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Abstract 

1. Tropomyosin [TM] was isolated from following sources; shark fast skeletal 

muscle, which contains a single, partially phosphorylated, alpha type isoform, and 

salmonid fast, slow and cardiac muscle. At 50mM ionic strength [pH 7.0, room 

temperature], thin filaments composed of shark phosphorylated TM produce a 

higher steady-state activation of the myosin-SlMgATPase compared to those 

containing the unphosphorylated protein. This difference is attributable to the 

extra negative charge associated with phosphoserine 283 which, under certain 

conditions [neutral pH, low ionic strength], enhances the interaction of adjoining 

TM molecule. By comparison, none of the salmonid TMs are unphosphorylated. 

Of the substitutions, which are distributed throughout the molecule, one occurs 

within the overlap region [Asn276 in fast, His in slow and cardiac]. This 

correlates with observed weakening of the end-to-end association of the C­

terminal histidine-containing isoforms [cardiac and slow] relative to one present 

in fast muscle (1). Surprisingly, however, thin filament activation of myosin­

SlMgATPase increases in the order: fast TM < slow TM < cardiac TM. Since 

thin filaments composed of cardiac TM generate the greatest amount of activation 

it is apparent that tightness of the joint site is not the sole determinant for 

regulation. Thin filament based regulation is also sensitive to substitutions within 

the internal region of tropomyosin. The results of myosin binding show very little 

difference in the affinity of myosin for thin filaments containing non-identical 
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isoforms of tropomyosin. Therefore these data suggest that the observed changes 

in steady state rate are due to a change in a kinetic step in the actomyosin ATPase 

cycle. 

2. Unlike other vertebrates, salmonids synthesize a unique isoform of actin in each 

type of striated muscle [fast, slow and cardiac]. Two are virtually identical to each 

other but one [slow actin] is divergent and is inferred to contain six or seven non­

conservative substitutions depending on the pairing [out of a total of twelve] when 

compared to the other salmonid actins and rabbit actin. Four of these 

replacements are predicted to occur in sub-domain 3. The other two or three are in 

sub-domain 1. Of particular interest is the substitution at residue 360, where a 

neutrally charged amino acid in a variety of isoactins is replaced by Asp in slow 

actin. This is consistent with the observation that slow actin migrates ahead of 

other isoactins when analysed by alkaline urea PAGE. Of all actins tested, the one 

from slow muscle is the least conformationally stable G-actin [calcium form + 

ATP], as gauged by a number of techniques including electronic circular 

dichroism. The midpoint of the change in far-UV ellipticity versus temperature 

for this isoform is IOOC lower than that of other actins studied [transition 

temperature, 45°C versus 5YC]. The slow isoform also displays a reduced rate of 

polymerisation, a faster rate of nucleotide dissociation and a lower level of 
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myosin activation. These data suggest that actin heterogeneity is a source of thin 

filament diversity in some vertebrate skeletal muscle. 

3. A survey was conducted to determine the distribution of slow muscle actin 

throughout the animal kingdom. Skeletal muscle actin extracted from certain 

species, selected on the basis of their taxonomical position, was characterized. Of 

the species surveyed, a unique isoform was identified in slow muscle of 

Chondrichthyes [mako shark] and Osteichthyes [teleosts, salmon, Atlantic herring 

and tuna] but not amphibians [frog] and avians [chicken]. In the latter two cases, 

the same isoform is present in both types of skeletal muscles. Further, a slow 

muscle actin gene is absent from the genomes of puffer fish and human. This 

suggests that a slow muscle actin gene starts to express randomly and then stops 

expressing after short period of time. This appearance and disappearance is a 

unique feature, which has occurred during the course of evolution in other genes 

as well. According to phylogenetic tree analyses performed using several methods 

[neighbour-joining, minimum evolution and MrBayes method] for selected amino 

acid and nucleotide sequences, a close relationship between salmon slow muscle 

actin and puffer fish cardiac actin which is considered one of the oldest actins, 

was observed. Finally, an actin clone was isolated from a dogfish shark skeletal 

muscle eDNA library and sequenced. The nucleotide sequence clusters with that 



v 

chicken actin, which again underlines the extraordinary degree to which the 

protein has been conserved. 
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1.0 An overview 

Chapter 1 

Introduction 

Movement is essential to life, and takes many forms, from cytoplasmic streaming and the 

growth of neurons at the molecular level, to the long distance flight of the albatross or the 

explosive performance of a sprinter. Although only a few families of proteins are responsible 

for movement in the biological world, muscle, which is an organ specializing in the 

transformation of chemical energy into movement, has developed to optimize this function. 

Muscles are categorized as striated [skeletal and cardiac muscle] or unstriated [smooth 

muscle] depending on whether alternating dark and light bands or striations can be seen when 

the muscle is viewed under the light microscope. Muscles are classified as voluntary [skeletal 

muscle] or involuntary [cardiac and smooth muscle] depending respectively upon whether 

they are innervated by the somatic nervous system and are subject to voluntary control or are 

innervated by the autonomic nervous system and are not subject to voluntary control (2 and 

3). The rest of the discussion will be restricted to striated muscle unless otherwise noted. 

Skeletal muscle is composed of long cylindrical cells [fibers], each measuring 10 to lOO~J,m 

in diameter and up to several centimeters in length. These cells arise during embryonic 

development from the fusion of myoblast cells. Each muscle fiber is enclosed within a single 

plasma membrane referred to as the sarcolemma. The cytoplasm is occupied largely by 
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cylindrical filaments, which contain the contractile protein machinery of the muscle cell. 

Three types of fibers can be recognized based on numerous parameters, including speed of 

contraction [slow or fast] and genre of enzymatic machinery used for the synthesis of A TP 

[oxidative or glycolytic]. These are: slow-oxidative, fast- oxidative and fast-glycolytic. 

Further classification and characteristic features of muscle fibers are summarized in Table 1.0 

(4). Slow-oxidative fibers [dark fibers], rich in myoglobin, cytochromes and mitochondria 

synthesize A TP predominately by oxidative phosphorylation. In contrast, glycolytic fibers 

contain very little myoglobin, and hence are pale in colour [white fibers]. In addition to their 

high myosin ATPase content, these fibers are also larger in diameter than the slow-oxidative 

fibers. Fast-oxidative fibers have high myosinATPase activity and also high oxidative 

capacity. However, the rate of ATP production of these fibers cannot keep pace with the high 

rate of ATP hydrolysis, because they rely partially on glycolysis and are more prone to 

fatigue than the slow-oxidative fibers. In mammals, most muscles contain a mixture of all 

three fiber types, the proportions of which depend on the type of muscle and the 

physiological demands placed upon it. Slow-oxidative fibers are in muscles specialized for 

maintaining low-intensity contractiions for a long period of time without fatigue, such as 

muscles of the back and legs, while fast-glycolytic fibers can be seen in the arm muscles, 

which are adapted for performing rapid, forceful movements (2, 5). 

In the early 1800s, it was first noted that muscle fibers exhibit a series of alternating light and 

dark bands or striations, when viewed with a light microscope. Later, it was determined that 

myofibrils of each muscle fiber are aligned with their bands in register, giving the cell a 

striated appearance consisting of alternating light and dark bands called I band [Isotropic 
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Table 1.0 Diversity of vertebrate striated muscle fibers 

Fiber type. 

Color White Red Red 

Contraction s eed Fast twitch Fast twitch Slow twitch 

Fati ue resistance Low Medium Hi h 

Mechanism of ATP Glycolytic Glycolytic and Oxidative 

s nthesis oxidative 

Extracted from "Calcium in muscle activation" by Ruegg, J. C. (4) 

3 



band] and A band [Anisotropic band] respectively. Running down the middle of each I 

band is a dense line known as the Z disk. The Z disks divide a myofibril into a series of 

repeating units called sarcomeres, each measuring about 2~..tm in length. Z discs also are 

implicated in mechanosensation and signalling to the nucleus. According to electron 

microscopy by Huxley (6 and 7), myofibrils are composed of two types of filaments: thin 

filaments [6nm in diameter] and thick filaments [15nm in diameter]. The I bands have a 

light appearance due to the presence of thin filaments only, while the A bands are dark 

because they contain overlapping arrays of both thick and thin filaments. There is a 

central region of the A band, called the H zone which does not contain thick filaments. 

It is estimated that a single muscle fiber may contain 16 billion thick and 32 billion thin 

filaments, all arranged in a very precise pattern within the myofibrils. Each thick filament is 

composed of several hundred myosin molecules while thin filaments are comprised of three 

proteins: actin, tropomyosin [TM] and troponin [Tn]. The third filament system is made up of 

single molecules of titin, which span half sarcomeres. Another giant protein, nebulin, spans 

the length of the actin filaments and forms the fourth filament system in skeletal muscle. 

Apart from these major proteins found in filaments, numerous other proteins are also present 

in sarcomeres; for example, the filaments are capped at the pointed and barbed ends by 

tropomodulin and CapZ respectively. 
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1.1 Contractile proteins 

1.1.1 Tropomyosin 

Tropomyosin, discovered in 1946 (8 and 9), is a dimeric, heat-stable protein, having an 

isoelectric point of ~4.6 (10). Tropomyosin is present in every eukaryotic cell. There is 

no evidence so far of TM in prokaryotes. The most abundant source is striated muscle 

where it accounts for ~3% of total protein (11). In muscle, the protein is located within 

the thin filament where it exists as a continuous chain. Some of the characteristics of TM 

are: highly alpha-helical, rod-shaped, actin binding, and with a sequence repeat in which 

non-polar amino acids occur every first and fourth residue of a heptapeptide unit. 

The complete primary structure of TM was reported in the early 1970s (12 and 13). 

Analysis of the sequence revealed two types of periodic repeats. As predicted by Francis 

Crick (14), there is a short-range repeat consisting of seven-residues in the form a-b-c-d­

e-f-g [Fig.1.1], where positions a and d show a strong preference for non-polar side 

chains. The b,c,e,f and g positions are usually filled by polar or charged side chains. 

Crick also proposed that the side chains of a and d amino acids would interlock at the 

interface of the dimer, in a knobs-into-holes fashion (15). Because an alpha-helix 

encompasses 3.6 residues per tum [whereas the repeat unit is a heptapeptide], the 

hydrophobic seam does not run parallel to the long axis of the helix, but winds around it 

(16). The association of two molecules of TM reflects this, since they wind around one 

another producing a coiled coil structure (17-22). The two chains are parallel [i.e. having 

both N-termini at one end and both C-termini at the other] and in register [i.e. non-
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Fig. 1.1 Interactions between the two oc-helices in the tropomyosin coiled-coil (16). 

Each a.-helix is shown with seven residues [a-g] in two turns. [A] End-on view looking from N terminus. The 

interface between the a-helices derives primarily from hydrophobic residues in core positions a and d, although 

there are also some salt bridges formed between residues e and g. [B] The core interface viewed parallel to the 

coiled-coil axis shows how residues from one chain occupy the spaces between the corresponding residues from 

the second chain to give "knobs in holes" packing (15). In tropomyosin there are slightly more than 3.6 residues 

per turn, which produces a left-handed super coil. 
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staggered]. One line of evidence for this arrangement of chains, is the fact that an 

interchain disulfide bond can be formed between Cystenes which occur at position 190 in 

both chains (23). This could only happen if the Cystenes were in close proximity. The 

basic features of the coiled coil as suggested by Crick were later confirmed by the crystal 

structure of the GCN4 leucine zipper (24). The long-range repeat is made up of 

alternating charged/polar and non-polar side chains and is considered to correspond to 

seven pairs of consecutive actin binding sites (25). Recently, an additional repeat 

involving core Ala residues has been identified. This is a semi-regular repeat, which is 

proposed to generate several bends in the molecule's axis (26). 

The first 20 residues of the TM molecule are highly conserved, including theN-terminal 

Met, which is acetylated. A comparison of 11 vertebrate muscle TMs reveals two minor 

changes in this region of the protein, Glu2Asp and Leu19Ile (27-29). When Drosophila 

muscle TMs are included in the analysis, 14 of the first 20 residues are identical, 

including the first nine residues which contain three consecutive Lys at positions five, six 

and seven. These Lys are required for self-polymerization, a process that is conveniently 

demonstrated by viscometry (8). Polymerization, which is more pronounced for muscle TMs 

than non-muscle TMs, is thought to arise from a merger of different ends of contiguous 

molecules [end-to-end polymerization]. The basis of the 'overlap' is, in part, electrostatic. The 

N-terminus will possess a net positive charge at pH 7.0, while the C-terminus will possess a 

net negative charge. This is consistent with the ionic strength-dependence of polymerization 

and the observation that a phosphate group at Ser283 increases the viscosity in the neutral pH 
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range (30 and 31 ). An overlap of 8-9 residues would reduce the effective length of TM from 

284 to about 275 residues, a length that is consistent with measurements from protein crystals 

(32) and the fact that removal of 12 residues from the C-terminus by carboxypeptidase results 

in non-polymerizable protein. (33-35). Interestingly, bacterially expressed TM, which is 

non-acetylated, exhibits substantially weaker end-to-end polymerization compared to wild 

type (36-39). This could be due to theN-terminal Met occupying an inner "a" position and/or 

repulsion with other positively charged side chains, notably one or more of the three 

aforementioned Lys. Restoration of polymerization can be achieved by theN-terminal fusion 

of two [Ala-Ser] or three [Ala-Ala-Ser] amino acids (40 and 41). It should be noted that there 

is evidence that changes within the central portion of the TM molecule can also influence 

overlap interactions (42 and 43). Despite the biochemical progress that has been made, the 

structure of the overlap region remains unsolved, as crystals of full length TM show low 

resolution in X-ray diffraction studies owing to their high water content [>90%] (44-46). 

High-resolution structures of N- and C-terminal peptides have been obtained by X-ray 

crystallography and by 1H-NMR (47 and 48). In the 2.7A crystal structure of a 31 residue C­

terminal fragment ofTM fused to a fragment of the GCN4leucine zipper, the helices formed 

by the last 22 TM residues [263-284] splay apart and two symmetrically related molecules 

make intermolecular contacts in a tail-to-tail manner (49). Further, evidence that the C­

terminal 9 to 11 overlap residues are highly flexible and differ in structure from the rest of 

the molecule, comes from a 1H-NMR study in which several sharp peaks [indicative of 

regions of high flexibility] were lost upon carboxypeptidase treatment (50). Phillip et al., (51) 

suggested from examination of TM motion within crystals, that the C-terminal half is very 
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flexible and partially unfolded at physiological temperatures. In connection with these 

reports, is the recently published solution structure of a dimeric peptide containing the last 34 

amino acids ofTM [i.e. residues 251-284] (52). The peptide was cross-linked and contained a 

stabilizing mutation at position 279. In this study the residues 257-269 formed a coiled coil, 

residues 270-279 were helical but were not arranged in coiled coil and the last five residues 

[280-284] were non-helical (52-54). 

The findings of a number of investigations have shown that the C-terminal half of the TM 

molecule is less stable than theN-terminal half (55 and 56). According to microcalorimetric 

analysis, TM thermal denaturation is interpreted as a multistep process in which specific 

segments called cooperative blocks unfold independently of one another (57). However, it 

has also been noted that the sum of the denaturation curves for two TM fragments, 

corresponding to predicted cooperative blocks [190-254 and 253-280], is not equal to the 

experimental curve for the fragment 190-254, arguing for long range cooperativity along the 

TM structure (58-60). Lee et al., (61) have suggested that a complex combination of 

stabilizing effects along the sequence is a more general indicator of protein folding in coiled 

coils than the identification of a specific sequence. Even if TM folds either via independent 

cooperative blocks or nucleated by one or more specific sequences, it is clear that TM 

contains regions that are more intrinsically stable than others. The factors which may 

contribute to instability could be: inter-helix repulsion between g and e' positions of the 

heptad repeat, a charged residue at the hydrophobic coiled coil interface and a greater fraction 

of~ branched residues located at d positions (62). 
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The role of TM remained unclear until the 1960s when Ebashi showed that TM is a regulator 

of the actomyosinATPase activity in striated muscle (63-66). This regulatory function stems 

from two fundamental properties of TM: [i] actin binding (67) and [ii] Tn binding. By 

interacting with both TnT [TM binding subunit of Tn] and actin, TM serves as a relay, 

conveying conformational information from Tn to actin (68 and 69). 

Tropomyosin comprises a family of proteins. This was first demonstrated by electrophoresis. 

Using SDS-PAGE as a separation method, two isoforms a- and P- were reported in rabbit 

skeletal muscle (70). The heterogeneity was then characterized more rigorously, first by 

protein-level sequencing and then nucleic acid-level sequencing (29, 71). All muscle 

[skeletal, cardiac, smooth] TMs have been shown to contain a total of 284 amino acid 

residues. As would be expected from TM's extensive quaternary structure, the sequence has 

been strongly conserved. There are only 39 amino acid substitutions between rabbit -a and -

p TMs (29). None of these substitutions significantly affect the short and long-range repeats 

discussed earlier. Non-muscle TMs are shorter in length, i.e. 245-251 amino acids. Yeast 

TMs are even shorter, containing 161 and 199 residues (72). Although, these TMs are 

dimeric, they polymerize less extensively than their muscle counterparts, primarily because 

of marked differences in the N-and C- terminal overlap sequences (71). 

Four TM genes have been identified in mammals and from these at least 20 isoforms are 

generated by the use of alternative promoters and alternative RNA processing (73). The 

TPMl and TPM2 genes give rise, respectively, to striated muscle a- and P- TMs (74 and 75). 

In addition, the TPM2 gene codes for the smooth muscle P-TM and fibroblast TMl. The 
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TPM3 gene [sometimes referred to as y-TM] codes for fibroblast LMW tropomyosin and a 

slow twitch skeletal muscle a-TM (76). TPM4 [also known as the 8 or TM4 gene] has so far 

only been shown to code for one isoform, fibroblast TM4. 

The functional significance of this diversity is not fully understood and is one of the aims of 

this thesis. One of the problems that has been encountered is that, multiple TM isoforms 

often exist in the same muscle fiber. For example, certain fast-contracting mammalian 

skeletal muscles [psoas] contain a preponderance of a-TM [80%a, 20%~] while others 

[extensor digitorum longus] contain equal proportions of a- and~- TM isoforms (15, 77 and 

78). Slow-contracting skeletal muscle contains an extra isoform, in addition to those found in 

fast muscle. The situation is made more complicated by the fact that the relative amount of 

each isoform changes during muscle development (79) and is also species-dependent. For 

example, the heart of small mammals [rabbit, rat, mouse], one of the rare instances of 

'isoform-purity' contains only a-TM, whereas larger mammals [cow, pig] contain low levels 

[~15%] ofthe ~-isoform. Studies involving the transgenic mouse heart have shown that heart 

containing only a- or ~-TM exhibit differences in contraction and relaxation (80 and 81 ), 

despite the high homology between a- and P-TM [a- and P-TM are 86% identical at the 

amino acid level], Although the a- and ~- TM isoforms are the major forms of the protein, 

additional variants have been observed in rabbit and rat skeletal muscle (15, 77 and 78). 

These extra isoforms may be products of the TPM3 gene (75). The complexity of this system 

will likely increase as more TM genes are characterized (79). 

11 



1.1.2 Actin 

Discovered by Straub in 1942 (82), actin is one of the most abundant proteins in both the 

prokaryotic and eukaryotic world, having been identified in the cytoplasm of animal, plant, 

protozoan and fungal cells (83). One of the hallmarks of actin is its ability to activate the 

A TPase of myosin. It can also self-associate into long filaments which are called F -actin. 

These features are consistent with actin's involvement in motility [eg. muscle contraction, 

cytokinesis, organelle movement] and maintenance of cell shape (84). Actin represents 20% 

of the total protein in skeletal muscle. Virtually all of the actins are present within the thin 

filament, where it is required for the production of force. 

Actin consists of a single polypeptide chain of, usually 373-375 (83), amino acid residues 

[mass, 42 kDa]. The sequence is one of the most highly conserved known. Side chains that 

are charged at pH 7.0 [i.e. Asp+Glu+Lys+Arg] account for roughly 25% of the total number 

of amino acids. Aromatic side chains, which include four conserved Trp, account for 10%. 

One Cys is removed by exolytic processing, yielding a final Cys content of five. Additional 

post-translational modifications are acetylation of theN-terminal amino acid and methylation 

of His73 (85). However, recently, unmethylated His73 was reported from Naegleria gruberi, 

Candida albicans and Saccharomyces cerevisiae, suggesting that methyl-His may be present 

only in multicellular eukaryotes (86). Other features of actin include one high affinity 

divalent cation-binding site, several low-affinity cation-binding sites (87) and one nucleotide 

[either ATP or ADP] binding site (88 and 89). 
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Filamentous actin is a non-covalent, double stranded polymer of actin monomers. The 

assembly process is sensitive to ionic strength and the type of divalent metal ion, and 

requires that the concentration of monomer be above a certain limiting value, which is 

known as the critical concentration (83). During polymerization the bound ATP is 

hydrolyzed. However, the involvement of ATP hydrolysis in polymerization is not 

completely clear (90). Previously, hydrolysis was assumed to play a key role in the 

steady-state treadmilling of actin filaments (91 ). Alternatively, Carlier (92) suggested that 

the hydrolysis of ATP upon polymerization facilitates rapid de-polymerization. Since 

ADP-actin can also polymerize (93 and 94), although the rate and the extent of 

polymerization are lower (95-97) than for ATP-actin, especially in the cold (98), it is 

evident that nucleotide hydrolysis is uncoupled from polymerization (94 and 95). The 

polymerization process can be conveniently divided into two major steps: the slow 

thermodynamically unfavored formation of nuclei, [the rate-limiting step], and the rapid 

elongation of nuclei to long filaments. The first step appears to involve a rapid 

conformational change of the actin monomer to a state referred to as F-monomer or G*­

actin which is assumed to be a necessary intermediate in the polymerization process. (99 

and 1 00). Self-assembly begins with the slow formation of G*-actin comprising three 

actin monomers (101-104). 

Based on the arrowhead pattern created when rigor myosin heads bind to actin, one end is 

called the barbed end and the other the pointed end. The filament grows bidirectionally (105) 

with the monomer exchange rate being 20-fold faster at the barbed end than the pointed end 
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(106). Thus, the pointed end will have a terminal ADP monomer while the barbed end will 

have an ATP monomer, resulting in chemically different ends. At concentrations too low to 

cause polymerization, Mg +2 can exchange for Ca +2 at the high affinity site (1 07-11 0) with a 

resultant conformational change (87, 108 and 1 09) that differs from, and is much slower than, 

that due to the association of cations with the low affinity sites (87, 1 08). At micromolar 

levels ofMg+2 and Ca+2
, divalent metal ions have an opposite effect on actin polymerization; 

Ca+2 bound to the high affinity site inhibits spontaneous polymerization while Mg+2 enhances 

it (111-114). However, both Mg+2 and Ca+2 promote polymerization at concentrations in the 

millimolar range, apparently by binding to multiple lower affinity sites (115-117). 

The three dimensional [3-D] structure of G-actin was first determined at low-resolution [i.e. 

1.5 nm] from electron microscopy and from 3-D structure reconstruction (118). The atomic 

structure of rabbit skeletal muscle actin was solved to 2.8A resolution in 1990 using crystals 

of actin complexed with DNase I (119). To facilitate the crystallization, the C-terminal three 

residues were removed using mild tryptic digestion (120). Later, two other actin structures 

were determined; undigested actin complexed with gelsolin segment I (121) and with profilin 

(122). There is a good qualitative agreement between these actin structures and the one 

derived from electron microscopy. Recently, Dominguez et al., (123) succeeded in producing 

crystals of uncomplexed actin. They were also the first to crystallize actin with ADP present 

in the nucleotide-binding cleft (124). Collectively, these structural studies have revealed two 

major domains, each of which can be subdivided into two sub-domains. The overall 

dimension of the molecule, which is about 40% helical, is approximately 55 x 55 x 35A .The 

protein chain initiates and terminates in sub-domain 1. This part of actin, as well as sub-
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domain 3 has a repeat motif comprising a multi-stranded ~-sheet, a ~-meander, and a right 

handed ~a~-unit suggesting that they may have evolved by gene duplication, followed by 

insertion of sub-domains 2 and 4 [into sub-domains 1 and 3 respectively]. The high affinity 

divalent metal ion and the adenine nucleotide are located at the bottom of the central cleft 

between the major domains (119-122,125). 

A major difference between these ATP and ADP structures occurs in sub-domain 2. The 

DNase I binding loop is folded as an a-helix or disordered or folded as a ~tum [in ATP­

actin]. In addition, minor differences can be seen in sub-domain 1, especially the interactions 

involved in the coordination of a divalent cation in the nucleotide binding cleft (124). 

A notable feature of the structure is a two-stranded "hinge" at residues 140 and 338 joining 

the large and small domains. Tirion et al., (126) described a "propeller" motion between 

these two domains that produces an opening and closing of the nucleotide cleft. The 

extensive contacts between the nucleotide cation complex and residues in all four sub­

domains contribute to the stability of the protein. Interestingly, the actin structure is similar to 

a group of proteins, which includes sugar kinases and A TPase heat-shock proteins (127), 

although there is a very low sequence homology to actin. 

It has been suggested from intrinsic fluorescence (107) and 1H-NMR (115) studies that the 

conformation of the protein is sensitive to the type of bound metal ion. The Ca +2 and Mg +2 

forms of the protein are not structurally equivalent. The removal of the bound metal ion upon 

addition of EDTA induces nucleotide dissociation and denaturation. One possible 
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explanation is that it is due to a loss of polymerization (128). However, in this inactivated 

state, actin retains much of its secondary structure. Complete unfolding is observed in high 

concentrations of urea and guanidine (129-132). It is possible to interconvert between the 

partially and completely unfolded states, but not between these states and the native 

conformation (131 and 132). 

The structure F-actin has only been solved to low-resolution using electron microscopy and 

computed image analysis (133-136). The results from these investigations have not always 

been in agreement. According to the model of Holmes et al., (134), in the left-handed helix, 

monomers rotate by -166° and have an axial translation of 27 .5Afrom one another. There are 

13 monomers in six turns with a pitch of 59Ao yielding a filament diameter of ~90-100A0

• 

The larger sub-domains 3 and 4 are axially located across from and interaction with sub­

domains 3 and 4 of the actin in the second strand. The smaller sub-domains 1 and 2 are 

located at the periphery of the filament exposed to the solvent and are available for 

interaction with myosin. Each actin monomer makes contact with four other monomer 

molecules of the preceding and following actins on the same long helix and the two across 

the filament on the other long pitch helix. Each actin uses 10 surface loops and 2 a-helices to 

make these interactions. 

Actin activates myosin by speeding up the rate of product release through the isomerization 

[structurally] of myosin's active site between two states, the so-called 'open' and 'closed' 

conformations, depending upon the presence or absence of a phosphate group [Pi]. Upon 

binding ATP, it closes the site. Actomyosin dissociates and the bound ATP is hydrolyzed. 
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Reassociation opens the site. In this conformation myosin has reduced affinity for gamma 

phosphate affinity. The Pi dissociates, closely followed by ADP. At this time myosin is in the 

'open' conformation and another molecule of ATP can enter the active site. Thus, actin's role 

is to lower the affinity of myosin for Pi (137). 

Structural and chemical modification studies have revealed that the N-terminal acidic 

residues on actin could be covalently linked to myosin-S! (133), troponin I [Inhibitory 

subunit of Tn] (138), TM (139) and several other proteins (140 and 141). Structural studies 

related to the docking of myosin-S 1 at the surface of actin filaments led to a model of the 

actomyosin interface that involves a dominant component of hydrophobic interactions and 

several weaker sites of electrostatic interactions, which are located in sub-domain 1 and 2 of 

actin and include sequences 1-7, 18-29, 92-101, the helix 79-92 and N-terminal segment of 

the DNase I binding loop 38-52 (142 and 143). Chemical modification analysis of residues 

located between His40 and Try69 has shown their significance in actin-actin interactions 

(144-146). Actin binds with various other proteins. Actin monomer binding proteins such as 

profilin (147) and DNase I inhibit actin monomer ATPase activity and also polymerization 

while capping proteins [eg., gelsolin (148) and fragmin (149)] bind to one end of the actin 

filament and influence subunit interactions there. Moreover, cross-linkers or gelation 

proteins, which bind to the sides of actin filaments, act as spot welds to the different cross­

link filaments. Fimbrin (150) and fascin (151) cause actin filaments to form bundles. While, 

actin was recently reported to occur in the nucleus, its function in the nucleus is not yet clear. 

However, Zhu et al., (152) showed that nuclear actin interacts with RNA polymerase II. 

