOM TRAWL 

The codend of the aligned trawl being hauled onto the FIV "Newfie Pride " during at-sea 

comparative fishing trials in September 2012. 

17 



2.1 Abstract 

Concern over the impacts of bottom trawling is widespread due to its adverse 

ecological impacts. We investigated gear modifications to reduce the total contact area of 

a traditional shrimp (Pandalus borealis) trawl on the seabed for the ewfoundland and 

Labrador inshore fishery. We designed, flume tank tested, and conducted sea-trials with a 

modified, experimental (aligned) trawl that demonstrated 39% reduced contact area with 

the seabed compared to a traditional , V6nin 2007-1570 trawl. This chapter focuses on the 

sea-trials. The purpose of this study was to test the null hypotheses that the aligned and 

traditional trawl are not different in terms of; shrimp catch rate or size, the percent of total 

catch made up of the most abundant bycatch species and the sizes of the major bycatch 

species captured. The aligned trawl was found to capture significantly 23% more shrimp, 

outperforming the traditional trawl in 17 of the 20 paired tows during comparative fishing 

trials. Major bycatch species caught in the experiment were Greenland halibut (a.k.a., 

turbot; Reinhardtius hippoglossoides) and capelin (Mallotus villosus). Mean percent 

contribution of capelin to the total catch was not significantly different between trawl 

types, however the aligned trawl captured significantly average 77% more turbot than the 

traditional trawl. Due to unacceptable increases in turbot bycatch, a commercially 

important species, further modifications to the aligned trawl are required before 

commercialization. This study represents a first step towards the development of a low 

impact shrimp trawl for the northern shrimp Newfoundland and Labrador inshore fishery. 
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2.2 Introduction 

Newfoundland and Labrador supports the world ' s largest northern shrimp 

(Panda/us borealis) fishery (Mullowney et al. , 20 12). The fishery is a major economic 

driver in the region and was valued at $192 million in 20 12 (Newfoundland and 

Labrador, 20 13). Overall, the offshore fleet employs 625-650 crew members. The 

inshore fleet provides employment for approximately 2,000 fishers aboard 360 multi

species enterprises. In addition, it provides shrimp to 12 inshore processing plants with a 

core workforce of approximately 1,350 workers (IFMP, 2007). 

The only way to commercial ly harvest northern shrimp in the Newfoundland and 

Labrador region is by the use of active fishing gear, the bottom trawl. Industrial scale 

harvesting of shrimp using passive fishing methods does exist in some areas which have 

unsuitable bottom types for trawling, however most large-scale commercial fishing is 

done using trawls (Gillett, 2008). The use of bottom trawls can have negative ecological 

impacts through destruction ofhabitat, decreased benthic biomass, community shifts, 

sediment suspension, changes in chemistry and by catch of non-targeted species (e.g. , 

Prena et al. , 1999; Hansson et al. , 2000; Johnson, 2002; L0kkeborg, 2005). Despite the 

interest in replacing bottom trawling with an alternate fishing method, no substantial 

progress has been made and the trawl has remained the predominant method for fishing 

shrimp over the last century. Efforts are thus concentrated on improving the shrimp trawl 

to reduce negative impacts, rather than into replacement technologies (Gi llett, 2008). 
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A bottom trawl is essentially a large net bag towed along the ocean floor. At the 

back of the net is the codend which holds the accumulated catch. The net is held open 

horizontally by two doors. One side each door is attached to sweeps and bridles 

connecting to the net and the other side is attached to to wires called warps that are 

secured to the fishing vessel (Graham, 2006). When towed, the doors are pushed 

outwards by the force of seawater which prevents the mouth of the net from closing. The 

net is held open vertically by floats attached to the rope nnming along the upper mouth of 

the net (headline) and weighted bobbins or other footgear attached to the lower mouth of 

the net (fishing line). Footgear is attached to the fishing line with the use of toggle chains. 

There are different variations of footgear that are used depending on substrate type, to 

maximize the capture of target species, minimize gear damage while maintaining bottom 

contact (L0kkeborg, 2005; Valdemarson et al. , 2007; Gillett, 2008). To ensure bottom 

contact, an important factor influencing catch rates, the footgear may include chain or 

weighted rope, or be equipped with rubber discs, bobbins or spacers (Gillett, 2008). 

Individual gear components of the trawl system have different physical impacts on 

the seabed. The doors have the most significant impact due to their size and weight 

(Gilkinson et al. , 1998; Valdemarsen et al. , 2007; He and Winger, 201 0; Polet and 

Depestele, 20 1 0). The doors act like a plough, digging into the sediment, leaving visible 

furrows with the depth of penetration dependent on substrate type (NRC, 2002). The time 

it takes for the furrows to disappear depends on substrate type and natural disturbance 

regime. This can range from a few hours to a few years (L0kkeborg, 2005). The doors 

also cause re-suspension of sediment into the water column, increasing water turbidity. 
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The footgear has minor smoothing or compressing effect on the substrate that it contacts, 

which can result in packing or compression over repeated trawling (Gillett, 2008). The 

sweeps have discontinuous contact with the seabed and usually have the largest contact 

area with the bottom producing a flattening effect (L0kkeborg, 2005; Valdemarson eta!., 

2007; Gillett, 2008). When the codend becomes extremely full it can drag along the 

bottom and produce a minor compressing effect on the seabed. 

Bottom trawling is often criticized as a fi shing practice, with concern shared by 

many groups. Aggressive campaigns by environmental GO's (Non-Government 

Organizations) have led to a widespread negative stigma being associated with this 

fishing gear among the general populous, even though many trawl fisheries hold 

sustainability certifications such as the Marine Stewardship Council (MSC). The unease 

over impacts of bottom trawling is shared by the international scientific community, 

including well respected organizations such as; the International Council fo r the 

Exploration of the Sea (ICES), Food and Agriculture Organization of the United Nations 

(FAO), and National Research Council (NRC) of Canada. 

A reflection of the wide spread concern over bottom trawling was demonstrated at 

the UN General Assembly in 2006 when there was an attempt to establish an international 

ban on deep sea trawling (UN 61 / 1 05). Some national governments have banned 

trawling completely, in certain areas or produced mandates for the use of less destructive 

gear. Some countries with national trawl bans include Belize and Indonesia (Stiles et a!. , 

20 1 0). Due to the commercial importance of bottom trawling in Canada, a widespread 

ban is not an option. However bottom trawling exclusion zones do exist, such as the 8,610 
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km2 Hawke Box off southern Labrador (Mullowney eta!., 2012). Low impact bottom 

trawling gear is defined as a trawl which has been modified to either reduce physical 

pressure exerted on the seabed or to reduce the total contact area with the seabed. It is 

anticipated that within the next 3-5 years the use of low impact bottom trawling gear will 

be enforced. Strong recommendations by Fisheries and Oceans Canada (DFO) into gear 

modification research to reduce impacts of trawled gears demonstrate the need for 

improving shrimp fishing gear technology (Gilkinson eta!., 2006; Rice, 2006). 

When it comes to bottom trawling impacts, the major concerns have to do with 

damaging living seafloor structures as well as the alteration of geologic structures (NRC, 

2002). A single pass of a bottom trawl can displace large boulders and damage or remove 

biogenic habitat such as corals and sponges which are attached to these substrates. 

Habitat forming epibenthic organisms found in ewfoundland and Labrador can 

be negatively affected by shrimp trawling. In this region, sponges are distributed on the 

slope edge at depths greater than 800 m (Kenchington et al. , 2010; Edinger eta!., 2011 ). 

In the Gulf of St. Lawrence, shrimp trawling is most common from 200-300 m (DFO, 

20 13). Due to limited habitat overlap, few instances of sponge bycatch have been 

reported from shrimp trawling (DFO, 20 13). Some species of soft bodied corals (sea 

pens) are expected to be negatively impacted by trawling. Sea pens are restricted to 

muddy habitats (Williams, 2011) and span a wide depth range from 30m to greater than 

1,900 m (Baker eta!. , 20 12). Sea pens can form unique habitats of dense meadows over 1 

km in length with up to 622 colonies per 10 m segment (Baker et a!. , 20 12). These 

meadows may be important habitat for other taxa. It has been suggested that sea pen 
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meadows may create important refugia for small invertebrates and influence prey 

avai lability (Tissot eta!., 2006) . Baillon et a!. (20 12) demonstrated that larvae of several 

fish species including redfish (Sebastes spp), lanternfish (Benthosema glaciate) and 

eelpout (Ly codes esmarkii) use deep water sea pens as habitat, most likely due to the 

shelter they provide from predators. It is hypothesized that some fish species (i.e. 

Sebastes spp) may spawn directly on sea pens to increase the chance of larval survival 

(Baillon eta!. , 20 12). Sea pens are thought to be fairly common in shrimp trawling 

grounds in the orthern Gulf of St. Lawrence (the study site for this experiment) however 

sea pen meadows have only been confirmed further south in the Laurentian Channel 

(Colpron eta!. , 201 0). Shrimp fishers of southwestern ewfoundland have been reported 

to specifically target areas containing sea pen meadows as they correlate to high shrimp 

catches (Colpron et al., 201 0). The destruction of sea pens by shrimp trawling is a 

concern as sea pens are an ecologically important habitat forn1ing species that may have a 

specialized role in the larval survival of several fish (Baillon eta!., 20 12). 

There is also concern regarding the indirect effects of bottom trawling on 

commercial groundfish and shellfish catches. Bottom trawling has been shown to reduce 

the complexity of the benthos by flattening substrate and removing upright epibenthic 

organisms. Reduced habitat complexity is thought to have negative implications for 

juveni le fish survivorship (Auster eta!., 1996; Schwinghamer eta!., 1996; NRC, 2002). 

In addition, the reduction in benthic biomass caused by trawling related mortalities may 

lead to decreased food availability for commercial species (Linnane eta!. , 2000). In 

Newfoundland and Labrador this is particularly concerning due to depleted groundfish 
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stocks and the possibility of poor juvenile survivorship and reduced prey abundance 

acting synergistically to hinder stock recovery. 

Some snow crab (Chinoecetes opilio) fishers on the northeast coast of 

Newfoundland and southern Labrador (NAFO Division 2J) are concerned over the 

impacts of shrimp trawling on the valuable crab resource (Newfoundland and Labrador, 

200 1 b; Mullowney et al., 20 12). The snow crab and northern shrimp fisheries overlap 

both spatially and temporally. In particular, they claim trawling activities increase crab 

leg loss and mortality (Gilkinson et al., 2006; Mullowney et al., 2012). However, poor 

handling practices in the snow crab fishery can also result in high limb loss and mortality 

of both undersized and soft-shelled crab discards (Miller, 1977; Dufour et al. , 1997; 

Grant, 2003). Although there has been no scientific evidence to suggest that shrimp 

trawling has a significant negative impact on snow crab populations (Newfoundland and 

Labrador, 2001 b; Dawe et al., 2007), a recent high-profile study was conducted to 

document the nature of interactions between snow crab and the footgear of shrimp trawls 

(Nguyen et al. , 2013). That work builds on the previous work ofDawe et al. (2007) and is 

expected to lead toward improved trawl designs with reduced impact on crab resources. 

The effects of trawling on soft bottom habitat and associated communities are 

related to the sensitivity of the benthic fauna, natural disturbance regime, water depth as 

well as the frequency and duration of trawling activity. Relatively shallow, high energy 

regions that experience annual or decadal scale natural physical impacts such as 

hurricanes are generally found to be resistant to the effects of trawling because the 

benthic organisms that occur there have become adapted to the local natural disturbance 
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regimes. Generally deep water(> 200 m), soft bottom habitats are thought to receive less 

natural physical disturbance. However, natural biologically induced changes in benthic 

community structure over periods of 3-5 years have been documented in deep (280-350 

m) soft bottom areas (Josefson, 1981). Several studies investigating the impacts of 

bottom contact gear on benthic biodiversity and community structure have been 

conducted in the past 2-3 decades and conclusions from reviews of these studies are that 

the understanding of fishing related impacts on soft bottom habitats is still only 

rudimentary (L0kkeborg, 2005). 

The development of a low impact shrimp trawl would have many benefits for 

local fishers . Developing a low impact trawl before any mandates are put in place, allows 

shrimp fishers to become fami liar with and learn how to most effectively handle the gear. 

Fishers in the Newfoundland and Labrador region will also be better prepared for future 

gear restrictions which will minimize potential economic loss associated with lost fishing 

time due to changing gear type. This preparedness will give the trawl manufacturing 

industry in the region and shrimp harvesters a competitive edge over other regions and 

nations. For example, local fishers and producers will be able to market their catch as 

being harvested by a low impact shrimp trawl which could provide access to emerging 

markets and result in a higher price being received for their catch. Further, use of low 

impact fishing gear will help the region's northern shrimp fishery in gaining Marine 

Stewardship Counci l (MSC) re-certification. Some shrimp fishers are part of multi

species enterprises, where other species are fished in addition to shrimp, such as 

groundfish and snow crab. By using a low impact bottom trawl, fishers would reduce 
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their physical footprint on a habitat which is shared among all commercially exploited 

species, during some part oftheir life cycle. This could increase regional ecosystem 

productivity as well as job security for local fi shers. Non-profit and scientific 

organizations have expressed a need for the development of low impact fishing gears 

(L0kkeborg, 2005; Gilkinson et al., 2006; Gascoigne and Willsteed, 2009). Economic 

incentives for fi shers listed above may aid in promoting voluntary implementation by 

industry in the absence of regulatory enforcement. 

The development of gear modifications to reduce the physical impact of shrimp 

trawling on the seabed is not a new concept. Many researchers have developed and tested 

novel trawls which aim to reduce the total contact area of the trawl on the seabed and/or 

reduce the downward pressure of the trawl on the seabed (e.g., DeLouche and Legge, 

2004; He, 2007; Valdemarsen et al. , 2007; He and Winger, 20 10). Despite these 

developments, no low impact trawls have been produced which would effectively work at 

a commercial scale for the Newfoundland and Labrador inshore northern shrimp fishery. 

