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Abstract 

This thesis represents the continuation of work on PetrograFX, an automated image 

analysis toolkit for petrographic image analysis. These types of images are used in the 

petroleum industry to provide valuable information, however, the retrieval of data from 

these images is time consuming and prone to operator bias. An integrated solution that 

combines a number of basic image processing concepts, each tailored towards 

segmenting a particular type of grain, is developed to automate this process. Specifically, 

an attempt is made to replicate the methodology and analysis carried out by core 

laboratories, which typically place more emphasis on overall 'interpretation of the image 

rather than just the measurement of the porosity and quartz grain distribution. This 

requires a solid treatment of the geological background to ensure the data being collected 

will be useful. Due to their complex nature there will be regions within these images that 

are unidentifiable. This approach necessitates a classification routine to eliminate objects 

once they have been segmented to ensure that they are unaffected by subsequent routines. 

To provide a quick and objective assessment segmentation performance an automated 

accuracy routine is presented. 
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Chapter 1 

Introduction 

The petroleum industry is multi-disciplined and requires knowledge of both engineering 

and earth sciences. In recent years technology has had a tremendous affect on production 

efficiencies. With the advent of reservoir simulators and other computer programs the 

industry is moving away from the qualitative constraints of traditional geological and 

petrophysical practices and is becoming evermore quantified and precise. Despite these 

advances the fact remains that the core, collected during the drilling of a well, remains 

the only direct source of data for the reservoir. The geologist uses information acquired 

from the core in combination with other sources such as well logs and seismic data to 

assess the potential of a particular reservoir. Coring a well can be an expensive 

procedure and is, therefore, not carried out for every well. This greatly increases the 

importance of the data that are obtained, especially considering the fact that wells can be 

several kilometers apart and the well data must be extrapolated over this distance. Core 

analysis involves testing samples of the core for rock properties such as porosity and 

permeability. The benefit of core analysis is that it is unambiguous and provides an 

accurate interpretation of the rock structure, however, due to the limited sampling along 

the length of the well, it cannot properly detect heterogeneities. Well logs, generated by 

passing various sensors and instruments through the well bore in the area of the 

formation, have the advantage of being able to scan the entire length of the well with an 

effective radius ranging from a few inches to a couple of feet. These logs are, therefore, 



better suited to detect reservoir heterogeneities but they require assumptions about 

properties of the rock structure as well as about any fluids that may be present in the 

reservoir [Koederitz et al., 1989]. While each method provides satisfactory results under 

favorable conditions (homogeneous reservoir), integration of all available data into one 

cohesive model is the key to successful reservoir analysis in real world situations. 

1.1 Petrographic Image Analysis 

Petrographic image analysis (PIA) is one type of core analysis in which information is 

acquired by producing thin sections of the core that are then viewed under a microscope. 

These thin sections provide a good qualitative indication of the reservoir properties by 

allowing the geologists to visualize the grains, pores and other materials. Thin-section 

acquisition is not limited to conventional core samples; they can also be acquired from 

sidewall cores and cuttings samples, which can be important in cases where conventional 

core collection is limited [Davies, 1990]. Pore space data acquired from thin-sections can 

be used to estimate permeability and predict reservoir quality based on an understanding 

of diagenetic alteration and its relation to effective porosity [Ruzyla, 1986; Bowers et al., 

1994; Gies and McGovern, 1993; James, 1995; Mowers and Budd, 1996]. In addition, 

this information can also be linked to well log data [Davies, 1990]. 

It is difficult to obtain accurate quantitative measures from PIA since a highly 

skilled operator is required to analyze a large number of grains (300-500) to make the 

results statistically meaningful [Kennedy and Mazzullo, 1991]. This type of analysis can 

be very time consuming and it can take 2-3 hours to complete a slide containing 200-500 

grains [Gosine and Burden, 1999], making it uneconomical to complete more than a few 
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images per well. In addition to this, a standard deviation of 5% between operators can be 

expected when manually segmenting images [Diogenes et al., 2003]. If a greater number 

of these images could be analyzed with greater accuracy, more information would be 

available to integrate into the reservoir model. To facilitate this, efforts have been 

extended to characterize thin sections using automated image analysis techniques. Fully 

automated image analysis has been complicated by the presence of touching, 

overlapping, and fused grains that lack distinct boundaries. An inability to separate these 

grains using image-processing methods leads to substantial bias when calculating textural 

characteristics of the sample [van de Berg et al., 2002]. Several image-processing 

algorithms have been proposed to remedy this situation but when it comes to accurately 

segmenting the entire image, results are generally poor to moderate. Difficulties with 

these methods have prompted researchers to focus their attention on developing 

alternative methods for acquiring the thin-section images. For some image acquisition 

methods, the visibility of grain boundaries vary depending on the orientation of the 

sample, therefore, a composite image can be formed which contains significantly more 

boundaries as compared to other methods [Starkey and Samantaray, 1994; Ross et al., 

2001]. Despite the above problems, most thin-section images are still acquired using 

more traditional methods and given the fact that many oil companies may already have an 

inventory of these images, it is worthwhile to pursue automated solutions based on these 

images. In addition, these methods can be adapted for use with other types of samples 

and materials, including metallurgical samples obtained using reflected light sources 

[Kraatz et al., 2003]. 
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1.2 Motivation and Objectives 

The research presented here is the continuation of PetrograFX, an automated thin section 

image analysis software package developed by C-Core, Hibernia Management and 

Development Company (HMDC), the Center for Earth Resources Research and 

Memorial University of Newfoundland. The goal of this software is to produce pore 

space and quartz grain segmentation and measurement algorithms that are capable of 

automated, fast and accurate thin-section image analysis to either replace or partially 

replace the human analysis [Zhao, 2000]. Work completed prior to the start of this thesis 

included an automatic pore space segmentation and measurement algorithm and a quartz 

grain segmentation and measurement algorithm. The algorithm for measuring the pore 

space was well developed and provided excellent results, while the routine for quartz 

grain segmentation simply provided a starting point for further research. It is recognized 

that this routine works well for segmenting a certain of grain, however, there are many 

other grains on which it fails. 

The overall goal of this thesis is to provide additional methods for segmenting the 

remaining grains, as well as identifying additional image constituents. Specifically, an 

attempt is made to replicate the methodology and analysis carried out by core 

laboratories, which typically place more emphasis on overall interpretation of the image 

rather than just the measurement of the porosity and quartz grain distribution. This 

requires a solid treatment of the geological background to ensure that the data being 

collected will be useful. It is important to recognize that because constant operator 

interaction is required to properly identify all constituents of thin-section images [Starkey 

and Samantaray, 1994], there will be regions within these fixed images that are 
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unidentifiable. In addition, the difference in interpretation that exists among experienced 

operators suggests that, even with constant interaction with the sample, some regions are 

impossible to segment accurately. Russ [1990] points out that this subjectivity is 

unavoidable when acquiring measurements using microscopy. Based upon this 

information, distinct types of grains were grouped together and different methods were 

developed to segment different grain types, with some types remaining un-segmented due 

to lack of information or uncertainty in the interpretation. The theory is that enough of 

the image can be segmented so as to provide accurate information for image 

classification (in a geological sense). This differs from previous methods that applied 

one segmentation routine to the entire image [Russ, 1995; Zhao, 2000; van den Berg, 

2002], but is similar to genetic algorithms that evolve a different routine for each mineral 

in the sample [Ross et al., 2001]. This approach necessitates a classification routine to 

eliminate objects once they have been segmented to ensure that they are unaffected by 

subsequent routines. 

Another important factor to consider is that the grains seen in these images are the 

result of natural processes and can therefore show significant variation from image to 

image. This variation further complicates the design of an image analysis algorithm; 

therefore, an approach that includes more than one segmentation routine provides 

adaptability from image to image. 

To gauge the effectiveness of the segmentation algorithm, a quick and objective 

method is needed, otherwise quantifying the performance will suffer from the same 

human subjectivity that was presented earlier. To accomplish this, potential grains are to 

be compared automatically to their manually segmented counterparts. 
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To summarize, the primary goal is to develop an adaptable segmentation algorithm 

capable of accurately identifying a sufficient amount of material to provide geological 

classification for a range of images. This is accomplished by developing a modular 

design that integrates a number of approaches, each aimed at a specific type of grain 

material. Secondary goals include identification of other image constituents and the 

development of automated methods to quantify the performance of the algorithm. These 

automated methods, in combination with the modular design of the segmentation 

algorithm, introduce the potential for learning as the program can test for the parameters 

and routines that maximize the accuracy of the segmentation. 

Chapter 2 provides an overview of thin-section petrographic image analysis and 

the research that has been carried out in this area. Chapter 3 discusses the manual 

analysis of the test images and the specific features found in the data set. Chapter 4 

outlines the development of the image processing methods used to segment, classify and 

measure the image constituents. Chapter 5 quantifies the performance of the 

segmentation routines and discusses their integration to form a single segmentation 

algorithm. Chapter 6 presents and discusses the results of the integrated segmentation 

routine. Chapter 7 presents the conclusions and recommendations . 
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Chapter 2 

Petrographic Image Analysis 

For any image-processing application, it is necessary to have a basic understanding of the 

contents of the images under consideration. In other words, it is necessary to know what 

is being observed and why. In the case of petrographic images, the contents are 

extremely varied due to their complex origins. Typically, a number of different image 

components are examined to provide some higher-level geological 'understanding' or 

interpretation. The goal of this chapter is to introduce the geological concepts required to 

identify and measure the contents of the petrographic images and to provide a review of 

previous work completed in this field. 

2.1 Geological Background 

Petrology is the branch of geology that is concerned with the study of rocks, including 

igneous, sedimentary, and metamorphic. Oil reservoirs most commonly consist of 

sandstone, although other types do exist. The sandstone, containing the oil, is formed 

through a depositional process that consists of the transportation and early burial of 

detrital material and allochems followed by the process of diagenesis, which turns the 

sand into sandstone [Raymond, 2002]. The detrital material consists of pre-existing rock 

fragments or grains originating from igneous, metamorphic and sedimentary sources. 

Allochems are any chemical or biochemical material that was formed prior to deposition, 

i.e., in an earlier rock formation. The term authigenic refers to any part of the rock that 
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was formed in situ, as part of the diagenetic process, including chemical and biochemical 

precipitates. Generally there are voids within the sandstone known as porosity. 

Precipitates form in the interstitial pore space, thereby, resulting in a reduction of the 

primary porosity. Aspects of Sedimentary Petrology are drawn upon to classify these 

petrographic thin-section images. This classification includes an examination of the 

texture, as well as the composition and alteration methods, since these factors provide the 

most important information for determining the origin, method of formation, and overall 

quality of the reservoir structure. 

2.1.1 Sedimentary Composition 

The composition refers to the mineralolgy or chemical characteristics of the grains. 

Compositional classification schemes are based on the relative amounts of quartz, 

feldspars and rock fragments, since they are the most common minerals forming detrital 

grains [Lewis and McConchie, 1994b]. These schemes can be very detailed, depending 

on the material present in the samples and the required depth of analysis. Sandstones are 

technically composed of grains in the range of 2.0-0.06 mm in diameter, however, 

textural studies incorporate grains in the range of 4.0-0.03 mm in diameter and so this 

convention is sometimes adopted for compositional classification. Material smaller than 

0.03mm in diameter is classified as silt and clay material and is considered to be part of 

the matrix (as opposed to part of the grain fabric). Matrix material and authigenetic 

material (cements) are also considered when identifying the composition of sandstone. 

Quartz varieties include volcanic, vein, recycled sedimentary, metamorphic, and 

common grains [Lewis and McConchie, 1994b]. The volcanic grains are typically water 
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clear, unstrained and mono-crystalline. Grains of the vein variety tend to have abundant 

vacuoles or other inclusions and may be unstrained or slightly strained. They can be 

mono-crystalline or polycrystalline with obscure crystal boundaries. The recycled 

sedimentary grains tend to show the characteristics of the ultimate source rather than the 

intermediate sedimentary source, but the presence of rounded or worn overgrowths is the 

main means of identification. Metamorphic grains are difficult to identify and are often 

grouped in the common grain category. Common grains are those that do not have any 

clear indicators of their origin. These grains can be mono-crystalline or poly-crystalline, 

strained or unstrained, with or without vacuoles or other inclusions. 

Feldspar grains are best identified by staining and when present, the 

discrimination of the different varieties can provide information about provenance. It is 

difficult to locate these grains without the stains; however, the use of crossed-polarized 

light may prove useful. Also, other characteristics, such as twinning or the alteration of 

feldspars to other materials, may be indicators of the presence of a particular variety. In 

some cases, feldspar grains can be completely replaced by authigenic clays during 

diagenesis. 

Rock fragments are the best indicators of provenance and should be carefully 

sought in thin section [Lewis and McConchie, 1994b] . However, these are not easily 

identifiable and in plane-polarized light they may be colorless or a murky pale brown and 

they are often confused with altered feldspars. Once found, techniques of optical 

microscopy are able to give further insight into the classification of the different rock 

fragments but there are no set rules separating the different classes. 
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Matrix material is composed of clay and silt-sized particles deposited with the other 

detrital grains and it has the potential to partially or completely fill the interstitial pore 

spaces. Cements, on the other hand, are precipitated after deposition during the 

diagenetic process in the form of optically-continuous, and often euhedral, overgrowths 

on the original detrital grains. Analysis of these materials provides important information 

on the diagenetic history of the formation. 

