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ABSTRACT

Modern computer-aided vision motion systems provide a computerized and fuily integrated
tool kit for biomechanical measurement and analysis. These tools are useful for evaivation
of problems, prescription of treatment and evaluation of such treatment. Many of these
systems use reflective markers placed on key anatomical sites of the body to detect accurate
three-dimensional spatial positions of the limbs being measured. While these systems ease
automated data gathering, there are issues, such as the correspondence between an observed
target and an established track, that require significant human intervention when markers
disappear from view for short periods of time. When the system loses sight of a marker. it
has no way of knowing where that marker will reappear and the track becomes broken or
disjointed. Once the missing marker comes back into view, many current systems do not

easily establish an association between the marker and its original track.

In this thesis a solution to the problem of making correspondence between markers and their
track histories was designed and tested. This solution also provided the capability of
predicting the path of markers when they were out of view of the cameras. To test the
algorithm three different repetitive motions were tracked using the Flock of Birds

measurement system.



The solution used a three-state Kalman filter to predict marker locations. The Kalman filter
was coupled with constraints to determine matches between tracks and their corresponding
marker positions. These constraints modelled a Region of Acceptance (ROA), distance from

the center of the ROA to the last known position of a marker. and velocity matching.

The Kalman predictor algorithm, because it is linear in nature, was able to predict the motion
accurately while there was no change in acceleration. However, the Kalman predictor,
coupled with the constraints, was useful in predicting and matching markers over a longer

(100-500% longer) missing interval than the test case.

To improve the prediction and matching capabiiities of the Kalman predictor algorithm a

physical motion model, that considers angular rotations at joints, was developed. The model

is named the angular model. This i used an or p:
motion model to check the location of the Kalman predictor. If the prediction did not match
the model (within certain error bounds), it was corrected by the model algorithm using a

calculation process that estimated the location of the marker based on its model. The

addition of this algorithm to the Kalman icti 1 imp: the prediction and
matching capabilities. The matching worked well over the length of a 2 second gap (the
longest used in testing) and the prediction of the marker path was excelient. The use of this
model with the available tracking algorithms used in gait analysis will help in preventing the

problem of disappearing markers in computer vision systems.
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CHAPTER 1

INTRODUCTION

1.1 Background

Human walking is the process of locomotion in which the erect. moving body is mainly
supported first by one leg and then the other. Knowledge of the mechanical and

physiological mechanisms of human walking has been advanced by methods of gait analysis.

Much of the recent gait analysis is being done in Ad! in ics and
use of new materials have improved the precision and reliability of detection and recording
procedures. High speed film and recording techniques have enabled visualization of subtle
events that were previously invisible to the examiner. Computer technology has provided
the means to process more digital information at faster rates for lower costs. It is now
possible to sample analog data at higher rates, use more sophisticated filtering and smoothing

techniques and to sample more variables simultaneously.

Gait laboratories contain the necessary instrumentation to visualize and quantify the

parameters used to describe walking. Modem computer-aided vision motion systems

provide a ized and fully i ool kit for bi i and
1



analysis for quantifying and analyzing normal and ical patterns of

evaluation of problems, prescription of treatment and evaluation of such treatment. Most of
these systems use reflective markers placed on key anatomical sites to detect accurate three-
dimensional spatial positions of the limbs being measured. Three-dimensional motion

models can be created using this positional data.

The study of gait and other body motions using these modern laboratories has obvious
economic and patient comfort benefits associated with it. The motion analysis system can
help physicians to plan studies for new treatments, to quantify how effective current

(before and after are thereby enabling patients to recover quickly

and thus lowering the patient's hospital stay and all related costs (Ariel Web Page, 1996 -
Appendix D). Italso reintroduces a healthier individual into society. The motion analysis
system can measure and analyze the intricate movements of athletes and provide coaches
with visual aids to help in the improvement of athletic performance and decrease dangerous

movements. This is of advantage to the athletes, their trainers, and the people they are

mp for, especially when it can be i with lower risk to the athletes (Ariel
Web Page, 1996). The assessment of compensation claims would help reduce false claims
by making a true assessment of damage. Applications in product testing and assessment

before marketing will reduce potential claims against manufacturing companies.



1.2 Objectives of Study

In this thesis, the study and work was concentrated on the moiion analysis component using
a computer vision system. While these systems eased automated data gathering, there were
issues, such as the correspondence between an observed target and an established track. that
require significant human intervention when markers disappeared from view for short
periods of time. When the system lost sight of a marker. it had no way of knowing where

that marker would reappear and the track became broken or disjointed.

The first objective of this study was to provide a robust solution to the problem of
establishing correspondence between markers and their track histories using data obtained

from multi-camera computer vision systems, when the markers disappear from the view of

the . The second objective was to predict the motion of the markers when
they were not in the view of the cameras. To accomplish this. work was done to simplify and
comprehend the mechanics of human motion from related earlier theoretical developments
and modify them to be suitable for motion tracking and subsequent analysis. This included
understanding the intricacies of walking, the laboratory equipment and software used to

measure gait, and identification of possible topics for research.

1.3 Contents of Thesis

This thesis includes five chapters. Besides the introductory first chapter, Chapter 2 of the

thesis provides a literature review concerning the state of the art of gait analysis and a



critique of the techniques used and assumptions made. Chapter 3 outlines the necessary

theory required for the study. Chapter 4 d bes the i used 1o test

the different components of the software developed for the purpose and discuss the results
provided by the tests. Finally. Chapter 5 highlights the salient findings of this swdy and

makes recommendations for future work in this area.



CHAPTER 2

LITERATURE REVIEW

A modern, fully fi Gait L v uses o record data on the

patient’s walking pattern. A multi-camera video system, floor-contained pressure plates. and
special equipment to determine activity within the muscular system are connected [0 an
advanced computer system with vision capabilities to help document. visualize and analyze

the body's motion.

As the patient walks in the laboratory, the instruments record and relay information to a
computer. The data is then collected and analyzed to help physicians determine the type of
surgery, braces, therapy or other corrective measures that will help the parient walk more
effectively. Testing is mostly non-invasive (i.e., done without puncturing the skin). using

- S S These i and provide a complete

analysis of the gait pattern, providing i ion that may be by the naked eye

of even the most trained professional.

During the gait analysis study, the patient is asked to demonstrate his or her walking



movements in the laboratory. The patient will be examined with and without different braces
or assistive devices (such as crutches or walkers), computers will record all necessary data
while the patient completes the walk on a specially designed floor plan. The actual walking

portion of the study takes less than 20 minutes.

As was stated in the i the problem of ided vision systems losing sight

of markers due to various reasons such as body rotations and obstructions is a serious one.
Mah (Personal Correspondence (Appendix A), Mah, 1996) stated that there was no complete

way to rectify the problem, since any method which was used involved constructing

estimates of missing data. It was that, especially for highly gical gait, clever
methods to replace missing data were not worth the effort and often made matters worse. It
was also suggested that the only defense against this problem was to eliminate. but in case
that was not possible, to reduce the seriousness of the problem by reducing the size of the
gaps. The best way to reduce the size of the gaps is to add extra cameras (o provide
redundancy in the cameras viewing the markers. Unfortunately, in many cases, no matter
how many cameras are added, a few gaps will occur. Also, the addition of extra cameras
requires significant increases in costs of both hardware and software. So software solutions
are needed for filling gaps (predicting marker motion and connecting disjointed markers),

especially when using fewer cameras.

This chapter describes various i and i used for ing motion and

will summarize state of the art commercial systems. It briefly outlines some algorithms used



for three-dimensional reconstruction from camera images 12D). tracking markers in 3D

space, predicting marker motion. and models of motion used to analyze gai.

2.1 Measurement of Motion

Kinematic analysis of gait requires measurement of displacements of the body segments

during the walking cycle. The s can be into direct

measurement techniques and imaging s E; les of direct

measurement systems include resistive grid vs and foot
switches. The direct measurement techniques are adequate for many applicauons but can be
cumbersome to use, especially with they have to be attached to the patient’s body and while

they are inexpensive compared to the motion analysis systems. the information produced is

often lacking in derail {O"Mallay, 1993, Biden et al. 1990)

Electrogoniometry: A goniometer is a device attached to the subject and measures the angle
orientation between two limb segments. The standard device uses a potentiometer that
converts changes in rotary motion to a proportional electrical output. They are inexpensive.
and the output voltage may be processed in real-time (O"Mailay, 1993). One problem is that
the device is difficult to fit to the body segment and constrains the movement of the patient’s
body. The output is unreliable and is relarive angular data and not absolute values. Another
problem is tracking more than one rotation per joint. There are some modified versions of

these that allow for motion to occur outside the plane of measurement. Strain gauges and



fibre optics are used as alternatives for potentiometers. Strain gauges are sensitive (¢
deformation and can be designed to record motion in two planes simultaneously without
additional attachments. Despite the problems. it is 2 useful tool for providing joint

displacement data quickly (Smidt. 1990).

Accelerometry: Accelerometers on limbs can be used to measure normal and tangential
components of acceleration. The output is available in real time but the acceleration signal
is relative to the position of the accelerometer on the limb. The wiring of the accelerometer

can also constrain the movement of the subject (O"Mallay, 1993. Smidt. 1990).

Resistive Grid Pathway and Foot Switches: The resistive grid is placed in the floor of the
walkway upon which the patient will tread. The foot switches are placed on the soles of the

person's feet. The output is available in real time but it only gives information when the foot

is in contact with the ground: therefore many joint movements cannot be measured.

Imaging the by direct
These techniques include photographic, cinefilm and video or other electronic techniques.
These techniques are used to calculate the position and orientation of each body segment to

reconstruct the movements that took place. Also. measurements can be made in two or three

dimensions.

Photographs: Photographic records of gait can be obtained using interrupted light to identify



points in the body. There are many different interrupted light techniques. Two of the more
common ones are: (i) a camera with an open lens and a rotating slotted shutter. lighted by
flood lights, which exposes the film briefly at specific intervals to record the position of the
marker; and (ii) use of a strobe instead of a flood light and rotating shutter. Both these
techniques can demonstrate serial changes in limb position at precise intervals (Sutherland

etal, 1988).

Measurements on stride dimensions can be made using time and distance parameters of
successive gait cycles and sagittal plane motion can be visualized or measured manually from

the The of is that they are relatively inexpensive and

cause minimal encumbrance to the subject. The disadvantages are that they are not useful
for tracking in three dimensions and converting to digital data for further processing is time
consuming and nearly impossible because there are several images of the walking sequence

in one photograph.

Film and Video Techniques: These two techniques can capture a separate image of the
subject during each successive time segment of the walking cycle. Also, these techniques
can increase the amount of samples, which in tm enables the examiner to view and
reproduce movements that occur quickly. However, it also increases data processing.
Normal walking alone requires about 50 to 60 pictures per second while running requires up

to 200 pictures per second (Sutherland et al, 1988, O’Mallay, 1993, Smidt, 1990).



Both of these techniques track markers placed in strategic locations of the subject’s frame.
For three-dimensional reconstruction the markers must be seen by at least two cameras.
Multiple cameras, four to six, are used to record different views of the walking subject.
Positioning of the markers is critical because serious errors can occur due to improper marker
placement. While the use of markers is one of the better techniques to track motion there are
some problems. Problems occur when trying to attach surface markers over certain joints
such as the hips. This can be taken care of by using other markers at known anatomical
locations to determine the motion of another. Moreover, knee motion is difficult to track
because the axis of retation changes during the movement. Another problem is movement
of skin and underlying soft tissue. Some examples of this problem are: first, if a marker is
placed on the knee when the subject is sitting, the marker will move forward when the
subject stands; and second, thigh markers may oscillate as the subject walks because of the
movement of the underlying tissue. [t should be noted that the marker placement must be

reliable to be useful for repeated testing.

An of video i over film i is the 3D systems. These
systems eliminate the need for processing film and since the signal is already electronic and
projected on a 2D grid, the X-Y coordinates are already known. Conventional systems can
scan between 50-60 cycles per second. There are two types of marker schemes used in these
systems. First, passive markers are made up of a highly reflective material and are tracked
by shining an infrared or bright light source on them. These markers often can be seen as an

array of markers that are attached to track the motion of limb segments. Color coded prisms

10



around the world. The sigrificant companies include VICON (VICON Web Page, 1996),
Ariel Dynamics, Inc. (Ariel Web Page. 1996). Peak Performance Analysis (Peak
Performance Web Page. 1996), Qualysis (Personal Correspondence, Johasson. 1996), Elite

(BTS Web Page, 1996), Motion Analysis Cc ion (Personal Ce p Greaves

1996) and OPTOTRAK (Northern Digital Web Page. 1996). These companies provide
hardware consisting of either off-the-shelf products or their own proprietary systems. Each
company includes software to operate the computer and follow bio-mechanical procedures
to analyze the data and present the results in useful, acceptable formats. This section will

outline some equipment and software techniques available.

VICON Motion Systems (Oxford, England and Santa Fe Springs, CA, USA) is the largest
commercial company for the motion analysis products. [ts top of the line system is the
VICON System 370. It consists of up to seven synchronised CCD cameras and has several

peripheral devices such as force platforms and yogram (EMG) devices

that can be attached to it. These devices are connected to a Pentium workstation running
Windows. VICON Clinical Manager, VICON Reporter and VICON BodyBuilder are three
high-end software packages that are available for analyzing the data obtained from the
hardware. The price tag for this system is around $200,000 (US) for the basic 370 and it

goes higher as extras are added to the system.

The VICON Bodybuilder software, introduced to the market during the past year (1996) can

automatically fill gaps, interpolate and smooth data using complex tracking and matching

12



(Personal Cc 1996). The software allows the user to

choose from a variety of algorithms to either automatically or manually join disjointed tracks
and fill in the gaps. The software uses kinematic equations and/or some physical modeling
of the body to connect disjointed marker tracks. It also allows for the user to edit manually

and model the data.

The Ariel Performance Analysis System (APAS), designed and manufactured by Ariel
Dynamics, Inc. (Englewood, CA, USA) is a modular system using off-the-shelf computers.
A/D boards, VCRs, any additional computer peripherals and cameras that sample with
speeds of 60 Hz to 10,000 Hz. The software available provides the tools necessary for
analyzing the data. This system has been used extensively in the sports medicine field for

task imp post-injury risks and di: ity Itis

a good system for analysis of non-complicated motion. It is the cheapest system available

with costs ranging between $20,000 and $30.0000 (US).

Ariel handles the joining of small gaps in many ways and two were mentioned in a personal
correspondence (Personal Correspondence, Wise. 1996): (i) using a complex search
algorithm along with simple linear extrapolation based on a history of data and (ii) using
smoothing functions, with user intervention to direct the algorithms, to interpolate over
spikes and gaps in data. However, the larger the gaps the greater the error associated with
these two approaches. They also allow the user to manually fill gaps and connect disjointed

tracks.



Peak P Te ies. Inc. (| CO, USA) supplies video and computer

motion measurement systems. These systems save images from the cameras onto a video
tape that are then analyzed by its Peak Motus sofiware (Windows-based). Data from devices
such as force platforms and EMG can be sampled and displayed in synchronization with

video. The cost of this system is more than $150,000 (US).

Peak Performance Technologies reiterated that the best solution for eliminating gaps in
marker tracks is by adding more cameras (Personal Correspondence, Sturkol, 1996). Data
shows that with a four-camera system and a standardized 15 point Helen Hayes marker set
only about six or seven markers can be reconstructed without filling any gaps. The others
may have up to 50% of their image space missing. Using five cameras. this percentage is
reduced to about 30% and with six cameras it is reduced to about 10% or less in all but the

most difficult cases. Their latest software, released in the mid-1996, does handle filling in

the gaps to a certain extent. Their latest ion and i i are based
on human motion and are used to predict not only which path segment may join to another,
but also, what direction the point is moving in the camera’s image space so that it can be self
correcting. Their software allows the user to connect the gaps manually by connecting
points, semiautomnatically by allowing the user to run different algorithms, or automatically
by allowing the user to set several tracking parameters. While much has been done using

more cameras and brute force it ion and i ion to fill missing

data accurately, there is still plenty of room for improvement, especially in using fewer

cameras with software or hardware that is smart enough to fill bigger and bigger gaps in the
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data. The algorithms for the software developed in this thesis. while different from the ones

listed here, have followed a similar approach to solving the missing gap problem.

Qualysis (Sweden & USA) the MacReflex Motion Systems for

the Macintosh or PC computers. This system uses passive retlectors with digital cameras to
track motion and the data can be interfaced with force plate and EMG measurement devices.
It is designed as a biomechanics research system. adaptable to many experimental protocols
including gait analysis. The software provided is used for data analysis of various kinds.

This system costs about $75,000 US.

To track markers, the Qualysis software (Personal C Johnsson.

1996) the approximate next position of the markers. This extrapolation helps the tracker to
look in the right places when looking for the next positions of the markers. [n situations
where the addition of extra cameras will not help solve the markers out-of-view-of-cameras
problems, the operator can run the tracking software manually or run the tracking separately
for specific segments of motion stored in a file. Since the tracking can be run both forwards
and backwards in the file, a point with missing markers can be approached and tracked from

both directions. A user of this software (Personal C: Zhang, 1996)

that when the discontinuities were too large (>%-%s seconds) the filling in of gaps did not

work well.

The ELITE system by Bioengineering Technology & Systems (Milano, Italy) provides up to
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an 8-camera system, eight channels EMG with optional telemetry and piezoresistive foot-
switches, force platforms and general purpose software for data acquisition. This system

tracks markers that reflect infrared light. The software provided is based on three different

lines: ki ics, kinetics and aphy. The primary products include: ELITEplus
(A three-dimensional motion package), ELICLINIC (Clinical gait analysis), TELEMG

(Dynamic y with no itati on subject motion), GAITemg

(Identification of muscle activity in walking), PcVect (Analysis of ground reaction forces).
etc. The price tag for this system is greater than $200,000 (US). The Elite software
(Personal Correspondence, Huiliger, 1996) provides interpolation to handle relatively short

2aps (<¥% (10-15 samples)).

