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Abstract 

Humic substances (I-IS) are complex natural materials that are thought to be 

produced by decomposition of biogenic matter. I-IS are known to be involved in various 

processes such as amending soil fertility, metal chelation and sequestration of organic 

contaminants; they also are precursors of harmful water disinfection byproducts (DBPs). 

To understand the role ofl-IS in all these processes it is imperative to understand their 

structural features. A MALDI-TOF MS method has been developed to characterize these 

materials and the results showed clear evidence of the oligomeric nature of I-IS. However, 

the inherent complexity of I-IS demands a multi pronged approach, thus thermally assisted 

hydrolysis-methylation-GC-MS was employed to aid in elucidating possible structural 

constituents of HS. Thermochemolysis results demonstrated a strong similarity between 

natural organic matter standard and humic acid model synthesized from polymerization 

of 4-oxo-2-butenoic acid, derived from oxidation of furfural, a well known product of 

dehydration of polysaccharides. These results suggest the concept that polysaccharides 

are important precursors in HS formation. 

Studies ofDBPs resulting from chlorination and chloramination ofi-IS were also 

carried out. Based on our understanding of key structural features of HS and rigorous 

mass spectral analysis, haloketones were found to be one of the major classes ofDBPs 

formed and numerous other potentially new DBPs were also identified. Their formation 

was replicated using selected plant flavanoids as model compounds for HS. Most of the 

resulting DBPs were polar, thermally labile and of high molecular weight and hence not 

amenable to analysis by the standard technique, GC-MS. To circumvent these problems, 

we have developed a new, rapid, selective, quantitative and very sensitive (detection 
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limits in the sub parts per billion range) "reactive matrix"-LDI MS method fix the 

analysis of carbonyl and cx.-dicarbonyl compounds. These techniques can be extended to 

the analysis of carbonyl compounds of importance in other fields: e.g., metabolomics, 

clinical diagnostics, food science, etc. Finally with good understanding of the structural 

properties of HS obtained from our studies, aquatic fulvic acid has been demonstrated as 

a novel universal MALDI matrix. 
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CHAPTER! 

Introduction and Overview 



1.1 Introduction 

Despite many years (> 200 years ago) of sustained research, humic substances 

(HS) remain a structurally enigmatic and virtually indefinable organic mixture of 

compounds that are only operationally classified based on their aqueous solubility. The 

solubility properties are normally exploited in the isolation of HS into their individual 

classes: fulvic acid, humic acid and humin. 1 Fulvic acid (FA) is soluble in all pH ranges, 

humic acid (HA) is soluble in alkali and insoluble in acidic (pH< 1) solution, whilst 

humin is the insoluble fraction. 1
-
6 The variations in their solubility behavior could be 

associated with probable differences in their chemical composition, acidity, molecular 

weight, degree of hydrophobicity and self association of the constituent molecules. 

Arguably, HS are formed from the decomposition and degradation of biogenic materials 

over time (humification), resulting in heterogeneous multifunctional materials with both 

aromatic and aliphatic constituents linked by chemical (hydrogen bond interactions) as 

well as physical interactions.7
•
8 Nevertheless, the understanding of the sources and 

mechanisms behind their formation is still inexact, probably due to the numerous and 

variable forces of nature (biogeochemical transformations) that are normally in play in the 

natural environment. The generality of the above definition clearly reveals the complexity 

ofthe problem in the scientific community on the identity ofthese substances. For 

instance, biogenic materials literally encompass a staggering number of living things and 

their waste products. The process of decomposition and degradation on the other hand, 

could involve both chemical and microbial processes, which varies geographically. All 
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these issues have resulted in the labeling of these substances by Ghabbour et al. 7 as 

"nature's most versatile materials". 

The enormous utility of HS in the environment is in agreement among HS 

researchers and this has probably been the major impetus for the research effort that has 

been invested in HS characterization. The earliest recognition of the significance of 

humic substances was in its potential to enhance soil fertility by soil pH buffering and 

water retention. They were also recognized as possible precursors of fossil fuels. In 

addition, HS are probably the strongest naturally-occurring chelating agents known and 

their interaction (either by: sequestration, mobilization or oxidative and reductive 

transformation) with numerous environmental pollutants (e.g. pesticides, heavy metals, 

poly aromatic hydrocarbons, etc.) has been widely investigated. Such studies represent a 

concerted effort to understand the impact on bioavailability and efficiency of pollutants 

detoxification mechanisms on interaction with HS, which is critical in remediation and 

toxicological studies.9
•
10 Moreover, due to their chelating nature, HS have also been used 

extensively as medicinal products. 11 HS are known also to influence drinking water 

quality since they are the principal precursors of a large number of potentially harmful 

disinfection byproducts (DBPs) resulting from HS reaction with disinfectants such as 

chlorine.9
·
10

.I
2 HS also could have a significant effect on climate influence since they are 

a major fraction (50-70 %) of atmospheric aerosol particles, which act as cloud 

condensation nuclei by affecting cloud and fog formation. 13
•
14 

It is believed the vastness of possible applications ofHS is far from being 

exhausted and hence they remain an attractive research undertaking. However, to be able 

to tap the wealth therein, rigorous analytical studies to unravel this enigma must continue, 
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albeit to build on sustained and often productive work that has been done over the years 

to understand their structure, origin and reactivity. 

The initial primary research goal was to characterize polar and high molecular 

weight disinfection byproducts (DBPs) ensuing when drinking water containing I-IS is 

chlorinated. As a prelude for studying DBPs chemistry, it was imperative to first 

understand the structural properties of the DBPs precursors, humic substances. Hitherto, 

an enormous amount of data has been obtained by degradation (e.g. 

pyrolysis/thermochemolysis with gas chromatography mass spectrometry (GC-MS)), 20
-
28 

and electrospray ionization mass spectrometry (ESI-MS) techniques.30
-
47 However, the 

ultra sensitive and the versatile matrix assisted laser desorption ionization time-of-flight 

mass spectrometry (MALDI-TOFMS) has not been used to any significant extent in the 

analysis ofHS, as evident in the sparsely available literature,50
-
68 making it a worthy 

research endeavor. MALDI-TOFMS could be particularly useful in determining the 

molecular weight of HS and general structural similarities between different classes of HS 

and should complement the data already generated by other methods. Application of 

MALDI-TOFMS for analysis ofHS has been limited by difficulties encountered 

especially in choosing the right matrix and optimizing sample preparation, which are the 

crucial steps that determine the success of MALDI. The complexity of sample preparation 

and matrix selection is exacerbated by the complexity of the HS and their poorly 

understood structural conformations. Optimization of sample preparation and the testing 

of different matrices to find the most appropriate one were thoroughly investigated. Since, 

humic substances are highly UV absorbing, LDI-MS was also employed and the results 

were compared with the MALDI variant. The efficiency of various matrix materials 
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investigated was based on their ability to enhance ionization and shield the analyte from 

fragmentation. 

To further understand HS, different techniques have to be employed for no single 

analytical tool is sufficient to fully characterize HS. The use of different techniques 

(multiple method approach) has been proposed to be the only panacea for the analysis of 

HS.9 The use of the commonly employed pyrolysis techniques has been very important 

since significant structural information has been derived. The use of thermally assisted 

hydrolysis methylation using the alkylating agent, tetramethylammonium hydroxide 

(TMAH), which is known to preserve the structural authenticity of the analyte was 

especially useful. This technique was used to compare the structural similarities of HS 

from different sources, essential in possibly understanding the similarities in their 

formation. 

In complex scientific problems, modeling plays a very useful role. A humic acid 

model was synthesized, based on acid polymerization of furfural; identified widely as a 

common pyrolysate/ chemolysate ofHS. In our study, the synthesized humic acid model 

was very similar to the isolated HA when characterized with THM methods and was 

deemed humic like substances (HULlS), which augmented previous studies by Susic.Z7 

With the structural revelation unearthed from these studies and augmented by the 

literature, especially regarding the functionalities present in fulvic acid, e.g. carboxylic 

acid groups, which undoubtedly have labile protons, it was envisioned it would be 

possible to utilize fulvic acid as a matrix for MALDI. Application of fulvic acid as a 

matrix for MALDI was impressive. It is believed that FA as a matrix, our original 

concept, could radically influence the formation of new MALDI targets. For example, we 
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think fulvic acid could be employed in making surface-modified MALDI plates by 

immobilizing a fulvic acid-metal complex (since FA are very strong chelating agents) on 

a plate that could be used as affinity probes for different compounds such as 

phosphoproteins. This is the so called affinity mass spectrometry. 

Equipped with a better understanding ofHS, chlorination experiments were done 

by mimicking water disinfection treatment systems and the resulting byproducts extracted 

and analyzed both by GC-MS and liquid chromatorgraphy mass spectrometry (LC-MS). 

Since different disinfection processes are being used in effort to reduce DBPs occurrence, 

the study also encompassed the use of the now common chloramination process, and 

similarly, the DBPs formed were evaluated. This was very insightful and diversified the 

research objectives. A plethora ofbyproducts formed contained a carbonyl and/or 

dicarbonyl moieties, certainly alluding to the presence of large numbers of such moieties 

in the HS backbone. Most of these compounds are difficult to analyze due to their 

characteristic high polarity making them difficult to extract and separate by typical non­

polar solid phase extraction methods. They also suffer from poor detectability with mass 

spectrometry due to poor ionization efficiency and suppression from sample matrices due 

to their low molecular weights. Their analysis therefore required some sort of 

derivatization methodology. 

With our major interest in widening the scope of MALDI-TOFMS applicability 

for small molecules, strategies were developed to analyze small molecules containing 

carbonyl and dicarbonyl moieties by derivatization and analysis by MALDI-TOFMS. The 

quantitative limitations of MALDI were also addressed and ways to improve the 

reproducibility of this technique were sought. Two novel tailor-made derivatizing agents, 
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otherwise christened "reactive matrices", were synthesized and successfully employed 

with remarkable sensitivity for the reactive matrix LDI-MS analysis of carbonyl and 

alpha-dicarbonyl target compounds. The tailor-made derivatizing agents were, out of 

necessity, bulky and consisted of ionization-enhancing pendant groups in the backbone. 

With our key interest in improving sample preparation techniques by minimizing sample 

handling, we developed what we referred to as on-plate derivatization and one-pot 

derivatization. The former is particularly ideal for high throughput screening in areas such 

as toxicology and environmental monitoring. 

1.2 SUMMARY OF' THESIS OBJECTIVES 

1) To develop a method for characterization ofhumic acids and fulvic acids 

from different sources using MALDI-TOFMS. 

2) To model the formation of humic substances and to compare the 

synthesized model with humic substances standards from IHSS using 

established THM -GC-MS characterization. 

3) To investigate new and non--conventional applications offulvic acid; e.g. 

use of aquatic fulvic acid as a MALDI matrix. 

4) To analyze previously unidentified disinfection byproducts resulting from 

chlorination and chloramination of humic water and to establish possible 

mechanistic pathways using selected model compounds. 

5) To develop methodologies for analysis of small molecules (e.g. polar 

DBPs) using novel reactive matrices with LDI-MS. 
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1.3 LITERATURE REVIEW 

1.3.1 Humic Substances Composition and Structure 

Humic substances were first reported by German chemist Karl Achard in 1786. 

Since then, over two centuries of research effort have been expended in an effort to 

determine the fundamental aspects of structure and composition of HS with little success. 

As a result, resignation seems to have set in with some scientists believing that it is 

impossible to structurally define these materials due to their inherent heterogeneity­

comprising a mixture of hydrophobic, polar and hydrophilic components- and hence are 

not amenable to standard analytical tools.7
-
10 Different equivocal terms have been used to 

describe HS such as natural polymers, polyelectrolytes, macromolecules, supermixtures, 

and supramolecules. In general, it is agreed that HS are brown to black colored substances 

formed by chemical and biological transformations of residues from plants, animals and 

exudates from microorganisms.2
-
14 These definitions are sometimes contradictory and 

infamously fall short in conveying the essential features ofHS.They are often 

characterized by an empirical definition based on solubility properties, categorizing HS as 

fulvic acid (FA), humic acid (HA) and humin.9 

Humic substances can either be terrestrial or aquatic. The sources of organic 

matter in water have been classified as either autochthonous sources or allochthonous. 

The former refers to carbon resulting from leachate from dead organisms, phytoplankton, 

organisms exudates and other in-stream processes. The later on the other hand includes 

leachate from neighboring terrestrial elements (soils, flora etc. ).2 A schematic 

summarizing the NOM classification is shown in Figure 1.1. 
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Water sample containing natural organic matter 
(NOM); autochthonous- (from in-stream processes) 
and 
allochthonous- (leachate from terrestrial sources) 

1 
Filtration ---. Suspended material removed 

! 
Elution with base 

! 
Non-humic substances (mainly biomolecular 
classes of compounds: lipids, carbohydrates, 
polysaccharides, amino acids, proteins, 
waxes, resins 

1 
Humic substances 
(50-75% in water) 

Fulvic acid (soluble at 
any pH) 

Humic acid (insoluble in 
acidic pH,< ~I) 

Figure 1.1. Classification and fractionation ofNOM. 

While there has been an agreement about the color, elemental composition and 

inherent complexity of HS, differences in opinion still exist regarding the exact genesis of 

these materials, but molecular weight (MW) and the possible polymeric nature of HS are 

probably the parameters that have been most controversial and an ongoing debate has 

ensued in the scientific community. Most of the early humic chemists, e.g. McCarthy,2 

Swift,4 Anderson, 16 etc., believed in the polymeric model ofHS. This was essentially 

based on experimental results from older techniques such as vapor pressure osmometry 

(VPO), ultracentrifugation and size exclusion chromatography (SEC), which estimated 

HS sizes to range from several hundreds to thousands of Daltons? It is intriguing that 

different techniques result in different molecular weight distribution values, attesting to 

the dynamic nature of HS in solution environment. 
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Traditionally, SEC with UV detection has been the premier tool for molecular 

mass analysis. SEC works on the principle of a molecular sieve (consisting of pores of 

different sizes) mechanism that resolves the macromolecule based on its relative size 

(hydrodynamic volume) compared to the pore sizes present in a polymer packed column. 

Molecules that are too big compared to any pore size are eluted through the column 

without any separation, whilst those that are small penetrate further into and spend more 

time in the pores and elute last. Those that are moderately sized are eluted, where bigger 

ones precede the small ones. SEC results suggest that HS are thousands of Daltons in 

molecular weight, but the results obtained are highly suspicious due to the inherent 

pitfalls of SEC for molecular weight determination. The most common drawback is 

charge interactions between the packing and HS that can overestimate or underestimate 

the MW as well as sorption effects that result in increased elution volumes. 15 Further, the 

fact that the standards used to generate calibration plots are of narrow polydispersity (e.g 

polyethylene oxide, polyethylene glycol, etc.) and possess different structures and 

chemistry from HS, makes the results obtained from SEC-UV very questionable. This 

prompted the use of SEC-mass spectrometry, which can determine molecular mass very 

accurate! y. 7 
· 
15 

As previously stated, there are two main views ofHS structural identity, 

polymeric and supramolecular view. The polymeric view was mainly given credence 

because of the historical hypothesis that associated HS formation with condensation of 

biological materials derived from degradation of lignin, polyphenols, cellulose and amino 

acids.4
-
6 The fact that HS are recalcitrant also gave acceptance to the polymer model since 

one would expect polymers to be very stable. Furthermore, it was believed that HS are 
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largely aromatic (consisting of benzene carboxylic and phenolics) due to the belief they 

are formed from lignin. Recent studies, however, have shown that humic substances 

contain a lot of aliphatic components, and thus lignin may not necessarily be their 

primary precursor.3 A composite group of compounds with sources from plant refuse 

such as cellulose, hemicellulose, lignin, tannins, sugars, amino acids, proteins, lipids, fats, 

oils, waxes, resins etc., could all be potential precursors of humic substances. 

Increasingly the polymer model is being replaced by the supramolecular model, 

initiated by Piccolo et al., 17 which indicates that HS may consist of collections of diverse, 

relatively low MW compounds (1 00-2000 Da). These low MW compounds are held 

together by hydrogen bonding, hydrophobic intermolecular aggregation and polyvalent 

cation interactions, leading to a cluster of molecules easily confused with polymers on 

analysis. This new concept has mainly been supported with the results from soft 

ionization techniques. 18 The aforementioned HS associations have been hypothesized to 

form into micellar structures strongly binding other components, e.g. biomolecules, 

making it impossible to purify HS without cleaving the covalent bonds of the humic 

substances fraction. As such, it has been argued that any component intimately associated 

with HS should be labeled as HS.8
,t

7 This vague boundary between humic substances and 

non-humic substances (biomolecules such as carbohydrates, proteins, lipids, lignin's, 

cellulose etc.), otherwise referred to as "the humic acid problem", has resulted in diverse 

and often contradictory interpretations of analytical results. 

Considerable information on bulk properties ofHS has been achieved by the use 

of solid and liquid-state nuclear magnetic resonance spectroscopy (NMR), infrared 

spectroscopy (IR) and VPO. On the other hand, degradation methods (e.g. chlorination, 
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ozonation, hydrolysis, pyrolysis, oxidation and reduction) coupled with GC-MS reveal 

more specific molecular-level details on existing chemical components, although with 

limitations because these techniques sometimes severely, alter the HS structure. 

Furthermore, the widespread presence of polar functionalities (alcohols and carboxylic 

acids) in HS limit volatility and detection of some products and hence molecular 

characterization is not representative.2
• 

8
•
13 With the evolution of more powerful analytical 

instruments, especially those with soft ionization methods, more molecular weight profile 

information has been revealed about compositional aspects of HS. 17
-
24 Nevertheless, even 

with such state-of-the-art analytical tools, the results can be contradictory due to the 

indefinable nature ofHS (cf humic acid problem). The HA problem has been minimized 

by the establishment of the International Humic Substances Society (IHSS), founded at 

the United States Geological Survey (USGS) Water Research Laboratories in Denver, 

Colorado, in September 1981. The IHSS mission is to isolate relatively uniform humic 

substances and provide them to the scientific community for analysis.29 This has greatly 

reduced the disparity of the results obtained. 

1.3.2 Humic Substances Characterization by Thermal Degradation Techniques 

Most structural elucidation ofHS has been accomplished by pyrolysis-GC-MS 

with electron ionization, effectively developed for analysis of intractable and non-volatile 

macromolecules such as coal, kerogen, asphaltene, plastics and recently humic 

substances. At the high temperature,> 550° C used, thermally mediated chemical bond 

cleavage occur yielding lower molecular weight molecules (called pyrolysates). The 

pyrolysates are usually separated by GC on the basis of fragment's volatilities and 
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interactions with stationary phase of the column (typically the nonpolar DB-5) with ion 

detection by MS. Classically, the pyrolysis-GC-MS system consist of an integrated 

pyrolyzer unit (vertical-furnace pyrolyzer is very common) interfaced directly with a GC­

MS, thereby reducing analyte losses.20 Although pyrolysis-Ge-MS has assisted 

considerably in the analysis ofHS, as manifested by numerous hypothetical structural 

concepts (often called pseudo structures) produced as a result of its use, it has several 

limitations.2
•
10

•
19 The high pyrolysis temperatures employed result in uncontrolled sample 

degradation and concomitant recombination of pyrolysates, leading to severe adulteration 

of the original structure of the sample, making the products difficult to relate to the 

precursors. Many analytical artifacts are also formed from minerals catalyzed cyclization, 

aromatization, and often decarboxylation (loss of carboxyl group as carbon dioxide) 

processes. 24
'
25

' 
26 

In the 1990s, the softer (sub-pyrolysis temperatures~ 250° C employed) pyrolysis 

variant, thermally-assisted hydrolysis and methylation (THM) was described by 

Challinor.24 The process uses quaternary alkylammonium hydroxides to mediate 

thermally-assisted chemolysis (hydrolysis), leading to in-situ alkylation (methylation 

being the most common) with the generated products sufficiently volatile to be analyzed 

by GC-MS. Tetra-methyl ammonium hydroxide (TMAH) is the principal reagent used, 

providing efficient esterification of carboxylic acids, etherification of alcohols and N­

alkylation of amino acids etc., with the products (otherwise called chemolysates) bearing 

a direct relationship to the parent molecule(s). Other reagents such as trimethyl sulfonium 

hydroxide and trimethyl anilium hydroxide have also been employed, although to a lesser 

extent than TMAH.22
• 
28 The THM mechanism (Figure 1.2) involves formation of 
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tetramethylammonium salts of phenols or carboxylic acids followed by high temperature 

base-prompted pyrolysis to the respective alkyl derivatives. In addition, under the 

reaction conditions, the excess TMAH breaks down to produce tertiary amine and 

methanol. 

0011 
excess 1250°C 

Figure 1.2. Thermochemolysis mechanism. 24 

THM circumvents some of the limitations ofpyrolysis-GC technique. For the 

most part, THM assists in the methylation of polar aromatic carboxylic acids and phenols, 

which otherwise undergo decarboxylation and are poorly resolved in chromatography. 

Carboxylic acids are methylated to methyl esters and alcohols and phenols to methyl 

ethers. There are a number of disadvantages of using TMAH: One is that methylated 

components cannot be distinguished from the methyl esters and ethers originally present 

in the sample (unless isotopically labelled TMAH reagent is used), thus making structural 

identification uncertain. The solution has been to use ethyl or butyl analogues of the base 
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as the butylated forms occur less frequently naturally.28 Also, TMAII is a strong base and 

apart from methylation the highly basic conditions are likely to induce a variety of 

peripheral reactions (e.g. Cannizaro reaction), which can make interpretation complex, 

especially when the substrate is also complex, e.g. HS. In addition, it has been recently 

reported that decarboxylation may occur with TMAH thermochemolysis depending on 

the position of hydroxyl substitution relative to the carboxylic group, with ortho and para 

substituted aromatic carboxylic acids, being more susceptible.25 The use of model 

compounds is therefore essential for better understanding of the underlying mechanism, 

although it must be stated that, the literature is deficient in this kind of studies. 

1.3.3 Soft Ionization Methods and HS Characterization 

The advent of the landmark, new soft ionization methods, as well as growth in the 

capabilities of mass spectrometers is revolutionizing and spurring new interest in the 

characterization ofHS. The new ionization methods of note are electrospray ionization 

(ESI), an atmospheric pressure form of ionization and matrix assisted laser desorption 

ionization (MALDI). 

ESI is a low fragmentation (soft) technique that preferentially ionizes hydrophilic 

analytes that are polar (e.g. carboxylic acids and other heteroatom functionalities) and/or 

thermally labile. As such, it has evolved to be one of the core methods in protein analysis, 

environmental, pharmaceutical and pharmacokinetic applications?0
•
31 ESI has numerous 

advantages including little fragmentation ofprotonated molecules, wide applicability, and 

high sensitivity. It is also readily coupled to LC and affords analysis of macromolecules. 

When many protonatable moieties are present, ESI can produce multiply charged species, 
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reducing the mlz ratio accordingly so that the ion of a high mass molecule can be 

analyzed using low mass range mass analyzers, such as quadrupole. ESI is also ideal for 

both qualitative and quantitative (especially with MS-MS and selected reaction 

monitoring) work. With these many benefits, ESI has seen a proliferation of research 

papers and reviews on many aspects and applications, including humic substances 

research.30
-
47 Before discussing ESI applications in HS, it is pertinent to briefly discuss its 

theory. 

1.3.3.1 ESI Basic Instrumentation 

Electrospray had been used as a painting technique before Dole and co-workers 

(1960s and early 1970s) and later Penn et al. (1980s) developed it into an ionization 

method for mass spectrometry.30
' 

31 Without labouring intensively on the fundamentals of 

ESI; succinctly, an analyte solution, either from LC or directly infused, is pushed at flow 

rates (~0.1-40 ~-tLimin) through a thin metal capillary (normally, 0.1 mm internal diameter 

and 0.2 mm outer diameter). The capillary is held at high potential(± 2-5 kV) and is 

located at about 1-3 em from the counter electrode; consequently forming a mist of highly 

charged droplets. The high electric field at the tip of the capillary results in partial charge 

separation, such that for negative ion mode, negative ions are enriched at the surface of 

the capillary tip, while positive ions are pushed inside the capillary. The synergy of the 

repulsive forces between the ions and the pull ofthe electric field on the ions overcomes 

the surface tension making the liquid expand into what is called a Taylor cone. The tip of 

the cone is unstable and as solvent is nebulized and evaporated with the help of a neutral 

drying gas e.g. nitrogen, the charged droplet shrinks considerably, thereby increasing the 
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electrostatic repulsion within the droplet ultimately reaching a critical value called the 

Rayleigh limit (Coulombic repulsion>> surface tension). At this limit, coulombic 

explosion occurs; producing a fine spray of charged droplets and eventually releasing 

charged molecules. Positive or negatively charged ions can be formed depending on the 

functional groups present in the analyte. For example, acidic functional groups (e.g. 

carboxylic acids) preferentially form negative charged ions usually by deprotonation, 

while basic (e.g. amines) ones would form positively charged ions generally by 

protonation. For analytes without sufficient basic moeties to enable protonation, 

cationization is observed. Notably, ESI favours production of multiply charged ions 

especially with macromolecules containing multiple charged centres. 31 A figure 

delineating the mechanism is shown in Figure 1.3. 

nebulizing gas 

nebulizing gas 

spray needle 
- 2-5KV 

Rayleigh limit & Coulombic 
explosion 

gas-phase ions 

Taylor cone "~, 

reduction 

large charged droplets 

Q 

high-voltage power + 1--------­
supply spray current (i) 

Figure 1.3. Schematic of a typical ESI system in the negative mode.31 

counter electrode 
+ ve 

oxidation 
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1.3.3.2 ESI-MS Application to HS Analysis 

ESI coupled to different powerful analyzers with tandem MS capabilities: (triple 

quadrupole (QqQ), Fourier Transform ion cyclotron resonance (FT-ICR), quadrupole 

time-of-flight (QqTOF) and quadrupole ion-trap (QIT)) have been employed for the 

characterization of HS. These studies have led to insights into the structure of HS 

components. The earliest report on the use ofESI-MS for HS characterization was by 

Fievre et al. 32 in 1997, using a FT-ICRMS. To improve desorption probability and 

detection efficiency for HS, HPLC was incorporated and fractions separated prior to 

analysis, thus reducing the polydispersity index of the HS. In their work, they used 

positive mode of ionization and compared the results from laser desorption ionization 

(200 :::;; m/z :::;; 800) with those of ESI, with the latter generating mass spectra with only few 

prominent ions and higher mass ions (up to m/z 3000), attesting to less selective 

ionization and minimal fragmentation. From their work, they proposed the possibility of 

determining unique molecular formulas for individual exact ion masses for detailed 

structure elucidation. However to achieve this, several tandem MS experiments are 

necessary especially with the use of collisional induced dissociation (CID) or sustained 

off-resonance irradiation (SORI) in FT ICRMS. In mass spectrometry, CID otherwise 

referred as collisional activated dissociation (CAD) refers to a mechanism of 

fragmentation of molecular ions typically in a vacuum of a mass spectrometer by 

collision with neutral gas molecules (ofen helium, nitrogen or argon). Mcintyre et alY 

used negative mode ESI and a QqQ mass analyzer to analyze groundwater HS. Complex 

mass spectra were reported with ions at virtually every mass unit with a large mass 
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distribution between m/z 100-1200 with a maximum around m/z 350. The possibility of 

the presence of multiply charged ions as well as spectral dependence on solvent made the 

obtained molecular weight distribution questionable. However, very useful information 

was obtained with CID experiments, where consistent loss of C02 and mass series of 

peaks separated by 14 and 2 Da, characteristic of CH2 group and olefinic and/or ring 

structures were observed, all pointing to a mix of aliphatic and unsaturated 

polycarboxylic acid compounds in HS. 

As discussed previously, carboxylic acids and phenolic moieties ionize best in the 

negative mode, whereas amines (-NH2) are preferentially ionized in positive mode. 

Mcintyre et al. 33 observed a higher (at least one order of magnitude) total ion current in 

the negative mode, which indicates a predominance of acidic molecules in ground water 

HS and so spectra acquired in negative ion mode could be more representative. However, 

in general, the negative ionization conditions can be used for the characterization of the 

acidic HS fraction, believed to constitute mono/dicarboxylic acids and polycarboxylic 

acid components, whilst the positive mode elucidates the basic fraction. Even with the use 

of the two modes, it is critical to mention that the resultant mass spectra may not 

accurately reflect the composition of the sample, since part of the neutral fraction (e.g. 

polyols, poly ethers, etc.) may be difficult to ionize and also due to the preferential 

ionization of the hydrophilic components containing functional groups such as carboxylic 

acids, alcohols, and especially amines.35 

Mcintyre et al. 34 confirmed the presence of individual classes of carboxylic acids 

in soil and peat fulvic acid standards from IHSS, using ESI tandem mass spectrometry 

(MS-MS). In their work, the fulvic acids were fractionated based on their solubility in 
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methanol and the precursor and product ion studies produced mass spectra indicating the 

presence of benzene, phenol, dihydrobenzene, furan and thiophene carboxylic acids. 

Aromatic carboxylic acid standards were used to verify the fragmentation patterns 

observed in the product ion spectra ofF As. Their results give credibility to the findings of 

degradation techniques (pyrolysis and thermochemolysis), where most of these are 

reported as pyrolysates. 

Kujawinski et a/.36 and Plancque et al. 37 employed ESI with a QqTOF mass 

analyzer, while Leenheer et a/. 38 using a multistage MS-MS (ion trap) have proposed 

hypothetical structures of lower molecular weight HS, as well as plausible fragmentation 

pathways. The use of sample infusion with QqTOF and QqQ mass spectrometers was, 

however, unable to fully resolve the individual HS ions. The remedy to this was proposed 

by Reemtsa et a/. 39 and others,40
-

43 who demonstrated that on-line coupling of SEC (using 

80/20 (v/v) water/methanol with 1 OmM NH4HC03) to MS-MS could significantly add a 

new dimension to the mass spectral information obtainable. Coupling SEC to MS/MS 

reduces the polydispersity of the HS entering the mass spectrometer at a given time thus 

minimizing ionization competition and increasing ionization efficiency, leading to more 

representative mass spectra. Moreover, by separating the inorganic impurities from the 

analytes, there is a reduction in adduct formation, which simplifies spectral interpretation. 

Using SEC-QqTOFMS, sufficient mass resolution was possible to allow identification of 

low MW FA (consisted ofhigh carboxylate content). The obtained data can be 

extrapolated for identification of high MW components, especially for the polymeric 

model ofHS. Nonetheless, even with these advantages, the use of SEC is limited due to 

non-specific ionic interactions, adsorption phenomena, hydrophobic (high at high ionic 
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strength) and electrostatic (high at low ionic strength) interactions. Judicious selection of 

the mobile phase is also critical because only a few solvents and buffers can solubilize the 

HS and are amenable to ESI-MS. 

Numerous studies have been conducted with the ultra-high resolution (R =m/~m) 

FT-ICRMS (theoretically R> 100,000), which was found to afford detection of 

individual fulvic acid molecules.44
-
46 This is due to its immense capability for resolving 

species that are nominally isobaric (e.g. species with a mass difference of up to 0.0034 

Da) without chromatographic separation. Stenson et al., 45 using ESI-FT-ICRMS, was 

able to detect individual molecules in Suwannee River HS assigning them elemental 

compositions and exact molecular formulas for low mass ions. Reemtsa et al. 46 has further 

demonstrated the utility of coupling SEC to ESI-FT-ICRMS, applying this technique to 

the analysis of fulvic acids from different origins (Suwannee River FA, Waskish peat 

elutriate and Nordic aquatic fulvic acid). From their study, up to 700-1900 molecular 

formulas ofF As components were derived. From these results, they concluded that the 

different fulvic acids had very similar molecular pattern and that (poly-) carboxylic acids 

with only few hydroxyl groups are the dominant class in the fulvic acids tested. The use 

ofFT-ICRMS technique is still a very active research area in humic substances studies 

and other related fields such as petroleomics due to the untapped potential therein.47 The 

major disadvantages ofFT-ICRMS are that it is extremely expensive, and thus not 

available to many academic institutions, and is not suited for coupling with LC. 

