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Abstract 

The rare earth manganites RMn03 for R=Ho, Er, Yb crystallize in hexagonal per

ovskites type structures with symmetry P63cm[#185,(C~v)J. In this work, the struc

tural and magnetic phase transitions are investigated by considering the Landau the

ory of phase transitions, in which the transition order parameter transforms according 

to the irreducible representations of the high symmetry space group. The structural 

phase transitions occurring at the r point for one component order parameters A1, 

A2, B1 and B2 lead to symmetries P63cm (Civ), P63 (C~), P3cl (C~v) and P31m (C§v) 

respectively. For the two component order parameter E1, the low symmetry phases 

as a result of structural phase transitions are Pm ( C!) and Pc ( c;) corresponding to 

the equilibrium values (7J,O), (0,7]). For E2, the two low symmetry phases correspond 

to the same symmetry group Cmc21 ( c§;) with opposite values of equilibrium order 

parameter i.e., (7J,O), (-7],0). 

The structural changes are also found at the M-point of the hexagonal Brillouin 

zone. The three-dimensional space group representations at theM-point are M1, M2, 

M3 and M4 . The low symmetry phases appearing at M1 are P63cm (C~v), Cmc21 

(CJ;) and Pmc21 (Civ). For M2, the low symmetry phases are P63 (C~), Cmc21 

(CJ;) and Pmn21 (Civ)· For M3, the low symmetry phases are P3cl (C~v), Cc (C;) 

and Pc (C;). For M4 , the low symmetry phases are P31m (C§v), Cm (C;) and Pm 

(C!). 

v 



The magnetic symmetry of RMn03 as a result of magnetic ordering in R3+ ions 

is supposed to be Pc for HoMn03 and Pg for ErMn03 , YbMn03 . The irreducible 

representation E1 at the r point or M3 representation at theM-point of the hexagonal 

Brillouin zone are proposed to be related to this symmetry for HoMn03 . 

vi 
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Chapter 1 

Hexagonal Perovskites 

Perovskite is the most abundant mineral on earth. It was first described in the 1830's 

by the geologist Gustav Rose, who named it after the famous Russian mineralogist 

Count Lev Aleksevich von Perovski. The principle perovskite structure, found in 

ferroelectric materials, is simple cubic, but perovskites also exist in hexagonal struc

tures. 

Most perovskites are dielectrics, but some of them are considered to be good con

ductors and semiconductors. The most common applications of the perovskites are 

as dielectric resonators (BaZr03), piezoelectric transducers (Pb(Zr,Yi)03), thick film 

resistors (BaRu03), electrostrictive actuators (Pb(Mg,Nb)03), laser hosts (YA103 ), 

ferromagnets ((Ca,La)Mn03), refractory electrodes (LaCo03), optical second har

monic generators (KNb03), multilayer capacitors (BaTi03 ) and Ba(Pb,Bi)03 super

conductors layered cuprate. 

The aim of the present work is to study the structural and magnetic phase tran

sitions occurring in hexagonal perovskites RMn03 at the r point and the M-point 

of the hexagonal Brillouin zone. A group theoretical analysis is presented for these 

transitions on the basis of Landau theory of phase transitions, in which the transition 

1 
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order parameter transforms according to an irreducible representation of the high 

symmetry space group. The Landau free energy has been expanded as a function of 

the order parameter components and the possible low symmetry phases are worked 

out. 

1.1 Rare Earth and Yttrium Manganites 

1.1.1 Overview of Materials 

The rare earth and yttrium manganites RMn03 of the perovskites type structure have 

been known since the 1950's [1]. The compounds with larger ionic radius (R=La, Ce, 

Pr, Nd, Sm, Eu, Gd, Tb, Dy) crystallize in a perovskite structure with orthorhom

bic symmetry and belong to the space group Pnma[#62,(D~~)] [2]. The perovskite 

structure for material with smaller ionic radius (R = Ho, Er, Tm, Yb, Lu, Y and Sc) 

becomes metastable, and a new stabilized hexagonal phase with space group P63cm 

[#185,(C~v)J appears [1]. The crystal structure of hexagonal RMn03 is shown in 

Figure 1.1. 

The hexagonal rare earth and yttrium manganites have three lattice parameters a 

and c, plus an internal c that represents the distance between oxygen and rare earth 

(yttrium) layers in units of c. The unit cell parameters of several hexagonal rare earth 

orthomanganites are shown in Table 1.1 [1]. 

The x-ray diffraction data on RMn03 compounds [1] indicate that there are six 

atoms per formula unit. The Wyckoff notations and atomic positions of these com

pounds are given in Table 1.2. 

The rare earth and yttrium manganites can be converted into an orthorhombic 

configuration under high temperature and pressure [3, 4]. Pressure values exceed-
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Compound a(A) c(A) cja 

YMn03 6.125 11.41 1.862 

HoMn03 6.136 11.42 1.861 

ErMn03 6.115 11.41 1.866 

TmMn03 6.062 11.40 1.881 

YbMn03 6.062 11.40 1.881 

LuMn03 6.042 11.37 1.882 

Table 1.1: Unit cell parameters of rare earth orthomanganites. All a and c values 

are ±O.OOlA and c/ a values are ±0.002. 

Atoms Wyckoff Notations X y z 

R(1) 4b 1 2 l+s 3 3 4 

R(2) 2a 0 0 Ls' 
4 

Mn 6c ""' 1 
""'3 0 0 

0(1) 6c ,....,1 0 ""' 1 
""'3 ""'6 

0(2) 6c ,....,2 
""'3 0 ,....,1 

""'3 

0(3) 4b 1 2 ~o 3 3 

0(4) 2a 0 0 ""' 1 
""'2 

Table 1.2: Wyckoff notations and atomic positions for RMn03 compounds. The s 

and s' are approximately 0.02-0.03. 
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e R(l) e R(2) 

• 0(1) • 0(2) 

• 0(3) 0(4) 

e Mn 

Figure 1.1: Crystal structure of hexagonal RMn03 . 

4 

ing 35 kbar are necessary to transform hexagonal YMn03 and HoMn03 into an or

thorhombic phase while the hexagonal YbMn03 transforms at a pressure of 40 kbar 

at 1000°0. X-ray diffraction studies indicate that both hexagonal and orthorhombic 
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forms do not undergo any other phase transitions. However, occasional traces of un-

reacted rare earth oxides have been found. The transformation from hexagonal to 

orthorhombic is reconstructive. 

1.1.2 r Point Phonon Modes of RMn03 

The group theoretical analysis for the r point phonon modes of hexagonal (P63cm) 

RMn03 is summarized in Table 1.3 [5]. From Table 1.3, one can see that out of 

a total of 60 r point modes (10A1+5A2+10B1+5B2+15El+ l6E2), 38 are Raman 

active. Also the modes of A1 and E1 symmetries are infrared active while the modes 

of A2, B1 and B2 symmetries are silent. 

Atom Site Symmetry Irreducible Representation 

R(l) C3v A1+A1+E1+E2 

R(2) c3 A1 +A2+B1 +B2+2E1 +2E2 

Mn cv 
s 2Al +A2+2B1 +B2+3E1 +3E2 

0(1) cv 
s 2Al +A2+2B1 +B2+3E1 +3E2 

0(2) cv 
s 2Al +A2+2B1 +B2+3E1 +3E2 

0(3) C3v A1 +B1 +E1 +E2 

0(4) c3 A1 +A2+B1 +B2+2E1 +2E2 

Table 1.3: Atomic site symmetries and the irreducible representations in RMn03. 

Modes Classification: 

r acoustic = A1 + E1 
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1.1.3 Ferroelectricity and Antiferromagnetism in RMn03 

Recently, hexagonal manganites have attracted much attention because of the co

existence of ferroelectric and magnetic ordering. Ferroelectric ordering occurs at a 

very high temperature (TFE ~ 900 K) while magnetic ordering occurs at a low tem

perature (Tm ~ 100 K). Therefore, the hexagonal yttrium and rare earth compounds 

form an interesting class of materials known as ferroelectromagnets [6]. In the past 

few years, experimental evidence of coupling between ferroelectric and magnetic or

dering has been found. For instance, anomalies in the dielectric constant have been 

observed in YMn03 near its Neel temperature (Tm ~ 80 K) and below its ferroelec

tric Curie temperature (TFE ~ 914 K). These anomalies indicate coupling between 

ferroelectric and antiferromagnetic ordering in YMn03 , in spite of the large difference 

in two ordering temperatures [7-9]. Also a new re-entrant phase has been found in 

HoMn03 in the presence of a magnetic field less than 4.1 T below its zero-field Mn-spin 

orientation transition temperature of 32.8 K, showing a coupling between ferroelec

tric and magnetic orders [10-12]. HoMn03 shows ferroelectricity at TFE ~ 830 K 

and antiferromagnetism developed at T m ~ 76 K. The coupling between ferroelectric 

and magnetic order parameters allows for the manipulation of electrical properties 

through magnetic fields. This would then lead to the application of these compounds 

in the field of electronics. 