Motion Analysis Corporation’s (Santa Rosa, CA, USA) top system has up to six CCD
cameras and software that runs on SGIL SUN or SUN/PC systems. HiRes software features
include a data collection package, on-screen 2D video viewing, raw data access. 3D track
editor and a full tracking system. This software captures the data from the cameras and
converts it to a form that is usable by the analysis packages for clinical applications programs
such as KinTrak (allows users to create 2D and 3D kinetic and kinematic assessments,
animations, and EMG reports) and OrthoTrack (uses standard and/or user customized
kinematic and kinetic reports, graphs, and charts to assess gait). The top of the line system
can track a full body that consists of 17 segments (with 51 markers). This system costs more

than $200,000 (US).



According to the founder and Senior Vice President of Motion Analysis Corporation. only
pathological gait motion is difficult to track (Personal Correspondence, Greaves, 1996).
Their best solution is to add more cameras. Their software requires a minimum of four or
a recommended six cameras for a full gait analysis system. unless specialized marker sets.
such as placing markers only in the front of the body. are used. They have software. the
Track Mender, which looks at the continuity of 3D path segments and automatically joins
them if they are no more than a small number (< % seconds) of frames apart. Another

technique used by their software is to allow the user to manually spline across the gaps.

Northern Digital, Inc. (Waterloo, Ontario, Canada) designs and manufactures the
OPTOTRAK 3D position Measurement systems. It uses off-the-shelf hardware and infrared
light-emitting diodes. It's biomedical applications include motor control research,
rehabilitation research and therapy, dentistry. neurosurgery, and gait analysis. It’s industrial

applications involve robotics. aeronautics, reverse engineering and virtual reality.

2.3 Reconstruction of Marker Positions

The algorithms in this section assume that the data is acquired by a multi-camera image
system. The system described in this section is based on standard commercially available
hardware and it tracks reflective markers placed on key anatomical sites. The digitizing of
images and recognition of the markers is not discussed as it is not in the scope of this thesis.

It is assumed that the image coordinates of the marker positions are already obtained.



Reconstruction of three-dimensional marker positions. in a base reference coordinate system.
is needed since a digitized camera image only contains two-dimensional information relative

to the camera position and orientation (Gonzales and Woods. 1992). There are many

different i available to ine thi i i i from two-

dimensional images: some of these are based on iterative methods and others on analytical
methods. There are three main methods that are in use: triangulation: ray shooting (tracing);

and reconstruction using the epipolar line geometric constraint.

2.3.1 Triangulation
Triangulation is a standard technique that uses similar triangles to determine distances and
sizes of objects. This technique can be used in a one camera system or a multi-camera

system. The one and two camera systems will be described in this subsection.

Monocular Imaging (Ayache, 1991, Ballard

and Brown, 1982, Kasturi, 1991): This

technique uses point projection that is the

model for the

wrought by our eyes, cameras or many other
imaging devices. Figure 2.1 shows a
pinhole camera. The image results from

projecting the image through a single point

autoran iage plaoe. Figure 2.1 A pinhole camera model
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Figure 2.2 (a) Camera model equivalent to Fig 2.1;
(b) graphical definition of terms

where (x), y') and (x", y") are the retinal coordinates of the world point imaged through each
eye. The baseline of the binocular system is 2d (let dl=d2=d). Thus

f-2)x" = x-d) f

(-9 x” = Grd) f 0
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and subtraction of these two equations gives

(=2’ =x) = 2df (2.5)
or
2d,
e 2L 26)
X =2

Therefore if the points can be matched to determine the disparity (x"-x’), and the baseline and

focal length are also known, then the z coordinate can be calculated.

4
ssoetrdon
e
b x=0
o
pts
4

o =0

Kamers 2 (€") #

5

Figure 2.3 A Binocular Imaging System

An important step in extracting depth information from stereo images is the matching of
points for disparity calculations. There are several methods to do this but they will not be

discussed here since they are out of the scope of this study.
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2.3.2 Ray Shooting
This technique involves the shooting of rays from a point behind the image plane (the
distance depending on the focal length) through corresponding pixels of the image plane.

As seen in Figure 2.4 two rays are projected from the two ponding points in the two

image planes, respectively. These proj rays, depending on the quality of the system,
may or may not intersect but will have a point where they are closest to each other.
Therefore, it is assumed that the location of the three-dimensional point occurs at this
shortest distance between the rays. The lines are defined parametrically (these are rays that

g0 to infinity but certain range restrictions can be placed on them),

txr.2)

2 £3

Figure 2.4 Stereo imaging system
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and,

(2.8)

where the parameters « and v vary from O to | along the length of a normalized finite line

segment. The distance between these lines for any values of « and v is given by

d = | (2.9)

and the values of « and v that minimize 4 will determine the (approximate) iocation of the

h i i point. The di of this is that it requires an iterative

technique to find the solution.

2.3.3 Epipolar Constraints

This i uses i i for matching and 3D reconstruction of
stereoscopic images. The technique provides a closed form solution to the set of 10
equations and 9 variables that will be discussed in greater detail in the next chapter. It also
allows for the arbitrary placement of cameras and uses the cameras in which the point falls
within the camera’s line of sight. This technique is general and can be easily modified to use

as many cameras as possible (Ayache, 1991, Kanazawa and Kanatani, 1995).
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Of the above three methods (triangulation. ray shooting and epipolar constraint), the epipolar

constraint method was chosen because it provided a closed form solution for the

of the thi i marker positions. The camera orientation and
position can be arbitrary since they are taken into account by the equations and this technique

can be extended to use as many cameras as are available.

2.3.4 Concepts of Uncertainty

Uncertainty of measurement is generally caused by the equipment. Such equipment includes
the cameras and the processing units. The first type of uncertainty comes from the
digitization process, which is well known in signal processing. The second type of error
comes from image processing, while extracting the image features. The third and last type
of unceniainty is generated by calibration errors in setting up all instrumentation components
(ie.. the orientation of cameras with respect to each other and the base), and the uncerainties

in camera parameters such as focal distances and distortions due to the pin hole model.

The sums of these uncertainties (in 2D) are modeled by an isotropic error around each pixel,
and given as a number of pixels (Bonnin and Zavidovique,1991). This type of assumption
in 3D space is not possible, as is shown in Figure 2.5 in translating the 2D uncertainty to 3D
space. Translating the 2D uncertainty to 3D space

z Df

s Ge(de-206n)
Df (2.10)

4 P ... S
mn " Sx(dx+28n)
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with f: focal length
D: Distance between the cameras
6x and By: size in X and Y of a pixel on a focal plane
dx:  the disparity (=nlx-nrx)
nlx and nrx are X pixel coordinates in left and right images

It can be shown that the error in Z is proportional to the square of the distance in Z-axis.

3D Uncertainty Area

Uncertainty estimed
on the image planes

Figure 2.5 3D space uncertainty

2.4 Software/Hardware Tracking of Markers

In the camera vision system, once three-dimensional reconstruction is completed, the marker
positions need to be matched to their corresponding tracks. The track consists of the history
of a marker's motion through 3D space and is used to produce the traces of motion which

are used in the analysis of the motion of the limbs to which the markers are attached.



Many different procedures are available to track markers. This is a well-developed field of
computer vision, and some of the latest methods are listed here. These methods can all be

used in gait analysis.

24.1 istical Data A iation T i

These techniques have been studied in radar imagery for target tracking and have only

recently been introduced into the field of computer vision. These technique can be used to

track a sequence of images over short time intervals; if the time interval is small and the

object velocity is constrained by physical laws, the interframe displacements of the objects

are bounded. Also, since we can assume that the objects move smoothly, motion coherence

can be used to predict the occurrence of markers in the future, which considerably reduces

the search space (Zhang, 1994). The technique can be used to track markers despite the

following problems:

. A previously unseen object may partially or totally come into view

. A moving object in the current field of vision may move partially or totally out of it
in the subsequent frames

. ‘A moving object may partially or totally be occluded by the background or by other
objects.

L] Some markers that should be present are not seen, due to failure of the feature

extraction (Or reconstruction) process.

This technique uses the Kalman filter (described in Subsection 2.4.5) to perform the
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in the predicti hing i It then uses (squared) distance

to decide which scene marker matches the predicted makers. The calculation of Mahalanobis

distance involves matrix inversion and is therefore ionally expe
with larger numbers of markers. Also, in tracking of moving markers over larger intervals
(>% seconds), the algorithms and heuristics used were very complicated and required a

greater number of g- the ilities of detection and ination of a token and

the probability of appearance of 2 new token. After some initial studies, it was decided that

many of the matching and predicting could be done using simpler non-statistical techniques.

Marker Tracks by Lower Rank

242 Extrapolation of I

Approximation

This technique (Muijtjens et al, 1993) is used to track the motion of objects like the
deformation of the heart, it's walls and the like. In experimental situations markers may not
be detected due to occlusion or lack of contrast. As a result the continuous marker track is
observed in separate parts, which cannot often be directly identified as corresponding to one
marker. The extractions are obtained by iteratively fitting a lower rank matrix to a set of
noisy, incomplete marker tracks. This technique is computationally heavy since the

mathematics in creating the lower ranked matrix and the iteration are quite involved.

2.4.3 Precise 3D Motion Analysis System for Real-time Applications

This motion analysis system was developed using strategically placed markers, one or more



and motion history and matches the observed marker positions to its predictions.

The filter. also known as the “optimum recursive predictor.” gives a linear “best” estimate
of the k+n™ value (n=1.2,3 ... =), where k is the current value. The model is a first-order
autoregressive process with random noise, W(k) (Bozic, 1979).
x(k) = Fx(k-1) - Wk-1) Q2.1
and the observation includes additive white noise, V(k).
y(k) = Cx(k) + V(k) (2.12)
The equations of the vector Kalman predictor (Bozic. 1979) are:
Predictor equation: £(k~11k)=Fi#(klk-1) - G(k)[y(k) - C T(klk~
Predictor gain: G(k) = FP(kik-)C T[CP(kik-1)CT - R(k)|"'(2.13)
Predictor mean square error: P(k-11k) = [F - Gk)C|P(kik-1)FT - Q(k)
The update of filter variables is linear and is a function of the predicted variables. However,
the prediction of a marker position is not necessarily linear because the prediction is based
on the motion of the marker which, in this case, includes velocity and acceleration. The
function of this filter is to predict the future state of the system given an estimate of the

current state. The Kalman algorithm will be described in greater detail in the next section.

The filter used in this experiment is a decoupled. Kalman predictor with three states;
position, velocity and acceleration. The position data is observed by the vision system and
the velocity and acceleration components are derived from the position data. This technique

was chosen because of many reasons: (i) ease of implementation; (ii) availability of many
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sources of information; (iii) inputs to the filter are easily measured or calculated. (iv) filter
constraints and precalculations can be changed to suit the conditions of the experiment
(discussed in Chapter 3) and most importantly (v) while the filter’s function is in the tracking
of markers. it can be easily modified to predict the motion of a marker several time steps into
the future and thereby avoiding a separate algorithm for motion prediction (section 2.5).
Another indirect reason for choosing this technique was that with some modifications it

could be converted into a non-linear filter which is briefly described in section 2.4.6.

2.4.6 Extended Kalman Filter Tracking
This filter is similar to the linearized Kalman filter. The difference is that the extended

Kalman filter uses istics or iati to modify the predictions

(Brown and Hwang, 1992, Wu et al, 1989) of the linearized Kalman filter. The extended
Kalman filter will use measurable quantities such as the static distance between two points,
associations such as three markers to make a unique segment in space, etc. (things that can
be identified without knowing the nature of the motion), to modify its prediction. Ideally,
this would be the filter to use since it performs better in nonlinear applications of motion.
However, in gait analysis making these associations between markers is difficult unless
special shapes of markers or special marker sets are used. Since a generalized technique that

could work with any marker set was wanted this technique has not been chosen.
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2.5 The Prediction of Motion

One of the aspects of this research was the assessment of the problem of missing markers and
possible solutions by discussion with members of the Biomechanics list server (BIOMECH-
L). The personal correspondents agreed that missing markers in motion analysis were a
problem (to varying degrees of seriousness) and no one had a good general solution. It was
suggested that the best solution was to make sure the problem did not occur. This could be
achieved by increasing the number of cameras viewing the tracking region, using non-camera
methods of tracking such as magnetic tracking (Personal Correspondence, Cao, 1996),
carefully choosing a marker set that would stay in view despite obstructions, rotations, and
other problems causing occlusions, and using special assistive devices that reduce
interference with the cameras (Personal Correspondence, Hulliger, 1996). Nevertheless, in
cases where the missing marker problem could not be eliminated software solutions were

suggested.

Various suggestions were discussed for the prediction of marker motion or the filling-in-of-

gaps. These include:

1) Joining short gaps using spline functions (cubic or quintic) (Personal correspondence,
Cao, 1996). It may not be very accurate over large gaps. Human involvement is
necessary to determine the start and end points for the spline functions.

2) For short isolated gaps, using a straight line or polynomial algorithm works well

(Personal Correspondence, Mah, 1996). This is done manually after computer
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3)

4

5)

6)

7

8)

9)

tracking and matching are completed.

Curve fitting algorithms are fine for small gap sizes (10 frames) (Personal
correspondence, Keezel, 1996). This is done manually after computer tracking and
matching are completed.

For longer gaps using a proxy marker to provide an offset-recording (Personal
Correspondence, Mah, 1996. Hulliger. 1996) of the marker that consistently
disappears from view. This proxy marker can then be used to infer the position of
the missing marker automatically.

For longer gaps, extrapolating along a straight line between two markers (Personal
Correspondence, Mah, 1996). For example, if there is trouble in viewing an ankle
marker, put two markers on the lower leg, so that the ankle is further along the
straight line drawn between the two markers.

If the general forms of a specific movement are known, then a tracking algorithm can
be written for this specific problem (Personal Correspondence. Zhang, 1996).
Three markers uniquely define a segment’s location and orientation in space. If a 4th
marker is used, the redundancy could be used to calculate a missing marker (Personal
Correspondence, Olree, 1996).

If the distances between three markers on a segment are known and the locations of
two of the markers are known, the location of the third marker can be constrained to

a small area. This might be used in conjunction with an interpolati 0

give a better estimate of location (Personal Correspondence, Olree, 1996).

If the data is cyclical, it may be possible to "guess” where a reasonable location of the
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10)

11)

marker might be based on where it was one period before or after the instant
(Personal Correspondence. Olree. 1996). However. in gait analysis cases where an
assistive device obstructs the camera view. they tend to happen 1a the same porucn
of each stride (Personal Correspondence. Geil. 1996).

For path matching, sometimes paths can be easily identified by some unique
characteristic of their location (Personal Correspondence. Olree. 1996) such as a
marker on the upper part of the body would have greater values :n the height
coordinates.

Using direction and velocity to help identify possible path matches (Personal
Correspondence, Olree, 1996). This will work well if the gaps are short and there are
no sudden reversals in direction of the marker. This technique was used as the
reference test to compare the Kaiman filter and the angle model techniques.

Again for path matching, using a marker path ique to

a path and mach it o an observed path (Personal Correspondence. Olree. 1996).

Many of these suggestions were good only for filling short gaps of missing data and worked

for only limited cases, the longer the gaps the less accurate the prediction. During the

discussion, it was realized that all prediction (gap-filling) methods used for calculating

marker motion were only as good as the equations and algorithms being used and that there

was no real general solution to this problem. The Kalman filter approach had not been used

in this area previously and since it was a well proven algorithm in other tracking and

predicting applications it was decided to test it in tracking markers placed on the human
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anatomy. This general filter predicts target motion for several time steps (camera frames)
into the future. It can be used with any type of marker motion. and calculates the prediction
based on the history of the marker motion. The initialization variables and the constraints

used are developed in detail in Chapter 3.

It was found, during testing, that since it is a linear filter, it cannot predict the complex gait
motion accurately (Chapters 3 and 4 detail the capabilities and limitations of using the
Kalman filter as a predictor of motion). Because of this. it was decided to couple the filter
prediction with a physical model of the gait. This modeling is described in greater detail in

the next subsection.

2.6 Modeling of Gait

The Kalman filter, used in this work. predicts the motion of the markers accurately, without
additional constraints. for short gaps (less than 15 frames or approximately “ second) of
missing data. Since it is a linear filter, it cannot accurately predict the complex motion
involved in gait, especially over longer gaps of missing data. Therefore. a physicai model
of gait is used to check the predictions and make necessary corrections to the predictions.
The physical model provides a general framework for 2 model of motion. Given a location
in the model’s cycle and some information at that point, one can calculate the actual motion
at that point in time. Some methods of modeling and analyzing gait will be discussed in this

subsection.



2.6.1 Joint Angle Motion Models
The joint angle motion models involve calculating three-dimensional relative motion

between rigid bodies. These models are used primarily to analyze gait. Using positional

data, the three-dimensional angular motion ata p joint is d by first

embedded coordinate systems to both the proximal and the distal segments (Kadaba etal,
1990, Mah et al, 1994, Ramakrishnan and Kadaba, 1991, Sutherland et al, 1988). Euler
angles or helical (screw) axis definitions are then used to compute the relative positions

between the embedded coordinate systems.

Both Euler and helical motion definitions are sensitive to the
orientation of the three axes about which the rotations are
assumed to take place in sequence. It is difficult, if not
impossible, to ensure that the defined axes coincide with the
base reference axes of rotation. This introduces a range of

errors in joint motion (Ramakrishnan and Kadabal991).

The following description of the embedded coordinate

system is for the knee of the right-sided limb (Figure 2.6) and

Figure 2.6 Schematic
diagram of thigh (X, Y, Z)
and shank (X*, Y', Z')
embedded axis used for
the estimation of knee
joint angles and helical
parameters (Ramakrishnan
and Kadaba, 1991)

can easily be extended to other joints. The distal to proximal
direction of the thigh and the shank segment are defined as
the Z- and the Z'-axes, respectively. The lateral to medial

direction of the thigh that is perpendicular to the Z-axis is
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defined as the Y-axis while the lateral to medial direction of the shank that is perpendicular
to the Z-axis is defined as the Y'-axis. As a consequence, the posterior tc anterior direction,
perpendicular to both the Y- and Z-axis is the X axis of the thigh. Similarly, the posterior

t0 anterior direction. perpendicular to both Y'- and Z’-axes is the X'-axis of the shank.