2.1.2 Sedimentary Texture 

In terms of sedimentology, texture refers to sediment fabric (including grain size and 

sorting) as well as the individual grain shapes. Sediment fabric refers to the packing, 

Figures 2.1A and B [Tucker, 2001], and orientation of the grains with specific emphasis 

on the types of contacts experienced between the grains. This is a very important factor 

for thin-section analysis and a thorough understanding of this factor is required for proper 

interpretation, and hence segmentation, of grain boundaries. Three main types of 

contacts exist, namely, sutured, point and concavo-convex, shown in Figure 2.1C, D, and 

E respectively. In terms of orientation, the grains can either have a preferred orientation, 

Figure 2.1F, or show no orientation at all. Finally, the fabric can be either grain 

supported or matrix supported as shown in Figure 2.1 G and H. Porosity and permeability 

are highly dependent upon the packing of the grains and the packing is, in turn, 

dependent on the grain size and sorting. High porosities generally imply loose packing, 

approaching that of cubic packing, Figure 2.1A. Lower porosities are the result of tighter 

packing in the form of the rhombohedral arrangement, Figure 2.1B. 
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A . cubic packing 
(48% porosity) 

C. point contacts 

E. sutured contacts 

G. grain-supported 
fabric 

B. rhombohedral packing 
(26% porosity) 

D. concavo-convex 
contacts 

F. preferred orientation 
of grains 

·~~~. 
H. matrix-supported 

fabric 

Figure 2.1: Sediment fabric descriptions [Tucker, 2001]. 

Grain size is typically defined using the Wentworth scale that was originally developed 

by Udden. This scale is geometric in nature and is divided such that each boundary is 

either one half or twice the millimeter value of the next boundary. The scale was further 

modified to include phi values so each boundary is an integer rather than a fraction. This 

scale system is summarized and shown in Figure 2.2 [Lewis and McConchie, 1994b]. 
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Figure 2.2: Wentworth scale showing grain size classification [Lewis and McConchie, 
1994b]. 

Sorting is a measure of the grain size distribution; poorly sorted samples have a wide 

range of grain sizes while those that are well sorted have similar grain sizes. Sorting is an 
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important indicator of depositional history and is also closely related to porosity. 

Comparative figures for determining sorting are shown in Figure 2.3 [Scholle, 1979]. 

Grain Shape 

moderately sorted <T = 1.0 poorly sorted cr = 2 .0 

Figure 2.3: Sorting images [Scholle, 1979]. 

Most terms used to describe grain shape are related to three-dimensional (3-D) grains as 

opposed to the two-dimensional (2-D) forms that are seen in thin-section. Two 

descriptions that have 2-D counterparts are sphericity and surface texture [Raymond, 

2002]. Spherecity is a difficult property to measure since the true value is taken to be the 

ratio of the grain surface area to the surface area of a sphere of the same volume. 

However, a grain that has high sphericity in 3-D will posses a high degree of circularity 

in 2-D. Surface texture is not easily observed or measured in thin-section since it is a 

property of the three-dimensional grain structure but there is some overlap with the 
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concepts of roundness and angularity. A grain that has a rough or angular surface can be 

observed in thin-section to be angular as well. For most studies, it is sufficient to use 

comparative silhouette diagrams for qualitative measures of roundness, as shown in 

Figure 2.4 [Lewis and McConchie, 1994b]. Six degrees of roundness/angularity are 

defined. 

c:)C0 

QVu 
VERY ANGULAR 

(·12 to ·17) 

QO 
ooo 

SUB ROUNDED 
(·35 to ·49) 

(;J~ 

D0 U 
ANGULAR 

(·17 to ·25) 

oo 
aOD 

ROUNDED 
(49 to ·70) 

00 
DoO 

SUB ANGULAR 
(·25 to ·35) 

000 
00 

WELL ROUNDED 
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Figure 2.4: Silhouettes used for estimating roundness [Lewis and McConchie, 1994b] 

2.1.3 Alteration Methods 

Alteration methods are better known as diagenesis, the term used to describe all processes 

that affect sediments after their final deposition. These processes are very important and 

can strongly influence the characteristics and the storage potential of a given reservoir. 

These effects may be negligible or extensive, local or widespread, essentially chemical or 

mostly physical. They may be obvious in thin-section or they may only be apparent after 
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analysis with special equipment such as cathodoluminescence, scanning electron 

microscopy, x-ray diffraction, x-ray fluorescence, or electron probe analysis [Lewis and 

McConchie, 1994b]. 

Chemical alteration methods do not generally destroy the dominant detrital 

components. However, grains of chemically unstable minerals may be completely 

dissolved or altered and replaced to such an extent that their original character is 

obscured. For example, feldspars and volcanic rock fragments may be altered to clay 

materials to such a degree that they become difficult to distinguish from clayey 

sedimentary rock fragments or clayey matrix. New minerals may be formed during 

diagenesis by direct precipitation from interstitial fluids. This process of precipitation 

tends to form euhedral crystals, either attached to the surface of existing grains, or on 

their own. Factors affecting their growth include the presence of other detrital 

components that may interfere and prevent the crystals from forming perfect crystal 

facies and therefore cause a sutured boundary as shown in Figure 2.5 [Sippel, 1968]. 

Figure 2.5: Quartz overgrowths. A) Plane-polarized light. B) Cathodoluminescence 
[Sippel, 1968]. 
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This authigenic material, may either partially or totally, fill the primary interstitial pore 

space. Physical alteration, in the form of pressure solution, can occur when two grains 

are touching and pressure causes one or both grains to dissolve preferentially at the points 

of greatest pressure. This causes the grains to interpenetrate and interlock and can be 

confused with overgrowth interlocking as shown in Figure 2.6 [Sippel, 1968]. Other 

physical effects of diagenesis include fracturing of grains and deformation of matrix 

material. 

Figure2.6: A) In plane-polarized light the sutured boundary taken as a sign of pressure 
solution. B) Cathodoluminescence shows it to be the result of interfering quartz 
overgrowths [Sippel, 1968]. 

Diagenetic effects can be responsible for substantial modification to grain roundness and 

grain size. Also, the resulting changes in porosity and permeability caused by these 

modifications are very important in the migration and entrapment of petroleum resources. 

In some cases, the primary porosity may be completely destroyed but there is also the 

potential for secondary porosity to be created. 
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2.1.4 Acquiring Data 

Modal Analysis 

Modal Analysis is used to determine the relative amounts of image constituents for 

compositional classification schemes. This is accomplished by traversing a given slide in 

a grid type pattern until 300-500 points on mineral grains are acquired [Lewis and 

McConchie, 1994a]. When selecting acquisition points, particular attention should be 

paid to samples with heterogeneities. The number frequency obtained using this method 

is, for most purposes, an adequate estimate of the relative abundance of components. It is 

important to note that this method suffers from operator bias when identifying the 

minerals, rock fragments and matrix. 

Grain Size and Shape 

Grain size can be estimated by using either the equivalent diameter [Kennedy and 

Mazzullo, 1991] or the length of the long axis of the grains [El-Dein et al., 1984]. 

Circularity can be estimated by the aspect ratio, defined as the ratio the grains apparent 

short axis to its apparent long axis [van den Berg et al., 2002]. For studies that require 

quantitative measures of roundness, the Waddell formula can be used [Tucker, 2001]: 

Sorting Measures 

Two major methods have been proposed to estimate sorting [Lewis and McConchie, 

1994a]. The first is based on graphical methods while the other, known as the method of 

moments, is computational in nature. Several factors make the method of moments 

favorable for the determination of sorting parameters. Firstly, it can be computerized 
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and, therefore, easily implemented into any image processing software. Secondly, it 

supposedly has advantages over other graphical methods in that it is not biased by the 

assumption of a fundamental lognormal distribution. This method does require a 

complete distribution and open tails must be extrapolated to some arbitrary grain size. 

Another assumption is that each class to be measured is normally distributed, which is 

generally false and can distort the results. Other pitfalls include the fact that the mode, or 

for that matter, any polymodality, cannot be determined using the method of moments. 

Graphical methods can be very time consuming if performed manually, however, 

computerized methods are available to retrieve points from the graphs. This method is 

considered to be statistically less valid than the method of moments. Results only 

approximate those obtained by the method of moments since 5-8% of the distribution is 

missing. Of course, this could also be a benefit if the distribution has open tails or if the 

tails contain enough uncertainty, due to measurement errors, to justify removal. 

2.2 Image Acquisition 

Thin-section analysis is conducted with the use of transmitted light microscopy. Samples 

are prepared by first impregnating them with a dyed epoxy, usually blue, but other colors 

can also be used. A thin-section is then cut from the sample, mounted to a glass slide, 

then ground and polished to a thickness of 30um. The thin section sample can then be 

examined with a microscope using two different types of lighting, each of which 

produces unique optical cues [Gribble and Hall, 1992]. 
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2.2.1 Plane Polarized Light 

Placing a polarizer in the path of light causes it to vibrate in single plane. This is then 

referred to a plane polarized light (PPL). Using this type of light, the field of view 

appears bright and generally white, depending on the particular type of rock being 

analyzed. The following features can be observed using PPL [Gribble and Hall, 1992]. 

Transparent phases appear as white since they allow the majority of light to pass 

through. These phases could be minerals, glass or liquid (depending on the 

presence of dye in the epoxy). 

Absorbing phases appear black since they absorb most of the light. Typically 

opaque material or ore minerals. 

Grain boundaries, cleavage traces and micro-fractures appear as thin black lines. 

This is due to the fact that light is scattered and refracted at these locations. 

Fluid inclusions can sometimes be observed as small irregular rounded areas 

within the minerals. They are often found grouped together or in zones. 

Holes, fractures, and places where the rock section is missing appear white 

(depending on the presence of dye in the epoxy). 

Artefacts, such as bubbles in the mounting medium, may appear either in areas 

filled with epoxy or superimposed on the minerals themselves. Other possible 

artefacts include preparation materials, such as grinding grit, which may 

accumulate in fractures or at the edge of a section. This material will appear as a 

dark colored dust. 
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Systematic methods have been developed to described minerals in thin-section using 

plane-polarized and crossed-polarized transmitted light sources. The following describes 

the methods implemented when using plane-polarized light [Gribble and Hall, 1992]. 

Color - the colors of minerals can vary significantly from the clear minerals such as 

quartz and feldspars to the opaque ores that appear black. The color of a particular 

mineral is dependent on the wavelength of light that it allows to pass. 

Pleochorism - refers to the change of color experienced by some minerals when the 

microscope stage is rotated. The mineral will exhibit two extremes separated by 90 

degrees of rotation. This is due to the orientation of the wavelengths of light. 

Habit - defines the shape exhibited by a specific mineral within the rock type. Euhedral 

minerals will show well-defined crystal faces while anhedral minerals have no 

distinguishable crystal facies. Typically, euhedral minerals can only be properly 

developed when there is nothing to interfere with the crystal growth. Minerals that are 

elongate in one direction are termed prismatic; those that are needle-like are known as 

acicular. When the minerals resemble fibers, they are termed fibrous. Finally, flat thin 

crystals are described as being platy or tabular. 

Cleavage - refers to the planes along which a mineral can be cleaved or split. These 

planes are straight, parallel and evenly spaced in the mineral. Quartz does not exhibit 

cleavage. Poorly developed cleavages are referred to as partings and are generally 

straight and parallel but not evenly spaced. 

Alteration - The result of chemical reactions between minerals and water or C02. These 

reactions can be so advanced that the original crystal is completely replaced by the new 
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stable mineral phase(s). In such a case, when the shape of the original mineral is 

maintained, it is considered to be pseudomorphed by the new mineral. 

2.2.2 Crossed Polarized Light 

To achieve crossed polarized light, the use of an analyzer is required. The analyzer is 

similar to the polarizer except it causes the light to vibrate at right angles to the polarizer. 

When light from the polarizer passes through the analyzer, the effect is a dark image, 

since light, that is vibrating perpendicular, is not passed through. Images, viewed in 

crossed polarized light (XPL), have a different set of terminology that is used to describe 

the minerals. Generally, the use of XPL is required to properly identify all of the image 

constituents found within a thin-section petrographic image [Gribble and Hall, 1992]. 

2. 3 Review of Petrographic Image Analysis 

Initial work in the area of petrographic image analysis (PIA) was focused on extracting 

information about the pore geometries. This early work provided most of the justification 

and motivation for the use of PIA and laid the groundwork for more advanced analysis. 

The basis for this work is the stereological concept known as the Delesse Principle 

[Delesse, 1847], which suggests that representative quantitative three-dimensional data 

can be derived from two-dimensional petrographic images. To test this theory, porosity 

data from PIA was compared to values obtained from standard volumetric methods and 

the results show good agreement between the two methods [Ruzyla, 1986]. In addition, 

multiple thin sections were taken from a single core plug and compared to each other and 

to volumetric methods to determine if a single thin section image could be representative 

21 



of the entire plug. Again, the results from these tests suggest that a single thin section 

could indeed represent the properties of the plug. The real test of the benefits and 

possible uses of PIA is whether it is capable of predicting other reservoir properties, such 

as permeability, which are more applicable to economic considerations. Permeability is 

considered to be the most important property of reservoir rock since it dictates how the 

reservoir fluids move throughout the reservoir. Gies and McGovern [1993] use pore 

measurements to develop a simulated capillary pressure curve, which in tum can be used 

to estimate parameters such as permeability, effective porosity, and irreducible water 

saturation. In other cases, the identification of distinct pore types allowed the definition 

of rock types, thereby leading to explanations of reservoir heterogeneities and 

permeability [Davies, 1990; Bowers et al., 1994; James, 1995]. In other work, diagenetic 

material was removed from samples using image-processing techniques. This allowed 

for the quantification of diagenetic effects in terms of permeability reduction [Mowers 

and Budd, 1996]. Much of this work involving pore characterization and its relationship 

to permeability is based around fundamentals developed by Ehrich et al. (1991a, 1991b) 

and McCreesh et al. (1991). Other workers stress the integration of imaging techniques 

to give a complete characterization of rock structure [Tomutsa et al., 1990; Radaelli et al., 

1998]. This includes Scanning Electron Microscopy, X-Ray Computed Tomography and 

Magnetic Resonance Imaging. Methods have also been developed to estimate grain-size 

distributions and mineralogy [Clelland and Fens, 1991; Starkey and Samantaray, 1994; 

Francus, 1998], but these measures are not limited to sandstone. Samples of igneous rock 

[Thomson, 1996; Ross et al., 2001], coal [Lester et al., 1993], and unconsolidated sand 

[van den Berg et al., 2002] are also examined. In addition, grain size distributions are 
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important in other polycrystalline materials and their analysis is similar to PIA [Diogenes 

et al., 2003; Kraatz et al., 2003; Mahadevan and Casasent, 2003]. 