A successful low impact trawl must not only reduce seabed impacts, but it must be user

friendly for fishers and where possible have economic incentives to be successfully 

implemented (Valdemarsen and Suuronen, 2003). Ultimately the goal of this project was 

to determine the commercial viability of a new low impact shrimp bottom trawl through 

comparative at-sea fishing trials with a traditional trawl. 

The novel gear developed for this project has modified footgear to reduce total 

contact area with the seabed compared to the traditional trawl. The footgear of the trawl is 

' aligned ' as the rubber discs in the footgear are aligned to be parallel with the direction of 
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tow (Fig. 2.1 ). This was achieved by boring the centre holes of the discs diagonally rather 

than concentrically with customized angles depending on their position within the trawl 

footgear. These modifications allow the physical footprint of the trawl to be reduced as 

the narrow side of the disc is facing the direction of tow, rather than the blunt side as is 

the case in the wing section of the traditional trawl footgear. In addition, the number of 

discs in the footgear is also reduced compared to the traditional gear, further reducing the 

physical footp rint of the a ligned trawl on the seabed. 

The objective of this project is to determine whether the aligned footgear affects 

shrimp catch or bycatch when compared to traditional footgear. This was achieved 

through comparative at-sea fishing trials with the aligned and traditional trawls where the 

only difference between the two trawls is the footgear. Economical ly important target and 

bycatch parameter comparisons were made between trawls. This included shrimp catch 

rate, counts, mean carapace length and length frequency distribution. In addition, 

measures of bycatch were calculated including; mean total length, length frequency 

distribution and percentage of the total catch comprised of individual bycatch species. 

The null hypotheses were the aligned and traditional trawl are not different in terms of; (i) 

shrimp catch rate or (ii) size, (iii) the percent of total catch made up of the most abundant 

bycatch species, as well as (iv) the sizes of these major bycatch species captured. 

2.3 Materials and Methods 
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Gear 

The trawl design used for the experimental and control trawls was the 4 seam, 

V6nin 2007-1570 shrimp trawl (Fig. 2.2). The trawls were equipped with 3.4 m2 Injector 

Sparrow steel trawl doors made by Injector Door Limited™ and high density 

polyethylene Nordm0re grids. The V6nin 2007-1570 shrimp trawl was used as the control 

(traditional), and the same design was used for the experimental (aligned) trawl but with 

modified footgear. The experimental trawl was designed to be low impact through the 

reduction of contact area of the footgear with the seabed compared to the control trawl. 

This was accomplished by changing the alignment of the footgear rubber discs (Fig. 2.3) 

as well as reducing the total number of these discs. The rubber discs in the footgear of the 

control trawl varied in their orientation, with the blunt side often up to 70 degrees out of 

alignment with the direction of tow, while the experimental trawl had all discs facing with 

their narrow side parallel to the direction of tow (Fig. 2.1 ). The number of discs was 

reduced from 66 in the control trawl to 38 in the experimental trawl. The control trawl 

consisted of discs with 12"(30.5 em) and 14"(35.6 em) diameters, while the experimental 

trawl di scs were 14" and 16"( 40.6 em). The width of all rubber discs was approximately 

56 mm. The ability to align all discs with the direction of tow required diagonally 

positioned centre holes, custom cut at individual angles depending upon their relative 

position within the footgear and attaching the footgear to the fishing line by a series of 

toggles rather than with a typical travel chain as in the control trawl. Toggles and travel 

chains are trawl components used to attach the footgear to the fishing line. Toggle chains 

are set perpendicular from the fi shing line, where as a travel chain is positioned parallel to 
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the fishing line and can be manufactured with wire or chain (Fig. 2 .3). As a result of these 

modifications, the distance from the centre of the footgear rubber disc to the fishing line 

of the experimental trawl was 20 em greater than the control trawl. The physical footprint 

of the experimental trawl on the seabed was reduced by reducing the total contact area of 

the footgear with the seabed. With all discs in alignment with the direction of tow, it was 

thought that the curved discs would slide over the sediment, rather than a more 

destructive ploughing effect thought to be caused by discs out of alignment with the 

direction of tow. 

Flume tank tests 

Scaled engineering models of the experimental and control trawls were tested in 

the flume tank at the Fisheries and Marine Institute of Memorial University of 

Newfoundland in St. John's, Newfoundland, as per Winger eta!. (2006). First, 1:8 scale 

models were tested then 1 :4 scale models. F lume tank testing demonstrated the trawls 

were simi lar in net geometry but the experimental trawl had a 39% reduction in contact 

area with the bottom compared to the control trawl , with no presumed differences in 

pressure (G. Legge, unpublished data, January 2012). 

Trawl quality control 
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Quality control was performed on the full -scale experimental and control trawls 

prior to sea-trials to ensure that the trawls were similar with the exception of the foot gear. 

This included; measuring 60 meshes per panel with an ICES standard spring-loaded 

gauge, counting meshes, producing a full description of each trawl with all associated 

components such as ropes, floats and weights, net drawing as well as a rigging plan. For 

full detailed protocol, consult DFO (1998). 

Sea-trials 

Sea-trials were carried out between 29 August and 7 September 2012 off Port au 

Choix, Newfoundland, on traditional fishing grounds, at depths ranging from 129-149 m 

(Fig. 2.4). In total , 40 tows or 20 paired tows were completed in 6 fishing days. The FN 

"Newfie Pride", a 19.8 m (65') inshore shrimp trawler based out of Anchor Point, NL, 

was used for all comparative fishing trials. All tows were 15 min in duration and towing 

speed was 2.3 knots. The towing speed used for experimental sea-trials was standard for 

the shrimp industry; however tow duration is typically 2-3 hr (H. Delouche, personal 

communication, March 15, 2013). 

Comparative fishing using the alternate tow method was employed to compare 

catches among trawls. The alternate tow method alternately hauls an experimental gear 

and a control gear, where the hauls are made as close as possible to each other in both 

time and space (DFO, 1998). The gears were identical except for the modified footgear 

being tested. All tows were conducted during the daylight period at least I hr after sunrise 
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and concluded at least 1 hr before sunset. Time between paired tows ranged from 20 to 42 

min. A maximum distance of 400 m between paired tows was chosen to ensure similar 

habitat was fished (Hannah et al., 2005). Paired tows were fished in the same direction, 

either with or against the tide. Towing order fo llowed the ABBA, or BAAB protocol, 

where A is the control trawl and B is the experimental trawl (DeAlteris and Castro, 1991 ). 

This protocol was used to eliminate time of day effect (He and Balanzo, 20 12). The port 

and starboard towing side of the second tow in re lation to the first tow was alternated to 

reduce side effects. 

Acoustic net mensuration equipment including a combination of E-Sonar™ and 

Netmind™ technology was used to record measurements of trawl net geometry during 

sea-trials . Net geometry parameters measured were door spread (m), wingspread (m) and 

headline height (m) . Door spread was recorded in order to ensure proper upright 

alignment of the doors. Wingspread and headline height were recorded throughout each 

tow as they are important parameters for determining catch rates. 

Catch sampling and analysis 

The shrimp catch and incidentally captured fish species were sorted and measured 

after each tow. Bycatch species were counted and body lengths(± 1 em) were measured 

for an arbitrary sample of 55 individuals of each fi sh species. Published length-weight 

regressions were used to estimate biomass for the most abundant bycatch species 

(Bowering and Stansbury, 1984; Hubutubise, 1993). 
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The shrimp catch was apportioned among 20 L baskets and weighed(± 1 kg) . A 

750 ml sub-sample of shrimp was removed from the first fi ve 20 L baskets. Sub-sampled 

shrimp were separated into broken and non-broken individuals. Non-broken individuals 

were counted and measured for carapace length (CL ± 0.0 1 mm) using a digital caliper. 

Carapace length was defined as the measurement between the posterior margin of the 

eye stalk and the posterior mid-dorsal edge of the carapace (Hansen and Aschan, 2000). 

All sub-samples of shrimp were taken back to the laboratory and weighed individually(± 

0.01 g) to obtain count data from non-broken shrimp. 

Comparative fishing data were analyzed using independent samples t-tests or the 

Mann Whitney U test as described below. Length frequency distributions were analyzed 

using independent samples Kolmogrov-Smirnov (K-S) tests. Software used to conduct 

statistical tests was SPSS® 17.0.0 (SPSS, 2008). 

Shrimp 

To determine if there were differences between trawl types in terms of shrimp 

catch rate (kg/min), an independent samples /-test was used. To determine if there were 

differences between trawl types in terms of the size of shrimp caught, three tests were 

used; (i) an independent samples t-test to compare shrimp counts (number/kg), (ii) a 

Mann Whitney U test to compare mean shrimp carapace length (mm) as these data 

violated the assumption of normal distribution required for parametric tests, and (iii) a K

S test to compare carapace length distributions. A Bonferronii correction was applied to 
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the probability level for tests analyzing shrimp size (n=3, p=0.016) to reduce the 

experiment-wise type one error rate. 

Bycatch 

Bycatch species were split into major and minor species (Table 2.1, Appendix 1 

and 2) based on prevalence, where major species were captured consistently by both 

trawls and minor species were captured sporadically and in low abundance. Major 

bycatch species were included in statistical analysis, however minor bycatch species were 

considered to be negligible and not analyzed. 

To determine if there were differences in catch rates of major bycatch species, 

independent samples /-tests were used to compare the percent of catch composed of 

capelin and turbot of the total catch between trawl types (Appendix 3 and 4). All 

proportion data were arcsine transformed, a standard statistical procedure which consists 

of taking the arcsine of the square root of the proportion (Sakal and Rohlf, 1995). 

Bycatch rates of the total catch were used rather than amounts to account for any 

differences that may have existed between trawls in terms of spreading capacities which 

would affect total area fished. To determine if there were differences between trawl types 

in terms of the size of major bycatch species captured, two tests were used for each 

species; (i) an independent samples !-test to compare total mean length (em) and (ii) the 

K-S test to compare length frequency distributions. A Bonferronii correction was applied 
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to the probability level for tests analyzing capelin and turbot size (n=2, p=0.025) to 

reduce the experiment-wise type one error rate. 

Trawl geometry data 

Trawl geometry data, including wingspread and headline height were compared 

between paired tows using independent samples t-tests. A Bonferronii correction was 

applied to the probability level for tests analyzing wingspread (n=4, p=0.0125) and 

headline height (n=2, p=0.025) to reduce the experiment-wise type one error rate. 

2.4 Results 

Trawl quality control 

Mean mesh size of the control and experimental trawls were calculated for all 36 

panels of the trawl net (Table 2.2). The percent difference in mesh size between trawl 

types ranged from 0.07%-4.71%, with a mean of 1.00%. It is highly unlikely that the 

minor percent differences between mesh sizes influenced catches of targeted and non

targeted species. Various measurements of the Nordmme grid, headline length, fishing 

line length and footgear length were similar between trawl types (Table 2.3). The distance 

from the centre of the foot gear rubber disc to the fishing line were over the minimum 

requirement of 71 em for the inshore shrimp fishery (Newfoundland and Labrador, 

2001 a) for both the experimental (108 em) and control trawls (88 em) (Table 2.3). 
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Shrimp catch 

The experimental trawl out fished the control trawl in 17 of 20 paired tows, 

representing a 23% increase in mean shrimp catch rate (Fig. 2.5). The difference between 

trawls in shrimp catch rate was statistically significant (Table 2.4). Shrimp carapace 

length or counts did not differ significantly between trawls (Table 2.4). The total weight 

of sub-sampled shrimp per tow ranged from 1.65 to 2.41 kg for the experimental trawl, 

and 0.83 to 2.52 kg for the control trawl. Size distribution of shrimp did not differ 

significantly (z = 0.047, p = 1.00) between trawls (Fig. 2 .6). On average, shrimp made up 

99% of total catch biomass for both the experimental and control trawls. 

Bycatch 

The major bycatch species; capelin and turbot (Fig. 2.7), comprised 93.1 % and 

92.8% of the total number of animals captured incidentally by the control (Appendix 1) 

and experimental trawls (Appendix 2), respectively. Capelin and turbot accounted for 

0.16% to 2.20% (mean = 0.72%, s.e. = 0.12) of the total catch weight for the control 

trawl. For the experimental trawl , capelin and turbot accounted for 0.28% to 2 .94% of the 

total catch weight (mean = 0.98%, s.e. = 0.15). 

Turbot 

35 



The experimental trawl captured significantly more turbot in relation to the total 

catch compared to the control trawl in 15 of 20 paired tows, by an average of 76.7% 

(Table 2.5, Fig. 2.8). Mean body length of turbot (Table 2.5), or length frequency 

distribution (Fig. 2 .9) was not significantly different between trawl types (z = 1.248, p = 

0.089). 

Cape/in 

Percent of total catch comprised of cape lin (Fig. 2.9) did not differ significantly 

between trawl types (Table 2.6); however the experimental trawl captured on average, 

33.8% less capelin than the control trawl. Mean body length (Table 2.6) or length 

frequency distribution of cape! in caught did not differ significantly between trawl types (z 

= 0.555, p = 0.918) (Fig. 2.10). 

Trawl geometty data 

Trawl sensors mounted on the upper wings and headline produced only 

intermittent data, where some tows rendered no data measurements and others gave 

several hundred measurements. For tows where measurements were recorded, the number 

of measurements obtained per tow ranged from 1 to 147 for wingspread and from 5 to 

304 for headline height (Appendix 5). The control trawl obtained 958 measurements 

(mean/tow = 47.9, s.e. = 45.62) for wingspread and 4441 (mean/tow = 222.05 , s.e. = 
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90.09) measurements for headline height. The experimental trawl obtained 657 

measurements (mean/tow = 32.85, s.e. = 41 .33) for wingspread and 717(mean/tow = 

35.85, s.e. = 43 .13) measurements for headline height. 

