
















































































CHAPTER 2. GROUP THEORY AND LANDAU THEORY 23 

and diagonal reflection plane ad through the origin and the axis with the highest 

symmetry but also bisecting the angle between the two fold axes perpendicular to the 

symmetry axis. 

C. Representations and Character Tables of Point Groups 

A representation of a group is a set of matrices having the same multiplication table as 

the group and can be written as R(A), where R is the matrix to represent symmetry 

operation A. The number of rows and columns in the matrix determine the dimen­

sionality of the representation. If there are two representations of a group R1 (A) and 

R2(A), one can construct a new representation by combining their matrices i.e., 

(2.1) 

Here the dimension of the matrix R3 (A) is equal to the sum of the dimensions of 

R1(A) and R2(A). In (2.1), the matrices R1(A) and R2(A) appear in the upper left-

hand and lower right-hand corners respectively, while the rest of the elements are 

zero. Any representation, whose elements appear in this form, is called the reducible 

representation. But if there does not exist any unitary transformation that can bring 

every matrix in a representation into this block diagonal form, then the representa-

tion is said to be irreducible representation. The irreducible representations are of 

fundamental importance in group theory. 

Character table is associated with each point group and contains all information in 

a compact form that is necessary in dealing with point groups. The word "character" 

refers to the trace of a matrix. The various irreducible representations (IR) are 

collected in character tables. The notation used for IR's were developed by R. S. 

Mulliken [52]. In this notation, A and B denote one-dimensional representation, E 
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denotes two dimensional representations, T denotes three-dimensional representation. 

Furthermore, subscripts 1,2 ... , prime and double primes are used for distinction. The 

symmetries with inversion are assigned by subscripts g and u after the German words 

"gerade" (even) and "ungerade" (odd). The last two columns in a character table 

shows the first order and second order combinations of Cartesian coordinates. 

2.1.2 Space Groups 

The space group of the crystal is a combination of all available point group symmetry 

operations with the Bravais lattice translations, or one can say that the collection of 

all symmetry operations that take a crystal into itself is called the space group of the 

crystal. There are 230 space groups made from the combination of 32 point groups 

with the 14 Bravias lattices which belong to one of 7 crystal systems [53]. The nota­

tions, symmetry elements or general position etc of all the 230 space groups are given 

in International Tables of X-Ray Crystallography [54]. The space group symmetry 

operations may contain translations followed by rotation or reflection. These types 

of symmetry operations are known as screw rotations or glide reflections. There­

fore, space groups are divided into groups known as symmorphic space group and 

non-symmorphic space groups [55]. The symmorphic space groups are the one which 

are generated without using glide planes or screw axes. There are 73 symmorphic 

space groups. The non-symmorphic space groups involve glide planes and/ or screw 

rotations. 

In order to work out theIR's of a space group [56-58], it is necessary to consider the 

lattice in k space and the corresponding Brillouin zone. After constructing Brillouin 

zone in k space, one needs to choose a k vector in or on the surface of the Brillouin 

zone. By applying all the symmetry operations of the point group on the k vector, one 
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can determine the "little group" and k*. The little group consists of the symmetry 

operations that leave k vector invariant, while k* is the set of k vectors found by 

applying all symmetry operations to k. The dimension of the IR of the space group 

is a product of dimension of IR of the little group and number of vectors in the k*. 

Thus by specifying the IR's of the little group, one can determine the IR's of the 

entire space group. The space group IR's at the r point of the Brillouin zone are the 

same as the point group IR's. 

2.1.3 Magnetic Point Groups and Space Groups 

The magnetic point groups were first studied by Shubnikov [59] and are generated by 

defining an extra coordinate in addition to the ordinary position coordinate (x, y, z) 

in a crystal. This extra coordinate takes only two possible values, referred to as color 

(black or white), sign ( + or -), or magnetic moment (parallel or antiparallel) and is 

known as operation of anti-symmetry, denoted by ~. In this type of crystallography 

a general point is represented in four dimensions, namely, (x, y, z, s), where s refers 

to the extra coordinate and takes a value of +1 or -1. By considering the operation 

of anti-symmetry ~' one can generate 58 magnetic point groups and 1191 magnetic 

space groups. Also the inclusion of~ with "all white" groups and the "grey" groups 

leads to 122 point groups and 1651 space groups [53]. 

The magnetic point groups can be categorized into three types. Type I includes 

ordinary 32 point groups. These point groups do not have anti-symmetry operation 

~. Type II includes 32 "grey" point groups, which appear if every equivalent site 

has both a white colored object and black colored object so that the overall color 

becomes grey. Thus in this case the operation of anti-symmetry ~ is an operation 

of the group and has the effect of doubling the size of the original point group. A 
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general coordinate is (x, y, z, ±s). Type III includes 58 black and white or magnetic 

point groups. In this case the operation of anti-symmetry ~ is not an element of the 

group independently, but half of the elements of the group are multiplied by~ while 

the other half form a subgroup on their own known the halving group. 

The magnetic space groups can be divided into four types. Type I are the ordinary 

230 space groups. Type II include 230 grey space groups, which are Type I space 

groups with time reversal. Type III includes 674 black and white space groups based 

on ordinary Bravais lattice and Type IV includes 517 black and white space groups 

based on black and white Bravais lattice. In addition to the 14 ordinary Bravais 

lattice, there are 22 black and white Bravais lattices [53]. 