This is not the case in the orthorhombic RMn03 compounds where only the mag

netic ordering occurs but not the ferroelectric one [13]. The orthorhombic compounds 

display ferromagnetism, semiconductor-to-metal transitions, charge order and colossal 

magnetoresistance properties where as hexagonal compounds are poor conductors. 
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1.1.4 Magnetic Phase Transitions in RMn03 

The magnetic ordering in hexagonal manganites RMn03 is due to Mn3+ sublattices 

and in some compounds R3+ sublattices, all of which are geometrically frustrated [14-

17]. The magnetic phase diagram of RMn03 is analyzed by Faraday rotation (FR) 

and optical second harmonic generation (SHG). The Mn3+ ions at 6c positions, with 

local symmetry m, form a triangular lattice on the z = 0 and z = c/2 planes in the 

hexagonal unit cell. It has been investigated that in all compounds Mn3+ spins exhibit 

eight different types of triangular antiferromagnetic ordering in the basal plane. The 

magnetic structures of the Mn3+ sublattices in RMn03 are shown in Figure 1.2. 

The magnetic structures corresponding to four different types of magnetic ordering 

in Mn3+ sublattices are denoted by A1, A2, B1, B2 for the spin angle oo or goo, 

where spin angle is the angle between the Mn3+ magnetic moment and the x-axis. 

The symbols A1, A2, B1, B2 refers to the one-dimensional irreducible representations 

of the space group P63cm. When the spin angle is between 0° and goo there are 

intermediate magnetic structures denoted as A, B, A~ and A;. 

The R3+ ions located at 2a and 4b positions, show ordering with a partially filled 

4f shell. For instance, the Ho3+ sublattices shows antiferromagnetic or ferromagnetic 

ordering as given in Table 1.4. 

According to published data [1g] on the magnetic properties of RMn03 for R=Ho, 

Er, Yb, there exist two different phases with long range magnetic order at zero mag

netic field in each manganite. These phases are denoted as Phase I for ErMn03 [20] 

and YbMn03 [14] or Phase I' for HoMn03 [11, 21, 22] between TNl =56 K-12g K and 

TN2=4 K and Phase II for ErMn03 and YbMn03 or Phase II' for HoMn03 below 

TN2· The magnetic symmetry of Phase I is associated with the B2 representation 

and corresponds to the magnetic space group P.Q3_gm at TNl >=:::J 7g K. The magnetic 
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.fvfn3+ 

; at z= 0 
1vl'n3+ ? atz= c/2 

P3c (A't) 

8 

Figure 1.2: Magnetic ordering of Mn3+ sublattices. The drawings in each of the four 

corners correspond to the four one-dimensional irreducible representation A1 , A2 , B1 , 

B2 of the space group P63cm, while the drawings in between them are intermediate 

structures A, B, A~ and A; respectively. The magnetic space group corresponding to 

these symmetries are also shown (from Ref. [14]). 

symmetry of Phase I' is also associated with the B2 representation with magnetic 

space group P.Q3_gm at TNl ~ 76 K. At TNl ~ 6 K, the magnetic structure of Phase I' 

is associated with the B1 representation and has symmetry P.Q3cm. It has also been 

observed in HoMn03 that a sharp Mn-spin-reorientation transition occurs in the low 

temperature range T sR ~ 33 K that changes the magnetic symmetry from P.Q3_gm to 

P.Q3cm (Phase I to Phase I') [11]. 
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Magnetic Symmetry Ho(total) Ho(2a) Ho(2a) Ho(4b) Ho(4b) 

along z xy-plane along z xy-plane 

P.Q3~m AFM 0 0 FM AFM 

P.Q3cm AFM AFM FM AFM FM 

P63cm AFM 0 0 AFM AFM 

P63cm FM FM FM FM FM 

Table 1.4: Magnetic symmetry of Ho3+ sublattices (from Ref. [18]). 

At low temperatures, the magnetic structure of YbMn03 changes from P.Q3~m to 

P63cm at 6 K, which corresponds to the A2 representation. Also a transition takes 

place from P.Q3 to P63 in ErMn03 and HoMn03 below 5 K. 

In YMn03, the Mn3+ sublattices orders antiferromagnetically below TNl :=:::i79 K. 

The corresponding magnetic structure transforms like B1 and has symmetry P.Q3cm, 

which exactly resembles to that of HoMn03 in the low temperature range [23-27]. 

There are indications [19] of a second order phase transition in ErMn03, YbMn03 

and HoMn03 at TN2, below which the magnetic long range order of rare earth R3+ 

ions develops. The magnetic symmetry of Phase II is P~, which is a subgroup of the 

symmetry group of the high temperature phase. There is not any definite conclusion 

about the symmetry of Phase II'; however symmetry consideration and the results on 

spontaneous polarization indicate that the symmetry is Pc. The hexagonal YMn03 

does not display long range ordering of R3+ ions because of the absence of a partially 

filled 4f shell. Therefore yttrium ions are non magnetic in this compounds. 
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1.2 Hexagonal Perovskites of ABX3 Family 

1.2.1 Overview of Materials 

A great number of compounds with chemical formula ABX3 crystallize in a hexagonal 

structure. Most of these compounds possess the high symmetry space group P63/mmc 

[#194,(D~h)] [28]. The crystal structure of hexagonal BaTi03 (ABX3 family) is shown 

in Figure 1.3. The transition temperatures and space groups of most of the ABX3 

compounds are listed in Table 1.5. 

The atomic parameters of BaTi03, measured by using the powder diffraction tech

nique, and the group theoretical analysis for the r point phonon modes of hexagonal 

ABX3 are summarized in Table 1.6 and Table 1. 7 respectively. 

1.2.2 Structural and Magnetic Phase transitions in ABX3 

The hexagonal perovskites of the ABX3 family undergo structural phase transitions by 

the condensation of one or several vibration modes. Various types of distortions have 

been found in different compounds. The Landau theory of phase transitions has been 

widely used in order to understand the mechanism of these transitions in crystals. 

The change in the symmetry of a crystal in the case of Landau type transitions can 

be described in terms of a symmetry-breaking order parameter, which transforms 

according to a physically irreducible representation (IR) of the high symmetry group. 

Perez-Mato et al. [32] have determined all the possible low symmetry phases derived 

from P63jmmc. The possible structural phase transitions of the Landau type in ABX3 

compounds occuring at the r point of a hexagonal Brillouin zone are listed in Table 

1.7. 

These materials also display magnetic phase transitions. The magnetic structure 
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Compound Prototype Space Group Low Symmetry Space Group 

KNiC13 P63/mmc(762K) P63/cm(561K) and Pca21 or Pbcm(274K) 

RbMnCl3 P63jmmc P21m(272K) 

RbFeBr3 P63/mmc(713K) P63cm(l08K) 

RbVBr3 P63/mmc(1263K) P63cm or P3'c1(90K) 

RbCrBr3 P63jmmc C2(184K) and C2/m(Unknown) 

RbMnBr3 P63/mmc(725K) P63cm(470K) 

RbMgBr3 P63/mmc(738K) P3' cl ( 449K) 

RbNiC13 P63jmmc -

RbMgH3 P63/mmc -

RbCoBr3 P63/mmc -

CsCoBr3 P63/mmc -

CsNiCl3 P63jmmc -

CsCoCl3 P63/mmc -

CsMnBr3 P63/mmc -

CsMni3 P63jmmc -

SrMn03 P63/mmc -

BaMn03 P63jmmc -

BaTi03 P63/mmc(300K) C2221(222K) and Cmc21 or P21 (74K) 

BaVS3 P63jmmc -

BaRu03 P63jmmc -

TlFeCl3 P63jmmc -

Table 1.5: The transition temperatures and space groups for ABX3. 
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Atoms Wyckoff Notations X y z 

Ba(1) 4f 1 1 0.09615(7) 3 6 

Ba(2) 2b 0 0 1 
4 

Ti(1) 4f 1 1 0.84794(11) 3 6 

Ti(2) 2a 0 0 0 

0(1) 12k 0.83400(7) 0.66800(14) 0.08094(3) 

0(2) 6h 0.51749(8) 0.03504(17) 1 
4 

Table 1.6: Wyckoff Notations and atomic positions for BaTi03 [29]. 