In an attempt to correct for the great variability in n values between tows, an 

arbitrary requirement of including only those paired tows which obtained at least 25% of 

the maximum number of measurements recorded for that parameter was deemed 

necessary for analysis. There were four paired tows for wingspread, and two paired tows 

for headline height which passed the arbitrary data requirement and were analyzed 

stati stically to test the null hypotheses; wingspread or headline height are not different 

between trawl types. 

Wingspread 

Mean wingspread and standard error was calculated for tows that passed the 

arbitrary data requirement (Table 2.7). Percent difference was calculated between mean 

wingspreads of each tow in a pair. Independent samples t-tests between paired tows 

demonstrated that wingspread was significantly different between trawl types in two out 

of four paired tows (Table 2. 7). In all four paired tows, the experimental trawl had a 

greater mean wingspread than the control trawl. 

Headline height 
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Mean headline height and standard error was calculated for tows that passed the 

arbitrary data requirement (Table 2.8). Percent difference was calculated between the 

mean headline heights of each tow in a pair. Independent samples /-tests between paired 

tows demonstrated that headline height was significantly different between trawl types in 

one of the two paired tows (Table 2.8). In both paired tows, the control trawl had a greater 

mean headline height than the control trawl. 

2.5 Discussion 

The results of the study revealed that the aligned trawl captured significantly more 

shrimp than the traditional trawl, without affecting the size of the shrimp captured. The 

size of major bycatch species captured was not significantly different between trawl 

types. However, the experimental trawl caught significantly more turbot than the control 

trawl. Mean capelin catch rate was lower with the experimental trawl but not significantly 

different between trawl types. Overall the results of this study indicate that the aligned 

trawl represents a good first step towards the development of a low impact shrimp trawl 

for the inshore ewfoundland and Labrador fishery as it does not negatively affect 

commercial catches. Before the commercial ization of the aligned trawl it will be 

necessary to conduct industry scale sea-trials with appropriate monitoring tools to 

understand the cause(s) of the increases in turbot catch, and then apply modifications to 

neutralize the effect once it becomes known. 
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This study demonstrated that the aligned trawl had significantly higher catches of 

both slu·imp and turbot compared to the traditional trawl. This was an unexpected result 

as the trawls were the same in all aspects with the exception of the modified footgear 

demonstrated by a thorough quality control, and it was predicted that the modified 

footgear would not affect catches. Shrimp do not herd, are unable to sustain an escape 

response and are generally found to be in higher volumes closer to the seabed during the 

daylight period (Eayrs, 2005 ; DeLouche et al. , 2006). Shrimp catch rates generally 

increase with an increase in area fished as well as with a reduction in the height of the 

fishing line offthe seabed (Hannah et al. , 1996). Thus, an increase in area fished (Hannah 

and Jones, 2000) or reduction in fishing line height may explain why the aligned trawl 

had higher shrimp catch rates compared to the traditional trawl. 

Exploring potential sources for the increased turbot catches of the aligned trawl is 

a much more difficult task than is exploring potential sources for increased shrimp catch 

due to the complex behaviour of flatfish, their ability to be herded and increased 

swimming capacity which allows them to actively escape capture. As we collected no 

video footage that could aid in the ability to determine the cause of the increased catches 

of turbot in the aligned trawl, the most parsimonious solution is to explore the potential 

sources for increased shrimp catch and see if these could also account for increased turbot 

catches. The most common response of flatfishes to an approaching trawl is an inverted 

or sideways rolling manoeuvre, keeping very close to the seabed (Bublitz, 1996). 

Flatfishes tend to stay within 1 m of the seabed when di sturbed by an approaching trawl , 

with an average distance of 35 em off bottom (Bublitz, 1996). Fishing line height is 
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inversely related to the capture of flatfish species, where an increase in fishing line height 

will reduce the catch of flatfish and vice versa (Brewer et al., 1996; Weinberg et al., 2002; 

Hannah and Jones, 2003; Winger et al. , 2010). Thus, an increase in area fished or 

reduction in fishing line height would also affect turbot catches and may explain why the 

aligned trawl had higher catch rates of both shrimp and turbot compared to the traditional 

trawl. 

Trawl geometry was monitored over the course of the experiment using an 

acoustic net mensuration system. This system consists of sensors, receivers and 

hydrophones that work together to collect acoustic data on trawl geometry for post trawl 

analysis. The sensors gave measurements for door spread, wingspread and headline 

height. Wingspread can be used to estimate the horizontal spread of the trawl and 

headline height can be used to estimate the vertical spread. When these estimates are used 

together, total area fished can be calculated. The wingspread of the trawl would affect 

shrimp and turbot catching efficiency, however increases in headline height would most 

likely have no effect on catches as shrimp and turbot are benthic species, most commonly 

found in bottom sediments or close to the seabed (Bublitz, 1996; Eayrs, 2005; DeLouche 

et al. , 2006). Due to technical difficulties with the sensors producing intermittent data or 

none at all (Appendix 1 ), the ability to use the trawl geometry data for any type of 

comparison or analysis was greatly reduced due to the high variability in the number of 

measurements obtained between tows and trawl types, reducing sample size. 

Although the number of trawl geometry measurements obtained was highly 

variable between tows and trawl types, the variability within a tow was quite low (Table 
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2.7 and 2.1 0). From the four paired tows which passed the arbitrary data requirement for 

wingspread, two of these tows were significantly different between trawl types, and in all 

four paired tows, the aligned trawl had a greater mean wingspread (Table 2. 7). One of the 

two paired tows for headline height demonstrated a significant difference between trawl 

types, and in both pairs the control trawl had a greater mean headline height (Table 2.8). 

God0 and Engas (1989) have demonstrated that wingspread and headline height have an 

inverse linear relationship, where an increase in wingspread leads to a decrease in 

headline height. Although the data from this study are sparse, they do seem to support this 

relationship, where the aligned trawl had a greater wingspread but lower headline height 

than the traditional trawl. Whether the difference in spread is biologically significant, and 

could explain the differences in catch observed between trawl types cannot be determined 

within this study. A greater sample size of reliable trawl geometry data is required 

through further sea-trials to determine differences between the horizontal and vertical 

spreads of the aligned and traditional trawls confidently. 

It would make sense that a trawl with increased horizontal spread and deceased 

vertical spread would capture more benthic species such as shrimp and turbot, and fewer 

pelagic species such as cape lin (DFO, 201 1 ). Although the aligned trawl had on average 

33.8% reduced capelin catches compared to the traditional trawl, there was no statistical 

difference between trawl types. Further sea-trials are recommended to better understand 

the relationship between trawl geometry and catch rates. 

An alternative solution in explaining the increases in shrimp and turbot catch by 

the aligned trawl compared to the traditional trawl is a lowered fishing line. To determine 
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the height of the fishing line above the seabed, an inclinometer is an effective tool; see 

Hannah and Jones (2003) for full description of this device. No such device was used in 

this study, thus it was not possible to explore the hypothesis that the aligned trawl had a 

lowered fishing line and fished closer to the seabed causing increased shrimp and turbot 

catches compared to the traditional trawl. To be able to test the hypothesis that the aligned 

trawl has a lower fishing line than the traditional trawl, an inclinometer would be required 

to determine fishing line height in future comparative sea-trials. 

The minimum toggle chain length established for the inshore slu·imp trawling fleet 

in Newfoundland and Labrador is 71 em to minimize flatfish bycatch (Newfoundland and 

Labrador, 200 I a). However in situ, toggle chains can be slack, or become wrapped 

around the footgear, reducing their effective length (T. Perry, personal communication, 

June 3, 20 13). Although the aligned trawl had toggle chains 20 em longer than the 

traditional trawl , it is possible that in situ the aligned trawl had toggle chains with a 

shorter effective length compared to the traditional trawl, causing the trawl to fish closer 

to the seabed. There are differences between the traditional and aligned trawl with respect 

to their attachment of rubber discs in the footgear to the fishing line. In the traditional 

gear, the rubber discs attach to the fishing line through a typical travel chain, however the 

rubber discs of the aligned trawl are attached through a series of toggles. Without this 

travel chain, the rubber discs of the aligned trawl are more ri gidly fastened to the toggles 

which may increase their tendency to roll forward, bringing the fish ing line closer to the 

seabed. Video footage as well as the use of an inclinometer wi ll be necessary to test this 

hypothesis during future sea-trials with the aligned trawl. 
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Turbot are an important commercial species in the Northwest Atlantic region and 

have been fished in Newfoundland and Labrador since the mid 1880s. After the collapse 

of many major groundfish stocks in the 1990s they composed the largest groundfish 

fishery (Bowering and Brodie, 1995). Data collected from research vessel surveys 

generating biomass and abundance estimates have shown a general declining trend in 

turbot abundance since the 1980's, as well as a decline in older larger cohorts (Bowering 

et a!., 1995; Bowering and Brodie, 1995). Recruitment has also been a concern over the 

last number of years, with no strong year classes being produced (DFO, 201 0). Size of 

fish caught by both trawls combined ranged from 6-32 em, all below the legal limit of 44 

em (DFO, 201 0). These fish are considered 1-2 year old recruits. Turbot bycatch in the 

Gulf of St. Lawrence shrimp trawl fishery is usually 3 kg or Jess per tow when observers 

are present, ranging from 1-7% of total catch (DFO, 201 Ob. Although accurate weights 

were not collected for this project, using a length-weight regression developed by 

Bowering and Stansbury ( 1984) demonstrated that on average 0.53% of total catch was 

turbot for the aligned trawl and 0.30% for the traditional trawl. Both trawl averages are 

below the commercial range (1-7%) calculated by DFO (20 I 0). The cause of the low 

turbot catches demonstrated in this study is unknown; however it most likely is a product 

of local juvenile turbot abundance which may have been low in the study area. Although 

overal l turbot catches were low in this study, the aligned trawl caught significantly more 

turbot than the traditional trawl, and if this trawl was fished in an area of high turbot 

abundance, representing 7% of the total catch, the current study suggests the aligned trawl 

would yield turbot catches representing 12% the total catch. The increase in turbot 

catches by the aligned trawl is not acceptable due to the importance of this species 
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commercially and the addi tional costs it would cause for fishers including; increased fuel 

consumption, increased sorting time and possibly less valuable shrimp catches caused by 

crushing and damage during sorting. 

The ability of the aligned trawl to reduce its physical footprint on the seabed could 

be increased with a higher shrimp catch rate. The aligned trawl has reduced contact area 

with the seabed by 39% and with its higher shrimp catch rate, fishing effort may be 

reduced, reducing the total area of seabed impacted. Reduced fishing effort could act as a 

driving incentive for fishers to use the aligned trawl, as less time at sea would be required 

to catch quotas. As discussed however, the increases in shrimp and turbot catch could be 

related, thus modifications to reduce turbot catches may also reduce shrimp catches. 

Therefore, until the increases in turbot catch are understood, it is unknown whether the 

increases in shrimp catch will remain once the aligned trawl is modified to reduce turbot 

catches. Nevertheless, even without significant increases in shrimp catch rate; the aligned 

trawl would have many incentives for its use and fill the void for a low impact trawl 

choice in the Newfoundland and Labrador northern shrimp inshore fishery. 

2.5.1 Limitations to Approach 

Industry scale tow duration for the inshore northern shrimp fishery ranges from 2-

3 hr (H. Delouche, personal communication, March 15, 2013) however the tow duration 

chosen for this experiment was 15 min as it was considered to be the most efficient (God0 

eta!., 1990). By using shorter tows, more tows can be conducted increasing sample size. 
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Fish or shrimp size is not affected by tow duration and catch composition of short (i.e. 30 

min) and long tows (i.e. 165 min) are similar (Wassenberg et al., 1998; Wieland and 

Starr-Paulsen, 2006). Wieland and Starr-Paulsen (2006) demonstrated that for northern 

shrimp and turbot, biomass densities or numerical densities did not differ between 30 and 

15 min tows. However, there is some evidence that fish and invertebrate catch rates are 

higher at shorter tow durations (God0 et al., 1990; Wassenberg et al. , 1998). Despite 

greater nominal catch rates that can be found with shorter trawl durations, our study 

compared catch rates between treatments with no intention of estimating commercial 

catch rates. Based on previous studies, using 15 min tows was valid for our study as it is 

the most efficient and does not affect the size or species composition of catch, and 

although catch rates may be higher, they were compared relatively. It can be reasonably 

assumed that the results of this study are likely to be mirrored by commercial scale tows 

for the inshore ewfoundland and Labrador shrimp fishery; however in situ testing will 

be required to know for certain. 

The basis for calling the aligned trawl a low impact trawl was strictly dependant 

on flume tank testing. No actual field sampling or monitoring was conducted to compare 

the contact area or pressure exerted between the aligned trawl and traditional trawl. 

Although the science and engineering of flume tank testing is well developed (Winger et 

a l. , 2006), its ability to estimate full-scale performance at-sea is only predictive and can 

sometimes be difficult (Fiorentini et al. , 2004). Due to time and financial constraints, 

physical monitoring of the seabed pre- and post- trawling for both trawls was not possible 

in the current study, however before commercialization of this product and marketing it 
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as low impact, evaluations of the aligned trawl's interaction with the seabed in situ is 

strongly recommended. 

Scientifically sound experiments which study seabed impacts of trawling tend to 

be labour intensive, expensive and time consuming. Due to the lack of resources available 

for these types of studies, using cameras attached to the trawl which will allow 

observation of the footgear and its physical interaction with the seabed may be sufficient 

to determine if the aligned trawl behaves how it was predicted by flume tank testing. This 

camera work could be piggy backed to future commercial testing of the aligned trawl by 

fishers. 