Hence it may have a function in RNA polymerase II mediated transcription. 
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A small multigene family encodes actin. In vertebrates, particularly mammals, the expression 

of each iso-actin gene is regulated in a developmental and tissue specific manner. The 

various iso-actins are grouped into a, ~ and y forms on the basis of their iso-electric point 

(153) which is ~5.6 and can be further classified into six variants on the basis of amino acid 

sequence and site of expression: these are two striated muscle [a-skeletal and a- cardiac], 

two smooth muscle [a-vascular and y-enteric], and two non-muscle [~-and "{-cytoplasmic] 

actins (154-158). It has been suggested that muscle actin genes have arisen from non-muscle 

actin genes by gene duplication and subsequent divergence events once within the 

deuterostome branch and once within the protostome branch (159-161). Furthermore, all 

metazoan cytoplasmic actins and the muscle actins of invertebrates appear to be direct 

descendants of the cytoplasmic actins found in protozoa and fungi (162). Even though actin 

is a remarkably conserved protein it does not appear to be interchangeable in vivo and 

numerous results using a variety of approaches suggest a functional diversity even within the 

same cell (163). 

1.1.3 Troponin 

The contraction of vertebrate striated muscle is regulated by Ca +z through its binding to a 

specific regulatory protein complex, troponin [Tn], which is distributed at regular intervals 

along the entire thin filament (164-168). The Tn complex, which was discovered in 1959 by 

Ebashi (169), is composed of three subunits: the Ca+2 binding subunit, troponin C [TnC]; the 

tropomyosin binding subunit, troponin T [TnT]; and the inhibitory subunit, troponin I [Tnl]. 

This complex can be dissociated by denaturants and reassembled into its functional complex 
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(170). It has been demonstrated that co-expression of all three Tn subunits in bacteria yields a 

functional ternary complex that can be purified under non-denaturing conditions (171). The 

overall structure of the troponin complex consists of two domains: a globular domain, which 

is comprised of subunits TnC, Tni and the C-terminal portion of TnT, and a highly extended 

region, or tail, containing the remainder of TnT (172 and173). Recently, the 3-D structure of 

the core domain of human cardiac Tn in the calcium-saturated form was reported (174). The 

core domain is mainly composed of a-helices and it can be further subdivided into two 

structurally distinct sub-domains, denoted as the regulatory head [consisting of TnC residues 

3-84 and Tni residues 150-159] and the IT arm [IT arm: consists ofTnC residues 93-161, Tni 

residues 42-136 and TnT residues 203-271]. These sub-domains are connected by flexible 

linkers making the entire molecule highly flexible (174). 

1.1.3.1 Troponin C 

Troponin C [18,000 Da], the smallest component of the Tn complex, was isolated in the 

1960s (175 and 176). It is a very acidic protein owing to its high content of Glu and Asp 

residues. Rabbit skeletal troponin C contains no Trp residues, only two Tyr residues and only 

one residue each of Pro, Cys and His (177). The crystal structure of avian TnC, determined at 

pH 5.0, revealed a dumb-bell shaped molecule that consists of two N- and C-terminallobes 

connected by a nine tum a-helix composed of two fused helices called D and E containing a 

centrally located Gly residue [Gly92] (178-181 ). Each lobe has two Ca +2 binding helix-tum­

helix motifs known as EF hands (182-184). These sites have been numbered I-IV, starting 

from theN-terminus. Sites I and II are called "low affinity" sites which are specific for Ca +2
, 
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and they have an association constant of 5xl 05 M-1
• Sites III and IV, the "high affinity" sites, 

have a binding constant of 2xl07 M- 1 and, in addition, bind Mg+2 with an apparent affinity 

constant of 3xl03 M-1 (185-187). Unlike skeletal TnC, cardiac TnC has only one Ca+2 

specific site and two high affinity Ca+2-Mg+2 sites (188). Further, there is a very hydrophobic 

region in the D-helix, which is buried within the amino terminal domain (177). It is possible 

that the Gly residue in the center of D-E helices may allow the molecule in the solution to 

fold over, which would bring the Ca+2 specific and Ca+2-Mg+2 sites into close proximity to 

interact (177). Resonance energy transfer experiments support this suggestion (189) 

1H-NMR studies of tryptic fragments ofTnC indicate that both halves ofthe molecule retain 

a structure in the apo and Ca +2 saturated forms, which resemble that of the intact protein 

(190). Additional work by Wang & Gergely (191) and Grabarek et al., (192) suggests that the 

interactions between two halves of the TnC molecule in Tn occur via interactions with Tnl 

and TnT subunits and may have a vital role in thin filament activation. Kinetic studies using 

dansylaziridine labelled TnC revealed rapid Ca +2 binding to both low and high affinity sites 

but the rate of Ca+2 release from the high affinity sites was considered to be too slow, 

suggesting that it may not participate in the dynamic regulation of contraction (193 and 194). 

1.1.3.2 Troponin I 

Troponin I [21 kDa] is a basic protein containing one Trp, two Tyr and three Cys, which may 

need to be reduced to maintain activity in reconstituted complexes (195). Troponin I inhibits 

the magnesium-dependent ATPase activity of actomyosin (170, 175, 196) through interactions 

with both actin and TM-actin (167,197) and also interactions with TM. The inhibition of the 
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actomyosinA TPase is neutralized when calcium-saturated TnC forms a complex with Tnl 

(196,198 and 199), an effect requiring a lower concentration of Tnl in the presence rather 

than in the absence of TM. Studies have indicated that residues 1-21 and 96-116 of Tnl 

interact with TnC (200-202). Residues 104-115 of Tnl [Gly-Lys-Phe-Lys-Arg-Pro-Pro-Lys­

Arg-Arg-Val-Arg] comprise the minimum sequence necessary for the inhibition of 

actomyosinATPase activity (203-205). This Tnl peptide is basic and contains alternating 

basic and hydrophobic residues. Two residues of Tnl can be phosphorylated: Thr11 by 

phosphorylase kinase and Ser118 by cardiac 3', 5'-cyclicAMP dependent protein kinase 

(200,206). Skeletal Tnl is not phosphorylated in whole Tn complex. The main structural 

difference between cardiac and skeletal muscle Tnl is an N-terminal extension unique to 

cardiac Tnl containing phosphorylation sites for cAMP-dependent protein kinase. While 

phosphorylation of cardiac Tnl appears to reduce the affinity of cardiac TnC for Ca+2 (207), 

no role has yet been established for skeletal Tnl phosphorylation. The structure of the Tnl 

peptide bound to calcium-saturated TnC, derived from 2D NOE 1H-NMR spectroscopy, 

reveals an amphiphilic helix -like structure, distorted in the centre by the two Pro residues 

(208). The central bend in the peptide functions to bring the residues on the hydrophobic face 

into closer proximity with each other to form a small hydrophobic pocket with the 

hydrophilic basic residues extending off the opposite face of the peptide. The reversal of 

inhibition is related to Ca+2 dependent Tni-TnC interactions elucidated in part at the atomic 

level (209). 
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1.1.3.3 Troponin T 

Troponin T, the largest subunit of the Tn complex, is a highly polar, structurally asymmetric 

molecule with a high content of acidic amino acids near the N-terminal half of the molecule 

and a predominance of basic residues within the C-terminal half. Troponin T isoforms 

isolated from vertebrate muscle are composed of a single polypeptide chain with a molecular 

weight in the 31-36kDa range, consisting of about 250 to 300 amino acids. Cardiac TnT 

usually contains a larger number of amino acids than its skeletal equivalents (210). 

Invertebrate forms exhibit significant homology with vertebrate skeletal TnT, but are often of 

higher molecular weight because of the addition of a C-terminal extension of about 100 

amino acids, roughly half of which are polar (211 ). Troponin T can be phosphorylated at Ser 

position 1 in the native Tn complex (212 and 213). However, no physiological role for this 

posttranslational modification has been recognized (214). Troponin T binds TM at two sites 

(212-215). The globular C-terminal domain [TnT-2] mediates its interactions with Tnl and 

TnC, as well as binding near residue Cys190 ofTM. TheN-terminal domain ofTnl [TnT-1] 

appears to bind to sequences within the C-terminal one-third of TM, from Cys 190 of one 

molecule to the N-terminus of the adjoining molecule (215). The central region and C­

terminal domain of TnT contain a helical segment, which may stabilize interaction with TM 

by the formation of a triple helix (212). 

1.1.4 Myosin 

Myosins are a diverse super family of molecular motors capable either of translocating actin 

or of translocating cargo along a fixed actin filament. The first myosin was discovered in 
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1864 (216). It is a ubiquitous protein found in all eukaryotic cells, the highest concentration 

occuring in muscle (217) and comprises almost 50% of the total protein in skeletal muscle. 

Based on sequence homology this superfamily is currently known to fall into 17 different 

classes (218). According to the classification scheme suggested by Cheney eta!., (219), all 

new classes of myosins discovered after the myosin I and myosin II classes are assigned a 

Roman numeral in order of their discovery. The closeness of numerical numbers does not 

imply that those myosins are closely related. All types of myosins that have been identified 

are multimeric and are activated by actin, yet the functions are diverse. All myosins possess 

at least three functional domains, a head, a neck and a tail. Striated muscle myosin [myosin 

II] is capable of forming thick filaments at low ionic strength. It is a hexameric protein 

comprised of two heavy chains [MHC, MW = 171-241 kDa](220) and four light chains 

[MLC, MW = 15-30 kDa](221). TheN-terminal sequence [720-780 amino acid residues] of 

the heavy chain forms the head region, which contains the actin and nucleotide binding sites. 

The C-terminal portions of the two heavy chains associate to form the tail; a highly elongated 

coiled coil (222 and 223). Two of the light chains belong to the essential light chain [ELC] 

family, which are related to Calmodulin and the other two are regulatory light chains 

[RLC](224 and 225). Within the class of essential light chains, which cannot be removed 

without loss of ATPase activity (226-228), two isoforms have been identified (229). The 

myosin head with ELC-1 can bind actin more tightly than the head with ELC-2 that has the 

same amino acid sequence except for the N-terminal 41 residues (230-233). The rigid 

elongated neck region that contains the tight binding sites amplifies small conformational 

changes in the globular motor domain, thus producing force and a step movement of 

approximately 5-10nm/ATP hydrolysed (234 and 235). The myosin II fragment, consisting of 
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the motor domain and the neck region, is referred to as myosin subfragment-1 or myosin-S 1. 

Two prominent trypsin sensitive surface loops of myosin-S 1 form the borders of the 25, 50, 

and 20kDa sub domains (236 and 237). The first loop, loop-1, spanning the 25/50kDa 

junction is situated near the nucleotide binding site and is involved in determining the rate of 

ADP release (238 and 239). The 50/20 junction, also called loop-2, plays a central role in 

actin binding and consequently in tuning the motor activity (240-242). Skeletal myosin 

contains two reactive thiols, SH-1 and SH-2, which are near each other in both the primary 

(243-245) and tertiary structures (246 and 247) and are released in a 20kDa tryptic peptide 

that constitutes the C-terminal region of myosin-S 1 (248). Their precise locations are now 

known to be 66 [SH-1] and 56 [SH-2] residues from theN-terminus of the 20kDa fragment. 

Chemical modification of these thiols alters the ATPase activity of myosin. In addition, 

myosin-S 1 contains one highly reactive Lys residue that on, modification, also affects the 

ATPase activity (249 and 250). While mapping of myosin-Sl has been pursued mainly 

through these biochemical techniques, investigations of the structure and function of myosin 

have been undertaken using numerous organisms and a variety of tissues within these 

organisms. Image reconstruction studies provided information on the general shape of the 

myosin-S 1 (132, 251-256). The dimensions of the myosin-S 1 in the region proximal to actin 

are 6.2-6.5nm x 4.8-5.6nm and the overall length is ~12-15nm in the absence of RLC. The 

angle of myosin-S 1 attachment is suggested to be almost perpendicular to the filament axis 

and the arrowhead appearance, which was observed in the electron microscope, attributed to 

the curved nature of myosin-S 1. 
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The characteristic feature, which is common to all myosins that have been identified so far, is 

the ability to bind with actin reversibly and hydrolyze A TP. Typically Mg +2 A TPase activity 

of myosin alone is very low and is increased significantly by the interaction with actin. The 

functional form of myosin in both muscle and non-muscle systems is the aggregated state. 

Myosin molecules are systematically organized into bipolar structures, the thick filaments 

whose length and diameter vary depending on the species. Myosin found in striated muscle 

has high ATPase activity (257) and actin sliding velocity, and requires the thin filament 

regulatory proteins [Tn/TM], for its regulation. Striated muscle myosin shows its motor 

activity without light chain phosphorylation and the Tn/TM system inhibits myosin motor 

activity when Ca +2 is dissociated from TnC molecule. However, the motor activity of 

vertebrate smooth muscle and non-muscle myosin is regulated by phosphorylation of its 

regulatory subunit and generally has lower ATPase activity and actin translocating activity 

(258). The phosphorylation takes place at Ser19 of the 20kDa light chain subunit and it is a 

prerequisite for smooth/non-muscle myosin motor activity. Furthermore, smooth muscle/non­

muscle myosins are characterized by their change in the conformation, known as 1 OS-6S 

conformational transition (259). The lOS myosin has a folded conformation that is not found 

in striated muscle myosin, and the formation of this conformation is characterized by the 

inhibition of Mg +2 or Ca +2 A TPase activity and thick filament formation. Of interest is that 

phosphorylation destabilizes the formation of 1 OS conformation (260). 
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1.2 Muscle Contraction 

The contraction of striated muscle is under neural control. Action potentials traveling along a 

nerve trigger the release of acetylcholine into the neuro-muscular junction. The 

neurotransmitter then binds to its receptor causing the wave of depolarization to spread over 

the muscle plasma membrane [the sarcolemma]. This electrical stimulation is transmitted to 

the sarcoplasmic reticulum, a calcium storage compartment which surrounds the myofibrils, 

by invaginations in the sarcolemma known as transverse tubules [T-tubules]. Upon 

excitation, calcium is released from the sarcoplasmic reticulum into the cytoplasm where it 

interacts with the Tn complex (261). The muscle then contracts and generates force. 

It is well established that muscle shortening [and relaxation] involves the relative sliding of 

the thick and thin filaments into [or out o:fJ each other, changing the degree to which they are 

interdigitated (262) Another widely accepted theory, the swinging cross bridge hypothesis, 

provides a basis for understanding how sliding occurs. Under activating conditions, a myosin 

head makes contact with the thin filament and then undergoes an ATP-driven swinging 

motion that rows the actin filament along (263). One of the difficulties with the swinging 

cross-bridge hypothesis was a lack of evidence for movement of the head. This problem was 

eventually overcome by determining the structure of the head with different nucleotides in 

the active site (264-268). Owing to the wealth of structural information, it is now believed 

that the entire head does not roll on the surface of actin during the power stroke but that the 

bulk of the movement occurs in the lever arm (269) [Fig.l.2]. 

26 



I (rigor) 

QJ 
.:ot::: 
I;) 
;.... 

ADP+Pi .... 
"' ' ;.... 
~ 

~ 
Q 

c.. 

Fig.1.2 The Lymn-Taylor cycle (269). 
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The myosin cross-'bridge is bound to actin in the rigor, 45° "down" position [state 1]. ATP 

binds, which leads to very fast dissociation from actin [state 2]. The hydrolysis of ATP to 

ADP and Pi leads to a return of the myosin cross-bridge to the 90o"up" position, whereupon it 

rebinds to actin [state 4]. This leads to release of the products and return to state 1 in the last 

transition actin is "rowed" past myosin. 
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The question of how the interaction between myosin and actin is regulated is more 

controversial. In the original Steric Blocking model (263), TM-Tn physically blocked the 

binding of myosin to actin at low Ca +2 concentrations. Calcium binding to Tn then induced a 

series of conformational changes within the thin filament that repositioned the TM molecule. 

This shift in TM led to the exposure of myosin-binding sites on the actin surface, strong 

stereospecific actomyosin binding and ultimately the generation of force. However, it was 

subsequently shown that Ca +2 has only a small effect on the binding of myosin to the thin 

filament, which is inconsistent with the model, at least in its original form (270). Another 

complicating factor is that Ca+2 is not the only ligand that can activate the actomyosin 

ATPase activity by binding to the thin filament. Rigor myosin, either nucleotide-free myosin 

or myosin-ADP, can also activate the actomyosinATPase activity (271 and 272). 

Throughout the 1980s, increasing attention was given to the allosteric nature/properties of the 

thin filament. The Hill model (273) envisaged the thin filament to adopt two configurations: 

inactive and active, with the equilibrium between them poised in accordance with the 

concentration of ligand [either calcium or rigor myosin]. In this scheme, myosin is able to 

bind to each thin filament conformer but only the 'active' form is capable of a productive 

interaction, that is, an interaction which results in myosin activation. There is also a 

difference in the affinity of binding. The active conformer binds strongly to myosin-ATP [or 

myosin-ADP-Pi], whereas the inactive conformer is referred to as the weakly binding state. 

The three-state model (274) proposes that the thin filament can adopt an additional 

conformation, referred to as 'blocked'. This state, which arises when no ligands are associated 
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with the thin filament, does not bind myosin. Although the other two states [referred to as 

'closed' and 'open'] are assumed to have a similar affinity for myosin, only the 'open' state is 

proposed to be capable of producing force (275). The McKillop-Geeves model, which is 

supported by both X-ray diffraction and helical three-dimensional reconstruction of electron 

microscopic images (276-279), also segregates the effects of ligand binding. Calcium binding 

is postulated to stabilise the 'closed' conformer, whereas rigor myosin is required for 

production of the 'open' conformer. In effect, the three state model combines the allosteric 

effects of ligand binding with a modified steric blocking scheme. In the 'blocked' state [no 

ligands bound], TM is assumed to lie on the outside of the actin filament on sub-domains 1 

and 2. Upon calcium binding, TM moves azimuthally by 25" towards sub-domains 3 and 4 

thus attaining the 'closed' state. Here TM is positioned such that it only partially occludes the 

myosin-binding site on actin thus allowing an interaction to take place. Attachment of rigor 

myosin produces an additional shift in TM uncovering the entire myosin binding surface on 

actin. A more recent investigation into the problem has involved the use of double-mixing 

stopped-flow analysis to measure the effect of thin filament ligand binding on the rate of 

dissociation of the products of A TP hydrolysis from myosin (280 and 281 ). As predicted by 

other researchers (282), the main mode of regulation is the variation in the rate of product 

dissociation. Thin filaments saturated with Ca +Z and rigor myosin accelerate the rate of this 

step by -200-fold relative to thin filaments devoid of bound ligand. At the same time, there 

was little change in the affinity of myosin-ADP-Pi for actin. Interestingly, both ligands are 

required to achieve the maximum rate of product release. Rigor myosin binding alone was 

insufficient, which is inconsistent with the model of McKillop and Geeves. A key difference 

between the experiments of Heeley et al., (280) and those, on which the two-, and three-, 
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state models are based, is that the stopped-flow measurements were carried out with myosin­

ATP/ ADP-Pi. In the other cases (272 and 273), the active site was either empty or contained 

non-hydrolysable nucleotide. Because myosin, which does not contain true substrate, cannot 

produce a power stroke, the authors (279 and 280) argue that it may not give an accurate 

description of regulation. 
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1.3 Purpose of study 

An important source of diversity in striated muscle is the synthesis of chemically related, 

non-identical, forms of the thin filament proteins; actin, TM and TnC, Tnl and TnT. 

However, the structural and functional significance of this heterogeneity is unclear. 

This problem is investigated by using salmonid fish as a model system. The salmonids have a 

simple musculature, such that the fast and slow swimming muscles of the trunk are 

anatomically segregated. Further, these muscles, together with cardiac muscle, synthesize 

unique isoforms of TM and actin. 

A major concern of the project is the characterization of the properties of these cell-type 

specific proteins. In addition, the identification of a slow muscle actin isoform prompted the 

study of the distribution of slow actin in the animal kingdom and its evolutionary relationship 

with other actin isoforms. 
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Chapter 02 

Materials and Methods 

2.1 Extraction of muscle proteins 

For protein extractions, fresh muscle was used except in the case of myosin, salmonid cardiac 

TM and Tn preparations where frozen muscle was used occasionally. All the steps in the 

procedures were carried out at or below 4 OC unless otherwise noted. To prevent proteolytic 

breakdown -2mM phenymethylsulphonylfluoride [PMSF] was added to the first extraction 

step [except in the case of myosin and myosin-S 1 preparations]. Centrifugation was 

performed at the following speeds using the indicated instrument and rotor: 2000-4200rpm 

[Beckman J6HC, JS-4.2], 8000-lO,OOOrpm [Sorval Superspeed RC2-B, GS-3] and 40,000-

SO,OOOrpm [Beckman Coulter Optima™ L-90K, 70Ti]. Volumes less than 1ml were 

centrifuged at 160,000 x gin an Eppendorf-5415C microfuge. 

2.1.1 Preparation of actin acetone powder 

The following protocol was used to prepare actin acetone powder of salmon fast and salmon 

slow from Atlantic salmon [Salmo salar], and salmon cardiac from Rainbow trout [Salmo 

gairdneri]. Salmon were purchased from a local commercial outlet while trout hearts [frozen] 

were provided by a local hatchery. Light [fast] muscle and dark [slow] muscle were dissected 

from longitudinally sectioned salmon, taking care to minimise cross contamination. 

According to the method of Bollag and Edelstein (283) ground muscle [ -500g] was stirred in 
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12-volumes [1kg = 1 volume] of distilled water [dH20] for about 30min. After allowing the 

solution to settle out for an additional 30min, the filtrate of the decanted solution was spun at 

4200rpm for 5min. The residue was then resuspended in 3 volumes of 0.4%[w/v] NaHC03, 

pH 8.0, followed by stirring for about 15min, and centrifuged at 4200rpm for 10min. This 

step was then repeated in the presence of 0.05M Na2C03 and 0.05M NaHC03 [pH 8.0] 

instead. After stirring for 2min in 0.2mM CaCh, the residue was centrifuged at 4200rpm for 

lOmin, then stirred in 3 volumes of cold [4'C] 95%[v/v] ethanol for 2min. After filtering the 

solution, the residue was resuspended in acetone [-20.C] and stirred for 2min again. The 

resultant solution was filtered through cheesecloth and this step was repeated twice. Finally, 

the residue was dried in a fume hood overnight. Typically 1kg of muscle [either fast or slow] 

will yield 90g of acetone powder. 

2.1.2 Preparation of Tropomyosin/troponin acetone powder 

The method of Cartson and Mommearts (284) was followed. First, minced rabbit back and 

leg muscles [~500g] were stirred in 3 volumes of ice-cold Guba-Straub buffer [0.3M KCl, 

O.lM KH2P04, 0.05M K2HP04] for 15min. After pelleting muscle by centrifugation at 

2000rpm for 1 Omin, this step was repeated. Then the residue was blended in one volume of 

0.4% [w/v] NaHC03 followed by rinsing the blender with 3 more volumes of 0.4% [w/v] 

NaHC03. The solution was then spun at 2000rpm for 15min. After resuspending the pellet in 

one volume of 0.05M Na2C03 and 0.05M NaHC03, 8L of 0.5mM CaCh was added. After 

stirring for 1 Omin, the muscle solution was strained through cheesecloth. The pellet was then 
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stirred in 1.5-2L of cold acetone [ -2o·q for Smin and drained through cheesecloth. This step 

was repeated twice and the resulting residue was dried in a fume hood overnight. 

Note: pH ofbuffers was not adjusted. 

2.1.3 Preparation of actin 

Actin was prepared by polymerization and depolymerization according to the method of 

Spudich and Watt (285) with some modifications. Acetone powder [lOg] prepared in section 

1.1 was gently stirred in lOOml of actin extraction buffer [2mM Tris-HCl, 0.2mM CaClz, 

0.2mM ATP and O.lmM DTT, pH 8.0] with the addition of solid DTT to a final 

concentration of 0.5mM for 30min. The resulting supernatant, after centrifugation at 

4200rpm for 15min was then filtered through 8.0J.Lm, 0.45J.Lm and 0.22J.Lm Millipore filters 

sequentially. Polymerization was initiated by the addition of KCl and MgClz [O.OSM and 

0.002M respectively] to the filtrate. After one hour of stirring, solid KCl was added to a final 

concentration of 0.8M and stirring was continued for further 90min. The above two steps 

were carried out at room temperature. Afterwards, polymerized actin was sedimented by 

spinning at 45,000rpm for 90min, the polymerized actin pellet was dissolved in 3-6ml of cold 

actin extraction buffer and dialyzed against 4L of the same buffer for 2-3 days at 4 ·c with 

one change of buffer per day. Finally, depolymerized actin was clarified by centrifuging 

again at 45,000rpm for 90min. The resulting G-actin was inCa form [Ca-G-actin]. 
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2.1.4 Preparation of tropomyosin 

Acetone powder [ 1 OOg] as prepared in section 2.1.2 was continuously stirred in 700ml of 

buffer A [Buffer A: 1M KCl, 25mM Tris-HCl, 0.25mM DTT and 0.5mM EDTA, pH 8.0] for 

2hrs. The supernatant of the sedimented solution [8000rpm, for 20min] was retained and the 

previous step was repeated, stirring for 60min. Taking the extinction coefficient as 1.00 for a 

1mg/ml solution as suggested in Smillie (286), the concentration of the combined 

supernatants was adjusted to 1-2mg/ml using buffer A. Tropomyosin was isoelectrically 

precipitated by lowering the pH to 4.6 with 1M HCl, stirring for about 30min and then 

sedimenting at 8000rpm for 30min. The pellet was redissolved in 5X buffer B [Buffer B: 

0.2M KCl, 20mM Tris-HCl, 0.25mM DTT and 0.5mM EDTA, pH 7.9] with a few drops of 

1M Tris-HCl; pH 8.0 to maintain the pH at 7.9, clarified by centrifuging at 8000rpm for 

20min., salted out between 40% and 70% (NH4)2S04 and centrifuged at 8000rpm for 45min. 

The precipitated protein was dissolved in dH20 and, following dialysis against 4-5 changes 

of 1 OL of dH20 in the presence of ~5mM (NH4) HC03 and ~2mM mercaptoethanol, was 

lyophilized. The impure TM was loaded onto a Q-Sepharose Fast Flow [Pharmacia] column 

for further purification [section 2.4.1]. 

2.1.5 Preparation of troponin 

Following the method of Potter (287), acetone powder [40g] prepared as described in section 

2.1.2, was stirred continuously in 300ml of buffer C [Buffer C: 1M KCl, 25mM Tris-HCl, 

O.lmM CaCh and O.lmM DTT, pH 8.0] over a period of 3hr, centrifuged at 4200rpm for 

10min and the supernatant was reserved. The residue was re-extracted with 150ml of 1M 
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KCl and stirred for 60min, before recentrifugation. Tropomyosin was removed by lowering 

the pH to 4.6 using 1M HCl, stirring for 30min and centrifuging at 4200rpm for 30min. 

Following the adjustment of the supernatant pH to 8.0 using 1M KOH, protein was salted out 

with 40%[w/v] (NH4)zS04 while maintaining the pH of the solution between 7 and 8. The 

retained supernatant of the centrifuged solution [4200rpm for 10min] was again salted out by 

raising the (NH4)zS04 concentration to 50%[w/v] and then to 60%[w/v]. Finally, both 50% 

and 60% precipitates were dissolved in imidazole buffer [10mM Imidazole, 50mM KCl, 

O.lmM CaCh and 0.02%NaN3, pH 7.0] and dialyzed extensively [2-3 days with several 

changes of dH20] in the presence of ~5mM (NH4)HC03 and ~2mM mercaptoethanol. 

Protein, which precipitated during dialysis, was removed by centrifugation at 8000rpm for 

30min. The combined pellets [both 50% and 60%] and individual supernatants of Tn were 

then lyophilized. Calcium sensitivity ofTn was determined as explained under section 2.6.4 

2.1.6 Preparation of myosin 

Myosin was extracted from New Zealand rabbit leg and back muscles according to Perry 

(288). Rabbit muscle [ ~500g] was minced by running through a cold meat grinder and stirred 

in 3 volumes [3 volumes of buffer per gram of tissue] of ice-cold Guba-Straub buffer [0.3M 

KCl, O.lM KH2P04, 0.05M K2HP04] for 15min. The supernatant of the sedimented solution 

[2000rpm for lmin] was filtered and placed in a 12L container. Care was taken to maintain 

the temperature at 4°C. Then, lOL of cold dH20 was slowly added, while stirring gently, to 

lower the ionic strength and induce myosin precipitation. The solution was then set aside to 

permit myosin to settle out. After siphoning away as much dH20 as possible, the remaining 
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solution was centrifuged at 2000rpm for 20min. The myosin-containing pellet was dispersed 

in buffer [5mM MOPS, 2mM MgCh, 0.2mM DTT and 1M KCl, pH 7.0], and adjusted to 15-

20 mg/ml with 1M KCl [to the final concentration of 0.5M KCl], as determined from its 

absorbance at 280nm [see section 2.5.4.1]. After overnight dialysis against 8L of sodium 

phosphate buffer [0.12M NaCl, 20mM Na2HP04, 4mM EDTA and lmM DTT, pH 7.0], the 

myosin solution was used to prepare myosin-S 1 as outlined in the next section. 