Atoms Site Symmetry Irreducible Representations 

A(1) c~v A1g+A2u+B1g+B2u +E1g+E1u+E2g+E2u 

A(2) D1h A2u+B1g+E1u+E2g 

B(1) c~v A1g+A2u+B1g+B2u +E1g+E1u+E2g+E2u 

B(2) D3d A2u+B2u+E1u+E2u 

X(1) cd 
s 2A1g+A1u+A2g+2A2u+2B1g+B1u+B2g+2B2u 

+3E19 +3E1u +3E29 +3E2u 

X(2) c~v A1g+A2g+A2u+B1g+B1u+B2u+E1g+2E1u+2E2g+E2u 

Table 1.7: Atomic site symmetries and the irreducible representations in ABX3 [5]. 
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Point on Irreducible Order Parameter Space Group 

h-BZ Representations Space 

r A29 
- P63jm (C~h) 

B19 
- P31c (D~d) 

B29 
- P3m1 (D~d) 

A1u - P6322 (D~) 

A2u - P63mc (C~v) 

B1u - P6m2 (D§h) 

B2u - P62c (Djh) 

E19 (0 17) C2/m (C~h) 

(17 0) B2/b (C~h) 

(171 172) PI(Ct) 

E29 (17 0) Cmcm (D~D 

( 171 172) P21/m (C~h) 

E1u (17 0) Amm2 (C~~) 

(0 17) Ama2 (C§~) 

(171 172) Pm (Cih) 

E2u (0 17) Cmc21 (c~;) 

(17 0) C2221 (D~) 

(171 172) P21 (C~) 

Table 1.8: Structural phase transitions for IR at r point in a crystal with P63/mmc 

symmetry [32]. 
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• Ba(l) • Ba(2) 

• Ti(l) • Ti(2) 

• 0(1) • 0(2) 

Figure 1.3: Crystal structure of hexagonal BaTi03 . 

of the ABX3 family of hexagonal perovskites is normally triangular or close to trian

gular. On the basis of structural and magnetic properties, some of the ABX3 family 

compounds can be grouped into three classes. Class I includes KNiClg, RbMnBr3 
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and TlFeC!s that undergo structural phase transitions at temperatures higher than 

their magnetic ordering points. The intermediate phases show ferroelectricity that 

disappears in the lowest temperature range. The Class II compound RbFeBr3, shows 

both ferroelectricity and antiferromagnetism at the lowest temperature phase. In 

Class III, the compounds RbCoBr3 and Rb VBr3 display dielectric anomalies around 

a magnetic ordering temperature region [38]. 

1.2.3 Structural Phase Transitions in KNiC13 

KNiCh crystallizes into a high symmetry space group P63/mmc (D~h) [30]. Recent 

dielectric studies of KNiCl3 indicate structural phase transitions at 274 K, 285 K, 

561 K and 762 K. The structural phase transition at room temperature (561 K) 

corresponds to the space group P63cm (C~v) [31]. A K4 mode at the point K=(-~ ~ 

0) of the hexagonal Brillouin zone is proposed to be responsible for this symmetry 

[32-35]. The structural phase transition from P63/mmc to P63cm is of second order 

and is determined by Landau theory. Also there are two successive structural phase 

transitions at 285 K and 27 4 K. The structural phase transition at 285 K does not 

differ much from the structural phase transition at room temperature. The phase 

transition at 274 K changes the symmetry from hexagonal to orthorhombic. The 

phase transition from hexagonal to orthorhombic is a first order phase transition. The 

possible space group for the orthorhombic phase is thought to be Pca21 or Pbcm. A 

schematic diagram of the structural phase transitions occurring in KNiCh at different 

temperature ranges is shown in Figure 1.4. The same type of distortions have also 

been found in RbMnBr3. 
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III II I 

Pbcm or Pca2 1 P6
3

/cm P6
3

/mmc 

I I I 
I I I 

274K 561 K 762K 

T [K] 

Figure 1.4: Schematic diagram of the structural phase transitions in KNiCl3 . 

1.2.4 Landau Theory of Structural Phase Transitions in BaTi03 

Hexagonal barium titanate (h-BaTi03 , space group P63/mmc at room temperature) 

undergoes two structural phase transitions at To= 222 K and Tc=74 K [39-41]. The 

origin of the transition at To occurs as a result of the destabilization of a non-polar 

soft optic phonon E2u of the high temperature phase (Phase I) with space group 

(P63 /mmc)[42-45]. Phase II following the transition is orthorhombic and belongs to 

the space group C2221 (D~). With further decrease in temperature, a ferroelectric 

phase transition occurs at T c, and both ferroelectric and ferro elastic properties are 

exhibited below T c (Phase III). There are two possibilities for the space group of 

Phase III, Cmc21 or P21 [46, 47]. A schematic diagram of structural phase transitions 

in BaTi03 at different temperature ranges is shown in Figure 1.5. The phase tran

sitions in hexagonal BaTi03 are discussed by considering Landau-type free energy 

functionals with emphasis on the transition between Phase II and Phase III. For this, 

the expression for the free energy [48] can be written in terms of order parameter (rJ1 , 

rJ2), which transforms as the bases of the E2u representation. i.e., ((x2 - y2)z/2, xyz) 
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as: 

III II I 

Cmc2 1 or P21 C2221 P63/mmc 

I I I 
I I I 

74K 222K 300K 

T [K] 

Figure 1.5: Schematic diagram of structural phase transitions in BaTi03 . 

F - ~(77r + 77~) + q(77r + 77~) 2 + 7f(77r + 77~) 3 + It77r(77r- 377~) 2 + %(77r + 77~) 4 

+ c~77f(77r- 377?) 2(77f + 77?) + C~l (ur + U~) + C12U1U2 + C~6 U~ 

+ 61(u1 + u2)(77r + 772) + 6[(u1- u2)(77r -772)- 2u6771772] + ;'! 
+ (Ps771(77r- 377~) + 17Ps[(u1- u2)771 + u5772] + .... , 

(1.1) 

where Pi and ui are the components of polarization and strain respectively. The 

coefficient a is temperature dependent, i.e., a=a(T-T0). 

According to phenomenological theory, eighth order terms are required for the 

transition from C2221 to Cmc21, while the transition from C2221 to P21 needs twelfth 

order terms in the Landau free energy. Also the transition from Phase II to P21 is of 

second order while the transition from Phase II to Cmc21 cannot be of second order. 

Moreover, it has been investigated that a polar soft optic phonon with A2u symme

try, independent of non-polar soft optic phonon with E2u symmetry, induces a phase 

transition at T 0 . This lowest frequency polar soft phonon A2u splits into two peaks 

below T 0 , which is unusual because it belongs to the one-dimensional representation. 

However, it is possible that the polar soft mode A2u couples with another non-polar 

optic mode E29 if this non-polar optic mode has a frequency very close to that of A2u 
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mode above T 0 [43]. This is because both A2u and E29-modes belong to the same B1 

representation of the orthorhombic C2221 below To [49]. 



Chapter 2 

Group Theory and Landau Theory 

2.1 Group Theory 

Group theory is one of the most powerful mathematical tools used in science, espe

cially in physics and crystallography. It is the study of the algebra of transformations 

and symmetry and consists of elements and some binary operations such that: (i) 

closure: if a and b are in a group then a.b is also in a group, (ii) associativity: if a, b, 

and care in a group then (a.b).c = a.(b.c), (iii) identity: an element e of the group 

such that for any element a of the group a.e = e.a =a, (iv) inverse: for any elements 

a of the group there is an a-1 such that a.a-1 = a-1.a=e. Thus any system satisfying 

these four rules can be studied under group theory. The crystallographic groups such 

as point groups, space groups etc of a crystal can be identified by using group theory. 

Below is some description of these groups. 