2.6 Conclusion 

The purpose of this experiment was to test the aligned shrimp trawl at sea in 

comparison to the traditional trawl to determine if differences existed in catch efficiency 

or catch composition that could introduce negative effects to shrimp fishers by using the 

ali gned trawl. This included quantifying shrimp catch parameters such as shrimp catch 

rate and size, as well as the amount and size of bycatch species captured. The aligned 

trawl demonstrated mixed results. It had significantly higher catches of shrimp and turbot, 

no significant effect on capelin, while presumably reducing the physical footprint of the 

trawl on the seabed compared to the traditional trawl. Increased turbot bycatch is a 

concern as turbot are a commercially important species that were in decline during the 

early 1990 ' s and increasingjuvenile mortality ofthis vulnerable species by shrimp 
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trawling could have negative effects on ecosystem sustainability (Bowering et al., 1995; 

Bowering and Brodie, 1995). This research represents a first step towards the 

development of a low impact trawl for the northern shrimp Newfoundland and Labrador 

inshore fishery. It demonstrated that a low impact trawl can be effectively used without 

compromising commercial catch rates. Further comparative sea-trials with industry-scale 

tow durations using video footage and inclinometers are recommended as a next step 

towards commercial development of the aligned trawl. 
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2.8 Tables 

Table 2. 1. Species captured incidentally during the shrimp trawl experiment. 

Major 

cape! in Mallotus villosus 

turbot Reinhardtius hippoglossoides 

Minor 

Atlantic herring Clupea harengus 

American plaice Hippoglossoides p latessoides 

red fish Sebastes spp. 

sand lance Ammodytes spp. 

lanternfish Ceratoscopelus maderensis 

witch flounder Glyptocephalus cynoglossus 

eel pout Zoarces spp. 

alligator fi sh Aspidophoroides monopterygius 

snakeblenny Lumpenus lampretaeformis 

mud star Ctenodiscus crispatus 

sea pen Pennatula aculeata 
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Table 2.2. Mean mesh size (mm) per panel with standard error for the experimental and 

control trawls. The percent differences between mesh size means are also reported. 

Control Experimental 
Panel Mean S.E. Mean S.E. % difference 
Top Wing Starboard 92.30 0. 19 91 .50 0.17 0.87 
Top Wing Port 92.13 0. 15 91.58 0.14 0.60 
Top Bunt Wing Starboard 46.10 0.12 45.48 0.13 1.36 
Top Bunt Wing Port 45.47 0. 14 45 .75 0.13 0.61 
1st Upper Belly 45.82 0.12 45.45 0.13 0.81 
2nd Upper Belly 45.87 0.12 45 .83 0.14 0.09 
3rd Upper Belly 45.43 0. 17 45.15 0.15 0.62 
4th Upper Belly 44.70 0.11 45.08 0.12 0.84 
Side Panel 1 Starboard 44.98 0.18 45.18 0.12 0.44 
Side Panel 1 Port 46.23 0.13 45.68 0.17 1.20 
Side Panel 2 Starboard 45.17 0. 14 45 .68 0.13 1.12 
Side Panel 2 Port 45.80 0.12 46.35 0.14 1.19 
Side Panel 3 Starboard 45.52 0.1 4 45.98 0.10 1.00 
Side Panel 3 Port 45.57 0. 15 45 .63 0.13 0.13 
Side Panel 4 Starboard 44.63 0. 12 45.47 0.10 1.85 
Side Panel 4 Port 44.88 0.15 45 .05 0.1 7 0.38 
Side Panel 5 Starboard 45.57 0.1 2 46.05 0.15 1.04 
Side Panel 5 Port 45 .57 0. 10 45 .32 0.15 0.55 
Side Panel 6 Starboard 43.78 0.1 3 44.12 0.16 0.77 
Side Panel 6 Port 44.68 0.11 44.58 0.10 0.22 
Lower Wing Starboard 91.88 0.13 91.55 0.16 0.36 
Lower Wing Port 91.68 0.1 5 92.12 0.17 0.48 
Lower Bunt Wing Starboard 45.65 0.11 45.72 0. 15 0.15 
Lower Bunt Wing Port 45.98 0.13 45 .55 0.13 0.94 
1st Lower Belly 43.47 0. 11 43 .13 0.15 0.79 
2nd Lower Belly 45.13 0.11 46.03 0.10 1.96 
3rd Lower Belly 45.15 0.16 46.02 0.12 1.89 
4th Lower Belly 44.80 0.13 44.67 0.14 0.29 
Lengthening Piece Top 43.48 0.18 42.62 0.24 2.02 
Lengthening Piece Bottom 43 .07 0.17 45.20 0.20 4.71 
Grid Section Top 44.08 0.20 44.53 0.1 7 1.01 
Grid Section Bottom 43.13 0.1 8 42.88 0.16 0.58 
Extension Top 41.98 0.17 42.65 0.1 5 1.57 
Extension Bottom 42.50 0. 17 42.53 0.12 0.07 
Codend Top 42.45 0.16 43.72 0.16 2.90 
Codend Bottom 43.42 0.15 43 .67 0.1 5 0.57 
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Table 2.3. Summary of the trawl quality control measurements conducted with the 

experimental and control trawls. 

Measurement 

Trawl parameter Experimental Control 

Nordm0re grid 

length (m) 1.23 1.27 

width (m) 1.01 1.04 

thickness (mm) 23 .80 26.13 

mean distance between 2 bars (mm) 21.05 21.49 

Length of the headline (m) 33.65 33.14 

Length of the fishing line (m) 32.84 32.84 

Length offootgear (m) 32.9 32.9 

Distance between footgear and fishing line (em) 108 88 

6 1 



Table 2.4. Results of statistical analysis are illustrated for shrimp catch rate (kg/min), 

counts (number/kg) and mean carapace length (mm) of the control and experimental 

trawls. Significant p-values are indicated by *. 

Shrimp Statistical analysis 

trawl mean S.E. d .f t-stat p-value 

Catch rate Control 8.28 0.49 38 2.881 0.006* 

Exp. I 0.19 0.45 

Counts Control 225.9 2 .2 94 0.824 0.412 

Exp. 257.1 8.8 

Carapace length Control 17.5 0.03 0.660 

Exp. 17.5 0.03 
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Table 2.5. Summary of turbot catches by trawl type including mean length (em) and 

percentage of total catch comprised of turbot. Significant p-values are indicated by *. 

Turbot Statistical analysis 

trawl mean S.E. d.f t-stat p-value 

% of total catch Control 0.30 0.065 38 2.105 0.042* 

Exp. 0.53 0.097 

Length Control 17.75 0.470 360 1.816 0.070 

Exp. 18.85 0.370 
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Table 2.6. Summary of capelin catches by trawl type including; mean length (em) and 

percentage of total catch comprised of capelin. Significant p-values are indicated by *. 

Cape lin Statistical analysis 

trawl mean S.E. d.f t-stat p-value 

% of total catch Control 0.37 0.07 38 1.624 0.113 

Exp. 0.25 0.04 

Length Control 12.83 9.54 1,239 0.650 0.516 

Exp. 12.87 10.11 
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Table 2.7. Mean wingspread, n value and standard error for paired tows that passed the arbitrary data requirement. The percent 
difference between average wingspreads for each paired tow is demonstrated. Results of statistical analyses are shown, with 
significant p-values indicated by *. 

Control trawl Experimental trawl Statistical analysis 

Pair # Wingspread mean n S.E. Wingspread mean n S.E. %difference d.f t-stat p-value 

3 19.39 147 1.03 19.58 47 0.76 0.98 102.99 1.309 0.194 

4 19.74 120 0.85 20.02 47 0.75 1.42 165.00 1.986 0.049 

7 20.35 124 0.85 21.6 1 75 0.92 6.19 197.00 9.819 <0.001 * 
8 2 1.05 79 1.00 22.06 45 1.18 4.80 122.00 5.024 <0.00 1 * 

Overall mean 20.01 20.9 1 3.35 

Overall s.e. 0.97 0.98 
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Table 2.8. Mean headline height, n value and standard error for paired tows that passed the arbitrary data requirement. The 
percent difference between average headline heights for each paired tow is demonstrated . Results of statistical analyses are 
shown, with significant p-values indicated by *. 

Control trawl Experimental trawl Statistical analysis 

Pair # Headline mean n S.E. Headline mean n S.E. % difference d.f t-stat p-value 
1 4.88 279 0.021 4.82 184 0.027 1.24 461 .00 1.677 0.094 

20 5.50 268 0.021 4.92 103 0.028 11.79 220.22 16.646 <0.001 * 
Overall mean 5.18 4.86 6.52 

Overall s.e. 0.38 0.34 
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2.9 Figures 

Figure 2.1. Photograph of the spatial positioning of the footgear rubber discs in the 
experimental (A) and control (B) trawls, as well as the modeled two inch penetration 
pathways for each trawl type (C and D) (Legge, 20 12). Colours indicate different sections 
of the trawl and are consistent between the photograph and modeled pathways. 
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1 02- 8" f loats 

Figure 2.2. Profile drawing of the V6nin 2007- 1570 shrimp trawl. The same design is used for both the experimental and 
control trawls (DeLouche, 2013 ). 
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Figure 2.3. Trawl model with gear components indicated. 
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Figure 2.4. Location of experimental fishing transects in the northern Gulf of St. 

Lawrence. 
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) of shrimp for the experimental and control trawls 
during the 20 paired tows, with mean line for each trawl type. 
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Figure 2.6. Northern shrimp carapace length distributions for the control and 
experimental trawls. Total number of shrimp measured (n) is also shown. 
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Figure 2.7. Total of number of animals captured incidentally by the control and 
experimental trawls during 20 paired tows. Species include; capelin, turbot, American 
plaice, Atlantic herring, redfish, miscellaneous species and sandlance. Miscellaneous 
species include; witch flounder, eelpout, alligator fish, snakeblenny, mud star and sea 
pen. 
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Figure 2.8. Percent contribution of turbot to the total catch by the control and 

experimental trawls during 20 paired tows, with mean line for each trawl type. 
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Figure 2.9. Turbot length distributions for the control and experimental trawls. Total 

number of turbot measured (n) is also shown. 
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experimental trawls during 20 paired tows, with mean line for each trawl type. 

76 

• 
i 

WI 

20 



40.---------------------------------------------------, 

30 

-0 
~ 

Q) 

..0 10 
E 
::J 
z 

0 

8 10 

- Control trawl , n=569 
- Experimental trawl , n=672 

12 14 16 18 

Length (em) 

Figure 2. 11. Capelin length distributions for the control and experimental trawls. Total 

number of capelin measured (n) is also shown. 

77 

20 



CHAPTER 3: TESTING MODIFIED GANGIONS TO REDUCE GREENLAND 
SHARK BYCA TCH IN THE CUMBERLAND SOUND TURBOT LONG LINE 
FISHERY 

Crew member of the MIV Nuliajuk and Pangnirtung resident, Levi lshulutaq holding a 
turbot caught during experimental fishing trials in the summer of 2012. 
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3.1 Abstract 

To develop a sustainable and economically viable open water Greenland halibut 

(aka turbot; Reinhardtius hippoglossoides) fishery in the Cumberland Sound, it is 

important to find a way to reduce Greenland shark (Somniosus microcephalus) bycatch. 

The objective of this study was to test modifications to turbot longline gear to reduce 

Greenland shark bycatch without affecting turbot catches or individual body size when 

compared to traditional gear. Experimental longline fishing was conducted with modified 

gangions from that of the traditional gangion. Gangions are leaders attached 

perpendicularly to the mainline that contain a baited hook on the terminal end. Twelve 

sets of 400 hooks were fished with each set containing 100 hooks of each treatment; 200 

lb multifilament braided nylon (traditional), 200 lb monofilament, 100 lb monofi lament 

and 50 lb monofilament. Each hook was assigned a catch label upon haul back describing 

hook condition or catch. Monofilament gangions captured significantly fewer sharks than 

the traditional gangion but turbot catch rates and body size did not differ significantly 

between treatments. Higher frequencies (number/1 00 hooks) of hook Joss were 

demonstrated for all monofilament gangions compared to the traditional multifilament 

gangion. The 200 lb monofilament gangion is recommended for turbot Jongline fishing in 

Arctic communities as it significantly decreases shark catch rates compared to the 

traditional gangion and has improved operational efficiency compared to the other 

monofilament treatments tested. Overall this study suggests the bycatch of Greenland 

shark can be significantly reduced by changing from the traditional 200 lb braided nylon 

gangion to monofilament gangions without any negative effects on turbot catch rates. 
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3.2 Introduction 

The Cumberland Sound is an inlet located on the southeastern side of Baffin 

Island in Nunavut, Canada. The only settlement in the Sound is the community of 

Pangnirtung. The people of Pangnirtung have traditionally sustained themselves by 

fishing Arctic char and hunting marine mammals (Pike and Mathias, 1995). More 

recently, fishing for turbot (Reinhardtius hippoglossoides) has represented an alternative 

form of game and income through commercial fishing. In the winter of 1986 a small-scale 

fishery was developed and in 1994 the quota of this winter fishery was set at 500 t (DFO, 

2008a) and has remained unchanged. Landings peaked in 1992 with 430 t harvested, 

however since then landings have fluctuated greatly, dipping as low as 3 t in 2007 (Fig. 

3. 1 ). 

The highly variable success rate of the Cumberland Sound winter turbot fishery 

since around 1995 is due to variable ice conditions and unpredictable winter storms which 

have led to low fisher participation (DFO, 2008b; Dennard eta!., 20 1 0). Turbot migrate 

from relatively shallow waters to deeper depths as they grow and mature, thus the best 

fishing grounds are in the deepest waters located in the centre of Cumberland Sound 

(Dennard eta!. , 2010; Nunavut, 2010). Due to climate warming, some years have had 

poor ice formation and led to fishers having limited or no access to deep water fishing 

grounds . Harsher than normal winter storms have led to landfast ice breaking up sooner 

than usual (DFO, 2008b) leading to a reduction in the length of the fishery season due to 

unsafe conditions. Harsh winter storms have also led to substantial gear loss and 

damages. In 1996, a particularly fierce and sudden storm resulted in 20 of the 30 fishers 
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losing a significant amount of gear (DFO, 2008b; Dennard et al. , 201 0). The synergistic 

effects of these environn1ental factors have led to low fishery participation and landings, 

with only 0.6 % of the quota being harvested in 2007 and of 115 fishers active in the mid-

1990' s, no more than 10 participated in the winter of2008 (DFO, 2008a; DFO, 2008b). 