2.2 Landau Theory of Phase Transitions 

The Landau theory of continuous phase transitions was proposed by the Russian 

physicist L. D. Landau in 1937 [60-62]. It is a macroscopic theory that can be used 

to study several important features of structural phase transitions. For instance, the 

dimension and symmetry properties of the transition's order parameter, the form of 

free energy expansion and the change in crystal's space groups and point groups. It is 

based on a power series expansion of the excess free energy that the low temperature 

phase possesses relative to the high temperature phase and has the following form for 

a one-dimensional order parameter: 

(2.2) 

where 1] is an order parameter describing the changes in a symmetry of a crystal 

and the coefficients a, f3, 1 depends on the mechanical or electrical properties of the 

material and are functions of pressure and temperature. 
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By considering Landau expansion to fourth order and minimizing F for equilib­

rium, one gets: 

~~ = A+ a"l + /3"72 + 1"73 = 0, (2.3) 

~~; = a+ 2/3"7 + 3!"72 2: 0. (2.4) 

The three solutions of "7 are: m=O and "711 = [-(3 ± ((32
- 4ai) 112JI21. It has been 

assumed that the states for 'f7=0 and "7=1=0 are of different symmetry so the first term 

A in (2.1) becomes zero. The high temperature phase (above transition) for T>Tc, 

'f7=0 correspond to the minimum ofF only if a >0. In the low temperature phase 

(below the transition) for T<Tc, the non zero value of "7 correspond to the minimum 

ofF for a <0. These situations are shown in a Fig 2.1. 

F 

CX>O 

Figure 2.1: The plot ofF versus "7 for a <0 and a >0. 

Also "7 >0 in the low temperature phase requires (3 and 1 both positive by keeping 

a negative, which is possible only if a = a(T- Tc), where a is a positive constant and 

the other coefficients are independent of temperature. So (2.1) becomes: 

(2.5) 
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However, at the transition temperature Tc, the minimization condition: 

(2.6) 

requires f3rP+'Yrl=O and has two solutions at the transition temperature 1]!=0 and 

rm=-(3 /"f. 
In order for r; to be continuous through the transition, (3 must be zero. If however, 

(3 is not zero then the continuous phase transition can occur only at isolated points 

[63]. Thus by taking (3=0 for continuous transition, the Landau free energy to fourth 

order becomes: 

(2.7) 

By minimizing F, one gets r;=O and r;=±Ja(T~Tc) showing that the order parameter 

possess a square root dependence as a function of temperature. The plot of F versus 

r; is shown in Fig 2.2, one can see two minima corresponding to the same value of the 

free energy but opposite value of r;. 

F 

Figure 2.2: The plot ofF versus r; for three characteristic temperatures. 

The Landau theory of continuous transitions has been used widely to describe the 

phenomena of ferroelastic and nonferroelastic phase transitions in crystals. The non-
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ferroic phase transitions are defined as the structural phase transitions that appear 

by breaking the translational symmetry within the same crystal and do not involve 

the reduction of any point symmetry. A group theoretical analysis based on Lan­

dau theory for the free energy expansion and changes in a space group of a crystal 

in case of non-ferroic transitions has been developed [67J.The ferroelectric and fer­

roelastic transitions involve the modification of the crystal's point group caused by 

the symmetry breaking of macroscopic quantities i.e., polarization, strain. A group 

theoretical analysis of these phase transitions based on Landau theory for the free 

energy expansion and changes in a point group and space group of a crystal has been 

done [64-66]. Gufan and his co-workers [68-72] discussed the free energy and phase 

diagram corresponding to the group generated by reflections Cnv' the cyclic group 

Cn and the cubic groups. Toledano et al. [73] summarized the free energy and phase 

diagram for C1, C4v, C4, C3v, C3, Oh, Th, 0, Td and T. 



Chapter 3 

Results and Discussion 

Hexagonal rare earth manganites RMn03 (R= Ho, Er, Yb), space group P6scm (C~v) 

undergo different types of structural and magnetic phase transitions. The Landau 

theory of phase transitions is applied to study the phenomenon of phase transitions 

in these materials. In Landau theory, the changes in a symmetry of a crystal can 

be described by an order parameter, the components of which transform according 

to a physically irreducible representation (IR) of the high symmetry space group. 

A physically IR is either a real IR or the direct sum of two complex conjugate IR 

of high symmetry space group. An order parameter is a physical quantity such as 

polarization, magnetization, strain, atomic displacements etc. 

A systematic method is adopted here to determine structural phase transitions in 

these materials. The method involves (i) selection of irreducible representation of the 

space group, (ii) derivation of the expression for the Landau free energy, (iii) deter­

mination of low symmetry phases, and (iv) identification of point groups and space 

groups for low symmetry phases. In order to work out all possible phase transitions 

occurring in RMn03 compounds, it is necessary to consider different IR's of the space 

group P63cm. The IR's at the r point of the hexagonal Brillouin zone are considered. 

30 
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The r point lies at the origin of Brillouin zone and coordinates of the wave vector 

k are (kx, ky, kz) = (0, 0, 0). The IR's of the space group P63cm at the r point are 

same as those of the point group C6v and are denoted by A1 , A2, B1 , B2, E1 , E2. The 

IR's A1, A2, B1 , B2 are one dimensional while E1 , E2 are two dimensional IR's. The 

character tables of these IR's are given in Appendix A. 

3.1 Landau Free Energy for One-dimensional Or-

der Parameters 

3.1.1 Landau Free Energy for A1 

The Landau free energy is a polynomial expansion in the order parameter rJ. The 

Landau free energy for one dimensional IR A1 to fourth order is [73]: 

(3.1) 

It is invariant under all symmetry operations of the high symmetry space group P63cm 

on the order parameter 17· 

In order to find the phase transition between the high symmetry and the low 

symmetry phases, it is necessary to minimize F. The equations minimizing F are: 

aF 
077 

(3.2) 

(3.3) 

The three solutions of 17 are: 1]1=0 and rJn = [-,8 ± (,82 - 4ar) 112]/2r. Thus from 

the above conditions of minimization, one finds that the 1]!=0 phase, called the parent 

phase I, is stable and corresponds to the minimum ofF for a >0 as shown in Figure 

3.1. The minimum for phase I persists for a >0 as shown in Figure 3.2. There exits 
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F 

Figure 3.1: The plot ofF versus 17 for a >0 shows the minimum at 1]=0, which is 

phase I. 

F F 

0:>0,/3>0 0:>0,/3<0 

Figure 3.2: The plot of F versus 17 for a >0, f3 >0 or f3 <0. In this case 

the minimum at 1]=0 correspond to the metastable phase while the minima at 

1Jn = [-/3 ± (/32
- 4arYI2]/2r correspond to the stable phase. 

two minima corresponding to two non-zero values of 1JII i.e., 

1Jn = [- f3 ± (/32 
- 4ar) 112]/21, which persist for /32 2:: 4ar, called limit of stability of 

phase II as shown in Figure 3.3. 

