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Abstract 

Atlantic cod (Gadus morhua) in Gilbert Bay provides an opportunity to better understand 

the potential effectiveness of a Marine Protected Area (MPA) in providing protection for 

a specific population, including the roles that oceanography and behaviour may play in 

population connectivity. This thesis uses long-tenn monitoring and research (1998-2011) 

through mark-recapture tagging, oceanographic sampling, ichthyoplankton tows, and 

acoustic telemetry tracking to describe demographic trends and population connectivity 

of the Gilbert Bay Atlantic cod population in southeastern Labrador, Canada. The 

population declined considerably after Gilbert Bay became a MPA, presumably as a 

direct result of legal fishing activities outside MPA boundaries. Therefore connectivity 

research was undertaken to investigate population dynamics and infer strategies to 

Improve MP A effectiveness. The locally adapted timing and location of spawning 

strongly influences the population's localized connectivity, resulting in egg retention at 

the spawning area. Tagging showed high site fidelity in juvenile and adult cod and that 

migratory adults exhibit strong homing behavior. Migratory adults move up to 40 km 

from the population's core area, but return to that core area to overwinter and spawn. 

Transplant experiments demonstrated the importance of prior experience for successful 

homing. Fish displaced outside their known or assumed home range displayed very low 

homing success compared to those displaced to areas within their home range. 

Adolescent and adult Atlantic cod migrated briefly from the head of the bay towards 

coastal areas for summer feeding, which increased susceptibility to fishing in areas 

outside the MP A. However, most ultrasonically tagged fish moved less than 10 km 
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outside MP A boundaries. This new information on the timing and locations of fish 

movement can improve MPA effectiveness by identifying times and locations when a 

portion of the protected population moves away from the MP A and becomes vulnerable. 

Such knowledge can facilitate adaptive management and improved co-operation between 

MP A stakeholders and fisheries managers. 
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Chapter One 

General Introduction 

Population connectivity refers to the exchange of individuals among subpopulations 

(Cowen et al. 2006), and marine population connectivity research over the past decade 

has changed ecological understanding of marine populations from a common view of 

broad dispersal and homogenous population structure to one that recognizes that discrete 

populations are much more common than previously thought (Thorrold et al. 2001 ; 

Warner and Cowen 2002; Kinlan and Gaines 2003; Shanks et al. 2003 ; Cowen et al. 

2006; Cowan et al. 2007; Jones and Srinivasan 2007; Pineda et al. 2007). Increasingly 

studies report intraspecific differences among genetic attributes, growth rates, 

reproductive characteristics, population size, and behaviour, often at smaller scales than 

previously recognized (Conover and Present 1990; Foster and Endler 1999; Jobling 2002; 

Jonsdottir et al. 2002; Berg and Albert 2003; Knutsen et al. 2007; Knutsen et al. 2011). 

These biological characteristics have significant potential to influence local adaptation 

(Felenstein 1976, Endler 1977; Olsen et al. 2008; Clarke et al. 201 0). 

Connectivity of populations defines and determines gene flow among them (Slatkin 1987; 

Ruzzante et al. 2006; Bradbury et al. 2012 and references therein). Biotic and biophysical 

factors that limit dispersal , such as local retention (Swearer et al. 1999), differential 

survival (Buston et al. 201 1 ), reproductive success of migrants (Hendry and Taylor 2004; 

Nosil et al. 2005), and natal homing (Jones et al. 1999; 2005), can restrict gene flow and 

lead to fine-scale genetic structure (Jorde et al. 2007; Ciannelli et al. 201 0) and local 

adaptation (Conover and Present 1990, Bricelj et al. 2005, Marcil et al. 2006; Olsen et al. 



2008; Clarke et al. 201 0). Over the last five decades, however, researchers have been 

debating the level of gene flow necessary to constrain evolution in the wild (Conover et 

al. 2006). Several authors contend that gene flow homogenizes populations and can 

negate local differences resulting from selection (Slatkin 1987; Hendry et al. 2002; 

Palumbi 2003), whereas others argue that natural selection typicall y overwhelms gene 

flow in nature so local adaptation can occur even with high gene flow (Erhlich and Raven 

1969; Hedgecock et al. 2007; Marshall et al. 201 0). Regardless, conserving and 

sustaining resources and healthy ecosystems for future generations requires recognition 

and understanding of the mechanisms that support biocomplexity (Hilbom et al. 2003; 

Schindler et al. 20 I 0). Biocomplexity in this context refers to geographic population 

structure at different spatial scales and several dimensions of life history variation within 

this geographic structure (Hilbom et al. 2003). 

Applied ecological research requires understanding of c01mectivity and local adaptation 

in order to improve conservation techniques that can sustain natural resources more 

effectively (Cowen et al. 2006; Clarke et al. 201 0). The potential depletion of populations 

under a broadly applied management plan can lead to overall reductions in species 

resilience, intraspecific biocomplexity, and ecosystem health (Hilbom et al. 2003; Worm 

et al. 2006; Schindler et al. 201 0). To conserve local populations, management effort 

needs to be applied at smaller scales than has traditionally been the case, adding 

additional challenges in understanding those smaller scales and developing management 

strategies appropriate to them. Large-scale global declines in marine resources over 

recent decades has re-focused applied ecology on the conservation and sustainability of 
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natural resources (Jackson et a!. 2001; Jackson 2008; Worm et a!. 2009; Tyus 2012). 

Some researchers maintain that improving existing harvest control rules can improve 

sustainability of resources (e.g., Hilborn et a!. 2003), while others suggest a need for 

more dramatic changes in resource management (e.g. , Worm et a!. 2009). Some 

researchers embrace the application of Marine Protected Areas (MPAs) as a conservation 

tool in ecosystem and fisheries management (Botsford et a!. 2009). MP A efficacy 

depends partly on the relationship between the MPA (its size, location and specific 

restrictions) and population connectivity. In particular, consideration of larval dispersal, 

juvenile and adult movements, and the activities of fishermen can greatly improve MPA 

effectiveness (Gaines and Gaylor 2007; Botsford et a!. 2009) and MP As should be 

considered on a case by case basis (Hilborn eta!. 2003). 

Atlantic cod offer a compelling model species for population connectivity in that their 

distribution spans both sides of the Atlantic Ocean (Scott and Scott 1988; Rose 2007) but 

nonetheless displays complex population structure (Brander 1994; Ruzzante et a!. 2000; 

Beecham et a!. 2002). Populations are capable of reaching levels of abundance in the 

millions (Rose 2007 and references therein), but discrete, persistent Atlantic cod 

populations specific to a bay, fjord, or offshore area characterize the species throughout 

its range (Templeman 1974; Ames et a!. 1997; Taggart 1997; Knutsen et a!. 2003 ; 

Robichaud and Rose 2004). A wide environmental tolerance range, behavioural 

flexibility, and local adaptation all likely contribute to their diversity and ecological 

success (Righton et a!. 201 0). Several studies report retention of eggs and larvae to 

specific areas, as well as homing behaviour, among Atlantic cod populations (Knutsen et 
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a!. 2003; Svedang eta!. 2007; Ciannelli eta!. 2010; Knickle and Rose 2010). All of these 

elements of Atlantic cod behaviour may be important in identifying the relevant scales 

and factors affecting population connectivity. 