Although the winter of 2012 was a more successful year for the fishery, a more consistent 

and reliable method to access the turbot resource is necessary. The fishery provides 

employment oppotiunities and is an important component ofthe local economy. In 1993, 

the turbot fishery was valued at $750,000 and employed about 130 people seasonally as 

either fishers or plant workers (Pike and Mathias, 1995). It provides an alternative to 

traditional Inuit fisheries , as well as increasing food security which can be a great 

challenge in isolated Arctic communities like Pangnirtung. 

A summer fi shery has been proposed to supplement the winter fishery, using 

vessels instead of fishing through the ice. A summer fishery would operate during the 

open water season, generally from mid-July to mid-October (DFO, 2008a). Although this 

alternative shows promise, experimental longlining in Cumberland Sound during the 

summer has demonstrated catch rates of Greenland shark (Somniosus microcephalus) are 

much higher than in the winter fishery, and often outweigh turbot catches (Nunavut, 

201 0). This is thought to be caused by a shift in Greenland shark primary foraging 

location between seasons. In the winter the primary prey is seals, thus sharks are found 

closer to the surface (Bigelow and Schroeder, 1953) patrolling seal breathing holes in the 

ice. In the summer its thought that the shark shifts to more demersal feeding (Bigelow and 

Schroeder, 1953) where the primary prey is fish, including turbot (Yano et al., 2007). The 
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consequence of this is a direct overlap between turbot fishing gear and shark habitat, 

which leads to increased interactions of sharks with fishing gear. 

Greenland shark bycatch has a number of costs to fishers . Sharks can depredate 

hooks, removing bait and reducing turbot catch rates. When hooked sharks become 

entangled in the gear (most often around their caudal peduncle); fi shers lose time 

associated with releasing the shark, lose turbot catch as the entangled hooks are no longer 

available to catch the target species, lose time disentangling the gear and may accrue gear 

damages or loss. Shark mortality caused by the turbot fishery is either a result of severe 

entanglements or cannibalism of hooked sharks (Borucinska et a!., 1998; Nunavut 201 0). 

It is estimated that 50% of hooked Greenland shark are released alive (Nunavut, 201 0). 

Finding a way to reduce Greenland shark bycatch is important as it will reduce costs for 

fishers, Greenland shark mortalities and help ensure a sustainable and economically 

viable summer turbot fishery in Cumberland Sound. 

Sharks, skates and rays are cartilaginous fish ofthe subclass Elasmobranchii 

(Musick eta!., 2000). Elasmobranches tend to be more vulnerable to overexploitation due 

to their life history characteristics in comparison to commercially fished teleost species 

(Musick et al. , 2000). Sharks are often apex predators with few predators and low natural 

mortality rates (Stevens eta!., 2000). They possess a reproductive strategy which includes 

the characteristics of slow growth, long life span, low reproductive potential and late 

sexually maturity. Having a low intrinsic rate of increase, depleted shark populations are 

slow to recover, often in the range of decades (Stevens et a!. , 2000). Mortality associated 

with fish ing activities has resulted in large population declines of several shark species. 
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Currently, 67 species of elasmobranches are considered critically endangered or 

endangered by the International Union for the Conservation ofNature (IUCN, 2011). 

Large population declines of these top predators have the potential to critically alter 

marine ecosystem structure. Top predators play a vital role in maintaining controls on 

ecosystem structure, functioning and diversity (Baum et al., 2003). With the elimination 

of top predators like sharks, detrimental cascading effects could ensue (Stevens et al., 

2000). Sharks have a long evolutionary history and their intrinsic biodiversity provides 

cause for the preservation of this group (Dulvy et al., 2008). 

Threats to shark species include; directed fishing, bycatch mortality (Stevens et 

al. , 2000; Dulvy et al., 2008), marine pollution (Seitz and Poulakis, 2006) and habitat 

destruction (Knip et al., 201 0). Bycatch is defined as the incidental capture of non

targeted species as well as undesirable size or under aged individuals of target species 

(F AO, 201 0). Bycatch can be sold or simply discarded at sea. Bycatch mortality is one of 

the leading causes of shark population declines (Cosandey-Godin and Morgan, 20 11 ). At 

best, sharks captured as bycatch are released alive without harmful effects, however many 

sharks die as a result of encounters with fishing gears. Fishing gears that sharks interact 

with include; longlines, purse seines, gillnets, and trawls. Vulnerability to fishing related 

mortality depends on the particular shark species, fishing gear involved, and the length of 

time the shark is entangled, hooked or exposed to air before being released. 

The Greenland shark is a member of the family Somniosidae (sleeper sharks) 

known to be found in the North Atlantic and Arctic oceans (MacNeil et al. , 20 12). It is the 

only shark that can tolerate polar temperatures year round and is the largest fish found in 
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these regions . Its ability to tolerate very cold temperatures and a broad depth range, 

results in a wide range distribution. Greenland shark have been identified from the 

intertidal zone to abyssal depths of 2,64 7 m in the Gulf of Mexico which attests to the 

potentially wide habitat range (Benz et al., 2007). The Greenland shark can reach a total 

length ofup to 5-7 m and weight of 1,020 kg (Bigelow and Schroeder, 1953). Greenland 

sharks exhibit sexual dimorphism and the females typically grow to a larger size than the 

males (Yano et al., 2007). The Greenland shark is an opportunistic feeder which preys 

and scavenges upon a great diversity of animals. Most frequently it feeds on teleost fishes 

(especially turbot) and marine mammals (Fisk et al., 2002; Yano et al., 2007; MacNeil et 

al. , 20 12). Cephalopods and crustaceans appear to be important prey items for smaller 

sharks. Little direct research has been conducted on this species due to a lack of 

commercial interest and the remoteness of its habitat. Despite the lack of knowledge of 

population trends, the International Union for the Conservation of Nature has listed the 

Greenland shark as near threatened due to its vulnerability to overfishing (IUCN, 201 1). 

Species classified as near threatened are considered likely to meet a threatened threshold 

in the near future. 

A number of methods have been attempted to reduce shark bycatch or reduce the 

danger of line-based fishing operations to shark species (e.g., Erickson et al. , 2000; 

Kerstetter and Graves, 2006; Gilman et al. , 2007; Kaimmer and Stoner, 2008; Ward et al. , 

2008). These include using alternate gear types, gear modifications and altered fishing 

strategies. Alternate gear types that are used to harvest turbot include gillnetting and 

trawling. Examples of gear modifications include changing hook type, gangion material, 

84 



and bait type. Altered fishing strategies include; fishing season, location, depth and 

reduced soak-time. Before discussing of these methods, I will give a brief overview of 

longline fishing and gear components as a basic understanding of these topics is 

necessary to understand bycatch mitigation techniques. 

Longlining is a passive fi shing method, where the gear is stationary and captures 

are a result of fish moving towards the gear (Bjordal and L0kkeborg, 1996). The ability of 

longlines to capture fish is based on attraction to bait which is the chemical stimulus that 

lures fish to the gear to ingest the baited hook (Bjordal and L0kkeborg, 1996; L0kkeberg 

et a!. , 20 10). The success of capture is based on the ability of the hook to catch and retain 

the fish until the line is hauled onto the fishing vessel. As the name suggests, there is a 

longline or mainline which has shorter branch lines called gangions attached 

perpendicularly. The gangions are spaced at a fixed interval and contain the baited hooks 

at the terminal end. They are typically attached to the mainline by a swivel which allows 

the gangion to rotate free ly around the mainline, reducing gear entanglements. 

There are three main ways to set longlines; bottom, semi-pelagic and pelagic. The 

Cumberland Sound turbot fishery is a bottom fishery, meaning the lines are set on the 

seabed. The mainline is manufactured with materials that cause it to sink and remain in 

contact with the seabed. The mainline is kept in position wi th the use of anchors. The 

anchors are attached to long buoy lines which connect to buoys at the ocean surface. 

These buoys function as markers. Longlines must be baited prior to setting. Baiting can 

be done by hand or mechanically using baiting machines. In the turbot longline fishery, 

hand baited longlines are coiled into tubs to store neatly before deployment. Typically 
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there are approximately 200 hooks per tub. After the lines are baited they are deployed 

into the water. Longlines are left in the ocean for a certain amount of time (soak time) 

depending on target species, size ofthe vessel, and number of hooks (Bjordal and 

L0kkeborg, 1996). Longlines are typically hauled onto the vessel using a power driven 

wheeled hauler called the gurdy. The gurdy is controlled by a fisher, who lands the fish, 

clears snarled gangions, and can stop the haul back process if there is a tangle or problem 

(Skud, 1978a). During haul back fish are removed. Before the longline can be baited and 

set again, old bait must be removed, broken hooks and gangions must be replaced, and 

tangles must be removed from the mainline. 

Changing gear type is a way to reduce or eliminate the capture of unwanted 

bycatch. Other ways to harvest turbot include trawling and gillnetting. Changing gear 

type from longlining to trawling would not be a solution as this fishing method has been 

known to catch Greenland shark (C. Bourne, personal communication, December 21, 

20 12) and trawling is banned in the Cumberland Sound (Northlands Consulting, 1994). 

Gillnetting is not recommended (DFO, 2008a) as it would pose a risk of entanglement for 

marine mammals, as well as Greenland shark. In addition, it is highly selective for large 

female turbot, making it unfavourable for fishery sustainability (DFO, 2008a). Longlining 

is the only appropriate fishing method for the Cumberland Sound turbot fi shery as the 

selectivity range for turbot includes both sexes, a broader size range, and this method 

poses a lower risk of entanglement for large animals in the Sound (DFO, 2008a). 

To reduce the bycatch of sharks or reduce the danger of line-based fishing 

operations to shark species, gear modifications are often used to increase selectivity 
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without compromising the catch of the targeted species. Changing hook type from circle 

to J-hooks can result in increased post-capture survival of shark discards (Kerstetter and 

Graves, 2006). Laboratory studies suggest hooks that incorporate rare earth metals and/or 

magnetic alloys such as SMART hooks may deter shark predation and thereby reduce 

captures in longline gears (WWF, 2006; Kaimmer and Stoner, 2008). However, results 

have been mixed in field trials (Brill eta!. , 2009, Tallack and Mandelman, 2009; Godin et 

a!. , 20 13). Changing gangion material or bait type can also increase gear selectivity 

(Erickson eta!., 2000). Changing gangion materials (i.e. from wire to nylon) allows larger 

animals or those with sharper teeth to avoid capture. This is a particularly good method 

for reducing bycatch of predatory species such as sharks (Ward eta!., 2008; Vega and 

Licandeo, 2009). Changing bait type takes advantage of species specific prey preference 

between targeted and non-targeted species (Erickson et al. , 2000). 

Altered fishing strategies can be a relatively easy way to reduce bycatch if the 

overlap between target and non-target species is not spatially consistent. Changing the 

location of fishing grounds in relation to environmental, topographic, and oceanographic 

features can reduce shark interactions and shark capture rates (Gilman eta!., 2007). 

Adjusting the depth fished has been used to reduce fishing area and to avoid overlapping 

with shark habitat (Afonso eta!. , 20 11 ). Reducing soak time reduces the potential length 

of time a shark remains hooked on the line and can increase the chances of post-capture 

survival (Carruthers eta!., 20 11). 

Some of the methods outlined above may also reduce the catch of the targeted 

species, an unfavourable outcome for business minded fishers. Gear modifications or 
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altered fishing strategies are more likely to be successfully implemented in commercial 

fisheries when they do not reduce the catch of targeted species and have an economic 

incentive for implementation. There are already many economic incentives to reduce 

catch rates and entanglements of Greenland shark in the Cumberland Sound turbot 

fishery, thus the only issue is finding a gear modification or altered fishing strategy that 

achieves its purpose without compromising turbot catch rates. 

The winter fishery for turbot in Cumberland Sound uses circle hooks, 

multifilament braided nylon gangions, and mainline swivels. SMART hooks have been 

shown to be ineffective (Grant, 2012). Changing bait type can be a successful bycatch 

reduction tool (Gilman et al., 2007), however Greenland shark are opportunistic and 

scavengers that have been documented to eat just about anything (Yano et al. , 2007). 

There is little confidence that changing bait type will be effective in reducing shark catch 

rates in the Cumberland Sound turbot fishery . Turbot are abundant at the greatest depths 

in the Sound during the summer (N unavut, 201 0) and a preference by Greenland shark for 

bottom waters and finfish during the summer (Yano et al. , 2007) suggest changing the 

fishing location would not be beneficial. Further experimental longline fishing and DFO 

turbot surveys indicate Greenland shark are captured at shallow and deepwater areas 

throughout the Sound (Nunavut, 2010; K. Hedges, personal communication, August 25, 

20 12). Reducing soak time is unlikely to be a viable option as it would result in reduced 

effort and hence reduced catch rates of turbot. It would appear that modifications to the 

gangion represent the most promising options for reducing bycatch of Greenland shark. 
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Recent studies have integrated the effects of gangion length (Grant, 20 12) but 

studies on the effect of gangion breaking strength and material are lacking. Greenland 

shark are on average four times the length of turbot and have 45 times the mass (Bigelow 

and Schroeder, 1953 ; DFO, 2008b). By using gangions of reduced breaking strength, the 

mass of the shark and tension exerted on the gangion during haulback may permit 

increased gangion breaks and shark escape rate compared to the traditional gangion. The 

use of monofilament gangions instead of the traditional multifilament gangion may lead 

to increased shark bite-offs (Berkeley and Campos, 1988; Ward et al., 2008). Many 

studies have documented the importance of gangion material in terms of shark catch rates 

(Berkeley and Campos, 1988; Branstetter and Musick, 1993; Bjordal and L0kkeborg, 

1996; Stone and Dixon, 2001; Ward et al., 2008; Vega and Licandeo, 2009; Afonso et al., 

2012). The combination of reducing gangion breaking strength and changing gangion 

material may facilitate increased escape rate of hooked sharks, reducing by catch of 

Greenland shark. 