2.1.6.1 Preparation of myosin-Sl 

Myosin was cleaved proteolytically using chymotrypsin [Sigma, dissolved in lmM HCl] as 

described by Heeley et al., (242). An initial test digestion was performed on a 

spectrophotometrically determined amount of myosin. The conditions were: enzyme: 

substrate ratio, 1:200 [w/w]; sodium phosphate buffer [0.12M NaCl, 20mM NazHP04, 4mM 

EDTA and lmM DTT, pH 7.0] at 4°C. The reaction was terminated by addition of a 2-fold 

mass excess of lima bean trypsin inhibitor [Sigma, dissolved in dH20] to the enzyme miture. 

The liberation of myosin-S 1 was assessed by the measurement of the steady state A TPase 

rate [see section 2.6.4] in the supernatant after centrifuging at 40,000rpm for 30min. After 

~6min, ~50% of total myosin was judged to have been proteolyzed. The procedure was then 

scaled up. Any intact myosin remaining after the digestion was removed by overnight 

dialysis against 8L of20mM Tris-HCl, pH 8.0 at 4oC followed by centrifugation [40,000rpm 

for lhr]. Impurities were removed [lO,OOOrpm for 30min] from the myosin-Sl containing 

supernatant by adding solid (NH4)2S04 to a saturation of ~24%[ w/v]. Myosin-S 1 was then 

collected [lO,OOOrpm for 30min] by precipitation at ~36%[w/v] (NH4)zS04. The pellet was 
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resuspended in 5mM MOPS, 2mM MgCh and 0.2mM DTT, pH 7.0 and dialyzed extensively 

against the same buffer to remove salt. After the final centrifugation [40,000rpm for lhr] 

myosin-S I was either lyophilized in the presence of 10%[w/w] sucrose or further purified on 

a Q-Sepharose fast-flow column [section 2.4.1]. 

Note: The activity of myosin was checked at each step as explained in section 2.6.4 

2.2 Electrophoretic methods 

Electrophoresis in polyacrylamide slabs was performed using a Bio-Rad mini-Protean II 

apparatus [Bio-Rad, Richmond, CA]. Gels were 7cm long, lOcm wide and either l.Omm or 

0. 75mm thick. Polymerization was initiated by the addition of N, N, N', N'­

tetramethylethylenediamine [TEMED] and 10%[w/v] ammonium persulfate. Acrylamide, 

30%[w/v] and bis-acrylamide, 0.8%[w/v] were used to prepare gels. 

2.2.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis [SDS-PAGE] 

The SDS gels consisted of 12%[w/v], 15%[w/v] or 20%[w/v] polyacrylamide (289). All 

protein samples were dissolved in sample buffer [13% [v/v] glycerol, 1.3%[w/v] SDS, 

0.02%[w/v] NaN3, and 0.79%[w/v] Tris-HCl; pH 6.8] to a final dilution of~ lJlg/Jll. Gels 

were stained in 0.25%[w/v] Coomassie Brilliant Blue R-250 [Bio-Rad], 50%[v/v] methanol 

and 10%[v/v] acetic acid and destained in 15%[v/v] acetic acid and 20%[v/v] methanol. 
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2.2.2 Alkaline Urea polyacrylamide gel electrophoresis [Alkaline Urea-PAGE] 

Alkaline urea-polyacrylamide gels comprised of 10%[w/v] polyacrylamide: 33%[v/v] 

acrylamide solution {Stock solution: 30%[w/v) acrylamide: 0.8%[w/v] bis-acrylamide}, 

8%[v/v] 12X glycine buffer [1.49M glycine and 0.24M Tris-HCl] and SM urea (290). All 

protein samples were dissolved in a freshly-made solution of saturated urea, containing DTT 

and Bromophenol blue to a final dilution of approximately 1 ~g/~1. The gel was prerun for 

15min and samples were loaded into the flushed wells. Electrophoresis was carried out at 

220volts for the indicated predetermined times [actin, 700volt hr and TM, 450 volt hr]. The 

gel was stained and destained as described in section 2.2.1. 

2.2.3 Safer gel electrophoresis 

2.2.3.1 Native Safer gel electrophoresis 

The method described in Bollag and Edelstein (291) was followed. The separating phase 

consisted of 7.5%[v/v] acrylamide, 0.2%[v/v] bis-acrylamide, 10%[v/v] lOX Safer buffer 

[250mM Tris-HCl, 1.94M glycine and 5mM CaCh], 0.2mM ATP and 0.1%[v/v] Triton. 

Samples were dissolved in sample buffer [2.0mM Tris-HCl, 0.05mM CaCh, O.lmM ATP, 

0.05mM DTT, pH 8.0] in 50% glycerol to a final concentration of 0.5-1J..lgiJ..ll. 

Electrophoresis was carried out at 140volts for 60min. 
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2.2.3.2 Urea Safer gel electrophoresis 

The protocol was as described in 2.2.3.1 except that gels contained a uniform concentration 

of urea varying from 2M to 8M. Gels were prerun at 140volts for 60min. 

2.2.4 Two dimensional gel electrophoresis 

Glass tubes [internal diameter ~ 1mm] were filled with a solution containing 5.5g urea, 4.0ml 

degassed dH20, 1.35ml acrylamide [30% [w/v] acrylamide and 1.8%[w/v] bisacrylamide], 

0.5ml ampholines [from LKB], pH 4-6, 0.22ml NP40. Isoelectric focusing was performed in 

a Bio-Rad [model 175] unit [lower chamber: 0.1 %[v/v) H3P04, O.lmM thioglycolate and 

upper chamber: 0.08%[v/v] 5M NaOH]. Gels were prerun at 850volts for 15min. Protein 

dissolved in a saturated urea solution was electrophoresed for 2500volt hrs. Finally gels were 

extruded from the tubes by hydrostatic pressure and placed onto a 15% [w/v] SDS­

polyacrylamide gel and run as in section 2.2.1 

2.3 Blotting techniques 

2.3.1 Western blotting 

Western transfer was carried out after either SDS-PAGE or alkaline urea PAGE to 

polyvinylidene difluoride [PVDF] membrane. The gel and membrane were soaked in 

transfer buffer [10mM CAPS, pH 11.0 in 10%[v/v] methanol] for 30min, assembled into a 

sandwich and electrophoresed for 2.5hr at 60volts at room temperature in transfer buffer. To 

confirm complete transfer of protein, the gel was stained with Coomassie Brilliant Blue R250 
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as outlined in section 2.2.1. The membrane was briefly stained usmg 0.025%[ w/v] 

Coomassie Brilliant Blue R250 in 40%[ v/v] methanol and destained in 50% [ v/v] methanol. 

Finally, the membrane was air-dried. 

2.3.2 Immunoblotting 

Electrotransfer was performed from an alkaline urea gel [section 3.1] to PVDF. The blotted 

membrane was incubated in blocking reagent [3%[w/v] casein], washed twice with TTBS 

[20mM Tris-HCl, 0.5M NaCl, 0.05%[v/v] Tween 20, pH 7.5] for 5min and then probed with 

primary antibody of rabbit anti-actin [Sigma], [1 :2000[v/v] in TTBS]. Actin was then 

detected using anti-rabbit IgG [whole molecule ]-alkaline phosphatase antibody [ 1 :6000[ v/v ]] 

with 5-bromo-4-chloro-3-indolyl-phosphate [BCIP [Promega], 0.15mg/ml] and 4-nitroblue 

tetrazolium chloride [NBT, 0.3mg/ml] [Promega] in 0.1M NaHC03, l.OmM MgCh, pH 9.8 

as the colour reagent (292). 

2.4 Chromatographic techniques 

2.4.1 Ion exchange chromatography 

Ion exchange chromatography was carried out to purify TM isoforms and myosin-S 1. Impure 

myosin-S 1 [170ml] was loaded onto a Q-Sepharose Fast Flow [Pharmacia] column [2.5cm x 

14.5cm; volume 80ml], which had been equilibrated against two column volumes of start 

buffer [lOOmM Tris-HCl, 2mM EDTA, pH 7.9 at 4°C]. The partially purified myosin was 

eluted using a linear salt gradient from 0.0- 0.5M NaCl [volume, 800ml]. Protein-containing 
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fractions were analyzed by absorbance at 280nm, and SDS-P AGE. After dialyzing against 

2mM Tris-HCl, pH 8.0, myosin-S I was lyophilized in the presence of 10% [w/w] sucrose. In 

the case of TM, freeze-dried protein [300mg] was first dissolved in start buffer [20ml], 

centrifuged to clarify and then loaded onto the column. 

2.4.2 Hydroxylapatite chromatography 

The pooled fractions of TM from the ton exchange column were loaded onto a 

hydroxylapatite column [Bio-Rad] for further purification. The pooled fractions were directly 

loaded onto the column [2.5cm x 14.5cm; volume, 80ml] that had been previously 

equilibrated against two column volumes of column buffer [1M NaCI, 0.01% [w/v] NaN3, 

lOmM NaH2P04, pH 7.0]. Protein was eluted at room temperature using a 70-250mM 

NaH2P04, pH 7.0, linear gradient [total volume, 800ml]. Protein-containing fractions which 

were detected by absorbance at 280nm and SDS-PAGE, were dialyzed against dH20 in the 

presence of -5mM (NH4)HC03 and -2mM mercaptoethanol and then freeze-dried. 

2.4.3 Affinity chromatography 

To study the interaction of various TM isoforms with Tn, predialyzed samples of TM [10-

15nmol] were applied to a cyanogen bromide activated Sepharose 4B column [column 

dimensions, 0.9 x 8 em] which had been equilibrated against lOmM MOPS, 50mM NaCl, 

l.OmM EGTA, l.OmM DTT, O.Ol%[w/v] NaN3, pH 7.0, at 4°C according to Spudich and 

Watt (293). Protein was eluted by application of a linear gradient [0.05 - 0.5M NaCl, total 

42 



volume, lOOml] using a flow rate of 5ml/hr. Fractions [1.75ml] were analyzed by absorbance 

at 230nm, by the method of Bradford [section 5.4.2] and by SDS-PAGE and alkaline urea 

PAGE as well. 

2.5 Spectroscopic techniques 

2.5.1 Mass spectroscopy 

The molecular weights of proteins were determined using an Applied Biosystems, Matrix­

Assisted Laser Desorption/Ionisation-Time Of Flight Mass Spectrometer (MALDI-TOF MS). 

Freeze-dried actin samples, which were dissolved in 0.2%[ v/v] trifluoro acetic acid and 

50%[v/v] acetonitrile, were embedded in a low molecular weight UV absorbing matrix of 

Sinapinic acid. The matrix material was present in vast excess [lOmg/ml] of sample in order 

to isolate individual sample molecules. Desorption and ionization was induced by 3 

nanosecond pulses of a nitrogen laser that was operated at 337nm. To obtain TOF spectra, 

Delayed Extraction mode [Voyager-DE PRO model] was used. The time at which the 

extraction pulse was applied was 750 nanoseconds. The flight tube is a field free region in 

which ions drift at a velocity inversely proportional to the square root of their masses. A 

linear detector was used to detect ions that travel down the flight tube and to measure the 

abundance of ions over time. Data Explorer™ software was used for data acquisition and 

processing. The acquisition mass range was 10,000-70,000Da. To obtain a spectrum, 100 

laser pulses per spectrum were applied to the sample at a rate of 3.0Hz. Using Data 

Explorer™, software spectra and chromatogram [multispectra] data were manually calibrated 

[Calibration mixture: Insulin [bovine]- molecular mass 5734.59Da for the+ 1 ion and 2867.80 
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for the +2 ion, Thioredoxin [E. Coli], 11674.48Da for the + 1 ion and 5837.74Da for the +2 

ion and Apomyoglobin [horse], 16,952.56Da for the +1 ion and 8476.78Da for the +2 ion]. 

The Voyage-De-500mHz digitizer converted these analog data to digital data that allowed 

the signal from the mass spectrometer to be transferred to the computer and to present the 

data for each individual protein sample in a single peak on a true molecular mass scale. 

2.5.2 Circular Dichroism spectros,:opy [CD spectroscopy] 

2.5.2.1 Far, and Near, -UV CD spectroscopy 

Electronic circular dichroism spectra were recorded m the near-ultraviolet region [250-

340nm] and far-ultraviolet region [190-300nm] using a Jasco-810 spectropolarimeter. For 

far-UV CD measurements, a protein concentration of ~1.5mg/ml was most commonly used. 

In the case of experiments conducted in the near-UV, a protein concentration of ~3.0mg/ml 

was most commonly used and the sensitivity of the instrument was adjusted to normal or low 

accordingly. Actin samples were dialyzed overnight against either actin extraction buffer 

[see section 2.1.3] or HEPES buffer [5mM Hepes, 0.2mM CaC}z, 0.2mM ATP, 

0.01 %[w/v] NaN3 and 2mM DTT, pH 8.0] at 4°C. The absorbance of the protein/reagents 

mixture at 222 nm was checked to ensure that it did not exceed 1.0. The temperature [5-

650C] was controlled by a CTC-345 circulating water bath. Water-jacketed cells varying in 

light path 0.2mm [far-UV experiments] and 5mm [near-UV experiments] were used. The 

heating rate was varied from 1YC/hr to 60°C/hr to confirm that the protein was at 

equilibrium. The scanning speed of the instrument was set at 1 OOnm/min with normal 

sensitivity. The temperature-dependence of the signal at 222nm [far-UV] and 292nm [near-
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UV] was observed by continuous monitoring at these wavelengths between 5-65°C. The 

melting temperature [Tm] was then obtained by converting the progress curve { [8] 222 or [8] 292 

vs. T} to the first differential form d[8] 222 or d[8] 292 /dT vs. T, where, T, absolute temperature; 

d[8] 222/292, changing ellipticity at 222/292nm. 

2.5.2.2 Far-UV CD spectroscopy [Chemical unfolding] 

Electronic circular dichroism spectra in the far-UV spectra of Ca-G-actin [1.5mg/ml] were 

recorded as a function of GdnHCl concentration from 0.2M to 4.0M in 0.2M intervals. The 

stock concentration of chemical denaturant was 6M and was prepared fresh each time. 

Experiments were carried out at 25°C. Ellipticity of the spectra at 222nm was recorded as in 

section 2.5.2.1. 

2.5.2.3 Far-UV CD spectroscopy [Rate of unfolding] 

As discussed in section 2.5.2.2, electronic circular dichroism spectra of Ca-G-actin were 

recorded by varying the concentration of of Ca-G-actin [1-4mg/ml] as function of time. 

Samples were incubated on ice in a O.lmm light path cell prior to being subjected to a 

temperature of 65°C. Ellipticity at 222nm was then recorded as a function of time. The 

rate of unfolding of Ca-G-actin was then determined. 
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2.5.3 Fluorescence spectroscopy 

2.5.3.1 Displacement of ATP from etheno ATP [e-ATP] in G- actin 

The Ca-G-actin [~2.0mg/ml] was first converted into "Mg" form [Mg-G-actin] as described 

in section 2.6.7. According to the method ofKinosian et al., (125), following the removal of 

excess ATP by swirling with Dowex A 1-Sx 20%[v/v] for about 30min on ice, Mg-G-actin 

was filtered through a 0.2J..Lm Millipore filter and incubated with 1-N6-ethenoadenosine 5' 

triphosphate [e-ATP] at 4°C for 2hr adjusting the final concentrations of Mg-G-actin and e­

ATP to 10J..LM and 140J..LM respectively using 2mM Tris-HCl, pH 8.0. The decrease in 

fluorescence emission was monitored as a function of time upon addition of ATP [0.28-

1.12mM] using a Shimadzu RF-540 spectrofluorophotometer. Excitation and emission were 

set at 340nm and 410nm respectively and the temperature was at 25°C. Sensitivity was set to 

1 [high mode] and the scan speed was set to 2 [fast mode]. 

2.5.3.2 Extrinsic fluorescence spectroscopy 

Following the same procedure described in section 2.5.3.1, N-methylantraniloyl-ATP [mant­

ATP; a gift from Dr. H. White, Eastern Virginia Medical School] Mg-G-actin was prepared 

using mant-ATP instead of e-ATP to the final concentrations of 15J..LM Mg-G-actin and 1J..LM 

mant-ATP. Visible spectra were recorded on all samples before and after excited state 

measurements to ensure that the samples did not photodegrade. Mant-ATP was excited at 

340nm and emission was measured at 440nm. A wavelength scan from 350nm to 600nm was 

carried out using a Photon Technology International (PTI) model QM-2001-6 QuantaMaster 

emission spectrometer equipped with a Hamamatsu R-928 photomultiplier tube housed in a 
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Products for Research Inc. PC 177CE refrigerated chamber. All emission spectra were 

collected with a lmm slit width, 90° to excitation source and are uncorrected for instrument 

response. Excitation spectra were obtained in an analogous geometry and then corrected in 

real time using a procedure provided by PTI. 

2.5.3.3 Intrinsic fluorescence spectroscopy 

Ca-G-actin [0.9mg/ml] in buffer minus ATP was prepared as described in section 2.5.3.1 and 

tryptophan excitation spectra of these samples were recorded as indicated in Potter (294) 

using the same apparatus as in 2.5.3.2. Settings were the same as above. Tryptophan was 

excited at 275nm and emission was recorded at 330nm. 

2.5.4 UV Nisible spectroscopy 

2.5.4.1 Determination of protein concentration- [1] Near-UV absorbance 

A Beckman DU-64 Spectrophotometer was used to measure absorbance. Protein was 

dialysed overnight against a given buffer at 4°C and then, if necessary, samples were clarified 

by centrifugation in an Eppendorf 5415 C Microfuge [2min at 14,000rpm, at room 

temperature]. The instrument was calibrated against dH20 and the absorbances of both the 

dialysis buffer and the protein [diluted with the buffer] were read at the relevant wavelengths. 

When sample quantity was not limiting, measurements were in the 0.1-1.0 range. Light 

scattering at 320nm was subtracted from the reading at relevant wavelength. 
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Extinction coefficients and molecular masses for the indicated proteins are: 

Tropomyosin [66, OOODa], A28o nm of a 1mg/ml solution= 0.33 (295) 

Troponin [70,000Da], A28o nm of a lmg/ml solution= 0.47 (242) 

Myosin-Sl [115,000Da], A28onm of a lmg/ml solution= 0.71 (296) 

Myosin, A280 nm of a 1mg/ml solution= 0.53 (297) 

Ca/Mg-G-Actin [42,000Da], A 290nm of a lmg/ml solution= 0.69 (298) 

2.5.4.2 Determination of protein concentration - [2] Bradford assay 

The Bradford assay (299) was employed to determine the affinity chromatography elution 

profile as described in section 4.3. Column fractions [100j..tl] and dH20 [700j..tl] were mixed 

carefully with 200j..tl of Bradford reagent [Bio-Rad] by gentle inversion. Absorbance at 

595nm was recorded using Beckman DU-64 Spectrophotometer. Column buffer [100j..tl] in 

dH20 [900j..tl] was used to calibrate the spectrophotometer. 

2.6 Biochemical methods 

2.6.1 Amino acid analysis 

Amino acid analysis was used to verify eDNA sequence data obtained for dogfish shark actin 

and to determine whether any posttranslational modifications were present in dogfish shark 

actin. Hydrolysates [24, 48 and 72hr] of dogfish shark Ca-G actin [80nmol] were analyzed as 

described in Heeley and Hong (300) on a Beckman model 121 MB amino acid analyzer 
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using Benson D-X8.25 cation exchange resin, bed size 200 x 2.8mm. A single column, three 

buffer sodium citrate elution method was used. The flow rate was 8ml/h with buffers and 

column temperature as per Beckman 118/119 CI AM 001 application notes. All analyzes 

were done in triplicate. Values for Ser and Thr were extrapolated back to zero time. Val and 

Ile were taken from the 72hr sampk Tyrosine was taken from 24hr sample. Tryptophan was 

measured by hydrolysis in mercaptoethane sulphonic acid (301). Methionine was determined 

as methionine sulphone and half-cystine as cysteic acid after oxidation in performic acid 

prior to acid hydrolysis (302). The cysteine was also determined by conversion to 

carboxymethyl-cysteine in the presence of 6M GdnHCl (303). The compositions were then 

calculated relative to the number of Ala residues, which produced a total nearest to 375 

residues. 

2.6.2 Determination of free sulthydryls in G-actin- Ellman's assay 

Protein was pretreated with 2mM DTT for 2hr at 4 OC and dialyzed overnight against Buffer 

D [20mM Tris-HCl, 0.2mM CaCh and 0.2mM ATP, pH 7.5] at 4oC as described in (304). 

The reaction was initiated by adding 0.4mM of 5,5' dithiobis - 2-nitrobenzoic acid [DTNB], 

which was dissolved in 100mM Tris-HCl, pH 8.0, to Ca-G-actin [lmg/ml]. Colour 

development, as a function of time was measured at 412nm. To avoid air oxidation of the 

product, the cuvette was filled to capacity and covered with the lid. Taking the extinction 

coefficient ofthe product formed at 0.337 [A412 nm of a 1mg/ml solution], the total number of 

reactive sulphydryls was determined at various temperatures. 
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2.6.3 NH20H cleavage 

First, the C-terminal Cys374 of Ca-G-actin [2.0mg/ml] was blocked by reacting overnight 

with iodoacetic acid [final concentration, lOmM] at 25"C in the dark. The pH of the solution 

was adjusted to 8.0 by adding 1M Tris-HCl, pH 8.0. Incubating for 30min at room 

temperature with 80mM DTT to stop the reaction, the solution was dialyzed overnight 

against actin extraction buffer at 4 oc, followed by radio labelling with 14C-iodoacetamide 

[2.5~Ci/ml] overnight at the respective transition temperatures [i.e. salmon fast actin at 55oC 

and salmon slow actin at 45°C]. After dialyzing against actin extraction buffer at 4°C for 

24hrs, the labelled Ca-G-actin [final concentration, l.Omg/ml] was then reacted with 0.2M 

hydroxylamine [NH20H] in the presence of 4M urea for about 2hr according to Bomstein 

(305), run on 15%[w/v] SDS-polyacrylamide gel and subjected to autoradiography. Prior to 

the exposure of the gel, it was dried using a Bio-Rad gel dryer model 583. The same 

procedure was followed without radiolabelling, when Ca-G-actin was reacted with 

iodoacetamide [lOX excess], transferred on to a PVDF membrane [section 3.1] and sent to 

Research Accounting facility at Hospital for Sick Children in Ontario for amino terminal 

sequencing of the desired fragment. 

2.6.4 ATPase activity measurements 

Tropomyosins and myosin-S 1 were dissolved and dialyzed against 30mM NaCl, 6mM MgCh 

and 5mM MOPS, pH 7.0 [Higher ionic strength buffer E]. Following a centrifugation step to 

remove any insoluble material, TM samples were stored frozen at -20°C. Myosin-S 1 was 

stored at 4°C. The EDTA activated ATPase activity [10s"1
] did not decrease substantially 
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over a two week period. A stock solution of Tn was prepared in 5 X buffer E [absence of 

EGTA], dialyzed overnight against 1 X buffer E [absence ofEGTA] at 4°C and clarified by 

sedimentation and used immediately. Ca-G-actin was converted to the polymerized, actin by 

dialysis against buffer E in the presence of lmM ATP. A stock solution of ATP [lOOmM] 

was prepared by dissolving the disodium salt in 1M NaOH to a final pH of 7.9. The final 

volume of the reaction mixture [CaCh or EGTA [lmM]], F-actin, TM and Tn in a ratio of 

7:4:4 respectively] was 600!-Ll. After incubating the reaction solution at 4°C for 30min, 

myosin-Sl [1!-LM] was added, incubated at 2YC for lOmin and the reaction was started by 

adding ATP [lmM]. Buffer E was used to do necessary dilutions. Aliquots of 200!-Ll were 

withdrawn at various time points, quenched by the addition of 100!-Ll of EDTA/SDS [0.12M 

EDTA and 13.3%[w/v] SDS] and, following the addition of 700!-Ll of ammonium molybdate 

reagent {0.5%[w/v] FeS04 and 5%[v/v] molybdate stock solution [10%[w/v] ammonium 

molybdate in 10M H2S04]}, colour development was measured at 550nm. Reaction rates 

were calculated from linear records over 2-8min intervals. The same assays were carried out 

at lower ionic strength as well [Lower ionic strength Buffer F: 4.5mM MgCh and 5mM 

MOPS, pH 7.0] 

To determine the Ca-sensitivity of Tn, A TPase assay was performed at higher ionic strength 

with reconstituted thin filaments in the presence of CaCh [lmM] and EGTA [lmM] 

separately and the ratio of the rates was calculated. Only Tn samples, which had a ratio above 

10, were used for the assays. In order to check the activity of myosin, myosin A TPase assay 

was carried out at higher ionic strength in the presence of A TP, myosin-S 1 [1!-LM] and 2mM 

EDTA only. 
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2.6.5 Myosin binding assay 

Myosin-Sl [lJ..LM] was added to the reconstituted thin filaments [F-actin, TM and Tn in a 

ratio of7:4:4 respectively] as described in section 2.6.4 in the absence of ATP. Upon addition 

of ATP [lmM], the mixture was sedimented in the Airfuge at 167,000 x g for lOmin. The 

amount of myosin-S 1 remaining in the supernatant was determined by A TPase assay using 

5mM ATP in 0.4M NH4Cl, 35mM EDTA and 25mM Tris-HCl, pH 8.0. Then the rate of ATP 

hydrolysis was calculated. Further verification was obtained by SDS-PAGE. This assay was 

done in both buffer E and F systems. 

To confirm the results of the above experiment, the following experiment was carried out. 

Thin filaments and myosin-Sl were reconstituted at higher ionic strength [50mM] in the 

absence of ATP as above. Immediately before centrifugation at 50,000mm for 25min at 4 °C, 

ATP [ 1 OmM] was mixed with the solution. To 400j..Ll of the supernatant, 600j..Ll of a reaction 

mixture containing 20j..LM F-actin, 1.7mM EGTA and 1.7mM ATP was added and 

equilibrated in a 25°C water bath. As explained before [section 2.6.4], 200j..Ll aliquots were 

pi petted out at 0, 8, 14 and 18min intervals and added to 1 OOJ..Ll of EDT A/SDS quenching 

solution. The amount of inorganic phosphate released was determined as in section 2.6.4. 

2.6.6 DNase I binding affinity for G-actin 

DNase I binding with Ca-G-actin was carried out according to Young et al., (306) with some 

modifications. A solution of DNase I [Sigma] was prepared in 2mM Tris-HCl, pH 8.0 to a 

final concentration of 4j.lg/j..Ll. To each lOj..Ll of Ca-G-actin [l.Omg/ml], lj..Ll, Sj..Ll and lOJ..Ll of 

DNase I was added. Bringing the final volume to 20j..Ll by adding appropriate volumes of 
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2mM Tris-HCl, pH 8.0, samples were incubated at 4oC for 30min. After adding 5J.1l of Safer 

sample buffer, a 5J.1l of the solution was analyzed on 7.5%[w/v] native Safer gel as described 

in section 2.2.3.1. The experiment was repeated at 25°C as well. 

2.6.7 Actin polymerization 

Studies on the polymerization of actin isoforms were carried out by taking advantage of the 

polymerization capability of actin at higher ionic strength. By incubating for 30min at 4°C in 

the presence of 0.2mM EGTA and O.lmM MgClz, Ca-G-actin [2mg/ml] was first converted 

into Mg-G-actin (307 and 308). Polymerization was induced at room temperature by the 

addition of 2mM MgClz and 0.05M KCl to Mg-G-actin [1mg/ml]. At various time intervals 

100J.1l of solution was airfuged [167,000 x g] or centrifuged at 45,000rpm for 30min at 25"C. 

Supernatants were analyzed by 15% [w/v] SDS-PAGE as in section 2.2.1. In order to 

determine the polymerization kinetics, light scattering studies were carried out using a 

Shimadzu RF-540 spectrofluorophotometer. Following a set period of 30s, samples [Ca-G­

actin] were loaded into a pre-positioned cuvette. The increase in signal at 320nm as a 

function of time was measured. Polymerization was also investigated using an Ostwald 

[capillary-flow] viscometer. Freshly prepared samples of Ca-G-actin were dialyzed 

against 100mM KCl, 1mM MgClz, 0.1mM CaClz, lmM NaHC03 and lmM NaN3, pH 

7.6 overnight at 4°C in the presence of different concentrations of ATP [0.05-0.3mM]. 