2.3.1 Petrographic Image Processing and Analysis 

Methods of image acquisition vary, depending on the application. For identification of 

pore space, thin-sections can be viewed with an optical microscope using plane-polarized 

light. For additional grain detail and determination of mineralogy, crossed-polarized 

light must be used. A scanning electron microscope (SEM) set in the backscattered 

electron (BSE) mode can also be used to identify pore space and when an electron 

dispersive x-ray analyzer (EDX) is added it can be used to identify mineralogy. 

Cathodoluminescence is used to investigate diagenetic effects and to examine 

components of polycrystalline grains. 

Images acquired with an optical microscope are known to suffer from the Holmes 

effect [Crabtree et al., 1984]. This phenomenon, also known as the shelving effect, is due 

to the fact that the samples are a finite thickness and therefore the edges of grains tend to 

fade away. BSE images are considered to be a true two-dimensional image and therefore 

grain boundaries are more distinct. Other pitfalls of transmitted light microscopy include 

the fact that image brightness depends on sample thickness, which may vary, and matrix 

material tends to be blurry. Despite these drawbacks, thin-section images require less 

preparation time as compared to BSE images and therefore remain one of the cheapest 

and quickest methods for making gross measurements on single images [Francus, 1998; 

Ross et al., 2001]. 
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Each of the above acquisition methods will produce images that can be processed 

and analyzed automatically, however, image processing and analysis was not the focus of 

the early work and very few details are typically given. This is mainly due to the fact that 

only the pore space was needed and for methods such as BSE the acquired image was 

distinctly bimodal and only required thresholding to provide the segmentation of pore 

space from the remaining image. Eventually, focus shifted to additional analysis of the 

structure including grain characteristics and mineralology. This type of analysis proved 

to be difficult as polycrystalline grains were over-segmented and mineral overgrowths 

were counted as individual grains [Clelland and Fens, 1991]. Also, many grains remain 

fused together and require operator interaction to separate them. These types of errors 

have a significant impact on measures of grain size distribution 

One method used to eliminate touching grains modifies the means of image 

acquisition. It captures numerous sequential images under varying conditions of 

illumination and then accumulates them to produce a synoptic image [Starkey and 

Samantaray, 1994]. This acquisition method is meant to replicate the operator interaction 

that is required for polarized light microscopy with the final image containing more 

information than any single image. Despite these efforts manual interaction was still 

required to separate touching grains. 

One of the first formal methods developed for petrographic analysis involved 

filtering to reduce noise, image segmentation via operator determined gray-level 

thresholding, image editing to fill holes within the objects, and manual separation of 

touching grains [Franc us, 1998]. This method has since been expanded to include 
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correction of non-uniform lighting, linear contrast stretching to enhance contrast and 

maximum likelihood classifier to identify grain material [van de Berget al., 2002]. 

Efforts have been put forth to fully automate the separation of individual grains in order 

to facilitate quicker processing of thin-section images. Erosion-dilation cycles were 

presented [Russ, 1995] but are known to distort the grains original shape. Watershed 

methods were also presented [Russ, 1998; Zhao, 2000; van den Berg et al., 2002] but 

they tend to give a large number of erroneous results. An attempt was made to reduce the 

number of false watershed separations by using a modified watershed transformation 

[Zhao, 2000] and while this method had some success, many errors remained. A 

variation of the above methods, known as the digital cutting method (DCM), was based 

on connecting characteristic contact wedges that form between touching grains [van den 

Berg et al., 2002]. The overall results of this method showed only moderate 

improvement as compared to the watershed method. 

2.3.2 General hnage Processing and Analysis Concepts 

One needs to look no further than the seemingly endless lists of journals dealing with 

image processing and its related topics to gain an appreciation for the shear volume of 

work carried out in this area over the last three decades. It has grown in leaps and bounds 

spurred on by the desire to produce systems capable of replicating (in some form or 

another) the human visual system. The motivation for this is often blurred with some 

researchers doing theoretical work in the area and others using basic well-known methods 

to develop ad hoc systems suitable only for a specific purpose or use. In recent years, 

more effort has been focused on developing general methods capable of understanding 
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real world images [Casadei and Mitter 1998]. It is pointed out that much of this work on 

general segmentation and understanding is based the perceptual grouping concepts of: 

similarity, proximity, continuity, symmetry, parallelism, closure and familiarity [Malik et 

al., 2001]. In other words, algorithms are geared more towards image understanding and 

are increasingly robust, requiring less a priori knowledge of the image composition. 

Proper development of these algorithms requires an intimate knowledge of image 

processing and its related disciplines. This is not an easy task since these disciplines 

include image processing, image understanding, scene analysis, machine vision, digital 

signal processing, artificial intelligence and others. 

Petrographic images can vary considerably since they are the result of natural 

processes. Francus [1998] indicates that image analysis techniques must be adapted to 

the optical characteristics of each set of samples and a generally accepted standard of 

analysis has yet to be developed. Many formal image analysis methods were investigated 

for this work but in the end an algorithm was developed based on straightforward and 

well-known concepts. Excellent overviews of image processing concepts can be found in 

several sources [Russ, 1995; Gonzalez and Woods, 2002]. Background that is specific to 

microscopy can be found in [Russ, 1990] while a review of concepts related to thin­

section analysis was conducted in [Zhao, 2000]. 
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Chapter3 

Manual Analysis of Data Set 

The purpose of this chapter is to investigate the characteristics of the images available for 

analysis and to select images for use as a data set for further testing. Also, the process of 

manually segmented these images is examined and criteria are established for identifying 

and classifying quartz grains. 

3.1 Image Characterization 

Thin-section images were acquired from five separate cores spanning approximately 

240m of a single well in the Hibernia formation [Hibernia]. Three different images are 

available for each interval corresponding to three levels of magnification. A macroview 

is included at a magnification of X7 .5 to show the overall structure of the specimen. 

Next, a low magnification image is taken at X63 to show the grain and pore space 

characteristics. Finally, a high magnification of X125 is used to observe the smallest 

features and details. A total of 72 images are available for this study; 36 low 

magnification images known as group A and 36 high magnification images labeled group 

B. The main focus is on group A since at this magnification there should be a sufficient 

number of grains to give an accurate size distribution. These images are 880 by 649 

pixels and represent a field of view measuring 1.80 mm x 1.33 mm. A variety of image 

features can be expected since many of the pictures were taken to indicate 
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heterogeneities. Also, the images span several reservoir structures, thereby, increasing 

the likelihood of showing a range of features. While this provides a good data set for 

testing the robustness of the final image processing routine, it also significantly increases 

the difficulties associated with designing such a routine. An attempt is made to address 

the majority of the most important and frequently occurring features present. 

The thin-section images used in this study are siliciclastic and contain whole and 

fragmented quartz, mostly of irregular shapes, due in part to the rounding and 

fragmentation that occurs during the depositional process. The quartz may be 

monocrystalline and appear as a single distinct grain, or polycrystalline and appear to be 

composed of several smaller grains. In addition, structures may be altered by any 

cementation that may have taken place during the diagenetic process, resulting in 

complex grain boundary interactions. 
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Figure 3.1: Typical thin-section image demonstrating complexity. 
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Other materials present in the image include clay, rock fragments, and opaque material 

such as organic detritus and certain heavy minerals. Figure 3.1 shows an example of a 

typical thin-section image. The blue represents the pore space in the image and results 

from a blue dyed epoxy used to hold the specimen together during preparation. Another 

notable feature produced by the preparation process is what in known as the 'shelving 

effect', which causes the grains to fade away in places where boundaries are shared with 

pore space. It is also cited as a partial cause for some of the complex grain boundary 

interactions often observed in thin-section [Van den Berg et al., 2002]. The term 

'typical', used to describe the above image, is a bit of a misnomer since the thin-section 

images vary significantly throughout the data set. The only guaranteed substance is the 

quartz that seems to appear in every one of the images. All other constituents vary 

significantly throughout the set as will be demonstrated in the next section. 

3.1.1 Summary of Image Characteristics 

A qualitative study of the test images was conducted to gain insight into the features 

present and the manner in which they vary from image to image. These features can be 

grouped into three main categories: image defects, diagenetic material, and grain 

characteristics. 

The image defects of most concern include the non-uniform lighting, the overall 

appearance in terms of the image brightness and the extent of the shelving effects. These 

defects are a result of the image acquisition methods and must be corrected before 

proceeding with any image analysis. Image processing methods are available to correct 

non-uniform lighting and poor brightness. The shelving effects, however, require a 
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completely different acquisition method that would allow for a true two-dimensional 

image and cannot be corrected using image-processing techniques. 

The diagenetic material includes opaque material, quartz overgrowths, clay and 

silt material as well as evidence of dissolved grains. These features are important in the 

interpretation of the reservoir geology and give indications of the depositional 

environment through an understanding of the diagenetic history of the formation. In 

terms of image segmentation, the diagenetic material complicates the process by 

precipitating between grains and causing them to appear joined. It also can form around 

detrital grains with a boundary separating the original grain and the diagenetic material; 

however, this boundary is not always visible in plane light. The amount of diagenetic 

material varies significantly throughout these images. 

Grain characteristics, such as the average grain size, presence of uniform textured 

grains, and the number of dirty grains are also noted. Many of the high texture or dirty 

grains are not considered to be quartz, however, in some cases polycrystalline quartz 

grains show complex internal structure and therefore can also be classified as high 

textured. 

A very significant range in properties and features are present in the A group 

images. Taking into consideration the above features, the 36 images were rated 

according to the overall image quality. Only two images were identified as having good 

overall image characteristics while 15 images were rated as moderate and 19 were 

identified as having poor overall quality. The good images, as illustrated in Figure 3.2, 

are unambiguous with respect to the image components and it is expected that such a low 

number of these images would be present. 
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Figure 3.2: Good quality image with distinct grains. 

r 
Figure 3.4: Poor quality image with few distinct grains. 
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The images that are rated as moderate, shown in Figure 3.3, appear to contain a majority 

of easily identifiable grains, however, some complex regions are present. Finally, poor 

images, shown in Figure 3.4, contain a variety of features that make it difficult to identify 

image constituents including: lighting effects, diagenetic alteration, high texture areas, 

and small grains. 

3.2 Manual Segmentation 

Three moderate quality group A images were selected and manually segmented by a 

senior reservoir geologist with HMDC. While not an expert in petrographic analysis, his 

knowledge of reservoir geology provided a sound basis for the manual segmentation. 

The three thin section images are shown in Figures 3.5A, 3.6A, and 3.7 A along with their 

corresponding manually segmented images, Figures 3.5B, 3.6B, and 3.7B. 

Figure 3.5: Image 1 A) Original image. B) Manually segmented image. 

These three images were re-segmented by an inexperienced operator with the primary 

goal of investigating the way in which the images are interpreted with limited a priori 

knowledge of petrology. A secondary goal was to study the methods used by an 

experienced geologist. 
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Figure 3.6: Image 2 A) Original image. B) Manually segmented image . 

. - -~ L· .? 

Figure 3.7: Image 3 A) Original image. B) Manually segmented image. 

The results, Table 3.1, show significant differences in interpretation and in each case the 

number of segmented grains identified by the inexperienced operator is greater. This 

suggests that many visual cues are present to prompt the operator to over-segment the 

image. 

Average 
Normalized 

Number of Percent Total 
Std Dev of 

Area 
Area 

Grains Image Area 

Image 1 Operator 1 1509 0.67 232 61.3 
Operator 2 1181 0.87 305 63.1 

Image 2 Operator 1 1254 1.45 282 61.9 
Operator 2 1258 1.37 317 69.8 

Image 3 
Operator 1 1140 1.13 211 42.1 
Operator 2 1276 0.99 242 54.1 

Table 3.1: For each of the 3 images different operators provide different interpretations. 
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Further study of these manually segmented images suggested that no formal guidelines 

were employed in the segmentation, i.e. rules that were applied to some grains were not 

applied to other similar grains. Such results can be expected, since human interpretation 

can vary depending on a number of factors [Russ, 1990]. 

In addition to the images shown in Figures 3.5-3.7, 11 other group A images were 

selected and manually segmented to give 14 images in total. Out of these images two are 

of good quality, eight are rated as moderate, and the remaining four are considered to be 

poor. A selection of 14 group B images was also manually segmented and used for 

comparison. While manually segmenting these images, a classification scheme was 

developed to identify problematic grains. This scheme is the focus of the following 

section. 

3.2.1 Grain Types 

Classifying the grains based on their complexity is an important concept. A fundamental 

goal of automating the thin-section analysis is to increase precision by limiting the effects 

of operator bias. The majority of these variations occur when interpreting the complex 

features of certain types of grains. Disregarding these grains for textual analysis would 

therefore eliminate some of the operator bias. Also, without a set methodology for 

segmenting these grains, it would be impossible to quantify the performance of the 

developed segmentation algorithms. It is theorized that the textual properties of the 

image can be accurately characterized by determining the features of certain 'types' of 

grains. This simplifies the process to some extent, and mimics the manual methods 

currently used to perform textural analysis. For example, the laboratory that completed 
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the analysis on this set of images used 100 monocrystalline quartz grains from each 

sample to provide grain size analysis [El-Dein et al., 1984]. Also, if comparative charts 

are used to determine sorting (or other features) the operator would not mentally segment 

all grains, just the ones needed to give an indication of the overall trend. Finally, and 

most importantly, it is not possible to fully segment the entire image based on a one field 

of view. As discussed in Chapter 2, the analysis of these types of thin-section images 

requires constant operator interaction to accurately identify all image constituents. 