The transition occurs for a = 2/32/91 and is obtained by equating the free energy 

for 1JI and 1Jn,i.e., F(1JI) = F(1Jn). Here 1JII = [-/3 + (/32
- 4ar) 112]/2/, because the 

minimum at 1Jn = [-/3 + (/32
- 4ar) 112JI2r goes below the minimum at 

1JII = [-/3- (/32
- 4ar) 112]/2r or one can say that the minimum at 
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F F 

CX<0,(3>0 CX<0,(3<0 

r; 

Figure 3.3: The plot ofF versus 'TJ for a <0, f3 >0 or f3 <0. Here the minimum at 

'TJII = [-{3 + ({32
- 4ar) 112JI2r correspond to the stable phase while the minimum at 

'TJII = [- {3 - ({32 
- 4ar) 112]/2"( correspond to the metastable phase which is phase II. 

'TJII = [-{3 + ({32
- 4ar) 112]/2r correspond to the stable phase while the minimum at 

'TJII = [- f3 - ({32 
- 4a'Y) 112

] /21 correspond to the metastable phase. This transition 

is of first order because 'TJI =I= 'TJII along the transition line a = 2{32 /9"(. The phase 

diagram in (a, {3) plane for the free energy given in (3.1) is shown in Figure 3.4 by 

keeping 1 positive as required for the conditions of stability. 

3.1.2 Landau Free Energy for A2, B1 and B2 

The expression for the Landau free energy for the one dimensional IR's A2, B1, B2 

up to sixth order can be written as [73]: 

(3.4) 

In this case the cubic term is absent from free energy because it is not invariant under 

all symmetry operations of space group P63cm. 

In order to find out a first order and second order transition between the high 

symmetry and the low symmetry phases, it is necessary to minimize F. The equations 
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Limit 

Limit f Stability~' 

of pha e II (3 2 =4cx.y / 
I 

CX.=2(3 2 /9'(, 
I 

34 

(3 

Figure 3.4: The phase diagram corresponding to the free energy F(77) in (3.1). The 

blue solid line and dashed red lines are limit of stability and first order transition 

lines respectively. 

minimizing P are: 

8F 
8TJ -

(3.5) 

(3.6) 

The three solutions of 17 are: 111=0 and 17II = [-JJ ± (j72
- 4ary) 112]/2ry. 

There is a minima in P corresponding to 171=0 for a >0, namely the parent 

phase(I). The minimum for phase I persists for a >0. The phase II appears for non 

zero value of 17II = [-JJ ± (j72 - 4ary) 112]/2ry and is stable for a <0. The plot of P 

versus 17 for different values of a and j7 is shown in Figure 3.5 by keeping ry constant. 

By considering ry greater than zero, one gets the phase diagram in the (a, J') plane 

as shown in Figure 3.6 for the free energy given in (3.4). The line of phase transition 

is described by a= 3j72 /16ry when j7 <0, which is determined by equating the free 

energy at 111 and 77n, i.e., P(17I) = P(17n), while for j7 >0 the transition is along a=O. 

The transition for j7 <0 is first order, because 111 =/= 11n along the transition line 
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F F 

a.>0,(3 0 

F F 
a.<0,(3<0 

Figure 3.5: The plot ofF versus 1] for various values of a: and (3. 

a: = 3(32 /16')'. The transition for (3 >0 is second order because 1JI = 1Jn=O along the 

transition line. When (3 <0, the minima of 1JII persists for (32 2:: 4a:')'. 

The low symmetry phases for one dimensional order parameters at the r point in 

a crystal with P63cm symmetry is given in the Table 3.1. 

3.2 Landau Free Energy for Two-dimensional Or­

der Parameter 

3.2.1 Landau Free Energy for E1 

The two dimensional IR's E1 and E2 in C~v correspond to two component order 

parameters. In the case of E1 , the sixth order expansion of Landau free energy F as 
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a 

Figure 3.6: The phase diagram corresponding to the free energy F(rJ) in (3.4). The 

solid blue line, dotted dashed green line and red dashed lines are first order, second 

order and limit of stability lines respectively. 

Point on Irreducible Space Group 

h-BZ Representation 

r A1 P6scm (C~v) 

A2 P6s (C~) 

B1 P3cl (cgv) 

B2 P3lm (C~v) 

Table 3.1: Low symmetry phases resulting from structural phase transitions for 

one-dimensional IR at the r point in a crystal with P63cm symmetry. 

a function of the two component order parameters f/1 and f/2 can be expressed as (73): 



CHAPTER 3. RESULTS AND DISCUSSION 37 

Using cylindrical coordinates wit rJ1 =pease and 'r/2 = psine, F(rJ1, 'r/2) becomes: 

(3.8) 

The equations minimizing F are: 

8F 
8p -

(3.9) 

(3.10) 

From (3.9) and (3.10), one can see that in addition to the parent phase I (p=O, 

TJ1 =0, rJ2=0) there exist two types of solutions corresponding to different classes of 

low symmetry phases. These are determined by the equation cos 38 sin 38=0. For 

cos 38=0, sin 38 = ±1, so F(p, B) becomes 

(3.11) 

For sin 3e=O, cos 3e = ±1, so F(p, e) becomes 

(3.12) 

One gets, from (3.10) and (3.11) that the minima ofF depends on the sign of b1 

i.e., sin 38=0 solutions correspond to the minima in F if b1 <0, or cos 3e=O solutions 

is minima if b1 >0. 

Thus the two low symmetry phases are denoted by phase II for cos 38 = ±1 and 

phase III for sin 38 = ±1 correspond to the equilibrium values (TJ,O) and (O,rJ) re-
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spectively and equivalent domains obtained by applying the operations of C~v· The 

possible symmetry of phase II and phase III is Pm(C1s) and Pc(C2s) respectively. 