The next day, each solution was adjusted to a protein concentration of 24J.1M using the 

appropriate buffer and passed through the capillary at room temperature. The flow times 

were expressed as specific viscosity. 
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Relative viscosity = Flow time of the sample/Flow time of the buffer 

Specific viscosity = Relative viscosity -1 

2.7 Nucleic acid biochemistry 

2.7.1 Preparation of eDNA library 

A Dogfish shark, [Scyliorhinus retifer] eDNA library was prepared by Donna M. Jackman 

using a Superscript™ plasmid System for eDNA Synthesis and Cloning [Gibco BRL] 

following the specifications of the manufacturer. Dogfish shark muscle tissue was a donation 

of the Marine Sciences laboratory [Virginia Beach, VA]. Restriction enzymes were 

purchased from either Pharmacia or Promega. All reagents were molecular biology grade. 

In summary, mRNA was separated from total RNA using an affinity oligo [dT] cellulose 

column. A [poly T] Not I primer adapter was added to provide a substrate for both reverse 

transcriptase and Rnase H during first strand synthesis and to facilitate ligation to the vector 

following second strand synthesis. The resulting cDNAs, synthesized by nick translational 

replacement of mRNA, were ligated into pSport [ 4.1 kb ], transformed into Escherichia coli 

DH5a and plated on Luria Broth [LB: 10g/L tryptone, 5g/L yeast extract, 10g/L NaCl and 

15g/L Bacto agar], ampicillin [100J.lg/ml] plates. Approximately, 1100 colonies were 

individually transferred to 96 well Micro titre plates in TYPGN [2%[ w/v] tryptone, 1 %[ w/v] 

yeast extract, 0.8%[w/v] glycerol, 5g/L Na2HP04, 10g/L KN03] media and incubated 

overnight at 3TC (309). After making duplicate plates, a 2X glycerol solution [65%[w/v] 

glycerol, 0.1M MgS04, 0.025M Tris-HCl, pH 8.0] was added to the archive plates and frozen 

at -700C. 
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2.7.2 eDNA library Screening 

Bacterial suspensions [25J..tl] from duplicate plates were immobilized by vacuum suction onto 

nylon Hybond-N+[Amersham] nucleic acid transfer membranes, which had been prewet with 

10%[w/v] SDS using a dot blot apparatus. The cells were lysed in lOOJ.!l of solution A 

[solution A: 0.5M NaOH and 1.5M NaCl], neutralized by the addition of 1 OOJ.!l of solution B 

[solution B: 0.5M NaCl, 0.5M Tris-HCl, pH 8.0] at room temperature (309) and rinsed in 4X 

SSC [SSC: 0.15M NaCl and 15mM sodium citrate], then air-dried. An 18 base mixed 

oligonucleotide [Queen's Oligonucleotide Synthesis Facility], which had previously been 

made for sequencing salmonid actins, was radiolabelled using bacteriophage T4 

polynucleotide kinase [Pharmacia], y'2P ATP [Mandel][12.5mCi/ml] and polynucleotide 

kinase buffer [50mM Tris-HCl, lOmM MgClz, 5mM DTT, O.lmM spermidine and O.lmM 

EDTA, pH 7.6]. After incubating at 3TC for 45min, the reaction was heated to 68°C to 

inactivate polynucleotide kinase. Following the removal of unincorporated radioactive 

phosphate by ethanol precipitation of DNA, the pellet was washed with 70%[v/v] ethanol and 

added to lOml ofprehybridization solution [5X SSPE: 150mM NaCl, lOmM Na2HP04, 

pH 7.4 and 1.25mM EDTA, 5X Denhardt's reagent: 0.5% of each of Ficoll, 

polyvinylpyrrolidine and BSA, 0.5%[w/v] SDS]. A 2hr prehybridization at 42°C followed by 

overnight hybridization was carried out with the actin probe at 42°C, and then membranes 

were washed as follows, with all procedures at room temperature unless otherwise stated. 

The membranes were first washed in 2X SSPE and 0.5%[w/v] SDS, followed by 2X SSPE 

and 0.1 %[w/v] SDS. The membranes were then subjected to two cycles of washes of O.lX 

SSPE and 0.5%[w/v] SDS, the first at room temperature and the second at 42°C. Finally the 

membranes were rinsed in O.lX SSPE, covered with plastic wrap and exposed to X-ray film 
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for ~ 6hr at -70"C (31 0). Positives from dot blot hybridization were verified by Southern 

analysis (311). The insert was excised from the plasmid using Hind III and EcoRI, subjected 

to agarose [10% [w/v]] gel electrophoresis and alkaline [0.4M NaOH] transferred to a nylon 

membrane. Prior to probing, the membranes were neutralized in 0.2M Tris-HCl, pH 7.5, 2X 

SSC [150mM NaCl and 15mM sodium citrate]. Hybridization conditions and stringency were 

identical to those for dot blot hybridizations. 

2.7.3 Isolation and sequencing of UNA 

Pelleted cells from overnight cultures [Sml] of positive clones were resuspended in 200!-Ll of 

GTE [50mM glucose, 50mM Tris-HCl, 10mM EDTA, pH 8.0 and 100!-Lg/ml RNase A], lysed 

with 400!-Ll of 0.2M NaOH, l.O%[w/v] SDS and neutralized with 300!-Ll of KacF [SM 

K+CH3Coo- and 88%[ v/v] formic acid]. The supernatant of the centrifuged solution 

[14,000rpm for 2min] was extracted with an equal volume of phenol: chloroform [1: 1] 

followed by the extraction of DNA from the aqueous layer using 0.5 volume 7.5M 

ammonium acetate and 2 volumes of ice cold ethanol (311 ). The purification of DNA was 

carried out using WizardR Minipreps [Promega] according to the manufacturer's instructions. 

Dideoxynucleotide sequencing (312) was performed using a T7™ Sequencing kit 

[Pharmacia] with '(5S dATP [Mandel]. Sequencing gels were run at 32 watts at a temperature 

~ 50-ss·c in TBE [O.lM Tris-HCl, O.lM boric acid and 2mM EDTA, pH 8.3]. Following 

electrophoresis, gels were fixed in 10%[v/v] methanol, 10%[v/v] CH3COOH, dried and 

autoradiographed overnight at room temperature. 
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Chapter 3 

Effect of changes in primary structure on the regulatory 

properties of tropomyosin: examination of phosphorylation 

and isomorphism. 

Tropomyosin isoforms originate from multiple genes as well as through alternative 

splicing of a common transcript (73). In each TM gene studied thus far, TM is encoded 

by 9 exons, and 4 out of the 9, exons 1, 2, 6, and 9, are alternatively spliced [Fig.3.1]. The 

unique striated muscle exon 9, which is specialized for the interaction of TM with Tn on 

the thin filament encodes for amino acids 258-284, is part of the TnT binding site. 

Paulucci et al., ( 62) have shown that this region is very important for the stability of the 

C-terminal region of the molecule. It is interesting that a phosphorylation site [Ser 283] 

(29), which was first discovered in the course of identification of the 32P-labeled proteins 

in live frog muscle (313), was identified in this region. In the following studies the 

functional significance of this phosphorylation and isomorphism was investigated. Thin 

filaments were reconstituted from rabbit actin, rabbit whole Tn and a given form of TM. The 

regulatory properties of each type of thin filament were then assessed in a steady-state 

actomyosin-S 1 Mg +2 A TPase assay. 
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Fig.3.1 Schematic representation of the tropomyosin isoforms (73) 

The exons are represented by boxes and represent only the coding portions of the exons. The empty boxes 

common to all genes.The a-gene straighted muscle isoform is frequently refrred to as the a-fast-twitch 

isoform, while the hTMnm gene encodes a skeletal muscle isoform which correspond to the a-slow- twitch 

muscle isoform. Fibroblast TM-4 corresponds to the human platelet TM30. Finally, the human TM30nm 

isoform has been identified in mouse and rat [W Guo, DM Helfam unpublished data], and also referred to 

as TM-5. 
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3.1 Regulatory properties of thin filaments containing 

unphosphorylated and phosphorylated tropomyosins. 

Myosin activation by thin filaments, which were reconstituted from purified proteins, was 

measured as described in Materials and Methods [Section 2.6.4]. Myosin, Tn and actin were 

isolated from rabbit skeletal muscle, while phosphorylated [PTM] and unphosphorylated TM 

[UnPTM] were purified from blue shark skeletal muscle. The steady state actomyosin­

S1Mg+2ATPase activity was determined by measuring the rate of release of inorganic 

phosphate [Materials and Methods, section 2.6.4]. In Fig.3.2 the time-dependent change in 

absorbance at 550nm at 50mM ionic strengthwas plotted for mixtures of myosin-S 1 plus thin 

filaments consisting of 25~M actin+ shark PTM or UnPTM +rabbit Tn at a ratio of7:2:2. It 

is apparent that thin filament [ +Ca +2
] preparations activate myosin-S 1 to a different extent. 

In light of this observation, the experiment was repeated at different concentrations of 

reconstituted thin filaments, using the same buffer conditions. It is important to note the 

linearity of the rate of reaction with time, which indicates substrate was not limiting over the 

duration in which these measurements were taken. 

When specific activity was plotted [Fig.3.3] as a function of the concentration of 

reconstituted thin filament in the presence of Ca+2
, the production of a 2-fold greater 

activation of thin filaments containing PTM was observed compared to those consisting of 

UnPTM at higher ionic strength, 50mM [Vmax; 10.4s-' (PTM) vs 5.8s-1 (UnPTM)]. 

However, the apparent binding constants [Ki] of reconstituted thin filaments containing 

either PTM or UnPTM did not show a significant difference [78.88~M (UnPTM) Vs 

72.08~M (PTM)]. 
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Fig.3.2 Regulated actomyosin-S1Mg+2ATPase assay using either phosphorylated or 

unphosphorylated tropomyosin. 

The regulated actin [25j..tM] was reconstituted with either PTM or UnPTM [7.14!-IM] and Tn [7.14!-IM]. Each 

reaction mixture contained either CaC12 [lmM] or EGTA [lmM]. The concentration of myosin-S I was 1.0!-IM. 

The amount of inorganic phosphate generated by the reaction in buffer, 30mM NaCl, 6mM MgClz and 5mM 

MOPS, pH 7.0 [ionic strength, 50mM], was monitored measuring the absorbance of produced phosphomolybdate 

at 550nm at 25°C. 
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Fig.3.3 Dependence of actomyosin-S1Mg+2ATPase rate on concentration of 

reconstituted thin filaments that contain either phosphorylated or unphosphorylated 

tropomyosin at SOmM ionic strength. 

The concentrations of PTM, UnPTM and Tn were 2/71
h that of the actin concentration. The concentration of 

myosin-S! was l.O!!M. To avoid complexity, the rates of actomyosin-S1Mg+2ATPase activities in the presence 

ofPTM/UnPTM [+EGTA] are not shown. Buffering conditions: 30mM NaCI, 6mM MgCiz and 5mM MOPS, 

pH 7.0. The rate of release inorganic phosphate was determined as explained in Fig.3.2. The actomyosin-

S 1 Mg +2 ATPase rate of myosin-S 1 alone has been deducted. The graph pad software, PRIZM was used to draw 

plots. The Vmax values ofPTM and UnPTM are 10.4 and 5.8s·1 respectively. 
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Therefore, it is apparent that under certain conditions [ eg. Ionic strength of the buffer, pH], a 

change at a single site [i.e. phosphorylation] in the TM molecule can alter the regulatory 

properties of the thin filament. 

3.2 Myosin-Sl binding affinity of reconstituted thin filaments containing 

either phosphorylated or unphosphorylated tropomyosin. 

To ascertain whether the observed difference presented in Fig.3.3 is a result of a change in 

myosin affinity, myosin binding was assessed by measuring the myosin NH4 + ATPase activity 

in the supernatant following sedimentation of different reaction mixtures in the Airfuge [see 

section 2.6.5 in Material and Methods] and confirmed electrophoretically in the presence of 

SDS [Fig.3.4]. The results showed an insignificant difference in the affinity of myosin for 

thin filaments containing non-identical TM isoforms [Fig.3.5], and this observation was 

compatible with the Kct values obtained from the kinetic data. 

3.3 Myosin activation of reconstituted thin filaments in the presence of 

salmonid isotropomyosins. 

Salmonid fish have a simple TM phenotype. Salmon and trout synthesize unique TM 

isoforms: fast skeletal, slow skeletal and cardiac (300). The sequences of these TM 

isoforms have been previously determined [Genbank accession numbers: fast skeletal, 

L25609; slow skeletal, Z66490; cardiac, Z66527]. 
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Fig.3.4 SDS-polyacrylamide gel analysis of myosin-Sl binding affinity of thin filaments 

containing either phosphorylated or unphosphorylated tropomyosin as determined by 

sedimentation method. 

Lane 1-myosin-S 1 standard; 

Lane 2-thin filaments containing UnPTM [pre centrifugation] 

Lane 3-thin filaments containing PTM [pre centrifugation] 

Lane 4-thin filaments containing UnPTM [post centrifugation] 

Lane 5-thin filaments containing PTM [post centrifugation] 

Thin filaments, F-actin [25f.tM], Tn and TM [either PTM or UnPTM] were reconstituted at a ratio of 7:4:4 in the 

presence of 0.8f.IM myosin-Sl at 25'C. Upon addition of lmM ATP, samples were Airfuged for lOmin at 

167,000 x g. The dilution factor of samples in lanes 2 and 3 is 1: 1 [sample buffer: protein solution] while it is 1 :4 

for samples in lanes 4 and 5. 
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Fig.3.5 Myosin NH4 +A TPase actilvity remaining in the supernatant fraction after 

sedimentation of a mixture of myosin-Sl and thin filaments [+Ca+2
] in the presence of ATP 

at 50mM ionic strength. 

The thin filaments were reconstituted as denoted in Materials and methods [section 2.6.5] and the amount of inorganic 

phosphate released at a given time period of time was determined as noted in Fig. 3.2. The buffering system used was 

30mM NaCl, 6mM MgC12 and 5mM MOPS, pH 7.0. 
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The amino acid substitutions within these isoforms [Fig.3.6] are distributed along the 

length of the molecule but a considerable number are confined to the Tn binding region 

and head-to-tail overlapping region. Therefore, the focus of this part of the study was to 

understand the effect of this heterogeneity on thin filament regulation. 

A thin filament titration was carried out as before [Fig.3.2] using the three salmonid TMs: 

fast, slow and cardiac. As shown in Fig.3.7, thin filaments containing cardiac TM yield 

approximately 4-fold higher activation of actomyosinMg+2ATPase [Vmax, 21.3s-'(salmon 

cardiac TM) vs 5.4s-1 (salmon fast TM)] than those containing fast TM at the higher ionic 

strength [ 50mM]. The presence of salmon slow muscle TM in the thin filament produces an 

intermediate level of activation [Vmax, 12.5s-1
]. The same trend was observed at lower ionic 

strength [Vmax; 19.3s-1 (salmon cardiac TM) vs 7.6s-1 (salmon fast TM)] [Fig.3.8]. 

3.4 Dual regulation of reconstituted thin filaments containing salmonid 

Tropomyosin isoforms. 

In this experiment, the concentration of myosin-S 1 was varied from 1 to 1 Oj..tM while 

maintaining the TM isoform [either salmon fast, slow or cardiac], Tn, and F-actin 

concentrations at 1.14, 1.14 and 4j..tM, respectively. Under these conditions, which were far 

away from Vmax, there was a linear dependence of actomyosin-S1Mg+2ATPase activity on 

myosin-S1 concentration [Fig.3.9]. 
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fast 
slow 
cardiac 

fast 
slow 
cardiac 

fast 
slow 
cardiac 

fast 
slow 
cardiac 

fast 
slow 
cardiac 

MDAIKKKMQMLKLDKENALDRAEGAEGDKKAAEDKSKQLEDDLVALQKKLKGTEDELDKY 60 
MEAIKKKMLMLKMDKETALEAADQSEIDKKAAEDKSKQHDDALIQMQKKLKGTEDELDKY 60 
MEAIKKKMQMLKLDKENAIDRAEQAETDKKAAEDKCKQLEDELLSLQKNLKGTEDELDKY 60 
*:****** ***:***.*:: *: :* ********·** :* *: :**:*********** 

SESLKDAQEKLEVAEKTATDAEADVASLNRRIQLVEEELDRAQERLATALTKLEEAEKAA 120 
SEALKDAQEKLEVADKKAADAEAEVASLNRRIQLVEEELDRAQERLATALQKLEEAEKAA 120 
SEALKDAQEKLEQSEKTAADAEGDVAGLNRRIQLVEEELDRAQERLSTALQKLEEAEKAA 120 
**:********* : :*.*:***· :**·*******************:*** ********* 

DESERGMKVIENRASKDEEKMELQDIQLKEAKHIAEEADRKYEEVARKLVIIESDLERTE 180 
DESERGMKVIENRASKDEEKMEMQEIQLKEAKHIAEEADRKYEEVARKLVIIEGDLERTE 180 
DESERGMKVIENRASKDEEKMEIQELQLKEAKHIAEEADRKYEEVARKLVILEGELERAE 180 
**********************:*::*************************:*. :***:* 

ERAELSEGKCSELEEELKTVTNNLKSLEAQAEKYSQKEDKYEEEIKVLTDKLKEAETRAE 240 
ERAELAEGKCAELEEELKNVSNNLKSLEAQAEKYSQKEDKYEEEIKILTDKLKEAETRAE 240 
ERAEVSELKCSDLEEELKNVTNNLKSLEASSEKYSEKEDKYEEEIKVLSDKLKEAETRAE 240 
****::* **::******.*:********· :****:**********:*:*********** 

FAERSVAKLEKTIDDLEDELYAQKLKYKAISEELDNALNDMTSI 284 
FAERSVAKLEKTIDDLEDELYAQKLKYKAISEELDHALNDMTSI 284 
FAERTVAKLEKSIDDLEDELYAQKLKYKAISEELDHALNDMTSL 284 
****:******:***********************:*******: 

Fig.3.6 Amino acid sequence comparison of salmonid tropomyosin isoforms. 

The inferred amino acid sequences of TMs from salmonid fast skeletal, slow skeletal and cardiac muscle 

have been aligned. Identities in all three sequences have been indicated with an asterisk. Positions where 

amino acids are not identical are highlighted in red. 
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Fig.3.7 Dependence of actomyosin-SlMg +2 ATPase activity on changing concentration of 

regulated actin in the presence of various forms of salmonid tropomyosin isoforms at 

SOmM ionic strength. 

Actin, Tn and either salmon fast, slow or cardiac TM were reconstituted at a ratio of7:2:2. The concentration of 

myosin-S I was l.OJ.LM. Buffering conditions: 30mM NaCl, 6mM MgC12 and 5mM MOPS, pH 7.0. Temperature: 

zs·c. The rate of release inorganic phosphate was determined as explained in Fig.3.2. The myosin­

S1Mg+2ATPase rate of myosin-S I alone has been deducted. The Vmax values of thin filaments containing 

salmon cardiac, fast and slow TM were 21.3, 5.4 and 12.5s·1 respectively. 
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Fig.3.8 Activation of actomyosin-S1Mg+2ATPase activity by regulated actin in the 

presence of variant salmonid tropomyosin isoforms at 22mM ionic strength. 

The thin filaments were reconstituted as noted in Fig.3.7 in a buffer consisting of 4.5mM MgCh and SmM 

MOPS, pH 7.0 buffer at 2s·c. The determination of the amount of inorganic phosphate released was the same as 

in Fig.3.2. The myosin-SIMg+2ATPase rate of myosin-S! alone has been deducted. Vmax: 19.3ls·1[salmon 

cardiac TM] and 7.64s"1[salmon fast TM]. Binding constants of thin filaments containing salmon cardiac and fast 

TM were 64.09 and 19.87j.1M respectively. 
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Fig.3.9 The actomyosin-S1Mg+2ATPase activity with regulated F-actin containing 

variant forms of salmonid tropomyosin and rabbit troponin, as a function of myosin-Sl 

concentration. 

The concentration ofmyosin-Sl was increased from 0 to lOJ.!M while the concentrations ofF-actin, TM and Tn 

were maintained at 4, 1.14 and l.14J.!M respectively. The buffering conditions: 30mM NaCI, 6mM MgCI2 and 

5mM MOPS, pH 7.0. Temperature: 25'C. The values for activity were corrected for the rate ofmyosin-sl alone. 
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It has been shown previously that addition of TM-Tn [+Ca+2
] results in a departure from 

linearity with inhibition at low myosin-S 1 concentration and potentiation at high myosin-S 1 

concentration, relative to F-actin alone (314). A similar behaviour was observed in Fig.3.9. 

As was demonstrated earlier [Fig.3.7], the highest activation occured with thin filaments 

reconstituted with salmon cardiac TM. In this particular case, potentiation was observed at a 

lower myosin-Sl concentration ratio than with the other two types of thin filament; ~7J.lM 

[salmon cardiac TM], lOJ.lM [salmon slow TM] and > lOJ.!M [salmon fast TM]. In 

conclusion, the order of decreasing actomyosin-S1Mg+2ATPase activation is: cardiac> 

slow> fast. 

Myosin-Sl binding experiments were carried out in identical fashion to those described 

earlier in the chapter. As before, changing the TM component of the thin filament 

produced no change in myosin-Sl binding [data not shown]. This suggests that the 

observed differences in thin filament regulation may be the result of a variation[ s] in a 

kinetic step[s]. 

3.5 Effect of tropomyosin heterogeneity on the binding of rabbit troponin. 

Tropomyosin was chromatographed on whole Tn Sepharose 4B using a linear gradient of 

NaCl. Eluted protein was determined by Bradford assay (299) or by Coomassie R-250 

staining of electrophoretically separated protein bands. To facilitate the comparison of the 

variant salmon TM isoforms, a mixture of isoforms was loaded onto the column and co-
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chromatographed. This method was employed to obviate run-to-run variation observed for 

chromatography of the same TM. Figure 3.10 [A],[B] and [C) shows the elution profiles of 

salmon fast +slow, fast+cardiac and slow + cardiac TM, respectively. The asymmetry of the 

profiles is evidence for a variable affinity of TM isoforms towards Tn. As shown in Fig.3.11 

[A] salmon slow TM starts to elute prior to salmon fast TM indicating that, of the two, fast 

TM is more tightly bound to Tn. Further, salmon cardiac TM released from the column later 

in the salt gradient than salmon slow TM [Fig.3.11 [B)] and fast TM [Fig.3.11[C]]. 

Therefore, Tn binding affinity increases in the order: slow < fast < cardiac TM. Thus, 

substitutions in the Tn binding region of salmonid TM must be responsible for this variant 

degree of binding affinity with Tn. 

3.6 Discussion 

3.6.1 Effect of phosphorylation on the regulatory properties of 

tropomyosin. 

Striated muscle TM [but not smooth muscle or non-muscle TMs] contains a single 

phosphorylation site: Ser residue 283, which is located in the overlapping region (9). 

This covalent modification, which gives the molecule a higher negative charge at pH 7.0 

(9, 315), has been demonstrated in amphibians (316), mammals (77), birds (317) and fish 

(300). It is more prevalent in a-TM than in ~-TM (313, 318-320) and requires a unique 

protein kinase, which is not activated by cAMP orCa +Z (317 -320). 

74 



Fig.3.10 Chromatography profiles of mixtures of salmonid Tropomyosin isoforms 

from rabbit skeletal muscle troponin Sepharose 4B. 

[A] A mixture of salmon fast +slow TM 

[B) A mixture of salmon slow + cardiac TM 

[C] A mixture of salmon fast+cardiac TM 

Samples [10-15nmol] which were dialyzed against lOmM MOPS, 50mM NaCl, l.OmM EGTA, l.OmM DTT, 

0.01% [w/v] NaN3, pH 7.0, at 4·c were loaded on to the column. The proteins were eluted with a linear 

gradient [0.05-0.5M NaCI, total volume, lOOm!). Protein was determined by Bradford assay as outlined in 

Materials and Methods [section 2.5.4.2). 
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Fig.3.11 SDS and alkaline urea polyacrylamide gel electrophoresis of eluted fractions 

from troponin Sepharose 4B. 

Gel A, fractions of the mixture of salmon fast and slow TM 

Gel B, fractions of the mixture of salmon slow and cardiac TM 

Gel C, fractions of the mixture of salmon fast and cardiac TM 

The fractions and standard proteins were loaded on the gels as noted. Sample [80j.tl] was mixed with 20j.tl of 

sample buffer and applied to the gel [20j.tl]. Binding affinity is apparent from the change in stained band intensity 

as a function of fraction number. 
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In the neutral pH range and at low ionic strength, phosphorylation strengthens the end-to­

end interaction of adjoining TM molecules (321) an effect that can be mimicked by 

mutating the Ser with Glu (322). 

Serine 283 is in a c position of the heptad repeat, which is predicted to fall on the outside of a 

coiled coil structure, hence the phosphate group is exposed to solvent. According to a 

1H- NMR analysis ofthe secondary structure of a C-terminal fragment ofTM, 1Ha and 13Ca 

chemical shift displacements showed that residues 252-279 are a-helical but residues 280-

284 are non-helical (323). The same researchers later reported that residues 270-279 are 

arranged in an unusual parallel, linear arrangement with the last five amino acids splayed 

apart (52). The functional consequences of phosphorylation have been studied previously 

in regards to mammalian a-TM (214), but not the fish protein. Studies conducted in the 

Heeley lab have shown that the phosphorylation site is conserved in shark TM (324). 

At 50mM ionic strength, reconstituted thin filaments [ +Ca2+] containing shark PTM 

[which comprises a single a-type isoform] showed approximately 2-fold higher 

activation than the unphosphorylated version [Fig.3.3], consistent with the findings of 

previous experiments conducted with rabbit TM under similar conditions (321). Further, 

there was no observable change in myosin-S 1 binding affinity. These data are included in 

this chapter to show that TM phosphorylation may be of physiological importance in fish, 

as well as other animal classes. In addition, they also demonstrate the critical nature of 
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the overlapping region. A single change in this region alters the properties of the entire 

thin filament. 

Tropomyosin, together with Tn, is required for ligand [either Ca2+ or rigor myosin-Sl]­

dependent regulation of the actomyosin-SlMg+2ATPase. In the absence of bound ligand 

[presence of EGT A and A TP] the thin filament is in an inhibited state and unable to form a 

productive interaction with myosin (274). Ligand binding changes the conformation of the 

thin filament such that it can now activate myosin. The three state model (274) envisages that 

Ca2+ binding produces an intermediate state [the 'closed' state], which can partially activate 

myosin. Conversion to the fully activating state, or 'open' state, requires the binding of rigor 

myosin heads. By contrast the two-state model predicts that Ca2+ and myosin binding 

influence a single equilibrium defining two states in which myosin is either weakly ['off 

state] or strongly ['on' state] bound. The difference in actomyosin-S1Mg+2ATPase activity 

observed in Fig.3 .3 can be explained by proposing that thin filaments composed solely of 

PTM have more regulatory units in an activating conformation than those containing 

UnPTM. 

3.6.2. Effect of isomorphism on the regulatory properties of 

tropomyosin. 

The study of naturally occurring protein isoforms can provide valuable insights into 

which regions of a protein are key to its function, as well as how these regions can be 

altered in order to modulate function. The location and characteristic features of the side 
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chains of the amino acids that are substituted in different TMs will be major factors in 

this regard. 

When thin filaments were reconstituted with a different isoform of TM, different levels of 

myosin-S! activation were observed [Figs.3.7-3.9]. Interestingly, the maximal level of 

myosin activation cannot be predicted from inspecting only the overlap sequences, as with 

the simple case of PTM and UnPTM. For example, at neutral pH [low ionic strength, s·q 

salmon fast muscle TM polymerizes end-to-end more strongly than salmon cardiac and slow 

muscle TMs on account of the substitution at position 276 [Asn in fast, His in slow and 

cardiac, (214)]. However, thin filaments containing this TM generate less than half the 

maximal activation of those containing cardiac TM, 7.6 vs 19s-1
• A similar result was 

obtained at low thin filament concentration, conditions where inhibition and potentiation 

of the myosin-S1Mg+2ATPase occurs (69, 313, 325-327). Thus, as was observed with 

PTM [Fig.3.3], thin filaments containing salmon cardiac TM have a greater fraction of 

units in the activating state compared to other thin filaments (272,326,328). However, 

unlike PTM, from these findings, it can be suggested that changes away from, as well as 

within, the overlap site [Fig.3.3 and (38)], also have a bearing on the regulatory properties of 

TM. 