Some disadvantages with ESI have also been noted, such as mass dependent 

ionization and possible in source fragmentation, which may explain the radical variations 

of HS molecular mass distribution obtained with ESI compared to those obtained by SEC 
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and other techniques.7
•
15 Although there are still divergent views as to the cause ofthis 

discrepancy, suggested explanations include preferential ionization of relatively low MW 

components ofHS, formation of multiple charges (confirmed by Pfeifer40
) with ESI, or 

that the HS are supramolecules consisting of small molecules that tend to behave as 

macromolecules under strong ionic conditions employed with SEC. Leenheer et a/.,38 

using polyacrylic acid as a proxy for aquatic fulvic acids, has intimated that ESI generates 

fragments and multiply charged ions of HS, especially in the case of those fractions with 

high carboxylic content, although given the softness of ESI and the fact that HS may not 

easily accommodate multiple charges, the extent of the fragmentation and multiple 

charges have not been ascertained. The propensity ofESI for formation of multiply 

charged ions, although an advantage especially in proteomics, can be a drawback in 

analyzing very complex mixtures like HS because ofthe complexity of the resulting mass 

spectra. This necessitates use of complicated data visualization protocols such as the 

Kendrick mass defect (KMD). KMD has been used for HS data analysis by Kujawinski et 

al. 44
, but was initially developed to identify compounds found in petroleum, which are 

related to each other by addition or substraction of a methylene group. In addition, HS 

analysis by ESI-MS may require use of complex deconvolution software to interpret the 

mass spectra, such as GRAMS/32® reported by Plancque et al. 37 Additionally, 

Kuwajinski et a/.48 has recently demonstrated use of an automated compound 

identification algorithm for analysis of mass spectra of NOM acquired by ESI-MS. 

Conversely, MALDI is known to form mainly singly charged ions and hence the 

resulting mass spectra are considerably easier to interpret. Surprisingly, there is only 
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scant literature in the use ofMALDI to characterize HS, making it an attractive research 

endeavor. 

1.3.3.3 MALDI Basic Operational Theory 

The use ofMALDI was first demonstrated simultaneously in two laboratories, by 

Koichi Tanaka (Shimadzu Corporation, Kyoto, Japan), and by Michael Karas and Franz 

Hillenkamp (both ofUniversity of Muenster, Germany) in 1987.50
•
51 Tanaka used a 

pulsed N2 laser (337 nm emission wavelength) and a slurry of glycerol and colloidal 

cobalt as a matrix and reported a mass spectrum of lysozyme (MW 14,307). 50 On the 

other hand, Karas and Hillenkamp used a frequency-quadrupled pulsed neodymium YAG 

laser (266 nm emission wavelength) with nicotinic acid as a matrix and a mass spectrum 

of bovine serum albumin (MW 66,750) was reported. 5 1 Since then, MALDI has been used 

widely, especially for qualitative analysis of non-volatile macromolecular analytes such 

as proteins, oligonucleotides, oligosaccharides and synthetic polymers. The ability of 

MALDI to analyze various classes ofanalytes (especially macromolecules) by converting 

them to ions in the gas phase, and its utility as a surface analytical method, attests to its 

versatility and wide applicability and hence frenetic activity in its use has resulted, as 

manifested by a large volume of publications. 52
-
56 

MALDI is a classical example of a technique whose commercialization and wide­

range of applications preceded a thorough understanding of elementary mechanistic 

principles governing ion generation processes and desorption; the multifaceted MALDI 

mechanism is still an active research area. In essence, MALDI involves co-crystallization 

ofthe analyte with a molar excess of matrix (100:1 to 10,000:1) on a stainless steel 
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sample stage. MALDI matrices are typically UV absorbing small molecular weight 

organic acids, (structures of common matrices are shown in Figure 1.4). 
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Figure 1.4. Structures of common MALDI organic matrices employed. 

Energy from a focused UV (or IR) laser beam is directed to the cocrystallite (condensed 

phase of analyte-matrix) and a couple of processes occur. The matrix absorbs the energy 

from the laser and transfers the thermal energy softly to the analyte; with sufficient laser 

energy density (threshold irradiance ), an explosive formation of a dense plume expanding 

at supersonic velocities results. The plume consists of protonated molecules, deprotonated 

molecules, electrons, hydrogen atoms, matrix radicals and neutral matrix fragments and 

analytes. There has been an ongoing debate, however, on the necessity of 
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cocrystallization for the success ofMALDI. As a result of the success of other non-matrix 

surface-based techniques, a number of researchers are casting doubt on this long held 

notion. 57-59 

Ionization is a very complex phenomenon that is much less understood than 

desorption. This is especially so because of the many possible ions that result including 

protonated, deprotonated, cationized and radical species, with only very remote 

dependence on matrix, solvent composition, solution pH and analyte acid-base properties. 

Whether ions are preformed in the solid solution or are formed in the expanding plume 

remains a debate, although, in general, the secondary reactions dictate the ions that are 

eventually detected. One proposed ionization mechanism that has been propagated 

extensively is donation of a proton from the matrix to the analyte ( eqn 1.1) analogous to 

chemical ionization. 

* - + M +A~ [M-H] + [A+H] , ........................................................... Eqn 1.1 

where M* is the excited matrix and A, is the analyte. 

Cationization (mainly K+ and Na+ adducts are observed) can also be prevalent depending 

on the nature of the analyte, particularly those with low proton affinity such as 

carbohydrates and synthetic polymers. 59
• 
60 Odd-electron ion formation (either by electron 

transfer or electron capture, eqn 1.2) has also been observed especially for non-polar 

matrices (e.g. C6o, anthracene, terthiophene etc.) and analytes such as ferrocene and its 

derivatives. It has been postulated that charge transfer is possible if the ionization energy 

of the matrix slightly exceeds that of analyte. 59 

M+• +A~ M + A+• .................................................................. Eqn 1.2 
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The role of the matrix is multifold: 

• Dilute and isolate analyte molecules to avoid analyte cluster formation. 

• Absorb the laser energy via electronic (UV-MALDI) or vibrational (IR-MALDI) 

excitation resulting in disintegration, while shielding the analyte from the energy 

deposited by the laser. This reduces analyte fragmentation by soft and uniform 

energy transfer from the matrix to the analyte. 

• Assist in desorbing the analyte from the sample surface and in analyte ionization. 

Most of the known matrices have stood the test of time and have been used since 

MALDI inception, but there is ongoing research on the exploration of new matrices, 

because none of the known matrices is ideal and able to meet all the above functions. 

Selection of a good matrix thus remains one of those challenges in MALDI applications, 

particularly because MALO I is a complex physico-chemical process happening in 

nanosecond timescale, and there are no rational guidelines or criteria for matrix selection. 

As such, the matrices are only operationally-defined as either "hot" or "cool" depending 

on their phase transfer temperatures, with the former causing more analyte fragmentation 

than the latter.58
-
61 

The analyte interaction with the matrix has also been a very contentious issue, 

with two schools of thought being dominant: possibility of analyte incorporation into the 

matrix solid, forming the so called 'solid solution', which refers to analyte solvation in 

the matrix crystal. The other possibility is where the matrix acts as support for the 
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analyte. To study these two phenomenons, high resolution scanning electron microscopy 

(SEM), a well developed microscopic technique, has been widely employed. 61
·
62 

MALDI is generally coupled to a time-of-flight (TOF) mass analyzer, particularly 

suited due to the pulsed nature of the laser (commonly N2), which results in pulsed ion 

generation. In the TOF mass analyzer, ions originating from same position at the same 

time are accelerated by a constant electric field, to a constant kinetic energy equal to zV 

(eqn 1.3b), where z is the charge ofthe ion, u is the velocity ofthe ions and Vis the 

accelerating pulse potential. The measured mass-to-charge ratio (mlz) relationship is 

shown in eqn 1.4. The lighter ions travel faster than the heavier ones and reach the 

detector earlier, (typically a microchannel plate detector) placed at the end of the flight 

tube (of length L).63
•
64 Figure 1.5 shows a schematic ofMALDI-TOFMS. 

Equation governing TOF separation: 

u = (2qV/m) 112 
••..•••..••.•••••..•••.•.•••.•••..•..•••••.•..•..••••.•.•••.•.. Eqn 1.3a 

Where: q =z x e, and z is the number of elementary charges and e is 1.6 x 10 -!
9 C 

Therefore, 

u = (2zeV/m) 112 
.•..•••.•.•..••••••.••.••••.•••.•••••.••.•••.••••.••.•.•..•..••• Eqn 1.3b 

and 

m/z = 2Ve (t/d)2 
.•.••••.••.••.•••..•••••.•••.•••..•••.••.•••..•..•..•.•.•..•.•• Eqn 1.4 

d- length of field free drift region 

t- measured time of flight ofthe ion 
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Figure 1.5. MALDI TOFMS principle (adapted from reference 63
) 

Some of the noteworthy advantages of TOF include: high ion transmission, high 

sensitivity, theoretically unlimited mass range, very high spectrum acquisition rate, 

multiplex detection capability for each ionization pulse, low cost and relatively simple 

instrumentation to conceptualize. The common limitations of TOF analyzers comprise of 

relatively poor resolution compared to FT-ICRMS (although high resolution hybrid TOF 

now available e.g. QqTOF and TOF-TOF) and incompatibility with continuous ion 

sources. Coupling MALDI to TOF, especially using the conventional axial geometry, 

requires the synchronization of mass analysis to the ionization and desorption steps, and 

which are highly variable, and can adversely affect the instrument performance. 

Nonetheless, with the development of time-lag focusing, the performance and robustness 

ofMALDI have been greatly improved. Furthermore, the decoupling ofthe mass analysis 

from laser timing using orthogonal MALDI ( analyzer perpendicular relative to the ion 

source) has not only improved the MALDI performance but also made MALDI amenable 

to coupling with other continuous beam mass analyzers (QqTOF, QqQ, IT etc.).64 
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1.3.3.4 MALDI-MS Application to HS Characterization 

Laser desorption ionization (LDI), the matrixless variant ofMALDI, has been 

employed for the determination of molecular weight distributions of humic substances by 

a number of researchers. Novotny eta/. 65 characterized five IHSS fulvic acids of different 

origins (from soil, peat, Nordic, and Suwannee River) using LDI-FTMS revealing broad 

molecular weight distributions of m/z 100-1100 with number average molecular weights 

of m/z 400-600 and intensity maxima at 3 70 and 530 Da. Brown et al. 66 reported 

molecular weight distribution in the positive mode for FA to be about m/z 1 000 with most 

abundant ions in the mlz 500-600, which complemented the results achieved previously 

by Novotny et al. 65
. In the negative mode, the molecular weight distribution ( ~ m/z 700, 

most intense ions mlz 400-500) was lower and more reproducible mass spectra were 

obtained. Very similar results were obtained by Fievre et al.32 and Srzic et al.67 In all 

cases, the featureless and poorly resolved mass spectra obtained were frustrating but 

confirmed the sheer complexity of these substances. Hence, interpretation was limited to 

MS fingerprinting of different FA classes and approximation of molecular weight 

distribution. Their results, however, provided some proof that lower MW substances 

dominate the mixture comprising FA, since the molecular weight distribution was 

significantly lower (centered ~ 500-700 Da) than those determined by other traditional 

methods (e.g. ultra filtration, SEC, VPO etc.), further casting doubt on the notion that HS 

are macromolecules spanning hundreds ofthousand Daltons.2
'
7
J

5 One major limitation of 

LDI, however, is that analytes are not shielded from the laser energy leading to analyte 

fragmentation, and this was suspected to be one of the possible reasons for lower mass 
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distribution. This therefore necessitated the use of the much softer ionization method, 

MALDI. 

The oldest reported attempt for characterization ofHS by MALDI-TOFMS was 

by Reemler et al.68 in his seminal paper in 1995. They confirmed the presence of basic 

groups in humic acid (isolated from lake water and from a bog) due to the amenability of 

HS to protonation. However, they reported that the technique was limited because of 

cluster formation, fragmentation phenomena and probable preferential desorption and 

ionization of lower molecular weight compounds. 

Haberhauer et al.69 among others/0
-
73 additionally confirmed, using MALDI­

TOFMS, that HS (samples used ofterrestrial origin) may not consist of high molecular 

weight compounds as once thought, but could be composed of smaller building blocks not 

bound together by covalent bonds. Similar conclusions had been arrived at from ESI 

results.42
-
46 Major obstacles encountered in the use ofMALDI-MS technique include: 

detection problems due to the inherent complexity of HS, which could contain a highly 

varied mixture of low concentration constituents and selection of an ideal matrix. MALO I 

is also prone to the formation of cluster ions, which are indistinguishable from molecular 

ions, fragment ions and isobaric matrix interferences, thus complicating spectra 

interpretation. Moreover, impure samples such as HS are likely to contain impurities that 

could adversely affect the ion yield. It is likely that only a small fraction of the entire 

mixture is desorbable and ionizable, thus the spectrum may not be representative of the 

whole sample, leaving a proportion of HS constituents unidentified. Nevertheless, 

MALDI-MS was found to afford characterization and differentiation ofHS from 

terrestrial and aquatic origins. 69 The similarity of MALD I mass spectra ofF As from 
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different origins (e.g. derived from coal, leornadite, soil, peat etc.) was noted by 

Gajdosova et al. 70
-
72 suggesting similarities in their genesis. The commonalities in the 

molecular composition ofF As have also been noted by Reemtsa et al. 42 in their 

comparative investigation ofF A from surface water, ground water and peat. The fact that 

similar mlz ions have been reported for different HS of different origins, including those 

from Antarctica where very limited vegetation is present, further attests to HS similarity, 

hinting at common precursors and a common genesis of these substances. In spite of the 

limitations, the potential of MALDI has not been fully exploited. With careful sample 

preparation, matrix selection and optimization of parameters such as matrix/analyte ratio, 

more information on HS can be obtained, which can bring deeper insight into their 

chemical nature. It is practical to envision that since there has been tremendous progress 

in the innovation of new analytical tools, the knowledge on the structural properties of HS 

will continue to be revealed. For example, the success in coupling of LC to MALDI 

integrated with FT-ICRMS has created a very powerful platform for proteomics, but 

could also have applications for materials like HS.76 

1.3.4 Disinfection Byproducts Formation 

According to estimates by the United Nations, up to 1.1 billion people lack access 

to safe drinking water. It is further estimated that 6000 children in developing countries 

die of waterborne diseases every day. Water contaminants e.g. metals, pesticides etc. 

further exacerbate an already dire situation. With the water shortage that is already being 

felt around the globe, water reuse by disinfection is one feasible solution; however, this 

approach is not without potential pitfalls. Ultimately, the onus for providing safe drinking 

water rests on the water chemists who must consider all aspects of water quality. 77
·
78 
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Although disinfection especially by chlorination has nearly eradicated the 

morbidity and mortality of water borne diseases caused by pathogens (e.g. Salmonella 

typhi, vibrio cholerae, E. coli, Cryptosporidium, Giardia etc.), it is counterproductive 

since chlorine reacts with aquatic NOM (HS being the major component) and inorganic 

materials present in water to form numerous potentially harmful disinfection byproducts 

(DBPs), some of which are suspected carcinogens. 12
·
79 The reaction pathways for NOM 

and chlorine are not well understood due to the structural ambiguity regarding NOM, but 

could include electrophilic substitution, radical reactions, oxidation, addition etc. These 

reactions produce a mixture ofDBPs, widely differing in polarity, molecular weight and 

physical and chemical properties.80
-
82 Figure 1.6 shows a simple schematic of the DBPs 

formation process. 

Disinfectant (e.g. Cl2, Cl02, 03, 

UV, C2H403, NHp) 

Water source --~-----i Natural organic 
matter (NOM) 

Figure 1.6. Formation of disinfection byproducts. 

1----r----. Disinfection by-products 
(DBPs) 

Bromide and/or 
iodide 

A delicate balance must be maintained between complete disinfection to kill 

pathogens and minimization ofDBPs formation. This is a big challenge because the 

parameters leading to improved disinfection efficiency similarly increase DBPs 

formation. 81 Figure 1.7 delineates in graphical form this relationship. 81 
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Figure 1. 7. Health risk tradeoffs of drinking water disinfection. 

The first case ofDBPs occurrence was reported by Rook 12 in the 1970s when he 

discovered chloroform in drinking water. Since then, a lot of research time and resources 

have been expended in the characterization ofDBPs and over 600 DBPs have been 

identified. As a result, there is a substantial accumulation ofliterature on DBPs over the 

last decade, which would be too large to comment on in its entirety. However, 

authoritative reviews on emerging contaminants including a detailed list of specific 

priority DBPs are produced annually by Richardson.82
-
84 Tables summarizing the 

categories ofDBPs and the semi-quantitative carcinogenicity rankings and rating scale 

categories are provided in Table 1.1 and Table 1.2 respectively. 

It is in general agreed among DBPs specialists that the known compounds only 

represent a small component(< 40%) ofthe existing DBPs in the water systems and thus 

their characterization remains a grueling task. By studying as many DBPs as possible, the 

resulting knowledge could be used to generate databases that could be useful and time 

saving for researchers in the future. Other issues, such as the formation of DBPs in vitro 

resulting from reactions of organic matter (foods) and other compounds such as 

pharmaceutical products with residual disinfectant in drinking water, have so far received 

little research effort and yet merits serious investigation. 84 
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Table 1.1. Classification of common known DBPs. 82-84 

DBPs class Example Toxicology Disinfectant 
rating source 

Halomethanes chloromethane B2 Cb, NH2Cl 
(THM) 

Haloacetic acids dichloroacetic acid B2 Cb, NH2Cl 

Halo ketones 1,1, 1 ,3-tetrachloropropanone c Ch, 03, Cl02 

chloropropanone c 
Haloaldehydes dichloroacetaldehyde c Cl2, NH2Cl 

chloroacetaldehyde c 
Haloacetonitriles chloroacetonitrile Cb, 03, 

Haloamides dichloroacetamide Cb,NH2Cl 

MXandMX 3 -chloro-4-( dichloromethy 1 )-5- Bl Cb, CI02, 
analogues hydroxy-2( 5H)-furanone NH2Cl 

Inorganic chlorite D 03, Cl02 
compounds 

N onhalogenated methylglyoxal c 03 
carbonyls 

Other priority nitroso compounds, e.g. Bl Ch, NH2Cl, 
DBPs ni trosodimethy lamine Cl03 

iodo acids, e.g.iodoacetic acid, NH2Cl 
iodobromoacetic acid etc. 

Some of the ratings were approximated from the structure activity analysis rankings 
proposed by Woo et al. 87 (see Table 1.2 below) 

Table 1.2. Contaminants carcinogenicity rankings categories. 

Class"'11'x1 Description Wooet Approximate 
at. 87 carcinogen Carcinogenicity scale* 
ran kings 

A Human carcinogen Highly likely A 
Bl, B2 Probable human carcinogen High moderate Bl 
c Possible human carcinogen Moderate B2 
D Not classified Low moderate c 
E Non-carcinogen Marginal D 

Low E 
*Classifications presented are estimated for comparison with the rating system m general 
use. 
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Briefly, traditional classes of DBPs such as trihalomethanes (TllM) and five of 

the nine haloacetic acids (HAA) have already been regulated and maximum contaminant 

levels fixed by organizations such as the United States Environmental Protection Agency 

(US EPA) and the World Health Organization. For example, in 1998, the US EPA set the 

maximum contaminant levels (MCLs) of total THMs and HAAS (the sum of five main 

HAAs) to 80 and 60 j..tgL-1 respectively.83
•
84 Other identified DBPs, such as the strong 

mutagen, 3 chloro-4-( dichloro-methyl)-5-hydroxyl-2( SH)-furanone (MX), initially 

identified as a DBP in bleached pulp water in Finland, have generated tremendous 

scientific interest and numerous studies have been published detailing their formation and 

occurrence. 79
• 

85 The main reason for the large number of studies is that MX reportedly 

accounts for 15-57% of the total mutagenic activity in chlorinated drinking water and SO­

l 00% in chlorinated humic-rich water. However, other MX analogues especially 

brominated forms ofMX (BMXs) or DBPs similar in structure to MX have also been 

reported. 79
• 

84
·
85 Many more emerging DBPs, some of which have been categorized as 

high-priority DBPs, have been recognized to be more important in their effect to human 

health. 79
•
85 For example, nitrosodimethylamine (NDMA) recently discovered in drinking 

water in Ontario has been recognized as a probable human carcinogen and is now a 

byproduct of great concern. Ontario has set its maximum allowable limit to 9 ng L -l. 

NDMA is normally produced when chloramines and, to a lesser extent, chlorine and 

chlorine dioxide are used as a disinfectant. 86 Other high-priority DBPs include 

chlorinated, brominated and iodinated forms of halomethanes, haloacetonitriles, 

haloketones, haloaldehydes, haloacids, halonitromethanes, halofuranones, haloamides etc. 

Iodinated DBPs have been found to be the most toxic followed by brominated and then 
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chlorinated analogues. For instance, dibromonitromethane has been reported to be at least 

one order of magnitude more genotoxic to mammalian cells than MX. The occurrence of 

both iodinated and brominated byproducts is common when surface waters are 

contaminated with coastal waters containing iodide and bromide, which react with 

chlorine (HOCl/OCl~) to form hypoiodous acid (HOI/Or) and hypobromous acid 

(HOBr/OBr~), respectively. Most ofthese compounds have been classified as possible 

human carcinogens and, though inconclusive, epidemiology studies have identified them 

as potentially teratogenic and cytotoxic. Studies on human exposure have shown that 

ingestion is only one of the exposure routes; inhalation and dermal absorption through 

bathing could be even more significant. 82
-
84 

However, it is virtually impossible to regulate every single DBP and therefore it 

has been suggested that bulk measurements (e.g. total dissolved organic halides) as well 

as predictive models would be the most practical way of occurrence prediction and 

decision making regarding regulatory measures. 81 Use of mechanism based structure 

activity relationship analysis has also been exploited by Woo et a!. 87 to rank 

carcinogenicity ofvarious DBPs. Nevertheless, the study of individual formation of 

newly discovered DBPs outside the realm of traditional DBPs such as THM and HAA 

remains a legitimate research area. This could be essential in understanding DBPs 

formation mechanisms~- since to date only hypothetical pathways have been proposed 

(Figure 1.8)- especially if suitable model compounds are employed. Model compounds 

such as flavanoids (hesperetin), aromatic acids (syringaldehyde) and phenolic compounds 
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(e.g resorcinol, have been employed to model the reaction pathways leading to the 

formation of DBPs. 88
-
90 
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Figure 1.8. Model pathway of adsorbable halogenated DBPs (AOX) formation. 10
' 

12 

Most of the uncharacterized DBPs are of relatively high molecular weight (> 500 

Da), polar and/or thermally labile compounds, and are not easily amenable to analysis by 

the gold standard technique GC-MS (used for thermally stable analytes with adequate 

vapor pressure). Minear et a/. 91
-
93 have published several papers describing attempts to 

characterize high molecular weight DBPs using SEC-ESI-MS and ESI-MS-MS. The 

identification of specific high molecular weight DBPs has been largely unsuccessful due 

to the complexity of the mass spectra, with peaks present at every mass unit. By using 

FT-ICRMS, it might be feasible to produce better resolved mass spectra and definitive 

structural assignments may be possible. The analysis of the polar DBPs is also very 

challenging especially because of their characteristic low octanol-water partition 

coefficient, hence their extraction is difficult. Derivatization using reagents such as 0-
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(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and 2,4-dinitrophenylhydrazine 

(DNPH) for carbonyl compounds (Figure 1.9a,b), in conjunction with GC-MS and LC­

MS, respectively, have been used successfully. PFBHA has mainly been used to 

derivatize aldehyde DBPs, leading to formation of oximes that are amenable to analysis 

by GC. 85
• 
94 DNPH on the other hand, reacts with both aldehydes and ketones to form 

hydrazones, which are sufficiently acidic and thus amenable for detection in negative 

mode ESI-MS.94 It is possible to distinguish hydrazones resulting from aldehydes and 

ketones either by their difference in chromatographic behavior (syn and anti isomers 

coelute for aldehydes, but are resolvable for ketones) or by collision induced dissociation, 

where a fragment ion m/z 163 is present in aldehydes but not in ketones. Vincenti et a/. 95 

recently synthesized water-soluble, stable highly fluorinated alkyl and aryl 

chloroformates (Figure 1. 9c) and demonstrated their use for rapid ( < 1 0 min) 

derivatization of highly hydrophilic DBPs (e.g. carboxylic acids, alcohol, phenols, etc.) 

with subsequent detection by electron capture negative ionization mode GC-MS. They 

reported detection limits ranging from 0.1-10 j.lg L- 1 for a number of classes of 

compounds (e.g. hydroxycarboxylic acids, hydroxylamine, di/trihydrobenzenes, etc.). 

Although the derivatives had a relatively high molecular weight, the multiple highly­

fluorinated funtionalities, made them sufficiently volatile. Using this technique, malic 

acid, tricarballylic acid and 1 ,2,3-benzenetricarboxylic acid could be identified as DBPs 

from ozonation. These techniques are limited because GC-MS can only be used for the 

relatively volatile compounds and derivatization may also result in compounds that are 

too bulky for GC-MS. 83
• 
94

• 
95 Additionally, the derivatives normally undergo extensive 
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fragmentation in the high temperature injection port of the GC, and hence, the molecular 

ion is almost always absent in the spectra making interpretation difficult. On the other 

hand, when the derivatives are analyzed by LC-MS, resolution using the LC column into 

discrete peaks is difficult and thus identification is seldom achievable. Since DBPs are 

typically present in water at ultra low levels (e.g. sub ng L-1 levels), sensitivity can be a 

problem; as a result, most of the derivatizing reagents employed require long reaction 

times and rigorous sample preparation followed by extraction. The use of LC-MS in 

DBPs analysis is a hot research area with tremendous potential for growth. 84 

a) 

PFI311A 

b) 02N-Q-NH-NJ12 + 

N02 
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Figure 1.9. Derivatization schemes for polar compounds: a) PFBHA and carbonyls b) 

DNPH and carbonyls c) alkyl chloroformates with carboxylic acids, alcohols and 

amides.94
•
95 
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Understanding the parameters that influence DBPs formation is critical to 

reducing their formation. Such parameters include pH, temperature, NOM properties, 

bromide and iodide levels and chlorine dose. In brief, THM and in general total organic 

halide (TOX) formation increases with increasing pH and temperature, although mixed 

effects have been reported for HAA species with pH variation. Higher chlorine dose has 

been found to favor HAA formation over THM. On the other hand, halogenated DBP 

formation increases with the activated aromatic content of NOM and UV 254 has been 

found as a good surrogate for DBPs.96 

Due to the magnitude of the DBPs problem, different approaches have been 

investigated for minimizing them. For example, alternative disinfectants e.g., 

chloramines, ozone, UV and peracetic acid have been investigated resulting in reduction 

in the use of chlorine as a disinfectant. Many plants (e.g. the local Bay Bulls water 

treatment in St. John's, Newfoundland, supplying water to more than 100,000 residents) 

are mainly using ozonation in tandem with chloramination, which has been found to 

reduce the DBPs occurrence. Nevertheless, chlorine still remains the most widely used 

disinfectant due to its superior disinfection efficiency.97
•
98 The search for more benign 

disinfectants is ongoing with the very recent promising discovery ofTAI'vll>li)-activated 

hydrogen peroxide, which is being explored by the Institute for Green Oxidation 

Chemistry (based in Carnegie Mellon University and directed by Dr. ·rerry Col!ins),'N as 

a means to destroy chemical pollutants in water, as well as an inexpensive water 

disinfection technology. Such technologies are still, however, in the research stage and it 

might take decades before their use becomes common in large scale water treatment. 
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Nevertheless, it has been argued that changing the means of disinfection would 

only result in the formation of different DBPs. For example, it was found that ozonation 

resulted in formation ofbromonitromethanes, while iodo-THMs, nitrosodimethylamine 

and dihaloaldehydes are prominent when chloramine is used as the disinfectant. 82
'
83 

Ultra-filtration (membranes can remove particles of 0.001 - 0.1 11m) of the natural 

organic matter has been suggested as a more pragmatic approach, but the fulvic acid 

component ofNOM, which is largely the known precursor ofDBPs, is highly soluble in 

water and hence complete removal is a very challenging endeavor. Catalytically-induced 

oxidative coupling reactions when combined with ultrafiltration to remove most of the HS 

have been suggested by Weber et al. 100 

1.3.8 Analysis of Small Molecules by MALDI 

The analysis of small molecules by MALDI has become an active research area 

especially over the past decade, catapulted by the desirable properties of MALDI 

especially its sensitivity, relative ease of sample preparation, small sample size 

requirement, and amenability to automation, which is desired for high throughput analysis 

in pharmaceutical applications. In addition, MALDI is also more tolerant of salts and 

buffers compared to ESI, and is also environmentally friendly since large amounts of 

organic solvents can be avoided. Despite MALDI being a mature technique for the 

analysis of biomolecules, most of the hurdles limiting its full application in small 

molecule analysis are yet to be fully surmounted and therefore its application to small 

molecules is still in its infancy. Cohen et al. 101 published an excellent treatise on small 

molecule analysis by MALDI. 
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Some of the common hurdles for application of MALDI in small molecule 

analysis include matrix interference in the low mass region, excessive volatility of small 

analytes especially in the vacuum chamber and poor ionizability of most small molecules. 

The inherent irreproducibility associated with random analyte deposition in the matrix 

crystal also greatly affects the possibility of using the technique for quantitative analysis 

of small molecules. Different approaches have been attempted to alleviate these obstacles 

with varying degrees of success. Use of more innovative sample preparation strategies 

other than the conventional dried droplet method, such as fast evaporation, 102 vacuum 

11 . · I 03 1 · d · · I 04 1 · · I 0~ h crysta tzatwn, e ectrospray matnx eposttwn, mu ticomponent matnces, · etc. ave 

been shown to yield more homogeneous analyte-matrix cocrystallization and thus better 

signal reproducibility. A matrix suppression effect (MSE) obtained by optimizing the 

ratio of analyte to matrix was proposed by Knochenmuss et al. 106 Although this technique 

worked for some classes of analytes, the rationale is cumbersome and a tedium since it is 

based on trial and error and thus too time-consuming. Matrix suppression has also been 

achieved using surfactants such as cetyltrimethylammoniumbromide (CT AB), Triton 

X1 00, sodium dodecyl sulphate (SDS), among others. 108 The use of such surfactants, 

however, can be counterproductive since the suppression is not specific to matrix ions but 

also suppresses the analyte, thereby compromising the signal to noise ratio, significantly 

eroding detection limits. Reproducibility has been improved by use of suitable internal 

standards as reported by Volmer et al. 108
•
109 and other authors. 110.1 11 Additionally, the use 

of selected reaction monitoring (SRM) scan mode (only diagnostic product ion is 

monitored), especially with triple quadrupole (has highest duty cycle scan available) and 
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equipped with high repetition rate laser has been demonstrated to improve SIN ratio, 

d . . ~ d b f~ . ~ ll l l · · I 09-1 II re uce matnx mter,erence an to e e 1ect1ve 10r sma mo ecu e quant1tat10n. 