3.2.2 Landau Free Energy for E2 

The Landau expansion for E2 is different from E1 because of symmetry operation 

C2 , which leaves the third order term invariant for E2 but not for E1 . So finally, the 

fourth order Landau expansion F for E2 is [73]: 

In terms of cylindrical coordinates equation (3.11) becomes 

The equations minimizing F are: 

EJF 
EJp 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

From (3.16), sin 3e=O for cos 3e = ±1. Therefore (3.15) and (3.16)give, in addition 

to the parent phase I (p=O, 171 =0, 1]2=0), the two low symmetry phases of identical 

symmetry. These phases are denoted by phase II for cos 3e= 1 and phase III for 

cos3e=-l corresponding to the equilibrium values (17,0) and (-17,0) respectively and 

equivalent domains obtained by applying operations of C~v· The symmetry group 

associated with phase II and phase III is Cmc21 (C~~). 
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06v E 206 203 o2 3a-v 3a-d tl t2 t3 

M1 3 0 0 3 1 1 -1 -1 3 

M2 3 0 0 3 -1 -1 -1 -1 3 

M3 3 0 0 -3 1 -1 -1 -1 3 

M4 3 0 0 -3 -1 1 -1 -1 3 

Table 3.2: The irreducible representations of the space group P63cm at theM-point 

on the hexagonal Brillouin zone. 

3.3 Landau Free Energy at the M-Point 

A theoretical analysis is presented here for the structural phase transitions at the M­

point of the hexagonal Brillouin zone as an example of a non-zero k-vector. M-point 

is the center of the rectangular face and its symmetry group is D2h. The wave vector 

kat theM-point is (1/2)b2 , where b2= 2;(}s-, 0, 0) is a reciprocal lattice vector of the 

hexagonal system. The IR of the space group P63cm at the M-point are calculated 

by specifying the IR of the little group. The little group in this case is 0 2v which has 

four one dimensional IR's. The dimension of theIR of a space group (P63cm) at the 

M-point is a product of dimension of IR's in a little group 0 2v and number of arms 

in k*. k* is generated by applying all symmetry elements of point group O~v on wave 

vector at the M-point. Some of the symmetry elements of point group O~v will leave 

the wave vector unchanged, therefore k* has the following three arms: (0 ~ 0), (~ ~ 

0), (~ 0 0). Thus there are four three-dimensional IR's, namely M1, M2, M3 and M4 

at the M-point of the hexagonal Brillouin zone. The characters of these IR's along 

with the translations are given in the Table 3.2. The matrices of the representations 

M1, M2, M3 and M4 along with translations t1, t1 and t3 are given in Appendix A. 
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The fourth-order Landau expansion for the M point is written as [64]: 

F( ) a ( 2 2 2) !31 ( 4 + 4 + 4) + /32 ( 2 2 + 2 2 + 2 2) 7Jl' 7J2' 7J3 = 2 Tll + Tl2 + Tl3 + 4 Tll 7l2 7J3 2 Tll 7l2 7l2 7J3 Tll Tl3 . 

(3.17) 

From minimization ofF with respect to rJ1, TJ2 , 7J3, one finds in addition to the parent 

phase I (TJ1 =0, rJ2=0, 7J3=0),three different low symmetry phases. These phases are 

denoted by phase II, phase III and phase IV and correspond to the equilibrium values 

(TJ, TJ, TJ), (TJ, TJ, 0), (TJ, 0, 0) respectively, and equivalent domains found by applying 

symmetry operations of C~v. The Landau free energy at the M point of the hexagonal 

BZ is equivalent to the free energy for the three-dimensional representations of Oh. 

Therefore, results can be obtained by considering the phase diagram of Oh· 

The possible structural phase transitions of Landau type for three dimensional IR 

at the M-point in a crystal with P63cm symmetry is given in the Table 3.3. 

3.4 Summary 

The structural phase transitions occurring at the r point and at the M-point of the 

hexagonal Brillouin zone are found by using Landau theory of phase transitions. Also 

the Landau free energy corresponding to one-dimensional irreducible representation 

and M4 at theM-point has been determined. The low symmetry phases corresponding 

to A1, A2, B1, B2 are P63cm (C~v), P63 (C~), P3cl (C~v) and P31m (C§v). The low 

symmetry phases for E1 are Pm(C1s) and Pc(C2s), while for E2 the two low symmetry 

phases correspond to same space group Cmc21 (C~~). 

For M1 the low symmetry phases are P63cm (Civ), Cmc21 (CJ;) and Pmc21 (Civ)· 

For M2 the low symmetry phases are P63 (C~), Cmc21 (C~v) and Pmn21 (C~v)· For 

M3 the low symmetry phases are P3cl (C~v), Cc (C;)and Pc (C;). Finally, for M4 
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Point on Irreducible Order Parameter Space Group 

h-BZ Representation Space 

M M1 rpp] P63cm (CJv) 

'Tl 'Tl 0 Cmc21 (CJ;) 

'T!00 Pmc21 (Civ) 

M2 'Tl'Tl'Tl P63 (C~) 

'T!'r/0 Cmc21 (C~v) 

'Tl 0 0 Pmn21 (CJv) 

M3 'Tl'Tl'Tl P3cl (C~v) 

'T!'r/0 Cc (Cf) 

'T!00 Pc (c;) 

M4 'Tl'Tl'Tl P31m (C~v) 

'T!'r/0 Cm(C;) 

'r/00 Pm(C;) 

Table 3.3: Low symmetry phases resulting from the structural phase transitions for 

IR at the M-point in a crystal with P63cm symmetry. 

the low symmetry phases are P31m (C~J, Cm (C;)and Pm (C:). 



Chapter 4 

Final Remarks 

4.1 Conclusions 

Different types of structural and magnetic phase transitions take place in hexagonal 

perovskites RMn03 for R=Ho, Er, Yb. The Landau theory of phase transitions is a 

useful tool to study the structural and magnetic changes in these materials, in which 

a symmetry breaking order parameter is required that transforms like irreducible 

representations of the high symmetry space group. The possible symmetry changes 

that can take place in a crystal with P63cm symmetry at the r point are analyzed. 