2.1.1 Point Groups 

A point group is a group of symmetry operations which act at a point, including 

rotations, reflections and inversion [50]. The word "point" emphasizes the fact that 

19 
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all the symmetry operations must act at one common point. This point is called the 

origin. The word "group" refers to the set of symmetry operations that form a group 

in a mathematical sense. There are 32 point groups. The list of these point groups 

is given in the Table 2.1. 

A. Classification of Point Groups 

The point groups can be classified into cyclic, dihedral, symmetric, tetrahedral and 

octahedral groups denoted by C, D, S, T and 0 respectively. Each of these classes is 

subdivided into different point groups. Here is a brief description about these point 

groups [51]. The notations used below are Schoenflies notation. 

(i) The point groups in the class C are Cs, Ci, Cn, Cnv and Cnh, where n is an 

integer. 

Cs: The point group Cs has a plane of symmetry and nothing more. 

Ci: It contains only two symmetry operations, identity (E) and inversion (i) 

through a center of symmetry. 

Cn:These groups contain only one axis of rotation. These are cyclic Abelian 

groups of order n. 

Cnv:It contains a av reflection in addition to the Cn axis. 

Cnh:It contains a ah reflection in addition to the Cn axis. 

(ii) The dihedral point group is defined by having a C2 axis perpendicular to the 

principal Cn axis or there are nC2 's perpendicular to the Cn. The point groups in the 

class D are Dn, Dnd and Dnh, where n is an integer. 

Dn: These groups have an n-fold rotation axis plus a two fold axis perpendicular 

to that axis. 

Dnh: These groups contain the elements of Dn as well as horizontal reflection 

planes ah. 
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System Label Point Group Number of Symmetry Elements 

Triclinic 1 c1 1 

I CJS')) 2 

Monoclinic 2 c2 2 

m Cs (C14) 2 

2/m c'), 4 

Orthorhombic 222 D2 4 

mm2 C2v 4 

mmm Dn 8 

Tetragonal 4 c4 4 

4 s4 4 

4/m c4h 8 

422 D4 8 

4mm C4v 8 

42m D2d 8 

4/mmm Daa 16 

Trigonal 3 c3 3 

3 S6(C3i) 6 

32 D3 6 

3m C3v 6 

3m D~n 12 

Hexagonal 6 c6 6 

6 c3h 6 

6/m c6h 12 

622 D6 12 

6mm C6v 12 

62m D3h 12 

6/mmm D()Ll 24 

Cubic 23 T 12 

m3 Th 24 

432 0 24 

43m Td 24 

m3m oh 48 

Table 2.1: List of 32 point groups [51]. 
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Dnd: These groups are defined by the elements of Dn plus diagonal reflection 

planes CJd bisecting the angle between the two fold axes perpendicular to the principal 

rotation axis. 

(iii) The point groups in the class S are Sn, where n is an even integer. They 

contain a Sn axis plus a Crr axis coinciding with it. 
2 

(iv) The tetrahedral group consists ofT, Td and Th. 

T: It is the smallest group of higher symmetry and contains four C3 axes and 

three c2 axes in addition to identity element. 

T d: It consists of 24 symmetry elements and has three planes of symmetry that 

contain the C3 axes. The point groupT is a subgroup ofT d· 

Th: It also consists of 24 symmetry elements and has six planes of symmetry that 

contain the C3 axes. It is a direct product ofT with the inversion symmetry. 

(v) The point group in the octahedral class 0 and Oh. 

0: This is a group of proper rotations that transform a cube into itself. It has 24 

symmetry elements. 

Oh: It is the group of second highest symmetry including improper rotations and 

reflections and has 48 symmetry elements. 

B. Symmetry Operations of Point Groups 

The notations of the symmetry operations which appear in point groups include 

identity E, clockwise rotation Cn through an angle of 2rr /n radians, where n=1,2,3,4,6, 

an improper clockwise rotation Sn through an angle of 2rr /n radians (it is a symmetry 

operation corresponding to a rotation followed by an inversion operation), inversion 

operator~ (82), mirror plane CJ, horizontal reflection plane CJh that passes through the 

origin and perpendicular to the axis with the highest symmetry, vertical reflection 

plane CJv which passes through the origin and the axis with the highest symmetry 
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and diagonal reflection plane ad through the origin and the axis with the highest 

symmetry but also bisecting the angle between the two fold axes perpendicular to the 

symmetry axis. 

C. Representations and Character Tables of Point Groups 

A representation of a group is a set of matrices having the same multiplication table as 

the group and can be written as R(A), where R is the matrix to represent symmetry 

operation A. The number of rows and columns in the matrix determine the dimen

sionality of the representation. If there are two representations of a group R1 (A) and 

R2(A), one can construct a new representation by combining their matrices i.e., 

(2.1) 

Here the dimension of the matrix R3 (A) is equal to the sum of the dimensions of 

R1(A) and R2(A). In (2.1), the matrices R1(A) and R2(A) appear in the upper left-

hand and lower right-hand corners respectively, while the rest of the elements are 

zero. Any representation, whose elements appear in this form, is called the reducible 

representation. But if there does not exist any unitary transformation that can bring 

every matrix in a representation into this block diagonal form, then the representa-

tion is said to be irreducible representation. The irreducible representations are of 

fundamental importance in group theory. 

Character table is associated with each point group and contains all information in 

a compact form that is necessary in dealing with point groups. The word "character" 

refers to the trace of a matrix. The various irreducible representations (IR) are 

collected in character tables. The notation used for IR's were developed by R. S. 

Mulliken [52]. In this notation, A and B denote one-dimensional representation, E 
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denotes two dimensional representations, T denotes three-dimensional representation. 

Furthermore, subscripts 1,2 ... , prime and double primes are used for distinction. The 

symmetries with inversion are assigned by subscripts g and u after the German words 

"gerade" (even) and "ungerade" (odd). The last two columns in a character table 

shows the first order and second order combinations of Cartesian coordinates. 

2.1.2 Space Groups 

The space group of the crystal is a combination of all available point group symmetry 

operations with the Bravais lattice translations, or one can say that the collection of 

all symmetry operations that take a crystal into itself is called the space group of the 

crystal. There are 230 space groups made from the combination of 32 point groups 

with the 14 Bravias lattices which belong to one of 7 crystal systems [53]. The nota

tions, symmetry elements or general position etc of all the 230 space groups are given 

in International Tables of X-Ray Crystallography [54]. The space group symmetry 

operations may contain translations followed by rotation or reflection. These types 

of symmetry operations are known as screw rotations or glide reflections. There

fore, space groups are divided into groups known as symmorphic space group and 

non-symmorphic space groups [55]. The symmorphic space groups are the one which 

are generated without using glide planes or screw axes. There are 73 symmorphic 

space groups. The non-symmorphic space groups involve glide planes and/ or screw 

rotations. 

In order to work out theIR's of a space group [56-58], it is necessary to consider the 

lattice in k space and the corresponding Brillouin zone. After constructing Brillouin 

zone in k space, one needs to choose a k vector in or on the surface of the Brillouin 

zone. By applying all the symmetry operations of the point group on the k vector, one 
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can determine the "little group" and k*. The little group consists of the symmetry 

operations that leave k vector invariant, while k* is the set of k vectors found by 

applying all symmetry operations to k. The dimension of the IR of the space group 

is a product of dimension of IR of the little group and number of vectors in the k*. 

Thus by specifying the IR's of the little group, one can determine the IR's of the 

entire space group. The space group IR's at the r point of the Brillouin zone are the 

same as the point group IR's. 

2.1.3 Magnetic Point Groups and Space Groups 

The magnetic point groups were first studied by Shubnikov [59] and are generated by 

defining an extra coordinate in addition to the ordinary position coordinate (x, y, z) 

in a crystal. This extra coordinate takes only two possible values, referred to as color 

(black or white), sign ( + or -), or magnetic moment (parallel or antiparallel) and is 

known as operation of anti-symmetry, denoted by ~. In this type of crystallography 

a general point is represented in four dimensions, namely, (x, y, z, s), where s refers 

to the extra coordinate and takes a value of +1 or -1. By considering the operation 

of anti-symmetry ~' one can generate 58 magnetic point groups and 1191 magnetic 

space groups. Also the inclusion of~ with "all white" groups and the "grey" groups 

leads to 122 point groups and 1651 space groups [53]. 