Another approach has been to use high molecular weight matrices, which have 

limited matrix peaks in the low mass region. Such high MW matrices reported include 

porphyrin based matrices, e.g. meso-trakis(pentafluorophenyl)porphrin (MW, 974.6 

Da). 112 Recently, there has been an emergence in the use of carbon nanotubes (CNTs), 

originally discovered by Iijima, 113 as matrices. 114
-
121 This is an off-shoot of the use of 

inorganic matrices as laser energy absorbing materials, which were the materials used at 

the inception ofMALDI.50 Black et al. 122 has also proposed the use of pencil lead, which 

is essentially graphite, as a matrix which has also shown considerable promise for use as a 

matrix. The major problem with these carbon based substrates is their susceptibility to 

contain impurities, which contaminate the ion source. For example, CNTs are rich in 

metallic impurities, suspected to be the main reason for ion source contamination, 

sometimes leading to instrument damage and costly repairs. The contamination of the ion 

source is exacerbated by the fact that CNTs do not adsorb firmly on the stainless steel 

MALDI stage and thus fly off upon irradiation with a laser. To solve this problem, Ren et 

a/. 118 immobilized CNTs on the target using a polyurethane adhesive. Another challenge 

with CNTs is that they are insoluble and thus result in inhomogeneous sample spots. To 

increase solubility, Pan et a/. 119
.1

20 found it imperative to introduce carboxylate groups to 

enhance protonation of analytes, and to further increase CNTs surf'ac~ polarity. Oxidation 

of CNTs is laborious and time consuming, requiring up to 20 hours of refluxing with 

nitric acid. Further functionalization has been attempted by bathing CNT in a citric acid 

solution resulting in an anionic surface. 120 Introduction of phenolic hydroxyl to the 
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surface of the CNT has been attempted by amidation of oxidized CNTs and the resulting 

(CNT 2,5-dihydroxybenzoyl hydrazine) derivative was found to possess a high surface 

area, labile protons available for chemical ionization and strong UV absorption at the 

laser wavelength. This reagent was originally used by Ren et a/. 121 for enrichment and 

identification of peptides. 

There has been sustained attempts to use matrix free substrates for laser 

desorption, while trying not to compromise the efficiency of the technique by seeking 

ways to shield the analyte from the fragmentation by the laser pulses. A good example is 

the development by Wei et al., 123 in 1999, of the matrix-free method desorption ionization 

on silicon (DIOS), which is categorized as "surface MALDI". DIOS was primarily 

developed to alleviate the matrix interference problem, common with MALDI, thus 

making it applicable for small molecule analysis. The sample stage is typically generated 

by electrochemical anodization and deposition or by chemical etching of crystalline 

silicon substrate to produce arrays (either photopattemed spots or grids). The resulting 

porous silicon has high optical absorption in the ultraviolet, thus meeting the criterion of 

an ideal matrix and is capable of trapping analyte molecules, enabling their desorption 

and ionization. DIOS has been demonstrated to offer low detection limits in the 

femtomole range for various analytes such as peptides, glycolipids, antiviral drug 

molecule etc.) and is compatible with silicon-based microfluidics and microchip 

technologies. However, DIOS suffers from difficulties in manufacture, due to chip to chip 

irreproducibility, non uniformity and contaminants (e.g. etchants) trapped in the porous 

surface, limited mass range and poor applicability to differing classes of 

compounds. 123
'
124 Research on how to solve these problems and increase the applicability 
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of this technique is on going. There are other interesting attempts developed to eliminate 

the matrix addition step from MALDI-MS technology, including use of resorcinol­

formaldehyde aerogels as LDI substrate, use of deposited nanostructured silicon films, 

sol-gel derived 2,5-dihydroxybenzoic acid assisted LDI and use of a surface bound­

polymer containing a UV -absorbing molecule, a technique christened, Surface Enhanced 

Neat Desorption (SEND). 125
-
127 Recently Kitagawa128 reported the successful use 

synthetic polyelectrolyte (poly-a-cyano-4-methacryloyloxycinnamic acid) as an LDI 

platform for peptides analysis. In his work, he indicated that a suitable polyelectrolyte for 

LDI should have laser-energy absorbing molecules on the polymeric backbone. The 

polymer must also bear moieties with labile protons such as carboxyl that could easily 

form a "proton cloud" that is available for donation to analyte, on excitation by the laser. 

With the loss of protons and subsequent formation of negative charges, the 

polyelectrolyte matrix, should be in a configuration that allows increased inductive 

repulsive effect, which eventually contributes to desorption. 

Increasingly, the application of derivatization is becoming a practical approach to 

circumventing most of the aforementioned problems with MALDI small molecule 

analysis. While chemical derivatization is a routine part of GC and HPLC analysis with 

UV and fluorescence detection, 130 it is only recently that it has been attempted for ESI 

and MALDI, and thus the application of derivatization enhanced LDI is still in its 

germinal stage. 131 -
139 

Site-specific chemical derivatization (often referred to as tagging or labelling) in 

MALDI has become more common, especially for the analysis ofpeptides and 
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carbohydrates, probably due to very well known, rapid and high yield chemical reactions, 

but applications to small molecule analysis is only in its preliminary stages. Examples of 

common chemical modification with these analytes include Schiffbase reactions, 

guanidation, dehydration of carbonyls with arylhydrazines and reductive amination with 

aromatic amine. 132
-
139 For example, Volmer et a/. 131 has also applied 2,4-

dinitrophenylhydrazine (DNPH) as a reactive matrix for corticosteroids. Formation of 

imines, for example, is a common biological reaction in enzyme-substrate binding, where 

the carbonyl group acts as a "handle". The use of charge bearing derivatization reagents 

for ESI-MS, such as precharged phosphonium based derivatizing agents (to analyze 

alcohols and carbonyls) and addition of a quartenary amine tag (peptide labelling) have 

also been attempted by Waterhouse et a/. 133 and Mirzaei et al., 135 respectively. Karst and 

co-workers, 140
-
142 pioneered the concept of"purpose-designed derivatizing agents" where 

a compound is tailor-made to incorporate the most ideal attributes of good derivatizing 

agents such as: a reactive moiety that is analyte selective, sufficient stability, polarity and 

good detectability. However, it is not trivial to integrate all these properties in one 

molecule. Karst et al. 140 synthesized a novel compound, 4-dimethylamino-6-(4-methoxy-

1-naphthyl)-1 ,3,5-triazine-2-hydrazine (DMNTH), which they used to analyze for 

carbonyl compounds using fluorescence and UV detection. The concept of modularly 

designed derivatizing agents is summarized schematically in Figure 1.1 0, adapted from 

the work ofWerlich et al. 143on selective analysis ofisocyanates and diisocyanates in 

air. This concept has not been utilized to our knowledge in synthesizing custom- reagents 

for use as reactive matrices with MALDI, and was envisioned to have great potential for 

the analysis of various analytes such as DBPs. 
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reactive functionality 

polar modifying moiety easily ionizable group 

Figure 1.10. Model of tailor made reactive matrix. 
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CHAPTER2 

Characterization of Humic Substances by Matrix Assisted Laser 

Desorption Ionization Time of Flight Mass Spectrometry 

A version of this chapter has been published. Mugo SM, Bottaro CS. Characterization of 

Humic Substances by Matrix Assisted Laser Desorption Ionization Time of Flight Mass 

Spectrometry. Rapid Commun. Mass Spectrom 2004; 18: 2375-2382. 
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2.1 Introduction 

Humic substances (HS) are brown to black colored compounds, which comprise a 

highly complex mixture of heterogeneous substances, believed to result from stochastic 

decomposition of diverse biogenic materials. This definition is equivocal and limited in 

explaining the structural properties of humic materials and so traditionally humics are 

operationally subdivided in terms of solubility aspects in aqueous media as a function of 

pH into three fractions: humins are non-soluble, humic acids (HA) are insoluble at acidic 

conditions, pH <1 and fulvic acids (FA) are soluble at all pH values. Humics are an 

important class of organic ligand that play a major role in the mobility and bioavailability 

of hydrophobic organic pollutants, trace metals and radionuclides in the environment. HS 

have also been implicated as the principal precursors ofhalogenated disinfection by­

products (DBPs) which are a concern to public health because of their suspected 

carcinogenicity, reproductive effects and hepatic toxicity. These critical issues, among 

others explain the continued interest in the characterization of HS compounds. 1-
4 

In spite of so many years of extensive research, much remains unknown about their 

genesis, molecular weight (MW), and absolute structure. However, during the past few 

decades, applications of a host of different analytical techniques have led to significant 

advances in the study of HS particularly with regard to their chemical composition. Gel 

filtration chromatography (GFC), vapor phase osmometry (VPO), field flow fractionation 

(FFF), and ultrafiltration (UF) have been used to probe the molecular weight distribution 

ofHS. 2-
5 GFC, which employs soft gels such as Sephadex and Bio-Gel, has been 

hampered by poor resolution and long analysis time, and so increasingly has been 

replaced with high performance size exclusion chromatography (HPSEC). Using HPSEC, 
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Piccolo and co-workers4 reported that contrary to the long-standing assumption that HS 

are high MW polymeric compounds (1 0 000-200 000 Da), HS are supramolecular 

compounds consisting of relatively small heterogeneous molecules (masses ~500 Da) 

held together by hydrogen bonds, and other weaker forces such as van der Waals among 

other interactions. HPSEC results are questionable due to lack of suitable calibration 

standards. Furthermore, the elution of polyelectrolytes such as HS is highly dependent on 

parameters such as ionic strength, pH, and stationary phase of the column and in general 

the nature of the buffer system. Optimization of these parameters to enhance fractionation 

to truly reflect size can be a formidable challenge and therefore SEC can only be used in 

determining apparent molecular weight distributions. Mass spectrometry, on the other 

hand, has become an important tool over the past decade for the analysis of these natural 

macromolecules. Most previous mass spectrometric studies ofHS used conventional 

electron impact ionization, giving important information about constituent moieties but 

resulting in extensive fragmentation of HS (m/z ~ 200 Da) and yielding little insight into 

the actual overall structure. Nevertheless, most of the models describing HS structure 

have been deduced using this method in conjunction with nuclear magnetic resonance 

(NMR) data.2
A·

6 With fundamental evolution in soft ionization techniques, such as fast 

atomic bombardment, laser desorption, electrospray and MALDI, intact high molecular 

gas-phase ions can be obtained and analyzed by mass spectrometry. LDI has been 

employed by Novotny et al. 5 and other authors6
-

11 for the determination ofF A molecular 

weight distribution; the values reported were consistently lower than those from GFC and 

VPO. The function ofLDI-MS is dependent on a number of variables such as laser 

wavelength, laser power, analyte nature, polarity of acquisition of the spectra, among 
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other factors, and hence spectra can differ significantly with varying conditions. 7 

However, LDI is a relatively energetic ionization method that might produce excessive 

fragmentation ofHS, and so other softer approaches like MALDI and electrospray 

ionization (ESI) are more likely to lead to formation of intact molecular ions. ESI is 

finding more widespread application because it is considered to be the softest ionization 

method. When coupled with ultrahigh resolution Fourier transform ion cyclotron 

resonance mass spectrometry (FT -ICRMS) at 9.4 Tesla, full resolution of individual 

peaks separated by less than 1 Da has been achieved for HS mixtures. 12 Using ESI-

FTICRMS Stenson et a/. 12
•
13

• as well as others, 14
-
17 have tried to determine the exact 

masses and chemical formulae of HS constituents, but getting the exact structure is still a 

formidable challenge due to the many constitutional isomers that may be represented by 

one chemical formula. 

Analysis of HS by MALDI, another relatively soft ionization technique, was first 

18 19 9-11 attempted by Reemler et al. and later by Haberhauer et al. among other researchers. 

They reported the method had only limited utility due to cluster formation and 

fragmentation phenomena and thus has not found widespread acceptance. However, it is 

believed with properly optimized sample preparation, the potential ofMALDI has been 

unexploited in the analysis ofHS. It has the advantage of forming singly charged ions 

(which simplifies the spectra), unlike ESI, which has the propensity of forming multiple 

charges. MALDI in combination with TOFMS has the added benefit of high mass range 

of detection, whereas ESI has been reported to show bias in favor of low molecular 

weight compounds.5
•
6 It would be naive to claim that only one of these methods will 

ultimately resolve the humic materials entirely, however it is feasible that through the 
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proper application of these soft ionization techniques a significant contribution can be 

made to the study ofHS. 

2.2 Experimental 

2.2.1 Samples and chemicals 

Suwannee River fulvic (1R101F, 1S101F) and humic acids (1Sl01H) were 

purchased from International Humic Substances Society (IHSS), St. Paul, Minnesota. 

Extensive elemental analysis of these compounds has been done by the IHSS. The 

Armadale soil fulvic acid (ASF A) from Prince Edward Island, Canada was donated by 

Dr. Robert Helleur of Memorial University. Acetonitrile, methanol, tetrahydrofuran 

(THF) and water, all ofHPLC grade, and trifluoroacetic acid (TFA) were purchased from 

Sigma Chemical Co. (St. Louis, MO., USA). A number ofMALDI matrices were tested: 

2,5-dihydroxybenzoic acid (DHBA or gentisic acid), a-cyano-4-hydroxycinammic acid 

(CHCA), 3,5-dimethoxy-4-hydroxycinammic acid also known as sinapinic acid (SA), 

dithranol (1,8,9-anthracenetriol), 9H-pyrido(3,4-b) indole (norharmane) and 2-(4-

hydroxyphenyl-azo)-benzoic acid (HABA) all from Sigma Chemical Co. 

A number of solvents were used to dissolve samples of HS including 

acetonitrile/water, acetonitrile/0.1% aqueous TF A, water, methanol, 5 M urea, aqueous 

solutions of 20 mg mL- 1 NaOH and KOH. The respective matrices concentrations 

investigated are shown in Table 2.1. The sample/matrix ratios investigated were; 1 :1 0, 

1:100, 1:1000, 1:10000 (w/w). Each of these were combined with different matrices and 

1 J.!L spotted and co-crystallized on the sample plate. The significance of the sample 

preparation method was also examined. The usual methods include the dried droplet 
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method (originally described by Karas and Hillenkamp20
), fast evaporation, and the 

overlayer method. In the dried droplet method, a drop of aqueous matrix compound is 

mixed with analyte solution and dried leaving a deposit of analyte-doped matrix crystal. 

On the other hand, with fast evaporation, the matrix and sample are deposited separately. 

The matrix solution is first spotted on the sample stage and once crystallized, a drop of 

the analyte solution is applied on top of the matrix deposit. In overlayer method, fast 

evaporation is used to form the first layer of crystals and over this, a mixture of matrix 

and analyte solution is deposited?1 

HS spectra were also acquired in the laser desorption ionization mode (LDI), that 

is, without use of matrix. 

2.2.2 MALDI Instrumentation 

MALDI mass spectra were acquired using a Voyager-DE Biospectrometry 

MALDI-TOFMS instrument (Applied Biosystems) with the following features: a 3 

nanosecond pulsed nitrogen laser (337 nm) with a maximum intensity of 4600 (arbitrary 

units), positive and negative ion detection, linear or reflectron mode operation; ion path 

length of2.0 meters in linear mode and 3.0 meters in reflectron mode. It was also 

equipped with a post-source decay (PSD) analysis capability, automated single-plate 

sample-loading system, mlz range in excess of 300 kDa, timed-ion selection, low mass 

gate matrix suppression, video camera and monitor for sample viewing, among other 

features. In the linear mode, the upper mass range is 350 kDa with a resolution of 1,000 

(for m/z 17,000) while in the reflectron mode, the upper mass range is 6,000 Da with a 
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resolution of 10,000 (for m/z 5,700), making it the preferred mode. In the work reported 

here, the reflectron mode was mainly used. 

The analyte/matrix samples were ablated and ionized from the sample holder with 

the nitrogen laser and ions accelerated into the flight tube with 20kV. Fifty laser shots 

were acquired then signal averaged. Other optimized instrumental settings were grid 

voltage, 73 .4%; mirror voltage ratio, 1.12; guide wire, 0: 0.002%; extraction delay time, 

200 ns; acquisition mass range, 100-2000 Da. Both positive and negative modes were 

investigated; only the former is reported in this paper. 

2.3 Results and Discussion 

2.3.1 Analysis by LDI 

Humic substances are known to absorb at wavelengths in the UV region, which 

includes the wavelength of the laser used in this work (337 nm). This provides an 

opportunity to make use ofLDI (no matrix). Representative spectra obtained by LDI­

TOFMS (positive mode) are shown in Figure 2.1, noting that the samples were prepared 

in acetonitrile/0.1% aqueous TF A (7 :3 ), and that the spectra reported were acquired in 

positive mode. Various solvents (water, methanol, dimethylsulfoxide, acetone, 

acetonitrile) and sample concentrations were investigated to determine their effect on the 

quality of the spectra, with the acetonitrile/0.1% aqueous TFA performing best, in part 

because it was effective in dissolving the sample and resulted in less spreading of spots 

on the plate. 

In LDI, the tendency for humic substances to form either positive or negative ions 

has been shown to depend on the laser wavelength. For example, Brown et al. 7 reported 
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that with IR laser wavelengths of both 1 0.6 nm and 1.06 flm, humic substances appeared 

to more readily form negative ions. However, with the laser wavelength used in this work 

(337 nm), HS produces predominantly positive ions, a feature that was previously 

reported by Srzi6 et al.8 and Gajdosova, et al.8
-

11 Additionally, Srzi6 et al.8 used an 

adjustable wavelength pulsed ND:YAG laser emitting at 1064 nm, 532 nm and 355 nm, 

with Fourier transform ion cyclotron MS and found that HS spectra acquired using 

different laser wavelengths yielded different characteristic peaks. 

It should be noted here, that laser power was carefully controlled as laser flux 

higher than the threshold value for desorption/ionization causes metastable decay and 

reduces resolution in TOFMS. An increase in the laser power from 2532 (arbitrary units) 

to the highest laser intensity possible ( 4600) caused significant fragmentation and only 

mlz 242 persisted. 

The spectra shown in Figure 2.1 are also less complex and better resolved than the 

featureless spectra (highly complex) obtained using negative mode reported by Brown et 

al.6 The simplicity of the spectrum acquired in positive mode is not surprising as there are 

fewer sites (probably amines and phenols) available in HS for positive ionization. 

However, the greater the abundance of moieties present that can be easily ionized in the 

negative mode, such as phenolic and carboxylic groups, the more complex the spectra. It 

is also possible that there may be a process of selective ionization occurring so that ions 

measured in the positive ion mode may actually be structurally different from the species 

observed in the negative mode.22 Furthermore, it is also possible that positive ions can 

form clusters through interactions with neutral HS molecules, a feature reported by 

Brown et al.6 and Klaus et a/. 22
, which may further complicate analysis of the spectra. 
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The LDI spectra of soil and aquatic fulvic acids were consistently found to contain 

a number of common peaks, indicating that humic substances are comprised of some 

common structural components, irrespective of their origin. Table 2.2 summarizes 

conspicuous peaks, which were shared by aquatic and soil FA, as well as aquatic HA. 

The relative abundance of these individual peaks was not always reproducible (a 

limitation of mass spectrometry and MALDI), hence this value is not reported in the 

table. However, a few labeled peaks (•) were always observed in relatively high 

abundance (>40%). In addition to the consistency seen within the results obtained in this 

work, the peaks at m/z 495, 522, 550, have been reported by other authors5
-

11 using LDI­

MS under other experimental conditions and with humic material from sources unrelated 

to those used in the work reported here. Using a C02 (1 0.6 fJm) laser, Novotny et al. 5 

reported relatively high intensity peaks for FA in the 370-530 Da region. These results are 

in agreement with our work. Similar results were reported for humic acid from Croatia by 

Srzic et a/.8 using Fourier transform ion cyclotron resonance MS with an adjustable 

wavelength pulsed laser. They found some prominent peaks that were also obtained in our 

work including mlz 550, 523, 495, 257 and 163. Other conspicuous peaks like mlz 164, 

283, 359, and 495 were also obtained by Gajdosova et a/.9
'
10 using LDI-TOFMS analysis 

on humic acids from Antarctica and coal derived HA. Similarities between our work and 

the work of others who used different samples confirm that humification processes result 

in humic substances containing similar chemical structures. The presence of humic 

substances in Antarctica, despite the absence of plants containing lignin, further casts 

doubts on the theory that HS are by-products of lignin degradation. Although it may be 
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difficult to firmly assign specific structures to these masses, it is noteworthy to point out 

that in his study of dissolved organic matter by a Py-GC-MS technique, Huang et a/.23 

found that peaks at m/z 256, 282, 359, 495, 523, 550 (all seen in our work) were 

associated with n-fatty acids. Most of the peaks obtained by LDI, such as 164, 177, 241, 

283, 326, 359, etc., agree with those reported in previous work by Plancque, et a/. 15 and 

Reemtsma, et a/. 16
, who made use ofESI-TOFMS and SEC/ESI-MS-MS, respectively. It 

is notable, that the peak at m/z 177 was detected as a common molecular substructure of 

FA by Planque et al. 15 and has been associated with lignin derivatives, specifically ferulic 

acid23
. 

Table 2.1. Matrices used and their concentrations. 

Matrix Concentration Solvent 

a-cyano-4-hydroxycinammic acid 
10 mg mL-1 acetonitrile/ 0.1% TF A 

(CHCA) (1: 1) 

HABA 1.3 mg mL-1 acetonitrile/ 0.1 %TF A 
(1: 1) 

Gentisic acid (DHBA) 10 mg mL-1 acetonitrile/water (3 :7) 

Sinapinic acid 10 mgmL- 1 acetonitrile/ 0.1% TF A 
(1: 1) 

Dithranol 10 mgmL-1 THF 

Norharmane 10 mg mL-1 acetonitrile/water (3 :7) 
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Table 2.2. Frequently occurring peaks obtained for aquatic FA, aquatic HA and soil FA 

by LDI and MALDI. 

LDI-MS MALDI-MS 

m/z [M+Ht Mass mlz [M+Ht Mass 

815 814 1848. 1847 
642. 641 1734. 1733 
615 614 1619. 1618 
551. 550 1565. 1564 
522. 521 1451. 1450 
508 507 1336 1335 
495. 494 1450. 1449 
494 493 1280. 1279 
452 451 1166. 1165 
391 390 1052 1051 
360. 359 997. 996 
368 367 883. 882 
332 331 769. 768 
327. 326 758 757 
326 325 714 713 
312 311 686 685 
284 283 669 668 
258 257 660. 659 
243. 242 600 599 
242. 241 
178 177 
165 164 

•Peaks consistently observed as highly abundant, others present in low abundance and 

not obvious in spectra. 

Note: There is also a possibility that some of the observed ions could be [M+Nat. 
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Repeating patterns were observed in the spectra obtained in our work, the most 

important being differences of multiples of 14 Da associated with- (CH2) n· Though, 

differences of 28 Da might also be due to loss of one -CO- unit. Studies of fulvic acids 

by ESI-MS-MS by Leenheer et al. 17
, using standards of carboxylic acids thought to be 

associated with FA, demonstrated that losses of 28 Da were associated with lactone 

esters, such as those in coumarin-3-carboxylic acid. Stenson et al. 13 attempted MS-MS 

experiments to try identify some of the structural components of individual FA ions and 

found that while negative ions lose C02 (MS-MS data), positive ions lose CO together 

with water, which authenticates our work. The difference of 14 and 28 Da between 

adjacent peaks been associated with the presence of aliphatic carboxylic groups in HS 

which is consistent with the functional groups expected to be present in HS (i.e. 

carboxylic, alkyl, carbonyl, and aromatic groups). It is also common to find peaks 

separated by 1-2 Da spacings, typically associated with ring structures and varying 

degrees of saturation. It was further noted that, peaks observed in the mass spectra are at 

well defined spacings, i).m :::::;169 (Figure 1), a feature that is more clear in MALDI spectra 

reported further in this study. 

Only ions up to m/z 642 could consistently be observed using LDI, with peaks 

around m/z 800-900 only sporadically detected. These results are in agreement with the 

work of Gajdosova et al.9
•
11

, who reported the disappearance of ions around m/z 800 on 

switching from linear positive mode to reflectron positive mode, which attests to the low 

stability of the higher mass ions produced by LDI. As such, analysis of humic substances 

using LDI is limited by rapid heating of the analyte during laser irradiation, resulting in 

extensive fragmentation. Matrix assisted LDI can be used to facilitate energy dispersion 
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and enhance sample ionization, this tends to produce intact molecular ions with minimal 

or no fragmentation, making this method more suitable for the analysis of HS than simple 

LDI. 

2.3.2 Analysis by MALDI-TOFMS 

Reemler et a/. 18 and Haberhauer et a/. 19
, pioneers in the application ofMALDI 

TOFMS to the analysis ofHS, reported complicated and featureless spectra. However, we 

found that through careful optimization of the critical parameters governing efficacy of 

ionization, i.e., sample preparation, analyte/matrix ratio, matrix selection, laser intensity, 

delayed extraction together with other instrumental settings, well-resolved spectra could 

be obtained. 

Aside from the choice of matrix, which will be discussed in depth below, the 

success of MALDI is in part governed by the sample preparation step (co-crystallization 

of analyte and matrix). In this step, it was critical to produce well-formed, homogeneous 

crystals to ensure good shot to shot reproducibility. To achieve this aim, the analyte and 

matrix needed to be miscible in a range of concentrations, and also be capable of co­

crystallization. A number of factors were found to influence the quality of the crystals and 

the rate of matrix/analyte co-crystallization, such as sample purity, proportion of solvent, 

quality and type of substrate surface, and environmental conditions such as temperature 

and humidity. In addition, a host of related sample preparation options exist, with the 

conventional dried droplet method being the most common. Fast evaporation method has 

been acclaimed to produce very homogeneous spots,20 but failed in this work. Both the 

dried droplet method and the overlayer method performed satisfactorily, although 
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overlayer slightly improved the homogeneity of the crystals, improving the chances of 

forming the "sweet spots". Sweet spots, refers to certain position on the analyte-matri 

cocrystallite that shows better mass signals than other positions. 

It was also found that suppression of potentially interfering matrix ions was 

greatly enhanced by ensuring good mixing of the matrix and analyte in the solid phase, 

proper optimization of the matrix/analyte ratio and tuning the time interval of the delayed 

extraction to ensure complete matrix-analyte reaction in the plume before ions are moved 

to the flight tube as demonstrated by Knochenmuss et al.24 

The choice of matrix is a critical aspect ofMALDI analysis. A good matrix is 

defined as one that preferentially absorbs the laser energy and gently transfers the energy 

to the analyte, forming gas phase ions with significantly less internal energy than those 

produced with LDI, hence reducing fragmentation phenomena. A good matrix should also 

produce spectra with reasonable signal-to-noise ratios (>3) with minimum laser power, 

produce few interfering ions at the mass range of interest, enhance ionization of analyte, 

and the analyte should be soluble in the matrix .25 

Dithranol, known to be a good matrix for non-polar polymers, did not yield 

acceptable results for HS. The major problem encountered here was analyte-matrix 

miscibility; precipitation occurred when the solution ofHS in acetonitrile, water, or 

methanol with TFA, was mixed with dithranol in THF. It should be noted that all of the 

solvents used were miscible, so the insolubility can only be attributed to solute/matrix 

immiscibility. Norharmane, on the other hand, formed very nice crystals but ionization 

was inefficient even at very high laser intensity. 
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Spectra of the CHCA, HABA and DHBA, the matrices that produced the best 

results for humic substances, can be seen in Figure 2.2. The spectra are shown over the 

mass range of interest, that is, up to 2000 Da. Prominent peaks that could be attributed to 

the matrices are identified (with an asterisk, '*')in the analyte spectra shown in Figures 

2.3 and 2.4. Among the matrices used, DHBA emerged to be the most suitable matrix for 

HS elucidation (Figure 2.3c and Figure 2.4). The sample spectra produced with DHBA 

have low spectral noise that can attributed to the matrix, in fact, the matrix peaks are 

nearly completely suppressed and have no interference with identified analyte peaks. 

Comparing the spectra for the Suwannee River fulvic acid sample, 1 Rl 01 F, 

obtained using the three matrices CHCA, HABA, and DHBA (Figures 2.3 a, b, c 

respectively), the highest ion current was produced using DHBA. Although HABA 

yields good ionization at much lower laser intensity ( ~ 2140), the spectra produced 

(Figure 2.2b) are much more noisy within the mass range of interest than that produced 

with DHBA. CHCA, like DHBA, gave good ion current at a similar laser intensity, but 

was not as effective as DHBA in enhancing ionization ofHS. Furthermore, the ionization 

efficiency for the high mass components of this fulvic acid sample was superior using 

DHBA (Figure 2.3c ), with many more prominent peaks in the region from mlz 1281 to 

mlz 1848. In the spectra for the fulvic acid using CHCA, the base peak at mlz 825 is 

likely a matrix peak. With HABA, relatively good spectra were obtained, but the most 

abundant peak at mlz 547 can also be attributed to a matrix ion. Using DHBA the base 

peak occurs at m/z 1166 or 1450. These peaks are also present in the other spectra for the 

same fulvic acid though at much lower abundance, supporting both the supposition that 
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they are truly analyte peaks and that DHBA is the best matrix of those evaluated here for 

the study fulvic acids. 
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Figure 2.2. Mass spectra of some ofthe matrices used: a) CHCA; b) HABA; c) DHBA. 
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Though it was clear that river fulvic acid samples could be ionized efficiently 

using DHBA, it was important to also determine the performance of this matrix with 

fulvic acid from other sources and humic acid. DHBA was found to perform similarly 

with the alternate samples. Some of the results are presented in Figure 4, where again 

very good enhancement of ionization at relatively high mass is seen and no interfering 

peaks from the matrix can be found. 

The molar ratio of analyte/matrix is also a critical parameter which must be 

optimized (no presumptive basis for prediction) to produce the most effective ratio. 

Because of the important role of the matrix in isolating analyte molecules from one 

another, shielding the analyte from the laser energy and enhancing matrix suppression, it 

was expected that lower analyte to matrix ratios would, within limitations, provide better 

results; which was confirmed in the results. From the wide-range of analyte to matrix 

ratios (w/w) tested, on average 5 mg mL-1 HS with 1.3 mg mL-1 HABA, 0.1 mg mL-1 HS 

with 10 mg mL-1 CHCA and 0.01 and even 0.001 mg mL-1 HS with 10 mg mL- 1 DHBA 

gave the best results. Increasing the ratio to 1:10000 HS to DHBA (Figure 2.4) was found 

to greatly suppress the matrix peaks in the lower mass region. There may be some 

questions as to why the relative concentration of humic substance to matrix for the HABA 

experiments is high in comparison to the ratios for the other matrices. Results using a 

lower concentration of HS for this matrix were poorer than those using the concentration 

cited above; therefore experiments using ratios that approach those used with the other 

matrices were never attempted. Degradation of high molecular weight ions is normally 

minimal when using MALDI; nonetheless, like LDI, increasing the laser power beyond 
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the threshold (sufficient power for ionization and desorption, which differs depending on 

the matrix) systematically degraded the high molecular weight ions. 
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Figure 2.4. Mass spectra of humic substances acquired using DHBA and matrix 

suppression with increase in matrix a) 1 S 101 H, DHBA, 1:1 0000; b) ASF A, DHBA, 

1:10000. 

As noted earlier, the use of a matrix, especially DHBA, significantly enhanced 

ionization (i.e. higher ion currents obtained) ofHS, particularly in the higher mass ranges. 