Type 1 Grains 

Type 1 grains, which are the easiest to identify, have complete boundaries separating 

them from surrounding grains and pore space. In addition, type 1 grains are uniform with 

respect to their intensity values, they contain no significant holes or defects, and they 

have a fairly regular shape as shown in Figure 3.8. 

Figure 3.8: Type 1 Grain with complete boundary A) Original. B) Manual outline. 

In geological terms, type 1 grains are detrital unaltered non-overlapping mono-crystalline 

quartz grains as seen using plane polarized light. These grains are either matrix 
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supported, and therefore not in contact with any other grains, or are in point contact. 

Some type 1 grains may share concavo-convex or sutured contacts provided there is a 

complete boundary, although, this is seldom the case. It is expected that an 

inexperienced user can identify type 1 grains with 100% certainty. 

Type 2 Grains 

Type 2 grains are defmed as those grains that are not completely separated from each 

other but posses properties that allow for easy visual segmentation from the surrounding 

background. Reasons for incomplete boundaries include shelving effects, moderate 

quartz overgrowths, low degrees of compaction (pressure solution), and poor lighting 

conditions. Type 2 grains can possess either point, concavo-convex, or sutured contacts 

with incomplete boundaries as shown in Figure 3.9. Overly complex sutured contacts 

with missing segments will cause the grains to be classified as type 3 grains. It is 

expected that an inexperienced operator would be able to correctly identify 70-80% of 

type 2 grains and with some basic knowledge of petrographic analysis it would be 

possible to identify the remaining 20-30%. 

0 

Figure 3.9: Example of type 2 grain with missing grain boundaries indicated in red. A) 
Original. B) Manual outline. 
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Type 3 Grains 

Type 3 grains are those that cannot be segmented manually, either because there is no 

satisfactory interpretation or because there is more than one interpretation. Generally 

speaking, these regions of grains are either composed of polycrystalline quartz and/or 

some combination of other materials or they have been diagenetically altered. These 

regions lack the clear boundaries and distinct textural features that would enable an 

operator, either skilled or unskilled, to properly complete the segmentation. A typical 

grain region that is classified as type 3 is shown in Figure 3.10. Two significantly 

different interpretations of the same field of view are shown which illustrates the 

difficultly associated with these grains. The segmentation requires analysis of extremely 

subtle features and any interpretation would be a guess. 

Figure 3.10: Example of type 3 grains A) Original. B) Manual outline with two 
interpretations. Green is an experienced operator, black is inexperienced. 

The only true way to interpret a polycrystalline grain is to view it under crossed polarized 

light. Figures 3.11A and B [El-Dein et al., 1984] demonstrates this concept. Both 

images show the same field of view, the first utilizes plane-polarized light and the second 

results from crossed-polarized light. The small arrows indicate mono-crystalline quartz 

while the large arrows indicate polycrystalline quartz. 
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Figure 3.11: Polycrystalline Quartz- same field of view. A) Plane-polarized light. B) 
Crossed-polarized light. Large arrows indicate polycrystalline quartz while small arrows 
indicate monocrystalline quartz [El-Dein et al., 1984]. 

Polycrystalline grains present significant challenges to the development of an automated 

segmentation routine. As can be seen in Figure 3.11, part of the polycrystalline grain 

appears to be several smaller grains stuck together, whereas, the remaining portion of the 

grain appears to be mono-crystalline (until viewed under crossed polarized light). 

Borderline Grains - Uniform Texture 

Grains with uniform textural characteristics, as shown in Figure 3 .12A, have the potential 

to fall within the guidelines of type 2 grains provided they could be easily identified. 

However, these types of grains are generally not quartz grains, but instead are composed 

of rock fragments, chert, feldspars, or other materials. It is not the purpose of this 

algorithm to accurately identify and segment non-quartz grains; therefore, it is suggested 

that these grains should be classified as type 3 grains. Another variation of a grain with 

uniform (or semi-uniform) texture is shown in Figure 3.12B. The texture is quite 

different from the grain shown in Figure 3 .12A and the dark parallel lines could be 
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cleavage traces indicating that it may be a feldspar grain (since quartz does not exhibit 

cleavage). 

Figure 3.12: Grains with uniform texture. A) Rock fragment or chert. B) Possibly 
feldspar, fluid inclusions, or vacuoles. 

Technically, this grain should not be included as a type 2 grain since it may not be quartz. 

Such a grain could cause problems for an automated segmentation routine since the dark 

parallel lines fall within the same range of intensity values as the grain boundaries and, 

therefore, keeping or eliminating one set of lines would require keeping or eliminating 

the other. It may be beneficial to consider these to be type 3 grains. 

Borderline Grains - Diagenetically Altered 

All grains have been affected, to some extent, by diagenetic processes since it is these 

processes that change the sand into sandstone. This can manifest itself in several forms 

including fracturing, overgrowths, cementation and dissolution. In Figure 3.13A quartz 

overgrowths are clearly identified by the presence of dust on the original grain surface. It 

is clear that these grains should be classified as type 3 since they have the potential to be 
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over-segmented (i.e. overgrowths will be removed). In some cases, when these layers of 

dust are not present the overgrowths can still be easily identified due to their euhedral 

shape, as in Figure 3.13B, but typically some other method is needed to quartz 

overgrowths. Grains without a distinct layer of dust should therefore be classified as type 

2. 

Figure 3.13: Distinct quartz overgrowths. A) Visible due to dust on original grain. B) 
Visible due to euhedral shape. 

Another example of complex diagenetic alteration is shown in Figure 3.14A. Figure 

3.14B shows an experts interpretation of this grain. It is clear that this type of grain 

should be classified as a type 3 grain, since it requires piecing together many smaller 

distinct grain regions and this type of interpretation is beyond the scope of this thesis. 

Figure 3.14: Diagenetically altered grain. A) Original. B) Manually segmented. 
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Figure 3.15A shows a large partially dissolved polycrystalline grain. The dissolution has 

started to take place along the boundaries, causing a confusing situation for segmentation. 

The combination of edges and pore indentations is the criteria used to segment many 

other grains but in this case the complexity of the interior grain boundaries and the 

presence of a well-defined outer boundary outweighs the other information and suggest 

that this grain should not be segmented. Technically, this grain should be classified as a 

type 2 grain, however, there is a tendency to label these grains type 3 since there is a 

degree of uncertainty associated with the identification. 

}'., 
Figure 3.15: Dissolution of quartz grains. A) Polycrystalline grain with dissolution along 
internal boundaries. B) Dissolution around external boundary and within grain. Clay 
shows location of original boundary. 

Figure 3.15B also appears to be partially dissolved with blue stain in the interior of the 

grain. This type of grain is also difficult to classify since the porosity suggests 

segmentation while the overall shape indicates a complete grain. This particular grain 

can be classified as type 2 but variations where the porosity is more pronounced should 

be classified as type 3. 
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The final two types of diagenetically altered grains are: fractured, Figure 3.16A and 

cemented Figure 3.16B. The fractured grain is an extreme case and most other examples 

show lesser degrees of fracturing. 

Figure 3.16: Altered grains. A) Fractured. B) Excessive cementation. 

This type of grain is considered to be borderline since the porosity indentation suggests 

splitting but the overall texture and shape suggests it may be considered as a complete 

grain. It is unclear which interpretation is correct and therefore this is classified as a type 

3 grain. The cemented grains are the result of excessive quartz overgrowths and in some 

cases it is clear where the original grains end and where the cement begins. In this 

particular case, the boundaries are unclear therefore prompting this entire grain region to 

be classified as type 3. 
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3.2.2 Summary of Grain Type Data 

To investigate the effects of neglecting type 3 grains, images in the data set were re­

segmented and the type 1, type 2, and type 3 grains were identified. Figure 3.17 shows 

an example where type 3 grains are illustrated in dark blue while the type 1 and type 2 

grains are pale yellow. Six measurements were recorded for the manually segmented 

grains; they include: area, roughness, compactness, elongation, breadth and width. These 

features are calculated using the Mil.. Blob analysis feature [Matrox, 1999]. 

Figure 3.17: Manually segmented image - blue grains classified as type 3. 

Figure 3.18 shows the average area of individual grains for each image while Figure 3.19 

shows the standard deviation of the area. 
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Figure 3.18: Average area calculated for the different grain types. 
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Figure 3.19: Standard deviation of the area calculated for each of the grain types 
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The figures show that the average area and standard deviation values for type 1&2 

together are closely related to the values for all grains. The type 1 grains alone seem to 

correlate well with all grains, suggesting that only a small number of grains are required 

to give a good estimate of the overall distribution. Pearson product moment correlation 

coefficients were calculated for all features and their standard deviations and the results 

are shown in Table 3 .2. 

Area Breadth Com pact ness Elon~ation Length Roughness 
Pearson 

Ave SD Ave SD Ave SD Ave SD Ave SD Ave SD 
1&2 with All 0.97 0.93 0.95 0.94 0.94 0.92 0.94 0.9 0.97 0.96 0.87 0.58 

1 with All 0.89 0.86 0.84 0.82 0.72 0.79 0.73 0.78 0.91 0.86 0.37 0.1 

Table 3.2: Pearson correlation coefficients for all images. 

The coefficients show a strong positive relationship between type 1 &2 grains and all 

grains. Table 3.3 shows the correlation coefficients calculated for just the group A 

images. 

Area Breadth Compactness Elon~ation Length Roughness 
Pearson 

Ave SD Ave SD Ave SD Ave SD Ave SD Ave SD 
1&2 with All 0.99 0.99 0.93 0.99 0.98 0.96 0.98 0.95 0.98 1.00 0.87 0.56 

1 with All 0.98 0.99 0.90 0.90 0.73 0.66 0 .76 0.66 0 .96 0.98 0 .77 0.47 

Table 3.3: Pearson correlation coefficients for A group images 

When considered separately, the group A images show an even stronger correlation. This 

is most likely related to the fact that the number of grains found in the higher 

magnification group B images is on average much lower than those found in group A. 

The above data shows that the type 3 grains can be left out of the segmentation process 

without negatively impact the overall characterization of the image. 
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3.3 Grain Shape Characterization 

Grain characterization is not only required as part of the textural analysis process, it is 

also needed for the segmentation algorithm. An important step in the algorithm is to 

identify grains once they have been separated from one another. This is not an easy task 

due to the complex nature of the rock-forming process. As mentioned in the previous 

section, six measurements were recorded for the manually segmented grains; they 

include: area, roughness, compactness, elongation, breadth and width. The area, 

roughness and compactness were selected for grain characterization. 

3.3.1 Area Considerations 

For textural analysis, only grains within the 4- 0.03 mm diameter range are considered 

significant. The lower end of this range corresponds to the boundary between coarse silt 

and medium silt. This works out to be approximately 180 pixels for the A group, which 

is a fairly small object in these images, so consideration was given to moving the lower 

cutoff up one step on the phi scale to 0.0625 (1/16) mm diameter. From initial study of 

the images, it seems that this is a logical cutoff since objects below this limit could 

correspond to diagenetic overgrowths or other partial grains and therefore should not be 

consider complete grains. The goal now is to detect and measure sand sized grains with 

all grains in the silt range being classified as non-grains. Analysis of the manual images 

shows that only about 4.3% of the total grain area is composed of silt sized grains. 

Although the silt grains are not significant in terms of area, they do make up nearly 37% 

of the total number of grains in the A group images. If the accuracy of the segmentation 

routine is based upon the number of correct grains found, the uncertainty in identifying 
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silt-sized grains could significantly impact this value, possibly to such a degree that it 

becomes meaningless. So silt-sized grains will be identified but will not be taken into 

account when determining the accuracy of the algorithm. It is also worth noting that the 

petrographic report completed by El-Dein et al. [1984] considers the silt -sized grains to 

be part of the matrix material. 

3.3.2 Roundness and Compactness 

Roughness and compactness were selected to measure the angularity and sphericity of the 

grains. To investigate the effectiveness of these measures, they were applied to Figure 

3.20, a standard reference chart taken from Lewis and McConchie [1994b]. 
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Figure 3.20: Rounding Silhouette [Lewis and McConchie, 1994b]. 

Table 3.4 shows the values obtained by applying the roughness and compactness 

measures to the grains in Figure 3.20. Compactness values increase as the grains become 

less rounded, which is expected since lower values of compactness indicate objects that 

are close to circular. The same trend is found with the roughness values. They increase 
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with increasing angularity, which is expected since higher roughness values indicate a 

greater degree of angularity. These features are measured for the manually segmented 

group A images. About 45% of the grains have compactness values within the sub 

rounded to sub angular range, which compares well with the petrographic analysis that 

classified all samples as sub-rounded to sub-angular [El-Dein et al., 1984]. 

Compactness Roughness 
Average Average 
Compactness Roughness 

1.94 1.15 

Very 
1.89 1.14 
2.01 1.09 2.04 1.16 

Angular 
2.11 1.15 
2.25 1.26 
1.62 1.14 
2.27 1.18 

Angular 1.81 1.14 1.82 1.15 
1.60 1.14 
1.81 1.14 
1.45 1.12 

Sub 
1.53 1.13 

Angular 1.65 1.13 1.62 1.13 
1.60 1.12 
1.85 1.16 
1.40 1.10 

Sub 
1.48 1.10 

Rounded 1.44 1.11 1.44 1.10 
1.49 1.12 
1.38 1.09 
1.32 1.09 
1.30 1.09 

Rounded 1.42 1.10 1.36 1.10 
1.38 1.12 
1.38 1.09 
1.34 1.11 

~ell 
1.32 1.11 
1.37 1.12 1.35 1.11 

Rounded 
1.41 1.11 
1.32 1.11 

Table 3.4: Compactness and Roughness measures 
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Only 3.3% of the compactness values are above 2.25, which is the maximum value in 

Table 3.4. This indicates a possible cutoff value to testing whether or not an object is a 

grain. The roughness data obtained from the manual images does not correspond as well. 