The structural phases resulting from one component order parameters A1 , A2 , B1, B2 

have symmetry P63cm (Civ), P63 (C~), P3cl (C~v) and P31m (C~v) respectively. The 

structural phases, which appear in case of the two component order parameter E1 

have two low symmetry phases Pm ( c;), Pc ( C;) corresponding to the equilibrium 

values (ry,O), (O,ry), and for E2 the two low symmetry phases correspond to the same 

symmetry group Cmc21 ( Ci~) but with opposite values of equilibrium order parameter 

i.e., (ry,O), (-ry,O). 

The phase transitions occurring at the M-point of hexagonal Brillouin zone are 

42 
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investigated for a crystal with P63cm symmetry. The space group representations 

appearing at theM-point are three-dimensional denoted by M1 , M2 , M3 and M4 . The 

low symmetry phases as a result of structural phase transitions at M1 has symmetry 

P63cm (C~v), Cmc21 (CJ;) and Pmc21 (Civ) corresponding to the equilibrium values 

(TJ, rJ, TJ), (TJ, rJ, 0) and (TJ, 0, 0). The low symmetry phases appearing at M2 has 

symmetry P63 ( C~), Cmc21 ( CJ;) and Pmn21 ( c;v) corresponding to the equilibrium 

values (TJ, TJ, TJ), (TJ, rJ, 0) and (TJ, 0, 0). For M3, the low symmetry phase correspond­

ing to equilibrium values (TJ, rJ, TJ) is P3cl (C~v), while (TJ, rJ, 0) and (TJ, 0, 0) are 

associated with the symmetries Cc (Ci) and Pc (C;). For M4 , the low symmetry 

phase corresponding to equilibrium values (TJ, 7], TJ) is P31m (Civ), while (TJ, TJ, 0) and 

(TJ, 0, 0) are associated with the symmetries Cm (C~) and Pm (CI). 

4.2 Suggestions for Further Work 

The magnetic transitions in RMn03 compounds are due to antiferromagnetic ordering 

of Mn3+ sublattices and in some compounds due to antiferromagnetic/ferromagnetic 

ordering R3+ sublattices. The magnetic symmetries of RMn03 compounds because 

of Mn3+ sublattices are P63cm, P63cm, P.Q3cm and P.Q3_gm corresponding to one 

component order parameter A1 , A2 , B1 , B2 respectively. The rare earth ions develop 

magnetic moment at very low temperature ~ 5K but their magnetic structures are still 

under investigation. However, it is suspected that the magnetic symmetry changes 

from P63cm to Pc for HoMn03 and P_g for ErMn03, YbMn03 [19]. The irreducible 

representation E1 at the r point or M3 representation at theM-point of the hexagonal 

Brillouin zone are proposed to be related to this symmetry for HoMn03. 



Appendix A 

Hexagonal Crystal System 

The hexagonal crystal system has four axes of symmetry. Three of them are of equal 

lengths set at 120° to one another, and the fourth one is perpendicular to the plane 

of first three. These axes are denoted by a1, a2, a3 and C respectively and are shown 

in Figure A.l. 

/I 
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l •""" I 
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: \ 
I \ 
I • 

I 
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Figure A.l: Indexing of Hexagonal Lattice. 

The volume of the hexagonal unit cell is v{a2c. The lattice vectors are: 

gl =(0, -a, 0); g2=~(aV3", a, 0); g3=(0, 0, c) 

44 
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The reciprocal lattice vectors are: 

b1= 2:(}s, -1, o); b2= 2:(}a, o, o); b3= 2;(o, o, 1) 

The Brillouin zone (BZ) of the hexagonal lattice is shown in Figure A.2 and has 

volume= Js::c. The points and lines of symmetry of the hexagonal BZ and their 

coordinates with respect to b1 , b2 and b3 are listed in a Table A.l. For example, P 

is a point on the line KH and its k vector is ( -ibl +~b2+o:b3)=( -Ho:), 0< a< ~· 

Figure A.2: Brillouin zone of the hexagonal lattice [53]. 

A.l 

The space group P63cm [#185,(C~v)J belongs to the class of hexagonal crystal system 

and has twelve symmetry elements. These symmetry elements consist of the identity 

(E), rotations by angles of imr radians (C6 , C3, C2, C§, and C~ for n=1, 2, 3, 4, 

5 respectively), three mirror planes (30'v) that pass through opposite faces of the 

hexagon, and three mirror planes (30'd) that pass through opposite vertices of the 
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Bravais Lattice Point /Line of Symmetry Coordinates 

Hexagonal P, rh r (0 0 0) 

M (0 ~ 0) 

A (0 0 ~ 0) 

L (0 ~ ~ ) 

K (-i ~ 0) 

H ( -i ~ ~ ) 
~(rA) (0 0 a) 

U(ML) ( 0 ~ a) 

P(KH) (-i ~ a) 

T(rK) (-a, 2a, 0) 

S(AH) (-a, 2a, ~ ) 

T'(MK) (-2a, ~+a, 0) 

S'(LH) (-2a, ~+a, ~) 

~(rM) (0 a 0) 

R(AL) (0 a ~ ) 

Table A.l: List of points of the hexagonal Brillouin zone [53]. 
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1 E x, y, z 7 O"v1 
1 -x + y, y, z + 2 

2 c3 -y,x- y, z 8 O"vz 
1 

X, X- y, Z + 2 

3 c~ -x + y, -x, z 9 O"v3 
1 -y, -x, z + 2 

4 c2 1 -x, -y, z + 2 10 O"d1 X- y, -y, Z 

5 c6 1 
X- y, X, Z + 2 11 O"d2 -x, -x + y, z 

6 c~ 1 y, -x+y, z+ 2 12 O"d3 y,x, z 

Table A.2: Positions of symmetry elements of space group P63cm [54]. 

hexagon. The generators of the group are E, C3 , C2 and av3 • It is a nonsymmorphic 

space group and involves glide reflections and screw rotations. In this case three 

mirror planes (3av) are glide planes. The general positions of all twelve symmetry 

elements are given in Table A.2. 