Since the regulatory properties of TM are connected to its interactions with actin and Tn, it is 

reasonable to assume that the three salmonid TM isoforms do not bind actin and Tn in 

precisely the same way. The interaction with actin requires Mg+2
. It is thought that 

carboxylate groups on each protein interact via Mg +Z salt bridges. The ability of one TM 

molecule to bind 7 molecules of actin has been accounted for by the presence within the 
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primary structure of stretches of approximately twenty amino acids having either a 

preponderance of hydrophobic [discounting the a and d positions] or hydrophilic side-chains, 

the so-called a and ~bands (25). There is also evidence to suggest that these actin-binding 

sites are not equivalent (25). For example, the ~-band has been implicated in the 'on' state 

of myofilament activation, and the positive zones are primarily filled with hydrophobic 

residues allowing for close contact between TM and actin (272,329 and 330). The N- and 

C-terminal regions of TM are particularly important determinants of actin affinity (331). 

When the sequences of the salmonid TMs are compared with each other, the first and last 50 

residues are found to contain a number of substitutions, including charge changes at positions 

21, 42, 49 and 276 [Table 3.2]. The substitution at position 49, Lys [in salmon fast TM] to 

Asn [salmon cardiac TM], will give this region of the cardiac isoform one fewer positive 

charge at cellular pH than that of fast muscle TM. Conversely, the presence of the C­

terminally located His in salmon cardiac TM will impart a partial positive charge. Changes in 

the actin affinity of TM have also been attributed to alternatively spliced exons. In a-TMs, 

approximately 2-fold differences in affinity for actin can be attributed to the type of second 

[residue 39-80] and sixth exon [residue 189-214] (332 and 333). It is interesting to note that 

the salmonid TMs also possess variability in these sections of the molecule [Table 3.2]. 

There are four replacements of Ala involving an hydroxyl-containing side chain between 

residues 45-79 of the salmon cardiac and fast muscle TM sequences. Further, a charge 

substitution exists at residue 216; Gln in fast, Glu in salmon cardiac TM. Because 

changes in these regions of TM have been linked to a change in actin binding (334-336) 
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the salmon cardiac and fast muscle TM are predicted to have different actin affinity. 

Although this was not verified experimentally, the interaction of the various TM isoforms 

with Tn was investigated and differences were demonstrated [Figs.3.12 and 3.13]. 

As mentioned in the introduction, Tn spans more than one-third of the length of TM 

[Fig.3.14]. It binds to TM via the Tn-T subunit at two sites. One of these is located 

towards the center of TM, between residues 175-190. The other encompasses the C­

terminal 25 amino acids [residues 258-284], and perhaps the N-terminal region of the 

next TM molecule on the actin filament (172 and 173). The main substitution in the 

terminal sections of salmonid TMs is at 276, which is located within the overlap, where a 

His in cardiac TM [which exhibits the strongest affinity for Tn] is switched for Asn in 

fast TM. It is possible that the partial positive charge associated with the His enhances the 

binding of the negatively charged N-terminal portion of Tn-T. The weak Tn affinity 

exhibited by slow TM can be speculated to be partially due to the loss of an Arg residue 

at 21. When attention is given to the other binding site, residues 17 5-190, salmon cardiac 

muscle TM is seen to contain three substitutions compared to fast muscle TM, 

specifically, at positions 174, 179 and 188. In the first two cases, a hydroxyl-containing 

side-chain in fast TM is replaced by Gly [residue 174] or Ala [residue 179]. The latter 

may be especially important because it is a core position. It is possible that the fast 

muscle isoform is destabilized relative to the cardiac muscle form in this region. Finally, 

it is worth noting the substitution at 188 where a Gly in fast TM is exchanged for a Leu in 

cardiac TM. 
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Table 3.2 The distribution of substituted amino acids in salmonid tropomyosin. 

The denoted comparison was carried out with respect to salmon fast TM. The substitutions highlighted in violet 

are in the Tn binding region, charge substitutions are in grey colour. The positions d and g are highlighted in 

orange and green respectively. 
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Location of the Salmon fast TM Salmon cardiac Salmon slow Location in the 
amino acid TM TM heptad sequence 

9 Gin Leu b 

17 Asn Thr c 

21 Arg Ala 

24 Gly Gin Gin 

25 Ala Ser 

27 Gly Thr lie 

36 Ser Cys Ser 

39 Leu His 

42 Asp Ala 

45 Ala Ser Gin 

49 Lys Asn 

63 Ser Ala Ala 

74 Ala Ser Ala 

79 Thr Ala Ala b 

83 Ala Gly f 

87 Ser Gly c 

107 Ala Gly b 

111 Thr Gin Gin f 

Ser Gly Gly f 

Thr Ala 

Ser Ala 

Gly Leu 

Ser Ala b 

Thr Asn Asn c 

Gin Ser 

Ala Ser a 

Gin Glu f 

Asn His His c 
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Tropomyosin 

Head-to-tail 
overlap 

Fig.3.14 A model of the molecular arrangement of Tn subunits, TM, and actin in 

skeletal muscle thin filament (39). 

Note the adjacent TM molecules overlap head to tail with the N-terminus of TnT lying along the overlap region. 

The C-terminus of TnT interacts with TnC and Tnl, and Tnl also interacts with actin. 
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Another consideration is the proximity of substitutions to alanine clusters. The seven Ala 

clusters in TM's helical structure impart conformational bends and yield flexibility to 

TM's coiled-coil design, thus allowing more effective interactions with actin (26). 

Charge changes in salmonid TM residue, 39Leu/His, 42Asp/ Ala, 49Lys/ Asn, 216Glu/Gln 

and 276Asn/His can be expected to have repercussions on nearby amino acid side chains 

and thus could alter the conformational bends in TM imparted by Ala clusters [Table 

3.3]. 

Residue 179, which occurs within the fifth Ala cluster, is occupied by Thr in salmon fast 

TM. The presence of a bulky hydrophilic side chain could disrupt the local conformation 

in this part of the molecule. More importantly, this residue is located in part of the TnT 

binding region. On the other hand residue 276, which lies adjacent to Ala277, the seventh 

cluster, is Asn instead of His as in salmon cardiac and slow TM. This substitution could 

minimize steric repulsion due to reduced size and neutrality of the side chain at pH 7.0. 

Position 24, which is adjacent to the first Ala cluster, is occupied by Gln in cardiac and 

slow TM while it is Gly in fast TM. Further, the second Ala cluster consists of residues 

Ala67, Ala74, Ala78 and Ala81 and of those residues, hydrophilic Ser in cardiac TM 

substitutes 74Ala. In addition, Ala211 which is located in position a in the heptad repeat is 

also substituted by Ser. It is possible that this change, combined with His276 could make 

the conformation unstable. Gaffin et al., (337) have determined the distance between 

native and mutant of His276Asn of transgenic mouse using atomic coordinates available 

from a protein data bank and minimizing the mutant structure in the Insight II suite, using 

Discovery [ Accelrys]. 
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Table.3.3 The comparison of amino acid substitutions near alanine clusters. 

FastTM CardiacTM SlowTM 

The comparison was done with respect to salmon fast TM. The Ala clusters are shaded ash in colour and all 

the substitutions are shaded green in colour. 
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The carbonyl atoms distance at residue 275,276 and 277 is 12.92, 11.19 and 6.20A in the 

native versus 13.33, 11.07 and 6.53A in the mutant molecule. Thus this mutation causes a 

significant change in the distance between the monomer strands in localized regions of 

the TM molecule and this change in tum could affect the interactions of the TM molecule 

with neighboring thin filament molecules such as actin and TnT. Later, using the same 

model, Gaffin et al., (338) have reported that the mutant His276Asn does not alter Ca+2 

sensitivity or thin filament regulation. Further, work by Jagatheesan et al., (339) have 

shown contradicting results obtained from transgenic mice expressing chimeric a-/-~ TM 

where there are only 5 amino acid differences between the C-terminal 27 amino acids of 

a-TM and ~-TM, of which two are highly conservative [Leu260Val, Ile284Leu]. Of the 

remaining 3 amino acids [Leu265Met, His276Asn and Met281Ile], all have substantial 

differences in the size of the side chain group and one introduces a charge change as well. 

Using recombinant TM, mutational studies on Glnlll Trp, which is located in the f 

position in the heptad repeat, have not shown any significant difference in actin binding 

and myosin-S1Mg+2ATPase inhibitory activity (340). Therefore, the observed variations 

in myosin- S1Mg+2ATPase activation and binding affinity with Tn appears to reflect the 

contributions of several substitutions spread throughout the molecule as opposed to 

heterogeniety in one particular region such as the overlap. Therefore, more research is 

required to explain the basis of the non-identical regulatory properties of the salmonid 

TM isoforms. The experiments reported in this chapter are to be viewed as a first step in 

this process. 
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4.0 Introduction 

Chapter 4 

Characterization of salmonid isoactins 

Salmon striated muscle contains three different types of actin isoforms: fast, slow and 

cardiac. Clones from eDNA libraries for each muscle type were identified from eDNA 

libraries and sequenced by Donna Jackman [Heeley lab]. The nucleotide sequences are 

registered with GenBank [accession numbers are as follows: salmon fast, AF 304406; 

slow, AF 267496; cardiac, AF 303985]. As expected, the inferred amino acid sequences 

of salmonid actins have been highly conserved [Fig.4.1]. However, the slow actin 

isoform appears to be surprisingly divergent from the other two. Cardiac and fast actins 

differ in only two positions, but both differ from slow actin at 12 positions [Table 4.1]. 

The slow muscle and fast muscle isoactins have six non-conservative changes between 

them: [i] Val103Thr [Val in slow, Thr in fast, and the residue position is based on 

processing of the first two amino acids to produce a stable 375 amino acids]; [ii] 

Ala155Ser; [iii] Thr278Ala; [iv] Gly281Ser [v] Gly310Ala and [vi] Asp360Gln [Table 

4.2]. The slow-cardiac pairing has an additional replacement [making a total of seven]; 

Ala354Gln. This particular substitution is also the only significant difference between the 

fast and cardiac sequences. Of interest is that, compared to the fast muscle isoform, slow 

actin is predicted to contain a charge at position 360, to have lost hydrogen bonding side 

chains at positions 103 and 155, and to have gained one such group at position 278. 
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Table 4.1 Comparison of the number of amino acid substitutions between salmonid 

isoactins. 

12 (6) 2 (1) 

12 (7) 2 (1) 

The number of non-conservative substitutions is shown in parentheses. 
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Table 4.2 The non-conservative amino acid substitutions in salmonid isoactins. 

Fast actin Slow actin Cardiac actin 

Thr Val Thr 

Ser Ala Ser 

Ala Thr Ala 

Ser Gly Ser 

Ala Gly Ala 

Ala Ala Gln 

Gln Asp Gln 

The residue position is based on processing of the first two amino acids to produce a stable 375 amino acid 

protein, consistent with protein mass spectrometric measurements. 
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fast 
cardiac 
slow 

fast 
cardiac 
slow 

fast 
cardiac 
slow 

fast 
cardiac 
slow 

fast 
cardiac 
slow 

fast 
cardiac 
slow 

fast 
cardiac 
slow 

MCDDDETTALVCDNGSGLVKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEA 60 
MCDDDETTALVCDNGSGLVKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEA 60 
MCDEEETTALVCDNGSGLVKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEA 60 
***::******************************************************* 

QSKRGILTLKYPIEHGIITNWDDMEKIWHHTFYNELRVAPEEHPTLLTEAPLNPKANREK 120 
QSKRGILTLKYPIEHGIITNWDDMEKIWHHTFYNELRVAPEEHPTLLTEAPLNPKANREK 120 
QSKRGILTLKYPIEHGIITNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREK 120 
********************************************.*************** 

MTQIMFETFNVPAMYVAIQAVLSLYASGRTTGIVLDSGDGVTHNVPIYEGYALPHAIMRL 180 
MTQIMFETFNVPAMYVAIQAVLSLYASGRTTGIVLDSGDGVTHNVPIYEGYALPHAIMRL 180 
MTQIMFETFNVPAMYVAIQAVLSLYASGRTTGIVLDAGDGVTHNVPVYEGYALPHAIMRL 180 
************************************:*********:************* 

DLAGRDLTDYLMKILTERGYSFVTTAEREIVRDIKEKLCYVALDFENEMATAASSSSLEK 240 
DLAGRDLTDYLMKILTERGYSFVTTAEREIVRDIKEKLCYVALDFENEMATAASSSSLEK 240 
DLAGRDLTDYLMKILTERGYSFVTTAEREIVRDIKEKLCYVALDFENEMATAASSSSLEK 240 
************************************************************ 

SYELPDGQVITIGNERFRCPETLFQPSFIGMESAGIHETAYNSIMKCDIDIRKDLYANNV 300 
SYELPDGQVITIGNERFRCPETLFQPSFIGMESAGIHETAYNSIMKCDIDIRKDLYANNV 300 
SYELPDGQVITIGNERFRCPETLFQPSFIGMESAGIHETTYNGIMKCDIDIRKDLYANNV 300 
***************************************:**.***************** 

LSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQAMWIT 360 
LSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWIS 360 
LSGGTTMYPGIGDRMQKEITALAPSTMKIKMIAPPERKYSVWIGGSILASLSTFQAMWIS 360 
***********.******************:************************ ***: 

KQEYDEAGPSIVHRKCF 377 
KQEYDEAGPSIVHRKCF 377 
KDEYEEAGPSIVHRKCF 377 
*:**:************ 

Fig.4.1 Amino acid sequence comparison of salmonid isoactins. 

The inferred amino acid sequences of actin from salmonid fast, slow and cardiac muscle have been aligned. 

Positions where amino acids are not identical are highlighted in red. 
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Further, slow actin has a higher Gly content on account of the changes at position 310, as 

well as an extra Met residue via a conservative switch at 329. When considering the 

conservative substitutions, a total of six substitutions are distributed in each isoform 

[Table 4.3]. As a final point, it should be noted that both the non-conservative and 

conservative substitutions are confined to actin sub-domains 1 and 3 [Fig.4.2, Table 4.3]. 

These two domains of the molecule are thought to have arisen as a result of gene 

duplication and are structurally similar ( 119). 

The surpnsmg sequence diversity of the salmonid slow muscle actin prompted an 

investigation into the possibility that this actin might have different properties compared 

with other striated muscle actins. In view of the near-identity of the salmonid fast and 

cardiac actin isoforms, the investigation was limited mostly to the fast and slow isoforms. 

Note: For convenience salmonid fast and slow actins are denoted as F and S respectively. 

4.1 Charge substitution in salmonid isoactins. 

As shown in Fig.4.3, there is a distinct difference in the mobility of slow and fast actin, 

when they are separated by electrophoresis in the presence of 8M urea at alkaline pH, 

confirming the presence of a charge substitution in slow actin. This is consistent with the 

amino acid substitution at position 360. According to the available sequencing data in the 

GenBank slow actin is the only actin that has Asp at position 360. 
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Table 4.3 The distribution of conservative and non-conservative amino acid 

substitutions in salrnonid isoactins with respect to secondary structure . 

Substitution . · Sub-:-domain . Location 
:·· > : ..... • 

. ··· Asp2Glu 1 loop Asp1-Leu8 

Asp3Glu 1 loop Asp1-Leu8 

Ile163Val 3 helix Thr 160-Tyr 166 

Ile329Met 3 helix Lys328-Ala331 

Thr358Ser 1 helix Lys359-Ala365 

Asp363Glu 1 helix Lys359-Ala365 

Val103Thr 1 loop Asn92-Thr103 

Ala155Ser 3 loop Ser155-Thr160 

Thr278Ala 3 helix Ile274-Ile282 

Gly281Ser 3 helix Ile274-Ile282 

Gly310Ala 3 helix Ile309-Leu320 

Ala354Gln 1 loop Met355-Lys359 

Asp360Gln 1 helix Lys359-Ala365 

The first amino acid of a given pair corresponds to that residue in fast muscle actin. The second 

corresponds to slow muscle actin. For example, Asp2Glu: Asp in salmon fast and Glu in salmon slow actin. 
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Sub-domain 4 

Ala155Ser 

Gly310Ala 

Thr278Ala 

Gly281Ser 

Sub-domain 3 

Sub-domain 2 

Sub-domain 1 

DNase I binding 
loop 

Val103Thr 

Asp360Gln 

Ala354Gln 

Fig.4.2 The distribution of non-conservative amino acid substitutions in salmonid 

isoactins with respect to tertiary structure solved by Kabsch et al (119). 
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1 2 3 

Fig.4.3 Alkaline urea polyacrylamide gel electrophoresis of purified salmonid 

iso- actins. 

Samples [0.5-2mg] of slow muscle actin [lane 1], a mixture of slow and fast muscle actin [lane 2], and fast 

muscle actin [lane 3] were applied to the gel, which had been pre-run for 15min at 220V and 

electrophoresed (290) at the same voltage for a total of 650Vhr at room temperature. Protein containing 

bands were detected by staining with Coomassie Brilliant Blue R-250. This gel was run by Donna 

Jackman. 
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4.2 Polymerization of salmonid isoactins. 

One of the characteristic features of G-actin is its ability to undergo salt induced 

polymerization into a filamentous form, F-actin. ATP hydrolysis accompanies ATP-actin 

polymerization but takes place on the polymer as a first order reaction (341-343). 

Nucleation of filament formation is thought to occur by the slow association of two 

monomers followed by stabilization of the complex with the fast addition of a third 

monomer (109,344). The filament then elongates from this complex. The rate of actin 

polymerization is known to be determined primarily by the nucleation rate. Actin 

nucleation rates are strikingly dependent on the ionic strength of the solvent while the 

elongation and dissociation reactions show only moderate sensitivity to ionic strength 

(103). 

Actin polymerization was investigated in different ways. The steady state extent of 

polymerization was assessed by a sedimentation assay. As described in Materials and 

Methods [section 2.6.7], polymerization of Mg-G-actin was initiated by addition of KCl 

and MgCh to a final concentration of 0.05M and 2mM respectively, at room temperature 

and in the presence of ATP. Aliquots of the reaction mixture were removed at set times, 

centrifuged in an Airfuge at room temperature [167,000 x g, 30min] and the supernatant 

fraction was analyzed by SDS-PAGE. As shown in Fig.4.4, more slow actin than fast 

actin remains in the supernatant at all time points following initiation. This result may be 

due to a slower rate of nucleation, or a reduced elongation rate. Either scenario would 

produce a larger pool of non-sedimentable protein. 
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Fig.4.4 Time course of salmonid isoactin polymerization. 

F- salmon fast actin; S-salmon slow actin 

F s 

... 
"'---y---J 

4hr 

G-actin [Ca + 2] samples [ ~ 1.0mg/ml] were converted into the Mg + 2 form in the presence of 0.1 mM MgC12 

and 0.2mM EGT A. Polymerization was initiated by increasing the ionic strength. At selected time intervals 

[0, 1, 2, 3 and 4hr ], aliquots [I OO!Jl] were Airfuged and 20!Jl of the resulting supernatant was subjected to 

SDS-PAGE analysis [see section 2.6.7 in Materials and Methods]. 
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Alternatively, it can not be ruled out that a portion of the slow actin is denatured, even 

though freshly prepared protein was used. A number of batches of protein [ n=5] were 

analyzed and a significant amount of non-sedimentable slow actin was consistently 

detected. Also apparent from the stained gel, is the fact that there is a slight increase in 

the amount of actin [slow] in the supernatant after three hours. 

Light scattering was used to examine actin polymerization in the pre-steady state phase. 

Subunit association was initiated as above and then, following a set period of 30s, 

samples were loaded into a pre-positioned cuvette and the scattering at 320nm was 

monitored. The increase in signal as a function of time for a protein concentration of 

l5j.tM is presented in Fig.4.5. Under these conditions the two isoactins yield clearly 

different progress curves. In the case of fast actin, more than 75% of the light scattering 

increase occurred before the first measurement can be taken. This was followed by an 

increase having an observed rate, kobs, of0.15min-1 [Fig.4.5 open symbols]. By contrast, 

the change in light scattering of slow actin is sufficiently time-resolved to be fit to a 

double exponential where kobs, is 2.45min-1 and 0.5min·1 [Fig.4.5 closed symbols]. The 

dependence of the observed rates of these phases upon protein concentration is presented 

in Figs 4.6 and 4.7. Since fast actin polymerizes at a very fast rate even at low 

concentrations, it was not possible to conduct a complete titration. However, the available 

data demonstrates that salmonid fast actin polymerizes at least three times faster than 

salmonid slow actin. Since the increase in light scattering did not exhibit a lag [Fig.4.5], 

it can also be concluded that the difference between the fast and slow isoactins which was 
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Fig.4.5 Change in light scattering at 320nm of actin solutions after induction of 

polymerization. 

Purified Ca-G-actin [15j.lM], which was first converted into Mg-G-actin in the presence of0.2mM EGTA 

and O.lmM MgClz at 4·c, was induced to polymerize at room temperature by adding KCl and MgC}z to 

final concentrations of 50 and 2mM, respectively. The change in light scattering, which is taken to be an 

index of subunit association, conforms to a biphasic process. The fast components of salmonid fast actin 

account for 75% [open circles] and it is 60% for salmonid slow actin [closed circles] of the total spectral 

change. The observed rate constants for slow actin subunit association are: 2.45min·' and O.Smin-1
• The rate 

of the fast phase of fast actin subunit association is not resolved by the current method, which has a dead 

time of 30s. The observed rate of the slow phase is 0.15min·' 
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Fig.4.6 Polymerization of isoactins at different concentrations as determined by light 

scattering. 

A- salmon fast actin 

B- salmon slow actin 

Experimental conditions were the same as to Fig.4.5. Because of the almost instantaneous change in light 

scattering signal associated with polymerization of salmon fast actin, lower concentrations of protein were 

used compared to salmon slow actin. The graph pad PRIZM was used to fit the curves. 
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Fig.4. 7 Dependence of light scattering increase with time at 320nm on actin 
concentration. 

The fast component of the light scattering change for slow actin [closed circles] observed was fit to a 

hyperbolic function using PRIZM graph pad software. The data for fast actin [open circles] could not be 

extrapolated to plateau and is included only for comparison. 
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observed in the sedimentation assay [Fig.4.4] was not due to a difference in nucleation 

rate. 

Polymerization was also investigated usmg an Ostwald [capillary-flow] viscometer. 

Freshly prepared samples of G-actin were dialyzed overnight in the cold against a high 

ionic strength solution in the presence of different concentrations of ATP. The next day, 

each solution was adjusted to a protein concentration of 24~M using the appropriate 

buffer and passed through the capillary at room temperature. Flow times, expressed as 

specific viscosity, are presented in Fig.4.8. Fast actin showed higher specific viscosity 

than slow actin regardless of the ATP concentration. This is most noticeable at very low 

concentrations of nucleotide, where the flow time of the slow actin solution is virtually 

the same as that of the buffer. The difference between the two isoforms is diminished by 

raising the ATP concentration. The observed increase in specific viscosity levels off at 

0.05mM, whereupon there is 3-4 fold difference. Although, viscometry is a crude 

measure of filament formation, these data, which have been reported in preliminary form 

(345), are consistent with a difference in the steady state extent of polymerization. This is 

further supported by electrophoretic analysis [Fig.4.9.] of the supernatants arising from 

sedimentation of the various samples used in Fig.4.8. 

It is of interest to identify the individual or group of substitutions in slow actin that is or 

are responsible for the observed functional variability. The DNase I binding loop 

[residues 38-52 in sub-domain 2], the hydrophobic loop [residue 262-274 in sub-domain 
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Fig.4.8 Dependence of specific viscosity of salmonid actin on A TP concentration as 

analyzed by viscometry. 

G-actin [241-!M] was polymerized in lOOmM KCI, lmM MgC12, O.lmM CaC12, lmM NaHC03 and lmM 

NaN3, pH 7.6 in the presence of different concentrations of ATP [0-0.3mM] as described in Materials and 

Methods [section 2.6.7]. Viscosity of these samples was assayed at 25'C. 
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Fig.4.9 SDS-polyacrylamide gel analysis of salmonid isoactins polymerized at 

different concentrations of ATP. 

F-salmon fast actin; S-salmon slow actin 

Salmonid isoactins [24J..tM, lOOJ..il], which were polymerized at various concentrations of ATP as described 

in Fig.4.8 were sedimented in an Airfuge and 1 OJ..il of 1:1 [ v/v] diluted supernatants with SDS-sample buffer 

were loaded on to the gels. Staining and destaining of gels were carried out as described in Materials and 

Methods [section 2.2.0]. There was a loading error in the sample of salmon fast actin polymerized in the 

presence of0.2mM ATP. 
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4], and the C-terminus region [in sub-domain 1] are among the structural elements of 

monomeric actin proposed to form the inter-monomer interface in F-actin. In the atomic 

model ofF-actin, amino acids 40-45 of one monomer interact with residues 166-169 of 

the neighbouring subunit and with the hydrophobic loop of the subunit from the opposite 

strand. In addition, common contact areas for monomer/monomer interactions mapped 

by x-ray diffraction studies (119,134) include a loop at positions 61-65 in sub-domain 2 

and segment 202-204 on the top of sub-domain 4 of the monomer. 

In order to assess the binding affinity of G-actin with DNase I, actin [2~g] was incubated 

with varying amounts ofDNase I [1~g-6~g] and analyzed by electrophoresis as described 

in section 2.6.6 under Materials and Methods [Fig.4.10]. No difference was observed in 

banding intensities of DNase I bound G-isoactins. Since there are no amino acid 

substitutions in the DNase I binding loop of salmonid isoactins, it can be suggested that 

amino acid substitutions close to the DNase I binding loop have no effect on DNase I 

binding. 

4.3 Thermal unfolding of salmonid isoactins 

Circular dichroism was used to determine the conformational stability of salmonid 

isoactins [G-actin-Ca in ATP form] by monitoring their ellipticity at 222nm as a function 

of temperature. Figure 4.11 shows that approximately 27% of the secondary structure of 

salmon fast actin was lost after thermal unfolding. Similar results were obtained for 
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Fig.4.10 DNase I binding affinity of salmonid isoactins as determined by non-

denaturing polyacrylamide gel analysis. 

F-salmon fast actin; S-salmon slow actin. 

To a fixed concentration of salmonid G-actin [21-lg] various amounts of DNase I, which was dissolved in 

2mM Tris-HCl, pH 8.0, were added. After incubating at 4'C for 30min, samples [5!ll] were loaded onto a 

nondenaturing polyacrylamide gel. Electrophoresis was carried out as per Materials and Methods [section 

2.6.6]. Note the similar banding intensities ofDNase I complex with salmon fast and slow-G-actins. 
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Fig.4.11 Far-UV circular dichroism spectra of salmon fast G-actin at different 

temperatures. 

Circular dichroism UV spectra [190-350nm] of salmon fast actin [-1.5mg/ml], which has been dialyzed 

against 5mM Hepes, 0.2mM CaCh, 0.2mM ATP, 0.01 %[w/v] NaN3 and 2mM DTT, pH 8.0 at 4·c, were 

recorded at 5 to 6s·c temperature range at a rate of30.C/hr. The scan speed was lOOnm/min. 

Light path, 0.1 mm. 
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salmon slow actin [Fig.4.12], rabbit fast actin and mako shark fast actin as well [data not 

shown]. The change in relative ellipticity at 222nm as a function of temperature showed 

that the transition temperature [Tm] for unfolding of slow and fast salmon isoactins are 

45 and 55°C [Fig.4.13], respectively, when heated at a rate of 30°C/hr, indicating that 

slow actin is the least conformationally stable of the two. Similar results were observed 

when the experiment was carried out at a heating rate of 60°C/hr. Interestingly, when 

thermal unfolding was monitored at 293nm the Tms of fast and slow salmonid muscle 

actins are 58°C and 48.6°C, similar to the values obtained from main-chain unfolding 

[Fig. 4.14] 

Since salmonid isoactins showed a significant difference in conformational stability, it 

was of interest to study the rates of thermal-induced unfolding of these isoactins. 

Towards this end samples were incubated on ice in a 0.1mm light path cell prior to being 

subjected to a temperature of 65"C. Ellipticity at 222nm was then recorded as a function 

of time and data were analyzed using PRIZM graph pad. As shown in Fig.4.15 the rate of 

unfolding of slow actin is much faster than fast actin, again suggesting that slow actin is 

less conformationally stable. Similar studies involving ADP-G-actin were hampered due 

to the instability of slow G-actin in ADP form [data not shown]. 
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Fig.4.12 Far-UV circular dichroism spectra of salmon slow G-actin at different 

temperatures. 

Circular dichroism UV spectra of salmon slow actin [ -1.5mg/ml] were recorded. The experimental 

conditions were the same as in Fig.4.11. 
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Fig.4.13 The thermal unfolding of salmonid isoactins. 