Commercial exploitation of Atlantic cod, and in particular the northern cod stock (NAFO 

Divisions 2J+ 3 KL), yielded remarkable catches in terms of numbers of individuals 

harvested but fi shing effort ultimately resulted in stock collapse in the late 1980's and 

early 1990's (Steele et a!. 1992; Lear and Parsons 1993; Rose 2007). The northern cod 

stock, described as a stock-complex with several populations (Smedbol and Wroblewski 

2002), is managed as a single unit within NAFO Subdivisions 2J3KL (Halliday and 

Pinhorn 1990). Managing easily fished, semi-independent populations to prevent 

overexploitation or elimination represents perhaps the single most difficult management 

problem for exploited populations such as inshore northern cod (Myers et a!. 1997 and 

references therein). The absence of a recovery in this stock since its collapse in the early 

1990's (DFO 2012) has become a global example of the importance of fisheries 

management (Hutchings 2000, 2004), and an example of the need for better knowledge of 

population structure and connectivity (Stephenson 1999; Sterner et a!. 2007; Reiss et al. 

2009). For example, Ames (2004) suggested that fishing depleted local inshore 

population components of Atlantic cod in the Gulf of Maine. Similarly, Myers et al. 

(1997) raised concern over the overexploitation of inshore northern cod populations. 

Gilbert Bay, Labrador supports a local Atlantic cod population within the northern cod 

management area (Green and Wroblewski 2000; Morris and Green 2002). Biological 
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characteristics of this population were described previously (Morris and Green 2002) and 

genetically it is considered an island of genomic divergence (Bradbury et a!. 2012). As 

populations diverge, elevated differentiation of genomic regions associated with 

adaptation often result in heterogeneous genomic divergence. Geographic differentiation 

in Atlantic cod appears to be driven by a small number of discrete islands of genomic 

divergence (Bradbury et al. 20 12). Gilbert Bay cod comprise the most discrete Atlantic 

cod population among those investigated in the western Atlantic (Ruzzante et a!. 2000; 

Beacham et al. 2002; Bradbury et a!. 201 0), with the exception of relict Atlantic cod 

populations inhabiting meromictic lakes on Baffin Island (Hardie et a!. 2006). Gilbert 

Bay was formally designated a Marine Protected Area (MPA) by Canada ' s Oceans Act in 

2005 (Canada Gazette, 2005). The specific regulatory intent of the MPA is to protect the 

local Gilbert Bay cod population and its habitat. 

This thesis addresses changes in the Gilbert Bay cod population based on long-term 

monitoring and research (1998-2011) and considers the contribution of population 

connectivity to MPA efficacy. Chapter 2 identifies a worrisome decline in abundance and 

changes in population structure over a 14-year monitoring period as a direct result of 

fishing pressure and variable recruitment. Chapter 3 investigates the retention of Atlantic 

cod eggs and larvae in Gilbert Bay, and emphasizes the importance of bathymetry and 

oceanographic conditions in relation to timing and location of cod spawning for 

connectivity of this population. Chapter 4 evaluates the movement patterns of juvenile 

and adult Gilbert Bay cod. Anned with specific knowledge of the population's home 

range and movement patterns, transplant experiments demonstrated the importance of 
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individual experience for Gilbert Bay cod homing behaviour. Chapter 5 presents evidence 

of seasonal migration over small spatial scales to feed in more productive coastal areas. 

Chapter 6 presents details of cod movements to areas outside the MPA and proposes how 

scientific infom1ation can advise potential adaptive management actions that could 

improve effectiveness of the Gilbert Bay MPA. Chapter 7 concludes on how improved 

understanding of connectivity, coupled with long- term monitoring and research represent 

critical scientific inputs to advise managers on how to improve MPA design and 

effectiveness for threatened populations. Specifically, it identifies how changing the 

timing of fishing closures in adjacent areas can allow protected fi sh to complete their 

feeding migration without risking capture in commercial fisheries and without further 

limiting fishing opportunities to local fishers. 
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Chapter Two 

Long-term Atlantic cod population trends in a subarctic MPA: How connectivity 

research can improve MPA efficacy 

2.1 ABSTRACT 

Gilbert Bay, Labrador was closed to commercial fi shing for Atlantic cod (Gadus morhua) 

in 2000, and became a Marine Protected Area (MPA) in 2005 regulated under Canada's 

Fisheries Act and Oceans Act, specifically to protect the genetically distinct population of 

Atlantic cod and its habitat. Population monitoring and research conducted in Gilbert Bay 

during 26 research trips and over 14 years of sampling have shown major population 

changes, resulting from variable recruitment and commercial fishing pressure in areas 

adjacent to the MPA. The pattern of juvenile recruitment of fish has included several 

strong year classes followed by several poor year classes throughout the period. Tag 

recaptures from the commercial fishery (n= l 05) indicate that commercial fishing 

activities removed some large adult Gilbert Bay cod that migrated outside the MP A. 

Relatively intense commercial fishing in the time series available, during a period of poor 

recruitment, cotTelated with a declining trend in research catch rates, and truncated size 

structure. The large changes in population abundance indicate a need for adaptive 

management in order to improve MP A effectiveness. 

7 



2.2 INTRODUCTION 

Many ecologists consider Marine Protected Areas (MPAs) to be an important 

conservation and management tool for marine ecosystems (CBD 2006). Many MP As 

have been established throughout the world 's oceans (Botsford et al. 2009) each with 

various objectives. MP As vary in design and application, but most restrict at least some 

activities from a specific area to reduce unwanted effects or to enhance specific 

ecological attributes, sometimes hoping for a positive spillover effect on larger, adjacent 

areas. MP As established specifically to protect fish populations are typically expected to 

produce measurable increases or at least maintain acceptable levels of abundance. 

Scientific monitoring and research therefore play an important role in documenting and 

sometimes improving MPA effectiveness. 

Population connectivity can play an important role in MP A efficacy and thus represents 

an important consideration in design and future management. Given that not all MP As 

have immediate positive effects (Agardy et al. 2011), monitoring and research to 

facilitate informed adaptive management decisions can improve MP A effectiveness. 

Scientific research and long-tenn monitoring programs become increasingly important in 

instances where MP As fail to achieve their intended objective, or regulations result in 

unexpected or unwanted changes. 

Traditionally, fisheries managers use a variety of harvest control rules such as licenses, 

quotas, fishing seasons, fishing methods, among others; still, many fish stocks continue to 
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decline, even when these measures are implemented (Worm et al. 2009). Collapse of 

northern cod (an area that encompasses the north coast of Newfoundland and the 

Labrador coast, defined by NAFO divisions 2J3KL), and other groundfish stocks in 

eastern Canada resulted in the implementation of fishing moratoria in 1992 with 

associated economic and social changes (Hutchings and Myers 1995). This closure now 

appears as a textbook reminder of the costs associated with poor fi sheries management. 

Since the collapse of northern cod more than 20 years ago there has been no evidence of 

recovery above pre-moratorium abundances (DFO 2012). A small-scale directed northern 

cod fishery persisted in the inshore in most years since 1998 (1998-2002, 2006-present) 

with reported landings in the range 3,000 t to 8,000 t. Recreational fi sheries were also 

permitted in most years. 