The stereographic projection of C~v is shown in Figure A.3 .. 

Figure A.3: The stereographic projection of C~v [51]. 
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A.l.l Character Table of C~v 

The r point lies at the origin of the hexagonal BZ with wave vector k=(O, 0, 0). The 

character table of irreducible representations and their products at the f-point for 

the point group C~v is shown in the Table A.3 and Table A.4 respectively. 

c~v E 2C6 2C3 c2 3crv 3crd Linear Functions Quadratic Functions 

A1 1 1 1 1 1 1 z x2+y2 ,z2 

A2 1 1 1 1 -1 -1 Rz -

B1 1 -1 1 -1 1 -1 - -

B2 1 -1 1 -1 -1 1 - -

E1 2 1 -1 -2 0 0 (x,y)(Rx,Ry) (xz,yz) 

E2 2 -1 -1 2 0 0 - (x2-y2,xy) 

Table A.3: Character table of the r point representations of C~v [51]. 

c~v A1 A2 B1 B2 E1 E2 

A1 A1 A2 B1 B2 E1 E2 

A2 A2 A1 B2 B1 E1 E2 

B1 B1 B2 A1 A2 E2 E1 

B2 B2 B1 A2 A1 E2 E1 

E1 E1 E1 E2 E2 A1+A2+E2 B1+B2+E1 

E2 E2 E2 E1 E1 B1+B2+E1 A1+A2+E2 

Table A.4: Irreducible representation products of C~v· 
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A.1.2 Matrices at the r -Point of the Hexagonal Brillouin 

Zone 

An explicit form for matrices of the irreducible representations E1 and E2 of the point 

group c~v are as follows: 

Matrices of E1 

Matrices of E2 

E = (~ :). 

C _ 2 2 0 2_ 2 2 ( _1 v'3) (-1 _.Y]) 
3- ' 3- ' c, = ( ~1 ~~) 

C5_ 
6-

c3 = 

_.Y] _1 .Y] _1 
2 2 2 2 

( ~ -¥) , O"v1 = (-
1 O) , O"v2 = ( ~ "?) , .Y] _21 0 1 .Y] _1 

2 2 2 

O"d2 = ( -~ - "?) ' O"d3 = (-~ ¥) v'3 1 v'3 1 
-2 2 2 2 

(A.1) 

(j, -:) , c~ = ( -;, ~) , c2 = (
1 0

) 
2 -2 -2 -2 0 1 

c6 = ( -
1 .Y]) cg = (-

1 _.Y]) av1 = (
1 0 

) -~ ~~ ' f _; ' 0 -1 ' 
O"v2 = (-~ ¥)' 

V3 1 
2 2 

O"v3 = ( -~3 -:) , O"d1 = (
1 

O ) , _.Y] - 0 -1 
2 2 

~~= (~~ -;) O"d2 = (-~ "?) ' .Y] 1 
2 2 

(A.2) 
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A.1.3 Matrices at the M-Point of the Hexagonal Brillouin 

Zone 

The M point is the center of the rectangular face with wave vector k=(O ~ 0) as 

shown in the Brillouin zone of the hexagonal lattice in Fig A.2. There are four three­

dimensional space group representations at the M-point, namely M1 , M2 , M3 , M4 . 

The matrices of these four three-dimensional representations are as follows: 

Matrices of M 1 

E~ (: 
0 

:} c, ~ (: 

0 

:)· G§~(: 
1 

:} c, ~ (: 

0 

:) 1 0 0 1 

0 1 0 0 

c, ~ (: 

1 

:} Ci ~ (: 
0 

:) ' ff"' ~ (: 
1 

:} ff"' ~ (: 
0 

:} 0 0 0 0 

0 1 0 1 

ff"'~ (: 
0 

:)·ffdl~(: 
1 

:} ffd2 ~ (: 
0 

:} ffd3 ~ (: 
0 

:) 
1 0 0 1 

(A.3) 
0 0 1 0 
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Matrices of M 2 

(A.4) 

Matrices of M 3 

(
1 0 OJ 

O'v2 = 0 0 1 ' 

0 1 0 
(
0 0 1) 

O'v3 = 0 1 0 

1 0 0 

O'vl = (: ~ :) , 
0 0 1 

(A.5) 

O'dl = (~1 ~1 
: l ' O'd2 = (~1 

: ~1) ' O'd3 = ( : ~1 ~1) 
0 0 -1 0 -1 0 -1 0 0 
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Matrices of M4 

(A.6) 

A.1.4 Translations at theM-Point of the Hexagonal Brillouin 

Zone 

The matrices of the translations t 1 , t 2 and t 3 can be calculated by considering k* at 

M-point. The k* has three arms denoted by k1=(0 ~ 0), k2 =(~ ~ 0) and k3=(~ 0 0). 

A method is described below to determine the matrices of the translations. 

Matrices of t 1 , t2 and t3 

Let 

0 

0 

0 

0 

0 

0 (A.7) 
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Here k1 =~b2; k2=Hb1 +b2); k3=~b1. 

Also 

b2.a1 =0, (b1 +b2).a1 =-27T, b1.a1 =-27T 

Thus 

1 0 0 

tl = 0 -1 0 

0 0 -1 

Similarly, the matrices of t2 and t3 are: 

A.2 

-1 0 0 

0 -1 0 ' t3 = 

0 0 1 

1 0 0 

0 1 0 

0 0 1 

53 

(A.8) 

(A.9) 

The space group P63 /mmc[#194,(D~h] is a non symmorphic group having twenty four 

symmetry elements, namely E, 2C6, 2C3, c2, 3C;, 3C;, t-, 2S3, 2S6, O'h, 3ad, 3av. The 

general positions of these twenty four symmetry elements are given in Table A.5. 