The magnetic point groups can be categorized into three types. Type I includes 

ordinary 32 point groups. These point groups do not have anti-symmetry operation 

~. Type II includes 32 "grey" point groups, which appear if every equivalent site 

has both a white colored object and black colored object so that the overall color 

becomes grey. Thus in this case the operation of anti-symmetry ~ is an operation 

of the group and has the effect of doubling the size of the original point group. A 
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general coordinate is (x, y, z, ±s). Type III includes 58 black and white or magnetic 

point groups. In this case the operation of anti-symmetry ~ is not an element of the 

group independently, but half of the elements of the group are multiplied by~ while 

the other half form a subgroup on their own known the halving group. 

The magnetic space groups can be divided into four types. Type I are the ordinary 

230 space groups. Type II include 230 grey space groups, which are Type I space 

groups with time reversal. Type III includes 674 black and white space groups based 

on ordinary Bravais lattice and Type IV includes 517 black and white space groups 

based on black and white Bravais lattice. In addition to the 14 ordinary Bravais 

lattice, there are 22 black and white Bravais lattices [53]. 

2.2 Landau Theory of Phase Transitions 

The Landau theory of continuous phase transitions was proposed by the Russian 

physicist L. D. Landau in 1937 [60-62]. It is a macroscopic theory that can be used 

to study several important features of structural phase transitions. For instance, the 

dimension and symmetry properties of the transition's order parameter, the form of 

free energy expansion and the change in crystal's space groups and point groups. It is 

based on a power series expansion of the excess free energy that the low temperature 

phase possesses relative to the high temperature phase and has the following form for 

a one-dimensional order parameter: 

(2.2) 

where 1] is an order parameter describing the changes in a symmetry of a crystal 

and the coefficients a, f3, 1 depends on the mechanical or electrical properties of the 

material and are functions of pressure and temperature. 
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By considering Landau expansion to fourth order and minimizing F for equilib

rium, one gets: 

~~ = A+ a"l + /3"72 + 1"73 = 0, (2.3) 

~~; = a+ 2/3"7 + 3!"72 2: 0. (2.4) 

The three solutions of "7 are: m=O and "711 = [-(3 ± ((32
- 4ai) 112JI21. It has been 

assumed that the states for 'f7=0 and "7=1=0 are of different symmetry so the first term 

A in (2.1) becomes zero. The high temperature phase (above transition) for T>Tc, 

'f7=0 correspond to the minimum ofF only if a >0. In the low temperature phase 

(below the transition) for T<Tc, the non zero value of "7 correspond to the minimum 

ofF for a <0. These situations are shown in a Fig 2.1. 

F 

CX>O 

Figure 2.1: The plot ofF versus "7 for a <0 and a >0. 

Also "7 >0 in the low temperature phase requires (3 and 1 both positive by keeping 

a negative, which is possible only if a = a(T- Tc), where a is a positive constant and 

the other coefficients are independent of temperature. So (2.1) becomes: 

(2.5) 
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However, at the transition temperature Tc, the minimization condition: 

(2.6) 

requires f3rP+'Yrl=O and has two solutions at the transition temperature 1]!=0 and 

rm=-(3 /"f. 
In order for r; to be continuous through the transition, (3 must be zero. If however, 

(3 is not zero then the continuous phase transition can occur only at isolated points 

[63]. Thus by taking (3=0 for continuous transition, the Landau free energy to fourth 

order becomes: 

(2.7) 

By minimizing F, one gets r;=O and r;=±Ja(T~Tc) showing that the order parameter 

possess a square root dependence as a function of temperature. The plot of F versus 

r; is shown in Fig 2.2, one can see two minima corresponding to the same value of the 

free energy but opposite value of r;. 

F 

Figure 2.2: The plot ofF versus r; for three characteristic temperatures. 

The Landau theory of continuous transitions has been used widely to describe the 

phenomena of ferroelastic and nonferroelastic phase transitions in crystals. The non-
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ferroic phase transitions are defined as the structural phase transitions that appear 

by breaking the translational symmetry within the same crystal and do not involve 

the reduction of any point symmetry. A group theoretical analysis based on Lan

dau theory for the free energy expansion and changes in a space group of a crystal 

in case of non-ferroic transitions has been developed [67J.The ferroelectric and fer

roelastic transitions involve the modification of the crystal's point group caused by 

the symmetry breaking of macroscopic quantities i.e., polarization, strain. A group 

theoretical analysis of these phase transitions based on Landau theory for the free 

energy expansion and changes in a point group and space group of a crystal has been 

done [64-66]. Gufan and his co-workers [68-72] discussed the free energy and phase 

diagram corresponding to the group generated by reflections Cnv' the cyclic group 

Cn and the cubic groups. Toledano et al. [73] summarized the free energy and phase 

diagram for C1, C4v, C4, C3v, C3, Oh, Th, 0, Td and T. 



Chapter 3 

Results and Discussion 

Hexagonal rare earth manganites RMn03 (R= Ho, Er, Yb), space group P6scm (C~v) 

undergo different types of structural and magnetic phase transitions. The Landau 

theory of phase transitions is applied to study the phenomenon of phase transitions 

in these materials. In Landau theory, the changes in a symmetry of a crystal can 

be described by an order parameter, the components of which transform according 

to a physically irreducible representation (IR) of the high symmetry space group. 

A physically IR is either a real IR or the direct sum of two complex conjugate IR 

of high symmetry space group. An order parameter is a physical quantity such as 

polarization, magnetization, strain, atomic displacements etc. 

A systematic method is adopted here to determine structural phase transitions in 

these materials. The method involves (i) selection of irreducible representation of the 

space group, (ii) derivation of the expression for the Landau free energy, (iii) deter

mination of low symmetry phases, and (iv) identification of point groups and space 

groups for low symmetry phases. In order to work out all possible phase transitions 

occurring in RMn03 compounds, it is necessary to consider different IR's of the space 

group P63cm. The IR's at the r point of the hexagonal Brillouin zone are considered. 

30 
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The r point lies at the origin of Brillouin zone and coordinates of the wave vector 

k are (kx, ky, kz) = (0, 0, 0). The IR's of the space group P63cm at the r point are 

same as those of the point group C6v and are denoted by A1 , A2, B1 , B2, E1 , E2. The 

IR's A1, A2, B1 , B2 are one dimensional while E1 , E2 are two dimensional IR's. The 

character tables of these IR's are given in Appendix A. 

3.1 Landau Free Energy for One-dimensional Or-

der Parameters 

3.1.1 Landau Free Energy for A1 

The Landau free energy is a polynomial expansion in the order parameter rJ. The 

Landau free energy for one dimensional IR A1 to fourth order is [73]: 

(3.1) 

It is invariant under all symmetry operations of the high symmetry space group P63cm 

on the order parameter 17· 

In order to find the phase transition between the high symmetry and the low 

symmetry phases, it is necessary to minimize F. The equations minimizing F are: 

aF 
077 

(3.2) 

(3.3) 

The three solutions of 17 are: 1]1=0 and rJn = [-,8 ± (,82 - 4ar) 112]/2r. Thus from 

the above conditions of minimization, one finds that the 1]!=0 phase, called the parent 

phase I, is stable and corresponds to the minimum ofF for a >0 as shown in Figure 

3.1. The minimum for phase I persists for a >0 as shown in Figure 3.2. There exits 
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F 

Figure 3.1: The plot ofF versus 17 for a >0 shows the minimum at 1]=0, which is 

phase I. 

F F 

0:>0,/3>0 0:>0,/3<0 

Figure 3.2: The plot of F versus 17 for a >0, f3 >0 or f3 <0. In this case 

the minimum at 1]=0 correspond to the metastable phase while the minima at 

1Jn = [-/3 ± (/32
- 4arYI2]/2r correspond to the stable phase. 

two minima corresponding to two non-zero values of 1JII i.e., 

1Jn = [- f3 ± (/32 
- 4ar) 112]/21, which persist for /32 2:: 4ar, called limit of stability of 

phase II as shown in Figure 3.3. 