Two sets of unit vectors, I, J, K, and I’, J°, K’ are assigned to the coordinate directions X.
Y. Z and X', Y', Z', respectively. From these two sets of unit vectors, the rotational

transformation matrix, R, for any relative arbitrary orientation of two limbs is calculated as:

By Ry Ry Iy 'K
R=|Ry Ry Ry |=|Ji1 J'I J'K 2.14)
Ry Ry Ry K"l K"J K"K

To extract the rotational information from this transformation matrix, the transformation
matrix for the Euler model is (Ramakrishnan and Kadaba,1991):
C1=C3+51=52=§3 (C2+53 -SI=C3+Cl=52=S3

R, = | -CI1=83+51=52=C3 C2=C3 SI=§3+Cl=52=C3 (2.15)
S1=C2 -52 C1=C2

where C1 refers to the cosine of angle 8, and Sl refers to the sine of angle,8. Similar

definitions apply to other terms, and the helical motion model is given by:

U U, -Up=U,<C+C  U,=U,~U,U,C-U,~S U,=U,-
R, = | U U,-U,xU,xC+UsS  U,U,~U,*U,=C-C U,=U,
U,=U-U,U~C-U,*S U-U-UzU=CU=S UxU,

U ~C+U,~S
U ~C-U,=S | (2.16)
~U,=C-C
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where U,, U,. and U, represent the direction cosines of a unit vector. U. along the helical axis:

¢ refers to the helical angle: C refers to the cosine of ¢; and S refers to the size of ¢.

These models are similar to and form the basis for the model defined and used in this thesis.
The angle models for the analysis, Figure 2.7, are calculated by taking the mean of several

cycles of gait. This normalized gait cycle is then compared against the population norm.

While this model is good for visual analysis. considerable information is lost in the
conversion from positional data to the angle data. The positional data, the length of the
limbs, and the motion of the limbs cannot be calculated in the backward direction because

these angles are relative angles. Therefore, it is not useful for this application.

2.6.2 Component Angle Model

The component angle model was designed if for the Kalman

against a physical model of gait. Itis similar to the Joint Angle model with a few important
differences. Instead of using relative positions between joints, this model calculates three
component angles (X, Y, Z) with respect to a base reference frame (of the vision system).
Instead of using actual limbs, the model uses the marker positions to define rigid bodies.
Two adjacent markers define one rigid body. So the model contains the lengths of the limbs,
the connectivity of the limbs (adjacent markers) and the component angles. From this
information, the locations of all the markers can be determined if the location of one marker
is known. This model will be discussed in detail in the next chapter.
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Figure 2.7 Variations in knee joint angles
(Euler Model) of a representative normal
subject. The outermost curves correspond to
a perturbation of 15° (Ramakrishnan and
Kadaba, 1991)
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CHAPTER 3

ANALYSIS OF TRACKING GAIT WITH

MISSING MARKER DATA

This chapter describes the theory used to develop the software for the tracking of markers
in gait analysis. The software matches image points from different cameras and reconstructs
their three dimensional marker locations (world coordinates). These reconstructed points are
then matched to their corresponding tracks of marker movement using the Kalman filter.
When location data is missing, the Kalman filter predicts the motion of the markers in the

gap. This prediction is then checked against the physical model that has been implemented.

Figure 3.1 shows the overview of the i ip between the i that are di:

in this chapter. There are two inputs to the software. The first input block depicts the marker
track (2D) data files as obtained from camera image planes and the initialization files
consisting of the orientations and locations of the simulated cameras (to be explained in next
section) and their focal lengths. The second input block is the expected motion model which

is calculated or measured before starting the tracking software. The matching of the 2D
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tracks from two cameras occurs in the image matching algorithm. After the matching has
been determined, the image points are passed to the 3D reconstruction algorithm where the
3D world coordinate marker locations are calculated. After these marker locations are

calculated, they are passed to the Kalman predictor/physical model algorithm for matching

DATATIES J IMAGE MATCHING
2%:s|s;r‘x(g o Matches markers between two
markers cameras using
geometric constraints.
Positions and

orientations of

3D RECONSTRUCTOR
Reconstructs using
geometric contraints

KALMAN PREDICTOR/PHYSICAL MODEL
Predicts marker location
Joins points to corresponding track:
Uses confidence region or the shortest distance
In case of missing marker - uses predicted points
Compares predictions with model

MODEL CONFIG

Complete
3D tracks

Figure 3.1 Overview of all blocks of software described in section
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markers to their corresponding tracks and in the case of missing markers, predicting their
locations. The output of the software are the complete 3D tracks of motion for all the

markers present.

The first section on epipolar matching presents the theory on epipolar lines and then shows
the development of the image matching algorithm. The second section describes the 3D
reconstruction algorithm used. The third section describes the Kalman predictor technique
and shows the development of the various components of the predictor equations. The fourth
section provides the reasoning behind the matching of three-dimensional marker locations
to their corresponding tracks. The fifth section describes the development of the physical
model. The sixth and final section describes how the algorithms in the first five sections fit

together to form a complete analysis system.

At the outset of the project, it was proposed that the data to test these routines would be
obtained from a camera vision system. Due to delays in obtaining the vision system, an
alternate methodology was used to obtain the data required for the verification of the theory.
The data for the experiment comes from the Flock of Birds™ (FOB) measurement system
and is explained further in Chapter 4. The output marker locations from the system are in
3D world coordinates (3D measurement system). To simulate tracking by a camera vision
system, these files are converted to the image planes (2D) of the simulated cameras using

simple linear ion, rotation and projection. The p for si ing the dara is

explained in greater detail in Chapter 5.
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3.1 Epipolar Matching

h

One component of gait analysis involves the of a
representation of the leg trajectory when walking from one point to another. This procedure
involves computing a 3D representation of motion from several images taken simultaneously

from different viewpoints.

The method used in this thesis consists of modeling the process for the formation of each
camera image by a linear transformation in projective coordinates, followed by a

of the of the ion. These are v used to specify

and to ine the spatial position of a marker from multiple images

(Ayache, 1991).

This technique is an intuitive approach to the matching and reconstruction problem. It also
allows for the arbitrary placement of multiple cameras and uses the cameras in which the

point falls in the camera’s line of sight.

3.1.1 Image Modeling

Each camera is modeled by its optical center, C, and its image plane, Q (Figure 3.2). The
cameras are calibrated and modeled as a standard pinhole (Zhang, 1995). A point Py(x, v,
) in the world coordinate space projects onto the camera’s image plane at the image point

I)(x, y) and similarly Py(x, y, z) to I,(x, y). Point I, is the intersection of line P,C with plane
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Q. The relation between each point in 3D space and it's corresponding point in the image
plane is described by a transformation (Ayache, 1991, Zhang, 1995). The transformation is
modeled by a transformation matrix T in projective coordinates. I". The relationship is given

by

3.1

NS
"
~
—tie .

where T is a 4x4 matrix, generally called the perspective matrix of the camera and U, V, and
S are the transformed 3D coordinates in the camera’s coordinate system. T has the simple

form

T=[R..t.] G2

where R, is the 3x3 the rotation matrix and t,. is the 3x1 translation matrix that describes

the transformation from the world coordinate frame, in which the 3D points P, and P, are

B &y

| X

C

Figure 3.2 The pinhole camera model
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Each match of an image point / with an associated scene point P gives two sets of linear

equations from the matrix T. i.e.,

Pt~ t, - uPty-1) =0
Pty -1, - vPt - 1) =0

(3.3)

where ¢, if the (i.j) element of T, t; is the vector composed of the first three clements of the

row i of T (Ayache 1991) and P is the point in the world coordinate system.

3.1.3 Epipolar Lines

The epipolar lines are calculated based on refations between multiple cameras. In Figure 3.3
point I, in image 1, is the match for point I, in image 2. Point I .. in camera 2. is located on
a straight line of image 2 determined completely by I, and is called the epipolar line
associated with I,. This epipolar line in image 2 is the projection of the line defined by the

set of points P, whose image corresponds to I, that can be defined as line PI,.

Figure 3.3 The geometry of binocular stereo vision
A plane, Q, can be defined by I,, C,, and C, (three points). This plane intersects the image
planes along two straight lines Dg, and Dg,. Any point I, on the epipolar line, D g,, has its
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potential matches on Dy, and vice versa. It can be seen that any epipolar line of image plane
2 is the image of a line passing through C,. i.e., all epipolar lines in image plane 2 will pass
through E, that is the projection of the optical center of camera 1. E, is called the epipole

of image 2 and similarly E,, the image of C,, in image plane 1. is the epipole of image 1.

3.1.4 Epipolar Matching

Given the point I, in the first image. it's corresponding point P in 3D space must be on the
line C,P. (Figure 3.4) passing through I , where B is a point at infinity (=). Figure 3.4
shows the epipolar geometry with the optical center of the camera behind the image plane
instead of between the image plane and the object as in Figure 3.3. This inversion of the
optical center does not change any equations and is well known. Assume that the coordinate
frame for camera C, is the reference frame. If, for simplicity sake, the world coordinate
frame was allowed to coincide with this reference frame. and I, = [u.v]". then point P can

be represented as
u
P=Al=2av (3.6)
1

where u, v are the image coordinates, and A a variable between [0,>). This is the parametric
representation of the line C,P_ (Zhang, 1995). If the world coordinate system does not
coincide then a second transformation would transform P to the correct values in 3D space.
The projection of the line C,P_ on camera C, is a line, the epipolar line, denoted by Dy, on
which the corresponding point in the second image of point I, must lie.
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The point P can be transformed, denoted as P, to the coordinate frame of the second camera

by

P’ = R+P+t = MRl +t, 1e(0=) (3.7)

The epipolar line can be defined by two points. The first point can be obtained by projecting
P with A = x, and the second with A =x . These two points can be transformed to the
coordinate frame of the second camera P,' and P,". These points can be projected onto the
image plane of camera C,. The point that lies on this line is the match to I in the image

plane of camera C,.

Figure 3.4 Epipolar geometry with image plane
between the point and optical centre of the
cameras

3.1.5 Epipolar Matching Algorithm

The algorithm’s input consists of the two cameras (camera to world) transformation matrices,

their ponding inverse ion matrices and the image points from the two image
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planes. This algorithm will be run for each sampled data point of the trial run. The image
points will consist of all the 2D marker coordinates observed by each camera. A check is
made to determine if both camera images contain the same number of points. If they do not

contain the same number of points, a flag is set to pass back only the matched points.

The flowchart for the matching algorithm is shown in Figure 3.5. To start the matching
process one camera is chosen as the base reference camera. The choice of the camera has
been soft-coded as the first camera transformation to be passed into the algorithm. The
coordinate system of this camera is assumed to be the world coordinate system. The rotation
and translation between the cameras | and 2 are calculated using the data from the two

camera (camera i to world matrices. Then each image

point seen in camera | is taken in tum.. First, the image point from Camera | is used (o set
up the parametric equations of (3.6). Two values for 4 are used (soft-coded) to calculate two
sets of 3D coordinates. Second, these 3D coordinates. used as reference points. are
transformed to the coordinate system of the second camera. Third, the 3D reference point
coordinates are projected back into the image plane (2D) of the second camera by dividing
the x and y components by the z component. Fourth, the equation of a line through the two
reference points is determined. Fifth, a search is done using the nearest vertical distance
from all image points on that line. The one closest to the line is chosen as the match. Checks
are made to make sure there are image points available in both camera images if the reduced

points flag is set.



Generally geometric constraints such as epipolar lines are not sufficient to determine
stereoscopic matches. However, in this particular application, the low number of markers
and the positioning of cameras to avoid problems along with some linear conditions provide
good matching capability. Tests in Section 4 will show that this algorithm works very well

in a noiseless environment but it does not work as well in a noisy environment. To make

p in the future, additi ints can be added to this matching technique.

3.2 Three-dimensional Reconstruction

Once the matches of image points are determined, the reconstruction of the marker locations
in a world coordinate frame can begin. Knowledge of T, and T, from cameras | and 2
respectively, are sufficient to compute the three coordinates of any point P, given its two

images I, and L,

The system defined in Equation 3.5, for cameras | and 2, can be rewritten to give a new

system of four equations in three unknown coordinates (x, ¥, ) of P (Ayache, 1991)

@ - ugYP + oy - ug
& - v)P + b -
€ - whiyP + 1 -
& - vB5YP + 13

"
© o o o

By

where the indices i and j of #/ refer to the i row of the transformation matrix of camera j.
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In theory. these equations are related since I, and I, are chosen in the same epipolar plane.
However, due to numerical imprecision and the absence of an objective criterion in the
choice of the equation to eliminate variables, it appears appropriate to solve the whole system
by least squares method outlined below (Ayache, 1991). This approach extends naturally to
reconstruction based on an arbitrary number of cameras. For n cameras, set

Aa = b (3.9

with a=(x, y. 2)’ and

A= and b= ~ (3.10)

for which

A, =

(3.11)

1=t Uty -t
W | [
(ty - vi) Vi, < by

The least squares solution is then given by
a = (A’A)"'A’b (3.12)
provided A'A is invertible. a is the reconstructed 3D marker position. One needs to store

k (k=2,3) matrices T, and solve a linear system of 2k equations in three unknowns.

3.2.1 Reconstruction Algorithm

Figure 3.6 shows the flowchart of the algorithm used in reconstruction. The inputs to the

are the inverse ion matrices (world to camera) and the matched image
points matrix from both cameras. The matrices A and b are determined based on equations
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(3.10) and (3.11). The least squares approach, equation (3.12). is used for the reconstruction
of the 3D marker location, a. This loop is continued until all the image points have been

reconstructed.

InputiTl, iT2, and
matched Image points
from cameras | and 2

Determine A and

= e—————
b matrices

1
1
|
1 |
” a=inv(AA)*A"*b | ‘ Get next poi

Last point
in image?

|

Write points to
file

Figure 3.6 of ion ithe

3.3 Kalman Prediction

This section will describe the algorithm that can be used to track the markers attached to the

legs and to predict their positiops when the markers are hidden from the cameras (thus



making thi i i ion i i (Bozic. 1979).

Many tracking ithms have been ped ( 1987) that make use of
position measurements. These have been mainly used for tracking aeroplanes. The most
common ones used in application are the various types of Kalman filters that are linear

filters/predictors over a set time interval.

It has been shown ( 1987, etal, 1993) that increasing the order

of the Kalman filter improves the accuracy of the prediction. The increasing of the order of
the filter involves using measurements of velocity and acceleration as inputs for the filter.

Unf ij for ing velocity and acceleration is more specialized and

therefore more expensive but there are methods to estimate these inputs. In this study, the
position measurements were used to estimate velocity and acceleration. A three-state
Kalman tracking filter that predicts position based on range. velocity and acceleration was

The ions of dy ics ( et al. 1993) for an object moving at

constant acceleration with a uniform time interval T (at 2ach position coorcinate) are

(3.13)

2 -3
X =x, +xT+ x,,TT - “’.T? (.18)
*y wE ET e ua% (.15)
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3.3.1 Kalman Predictor

The i ped is a one-step predi It predicts the location of a marker one time

step into the future. It can be easily modified to predict m steps into the future (Bozic, 1979).

The signal model is a first-order autoregressive process (Figure 3.7)
x(k+1) = Fx(k) + w(k) (3.16)
where w(k) is zero mean white noise.
Yk) = Cx(k) + v(k) (3.17)

where v(k) is an independent additive white noise with zero-mean and unknown variance o

wik-1)

x) + )
&

v(k)

Additive
white
noise

Model of random signal process Measurement model

Figure 3.7 Random signal process and measurement model

The optimum one step prediction is shown in Figure 3.8. The summarized set of equations
are shown below. The development of these equations is not dealt within this thesis since
it is a standard filter and the information can be found easily (Ayache, 1991). The predictor

equations are:



siving

[ o 0 o 1
e- ! o 0 ' 1325)
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From equation (3.17) we define the terms as following

[P, P, 1f
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Also

To start the Kalman predictor, calculations the gain matrix G(k) has to be initialized. For
this purpose the error covariance matrix P(k) has to be specified. An ad hoc technique used
in Ayache (1991) is based on the first few measurements of data to calculate an initial value
for P(k). In this application since the velocity and acceleration are calculated the first three

measurements of position at times k=1, 2, and 3 are used. From these three sets of
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Calculate the gain matrix (G)
uture = F*PpastF-

G = F*Pruture=C *inv(C*Pfuture*C-R)

Pfuxure (F-G*C) F +Q
‘Pfuture~C *inv*C*PfutureC’ - R)

Xpmd F*Xold + G=(Observed - C*Xold)
Ppast = Pfuture
Xold = Xpred

Track Matching
Routine

Back 10
Main

Figure 3.9 Flowchart of Kalman prediction routine
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3.4.1 Single Step Tracking

The Kalman predictor approach used predicts future positions of the marker based on past
track data. At time 7 the predictor predicts the marker positions at ume 7+ /. Attime r+/ the
reconstructed (observed) 3D marker location is matched to the predicted marker locations

and thus the markers are connected (o their corresponding tracks.

This one-to-one correspondence occurs only under ideal conditions. Uncertainty due to

white noise, errors in ical i ision and the linear p nature
of the Kalman predictor cause the predicted locations to rarely match with the observed
locations. Therefore, some conditions need to be used to match the prediction with the
observation. To this end, a region of uncertainty is established around each predicted point.

This is called the region of acceptance (ROA) (Figure 3.10).
The predicied marker has an upper and lower bound of uncertainty associated with each
coordinate. ex. ey, and ez are the uncertainty lines for coordinate x. y, and z. They combine

to form a cube volume around the predicted marker.