Declines in fishery resources globally led to alternative management measures to improve 

conservation, including a more holistic, ecosystem-based approach to fishery 

management (Worm et al. 2009) and more stringent applications of traditional fisheries 

management measures (Hilborn et al. 2004). Multiple authors have suggested that 

recognizing and managing the small-scale population structure that characterizes many 

marine species would greatly improve fisheries management (Stephenson 1999; Rouget 

et al. 2003; Sterner 2007), by preserving the intraspecific biocomplexity (population 

structure) needed to maintain healthy ecosystems (Hilborn et al. 2003; Wonn et al. 2006; 

Schindler et al. 201 0). 

9 



Since the collapse of northern cod, several studies have recognized different inshore 

populations in this region based on contrasting distributions, life history characteristics 

and genetic differences (Lilly et a!. 1999; Ruzzante et a!. 2000; Beacham et a!. 2002; 

Morris and Green 2002; Smedbol and Wroblewski 2002; Bradbury et a!. 2011 ). 

Persistence of these populations at a time when offshore population abundances have 

remained low further attests to their importance. The Gilbert Bay MPA (Figure 2.1 ), 

which is located within NAFO division 2J , has as its primary objective the protection of 

the genetically unique population of Atlantic cod and its habitat (Canada Gazette 2005). 

This population was considered susceptible to overfishing soon after the northern cod 

fishery reopened in 1998, following six years of moratoria, when low abundances in other 

populations led fishers to target considerable and focused efforts on this small, local 

population (Morris and Green 2002; Morris et a!. 2003). Other work describes the 

population as resident (Green and Wroblewski 2000), with a very localized and restricted 

primary overwintering and spawning site within Gilbert Bay (Chapter 3), and limited 

movement of individuals (Chapter 4). 

These biological characteristics of the Gilbert Bay cod population (Green and 

Wroblewski 2000; Beacham et al 2001; Morris and Green 2002) clearly emphasized the 

need to protect this unique population and were important in the establishment of the 

Gilbert Bay Marine Protected Area. Subsequent research has identified a decline in 

abundance and has focused on factors affecting MPA effectiveness. This chapter presents 

long-term population monitoring and data analysis, including trends in abundance, size 
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distribution, and recruitment. The chapter also considers commercial fishing effort near 

the Gilbert Bay MPA from 1998 to 2011. 

2.3 METHODS 

2.3.1 Annual Sampling 

Annual sampling methods used to study population dynamics were initially developed 

and described by Morris and Green (2002). Continued sampling efforts spanned 26 

research and monitoring trips to Gilbert Bay from 1998-2011 {Table 2.1), during which 

Gilbert Bay cod were sampled in late May-early June (spring), and again in early August 

(summer) from small boats 4-7 m in length. Spring monitoring targeted the Gilbert Bay 

cod spawning season (see Chapter 3), at which time most Gilbert Bay cod were 

concentrated at overwintering locations (Morris and Green 2002; Morris et al. 2003). 

Summer monitoring targeted a period after fish (particularly adults) disperse from their 

overwintering areas (see Chapter 4). 

2.3.2 Research catch data 

Hook and line sampling, using a straight one ounce jigging lure (Gibbs Mitmow Jig™), 

was conducted in order to capture representatives of nearly all size classes of Gilbert Bay 

cod (fish greater than ~ 15 em, and ages 2- 18 yrs) from 33 sampling locations in zone 1 a 

during each trip (Figure 2.2). Thirty other locations distributed throughout Gilbert Bay 

were sampled less regularly. Although this strategy samples non-randomly, it provides 
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relative trends in specific size classes at defined locations which does not require random 

sampling. The largest fish caught were comparable to commercial sizes, and commercial 

efforts presumably include some of the largest fish available. Sampling sites covered an 

average area of 2 hectares and were typically spaced 500 to 7500 meters apart within 

zone I a (Figure 2.2). Most fishing locations were initially selected based on fish 

availability, and spanned a depth range of 5-15 m. Because sampling was non-random, 

total fish abundance cannot be estimated, however, the objective of this sampling was to 

look at relative rather than absolute change in numbers. Since 2004, the fishing times, 

duration, and number of people fishing at each location was recorded; data for previous 

years documented daily fishing effort (time and people). Each site was sampled for a 

minimum of 30 minutes and less than 120 minutes consecutively, and ensuring that sites 

were not fi shed sequentially. 

Upon capture, each cod was measured for total length (TL) to the nearest millimeter and 

further examined by gently squeezing the abdomen to check for sexual maturity 

(identified by the presence of eggs or milt) and generally assessing overall fish condition. 

Healthy fish larger than 30 em were marked with an external, individually numbered tag 

(Floy® t-bar tag) and released (n = 8213) at the location of capture. Some cod (n = 1 05) 

were recaptured during commercial fishing and the tags were returned to Fisheries and 

Oceans Canada. 

Annual research catch rates were calculated for the entire time series, 1998-2011 based 

on mean daily catch rates 1998-2005. For 2005-2011 the calculation was based on mean 
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catch rate per site. Research catch per unit effort (CPUE) was defined as the number of 

fish caught divided by the number of people fishing multiplied by the time (hrs) each 

person fished, standardizing catch to the average sampling effort during the 14-year time 

series (i.e. annual mean effort of 178 hours of fishing each spring). 

2.3.3 Recruitment 

The relative abundance of a cohort sampled during three and four consecutive years of 

sampling was used to estimate the strength of each cohort relative to others in the series. 

These data included as many year classes as possible identified from modes in length­

frequency distribution plots that were standardized by sampling effort. Modes in length­

frequencies from ages 2 to 5 were distinguishable by visual inspection of data and 

assigned to year classes based on length-at-age data from otolilths. Ages from 2-5 years 

were selected because sampling collected few age 1 fish and there was considerable 

overlap in length at age after age 5. To convert individual lengths representing modal 

length groups to age, the length-frequency distribution was divided into age classes (2-5 

yrs) estimated from the midpoint between mean lengths-at-age detennined from otolith 

aging. These midpoints corresponded to modes in the length-frequency distribution. A 

plot of the standardized proportions by age across years (SPAY) was used to show cohort 

consistency (see Healey 2011 for methods). Annual proportions at age were computed 

and then standardized to have a mean of 0 and variance of 1. Values were calculated by 

subtracting the mean proportion and dividing by the standard deviation of the proportions 

computed across years. The same methods are used to track year classes for northern cod 
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(Brattey et a!. 201 0), American Plaice (Hippoglossoides platessoides) (Dwyer et a!. 

2012), and Greenland Halibut (Reinhardtius hippoglossoides) (Healey 2011). 