Over 90% of the grains have roughness values in the well-rounded to sub-rounded range. 

This can be explained by considering the straight lines used to estimate the grain 

boundaries in the manual segmentation process. Much of the detail is lost, thereby, 

reducing the roughness of the edges and producing lower roughness values. Roughness 

is still considered to be a good estimate of the grains angularity but some trial and error 

will be required to determine the cutoff value for determining grain criteria. 

3.3.3 Sorting 

Methods for sorting were introduced earlier but both the method of moments and the 

graphical methods have their drawbacks. For this application, sorting is not of utmost 

importance but some measure is needed to give an indication of how well the algorithm 

works compared to the manual segmentation. Standard deviation was the preferred 

method of sorting measurement implemented in previous work on this data set [Zhao, 

2000]. To obtain a value similar to the Phi scale, the standard deviation is normalized by 

dividing by the mean value to obtain a relative standard deviation. Table 3.5 shows the 

relationship between Phi standard deviation, relative standard deviation, and the verbal 

scale. 
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PHI standard Relative standard Verbal scale 
deviation deviation 

0.35 0.2377 Very well sorted 

0.5 0.4017 Well sorted 

1 0.5542 
Moderately 

sorted 

2 0.9989 Poorly sorted 
Table 3.5: Sortmg Measures 
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Chapter4 

Development of Segmentation Methods 

It takes highly skilled operators to properly analyze a thin-section petrographic image. 

They draw upon knowledge of how the rocks are formed, (sedimentary petrology), and 

the manner in which the images are acquired (optical microscopy). The intuitive feel that 

they develop for how to properly segment the images can be linked to the perceptual 

grouping concepts introduced in Chapter 2. It seems that the challenge is to find the right 

combination of image-processing and analysis routines that are able to mimic these 

concepts. Identification of type 1 grains should be straightforward and is the focus of the 

primary segmentation routine. From studying the thin section images, it is apparent that 

in most cases type 2 can be segmented using a combination of comer, line, and texture 

information as demonstrated in Figure 4.1. 

' Weak Edge 

: 

- . 
Figure 4.1: Image showing weak and strong edges and comer points used by an expert to 
segment thin section images. 
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Hence, efforts are focused on connecting partial and weak line segments to comers and 

other, more prominent, line sections in an attempt to replicate the perceptual process used 

by an expert. This is the job of the secondary segmentation routine. After all of the 

segmentation has taken place, the grain reconstruction routine makes an attempt to 

reconstruct some of the over-segmented grains. The full algorithm is illustrated in Figure 

4.2. In addition to the primary and secondary segmentation routines, it includes 

preprocessing methods as well as a routine to classify the image constituents. Once 

grains and other material have been classified, statistics are gathered and output to a text 

file. The preprocessing and primary segmentation are inter-related and, therefore, are 

discussed together. 

Input Image 

Primary 
Segmentation 

Secondary 
Segmentation 

Grain 
Reconstruction 

Figure 4.2: Algorithm overview 

Correct Grains 

Other Material 
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4.1 Primary Segmentation 

The goal of the primary segmentation routine is to produce an image containing only type 

2 and type 3 grains, which can then be used as input for the secondary segmentation 

routine. This process involves removing the clay, silt or opaque material from the image 

along with any type 1 grains. The methods used here are based mostly around gray scale 

thresholding techniques with some filtering used to reduce noise and blob analysis 

[Matrox, 1999] in order to classify and measure image features. The red channel is 

chosen for further processing since it has the highest contrast between grains and pore 

space [Zhao, 2000]. 

4.1.1 Filtering 

Several types of filters exist for noise reduction; the mean, median and Gaussian filters 

are among the most popular. Starkey and Samantaray [1994] conducted a comparison of 

filters for petrographic analysis; however, due to the fact that these types of images can 

vary significantly, it is still necessary to investigate filtering for each specific application. 

Previous work with this data set concluded that the median filter provided a good means 

of noise removal for these images [Zhao, 2000]. While the median filter is an effective 

means of noise removal, it also has a tendency to reduce the visibility of grain 

boundaries, as shown in Figure 4.3, and in the case of weak boundaries it results in their 

removal. Also, repeated applications of the filter tend to reduce the presence of larger 

spots and other grain features that are important to the segmentation process. Francus 

[1998] used a hybrid median filter that eliminates noise but preserves edges. This 
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approach was considered here but in many cases it is just as important to eliminate edges 

as it is to eliminate noise. 

!. • 

Figure 4.3: Effects of median filtering. A) Original image. B) After median filtering. 

Further consideration of the trade-off between noise reduction and edge preservation is 

provide in later sections. It is clear that at least one application of the median filter is 

needed, but it is unclear at this point whether or not additional applications are required. 

4.1.2 Thresholding 

Thresholds were investigated for all of the 36 A group images to determine the range in 

intensity values for each of the important image features. These intensity ranges were 

compared to the histograms for each of the images to determine whether or not there is a 

relationship between these values and peaks in the histogram. Examples of histograms 

for the red channel are shown in Figure 4.4. 
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Figure 4.4: Histograms showing one large peak corresponding to quartz grains (A) and 
three peaks representing opaque material, pore space and quartz grains (B). 

Histograms vary from image to image but in most cases the intensity ranges correspond 

to specific image features as indicated in Table 4.1. 

Opaque Pore Shelving & Normal Clean 
Material Space Dirty Grains Grains Grains 

Intensity 
80-130 130-170 170-210 210-230 230-240 

Range 
Table 4.1: Intensity ranges for main image features. 

For the opaque material, a single threshold is required and all pixels below that value can 

be considered opaque material. In this case, the threshold can vary from 80-130, 

depending on the image. In terms of area, opaque material can be very significant in 

some images and therefore has the potential to provide valuable information for 

characterization. The thresholding and blob analysis can provide a quick measure for 

determining the amount and type of opaque material. Large circular blobs may be 

authigenic pyrite or siderite while large elongated blobs are likely plant detritus [El-Dein, 

1984]. 

For the pore space, shelving effects, and dirty grains, a high and low threshold is 

required and the features are more or less composed of the intensity values within the 

given range. The dirty grains appear much darker than other grains and show either 

55 



uniform or random texture features. These grains are not likely to be quartz grains and as 

discussed in Chapter 3, they are classified as types 3 grains. Therefore, no further efforts 

will be made to segment and measure the dirty grains using thresholding methods. 

Finally, for the normal and clean grains, the threshold is single-valued and all 

pixels with intensity values above the threshold are considered to be grain pixels. The 

distinction made between normal and clean grains is to indicate that some grains are 

brighter and have uniform intensity values falling within a smaller range. This effect is 

partially due to non-uniform lighting conditions and partially due to the types of grains 

present. It was noted that many clean monocrystalline grains are present in these samples 

[El-Dein, 1984]. 

The normal grain intensity range contains the majority of quartz grains. Raising 

the threshold value results in better separation of grains in the center of the image but at 

the expense of loosing grains on the right boundary. Several solutions to this problem 

were investigated including subtracting a blank image, fitting a background function and 

rank leveling [Russ, 1995]. The approach taken here is based on the adaptive 

thresholding method developed by Zhao [2000] in which the image is divided into four 

equal regions and thresholds are then determined automatically from each region's 

histogram. It was found that while this worked well for some images, better overall 

results could be obtained by using 32 sub-images as opposed to just four. The method 

used to determine the thresholds is based upon examination of the histogram. The 

intensity value with the greatest number of pixels associated with it is selected as the 

maximum histogram value. These peaks are only considered if they are greater than 180 

so, for example, peaks due to pore space are not considered for thresholding. Once the 
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peaks are determined, two different correction factors are applied to the maximum 

histogram value to obtain a threshold value. For sub-images with maximum histogram 

values above 230, a high correction factor is subtracted from the intensity value to give 

the threshold. Sub-images with values below 230 have a low correction factor subtracted 

to give the threshold. For the preliminary work the high and low correction factors are 

set at 30 and 20 respectively. Each sub-image is then binarized using its histogram-based 

threshold. This method reduces the threshold values used for the sides of the image and 

produces an improved binary image as can be seen in Figure 4.5; note that the grain 

material is white. 

ll'f."J~ ,.tio}''~!'.";"-. ~;.r-;;-~-_: .. 

Figure 4.5: Adaptive thresholding. A) Global threshold. B) Adaptive with high 
correction factor set to 30 and low set to 20. 

It is important to note that grain detection/segmentation is sensitive to the threshold 

correction factors and the lower the factor the better separated the grains tend to be. The 

tradeoff is an overall reduction of grain area, which could significantly alter the shape of 

the grains. 

4.1.3 Type 1 Grain Detection 

After initial thresholding is performed, a number of type 1 grains have been segmented 

and the focus is shifted to detecting these grains. Objects with area values less than 50 
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pixels are labeled as dirt to indicate a lack of interest in this size range and to distinguish 

them from the medium and coarse-grained silt that lies in the 50-732 pixel range. The 

dirt size range encompasses the fine and very fine silt grains. Clay is not distinguishable 

in grain form and appears as a brown matrix that contains silt sized grains dispersed 

throughout. The blob analysis package [Matrox, 1999] is used to eliminate objects 

(blobs) based on their area. These objects, once removed from the image, are placed in 

separate buffers and kept for future reference. Figure 4.6 shows the results of removing 

the dirt -sized objects. 

.·-.. _., ; 

Figure 4.6: Removal of dirt-sized objects. 

The small black blobs within the grains (fluid inclusions or clay on original boundaries) 

can also be removed using the blob analysis package. This presents an alternative to 

excessive filtering of the grayscale image and allows a means of selecting features of 

interest. Excluding blobs that have low compactness values (circular shapes) leaves only 

straight blobs that are more likely to be partial grain boundaries. Some constraint on the 
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area is still required since too many blobs remain that correspond to "dirt". The area 

threshold is set to 50 for this particular image, however, images that have different sized 

grains would require different threshold values. For example, segmentation of smaller 

grains may benefit from retaining blobs less than 50 pixels in area. Figure 4.7 shows the 

result of eliminating interior "dirt", based solely on area and Figure 4.8 indicates, in red, 

the benefits of using the compactness criteria. 

oA -~ • 

Figure 4.7: Interior dirt removed based on area constraints. 

A 

Figure 4.8: Interior dirt removed based on area and compactness constraints. Red 
indicates features that are important for segmentation. 
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Once the image has been cleaned using the blob analysis, the search for grains can begin. 

Roughness and compactness are the criteria used to detect the grains and an object is only 

considered to be a grain if it meets both criteria. A number of possible roughness and 

compactness values were tested based on the discussion in Chapter 3. In the end, it was 

found that many correct grains were being rejected based on these criteria. The reason 

for this is linked to the rough grain edges produced by the thresholding process. 

Applying the median filter to the grayscale image will tend to smooth these boundaries, 

however, this has side effects and it would be better to have a method of boundary 

smoothing that is independent of the grayscale image. The proposed solution involves 

applying morphological closing operations to each grain before calculating the roughness 

and compactness values. The idea is that the closing will fill in the small gaps along the 

boundary without significantly altering the shape of the grain. The closing operation 

leaves grains with large indentations unaltered and, therefore, they can be left for the next 

segmentation routine. This process allows roughness and compactness values to be set in 

accordance with the analysis provided in Chapter 3. Objects meeting the grain criteria 

are removed from the image and placed in a buffer, to be measured. 

4.1.4 Detecting Other Type 1 Grains 

Type 1 grains are defined in Chapter 3 to have complete boundaries when viewed as an 

unaltered color image. After filtering and thresholding, these grains may be connected. 

These connections often consist of just a few pixels and simple methods can be used to 

separate these type 1 grains from the rest of the grain fabric. 
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Morphological Operations 

Erosion dilation cycles have been proposed to separate touching objects and while this 

method has had some success it does so at the cost of distorting the grain shape. This is 

not acceptable in this case since information about the shape of the grain is required. 

However, this method could be used conservatively so that the shapes are not 

significantly changed. For example, one application of morphological opening would 

result in the separation of objects that are connected with only one or two pixels. 

Edge Detectors 

Edge detectors can also be used to segment type 1 grains. Boundaries that may not have 

been detected by the thresholding routine can be detected using the edge operators since 

they respond to absolute differences in intensity values. Several edge-finding routines 

were applied to the red channel image including the Sobel and Canny detectors. While 

the Canny edge detector is often considered to be the optimal routine, its added 

complexity was not required for this application and the Sobel operator did a good job of 

finding edges. The Sobel operator is applied to the red channel and the result is a 

grayscale image where the intensity values represent the strength of the edges. Applying 

a threshold to this image is equivalent to selecting edges of a particular strength; higher 

intensity values correspond to stronger edges. The binary image produced by the 

thresholding is then skeletonized and blob analysis is conducted to remove small closed 

loops that are not needed for the segmentation. The focus is on detecting more 

significant edges. The clean skeleton image is then inverted and overlaid on the binary 

grain image and any newly segmented grains are analyzed to determine their agreement 
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with the grain criteria. Newly classified material will be placed in their respective 

buffers. 