The upper and lower bounds of uncertainty are

ez
Marker __| defined as the location of the predicted marker
——t
ey  plus and minus the variance of measurement.
Region
of Accgcplznce This technique of matching markers to tracks

ex

works well with one step prediction.
Figure 3.10 Region of acceptance P
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3.4.2 Multi-Step Tracking

One of the problems with the camera vision computer-aided-systems is that due to
obstruction, occlusior, or some other reason the system loses track of one or more markers
for a period of time. Once this happens the system does not know where that marker will

reappear and the track becomes broken or disjointed.

The Kalman predictor is used to predict the marker locations until a match for that location
is found. Figure 3.11 shows the prediction of a segment of a marker track between times
t=kand t =k+n. The motion of the marker between k and k+n is unknown and is depicted
in the figure by two possible paths (solid lines) that it might have traveled. The ROA att=
k+n is larger than at t = k. This is because the region of acceptance grows larger the further
into the future the prediction is continued: the greater the region of acceptance. the greater

the possibility of error.

The growth of the region of acceptance is denoted by the dashed lines. In this application.

the region of has two factors i ing its growth. The first is the error due to

the measurement devices. This error is estimated at the beginning of the trial run and added

to the x, y and z for every i i step. The second factor
influencing the growth of the region of acceptance is the last calculated velocity vector. The
percentage of the possible distance traveled in the time intervai using this velocity vector is

calculated and also added to the x, y, and z components of the region of acceptance.
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Motion Unknown

Figure 3.11 Difference in region of acceptance at different times of prediction

Since the Kalman filter is a linear predictor it works well in predicting motion that is simple
and that has very little change in acceleration over a period of time. In gait. however, the
motion is complex. With complex motion, even after as few as 20 time steps into the future
the predictor gives inaccurate predictions. Therefore to predict gait motion for any length
of time and match the predictions to their corresponding tracks requires additional

These additi ints include the distance of observed marker to the

center of any region of acceptance and the velocity profile of the observed marker matched
to that of the predicted track. If one track and one marker are left unmatched after the
constraints are checked then these markers are considered to be matched in a process of

These additi can be used, in theory, as long as the regions of

acceptance do not overiap.

The algorithm for matching is shown in Figure 3.12. First, the straightforward matching is
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done. Any marker that is found in a ROA is then attached to the associated track. If there
are two markers found in a ROA then the ROA is removed from matching consideration
until all the other markers are matched. If there are any unmatched markers left. then
additional constraints will be used. It should be noted that there may be more ROAs than
observed markers because one or more markers may not have been in view of the cameras.
Second, the distance constraint is used. The Euler distances, which are the square root of
the sum of squares of the difference between the remaining marker iocations and the
predicted location. are calculated. The markers are then matched using minimum distances.
If there are markers unmatched, the velocity constraint is used. Finally. by a process of
elimination. if the above constraints found matches then no markers should be left. If one
is left then the final match is made to the only remaining ROA using distance as the deciding

criterion. If additional markers are left after this step. then they are discarded.

Even with these additional constraints, however, if the Kalman predictor is allowed to predict
far enough into the future (greater than | second. i.e. 30 time steps), the regions of
acceptance for different markers will overlap and thus the prediction will become useless for
the matching of markers to tracks. To solve this problem a physical model has been devised
to help improve the prediction and matching process. This will be described in the following

section.



markers, Note: there maybe fewer
predicted markers, and observed markers than
Fegions of acceptance

Yes

Dothe
ROAs End analysis:
overtap?
Yes
Maliple Remove ROA
markers in fromtesting
e ROA? and siore
No
Mach
10 ROA using
check

Figure 3.12 Flowchart of matching process
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3.5 Component Angle Model of Gait

This model is a representation of the angles that adjacent body segments. and their
corresponding lengths, make with world coordinate system. These angles are broken into
their X, y. and z components and therefore given the name component angle model. It was
designed specifically for the purpose of comparing the Kalman prediction against a physical
model of gait. Component angles are calculated from the 3D Kalman prediction data which
can then be compared against the expected or measured model. This subsection will describe

the model and the algorithm used to calculate the model from 3D coordinate data.

3.5.1 Discussion of the Model
The model uses 3D marker position data to define rigid bodies: two adjacent markers define

one rigid body. Figure 3.13 shows a three marker system with two rigid bodies.

Each rigid body forms three component angles (X. Y, Z) with respect to the world coordinate
system. The mode! consists of the lengths of the rigid bodies, the connectivity of the markers

and the component angles.

Using this model, the locations of all the markers can be determined if the location of one
or more markers is known. The motion model has been developed by considering the three
dimensional motion of the rigid bodies (Kadaba et al, 1990, Ramakrishnan and Kadaba, 1991,

Sutherland et al, 1988).
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Figure 3.13 Rigid body mode!

The connectivity matrix for the example shown in Figure 3.13 is

21
CONNECT = { 5% ] (3.33)

This matrix shows that marker 2 forms a rigid body with marker | and marker 3 forms one
with marker 2. The component angles are easily determined by using the normalized vectors,

AR, and nR,, of the rigid bodies which are defined by

R - g
n = ———(k)
! P,-P|
PP, (3.34)
Rk = ®
: \P,-P}|

where P, P, and B are the three dimensional marker locations at time step k. These
normalized vectors are used to compute the component x, y, and z angles that the rigid body

forms with the world coordinate system as shown in the set of equations (3.35)
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8,,(k) = acos([1 0 0]-nR,T(k)
8,,(k) = acos([0 1 0]-nR,T(k)
6,,(k) = acos([0 0 1]-nR, (k)
and (3.35)
8,,(k) = acos([1 0 0]-nR,"(k)
8,.(k) = acos([0 | 0]-nR,"(k)
6..(k) = acos([0 O 1]-nR,T(k)

These angles provide a motion history of the rigid body movements. Since the rigid body
motion observed here is cyclic in nature, the length of one cycle is determined and the mean
of several cycles is taken to form a percentage cycle model of motion shown in Figure 3.14.
The figure shows the component angle cycles for one of the rigid bodies using data from one

of the test runs. The test runs will be explained in the next chapter.

3.5.2 Development of the Algorithm

The physical model is used to compare predicted marker locations with a set model of
motion and provide the data necessary to move the predictor back on track. The flowchart
for this procedure is shown in Figure 3.15. The only time that the comparison to the physical
model is made is if there are one or more markers missing from view. If one or more
markers are missing and therefore their locations predicted. the physical model checking
routine is called. This routine uses the marker positions, which have already been matched
to their corresponding tracks, to calculate the component angles of the rigid bodies that they
form. A check is then made against the expected angle values at that particular location in

the cycle. If the angles are within a small range around the model component angles, the



Figure 3.14 x (top left), y (top right). and z (bottom) graphs of the component angle
cycle

comparison passes; if not it fails.

As long as there is one observed marker, the approximate locaucns of all other markers can
be calculated. The connectivity matrix, along with the component angles per rigid body, and
their lengths, can be used to calculate the positions of the markers. For example, if P, were
missing either P, or P, can be used along with their corresponding angles and the length to

determine the location of P,.
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One important constraint is that the software needs to know in which part of the cycle the
motion is occurring. Only then can a proper comparison can be made. As mentioned
previously, the angle model based on the predicted and observed markers is calculated and
compared with the component angles at that location in the cycle. If the angles are within
a small range around the model angle (set to £5% of the gait cycle). the comparison passes;
if not it fails. If it fails then the locations of the predicted markers are calculated using the
known locations of the observed markers, the length of the rigid bodies and the expected

angles at that point in the cycle.
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CHAPTER 4
EXPERIMENTAL PROCEDURE, RESULTS,

AND DISCUSSION

This chapter describes the procedure used for testing the theory discussed in the previous
chapter, where the motion of a person (described in terms of her/his position coordinates) is
tracked by two (or more) cameras placed at strategic locations. Markers are located on key
anatomical sites on his or her body. Figure 4.1 shows the data flow of the various algorithms
described in the last section. Software procedures, written in the Matlab™ programmers’

environment, were developed to test the theory outlined in Chapter 3.

At the outset of the project it was expected that the data to test these routines would be
obtained from a camera vision system. Due to delays in obtaining the vision system, an
alternate methodology was used to obtain the data required for the verification of the theory.
The data for the experiment came from the FOB measurement system. This system is
composed of three electromagnetic sensors and a base magnetic field generator. The sensors

return position and orientation data to a data collection system. Section 4.1 describes the
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FOB system in greater detail. Since the range of measurement of the FOBs is a maximum
of three feet from the field generator, it does not allow for tracking of gait. As a substitute
for periodic motion, markers were placed on a subject’s arm and cyclic/periodic motions

were performed.

The data from the sensors were already in 3D coordinates with respect to the base and could
be input directly to the Kalman prediction routine. However. to simulate a camera vision
system, the data were transformed to iwo simulated camera image planes which were
assumed to be the input to the system. [mage data were removed from sections of the record.
as required, to simulate periods when a marker was not seen by a camera. Figure 4.1 shows
the generalized flow of the data from one stage (subroutine) of analysis to the next. These
stages, depicted by the rectangular blocks. are discussed in detail in this chapter. The 3D
position data (marker tracks) from the FOB system were passed through a moving average
filter to remove some of the high frequency components from the data. These data (3D) were
then converted to the camera image planes (2D) using simulated camera transtformation
matrices. The 2D tracks of data were then matched and reconstructed io retrieve the 3D
coordinates of the markers. The 3D coordinates were entered into the Kalman predictor
routine to be matched to their corresponding tracks (the tracking algorithm). The Kalman
predictor also filled the gaps in the tracks when markers were missing from view. Finally,
the matched markers were checked against the motion model discussed in Chapter 3 to

determine the correctness of the match.
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4.1 Experimental Setup

4.1.1 The Flock of Birds

The FOB is a “six degree-
of-freedom™ measurement
device that can track
position and orientation of
up to thirty  magnetic
markers (Flock of Birds,
1995). Figure 4.2 shows
the setup used in the
laboratory. It has one
transmitter (XMTR) and

three receivers (RCVR).

User's host
computer
Rs232
Rsi85 8525
r
[ J
RSN2  FBB [T RSB FBO
Master Slave Stave
Bird Addres | B Addres Bird Address 3
I
XMTR
l RCVR [ RCVR | RCVR |

Figure 4.2 FOB configuration with three birds

The FOBs are connected to the host computer through a full duplex RS232C interface. The

second interface is a dedicated RS485 interface for communication between flock members

and is generically called the Fast Bird Bus (FBB). A picture of the FOB system along with

the three transmitters/receiver on the wooden arm can be seen in Figure 4.3. A picture of the

FOB system can also be seen in appendix B.

The FOB system is capable of making from 10 to 144

per second



on various factors such as the number of birds used, the communication rate, the type of
measurement required, etc. With the current setup of three birds (markers) and a

communication (baud) rate of 9600, the maximum sampling rate for measuring positional

data is between 32-38 Hz.

Figure 4.3 Wooden arm attached with birds

When set to measure positional data, each receiver (the bird) returns the x, y, and z

coordinate distances, in inches, from the itter. The itter is the point
with coordinate (0, 0, 0). The static positional accuracy of the FOB is stated to be .1" RMS
average (Flock of Birds, 1995) over the translational range. From static measurement trials

conducted it was shown that the measured position values had a higher variance when a bird
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remove the curvature of the data (since we expect a line). it does remove much of the high
frequency noise (smooths the data). Another possible source of error is that the transmitter
generates magnetic fields and hence is very sensitive to ferrous metals and thick obstructions.

This made the gathering of valid data extremely difficult.

Since the data from the FOB was already in 3D coordinates. no effort was made to determine
a calibration or computation to remocve the curvature of the lines. Any errors in the
measurement were assumed to be the actual motion of the object in 3D space. This error was
allowed because in general situations there were many unknowns with markers placed on
skin such as slippage of skin over a region and amount of body fat that caused the marker to
wobble differently with different subjects. This 3D data was then transformed to the image
planes of the simulated cameras to simulate measurement from a camera-aided vision

system.

4.1.2 Si ing Camera P

A simple pinhole camera model is simulated using the position (x, v, z), the orientation (6,,
6, 6) parameters of the camera with respect to the world coordinate reference point

(location and orientation of the FOB transmitter) and the focal length of the camera.

The 3D reconstruction of images require a minimum of two cameras. Therefore, for testing
purposes and simplification of the algorithms it was assumed that only two cameras were

used. Figure 4.6 shows two cameras, with independent axes, pointed to a track or area where
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for the “angle mode! algorithm.”

The first motion, run #1 (Figure 4.8), was a slow periodic circular movement cver the top
of a plastic cylinder. The cylinder was weighted down to avoid any accidental movements
and carefully set to be within the range of the transmitter for the FOB. The figure shows a

large movement in the x and y directions and minimal movement in the z direction.

10

2 (inches)

Figure 4.8 3D representation of motion history of the
markers A, B, and C in run #1

The second motion, run #2 (Figure 4.9), was a periodic motion over a semi-rectangular
configuration with rounded corners. The rectangular object was positioned vertically and
placed at a45° angle in the x-y plane to allow for farge changes in the x, y and z coordinates.
The figure shows that marker A has the greatest range in motion and is periodic. Marker B
also gives a periodic motion with a reduced range. And marker C has a small planar periodic

motion, since a slight rocking of the body was required to complete the rectangular motion.
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Figure 4.9 3D representation of motion history of markers
A, B, and C in run #2

The third motion, run #3 (Figure 4.10), was created by the subject flexing his/her arm. In
this motion, marker A was moved to marker position D to simulate markers in close
proximity with each other. The subject was positioned in the transmitter’s range so as to give
the greatest motion in the x, y and z planes. The close proximity of the markers B and D

allowed for testing of overlapping ROAs.

z (inches)
c‘\

x (inches)

Figure 4.10 3D representation of motion history of
markers B, Cand D in run #3

83



This algorithm was tested by injecting different levels of white noise in the camera image
planes. The injected noise in the image planes of both cameras simulates digitizing errors.
numerical imprecision and electronic noise in video cameras. Appendix C describes the types
of noise in charge-coupled device (CCD) cameras and describes the procedure used to inject
noise in the image plane and determine how the noise affects the precision of the marker
coordinates. The RMS error n pixels was calculated for three different intensities of noise:
5. 10 and 20 percent. Table 4.1 contains one row of data from Table C.1 and these RMS
values are used to corrupt the image coordinates to varying degrees by adding or subtracting

arandomly generated percentage of the RMS error from the known image coordinates.

5% Error 10% Error 20% Error

Var Type
RMS, | RMS, | RMS, | RMS, | RMS, | RMS,

10 Edge 0.004 0.003 0.008 0.007 0.027 0.6221

Table 4.1 RMS error in pixel values caused by different intensities of white noise

To assess the success of the algorithm, the output array of matches was visually checked
against an expected output. The algorithm was considered to have failed if any of the marker
positions were found to be matched incorrectly. For example, if the marker A in camera [
was matched to marker B in camera 2 then the algorithm had failed. For each noise intensity
the algorithm was run three times (since the noise is random and gives different percentage
values) and the average percentage error of failures was then calculated. The error was
rounded up to the nearest 5%. Table 4.2 shows the results of the test for the 0%. 5%, 10%

and 20% noise levels.
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Before injecting the noise. the markers were matched between the images. This procedure
was successful for all three data sets. It can be seen from Table 4.2 that with less than 20%
signal-to-noise ratio in the image plane, the matching process failed. As was stated in the
literature review section, geometric matching was not sufficient for matching in noisy

scenarios and additional constraints needed to be added.

With run #1 more than 5% failures started at approximately |5% noise level, run #2 started
failing at approximately 17% noise level, and run #3 started failing at 8% noise level. The
% error entry showed the maximum percentage of failures, i.¢., the % ervor for run #1 at 20%
noise reads as less than 20% of the markers were matched incorrectly. I[n other words 80%

of the matches were done correctly.

Run #1 Run #2 Run #3
% % Error % % Error % % Emor
Noise Noise Noise
0 0 0 0 0 0
5i 0 5 0 5 0
10 0 10 0 10 <i0
20 <20 20 <15 20 <85

Table 4.2 Results from noise injection test of the epipolar matching algorithm

proving the i ilities of the epipolar algorithm by the addition of extra
matching constraints was not considered. The reason being that, since these markers were
moving through 3D space without simple constraints, it would be difficult to establish
additional physical constraints in the image plane without introducing many computationally
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heavy rules. Another reason was that in commercial systems all the markers were identical
and the lighting conditions and coatings on the markers were set to maximize the view of the
markers and remove all other background features. Therefore, no other identifiable features

such as edges could be used to establish relationships between markers.

One solution to improve matching in noisy environments is to use active markers such as
color coded markers or markers blinking with a set frequency. Another solution s to use the
distance between markers as fixed lengths (Personal Correspondence, Mah 1996, Strukol
1996). But this would require extra information about the connectivity of the markers in the
image plane, as well as the orientation of the lengths. Another would be to use specific
marker sets such as using three markers per body segment (Personal Correspondence,
Forstien 1996). This would require more complex algorithms for tracking and prediction of

the markers.

In addition to the white noise injection tests, two additional tests without noise were done
to test the constraints. In the first test, image points were removed from one camera plane
0 simulate obstructions to the camera and occlusion of markers, and the matching algorithm

was executed. The i matched the ing image points and

discarded the unmatched ones. In the second test, additional marker coordinates were added
to the image plane of one of the cameras to simulate unwanted artifacts. The test for missing
markers passed without any errors. The matching test only failed in test cases where the

injected point was closer to the calculated epipolar line than the actual point. A form of
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linear programming (Ayache 1991) in addition to epipolar matching may solve this problem.
This was not pursued further because it wasn't the main purpose of this work and because
the acquiring of data from cameras and their 3D reconstruction algorithms were usually

provided with the hardware.

4.2.2 3D Reconstruction

This algori 3D (world) i using matched 2D (image) coordinates.