2.3.4 Growth 

Because a very limited number of fish were sampled for conservation reasons, otoliths 

were not sampled from all ages annually. Therefore, otoliths sampled in different years 

were combined to produce a general length-at-age relationship. To estimate the trend in 

growth, a Von Betialanffy growth formula 

was fitted to the data, where Loo denotes the average length of a very old fish in the 

population, K represents a growth coefficient, t0 denotes the age the fish would have at 

length zero, and Lt denotes the length at age t. Length and age data were obtained from 

fish at the same time each year during the early spring spawning period. A Ford-Walford 

plot (Pauly 1984) was used to estimate the Von Bertalanffy model parameters K and Loo, 

by rewriting the Von Bertalanffy growth formula in the fonn 

where Loo = a I (1 - b) Eq. A 

and K =-In (b). Eq. B 
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The data provided an estimate of a = 9.5924 and b = 0.8565, and from equations A and B 

enabled the calculation of Loo = 66.9 and K=0.1549. 

2.3.5 Maturity 

During the spawning period samples were collected to describe the age and lengths at 

maturity. Between 1998 and 2011 389 Gilbert Bay cod were euthanized (by direct blow 

to the head) prior to dissection. Fish were sacrificed if recaptured with a tag or if injured 

during capture with low chance of survival. All fish were measured and sexed when 

possible prior to removing otoliths for aging by experienced readers at the Northwest 

Atlantic Fisheries Centre, St. John's, Newfoundland and Labrador. Atlantic cod ovaries 

and testes were staged following the method of Morrison (1991 ). Female fish with large 

ovanes and visible eggs were identified as mature, and those with small translucent 

ovanes as immature. Some fish with non-translucent, small ovanes were likely skip 

spawners, which were noted but excluded from histological analysis. Although less is 

known about skip spawning in male compared to female fish, available data suggests 

skipped spawning is less common among males (Rideout and Tomkiewicz 2011). 

Previous work documented skip spawning in the Gilbert Bay population based on 

histological analysis (Morris and Green 2002). Males were identified as mature by the 

presence of milt and immature when testes were small and tightly coiled. Because small 

testes were sometimes difficult to identify in the field, compared to small ovaries, the sex 

of all fish was not recorded. Unidentified individuals were likely immature males. 

Logistic regression was used to fit sigmoid curves to the proportion mature by length and 
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age in the form, 

e<lu+bJ 'l l 
(l+e<lu+bJxl l) where, 

Px 1 describes the probability that a fish is mature in a given length (em) or age interval 

x 1, and b0 and b 1 denote parameters that define the shape and location of the fitted 

sigmoid curve. 

The predicted length or age at 50% maturity was calculated as, 

L (or A) 50 = -bo/b1. 

To assess the effect of skip spawners, all fish 40 em or larger and age 7 or older were 

assumed to have reached sexual maturity at least once prior to capture, and regression 

curves for comparison were fitted under that assumption. 

2.3.7 Commercial fishing 

Fisheries and Oceans Canada provided commercial fishing information (landings data, 

fishing season, number ofharvesters) from dockside monitoring. For this study, landings 

information was selected from an area consistent with the home range of the Gilbert Bay 

cod population (see Chapter 4), where fishing catches were likely to include Gilbert Bay 

cod. Commercial catch was compared with sampling data using Pearson correlation. 
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Recaptures of externally tagged cod by commercial and recreational harvesters during the 

commercial and recreational fishing season provided an indication of size of fish caught, 

fishing locations, and the timing of recapture in areas outside the MPA. 

2.4 RESULTS 

Research sampling catch rates were highest in 1998, 6 years after the northern cod fishing 

moratorium commenced, and have declined thereafter (Figure 2.3). Catch rates typically 

varied among sites and years. A two-way A OVA comparing 10 consistently fished and 

well-distributed sites within zone I a from 2005-2011 found no significant within-year 

differences among sites (P=0.074), however a significant year effect was evident 

(P=O.Ol 0) (Table 2.2). Catch rate decreased significantly between 2005 and 2010 

(Tukey' s pairwise multiple comparison P=0.023). Although the A OVA analysis failed a 

test of nonnality, it passed a test of equal variance (Sigma-Stat 3.0); A OVA is relatively 

robust to nonnality issues and the result was consistent with general trends through the 

sampling period ( 1998-2011 ). 

The biomass of Gilbert Bay cod sampled decreased during the 14-year sampling period, 

and remained particularly low after 2008. The proportion of the biomass sampled since 

2008 was between four and 11 times lower than in 1998 (Figure 2.3). From 1998-2006, at 

least 1 fish per 30 minute fishing interval was caught when sampling at different sites 

within zone l a. During each year since then, however, at least one 30-minute sampling 
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period occurred when not one fish was caught at some regularly sampled sites. Moreover, 

during 14 years of research sampling and more than 26 sampling trips, we captured and 

released 11 ,73 8 fi sh in zone 1 a; of which only 28 individuals were a species other than 

Atlantic cod. Given that sampling from a variety of locations elsewhere demonstrates that 

this method collects a wide range of species effectively (personal observation), the results 

strongly suggest that cod were, by far, the predominant fish species in Gilbert Bay. 

Indeed, 2009 marked the first time that a fish other than Atlantic cod was caught in zone 

la. Since then several different species including rock cod (Gadus ogac), sculpin 

(Myoxocephalus scorpius), and flounder (Pseudopleuronectes americanus) have been 

captured in zone 1 a during both spring and summer sampling. In contrast, these species 

were not uncommon in samples from zone 3 and other coastal areas. 

Length data collected since 1998 describe striking recruitment trends in the Gilbert Bay 

cod population. Modes representing a specific year class were sampled consistently in 

different years of sampling, providing estimates of year class strength over consecutive 

years. Standardized length frequency distributions (Figures 2.4 and 2.5) helped depict the 

relative abundance of year classes. For example, cod between 13.7-21.3 em TL (age 2) in 

2003, 21.4-27.8 (age 3) in 2004, 27.9-33.4 (age 4) in 2005, and 33.5-38.2 (age 5) in 2006 

were abundant compared to fish of the same size in the subsequent year. Other year 

classes showed a similar pattern. A recruitment pattern characterized by years of strong 

recruitment followed years of weak recruitment (Figure 2.6). 
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The length-at-age relationship for Gilbert Bay cod provides an indication of the time 

(years) required for year classes to reach commercial size (Figure 2.7). The data suggest 

that the series of relatively strong year classes produced from 1999 to 2002 would have 

reached a minimum commercial size (45 em) at age 7, during 2006 to 2009. The timing 

of recruitment to the fishery of these 4 strong year classes overlapped a period of 

relatively high commercial landings within recent years (Table 2.3). However, landings 

decreased during that time period, from 17,500 to 9500 kg. Assuming that the 

commercial fishery exploited these strong year classes, as suggested by their 

disappearance from length-frequency distributions (Figure 2.4), the strong relationship 

between CPUE and commercial fishing (Figure 2.8), and the relatively weak year classes 

from 2003-2005 (Figure 2.6), the poor research catches in recent years (2010-2011) are 

hardly surprising. Indeed few fish were caught at ages 6 -13 years (35-55) and low 

abundances of fish > 45 em were sampled in recent years (2008-2011) (Figure 2.8). A 

relatively strong 2006 year class should produce the next significant year class to reach 

commercial size in 2013. The length-frequency distribution from 2011 indicates that the 

2009 year class (and possibly the 2008 year class) could also be strong, based on 

relatively high numbers of age 2 and 3 year olds sampled in 2011 (Figure 2.4 and 2.5). 