4.1.5 Estimating High Texture Material 

High texture regions, composed mainly of clay material, do not fall into a specific 

intensity range and they are well suited for textural analysis. The most important 

consideration for this problem is that the clay material varies with respect to intensity in 

all directions. Edge detectors are good for measuring intensity gradients and, therefore, 

can be used to detect high texture areas. For this application, the Sobel edge detector was 

applied to the red channel. For clay regions, a high response is recorded; this is then 

thresholded and the holes are filled to produce complete objects that represent the clay 

material. This image is then measured to provide an estimate of the amount of clay 

material in the image. Regions that do not have intensity values varying in all directions 

are not detected using this method. Therefore line segments, such as those shown in 

Figure 3.12B, are not measured but dirty grains that are likely rock fragments, Figure 

3.12A, are included. 

4.2 Secondary Segmentation 

Secondary segmentation is based on approximating missing grain boundaries of type 2 

grains. Several methods are available to estimate the grain boundaries. Work has been 

carried out to connect characteristic indentations, or contact wedges, that indicate the 

presence of grain boundaries [van den Berg et al., 2002]. This concept was examined and 

it became clear that it would only be successful on a specific type of grain contact. 
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Because of the diagenetic alteration found in this data set grain contacts seldom meet the 

above criteria. 

Figure 4.9: Multiple grains in contact. A) Contact wedges. B) Search area defined by 
tolerance lines. 

This is largely due to the fact that two or more grains are often fused together creating a 

situation where there is no second contact wedge. Or, in other cases there may be 

multiple contact wedges oriented in a manner that does not facilitate proper 

segmentation. A good example of this is shown in Figure 4.9A. This is a particularly 

clean example in which strong grain boundaries are connected to the contact wedges. For 

the time being, the grain boundaries are ignored and focus is directed towards the contact 

wedges. The vertex of the contact wedge is considered to be a corner. The corners found 

at locations 2 and 3 appear to be good candidates to be joined, however, if corner joining 

is based solely on proximity measures then comers 1 and 2 will be joined. The correct 

interpretation is clear from the grain boundaries. It is not sufficient to simply join the 

closest comers; splitting direction is required to give an indication of how to proceed with 

the segmentation. This can be determined based on the geometry of the contact wedge by 
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first determining the line that bisects the wedge and then providing a tolerance on the 

direction of this line, for example, +-5 degrees. This creates a search wedge, as shown in 

Figure 4.9B and depending on the radius and angle used to define the wedge, corner 2 

will either be inside or outside of this search area. Using the same search criteria for 

corner 1, results in no suitable matches and the grains will remain un-segmented. 

It is clear that in the case shown in Figure 4.9 the grain boundaries provide 

valuable additional information for the segmentation process . If the grain boundaries are 

included in the contact wedge definition, the corner location shifts from the vertex of the 

wedge to the endpoint of the grain boundary. Due to the complex grain boundary 

interactions found in some of these images, it is believed that the most important 

information regarding splitting direction is contained the final few pixels of the boundary 

line. Therefore, extrapolating the grain boundaries based on the last 2 or 3 pixels 

provides a good estimate of the missing grain boundary. At the same time, the 

complexity associated with the grain boundaries also implies that there is a limit to the 

boundary extension. 

There are difficulties associated with including the grain boundaries since their 

presence is dependent on the filtering and thresholding processes that are used in the 

primary segmentation step. The near continuous boundaries from the color image in 

Figure 4.1 OA appear broken in Figure 4.1 OB after the filtering, thresholding and blob 

removal operations. 
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Figure 4.10: Effects of primary segmentation. A) Original image. B) Binary image. 

This shows the importance of carefully eliminating blobs from within the grains since 

these partial boundary segments would have likely been removed if not for the 

compactness criteria used in the primary segmentation routine. To accommodate these 

new broken segments, the definition of a corner is changed so that the endpoints of these 

segments are also considered corners. So, the formal definition of a corner for this work 

includes contact wedges, endpoints of boundaries connected to contact wedges, and 

endpoints of broken boundaries. Corner detection schemes were investigated to 

determine their suitability for finding corners, as defined by the above criteria. 

4.2.1 Corner Detection 

Corners can be detected using binary images or they can be detected directly from the 

grayscale images. The digital cutting method (DCM) [van den Berg et al., 2002] is an 

example of the binary approach and it uses a boundary tracking routine to find suitable 

contact points that are considered to be corners. The SUSAN detector [Smith and Brady, 
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1997] is an example of a routine based on the grayscale image. It searches for patterns in 

the intensity values that indicate corner locations. The result of applying the SUSAN 

routine is shown in Figure 4.11 where the black dots indicate corner locations. 

• • 

• • . a • 

Figure 4.11: Application of the SUSAN algorithm where detected corners are shown by 
small black dots surrounded by white. 

A large number of corners points are detected and only a small fraction of those are 

considered to be important in the grain splitting process. Such a larger number of corners 

can be expected for these images due to an abundance of high texture areas. It is possible 

to tune the routine to produce a lower number of corners but the result is still not 

acceptable. The algorithm can also be applied to binary images as shown in Figure 4.12. 

Even though the binary image is much simpler, there are still too many corners detected 

and it is clear that an alternate approach is required to find the corners needed for this 

application. 
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Figure 4.12: Binary image with application of SUSAN detector. Comers shown by black 
dots surrounded by white. 

A new method was developed based on the boundary of the grains in the binary image. 

The image is dilated 3 times and the difference is taken between this new image and the 

original image. The result is thinned to skeleton to produce a single pixel wide boundary 

image. This process is illustrated in Figure 4.13. 
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Figure 4.13: Corner detection process. A) Original color image. B) Binary image. C) 
Skeleton image produced by one dilation. D) Skeleton produced with three dilations. 

One dilation operation outlines the grains and produces an image similar to what would 

be obtained with an edge detector, shown in Figure 4.13C. This is of no real use since a 

line tracking routine is still needed to find comers. Three dilations will fill most of the 

gaps between grains, including some contact wedges, and this allows the thinning routine 

to produce a single pixel wide line, Figure 4.13D, that can be used to indicate comer 

locations. The focus now shifts to finding and connecting the endpoints. This is 

accomplished using a combination of line growing and comer connection routines. 
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4.2.2 Line Growing 

Line growing is used to extend endpoints found in the corner detection step. Originally 

this was achieved using a set of eight 5x5 convolution masks. This is a form of template 

matching where any pixel that is connected to only one other pixel is selected as a corner 

and a tangent line is extended based on the orientation of these two pixels. If a line 

extension segment intersects any other contour in the image, then the line extension 

stops. If the line extension does not intersect another contour, then the segment is 

removed using a line shrinking routine. It is expected that this approach will provide 

quick and accurate segmentation since the line segments are extended from different 

locations and do not necessarily need to be within the search wedge. So, for in the 

example used in Figure 4.1 0, the three corners have the potential to intersect each other 

as well as any intermediate segments that may be present, as shown in Figure 4.14. 

1 

·J 

Figure 4.14: Line extension routine. A) Expected operation. B) Actual results, red dots 
indicated corner locations and two short lines (circled) show successfu1line extension. 
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Although this method seems straightforward, Figure 4.14 shows that many comers 

remain unconnected. This is largely due to complexities in the grain boundaries that 

cause parallel line extensions that have no possibility of intersecting. Unexpected 

changes in curvature cause other line extension segments to move in opposite directions. 

Using a larger convolution mask partially solves these problems. The slope for 

the line extension can be based upon 3 pixels rather than two. In order to achieve this, a 

set of 24, 7x7 convolution masks are used. Using the larger masks reduces the number of 

comers detected and gives a better approximation of the missing grain boundaries. To 

adjust for the parallel line segments, a simple comer connection routine is used to join 

corners that are close to one another. The length of the line extension segments is limited 

to 5-10 pixels. 

4.2.3 Corner Connection 

In order to join comers that are close together but not necessarily facing each other, a 

simple comer connection routine is used. If two comers are detected within a certain 

distance of each other, they are connected. This routine can be applied as part of the line 

extension routine or on its own. Good results are observed with this method. The radius 

of the search area is limited to 5-l 0 pixels. 

4.2.4 Watershed Methods 

The comer detection and line growing schemes are limited to contact wedges that are less 

than 90 degrees. For wedges that are greater than this value, watershed methods are 

considered. Watershed segmentation was used on this data set by Zhao [2000] and it was 
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considered to be a poor approach. This is due mainly to the fact that the rough 

boundaries found in these images cause false watershed. However, if the length of the 

allowable watershed line is limited, it will not produce as many errors. In fact, small 

watersheds perform very well for segmenting grains that are in point contact. As with the 

length of the line extension segments, watershed lines are limited to 5-10 pixels. 

4.3 Grain Reconstruction 

Partial grains become more abundant as the segmentation progresses, due mainly to the 

use of boundaries and line segments with lower contrast. These weaker boundaries 

correspond to quartz overgrowths, boundaries within polycrystalline grains and rock 

fragments, cleavage planes in feldspars, and in some cases they are scratches left by the 

sample preparation. The reason for including boundaries found in the lower intensity 

range is that many of these boundaries are vital to the segmentation process. 

Considerable effort was expended in an attempt to classify these weak boundaries but no 

suitable means was found, so instead of attempting to classify every weak boundary, a 

process was developed to reconstruct over-segmented grains based on shape. Human 

operators can mentally reconstruct these over-segmented grains and are then able to 

outline the overall shape of the grain. The goal of the blob reconstruction routine is to 

mimic this mental reconstruction. Once the segmentation routines have finished, the silt­

sized grains and dirt material are added together and analyzed using a combination of 

morphological operations and blob analysis. If any new blobs are formed they are 

checked using the grain criteria. If these criteria are met, the new blob will be classified 

as a grain and added to the removed grain buffer. 
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ChapterS 

Integration of Methods 

The primary goal of this chapter is to integrate the primary and secondary segmentation 

routines in a manner that optimizes the segmentation. While developing these routines, it 

became apparent that some methods perform better on some types of grains than they do 

on others. Each method also requires that local parameters be set in order to optimize the 

results. One of the most important tuning parameters is the threshold for the initial 

binarization. The threshold is considered to be a global parameter since changing its 

value can affect the outcome of every method used. The number of applications of the 

median filter is another important global parameter and its value will affect all routines. 

The final factor to consider in the optimization is the order in which the routines are 

applied. 

The secondary goal of this chapter is the development of an automated method for 

evaluating the performance of the segmentation routine. Originally, the accuracy of each 

method was determined manually and segmented grains were labeled as either correctly 

segmented, under segmented, or over segmented. The subjectivity involved in this 

method was removed by developing an automated accuracy determination routine. First, 

all routines are tested on a single image with manual inspection; then the routines are 

combined and tested on 4 images with manual and automatic inspection to ensure that the 

automatic analysis is performing correctly. 
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5.1 Individual Routine Performance 

Each individual segmentation routine is tested separately in a systematic manner to 

investigate the affect of each routine and the parameters needed to optimize the 

segmentation process. This is a time consuming process so only one image was selected 

for this treatment. 

5.1.1 Threshold Selection 

The global parameters were the first to be addressed since they affect all the other 

routines. Based on the discussion of thresholds in Chapter 4, it stands to reason that more 

than one threshold can be selected to provide an estimate of the grain fabric. Alternate 

threshold values are obtained by adjusting the high and low correction factors. For the 

preliminary work the high value was set to 30 and the low value was set at 20. Increasing 

the correction factors slightly to 35 and 25 resulted in an increase in the number of 

correctly identified grains. Reducing the correction factors to 20 and 10 also produces an 

increase in the number of correctly identified grains. In general, increasing the correction 

factors will give lower thresholds and therefore more pixels are included in the grain 

fabric. These additional pixels are typically associated with weak grain boundaries and 

their presence means fewer grains are separated. The opposite is true when lowering the 

correction factors, the threshold is higher and more of the weak boundary pixels are 

removed resulting in more partial grains being produced. These results suggest that 

thresholds selected between these extreme values may show better results and 

demonstrate a trade-off between under and over segmented grains. However, for this test 

image the extreme correction factors give better results than any intermediate values. 
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Although the number of grains being considered is not large enough to make any solid 

conclusions about this trend, the other segmentation routines, which use the extreme 

threshold values, consistently show better results than those based on intermediate 

threshold values. The higher number of pixels being classified as grain material is 

demonstrated by the fact that for the 35-25 case the grain fabric composes nearly 60% of 

the image while for the 20-10 case only 50% of the image is grain fabric. This suggests 

that approximately 10% of the image is composed of pixels that can be considered either 

grain pixels or boundary/other pixels. It is unclear which set of correction values would 

provide better overall all results so two algorithms are developed, a high case which uses 

the larger correction factors and a low case that uses the smaller ones. 

5.1.2 Median Filter Applications 

Within each case the number of median filter applications is varied from 0 to 5 and the 

results are observed. The general effect is that one or more applications are needed for 

the low case and zero applications are required for the high case. Again this fits well 

with the threshold observations since smoothing the image with the median filter 

eliminates some of the weak edges that lead to over-segmentation. The high case 

benefits from having all original boundaries left intact and unaltered by filtering. This 

analysis facilitates the formation of a high and low base case by which all other routine 

performance can be compared. The base high case uses the larger correction factors and 

zero applications of the median filter. The base low case uses the lower correction 

factors and one application of the median filter. 
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5.1.3 Other Global Parameters 

These cases use three iterations of closing in the blob analysis routine used to detect 

grains. It was found that three iterations significantly improved the results. Although it 

was suggested in Chapter 4 as a possible way of assisting in the segmentation, no opening 

operations were performed on the base case. The opening only improved the high case 

slightly and it reduced the percentage of correct grains for the low case by almost 10%. 

This reduction is in the form of over-segmentation. 