It used the image match information and the transformation matrices of the cameras in a least
squares approach to reconstruct the 3D coordinates. The same noise injection method used
in the epipolar matching was used for testing the 3D reconstruction. Different noise levels
were added to the image plane data values to determine the effect they would have in
determining the 3D positions. To avoid any problems of incorrect matching, the noise in the
image plane was introduced after the matching algorithm was completed. A squared error
{in the x. y, and z direction) was calculated between the observed marker location and the

location to the of the algoril This

error gave the minimum distance between the two points. The observed location values (x,
¥, z) were subtracted from the calculated location values, then squared, then summed. and

the square root of the sum was obtained.

Table 4.3 shows the resuits of this test for noise ratios of 5%. 10% and 20%. For runs #1 and
#2, the markers used are A, B, and C and for run #3 the markers used are markers D, B, and

C (refer to Section 4.1.3 for explanation on change of markers).
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Figure 4.12 Reconstructed 3D tracks of run #1: a) 5%
noise and b) 10% noise

4.2.3 Kalman Prediction Matching of Disjointed Tracks

Consider one sampling frame, t, of this two camera simulated vision system. The output
from the system is composed of two sets (list) of image coordinate data. These two sets of
image coordinates are matched to their corresponding markers in the two images based on
the epipolar constraints. After the image coordinates are matched, the three dimensional
coordinates are calculated. At time t+1 a new set of data is captured and the 3D coordinate
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data These i data have no i ip to marker data

from previously sampled frames. This algorithm serves two purposes. The first purpose of
this algorithm is to match the marker data from time step t to the marker in time step t+1. i.e..
marker A in time step t is still marker A in time step t+1 and so on until time step t+n: to
track the markers through space. The second purpose is to predict the motion of the marker
while it out of view of the vision system so that a correct match can be made once the marker

is back in view.

In order to track the markers through space, the Kalman prediction aigorithm. at time step
t. predicts the motion of a particular marker one step into the future, t+1. This one step

has an i region of v around it which is assumed to be system

noise and measurement error. At time step t+1 when the 3D locations are extracted from the

vision system a search is done to match the observed (extracted) markers with their

prediction (regions) from time step t. If a marker. at t+1. falls within the region of

v ) for a iction, from t. then it is assumed by the

algorithm to be that same marker. So the connection is made and a track of that marker is

determined.

When data is missing for a period of time, the Kalman predictor continues its prediction for
as long as the data is missing. The moment the marker comes back into the view of the
vision system, the algorithm attempts to make a match to the previous marker locations based

on the last prediction. The only di between this multi-step matching and the one-step




matching is that the region of uncertainty will be much larger (Section 3.4.2). For testing this

algorithm, only the three data sets from the Flock of Birds system were used.

The reconstructed marker data, from the previous subsection, was used as the input for this
algorithm. At this stage, no noise was added to the coordinate data since the effect of noise

was analiyzed in the previous stages of the vision system. discussed in Section 4.2.

Two conditions (tests) were devised for the algorithm. The first test involved the addition
of extra markers, while the second test involved the removal of markers. A squared error
was calculated between the algorithm's matched marker (the final track output) and the
observed marker. This showed the average error based on the length of prediction. It also
showed if there was any type of relationship between the error and the length of prediction.
The marker-to-track matching capability of the algorithm was tested visually (on the
computer screen) by observing the actual tracks against the predicted tracks. For the
algorithm to pass, the observed markers had to be matched to their correct tracks. As
mentioned in Section 3.4, matching markers to their tracks was done using three constraints
which are: (i) the prediction ROAs; (ii) distance of the observed marker from the center of
any ROA and; (iii) matching of the velocity profile of an observed marker with that of a
predicted track. The test involving the addition of extra markers passed for most cases and
the correct matches between the observed markers and their corresponding track histories
were found. The only time the matching failed was when there were two markers in the

ROA and the inserted marker was closer to the ROA center than the observed marker.
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This failed case appeared after the prediction of many (>30) time steps of a marker track.
As was stated before, the longer the prediction was allowed to run. the greater the region of
uncertainty and therefore the greater the ROA and the greater the possibility of extra markers
falling in the ROA. This large ROA. as can be seen in the following tests. did cause some

bl with g. However, the ion of checking the matched 3D markers

against the physical model. as shown in the next section, eliminated this erroneous matching.

Significant testing has been done to test the prediction and matching of the marker locations
when the markers disappeared from view for different lengths of time. As a reference case.
the prediction and matching was run with no missing data and the error calculated was zero.
Twelve tests were done for each run by changing the size of the gap of missing data and
changing the number of missing markers. In tests |-6 one marker at a time was removed for
a period of time which increases from test | to test 6. For each of the three runs. sampled at
30 Hz. the location and length of missing marker segments are given in Table +.4 {substitute
marker D for marker A in run #3). Figure 4.13 gives a simulated example (missing gaps
were exaggerated) of test no. | in Table 4.4 which shows three separate tracks with different

segments of data missing.

Similarly, for the tests 7-12 two markers were removed simultaneously for increasing periods
of time. Three combinations of the three markers are given for each. Table 4.5 shows these
combinations. The first row in the table shows that markers A (D) and B have a gap at 10 -

20 time steps. markers B and C have a gap at 80 - 90 time steps and markers A (D) and C
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have a gap at 150 - 160.

Test | Length Location of missing data (time steps)

Bow | ) | arker AD) || Marker B Marker C
1 Ya 10-20 80 -90 150 - 160
2 % 10 - 30 80 - 100 150 - 170
< 1 10 - 40 80-110 150 - 180
4 1% 10 - 50 80- 120 150 - 190
= 1% 10 - 60 80- 130 150 - 200
6 2 10-70 80 - 140 150-210

Table 4.4 Tests 1-6 based on length and location of missing data

Example of missing gaps in tracks
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Figure 4.13 Three marker tracks with one gap (missing markers)
per track (No. 1)
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The rest of this sub-section is separated into three parts. one for each run.

4.2.3.1 Run #1

As can be seen in Table 4.6. for run #1 all the tests passed. but to match the markers to their
tracks after the 1'% seconds (4) mark required the use of all three constraints.. [n run #2. the
motion failed at the 1% seconds (5) mark for both the one (1-6) and two (7-12) marker
missing tests. It required the first two constraints to make proper match after the s second
(missing length of time) mark. Also, in this case, the third constraint was not useful in
obtaining a proper match. With run #3, since the markers were much closer (B and D) and
the motion was faster, the matching algorithm failed with the two missing markers tests (7-
12) at % seconds (8). It also failed at the 2 second (6) mark with the one missing marker
tests (1-6). And again, the third constraint did not prove to be useful in this test run. The
reason for the failures in all the cases was that the ROAs became too large, more than one
marker fell in their region and the wrong marker was matched based on the distance

measurement to the ROA center.

Tables 4.7, 4.8, and 4.9 (4.8 and 4.9 are given later) show the squared error of selected tests
for the three runs. Table 4.7 contains the squared error values for the s second. | second,
and 2 seconds for both the one and two markers tests of run # 1. Table 4.8 contains the
squared error values for, s second, | second, and 1Y second tests for both the one and two
marker missing tests of run #2. Table 4.9 contains the squared error values for ¥ seconds,

| second and 15 seconds tests are shown for the one marker test and ¥ seconds for the two
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marker test of run #2. The general trend that can be observed in these tables is that while the
markers are matched properly, especially for run #1. the longer the prediction of the motion

was allowed to continue, the greater the error between the prediction and the actual motion.

Test: | Frroc | missing marker Test | Emor 2 missing markers
no. | square no. | square
and mean and mean
cap [anenh| A | B C | cap [iinerh | » B c
e | o 0 ) e oot Joor [ o
L 7 3
T o |o
o 0 0 0 Joey e 001 | ©
0 0 0 e | 0 |oo2| o
0.15 | 0.03 | 0041 er |0205 0767 | 005
3 [Te? 0393|0196 01282 ° [ e [0225 0464 | 004
s | & (s | &
s | o o | 003 e | 008 0357 ] 0.06
€2 | 1097 | 0906 | 03045 € | 1486 | 7.696 | 0.225
- - 2 S < 2.
(Zﬁs) 4232 | 3.359 | 1.4433 (2‘ e [ ]ses ] oo
0 | 002 | 0407 e | 0571 | 2012 | 0508

Table 4.7 Selected squared error results from run #1

Table 4.7 shows that there is an increase in error between the known location and the
predicted location as the time period for prediction increases. As the prediction was allowed
to run beyond the full 2 second interval, the prediction diverged from the actual marker
paths. There seems to be no other discernible relationship between the length of the
prediction and the error. The divergence for markers A, B, and C can be seen in Figures

4.14,4.15, and 4.16 which shows test case 12 of run #1.
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Figure 4.14 (a) X Coordinate Track of Marker A for run # 1 (passed)
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Marker A - Y Component
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Figure 4.14 (b) Y Coordinate Track of Marker A for run # 1 (passed)



Marker A - Z Component
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Figure 4.14 (c) Z Coordinate Track of Marker A for run # 1 (passed)
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[t can be seen in Figure 4.14a and Figure 4.14b that the Kalman filter s accurate in predicting
the motion for approximately half of the missing data interval and is as far as 5 feet away at
the end cf the prediction interval (10-70). To match this ROA to the correct observed marker
requires the using the ROA constraint. as well as the distance and velocity constraints. It can
be seen from the actual and predicted lines that the correct match is found for this marker at

the end of the first interval.

At the end of the second interval (150-210), it is seen that both the X and Z ROA
components contained both the observed marker and predicted locations, while the Y
component ROA contains only the predicted marker position with the observed marker
position approximately 2 feet away from the edge. In this case only the ROA and the
distance (second) constraint are needed to match the predicted marker track’s ROA to the
ohserved marker location. In this interval, the Kalman filter correctly predicts the motion of
the marker for a third of the interval (150-210). The divergence of the Kalman filter from
the observed marker values occurrs at the point when the acceleration of the marker changes

significantly.

Figure 4.15 also has two intervals of missing data at 10 to 70 and 80 to 140. In the first
interval (10-70), only the ROA constraint is used for matching until about the 49 time step

when the Y i (Figure 4.15b) iction ROA no longer contains the observed

marker locations. Then the secondary (distance) constraint is used to match the observed

marker position to the ROA of the predicted track.
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Figure 4.15 (a) X Coordinate Track of Marker B for run # 1 (passed)
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Marker B - Y component
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Figure 4.15 (b) Y Coordinate Track of Marker B for run # 1 (passed)
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Figure 4.15 (c) Z Coordinate Track of Marker B for run # 1 (passed)
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The use of the two constraints (ROA and distance) continuos until the end of the interval
(70). It is seen that the Kalman filter accurately predicts the motion of the miss:ag marker
for approximately 15 time steps (%2 2 second) and by the 39° ume step. 15 the terval. the

prediction and it’s associated ROA no longer contain the observed marker location.

The prediction at the second interval (80-140) followed a pattern similar to the first interval.
where only the ROA constraint is used for matching unul the Y coordinate prediction. at the
120" time step, and its associated ROA no longer contains the actual observed path of the
markers and thus the addition of the distance constraint is needed to perform the correct
matching. In this interval it is observed that the Kalman filter predicts the motion accurateiy
for over 20 time steps and by the 49® time step, in the interval. the prediction and it's

associated ROA are no longer contained the observed marker location.

[n Figure 4.16. the data missing intervals are between 80 to 140 and 150 to 210. In the first
missing data iaterval (80-140), the ROA of the predicted track always contains the observed
track, therefore only the first constraint (ROA) is used in matching. In the second interval
(150-210), the distance (second) constraint is necessary for maiching when the Y coordinate

ROA of the predicted track no longer contains the actual track data at the 180 ume step.
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Figure 4.16 (a) X Coordinate Track of Marker C for run # | (passed)
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Figure 4.16 (b) Y Coordinate Track of Marker C for run # | (passed)
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Figure 4.16 (c) Z Coordinate Track of Marker C for run # 1 (passed)




Itis seen in both intervals that the Kalman filter accurately predicts the motion for only 10-15
time steps. Even though the prediction and its associated ROA. for the major part of the
interval, contain the observed marker and is in close proximity to the observed marker, the

motion is not accurately predicted.

The three Figures +.14, 4.15, and 4.16 show that the prediction continues based on the last
known values for position velocity and acceleration, even though the motion had changed

in the interval of prediction

This is a limitation of the linear Kalman filter because there is no constraint provided to
change the direction of the prediction when no marker is observed. This is why the
prediction algorithm cannot be allowed to run for long periods of time without additional

constraints.

The three groups of graphs in Figures 4.14, 4.15, and 4.16 shows that in the first 10 to 20
steps of the missing data sections, the algorithm predicts the motion of the markers
adequately. If the missing markers became visible to the camera in this short period after
they disappeared, the prediction would be accurate. Generaily, the predictor diverged when
the prediction was allowed to run longer and the more the actual marker motion underwent
accelerations. For example, within the 80 to 140 time interval in Figure 4.16 for the X. Y
and Z coordinates the prediction follows the actual motion closely. However, for the time

interval of 150 to 210, the prediction diverges from the actual path. It is seen that the
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predictor is only good for prediction of complex motion for short periods of time since it is
a linear predictor. The next section discusses a method to improve the prediction of the

actual motion when the marker is out of view of the cameras.

In this run (#1), the algorithm is very successful in the task of connecting a marker to its track
after a period of prediction. It is able to correctly match the markers to their corresponding

tracks after the 2 seconds, for both the one and two missing marker tests.

4.2.3.2 Run #2

Table 4.8 shows the squared mean error of selected test from run #2. From Table 4.6 it is
seen that the matching for this run failed at 1%4 seconds for both the one missing marker and
two missing marker tests. Table 4.8 contains data from selected tests: %5 second, | second
and 1'% second tests for both the one marker missing and two marker missing tests. This is
different from Table 4.7 in that the 2 second tests could not be included since it failed at the

1% second tests.

Again this table shows an increase in error with the increase in prediction length. No other
relationship between prediction length and error can be seen from the data. One of the
reasons for not being able to determine any other special relationships between prediction
and the error is that the error depends on the change in motion while it is out of view of the
vision system. This means that a relationship between the error and type of motion (i.e. slow,

fast, straight, twists and tums) may be ined but a i ip between the
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length and error cannot be determined.

Test | Emor | missing marker Test | Emor | 5 missing markers
no. | square no.
and mean and
sap |Gnet)| A B C | e A B €
e | 0 0 0 0 0 0
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el | o 0 0 o |oot | o
e? [o04[o003 | o 2 loo7oos | 0
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> | 002 | o [ 004 [ 007 | 0
as & oo s
e | o [o0s5| 00 2 {004 | 02 | 004
el 009 fou3t| o 0.153 | 009 | 0.02
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The graphs for run #1 shows the successful runs. but for runs #2 and #3 only the failed test
graphs are selected, one failure for each run. These graphs are also shown to explain how
the matching process fails for the runs. The X component graph labels the length of the gap
of missing data. The Y component graph labels the location of the error in matching and the

ROAy (Y component of the ROA). The Z component graph labels the ROA , Also, the data

Table 4.8 Selected squared error results from run #2

in the graphs have been trimmed to view only the area of interest.

Figure 4.17. from run #2, shows the track for test no. 11, Marker B, in which the error occurs

causing the test to fail. The failure occurs in the first missing data interval (10-60) at the 55°

time step.

112




Marker B - X component

Time steps (1 second = 30 steps)

- Actual Track — Predicted Track
— — Upper Limit — — — Lower Limit

Figure 4.17 (a) X coordinate of marker track in run #2 which failed
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Figure 4.17 (b) Y coordinate of marker track in run#2 which failed
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Figure 4.17 (c) Z coordinate of marker track in run #2 which failed
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As can be seen in any one of the component graphs the ROA is increasing almost linearly
until about time step 55, then a discontinuity starts and lasts until the end of the data mussing
interval at time step 60. The X and Y component graphs clearly show that this portion in this
small error region has a different motion than it’s previous track history (a discontinuity) and
in the Z component graph the prediction in this error region (Z coordinate only) is nearly 15
inches away from the observed track. This incorrect matching occurs because another visible
marker is encompassed by the growing ROA and therefore the marker is matched to the
ROA's track (B’s track). Once the missing marker (B) is back in view of the cameras the

algorithm is able to recover from it's erroneous matching by using the distance constraint.

The two major differences between run #2 and run #1 is that there are slightly larger
components of acceleration in run #2, seen by the sharper comners that were in the motion
path for run #2. and the straighter lines of motion (Figure 4.9). The run fails because the
ROA becomes large enough to encompass a neighboring marker and a wrong match is made.
Despite the error in matching, the algorithm corrects itself once the missing markers becomes
visible. On comparing Table 4.8 with Table 4.7 it is noted that the error in table 4.8 is much
smaller. On further examination, while there are sections of motion with higher acceleration
(the comers), the majority of the motion is almost linear and therefore the prediction
generally tends to approximate the motion. Thus the error is much smaller. For this test case
the Kalman filter predicts the motion of the mussing markers accurately for longer gaps (40-

50 time steps).
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4.2.3.3 Run #3

Table 4.9 shows the error squared mean values from run #3. This table shows selected
values for tests at the /5 second mark for both the one and two marker missing tests and at
the 1 second and 1%5 seconds marks for the one marker missing tests. This run. as can be
seen from Table 4.6, failed at the 2 second mark for the one marker test and at the % second
mark for the two markers test. Table 4.9 shows the large error at test no. 5. Because of the
size of the error for Y coordinate it can be assumed that the prediction for that coordinate was

rapidly diverging.

Test | Ermor | missing marker Test | Emor | 3 missing markers

no. | square no. | square
and | mean and | mean
gap |Ginch’)| AD | B C | gap |Ginenh| D] B C
e | 002 [0.107] 0033 e [003 [o.146 | 006
iy & 00| 0 Joow -/75) €} | 007 | 009 | 008
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el | 002 [ 002 | 0oss e’ | 004 | 005 | 006
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”;:s) ! | 4056|1053 53815
) e |0291] 014 Jo4s32

Table 4.9 Selected squared error results from run #3

The main reasons for the early failure in the two missing markers test are that the markers
B and D are much closer together and that the motion is highly nonlinear (Figure 4.10).