2.5 1 Commercial recaptures 

One hundred and five tags were returned from commercial fishing activities since 1998. 

Of those recaptures, 49 were caught outside the MP A after 2000. Fifty six tagged fish 

were caught within Gilbert Bay in 1998 and 1999, before the MP A was established. Fish 
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caught during commercial fishing were usually larger than 45 em (Figure 2.9). The 

furthest distances tagged Gilbert Bay cod were reported captured were Alexis Bay and 

areas along the coast, corresponding to distances of approximately 10 km north and 20 

km south of the MP A boundary. One tagged cod was reported captured 60 km south of 

Gilbert Bay in 2001. 

2.5.2 Maturity 

Between 1998 and 2011 the length, age, and sexual maturity status of 100 female, 197 

male, and 92 immature fish for which sex were not detennined were collected (Table 

2.4). It was assumed that small immature fish not identified in the field were male. In 

logistic curves describing length and age at which males and females reached maturity 

(Figure 2.10), male Atlantic cod were estimated to be 50% mature at a length of 30.5-

34.4 em (Table 2.4), and at an age of 3.9-5.1 yrs. Assuming that immature fish were male 

increased the length at maturity by 3.9 em and 1.2 years. Females matured over a greater 

range in size, but skip spawners likely biased these observations. Fifteen large female fish 

were likely skip spawners, based on observations of their ovaries. With potential skip 

spawners included, female Atlantic cod were 50% mature at 34.9 - 38.2 em (Figure 2.3) 

and at 5 - 5.8 years. When data were analyzed excluding the expected skip spawners, 

females matured over a similar range as the males. 
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2.6 DISCUSSION 

The objective of the Gilbert Bay MP A is to protect the genetically distinctive Atlantic 

cod population and its habitat (Canada Gazette 2005), and there is clear evidence that the 

MPA protects the population 's most important spawning area and also protects many 

Gilbert Bay cod until sexual maturity (Chapter 4?). However, because Gilbert Bay cod 

are migratory (Chapter 4) some are harvested after they attain commercial size (7 years 

old and 45 em TL) and move outside the MPA. This study documented a significant 

decline in the protected Gilbert Bay Atlantic cod population and its likely causes. From a 

fishery enhancement perspective (which is not the MPA's explicit mandate) the decline 

in the abundance of sexually mature, commercial size fish demonstrates limitations in the 

MPA. 

From the 1970's until 1992, commercial fishing was conducted in Gilbert Bay (Powell 

1987; Morris eta!. 2001b) and presumably reduced the abundance of Gilbert Bay cod. 

The 1998 length frequency distribution shows an abundance of fish between 35 and 50 

em (ages 4-9) and few larger fish, suggesting a low abundance of commercial sized fish 

in 1992 and some population rebuilding between 1992 and 1998. Commercial fishing 

directly within Gilbert Bay resumed in 1998 and 1999, which correlated with the 

observed decline in research catch rates. Reported landings in 1998 and 1999 of 18,000 

and 16,000 kg respectively from the Gilbert Bay population (as reported by Morris et a!. 

2003) significantly impacted the total population, which was likely less than 100,000 kg 
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at that time (Morris et al. 2003). Continued fishing within Gilbert Bay at this intensity 

during a period of poor recruitment would have greatly reduced population size over a 

short time period. 

In those instances where a relatively strong year class was detected, even at age 2 (13.7-

21.3 em TL), it was possible to follow a cohort until at least age 4 or 5, when modal 

analysis was no longer possible. More detailed infonnation on year class strengths 

beyond age 5 requires increased lethal sampling to remove otoliths from many 

individuals. Lethal sampling was minimized in the Gilbert Bay monitoring program for 

obvious conservation reasons, and no attempt was made to resolve year class abundance 

or differences in growth for all cohorts on an annual basis. Therefore, trends in the 

abundance of cod were infetTed based on interpretation of length-frequency distributions 

and catch per unit effort data. Catches of demersal juvenile cod (ages 2 and 3 yrs) and 

those that potentially reached sexual maturity ( 4-5 yrs) provide consistent information 

conceming recruitment-driven demographic changes in the Gilbert Bay cod population. 

Several ultrasonic tagging and tracking studies conducted since 1998 investigated the 

movement pattems of cod in Gilbert Bay, and raised the questions of whether all Gilbert 

Bay cod home (and by what mechanisms) and over what spatial and temporal scale 

(Chapter 4). Collectively during these studies size-specific behavior, seasonal migration 

pattems and foraging movements within and in areas adjacent to Gilbert Bay have been 

described (Green and Wroblewski 2000; Mon·is and Green 2002; Chapter 4; Chapter 5). 

These investigations show that Gilbert Bay cod are site specific and retum to the same 
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areas of zone I a each year. Importantly, they also showed that some Gilbert bay cod 

move outside the MP A where commercial harvesting occurs. 

A reduced number of mature spawners and several years of poor recruitment truncated 

the natural age and size distribution, leaving fewer strong year classes. Reestablishing 

greater numbers of larger and mature Gilbert Bay cod could provide improved and more 

sustainable local harvesting benefits on a small scale. Monitoring indicates recent strong 

year classes not yet recruited to commercial size, and, with the acquired knowledge of 

fishery effects on the population, future work to develop a quantitative population model 

using existing and new monitoring data could provide a useful adaptive management tool. 

The level of commercial Atlantic cod fishing effort and landings increased in the vicinity 

of Gilbert Bay in recent years, particularly since 2007. Maddock-Parsons and Stead 

(2009) report increased sentinel fishery catch rates in the vicinity of Gilbert Bay during 

2007-2008. Catch rates increased from 1-3 fish per net to 5-6 fish per net, a modest 

increase but perhaps reflective of the potential output from a small local population such 

as the Gilbert Bay cod population. The increased catch corresponds to the timing of 

relatively strong year classes produced during the 1999-2002 period which would have 

reached commercial size during the period of increased landings from sentinel fishing. 

Tagged Gilbert Bay cod were caught at each of these locations in the past, demonstrating 

that some Gilbert Bay cod move to these areas. However, tag returns from commercial 

fishing are not easily comparable to research tag-recapture rates. Reporting rates of 

commercial tag recaptures are considered inaccurate in terms of location and fish size, 
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and periodic disputes between harvesters and MP A management result in low and 

variable reporting rates over time. The potential export of fi sh from Gilbert Bay, 

however, is not spillover, which would constitute a net export of fi sh from an MP A. The 

data suggests very limited spillover from Gilbert Bay, because the large migratory Gilbert 

Bay cod that move outside the MP A in summer return to Gilbert Bay each fall. 

Declining research catch rates, the removal of large fi sh during commercial fishing, and 

periods of poor recruitment indicate substantial changes to the Gilbert Bay cod 

population. The recent absence of cod at some sampling sites on the spawning grounds 

recently and the occurrence of fish species other than cod in recent years could be related. 

If this trend continues, long-term changes in local fi sh community structure may follow. 

Given reports of local Atlantic cod population disappearances in Maine (Ames 2007), it 

is possible that population dynamics at very low levels of abundance are currently 

difficult to predict, potentially driven by equally unpredictable factors such as weak or 

nonexistent compensation, allee effects or density independent effects as stock size 

declines (Keith and Hutchings 2012). 