The character table of irreducible representations at the r point for the point 

group D~h is shown in the Table A.6. 
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1 E x, y, z 13 " -x, -y, -z 

2 Ca -y, X- y, Z 14 st -y, x-y, -z 

3 C§ -x+y, -x, z 15 83 y, -x + y, -z 

4 c2 
1 -x, -y, z + 2 16 st x- y,x, -z 

5 Ca 
1 X- y, X, Z + 2 17 s;; y, -x + y, -z 

6 c~ 1 y, -X+ y, Z + 2 18 (Jh y, x, -z 

7 c;1 -x + y, y, -z 19 Clv1 
1 -x + y, y, z + 2 

8 c;2 x, x- y, -z 20 Clv2 
1 X, X- y, Z + 2 

9 c;3 -y, -x, -z 21 Clv3 
1 -y, -x, z + 2 

10 C" 21 x- y, -y, -z 22 Cldl X- y, -y, Z 

11 C" 22 -x, -x + y, -z 23 Cld2 -x, -x + y, z 

12 C" 23 y, x, -z 24 Cld3 y,x, z 

Table A.5: Positions of symmetry elements of space group P63/mmc [54]. 
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D~h E 2C6 2C3 c2 3C~ 3C~ [, 283 286 CTh 3crd 3crv - -

A19 1 1 1 1 1 1 1 1 1 1 1 1 - x2+y2,z2 

A29 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz -

B19 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 - -

B29 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 - -

E19 2 1 -1 -2 0 0 2 1 -1 -2 0 0 (Rx,Ry) (xz,yz) 

E29 2 -1 -1 2 0 0 2 -1 -1 2 0 0 - (x2-y2,xy) 

Alu 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 - -

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z -

Blu 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 - -

B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 - -

E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x,y) -

E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0 - -

Table A.6: Character table of D~h [51]. 



Bibliography 

[1] H. L. Yakel, W. C. Koehler, E. F. Bertaut and E. F. Forrat. Acta Crystallogr 16, 

957, (1963). 

[2] M. A. Gilleo. Acta Crystallogr 10, 161, (1957). 

[3] V. E Wood, A.E. Austin, E. W. Collings and K. C. Brag. J. Phys. Chern. 

Solids 34, 859, 1973. 

[4] A. Waintal and J. Chenavas. Compt. Rend B168, 264, (1967). 

[5] D. L. Rousseau, R. P. Bauman and S. P. S. Porto. Journal of Raman Spec­

troscopy 10, 253, (1981). 

[6] D. G. Tomuta, S. Ramakrishnan, G. J. Nieuwenhuys and J. A. Mydosh. J. Phys. 

Condens. Matter 13, 4543, (2001). 

[7] Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue and C. W. Chu. Phys. Rev. B 56, 

2623, (1997). 

[8] M. N. Iliev, H. G. Lee, V. N. Popov, M. V. Abrashev and A. Hamed, R. L. 

Meng and C. W. Chu. Phys. Rev. B 56, 2488, (1997). 

[9] A. Filippetti and N. A. Hill. J. Magn. Magn. Mater. 236, 176, (2002). 

56 



BIBLIOGRAPHY 57 

[10] A. B. Souchkov, J. R. Simpson, M. Quijada, H. Ishibashi, N. Hur, J. S. Ahn, A. 

W. Cheong, A. J. Millis and H. D. Drew. Phys. Rev. Lett. 91, 027203, (2003). 

[11] B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov and C. W. Chu. Phys. Rev. 

Lett. 92, 087204, (2004). 

[12] A. P. Litvinchuk, M. N. Iliev, V. N. Popov and M. M. Gospodinov. J. Phys. 

Condens. Matter 16, 809, (2004) 

[13] A. Munoz, J. A. Alonso, M. T. Casais, M. J. Martinez-Lope, J. L. Martinez 

and M. T. Fernandez-Diaz. J.Phys. Condens. Matter 14, 3285, (2002). 

[14] M. Fiebig and Th. Lottermoser. J. Appl. Phys. 93, 8194, (2003). 

[15] Th. Lottermoser, M. Fiebig, D. Frohlich, St. Leute and K. Kohn. J. Magn. 

Magn. Mater. 226, 1131, (2001). 

[16] M. Fiebig, D. Frohlich, K. Kohn, St. Leute, Th. Lottermoser, V. V. Pavlov and 

R. V. Pisarev. Phys. Rev. Lett. 84, 5620, (2000). 

[17] C. Degenhardt, M. Fiebig, D. Frohlich, Th. Lottermoser, and R. V. Pisarev. 

Appl. Phys. B 73, 139, (2001). 

[18] Th. Lottermoser, Th. Lonkai, U. Amann, D. Hohlwein, J. Ihringer and M. 

Fiebig. Nature 430, 541, (2004). 

[19] Hisashi Sugie, Nobuyuki Iwata and Kay Kohn. J. Phys. Soc. Jpn. 71, 1558, 

(2002). 

[20] M. Fiebig, C. Degenhardt and R. V. Pisarev. Phys. Rev. Lett. 88, 027203, 

(2002). 



BIBLIOGRAPHY 58 

[21] M. Fiebig, C. Degenhardt and R. V. Pisarev. J. Appl. Phys. 91, 8867, (2002). 

[22] Th. Lonkai, D. Hohlwein, J. Ihringer and W. Prandl. Appl. Phys. A 74, S843, 

(2002). 

[23] T. J. Sato, S. H. Lee, T. Katsufuji, M. Park, J. R. D. Coply and H. Takagi. 

Phys. Rev. B 68, 014432, (2003). 

[24] T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto and H. Takagi. 

Phys. Rev. B 64, 104419, (2001). 

[25] Bas B, VanAken, Auke Meetsma and Thomas T. S. Palstra. Acta Crystallogr. 

c 57, 230, (2001). 

[26] Th. Lottermoser, M. Fiebig and D. Frohlich. J. Appl. Phys. 91, 8251, (2002). 

[27] A. Munoz, J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, J. L. Martinez 

and M. T. Fernandez-Diaz. Phys. Rev. B 62, 9498, (2000). 

[28] J. F. Ackerman, G. M. Cole and S. L. Holt. Inorg. Chimica Acta 8, 323, (1974). 