The transition occurs for a = 2/32/91 and is obtained by equating the free energy 

for 1JI and 1Jn,i.e., F(1JI) = F(1Jn). Here 1JII = [-/3 + (/32
- 4ar) 112]/2/, because the 

minimum at 1Jn = [-/3 + (/32
- 4ar) 112JI2r goes below the minimum at 

1JII = [-/3- (/32
- 4ar) 112]/2r or one can say that the minimum at 
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F F 

CX<0,(3>0 CX<0,(3<0 

r; 

Figure 3.3: The plot ofF versus 'TJ for a <0, f3 >0 or f3 <0. Here the minimum at 

'TJII = [-{3 + ({32
- 4ar) 112JI2r correspond to the stable phase while the minimum at 

'TJII = [- {3 - ({32 
- 4ar) 112]/2"( correspond to the metastable phase which is phase II. 

'TJII = [-{3 + ({32
- 4ar) 112]/2r correspond to the stable phase while the minimum at 

'TJII = [- f3 - ({32 
- 4a'Y) 112

] /21 correspond to the metastable phase. This transition 

is of first order because 'TJI =I= 'TJII along the transition line a = 2{32 /9"(. The phase 

diagram in (a, {3) plane for the free energy given in (3.1) is shown in Figure 3.4 by 

keeping 1 positive as required for the conditions of stability. 

3.1.2 Landau Free Energy for A2, B1 and B2 

The expression for the Landau free energy for the one dimensional IR's A2, B1, B2 

up to sixth order can be written as [73]: 

(3.4) 

In this case the cubic term is absent from free energy because it is not invariant under 

all symmetry operations of space group P63cm. 

In order to find out a first order and second order transition between the high 

symmetry and the low symmetry phases, it is necessary to minimize F. The equations 
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Limit 

Limit f Stability~' 

of pha e II (3 2 =4cx.y / 
I 

CX.=2(3 2 /9'(, 
I 

34 

(3 

Figure 3.4: The phase diagram corresponding to the free energy F(77) in (3.1). The 

blue solid line and dashed red lines are limit of stability and first order transition 

lines respectively. 

minimizing P are: 

8F 
8TJ -

(3.5) 

(3.6) 

The three solutions of 17 are: 111=0 and 17II = [-JJ ± (j72
- 4ary) 112]/2ry. 

There is a minima in P corresponding to 171=0 for a >0, namely the parent 

phase(I). The minimum for phase I persists for a >0. The phase II appears for non 

zero value of 17II = [-JJ ± (j72 - 4ary) 112]/2ry and is stable for a <0. The plot of P 

versus 17 for different values of a and j7 is shown in Figure 3.5 by keeping ry constant. 

By considering ry greater than zero, one gets the phase diagram in the (a, J') plane 

as shown in Figure 3.6 for the free energy given in (3.4). The line of phase transition 

is described by a= 3j72 /16ry when j7 <0, which is determined by equating the free 

energy at 111 and 77n, i.e., P(17I) = P(17n), while for j7 >0 the transition is along a=O. 

The transition for j7 <0 is first order, because 111 =/= 11n along the transition line 
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F F 

a.>0,(3 0 

F F 
a.<0,(3<0 

Figure 3.5: The plot ofF versus 1] for various values of a: and (3. 

a: = 3(32 /16')'. The transition for (3 >0 is second order because 1JI = 1Jn=O along the 

transition line. When (3 <0, the minima of 1JII persists for (32 2:: 4a:')'. 

The low symmetry phases for one dimensional order parameters at the r point in 

a crystal with P63cm symmetry is given in the Table 3.1. 

3.2 Landau Free Energy for Two-dimensional Or

der Parameter 

3.2.1 Landau Free Energy for E1 

The two dimensional IR's E1 and E2 in C~v correspond to two component order 

parameters. In the case of E1 , the sixth order expansion of Landau free energy F as 
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a 

Figure 3.6: The phase diagram corresponding to the free energy F(rJ) in (3.4). The 

solid blue line, dotted dashed green line and red dashed lines are first order, second 

order and limit of stability lines respectively. 

Point on Irreducible Space Group 

h-BZ Representation 

r A1 P6scm (C~v) 

A2 P6s (C~) 

B1 P3cl (cgv) 

B2 P3lm (C~v) 

Table 3.1: Low symmetry phases resulting from structural phase transitions for 

one-dimensional IR at the r point in a crystal with P63cm symmetry. 

a function of the two component order parameters f/1 and f/2 can be expressed as (73): 
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Using cylindrical coordinates wit rJ1 =pease and 'r/2 = psine, F(rJ1, 'r/2) becomes: 

(3.8) 

The equations minimizing F are: 

8F 
8p -

(3.9) 

(3.10) 

From (3.9) and (3.10), one can see that in addition to the parent phase I (p=O, 

TJ1 =0, rJ2=0) there exist two types of solutions corresponding to different classes of 

low symmetry phases. These are determined by the equation cos 38 sin 38=0. For 

cos 38=0, sin 38 = ±1, so F(p, B) becomes 

(3.11) 

For sin 3e=O, cos 3e = ±1, so F(p, e) becomes 

(3.12) 

One gets, from (3.10) and (3.11) that the minima ofF depends on the sign of b1 

i.e., sin 38=0 solutions correspond to the minima in F if b1 <0, or cos 3e=O solutions 

is minima if b1 >0. 

Thus the two low symmetry phases are denoted by phase II for cos 38 = ±1 and 

phase III for sin 38 = ±1 correspond to the equilibrium values (TJ,O) and (O,rJ) re-
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spectively and equivalent domains obtained by applying the operations of C~v· The 

possible symmetry of phase II and phase III is Pm(C1s) and Pc(C2s) respectively. 

3.2.2 Landau Free Energy for E2 

The Landau expansion for E2 is different from E1 because of symmetry operation 

C2 , which leaves the third order term invariant for E2 but not for E1 . So finally, the 

fourth order Landau expansion F for E2 is [73]: 

In terms of cylindrical coordinates equation (3.11) becomes 

The equations minimizing F are: 

EJF 
EJp 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

From (3.16), sin 3e=O for cos 3e = ±1. Therefore (3.15) and (3.16)give, in addition 

to the parent phase I (p=O, 171 =0, 1]2=0), the two low symmetry phases of identical 

symmetry. These phases are denoted by phase II for cos 3e= 1 and phase III for 

cos3e=-l corresponding to the equilibrium values (17,0) and (-17,0) respectively and 

equivalent domains obtained by applying operations of C~v· The symmetry group 

associated with phase II and phase III is Cmc21 (C~~). 
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06v E 206 203 o2 3a-v 3a-d tl t2 t3 

M1 3 0 0 3 1 1 -1 -1 3 

M2 3 0 0 3 -1 -1 -1 -1 3 

M3 3 0 0 -3 1 -1 -1 -1 3 

M4 3 0 0 -3 -1 1 -1 -1 3 

Table 3.2: The irreducible representations of the space group P63cm at theM-point 

on the hexagonal Brillouin zone. 

3.3 Landau Free Energy at the M-Point 

A theoretical analysis is presented here for the structural phase transitions at the M

point of the hexagonal Brillouin zone as an example of a non-zero k-vector. M-point 

is the center of the rectangular face and its symmetry group is D2h. The wave vector 

kat theM-point is (1/2)b2 , where b2= 2;(}s-, 0, 0) is a reciprocal lattice vector of the 

hexagonal system. The IR of the space group P63cm at the M-point are calculated 

by specifying the IR of the little group. The little group in this case is 0 2v which has 

four one dimensional IR's. The dimension of theIR of a space group (P63cm) at the 

M-point is a product of dimension of IR's in a little group 0 2v and number of arms 

in k*. k* is generated by applying all symmetry elements of point group O~v on wave 

vector at the M-point. Some of the symmetry elements of point group O~v will leave 

the wave vector unchanged, therefore k* has the following three arms: (0 ~ 0), (~ ~ 

0), (~ 0 0). Thus there are four three-dimensional IR's, namely M1, M2, M3 and M4 

at the M-point of the hexagonal Brillouin zone. The characters of these IR's along 

with the translations are given in the Table 3.2. The matrices of the representations 

M1, M2, M3 and M4 along with translations t1, t1 and t3 are given in Appendix A. 



CHAPTER 3. RESULTS AND DISCUSSION 40 

The fourth-order Landau expansion for the M point is written as [64]: 

F( ) a ( 2 2 2) !31 ( 4 + 4 + 4) + /32 ( 2 2 + 2 2 + 2 2) 7Jl' 7J2' 7J3 = 2 Tll + Tl2 + Tl3 + 4 Tll 7l2 7J3 2 Tll 7l2 7l2 7J3 Tll Tl3 . 