5.1.4 Individual Results of the Segmentation Routines 

After defining a set of base cases the remaining primary and secondary segmentation 

routines can be investigated. The best results for the Sobel routine, line growing and 

corner connection routine, and the watershed routine are demonstrated in the following 

tables. For all of these cases, the result of the segmentation routine is compared to the 

complete, manually segmented image, i.e. no consideration is given to the different grain 

types. Focus is placed on methods that provide correct grain percentages in the 75% and 

greater range. The results of the Sobel segmentation routine are shown in Figure 5.1. 

The number in the legend refers to the threshold value used to binarize the Sobel intensity 

image; in this case two thresholds, 60 and 100, were selected. The Sobel detector is 

applied to a filtered version of the red channel image. The number of filter applications 

is independent of the number of applications used to produce the binary grain image. 
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Sobel Comparison 
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Figure 5.1: Best results for the Sobel routine compared to the base cases. 

Pixels above the threshold value are kept and therefore a higher value eliminates weaker 

boundaries. So for the Sobel 100 case the threshold reduces the need for filtering and 

peak accuracy is obtained with no filtering in the high case and one application in the low 

case. The Sobel 60 case requires additional filtering to improve the number of correctly 

identified grains. The first test with Sobel 60 uses five applications of the median filter 

and has more correct grains as compared to the second test, which uses just one filter 

application. For both the high and low case the second test shows a lower percentage of 

correct grains but a significantly greater number of grains are segmented. Once again the 

incorrectly identified grains are partial grains. Another important measurement is the 

total grain fabric present, which is a measure taken after the silt sized particles have been 

removed from the image. So, for routines that produce lower initial grain fabrics the 
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amount of segmented silt-sized material is greater. Taking a second look at the Sobel 100 

high case shows that it does a good job with the segmentation according to the percentage 

of correct grains and amount of grain material detected. However, the initial amount of 

grain fabric is nearly 10% less than the base case, all of which is classified as silt-sized 

grains or smaller. This can be attributed to the lack of filtering which is an important 

consideration for selecting segmentation routine parameters. 

Line Grow Comparison 
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Figure 5.2: Best results from the line growing and comer connection routine compared to 
the base cases. 

The results for the line growing and comer connection routine are shown in Figure 5.2. 

At this point, the behavior of the line growing and comer connection routines can be 

predicted based on the above discussion. Specifically, median f'tltering will affect the 

number of comers found and therefore the number of line extension locations. The 
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combination of thresholding and median filtering will affect how many iterations of the 

line growing routine are needed to split grains. In terms of accuracy, 5 iterations of the 

line growing routine shows good results for both the high and low case. While this is a 

good start, the high case removes only 21% of the grains and the low method removes 

only 33%. Increasing the number of iterations to 10 results in a higher percentage of 

grains being segmented but at the cost of reduced accuracy. 

Adding a comer connection routine with a 5 pixel radius to the line growing gives 

good results for the high case with 32% of the grains removed at 80% accuracy. 

However, for the low case the accuracy is the same as the line grow xlO case but it 

removes only 41% of the grains, down from 45%. The difference between the two 

methods is the number of filtering applications used; for the line growing case 5 

applications are used and for the line growing and comer connection case only 1 

application is needed. This suggests that the extra filtering changes the image in such a 

way that the accuracy is improved for the line growing method. This could be in the 

form of altering the boundary curvature or just eliminating erroneous line growing 

locations. Extending the comer connection radius to 10 pixels, once again, increases the 

number of grains segmented by the high case from 32% to 41% with an accuracy of 81%. 

Also, by reducing the amount of filtering from 1 application to zero the number of 

segmented grains is increased to 55% with only a 6% reduction in accuracy. This is a 

good result but further examination of the percentage of initial grain fabric suggests that 

the median filtering is needed. Removing it results in a 6% decrease in the initial grain 

fabric, and hence possible over segmentation. Increasing the comer connection radius 

has no real affect on the low case and the percentage of segmented grains is 44% with 
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74% accuracy. The results for the low case seem to suggest that a limit exists for the 

number of grains that can be removed using the contact wedge approach. In other words, 

only a fraction of the grains are connected in a manner that is conducive to segmentation 

by the line growing based routines. This is confirmed by visual inspection of this 

particular image. 

Watershed Comparison 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
%Correct Total Grains as% Removed as% of Removed as% of 

of Image Image Total Grains 

Figure 5.3: Best results for the watershed routine compared to base cases 
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The result of applying the watershed routine is shown in Figure 5.3. The cases tested 

select watershed lines that are less than 5 or 10 pixels in length. The watershed routine is 

less sensitive to variation in thresholds and filtering and hence, less sensitive to noise. 

Also, they show a significant improvement in segmentation as compared to the base 

cases. The watershed x10 low case segments over 71% of the grain fabric with an 
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accuracy of 76%. The lower correct grain percentage indicates some over segmentation, 

also indicated by the low initial grain fabric percentage. The 10 pixel watersheds have a 

lesser affect on the high case since there is more grain material present. 

Line Grow and Watershed Comparison 
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Figure 5.4: Best results for the line growing and watershed routine compared to the base 
cases. 

Finally, results are shown in Figure 5.4 for the line growing and watershed method. For 

the high cases, the results are nearly identical to those obtained with the line growing and 

comer connection routine. The exception being, this routine does not require any 

filtering while the line growing and comer connection requires one application. This 

agrees with the observations made previously about the watersheds relative insensitivity 

to noise. For the low cases, the accuracy is slightly lower than the high case but slightly 

better than those obtained for the low cases of the line growing and corner connection 
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methods. Also, there are significantly more grains segmented with no reduction in initial 

grain fabric, suggesting few silt-sized grains are created as a result of over-segmentation. 

5.2 Combining Methods 

Now that there is some insight into the individual behavior of each of the methods, focus 

shifts to combining routines in a manner that will maximize segmentation. The strategy 

is straightforward; the most accurate methods are applied first. Also methods with 

shorter line lengths are applied before those with longer lengths, for example, the 

watershed x5 routine would be applied before the watershed x 10 routine. In theory, the 

secondary segmentation methods should have some overlap in the types of grains that 

they segment and therefore only a small improvement is expected from routines that are 

applied later on in the algorithm. For the Sobel methods, the higher threshold is applied 

fust since it includes stronger edges and therefore causes less over-segmentation. Two 

cases are developed based on the high and low cases discussed in the previous section. 

These cases are summarized in Tables 5.1 and 5.2. 

High Case- Median xO 
Order Type Accuracy Rank 

1 Thresh MxO 79 Max 
2 Watershed x5 87 Max 
3 LineGrow x5 88 Max 
4 Sobel 100 MxO 85 Max 
5 Sobe160 Mx5 82 Max 
6 Watershed x 1 0 81 Max 
7 LineGrow x5, CCx5 78 Compared to 80 
8 LineGrow xlO 72 Max 
9 LineGrow x5, CCxlO 75 Compared to 81 

Table 5.1: High case definition based on zero median filter applications 
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Low Case - Median x5 
Order Type Accuracy Rank 

1 Thresh Mx5 79 Compared to 84 
2 Watershed x5 85 Highest 
3 Sobel 1 00 Mx5 82 Tied for highest 
4 Sobel60 Mx5 85 Highest 
5 LineGrow x5 78 Compared to 80 
6 Watershed x10 75 Compared to 7 6 
7 LineGrow x 10 75 Highest 
8 LineGrow x5, CCx5 71 Compared to 7 5 
9 LineGrow x5, CCxlO 74 Highest 

Table 5.2: Low case definition based on 5 median filter applications 

With the exception of the Sobel operators, all methods are required to use the same 

number of median filter applications since they are based on the same binarized image. 

The rank column in Tables 5.1 and 5.2 indicates where the selected method ranks 

compared to the other methods with different amounts of filtering. In most cases, only a 

small amount of accuracy is given up in order to accommodate for using the same base 

binary image for all routines. For the high case, the Sobel 100 routine does not use any 

filtering while the Sobel 60 routines uses 5 applications. Also, the combined line 

growing and watershed method is not included at this point in the interest of simplicity. 

In both cases, the accuracy decreases with increasing distance between segmentation 

locations. The secondary watershed x5 case is included before the primary Sobel case 

since it takes the place of the opening operation that was proposed in Chapter 4. 

The High and Low algorithms are applied to a total of four test images. The 

segmented grains are then compared with their manually segmented counterparts. The 

results are compiled manually to gain insight into the interaction of the methods and to 

provide a benchmark for testing with the automated analysis algorithm developed in the 

next section. After applying the low case to one of the test image many grains were left 
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un-segmented despite appearing as if they should be separated. This prompted the 

reduction of filter in the low case from 5 applications to 1 application. The overall 

accuracy remains the same but the number of segmented grains rises from 30% to 101%. 

This result is shown in Figure 5.5 along with the results from the high case. 
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Figure 5.5: Accuracy and Removed grains for one of the test images. 

The accuracy for both the high and low case is very similar and decreases as the 

algorithm progresses. The cause for the abnormal percentage of removed grains is based 

on the fact that some grains are reconstructed from silt-sized grains that are not included 

in the original estimation of the grain fabric area. In addition to this, the closing routine 

used to classify the blobs tends to slightly increase the area of each blob. Therefore, the 

area of removed grains is greater than the actual value, however, this is not considered to 

be significant. The results for the other three images are not as promising in terms of 
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accuracy and grains segmented. However, for the other images the segmentation 

algorithm provides better estimates of the average grain area and standard deviation. 

The average grain area and standard deviation are computed at each stage of the 

segmentation and the results for one of the test images are plotted in Figures 5.6 and 5.7 

respectively. The same results are included for the manually segmented images. 
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Figure 5.6: Average grain area compared to manual grain area for different grain types. 

The average grain area shows considerable variation for each of the different grain type 

combinations. Ideally, the estimate should be somewhere between the type 1&2 and the 

'all types' case. It is interesting that the average grain area for both the high and low case 

remains very close throughout the algorithm. This suggests that for this image the 10% 

difference in initial grain fabric area is due to the presence of boundary pixels and not 
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grain pixels. If 10% of the grain pixels were removed, a lower average grain area could 

be expected. For other images, the experimental average grain area is much closer to the 

manual grain areas as demonstrated in Figure 5. 7. 
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Figure 5. 7: Average grain area for another test image. 

Again both the high and low cases give roughly the same average grain area throughout 

the algorithm. Also, the values fall between the type1&2 and 'all types' value, with the 

final values converging on the 'all types' case. There are a number of very large and very 

small type 3 grains in this particular image causing the standard deviation to be increased 

when they are included in the analysis. These type 3 grains are not found using the 

segmentation algorithm as demonstrated by the standard deviation, shown in Figure 5.8, 

that is in the range of the type 1 and type 2 grains. 
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Figure 5.8: Standard deviation compared to manual standard deviation for different grain 
types. 

5.3 Automated Accuracy Routine 

Compiling results of the automated segmentation routine is very time consuming and 

subjective. These drawbacks prompted the development of an automated analysis routine 

that can compare the results of the segmentation process to the manually segmented 

images. This method is based on the centers of gravity (COG's) of the automatically and 

manually segmented grains. The first step is to check for COG's from the manual grains 

within the boundaries of the potential grains. If two or more manual COG's are found 

within the potential grain, it is then considered to be under-segmented. If two or more 

automatic COG's are found within the manually segmented grain they are then 

considered to be fragments of an over-segmented grain. If there is only one COG, the 
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areas of the two are then compared and if the area of the automatic grain is within 20% of 

the manual grain area, it is then considered to be correct; if not, it is considered to be 

either under or over-segmented. The output of this routine is the original image with the 

correct, partial, and under-segmented grains displayed on the image, along with the 

COG's of both automatic and manual grains. This allows for a visual inspection of the 

performance of the segmentation algorithm. Also, all the statistics discussed in the 

previous section are output to text files for further analysis. To ensure that this routine is 

performing correctly, the results are compared to the manual analysis carried out on the 

four images in the previous section. These results are shown in Figure 5.8. 
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Figure 5.9: Comparison of manual and automatic analysis for the four images examined 
in the previous section. 

Some discrepancies are noted between the automatic and manual analysis specifically for 

image 4 which is off by nearly 10%. Visual inspection attributes this to subjectivity in 
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the manual analysis and the performance of the automated analysis is considered to be 

quite good overall. 
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Chapter 6 

Results and Discussions 

The discussion of results is initiated by illustrating specific examples resulting from 

applying the Low Case Mx5 routine to the first image in the group A set. Next the other 

cases are applied to the same image and the results are compared. Once this is done, the 

results of all four cases are shown for all 14 images in group A. Finally, results from 

Group B are discussed and some comments are given regarding overall program 

functionality 

6.1 Group A Results 

The original image is shown in Figure 6.1 while Figure 6.2 displays the result of the 

segmentation process and Figure 6.3 displays the output from the comparison to the 

manually segmented image, shown in Figure 6.4. The low case with five applications of 

the median filter (Low Case Mx5) is used since it uses the highest threshold values and 

the most filtering of all the cases considered. The results of this case should provide the 

highest number of correctly identified grains but with the lowest amount of segmented 

material. Table 6.1 provides a legend to aid in the interpretation of the output images. 
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Segmentation Ouput Accuracy Output 
Color Meaning Symbol Meaning 

Blue Potential Grains c Correct grains 
Light Blue Silt sized grain material p Partial grains 
Black Pore space us Under-segmented grains 
Pink high texture areas Red dot Location of manual center of gravity 
Yellow Opaque Material Green dot Location of automated center of gravity 
Green Reconstructed Material 
Red Very small mise components 

Table 6.1: Legend for mterpretatwn of output Images. 