[29] Sinclair. ISIS Experimental Report 8738, (1998). 

[30] D. Visser, G. C. Verschoor and D. J. W. Ijdo. Acta Crystallogr. B36, 28, (1980). 

[31] 0. A. Petrenko, M. A. Lumsden, M. D. Lumsden and M. F. Collins. J. Phys. 

Condens. Matter 8, 10899, (1996). 

[32] J. M. Perez-Mato, J. L. Manes, M. J. Tello and F. J. Zuniga. J. Phys. C: Solid 

State Phys. 14, 1121, (1981). 

[33] T. Kato, K. Machida, T. Ishii, K. Iio and T. Mitsui. Phys. Rev. B 50, 13039, 

(1994). 



BIBLIOGRAPHY 59 

[34] J. L. Manes, M. J. Tello and J. M. Perez-Mato. Phys. Rev. B 26, 250, (1982). 

[35] Z. W. Hendrikse, W. J. A. Maaskant. Physica. B 233, 139, (1997). 

[36] H. Tanaka and K. Kakurai. J. Phys. Soc. Jpn. 63, 3412, (1994). 

[37] T. Kato, T. Ishii, Y. Ajiro, T. Asano and S. Kawano. J. Phys. Soc. Jpn. 62, 

3384, (1993). 

[38] Y. Nishiwaki, K. Ilo and T. Mitsui. J. Phys. Soc. Jpn. 72, 2608, (2003). 

[39] H. Yamaguchi, H. Uwe, T. Sakudo and E. Sawaguchi. J. Phys. Soc. Jpn. 57, 

147, (1988). 

[40] H. Yamaguchi, H. Uwe, T. Sakudo and E. Sawaguchi. J. Phys. Soc. Jpn. 56, 

589, (1987). 

[41] M. Yamaguchi, K. Inoue, T. Yagi, andY. Akishige. Phys. Rev. Lett. 74, 2126, 

(1995). 

[42] K. Inoue, A. Hasegawa, K. Watanabe, H. Yamaguchi, H. Uwe, T. Sakudo. Phys. 

Rev. B 38, 6352, (1988). 

[43] A. Yamanaka and K. Inoue. J. Phys. Soc. Jpn. 66, 3277, (1997). 

[44] K. Inoue, A. Yamanaka, A. Hasegawa and H. Yamaguchi. Ferroelectrics 156, 

297, (1994). 

[45] Y. Akishige, H. Takahashi, N. Mori and E. Sawaguchi. J. Phys. Soc. Jpn. 63, 

1590, (1994). 

[46] Y. Ishibashi. J. Phys. Soc. Jpn. 63, 1396, (1994). 



BIBLIOGRAPHY 60 

[47] A. Yamanaka, K. Inoue, T. Furutani, J. Kawamata and H. Yamaguchi. Ferro­

electrics 159, 79, (1994). 

[48] Y. Ishibashi and M. Tomatsu. J. Phys. Soc. Jpn. 58, 1058, (1989). 

[49] K. Inoue, A. Hasegawa, K. Watanabe, H. Yamaguchi, H. Uwe and T. Sakudo. 

Ferroelectrics. 135, 6352, (1992). 

[50] A. W. Joshi. Elements of Group Theory for Physicist. John Willey and Sons, 

(1977). 

[51] Michael Tinkham. Group Theory and Quantum Mechanics. McGraw-Hill Book 

Company, (1964). 

[52] R. S. Mulliken. Phys. Rev 43, 279, (1933). 

[53] C. J. Bradley and A. P. Cracknell. The Mathematical Theory of Symmetry in 

Solids. Clarendon Press, (1972). 

[54] Theo Hahn. International Tables of X-Ray Crystallography. Kluwer Academic 

Publisher, (1996). 

[55] Gerald Burns and A. M. Glazer. Space Groups for Solid State Scientists. Aca­

demic Press, (1990). 

[56] G. F. Koster. Space Groups and Their Representations. Academic Press, (1957). 

[57] J. Zak. The Irreducible Representations of Space Groups. W. A. Benjamin, 

(1969). 

[58] 0. V. Kovalev. Irreducible Representations of the Space Groups. Gordon and 

Breach Science Publishers, (1965). 



BIBLIOGRAPHY 61 

[59] A. V. Shubnikov. Symmetry and Antisymmetry of Finite Figures. U. S. S. R. 

Academy of Sciences, Moscow, (1951). 

[60] L. D. Landau. Collected Papers of Landau. Gordon and Breach Science Pub­

lishers, 1967. 

[61] L. D. Landau and E. M. Lifshitz. Statistical Physics. Pergamon Press, 1980. 

[62] Jean-Claude Toledano and Pierre Toledano. The Landau Theory of Phase Tran­

sitions. World Scientific, 1987. 

[63] L. D. Landau. Zhurnal Eksperimental'noi i Fiziki 7, 627, (1937). 

[64] Pierre Toledano and Jean-Claude Toledano. Phys. Rev. B 14, 3097, (1976). 

[65] Pierre Toledano and Jean-Claude Toledano. Phys. Rev. B 16, 386, (1977). 

[66] Jean-Claude Toledano and Pierre Toledano. Phys. Rev. B 21, 1139, (1980). 

[67] Pierre Toledano and Jean-Claude Toledano. Phys. Rev. B 25, 1946, (1982). 

[68] Yu. M. Gufan. Sov. Phys. Solid. State 13, 175, (1971). 

[69] Yu. M. Gufan and V. P. Sakhnenko. Sov. Phys. JETP 36, 1009, (1973). 

[70] Yu. M. Gufan and V. P. Sakhnenko. Sov. Phys. Solid. State 16, 1034, (1974). 

[71] Yu. M. Gufan. Structural Phase Transitions. Nauka, Moscow, (1982). 

[72] E. I. Kutin, V. L. Lorman and S. V. Pavlov. Sov. Phys.Usp 34, 497, (1991). 

[73] Pierre Toledano and Vladimir Dmitriev. Reconstructive Phase Transitions. 

World Scientific, (1996). 