For example, without the matrix the highest mass detectable was at m/z 928, whereas 

peaks as high as m/z 1848 could be observed only when a matrix was employed. This 

suggests that, as is expected with MALDI, much of the laser energy was absorbed by the 
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matrix and only partially transferred to the sample during ionization resulting in 

significantly less fragmentation. There is evidence in the MALDI spectra (Figures 2.3 and 

2.4) to support the idea that fragmentation is occurring in LDI, for example, the ion 

detected at mlz 883, could be the parent of fragments detected at mlz 523 and mlz 360, 

both apparent in the LDI spectra (Figure 2.1). This theory can be confirmed by further 

MS-MS studies. 

There were a number of notable features consistently observed in the MALDI 

spectra of nearly all the humic substances studied. Most obvious, was a Gaussian-shaped 

distribution of peaks, a feature reminiscent of distributions usually seen in the analysis of 

synthetic and natural polymers. Additionally, when the number of mass units separating 

prominent peaks was investigated, consistent values became apparent. The most 

prominent values were 55, 114 and 169 Da, occurring repeatedly (see pattern in Figures 

2.3c, also evident in Figure 2.3a, band 2.4). It is possible that 114 and 169 could be 

fragments of m/z 283, a prominent peak observed in our work using LDI-TOFMS and 

also very conspicuous in the work of Gajdosova et a/. 10
'
11 (LDI-TOFMS). It is also a 

prevalent peak in other spectra acquired by ESI. 15
• 
17 The peak at m/z 114 has been 

associated with 4-hydroxy-5,6-dihydro-(2H)-pyran-2-one, widely reported as a 

polysaccharide marker from py-GC MS. 23
•
26

•
27 This is reasonable in light of the evidence 

that HS are formed from polyssacharides and sugars, a theory that has been described in 

detail by Susic.28 Finally, there were a number ofpeaks that aquatic FA, HA and soil FA 

werefoundtoshareconsistently,e.g. m/z883, 1166,997,1280,1450,1563,1733,1848, 

indicating common structural elements, not surprising given the related origin (i.e. 
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humification of plant material) of these macromolecules. Peaks at m/z 883, 997 and 1280 

were also reported by Gajdosova, et al.9
,10.II 

Although at the moment, we can only speculate on the possible structures of these 

repeating units, it gives more evidence that humic substances, although complex, are not 

on the whole stochastic, but may be highly-ordered systems with polymeric 

characteristics. MS-MS experiments performed by post-source decay (PSD) and triple 

quadrupole should be carried out to investigate these patterns, which are proposed to be 

building blocks ofHS. 

2.4 Conclusions 

MALDI-TOFMS has been found to be a very versatile tool and adds a new 

dimension to the analysis of humic substances. This method can potentially be used in 

the determination of molecular weight and may also be utilized to determine structural 

elements, particularly if post source decay (PSD) can be employed on the observed 

sample peaks. PSD was however not attempted because of equipment failure. Proper 

selection of the matrix and careful optimization of sample preparation procedures has 

been found to greatly improve the results that are obtained using TOFMS on humic 

substances. It is however, acknowledged that HS are very complex substances consisting 

of a large number of macromolecules with a wide mass range distribution, and so 

detection and characterization is not a trivial undertaking. Nonetheless, this work has 

also shown that MALDI-TOFMS can be used to obtain important information about HS, 

yielding a spectral fingerprint and providing additional structural information beneficial 

for future work on characterization. One striking feature of this work was that a number 
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of peaks were consistently found in the spectra of the soil FA, aquatic HA, and aquatic 

FA, indicative of shared structural elements. Although MALDI and LDI are not as soft 

ionization techniques as ESI, they produce single charged ions making the interpretation 

of the spectra more straightforward. Thus MALDI-TOFMS and LDI-TOFMS produce 

complementary information to ESI-TOFMS and ESI-FTICRMS and will be useful tools 

in unraveling the mystery of HS. 
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CHAPTER3 

Comparative Study of Suwannee River Natural Organic Matter and 

Humic Like Substances (HULlS) Synthesized from Acid Polymerization 

of 4-0xo-2-Butenoic Acid by Online Thermochemolysis Techniques. 
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3.1 Introduction 

Humic substances (HS) are naturally occurring, environmentally ubiquitous (in 

soils, sediment, waters), refractory, and heterogenous complex mixtures, which are 

believed to be formed by death and decay of wide-varied biogenic materials. 1
-
6 Although 

these compounds have been studied for an inordinately long time, complete structural 

elucidation and understanding remains elusive and hence, as a group, they remain a 

puzzle yet to be solved by the scientific community. 1
'
7 Apart from their inherent 

complexity, which has certainly been the greatest impediment to their full 

characterization, delay in the development of analytical techniques that are amenable to 

their analysis contributed to the slow pace in their characterization. The frustration in 

their analysis resulted in fatigue and resignation, with some researchers indicating that, 

HS cannot be characterized at the molecular level. 1 
•
2 Hitherto, HS continue to be 

operationally-defined based on their aqueous solubility at different pH, a definition that is 

often unsatisfactory when trying to understand and predict their behaviour in real 

systems, such as when HS is acting toward the enrichment of soils or as precursors to 

production of disinfection by-products. 5-
7 Nonetheless, using conventional analytical 

tools such as FT-IR, titrimetric methods, nuclear magnetic resonance (NMR), size 

exclusion chromatography (SEC), pyrolysis-GC-MS etc., a significant understanding of 

the predominant chemical features ofHS are known with a fairly high degree of 

confidence. 1
-
6 Most commonly reported moieties include a staggering variety of aromatic 

and aliphatic hydrocarbon structures functionalized with amide, carboxyl, and hydroxyl 

groups, among others. These many functionalities make the chemistry of HS very 

complex, dynamic and extremely fascinating, making it a dominant player in numerous 
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global processes such as in carbon and nitrogen cycling. In addition, HS not only 

influence ecosystems through their role in soils, but also through sequestration, chelating 

ability, transport enhancement, toxicity attenuation and bioremediation of hazardous 

organic chemicals and metals.3
-
6 Their well documented, strong complexing abilities 

have also lead to research into their ability to act as free radical scavengers, antiviral 

agents and other important therapeutic properties. 7 

Originally, HS have always been described as macromolecules with molecular 

weight of up to thousands ofDaltons, partially from data obtained from SEC, but 

primarily from anecdotal evidence that HS are precursors of lignins (high molecular 

weight naturally occurring polymers). 1
-
3 However, recent studies especially using the 

recently developed soft ionization techniques such as ESI and MALDI have revealed that 

HS consists of relatively small molecular weight compounds (100-1000 Da).8
-

11 Picollo 12 

has suggested that the large apparent molecular weights may in fact be due to 

characteristic aggregation (self-assembly) of relatively small molecules at higher 

concentrations, which results in a supramolecular structure for HS. This insight adds 

further to the confusion in the structural characterization ofHS. The application of 

imaging techniques like small angle scattering and X-ray microscopy has also helped 

explain the aggregation properties of humic substances. 13 

The debate on the exact source of HS has also been raging since their discovery, 

with HS experts divided on whether they are mainly formed from lignins, cellulose, 

polysaccharides or amino acid compounds. Fingerprinting of HS from different sources 

(mainly by FT-IR and degradative techniques) to determine their differences based on 

origin has been an important field ofresearch?·14 For instance, Leeheer et al.3 has 
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described that the composition of HS is to some extent dependent on the origin, with 

aquatic HS (believed to be synthesized from macrophites, algae and bacteria) having 

more aliphatic character than terrestrial derived HS. These aliphatic and aromatic groups 

with their pendant functional groups were conventionally believed to be intricately linked 

to form highly heterogenous supramolecular assembly ofmaterials. 1 However, research 

using non degradative ionization methods (viz. EST and MALDI) coupled to high 

resolution mass spectrometric tools such as FT-ICRMS, TOFMS, QTOFMS has revealed 

that HS are composed of relatively fewer major building blocks (oligomeric nature) with 

some structural similarities irrespective of their origin. S-ll The future of the ultra-high 

resolution ESI-FT-ICRMS (resolving power> 80, 000 and mass accuracy, <1 ppm) is 

particularly bright for the analysis ofHS because of its ability to resolve individual 

molecules in complex humic substances mixtures, making it possible to assign exact 

molecular formulae. 11 However, the cost of FT -ICRMS is too high to be affordable to 

most academic institutions and regardless of its high resolution capability, it cannot 

single-handedly solve the HS puzzle, since it has limitations as well. Some of the general 

FT-ICRMS limitations include subjectivity to space charge effects and ion molecule 

reactions, limited dynamic range, and mass spectra quality dependence on many 

experimental parameters (excitation, trapping, collision energy, detection conditions 

etc.,). The use of other more common and powerful approaches have a pivotal role to play 

in uncovering some ofthe complexities ofHS materials. Given the array of 

methodologies that could be employed in this work, it must be emphasized that the multi­

pronged approach of studying these compounds by different techniques and gleaning as 
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much information as possible from data obtained from each technique is the most astute 

strategy, since every method is substantially limited on its own. 16 

It is believed the use of the now mature chemical and/or thermal degradative 

approaches and subsequent analysis of the fragments by GC-MS still has potential in 

generating new HS structural insights. In particular, conventional pyrolysis-GC-MS has 

already been most heavily applied in efforts to elucidate HS structure. 1
,4·

6
·
14

•
15 While 

crucial cues have been gleaned from such work, pyrolysis-GC-MS does have some 

limitations. In particular, only a small fraction of any sample is actually pyrolyzed to GC-

amenable products and so results may not be representative ofthe overall structure ofHS 

and, more importantly, at the high-temperatures employed(> 550 °C) possible secondary 

reactions such as rearrangement, decarboxylation, cyclization and aromatization can 

occur. Hence the possibility of artefacts formation is a significant pitfall, which must be 

acknowledged and utmost care should be taken in the interpretation of the resulting 

data. 14
-
16 The present HS hypothetical structures (often used for modelling purposes), 

most of which have been derived from pyrolysis-GC-MS data, should therefore be 

questioned since they may not reflect the true picture ofHS. For example, most of the 

hypothetical structures are mainly polyphenolic, and ESI techniques have shown HS 

. b . 1 f 1" h . 12 14 contam a su stantm amount o a 1p atlc components. ' 

Contrary to thermal degradation, chemical degradation is more selective to only 

particular linkages and the fragments can be easily extrapolated to map the parent 

molecule. Chemical degradation has found wide acceptance in various disciplines. In 

proteomics for example, an enzyme is used to cleave proteins and the resulting peptides 

fingerprinted, leading to information on the parent protein. Similarly, HS can be 
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degraded, for example by acid hydrolysis (H2S04), basic oxidative hydrolysis (CuO), 

saponification (KOH), use of other oxidants such as ozone and hypochlorite have been 

accomplished. 4
-
6 A much more useful chemical degradation approach is the application 

of thermally assisted hydrolysis and methylation (THM),developed by Challinor 17
J

8 in 

the 1980s, which uses tetra-alkyl ammonium hydroxide reagents, typically 

tetramethylammonium hydroxide (TMAH). This method has gained widespread 

acceptance as a powerful tool for structural analysis with principal applications in 

synthetic and natural resins, lipids, waxes, polysaccharides, proteins, kerogen, biothreat 

agents, soil and HS, etc. The primary reason for the widespread applicability ofTHM is 

because it helps to overcome some of the analytical limitations of direct pyrolysis by 

improving the detection of polar compounds (e.g. dicarboxylic acids), while evading 

decarboxylation of acidic groups, dehydration of alcohol moieties and cyclization 

reactions. This is because THM requires use of sub-pyrolysis temperatures (250-300 °C), 

thereby preventing the loss of important structural information. It also renders more of the 

degradation products to be amenable to GC-MS analysis by concomitant hydrolysis of 

ester and ether linkages and in situ methylation of the resulting OH- and COOH 

groups. 19
•
20 Additionally, the mechanism through which TMAH cleaves and 

subsequently methylates structural linkages is relatively well understood and hence the 

relationship between the degradation products and the original composition of humic 

substances can be ascertained. 18 Though some of the chemolysates produced and 

detected, using this technique are still categorized to be of unknown origin (not known 

whether they are lignin, polysaccharide derived etc.,); THM-GC-MS has been used to a 

great extent in defining the possible origin of humic material. Most aromatic moieties that 
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have been detected, e.g., syringic and p-coumaric units, have mainly been associated with 

lignin, while other fragments have been associated with polysaccharides and fatty acid 

methyl esters.21
-
23

. However, one major limitation ofTMAH is that it does not 

differentiate between naturally occurring methyl ethers or methyl esters from those 

formed during thermochemolysis. Nevertheless, the use oftetrabutylammonium 

hydroxide and isotopically-labelled TMAH could be used to make differentiation 

possible?4 In addition, the results of THM are highly dependent on experimental 

conditions, as recently reported by Cynthia et a/?5 who found an increase in 

decarboxylation reaction with increase in the mole ratio of TMAH to model compounds, 

hence the interpretation of the results shouldn't be without caution. Furthermore, as 

compellingly noted by Mcintyre et al. 9 and other authors,25
•
26 the most logically valid and 

sound strategy in the study ofHS must involve study ofknown compounds as surrogate 

for HS for prior optimization and interpretation; this approach remains, by all measures, a 

major research challenge. 

The idea of synthesizing humic acid models from known starting materials by 

attempting to mimic nature has been propagated by Susic27
, and it gives solid evidence as 

to the possible origin and nature of these molecules. Susie has also noted that some of the 

complexity of these compounds is possibly due to their dynamic supramolecular 

structures, which results from intermolecular interactions involving carboxylic, phenolic 

and hydroxyl moieties. In this communication, we have taken up the challenge of 

synthesizing a humic acid model (HULlS) as described by Susie, and characterized it in 

concert with the intensively studied, naturally occurring NOM Suwannee River standards 

obtained from the International Humic Substances Society (IHSS). It should be noted that 
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the humic substances content in NOM is approximated to be between 50-90%. Because of 

their widespread use and their abilities to provide clues as to chemical structure, we have 

focused on the use ofthermochemolysis GC-MS and 1H NMR for the analysis of these 

compounds. 

From this work, very telling information was obtained regarding the origin of 

humic substances and possible indicators of polysaccharide biomarkers in HS have been 

clearly identified. The origin ofpyrolysates that were previously described as ofunknown 

origin has been identified, and possible error of associating all phenolics and aromatic 

moieties with lignins has been soundly questioned. 

3.2 Materials and Methods 

The lRlOlN sample (Suwanee River natural organic matter) was bought from 

IHSS, St. Paul, MN, USA. Chemicals for synthesis of humic acid model such as furfural, 

hydrogen peroxide, dichloromethane and other solvents we bought from Sigma Aldrich 

Chemical Co. (Oakville Ontario) and used without further purification. TMAH was 

purchased from Aldrich chemical company, Milwaukee, WI, USA. All chemicals and 

solvents were of analytical grade and were used without purification. 

3.2.1 Synthesis of HS Model from Furfural Oxidation 

The procedure employed was modified from one described by Susic. 27
; in 

particular, reactant ratios have been optimized to ensure complete reaction. Furfural 

(0.12 mols) was oxidized by shaking with 30% (v/v) aqueous hydrogen peroxide at 25°C 

for 3 days until the two phases combined. The residual furfural was extracted from the 
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mixture by liquid-liquid extraction with dichloromethane and discarded. The resulting 

product which consisted of 4-oxo-2-butenoic acid as the major product and maleic acid as 

minor component was acid polymerized in-situ by addition of a few drops of concentrated 

hydrochloric acid. The precipitate formed was washed with distilled water to remove the 

unreacted hydrogen peroxide and dried. The dark brown product obtained bore the same 

operational definition as humic acid, i.e. it was insoluble in acidic media, but soluble at 

basic pH. As is usually done for the purification of HA, the product was adsorbed on 

XAD-8 and eluted with 0.012 M ammonia, pH 10.45. 1
'
2 A schematic ofthe synthesis is 

shown in Figure 3.1. The product was analyzed by 1H NMR and thermochemolysis GC-

MS and the results were compared to similar analyses of IHSS NOM standard. 

(C5Hs04)n + H2S04 + H20 --. 

Pentosans 

Well known synthesis, Garret et a/.28 

Figure 3.1. Schematic of synthesis of HULlS. 

O=CH~CH==CH~CQOH 

4-oxo-2-butenoic acid 

j polymerization by cone. HCI 

humic like substances (HULlS) 

Adapted from Sucic27 
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3.2.2 Analytical Thermochemolysis 

IRIOIN or synthesized humic acid model(~ 500 !-lg) were weighed and deposited 

in the pyrolysis cup and 40 !-!L of 10% TMAH in methanol added. The mixture was then 

dried in a gentle stream of nitrogen and then introduced in the pyrolyzer unit for analysis 

by THM-GC-MS. 

3.2.3 GC-MS Instrumentation 

A Varian Star 5890 series GC with a Hewlett Packard 5971 series MS (equipped 

with an online Frontier lab pyrolyzer unit) was employed for the analysis. The GC 

column was a DB-5 (0.25 mm i.d. x 30m, 0.25 !-till film thickness). The carrier gas (He) 

head pressure was set at 10 psi, split flow 30 mL min-1
• The THM furnace temperature 

was kept at 280 °C and the transfer line was heated to 290 °C. The GC oven temperature 

program was as follows; initially the temperature was set at 40 °C and held for 2 minutes, 

then ramped at a rate of 4 °C min-1 to a final temperature of 280 °C and held for 10 min. 

The ionization mode for the MS was electron ionization (EI) at 70 e V, and the scan range 

was 35-550 m/z. 

Thermochemolysis conditions were chosen based on the work done by Lehonen et 

al. 20 who reported that relatively high temperature (> 300 °C conditions were necessary 

for optimal TMAH degradation of HS matter, but a delicate balance had to be maintained 

to avoid aromatization of aliphatic chemolysates that is possible at elevated temperatures. 

3.3 Results and Discussion 

The formation of furfural (common industrial solvent) from xylose and other 

pentosans derived from comcorbs, and sugarcane bargasse has been well-documented 
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over the decades and the reactions mechanism leading to its formation have been well 

understood.28
'
29 As such it was logical to start with furfural as the starting material for the 

HULlS synthesis. The resulting precipitate (HS model) synthesized from 4-oxo-2-

butenoic acid (HULlS) had the same solubility characteristics and brown color as HS, 

which is is quite telling in that it provides evidence of a link between HS and simple 

sugars. However, information about molecular structure is essential to confirm this 

relationship, since many organic materials could have similar physical and solubility 

characteristics to HS and still not fit the complete definition ofHS. The mature 

thermochemolysis GC-MS can afford the necessary structural information and was thus 

carried out with dilute TMAH (10%) and at sub-pyrolysis temperatures (280 °C), which 

ensures minimum breakdown and adulteration of the sample, thereby maintaining 

maximal structural integrity and providing a better picture of the original structure of 

these compounds. The results obtained demonstrate a very interesting trend and important 

similarities between standard NOM (major fraction humic substances) and the 

synthesized model. The total ion pyrogram of the humic acid model is shown in Figure 

3.2 and that of the IRIOIN standard is shown on Figure 3.3. As the pyrograms were very 

complex, as expected, through careful examination and comparison of the results for the 

standard NOM and the humic acid model, some very subtle but useful information was 

obtained. In this approach, compounds were identified based on their EI mass spectral 

matches with National Institute of Standards and Technology (NIST) Mass Spectral 

Library Version 1.6, as well as through mass spectral elucidation. Though many 

similarities were found, only the most informative peaks are cited, those whose 

compounds could be identified with a high degree of confidence by obtaining high 
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agreement matches from the NIST library as well as through THM-GC-MS data from 

literature. The identified pyrolysates of the HULlS are shown in Table 3.1 while those of 

the IRIOIN are shown in Table 3.2. 
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Figure 3.2. Total ion chromatogram ofTHM-GC-MS of Humic acid model. (The peak at 

48.00 min is a bleed from the column) 
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Figure 3.3. Total ion chromatogram ofTHM-GC-MS of Suwannee River NOM. 
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Table 3.1. HA model-thermochemolysis products 

Peak Number* Compound 
1. Methoxymethylbenzene 

2. 2-Ethyl-2,3,3-trimethylbutanoic 
acid 

3. Hexanoic acid, 3-oxo-, methyl ester 

4. 2,5-Pyrrolidinedione, 1-methyl-

5. Benzoic acid, methyl ester 

6. 1,4-Benzenediol, 2-methoxy-

7. 2-Cyclohexenylacetic acid, methyl 
ester 

8. Dimethyl ethylidenemalonate 

9. Pentanedioic acid, dimethyl ester 

10. Ethanol, 2,2'-oxybis-, diacetate 

11. 2-Furancarboxylic acid, 3-methyl-, 
methyl ester 

12. Dimethyl 2-ethyl succinate 

13. Pentanedioic acid, 2-methylene-, 
dimethyl ester 

14. Butanedioic acid, ethylidene-, 
dimethyl ester 

15. 2-Furancarboxylic acid, anhydride 

16. Pentanedioic acid, 2-oxo-, 
dimethyl 

17. 2-Furancarboxylic acid, 3-methyl-, 
methyl ester 

* As assigned in Figure 3.2 

18. Propanedioic acid, (2-methyl-2-propenyl)-, 
dimethyl 

19. 2,5-Furandicarboxylic acid, dimethyl ester 

20. 1-Cyclopentene-1 ,2-dicarboxylic acid, 
dimethyl ester 

21. Phenol, 5-methoxy-2-(methoxymethyl)-

22. 2,5-Furandicarboxylic acid, dimethyl ester 

23. 1-Cyclopentene-1 ,2-dicarboxylic acid, 
dimethyl ester 

24. Ethanedione, di-2-furanyl-

25. Trimethyl 1 ,2,3-propanetricarboxylate 

26. Octanedioic acid, dimethyl ester 

27. Methyl 4-methoxysalicylate 

28. 1 ,2,4-Butanetricarboxylic acid, trimethyl 

29. 1,2-Benzenedicarboxylic acid, 4-methyl-, 
dimethyl 

30. 1,2-Benzenedicarboxylic acid, 4-hydroxy-, 
dimethyl ester 

31. 1 ,2,4-Benzenetricarboxylic acid, 
trimethyl ester 

32. Benzenebutyric acid, 2,3-dimethoxy-

33. 3-Ethyl-5,7-dihydroxy-4H-chromen-4-one 
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Table 3.2. NOM-thermochemolysis products 

Peak Number* Compound 
1. 2-Butenedioic acid (E)-, dimethyl 
ester 
2. Ethanol, 2-(2-methoxyethoxy)-
3. Butane, 1 ,2,4-trimethoxy-
4. 2,5-Pyrrolidinedione, 1-methyl-
5. Pentanedioic acid, 2-methyl­
,dimethyl ester 
6. 1,4-Benzenediol, 2-methoxy-
7. Butanedioic acid, 2,3-dimethyl-, 

dimethyl ester 
8. Dimethyl ethylidenemalonate 
9. Pentanedioic acid, dimethyl ester 
10. Ethanol, 2,2'-oxybis-, diacetate 
11. Benzene, 1 ,2-dimethoxy-
12. Dimethyl2-ethyl succinate 
13. Benzene, 1 ,4-dimethoxy-
14. 3,4-Methylpropylsuccinimide 
15. Piperazine, 1-(2-furanylcarbonyl)-
16. 1-Cyclohexene-1-carboxylic acid, 

3-oxo-, methyl 
17. N-Nitrosodimethylamine 
18. Pentanedioic acid, 2-oxo-, 
dimethyl ester 
19. 2,5-furandicarboxylic dimethyl 
ester 
20. 1 ,2,6-Trimethoxy-hexane 
21. 5-Hydroxy-4,5-dimethyl-2,5-

dihydrofuran-2-one 
22. 4-Methoxycarbonyl-4-butanolide 
23. 3, 4-B is(Methoxycarbony 1 )fur an 
24. 2,4-Hexadienedioic acid, dimethyl 
ester, (E,E)-
25. 1 ,2,3-Trimethoxybenzene 
26. L-Proline, 1-methyl-5-oxo-, 
methyl ester 
27. Benzene, 4-ethenyl-1,2-
dimethoxy-
28. Benzoic acid, 4-methoxy-, methyl 
ester, 

* as assigned in Figure 3.3 

29. 2-Furancarboxylic acid, tetrahydro-3-
methyl-5-oxo-, methyl 

30. d-Xylopyranoside, methyl 5-C-methoxy-
2,3 ,4-tri -0-methyl-

31. 1 ,2,4-Butanetricarboxylic acid, trim ethyl 
ester 

32. Benzoic acid, 3,4,5-trimethoxy-, 
33. 1 ,3-Benzodioxole-5-carboxylic acid, 

methyl ester 
34. 1 ,4-Benzenedicarboxylic acid, dimethyl 
35. 1,3-Benzenedicarboxylic acid, dimethyl 
36. 1 ,2,3,4-Tetramethoxybenzene 
37. 1,2-Benzenedicarboxylic acid, 4-methyl-, 

dimethyl 
38. 2,4'-Dihydroxy-3'-methoxyacetophenone,. 
39. Benzoic acid, 3,5-dimethoxy-, methyl 

ester 
40. Acetic acid, 2-(3,5-dimethoxyphenyl)-, 

methyl ester 
41. Benzeneacetic acid, 3,4-dimethoxy-, 

methyl ester, 
42. Benzoic acid, 3,4,5-trimethoxy-, methyl 

ester 
43. 2-Propenoic acid, 3-(3,4-

dimethoxyphenyl)-, methyl ester, 
44. Pentadecanoic acid, 14-methyl-, methyl 

ester 
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Upon comparison, it was found that the major thermochemolysis products of 

NOM were very similar to those ofthe prepared humic acid model, which clearly points 

to similarities in their structure, and in all probability their origins. Further, the HA 

model, which by nature of its synthesis should be devoid of aromatic structures (precursor 

primarily aliphatic), showed evidence of some benzenoid compounds such as benzene 

tricarboxylic acids, benzene butyric acids, methoxy substituted benzene, etc., all of which 

have been attributed to lignins in the literature. For example, Leenheer et al. 3 have 

associated methoxyphenols with lignins. However, as strongly demonstrated by Frazier et 

al. 24 (found methoxybenzene compounds e.g., 1,2- and 1 ,4-dimethoxybenzenes to be 

TMAH products from carbohydrates) as well as in our work, these aromatic products are 

not always specific to lignins. Other previously reported potential lignin-derived TMAH 

products such as 1,2-dimethoxybenzene, 3,4-dimethoxybenzoic acid methyl ester, and 

methyl benzoate were also formed from thermochemolysis ofthis polymerized 4-oxo-2-

butenoic acid. Given the ambiguity as to the origin ofthe aromatic structures detected by 

thermochemolysis GC-MS, it seems that it would be difficult to use this technique to 

ascertain the degree to which each possible source (i.e. lignin, carbohydrate, etc.) may 

contribute to the formation of HS as attempted for NOM by Frazier et al. 24 who 

associated 21-35% ofNOM with lignin-derived compounds. As such, we believe that this 

work demonstrates that, in spite of the fact that these aromatic compounds are usually 

ascribed to lignin derivatives in NOM, their presence is not necessarily indicative of 

lignin content or intrinsic aromaticity. 

In addition to the aromatic compounds detected, some of the methyl esters of fatty 

acids like octanedioc acid and hexanoic acid usually detected in the thermochemolysis of 
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HS, were also found from the synthetic humic acid model. However, evidence of higher 

molecular weight fatty acids (C9-C 18) was not found. It has been reported by others, 6
• 
16 

including Lehtonen et al. 20
, that the most abundant identifiable chemolysate products of 

HS include dimethyl diesters of 2-butenedioic acid and butanedioic acid, which is in 

agreement with a 4-oxo-2-butenoic acid polymerization model reported herein. It is 

interesting to note that benzenediols detected in the HULlS have been noted as important 

markers of anthropogenic NOM by Poerschmann et al. 15 

The difficulties in understanding the thermochemolysis GC-MS signature of 

NOM is further exacerbated by the numerous chemolysates whose structures have been 

identified but whose origins have not yet been determined. 19
•
24

-
26 In the analysis of our 

synthesized HULlS, we have identified a number of these TMAH degradation products in 

abundance including butanedioic acid dimethyl ester, pentanedioic acid dimethyl ester, 

and other substituted analogues of diacid methyl esters, as well as hydroxy and methoxy 

substituted butyric acid methyl esters. These results seem to reinforce the fact that the 

majority of humic acid composition is carbohydrate derived and further augments the 

work by Susie who advanced the idea that 4-oxo-2-butenoic plays a key role in the 

formation of humic substances. 

The similarities of the aforementioned compounds, which are present in both the 

THM products of HULlS and the NOM with 4-oxo-2-butenoic acid, proposed to be a 

major building block of humic substances can be seen in Figure 3.4, which shows some 

structurally remarkable chemolysates, which heavily support this evidence. A very 

notable one is 3,4-bis(methoxycarbonyl)furan, present in NOM, and which looks like a 

dimer of 4-oxo-2-butenoic acid. Others, like dimethyl ethylidenemalonate, fumaric acid, 
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oxalic acid and malic acid, which are known to be oxidation products of NOM obtained 

by GC-MS, seem to be derived from the proposed monomer 4-oxo-2-butenoic acid. The 

well-documented presence of 4-oxo-2-butenoic acid as one of the major components of 

atmospheric aerosols, which is estimated to contain more than 60% humic substances, 

further gives credence to our proposal that 4-oxo-2-butenoic acid may be a major building 

block ofHS.37 
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o=(\;=o 0, l 1 / / lf I -o 00 
I \ 0 

4-oxo-2-butenoic acid 3, 4-bis( methoxycarbony I )furan dimethyl 2,3-dimcthy I succinate 

l(o~0~oy 
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ethano I ,2,2-oxy bis-d iacetate 

I 
0 0 
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0 

'-.__~/ 
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methyl 5-rnethoxy-4-oxo pentanoate 

0 /oA'{o/ 
dirnethy I 2-cthy I succinate 

I ,2,4-butanetricarboxylic acid, trimethyl dimethyl furan-2,5-dicarboxylate dimcthylcthylidcnemalonatc 

cfo/ 
0 

mcthy I 3-oxocyclohex-1-ene-1-carboxy late 

Figure 3.4. Some structures ofTHM products (also shown in Table 3.1 and Table 3.2) 

which possibly originate from the acid polymerization of 4-oxo-2-butenoic acid. 

The chemolysates obtained from THM-GC-MS could be used to develop credible 

hypothetical structures of HS and thus eventually help in understanding these materials. 
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This is particularly so because hydrolysis and methylation are selective and hence the 

chemolysates bear a strong relationship with the NOM. We have in a rudimentary way 

attempted to construct a HS component as shown in Figure 3.5. However, we should 

clearly state that developing credible hypothetical structures is not a trivial undertaking 

due to the numerous chemolysates that are generated. 

0 0 

HO~LtO/ OH 
. 0 0 

TMAH 1n methanol WO 
o "' '----o o/ -) ~ /, 

/0~0/ 
0 0 

hypothetical component of humic acid 2,5-furandicarboxylic acid, 
dimethylester (#22) 

+ 

dimethylethylidenemalonate (#8) 

Figure 3.5. Possible hypothetical structure of aquatic FA from thermochemolysate data. 