2.7 CONCLUSIONS 

This research and monitoring demonstrated substantial changes in Gilbert Bay cod 

population demographics. Protecting discrete populations that could be engulfed by large 

scale fishery management areas, such as the northern cod management area (NAFO 

2J3KL), requires some understanding of population connectivity. Fishing in Gilbert Bay 
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during 1998 and 1999 prior to MPA regulations and the increased fishing activity in areas 

surrounding the MPA during the period from 2007 to 2011, has led to a substantial 

decrease in the Gilbert Bay cod population. Although the MPA protects important 

spawning and nursery habitats, as well as some young adults and foraging/feeding 

habitats, its effectiveness can be improved. In this case, the goal of the MP A is to protect 

the Gilbert Bay cod population and its habitat, but whether this MPA can contribute to 

the recovery of cod in other areas remains unknown. Despite variable recruitment, our 

work provides evidence of relatively strong recruitment in 2006 and possibly 2009 but 

these fish have not yet reached commercial size. Strong recruitment did occur in some 

years with low population levels but the variability in recruitment suggests that protecting 

these year classes and maintaining a larger adult population will help the probability of 

rebuilding the Gilbert Bay cod population if adaptive management measures are 

implemented. Early life history and recruitment infonnation represents an important 

component of understanding population connectivity, which is considered in the next 

chapter. 
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Table 2.1. Summary of angling research data collected in zone 1 a, within Gilbert Bay 
during spring and summer sampling periods, from 1998 to 2011. 

Year Sampling period Rod hrs Fish caught 

1998 June 1- 10 88 439 

1999 May 20 -June 2 168 598 

2000 June 10-22 148 447 

2001 May 29 - June 7 84 306 

2002 June 11 - 19 162 679 

2003 June4-IO 128 333 

2004 June 1-8 126 498 

2005 June 1-1 9 222 675 

2006 June 1- 10 224 602 

2007 June 1- 10 224 457 

2008 June 2- 12 284 41 8 

2009 June 2- 11 274 491 

20 10 June3-l 0 23 1 366 

20 11 June 1-9 165 408 

1998 July 27-August 3 23 183 

1999 August 2-12 30 3 14 

2000 

200 1 July 30- August 5 39 210 

2002 July 3 1 - August 6 51 424 

2003 

2004 August 1-7 54 298 

2005 August 2- 8 63 329 

2006 July 31 -August 5 50 475 

2007 July 31- August 7 73 290 

2008 August 2-11 206 372 

2009 August 2-10 19 1 538 

2010 August 3-8 101 6 10 

20 11 August 1-5 191 415 
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Table 2.2. Two-Way ANOV A comparing CPUE among 10 common fishing sites and 
seven sampling years (2005-2011 ). 

Source of 
OF ss MS F p 

Variation 
Site 10 28.573 2.857 1.833 0.074 
Year 6 29.958 4.826 3.097 0.010 
Residual 60 93.511 1.559 
Total 76 151.042 1.987 
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Table 2.3. Commercial Atlantic cod catches (round weight) reported by Department of 
Fisheries and Oceans dockside monitoring program at locations where tagged Gilbert Bay 
cod were caught and reported by commercial fishermen. Fishing areas span headland 
areas between Salmon Point (N 52° 37' 44", W 55° 44' 51") in the north, to Cape Spear 
(N 52° 26' 35", W 55° 37' 38") to the south, and all of Alexis Bay. The northern cod 
fishery was closed from 2003-2005. 

Year 
Active Total catch Individual 

% quota caught 
Fishennen (kg) Quota (kg) 

1998 12 8,135 1125 60 

1999 11 12,057 4082 27 

2000 3 613 3810 5 

2001 2 928 3810 12 

2002 9 5,740 3810 17 

2003 

2004 No Fishery 

2005 

2006 10 6,598 1361 48 

2007 19 17,672 1134 82 

2008 23 17,631 1474 67 

2009 17 14,385 1700 50 

20 10 14 11 ,500 1700 48 

2011 11 9,400 1700 50 
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Table 2.4. Results of logistic regression analysis of maturity status of Gilbert Bay cod versus length (em) and age (y), with lengths 
(Lso) and age (L50) at 50% maturity indicated. 

Group Sample size 
Independent Lso or 

Coefficients 
Standard 

p-value 
variable A so error 

Length 30.5 
Constant -10.129 3.048 <0.001 

Males Length 0.332 0.086 <0.001 
(excluding 197 

Constant -4.569 1.583 0.004 
immatures) Age 3.9 

Age 1.167 0.288 <0.001 

Length 34.4 
Constant -1 7.299 3.012 <0.001 

Males Length 0.503 0.087 <0.001 
(including 289 

Constant -8.167 1.129 <0.001 
immatures) Age 5.1 

Age 1.610 0.219 <0.001 

Length 38.2 
Constant -6.192 1.479 <0.001 

Females Length 0.162 0.038 <0.001 
(including skip 100 

Constant 
spawners) Age 5.8 

-3.238 0.903 <0.001 

Age 0.555 0.143 <0.001 

Length 34.9 
Constant -21.441 5.207 <0.001 

Females Length 0.613 0.148 <0.001 
(assuming mat at 100 

Constant -17.023 5.048 <0.001 
40 em and 7 yr) Age 5 

Age 3.396 0.997 <0.001 

Length 35.4 
Constant -9.262 1.016 <0.001 
Length 0.262 0.027 <0.001 Males and 

389 
females combined Constant -6.225 0.689 <0.001 

Age 5.3 
Age 1.1 73 0.123 <0.001 
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Figure 2.1 Map of study area showing the Gilbert Bay MP A. Colours 

represent different MPA zones established for different regulations 

(see Canada Gazette (2005) for regulatory details). 
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Figure 2.2. Sampling locations (dark blue boxes) in zone l a, also referred to 

as The Shinneys. 
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Figure 2.2 
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Figure 2.3. Annual research catch per unit effort (CPUE) data (mean ± SE) 

based on sampling in zone 1 a. CPUE on the solid line describes 

mean daily sampling effort; CPUE on the dashed line describes 

individual site effort. The pink squares denote the total 

standardized biomass of cod sampled each year. Lower biomass in 

relation to CPUE, particularly since 2007, indicates fewer large 

fish were sampled. 
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Figure 2.4 Standardized spnng length-frequency distributions (see Methods 2.3.2) 

sampled in zone la. Given the desire to limit lethal sampling, particularly 

for large mature fish, no age frequencies were obtained. 
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Figure 2.5. Standardized summer length-frequency distributions sampled m 

zone la. 
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Figure 2.5 
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Figure 2.6. Recruitment trends based on standardized proportions at age from 

spring sampling in Gilbert Bay. For each age, annual catch 

proportions at age are standardized to have a mean 0 and variance of 

1. The size (i.e. area) of each symbol is proportional to the absolute 

value of the deviation. Positive deviations are shown as grey circles, 

and negative deviations are shown black circles. Grey and black 

dotted lines illustrate the consistency of both strong and weak 

recruitment patterns observed during four consecutive years of 

sampling. The symbol sizes do not reflect the year to year changes in 

relative strength of year classes, but are useful for indicating how 

consistently individual year classes track through successive surveys. 
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Figure 2.7. Mean length at age of cod in Gilbert Bay, where black error bars 