Figure 6.1: Original Image 

The algorithms performance is considered by examining the correct, partial, and under-

segmented, individually. In addition, an explanation of un-segmented material is given 

for some cases. 
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Figure 6.3: Output from manual image comparison - Low Case Mx5 
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Figure 6.4: Manually Segmented image 

6.1.1 Correct Grains 

Initial examination suggests the correct grains seem to agree well with the manually 

segmented images, however, on closer inspection there are cases where grains that are 

identified as being correct actually overlap with other grain regions. An example of this 

is shown in Figure 6.5 where A is the original image, B shows the manual outline and C 

is the result of the automated segmentation algorithm. 

' 
Figure 6.5: Overlap of correct grains. A) Original. B) Manual outline. C) Automatic 
result. 
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The area of overlap (indicated by red oval) should not be included as part of the grain. A 

more extreme example is given in Figure 6.6. 

Figure 6.6: Overlap of correct grains. A) Original. B) Manual outline. C) Automatic 
result. 

These types of errors are unavoidable since some allowance must be made for the fact 

that automatically segmented grain will seldom be an exact match with the area of the 

manually segmented grain. Also, the grain identification criteria are not perfect and 

while it may be possible to reduce errors like those shown in Figure 6.6 by introducing 

additional criteria, the errors shown in Figure 6.5 are difficult to identify. The opposite 

outcome is illustrated in the next section. 

6.1.2 Partial Grains 

Partial grains are typically associated with high texture regions of the image or 

polycrystalline grains. In some cases, as displayed in Figure 6.7, the partial grains are 

only slightly smaller than the manual grain and the difference in size is the result of small 

pieces of grain being 'chipped away' from the perimeter of the grain . 

• 
Figure 6.7: Partial grain- missing pixels around majority of perimeter. 
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Cases like this are dependent upon the operators choose of manual boundary, which is 

often arbitrarily selected, especially in cases where shelving effects are pronounced. In 

other cases, as displayed in Figure 6.8, the partial grain is only a fraction of the complete 

grain. 

Figure 6.8: Partial grain- significantly reduced area. 

The high threshold used for this case contributes to the effects seen in the above images 

since there is a greater number of low intensity pixels eliminated from the image. These 

types of grains are classified as type 3. 

6.1.3 Under-segmented Grains 

Two main types of under-segmented grains are found; those that are composed of two or 

more smaller distinct grains, as shown in Figure 6.9, and those that are composed of 

grains that simply blend together with other grain regions, as displayed in Figure 6.10. 

Figure 6.9: Under-segmented grain- two distinct grains 
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Figure 6.10: Under-segmented grain- one grain blends into the other 

These examples are similar to those shown in Figure 6.5 and 6.6 with the difference 

being that they do not meet the grain criteria. As discussed previously, errors such as the 

one in Figure 6.9 can be reduced while those shown in Figure 6.1 0, considered to be type 

3, are unavoidable. 

6.1.4 Un-segmented Material 

There are two main reasons for un-segmented material in this particular image. The first 

involves the lack of acute contact wedges as shown in Figure 6.11A. Many grain regions 

have contact wedges that are 90 degrees or greater and the corner detector used in this 

work is simply not designed to detect those types of corners. The second cause of un-

segmented material is the lack of strong grain boundaries, illustrated in Figure 6.11B . 

• 

- . ~· 
Figure 6.11: Unclassified material- A) Obtuse contact wedges. B) Missing boundary 
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6.1.5 Reconstructed Grains and Other Material 

Five reconstructed grains (green) can be seen in Figure 6.2 and checking these in Figure 

6.3 shows that two of these grains are identified as being correct. Also in Figure 6.2, 

mixtures of pink and yellow material partially identify high texture grains. 

6.2 Comparison to Other Cases 

The results for the three other cases are shown together with the Low Case Mx5 in Figure 

6.12. This graph shows the cumulative percentage of segmented grain material as the 

algorithm progresses. It is noted that in both the high case and the low case the median 

filtering causes a slight reduction in the total amount of grain material segmented. 

Cumulative Segmented Grain Material 

80 .-~------------~------------------------------~ 

~ ~ -
- 50 +-----------------------~~ ---~--~~----------4 c -c 40 +------------------~----------------------------1 
8 ... 
G) 

~ 30 +-----------~~~~-----------------------------; 

20 

0 +----.----.----.----.----,--~,---.----.----.---~ 

2 3 4 5 6 7 8 9 10 

Step Number 

-+- High MxO 

- High Mx1 

Low Mx1 

~LowMxS 

Figure 6.12: Segmented grain material for each of the 4 cases as the algorithm progresses. 
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The accuracy with which the above grain material is segmented is the focus of Figure 

6.13. One extra case, which compares the potential grains to a manual image that 

includes only type 1&2 grains, is added for comparison. The accuracy for all cases 

decreases as the algorithm progresses and at the completion all values are roughly the 

same with the exception of the type 1 &2 case. It is theorized that as the algorithm 

progresses the number of type 3 grains that are improperly segmented increases and, 

therefore, if these grains are not being considered then the overall accuracy will be better. 

It is also worth noting that the percentages displayed in Figure 6.13 are based on the 

numbers of correct grains and if the area of correct grains is considered instead there is 

roughly a 2% increase in correctly identified material in all 4 original cases. However, in 

the type 1&2 case there is nearly a 10% increase in correctly identified grain material 

with the final values being 78%. 

Correctly Identified Grains 
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Figure 6.13: Correctly identified grains for each of the cases as the algorithm progresses . 
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6.3 Comparison to Other Images 

The results for the remaining images are compared in this section. The first item 

considered is the final percentage of segmented grain material for each of the group A 

images as shown in Figure 6.14. It is important to keep in mind that most images, on 

average, have only 65 - 70% of the image classified as type 1 and type 2. 
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Figure 6.14: Final percentage of segmented grain material for each of the group A 
images. 

The accuracy for each of the methods is shown in Figure 6.15. The values produced by 

each of the segmentation routines are similar for some images but vary significantly for 

others. 
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Correctly Identified Grains 
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Figure 6.15: Correctly identified grains (frequency percent) 
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The results for the average grain area are shown in Figure 6.16. The automatically 

determined results for each case are compared to results from the manual segmentation. 

The segmentation routines produce nearly equivalent results for most images. Many of 

the images (1-5, 8, 10) show good agreement with the manual image results, while others 

(6, 7) are more spread out but are bracketed by the 'all types' value and the type 1&2 

value. The remaining results are not as good with the error for images 11 and 14 being 

particularly high. Both of these images are composed of large grains with significant 

amounts of missing boundaries. The decrease in average area results from the inability to 

detect larger grains coupled with the fact that some grains possess texture that produces a 

multitude of small partial grains. 
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Average Grain Area 
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Figure 6.16: Automatic average grain area compared to manual results. 

The sorting values are compared to the manual results in Figure 6.17. As with the 

average area values, the sorting values for each segmentation routine are very close. The 

sorting values show good agreement with the manual values for some images (4, 9, 12, 

13), with other images (6, 7) having results that are bracketed by the manual values. The 

other 8 images show significant error between automatic and manual sorting values. 

100 



Sorting 

2.5 T-----------------------------------------~ 

2 3 4 5 6 7 8 9 10 11 12 13 14 

Image Number 

--+- High Mxo 

-a- High Mx1 

Low Mx1 

----Type 1 and 2 

Figure 6.17: Automatic sorting measures compared to manual results. 

6.4 Group B Results 

Segmentation results for the B group images showed overall poor results as compared to 

the A group, especially for cases with very large grains. For this reason, a complete 

analysis of these results is not presented here, however, a few examples are given to 

indicate the overall results. Figure 6.18 shows an image with significant textural 

characteristics, mostly in the form of matrix material, and complex grain boundary 

interactions. The resulting segmentation is shown in Figure 6.19. The algorithm leaves 

much of the grain material un-segmented but it does an excellent job of classifying the 

high texture, indicated by pink. 
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Figure 6.18: B group image with high texture areas due to matrix material. 

Figure 6.19: Result of segmentation for image shown in Figure 6.18. 
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Figure 6.20 shows another image with high texture areas but this time it is in the form of 

grain material. The result of the segmentation, shown in Figure 6.21, is similar to the 

previous example. Most grains remain un-segmented but high texture grain material is 

successfully identified and is shown as a combination of silt-sized grains, dirt material 

and high texture material. These types of results are acceptable for the B group images 

since they are not intended for grain size distribution. They are acquired to show fine 

detail such as high texture grains and matrix material and it is evident from the example 

that the segmentation algorithm does a good job of finding this. 

. . 
Figure 6.20: B group image with high texture grains. 
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Figure 6.21: Result of segmentation for image shown in Figure 6.20. 

6.5 Program Performance and Adaptability 

A number of statistics are calculated as part of the output of the segmentation routine. 

The amount of silt-sized material is included as is the amount of "dirt" or clay-sized 

particles. The amount of opaque material and porosity is also measured based on simple 

threshholding and pixel counting operations. The percentage of image that is composed 

of high texture material is also included based on the Sobel texture analysis. The 

percentages of porosity, opaque material and high texture material are measured before 

the start of the segmentation process and these values do not change as the algorithm 

progresses. In theory, these values should be linked to other parameters such as average 

grain size and grain size distribution and it may be possible to select applicable 
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segmentation routines based on the measure. These types of relationships were explored 

but there were no solid links found. 

Another approach is to base segmentation on the presence of one or more of the 

petrographic components that is produced by the segmentation process. For example, an 

abundance of silt-sized grains or high texture material may suggest the presence of 

diagenetic material of polycrystalline grains. Either, these regions can be flagged for 

further consideration or parameters can be adjusted to account for this and the 

segmentation process can be rerun in an attempt to produce fewer silt-sized grains. 

An attempt was also made to automate the selection of line limits used in the line 

growing routines. The line limits were based on the average grain area or average pore 

area, depending on which is more abundant in the initial stage of segmentation. Line 

limits are then obtained by taking a fraction of the average radius. Low limit= 114, mid 

limit= 1/3 and high the limit= V2. These limits are based on the assumption that only a 

small fraction of the grain boundary can be approximated by a straight line. Since the 

radius is an average, the low limit is applied first then the middle value followed by the 

high value, progressing from lower to higher as did the original routine. Results of this 

selection routine showed promise for some images but it was not adaptable to the entire 

data set. 

Due to the automated accuracy routine, the program has the ability to learn from a 

few representative manually segmented images. That is, images that represent each of 

the dominant structures in a set of samples can be input and optimal algorithms can be 

developed for each structure. Overall, this algorithm shows great potential as a means of 

classifying thin-section petrographic images. 
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

The image segmentation and measurement algorithms presented here were applied to a 

data set containing 28 images. The goal was to partially automate the analysis performed 

by an experienced operator, thereby allowing significantly more images to be processed. 

For the group A images the algorithm does a good job of segmenting and identifying type 

1 and type 2 quartz grains. For the group B images, grains are often too large or the 

magnification shows too much detail and, therefore, the segmentation routine is focused 

on measuring image constituents other than quartz. Major conclusions are as follows: 

• It is clear that an integrated approach is necessary to accurately segment 

thin-section petrographic images. This is due to the fact that the grain 

types, and hence the grain contacts, vary significantly throughout the 

images. 

• The effect of operator error is noted in other research and despite efforts to 

minimize this, it is still a factor here. In several cases, the segmentation 

routine correctly identifies grains that are incorrectly identified by manual 

analysis. 

• Accurate segmentation is highly dependent on grain size with larger 

grains, usually found in group B, being more difficult to segment due the 

fact that longer boundaries need to be approximated. However, due to 
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their size, large grains are often cropped and therefore their segmentation 

is meaningless since the entire grain is not present to be measured. 

• Diagenetic effects, in the form of quartz overgrowths, compaction, 

including shear bands and fracturing, dissolved or partially dissolved 

grains and authigenic clay material, play an important part in the 

segmentation process. 

• Polycrystalline quartz grains, quartz with abundant inclusions, and 

feldspars are noted throughout the samples and these types of grains (type 

3) complicate the segmentation by creating partial grains. 

• Grain fabric, left un-segmented at the conclusion of the algorithm, is 

typically composed of very large grains, areas of significant diagenetic 

alteration, or a combination of both. Attention can be drawn to images 

with large amounts of un-segmented fabric and they can either be quickly 

segmented by the operator or they can be studied for their diagenetic 

properties; either way, it is important to note these features. 

While conducting this research, it became apparent that many of the grains are altered 

through the process of diagenesis and some means to quantify this effect would prove 

useful. In fact, the petrographic report completed for these samples [El-Dein et al., 1984] 

shows that only a small part of the analysis conducted by a petrographic laboratory is 

focused on grain area and sorting. Significantly more consideration is given to other 

components, that better characterize the sediment. This includes the presence of any 

diagenetic material including authigenic clays and altered quartz or feldspar grains. 
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An attempt is made to lay a solid foundation upon which additional methods and 

analysis can be based. This included a significant amount of time and effort spent to 

understand the process of characterizing sediments using thin-section imaging. This 

effort has paid off and produced a well-developed analysis of the problems associated 

with using thin-section analysis to produce data for characterization of geological 

structures. It was important to consider the use of these data throughout the development 

of the algorithms. 

7.2 Recommendations 

The groundwork developed in this thesis gives valuable insight into the automated 

segmentation of thin-section petrographic images. Many recommendations can be made 

based on this work; the most significant of these are as follows: 

• Additional blob reconstruction strategies can be developed to reduce the effect of 

over-segmented grains. These strategies would likely include texture analysis. 

• Under-segmented grains could benefit from additional analysis at the grain 

recognition stage. For example, many of the under-segmented grains meet the 

splitting criteria as defined by the modified watershed transform developed in 

previous work [Zhao, 2000]. 

• Further investigation into porosity and rock type relationships could help in the 

automatic characterization process. If the program could identify distinct rock 

types based on porosity analysis, the operator could segment characteristic 

images, input them into the program, and the optimal segmentation routine for 

that particular rock type can be found. 
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• Work with a petrographer to produce optimal images for automated analysis. 
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