In order to further the multiple approach strategy, 1H NMR studies were 

conducted on both the synthetic model and the NOM standard, both of which gave very 

similar spectra (Figures 3.6 and 3.7) and from which some useful information could be 

extrapolated. The most telling feature is the absence of peaks in region where aromatic 

protons, which normally occur at ~ 7 ppm, would usually absorb, even though aromatic 

moieties are observed in the GC-MS data. The peaks with chemical shift --J.7 ppm, 

shows an evidence of presence of functionalities such as -OCH2- linkages, which fbrthcr 

authenticates the thcrmochernolysis data. suggesting a similarity between the HULlS and 

the natural NOM. It should be noted that while discrete peaks appear in this region f()r the 

lllJlJS. only an envelope of peaks, likely due to a complex mixture of protons at closely 
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related environments, is seen f(x the NOM; this observation is consistent with the 

expected complexity of NOM. 'Therefore, it can be concluded that humic substances may 

be primarily aliphatic, and it is probable that the genesis of humic acid may not be from 

the condensation of polyphenols as often believed, but, as reported by Susie, the dynamic 

structural nature of these materials allow them to be converted to aromatic structures that 

may not be necessarily related to lignin-derived compounds such as vanillic and syringic 

acids.3
,
27 The fact that Gajdosova eta!. 10 reported there are plentiful humic substances in 

Antarctica, which have very similar structural properties to other HS and yet there exists 

no plants with lignin is further compelling evidence that the primary building block of HS 

are polysaccharides rather than lignins. 

NMR is however designed for analysis of pure or less complex mixtures and 

hence only minimal information (spectra not representative) could be obtained when used 

to analyze HS, which may consist of many components in low concentrations. The fact 

that HS conformation is so dependent on its solution environment further casts a 

limitation on solution NMR data shown in our study. It is probably for this reason that HS 

has mainly been characterized by solid NMR recently.31
·
32 

~ ~f;, ~;5; 
-ot" .....,: --t! -i -r= 
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Figure 3.6. 1H NMR of 10 mg mL-1 HULlS in DMSO. 
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Figure 3.7 1H NMR of 11 mg mL-1 lRlOlN in DMSO (peak at 2.5 ppm is from DMSO). 

3.4 Conclusion 

The results of this work have demonstrated that caution should be taken when 

associating some TMAH byproducts with lignins, as these aromatic structures are not 

specific to lignins and are possibly polysaccharide-derived. Some of the hitherto 

pyrolysates reported to be of unknown origin have been determined to arise from 

carbohydrates. The knowledge ofthe origin of these pyrolysates is crucial, since it can 

help provide bulk characterization of the composition ofNOM, and may help to end the 

uncertainty as to the origin of humic substances. Evidence has also been presented that 

the most probable route for the formation of humic substances is from polysaccharides, 

which has been proposed previously, though it is not widely accepted. Continued 

application ofthis strategy; combining the application of multiple analytical techniques to 

studies of both synthetic NOM models and extracted NOM should lead to a more exact 

picture of the chemistry ofhumic substances. For example, it would be desirable to 
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compare fingerprint spectra of NOM and humic acid models using LDI, MALDI and 

even ESI. 
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CHAPTER4 

Aquatic fulvic acid as a matrix for MALDI-TOFMS analysis. 

A version of this chapter has been published. Mugo SM, Bottaro CS. Aquatic fulvic acid 

as a matrix for matrix assisted laser desorption/ionization time of flight spectrometric 

analysis. Rapid Commun. Mass Spectrom. 2006; 21: 219-228 
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4.1 Introduction 

Matrix-assisted laser desorption ionization time of flight mass spectrometry 

(MALDI-TOFMS), first reported by Hillenkamp and Karas in 1987, has evolved to 

become the gold standard in the qualitative analysis of high molecular weight molecules 

in a suite of scientific disciplines, especially proteomics and polymer research. 1
'
2 The 

surge in the acceptability of the MALDI technique is due to its unmatched sensitivity, 

high throughput, softness in ionization, relatively uncomplicated spectra (with formation 

of mainly singly-charged ions), and essentially unlimited mass range when coupled to 

TOF analyzer.3
"
8 Furthermore, unlike other ionization techniques (e.g. electrospray), 

MALDI is somewhat more tolerant of impurities, salts and buffers, attributed to what 

Cohen et al.3 called "chromatographic on-target cleanup effect", where impurities are 

excluded from incorporation in the analyte/matrix crystal.4 

The success of MALDI analysis relies on appropriate sample preparation and the 

nature of matrix employed. A MALDI matrix must meet a litany of requirements such as: 

reasonable absorption at the wavelength of the laser (N2 operating at 337 nm wavelength 

and frequency-tripled Nd:YAG at 335 nm lasers are most common), stability at high 

vacuum (around 10"6 torr), compatible solubility with analyte, ability to isolate analytes 

while hindering their aggregation, and ability to promote analyte ionization. However, no 

one known matrix or even handful of matrices meets all these archetypical features for 

analytes with widely varying masses and structures, in other words, most matrices are 

analyte specific.5
-
7 

The traditional matrices are typically low molecular weight ( < 500 Da) organic 

acids e.g. 2,5-dihydroxybenzoic acid (DHB), a-cyano-4-hydroxycinnamic acid (a-
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CHCA), and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), etc .. 1•
3
,4·

5
•
6 Their 

carboxylic moieties play a key role in enhancing protonation of the analyte, though the 

suitability of a compound as a MALDI matrix is not exclusively determined by presence 

of a labile proton. In general, MALDI ionization occurs through proton transfer, cation 

adduction (forming potassium and sodium adducts), electron transfer or electron 

capture.6
•
7 It should be emphasized that since the mechanisms governing desorption and 

ionization processes are complex and still only vaguely understood, there are no absolute 

criteria that must be met in matrix selection and the field remains open for exploration. 

Moreover, investigation of as many compounds as possible as MALDI matrices will 

eventually be helpful in better understanding these fundamental processes. 

The use of prototypical matrices is problematic for small molecule analysis due to 

spectral noise (resulting from matrix, matrix fragments, and cluster ions) in the low mass 

region ( < 1 000 Da), making it difficult to distinguish the analyte ion peaks from matrix 

peaks. As such, there has been intense research to adapt these matrices to the analysis of 

small molecules by using various approaches to decrease matrix interference. These 

approaches include: matrix suppression effect based on optimization of the analyte to 

matrix ratio,8 surfactant-based matrix ion suppression,8
-
10 and use of matrix co-additives 

(e.g. nitrocellulose). 9 To circumvent the problem of matrix interference in the mass 

region ofinterest altogether, high molecular mass matrices1u 2 (e.g. porphyrinic 

molecules), matrix-less techniques (e.g., desorption ionization on silicon (DIOS) 13
·
14

) and 

ionization enhancing films (UV energy absorbing polymers, 15 sol-gel, 16 and 

nanostructured silicon 17 
) have been employed. 
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Recently, there has been tremendous interest in experimentation with carbon 

nanotubes (CNT) and related materials, (e.g. graphite from a pencil lead) as MALDI 

matrices. 18
-
27 CNT have been found quite promising in enhancing ionization- especially 

through cationization (sodiation and potassiation)- of a wide range of small molecules, 

such as carbohydrates, amino acids, peptides and proteins, environmental samples, etc. 

Nevertheless, there are still many limitations that are yet to be overcome, for example, 

low solubility of CNT, matrix interference at high laser power, poor adsorption on 

MALDI target surfaces and problems with metallic impurities, which are suspected to be 

the main reason for ion source contamination and can potentially lead to instrument 

downtime and costly repairs. These limitations necessitate chemical modification of 

CNT b ~ 0 1' 0 d 0 b'l' 0 0 h' h 1 b 0 21 23 24 0 s y 1 unct10na 1zat10n an 1mmo 1 1zat10n strategies, w 1c are a onous. 0 0 n 

the other hand, aquatic fulvic acid (AF A), a heterogeneous mixture of compounds with 

aromatic and aliphatic character, exhibits many of the desirable properties associated with 

CNT matrices but without many of their limitations. AF A is inherently highly 

functionalized, very soluble in water and needs no demanding functional modifications, 

making MALDI sample preparation straightforward. Also the supramolecular 

morphology of AF A provides a large surface area, which could be useful in sufficiently 

dispersing analyte molecules and preventing sample aggregation. 

The idea of using fulvic acid as a MALDI matrix was borne from recognition of 

its key unique structural features that should lend it to use in this capacity. Fulvic acid is a 

component of a class of materials called humic substances that are thought to be formed 

from degradation of biogenic materials. Although the complex structure of AF A is not 

fully understood, 13C-NMR, IR, UV, titrimetric characterizations, pyrolysis and 
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thermochemolysis techniques and electrospray ionization-MS have provided convincing 

evidence for the presence of a number of representative functionalities. 28
-
33 These include 

numerous keto acids, aromatic and aliphatic carboxyl groups and polycarboxylic a-ether 

and a-ester structures, which endow AF A with considerable acidic character (pKa of 

Suwannee River FA estimated to be < 2-3 .0). 28
-
30 As such, fulvic acid is undoubtedly rich 

in labile protons, which could be utilized for protonation of embedded analyte, making it, 

in principle, a good candidate for use as a MALDI matrix. 

During the preparation of this manuscript the use of a synthetic polyelectrolyte 

(poly-a-cyano-4-methacryloyloxycinnamic acid) as a polymer surface platform for LDI­

MS was reported by Kitagawa.34 In his work, he indicated a suitable polyelectrolyte for 

LDI should bear laser-energy absorbing structures on the polymeric backbone and 

moieties with labile protons, such as carboxyl groups, that could easily form a "proton 

cloud" that is available for donation to the analyte on excitation by the laser. With the loss 

of protons and subsequent formation of negative charges, the polyelectrolyte matrix 

should be in a configuration that allows increased inductive repulsive effects, which 

contribute to desorption. These features are shared by AF A, and thus it may be defined as 

a natural polyelectrolyte. This work using the synthetic polyelectrolyte assisted LDI-MS, 

further gives credence to the possible utility of fulvic acids in MALDI matrix 

applications. 

107 



4.2 Materials and Methods 

Poly(ethyleneglycol) 1000 (PEG 1000), 2,3,4,6-tetramethylglucose, xylose, 

chlorogenic acid, allose, a- and 13-cyclodextrins (CD), (D)-glucose, trialanine, maltose, 

maltotriose and 6-methyl-D-galactose were bought from Sigma-Aldrich Canada Ltd; 

Oakville, Ontario and used without purification. MALDI Calibration Mixture 1 

containing angiotensin-}, des-Arg1-Bradykinin, Glu-fibrinopeptide B and neurotensin 

was obtained from PerSeptive Biosystems; Foster City, California. Suwannee River FA 

standard 1 S 101 F was bought from the International Humic Substances Society (IHSS), 

St. Paul, Minnesota, USA. All solutions used in this work were made up in distilled 

deionized water unless otherwise indicated. The AF A matrices were made up at 

concentrations of 2.0 mg mL-1 and all analytes at 1.0 mg mL- 1
, other than the proteins in 

Calibration Mixture 1, which were present at 1.0 M, except for angiotensin-! at 1.3 M. 

Cantaloupe and generic pharmaceutical grade acetaminophen (500 mg tabs) 

manufactured for Loblaws Inc. Montreal, were obtained locally. 

4.2.1 Extraction of Aquatic Long Pond (Newfoundland) Fulvic Acid 

Fulvic acid from Long Pond (LF A), St. John's, Newfoundland, was isolated using 

the method described by Thurman and Malcolm, 35 with some modifications. Concisely, 

one hundred litres of water from Long Pond (St. John's, Newfoundland) were filtered 

using 0.45 f..!m hydrophilic polypropylene membrane filters and the pH adjusted to~ 1. 95 

using 6M HCl. The water was then pumped (flow rate, 6-7 mL min-1
) through a pre­

cleaned XAD-8 column (bed volume,~ 81 mL) and eluted in the reverse direction with 
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one molar NH3. The eluent was acidified to ~pH= 1. 95 using 6M HCl, reconcentrated on a 

smaller XAD-8 column (bed volume, ~38 mL) and eluted with one molar NH3, resulting 

in a concentrate offulvic and humic acid (HA). HA was isolated by acid precipitation, the 

pH of the concentrate was adjusted to 0.90 with HCl, followed by centrifugation. The 

fulvic acid fraction was reconcentrated on XAD-8, washed with two bed volumes of 

water to remove salts, eluted with one molar NH3, and then dried under vacuum. 

4.2.2 SEM Imaging of Fulvic Acid 

Two f.!Ls of2 mg mL-1 Long Pond fulvic acid and 2 f.!LS lSlOlF (2 mg mL-1
) 

were spotted on a stainless steel sample stage and imaged using a scanning electron 

microscope (Hitachi 5570 SEM with Tracor Northern 5500 EDX and backscattered 

electron detector). A 2-f.!L aliquot of 1 mg mL-1 trialanine was spotted separately on the 

LF A spot and imaged as well. 

4.2.3 UV-Vis Spectrophotometry 

Ten f.!g L-1 solutions ofLFA and lSlOlF were prepared in distilled deionized 

water and characterized spectrophotometrically using a Hewlett Packard 8452A diode 

array spectrophotometer. UV-vis spectra were obtained over a wavelength range of 190-

440 nm. 

4.2.4 Sample Preparation 

The very convenient fast evaporation method was employed as a sample 

preparation protocol. One flL of2 mg mL-1 (determined experimentally to be a suitable 
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concentration) AF A dissolved in water/acetonitrile (1: 1, v/v) was spotted on a MALDI 

1 00-sample capacity stainless steel sample stage and allowed to dry under ambient 

conditions. This formed a homogeneous film of the matrix. One-JlL aliquots of the 

analyte solutions were then spotted onto the dried matrix spots and allowed to dry. The 

sample stage was then loaded in to a MALDI-TOFMS instrument for analysis. 

4.2.5 MALDI-TOFMS Instrument Conditions 

The MALDI-TOF mass spectra reported herein were acquired in positive ion 

mode using an Applied Biosystems DE-RP equipped with a reflectron, delayed ion 

extraction and a pulsed nitrogen laser beam (337 nm). The accelerating voltage was 

20kV, extraction delay time was 200 nsec and the grid voltage was 74.4%. The mass 

acquisition range was chosen based on the molecular weight of analyte, with the upper 

limit ranging between mlz 1000-2000. Low mass ions were rejected by gating ions below 

mlz 1 00 to avoid detector saturation. The laser intensity was varied depending on the 

analyte analyzed, but for the purpose of obtaining good signal-to-noise ratio (SIN) was 

adjusted to slightly above the experimentally determined ionization threshold. Spectra 

reported are the average of 30 laser shots. 

4.3 Results and Discussion 

Topographical images from SEM of the IHSS Suwannee River fulvic acid 

standard 1 S 1 01F and the locally-extracted Long Pond fulvic acid (LFA) are presented in 

Figure 4.1. A comparison of images of the two fu1vic acids (Figure 4.1 a and b) shows 
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differences in the gross morphology. 

a) 

c) 

Figure 4.1. SEM offulvic acid as a matrix, a) 2 J.!L of2 mg mL- 1 LFA, b) 2 J.!L of2 mg 

mL- 1 1S101F c) 2 J.!L of2 mg mL-1 LFA doped with 2 J.!L of 1 mg mL- 1 trialanine, d) 

higher magnification of c). 

Supramolecular morphology is borne from molecular structure, where even subtle 

differences can have significant effects on supramolecular assembly. The observed 

disparities can be attributed to the source of AF A, isolation techniques, and physico-

chemical properties, noting that it is well accepted that the actual differences in 

functionality between humic substances from different places are marginal. 31 

Nonetheless, LF A seems to form a more homogenous and porous surface than its 1 S 1 01 F 

counterpart. There is also evidence that LFA performs better as a matrix, as will be 

illustrated later with examples of the mass spectra. The differences in their performance 
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as MALDI matrices could, in part, be explained by the disparity in their surface 

morphology (porosity and roughness), which has been noted to be an important parameter 

in enhancing desorptionlionization?6 As can be seen from the SEM images, LF A seems 

to form a crystalline morphology, which is now known to be an ideal condition for 

successful MALDI desorption/ionization. 34 

Even though there is no obvious relationship between the morphology of a matrix 

and its utility as a MALDI matrix, the study of morphology is important in understanding, 

albeit only partially, analyte-matrix interactions. Based on the two known schools of 

thought on analyte-matrix interaction required for a successful analysis, the analyte 

should either be included into the matrix crystal lattice through cocrystallization or 

interact with matrix by adsorption or chemisorption.5
'
6 It is critical to mention that our 

attempts to use the dried droplet sample preparation method (mixture ofmatrix/analyte 

solution spotted and dried) never worked well for these matrices, but the fast evaporation 

method (drop of matrix allowed to dry on sample stage to which a drop of analyte 

solution is then added) was found to be quite efficient, which might suggest that surface 

interaction (AF A acting as a support) is the dominant process and plays a critical role in 

the success of fulvic acid as a matrix. This is contrary to what is considered to happen 

with conventional matrices, where cocrystallization with the analyte is a prerequisite for 

success in MALDI. Spotting trialanine on the fulvic acid matrix spot did not seem to 

change the general morphology of the AF A, suggesting the analyte is trapped in the sub­

micrometre cavities (evident at high magnification, Figure 4.2d) of the matrix from which 

they are desorbed and ionized, a mechanism that is analogous to DIOS, which is a form of 

surface assisted laser desorption/ionization (SALDI). 13
' 

31 Further surface morphology 
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characterization ofF As are essential with both SEM and atomic force microscopy 

(AFM). 

To determine the performance of fulvic acid as a MALDI matrix, a variety of 

analytes were selected, the structures of which are illustrated in Figure 4.2. The results for 

each analyte are discussed on a case by case basis. 
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Figure 4.2. Test compounds employed with AF A matrices. 

4.3.1 Analysis of carbohydrates 

Small carbohydrates are a good choice for testing the efficiency of new matrices 

since it is difficult to form ions of these carbohydrates using MALDI, which can be 

attributed to a deficiency of basic sites available for protonation. Since conventional 
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matrices cannot be employed because of interferences, various ways of introducing 

charged moieties have been employed, such as use of quaternary ammonium centers, 

which Gouw et a/.37 reported to significantly enhance ionization. On the other hand, we 

have found that AF A facilitates ionization through cation adduct formation (a similar 

function is seen with CNTs) with small carbohydrates like xylose, glucose, 2,3,4,6-

tetramethylglucose, maltotriose, xylose, allose, glucose, and galactose; mass spectra for a 

selection of these analytes are shown in Figure 4.3. Sodiated analyte peaks were most 

intense, potassium ion adducts were also observed though at lower intensity and with less 

prevalence, but [M+Ht peaks were observed only infrequently. 

Matrix less LDI was also used in assessing the efficiency of fulvic acid in 

enhancing ionization of the carbohydrates. It was found that most of the analytes, such as 

maltotriose, xylose and galactose, could not be analyzed by matrix-free-LDI and spectra 

produced showed no identifiable peaks, only noise. With AFA as the matrix (Figure 4.3), 

analyte peaks were easily recognized on a background with only a few fragment or matrix 

peaks present, at relatively low intensity. For comparison, a spectrum of the 1 S 1 OlF 

AF A matrix alone can be seen in Figure 4.4a; a number of prominent peaks are apparent, 

which are absent in the spectra found in Figure 4.3. A comparable spectrum was 

observed for the LFA AFA matrix. 

Serial dilutions of these carbohydrates were carried out to test for detection limits 

using fulvic acid as a matrix. The detection limits were found to be relatively high and no 

analyte peaks could be identified below concentrations of 10 j.lg mL-1
. This may be due to 

the sequestration of analyte in the fulvic acid matrix cavities. Studies on models of fulvic 
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acid have attributed its ability to strongly bind organic compounds to its numerous 

polycarboxylic acid groups.28
·
29 This might explain why, in general, higher laser 

intensities than those used with conventional matrices had to be employed for these 

analyses. 
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It is well known that optimization of the ratio of matrix to sample is important for 

MALDI applications, and thus, the most appropriate concentration of matrix to use was 

sought. Aquatic fulvic acid concentrations ranging from 1 mg mL-1 to 5 mg mL-1 were 

evaluated and minimal differences in the results were observed. Since there was no 

advantage in using higher loadings of AFA, an intermediate concentration of2 mg mL-1 

was selected. Interestingly, at a low fulvic acid concentration (10 f.!g mL- 1
) simple sugars 

(concentration, 1 mg mL -I) such as galactose, allose and chlorogenic acid (has a 

carbohydrate chain) were found to enhance ionization of AF A components (Figure 4.4b ). 

This role reversal could be attributed to the fact that at low AF A concentrations, the sugar 

(now in molar excess) is not shielded from laser irradiation, experiences an increase in 

internal energy, degrades, and undergoes collisional cooling that enhances ionization of 

fulvic acid components, making their ions prominent.38 Enhancement of ionization by 

sugar additives is not a new phenomenon and has been reported and employed previously 

in the analysis of oligonucleotides.38
,3

9 Related to these results, the use of the phenolic 

compound, chlorogenic acid (molar absorptivity at 337 nm, 920 M-1 cm-1
), also 

substantially improved the signal strength of AF A peaks and could indeed be used as a 

matrix or matrix additive for analysis offulvic acids (Figure 4.4c). These improvements 

in ionization could be employed in the further characterization of AF A, as the signal 

intensities ofthe fulvic acid peaks (e.g. m/z, 360, 388, 494, 522, 550, etc.) are made 

strong enough to allow the possibility of fragmentation experiments with post source 
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decay (PSD). It is essential to underscore that the resulting peaks are not necessarily 

representative of fulvic acid as a whole, but only the components that are most amenable 

to ionization in MALDI in positive mode. 
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Excellent performance of AF A as a matrix was further demonstrated for CDs, 

specifically ~-CD (7 -glucopyranoside units) and a-CD ( 6-glucopyranoside units). This 

class of compounds are bucket shaped oligo saccharides used in a number of applications, 

including pharmaceutical formulations. Although CDs could be ionized using LDI, 

ionization is greatly enhanced using AF A matrices. The a- and ~-cyclodextrin ions (mlz, 

995 and 1157 respectively) detected were predominantly sodium adducts (Figure 4.5), 

formed through gas phase scavenging ofNa+ from the matrix, not unexpected since 

protonated carbohydrates are inherently unstable and thus cationization is the 

predominant ionization process. 

It was also found that the locally extracted LF A performed better than 1 S 1 01 F as 

a matrix for the carbohydrates, exemplified by the marked increase in intensity using LF A 

in the analysis ofmaltotriose (Figure 3b and c) and a-cyclodextrin (Figure 4.5). The 

differences in the efficiency of the two AF A matrices can be seen in Table 4.1, which 

gives peak intensities and S/N associated with the sodiated molecules of a number of 

carbohydrates. Again, LF A is shown to be a more effective matrix than the 1 S 1 01 F AF A 

standard. It is not completely apparent why this is the case, since the spectrophotometric 

data showed that the mass extinction coefficient at the laser wavelength (337 nm) was 

approximately ten times higher for 1 S 101 F than for LF A. So 1 S 101 F should be able to 

better absorb the laser energy and thus lead to more efficient ionization. Although in 

general, mass spectral quality increases with increase in the absorption coefficient of the 

matrix, it has been reported that above a certain threshold the effect of the UV absorbance 

coefficient on the quality on the mass spectrum is minimal.5 Therefore, the difference in 
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performance between the two AF A matrices could be attributed to a more significant role 

of other factors, for instance, structure, functionality and amenability to form crystalline 

solid support. 
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Table 4.1. Ion intensities and SIN values (sodiated peaks) for carbohydrates using 

1 S 1 01 F and LF A as matrices. 

1S101F LFA 

Analyte Intensity (SIN) Intensity (SIN) 

a-cyclodextrin 6.6xl03 (124.1) l.Oxl04 (275.8) 

~-cyclodextrin 6.4x 103 (1 08.1) 1.3x 104 (439.6) 

glucose 6.1 X) 03 (1 05.8) 2.0x 104 (338.6) 

maltotriose 4.Ix103 (94.0) 1.6x 104 (468.0) 

xylose 1.1 X 104 (202.4) 2.5xl04 (333.7) 

4.3.2 Analysis of Peptides 

As can be seen in Figure 4.6, AF A was found to be effective for the analysis of 

peptides of a range of masses. Trialanine (MW, 231.30), angiotensin 1 (MW, 1296.68) 

and des-Arg1-Bradykinin (MW, 904.47) ionized well using either lSlOlF or LFA. The 

workable mass range of AFA, however, seems to be limited to< 1500 Da since Glu-

fibrinopeptide B (MW, 1570.67) and neurotensin (1672.91) couldn't be detected. We 

speculate this could be associated with the ability of AF A to only accommodate the lower 

molecular weight analytes in its pores, where efficient transfer of the laser energy to 

analyte results in ionization and desorption, while the higher molecular weight 

compounds may be excluded from the fulvic acid cavities, reducing their chance of 

ionization/desorption. However, further studies should be carried out to assess the utility 

of fulvic acid for high molecular weight peptides. Proteins have sufficient basic sites for 
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facile protonation, so as anticipated [M+Ht was the dominant peak for the pcptidcs 

tested and sodiated adducts were only rarely present. 
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Figure 4.6. MALDI-TOFMS spectra of peptides using 2 mg mL-1 1 S 101 F as matrix: a) 

Calibration Mixture 1, (angiotensin 1, ~ 1.3 M and des-Arg1-Bradykinin, 1.0 M), b) 

trialanine 1.0 mg mL-1
. 

4.3.3 Analysis of PEG 

The use of AF A matrices was also successful for the analysis of the commercially 

important non-polar polyethylene glycol, PEG 1000, which ordinarily requires addition of 

a metal cation to obtain a charged oligomer that can be detected in MALDI-TOFMS. LDI 
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can also be used in its analysis; the result is a distribution of peaks typical for polymers. 

When AF A is used as a matrix for this class of analytes, the overall pattern of peak 

distribution does not change, i.e. the typical repeating pattern of peaks separated by 44 Da 

was clearly evident and consistent with the -CH2CH20- monomer of PEG (Figure 4.7). 

However, more peaks at higher mass are observed and the peak intensities increase by an 

impressive ~ 300%. Both 1 S 101 F and LF A were comparable in their efficiency to ionize 

PEG, with most of resulting ion peaks deduced to be sodiated. 
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1S101F as matrix. 
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4.3.4 Application to Real World Samples 

The utility of LF A for the application of real samples was tested in the analyses of 

the juice from a small piece (2 g) of macerated cantaloupe, and a solution made from a 

500 mg acetaminophen tablet dissolved and diluted it to~ 1 mg mL-1 acetaminophen_ AJI 

solutions were filtered resulting in clear colorless solutions. No extraction or separation 

was necessary. One-)lL aliquots of the solutions were spotted onto dried spots of 1 )lL of 

2 mg mL-1 LF A. For cantaloupe, the peak at m/z 203 (Figure 4.8a) was tentatively 

identified as either glucose or fructose with its potassium adduct at mlz 219. Other peaks, 

such as m/z 313, 419 and 717 were also present, but they couldn't be readily identified. It 

is envisioned that identification may be possible through the use ofPSD, however, the 

PSD in our TOFMS equipment was not functioning at that time. For the acetaminophen 

tablet (Figure 4.8b ), the active ingredient was unambiguously identified in its easily 

protonated form (mlz 152), resulting from protonation of the available basic site in the 

structure, and its sodiated form (mlz 174); the other peaks present (the polymer cluster) 

could result from the corn starch, which is normally added to acetaminophen tablets as a 

binder. 
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Figure 4.8. MALDI-TOFMS spectra acquired using 2 mg mL-1 LFA as matrix on: a) 

cantaloupejuice, b) 1 mgmL-1 acetaminophen. 

4.4 Conclusion 

The potential of aquatic fulvic acid for use as a MALDI matrix has been 

successfully shown. Particularly interesting is the remarkable performance of locally-

isolated fulvic acid as a MALDI substrate material, which was significantly better than 

that ofthe IHSS AFA standard. To our knowledge this is the first time that AFA has been 

investigated and reported as a MALDI matrix. With this breakthrough, the use of both 

MALDI and fulvic acid could be widened. It is envisioned that with proper optimization, 

these benign aquatic fulvic acids could have potential for use as universal MALDI 
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matrices. Of special note is the matrix/analyte role reversal observed at low concentration 

of fulvic acid with sugars in excess, this behaviour is intriguing and it is undoubtedly 

worth further investigation as it may be useful in the characterization of fulvic acid by 

MALDI-TOFMS. 
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CHAPTERS 

Characterization and Comparative Study of Disinfection By-Products 

from Suwannee River Natural Organic Matter, Fulvic, Humic Acid and 

Selected Model Compounds. 
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5.1 Introduction 

Though other forms of disinfectants, such as ozone, chlorine dioxide, inorganic 

chloramincs and, recently, peracetic acid, arc becoming increasingly common, 

chlorination remains the most widely used fonn for disinfection of drinking water 

worldwide. 1
-
5 The main advantage of chlorination is its low cost, well-established 

practices, broad spectrum gennicidal potency ( ~ 40 mg L-1 enough to kill enteric disease 

causing pathogens such as E. coli, Salmonella Typhimurium, etc.), and ability to provide a 

stable disinfectant residual (typically 0.2-1.0 rng L-1
).

1 Although the effectiveness of 

chlorination as a disinfectant is undisputed, its usc results in the formation of unintended 

potentially hannful chemical disinfection by-products (DBPs) generated from reactions 

with ubiquitous natural or xcnobiotic organic compounds and bromide or iodide ions 

(mainly present in coastal watcrs). 4
-
8 Some DBPs have been associated with bladder and 

colorcctal cancer, and teratogenic effects, and arc therefore of serious conecm.9
•
10 

DBPs f{)rmation (i.e. reaction pathways and end products) remain poorly 

understood even though three decades now have been dedicated to their study since the 

discovery of chlorof{)rm in drinking water by Rook.Z Balancing health risks associated 

with drinking water disinfection with the risk of pathogen exposure, therefore, remains a 

significant challenge f(Jr the modem drinking water professional. Complicating this 

picture is the fact that an inordinate number(> 600) ofDBPs have been identified to date 

and many more remain unidentified, moreover, their analysis is not analytically trivia1.8 

Only a few of the known DBPs are routinely quantified and regulated; the primary focus 

has been on the two most abundant DBPs classes, namely trihalornethanes (THMs) and 
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haloacetic acids (HAAs).4
-
8 Other classes ofDBPs identified in treated drinking water 

include: haloacetonitriles, halonitromethanes, haloketones, haloacids, haloaldehydes, 

haloacctatcs, haloamidcs and other non-halogenated organic compounds. Most of these 

arc considered emerging high priority DBPs by the US EPA, with iodinated and 

brominatcd analogs of particular concern as they have been found to exhibit higher 

toxicity compared to their chlorinated counterparts. 6•
8 

Because of the large number ofDBPs that have been identified in drinking water 

and/or predicted by occurence predictive models, it is not practical to do epidemiological 

and toxicological studies for each, thus toxicity and carcinogenicity rankings arc normally 

done using structure-activity relationship modcls. 11
'
12 However, even for relatively well 

studied DBPs such as MX, which has been known to be a highly potent mutagen for more 

than a decade, regulations arc yet to be in place in most countrics. 13 For instance, 

occurrence ofMX concentrations of as high as 67 ng L-1 and up to 80 ng L-1 have been 

reported in Finland and Massachusetts water supplies, respectively. 14
'
15 A recent study on 

DBPs in a small Alberta community showed drinking water often exceeded the maximum 

contaminant level for THMs. 16 Therefore, it must be emphasized that most water 

treatment plants arc yet to comfortably minimize the most abundant, simple and well­

understood DBPs, i.e., the THMs and HAAs. 