However, with the one marker missing tests (1-6) the algorithm is still very successful at
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Figure 4.18 (a) X coordinate of marker track in run #3 which failed
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Figure 4.18 (b) Y coordinate of marker track in run #3 which failed
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Also it can be concluded that this Kalman filter routine with the three constraints 1s excellent
at matching markers to their tracks when there are no missing markers (tracking only) and
it performs well for over short gaps in the data if only one marker is missing or if the motion

is not too complex over the prediction period.

4.2.4 Di C int M ing of Disjoi Tracks

To determine if the use of the Kalman algorithm is an improvement over simple matching,
for example, drawing a straight line between two previous points and extrapolating a future

point, a simple distance int alg has been ped to perform the matching of

the disjointed tracks. This algorithm can not predict the motion of the markers when they
are missing. It is assumed that once the matches between disjointed tracks are made a curve

fitting/filling algorithm could be used to fill the gaps.

The Euler distance between observed markers at time frame t and the known marker tracks
attime frame t-1 are calculated. For a 3 marker system this gives nine possible combinations
(3 tracks and 3 markers) which are sorted based on shortest distance and then matched to the
corresponding tracks. As each track and marker is matched, all other combinations for either
the marker or the track are removed from the list of combinations until all the markers are
matched to disparate tracks. For example, if one marker is missing then six combinations
are calculated (3 tracks and two markers). The two marker and track combinations with the
shortest distances between them are matched to each other leaving one track unmatched (the

last known position for this track was stored). When the marker comes back into view, the
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combinations (3 markers and 3 tracks) are again calculated between the last known positions
of tracks and the current observed markers. The distance between the tracks and markers are
calculated and matching is done by using the shortest distance as the criteria. Table 4.10
contains the size of the gap (in time frames) where the matching of disjointed tracks fails for
each of the three runs when there is one or two markers missing. It should be noted that the

locations of the gaps are the same as those described in Section 4.3.3.

Run Size of gap at failure
# 1 missing marker 2 missing markers
1 18 13
2 31 25
3 3 2

Table 4.10 Length of gap before algorithm failed

The results show that the success of this technique is strongly related to the complexity and
speed of motion as well as proximity of markers to each other. For simple motion and one
marker missing, this technique works in matching markers with their corresponding tracks
for long gaps (>20 frames @ 30 Hz - less than | second) as can be seen in run # | and #2.

In run # 3 the proximity of the markers and the speed of the motion plays an important role
in the failure of the algorithm. And with more than one marker missing the performance of
the algorithm deteriorates. These results can be compared against Table 4.6 which shows
the general location where the Kalman algorithm fails. For run #1 the Kalman algorithm
performs the correct matching within a 60 frame (2 second) gap for both one and two missing
marker tests. For run #2 the Kalman algorithm fails at the 50 frame gap (1% second) for
both one and two missing marker tests. For run #3 the Kalman algorithm fails at the 60 (2
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second) frame gap for the one marker missing test and at the 20 frame gap (%5 second) for

the two markers missing test. [t can be that the Kalman i is an

improvement over this distance constraint technique.

4.2.5 Testing the Model

It was shown in section 4.2.3 that the Kalman predictor is not accurate in predicting the
motion of the markers if they are out of view of the vision system for long periods of time
greater that 20-25 time steps). An extra criteria is added to the prediction algorithm to
predict the actual motion of the markers when they were not visible. [t is proposed that a
physical motion model could be used to aid the Kaiman prediction algorithm. In the tracking
of other types of motion physical models, which modeled the approximate motion, have been
used to help predict the motion more accurately. The physical model algorithm developed.

in conjunction with the Kalman predictor algorithm, seeks to predict such motion.

The physical motion model developed for this work is the angle component model. The
model uses the marker track position data and the relative positions of the markers to each

other to create three component angle models, one for each coordinate. An algorithm is

written to check the prediction from the Kalman predic against the

model.

The algorithm accepts 3D marker data after the prediction/matching routine used the ROAs

and other constraints to match the observed and/or predicted markers to their corresponding
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The tests consist of removing sections of track data as done in the previous subsection. The
12 cases listed are run again for this algorithm for the three sets of runs (#1. #2. and #3). All
the tests passed the matching of the observed markers to their corresponding tracks. While

the previous algonthm has failures as are noted in Table 4 6. no failures are observed by the

use of the angle model i Also, this predicts the
motion of the markers while they are out of view of the vision system. The following tables
contain the calculated error squared mean values for selected test cases. These calculations
are done to determine the error in the new algorithm and to provide a basis for comparing the
performance of the addition of the new algorithm to the Kaiman prediction/matching

algorithm (alone).

Table 4.11 contains the error values for the same selected tests as in Table 4.7. These tests
are the 1/3 second. | second and 2 seconds data for both the one marker missing and two
marker missing conditions. As can be seen in the table, the error has increased as the length
of the prediction interval has increases. The increase. however. doesa’t seem to follow any
specific pattern. The accuracy of prediction depends on the type of motion that occurs during
the interval of prediction. [f it is similar to the earlier motion, the predictor is accurate but
if large changes in velocity and acceleration occur then the predictor is not accurate. The
errors in magnitudes are smaller compared to the results in Table 4.7, especiaily when the
interval of prediction becomes larger. The reason for this is that the model checking
algorithm modifies the prediction as it moves away from it's model. This is illustrated

clearly in Figures 4.19 , 4.20, and 4.21. These figures containes the graphs of predicted
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track, the actual track, and the upper and lower error bounds for the X. Y. and Z coordinates

for run #1 and the 2 second test with two markers missing.

. sEq:I':: 1 missing marker et :f:; 2 missing markers

= (,_"3", AlB | c|™ L:;_m’ AlB | C
e [oo1 ]| O o e |002| o 0

1 €} o 0 [ 7 | g | 001|001 | 002
e | o 0 0 0 0 0

€2 | 005 | 0.02 | 0.065
3 €? | 003|004 | 0072} 9
e’ | 001 [ 002 | 0.081

0.113| 004 | 0.05
0.198 | 0.06 | 0.105
0.05 [ 0.01 | 0.08

e? | 008 [ 003 [ o0.107 el [ 032|008 | 01
6 | € | 007|008 |0148f 12 | g | 082 [0.129 [ 0213
e? | 003 [0367] 0.16 e} |0438] 006 |0.172

Table 4.11 Selected squared error results from run #1

These three figures have a similar format as the ones in the Section 4.2.3. All show only the
portions where the prediction occurred to keep the resolution of the graphs as high as
possible. Also to keep the graphs as uncluttered as possible only the X coordinate graph is
marked to show the locations of the missing data and hence the prediction region. The Y
coordinate graph is marked to show the oscillation of the model and the predictor. Finally,
in the Z coordinate graph, two regions (1 and 2) are marked in the data missing interval (see
coordinate Y graph). Region 1 shows, the Kalman prediction (alone) while region 2 shows
the predictions with the added model checking. It should be noted that region 2 consists of

both Kalman predictions with and without angular component corrections (when the
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prediction matches the model no correction is required).

In Figure 4.19. it can be seen from the X coordinate graph that the two intervals of prediction
for marker A are 10 to 70 and 150 to 210 time steps (test 12). The Z coordinate graph clearly
shows the two regions labeled | and 2. In the first interval (10-70). the Kalman prediction
runs until the 17* time step is reached (27* time step in graph) where the error between the
prediction and the expected model is large enough o invoke the model correction algorithm.
This shift to the model algorithm can be seen in the Z coordinate graph because the ROA,
grows nicely in Region | and becomes seemingly erratic in Region 2 of both intervals 10-70
and 150-210. The oscillations are formed as the Kalman predictor and the angle component
algorithm worked together. When the angle component algorithm's corrections are
calculated and input fed back into the Kalman algorithm. the predictor's most recent time
history data are changed. This obviously affects the future predictions. If the change
between the predicted values and the corrected values are great then the Kalman filter
interprets the change as a large acceleration and this causes an overshoot in the next
predicted value. This prediction is checked against the model again and if it does not match
the model. it will again perform a correction which is fed back into the predictor. This

continues until the prediction is back on track with the expected model of motion.
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Figure 4.19 (a) X coordinate of marker A in run #1 with Kalman/Model algorithm
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Figure 4.19 (b) Y coordinate of marker A in run #1 with Kalman/Model algorithm
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Marker A - Z component
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Figure 4.19 (c) Z coordinate of marker A in run #1 with Kalman/Model algorithm
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The size of the oscillations varies ing on the inate graph viewed. Fer reference

purposes it is observed from the Y coordinate graph that the oscillations in the first interval
(10 to 70 time steps) are low and in the second interval (150 to 210 time steps) are high. The
magnitude of the oscillations depend on the size of the correction between the prediction
algorithm and the angle model algorithm. The greater the difference. the greater the

Once the ictit is on track. it will use only the Kalman filter until

the predictions diverges again. It should also be noted that the error bounds. the ROAs,

during the i stage are to the variance in the measurement data.
The remova of these oscillations is not easy since the corrections have to be input back into
the Kalman filter. If they are not put back into the Kalman filter, then the filter will continue

to predict along the erroneous path.

Figure 4.20. the graphs of the track of marker B, showes results similar to Figure 4.19. The
intervals of prediction (for test no. 12). as seen in the X coordinate graph are between 10 to
70 time steps and 80 to 140 time steps. The Kalman prediction algorithm predicts the motion
for 17 time steps in the first interval and 11 time steps in the second interval. The angle
model algorithm combined with the Kalman prediction algorithm predicts the motion until

the end of the intervals.

The Kalman prediction and angular model correction algorithms are accurate in predicting
the motion in the X and Y coordinates. This can be seen by the low error values obtained

for this run in Table 4.11. For the Z coordinate graph, the prediction of shape of the motion

132



is accurate but the actual positioning is in error by an offset value. This error could have
been caused by the variance in the rigid body length between marker B and marker A or

marker C. whichever was correctly observed.

This slightly larger error rate can be from the results given in Table 4.11. Even though there
is an offsetting error in the Z component. it is less than .2 inches. Therefore. in 3D space the

combination of the two algorithms can be said to be very good in predicting motion.

Figure 4.21, which shows the motion of marker C, exhibits resuits similar to the previous
graphs. The regions of prediction (for test 12), as seen in the X coordinate graph. are
between 80 to 140 and 150 to 210 time steps. The prediction and model correction
algorithms are good for all three coordinate data. The Z coordinate graph of this figure is
good for illustrating, in the 150-210 interval, the predictor error growing larger until (about

the 170 time step location) it gets large enough to be changed in the model algorithm.

All three figures, 4.19, 4.20, 4.21, show that the marker matching and prediction of the
motion in the regions of missing data are excellent for run #1. Runs #2 and #3 show similar
results and therefore the figures of the marker plots were not shown. However the error
tables are given to show the improvement in the error between the output of the algorithms

and the actual tracks.
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Figure 4.20 (a) X coordinate of marker B in run #1 with Kalman/Mode! algorithm
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Figure 4.20 (b) Y coordinate of marker B in run #1 with Kalman/Model algorithm
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Figure 4.20 (c) Z coordinate of marker B in run #1 with Kalman/Model algorithm
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Figure 4.21 (a) X coordinate of marker C in run #1 with Kalman/Model algorithm
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Figure 4.21 (b) Y coordinate of marker C in run #1 with Kalman/Model algorithm
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Figure 4.21 (c) Z coordinate of marker C in run #1 with Kalman/Model algorithm
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Table 4.12 Selected squared error results from run #2
Error | missing marker Emor | 5 missing markers
Test | square Test | square
™ | A | B c | [eanl a| 8| c
e2 | o | o [oon i o | 006
1 Eyz 0 0 0.01 7 eyz 0.03 | 0.01 0.03
e2| o | o |oon €2 | 002 [ 001 [0.109
e2 | 0 | 0020029 €2 | 002 | 002 [ 006
3 €} 0 | 001 [0021 | 9 €’ | 008 | 0.05 | 0.05
€2 0 | 002 | 0.037 €? | 006 | 005 [0.112
€x2 0 0.03 | 0.029 5‘2 0.05 | 0.03 | 0.07
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Table 4.13 Selected squared error results from run #3




The six tests error data in Table 4.12 can be compared directly with the data in Table 4.3.
As can be seen by this comparison, the general trend is that the corresponding entries in
Table 4.8 show greater errors than those in Table 4.12. with the exception of the C marker.
This can be explained by the fact that the C marker output. as shown in Figure 4.21. is offset
by a small error even though the shape of the predicted motion is comparable to the actual

motion.

Table 4.13 contains the error values for four of the same tests as in Table 4.9 (only 4 tests
available). This has been done so that comparisons could be made between the two tables.
These tests are the 3 second for both the one and two missing marker tests. the 1 second and
the 1% second test for the one missing marker test. The other two consist of the | second

test for two missing marker case and the 2 second test for the two missing marker case.

The error rate is generally much lower, by orders of magnitudes. in Table .13 than Table 4.9
between the four matching tests. As the interval of prediction increases. the gap between the
two errors also increases quite dramatically. This can be seen in test 5 of Table 4.13 where

the error values are much smaller than the test no. 5 of Table 4.9.

This section has shown that the addition of the physical model (to the Kalman predictor) has
significantly improved the matching process between the observed/predicted marker
locations and their corresponding tracks. This model also has greatly improved the capability

of the software to predict the motion of the markers when they are out of view of the system.
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4.2.6 Summary
This section has shown that the epipolar matching routine is adequate for matching image
points between cameras as long as the noise in the system doesn’t exceed approximately 10%

of the signal strength.

The Kalman predi is good at ing observed marker points with their tracks.

It was shown to work well with the single missing marker tests; all three test runs passed for
the 1 1/3 seconds test. It worked fairly well when two markers were involved; the only case
where it failed badly was with run #3. However the Kalman predictor was not very good at
predicting complex motions. It worked well for a few (15 to 20) time steps and then
depending on the motion it might or might not have continued along the path of the marker.
It was also noticed that the prediction algorithm diverged fast if the motion was fast and/or

complex.

A physical model algorithm based on angular motion was developed to aid the Kalman
predictor in checking the matches made and make corrections if necessary. This algorithm,
along with the Kalman algorithm, worked very well at matching markers to their tracks and

predicting the marker paths when the markers were out of view of the vision system.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The study presented in this thesis was concerned with the marker tracking capabilities of
computer-aided vision systems. The markers being tracked were placed at salient points on
an arm and periodic motion exercises were performed. The study focused on the matching
of markers with their corresponding track histories; matching segments of tracks with
corresponding segments when portions of the marker’s path, the track, were obstructed or
lost from view of the vision system; and the recovery of the motion of the markers while they

were obstructed or lost from view of the vision system

Relevant theory was described in Chapter 3 and since a computer vision iaboratory was not
available for testing, smaller scale testing was done with the Flock of Birds (FOB) system.
The FOB system provided positional data in 3D coordinates. This data was transformed to
camera image coordinates of simulated cameras in a simulated gait lab. The data was also

corrupted with white noise and put through a matching and reconstruction process to recover

the 3D position i These were then used in the
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Three test runs were examined by this simulated system. To get the periodic motion the
markers were placed on a subject’s limb and the subject had to move through specific paths.
These were: (i) a slow motion over the mouth of a plastic cylinder (run #1); (ii) a faster one
around a semi-rectangular object with rounded corners (run #2) and (iii) a still faster motion,

the flexing of the arm of the subject (run #3).

The Kalman predictor was used to match the markers with their track histories and predict
complex motion for short periods (% to % of a second) of motion. The cycle times varied
from run #1, approximately 2.2 seconds, to run #3 which was approximately | second
(typical length for gait cycles). The Kalman algorithm showed a decrease in performance
over the three runs. For the longer periods of prediction (greater than | second), the Kalman
predictor was used with the angle component model. The angle component model was used
to check the predictor matches against and internal physical model and make corrections as

necessary. These iques were in ishing the objective, i.e. the tracking

of markers and predicting their motion when the markers were out of view of the vision

system, set out by this study.

Considering the results, ially run #3, it is prop that these i can be applied

to lower limb gait studies to match image di and 3D i from
camera image data, match markers to their corresponding tracks, predict the gait, and make

between disjointed tracks. The hing algorithm should be useful in lower

limb studies because the markers are generally placed sufficiently far apart that the regions
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of acceptance will not overlap until after many steps of prediction. The next section wili list
the conclusions established from the 2bove studies and give some recommendations for

improvements in the study and possible areas of future research.

5.1 Conclusions

This study has shown several interesting results:

¢ Sincedhe update of the filter variables is linear. 1t :s good for prediction of compiex
motion only for brief periods of motion. In the test runs used 10 venrty the aigonthm.
the Kalman filter accurately predicted the general motion for approximately 3 of a

second.

. Though the Kalman predictor cannot accurately predict the motion of the markers
when they are out of view of the vision system. the predictor with the simple

maiching algoritt i of the Region of Acceprance (ROA} and

the distance to the center of the ROA constraints. is very good at matching markers
to tracks after they have been out of view for over one second. depending on the type
of motion. As noted in Chapter 4. the algorithm was excellent at matching markers

to their tracks especially when only one marker was missing. In run =1 the predictor

correctly matched the disjointed tracks for all single marker missing tests. In ruas

and #3, the marching passed until the 1% seconds and 2 second marks. respectively.



positions of markers.

Currently the motion model algorithm knows where it is in the limb cycle and this

makes the comparison between the predicted points and the motion model relatively

simple. To g ize the i an algorithm to match a predicted

position to a specific position in a limb cycle would be an asset.

The forward Kalman predictor was used to simulate an initive approach. i.e.. since
the motion was occurring in a forward direction, it made sense to predict it in the
same direction. However, since the analysis is not done at real-time, backward and
also forward predictions are possible and this would require some rewarking of the
predictor equations, but a possible advantage may be that the prediction would only
run for half of the interval when the marker is missing, i.e., the forward prediction
and backward prediction would start at the two ends of the interval and meet in the

middle.

Identification of specific events during the gait cycle would be an asset. This would

help in tracking and making comparisons of the time length of these events.