indicate standard deviation and red bars indicate range in length at 

age. A Yon Bertalanffy growth curve was fitted to the data. 
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Figure 2.8. Number of commercial-size Gilbert Bay cod (>45 em) sampled 

during research collections in Gilbert Bay (blue diamonds, primary 

y axis), and commercial reported landings data (Secondary y axis ­

hatched bars). Cod larger than 45 em were selected because they 

are caught commercially (Figure 2.9). The 2006 research sampling 

estimate (pink circle) is known to be low and underestimates large 

cod because large cod migrated early during 2006 and large cod 

were under-sampled at the spawning site (Chapter 4). The Pearson 

correlation between reported landings and change in the number of 

commercial-sized fish sampled between years was significant, r = 

-0.87, p = 0.002 (with 2006 data removed as an outlier) from 1998 

until 2008, after which the number oflarge fish has remained low. 
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Figure 2.8 
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Figure 2.9 Length-frequency distribution of tagged Gilbert Bay cod recaptured 

during commercial fishing. Top panel includes recaptures from 

within Gilbert Bay, zones 1 b, 2, and 3 during 1998 and 1999. 

Bottom panel includes recaptures from outside the MP A during 

2000-2008. 
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Figure 2.1 0. Proportion of mature male and female Atlantic cod by length and 

age showing fitted logistic curves with constants from Table 2.3. 

Two curves are plotted for female fish, the dashed line assumes 

that all female fish matured by age 7 and 40 em TL, and that those 

not in spawning condition were skip spawners. 
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Figure 2.10 

1.00 - 1.00 -

~ 0.75 0.75 -
:::J 

ro 
E 0 c 0.50 - 0.50 - <;2 
0 
t 
0 
Q. e 

0.25 - 0.25 -n.. 

0.00 0.00 

10 18 26 34 42 50 58 66 74 10 18 26 34 42 50 58 66 74 

Size (em) Size (em) 

1.00 1.00 

~ 0.75 0.75 
:::J 

ro 
E 0 c <;2 
0 0.50 0.50 

·-e 
0 
Q. e 

0.25 n.. 0.25 

0.00 0.00 

3 5 7 9 11 13 15 3 5 7 9 11 13 15 

Age (yr) Age (yr) 

49 



Chapter Three 

Spawning behaviour attuned to local oceanographic features drives reproductive 

isolation of Atlantic cod in Gilbert Bay, Labrador 

3.1 ABSTRACT 

During 14 years of research and monitoring, resident Atlantic cod in Gilbert Bay, 

Labrador spawned at the same primary site near the head of the bay. Each year spawning 

began in May and ended in June. Eggs were confined to a layer below a 3-5 m thick 

surface layer of low salinity water covering the spawning site. Shallow, 5-m deep sills 

separate the spawning site where higher densities of eggs (23-90 egg·m-3) were sampled, 

from the adjacent Main Ann where egg densities were much lower (4-7 egg·m-\ 

Ichthyoplankton sampling at the same areas in early August yielded pelagic juveniles 

(mean length 24.9 mm) and no cod eggs. A combination of physical and oceanographic 

factors and locally adaptive behavioural attributes of Gilbert Bay cod maintains 

reproductive isolation in this genetically distinctive bay population of Atlantic cod. 

3.2 INTRODUCTION 

Traditionally, biologists have viewed marine species as having demographically open 

populations interconnected by high gene flow. However, multiple lines of evidence now 

suggest lower connectivity and greater spatial structure in marine populations than 

previously thought (reviewed by Palumbi 2004, Kritzer and Sale 2004; Levin 2006; Sale 
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et al. 2006; Gaines and Gaylor 2007). Throughout the range of Atlantic cod, geographic 

features such as continental shelves, continental slopes, specific coastal areas and bays, 

and semi-enclosed fjords help define heterotypic groups of fish (i.e. populations, sub­

populations, and races) (Skjaeraasen et al. 2011; Robichaud and Rose 2004), that differ 

genetically (Bradbury et al. 2011; Knutsen et al. 2007) and behaviourally (Sal vanes et al. 

2004). Environmental heterogeneity across a species' geographic range should exert local 

selection pressures on the fitness of individuals within specific environments (Fraser et al. 

20 11 ), potentially resulting in locally adapted populations with important conservation 

value (Hilborn et al. 2003; Schindler et al. 201 0). Restricted gene flow among 

populations increases the potential for local adaptation (Endler 1977; Slatkin 1987; 

Hendry and Taylor 2004; Conover et al. 2006). However, genetic differentiation may still 

arise among overlapping populations in cases of strong selection following dispersal 

(Slatkin 1987; Hedgecock et al. 2007; Marshall et al. 201 0). The dispersal of eggs and 

larvae can therefore significantly affect population structuring, demographics, and 

connectivity. 

Population connectivity, defined here as the exchange of individuals among 

subpopulations (Cowen et al. 2007), is important to understanding the potential 

geographic scale of local adaptation. Local adaptation refers to populations that 

differentiated genetically under conditions where limited dispersal or active habitat 

choice results in low gene flow (Kawecki and Ebert 2004). Contemporary evolutionary 

theory suggests that the extent to which local adaptation can occur in a species depends 

on population size, level of gene flow, and selection pressures acting on each individual 
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(Felenstein 1976, Endler 1977). Adaptive differentiation can occur rapidly (Hendry et al. 

2002) over small spatial scales (Grosberg and Cunningham 2001; Hedgecock et al. 2007; 

Olsen et al. 2008) despite gene flow (Marshall et al. 20 I 0), selecting phenotypic traits 

that directly influence the viability of populations (Conover et al. 2006). However, 

conclusively demonstrating adaptation in field studies remains a challenge because of 

limitations in linking phenotypic differences with specific genes that affect fitness. 

Recent reviews indicate that many species with broad geographic ranges show adaptive 

differentiation among populations, which can generate a variety of spatial patterns, 

ranging from counter gradient variation across a latitude gradient (Conover et al. 2006, 

2009) to more complex geographic mosaics of adaptation (Thompson 1999). Atlantic cod 

populations display both of these patterns (Purchase and Brown 2000; Knutson et al. 

2007; Olsen et al. 2008; Bradbury et al. 20 10). 

Dispersal of fish eggs, including Atlantic cod, can affect population connectivity. 

Dispersal depends initially on the spawning location and subsequent physical conditions 

to which eggs are exposed (Swearer et al. 1999; Warner and Cowen 2002; Knutsen et al. 

2007; Werner et al. 2007; Ciannelli et al. 201 0). Atlantic cod spawn pelagic eggs and 

presumably eggs spawned in offshore areas disperse more broadly (Pepin and Helbig 

1997) than eggs spawned within more protected bays and fjords (Ciannelli et al. 201 0). 