Many other issues complicate the study ofDBPs, for example, contrary to the 

conventional belief that ingestion is the only significant exposure route, research has 

demonstrated that other exposure routes such as inhalation, dermal adsorption (from 

bathing, swimming, and other activities) could have varying degrees of importance, 
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depending on type ofDBP in question.4
'
5

'
8 Furthermore, most of the research on DBPs 

occurrence has been conducted by sampling treated water from the treatment plant before 

distribution and yet it is obvious that the nature ofDBPs could change with time, for 

example, by reduction ofDBPs by iron oxides in the distribution pipes or by boiling 

water in homcs. 17
'
18 

In addition to the aforementioned issues, the DBPs problem cannot be ignored in 

light of the knowledge that a huge portion of relatively polar, thcnnally labile and high 

molecular weight products defy analysis by the gold standard technique, GC-MS and 

therefore have yet to be characterized. Most of the gcnetoxicity in water is attributed to 

this uncharactcrizcd fraction. 19
-
22 Attempts to analyze the often complex mixture by LC­

MS is not trivial since resolution into discrete peaks by HPLC has not been possible and 

continues to be a hot topic of research. A number of other approaches have been used in 

attempts to characterize this intractable fraction. Of note, clectrospray ionization high 

field asymmetric waveform ion mobility spectrometry mass spectrometry (ESI-F AIMS­

MS) has been exploited due to its characteristic high selectivity, sensitivity and gas-phase 

ion separation capability at atmospheric pressure (760 Torr) and room temperature. ESI­

F AIMS-MS is proving useful for trace analysis of highly polar non-target DBPs.23 

DBPs formation is influenced by a variety of water quality parameters including 

total organic carbon, pH, temperature, contact time, disinfectant dose and residual 

disinfectant, all of which must be optimized to ensure maximum disinfection and minimal 

byproduct formation. In effort to comply with stringent regulations ofTHMs and HAAs, 

water facilities in North America are increasingly being redesigned to incorporate the use 
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of nanofiltration in order to remove dissolved organic matter prior to disinfection and to 

use alternative disinfectants such as ozone, chlorine dioxide, UV and chloramine. 1
,?.

4 

Chloramincs (monochloramine is highest in germicidal potency), though weaker 

disinfectants than chlorine and with low persistence in the distribution system, have been 

shown to produce considerably less chlorinated DBPs than chlorine, probably due to their 

lower oxidation potentials. Thus chloramincs arc considered less hazardous in this regard 

and arc a preferred choice, especially as a secondary disinfectant (ozone a common 

primary disinfectant). However, it is obvious that usc of alternative disinfectants such as 

chloramincs is not a panacea to the DBPs problem, since DBPs classes could also be 

formed when chloramines react with the natural organic matter (NOM)?5 The DBPs that 

would result from chloramination of water containing NOM arc not well characterized 

and thus their study is a critical research gap that warrants increased scrutiny. 

Nevertheless, it is well accepted that two competing reaction pathways exist with the usc 

of chloramines, auto-decomposition of monochloramine and direct reaction of 

monochloramine with NOM. 1
·
26 Monochloramine has been reported to form 

dichloroacetaldehydes, though HAA are the primary DBPs formed with dichloroacetic 

acid being dominant. In the presence of bromide, brominated and mixed halogenation 

acetic acids have also been reported as other possible DBPs that could be formed. Apart 

from the DBPs formation, choramination has been associated with the release oflead into 

drinking water from distribution system pipes, which could further toxify drinking 

water.25 
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Studies by Choi et a/. 27 among others, 28 also suggest that N-nitrosodimcthylaminc 

(NDMA), a non-halogenated and probable human carcinogen- previously a known 

contaminant in foods and consumer products such as meats, beer, tobacco smoke and 

rubber products such as baby bottle nipples - could result from the reaction of 

monochloraminc and NOM during drinking water disinfection. A maximum allowed limit 

for NDMA of 9 ng L- 1 has been suggested in Ontario and 10 ng L- 1 in Califomia.28 

Analysis ofNDMA and other related compounds arc analytically challenging due to lack 

of standard analytical methods, difficulty of extraction due to their high polarity, thermal 

instability, low-molecular weight and occurrence at very low concentrations; thus could 

require dcrivatization strategies. Sensitive (nanogram-level) methods of analysis of 

NDMA have been reported, such as GC-MS-MS with chemical ionization and, recently, 

HPLC with fluorescence detection of a dansy1 amine dcrivativc.29 

The complexity ofDBPs characterization stems especially from the poorly 

defined structural nature of their precursors, NOM of which the major components arc 

humic substances (HS). The puzzle is further complicated by the intricate reaction 

pathways between NOM and disinfectants, such as chlorine. Wu et al., 30 as well as other 

researchers, 31
-
33 have postulated that, since chlorine is an clectrophilc, most DBPs would 

result from its reaction with the electron-rich moieties such as aromatic structures in 

NOM. The reaction pathways that have been suggested involve oxidation, radical 

reactions, clectrophilic substitution, etc., ensuing into an abundance ofboth oxidative and 

chlorination products, as well as metastable products, all at very low conccntrations.30
-
33 

Unravelling the fonnation mechanisms as well as characterizing all these by-products is 
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arduous and thus many scientists have begun using hydroxyl and methoxy substituted 

aromatic compounds as surrogate compounds for HS to study DBPs fonnation. 34
-
4° For 

example, Huixian et al. 34 has attributed MX fonnation to the reaction of substituted 

aromatic aldehydes and amino acids with <;hlorinc. Apart from using model compounds to 

model fonnation mechanisms of known DBPs, new DBPs have also been documented 

from the chlorination of model compounds by quite a number of authors. For example, in 

the process of searching for MX precursors, Gong et al. 35 identified 2,2,4-trichloro-5-

mcthoxycyclopcnt-4-cnc-1 ,3-dionc from chlorinated syringaldchydc, which was later 

detected by GC-MS in chlorinated drinking water. Studies by Rook2 showed that 

flavanoids such as rutin, hesperetin and hcspcrcdin and polyhydroaromatic compounds, 

especially orcinol and resorcinol, arc potential precursors in chlorofonn fonnation. It is 

crucial to note that model compounds must be carefully chosen, and should bear 

significant functional similarity to known HS structures. Compounds constituting highly 

substituted aromatic rings, which are inherently prone to electrophilic attack by chlorine, 

have been found to mimic HS very well in the f(mnation of certain DBPs.34
-
40 

In our study, Suwannee River fulvic acid (FA), humic acid (HA) and NOM were 

chlorinated separately and the products were screened using GC-MS. Several DBPs were 

identified using the National Institute of Standard Testing (NIST) mass spectral library 

and by interpretation of spectra. Studies on DBPs that result from use of monochloramine 

are relatively few and so our work also compares the products that are generated from the 

use of chlorine to those produced using monochloramine in water containing HS. To 

better understand the formation of halo ketones, which were prevalent from both 
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chlorination and chloramination ofNOM, chrysin, quercetin, quereetrin and chlorogenic 

acid were used as model compounds. 

5.2 Materials and Methods 

Fulvic acid (1S101F), humic acid (1S101H) and NOM (1R101N) were bought 

from the Intemational Humic Substances Society (IHSS), St. Paul, MN. Sodium 

hypochlorite (10-13% free chlorine), ferrous ammonium sulphate, sodium sulphate, 

sodium sulphite were purchased from Sigma Chemicals Co. (Oakville, ON). N, N-diethyl­

p-phenylenediamine (DPD No. 1) was bought from Palintest House, Kingsway (Team 

Valley, UK). Amberlites XAD-4 and XAD-8 were purchased from Supclco Ltd, 

(Bellefonte, P A). Quercetin, quercitrin, chrysin and chlorogenic acid were purchased 

from Sigma Aldrich (St. Louis, MO). All chemicals were at least of reagent grade and 

were used without further purification. 

5.2.1 Procedure for Chlorination 

The procedure used for the chlorination has been shown schematically in Figure 

5.1. Briefly, 150-mL of 100 ~tg mL-1 ofNOM (1Rl01N), HA (1Sl01H) and FA (1S101F) 

prepared in distilled deionized water were each added separately to 150-mL portions of 

freshly prepared aqueous sodium hypochlorite containing 100 ).!g mL-1 of free available 

chlorine; concentration was approximated by titration with ferrous ammonium sulphate 

with N, N-diethyl-p-phenylenediamine as an indicator. 1 
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100 1-1g mL-1 NOM or FA or IIA +100 1-1gmL1 

NaOCl in lOmM phosphate buffer, pH 7.0 ± 0.2 

< I Incubation time, 24 h_o_u_rs __ ...J 

< Quenched by N~S03 and acidified to pH< 2.5 by 
3MIIC1 

I 

Solution passed through mixture XAD-4 and 
XAD-8 (1:1); bed volume 7.8 mL at a flow 
rate of2-3 mL min-1 

IV 

Elution by I 0 mi, ethyl acetate, rotavappcd I 
to dryness and reconstituted in 0.5 mL 
ethyl acetate 

) I Analysis by GC-MS 

l 
NIST library and elucidation 
of mass spectra 

Figure 5.1. Schematic of the chlorination procedure employed. 

Chlorination was conducted in 300-mL capacity borosilicate glass bottle equipped with 

Teflon lined caps. The high NOM and chlorine concentrations and a relatively long 

contact time (24 hours) used were similar to those employed by Zhang et a/. 19
, which is in 

effort to maximize the formation of DBPs, making their detection more straightforward. 

For model compounds, 10 j.lg mL-1 of quercetin, chlorogenic acid, chrysin, qucrcitrin 

were chlorinated for 2 hours and 24 hours. Since chrysin is relatively insoluble in water, 

5% acetonitrile was added to assist in solubility. A method blank, prepared by incubating 

150-mL of distilled deionized water with 150-mL hypochlorite solution was also run 
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using the aforementioned procedure. All solutions were buffered with phosphate buffer at 

pH 7.0 (pH at which chlorine is freely available) and incubated at room temperature in the 

dark to avoid photochemical oxidation of chlorine to Cl02 . The residual chlorine in 

solution was reduced to chloride by quenching with an cquimolar quantity of sodium 

sulphite and acidification to pH 2.5 using 3 M HCl. To isolate DBPs, the solution is 

passed through a column packed with pre-cleaned XAD-4 (macroreticular styrcnc­

divinylbenzenc copolymer resins) /XAD-8 (methyl acrylate and trimethylolpropanc 

trimcthacrylatc copolymer resins) in a 1:1 ratio. The combination ofXAD-8 with XAD-4 

has been shown to be effective in adsorbing a wide range of organic compounds, 

including MX. 13
-
15 

DBPs of interest were eluted using ethyl acetate, and the eluate was dried over 

anhydrous sodium sulphate, concentrated to 0.5 mL and analyzed by GC-MS and FIA­

ESI-MS. Based on the polarity of ethyl acetate, the DBP fraction targeted was moderately 

polar and so undoubtedly, the higher polar compounds may be retained on the column (in 

XAD-8 resin). This fraction could be eluted using a more polar and aggressive eluent, 

perhaps DMF, DMSO, or derivatization prior to isolation on the column might be used. 

However, the overly hydrophilic compounds might not be retained at all in the column. 

5.2.2 Preparation of Monochloramine 

A stock solution was prepared by mixing 8.3 g C 1 of aqueous ammonia with 5% 

(v/v) NaOCl, f(Jrming a solution with a pH of~9.0. The f(.)fmation ofmonochloramine, 

dichloramine or trichloramine is pH dependent. The concentration of the prepared 

monochloramine stock solution was approximated by the DPD titrimetric method. 1 Using 
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this reliable method, it was ascertained that no detectable residual free chlorine was 

available in the freshly prepared chloramine solution. The working solution was prepared 

by diluting the stock solution to 100 mg L- 1 monochloraminc, which was used to treat 1 00 

~Lg mL-1 ofF A or NOM. The incubation time was 24 hours, which was carried out at 

room temperature under darkness to reduce the autodecomposition of monochloramine 

which is inherently unstable. After the 24 hours contact time the monochloramine residue 

was found to be ~ 11 mg L-1
. Without dechloraminating, the treated solution was extracted 

as shown in Figure 1. The series of bimolecular reactions that result when chlorine reacts 

with ammonia are shown below. The formation constant (Kf) f(x monochloramine attests 

. b'l' d h' h f hl . fi . . k 15 16 to 1ts sta 1 tty an tg rate o monoc oramme ormatwn 1s nown. ' 

Eq 5.1 

Eq 5.2 

Eq 5.3 

5.2.3 GC-MS Instrumentation 

An Agilent Technologies 5890N Network GC system equipped with 7683 series 

automatic injector coupled to an Agilent 5973 mass selective detector in EI mode (70 cV) 

was employed for the analysis. The GC column used was Agilent 19091 S-433 HP-5MS 

(0.25-mm i.d. x 30m, 0.25-Jlm film thickness). The carrier gas (He) head pressure was set 

at 11.99 psi, splitless mode used, injection volume was 2 JlL, solvent delay set to 4 min, 

MSD transfer line was heated at 280 °C, injector temperature was 280 °C. The mass range 

(35-550 Da) was scanned at 2.76 scans/sec. The oven temperature program was as 
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follows: initial temperature was set at 40 °C and held for 2 minutes, then ramped at a rate 

of 4° C/min to a final temperature of270 °C, which was held for 10 min. 

Changes in the absorption spectra of the precursors were monitored during the 

chlorination process using a Hewlett Packard 8452A diode array spectrophotometer .. 

Equal volumes of 10 J..tg mL -I ofHS, model compounds and chlorine solutions were 

mixed in a 1 em quartz cuvette and UV spectra acquired at different times including: 30 s, 

10 min, 20 min, 30 min, 40 min and 24 hours. 

5.2.4 ESI MS Instrumentation 

A Hewlett Packard (HP) 1100 series LC system equipped with a HP 1100 series 

MSD single quadrupole was employed f()r the analysis of the chlorinated extract. The 

mobile phase used consisted of acetonitrilt~/ water (50: 50) and the flow rate was 0.8 

mL/min. The acquisition mass range in negative ion mode was 3 5-1000 Da. 

5.3 Results and Discussion 

It has been well-documented that most of the DBPs formed that arc yet to be 

characterized are highly polar and/or high molecular weight and thus not amenable to 

analysis by GC-MS due to their limited volatility and likely lack of thermal stability. 19
-
22 

However, attempts to analyze the extracts of chlorinated HS by LC-MS was found to be a 

challenge because the sample consisted of a complex mixture of compounds. Moreover, 

even though the extraction procedure used only affords extraction of a fraction of the 

moderately polar DBPs, the mass spectra obtained consisted of peaks at every mass unit. 

With the low resolution of quadrupole mass analyzer used, identification of the 

components was not possible. Figure 5.2 shows the complex mass spectrum obtained by 
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flow injection (FIA) analysis with ESI detection in the negative mode. Negative ESI is 

preferred to the positive mode, since it was expected that most of the compounds would 

be anionic (carboxylic acid groups arc the dominant functionalities in HS) and hence arc 

either pre-ionized in solution or arc easily ionized in the spray. From the mass spectrum 

obtained, peaks associated with DBPs were found from m/z 100- ~ 1000, with most 

concentrated around m/z 300-500. An attempt to separate the compounds to individual 

components chromatographically was not effective and only poor separations resulted. 

Difficulties associated with the characterization ofthc high-molecular weight DBPs have 

also been noted by Minear et al., 19-nwho have attempted to usc size exclusion 

chromatography (SEC) with ESI-MS-MS, without much success in unequivocal 

identification of specific DBPs. 
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Figure 5.2. FIA-ESI-MS mass spectrum ofDBPs extraction from chlorinated NOM. 

It is envisioned that by employing MALDI-TOFMS, MALDI-QqTOFMS and nano 

capillary LC/LC-MS-MS to the characterization of these high MW DBPs, much more 

could be learnt and further studies in our laboratory are being conducted in these areas. In 
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addition, the usc ofFT-ICRMS, which characteristically has high resolving power and 

has become more common in the analysis of complex mixtures such as humic materials 

and petroleum, might be the best technique to resolve and identify complex mixtures of 

DBPs.41 However, a lack of availability of such expensive instruments is a major obstacle 

and thus reliance on the widely available GC-MS continues. 

The results shown in this chapter arc from GC-MS and thus account for only a 

small portion (mainly semi-volatile and volatile components) of this complex mixture. 

Nonetheless, the usc of GC-MS with electron ionization is favourable because it offers 

unique advantages that arc unmatched by other analytical methods. These include very 

high sensitivity, availability of the now mature mass spectral libraries, and also well 

understood fragmentation mechanisms, making it feasible to carry out structure 

elucidation. The resulting total ion chromatograms (Figure 5.3) were, as expected, so 

complicated that identifying individual compound has proven to be difficult. From a 

superficial look at the profiles depicted in the chromatograms, it seems valid that more 

numerous DBPs result from fulvic acid (chromatO!,'l'am with more detectable peaks) 

compared to humic acid, a principle that is well acccptcd.2 A possible explanation for this 

is that FA is the predominant fraction of HS present in water. Since FA may be more 

highly functionalizcd than HA, it may be more prone to attack by chlorine leading to a lot 

of small DBPs, detectable by GC-MS. Each chromatogram was background corrected and 

the NIST (> 100,000 spectra) mass spectral library databases (Version 2.0) and 

elucidation of spectra were used in identification. 
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}figure 5.3. Chromatograms of chlorinated Suwannee River a) HA b) FA c) NOM. 
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Several interesting DBPs that have previously been reported were quickly 

identified (> 80% match), and arc delineated in Table 5.1. Some ofthcir structures and a 

few selected mass spectra arc shown in Figure 5.4 and Figure 5.5, respectively. Most of 

the DBPs resulting from chlorination ofthc different classes ofNOM (i.e., HA, FA and 

NOM) were quite similar, which further supports the idea that humic and fulvic acids arc 

structurally similar. 

Halokctoncs (HKs) were the predominant class ofDBPs in the fractions studied 

for all the organic materials chlorinated. Although this class of compounds has been 

previously reported, it is yet to be regulated, despite the fact that there is compelling 

evidence that these compounds could be mutagenic. For instance, Curieux et al. found 

that dichloropropanone and trichloropropanone induce primary DNA damage in E. Coli 

and in the Salmonella Typhimurian strain TA100.42 Haloketoncs have also been reported 

by Woo et al. 12 as likely to be weakly carcinogenic or carcinogenic toward a single 

species/target at relatively high doses. It is for this reason that Richardson et al.4
-
8 of the 

US EPA have recently classified HKs as priority DBPs. 

Preliminary results also show that some of the DBPs identified were found to be 

specific to definite classes ofNOM. For example, chloroacetamides (e.g., 2,2,2-

trichloroacetamide) and dichloronitromethane were only produced from the chlorination 

of NOM suggesting that they result from components of NOM other than FA and HA, 

such as aminoacids. Halogenated furanones like 2-chloro-3-methyl maleic anhydride and 

3-chloro-2,5-furandione, as well as non-halogenated furanones (e.g., 3-(1,1-

dimethylethyl)- 5-furandione) were mainly detected from NOM and FA, but were not 
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pronounced in fractions from chlorination ofHA. It appears that these furanoncs mainly 

result from chlorination of the fulvic acid precursor; however, further studies arc 

underway to ascertain this. The study of furanoncs is very important because mechanism­

based structure activity relationships indicate that they arc toxicologically-significant 

compounds, attributable to structural similarity to the highly potent mutagen MX. 17
· 

Other DBPs observed with a high degree of confidence that have not been 

previously emphasized as DBPs included 2,2-dichloro-1 ,3-cyclopcntancdionc, 5,5-

dichloro-2,2-dimcthyl-(1 ,3)-dioxanc-4,6-dione, 2,3-dichloro-2-propcnoic acid, 

chloroacrylic acid, and methyl 3-chloropropenoate. Arguably, the reactions between 

chlorine and the DBPs precursors proceed via a number of routes, including degradation 

of HS through oxidation reactions to produce reactive sites followed by substitution 

reactions to produce the halogenated DBPs. 30
"
33 Evidence for this oxidative pathway is 

demonstrated by the presence of oxidation products found along with their chlorinated 

analogues. Some of the oxidative products identified arc summarized in Table 5.1. Most 

of these products arc similar to those that result from pyrolysis or thcnnochcmolysis of 

humic substances; a number of these experiments that have been done in our lab. These 

products add a new dimension to the understanding of the structural components that 

make-up HS. For example, butcncdioic acid, one of the oxidative products obtained on 

chlorination (Figure 5.4) was observed as a major chcmolysatc ofHS, and since it was 

demonstrated (Chapter 3) to be present in humic acid model derived from 

polysaccharides; this work gives further credence to the hypothesis that HS arc 
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predominantly polysaccharides derived. Furthennore, the consistent presence of furanone 

derivatives formed on chlorinating HS attests to a polysaccharide origin. 

Table 5.1. Some DBPs observed in the chlorination studies ofHS 

DBPs Retention time 
(min) 

Halo ketones 
1) 1,1, 1-trichloro 2-propanone 5.55 
2) 1,1 ,3-triehloro 2-propanone 9.12 
3) 1,1 ,3,3-tetrach1oro 2-propanone 11.64 
4) 1,1, 1 ,3,3-pentachloro 2-propanone 11.62 

Haloacids+ 
5) 2,3-dichloro-2-propenoic acid 13.40 
6) chloroacrylic acid 9.20 

Chlorinated furanones • 
7) 3-chloro-2,5 furandione 9.33 
8) 2-chloro-3-methyl maleic anhydride 10.96 

Haloamides 
9) 2,2,2-tricloroacetamide* 16.32 

Halonitromethanes 
1 0) dichloronitromethane* 12.99 

Haloester 
11) methyl 3- ehloropropenoate 8.04 

Other halogenated compounds 
12) pentachloro-cyclopropane + 13.09 

13) 4,5-dichloro-1 ,3-dioxolan-2-one+ 7.56 

Oxidative products 
8.82 14) 3-mcthyl-2,5-furandionc+ 

15) 3-(1, 1-dimethylethyl)- 5-furandione+ 8.85 

16) propanoic acid 7.60 

17) 3-methyl butanoic acid 6.04 

18) 4-methyl, 3-penten-2-one 6.37 

19) 2-butcncdioc acid 6.38 

20) 2-methyl-, 2-methylpropyl ester, 2- 11.43 

propanol 
6.24 21) 4-hydroxy-4-methyl, 2-pentanone 

* Observed only in chlorinated NOM, +observed in NOM and FA and not in HA 
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};'igure 5.4. Structures of some DBPs observed in the HS chlorination studies. 
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Figure 5.5. Mass spectra of a) 1,1,1,3,3-pcntachloro-2-propanonc, b) 2,3-dichloro-
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Similar to chlorination, chloramination of FA and NOM also resulted 

predominantly in fonnation ofHKs and a few HAAs, which is in agreement with 

previous research by Wu et a/. 30
, who have indicated HAAs arc the major 

monochloraminc DBPs. 30 However, for chloramination ofNOM, the chlorinated DBPs 

detected were fewer compared to those obtained by chlorination, which is consistent with 

why increasingly chloramine is replacing chlorine as a disinfectant. 

5.3.1 Results from the model compounds 

Since HK.s were found to be the most prominent DBPs formed by both 

chlorination and chloramination of the different NOM classes studied, it was imperative 

to determine their exact precursors. Because the detailed structure of NOM is uncertain, 

the most practical approach to the study of HKs formation is to use carefully selected 

model compounds. The model compounds used were quercetin, quercitrin, chrysin, (all 

f1avanoids) and chlorogenic acid, which is a major phenolic compound in coffee and a 

known anti-oxidant. The rationale used for the model compounds selection is the fact that 

they are known plant materials and thus expected to be part of the raw materials that lead 

to the f(Jrmation ofJ-IS. Chlorogenic acid and quercetrin structures also have a unique 

combination of aromatic and sugar moiety, and similar structural association has been 

suspected f()r HS, making them suitable surrogate compounds.2 Chlorination of quercetin, 

quercitrin and chrysin (structures shown in Figure 5.6) resulted in the f(mnation of some 

of the HKs, which had previously been obtained with chlorinated NOM including 1,1 ,3,3-

tetrachloro-2-propanone and 1,1, 1 ,3,3-pentachloro-2-propanone and 1,1, 1 ,3,3,3-

hexachloro-2-Propanone. However, for chlorogenic acid, none of the HKs or any other 
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chlorinated species were identified. From these results, we speculate the precursor site 

responsible for the HKs formation is the meta-dihydroxy substituted ring present in the 
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HO, ¢ ,OH OH .,, ... 

HO'''··· O 0 Oil OH 
() 

.... ,,OH 

HO 
OII HO ... ,,,OH 

HO 
HO 

Quercetrin 
Chlorogenic acid 

Figure 5.6. Structures of model compounds tested. 

flavanoids and absent in chlorogenic acid, which contains the ortho-dihydroxy 

substituents instead. These results are in agreement with previous studies on chlorination 

and chloramination of various aromatic phenols such as resorcinol, phoroglucinol, 

orcinol, etc., which were f(mnd to produce large amounts of chlorof()rm and chloroacetic 

acid, attributed to chlorine attack at the meta-dihydroxy substituted ring. 2
•
36

•
39

• 
40 The 

formation of chlorinated compounds from hydrogen substitution of the activated carbon 
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in ~-diketone, is also evident from the fonnation of 2,2-diehloro-1 ,3-cyclopentadione and 

5,5-dichloro-2,2-dimethyl (1,3) dioxane-4,6-dione detected in chlorinated NOM (Figure 

5.3). 

5.3.2 UV-Vis Spectrophotometric Studies 

Correlating the changes in UV absorption of NOM or model compounds being 

chlorinated and DBPs formation has been found to be a practical and reliable approach 

and has further been used to probe the mechanisms of the underlying rcactions.32 

Although the intent of our research was to screen for new DBPs on chlorination of NOM 

and its component classes rather than to undertake an in depth mechanistic study of the 

chlorination process, preliminary studies on monitoring the reaction of NOM and model 

compounds with chlorine using UV-vis spectrophotometry was attempted. This was done 

by mixing NOM and model compounds solutions with hypochlorite solution in a 1-cm 

glass cuvette as described earlier and acquiring UV-vis spectra at different times in the 

reaction process. Figure 5.7 shows representative UV spectra ofNOM, chlorogcnic acid 

and chrysin before chlorination and at 30 seconds and 30 minutes after chlorination. With 

longer reaction times (>30 min), only very minimal changes in the spectra were observed 

and no significant infonnation could be deduced and thus arc not shown in the spectra. As 

shown in the UV spectra on chlorination of chrysin (spectra shown in Figure 5.7a, which 

was very similar to quercetin), there was a dramatic bathochromie (shift to longer 

wavelength) and hyperchromic shift (increased intensity) of the peak at ~270 nm to --300 

nm immediately on chlorination. The above mentioned spectral shift may be as a result of 
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the a-substitution sensitive n->n* transition (associated with ketones), which occurs in 

the range of 270-300 nm and thus has been exploited as a diagnostic band for monitoring 

hl . . . . . 31 32 44 1'h' b d 1 h'ft b 'b d c onnatwn mcorporatwn reactwns. ' ' IS o serve spectra s 1 can e attn ute 

to chlorine (auxochrome) incorporation by substitution at a carbon atom at the ortho 

position with respect to both phenolic hydroxyl substituents in the chrysin (believed to be 

the site most prone to an electrophilic attack). Based on the mechanism proposed by 

Rook, 2 (mechanism shown in Figure 1.8) chlorine substitution subsequently leads to the 

formation of a ~)-diketone as an intermediate. The peak ( ~ 300 nm) gradually reduced in 

intensity (hypochromic shift), which could be associated with the breakdown of the 

aromatic ring as a result of oxidation and/or hydrolysis reactions with possible 

substitution reactions as well. Similarly, with NOM, although the spectrum (Figure 5.7b) 

has no discrete minima or maxima, due to the large number of double bonds that arc 

conjugated with carbonyl moieties as well as numerous alkyl substitucnts- the n-->n* 

transitions almost completely obscure the diagnostically valuable n~rr* band- there is 

weak evidence on initial chlorination that similar spectral shifts described for chrysin may 

occur. 30
-
33 The bathochromic and hyperchromic spectral shifts discussed were not clearly 

evident for chlorogcnic acid (Figure 5.7c), which could mean oxidation rather than 

substitution is the dominant reaction pathway, and could further explain why no 

chlorinated byproducts were detected. It was also apparent that the reaction between 

chlorogcnic acid with chlorine was extremely rapid as attested by the immediate 

disappearance of the brown color of chlorogcnic acid and the large hypochromic shifts 

shown in the UV Spectra in comparison to other compounds evaluated. 
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Figure 5.7 UV-Vis spectra of chlorine reaction with a) NOM, b) chrysin, and c) 

chlorogcnic acid, c is the molar (mass for NOM) absorptivity coefficient. 

5.4 Conclusion 

After three decades, the DBPs are an old DBPs problem but remain a legitimate 

research area with so much information regarding their formation, occurrence and effects 

on human health still nebulous. In this study, several rarely reported DBPs, including a 

number of furanone derivatives and halo ketones were identified from chlorination and 

chloramination of Suwannee River NOM, HA and FA. From the chlorination studies 

using chrysin, quercetrin and quercetin as model compounds, a strong candidate f()r a 

structural precursor site for the formation of HK.s was identified in the aromatic meta-

dihydroxy ring component. The selected model compounds were also confirmed to be 
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suitable surrogates for NOM because of their remarkable similarlity to the byproducts 

fonncd on chlorination. Although preliminary UV spectroscopy results show some 

similarity in response to chlorination of NOM and model compounds, further 

spectroscopic study of the reaction pathway would be essential in effort to establish the 

exact mechanism of action for the fonnation ofhaloketones. On-going studies in our lab 

also include analysis of other polar and high molecular weight byproducts fonned from 

the reaction of model compounds and NOM with chlorine using ESI-MS-MS, which 

could help identify the thennally labile components. 

In our mass spectral elucidation of the ethyl acetate extract of the chlorinated 

NOM, numerous peaks were observed with fragmentation patterns characteristic of 

carbonyls, m/z: 43, 57, 71, 85, suggesting dominance of the presence of carbonyl groups 

and hence the need to carry out carbonyl dcrivatization to enhance their detection. In 

addition, most water treatment plants usc ozone as a primary disinfectant, which is known 

to form a phlethora of carbonyl containing byproducts on reaction with organic matter.45 

Therefore subsequent studies in our laboratory have been tailored towards developing 

methodologies for analyzing carbonyls and dicarbonyl compounds by derivatization and 

analysis by MALDI-TOFMS. 
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CHAPTER6 

Rapid On-Plate and One-Pot Derivatization of Carbonyl Compounds 

for Enhanced Detection by Reactive Matrix LDI-TOFMS Using the 

Tailor-Made Reactive Matrix, 4-Himethylamino-6-(4-Methoxy-1-

Naphthyl)-1,3,5-Triazine-2-Hydrazine (DMNTH). 

A version of this chapter has been published. Mugo SM, Bottaro CS. Rapid On-Plate and 

One-Pot Derivatization of Carbonyl Compounds f()r Enhanced Detection by Reactive 

Matrix LDI-TOFMS Using the Tailor-Made Reactive Matrix, 4-Dimethylamino-6-(4-

Methoxy-1-N aphthyl)-1 ,3 ,5-Triazine-2-Hydrazine (DMNTH) . 