Figure, A: The relative ellipticity of salmon fast [open circles] and slow actin [closed circles] at 

222nm is plotted as a function of temperature; 

Figure, Band C: The first derivative of the change in ellipticity at 222nm [d9/dT [222nm] of fast and slow 

muscle actin, respectively. 

Tms are: fast actin; ss·c; slow actin, 45T. [n=5]. At s·c, starting ellipticity of fast actin, -29.867mdeg; 

slow actin, -19 .156mdeg. The first derivative of the change in ellipticity was calculated according to the 

instrument software. 
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Fig.4.14 Near-UV circular dichroism progress curve of the first differential of 

salmonid isoactins. 

Figure A: The change in ellipticity [at 293nm] of slow and fast muscle salmon actin [3.4mg/ml], 

was recorded as a function of temperature. Path length of the cell is 5.0mm. 

Figures B and C: The first derivative of the change in ellipticity at 293nm of fast and slow muscle 

actin, respectively. 

114 



-19r---------------------------------------------------~ 

Slow actin 

~ \ 

560 650 740 800 

Fig.4.15 Time dependent unfolding of salmonid isoactins following a temperature 

jump. 

The change in ellipticity [at 222nm] of salmonid isoactins [concentration, lmg/ml], was recorded as a 

function of time following a temperature jump from 0 to 65°C. Path length of the cell was 0.1 mm. Prior to 

the temperature jump, samples were incubated on ice. This experiment was repeated changing the 

concentration of actin from 1 to 4mg/ml. No concentration dependence on the rates of unfolding was 

observed. The time taken to reach maximum ellipticity at 222nm of slow and fast muscle actins was 55 

and 1 05s respectively. 
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Actin contains four Trp residues that are the primary fluorophores in the molecule. All of 

them are located in sub-domain 1 (119). According to the resolved rabbit G-actin-DNase 

I structure (119), Trp79, Trp86 and Trp340 are located in a-helices; Trp79-Asn92 and 

Ser338-Ser348, whereas Trp356 is located in the loop between a-helices Ser350-Met355 

and Lys359-Ala365. Of these Trp residues, Trp79 is the only one that can be regarded as 

being exposed to the solvent. 

The intrinsic fluorescence spectra ofsalmonid isoactins [14J..LM] were recorded at 2s·c in 

order to study the effects of substituted amino acids on protein conformation. As shown 

in Fig.4.16 the emission spectrum of slow actin is equivalent to that of fast actin with 

Amax at 330nm, indicating that the immediate environment around the fluorophore is 

similar in the different isoactins. The intrinsic fluorescence spectra [Fig.4.16] of native 

and thermally unfolded salmonid isoactins are also equivalent, indicating that the 

conformation of sub-domain 1 is similar. Unfolding of both isoactins resulted in a red 

shift of the emission maximum from 330nm to 336nm. However, this result is not in 

good agreement with near-UV circular dichroism spectra of these isoactins [Fig.4.17]. 

Since the signal in this region of the UV is also dominated by Trp, the observed spectral 

difference suggests that one or more of these groups occupy a different environment in 

slow actin compared to fast actin. Unfortunately, it is difficult to explain these conflicting 

results. 
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Fig.4.16 The fluorescence emission spectra of thermally unfolded salmonid isoactins. 

Actin [0.9mg/ml], which was incubated for 2hrs at either 45·c [slow actin] or ss·c [fast actin] in 5mM 

Hepes, 0.2mM CaClz, 0.2mM ATP, 0.01 %[w/v] NaN3 and 2mM DTT, pH 8.0, was excited at 270nm [at 

2s·q and the emission was recorded. Both actin isoforms have red shifted to the same extent. The "-max 

values of native and unfolded salmonid isoactins were 330nm and 336nm, respectively. 
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Fig.4.17 Near-UV circular dichroism spectra of salmonid isoactins. 

Circular dichroism UV spectra [250-340nm] ofsalmonid iso-actins [1.2mg/ml], were recorded at a speed of 

lOOnm!min. The temperature was maintained at S'C and the path length of the cell was S.Omm. The 

concentration ofactins is 3.74mg/ml. 
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4.4 Chemical unfolding of salmonid isoactins 

In order to study chemical sensitivity of salmonid isoactins, urea and GdnHCl-induced 

unfolding was carried out. The concentration of actin was maintained~ lmg/ml and in the 

presence of various concentrations of GdnHCl, the ellipticity at 222nm of far-UV circular 

dichroism spectra was recorded at 25°C. It can be seen in Fig.4.18 that the dependence of 

ellipticity at 222nm versus GdnHCl concentration represents two distinct cooperative 

transitions, reflecting the fact that the GdnHCl induced unfolding of G-actin is a two-step 

process. The first transition, which is similar in both isoactins, occurred at ~ l.OM of 

GdnHCl. However, the second transition of slow actin starts at ~ 1.8M GdnHCl while it 

is 2.2M in the case of fast actin. With slow actin, the transition from native to inactivated 

actin [see discussion] takes place at low GdnHCl concentrations [0.0-l.OM], whereas the 

transformation of the inactivated actin into completely unfolded protein occurs between 

1.8 and 4.0M GdnHCl concentrations. Salmon slow actin has a short range of inactivated 

form [1.0-1.8M] while the range is slightly higher for salmon fast actin [1.0-2.2M], 

indicating that slow actin is more sensitive to chemical unfolding than fast actin. Aiming 

to obtain more information about the change in conformation, which is induced by 

addition of GdnHCl, intrinsic fluorescence spectra of isoactins [0.1 mg/ml] were recorded 

at various GdnHCl concentrations. As shown in Fig.4.19 the emission maximum of both 

fast and slow actins have red shifted to the same extent, i.e from 330nm to 345nm in the 

presence of 2M GdnHCl and to 350nm at 4M GdnHCl. Therefore it appears that although 

sub-domain 1 varies in stability depending on the isoform in question, the environments 

of the aromatic side chains are largely similar. 
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Fig.4.18 The chemical unfolding of salmonid isoactins as determined by Far-UV 

circular dichroism in the presence of varying concentrations of GdnHCI. 

The changing ellipticity at 222nm of salmonid G-actin [lmg/ml] in the presence of varying concentrations 

of GdnHCl was recorded. The difference in incubation period of every sample in the presence of GdnHCl 

is minimal. Note the % relative ellipticity of both fast [open circles] and slow actin [closed circles] is 

similar in the range of 0-1.8M GdnHCl and rapidly decreases at higher concentrations of denaturant in the 

case of slow actin. The ellipticity at O.OM GdnHCl of fast and slow muscle actins are -12.30 and -

9.37mdeg, respectively. 
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Fig.4.19 Intrinsic fluorescence spectra of unfolded salmonid isoactins in the presence 

of various concentrations of GdnHCI. 

Tryptophan emission [330nm] of salmonid G-actin isoforms, which were reacted with 0, 2, and 4M 

GdnHCI were recorded at 2YC. The buffering condition: 2mM Tris-HCI, 0.2mM CaClz, 0.2mM ATP and 

O.lmM DTT, pH 8.0. 
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Slow muscle actin also exhibits low resistance to urea-induced unfolding [Fig.4.20]. The 

midpoints of the change in relative ellipticity at 222nm are ~3M [slow actin] and 4M 

[fast actin]. At the highest concentrations ofurea the relative ellipticity at 222nm of these 

two actins is similar, stabilising at ~30%. Compared to urea, guanidine has a greater 

effect on the conformation of slow muscle actin. This is consistent with GdnHCl, which 

is positively charged at pH 8.0, being a more powerful denaturant than urea. 

Further to mapping the region(s) of instability in the isoactins, the number of reactive Cys 

residues was determined both at room temperature and at each respective transition 

temperature. Muscle actin contains five Cys residues at positions 10, 217, 257, 280 and 

374. The changing intensity of yellow color was recorded as a change in absorption at 

412nm with time following the addition of DTNB [0.4%w/v] to the actin [1mg/ml] 

solution. As shown in Fig.4.21, regardless of the type of isoactin present, there was only 

one reactive Cys residue at room temperature and only one additional Cys residue is 

exposed at the respective Tm. Holmes et al., (134) reported that Cys374 is the only Cys 

that is exposed to solvent at room temperature. Since actin is a highly conserved 

molecule, it can be assumed that the reactive Cys of salmonid isoactins at room 

temperature is Cys374 as well. To identify the second reactive Cys residue, 

hydroxylamine, NH20H, cleavage reactions were carried out using actin in which 

Cys374 was blocked with 14C-labelled iodoacetic acid. NH20H has a highly specific 

cleavage site between Asn-Gly. Specificity of this reagent was first tested on rabbit 

skeletal TM which lacks this sequence. 
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Fig.4.20 Far-UV circular dichroism analysis of salmonid isoactins unfolding in the 

presence of urea. 

The ellipticity at 222nm of unfolded salmonid monomeric isoactins [0.5mg/ml], which has been dialyzed 

against 2mM Tris-HCl, 0.2mM CaC12, 0.2mM ATP and O.lmM DTT, pH 8.0, was recorded at 25°C. Urea 

concentration varied from 0 to 6M and samples were incubated in urea for 30min. Using the ellipticity at 

OM urea as 100%, %molar ellipticity was calculated for every concentration. For fast actin the ellipticity at 

OM urea is -11.7mdeg while it is -12.5mdeg for slow actin. 
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Fig.4.21 The sulphydryl reactivity of salmonid isoactins with DTNB as a function of 

time. 

Salmonid G-actin isoforms [lmg/ml], which were pretreated with 2mM DTT in 20mM Tris-HCl, 0.2mM 

CaCh and 0.2mM ATP, pH 7.5, were reacted with 0.4mM DTNB at either 25, 45 or 55'C and the color 

development was recorded at 412nm as a function of time. The concentrations of isoactins were confirmed 

electrophoretically. For lmg/ml protein, an absorbance change of0.33 is equivalent to one reactive Cys 

[£412 ofDTNB, 14,000 M-1cm-1
]. 
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No cleavage was observed [data not shown]. The sequence Asn-Gly can be found only in 

slow actin at positions 11-12 and 280-281 in the molecule. Due to partial cleavage, the 

reaction resulted in five fragments along with intact actin [Fig.4.22 [A].-Actin fragments 

1-280, and 12-280 were labelled with 14C but not the C-terminal fragment [Fig.4.22 [B]]. 

It was confirmed by sequencing that the C-terminal fragment contains both Cys285 and 

Cys374. Therefore, Cys10, which is located in sub-domain 1, or Cys217, or Cys257 

could be the second reactive Cys residue, which is exposed to solvent upon thermal 

induced unfolding of the actin molecule. This is consistent with Konno and Morales 

(346) who reported that upon removal of Ca+2
, Cys10 is exposed first followed by 

Cys257. However, efforts to pinpoint the second reactive Cys by mass spectrometric 

analysis of tryptic, CNBr and subtilisin peptides [data not shown] were unsuccessful. Part 

of the difficulty was the complexity of the spectra which consisted of numerous 

unidentified components. If sub-domain 1 is the least-stable region of actin it is 

reasonable to suggest that the second reactive sulfhydryl is Cys10. 

4.5 Nucleotide binding of actin 

The nucleotide/cation complex has been shown by crystallographic studies, to be bound 

at the bottom of the cleft between the major domains of actin with the adenosine base 

located in a hydrophobic pocket formed between sub-domain 3 and 4. The triphosphate 

tail is bound tightly by two invariant ~-hairpin loops, Asn12-Cys17 and Asp154-His161, 

protruding into the inter-domain cleft from sub-domain 1 and 3, respectively. 
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Fig.4.22 Electrophoresis and autoradiogram of hydroxylamine-treated, 14C-labelled 

slow actin. 

Figure A: SDS-polyacrylamide gel analysis of unlabelled, C-terminus blocked salmon slow G-

actin [lmg/ml], which had been reacted with 0.2M NH20H in the presence of 4M urea 

for 2hrs. Lane 1, molecular weight marker; lanes 2 and 3, reacted salmon slow actin. Gel 

was electrophoresed as described in Materials and Methods [section 2.2.0]. 

Figure B: Autoradiogram of NH20H reacted salmon slow actin, that had been labelled with 14C-

iodo acetamide [2.5j.tCi/ml] overnight at 45"C before reacting with 0.2M NH20H in the 

presence of 4M urea. 
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In the 'opened' state the interactions between nucleotide and the loop in sub-domain 3 are 

somewhat weaker compared to the 'closed' state (347 and 348). Both loops are linked 

with sub-domain 2 and 4 by side chain interactions of Ser14 with Gly74, and Asp157 

with Argl83, respectively. These amino acids, which interact with B-andy- phosphate 

groups of the nucleotide, are highly conserved. In salmon slow actin there is a rare 

Ser155Ala substitution which can also be found in some other fish species eg. Gold fish 

[Carassius auratus], Thilapia [Oreochromis mossambicus], and Japanese puffer fish 

[Takifugu rubripes]. Because this replacement occurs in the vicinity of the nucleotide­

binding site, it was of particular interest to determine whether there is a change in 

interaction with the nucleotide. To study this, bound nucleotide was first displaced with a 

fluorescent analogue of ATP [mant-ATP] as described in Materials and Methods [section 

2.5.3]. To ensure that all of the fluorophore was bound, the concentration of actin was in 

14-fold molar excess compared to the fluorescent analogue [14:lJ.lM]. A spectral analysis 

of these fluorescent probe bound salmonid isoactins was then carried out. It is apparent 

that slow actin is blue shifted by about 8nm with respect to fast actin, indicative of non­

identity in the nucleotide-binding cleft [Fig.4.23]. In order to further investigate the 

consequences of the Ser155Ala substitution on nucleotide affinity, bound ATP was first 

displaced with 10-fold excess of etheno-ATP in the absence of free ATP. Then, a time 

course of decreasing fluorescence intensity was determined by mixing the etheno-ATP­

actin with excess ATP. At 0.56mM ATP, the rate of displacement, which is fit as a single 

exponential, was ~0.02s- 1 [fast actin] and 0.038s-1 [slow actin] [Fig.4.24]. 
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Fig.4.23 Extrinsic fluorescent spectra of salmonid mant-ATP-G-actin isoforms. 

The emission spectra of salmonid mant-ATP-G-actins, which were prepared as explained in Materials and 

Methods [section 2.5.3], were recorded. Prior to analysis, the concentrations ofisoactins were confirmed by 

UV-visible absorption. Mant-ATP was excited at 340nm and emission was measured at 440nm. Visible 

spectra were recorded on all samples before and after excited state measurements to ensure that the samples 

did not photodegrade. 
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The dependence of the observed rate on ATP concentration is presented in Fig.4.25. The 

results for the slow actin isoform can be fit to a hyperbola having a maximum observed 

rate of 0.093s-1 [Kd, 3.5mM]. In the case of fast actin, the conditions are far-removed 

from saturation and the observed rate shows a near-linear dependence on the ATP 

concentration. However, at sub-saturating ATP concentrations, approximately three times 

as much A TP is needed to produce the same rate of analogue displacement from fast 

actin as from slow actin. As a control, a far-UV circular dichroism spectrum of etheno­

ATP-slow actin [in the absence of ATP] was recorded to confirm that the protein was in 

fact in the native conformation. This was important in view of the lower conformational 

stability of this isoactin. 

4.6 Myosin activation by unregulated and regulated salmonid isoactins. 

The ability of different isoactins to activate myosin was investigated in a steady-state 

ATPase assay [ionic strength, 50mM and T=25°C] First, actin from slow muscle or from 

fast muscle was mixed with rabbit skeletal muscle myosin-S 1 in the absence of other thin 

filament proteins. Inorganic phosphate arising from the hydrolysis of MgA TP was 

quantified by reaction with molybdate. The MgA TPase rates, which were measured on 

the same day, are plotted against F-actin concentration in Fig.4.26. 
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Fig.4.24 Time course study of displacement of etheno-ATP from etheno-ATP-G-

actin by ATP. 

The etheno-A TP -G-actin was prepared as discussed in Materials and Methods. The fluorescence of etheno-

ATP was monitored at 410nm [excitation wave length, 340nm] at 25·c. The experiment was repeated at 

various A TP concentrations and the rate of fluorescence decline as a function of A TP concentration was 

determined by fitting plots to a single exponential decay curve [PRIZM graph pad software]. Fluorescence 

at zero time of fast [open circles] and slow [closed circles] muscle actins were 55.7 and 50.0 respectively 

[arbitrary units]. 
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Fig.4.25 Dependence of etheno-A TP displacement from salmonid G-actin on the 

concentration of ATP. 

The rate constants for displacement of etheno-ATP by ATP were determined from the best fits to single 

exponential decay curves as shown in fig.4.24. For slow actin the rate of displacement of ATP at saturation, 

Vmax, is 0.092s"1 and the YzVmax is 0.74mM. 
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Fig.4.26 Dependence of the acto-myosin-SlATPase activity on the unregulated 

salmonid isoactin concentration. 

The rate of release of inorganic phosphate as a function of unregulated actin concentration was determined 

in 30mM NaCI, 6mM MgC12 and 5mM MOPS, pH 7.0 buffer at 25T [ionic strength, 50mM] as described 

in Materials and Methods [section 2.6.4]. Myosin-S! and ATP concentrations were lj..LM and lmM 

respectively. Myosin-SIATPase activities were corrected for myosin-S! alone. The experiment was 

repeated using different batches of actin [n>5] The Vmax and Kct of salmon fast unregulated actin are 

16.18s-1 and 83.76j..LM, respectively. 
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In the case of fast actin, the curve can be fit to a hyperbola with a maximum rate of 

16.18s-1
• By contrast, the ATPase rate shows a linear dependence on the concentration of 

slow actin and extrapolation to saturation is not feasible. At the highest protein 

concentration used, slow actin produces ~50% of the activation that is generated by fast 

actin but we can not say whether this is due to a decrease in Vmax or affinity for myosin, 

or both. The experiment was repeated with other batches of protein. In all instances, slow 

actin activated myosin to a lower extent than fast actin. The difference varied between 25 

-35%. 

The next step was to extend the comparison to thin filaments. These were prepared by 

addition of rabbit skeletal TM and Tn to a given isoactin. Rabbit Tn was used in the 

reconstitution because a reliable procedure for isolating whole Tn from salmon is 

currently unavailable [Heeley, personal communication]. The results are presented in 

Fig.4.27. It is apparent that thin filaments [+Ca+2
] composed of salmon fast actin activate 

myosin to a greater extent than those composed of slow actin. The same batches of actin 

were used in these experiments as in Fig.4.26 and the difference in rate at sub-saturating 

concentrations of protein is the same [~2-fold]. In the presence of EGTA, both sets of 

thin filaments inhibit the myosin MgATPase, indicating that the regulatory proteins are in 

fact bound to actin [Fig.4.27]. Thin filaments containing different salmonid isoactins 

were also compared by myosin-S 1 titration [Fig.4.28]. In this case, the actin 

concentration was held constant at 4f..LM and the myosin-S 1 concentration was varied 

between zero and 8f..LM. 
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Fig.4.27 The relationship between acto-myosin-SlATPase activity and regulated 

actin concentration. 

Thin filaments were reconstituted with salmonid isoactins, rabbit TM and rabbit Tn at a mole ratio of 7:4:4 

in 30mM NaCl, 6mM MgCh and 5mM MOPS, pH 7.0 at 25"C. Myosin-S! and ATP concentrations were 

111M and 1 mM, respectively. The amount of released inorganic phosphate was determined as noted under 

Materials and Methods [section 2.6.4]. 
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Fig.4.28 The acto-myosin-SlATPase activity in the presence of regulated salmonid 

isoactins as a function of myosin-Sl concentration. 

The concentration of myosin-Sl was varied from 0 to 8J..LM while the concentration of F-actin [each 

isoform], TM and Tn were maintained at 4, 1.14 and 1.14J..LM, respectively. The experiment was carried out 

in 30mM NaCl, 6mM MgC}z and 5mM MOPS, pH 7.0 at 25'C as outlined in Material and Methods 

[section 2.6.4]. 
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The same trend that occurred in Fig.4.27 is again observed, although the difference in 

thin filament activation at the higher concentrations of myosin enzyme appears to be 

larger than the difference in activation by pure actin. The fact that the calcium-activated 

rates do not exceed the unregulated rate at the highest mole ratio of myosin-S 1: actin, 

unlike what has been reported previously, can be attributed to an error in protein 

concentration, either S 1 or thin filament or both. 

Finally, a TM titration was performed in the absence of Tn. The conditions [2~M 

myosin-S I and 7~M F-actin] were such that TM is expected to act as an inhibitor of the 

actomyosin ATPase (349). For this particular experiment, a given isoactin was paired 

with either rabbit TM or the corresponding salmon TM isoform. Fig.4.29 shows that the 

rate of ATP hydrolysis decreases with increasing concentrations of TM and that 

saturation is achieved at - 2~M. Interestingly, the maximal levels of inhibition are: > 

75% [i.e.< 25% of the unregulated ATPase rate] for fast actin and< 50% for slow actin. 

It is also noticeable that salmon TM effects exerts more inhibition than does rabbit TM. 

The %ATPases at saturation for mixtures containing fast actin are: -50% [ + rabbit TM] 

and < 25% [+salmon TM]. 
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Fig.4.29 The effect of tropomyosin on the acto-myosin-SlATPase activity. 

The concentrations ofmyosin-Sl, F-actin [either, salmon fast or salmon slow] and ATP were 2, 7J.!M and 

lmM respectively. The concentration ofTM [either, rabbit, salmon fast or salmon slow] was varied from 

0 to 3.0J.!M. The buffering conditions are the same as in Fig.4.28. Rates are expressed relative to the 

actomyosin-SlATPase activity in the absence of TM. After correction for the rate of myosin-S! alone 

[0.2nmol/s], these are: 1.04s·1 [salmon fast actin] and 0.38s·1 [salmon slow actin]. 
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4. 7 Discussion 

The focus of this chapter is to investigate the structural-functional consequences of the 

heterogeneity which is inferred from the sequences of salmon muscle actin eDNA. The 

possible importance of the non-conservative substitutions is summarized in Table 4.4. In 

addition, the conservative substitutions [Table 4.3] could also impose an effect on 

isoactins functions. To determine this, the following actin-related properties were 

investigated: [i] polymerization; [ii] conformational stability; [iii] nucleotide affinity and 

[iv] myosin activation. 

4.7.1 Polymerization of salmonid isoactins 

Polymerization, one of the fundamental properties of actin, was studied usmg 

sedimentation, viscometry and light scattering. After initiating the process of 

polymerization, more slow muscle actin remained in the supernatant following high­

speed centrifugation than fast muscle actin [Fig.4.4]. This result, which is consistent with 

those from the viscometric analysis [Fig.4. 7], demonstrates that there is a difference in 

the extent to which these two isoforms form sedimentable filaments. Because no lag was 

observed in the light scattering experiment [Fig.4.5 and 4.6], it can be deduced that the 

G-actin, which was used in the sedimentation experiment, already contained nuclei. 
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Table 4.4 The significance of non-conservative substitutions with regard to binding 

with other proteins. 

Near to myosin binding site [residues 
103 Start of~ strand [sub-domain 1] 

95-100] 

155 End of~ strand [sub-domain 3] Very near to nucleotide/metal ion 

Middle of a-helix [sub-domain Near to actin binding site [residues 
278 

3] 286-289]~3 helical turns away 

Near to actin binding site [residues 
281 End of a-helix [sub-domain 3] 

286-289]~2 helical turns away 

Glu311Ala mutation is reported to 
310 Start of a-helix [sub-domain 3] 

change the affinity for TM. 

354 [sub-domain 1] 

End of final a-helix [sub- Glu360His mutation is reported to 
360 

domain 1] change the affinity for TM. 
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Thus, although, the two salmonid actins may possess non-identical nucleation rates, this 

can not explain the findings in Fig.4.8. Therefore, it is reasonable to conclude that the 

observed difference in polymerization arises due to a difference in the rate of elongation, 

which may have been imposed by the structural differences resulting from conservative 

and non-conservative substitutions within the primary structure. 

In the actin filament, each actin monomer makes contact with four others, the preceding 

and following actins on the same long pitch helix and the two across the filament on the 

other long pitch helix. The larger sub-domains 3 and 4 are axially located with 

interactions across to the sub-domains 3 and 4 of the actin in the second strand. The 

smaller sub-domains 1 and 2 are located at the periphery of the filament exposed to the 

solvent and are available for interaction with myosin. The interface ofF-actin is proposed 

to be encompassed by the DNase I binding loop [residues 38-52], the hydrophobic loop 

[residue 262-274] and the C-terminal region. The rest of the discussion is concerned with 

amino acid substitutions which may influence polymerization. 

In the monomer, a hydrophobic loop extends from the surface of the protein and then 

hooks back towards the actin in the vicinity of Tyr188. However, this loop could be 

remodelled to represent two anti-parallel ~-strands with a four residue hydrophobic plug 

in a direction perpendicular to the filament axis. The four residue "plug" consisting of 

three hydrophobic residues and a Gly, could insert into a hydrophobic pocket generated 

by the interface of two subunits on the opposing strand of the helix. Actin residues 
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Tyr143, Ala144, Gly146, Thr148, Gly168, Ile168, Ile341, Ile345, Leu346, Leu349, 

Thr351, Met355 and possibly the C-terminal region of actin, which is typically 

disordered in actin structures, line this hydrophobic cleft (350). Site directed mutagenesis 

studies have shown that partial disruption of the plug pocket interaction in this complex 

has a significant effect on the stability of the so called nucleus, since this hydrophobic 

interaction constitutes a major component of the inter-subunit interactions (109,351). 

Interestingly, the non-conservative substitutions Thrl03Val and Asp360Gln, as well as 

the conservative substitutions, Ile163Val, Thr358Ser and Asp363Glu, are in the 

proximity of the hydrophobic cleft indicating that they may have direct contacts with 

these inter monomer binding regions thereby resulting in a lower rate of polymerization. 

However, Schutt et al., (348,352), have suggested a possible alternative model for the 

actin filament, based on their work with the crystal structure of the actin/profilin 

complex. According to their model, sub-domains 1 and 2 are in the interior of the 

filament where sub-domain 2 contacts the small domain [sub-domain 1 and 2] of one 

neighbouring monomer and the top of the large domain [sub-domain 4] of another 

monomer. The interface between sub-domains 3 and 4, where the hydrophobic loop is 

located, is on the exterior of the filament apparently not involved directly in inter-subunit 

contacts. Supporting this proposal, are studies on F-actin-ADP and F-actin-ADP-BeFx in 

which the release of phosphate following ATP hydrolysis in F -actin destabilizes the 

filament (93,353) by means of disordering sub-domain 2. Since there are no substitutions 

in, or in the vicinity of, sub-domain 2 [as confirmed by DNase I binding affinity], it is 
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difficult to explain the observed difference in polymerization using this model. However, 

the limited proteolysis studies done on the region of sub-domain 2 using subtilisin (354), 

chymotrypsin (355), and E. coli protease (356) and trypsin (357) are in agreement with 

Schutt's model ofF-actin filament. 

The mutations Arg177 Asp (358), Ser14Cys (359) and the double mutation 

Ser14Cys/Asp157Ala (360) have been reported to reduce the rate of polymerization, 

indicating that the amino acids in sub-domains 1 and 3 also have interactions with each 

monomer in the F -actin filament. Therefore, it is reasonable to say that the charge 

substitution along with other conservative and non-conservative substitutions in sub­

domains 1 and 3 of slow actin may have produced conformational changes in sub­

domains 2 [without altering DNase I binding] and/or 4 that are large enough to cause a 

difference in interaction between actin monomers, resulting in a significant difference in 

polymerization. 

When polymerization was investigated using Ostwald viscometry, salmonid fast actin 

showed higher specific viscosity than slow actin, regardless of the concentration of ATP 

present. Pantaloni et al., (361) observed the same behavior of rabbit actin polymerization 

in the presence of varying ATP concentrations. Further, the authors found that the 

critical concentration of actin is 20-fold higher in lmM Mg+2
, 0.2mM ADP than in lmM 

Mg+2
, 0.2mM ATP, suggesting two possible mechanisms of polymerization. The 

association rate constant for the addition of ATP-G-actin to an ADP-F-actin might be 
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larger than that for the addition of ADP-G-actin, facilitating actin monomer assembly. 

Alternatively, the rate of actin dissociation from filaments might be lower in the presence 

of A TP than in the presence of ADP, which would imply the presence of an ATP "cap" at 

the ends of the filament. Later, Carlier et al., (343) reported that both mechanisms do 

occur when actin is polymerizing in the presence of excess ATP. The growing filament 

consists of ADP subunits in the interior and ATP subunits near the ends forming a "cap". 