(3.17) 

From minimization ofF with respect to rJ1, TJ2 , 7J3, one finds in addition to the parent 

phase I (TJ1 =0, rJ2=0, 7J3=0),three different low symmetry phases. These phases are 

denoted by phase II, phase III and phase IV and correspond to the equilibrium values 

(TJ, TJ, TJ), (TJ, TJ, 0), (TJ, 0, 0) respectively, and equivalent domains found by applying 

symmetry operations of C~v. The Landau free energy at the M point of the hexagonal 

BZ is equivalent to the free energy for the three-dimensional representations of Oh. 

Therefore, results can be obtained by considering the phase diagram of Oh· 

The possible structural phase transitions of Landau type for three dimensional IR 

at the M-point in a crystal with P63cm symmetry is given in the Table 3.3. 

3.4 Summary 

The structural phase transitions occurring at the r point and at the M-point of the 

hexagonal Brillouin zone are found by using Landau theory of phase transitions. Also 

the Landau free energy corresponding to one-dimensional irreducible representation 

and M4 at theM-point has been determined. The low symmetry phases corresponding 

to A1, A2, B1, B2 are P63cm (C~v), P63 (C~), P3cl (C~v) and P31m (C§v). The low 

symmetry phases for E1 are Pm(C1s) and Pc(C2s), while for E2 the two low symmetry 

phases correspond to same space group Cmc21 (C~~). 

For M1 the low symmetry phases are P63cm (Civ), Cmc21 (CJ;) and Pmc21 (Civ)· 

For M2 the low symmetry phases are P63 (C~), Cmc21 (C~v) and Pmn21 (C~v)· For 

M3 the low symmetry phases are P3cl (C~v), Cc (C;)and Pc (C;). Finally, for M4 
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Point on Irreducible Order Parameter Space Group 

h-BZ Representation Space 

M M1 rpp] P63cm (CJv) 

'Tl 'Tl 0 Cmc21 (CJ;) 

'T!00 Pmc21 (Civ) 

M2 'Tl'Tl'Tl P63 (C~) 

'T!'r/0 Cmc21 (C~v) 

'Tl 0 0 Pmn21 (CJv) 

M3 'Tl'Tl'Tl P3cl (C~v) 

'T!'r/0 Cc (Cf) 

'T!00 Pc (c;) 

M4 'Tl'Tl'Tl P31m (C~v) 

'T!'r/0 Cm(C;) 

'r/00 Pm(C;) 

Table 3.3: Low symmetry phases resulting from the structural phase transitions for 

IR at the M-point in a crystal with P63cm symmetry. 

the low symmetry phases are P31m (C~J, Cm (C;)and Pm (C:). 



Chapter 4 

Final Remarks 

4.1 Conclusions 

Different types of structural and magnetic phase transitions take place in hexagonal 

perovskites RMn03 for R=Ho, Er, Yb. The Landau theory of phase transitions is a 

useful tool to study the structural and magnetic changes in these materials, in which 

a symmetry breaking order parameter is required that transforms like irreducible 

representations of the high symmetry space group. The possible symmetry changes 

that can take place in a crystal with P63cm symmetry at the r point are analyzed. 

The structural phases resulting from one component order parameters A1 , A2 , B1, B2 

have symmetry P63cm (Civ), P63 (C~), P3cl (C~v) and P31m (C~v) respectively. The 

structural phases, which appear in case of the two component order parameter E1 

have two low symmetry phases Pm ( c;), Pc ( C;) corresponding to the equilibrium 

values (ry,O), (O,ry), and for E2 the two low symmetry phases correspond to the same 

symmetry group Cmc21 ( Ci~) but with opposite values of equilibrium order parameter 

i.e., (ry,O), (-ry,O). 

The phase transitions occurring at the M-point of hexagonal Brillouin zone are 

42 
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investigated for a crystal with P63cm symmetry. The space group representations 

appearing at theM-point are three-dimensional denoted by M1 , M2 , M3 and M4 . The 

low symmetry phases as a result of structural phase transitions at M1 has symmetry 

P63cm (C~v), Cmc21 (CJ;) and Pmc21 (Civ) corresponding to the equilibrium values 

(TJ, rJ, TJ), (TJ, rJ, 0) and (TJ, 0, 0). The low symmetry phases appearing at M2 has 

symmetry P63 ( C~), Cmc21 ( CJ;) and Pmn21 ( c;v) corresponding to the equilibrium 

values (TJ, TJ, TJ), (TJ, rJ, 0) and (TJ, 0, 0). For M3, the low symmetry phase correspond

ing to equilibrium values (TJ, rJ, TJ) is P3cl (C~v), while (TJ, rJ, 0) and (TJ, 0, 0) are 

associated with the symmetries Cc (Ci) and Pc (C;). For M4 , the low symmetry 

phase corresponding to equilibrium values (TJ, 7], TJ) is P31m (Civ), while (TJ, TJ, 0) and 

(TJ, 0, 0) are associated with the symmetries Cm (C~) and Pm (CI). 

4.2 Suggestions for Further Work 

The magnetic transitions in RMn03 compounds are due to antiferromagnetic ordering 

of Mn3+ sublattices and in some compounds due to antiferromagnetic/ferromagnetic 

ordering R3+ sublattices. The magnetic symmetries of RMn03 compounds because 

of Mn3+ sublattices are P63cm, P63cm, P.Q3cm and P.Q3_gm corresponding to one 

component order parameter A1 , A2 , B1 , B2 respectively. The rare earth ions develop 

magnetic moment at very low temperature ~ 5K but their magnetic structures are still 

under investigation. However, it is suspected that the magnetic symmetry changes 

from P63cm to Pc for HoMn03 and P_g for ErMn03, YbMn03 [19]. The irreducible 

representation E1 at the r point or M3 representation at theM-point of the hexagonal 

Brillouin zone are proposed to be related to this symmetry for HoMn03. 



Appendix A 

Hexagonal Crystal System 

The hexagonal crystal system has four axes of symmetry. Three of them are of equal 

lengths set at 120° to one another, and the fourth one is perpendicular to the plane 

of first three. These axes are denoted by a1, a2, a3 and C respectively and are shown 

in Figure A.l. 

/I 
_..' I 

l C ,.,.· I 
l •""" I 

-·-·-·-·:-·~ i 
: \ 
I \ 
I • 

I 
I 
I 
I 
I 
I 
I 

,!..-- ---- ---,,-

Figure A.l: Indexing of Hexagonal Lattice. 

The volume of the hexagonal unit cell is v{a2c. The lattice vectors are: 

gl =(0, -a, 0); g2=~(aV3", a, 0); g3=(0, 0, c) 

44 
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The reciprocal lattice vectors are: 

b1= 2:(}s, -1, o); b2= 2:(}a, o, o); b3= 2;(o, o, 1) 

The Brillouin zone (BZ) of the hexagonal lattice is shown in Figure A.2 and has 

volume= Js::c. The points and lines of symmetry of the hexagonal BZ and their 

coordinates with respect to b1 , b2 and b3 are listed in a Table A.l. For example, P 

is a point on the line KH and its k vector is ( -ibl +~b2+o:b3)=( -Ho:), 0< a< ~· 

Figure A.2: Brillouin zone of the hexagonal lattice [53]. 

A.l 

The space group P63cm [#185,(C~v)J belongs to the class of hexagonal crystal system 

and has twelve symmetry elements. These symmetry elements consist of the identity 

(E), rotations by angles of imr radians (C6 , C3, C2, C§, and C~ for n=1, 2, 3, 4, 

5 respectively), three mirror planes (30'v) that pass through opposite faces of the 

hexagon, and three mirror planes (30'd) that pass through opposite vertices of the 
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Bravais Lattice Point /Line of Symmetry Coordinates 

Hexagonal P, rh r (0 0 0) 

M (0 ~ 0) 

A (0 0 ~ 0) 

L (0 ~ ~ ) 

K (-i ~ 0) 

H ( -i ~ ~ ) 
~(rA) (0 0 a) 

U(ML) ( 0 ~ a) 

P(KH) (-i ~ a) 

T(rK) (-a, 2a, 0) 

S(AH) (-a, 2a, ~ ) 

T'(MK) (-2a, ~+a, 0) 

S'(LH) (-2a, ~+a, ~) 

~(rM) (0 a 0) 

R(AL) (0 a ~ ) 

Table A.l: List of points of the hexagonal Brillouin zone [53]. 
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1 E x, y, z 7 O"v1 
1 -x + y, y, z + 2 

2 c3 -y,x- y, z 8 O"vz 
1 

X, X- y, Z + 2 

3 c~ -x + y, -x, z 9 O"v3 
1 -y, -x, z + 2 

4 c2 1 -x, -y, z + 2 10 O"d1 X- y, -y, Z 

5 c6 1 
X- y, X, Z + 2 11 O"d2 -x, -x + y, z 

6 c~ 1 y, -x+y, z+ 2 12 O"d3 y,x, z 

Table A.2: Positions of symmetry elements of space group P63cm [54]. 

hexagon. The generators of the group are E, C3 , C2 and av3 • It is a nonsymmorphic 

space group and involves glide reflections and screw rotations. In this case three 

mirror planes (3av) are glide planes. The general positions of all twelve symmetry 

elements are given in Table A.2. 