.!. Mass Spectrom. On-line Dec. 2006. 
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6.1 Introduction 

Many of the pollutants that compromise the quality of air and drinking water arc 

compounds with carbonyl moieties. Consequently, carbonyl compounds have attracted 

the interest of environmental chemists, toxicologists, pharmaceutical researchers, and 

biotcchnologists, among othcrs. 1
-
9 Though a number of techniques have been developed 

for the determination of these compounds, the polar nature of carbonyls complicates the 

analysis by making isolation from water difficult and analysis by methods that usc gas 

chromatography (GC) challcnging. 1
•
2 Further, direct application of the available 

ionization methods (e.g. atmospheric pressure ionization) for mass spectrometry can be 

hampered by the fact that these compounds arc not easily protonated or deprotonated to 

form charged spccics.4 The most common technique that has been applied to circumvent 

these problems entails dcrivatization of carbonyl groups with 

pcntafluorobcnzylhydroxylaminc (PFBHA) to form oximes, thereby imparting nonpolar 

character to carbonyl containing molecules, aiding extraction from aqueous substrates and 

facilitating subsequent analysis by GC-MS. Nonetheless, this method has only led to the 

identification of a few polar disinfection by-products (DBPs), which are amenable to GC­

MS.1· 2· 
5 Another complementary technique, though typically less sensitive than the 

af()fementioned method, involves the formation ofhydrazones through derivatization of 

carbonyls with 2, 4-dinitrophenylhydrazine (DNPH) followed by analysis using liquid 

chromatography mass spectrometry (LC-MS). 1
A Although these two approaches have 

gone a long way in solving the problem of carbonyl analysis, they have limitations such 

as poor detection limits, poor reaction kinetics, and time-consuming concentration 

procedures. As well, analysis of compounds with multiple carbonyl groups using PFBHA 
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for GC-MS can be a challenge due to a decrease in volatility with each subsequent 

addition of a bulky dcrivatizing group. 1
-
7 

In addition to applications in GC and LC, derivatization with commercially­

available reagents like DNPH have also been used to improve detection limits for a range 

of carbonyl compounds (aldehydes, ketones, carboxylic acids, etc.) using fluorescence 

and electrochemical detectors, as well as mass spectrometry.8
-

11 However, though 

derivatization for the purpose of enhancing detection by MALDI-TOFMS has been 

undertaken, it is not yet common place. 

Volmer et al. 12 have coined the tenn "reactive matrix" to describe rapid 

derivatization of small molecules with functionalities that assist in ionization and 

detection by MALDI-MS; in their seminal work they successfully used DNPH to analyze 

corticosteroids. Lattova and Pcrrcault13 used a similar approach for the analysis of 

saccharides by HPLC-UV, HPLC-MS and MALDI-MS using phenylhydrazine to form 

the saccharide hydrazone. By exploiting this principle and tailoring derivatizing agents to 

meet specific criteria, analyses can be made selective and sensitive. 

The features of an ideal derivatizing agent f(>r mass spectrometric detection have 

been delineated by Cartwright et al.: it should be easily synthesized, pre-charged or easily 

protonated, chemically-stable, and should react rapidly and quantitatively with analyte 

molecule. 11 Kempter et al. 14 16 advanced the development of what they called "tailor­

made" derivatizing agents by combining selective reactive functionality, stability, and 

good spectroscopic properties in one compound. They synthesized the novel derivatizing 

agent, 4-dimethylamino-6-( 4-methoxy-1-naphthyl)-1 ,3,5-triazine-2-hydrazine (DMNTH) 
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for determination of carbonyl compounds by HPLC with detection by UV, fluorescence 

and MS. 

In addition to its desirable spectroscopic properties, the presence of the 

dimethylamine functionality in DMNTH makes it readily ionizable by positive 

atmospheric-pressure chemical ionization (APCI). 16 DMNTH has been exploited for the 

determination of polar carbonyl disinfection by-products (DPBs) by LC-APCI-MS at ng 

L-1 1 1 ·h · · 14-18 L. t 17 h 1 full eve s wit no preconcentratwn or extractiOn. m et a . ave a so success y 

optimized the parameters necessary for capillary electrochromatography in the separation 

ofDMNTH-derivatized carbonyl compounds, which further widens the applicability of 

this compound. Adding to the many positive features of DMNTH, its reaction with 

aldehydes and ketones has been found to be rapid(< 30 min), enhancing the efficiency of 

analyses. Other similar reagents for carbonyl derivatization often require an hour or more 

before the reaction is sufficiently complete. Based on the experience of others using 

DNPH as a reactive matrix for MALDI and the integration of a number of key features in 

DMNTH, we envisioned that DMNTH could be employed as a reactive matrix for 

analysis of carbonyls by MALDI-MS and it seems this approach could surmount a 

number of limitations currently facing MALDI-MS for the analysis of small molecules. 

Since the initial development ofMALDI-MS in 1988 by Karas and Hillenkamp, 19 

and Tanaka,20 its soft ionization properties have lead to widespread application in the 

analysis of fragile and non-volatile molecules, especially biomolecules and synthetic 

polymers. Recently, efforts have been made to extend its strengths (i.e. sensitivity, 

versatility, high-throughput, relatively high tolerance for impurities, and ease of sample 

preparation) to the analysis of small molecules. The application of MALDI for relatively 
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small molecules ( < 500 Da), however, is impeded by the presence of interfering matrix 

peaks in the low mass range and irreproducible signal intensities due to non-

h 11 . . f 1 . h h . 71-27 omogeneous co-crysta 1zat10n o ana yte wit t e matnx. · · 

A variety of techniques have been explored in the effort to overcome obstacles 

that hinder the application of MALDI to small molecule analysis. One tactic involves 

matrix suppression effects (MSE) through the usc of surfactants or by striking a delicate 

balance ofmatrix/analytc ratios. In some instances, MSE approaches have been 

successful but the mechanism of their action is poorly understood and thus difficult to 

predict and control. 21
• 
22 Additionally, the usc of surfactants for matrix suppression can 

lead to suppression of analyte ionization as well, negatively impacting the signal-to-noise 

ratio (SIN). 

Another promising approach has been to develop new specialized matrices, 

usually compounds with inherently low volatility or of high molecular weight that 

produce fewer peaks in the low mass range than conventional matrices. Conducting 

polymers, e.g. polythiophenes,23 and carbon nanotubes24 are finding utility in this field, 

but metallic impurities present in some nanotube samples can be detrimental to the 

performance of TOFMS. Other matrices being developed include inorganic matrices 

such as porous silicon powder and silica gel particles?5
· 

26
. Additionally, the use of 

selected reaction monitoring (SRM) has been reported as a convenient approach to 

improve S/N ratio and reduce matrix interference and thus has been demonstrated to be 

effective fix small molecule quantitation. 27 

On the other hand, the use of analyte derivatization with a high mass, easily 

ionized reagent (reactive matrix), which selectively tags the analyte of interest, is a 
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pragmatic solution to matrix interferences. This increases the molecular weight of the ion 

of interest moving it out of the region that presents the greatest likelihood of interference 

and, hence, reduces matrix interference that usually limits the sensitivity of analysis. 

Also, some small molecular weight compounds, which arc too volatile under the high 

vacuum of the mass spectrometer, can be rendered less volatile by dcrivatization and thus 

amenable to analysis. Moreover, derivatization introduces a measure of selectivity to the 

analysis by introducing photoactivc moiety only to molecules with the appropriate target 

functional group. This protocol has been employed successfully in the analysis of a 

variety of small molcculcs28
-
31 (e.g. small amine molecules, carboxylic acids and neutral 

oxostcroids) and offers considerable potential in analysis of small molecules by MALDI­

MS. 

DMNTH has been employed in our work as a dcrivatizing agent for carbonyls to 

eliminate the need for a separate matrix in MALDI-MS; it has been noted for its excellent 

spectroscopic properties such as absorption in the UV region and ease of ionization under 

acidic conditions. Our research introduces a simple, rapid and sensitive method for the 

analysis of small carbonyl compounds by DMNTH RM-LDI-TOFMS, with both one-pot 

and rapid on-plate derivatization approaches yielding good results. The use of this 

reactive matrix provides a route to better reproducibility f()r MALDI-MS as the resulting 

spots are quite homogeneous. This is an advantage over ordinary MALDI, which tends to 

yield inhomogeneous matrix sample spots due to inconsistent co-crystallization of matrix 

and sample leading to significant variation in the ion intensities. 
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6.2 Materials and Methods 

Cyanuric chloride, 1-mcthoxynaphthalcnc, aluminium chloride, hydrochloric acid, 

dimethyl amine, potassium carbonate, hydrazinc hydrate and analytical grade solvents 

(acetonitrile, toluene, 1-4 dioxane) were purchased from Sigma Aldrich (Oakville ON, 

Canada) in analytical grade or higher and used without further purification. Milli-Q-

organic free water was used throughout. 

DMNTH was synthesized as described by Kcmptcr et al. 14
, the synthetic scheme 

is summarized in Figure 6.1. The carbonyl compounds employed in this work include 

furfural, cyclohcxanonc, cyclopcntanonc, methyl-glyoxal, 4-hydroxybcnzaldchydc, 

bcnzophcnonc, 4-hydroxyacctophcnonc, 4--mcthoxybcnzaldchydc, trans-cinnamaldchydc 

and acetaldehyde all from Sigma Aldrich (Oakville ON, Canada). A Molson Canadian 

Premium Lager beer was bought locally for usc in a study of the effect of real sample 

matrices on the efficacy of the method. 

(J ,1 
I 1-methoxynaphthalene N -...:: N 

NAN II 
Jl -I!Cl ~ _.-:. 

Cl N 
CJ ~N CJ 

OMNTII MW 310 

Figure 6.1. Synthesis ofDMNTH. 14 
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6.2.1 Preparation of the DMNTH and Analyte Solutions 

A stock solution of 8.05 mmol L-1 DMNTH was prepared by dissolving the pure 

solid in acetonitrile/ water containing 0.1 M hydrochloric acid ( 4:1, v/v). Various 

concentrations (0.1-100 j..tg mL-1
) of target carbonyl compound solutions were prepared in 

acetonitrile/water (1: 1, v/v). 

6.2.2 Derivatization Procedure 

Two dcrivatizing procedures were adopted. In the first method (one-pot 

dcrivatization), 100 f.!L of the DMNTH solution and 100 f.!L of the carbonyl sample 

solution were combined in a micro-centrifuge vial, mixed by vortex, then allowed to react 

at room temperature for 30 minutes, the time found to be sufficient for completion of 

reaction for most carbonyl compounds. A 0.5-j..tL aliquot of the samplc/DMNTH mixture 

was then deposited on a stainless steel sample stage, dried under ambient conditions, and 

analyzed using LDI-TOFMS. The second much simplified method involved on-plate 

derivatization, where 0.5 f.!L of the DMNTH solution was spotted on the sample stage, 

then 0.5 f.!L of the sample solution was deposited on the DMNTH spot; with drying 

allowed after each deposition. The resulting spot was then analyzed by LDI-TOFMS and 

the performances of the two techniques evaluated. Figure 6.2 shows the structures of the 

carbonyls studied and delineates the f()rrnation of the hydrazones that resulted on 

derivatization. 
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Figure 6.2. General scheme f(>r reaction of DMNTII with carbonyl compounds to 

produce DMNThydrazones. 
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6.2.3 Synthesis of the Internal Standard 

Furfural DMNThydrazonc was synthesized for usc as an internal standard. 

Furfural (0. 982 mmol) was added to a DMNTH solution (2.142 mmol) in 20 mL of 1:1 

acetonitrile and water. The mixture was stirred overnight and then filtered. The product 

was obtained with satisfactory purity, confirmed by 1H NMR. Its ionization efficiency 

was tested by LDI-TOFMS, which showed a "clean" spectrum (Figure 6.3a) of only 

peaks associated with the protonatcd furfural DMNThydrazonc, with the base peak at m/z 

389. 

Another approach investigated was to introduce furfural internal standard into the 

reaction mixture, leaving it to react with DMNTH with the other analytcs, hence forming 

the furfural DMNThydrazonc in-situ. The reaction of furfural with DMNTH was fast, 

considered to have gone to completion within 15 min, and the ionizability of the 

hydrazone was very efficient as seen in Figure 6.3b. 

6.2.4 MALDI-MS Instrumentation 

An Applied Biosystems DE-RP TOFMS equipped with high performance 

nitrogen laser (337 nm) and reflectron was used. Spectra from 30 laser shots were 

acquired in reflectron mode and averaged. The acquisition mass range in positive ion 

mode was 100-700 Da. Other instrumental parameters included extraction delay time: 200 

nsec, grid voltage: 74.4%, accelerating voltage: 20kV, and mirror voltage ratio: 1.12. 
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Figure 6.3. RM-LDI-TOFMS spectra of; a) synthesized internal standard, furfural 

DMNThydrazone, b) Furfural labelled in-situ, c) LDI-TOFMS spectrum of0.161mM 

DMNTH. 
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6.3 Results and Discussion 

The appropriate concentration ofDMNTH to be employed required optimization 

since DMNTH had to be in excess to ensure that the analytc would react quantitatively in 

this acid catalyzed reaction. A range of concentrations (16.1 - 0.0161 mM) were tried, 

and it was found that for analyte concentrations below the flg mL-1 lcvel, 0.161 mM 

DMNTH in 0.1 M HCl/acctonitrile (1 :4, v/v) was most effective for individual analytcs. 

However, for the analysis of carbonyl mixtures, an 8.05 mM DMNTH solution was used 

to ensure DMNTH was in molar excess. 

The LDI-TOF mass spectrum ofDMNTH is shown in Figure 6.3c. The DMNTH 

was found to be sufficiently stable and well ionized by LDI at low laser intensity (~2460 

arbitrary units) yielding the protonated molecule of the hydrazone. Ionization resulted in 

very little fragmentation, producing a clean spectrum with the prominent base peak at m/z 

311 due to protonatcd DMNTH. The high ionization efficiency could be attributed to the 

presence of tertiary amine sites (possessing high proton affinity) in the DMNTH 

structure. To ascertain the possible ion f(Jrmation mechanism, DMNTH was analyzed by 

ESI-MS (spectrum not shown), for which the ionization mechanism is better understood 

than for MALDI, and a protonated molecule of high intensity resulted. Since ESI works 

effectively for analytes that are ions in solution, it is presumed that DMNTH ions (under 

LDI conditions) could be mainly preformed in the condensed phase before desorption. 

Nonetheless, both condensed and gas phase ion formation might be occurring 

, simultaneously; evidence fix gas phase reactions has been reported previously in the 

1 . f' DMN'fH d . . , h . h . 1 . . . 14 16 ana ys1s o envatlves usmg atmosp enc pressure c em1ca wmzatwn. · 
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As with any dcrivatization technique, a compromise must be made between using 

a small derivatizing agent, so that reactions arc not inhibited by steric hindrance, and 

using a high molecular weight (MW) agent that produces a sufficiently high mass product 

with a good ionization profile. 28
'
29 DMNTH is a relatively high MW compound, so the 

decrease in efficiency of reaction with larger more stcrically hindered carbonyls is 

significant. However, its usc offers an important advantage in that it enables a signal to be 

observed in a higher mass region ofthe mass spectrum with marked improvement of SIN. 

The reaction kinetics for the dcrivatizations using the one-pot preparation method 

were found to be dependent on the nature of the carbonyl analyte. A time dependent study 

of the dcrivatization of carbonyls with DMNTH was conducted to assess the required 

time for the reaction to go to completion. The carbonyl compounds were allowed to react 

at room temperature with molar excess DMNTH, over a range oftimcs (15, 30, 45, 60, 

75, 90, 105 min). Aliquots of the mixture from each interval were spotted in duplicate and 

each spot analyzed in duplicate, giving a total of four data points (peak area) that were 

averaged. The rate off()rmation (Figure 6.4) does not significantly increase after 15 

minutes and so a thirty minute reaction time was found to be sufficient for analysis. 

Although, there seems to be a slight decrease in the relative intensity of the hydrazones 

over time, the decrease may not be statistically significant (RSDs without normalization 

were around 30%). The apparent decrease may be attributed to possible adsorption of the 

analyte on the surface of the polycarbonate vial over time. 
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Figure 6.4. Time dependent study of reactions of8.05 mM DMNTH and 20 llg mL-1 

carbonyl compounds. Aromatic carbonyls were reacted separately from aliphatic 

carbonyls. 

From the kinetic studies, it was noted that there was an obvious discrepancy in the 

reactivity of the hydrazones of the different carbonyl compounds. The reactivity of the 

carbonyl moieties in the aromatic aldehydes (i.e. 4-methoxybenzaldehyde, 4-

hydroxybenzaldehyde, furfural and trans-cinnamaldehyde) was higher compared to the 

aliphatic carbonyl compounds (acetaldehyde, cyclohexanone, cyclopentanone). This is 

not surprising since transition state intermediates resulting from aromatic aldehydes and 

ketones arc much more stable than those of the aliphatic analogues (lacking pendant 

aromatic groups) presumably due to resonance stabilization effect. Reactions with higher 
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MW aromatic ketone compounds, such as benzophenone, were found to be slower and 

may not reach completion under ambient conditions, which might be attributed to a larger 

activation energy borne from greater stcric hindrance. Thus, the achievable detection 

limits (DL) were slightly compromised but were nevertheless satisfactory. It is notable 

that DMNTH can be utilized for the analysis of small a-dicarbonyls, such as methyl 

glyoxal (Figure 6.5a), which arc normally analyzed following dcrivatization with ortho­

phcnylcncdiaminc to form quinoxalincs rather than the hydrazones seen here. Due to the 

differences in ionization efficiency (aromatic hydrazoncs may be preferentially ionized to 

aliphatic hydrazoncs) and reaction kinetics, it is imperative to note that in the analysis of a 

mixture of aromatic and aliphatic carbonyl compounds, the latter tend to be suppressed 

making them hard to detect. When the laser intensity is increased to enable detection of 

aliphatic carbonyls, the aromatic derivatives saturate the detector. It is therefore 

recommended that for quantitative work, aromatic and aliphatic groups should be 

analyzed separately; however, for qualitative applications, separation may not be critical. 

Figure 6.5a and b show the RM-LDI-MS mass spectra of aromatic and aliphatic carbonyl 

mixtures analyzed separately. 
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Table 6.1 illustrates the detection limits that were obtained for different carbonyl 

compounds. The data were acquired from six data points generated from 3 replicate spots 

with each spot analyzed in duplicate. The sample consisted of a mixture of 25 j.!L 

carbonyl (10 j.-lg mL-1
), 25 j.!L DMNTH (0.161 mM) and 10 j.!L pre-labelled furfural 

DMNThydrazonc internal standard (10 j.!g mL-1
), with 30 minute reaction time. 

Generally, precision was significantly improved by nonnalization of the analytc peak area 

against that of the internal standard compared to RSDs obtained without normalization, as 

shown in Table 6.1. Clearly, very low detection limits were achievable using RM-LDI­

MS, with aldehydes displaying lower DLs than the ketones. The DLs achieved using this 

method arc comparable to those reported using other techniques, such as DNPH-LC-MS­

MS, DMNTH-LC-fluorcsccncc detection and DMNTH-LC-APCI-MS, which were 0.18, 

0.088 and 0.88 ng mL-1 for acetaldehyde, rcspcctivcly.4
•
14

•
16 The detection limit for 

acetaldehyde using RM-LDI-TOFMS was 0.078 ng mL-1
, which is within the range of the 

most sensitive methods thus reported. Although we do not show great improvements 

over the best detection limits reported, there is significant improvement over those 

published previously f()r MS detection; moreover, the speed, ease of use and applicability 

to a range of analytes makes the method attractive. 
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Tabl~ 6.1. Detection Limits for DMNThydrazones by RM-LDI-TOFMS 

------·----·-··-·--·-- .. ··-····· ---· ·-·-- ---·-·----·---·9·-----··--·-. ·-· ... ·--·-·---·-·····-·-··-----·-------~---

DL % Normalized Normalized 
DMNThydrazones 

(ng mL-1
) RSD %RSD %RSD* 

________________ , __ 

4-mcthoxybcnzaldchydc 0.022 23.5 28.9 11 

4-hydroxyacctophcnone 0.086 36.7 3.7 NA 

p-hydroxybcnzaldchyde 0.014 27.7 25.7 13 

mcthylglyoxal 11.3 47 7.6 12 

acetaldehyde 0.078 61 41.6 7.8 

trans-cinnamaldehyde 0.0089 27.7 14.2 11 

furfural 0.036 63.9 IS IS 

cyclohcxanonc 0.36 41.2 40.9 NA 

cyclopcntanone 0.079 56.1 30.9 15.4 

bcnzophcnone 2.8 63.7 29.6 NA 

DMNTH 0.081 50.7 36.5 4.8 

[···-------·-·· --····-···--··--·-----·-·-----~-- ····-··-------·-----·-··-···-------··----

detection limit- (3 SD ofblank)(analyte concentration/net analyte signal intensity). 
*Using furfural labelled in-situ as the internal standard. 
IS - In the case of furfural, it was used as the internal standard in the normalization of the results, 

thus no %RSD is reported 
NA - not available - the reported normalized %RSD*s are for a selection of representative 

compounds, the remaining compounds have not been assessed. 

The utility of using unlabelled furfural as an internal standard instead of the pre-

labelled standard (furfuralDMNThydrazone) was also investigated. This approach was 

found to work very effectively and greatly simplified the analysis since prior synthesis of 

the internal standard was not required. As is clear from Table 6.1, normalized RSDs 
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obtained were consistently better when this approach was employed compared to when 

separately synthesized furfuralDMNThydrazone was used. The improved rcproduciblity 

is likely due to the fact that the internal standard is derivatized and analyzed under the 

same conditions as the analytcs. A calibration plot was generated for 4-

methoxybenzaldchyde using in-situ labelled furfural as an internal standard (Figure 5c) 

and a good linear regression coefficient (R2 = 0.9801) was observed, indicating that the 

technique shows good linearity over the range studied. A perfect regression coefficient 

may have been unachievable due to instrumental limitations; typically TOF-MS methods 

arc not very good for quantitative work. However, it is expected that the usc of other MS 

systems that arc better suited to quantitation (such as triple quadrupole mass 

spectrometers with characteristically high sensitivity, wide linear dynamic range and high 

ion transmission efficiency assumed to be close to 1 ooryo) could greatly improve the 

linearity.27
' 
32 

On-plate derivatization worked well for both aromatic and aliphatic carbonyls. 

This method worked particularly well f(>r small aromatic carbonyl molecules such as 4-

methoxybenzaldehyde, furfural, 4-hydroxyacetophenone and trans-cinnamaldehyde (mass 

spectra of three of these are shown in Figure 6.6), but was slightly less sensitive in the 

analysis of aliphatic compounds and benzophenone; this difference in sensitivity was also 

observed with the one-pot derivatization approach. A prominent ion of the protonated 

product molecule can be seen for each derivative, which is often the base peak in the 

spectrum. Although not shown here, the application of on-plate derivatization to the 

aromatic and aliphatic carbonyl mixtures also worked effectively, resulting in mass 

spectra that were very similar to those obtained with one-pot derivatization (Figure 6.5a 
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and b). It should be noted, however, that the detection limits for on-plate approach were 

generally one order of magnitude higher than for the one-pot derivatization. 
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Figure 6.6. Sample RM-LDI-TOFMS spectra for carbonyl compounds that were 

analyzed by on-plate derivatization with 0.5 ).!L of0.161 mM DMNTH. For all 

carbonyls, 0.5 ).!L was spotted on-plate at a concentration of 100 ).!g mL- 1
• 

In the analysis of 0.5 ng mL-1 of 4-methoxybenzaldehyde, the difference in 

sensitivity between the one-pot and on-plate methods can be clearly observed, (Figure 

6. 7). Despite using the same amount of analyte, the 4-mcthoxybenzaldehyde 
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DMNThydrazonc was more easily detectable with a much better SIN ratio using the one­

pot method, Figure 6.7 a, than when prepared on-plate, Figure 6.7 b, a reflection ofboth a 

higher signal and a less noisy background for the one-pot method. Because the time 

allowed for the on-plate dcrivatization to occur is shorter (roughly the time it takes for the 

spot to dry~ 10 min) and mixing is not possible, the on-plate method is less efficient in 

producing the desired derivative. As a result, it was necessary to usc a higher laser 

intensity to desorb more material. While this allowed us to achieve an improved detection 

limit for the on-plate method, it also resulted in more extensive fragmentation, which 

worsened the signal to noise ratio and still did not result in DLs as good as those seen for 

the one-pot method. Evidence for the lower reaction efficiency is demonstrated by the 

presence of a large peak at mlz 311 related to the protonatcd DMNTH and the decreased 

intensity of the analytc derivative peak compared to Figure 6.7 a). For detection of 

carbonyls at low concentrations, it is therefore essential to usc the in-vial reaction 

method; this allows a longer reaction time with greater yields, and better mixing resulting 

in greater homogeneity of the sample spots. These advantages can be significant when 

semi-quantitative or quantitative results are desired. In spite of the obvious advantages of 

using the one-pot method, the on-plate technique offers a rapid and reasonably sensitive 

(ng range detection) approach for screening various types of samples for carbonyl 

compounds. 
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Figure 6.7. RM-LDI-TOFMS spectra of0.5 ng mL 1 of 4-methoxybenzaldehyde with 

0.161 mM DMNTH, a) one-pot derivatization, b) on-plate derivatization. (The identity of 

the peak at m/z 337 is not clear). 

It may be possible to improve the on-plate method by trying to control and slow 

down the rate of solvent evaporation. Under ambient conditions, the rate of drying and 

hence reaction was variable due to changes in the room temperature and humidity from 

day to day; this could be improved by carrying the reaction in a more controlled 

environment. A slower rate of evaporation allows a longer reaction time and may have 

the added benefit of facilitating better crystal f{)rmation, where quality of crystallization is 

indicated as a parameter contributing to the success of MALDI-TOFMS. One approach 
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used to lengthen reaction time and improve derivative product yield was solvent 

replenishment after the first cycle of spot drying. This was found to significantly improve 

the reaction yields, but not in a reproducible way. 

The usc of the DMNTH RM-LDI-TOFMS was also investigated in the analysis of 

carbonyls in real environmental samples. A beer sample was purchased and a portion 

degassed by sonication for thirty minutes. A 1 00-).lL aliquot was spiked with furfural to 

make a final concentration of 5 ).lg mL-1 and a 25-).lL aliquot was reacted with 25 ).lL of 

DMNTH for thirty minutes, spotted on the MALDI plate, and analyzed. Although the 

saccharides and other beer matrix components impair the analysis and the furfural 

DMNThydrazone is not detected at the laser intensity used with the standards (2460 

arbitrary units), by using higher laser intensity (271 0 arbitrary units), furfural derivative 

was clearly identifiable (Figure 6.8). From the mass spectra, the specificity of DMNTH in 

reacting with carbonyls is clearly evident. Other peaks tentatively identified in the beer 

sample include, mcthylglyoxal DMNThydrazonc at m/z 365 and, possibly, propanal 

DMNThydrazonc at m/z 351. 
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Figure 6.8. RM-LDI-TOFMS spectra ofunfiltered beer spiked with 10 ).lg mL-1 furfural 

and derivatized with 1.61mM DMNTH. 
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Traditionally, LDI-TOF mass spectrometry and its matrix assisted variant has had 

a reputation as a poor technique for quantification, primarily due to its poor precision, 

which is influenced by a number factors, particularly the level of homogeneity of the 

sample/matrix spot. The inherent lack of reproducibility that plagues MALDI has also 

been shown to worsen when matrix ion suppression techniques arc used. 31 
•
34 Though 

these limitations have hindered the usc ofMALDI-MS as a quantitative analytical 

technique, we have found that when RM-LDI-MS is combined with selection of an 

appropriate internal standard with a response profile similar to the analytc, the method 

can be useful for semi-quantitative and possibly quantitative work. Furfural was chosen 

as the internal standard to verify this method for quantitative work as it is a representative 

compound that reacted readily to form the corresponding DMNThydrazonc and it was 

found to respond to the laser in the same way as the sample hydrazoncs. The similarity in 

response is by design, since the moiety primarily responsible for ionization is introduced 

through DMNTH derivatization and is, therefcJre, a consistent feature in all target 

molecules. The spot-to-spot reproducibility of LDI-TOFMS was determined using the 4-

methoxybenzaldehyde hydrazone normalized against the in-situ labelled furfural internal 

standard. Mass spectra were acquired from each of the 35 sample spots, by averaging 30 

replicate laser shots per spectrum; the results showed excellent statistical control (Figure 

6.9a) with most points falling within ±2cr. The RSD was f(mnd to be 15.5 %for the 35 

measurements, which is comparable to values reported previously using specialized 

methods to improve reproducibility such as normalization against an internal standard, as 

has been used in this work, coumarin fluorescent tags f()r peptides analysis, and the seed 

layer sample preparation method. 31
-
33 A representative spectrum of those used to derive 
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the % RSD is shown in Figure 6. 9 b). Both peak area and the height of the peaks were 

used, and peak area was found to produce the best results because it was less sensitive to 

subtle changes in conditions and gave a better signal to noise ratio in comparison to peak 

height. This RSD is a considerable improvement over those usually obtained with 

MALDI, where RSDs can be greater than 40%. Dekker et a/. 34 reported a reproducibility 

of peak intensities of 30-42% for tryptic digests of cerebrospinal fluid. It is clearly 

evident from the RSD reported that RM-LDI-MS significantly improves precision. 
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Figure 6.9. a) Spot-spot reproducibility of 5 !lg mL- 1 4-methoxybenzaldehyde derivatized 

with 1.61mM DMNTH and 5 !l8 mL-1 furfural internal standard (IS) using one-pot 

derivatization method, b) Representative RM-LDI-TOFMS spectrum of resulting 

hydrazones from which data was drawn in construction of the control chart. 
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6.4 Conclusions 

RM-LDI-TOFMS using DMNTH as the dcrivatizing agent is a sensitive, 

economical and rapid method for the analysis of carbonyl compounds. The method can be 

used quantitatively using very small samples without extensive sample handling. The 

prime disadvantage of using DMNTH is that it is not commercially available. The on­

plate dcrivatization was found to be effective for concentrations of the carbonyl analytc in 

the sub-Jlg mL-1 range, useful for qualitative work and high throughput screening. For 

detection oflow concentrations of carbonyls (<1 ng mL-1
), good mixing ofDMNTH with 

carbonyl compound and longer reaction times on the order of 30 minutes arc essential; the 

one-pot dcrivatization method meets these requirements. 

It is certain that DMNTH can be used for analysis of numerous carbonyl 

containing compounds, which arc of importance in environmental and biological systems. 

In addition, DMNTH is easy to prepare in high yield and purity, very stable and hence 

could be of practical utility in high throughput labs. The technique opens new frontiers 

for the analysis of carbonyl compounds using RM-LDI-TOFMS and the application of 

these derivatization techniques greatly widens the applicability ofMALDI-TOFMS 

instruments. This approach illustrates an extremely efficient procedure f(x analysis of 

carbonyl compounds in drinking water, and shows potential f(x biomedical applications 

and biomarker research; f(Jr example, in the detection of malondialdehyde, a biomarker of 

oxidative stress, or of formaldehyde in human cancer cells. 8•
9 The technique could be 

extended for rapid, sensitive analysis of aldehydes in beer, such as acetaldehyde, 2-

methylpropanal, methylbutanal, pentanal, hexanal, furfural, methional, 
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phcnylacctaldchydc, and (E)-2-noncnal, which arc typically cited as evidence of 

fouling. 6
'
7 

Work is currently underway to synthesize other analyte specific derivatizing 

agents for RM-LDI-TOFMS of small molecules with different reactive moieties. Further 

work will involve applying these dcrivatizing agents to the analysis of real environmental 

samples. 
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CHAPTER 7 

Rapid Analysis of Alpha-Dicarbonyl Compounds by MALDI Using 9-

(3,4-Diaminophenyl)Acridine (DAA) as a Reactive Matrix. 