To test the effect of changing gangion material and breaking strength on 

Greenland shark and turbot catch rates, longline fishing experiments carried out in 

Cumberland Sound during Aug - Sep 20 12. Catches and hook status were assessed for 

monofilament gangions of three different breaking strengths and the traditional 200 lb 

multifilament braided nylon gangion (control) . The goal ofthis research was to reduce 

fishing related mortalities of the Greenland shark while creating a sustainable and 

economically viable open water turbot fishery for residents of Pangnirtung. If one of the 

experimental gangions was found to reduce shark catches and entanglement without 
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compromising turbot catch rates then the next step would be introduce this technology to 

local fishers in Pangnirtung for verification under commercial conditions. 

3.3 Materials and Methods 

Gear design and configuration 

Four gangion treatments were tested in the experimental turbot longline fishing 

gear. Treatments included one control and three experimental gangions (Table 3.1). All 

experimental gangions were manufactured by Momoi®, part of the Hi-Catch brand. 

Monofilament material is made out of a single fibre of nylon whereas multifilament 

braided nylon is composed of three or more fibres woven together. All gangions had a 

14/0 Mustad® circle hook with a gape size of 15.4 mm attached to the terminal end. Each 

hook was baited with cut squid (lllex sp.), measuring on average 15.2 em (s.e. = 0.34). 

The bait length was within the 15-20 em range used in the Cumberland Sound winter 

turbot fishery (Pike and Mathias, 1995). 

Experimentallongline fleets consisted of 400 hooks with al ternating treatments 

every 20 hooks. Pattern of alternation remained consistent through the experiment, in the 

following order; C-200BN, E3-50M, E 1-200M and E2-100M. Every set contained five 20 

hook replicates of each treatment. Colour coded line was braided into the mainline before 

the first hook and after the twentieth hook of each section to allow easy identification of 

gangion type as the experimental treatments all looked quite similar (Fig. 3.2). The 

mainline was comprised of 14 mm tarred braided polyester line fitted with Mustad® rotor 
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swivels at 1.8 m (1 fathom) intervals. Gangions were attached to the mainline by swivels 

spaced at 1.8 m intervals and total length of each longline set was 731.5 m (400 fathom). 

Experimental fishing trials 

At-sea experimental fishing took place in Cumberland Sound at depths ranging 

685-1,278 m from 19 August to 7 September 2012. In total, 12 longline sets were fished 

in 17 fishing days (Fig. 3.3). Fishing locations were chosen haphazardly within known 

depth strata. The M/V "Nuliaju/C', a 19.8 m (65') research vessel owned by the 

Government ofNunavut was used for all experimental fishing. 

Experimental fishing was conducted in order to test the null hypothesis that there 

is no difference in Greenland shark or turbot catch rates between gangion treatments. 

Longlines were set at dusk between 1800-2100 hr and hauled the next morning starting at 

0700-0900 hrs. For 11 of 12 sets, soak time ranged from 12 hr to over 14 hr; however one 

set was left for 36 hr (Table 3.2) due to inclement weather. Haul back operations varied in 

duration, ranging from 3-5 hr. 

Catch sampling 

To test the null hypothesis, every hook fished was assigned a catch label upon 

haul back that determined hook condition or identified species captured (Table 3.3). All 

turbot were measured for total length to the nearest em, and then released. Body length of 
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Greenland shark was estimated based on a baseline marker of known length on the hull of 

the vessel. Three size classes were estimated; < 3 m, 3 - 4 m, and > 4 m. Sharks were 

sexed based on the presence or absence of claspers. Time to release the shark and to 

resume fishing was recorded. Number of hooks fouled by Greenland shark, hook location 

on sharks, and details of entanglement were also noted. Captured sharks were released by 

severing the gangion(s) as quickly and safely as possible to reduce stress and increase 

chances of post-capture survival. 

Additional data 

Research survey longlines were set at the same location as the experimental 

longlines for an unrelated study assessing turbot population abundance in the Cumberland 

Sound. The survey longlines were fished in the same manner and data was recorded in the 

same format as the experimentallonglines. The survey longlines used the same type of 

hooks, mainline and gangion spacing as the experimentallonglines. The gangions used in 

the survey fl eet were composed of braided nylon of 360 lb breaking strength. The survey 

fleet was attached to the experimental longlines by a 10-15 m length of rope. 

The data from the survey fleet were incorporated in this study for two reasons. 

Since the survey fleets fished at the same locations as the experimentallonglines, shark 

captures on the survey fleet could be used to indicate shark presence in the study area 

when none was captured on the experimentallongline. Using these data could help to 

explain hook losses when no sharks were captured on the experimental longline. Also, 
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gangions used by the survey fleet were multifilament braided nylon, although a higher 

breaking strength than what was used in the experimentallongline. By using the 

information on time lost due to shark entanglements from the survey fleet, another 

reference point for multifilament gangions could be utilized when attempting to compare 

multifilament to the monofilament gangions in terms of time lost due to shark 

entanglements, or entanglement severity. 

Analysis 

Catch label frequencies for each treatment were combined by set to give a 

frequency per 100 hooks. For analysis of effect of treatments on catch label frequencies, 

sets where the catch label of interest was recorded at least once were included. Catch 

labels included in analysis were those with 10 or more total observations recorded. Set 8 

was excluded from bait absent (A) analysis as soak time was 1.5 times longer than the 

next longest and bait loss has been shown to increase with soak time (Skud, 1978b ). 

All catch and hook status data were log (n+ 1) transformed to increase normality 

and obtain homogeneity of variances. Levene's test for homogeneity of variances was 

used to determine if parametric or non parametric tests were required. To compare mean 

turbot lengths between treatments a one-way ANOVA was conducted. To analyse the 

effect of gangion treatment on catch label frequency, one-way ANOVAs were conducted 

for each catch label. Post-hoc analysis was conducted with Duncan ' s new multiple range 
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test. Significance level was set at 0.05 for all analyses. Software used to conduct 

statistical tests was SPSS® 17.0.0 (SPSS, 2008). 

Due to the small sample size of some of the more detailed catch labels describing 

catches of Greenland shark, (GS-L, GS-D, GT-L, GT-D) and turbot, (T, TP) the labels 

were combined for analysis as GS-TOTAL and T-TOTAL, respectively. 

3.4 Results 

Summary of fishing results 

Over the course of the experiment, a total of 4,800 hooks were fished, with data 

collected for 4,780 hooks (99.6 %). The missed data were the result of human error 

during the data collection and recording process. Data exist for 1,193 hooks of treatment 

C-200BN and E I-200M and 1,197 hooks of E2-1 OOM and E3-50M. In total; 17 sharks, 

233 turbot and 100 Arctic skate were captured (Table 3.4). Out of all finfish (turbot, 

Arctic skate and Greenland shark) captures; the C-200BN treatment accounted for 26.6 

%, E l -200M for 33.1 %, E2-100M for 22.3% and E3-50M for 18.0 %. 

Greenland Shark 

Sharks were captured in seven of the 12 longline sets, however when catches in 

the survey fleet and Greenland shark predation on turbot were included, sharks were 

clearly present in at least 10 of the 12 longline sets (Table 3 .2) . Mean catch rates were 
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calculated from the seven experimental longline sets that captured Greenland shark. The 

mean number of Greenland shark captures was significantly greater within the C-200BN 

gangion compared to the experimental gangions with the latter comprising a homogenous 

sub-set, demonstrated by post-hoc tests (Table 3.5 and Fig. 3.4). The traditional 

multifilament braided nylon gangion accounted for only 25% of gangions, yet accounted 

for 65% of Greenland shark captures. 

Sharks brought to the surface did not appear to struggle, only displaying slight 

movements. Size class was estimated for 15 sharks; three were < 3 m, eight were 3-4 m 

and four were > 4 m. Sex was determined for 13 sharks. There were seven females and 

six males captured. For the 10 sharks that could be assessed for the prominent ocular 

ectoparasitic copepod Ommatokoita elongata (Grant, 1827), 100% were infected with the 

parasitic copepod in both eyes. Sharks were hooked by the mandible or caudal fin. 

Entangled sharks were wrapped around the caudal peduncle, caudal fin or in the head 

region. The number of hooks fouled by an individual shark ranged from 1-52. Total time 

lost per shark capture including; time to release shark, time to disentangle the gear and 

resume fishing ranged from 0-128 min (Table 3 .6). 

Turbot 

Turbot were captured in all 12 longline sets (Table 3.2). The number of turbot 

captured was not significantly different between gangion treatments (Table 3.5 and Fig. 
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3.4). Turbot body length did not differ significantly between gangion treatments (Table 

3.7, Fig. 3.5). 

Turbot brought to the surface upon haul back struggled fiercely, thus a hand held 

net was necessary to safely bring the fish aboard for length measurements. There were 15 

turbot caught with evidence of shark predation out of the 233 caught, representing 6.4% 

of turbot. 

Arctic skate 

Arctic skate were captured in 11 of the 12 longline sets (Table 3 .2). The number 

of Arctic skate captures was not significantly different between gangion treatments (Table 

3.5 and Fig. 3.4). 

Hook condition 

Catch labels describing hook condition (A, HL, HT-G, P, S) were not significantly 

different between treatments except for HL (Table 3.5). There were significantly more 

hook losses with the monofilament gangions which comprised a homogenous sub-set, 

compared to the traditional C-200BN gangion as demonstrated by post-hoc tests (Fig. 

3.5). 
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3.5 Discussion 

The goal of this study was to introduce a longline gear modification that would 

reduce catch rates of Greenland shark without reducing either the individual body size or 

catch rate of turbot. This study has demonstrated that catch rates of Greenland shark can 

be significantly reduced by changing gangion material from multifi lament braided nylon 

to monofil ament without negatively influencing turbot catch rates. Breaking strength of 

monofi lament line did not have a significant impact on catch rates or hook status 

categories. It is concluded that switching gangion type from multifi lament to the 200 lb 

monofi lament will decrease catch rates of Greenland shark without negatively effecting 

catch rates of turbot. 

The fact that Greenland shark captures and hook loss mirrored the same post-hoc 

results, with monofil ament gangions grouped together as a homogenous sub-set, indicates 

there were no differences between experimental gangions for these catch labels. Gangion 

material seems to have a greater effect than breaking strength. The effect of gangion 

material on catch rates of sharks has been demonstrated by many groups (Branstetter and 

Musick, 1993 ; Bjordal and L0kkeborg, 1996; Stone and Dixon, 200 1; Ward et al. , 2008; 

Vega and Licandeo, 2009; Afonso et al. , 201 2). 

Monofilament fishing line is a thin, typically clear material, which is less visible 

than darker multifi lament braided nylon or steel. It has been suggested that this decrease 

in visibility explains the increased catch rates of some fish species (Bjordal and 
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L0kkeborg, 1996; Stone and Dixon, 2001; Ward et al., 2008). Catch rates of cod and 

haddock have been shown to be as much as three times higher on monofilament 

compared to multifilament gangions and thinner gangions tend to have higher catch rates 

than thicker gangions (Bjordal and L0kkeborg, 1996). It is thought that finfish have a 

harder time identifying monofilament compared to the multifilament braided nylon and 

are more apt to prey upon these baited hooks (Bjordal and L0kkeborg, 1996; Stone and 

Dixon, 2001 ). The ability of the Greenland shark or turbot to detect multifilament braided 

nylon fishing line easier than monofilament will depend on the role that vision plays as a 

key sensory mechanism during predation. 

The Greenland shark is thought to have severely limited vision (Borucinska et al. , 

1998; MacNeil et al., 2012) thus changing gangion visibility should not affect catch rates. 

Limited vision of the Greenland shark is caused by the prominent ocular ectoparasitic 

copepod Ommatokoita elongata which attaches to and dangles freely from the shark's 

cornea (Grant, 1827). Borucinska et al. ( 1998) and Benz et al. (2002) suggest that infected 

eyes are only capable of light reception and rough image formation. In addition, vision is 

not thought to play a dominant role in foraging for Greenland shark due to the relatively 

small eye (Bigelow and Schroeder, 1953) and the deep dark environment it inhabits 

which is often ice covered. The shark's well developed olfactory sense and electrosensory 

modalities are thought to be most important for survival (MacN ei I et al., 20 12). 

Therefore, decreased catch rates of Greenland shark on monofilament line compared to 

multifilament are not likely to be related to differences in abil ity to visually detect the 

gangwn. 
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The pelagic prey items consumed by turbot (Vollen and Albert, 2008) and results 

of vision tests conducted with related species (Matsuda et al. , 2009), suggests it is 

plausible that turbot have good vision which is capable of identifying multifilament 

braided nylon more easily than monofilament. Turbot are a deepwater flatfish, but there is 

evidence to suggest that their use of the pelagic zone is significant as adults (Vollen and 

Albert, 2008). Turbot prey upon bathypelagic, mesopelagic and epipelagic species such as 

capelin and herring, demonstrated by stomach content analysis (Vollen and Albert, 2008). 

Successful capture of these species would require good visual acuity. Matsuda et al. 

(2009) demonstrated that related members of the family Pleuronectidae, the Point head 

flounder (Cleisthenes pinetorum) and red halibut (Hippoglossoides dubuis) have colour 

vision. It is likely that turbot rely on vision for successful prey capture and that they have 

the ability to detect multifilament braided nylon fishing line easier than monofilament, 

which is expected to lead to higher catch rates on monofilament. However it is important 

to note that the role of vision at depths fished is unclear. 