Since gait is periodic, a study of its and ics may help
different facets of motion and diseases. An exhaustive literature search on the topic

provided no information.
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The performance degraded when two markers were missing. For the first two runs
the matching with two missing markers was excellent, all tests passed for run #1 and
all but the last two passed for run #2. However, with run #3, the slightly faster
motion of markers and closer proximity to each other caused the matching to fail at

the % second mark.

The addition of a physical motion model, the angle component model, helped to aid
the Kalman prediction/matching algorithm in predicting the motion over the periods
tested. The addition of this model to the Kalman predictor/matching routine enabled
the software to predict the motion of the markers accurately. This showed that the
motion model was an excellent aid in the prediction of complex motion of limbs

when the markers placed on them disappear from the view of the vision system.

2 Recommendations

For matching between cameras, the use of color coded markers, different shape
markers, banks of markers, or reflective strips along the axis of the limbs may

enhance the tracking capabilities of a vision system.

In improving the motion model, one could use the angle models that are standardized
in hospitals. This was not done because it was determined that the angle graphs by

themselves did not contain enough information to back calculate the expected
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APPENDIX A

PERSONAL CORRESPONDENCES

A.1 Letter of Request

From joshua@tera.engr.mun.caWed Nov 13 11:57:43 1996
Date: Tue, 10 Sep 1996 11:00:37 0230 (NDT)

From: joshua Swamidas <joshua@tera.cngr.mun.ca>

To: Multiple recipients of list BIOMCH-L <BIOMCH-L@NIC.SURFNET.NL>
Subject: Summary - Missing Markers

Hello all,

I would like to apologize for the tardiness of this summary and Id like to thank all of you who took
the time to help me. The information was very helpful.

First, here is the message that [ had sent:
['m a master's student who is working in the area of gait. [ have access to data from a multi-camera
vision system. [ am looking into the problem of missing markers and the ability to track them and
predict their path while they are out of view of the vision systems. [ have come across some
interesting techniques.

Unfortunately, I haven't been able o find out how big this missing marker problem really is. [
understand that as long as the markers placed in the anatomical sites are viewed by any two cameras
the 3D positions of these markers can be calculated. However, in case of pathological gait, the use
of canes, walkers, walking patter, efc.. can cause the marker to be obstructed from view of the
cameras. [ haven't been able to find any information to show if this really is a problem other than the
words of a few people who work in gait laboratories.

In many of the vision systems, when the vision system loses sight of the markers the tracks of the
marker paths become disjointed. Generally the user has had to connect the disjointed tracks manually.
Is there software that makes these connections automatically? If so how do they do it?

Finally, in the prediction of motion, I have narrowed my search o using motion models of those limbs.
Are there better techniques, esp. for pathological gait?

A.2 Grouping of responses
MISSING MARKERS:

Pertaining to the problem of missing markers, it seems that almost everyone agreed that it was a
problem (to varying degrees of seriousness). The best solution, as one person said, is to make sue the
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problem does not occur and this could be done by: increasing the number of cameras viewing the
tracking region: using non-camera methods of tracking such as magnetic tracking{11]: carefully
choosing a marker set that would stay in view despite obstructions. rotations. etc.: and using special
assistive devices that minimize intereference with the cameras [2].

PREDICTING MARKERS AND CONNECTING DISJOINTED TRACKS:
As for actually filling in the gaps using software, I have broken this down into two separate sections:
the first one deals with comments from individuals and the second would be the companies that
specialize in  motion analysis' hardware and sofiware such as VICON, Ariel Dyanmics, Inc..
QUALYSIS, Peak Performance Technologies. and Elite (BTS).

The techniques are listed in point form and the reference number attached to it is based on the order

of the email responses which are concatenated to the end of this summary. The following is a list of

techniques and algonthms:

- Join missing gaps using spline functions (cubic or quintic) (1] [t may not be very accurate
over large gaps. Cheng cautions that some kind of human involvment is usually necessary
when using visual systems.

£ Using a proxy marker (o provide an offset-recording [2.3] of the marker that consistently
disappears from view. This proxy marker can then be used to infer the position of the missing
marker.

. For short isolated gaps. using a straight line or polynomial algorithm works well [3]

. Extrapolate along a straight line between two markers [3]. For example, if you have trouble

seeing an ankle marker, put two markers on the lower leg, 5o that the ankle is further along
the straight line drawn between the twp markers.
- For constructing analytical models for analysis [3] some papers to consult are:
« Quantitative analysis of human movement synergies: construcuve patter analysis for gait.
C.D. Mah, M. Hulliger. R.G. Lee and [.O. Callaghan, Joumnal of Motor Behaviour. 26.
83-102. 1994.
« Quatitative analysis for human finding pattems in large
data sets. in M. Whitten and D.J. Vincent, eds.
Computational Medicine, Public Health, and Biotechnology: Building a man in the
machine, Part II, pp. 1056-1069. World Scientific Press. 1996

- Curve fitting alogrithms are fine for small gap sizes (10 frames) [4]

. If the general forms of a specific movement are known. then a tracking algorithm can be
written for a this specific problem [5].

- 3 markers uniquely define a segment's location and orientation in space. If a 4th marker is
used., the could be used to calculate a missing marker. Some pros and cons of this
technique are discussed in email [6).

- If the distances between three markers on a segment are known and the location of two of the

marker are known, the location of the third marker can be constrained to a small area. This
might be used in conjunction with a interpolative procedure to give a better estimate of
location (6].

L If the data is cyclical, it may be possible to "guess” where a reasonable location of the marker
might be based on where it was one period before or after the instant [6]. However, in gait
analysis cases where an assistive device obstructs the camera view they tend to happen in the
same potion of each stride [8].

. For path matching, sometimes paths can be easily identified by some unique characteristic of
their location [6] such as a marker on the upper part of the body would have greater values
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in the height coordinates.

. Using direction and velocity to help identify possible path matches [6]. This will work well
if the gaps are short and there are no sudden reversals in direction of the marker.

. Again for path matching, using a marker path reconstruction technique to reconstruct a path
and match it to an observed path [6].
- Other useful papers(9):
* Ball, KA. and Pierrynowski. M.R. (1991), WalkTrak: Automated analysis of 3D
kinematic data from video systems. Proceedingsof Intemational Symposium on 3D
Analysis of Human Movement, First Meeting, 28-31 July, Montreal, Quebec. Canada. 6-9.
Papers on rigid body kinematics:
+ Ball. K-A. and Pierrynowski, M.R. (1995). Estimation of siz degree of freedom rigid body
segment motion from two dimensional data, Human Movement Science, 14, 139-154
+ Ball. K.A. and Pierrynowski, M.R. (1996), Classification of errors in locating a ngid body.

Journal of Bi Any day now
The following is a list of the companies and a brief comment on their software.
Qualysis (Sweden & USA) [10] who the Motion Systems for

the Macintosh or PC computers gave me information on how they track the markers and what they do
for prediction of the missing markers. In handling the tracking of markers, the Qualysis software

of the marker are carried out to imate the next position of the marker.
‘This extrapolation helps the tracker to look in the right place when looking for the next position of the
marker. In situations where the adding of extra cameras will not heip solve the marker
out-of-view-of-cameras problems, the operator can run the tracking manually or run the tracking
separately for different segments of motion stored in a file. Since the tracking can be run both
forwards and backwards in the file, a point with missing markers can buppm:mmmm from
both directions. A user of this software (E-mail C Zhang, that when
the discontinuitics were too large the flling in of gaps did not work well.

Peak Inc. CO. USAL), says that their latest software [11]
allows the user to connect the gaps manually by connecting points, semi-automatically by allowing
the user to run different algorithms, or automatically by allowing the user (o set several tracking
parameters. According to the engineer, while much has been done using brute force mathematical
extrapolation and interpolation, along with more cameras, to accurately fill in missing data, there is
still plenty of room for improvement. Especially in the areas of using fewer cameras with software or
hardware that is smart enough (o fill in bigger and bigger gaps in the data.

The ELITE system by Bioengineering Technology & Systems (Milano, Italy) primary products
include: ELITEplus (Three-dimensional motion package), ELICLINIC (Clinical gait analysis),

G (Dynamic electromyography with no limitations on subject motion), GAITemg
(Identification of muscle activity in walking), PcVect (Analysis of ground reaction forces), etc. The
Elite software provides interpolation to handle relatively short gaps.

According to the founder and Senior Vice President of Motion Analysis Corporation, (12]
pathological gait motion is difficult to track. They have software, the Track Mender, which looks at
the continuity of 3D path segments and automatically joins the if they are no more than a few frames
apart. Another technique used by their software is to allow the user to manually spline across the
gaps.
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Subject: Marker obstruction - gait anlaysis
Dear Joshua,

Chris Mah from our gait lab will send you a more comprehensive reply. There is therefore no need
o include this one in your summary. At any rate, when you compose your summary. you would do
the a service by a genuine digest. main points and

the lemnts from different replies ingly. rather than merely appending poorly
correlated and hetero-genous replies in incoming order, as we see 50 often in the debates going on in
this forum.

Marker obstruction often is a genuine problem. even in normal gait: with a two camera system arm
movements obscure hip markers quite regularly and predictably. The Elite software we are using
provides interpolation software to handle relatively short gaps. In addition. we are using a “tail”
attached to the subject’s lower back, to get an offs rding of hip marker (in crude
approximation). You may want to consult Mah et al., Journal of Motor Behaviour 26, $3-102. 1994,

With multi-camera systems (Vicon is going up to 7. [ understand) this problem appears to be reduced
in magnitude.

The above problems are exacerbated in the conditions vou list. Canes and walkers indeed cause
additional loss of marker information. For our work with cerebral palsy patients we have constructed
a special walker to minimize such interference. For patients using canes, we use parallel bars to
provide support (on the side remote to the cameras).

I hope this helps a bit. Chris Mah will reply more extensively.
You might want to visit the lab to get some first hand experience.
Yours.

Manuel Hulliger, D.Phil.

Department of Clinical Neurosciences. Faculty of Medicine
University of Calgary. 3330 Hospital Drive N.W.

Calgary, Alberta, Canada T2n 4N1

Phone: 403-220-6216  (Ellen Wong  Phone: 403-220-8389]

Fax: 403-283-8770 ([Secretary Fax 403-283-8731]
E-mail ucalgary.ca or ucalgary.ca
www:  hep:// ns.ucalgary. iger.heml

(3] Email from Chris Mah:

This is an informative email about the seriousness of the problem. Christ mentions that the best
solution for ths problem is not to have the problem. But in cases that this cannot be avoided he
dicusses some techniques that can be used. He also provided two useful references in discussion of
pathological gait.

From cmah@cns.ucalgary.caMon Sep 9 11:30:12 1996
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Date: Wed. 28 Aug 1996 17:47:27 0230

From: Chris Mah <cmah@cns.ucalgary.ca>

To: joshua@engr.mun.ca. manuel @cns15.cns.ucalgary.ca.
cmah@cns!5.cns.ucalgary.ca

Subject: missing markers

Dear Joshua:

Despite what some people may tell you. the problem of missing markers 15 2 senous one
When data are missing, there is no good way 10 rectify the problem. because any metiod you use
involves constructing estimates of data you dont have. For hughly pathological gais. occur
unpredictably and often. Clever methods to replace mussing data are usually not worth the effor. and
only make matters worse.

So the first line of defence against missing markers 1S not to have the problem. This means
having more cameras if possible. 1o increase the probability that at least two can see them 2il. In
addition. you need to think about simplifying your data collection protocol (if that is acceptable) so
that the missing marker problem does not occur.

Having said this, there are different degrees of seriousness for this problem. When there 15
a short (say < 100ms). isolated gap. in the sense that there is a stretch of good daza on exther size of
it, there is no problem filling in the gap with a straight line or poivnomial algorithm. Wher thers are
longer gaps. or stuttering intervals of missing data it is helpful to have some kind of proxy marker
which might allow you to infer the position of the missing marker.

We often have this problem with the hip during saginal view recordings of normal walking.
because i is covered by the hand during normal arm swing. To deal with the problem we have our
subects wear a tail piece of 10 - 15 cm in length attached nigidiy (o a belt. This remains 1n view when
the hip is covered. Assuming that the subjects are walking in 2 straight line. there is a fixed spaal
relationship between the hip marker and the tail. and the position of the hip dunng relanvely short
gaps (say S00ms) can be inferred.

A slightly different, but related strategy (which I can suggest but have not acwally employed)
is to extrapolate along a straight line between two markers. For example. :f you have trouble seeing
an ankle marker, put two markers on the lower leg. so that the ankie is 1say 10cm) further along 2
straight line drawn between the two markers.

As far as vour analytical problem goes. the best technique depends on what scienufic question
you want to ask. However. if vou are interested in unpredictable pathological gait. you may want to
take a look at our methods papers.

. Quantitative analysis of human movement synergies: constructive patiern analysis for gait
(1994). C.D. Mah. M. Hulliger, R.G. Lee and L. O'Callaghan. Journal of motor behavior. 26.
83-102.

2 Q ive Analysis iques for Human Patterns in

Large Data Sets C.D. Mah. M. Hulliger, RG. Les and I OCﬂhznzn In M. Witen and D.
J. Vincent. eds. Compurational Medicine, Public Health, and Biotechnology: Building 2 Man
in the Machine, Part IL pp. 1056-1069. World Scientific Press, 1996.
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T hope you find this helpful.
Chris Mah

[4] Email from Bill Keezel:
Mr. Keezel mentions some packages that will interpolate missing gaps in data. He says that wiil small
gaps and slow moving subjects curve finting is an acceptable method for approximating the gaps

From tsrhgait@ix.netcom.comMon Sep 9 11:30:09 1996
Date: Wed, 28 Aug 1996 17:2:03 -0230

From: TSRH Gait Lab <isthgait @ix.netcom.com>

To: Joshua Swamidas <joshua@engr.mun.ca>

Subject: Re: Some Help please - gait anlaysis

Hello Joshua,

Yes, there are a few software packages out there that will interpolate over those missing gaps in your
trajectory information. However, the accuracy of interpolation is limited by the gap size and the
subject’s walking velocity. Also, the applications I'm thinking of utilize C3D files for evaluating a
subject’s kinetics and kinematics. So. what software are you using for your data reduction and what
is the range of your gap sizes of missing data?

If vour gap size is within 10 frames for a camera system collecting at 60hz and a slow moving
<walking) subject, then curve fitting is an acceptable method for approximating that gap. There are
three applications that we utilize in our lab for interpolating over gaps: AMASS(Adtech Motion
Analysis Software System), Vicon Clinical Manager (Oxford Metrics). and EVENTS (developed at
the NTH, contact Steven Stanhope at sstanhop@cc.nih.gov for more detals)

Looking forward to your reply.
Bill Keezel

tsrhgait@ix.netcom.com

Texas Scottish Rite Hospital Gait Lab
ph (214)559-7580

TSRHGAIT @ix.netcom.com

(5] Email from Xudong Zhang:
He mentions that if one has an idea of specific motion profiles then. one can develop curve fitting
methods to fill in gaps.

Date: Wed, 28 Aug 1996 13:20:28 0230
From: Xudong Zhang <xudong@umich.edu>
To: Joshua Swamidas <joshua@engr.mun.ca>

Subject: Re: Some Help please - gait anlaysis
Hi Joshua,
Ihave with the ystem. That system provides some capability of filling

the drop-outs. However, when the discontinuity is 100 severe, (i.e.. missing for a large number of
consecutive frames), the filling does not work well. Also, it does not extrapolate. I would imagine
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problems calculating centers of rotation from marker data.

2. If the distances between three markers on a segment are known, and the location of 2 of these
markers are known, the location of the 3rd marker is constrained to a circle. This might be used in
conjunction with an interpolative procedure to provide a better estimate of the marker's location. It
could also be used where the marker is only seen by one camera. One camera view constrains the
marker o be on a line. The intersection of the line and circle could provide the location.

3. Ifthe data is cyclical it may be possible to "guess” where a reasonable location for the marker might
be based on where it and the other two markers were at one period before or after the instant the
marker is missing.

Lthink the joining of marker segments is a much more complex and time consuming problem and well
deserves addressing. My guess is that there will not be a single algorithm that will work well in
matching disjointed marker paths. ['ve noticed that in doing it manually [ use a variety of techniques
to solve the problem quickly. I think the best approach would combine these techniques and then use
some sort of artificial intelligence to make a "best guess” at which path belongs to which. Some of
the techniques you might want to consider for path matching are below

Path Matching

1. Sometimes paths can be easily identified by some unique characteristic of their location. For
instance. in our lab, superior markers on a subject will always have a greater Z coordinate than inferior
markers. Left sided markers will always have greater Y values. Anterior segment markers will have
greater X values, although this may not be true for markers on the lower extremities as one foot passes
the other. This will in general be true for all of our gait analyses. however, in other activities it may
not be true at all (e.g. high jump or back flip). Ideally, your algorithm will be more useful if it is
applicable to any activity, not just gait.

2. Generally when a marker is lost and then picked up again the drop out will be for a short period
of time. The direction and velocity of the two paths will tend to "point” to each other in each of the
3 dimensions if they are reaily one path. This may not be true however if there are sudden reversals
in direction of the marker.

3. If you can reconstruct the marker position using some of the techniques above, you should be able
to use that information to find where a marker should be. If you have a data segment that is similar
to the reconstruction, it may be a match.

My opinion is that for the marker reconstruction algorithm and the data matching to be really useful
it should be applicable to many activities and make as little assumptions about lab coordinates and
how the data s "supposed” to look as possible. Ideally the algorithm would be smart enough to make
some generalizations about the data from the data itself and not depend on a human telling it what
assumptions to make. [ also think there will be a need for some human oversight of the algorithm’s
actions to correct mistakes it will make. This is a project that I think is very worthwhile and would
save a lot of time should you develop an algorithm that worked well. [ would be very interested in
hearing of other responses and hearing of any progress you make.