A version of this chapter will be submitted for publication. Mugo SM, Bottar<) CS. Rapid 

Analysis of Alpha-Dicarbonyl Compounds by MALDI Using 9-(3,4-

Diaminophenyl)Acridine (DAA) as a Reactive Matrix. 
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7.1 Introduction 

Alpha-dicarbonyls arc an important class of compounds that have attracted the 

attention of researchers in diverse scientific disciplines such as water quality chemistry, 

food chemistry, and medical rcscarch. 1
-
6 Pyruvic aldehyde (mcthylglyoxal) has been 

identified as a priority and potentially ham1ful disinfection by-product in ozonatcd 

drinking water. 1 Mcthylglyoxal and glyoxal arc reactive intermediates produced from 

non-enzymatic glycation (Maillard reaction) and arc clinically significant compounds 

since they arc known to react with proteins, basic phospholipids and nuclcotidcs to form 

advanced glycation end products, which arc possible indicators of chronic and age related 

diseases, such as diabetes mellitus and Alzhcimcrs diseascs?-4 Dikctoncs arc also 

responsible for the characteristic stale smell in wines and beers and thus act as indicators 

of aging and deterioration in flavour quality. 5 Dicarbonyls have also been reported to be 

present in the cornucopia of toxic compounds present in cigarette smoke and arc thus 

important among environmental toxicologists. 6 

Analysis of these compounds has been traditionally accomplished by reaction of 

the u-dicarbonyls with o-phenylenediamine to fonn stable UV- active quinoxalines (with 

a notable absorbance maximum of 315 nm), which arc analyzed by high pcrfonnancc 

liquid chromatography (HPLC) or capillary electrophoresis (CE) and detected by UV 

spcctrophotomctry?-6 Current trends in chemical analysis, however, demand high 

sensitivity and high sample throughput methods, especially with clinical applications 

where numerous samples must be analyzed in a short period of time. Outstanding 

performance features such as wide mass range, low sample volume requirements ( < 11-!L ), 
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tolerance to salts and buffers, characteristic ultra low sensitivity and increased throughput 

have distinguished MALDI-TOFMS from other techniques, making it a leading 

technology, especially in protcomics. Although MALDI was initially designed for 

qualitative analysis of relatively high molecular weight biomolcculcs, there has been 

burgeoning interest in its utility for the analysis oflow molecular weight compounds, 

particularly those of phannaccutical importance.'~ Some of the hurdles, which must be 

overcome for MALDI to realize its full potential in the analysis of small compounds 

include solving the pronounced isobaric interferences arising from matrix and matrix 

cluster ion peaks, which obscure spectra in the low mass region(< 500 Da), poor 

ionizability of some analytcs, inherent inhomogeneity, and problems with high volatility 

of very small molecules, which arc essentially lost in the sample preparation stage and in 

the vacuum chamber of the mass spectrometer. Different approaches have been 

implemented for circumventing these problems, such as the usc of high molecular weight 

matrices, 8 use of matrix suppression effect,9 desorption/ionization on silicon (DIOS), 10 

application of non-organic matrices such as carbon nanotubes, 11 and tandem MSY All 

these strategies however, have limitations in their effectiveness for small molecule 

analysis. So small molecules analysis remains an analytical challenge. A potential 

scientifically pragmatic approach to mitigate some of the small molecules analytical 

challenges with MALDI could involve the use of easily ionizable reactive matrices, a 

concept reported by Volmer et al. 13 in his seminal paper, which could be viewed as an 

extension of derivatization methods used with other analytical techniques. 

Chemical derivatization is a routine part of GC and HPLC analysis, particularly 

used to enhance chromatographic behaviour and detectability of otherwise fragile 

188 



analytes. However, recently chemical derivatization has been employed to enhance signal 

intensities of poorly ionized molecules by converting them into products that can be 

easily detected by soft ionization methods such as clectrospray ionization (ESI) and 

MALDI. 14 Chemical derivatization in MALDI has become more common particularly for 

the analysis of peptides and carbohydrates (often referred to as tagging or labelling). A 

number of very well known, rapid and high yielding chemical reactions such as Schiff s 

base reactions, guanidation, dehydration of carbonyls with arylhydrazines, and reductive 

amination with aromatic amines, have been used in MALDI. 15
-
19 However, despite 

obvious advantages, derivatization of small molecules for MALDI analysis has only been 

. . db c h d . h" 1" . d 13 20-22 mvestlgate y a 1ew researc ers an w1t m a umte scope. · · · 

This study demonstrates the application of a specially synthesized and highly 

ionisable reactive matrix, 9-(3,4-diaminophenyl)acridine (DAA)- originally synthesized 

by Plater et al. 23 as a fluorescent probe for nitric oxide detection- for specific 

derivatization of cx.-dicarbonyls to produce relatively high mass and easily ionizable 

quinoxaline products suitable for analysis by MALDI-TOFMS. The u-dicarbonyls used 

as test compounds include mcthylglyoxal, 2,3-butancdionc and diphcnylglyoxal. 

Following dcrivatization of these compounds with DAA, a large increase in sensitivity 

was obtained and hence low detection limits were achieved. 

7.2 Materials and Methods 

Chemical supplies such as acridine, o-phenylenediamine, ethanol, ammonia, 

acetic acid, sodium chloride, sulphur, sulphuric acid, methyl glyoxal, diacetal, 
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diphcnylglyoxal, dicthyl kctomalonatc, and dicthyl oxalate, which were bought from 

Sigma-Aldrich Canada Ltd, Winston Park Drive, Oakville Ontario. All chemicals were of 

analytical grade and were used without further purification. A Molson Canadian beer, 

Premium Lager was bought locally. 

7.2.1 Synthesis of 9-(3,4-Diaminophcnyl)acridinc 

9-(3,4-Diaminophenyl)acridine was prepared by the method adopted from Plater 

eta!. 7-J as summarized schematically in Figure 7 .1. Briefly, the synthetic procedure 

consisted of two steps: flrst, 9-chloroacridine (pale brown crystals) was synthesized by 

bubbling anhydrous HCl gas, generated from the reaction of sodium chloride with 

concentrated sulphuric acid, through an 11 mmol solution of acridine in absolute ethanol. 

The second step involved a straightforward solvcntless nucleophilic substitution reaction 

in which a mixture of 9-chloroacridine (9 mmol), o-phenylenediamine (17 mmol) and 

sulphur (27 mmol) was heated and stirred for 2 hrs. The resulting product was washed 

with diethyl ether (2 x 20 mL) and extracted with 10% HCl (150 mL) to give a dark 

brown solution with a green cast, which was then made alkaline with concentrated 

aqueous ammonia to pH 9 and a brown solid precipitated. Sample clean up was 

accomplished by column chromatography and the identity of the product ascertained by 

1H NMR and APCI-MS. The most admirable aspect of this synthesis is the atom economy 

which was calculated to be > 85% which certainly goes a long way in reducing waste by 

designing sustainable synthetic schemes. 
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Figure 7.1. Synthetic scheme for derivation of9-(3,4-Diaminophcnyl)acridinc. 

7.2.2 UV-Vis Spectrophotometry 

A UV-Vis spectrum ofO.l mM DAA in lOmM acetic acid in 8:2 water and 

acetonitrile was acquired using a Hewlett Packard 8452A diode array spectrophotometer 

and the data obtained (wavelength range; 190-800 nm) plotted using Minitab. 

7 .2.3 Sample Preparation 

A DAA stock solution (1.0 mM) prepared in water containing I OmM acetic acid 

and acetonitrile (8:2, v/v) was found ideal for dcrivatization of dicarbonyls. The pH was 

3.39, which is suitable for this acid catalyzed reaction. A 10 J-LL aliquot of the DAA 

solution (hnM) was mixed with the same volume ofvarious dicarbonyl solutions (of 

different concentrations ranging from 1-1 00 J-Lg mL-1 
), then vortcxcd and allowed to react 

at room temperature for lhr before deposition on a MALDI target. A 0.5 J-LL aliquot of the 
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resulting solution was spotted on the MALDI plate and dried at ambient conditions, then 

analyzed by TOFMS without purification or usc of any extraction process. On-plate 

dcrivatization was also evaluated where 0.5 flL of the DAA is spotted on the MALDI 

target and the dicarbonyl solution spotted on the dried spot containing the reactive matrix. 

7.2.4 MALDI Mass Spectrometry 

A commercial Applied Biosystcms DE-RP TOF-MS equipped with high 

pcrfonnancc nitrogen laser (337 nm emission wavelength) and rc:flcctron was used. 

Spectra from 30 laser shots were acquired in rcflcctron mode and averaged. The 

acquisition mass range was 100-700 Da and the polarity was positive. Other instrumental 

parameters included, extraction delay time; 200 nsec, grid voltage: 74.4%, accelerating 

voltage: 20kV, and mirror voltage ratio: 1.12. 

7.3 Results and Discussion 

UV-Vis spectrum (Figure 7.2) ofDAA exhibited a reasonable absorbance at the 

MALDI nitrogen laser excitation wavelength 337 nm, with two pronounced relative 

maxima around 258 nm and 356 nm meeting one criterion f()r use as a reactive matrix in 

MALDI. Since DAA absorbs more strongly at 355 nm, it would be expected to perf(mn 

even better as a reactive matrix if a MALDI Nd: Y AG laser (not available in our 

laboratory) emitting at that wavelength is employed. The molar extinction coefficient (E) 

ofDAA in lOmM acetic acid and acetonitrile (8:2, v/v), was calculated to be 37112 L 

molc-1cm-1 at 337 nm, which when compared to the commonly used matrix, a-CHCA 
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(22795) is considerably higher, further showing the capacity ofDAA to absorb the energy 

of the laser. However, it is important to note that the molar absorption coefficient ofthe 

resulting quinoxalines (analyte being ablated by the laser) may be different from DAA as 

the free compound. More importantly, the ionization efficiency ofDAA was established 

to be exemplary at low laser intensity(~ 2496 arbitrary units) producing little to no 

fragmentation. Figure 7.3 demonstrates the "clean" mass spectrum obtained that is 

completely free of spectral noise, with the intense peak at mlz 286 representing the 

protonated molecule, [DAA+H( Furthem1ore, the spectrum attests to the excellent 

photochemical stability of the molecule under laser irradiation. The high ionizability is 

attributed to the presence of basic sites in the DAA structure, making it particularly prone 

to protonation. To ascertain the ionization mechanism (MALDI mechanism poorly 

understood), DAA was analy.~:ed by ESI for which the ionization mechanism is better 

understood than that of MALDI; DAA was found to be easily protonated under these 

conditions as well (spectra not shown), suggesting that the DAA ions seen using LDI-

TOFMS may be pref()m1ed bef(xe desorption. Nonetheless, gas phase ion formation 

cannot be ruled out. 

1.2 

~ 0.8 = 
~ 
~ 0.6 

"' "' -e 0.4 
0 
~ 
....: 0.7. 

190 2tl0 290 340 390 440 490 5tl0 590 640 690 7t10 790 
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Figure 7.2. UV-Vis absorption spectra of 10 J.lg mL-1 DAA in lOmM acetic acid in 8:2, 

water and acetonitrile. 
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Figure 7.3. LDI-TOFMS spectrum of 10 J.!M DAA. 

The reaction mechanism between an a-dicarbonyl and DAA (reacting moiety, 

ortho-diamine) is a straightf(Jrward acid catalyzed condensation reaction forming a type 

of compound called quinoxaline. The derivatization chemistry is illustrated schematically 

in Figure 7 .4. To assess the time required for the reaction to go to completion, an 

experiment was conducted where the dicarbonyl compounds were allowed to react with 

DAA at room temperature over a range of times (15, 30, 45, 60, 75, 90, 105 min). 

Aliquots of the mixture from each time interval were spotted in duplicate on the MALDI 

plate and each spot analyzed in duplicate, giving a total of four data points (peak area) 

that were averaged. The time course study is graphically represented in Figure 7.5. The 

rate of reaction was variable from compound to compound, with small molecules like 

methyl glyoxal displaying the fastest reaction kinetics compared to diacetal and 

diphcnylglyoxal, attributed to stcric accessibility of reacting moieties. However, as is 

clear from Figure 7.5, a one hour reaction time was established to be sufficient for all the 

three a-dicarbonyls studied. The reaction kinetics detennines the completeness of the 
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reaction at the time of sampling and consequently influences the limits of detection 

achievable, as will be evident later. 

dimelhylglyoxal (DMG) 

j 
9-( 3 ,4-diam inophcny !)acridine 

(~~ 0--{ \d 
0 

diphenylglyoxal (DPG) 

]
0,.;----( 

H+ 0 
mcthylglyoxal (MG) 

l 
~ 

9-(2,3-dimcthylquinoxalin-6-yl)acridinc 

(DMG-quinoxalinc) 

9·(3 -methy lquinoxalin-6-y !)acridine 

(MG-quinoxalinc) 

9-(2,3-diphcny lquinoxal in-6-y !)acridine 

(DPG-quinoxalinc) 

Figure 7.4. Derivatization chemistry. The schematic shows acid catalyzed condensation 

reaction of DAA and u-dicarbonyl compounds namely; methyl glyoxal, diacetal and 

diphenylglyoxal to form their respective quinoxalincs. 

The reaction of DAA and diphcnylglyoxal was particularly intriguing because it 

was very rapid irrespective of the fact that the product and the reactants arc quite bulky. 

This may be attributed to a favourable orientation of dicarbonyl moiety of 

diphcnylglyoxal with respect to the active moiety in DAA. The quinoxalinc products 

reported herein arc remarkable compounds to investigate because to our knowledge they 

have not been previously synthesized or reported, and since quinoxalinc derivatives arc 
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known to possess a broad spectrum of biological activity, it is envisioned they could bear 

interesting chemical and medicinal properties. 
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Figure 7.5. A time dependent study ofDAA reaction with a-dicarbonyls. 
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The mass spectra shown in Figure 7.6 confirm that ion peaks of the reaction 

products (quinoxalines) were observed exclusively along with the unreacted DAA ion 

peak. The quinoxalines of dicarbonyls, namely 9-(2,3-dimethylquinoxalin-6-yl) acridine, 

9-(2,3-diphenylquinoxalin-6-yl) acridine and 9-(2-methylquinoxalin-6-yl) acridine 

displayed strong protonated molecule peaks at m/z 336, 460 and 322, respectively. 

Evidently, these quinoxaline products fom1ed were vacuum stable under MALDI 

conditions, resisting fragmentation on irradiation and ionizing remarkably well, even 

better than the derivativatizing agent, DAA itself. This may be because the derivatives 

have up to three basic sites available for protonation and therefore the total probability of 

ionization is higher. It is worth mentioning that the sample spots on the MALDI plate 

were stable even when stored in the desiccator for over one week and relatively 
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reproducible mass spectra could be acquired, making it possible to reanalyze the samples 

if needed. 
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Figure 7.6. RM-LDI TOFMS spectra of alpha-dicarbonyls quinoxalines obtained by one­

pot dcrivatization (lhr reaction time); a) 5 flg mL-1 methyl glyoxal b) 50 flg mL-1 2,3-

butancdionc c) 50 flg mL-1 diphcnylglyoxal. 

197 



Apart from the hour long, one-pot derivatization, a rapid on-plate dcrivatization, 

analogous to the on-target trypsinization strategy in protcomics was attempted and a 

representative mass spectrum is shown in Figure 7.7a. The product ion peaks arc much 

less prominent than with the one-pot derivatization (Figure 7.6), perhaps due to 

insufficient time for the reaction to occur and the lack of mixing yielding a less than 

homogeneous reaction mixture. The detection limits achievable arc thus compromised as 

will be illustrated later in this communication; nevertheless, the on-plate dcrivatization 

approach is satisfactory for facile screening for relatively high concentrations of a-

dicarbonyls and a-ketocarboxylic acids in different sample matrices. 
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Figure 7.7. a) Representative RM-LDI-TOFMS spectrum obtained by on-plate 

dcrivatization of a mixture of 30 ~g mL-1 methyl glyoxal, diphcnylglyoxal and diacctal, 

b) RM-LDI-TOFMS spectrum ofbccr spiked with 5 ~g mL-1 methyl glyoxal. 
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To test the applicability of the technique for analysis of real environmental 

samples, a 100 ~tL aliquot ofbccr (degassed for 30 minutes) was spiked with methyl 

glyoxal to give a final concentration of 5 1-1g mL-1
. A 25 ~tL aliquot of spiked beer was 

reacted with 25 IlL DAA solution for one hour and spotted on the MALDI plate for 

analysis without any prior clean-up or extraction. Figure 7. 7b, shows the obtained 

spectrum, which clearly show the excellent selectivity ofDAA to <x-dicarbonyl 

compounds, even in the midst of enormous amount of matrices (saccharides etc.). It must 

be stated that relatively higher laser intensity (271 0 arbitrary units) was used in this case 

because of the possible matrix suppression. 

The usc ofMALDI-TOFMS for quantitative work is generally encumbered by 

inherent synchronization of desorption/ionization (highly variable) and mass analysis, 

particularly for conventional axial ion injection mode TOF instruments, which leads to 

major imprecision. The irreproducibility of mass spectra is exacerbated by the usc of 

matrices, which ideally should cocrystallizc with the analytc resulting in heterogeneous 

sample spots. Hence "sweet spots" have to be searched for during analysis, which is 

seldom effective for quantitative analysis. Conversely, the reported approach eliminates 

the usc of additional matrix, with DAA acting as its own matrix eliminating one major 

source of irreproducibility, making it attractive for quantitative work. Accordingly, a 

calibration plot was constructed to evaluate linearity. The data for the plot was taken from 

a series of reactions ofDAA with methyl glyoxal and dimethyl glyoxal in varying 

concentrations (ranging, 3-50 1-1g mL-1
), with DPG-quinoxaline as the internal standard; 
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DPG was labelled in situ. The internal standard (ideally should bear structural and 

physicochemical similarity to analyte, e.g. isotopically labelled analogues of analyte) can 

compensate for variability in composition of the sample spot, which is a source of the 

irreproducibility typically seen in MALDI. Four replicate mass spectra (representative 

spectrum, Figure 7.8a) were acquired (from two sample spots, each sampled in duplicate) 

and the average area of each corresponding quinoxaline calculated. Clearly, as shown in 

Figure 7.8b, a good linear plot was obtained, qualifying the technique for routine 

quantitative analysis. The linear range was generally narrow; however, it is envisioned 

that superior linear dynamic range could be achievable with MALDI coupled to a triple 

quadrupole mass analyzer (QqQ) in selected reaction monitoring mode (SRM). This 

technique allows better latitude for quantitation because of its characteristic high 

sensitivity, wide linear dynamic range, and high ion transmission efficiency, assumed to 

be close to 100% .24 Further, Figure 7.8a delineates the multi-component analysis of a 

mixture of all three dicarbonyls without time consuming chromatography, which is a 

testament to the applicability of the technique for simultaneous determination of various 

dicarbonyl compounds in a complex sample mixture. Nevertheless, f()r very complex 

mixtures, a system in which MALDI is coupled to HPLC, would be attractive. 
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Figure 7.8. a) Representative mass spectra of a mixture of 10 )..lg mL 1 methyl glyoxal and 

diacetal and 20 )..lg mL· 1 diphenylglyoxal as an in situ labelled internal standard, b) 

Calibration curves for methyl glyoxal and (c) dimethylglyoxal, using 20 )..lg mL-1 in situ 

labelled diphenylglyoxal as an internal standard. 
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Table 7.1 gives the limits of detection (DL) obtained for the dicarbonyl compounds 

analyzed both by one-pot dcrivatization and on-plate dcrivatization, with the sample 

consisting of 10 J.lg mL- 1 a-dicarbonyls and 100 J.lg mL-1 a-dicarbonyls solution 

respectively with lmM DAA. The results were obtained from six data points obtained 

from 3 different spots, with each spot sampled twice and the mean average of peak area 

taken. Clearly, the technique described here affiJrds almost a hundred times lower 

detection limits compared to DL reported (7.2 ~tg/L) by Pedro et al. 2 for methyl glyoxal 

analysis using capillary electrophoresis with diode array detection. The reproducibility of 

the technique was found to range from 13.8-25%, with on-plate dcrivatization giving 

higher RSDs, obviously due to lower homogeneity of the sample spots compared with 

one-pot derivatization. Undoubtedly, the RSDs obtained arc a great improvement on the 

non-linear ion response of conventional MALDI, which can be> 40%. This may be 

primarily due to the inhomogeneity of the analytc distribution in the matrix-analytc 

cocrystallitc. 

A specialized hydrophobically coated MALDI target has been designed to reduce 

the size of the sample spot, and thereby increases sensitivity by enhancing the mass load 

per unit of area. 25To dctenninc if this new target offered improvement in reproducibility 

and sensitivity over the standard stainless steel stage, experiments on the determination of 

detection limits and RSD were repeated. The results are presented in Table 7.2. While 

there is still significant error in the values reported due to the relative irreproducibility of 

MALDI-MS in comparison to other techniques, it can be clearly concluded that the 

hydrophobic plate does not significantly improve the sensitivity or shot-to-shot 
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reproducibility ofthis method. Thus, a regular low cost stainless steel MALDI target is 

sufficient for the analysis. It is crucial to note that the limits of detection reported here for 

a-dicarbonyls arc lower than those obtained by other techniques such as CE with diode 

array detection, and hence the technique could be a favourable altemative.2
-
4 

Table 7.1. Summary of limit of detection for quinoxalincs of dicarbonyls tested by RM­

LDI-TOFMS, at a laser intensity of2496 (arbitrary units). *denotes data from on-target 

derivatization. 
-- ~--

Quinoxaline 
derivatives of: 

Methyl glyoxal 

Diphenyl glyoxal 

Dimethyl glyoxal 

DAA 

. r-·- --------~---~ --------· -------------··-·-------

Detection limit in ng mL-
1 (% RSD) 

0.08, (9.0) 
0.65* (15.6) 

0.28, (13.8) 
3.2* (24) 

0.22 (12.4) 
2.4* (23.2) 

2.8 (18.8) 

Molecular ions 
(mlz) [M+H( 

322 

460 

336 

286 

DL= (3SD ofblank)(analyte concentration/net analyte signal intensity). 

Table 7.2. Figures of merit with hydrophobic MALDI target. 

Quinoxaline derivatives 
of: 

Methyl glyoxal 

Diphcnyl glyoxal 

Dimethyl glyoxal 

DAA 

Detection limit in ng 
mL-1 (% RSD) 

0.11 (18.6) 
0.95* (19.8) 

1.2 (25.6) 

0.83 (22.6) 

2.7 (17.8) 

Molecular ions 
(mlz) [M+Ht 

322 

460 

336 

286 
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7.4 Conclusion 

The dctcnnination of a-dicarbonyls by chemical modification strategy using 9-

(3,4- diaminophenyl)acridine as a reactive matrix with analysis by MALDI-MS has been 

explicitly demonstrated. The technique is rapid, sensitive and with excellent selectivity 

for u-dicarbonyls (in principle, <x-ketocarboxylic acids), making it suitable for high 

throughput analysis and sample screening. Additionally, the technique described is 

particularly efficient as it eliminates the need for sample purification and extraction, 

which arc often time consuming procedures. Likely, it could be employed for analysis of 

target compounds in whole blood, tissues, urine samples, etc. The speed ofthc on-plate 

dcrivatization approach makes it suitable for applications in automated systems, such as 

those developed with matrix-less targets (like Quickmass™ produced by the 

Nanohorizons)26 and microfluidic-MALDI systems. The fact that an interpretation of the 

resulting spectra is also straightforward should arguably captivate the interest of other 

researchers in the area and be an impetus to investigate other compounds. With the 

growing interest in coupling HPLC or capillary electrophoresis to MALDI, the usc of 

reactive matrices with MALDI (viz. chemical dcrivatization) is expected to grow. 
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CHAPTERS 

Summary and Future Work 
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LDI and MALDI-MS have been used (Chapter 2) to characterize Suwannee River 

humic substances (HS), obtained from the International Humic Substances Society 

(IHSS), and Annadalc soil fulvic acid (ASF A). Among the MALDI matrices tested for 

usc with HS, 2,5-dihydroxybcnzoic acid yielded the best results, exhibiting superior 

ionization efficiency, low spectral noise, and most importantly producing an abundance 

of high mass ions, with the largest observed at m/z 1848. A number of sample 

preparation methods were investigated; the ovcrlaycr method (analytc/matrix solution 

spotted on dried matrix spot layer) improved sample-matrix homogeneity and hence shot 

to shot reproducibility. The choice of the matrix, mass ratio of analytc to matrix, and the 

sample preparation protocol were found to be the most critical factors governing the 

quality of the mass spectra. A number of common mass spectral features, particularly 

specific ions that could not be attributed to the matrices or to contaminants, e.g. mlz, 242, 

360, 495, 550, 883, 997, 1166, 1280, 1450, etc., were present in all the HS, regardless of 

origin or operational definition. Additionally, a prominent repeating pattern of peaks 

separated by 55, 114 and 169 Da was clearly observed in both LDI and MALDI, 

suggesting that the humic compounds studied here may have quasi-polymeric or 

oligomeric features. Future work to elucidate structure of the observed HS ions should 

entail complementary use ofMALDI-TOFMS with post source decay (PSD) and ESI 

instruments with MS-MS capabilities e.g., QqTOFMS as well as FT-ICRMS, which 

could afford exact assignments of molecular f(Jrmulae. 1 

Thermally assisted hydrolysis and methylation (THM) using TMAH and 

subsequent analysis by GC-MS (Chapter 3) was also used to study the fundamental 

structure ofHS. Chemolysates containing carboxylic acids were found to be dominant in 

208 



Suwannee River natural organic matter (NOM) and its component classes (fulvic and 

humic acids). To evaluate a possible polysaccharide model for the formation ofHS, 

polymerized 4-oxo-2-butenoic acid was used as a model compound and analyzed by 

THM-GC-MS. The results were compared with the analysis of Suwannee River NOM 

standard from the IHSS. This study yielded evidence of structural similarities (presence 

of chemolysates related to 4-oxo-2-butenoic acid and maleic acid) between the two 

analytes, indicating commonalities in their basic composition and suggesting a clue as to 

the route offonnation for NOM. Further, lignin-type pyrolysatcs were also found in the 

analysis the humic acid model, which calls into question the origin of reported lignin­

derived moieties in NOM. Based on this finding, it is proposed that some ofthc 

associated pyrolysates that have been widely reported to be of unknown origin (e.g. 

butancdioc acid dimethyl esters) arc likely derived from HS, which has been formed from 

polysaccharides. The usc ofTMAH reagent used in our work to mediate hydrolysis and 

methylation has been regarded as a relatively harsh reagent that could catalyze other 

undesirable secondary reactions. It would thus be important to use other methylating 

reagents such as carbanion and methyl iodide, tetramethyl sulfonium hydroxide etc. 2 

From the MALDI-MS and THM-GC-MS studies, it was evident the dominant 

structural features of aquatic HS in general and fulvic acid in particular, are the (poly-) 

carboxylic acids and fewer phenolic constituents, which in principle makes aquatic fulvic 

acid (AF A) a potential source of acidic protons and suitable for use as a MALDI matrix. 

In addition, AF A posesses some aromatic and unsaturated aliphatic moieties that make it 

good at absorbing UV energy, a key requirement for a MALDI matrix. AF A, from the 

Suwannee River and also locally-extracted (Long Pond, St. John's, Newfoundland), has 
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been demonstrated to be an effective matrix for MALDI in the analysis of molecular 

weight compounds ranging between 100-1500 Da (Chapter 4). The efficiency of AF A as 

a matrix has been shown with a wide range of test compounds, including low molecular 

weight sugars, cyclodextrins and pcptidcs. The propensity of AF A to enhance protonation 

of pcptidcs and fonnation of sodium and potassium adducts of carbohydrates was noted. 

The applicability of AF A as a MALDI matrix for real environmental samples was 

evaluated by the analysis of cantaloupe juice and acetaminophen tablets without prior 

extraction or purification; glucose and acetaminophen could easily be identified as 

respective components. The suitable concentration of AF A as a matrix solution was found 

to be 2 mg mL-1.Whcn lower concentrations offulvic acid were used in the presence of 

sugars, a reversal of roles was observed, in which the sugars instead aided in the 

ionization of the fulvic acid components. This interesting discovery could be utilized in 

the structural determination of fulvic acid, an ongoing area of interest for humic 

substances researchers. Further work will involve the use of AF A immobilized on 

MALDI stage f()r surface enhanced neat desorption technology. 3 It is additionally 

envisioned that AF A-iron (III) orAl (III) complex could be immobilized on MALDI 

stage and used as an immobilized metal-ion affinity chromatography substrate for 

analysis of analytes such as phosphopeptides.4
"
6 

HS have also been studied by degradation using oxidative agents such as chlorine 

and chloramines typically used as disinfectants during water treatment (Chapter 5). This 

work has served two functions; it has revealed inf()nnation about the structural makeup of 

HS as well as generating possible disinfection byproducts (DBPs) for study. In our study, 

chlorination and chloramination of different classes of NOM were carried out, with 
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subsequent adsorption on macroporous XAD resins, elution with ethyl acetate followed 

by analysis by GC-MS. Possible new DBPs were tentatively identified based on mass 

spectra library searches and mass spectral interpretation. It should be noted that among 

samples (NOM, FA, HA), most ofthc resultant DBPs were quite similar, demonstrating 

commonality in the structures of humic and fulvic acids. Highly substituted halokctoncs 

were found to be an important class of chlorine and chloramine by-products. To model 

halokctoncs DBPs formation, selected model compounds, chrysin, quercetin, qucrcctrin 

and chlorogcnic acid were used. On chlorination, halokctoncs formed from HS were also 

observed, but only for flavanoids containing meta-substituted hydroxy phenol 

substitucnts. From this work, precursors ofhalokctoncs, which arc high-priority DBPs, 

have been tentatively identified. Further studies on more rigorous mechanistic procedures 

arc, however, essential. 

Many DBPs observed in this work contained carbonyl and dicarbonyl moieties, 

which make them difficult to be analyzed by GC-MS due to their high polarity. This 

directed our focus to the development of two tailor-made derivatizing agents for use in 

laser desorption ionization mass spectrometry, namely, dimethylamino-6-( 4-methoxy-1-

naphthyl)-1 ,3,5-triazine-2-hydrazine (DMNTH) and 9-3,4-diaminophenyl)acridine 

(DAA), which could react quantitatively, selectively and rapidly with carbonyl (Chapter 

6) and cx,-dicarbonyl (Chapter 7) compounds respectively. The products f()rmed 

(hydrazones and quinoxalines respectively) were very stable and demonstrated high 

ionization efficiency. They could be detected expediently by LDI-TOFMS, thus 

eliminating the need for the matrix assisted variant (MALO I) and the associated issue of 
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matrix optimization. As such, it greatly simplifies the analysis. Both one-pot and rapid 

on-plate chemical modification approaches were developed, with the latter in particular 

found to be ideal for high-throughput analysis. It has been demonstrated that a wide range 

of carbonyl and a-dicarbonyl compounds, even in complex matrices (e.g. beer), can be 

conveniently analyzed by these techniques; christened in our work as "reactive matrix 

LDI-TOFMS (RM-LDI-TOFMS)". These technique offers very low detection limits, 

typically in the sub parts per billion range (especially using the one-pot derivatization), 

improved precision and relatively wide linear dynamic range especially with the use of 

in-situ labelled internal standards. These attributes qualify the technique as suitable for 

quantitative analysis. Further research is underway to synthesize new reactive matrices 

for analysis of other environmentally important contaminants such as nitrosamines and 

other polar pollutants. In addition, extensive application of the afiJrementioned 

synthesized reactive matrices to real world samples is also being conducted with capillary 

electrophoresis and reversed phase chromatography being used for separation. In 

addition, other separation strategies such as hydrophilic interaction chromatography 

(HILI C), suited for resolving highly polar analytcs, could be an attractive method to usc 

for analysis of the polar DBPs extract fraction, especially when coupled to ESI-MS-MS. 7 

The demonstrated on-plate dcrivatization is also believed to be easily applicable as an 

analytical screening system for integrated microfluidics systems with on-line MALDI­

MS.8 
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