Although there is evidence to suggest that turbot are visual predators, the results 

of this study demonstrated that turbot catch rates were not significantly different between 

gangion treatments. The reason for this may be that perhaps at the depths fished (Table 

3.2) it was too dark for gangion visibility to have an effect on catch rates. Stone and 

Dixon (200 1) suggest that the ability of some fish species to distinguish thicker 

multifilament lines easier than monofilament lines can be achieved during nightfall under 

darkness. An alternate hypothesis to explain the results would be that due to the low catch 

rates, and the high variabi lity between catches (Fig. 3.4), sample size was too low to 
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accurately assess differences between gangion treatments in turbot catch rate. Fishing 

grounds chosen for this study were based on depth strata, not on known commercial 

fishing grounds, which produced high variability in turbot catch rates between sets. For 

example, set seven yielded 62 turbot, however six sets (2, 3, 5, 6, 9 and 11 ) yielded less 

than ten turbot (Table 3.2). Variability in catch rates between sets most likely stemmed 

from the fact that turbot were not abundant in some of the areas fished. It is possible that 

fishing on only commercial turbot grounds would have yielded different results with 

regard to turbot catch rates between gangion treatments. 

With regard to Greenland shark, monofilament gangions were demonstrated to 

have lower catch rates than traditional multifilament but breaking strength did not affect 

Greenland shark catch rates. This study supports the findings of Vega and Licandeo 

(2009) which demonstrated that using monofilament gangions reduces shark catch rates 

as sharks are able to bite through monofilament gangions easier than multifilament. The 

hypothesis that reducing breaking strength of monofilament gangions can reduce 

Greenland shark catch rates is rejected. The reason why breaking strength did not affect 

shark catch rate may be related to behaviour of Greenland sharks. If the shark is hooked 

in such a way that it is unable to successfully bite through the gangion, its docile 

behaviour (ldrobo and Berkes, 20 12; MacNeil eta!., 2012) suggests it does not put great 

effort in escaping. Because it is expected that Greenland sharks do not thrash or exhibit 

resistance when hooked, breaking strength is not put to the test and reducing gangion 

breaking strength would have no effect on Greenland shark catch rates. 
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A consequence of an increased ability of sharks to bite through monofilament 

gangions is increased hook loss (Berkeley and Campos, 1988). This was found in the 

current study with experimental monofilament gangions having significantly more hook 

loss than the control multifilament gangions. The actual cause of individual hook losses 

cannot be determined by this study. In similar studies however, hook losses are attributed 

to shark bite-offs, or escaped sharks (Berkeley and Campos, 1988; Branstetter and 

Musick, 1993 ; Afonso et al., 2012). Berkeley and Campos (1988) suggest that although a 

large fish may occasionally break off a worn gangion, most missing hooks are believed to 

be bitten off. In addition, they state that among captured species, sharks should be 

responsible for most bite-offs. Sharks are known to have been present in 10 ofthe 12 sets 

determined by shark captures in either the experimental or survey fleet and predation 

upon turbot (Table 3 .2). Of the two sets where sharks were not captured, in one set a 

turbot caught was observed to have been preyed upon (Table 3 .2), and many more sharks 

could have been present in fished areas but were able to avoid capture. Due to evidence 

confirming the presence of sharks and the fact that they are assumed to be the main 

source of hook loss in other studies, the Greenland shark is suspected to be the major 

cause of hook loss in the current study through bite-offs. It is expected that to a lesser 

extent, turbot, Arctic skate and environmental factors are also contributing to hook losses. 

Although using monofilament gangions may increase the costs for hook 

replacement, gear damages caused by shark interference will be minimized as only the 

gangion needs to be replaced compared with larger mainline entanglements that can be 

caused from hooked sharks on multifilament braided nylon lines. These types of damage 
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are considerably more costly and time consuming to fix compared to replacing gangions 

(Stone and Dixon, 2001). 

The severity of shark entanglements and the duration of time entangled may be an 

important factor determining post-capture survivorship, as well as costs to fishers. 

Although small sample size prevented this study from being able to determine whether 

gangion material or breaking strength has an effect on entanglement severity, it will be an 

important factor to address with future studies. Time lost due to shark captures, including 

time to release the shark and time to untangle the gear ranged from 1-19 min (mean = 7, n 

= 6) with experimental monofilament gangions and from 1-1 28 min (mean = 15, n = 11) 

with control multifilament braided nylon gangions. Multifilament braided nylon gangions 

of 360 lb breaking strength used in the survey fleet, had a time loss range of 1-81 min 

(mean = 1, n = 16) (Table 3 .6). Further studies are required to determine if monofilament 

has any added benefit affecting shark entanglements. 

From a conservation perspective reducing Greenland shark captures through gear 

modifications can only be successful if sharks that are hooked and escape, survive to 

reproduce. It was not possible to safely remove hook(s) from captured sharks prior to 

release, nevertheless, post-capture survival is expected to be very high. Evidence from 

acoustic tagging studies (K.Hedges, personal communication, August 25, 2012) of one 

Greenland shark captured during turbot longlining and then released has shown 

movements after a year post initial capture. Further, one shark captured during this study 

was observed to have an old hook embedded in its jaw. This was obvious as all hooks 

used in the present study were new, thus rusted hooks were from previous encounters 
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with fishing gear (Fig. 3.7). Thus, hooked sharks that escape longline gear can survive 

and resume normal behaviour such as feeding. In addition, the hardiness of this species 

observed by Pangnirtung residents (ldrobo and Berkes, 20 12) and the calm, docile nature 

of the fish when caught all suggest that post-capture survival will be high. 

Out of the three experimental gangions, the 200 lb gangion performed the best in 

this study. The 200 lb monofilament gangion is the thickest and stiffest of the 

experimental gangions and has a reduced tendency to become tangled during baiting and 

when placed in storage tubs. In general, baiting by hand using monofilament line is a 

more difficult task than when using other types of fishing line as monofilament is thinner, 

more rigid and has memory (Bjordal and L0kkeborg, 1996). Baiting with gangions that 

have the tendency to tangle can also increase the total time it takes to bait, with fewer 

hooks deployed and ultimately reduced revenues per fish ing day. Out of the three 

experimental gangion types used in this study, the 200 lb monofilament gangion proved 

to be the best as it was the easiest to use and quickest to hand bait. 

3.5.1 Limitations to Approach 

A challenge to studying solitary, wide ranging marine species such as some sharks 

or marine mammals is that it can be difficult to achieve the ideal number of samples with 

limited resources. In total, 17 Greenland sharks were captured through experimental 

longline fishing. Although sample size is low, the highly significant relationship (p < 

0.0 I) demonstrated between gangion treatment and Greenland shark captures reduces the 
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probability that low sample size reduces the power to detect significant differences. 

Nevetiheless, conducting further experimentallongline fishing to increase shark sample 

size would add confidence to the results obtained from this study. 

3.6 Conclusion 

Substituting the traditional multifilament braided nylon gangions with a 

monofilament gangions in the open water fishery in Cumberland Sound, may lead to a 

significant reduction in the bycatch of Greenland shark without negatively impacting 

commercial catches of turbot. Arctic skate bycatch is not affected by changing gangion 

type. Although it is not clear why monofilament gangions reduce shark catch rates, it is 

plausible that sharks are able to bite through the monofilament gangions more easily than 

traditional multifilament gangions. This is supported by the increase in hook loss of the 

monofilament gangions compared to the traditional gangions demonstrated by this study. 

Increased hook loss wi ll increase hook replacement costs. However, economic savings in 

reducing the total number of shark captures would compensate for these additional costs. 

The gangion best suited for the Cumberland Sound turbot longline fishery 

demonstrated by results of this study is the 200 lb monofilament gangion. Without 

affecting turbot catches, this gangion captured significantly fewer Greenland sharks than 

the traditional multifilament braided nylon gangion and were the most efficient 

operationally out of the experimental gangions. The next step is to share the results of this 
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study with Pangnirtung turbot fishers and have them try out the 200 lb monofilament 

gangion under commercial conditions. 
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3.8 Tables 

Table 3 .1. Gangi on treatment descriptions. 

Letter Breaking Clasp Average gangion 
Fig. 3.2 Gangi on Treat. Material Colour Diameter strength length/knot length (em ± 1 s.e) 
D C-200BN control multifi lament Blue 3.0mm 200 lb Knot 37.68 ± 1.35 
c E1-200M monofi lament Clear 1.5mm 200 lb 18 em 41.56 ± 0.78 
B E2-1 00M monofilament Clear l.Omm 100 lb 8cm 44.78 ± 0.68 
A E3-50M exp. monofilament nylon Clear 0.5 mm 50 lb 7cm 43.72 ± 0.90 
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Table 3 .2. Summary of longline soak time, mean depth and catch labels per set, with totals. Greenland shark captures by the 
survey fleet are included at the bottom of the table. 

Set 

2 3 4 5 6 7 8 9 10 11 12 Totals 

Soak time (h r) 12 12 13 14 13 12 14 36 12 13 14 12 
Mean depth (m) 854 1,143 708 863 1,082 720 960 778 891 1,267 833 1,080 
Turbot 

Total (T-TOTAL) 23 9 5 25 9 62 31 7 45 2 14 233 
Preyed upon (TP) 0 0 2 0 0 0 9 0 15 

Greenland shark 

Total (GS-TOTAL) 0 0 2 " -' 0 2 0 I 0 5 " -' 17 
Alive (GS-L + GT-L) 0 0 1 2 0 2 0 0 0 4 '"' -' 13 
Dead (GS-0 + GT-0) 0 0 1 0 1 0 0 0 1 0 1 0 4 

Arctic skate (AS) 15 2 10 11 7 13 0 17 2 5 12 2 5 100 
Hook/mainline tangled 

By shark (HT-G) 0 0 0 0 12 0 27 0 15 0 8 51 113 

No shark present (S) 1 79 5 11 3 4 40 3 10 8 10 175 
Hook loss (HL) 97 85 96 59 59 49 96 128 140 99 130 122 1, 160 
Bait absent (A) 47 32 57 57 45 35 75 122 81 78 57 56 742 

Bait 12resent (P) 21 7 192 223 228 254 310 79 113 148 154 188 126 2,232 

Research Survey Fleet 

G reenland shark 0 0 2 0 0 0 4 2 5 2 17 
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Table 3.3 . Catch labels used to determine hook condition or identify catch species. 

A 

AS 

OS-TOTAL 

HL 

HT-G 

p 

s 
T-TOTAL 

Bait absent 

Arctic skate 

All Greenland shark captures including; GS-0, GS-L, GT-0 and GT-L 

GS-0, Greenland shark-dead 

GS-L, Greenland shark-alive 

GT-0, Greenland shark and turbot on same hook-shark dead 

GT-L, Greenland shark and turbot on same hook-shark alive 

Hook loss 

Hook snarl suspected to be caused by Greenland shark interference 

Location immediately before or after a recorded shark capture 

Bait present 

Hook snarl suspected to be caused by environment or fishing process 

All turbot captures including; T and TP 

T, Turbot 

TP, Turbot with predation evidence 
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Table 3.4. Catch label totals per gangion treatment. 

Gangion treatment 

E3-50M E2- 100M E1-200M C-200BN TOTAL 

T-TOTAL 35 62 88 48 233 

AS 26 15 25 34 100 

OS-TOTAL 2 3 11 17 

HT-G 28 7 17 61 113 

HL 150 176 193 66 585 

HL-G 188 146 129 112 575 

A 174 162 184 222 742 
p 554 573 522 583 2232 

s 37 47 36 55 175 
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Table 3.5. Catch label means(± 1 s.e.) per 100 hooks for each gangion treatment. Letters indicate results of post-hoc tests, 
where groups that make up a homogenous sub-set are indicated by the same letter listed below their mean. The letter A 
indicates that the sub-set contained the greatest nominal mean of all sub-sets. Significant p-values ( < 0.05) are indicated by *. 

Treatments Statistics 

E3-50M E2-100M E1-200M C-200BN d.f F-stat p-value 

T-TOTAL 2.92 ± 0.99 5.17 ± 1.54 7.33 ± 2.09 4 ± 1.17 3, 44 1. 111 0.355 

AS 2.36 ± 0.85 1.36 ± 0.51 2.27 ± 0.81 3.09 ± 0.74 3, 40 1. 196 0.324 

GS-TOTAL 0.29 ± 0.18 0.14 ± 0.14 0.43 ± 0.20 1.57 ± 0.48 3, 24 5.399 0.006* 

B B B A 

HT-G 2.33 ± 1.65 0.58 ± 0.40 1.42 ± 1.04 5.08 ± 7.73 3, 24 1.847 0.166 

HL 28.17 ± 2.80 27.33 ± 2.65 26.83 ± 3.02 14.83 ± 2.57 3,44 7. 180 0.001 * 

A A A B 

A 13.55 ± 1.89 11.82 ± 1.04 14.73 ± 1.92 16.27 ± 1.67 3, 40 0.710 0.552 
p 46.17 ± 4.28 47.75 ± 5.32 43.50 ± 4.85 48.58 ± 5.27 3, 44 0. 135 0.939 

s 3.08 ± 1.67 3.92 ± 1.84 3 ± 1.31 4.58 ± 2.22 3, 44 0.320 0.811 
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Table 3.6. Summary of lost fishing time due to shark entanglements between three gangion types; monofilament (50, 100 and 
200 lb inclusive), 200 lb braided nylon and 360 lb braided nylon (from the survey fleet). Mean values include(± 1 s.e.). 

Monofilament B. nylon 200 B. nylon 360 

N 6 11 16 
Max (min) 19 128 81 
Min (min) 1 1 1 
Mean (min) 7 (± 6.66) 15(± 33.76) 17(± 26.61) 
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Table 3.7. Mean turbot length (em± 1 s.e.), minimum length (em) and maximum length (em) by gangion treatment. Results of 
the one-way ANOV A comparing mean turbot length and gangion treatment is also shown. 