The size of the ATP cap increases with the rate of actin monomer addition to the filament 

and is larger when the polymer is in its equilibrium than in the steady state. Therefore, the 

authors proposed that the rate of actin dissociation from filaments might be lower in the 

presence of ATP, which would imply the presence of one or several subunits of ATP-F­

actin at the ends of filaments forming a "cap" and that ATP hydrolysis is not tightly 

coupled to actin polymerization. In the presence of A TP, the association rate constant is 

greater, the dissociation rate constant is lower, and a stabilizing "cap" of ATP-F-actin 

subunits maintains the metastable ADP-F-actin filament. Above the critical 

concentration, the system is mainly dominated by the association-dissociation reactions 

of ATP-G-actin to form F-actin ends. 

From this research it can be suggested that, for slow muscle salmonid actin, the critical 

concentration is higher and the rate of elongation is significantly lower than for salmonid 

fast actin resulting in a difference in the extent of polymerization. The lower viscosity of 

salmon slow actin may be due to the formation of shorter filaments as well. Due to the 

higher rate of ATP dissociation [to be discussed in the latter part of the chapter, section 
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4.7.3.] the slow actin may produce shorter F-actin filaments. It is clear that the amino 

acid substitutions in the primary structure of salmonid slow actin have a significant 

impact on polymerization but it is difficult to identify the responsible amino acids in this 

regard. 

4. 7.2 Conformational stability of salmonid isoactins 

The actin protein chain transverses the various sub-domains in the order of: 1 ~ 2 ~ 1 

~ 3 ~ 4 ~ 3 ~ 1, thereby creating a small and a large domain [sub-domains 1 + 2 and 

3+4, respectively] connected by two crossed helices at the bottom of the inter-domain 

cleft. This linkage provides the means whereby a change in structure in one part of the 

molecule may be communicated to another (347,362). In the present work, salmon slow 

muscle actin was found to be less stable than any other actin tested [salmon fast, rabbit 

skeletal and shark fast actin]. This isoactin was the one that is most susceptible to heat, 

urea, and GdnHCl-induced denaturation. 

Prior to the current investigation, it had been shown that the composition of the N­

terminal region of actin influences stability. This was established by comparison of 

cytoplasmic ~-actin [Asp2, Asp3, Asp4 .... VallO] andy-actin [Glu2, Glu3, Glu4 ... IlelO] 

(362). Interestingly, salmonid slow muscle actin carries two conservative substitutions in 

theN-terminal region [Asp2Glu and Asp3Glu, Asp in both salmon fast and cardiac]. In 

addition another unique substitution, Asp363Glu [Asp in both salmon fast and cardiac] is 
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found in sub-domain 1 in slow muscle actin. Thus, it is conceivable that heterogeneity at 

either end of the molecule could contribute to the observed difference in conformational 

stability [Table 4.3]. 

The clustering of tryptophan residues in sub-domain 1 provides a probe for this section of 

the protein. Of the four indoles [at position 79, 86, 340 and 365], Trp340 and 365 are the 

main fluorophores (363). Bertazzon et al., (364) have reported that upon denaturation the 

intrinsic fluorescence of yeast actin is red shifted (364). Significantly, the emission 

maximum of the salmonid skeletal muscle actins is equivalent, below the Tm as well as 

above the Tm [Fig.4.16], suggesting that the tryptophan environment and, by 

extrapolation, the conformation of subdomain-1 is similar in both isoforms and that the 

extent of unfolding induced by heating beyond the Tm is the same. However, the 

differences in near-UV CD spectra, which were recorded at 5°C indicate a different 

conformation of each sub-domain-1. Further, because the Tm associated with the 

thermal unfolding of both salmonid slow and fast muscle actin, as observed by near-UV 

CD, coincides within 2-3 degrees to that observed in the far-UV, the difference in thermal 

stability of the salmonid skeletal muscle actins appears to be due to a change in sub­

domain- I though its conformation is different in each isoform. Therefore, the only non­

conservative substitutions in this part of the molecule at positions 103 [Thr/Val] and 360 

[Gin/Asp]. It is interesting that the charge substitution, which is close to Trp356, makes 

no detectable contribution to intrinsic fluorescence. 
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The instability of salmon slow actin is also evidenced by the results of chemical 

unfolding experiments, in which both GdnHCl and Urea were used. Previously, 

Kuznetsova et al., (365) observed the denaturation of rabbit actin by Gdn.HCI to result in 

two unfolding transitions where the second transition is completely reversible, unlike the 

first transition, suggesting that the process of equilibrium actin refolding from a GdnHCl­

unfolded conformation is terminated at the stage of formation of an intermediate state. 

However, recently Kuznetsova et al., (366) and Turoverov et al., (367) independently 

reported that the inactivated state is not an intermediate between the native and 

completely unfolded states. According to the phosphorescence studies on actin unfolding 

(368) inactivated actin which is a homogeneous association consisting of 15 

macromolecules of actin (369), is not formed from single state transition of kinetic 

intermediate to inactive actin. Instead, inactivated actin is formed from the unfolded state 

by a gradual increase in the number of associates. 

A specific association of actin macromolecules seems to be the main reason for the 

irreversibility of the native to intermediate state/inactivated actin transition (370 and 

371). Inactivated actin has a unique structure where hydrophobic clusters are on the 

surface of the associate, while some polar regions and Trp residues are in the interior, 

(363). It is apparent that salmonid slow actin tends to form inactivated aggregates at 

lower concentrations of denaturing agents and quickly attains its irreversible unfolded 

state [Fig.4.18]. The similar extent of red shift in intrinsic fluorescent spectra of salmonid 
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isoactins at the respective melting temperature suggests that the unfolding region in the 

first transition state of both isoactins is the same [i.e. sub-domain 1] and that a further 

increase in the concentration of denaturant starts to exert a greater impact on slow actin 

leading to more inactivated actin. The regions which comprise the second transition are 

unknown. 

4.7.3 Nucleotide binding of actin 

It is well understood that dissociation of ATP from G-actin depends on various factors 

including the type and concentration of divalent metal ion present in the high affinity site, 

as well as the pH (372-374). Several reports show a wide range of affinities of actin for 

nucleotide, depending upon the phosphorylation state of the nucleotide and the solution 

conditions (375-377). Further, it is clear that the metal ion is located in a deep 

hydrophobic pocket formed by the phosphate groups of the adenine nucleotide and the 

actin residues, Asp11, Gln137 and Asp154 (134). 

Nucleotide-free protein is unstable (130), consistent with the nucleotide-binding pocket 

being situated in the middle of the molecule. Likewise, unfolding can be induced by ion 

chelators such as EDTA (130). Leading on from this, it can be postulated that the 

substitution at position 155 [Ala in salmon slow muscle, Ser in fast muscle] contributes to 

the interaction with nucleotide-metal ion. This does not agree with crystal structure, 

however, where the Ser 155 side-chain is pointing away from the metal ion and too far 

removed to interact with it [Dr. Les Burtnick, Dept. of Chemistry, University of British 
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Columbia, personal communication]. On the other hand, we observed a shift in the 

fluorescence emission spectrum of mant-ATP [Fig.4.23] consistent with a change in 

polarity at the site of nucleotide binding. Specifically, association of mant-ATP with 

salmonid slow muscle actin produces a blue shift of ~8nm relative to that of fast muscle 

actin. We cannot, however, rule out the possibility that instability elsewhere in slow 

muscle actin, connected with one or more substitutions, is transmitted to the nucleotide­

binding cleft. 

Since G-actin inactivates rapidly in the absence of nucleotide, it is difficult to obtain 

absolute values for the nucleotide dissociation constants (126). For example, the ATP 

dissociation rate constant of rabbit Ca-G-actin at pH 7.0 is 0.015s-1 at very low 

concentration of Ca+2 and reaches a minimum value of 5 x 10-4s-1 at high Ca+2 

concentration [0.00 1-1 OO~M] (3 78). However, Strzelecka-Golaszewiska (3 79) reported a 

value of 4 x 10-6s-1 at pH 7.0 in the presence of an infinite concentration of Ca +2
• Using 

the experimental data for the ATP association rate constant (380), the ATP dissociation 

constant can be calculated as 0.2s-1 (109). At low ATP concentrations [<50~M], the rate 

of displacement is not exactly first order, but the major step has an apparent rate constant 

of 0.003-0.006s-1
, and this value does not vary greatly with Ca +z concentration. Frieden 

and Pantane (373) have reported that above ~lOO~M, the rate of etheno-ATP 

displacement as a function of the ATP concentration, is strictly first order. The rate 

constant markedly increased to about 0.15s-1 from 0.003S- 1 [<50~M] at 4mMATP [at 

lO~M Ca+2
]. In the current study, the ATP concentration was changed from 0 to 1.40mM 
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[in the case of salmon slow actin the ATP concentration was increased up to 1.18mM] in 

the presence of 0.2mM Mg+2 at 25°C. At 1.18mM ATP, the rate of displacement of 

etheno-ATP from salmon slow actin was 0.052S-1 and it was 0.026S-1 for salmon fast 

actin. Since the experimental conditions were different from above, the observed 

apparent rate constants are different from others. However, it is clear that the 

displacement rate constant of salmon slow actin is significantly greater than that of 

salmon fast actin and the major causative factor for the observed difference could be the 

substitution in the vicinity of the nucleotide binding region [Ser155Ala]. As observed in 

extrinsic fluorescence spectra of salmonid isoactins [Fig.4.23], the environment around 

the nucleotide binding region might have changed, thereby weakening the interactions of 

ATP with other amino acids. Another possibility is that the observed change in nucleotide 

affinity has been caused by a change in the strength of metal ion bonding. Finally, it is 

feasible that the substitutions at 360 and 363 have exerted a long range effect. In 

connection with this point researchers have shown that modification of Cys374 perturbs 

nucleotide binding and vice versa (381 and 382). 

4.7.4 Myosin activation 

The reconstituted thin .filaments containing salmon fast actin in the absence of regulatory 

proteins showed 2-fold higher myosin activation than that of slow actin under steady state 

conditions [Fig.4.26]. A similar difference in myosin activation was also observed 

between these two proteins in the presence of rabbit TM and Tn [Fig.4.27]. However, a 
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maximum level of inhibition was observed for fast actin by increasing TM concentration 

to 3!-LM [Fig.4.28]. This indicates that, due to the influence of Tn, the interactions 

between actin and myosin-S I in the presence ofTM have changed drastically. Therefore, 

a clear understanding of the involvement of amino acids in actomyosin interactions gives 

insights into the functional variations that arise as result of amino acid substitutions. 

The 3-D atomic model ofF-actin decorated with Dictyostelium myosin-S1 (143) and 

rabbit chymotryptic Sl-decorated actin (142) reveal three regions of close contact 

between single actin monomers and the myosin-S! head. The first contact involves theN­

terminal amino acids Asp1-Asp4, Asp24, Asp25, Glu99 and GlulOO [according to the 

rabbit actin sequence]. This contact is electrostatic in nature and may be responsible for 

the ionic strength dependent 'weak' interactions between actin and myosin (383). The 

second contact region has stereospecific interactions with hydrophobic residues Ala144, 

Ile341, Ile345, Leu349 and Phe352. The third contact region involves Pro332 and 

Pro333. These three regions define the primary site of actomyosin interaction and all 

occur in sub-domain 1. Truncated actin, devoid of the last two or three C-terminal 

residues has shed light on the importance of actin's C-terminus to inter-monomer 

communication as well. The critical concentration for actin polymerization and the 

activation of myosinS-lATPase is also affected by the removal of C-terminal residues 

(384 and 385). It is further confirmed by fluorescence studies where the reactivity of 

CyslO alone is very low in actin, but when the complex, [myosin-Sl]-F-actin is formed, 

the reactivity ofCyslO is strongly increased (386). Actin's N-terminus is believed to play 
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a greater role m the formation of the weakly bound actomyosin states than in the 

formation of the strongly bound actomyosin states. However, mutations at 

Asp363His/Glu364His, and Glu360His/Glu361His resulted in a rather large increase of 

Kl values indicating that both mutations changed kinetic steps of the ATPase cycle to 

some extent (387). From this it is apparent that the conservative substitutions of salmonid 

isoactins [see table 4.3], substitutions Asp2Glu and Asp3Glu, which are located in sub­

domain 1, might influence weak actomyosin-S1 binding Further, as confirmed by 

mutational studies (387), the involvement of charge substitution at position 360 and the 

conservative substitution Asp363Glu could also be substantial in salmonid thin filament 

regulation. 

The sub-domain 2, and in particular its DNase I binding loop, possibly play a role in 

transmission of conformational changes between actin protomers in the filaments. Their 

conformational transitions strongly influence the inter-protomer interactions along the 

filament (388 and 389). Inhibition of in vitro motility assays by inter-protomer cross 

linking of actin filaments between various residues revealed the importance of 

conformational freedom of the sub-domain 2/sub-domain 1 interface for generation of 

motion with myosin. Charged actin side chains between residues 309 and 326 located in 

sub-domain 3 have been hypothesized to interact with TM in the absence of Tn by 

Lorenz et al., (390). In accordance with the results of mutational studies 

[Lys315Ala/Glu316Ala and Glu311Ala/ Arg312Ala] performed by Korman and 

Tabacman (391), the effect of these mutations on TM binding was insignificant, 
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suggesting that the interactions, if present must be weak. Hence, it can be suggested that 

the observed difference in thin filament regulation of salmonid isoactins is not a direct 

result of one substitution of amino acid, but a result of involvement of a few, if not all of 

the substitutions. 
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Chapter 5 

The distribution of slow muscle actin isoform 

in the animal kingdom. 

Actin comprises a small multigene family. Mammals have four distinct muscle actins [a­

skeletal, a-cardiac, a-vascular andy-enteric], and two distinct non-muscle actins [~- andy­

cytoplasmic] (154-159). In organisms that contain only a single actin gene, the sequence is 

more similar to vertebrate non-muscle actin genes than to muscle actin genes, so the non­

muscle actins are considered to be ancestral. Kovilur et al., (392) suggested that the evolution 

of muscle actin genes from non-muscle actin genes began in the prochordate lineage, even 

though they found a sea urchin actin gene as a sister to the chordate actin genes. The two 

actin genes from an early echinoderm led to the chordate muscle and non-muscle actin genes. 

However, actin sequences analyzed from a variety of animals including sea star [Pisaster 

ochraceus ], have shown that actin genes are more closely related to vertebrate cytoplasmic 

actins than they are to vertebrate muscle actins. For this reason it is speculated that chordate 

muscle actin arose from non-muscle actin before the divergence of urochordates and 

vertebrates (393). 

In the human genome, only a single gene for each of the six-actin isoforms have been 

mapped (394). A large number of actin pseudogenes have been identified in the human 

genome (395).Two striated muscle actins, skeletal and cardiac are found in both avians and 
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amphibians (397-399), but only one smooth muscle actin, a-aortic, has been identified in 

birds (400). A third form of cytoplasmic actin, denoted as type 5, has been reported in 

chicken (401). In early development of mice, skeletal and cardiac muscle actins are co­

expressed in developing somites, but the cardiac actin withdraws from the skeletal muscle in 

later stages ( 402). Amphibian non-muscle cells synthesize five different isoforms of actin 

(403). Different regulatory mechanisms are thought to activate these tissue-specific genes. 

For example, in skeletal muscle, myogenic determination factors of the 'basic helix-loop­

helix' [bHLH] that bind to E box [CANNTG], are the most notable muscle-specific 

transcription factors ( 404 and 405). Other important cis-regulatory sequences include CarG 

box, to which positive acting serum response factor [SRF] and negative actin YY1 factor 

competitively bind ( 406 and 407). 

It has been reported that teleosts have two striated muscle actin genes [a-skeletal and a­

cardiac]. Interestingly, a unique second skeletal actin gene in salmon was reported in our 

laboratory ( 408). Therefore, the focus of this study was to determine the existence of a slow 

muscle actin isoform in other animal species and to analyze the evolutionary relationships 

among those species. Actin was analyzed from the following species; chicken [Gallus 

gallus], frog [Xenopus laevis], yellowfin tuna [Thunnus albacares], Atlantic herring [Clupea 

harengus harengus] and mako shark [Prionace glauca]. 

Tunas are unique among teleosts because of their ability to elevate the temperature of their 

locomotor muscle, viscera, brain, and eye tissues above that of water temperature. 

Endothermy in tunas is compartmentalized in regions of high metabolic output (409-411). 
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Elevation of slow twitch [red] muscle temperature is facilitated by the more axial positioning 

of the aerobic muscle mass and the presence of counter-current heat exchangers in the 

circulatory system, which reduces conductive and convective heat loss at the gills and body 

surfaces. Many tunas have a higher proportion of slow twitch muscles, relative to fast twitch 

muscles than other teleosts (411). Mechanisms for heat retention in aerobic muscle are 

widespread in large pelagic fish. Telemetry and anatomical studies have shown that heat 

conservation strategies are present not only in tunas, but in lamnid sharks, alopiid sharks, 

blue sharks and swordfish as well (412). 

Salmon and herring are round-bodied teleost fish. Herring are found mainly offshore in 

deeper water and spawn in the vicinity of bays, straights, estuaries and oceanic banks, while 

salmon are migratory fish that spawn in fresh water but spend a longer time in salt water. 

Unlike the tuna and shark, these fish do not have a mechanism to maintain body temperature, 

and hence they are cold-blooded fish. 

The chicken has dark and red muscles related to the different types of fibres. Breast muscle 

has mainly white fibres, which contain a relatively small amount of myoglobin, while some 

leg muscles contain more red fibres with myoglobin. Certain birds such as the hummingbird 

have only red fibres and studies indicate that these fibres have high mitochondrial density and 

stored fat. As in mammals many avian muscles contain a mixture of different types of fibres. 
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Since the selected species represent vertebrates, amphibians, bony fish and cartilaginous 

fish, it was expected to get valid information on this slow muscle actin isoform pertaining 

to its existence and distribution in the animal kingdom. 

For the study, fish and chicken were bought from a local store and frogs were donated by the 

Terry Fox Cancer Research Laboratory [Health Sciences-Memorial University of 

Newfoundland]. Chicken breast was used as the fast muscle while the anterior latissimus 

dorsi muscle [ALD] was used as the slow muscle. In the case of frog, sartorius and cruralis 

muscles were used as fast and slow muscles, respectively. All the extracted actins were in 

Ca-G-actin form. With the exception of the chicken and frog, the primary structures of the 

other actins have not yet been determined. 

5.1 Two-dimensional gel electrophoresis [2-D PAGE] of isoactins 

To determine the existence of actin isoforms in a particular muscle type, 2-D PAGE was 

carried out using both muscle extracts and purified actins as discussed under Material and 

Methods. As shown in Fig.5.1 chicken ALD and breast muscle have a single actin 

isoform in each muscle extract while there are two isoforms present in mako shark, 

Atlantic herring [data not shown] and tuna slow muscle extracts. Due to the problem of 

smearing, some of the obtained results were inconclusive. However, the presence of actin 

isoforms was confirmed by various other methods as described below. 
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5.2 Alkaline urea polyacrylamide gel electrophoresis of isoactins 

As mentioned in Mudalige et al., ( 408), salmon slow muscle actin isoform has a unique 

charge substitution at the position of 360 [Asp/Gln; Asp in salmon slow actin and Gln in 

salmon fast actin]. Assuming all slow muscle actin isoforms contain this charge 

substitution, actin was extracted from a variety of muscles and subjected to alkaline urea­

PAGE [Figure 5.2]. No difference was observed in the mobility of actins from chicken 

and frog muscles. However, tuna and Atlantic herring do possess a faster moving actin in 

their slow muscles. It is important to note that shark and tuna slow muscles are 

intermingled with fast type fibers thus showing two bands in the actin slow muscle 

extract. Secondly, the mobility of mako shark slow actin isoform is less when compared 

to the mobility of salmon slow actin. 

5.3 Immunoblotting of isoactins 

To confirm that the proteins electrophoresed under alkaline condition are actins, 

immunoblotting was carried out. From the results of immunoblotts [data not shown], it can 

be confirmed that not only salmonids, but Atlantic herring and tuna also carry a separate gene 

for slow muscle actin. Interestingly, the immunoblot of shark isoactins revealed a single 

band, indicating that the second protein observed in the alkaline urea gel was not actin. 
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Gallus gallus [chicken ]ALD 
purified muscle actin 

t 

Gallus gallus [chicken] 
breast purified muscle actin 

It 

Prionace glauca [ mako shark] 
slow muscle homogenate 

Prionace glauca [ mako shark] 
fast muscle homogenate 

... 1 
t 

Thunnus albacares [Tuna] purified 
fast muscle actin 

Thunnus albacares [Tuna] 
purified 

Fig.S.l Two-dimensional gel analysis of the isolated isoactins and muscle homogenates 

from various species. 

Purified actins or muscle homogenates were subjected to 2-D gel electrophoresis. The pH gradient, 4-6; the 

concentration of polyacrylamide of the slab gel, 15% [ w/v ]. Coomassie blue stained protein patterns of the gels 

are shown here with the acidic end to the left. Arrowheads indicate the actin containing spots. As seen in all the 

gels, bilateral smearing obscured spot separation. 
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[Atlantic herring] 

Fig.5.2 Alkaline urea polyacrylamide gel electrophoresis of purified isoactins extracted 

from fast and slow muscles of various species. 

X-sartorius muscle actin; Y-cruralis muscle actin. 

Samples [0.5-2mg] were applied to the gel, which had been pre-run for 15min at 220V and electrophoresed 

at the same voltage for a total of 650Vhr at room temperature. Protein containing bands were detected by 

staining with Coomassie Brilliant Blue R-250. As seen in the gel, the migration of mako shark slow actin 

differs from salmon, tuna and Atlantic herring slow actins [under the alkaline conditions]. 
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5.4 Polyacrylamide gel electrophoresis of isoactins in the presence of 4M urea [Safer 

gel electrophoresis in the presence of 4M urea] 

A significant difference was observed in the electrophoretic mobility of salmon slow actin in 

the presence of 4M urea, suggesting that salmon slow muscle actin has different 

conformation[s] of unfolded intermediate[s], when compared to salmon fast actin (408). At 

4M urea, the extent of unfolding of salmon slow actin is greater and its conformation[s] is 

different from salmon fast actin resulting in a change in mobility in Safer gels (291). This 

observation can be used as a fingerprint in characterizing other isoactins. Tuna and Atlantic 

herring isoactins show a similar profile to salmonid isoactins under the sai:ne conditions 

[Fig.5 .3 ], unlike chicken isoactins, indicating that the conformation[ s] of unfolded salmonid, 

tuna and Atlantic herring slow muscle actin isoforms are similar. 

5.5 Polymerization of isoactins 

The sedimentation technique was utilized to study the extent of polymerization of isoactins. 

As shown in Fig.5.4 [A], the extent of polymerization of Atlantic herring slow actin was 

lower than salmonid slow actin [Fig 4.4]. However, possibly due to the presence of both 

isoactins in the tuna slow muscle actin extract, a different behaviour was observed, i.e. both 

isoforms polymerize to the same extent over a given time period [Fig.5.4 [B]]. 
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Thunnus albacares 
[tuna] 

F s 

Clupea harengus harengus 
[Atlantic herring] 

ALD Breast 

' 

Gallus gallus 
[chicken] 

Fig.5.3 Polyacrylamide gel electrophoresis of G-actin isoforms in the presence of 4M 

urea. 

F- fast muscle actin; S-slow muscle actin. 

Samples [2-4!-lg] diluted in 2mM Tris-HCl, O.lmM CaClz, 0.2mM ATP, 2mM DTT, pH 8.0 in the presence 

of 10%[v/v] glycerol were loaded onto a pre-run [for lhr at 140v] 6.5%[m/v] polyacrylamide gel 

containing 4M urea. Electrophoresis was for 1 hr at 140v at room temperature. The gels were stained with 

Coomassie blue R-250. The arrows show the inactivated G-actin aggregates. As salmonid isoactins (408), 

Atlantic herring and Tuna slow muscle actins unfold at 4M urea forming inactivated aggregates while the 

proportion of the formation of these aggregates in fast muscle actins is much less. 
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Fig.5.4 SDS-polyacrylamide gel analysis of time course polymerization of isoactins 

extracted from various species. 

The experimental conditions were as outlined under Material and Methods. As shown in gel A, the pattern of 

polymerization is the same as salmon isoactins, while it is different in tuna, possibly due to presence of two 

isoforms in the slow muscle actin extract. 
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5.6Thermal unfolding of isoactins 

Thermal unfolding was carried out using circular dichroism spectropolarimetry as discussed 

under Materials and Methods. The results are tabulated in Table 5.1. First, the transition 

temperature [Tms] of ALD, Atlantic herring fast, and mako shark fast actin are similar to 

salmon fast actin ( 408). Second, Atlantic herring slow muscle actin is more thermally stable 

than salmon slow muscle actin. Third, a higher Tm was observed in tuna fast muscle actin 

when compared to the salmon fast muscle actin. The endothermy in tunas may account for 

greater thermal stability of fast muscle actin. Surprisingly, two different Tms were 

observed in chicken breast and ALD isoactins even though there was no difference 

observed between these actins in other experiments, such as alkaline urea PAGE and 

PAGE in the presence of 4M urea and according to literature chicken contains only one 

skeletal muscle actin. 

5. 7 Mass spectrometric analysis of isoactins 

Molecular masses of actin isoforms were determined usmg MALDI-TOF mass 

spectrometry. Freeze-dried samples were dissolved in 0.2% [v/v] trifluoro acetic acid and 

50%[ v/v] acetonitrile. Table 5.2 illustrates the molecular weights of isoactins. According 

to the amino acid sequence, the molecular weight of chicken breast actin is 41823Da 

[corrected for theN-terminal acetylation and methylation ofHis73], and the experimental 

value was 41808Da. 
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Table 5.1 The transition temperatures of fast and slow muscle isoactins as determined 

by circular dichroism spectroscopy. 

Species Transition Temperature [Tm], ° C 

Fast muscle actin Slow muscle actin 

Salmo salar [salmon] 55.0 45.0 

Gallus gallus [chicken] 58.9 55.4 

Xenopus laevis [frog] 59.6 59.2 

Thunnus albacares [tuna] 57.6 -

Clupea harengus harengus [herring] 55.8 49.0 

Prionace glauca [mako shark] 55.0 -

Proteins were dialyzed against HEPES buffer [SmM Hepes, 0.2mM CaC12, 0.2mM ATP, O.Ol%[w/v] NaN3 and 

2mM DTT, pH 8.0] and concentration was adjusted to l.Smg/ml. Temperature was increased from 5 to 65°C and 

change in ellipticity at 222nm was monitored. The Tms were obtained from the 1st derivative of the change in 

ellipticity with temperature. The experiment was repeated at least twice from each batch of protein preparation. 

Number of batches= 2. 
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Table 5.2 Molecular weights ofisoactins as determined by MALDI-TOF. 

Species Molecular mass of isoactins,Da 

Fast muscle actin Slow muscle actin 

Gallus gallus [chicken] 41808 41817 
Xenopus laevis [frog] 41763 41770 
Thunnus albacares [tuna] 41767 -
Clupea harengus harengus [herring] 41787 41825 
Prionace glauca [ mako shark] 41822 -

The shown values are not averaged. Attempts to measure the molecular weight of tuna and mako shark 

slow muscle actins [which are contaminated with fast muscle isoform] were unsuccessful. 
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The difference of 23Da observed in frog skeletal muscle probably due to the presence of 

Na+. The comparison for the other isoforms cannot be performed due to the unavailability 

of amino acid sequences in the protein data bank. 

5.8 The eDNA library sequencing of dogfish shark skeletal actin 

As a continuation of this study, a clone encoding dogfish shark actin was identified from 

a eDNA library. The eDNA and the amino acid sequences [accession no. AF388172] are 

given in Fig.5.5 and 5.6, respectively. As shown in Table 5.3, there is a greater homology 

of the dogfish shark actin to the salmonid fast and cardiac actins than to salmonid slow 

actin [when compared the non-conservative amino acid substitutions]. A comparison of 

amino acid substitutions [both conservative and non-conservative] is given in Table 5.4. 