Good Luck,
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Kenneth S. Olree. MS
BJC Human Performance Laboratory  phone: (314) 454-7592

Bamnes-Jewish and St. Louis fax : (314) 454-5500
Children's Hospitals
4555 Forest Park Parkway kolree@ roadrunner.carenet.org

St. Louis, MO 63108. USA

(7] Email from At Hof:
Mr. Hof also confirms that with his ELITE system the missing markers are a big problem

Date: Thu, 29 Aug 1996 06:09:57 -0230
From: “A L HOF" <a.l hof@med.rug.nl>

To: Joshua Swamidas <joshua@engr.mun.ca>
Subject: Re: Some Help please - gait anlaysis

Dear Joshua.

> been able to find any information to show if this really is a problem
> other than the words of a few people who work in gait laborataries.

Iam working, sometimes, with the ELITE system, a version of some 5 vears old. Missing markers
are really a big problem there: when they are missing for more than a few frames, the processing does
not go further. Manual correction is even not possible.

With two camera’s all the time both cameras should view all markers. This is really a big problem
in any kind of real-world movement. Some people here tried to get data for the arm movements from
crawling babies. This was very discouraging.

> In many of the vision systems, when the vision system loses sight of the
> markers the tracks of the marker paths becomedisjointed. Generally the
> user has had to connect the disjointed tracks manually. Is there software
> that makes these connections automatically? If so how do they do it?

Part of the solution would be a set-up with more than two cameras, in which for each marker data from
those two cameras are used that have the best view on that particular marker.

I am very interested in the responses. Particularly [ would like to know whether any of the
manufacturers has solutions for this problem. Free software would be even more handy, of course.

Greetings,
At Hof

Department of Medical Physiology

University of Groningen

Bloemsingel 10

NL-9712 KZ GRONINGEN, The Netherlands
Phone: (31) 50 3632645

Fax: (31) 50 3632751
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(8] Email from Mark Geil:

He comments that inerpolation is made easier when the missing marker information can be copied
from a different stride (cycle) of the same trial. However when using assistive devices in pathological
gait usually the marker is missing for the same portion of each gait cycle.

Date: Thu, 29 Aug 1996 11:02:59 -0230
From: "Mark D. Geil” <Geil.| @osu.edu>
To: joshua@tera.engr.mun.ca

Subject: Missing Markers

Regarding your question on Biomch-L.

You are correct in your thought that assistive devices common with pathological gait can result in
missing markers. This presents a problem, because the marker in question is usually missing for the
same portion of each gait cycle. Interpolation is made easier when the missing marker information
can be copied from a different stride of the same trial. However. when a crutch or walker obstructs a
camera's view of a marke, it typically does this at the same portion of each stride. VICON's software
will perform interpolation as part of the AMASS package upon marker identification or as part of the
Vicon Clinical Manager package upon processing gait cycles.

Best wishes,

Mark Geil

Ohio State University Gait Analysis Laboratory, Columbus, Ohio

(614) 2934832

(9] Email from Kevin Arthur Ball:
Mr. Ball writes that the missing marker problem is pretty serious. He provides some references
for the automated analysis of gait and for rigid body kinematics (which [ found useful).

Date: Fri, 30 Aug 1996 11:25:21 -0230
From: Kevin Arthur Ball <BALL@phe.utoronto.ca>

To: Joshua o> j er.mun.ca
Subject: Re: Some Help please - gait anlaysis

Hello Joshua

First some comments about your email. You have written that *you are a maters student”, [ assume
by this that you are concerned with all that matters! In the furure | would suggest that you drop this
prefix altogether. Your question can stand on its own, and it is a good one.

"L am looking into the problem of missing markers and the ability to track them and predict their path
while they are out of view of the vision systems. [ have come across some interesting techniques.
Unfortunately, 1 haven't been able to find out how big this missing marker problem really is.”

In my estimation this problem is far more pervasive than has even been realized. Have you ever
wondeced why there are virually 1 complete 3D kinematic stdies of gait or ruaning tha includes

s o pis Each would certainly be interesting to study but given the
present state of our technology very few rescarchers would ever be willing to attempt them. Instead
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we tend to restrict gait analysis (o straight line walking and use as few markers as possible 50 as to
avoid "marker collisions”

“In many of the vision systems, when the vision system loses sight of the markers the tracks of the
marker paths become disjointed. Generally the user has had to connect the disjointed tracks manually.

Is there software that makes these connections automatically? If so how do they do it?"

Some years ago Michael Pierrynowski and [ were working with a vision system similar to that which
you have described. At that time we decided to circumvent the vendors software, so we designed our
own system for data processing. This took the better part of a year to write. It is described in the
following:

Ball, K.A. and Piemynowski, MR (1991). WalkTrak: Automated analysis of 3D kinematic data from
video systems. on 3D Analysis of Human Movement.
First Meeting, 28-31 July. Momual Quebec, Canada, 6-9.

More recently. we have switched to an activer marker system. thus our previous efforts have been
shelved as of late.

If you are willing to explore the use of rigid body methods for kinematic measurements, then I think
you will may find the answer for the marker drop-out problem. I could provide a long list of
references for you but to save myself some time you will find many of these in the following:

Ball, K.A. and Piemrynowski, M.R. (1995). Estimation of six degree of freedom rigid body segment
motion from two dimensional data. Human Movement Science, 14, 139-154

Ball. K.A. and Pierry i, M.R. (1996). Classification of errors in locating a rigid body. Journal
of Biomechanics. Any Day Now.

I hope this helps!
Bye for now, Kevin.
P.S. I hope all of you at Memorial have a good 500th anniversary of Cabol's sailing, eh!

Kevin Arthur Ball, B.P.H.E., M.Sc.
Director, Biomechanics Laboratory
Sport Medicine / Biomechanics Group
School of Physical and Health Education
University of Toronto

320 Huron St.

Toronto, Ontario M5S 1A1, CANADA
Voice (416) 978-3196

Fax (416) 9784384
ball@phe.utoronto.ca

{10] Email from Hakan Johnsson, QUALYSIS:
He commented on the complications of the problem of tracking and discusses some of the techniques

164



ExpertVision HIRES system does provide tools for filling in the gaps in marker tracks. With short
gaps of no more than a few frames a software (Track Mender) looks at the continuity of the 3D math
segments (and a few other things) and automatically joins the segments. Another method is one that
involves human intervention to help draw a curve over the gap.

Date: Wed, 28 Aug 1996 14:44:10 -0230

From: John Greaves <John.Greaves@MotionAnalysis.com>
To: Joshua Swamidas <joshua@engr.mun.ca>

Subject: Re: Some Help please - gait analysis

Hi Joshua,

I'm John Greaves, founder and Sr. VP at Motion Analysis Corporation in California. Here are some
ways that our ExpentVision HiRES video motion capture system deals with the missing marker
problem you mentioned. First of all, gait is not too difficult to “track” (which means reduction to 3D
coordinates from the raw camera data in our parlance) in the grand scheme of what people are doing
with motion capture systems. What is more difficult is collecting data from two or three persons. each
with 30 or 40 markers to accurately represent their limb segment motions. Anyway, pathological gait
we also have a lot of experience with (the OrthoTrak gait analysis software has been on the market
since about 1987) and pathological gait is more difficult to track than normat subjects. as you know.

The best solution is to have redundant cameras for picking up more marker positions from more
camera locations. A minimum of 4 cameras (two for each side) is required for markers placed around
the body. although the folks at Newington Children's hospital used 3 cameras for 2 long time by
designing a special marker set with markers only on the front of the body. As you add more cameras,
the more redundancy you have in your data collection mechanism and the fewer holes you will have
in your data. We sell mostly 6 camera systems (roughly 3 cameras per side) for gait analysisnow. and
the data can be tracked with almost no "holes” in the 3D data set. BUT if there are holes. the
mechanisms we have are:

1-The Track Mender, which looks at the continuity of 3D path segments and automaticalty joins them
if they are no more than a few frames apart and meet some equations about continuity in the XYZ
components and their first derivatives. If you don't like the results. you can Undo it.

2-The Add button in the XYZ time-series editor. Here you can position the mouse in a hole in each
component (X, Y and Z) and place a point. The software splines across the gap with your input and
you confirm each component separately. [t turns out that the human is very good at seeing what “looks
right” from this XYZ editor view—much better than what you can "see” from a stick figure or 3D
spatial view of your data.

Anyway, I hope this helps. We have spent years refining the tools for accurate data collection,
tracking and editing and we were just at the Canadian Society of Biomechanics meeting, but that was
on the opposite end of Canada from you.

Sincerely,
John Greaves, Ph.D., Sr. Vice-President
Motion Analysis Corporation
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{13} Email from Georger Roundanez (VICON):

Date: Fri. 23 Aug 1996 12:37:08 0230
From: Georges Roudanez <georges@viconsys.com>
To: joshua@engr.mun.ca

Subject: Re: mailto:georges @viconsys.com

>1) How frequently do these holes (missing data) occur say, with a
> and 5 camera system and in studying pathalogical walking? The system
> that will be purcahsed will be used maily wth CF kids and for research

Joshua.

This is a difficuit question to answer. The lost trajectories occur as a result of a marker not being seen
by at least 2 cameras (in order to provide xyz coordinates). The more cameras. the placement of those
cameras and the type of movement being measured determine the opportumity to avoid occlustons (not
seen markers). A simple move with two cmeras being constantly in view of the markers will most
likely result in no occlusions.

>2) Do you have a way of predicting the marker motion?
The way the Vicon operates it is possible to determine the anitcicipated marker path (trajectory

>3) Does the software automatically connect disjointed marker tracks or do
> you let the operators handle the connecting of incomplete tracks.

The answer is ves o both. You may choose to have the software (BodyBuilder - a special package
that has editing and modelling features) automatically fill gaps. delete and fill noise spikes and
interpolate or smooth the data.

{14] Email from Jermy Wise (Ariel):
Dr. Wise comments on the general problem of missing markers and makes comments on how their
software handles the problem. They seem to use linear extrapoianon of some kind and also some
smoothing functions (o fil in the shorter gaps.

Subject: Re: missing marker solution
:25:52 -0230
From: Jeremy Wise <jwisc@oitunix.oit umass.edu>
To: joshua@tera engr.mun.ca
CC: ariell @ix.neicom.com

Joshua-

Dr Ariel has asked me (o respond to vour questions regarding handling of incomplete tracks with the
APAS system. Tl do my best.

>1) How frequently do these holes (missing data) occur say, with 2
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> and 5 camera system and in studying pathalogical walking? The system
> that will be purcahsed will be used maily wth CF kids and for research purposes

It's impossible 10 say how often this occurs because it depends entrely on the acuvity under

jon. Generally the more rotation about 2 vertical axis the more often 2 marker will become
obscured. The more cameras one has the more likely atleast 2 cameras will see 2 marker for ail frames
If 2 or more cameras “see” marker then the software can calculate the 3D coordinates.

>2) Do you have a way of predicting the marker motion?

The program predicts marker motion using 2 rather complex search algonthm. The iocation the
software starts searching at is an extrapolalion of the previous 2 frames o previous frame. 3 software
selectable switch. The reason a simple linear extrapolation is used is because higher order
extrapolauions are more error prone.

>3) Does the software automaucally coanect disjointed marker tracks or do
> vou let the operators handle the connecting of incomplete tracks.

I'm not sure if you are referring to tracks in 2D or reconstructed 3D. If you are talking about the plane
of the vidzo, the software can be set to skip and flag as MISSING any markers which the software
can't find. or the software can be configured to pause & let the user estimate marker location based
on his/her observation of the whole image. If vou are talking about 3D. then the program flags any
point that cannot be seen by atleast 2 cameras 2s MISSING and will be consider=d as missing RAW
data. However. when it is smoothed. and incomplete sections of data will be interpolated then
smoothed with the selected algonthm. What you are asking the software 1o do is to make data where
it can't be seen be at least 2 cameras. This is risky business.

T hope this helps.
Dr. Jeremy Wise
Dir R&D



APPENDIX B

FLOCK OF BIRDS PICTURE

Figure B.1 Flock of Birds system
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APPENDIX C

NOISE IN CCD IMAGES

C.1 Introduction

A Charge Coupled Device (CCD) is an armay of light-sensitive silicon cells. Each cell produces a
signal that is converted into a number representing a pixel in the digital image. The “signal” refers
to the number of photons recorded by each cell. Ideally each cell in the CCD-chip is able to detect
light corresponding o everything between zero and 278 578 electrons (Walmann, 1996). However.
all circuitry generates undesirable noise 5o that even if the CCD camera is placed in a no light
environment the pixel values would vary unpredictably. Since this random part of the signal cannot
be reproduced in any way, it can never be removed from the signal. By definition, this unpredicable
variation is noise. This and other sources of noise are classified into four categories which are. for the

most part. independent of each other and combine to degrade the image quality.

Readout noise. When the accumulated charges are shifted on the CCD chip, clectrons may be left
behind or may jump ahead: these fluctuations together with noise from the pre-amplifier are called
readout noise. This can be reduced but not removed completely

Dark count. Even in the absence of light, electrons accumulate in a CCD, and this signal is
indistinguishable from one produced by light The rate at which this dark count is produced decreases
as the temperature of the CCD decreases. It is even possible to measure and correct for the mean
value of the dark count, but the noise component of the current cannot be removed.

Background noise. Light pollution from background sources contributes to the signal collected by
a CCD. Tie process of a photon striking a CCD does not guarantee that it will produce a count. This
is due to the quantum nature of light (not discussed here). The photon detection event is considered
to be a Poisson event (Newberry, 1996). The statistical nature of photon counting makes the exact
value of the signal uncertain. Because this background adds photons, and because all photon
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measurements have an inherent uncertainty, it is difficult to remove it from the signal. There are ways

of reducing, but not completely eliminating background noise.

Processing noise. Basic image processing such as using filters or subtracting dark frames involves
combining uncertain numbers with other uncertain numbers on a pixel-by-pixel basis. This results

in an increase in the amount of noise in each pixel.

C.2 Experiment

The intricacies of the camera were not considered in the thesis since a model camera was calculated
and used. However, in order to test the Epipolar matching and 3D reconstruction algorithms, a routine
was written to simulate a circle target on a camera image plane at a particular location and white noise
was added to simulate the uncertainties in the measurement and the error (RMS) in pixels was

calculated.

The target was created using a Gaussian distribution curve with varying variances to simulate varying
reflection coefficients of spherical markers. The sizes of target were used by specifying a radius from
the center of the distribution. The target size that was tested represented approximately 1% of the total
size of the CCD grid. The target was placed in an arbitrary location on the grid and the white noise
was added. The percentage of white noise added (o test the algorithms were 5, 10 and 50 percent of

the actual signal intnsities

Two techniques were used to determine the center of the target. The first technique, the centroid
method, calculated the center of mass of the whole image and assumed that the noisc was low enough
to not affect the center of the target. The second technique used, the edge detection method. used the
centroid method to find the approximate location of the target and refined the center values by
calculating the edge vectors along the surrounding arcas and finding the center point of those edges.
Tables C.1 shows the RMS error values of the calculated pixel values from the expected locations.
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1% Size Target

5% Error 10% Error 20% Error
Var | Type
x v x v x v
~ Centroid 1.288 1.304 1.984 1.967 2623 2.609
3
Edge | 0005 | 0005 | 0104 | 00963 | 0241 [ 03317
Centroid 1.184 1179 1.839 1.802 252 25
10
Edge | 0004 | 0003 | 0008 | 0007 | 0027 [ 0022
Centroid | 111 2t | o2 | ou7s7 | 2407 | 2555
20

Edge 0.003 0.003 0.005 0.005 0.03 0.011
Table C.1 RMS values of the |% circle target

The table shows an increase in the RMS values as the error increases. The error from the centroid
method was larger than the edge detection method. This was expected since the edge detection
method used the centroid location as the starting point for determining the real center point. One other
trend to note is that the error decreases as the variance increases. This was also expected because the

larger variance meant a wide Gaussian curve and therefore a more flat target.

The edge detection entry with variance of 10 in Table C.1 was chosen to be used in determining the
successes of the epipolar and reconstruction algorithms.

References:

Newberry, M. V. (1996). The Signal to Noise Connection, CCD Astronomy, Summer 1994
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APPENDIX D

ARIEL WEB PAGE EXCERPTS
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Ariel Performance Analysis System User Manual Page tor2

Ariel Dynamics Worldwide
Outine Reference Library

The Ariel Performance Analysis System
Three Dimensional Video Analysis for Orthopedic Evaluation
The Ariel Performance Analysis System (A.PAS) the world’s most advanced computenzed system for the study of human movement, otfers.

of pa The data gained from these studies can aid the orthopedic physician by quantifying
deficiencies in functional movements.

PRE-SURGICAL ANALYSIS

The APAS can be used to measure and calculate ranges of mation, joint angle, velocuty, aceeleration, and force. This information helps to
identify and document a patient’s

using the APAS v des an apporcicy (o fuly cvaluate « diaby and how  affecsy
functional Pre-surgical analysis also allows for procedural jusafication, as well as
establishing a patients condition prior t surgery o treatment.

SURGICAL ANALYSIS

The APAS can provide accurate information as an aid in determining such things as the proper positoning, of implants and surgical
jont ‘motion.

POST-SURGICAL EVALUATION

Data supplied by the APAS may be used in both cesuits and planning

REHABILITATION TRACKING AND TREATMENT JUSTIFICATION

Because APAS data can be used be evaluated and
documented These analyses are powertul additions 10 a medical history from which to phn funther pauent treatment

AREAS OF APPLICATION

The APAS can be used to cvaluate and study the level of impairment in functional movement due to:
A Upper Extremity Dysfunction

1. Shoulder Dysfunction
4. shoulder extension-flexion abnormalitics
b. shoulder abduction-adduction abnormalities
c. shoulder intemal-extemal rotation abnormalities
d. other shoulder abnormalities
2. Elbow Dysfunction
2. elbow extension-flexion abnormalitics

The APAS can be used critical forces on it analysis.
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Anel Performance Analysis System User Manual PageZor2

on of cach body part dunng gait

The APAS can be used to g
HANDSTUDY

The APAS can be used to perform detailed studies of any part of the anatomy
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