One-way ANOV A 

Treatment Mean length Min Max df F-stat p-value 

C-200BN 67.0 ± 3.07 47 86 
El -200M 66.3 ± 2.92 50 88 
E2-100M 67.7±3.17 53 90 3,229 0.947 0.41 

E3-50M 65.2 ± 2.82 50 81 
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3.9 Figures 
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Figure 3.1. The history of the Cumberland Sound winter turbot fishery, including allotted 
quota (t), amount of fish harvested (t) and number of fishers from 1986-2012 (data 
provided by K. Imrie, Pangnirtung Fisheries Ltd.). 
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Figure 3.2. Photograph of gangion treatments (Table 3.1 for descriptions). 
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Figure 3.3 . Approximate longline set location in the Cumberland Sound, Nunavut. The 
accuracy of locations plotted is limited due to the lack of reliable cartographic data for 
this region (i.e. one point positioned on land despite accurate coordinates recorded). 
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Figure 3 .4. Mean number of captures (per 1 00 hooks) of fish species per gangion 
treatment. Includes target catch (turbot) and bycatch (Arctic skate and Greenland shark). 
Error bars indicate standard deviation. 
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Figure 3.5. Turbot body length di stributions by gangion treatment. 
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Figure 3 .6. Mean number of hook losses (per 100 hooks) per gangion treatment. 
Error bars indicate standard deviation. 
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Figure 3.7. Photographs illustrating a new (A) hook bitten off the research longline and an 
old rusted (B) hook from a previous interaction with turbot longline gear. The presence of 
a rusted hook in the jaw of a shark caught during the current study suggests that 
remaining hooks do not compromise the Greenland shark' s feeding ability post-release. 
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CHAPTER 4: SUMMARY 

4.1 Recommendations for Fishing Industry 

4. 1. 1 Inshore Newfoundland and Labrador northern shrimp trawl fishery 

The aligned trawl demonstrated increased shrimp catches compared to the 

traditional trawl with a modelled 39% reduction in contact area with the seabed. With its 

higher shrimp catch rate, the total area of seabed impacted may be reduced over time 

through reduced fishing effort. In terms of the capture of major bycatch species, trawl 

types did not differ in terms of capelin catch, however the aligned trawl had significantly 

higher turbot catch rates. The increases of turbot catch are unacceptable due to the 

commercial importance of this species and the negative impacts of increased bycatch on 

fi shing efficiency. This trawl is not recommended for commercialization unti l 

modifications are implemented and shown to have no effect on turbot catch when 

compared to the traditional trawl. Due to the lack of appropriate monitoring tools, factors 

influencing increases in shrimp or turbot catch rates could not be confidently determined 

from the results of this study. It is recommended that further comparative sea-trials are 

conducted with the aligned and traditional trawls, using industry scale tows and tools that 

can aid in determining the cause of increased turbot catches. This would include video 

footage of the aligned trawl footgear in situ, quality net mensuration equipment providing 

reliable data, and the use of an inclinometer to determine the height of the fishing line off 

the seabed. This study represents a first step towards the development of a low impact 

shrimp bottom trawl for the Newfoundland and Labrador inshore fishery, demonstrating 

seabed contact can be reduced without negatively affecting commercial catches. 
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4.1.2 Cumberland Sound turbot longline summer fishery 

Monofilament gangions are recommended for the Cumberland Sound fishery as 

they reduce Greenland shark captures without compromising commercial turbot catches 

compared to the traditional multifilament braided nylon gangion. Operationally, the 200 

lb monofilament gangion would be better than the 100 lb or 50 lb as it is easier to work 

with due to its increased rigidity. Bycatch rates of Arctic skate did not differ between the 

experimental monofilament gangions and the traditional multifilament braided nylon 

gangions. Materials costs of monofilament and multifilament nylon are comparable 

(North Atlantic Marine, personal communication, May 16, 20 12). The 200 lb 

monofi lament gangion should be tested by Pangnirtung fishers on a commercial scale. 

The knowledge of the benefits using monofi lament gangions should be shared with other 

communities in Baffin Island with plans to develop turbot longline fisheries. 

4.2 Future Research 

4. 2.1 Inshore Newfoundland and Labrador northern shrimp trawl fishery 

The next step in development of the aligned inshore shrimp trawl is to conduct at

sea comparative fishing trials with the traditional trawl at a commercial scale, using tow 

durations of 2-3 hr. For these trials it is recommended that a more reliable net 

mensuration system is used than what was used in this study to ensure the ability to 

calculate total area fished of each tow (i .e. wingspread, headline height and height of 

fishing line) . It is recommended that under water cameras are used in these trials to allow 
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observations of the seabed to confirm that the aligned trawl interacts with the seabed in 

the same way that was expected through flume tank testing. Without this, it will remain 

unknown whether the aligned trawl is actually low impact in situ. In addition cameras 

should be used to observe the behaviour of benthic bycatch species as they interact with 

the trawl , especially fl atfi sh like turbot. Additionally, with the use of an inclinometer to 

calculate fishing line height, the cause of increased turbot catches may be possible 

through these fishing trials. Once the cause of the increased turbot catches is known, 

modifications to ameliorate the effect should be devised, and subsequently tested at sea. 

4. 2. 2 Cumberland Sound turbot longline summer fishery 

Severe entanglements involving Greenland shark and longline gear negatively 

affects both shark populations and the fishing industry. Severe entanglements decrease 

the probability of the shark surviving the capture as it places substantial stress on the 

body of the animal and can cause injuries. In addition, these entanglements render the 

hooked shark more vulnerable to fatal attacks from other sharks as it limits their mobility. 

Entanglements also negatively impact fishers as they increase fishing time, gear 

replacement costs and reduce commercial catch rates as entangled hooks no longer fish. 

Thi s experiment demonstrated that the monofilament gangions can effectively reduce 

Greenland shark catch rates, without effecting turbot catches, however there was 

insufficient data to determine whether modified gangions affect entanglement rates and 

severity of entanglements (i.e. number of hooks) compared to traditional gangions. My 

hypothesis is that monofilament gangions will result in fewer entanglements and a 

reduction in the severity of entanglements compared to multifilament braided nylon 
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gangions due to the physical properties of monofilament, allowing it to stretch with stress 

and weaken over time. To investigate this issue more experimental longline fishing trials 

with the 200 lb multifilament braided nylon and monofilament gangions are 

recommended to increase shark sample size. 
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APPENDICES 
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Appendix 1. Species captured incidentally (in numbers) per tow by the control trawl is illustrated. Miscellaneous fish include; 
witch flounder, eelpout and snakeblenny. 

Paired tow no. cape lin turbot A. plaice A. herring red fish sandlance 
Benthic 

misc. fi sh Total 
inverts. 

12 4 0 2 0 0 0 0 18 
2 10 3 0 2 0 0 0 0 15 

" .) 0 11 0 0 0 0 0 0 11 

4 41 4 1 1 0 0 0 1 48 

5 80 " .) 0 0 
..., 
.) 0 0 1 87 

6 53 7 1 1 0 2 0 0 64 

7 78 2 2 0 2 1 0 1 86 
8 132 2 1 1 2 2 0 0 140 

9 22 18 0 3 0 0 0 0 43 

10 46 6 0 1 0 0 0 54 
11 25 11 0 2 0 0 0 1 39 

12 30 22 4 0 0 0 0 1 57 

13 39 0 0 1 0 0 0 41 

14 21 1 0 0 1 1 0 0 24 
15 5 4 0 1 1 0 0 1 12 

16 32 0 0 0 0 0 0 
..., ..., 
.) .) 

17 18 14 0 3 0 0 0 36 
18 9 10 0 0 0 0 2 22 

19 16 10 2 3 0 0 0 0 31 

20 25 0 0 2 1 0 0 0 28 

Total 694 134 11 23 12 7 0 8 889 
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Appendix 2. Species captured incidentally (in numbers) per tow by the experimental trawl is illustrated. Miscellaneous fish 
include; witch flounder, eelpout and alligator fish. Benthic invertebrates include the mud star and seapen. 

Paired tow no. capelin turbot A. plaice A. herring red fish sand lance 
Benthic miSC. 

Total 
inverts. fish 

35 29 l 0 0 2 1 1 69 

2 21 6 0 1 0 0 0 1 29 

3 23 17 0 0 0 0 0 0 40 

4 77 17 0 3 1 0 2 101 

5 32 4 1 
..., 
.) 0 0 0 0 40 

6 43 7 0 0 0 0 1 52 

7 78 4 0 1 2 0 0 86 

8 290 7 0 9 
..., 
.) 0 1 311 

9 169 2 3 0 0 0 176 

10 45 15 2 1 0 0 65 

11 16 16 4 4 0 0 0 0 40 

12 53 16 4 4 0 0 0 78 

13 37 4 0 1 
..., 
.) 0 0 46 

14 19 4 2 1 1 0 0 0 27 

15 2 7 0 0 0 0 0 0 9 

16 30 23 0 1 0 1 0 56 

17 12 10 4 2 0 0 0 0 28 

18 23 30 6 1 1 0 0 5 66 

19 41 6 0 0 0 0 0 0 47 

20 20 5 0 2 0 0 0 1 28 

Total 1066 228 29 24 23 8 2 14 1394 
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Appendix 3. Total biomass (kg) of turbot, capelin and shrimp captured in each tow for the control trawl. Additionally, turbot 
and cape lin catches are expressed as percentages of total catch in terms of weight (kg). 

Paired tow No. Turbot (kg) Capelin (kg) Shrimp (kg) Total catch (kg) %catch turbot % catch capelin 

0.26 0.49 143.52 144.26 0.18 0.34 
2 0.08 0.13 105.00 105.21 0.07 0.1 3 

" .) 0.17 0.35 100.00 100.51 0.17 0.34 

4 0.16 0.79 103.00 103.95 0.15 0.76 

5 0.13 0.45 107.00 107.58 0.13 0.42 
6 0.48 0.71 53.00 54.19 0.88 1.31 

7 0.30 0.68 112.00 112.98 0.26 0.60 

8 0.07 0.66 87.00 87.72 0.08 0.75 
9 1.01 0.26 163.20 164.47 0.62 0.16 
10 0.37 0.51 116.00 116.89 0.32 0.44 

11 0.42 0.20 148.50 149.12 0.28 0.13 
12 1.10 0.35 141.48 142.93 0.77 0.24 
13 0.02 0.45 76.00 76.47 0.02 0.59 
14 0.01 0.24 154.80 155.04 0.00 0.15 
15 0.28 0.06 144.90 145.24 0.19 0.04 
16 0.03 0.37 129.00 129.40 0.02 0.29 
17 0.93 0.24 154.20 155.37 0.60 0.15 
18 0.60 0.23 108.00 108.83 0.55 0.21 
19 1.22 0.37 153.00 154.59 0.79 0.24 

20 0.00 0.26 183.40 183.66 0.00 0.14 

Mean 0.38 0.39 124. 15 124.92 0.30 0.37 
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Appendix 4. Total biomass (kg) of turbot, capelin and shrimp captured in each tow for the experimental trawl. Additionally, 

turbot and cape! in catches are expressed as percentages of total catch in terms of weight (kg). 

Paired tow No. Turbot (kg) Capelin (kg) Shrimp (kg) Total catch (kg) % catch turbot % catch capelin 

2.09 0.17 114.0 116.26 1.79 0.15 

2 0.45 0.28 118.0 118.74 0.38 0.24 
..., 
.) 1.27 0.00 105.0 106.27 1.20 0.00 

4 0.78 0.61 137.5 138.88 0.56 0.44 

5 0.16 0.71 173 .6 174.47 0.09 0.41 

6 0.36 0.58 156.2 157.14 0.23 0.37 

7 0.55 0.72 159.6 160.87 0.34 0.45 

8 0.44 0.63 132.0 133 .07 0.33 0.48 

9 0.02 0.61 144.0 144.63 0.01 0.42 

10 0.65 0.50 159.6 160.75 0.40 0.31 

11 0.89 0.29 173.6 174.79 0.51 0.17 

12 0.96 0.59 189.0 190.56 0.50 0.31 
13 0.20 0.44 109.0 109.65 0.19 0.40 

14 0.51 0.24 193.2 193 .95 0.26 0.13 

15 0.89 0.04 147.6 148.53 0.60 0.02 

16 1.50 0.34 160.8 162.65 0.92 0.21 

17 0.93 0.14 132.0 133.07 0.70 0.10 

18 1.65 0.09 153.6 155.34 1.06 0.06 

19 0.64 0.20 212.8 213 .63 0.30 0.09 

20 0.28 0.3 1 195.3 195.89 0.14 0.1 6 

Mean 0.76 0.37 153.32 154.46 0.53 0.25 
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Appendix 5. Number of trawl geometry measurements (n) for wingspread and headline height per trawl type and tow. Balded 
numbers indicate where there was at least 25% of the maximum number of measurements (147 for wingspread and 308 for 
headline height) for that parameter recorded for both tows in a pair. Underlined numbers indicate a tow that met the arbitrary 
data requirement; however the other tow in the pair did not, thus neither was included in analysis. 

Pair # Control wingspread Experimental wingspread Control headline height Experimental headline height 

32 2 279 184 
2 118 11 246 16 

"' _) 147 47 265 10 

4 120 47 268 7 

5 137 0 285 44 

6 109 2 190 41 

7 123 75 223 0 

8 79 45 111 31 

9 0 94 255 13 

10 0 27 244 49 

11 0 256 5 

12 0 13 196 28 

13 94 302 29 

14 1 138 308 2 1 

15 0 1 0 6 

16 0 50 0 28 

17 0 10 304 10 

18 0 0 263 37 

19 89 0 178 55 

20 2 0 268 103 

137 