Interestingly, dogfish shark actin also contains a unique substitution at position 5l[Ala] 

where it is Ser in all the other amino acid sequences listed in the Genbank. Note that this 

residue is a part of the DNase I binding looping. Secondly, when comparing all the 

substitutions with salmonid isoactins, it is apparent that dogfish shark actin is more 

hydrophilic than that of salmon slow actin as it is comprised of Thr/Val, Thr/Ala, and 

Gin/ Ala [Thr in dogfish shark and Val in salmon slow]. 
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1atgtgtgacg acgaggaaac cacagcactg gtctgtgaca acggctccgg tctggtaaag 

61 gctggctttg ccggtgatga cgctcccagg gctgtcttcc cttccatcgt gggccgaccc 

121 aggcaccagg gtgtcatggt tggtatgggt caaaaagacg cctatgtagg agatgaggcc 

181 cagagcaaga gaggtatcct gactttaaaa tacccaattg aacacggcat cattaccaac 

241 tgggatgata tggagaagat ctggcaccac actttctaca atgagctgcg tgtggcccct 

301 gaggaacatc ccaccctgct cactgaagcc cccctcaacc ccaaggctaa ccgagagaag 

361 atgacccaaa tcctgtttga gaccttcaac gtacccgcca tgtatgtcgc catccaagct 

421 gtgctgtccc tgtacgcctc cggtcgcaca actggtattg ttctggactc tggtgatggt 

481 gtgacccata acgtccccat ctatgaaggt tatgctctcc ctcacgccat catgcgcctg 

541 gatctggctg gtcgcgacct gactgactac ctgatgaaga ttctcacaga gcgtggttat 

601 tcatttgtca ccactgctga acgtgaaatt gtccgtgaca tcaaggaaaa actttgctac 

661 gtggctctgg actttgagaa tgagatggca acagctgcat catcttcatc tctggagaaa 

721 agttatgaac ttcccgatgg ccaggtcatc accattggca atgagcgttt caggtgccca 

781 gagaccctct ttcagccatc cttcattggt atggaatctg atggcattca tgagaccacc 

841 tacaacagca ttatgaagtg tgatattgac attcgtaagg atctgtacgc caacaatgtc 

901 ctatctggtg gtaccaccat gtaccccggt attgctgacc gcatgcagaa ggaaatcact 

961 gccctagccc ccagcactat gaagattaag attattgccc cacctgagcg taaatactcc 

1021 gtctggattg gaggctccat cttagcttca ctgtccacct tccagcagat gtggattagc 

1081 aaacaggaat atgatgaggc gggtccctct attgtacaca ggaaatgctt ctaa 

Fig.5.5 The complete eDNA sequence of dogfish shark skeletal actin. 
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10 20 30 40 50 60 

MCDDEETTAL VCDNGSGLVK AGFAGDDAPR AVFPSIVGRP RHQGVMVGMG QKDAYVGDEA 

70 80 90 100 110 120 

QSKRGILTLK YPIEHGIITN WDDMEKIWHH TFYNELRVAP EEHPTLLTEA PLNPKANREK 

130 140 150 160 170 180 

MTQILFETFN VPAMYVAIQA VLSLYASGRT TGIVLDSGDG VTHNVPIYEG YALPHAIMRL 

190 200 210 220 230 240 

DLAGRDLTDY LMKILTERGY SFVTTAEREI VRDIKEKLCY VALDFENEMA TAASSSSLEK 

250 260 270 280 290 300 

SYELPDGQVI TIGNERFRCP ETLFQPSFIG MESDGIHETT YNSIMKCDID IRKDLYANNV 

310 320 330 340 350 360 

LSGGTTMYPG IADRMQKEIT ALAPSTMKIK IIAPPERKYS VWIGGSILAS LSTFQQMWIS 

370 

KQEYDEAGPS IVHRKCF 

Fig.5.6 The predicted amino acid sequence of dogfish shark skeletal actin as determined 

by the dideoxy method. 

The estimated molecular weight of the posttranslationally modified dogfish shark actin is 41840 Da. 
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Table 5.3 The comparison of total number of substitutions of dogfish shark skeletal 

actin with other isoactins. 

Dogfish Salmon Salmon Salmon Rodent 
shark slow fast cardiac skeletal 

Dogfish shark - 12 6 4 6 

Salmon slow 12 - 12 12 12 
Salmon fast 6 12 - 2 6 

Salmon cardiac 4 12 2 - 4 

Rodent skeletal 6 12 4 4 -
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Table 5.4 The comparison of dogfish shark skeletal actin with salmonid isoactins. 

Position in the Dogfish Salmon fast Salmon slow Salmon 
sequence shark actin actin actin cardiac actin 

2 Asp Glu 

3 Glu Asp Asp 

51 Ala Ser Ser Ser 

103 Thr Val 

155 Ser Ala 

165 Ile Val 

278 Thr Ala Ala 

281 Ser Gly 

310 Ala Gly 

318 Ile Thr Thr Thr 

329 Ile Met 

354 Gln Ala Ala 

358 Ser Thr 

360 Gln Asp 

363 Asp Glu 

The comparison was carried out with respect to dogfish shark actin. 
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5.9 Evolutionary relationships of isoactins 

To examine the evolutionary relationships of deuterostome actin isoforms, especially in 

relation to salmonid isoactins, a molecular phylogenetic analysis of actin amino acid and 

nucleotide sequences was performed. Deduced amino acid and nucleotide sequences 

were aligned using CLUSTAL W (413) and the phylogenies were constructed using the 

Neighbor-Joining [NJ] (414), Minimum Evolution [ME], or Bayesian analysis [BA] 

methods as implemented in the MEGA 3.1 or Mr.Bayes 3.1.2 programs. The analysis 

using Mr.Bayes 3.1.2 were carried out by Dr. D. Marshall [Department of Biology, 

Memorial University ofNewfoundland]. 

One phylogenetic tree was constructed using the ME method and bootstrapping for 

support at the nodes, and the other with the NJ method and estimation of branch lengths 

for support of branches leading to nodes. About 95% or greater support on nodes is 

considered to be statistically valid. However, about 80% or greater is often considered as 

satisfactory as well. For this analysis amino acid sequences were obtained from GenBank 

[Fig.5.7]. The NJ [Fig.5.8 [A]] and ME [5.8[B]] analyses gave essentially similar results 

with respect to the major clusters identified. Due to the lack of statistical support 

observed in the results of these phylogentic trees, which were constructed using amino 

acid sequences, trees were again constructed using nucleotide sequences. To construct 

these trees, the NJ and BA methods were used and lamprey [Lethenteron japonicum] 

muscle actin was used as an out-group to root the nodes. To minimize the complexity of 

the tree, a reduced number of nucleotide sequences were utilized. 
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1. Bos taurus alpha-aortic smooth muscle actin 
2. Bos taurus alpha-skeletal actin precursor 
3. Cyprinus carpio alpha-skeletal muscle actin 
4. Fugu rubripes alpha- cardiac muscle actin1 
5. Fugu rubripes alpha-skeletal muscle actin1 
6. Gadus morhua alpha-fast skeletal muscle actin 
7. Gallus gallus alpha actin 
8. Gallus gallus alpha-cardiac muscle actin 
9. Homo sapiens actin, alpha 1, skeletal muscle 
10. Homo sapiens actin, alpha 2- aorta smooth muscle actin 
11. Homo sapiens actin, alpha, cardiac muscle actin 
12. Lethenteronjaponicum muscle actin 
13. Mus musculus alpha-cardiac muscle actin 
14. Mus musculus actin alpha 2- aorta smooth muscle actin 
15. Mus musculus alpha 1-skeletal muscle actin 
16. Oryctolagus cuniculus alpha-aortic smooth muscle actin 
17. Rattus norvegicus alpha, cardiacmuscle actin 
18. Rattus norvegicus alpha-aortic smooth muscle actin 
19. Rattus norvegicus, alpha 1, skeletal muscle actin 
20. Salmo salar alpha-fast muscle actin. 
21. Salmo trutta alpha-cardiac muscle actin 
22. Salmo trutta alpha-slow muscle actin 
23. Scyliorhinus retifer alpha-fast muscle actin. 
24. Sus scrofa alpha-skeletal muscle actin 
25. Takifugu rubripes alpha1-ske1etal muscle actin 
26. Takifugu rubripes alpha-cardiac muscle actin 
27. Xenopus laevis alpha-aortic smooth muscle actin 
28. Xenopus laevis alpha-cardiac muscle actin 

Fig.S. 7 Accession numbers taken from GenBank. 

P62739 
AAA82873 
P53479 
P53480 
P68140 
AAM21702 
AAA98527 
P68034 
CAI19051 
CAI13865 
P68032 
BAB79590 
P68033 
NP 031418 
NP 033736 
P62740 
P68035 
P62738 
NP 062085 
AAG25672 
AAG22822 
AAF75784 
AAK70884 
P68137 
P68140 

P53480 
AAX85448 
P04751 
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Fig.5.8 Molecular phylogenetic analysis of the amino acid sequences of isoactins of 

selected species. 

The total number of amino acids [377] were subjected to phylogenetic analysis. [A] phylogenetic tree inferred by 

the neighbour-joining method. Branch lengths are proportional to evolutionary distances. Scale bar indicates an 

evolutionary distance of 0.005 amino acid substitutions per position in the sequence. [B] Phylogeny inferred by 

the minimum evolution method. Numbers shown in both trees are percentages of I ,000 bootstrap replicates. All 

the accession numbers are given in Fig.5.7 

177 



A 

30 

14 

Rattus norw~giclu alpha-aortic smooth muscle actin 

92 Orycto/llgus cunicllltu aipbHortic smooth muscle actin 
r-------1 

93 

lJoJ flUiriU alpha-aortic smooth muscle actin 

Homo sapielu actin, alpha 2· aorta smooth muscle actin 

M111 /llli.JCIIJIII actin alpha 2- aorta smooth muscle actin 

1..------ X.Wfllll illeYU alpbHmtic smooth muscle actin 

"'------ Letlrsutron japonicum muscle actin 

Galbu gallus aipha-cardiic muscle actin 

Ri#tiU IUITVCficlu ajpba. C3ldilc IJIIIICla xtia 

1--- Xenop118 /aevil alpba-cardiac mUICle actin 
-

Mus mu.tculus a1pba-caidial: muscle actin 

Homo sapielu actin. alpha. cardiac muscle 

L--------- Scyliorlliluu Tlti{tr alpha-fast muscle actin 

Fup rubripu aiplla- cardiac muscle actin 

SiJlmo trultlJ alplla-canli.al muscle actin 

L----- Salmo .sa/.ar aipba.fast muscle actin. 

Mus mu.tcubu alpha 1-skeletalmUICle actin 

. 8os flUiriU alpha·skelelal actin precursor 

Gallus gallus alpha skdetal actin 

Rattus norw~gicus, alpha 1, skeletal muscle actin 
93 Homo sapielu actin. alpha 1. skeletal muscle 

Oryctolagus CllllicuJus alpha 1 slc.cletal muscle actin 

! Su.s scrofa a.lpba-skelelll muscle~ actin 

Gillius mor/Ju.a alpba-fast skeletal muscle actin 

r- Pleurogranuruu lJ1.0IIU$ alpha slceletal mUICle actin 

36 Lj- Fttll" ."llbrirH!S alpba-sielelll muscle 'll.'lin i 

43 1..-- Cyprinlu carpio alpha-skeletal muscle lll:tin 

1.----------------------- Saimo mma alpha-slow muscle lll:tin 

0.005 

Fig.5.8 continued on the next page. 
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As shown in Fig.5.9 [A] the phylogenetic tree constructed using the BA method gives 

high probabilities at the nodes, when compared to bootstrap support for nodes on the tree 

constructed using the NJ method [5.9[B]]. 

Discussion. 

The alkaline urea gel and immunoblotting analysis confirmed that, in contrast to mako shark, 

frog and chicken, Atlantic herring tune and salmon contain a separate actin gene in its slow 

muscle implying that this gene expresses in some of the aquatic species. This is evidenced 

by the absence of a slow muscle actin isoform in other higher vertebrates including rat, 

mouse, pig and human (415-419). The existence of a single skeletal actin isoform in 

chicken and frog embryos (420) as well has been previously reported. 

First, according to the amino acid phylogeny, first, using mid point rooting, salmon slow 

actin is the out-group to Atlantic cod [Gadus morhua] fast skeletal muscle actin. Secondly, all 

fish skeletal muscle actins cluster together except salmon fast and dogfish shark isoactins. 

Surprisingly, dogfish shark actin seems to be closely related to mammalian and frog 

[Xenopus laevis] cardiac isoactins. On the other hand, salmon fast actin is grouped with 

salmon and puffer fish [Fugu rubripes] cardiac isoactins. Note that in particular this latter 

relationship is not strongly supported by bootstrap replicates. As to the grouping of 

mammalian aortic smooth muscle actins with frog aortic smooth muscle actin, this was 

strongly supported with 93% of the bootstrap replicates as was the grouping of mammalian 

and Atlantic cod skeletal muscle actins with 94%. However, the support for other nodes is 
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Fig.5.9 continues on the next page. 
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Fig.5.9 Phylogentic trees of the aligned actin nucleotide sequences of selected species. 

[A]Phylogenetic analysis to generate phenograms via the Bayesian method was implemented with MrBayes 3.1.2 

computer package. [B] Phylogentic tree inferred by the neighbour joining method as implemented in MEGA 3.1. Branch 

lengths are proportional to evolutionary distances. Scale bar indicates an evolutionary distance of 0.02 amino acid 

substitution per position in the sequence. All the accession numbers are given in Fig. 5. 7. 



considerably lower, such that the results do not fall into the statistically defensible range. 

This is mainly due to the limited number of amino acid substitutions in the actin molecule. 

As seen in Fig.5.9, human skeletal and lamprey muscle actins are clearly separated from 

other isoactins. The nucleotide sequences of salmonid isoactins reported here clearly fall into 

different categories of vertebrates. In the Bayesian phylogenetic analysis, salmon slow 

muscle actin was clustered together with puffer fish cardiac alpha actin 1 isoform while 

salmon fast actin is clustered together with puffer fish skeletal alpha actin 1. 

The salmon slow muscle actin seems to have diverged from the ancestral actin after it 

diverged from salmon cardiac muscle actin. Interestingly, with 97% support dogfish shark 

actin is grouped together with chicken cardiac actin. The comparison of amino acid 

sequences between salmon slow and puffer fish cardiac actin shows six non-conservative 

substitutions and it is only two for both between salmon fast and puffer fish skeletal actin and 

chicken cardiac and dogfish shark fast actin. Therefore, it is apparent that the amino acid 

sequence of dogfish shark fast muscle actin is well preserved for a very long period. 

Japanese puffer fish have two skeletal actin isoforms containing three non-conservative 

substitutions (421). The substitutions unique to salmonid slow muscle actin such as the 

charge substitution at 360 and Ala residue at 155 do not appear in these sequences. The 

comparison of slow muscle actin amino acid sequence with the other available vertebrate 

actin sequences in the GenBank revealed the diversity of non-conservative substitutions in 

the animal kingdom [Table 5.5]. The charge substitution at 360 can only be found in salmon. 
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Table 5.5 The diversity of salmonid non-conservative substitutions in the animal 

kingdom. 

SubstitUtion ·.. . No. 9fspepi~~ ·. ·. >,; Remarks 
: ... having the substitution. •• 

Va1103Thr 2 In zebra fish and sea squirt 
Ll\.1ohmla oculat(! l skeletal muscle 

Ala155Ser 17 In fish, desert iguana [Dipsosaurus dorsalis] 
and pelican rsohvraena idiastes l 

Thr278Ala 23 Found in terestial [frog, rat, mouse and 
human] and aquatic species [zebra fish, 
lamprey] 

Gly281Ser 1 Zebra fish [Brachxdanio rerio] 

Gly310Ala 1 Zebra fish [Brachxdanio rerio] 

Asp360Gln 0 -

A total of 100 sequences were analyzed. All the sequence data are taken from GenBank. 

Val103Thr- Val at position 103 of salmon slow actin and other species documented under the column 

"remarks" is substituted with Thr in salmon fast actin. 
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Further, the substitutions, Gly281 Ser and Gly31 OAla [Val in slow, Thr in fast] are only 

unique to salmon and zebra fish [Brachydanio rerio]. Interestingly, all the non-conservative 

substitutions of salmonid slow actin except the Asp360Gln, exist in zebra fish skeletal muscle 

actin. Therefore, zebra fish could be closely related to salmonids. The charge substitution at 

position 360 of salmon might have arisen as a result of a point mutation. 

The nucleotide sequences of the 5' flanking region and the 3' untranslated region of actin 

genes have been reported to be isoform specific (422 and 423). Salmonid 5' and 3' 

untranslated sequences were compared with the few other available 5' and 3' untranslated 

sequences. The information, which can be gathered from this alignment, is very limited due 

to the fact that the salmonid non-coding sequences are short. 

To study whether there is a relationship between the distribution of the slow muscle actin 

isoform in the phylogeny and the taxonomy of the species, a taxonomical study was carried 

out [Fig.5.10]. First, it is apparent that, as a result of the gene duplication, slow muscle actin 

isoform starts express in bony vertebrates [ euteleostomi], hence it has not been observed in 

cartilaginous fish [e.g. mako shark]. Secondly, the expression of this isoform diverted 

towards teleostei [bony fish] and can only be found in some fish species such as salmon and 

Atlantic herring. However, the distribution of this isoform in fish is difficult to explain due to 

the lack of slow actin sequences in the Genbank. 

In a comparison of the functional properties of salmon fast actin with slow actin it can be 

seen that fast actin is a thermally stable actin having greater A TPase activity and 

polymerization (408). This indicates that the existence of a second isoform [slow actin] 
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Fig.5.10 The distribution of selected species in the animal taxonomy 
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which is less effective is not important to the skeletal muscle system. Possibly due to this 

reason, and maybe due to environmental changes that occurred, the slow muscle actin gene 

stopped expressing in some species [e.g. tetrapodes]. 

Actin isoforms display very small differences in amino acid sequence across a diverse range 

of eukaryotic organisms, e.g. human, rat and chicken skeletal actin sequences are identical. 

This conservation is probably due primarily to selective pressure on the protein itself. 

However, an additional mechanism for maintaining homogeneity among members of gene 

families is gene conversion, the non-reciprocal exchange of portions of allelic or homologous 

non-allelic genes ( 424 and 425). Further, the nucleotide sequences of the 5' and 3' flanking 

regions and the location of introns are also helpful in determining the conservation of 

isoforms. 

The factors that determine a particular protein's rate of change may be genetic, structural or 

functional. It has been shown that the evolutionary rates of molecules depend strongly on 

tissues where they are expressed specifically, and suggested the presence of functional 

constraints against molecular variations from the tissue level (426). Because family members 

often express tissue specifically and the evolutionary rates differ for different tissues, it is 

important to find the relationship between tissue and molecular evolution. The rate of change 

of eukaryotic actin is about 10% per billion years ( 427). One reason that actin changes slowly 

may have to do with the large number of macromolecular interactions that it possesses and 

those interactions must be preserved. For example, these include myosin, profilin, gelsolin 

etc. As such the various interactions are genetically interlocked, change in any one having a 
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potential consequence for the rest. This is evident in that, when muscle and non-muscle 

sequences are compared, the substitutions of an internal residue appear to be accompanied by 

another change in the vicinity, compensating for the effects of the first. Cysl0Nal17 and 

Thr103Nal129 in muscle actins become, respectively, Val10/Cys17 and Val103/Thr129 in 

non-muscle actins. The exact symmetries of the compensatory pairs of the residues suggest 

that there are very specific requirements in the internal packing of amino acids in actin, 

probably to preserve and maintain the overall structure. 
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Chapter 6 

Conclusions 

The capacity for the diversity of striated muscle proteins 1s enormous. Numerous 

isoforms arise from the use of multiple genes, multiple promoters, and alternative 

splicing of individual genes. Additional diversity is supplied by the reversible 

phosphorylation of some of these proteins. Therefore, it is important to understand the 

difference in functionality of a given muscle protein variant. To this end, this thesis 

focuses on the evaluation of these phenomena as they apply to two striated muscle 

constituents namely, tropomyosin and actin. In addition, the distribution of a slow muscle 

isoform actin, thought not to exist in vertebrates, has been mapped. 

As to the study on shark TM [Chapter 3], it is clear that phosphorylation at residue 283 

exerts a significant impact on thin filament regulation. This is probably due to the 

strengthening of the end-to-end interaction which, in tum, may lead to the change in thin 

filament 'block' size [discussion - chapter 3]. As a result, a greater activation in thin 

filament regulation was observed in thin filaments containing PTM [2-fold activation 

over UnPTM; Figure 3.3, Chapter 3]. Further, the observed insignificant difference in 

myosin-Sl binding affinity [Figure 3.4, Chapter 3] with reconstituted thin filaments 

containing PTM!UnPTM is in good agreement with the above explanation. However, it 

cannot be ruled out that the observed difference in myosin-S 1 activation could also be 

due to the difference in rate(s) in kinetic steps. 
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Heeley et al (1) reported the existence of two skeletal [fast and slow] and a cardiac 

muscle TM isoforms in salmon. From the results of Tn binding experiments [Chapter 3 ], 

affinity of these isoforms increases in the order: slow <fast < cardiac. It has been well 

documented that TM contains two binding regions for Tn in the thin filament [residues 

10-30 and 174-216 (173)]. However, under the experimental conditions it is reasonable to 

assume that TM is in the monomeric form [no F-actin present either] and hence the end­

to end interactions are absent. Therefore, it can be suggested that the non-conservative 

and conservative substitutions of the Tn binding region of these TM isoforms [174-216, 

see Table 3.2] are responsible for the observed difference in Tn binding affinity. When 

studying the amino acid substitutions in this region it is noted that salmon slow TM does 

not carry a single Ser residue in this region while salmon fast and cardiac TMs contained 

three and two Ser residues, respectively. However, while salmon cardiac TM does not 

contain any Thr residues in this region, but both salmon fast and slow TM carry Thr 

residues. Further, only cardiac TM, contains an amino acid with a charge substitution 

[216Glu in cardiac while it is Gln in fast and slow]. Secondly, it is possible to have long­

range effect[ s] from other non-conservative and conservative substitutions in the rest of 

the TM molecule on Tn binding. There are four charge substitutions in the N-terminal 

region [residues 9-50, see table 3.2]. Of these charge substitutions, three substitutions are 

located in the g position of the heptad sequence [residues 21, 42 and 49], while the fourth 

charge substitution [Leu39His, Leu in salmon fast vs His in salmon cardiac TM] is 

located in the d position. Interestingly, as a result of these substitutions the cardiac TM 

carries the least net charge in the N-terminal region while fast TM has the highest. 
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Therefore, the substituted amino acids in the region of 174- 216 along with rest of the 

substitutions could be responsible for the observed difference in Tn binding affinity. 

Interestingly, the order of actomyosin-S1ATPase activities of reconstituted thin 

filaments of salmonid TMs is the same as the order of Tn binding affinity, implying that 

these substitutions which are in Tn binding region are involved in moving TM from the 

'blocked' state to the 'open' state. Further, the other substitutions, including conservative 

and charge substitution at 276 [Asn!His], may also be involved in binding with actin 

giving a different level of ATPase activity. 

When considering the results of all the experiments that have been carried out using 

salmonid isoactins, the uniqueness of salmon slow muscle actin is an eminent feature 

[Chapert 4], the uniqueness of salmon slow muscle actin is an eminent feature. Salmon 

slow muscle actin contains one dozen of substitutions compared to those isoforms present 

in salmon fast skeletal muscle, salmon cardiac muscle and rabbit skeletal muscle, and yet 

it shares considerably lower rate of polymerization resulting in a less viscous solution, 

and is less stable to both elevated temperature and chemical denaturants such as 8M urea 

and Gdn-HCl, thus having greater rate of unfolding compared to salmon fast actin. 

Under the steady state conditions salmon slow actin showed significantly less myosin 

activation. Further, its ability to displace ATP from the nucleotide binding pocket is 

greater with respect to salmon fast actn. 
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As mentioned in chapter 4, each G-actin monomer possesses several binding sites with 

other monomers in F-actin. Most of the substitutions are found in these interacting 

regions making it difficult to recognize one or a group of amino acids responsible for the 

change in the interactions. When considering the thin filament regulation, sub-domain-1 

is of interest due to its carrying the myosin-S 1 binding region. The changing interactions 

imposed by the charge substitution at 360, which is located in sub-domain-1, with other 

substitutions can account for the observed difference in thin filament regulation. 

When considering the stability of ATP-G-actin, from the results of near and far-UV 

thermal unfolding [Fig. 4.25], it is reasonable to predict that the least stable region is sub­

domain- I. Therefore, the exposed Cys residue [other than Cys374] at Tm could be Cys 

10. However, the unfolded regions of the G-actin molecule in the presence of chemicals 

[8M urea and 4M Gdn-HCl] are not clear. 

The ability to displace the nucleotide [ATP/ADP] is an important feature ofG-actin. The 

amino acids, which stabilize the interactions with the nucleotide are highly conserved. 

However, according to the intrinsic fluorescence spectrum of mant-ATP-G-actin 

[Fig.4.23], the substitution Serl55Ala in slow actin changes the hydrophobicity of the 

nucleotide-binding pocket. The higher rate of displacement of ATP in slow muscle actin, 

when compared to salmon fast actin implies that the long-range interactions either by 

changing the interactions with the nucleotide or the metal ion, has had an impact on the 

strength of the nucleotide binding to molecule. 
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It is well documented that actin is an old highly conserved protein molecule. From the 

species analyzed [Chapter 5], it can be suggested that the slow muscle actin gene 

expresses randomly only in aquatic species. The non-conservative substitutions found in 

slow muscle actin can be seen in a few other species [see Table 5.5]. In particular, the 

charged substitution thought to be found only in Salmon. However, recently, it has been 

determined that Atlantic herring slow muscle actin also has this charge substitution 

[unpublished data from Heeley's lab]. Therefore, the charge substitution at 360 could be 

used as a marker for slow muscle actins. However, the evolutionary studies which were 

conducted using actin nucleotide sequences revealed that salmon slow muscle actin 

isoform is more closely related to puffer fish cardiac actin 1 isoform than it is to other 

sarcomeric actins. In addition, salmon fast actin isoform is clustered together with puffer 

fish skeletal alpha actin 1 isoform. The combination of this data with the taxonomical 

distribution of these selected species indicates that slow actin starts to express in slow 

twitch muscle as a result of the gene duplication which has been taken place prior to the 

divergence of bony vertebrates [euteleostomi] from cartilaginous fish [chondrichthyes]. 

The fact that it is then entered into clupeocephalians but not into tetrapodes, maybe due to 

structural, functional and/or environmental factors that affect on the expression of this 

isoform. However, it is difficult to gather more information pertaining to its distribution 

due to lack of slow muscle actin amino acid sequences in the data base. 

Finally, it can be concluded that the amino acid substitutions [both conservative and non­

conservative] observed in variant forms of actin and tropomyosin have short or long 
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range interactions with other thin filament proteins that may have caused them to perform 

its function to a different extent. Secondly, the charge substitution of salmon slow muscle 

actin at residue 360 can be used as a marker to identify slow muscle actin. However, 

further studies on slow muscle actin isoform amino acid sequences from other species are 

necessary to be done. 

Future research work 

It would be of interest to investigate the stability of salmonid isoTMs using circular 

dichroism and differential scanning colorimetry. This can be studied by thermal 

unfolding of isoactins in the presence of rabbit Tn and then with thin filament [either with 

rabbit actin or relevant salmonid isoactins] at the near and far-UV range. The interactions 

ofF -actin affect the character of thermal unfolding of TM, leading to the appearance of a 

new Tm. Addition of Tn would change the Tm of F -actin bound TM. This experiment 

could be carried out in the presence and absence of Ca+2 and at different ionic strengths 

as well. To study the influence of isolated components ofTn, TnT, Tnl and TnC could be 

added separately. 

To determine the significance of the substitutions occurred in Tn binding regwn, 

mutational studies of recombinant TM could be carried out. The functional properties of 

the modified proteins could then be defined by actin affinity, TnT affinity and by 

regulation of reconstituted thin filaments. As a continuation of Tn binding with salmonid 
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TM isoforms, the experiment could be carried out using TnT bound affinity column 

material istead of whole Tn. 

It is important to determine the unfolding regions in the presence of 8M urea and Gdn­

HCL This could be carried out by mapping the unfolded regions using enzymes such as 

trypsin and subtilisin. Further, size exclusion chromatography could be a valuable tool 

used to study the number of inactivated molecules at 4M urea concentration [in 

connection with Safer gel analysis] in each isoform. 

The importance of conservative and non-conservative substitutions in the actin binding 

protein regions could be studied. For example, the charge substitution at 360 is in the 

binding site of profiline and hence a comparative study of profilin binding with salmonid 

actin will give insights to the orientation of this substitution in the sub domain-1 

It is useful to study the nucleotide displacement of ATP-G-actin as a function of metal 

ion concentration [Mg+2 I Ca+2
]. Further, for a comparative study, the same experiment 

could be repeated using ADP-G-actin. The dissociation of nucleotide [either ATP or 

ADP] could be examined in the presence of EDT A using stop-flow apparatus. 
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Finally, as a continuation of the thin filament regulation studies on salmonid TM and 

actin isoforms at steady state, the same experiment could be repeated under pre-steady 

state conditions using stop-flow apparatus. 
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