The stereographic projection of C~v is shown in Figure A.3 .. 

Figure A.3: The stereographic projection of C~v [51]. 
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A.l.l Character Table of C~v 

The r point lies at the origin of the hexagonal BZ with wave vector k=(O, 0, 0). The 

character table of irreducible representations and their products at the f-point for 

the point group C~v is shown in the Table A.3 and Table A.4 respectively. 

c~v E 2C6 2C3 c2 3crv 3crd Linear Functions Quadratic Functions 

A1 1 1 1 1 1 1 z x2+y2 ,z2 

A2 1 1 1 1 -1 -1 Rz -

B1 1 -1 1 -1 1 -1 - -

B2 1 -1 1 -1 -1 1 - -

E1 2 1 -1 -2 0 0 (x,y)(Rx,Ry) (xz,yz) 

E2 2 -1 -1 2 0 0 - (x2-y2,xy) 

Table A.3: Character table of the r point representations of C~v [51]. 

c~v A1 A2 B1 B2 E1 E2 

A1 A1 A2 B1 B2 E1 E2 

A2 A2 A1 B2 B1 E1 E2 

B1 B1 B2 A1 A2 E2 E1 

B2 B2 B1 A2 A1 E2 E1 

E1 E1 E1 E2 E2 A1+A2+E2 B1+B2+E1 

E2 E2 E2 E1 E1 B1+B2+E1 A1+A2+E2 

Table A.4: Irreducible representation products of C~v· 
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A.1.2 Matrices at the r -Point of the Hexagonal Brillouin 

Zone 

An explicit form for matrices of the irreducible representations E1 and E2 of the point 

group c~v are as follows: 

Matrices of E1 

Matrices of E2 

E = (~ :). 

C _ 2 2 0 2_ 2 2 ( _1 v'3) (-1 _.Y]) 
3- ' 3- ' c, = ( ~1 ~~) 

C5_ 
6-

c3 = 

_.Y] _1 .Y] _1 
2 2 2 2 

( ~ -¥) , O"v1 = (-
1 O) , O"v2 = ( ~ "?) , .Y] _21 0 1 .Y] _1 

2 2 2 

O"d2 = ( -~ - "?) ' O"d3 = (-~ ¥) v'3 1 v'3 1 
-2 2 2 2 

(A.1) 

(j, -:) , c~ = ( -;, ~) , c2 = (
1 0

) 
2 -2 -2 -2 0 1 

c6 = ( -
1 .Y]) cg = (-

1 _.Y]) av1 = (
1 0 

) -~ ~~ ' f _; ' 0 -1 ' 
O"v2 = (-~ ¥)' 

V3 1 
2 2 

O"v3 = ( -~3 -:) , O"d1 = (
1 

O ) , _.Y] - 0 -1 
2 2 

~~= (~~ -;) O"d2 = (-~ "?) ' .Y] 1 
2 2 

(A.2) 
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A.1.3 Matrices at the M-Point of the Hexagonal Brillouin 

Zone 

The M point is the center of the rectangular face with wave vector k=(O ~ 0) as 

shown in the Brillouin zone of the hexagonal lattice in Fig A.2. There are four three

dimensional space group representations at the M-point, namely M1 , M2 , M3 , M4 . 

The matrices of these four three-dimensional representations are as follows: 

Matrices of M 1 

E~ (: 
0 

:} c, ~ (: 

0 

:)· G§~(: 
1 

:} c, ~ (: 

0 

:) 1 0 0 1 

0 1 0 0 

c, ~ (: 

1 

:} Ci ~ (: 
0 

:) ' ff"' ~ (: 
1 

:} ff"' ~ (: 
0 

:} 0 0 0 0 

0 1 0 1 

ff"'~ (: 
0 

:)·ffdl~(: 
1 

:} ffd2 ~ (: 
0 

:} ffd3 ~ (: 
0 

:) 
1 0 0 1 

(A.3) 
0 0 1 0 
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Matrices of M 2 

(A.4) 

Matrices of M 3 

(
1 0 OJ 

O'v2 = 0 0 1 ' 

0 1 0 
(
0 0 1) 

O'v3 = 0 1 0 

1 0 0 

O'vl = (: ~ :) , 
0 0 1 

(A.5) 

O'dl = (~1 ~1 
: l ' O'd2 = (~1 

: ~1) ' O'd3 = ( : ~1 ~1) 
0 0 -1 0 -1 0 -1 0 0 
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Matrices of M4 

(A.6) 

A.1.4 Translations at theM-Point of the Hexagonal Brillouin 

Zone 

The matrices of the translations t 1 , t 2 and t 3 can be calculated by considering k* at 

M-point. The k* has three arms denoted by k1=(0 ~ 0), k2 =(~ ~ 0) and k3=(~ 0 0). 

A method is described below to determine the matrices of the translations. 

Matrices of t 1 , t2 and t3 

Let 

0 

0 

0 

0 

0 

0 (A.7) 
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Here k1 =~b2; k2=Hb1 +b2); k3=~b1. 

Also 

b2.a1 =0, (b1 +b2).a1 =-27T, b1.a1 =-27T 

Thus 

1 0 0 

tl = 0 -1 0 

0 0 -1 

Similarly, the matrices of t2 and t3 are: 

A.2 

-1 0 0 

0 -1 0 ' t3 = 

0 0 1 

1 0 0 

0 1 0 

0 0 1 

53 

(A.8) 

(A.9) 

The space group P63 /mmc[#194,(D~h] is a non symmorphic group having twenty four 

symmetry elements, namely E, 2C6, 2C3, c2, 3C;, 3C;, t-, 2S3, 2S6, O'h, 3ad, 3av. The 

general positions of these twenty four symmetry elements are given in Table A.5. 

The character table of irreducible representations at the r point for the point 

group D~h is shown in the Table A.6. 
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1 E x, y, z 13 " -x, -y, -z 

2 Ca -y, X- y, Z 14 st -y, x-y, -z 

3 C§ -x+y, -x, z 15 83 y, -x + y, -z 

4 c2 
1 -x, -y, z + 2 16 st x- y,x, -z 

5 Ca 
1 X- y, X, Z + 2 17 s;; y, -x + y, -z 

6 c~ 1 y, -X+ y, Z + 2 18 (Jh y, x, -z 

7 c;1 -x + y, y, -z 19 Clv1 
1 -x + y, y, z + 2 

8 c;2 x, x- y, -z 20 Clv2 
1 X, X- y, Z + 2 

9 c;3 -y, -x, -z 21 Clv3 
1 -y, -x, z + 2 

10 C" 21 x- y, -y, -z 22 Cldl X- y, -y, Z 

11 C" 22 -x, -x + y, -z 23 Cld2 -x, -x + y, z 

12 C" 23 y, x, -z 24 Cld3 y,x, z 

Table A.5: Positions of symmetry elements of space group P63/mmc [54]. 
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D~h E 2C6 2C3 c2 3C~ 3C~ [, 283 286 CTh 3crd 3crv - -

A19 1 1 1 1 1 1 1 1 1 1 1 1 - x2+y2,z2 

A29 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz -

B19 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 - -

B29 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 - -

E19 2 1 -1 -2 0 0 2 1 -1 -2 0 0 (Rx,Ry) (xz,yz) 

E29 2 -1 -1 2 0 0 2 -1 -1 2 0 0 - (x2-y2,xy) 

Alu 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 - -

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z -

Blu 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 - -

B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 - -

E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x,y) -

E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0 - -

Table A.6: Character table of D~h [51]. 
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