Atlantic cod prefer to spawn at temperatures between 4 and 7 °C (ICES 2005; Righton et 

al. 201 0), but eggs can tolerate a much larger temperature range spanning from -1.5 to 12 

°C (Pepin and Helbig 1997; Jordaan and King 2003 ; ICES 2005; Geffen et al. 2006). 
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Water density, developmental stage, egg quality, and size all affect cod egg buoyancy 

(Sundby 1983). Depending on locality in the western Atlantic, reported densities of 

Atlantic cod eggs vary between 22-26 kg·m-3, with slightly positive buoyancy that 

facilitates eggs drifting and hatching near the surface (Anderson and de Young 1995; 

Ouellet 1997). At their preferred temperatures ( 4-7 °C) cod eggs develop quickly. 

Anderson and de Young (1995) estimated that cod eggs on the northeastern 

Newfoundland shelf hatch in 24-27 days at 3 °C, and that stage 1 eggs (using the Markel 

and Frost 1985 staging scheme) are 6-7 days post-spawning at most. After eggs hatch, 

temperature continues to affect larval growth (Folkvord 2005 and references therein), but 

other factors including light (Puvanendran and Brown 2002) and predator-prey dynamics 

also play a role (Ellertsen et al. 1981 ). Larval cod in the wild typically experience 

temperatures between 5 and 7 oc (ICES 2005; Folkvord 2005 and references within), but 

will grow rapidly at temperatures of 14 and 16 °C (Otterlei et al. 1999). 

The location and timing of spawning by Gilbert Bay cod and physical characteristics 

including bathymetry and seasonally structured water column is likely to affect egg 

dispersal. Because these features support a localized population, they could foster local 

adaptation. The inference of local adaptation promoting low connectivity (reduced 

exchange of individuals with other populations) through both location and time of 

spawning is further supported by studies of cod movement (Chapter 4) and genetic 

analysis (Bradbury et al. 2010). This 14-year study examines the location and timing of 

Atlantic cod spawning as well as early development and local oceanographic conditions 

53 



in Gilbert Bay. Specifically it addresses how these factors influence the retention of eggs 

and larvae near the spawning area in Gilbert Bay. 

3.3 METHODS 

3.3.1 Study area 

Gilbert Bay is a shallow-water, low-gradient, sub-Arctic fjord, located on the southern 

coast of Labrador 52°35'N 56°00'W (Figure 3. 1) measuring ~ 28 km in length and 1-2.5 

km in width with a total area of 60 km2
. Ice covers Gilbert Bay from December until 

early May. Two large rivers at the head of Gilbert Bay, Gilbert River and Shinneys River, 

influence the oceanographic characteristics in the area, particularly during spring. The 

132-km long Gilbert River drains a watershed of 642 km2 in contrast with the shorter 76-

km long Shinneys River which drains a 313 km2 area (Anderson 1985). A long-term river 

monitoring station on the Alexis River provides infonnation on timing of the spring 

freshet in this region of Labrador. The Alexis River runs parallel to Shinneys and Gilbert 

Rivers; as little as 5 km separate the head waters of these rivers. 

A multibeam survey of the seabed features of Gilbert Bay in 2003 (Morris and Power 

2004) provided data used to describe benthic features in the area. Data from this survey 

were extensively analyzed and ground-truthed by Copeland et al. (201la, 2011b). The 

complex bathymetry, which is important to the exchange of water in the bay, spans seven 

basins along the length of the fjord separated by six sills (Copeland et a!. 20lla). The 
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basins range in depth from 32 m near the head of the bay to 163 m at the mouth, and the 

sills range in depth from 4 m to 65 m. MPA zone 1 a, an area known as The Shinneys, 

branches to the southwest of the Main Arm of Gilbert Bay, where a narrow channel and 

shallow sill at 4 m depth restricts exchange with the Main Arm. 

Copeland et al. (20 11 b) differentiated five habitat types based on multi beam substrate 

analysis and ground truthing. Much of the mapped fjord is shallower than 30 m with a 

mean depth 33.2 m throughout. The substrate is 41% gravelly mud, 38% muddy gravel , 

I 0% sandy mud, I 0% mud, 8% coralline-algae-encrusted gravel, 4% sandy gravel and 

large kelp (Laminaria spp.) and sea grasses are effectively absent (Copeland et al. 2011 b). 

3.3.2 Sampling 

Vertical measurements of the water column including conductivity, temperature, and 

depth (CTD) were conducted during the spring melt (late May - early June), which 

coincides with the Gilbert Bay cod spawning season, and in mid-summer (early August). 

CTD data were collected using a Seabird Electronics Inc. Seacat SBE 19- 01 probe, and 

YSI hand held salinity probe. 

Continuous water temperature data were collected from temperature loggers (Vemco 

mini-log T, ± 0.2 oc accuracy) positioned at 2-3 meters and 7-8 meters depth in zone 1 a. 

Although data collections were consistent most years, lost or malfunctioning probes 

resulted in incomplete data in some years. 
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Ichthyoplankton sampling was conducted primarily during two periods: late May - early 

June (spring) and again dUting early August (summer) of each year (except 2003). During 

1999 sampling was also conducted in late June (Morris and Green 2002). Sampling was 

conducted during the morning (7:30 - 10:30 am); however, during August additional 

sampling was conducted near dusk (6:30 - 8:30 pm). Morris and Green (2002) describe 

the protocol used to sample eggs and pelagic juvenile cod, which was followed 

throughout the time series. Data described by Morris and Green (2002) were also 

included in thi s analysis to extend the time series. Ichthyoplankton samples were 

collected using a 1-m diameter ring net with 333 f.lm mesh towed horizontally for 15 

minutes, while maintaining a constant boat speed to sample a fi xed depth. Boat speed was 

monitored using a hand held Global Positioning System (Gannin 60 CSx). Egg sampling 

was typically conducted at speeds of 3.8, 2.4, and 1.7 km/hr which sampled depths of 1-2 

m, 4-5 m, and 7-8 m respectively, dependant on length and angle of the towrope. 

Different tow speeds were necessary to maintain the net at a specific depth. Pelagic 

j uvenile sampling was only conducted at 1-2 m with typical boat speed of 3.8 km/hr. In 

2009, sampling depth was validated to ± 1 m using a depth gauge which showed that the 

deepest tows (7-8 meters) varied between 7 and 11 m. Some sampling error was 

expected, particularl y at greater depth, because of small fluctuations in boat speed and 

during net deployment and retrieval. The same locations were sampled each year, fixing 

egg samples in 5% formalin and preserving larvae in 95% ethyl alcohol. In the 

laboratory, eggs were characterized using the four part egg staging scheme of Markel and 

Frost ( 1985). For larger samples a Motoda splitter was used to subsample a smaller 

volume containing at least 300 eggs, which were then counted and identified to 
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development stage. Egg sampling within Gilbert Bay was conducted to identify their 

pnmary location in the water column (deep versus surface layer), their geographic 

location (Shinneys and the Main Arm (zone 1 b, zone 2 and zone 3)), and their 

developmental stage. The concentration of eggs in the water column was estimated from 

the expected sample volume associated with a given tow distance. Differences in egg 

concentration were compared between locations using an unpaired two-tai led Student's t­

test with unequal sample size and assuming equal variance. 

Morphometric transfonnation of Atlantic cod from larvae to the early juvenile stage 

occurs at sizes greater than 20 mm (Fahay 2007). Standard lengths of pelagic juvenile cod 

were measured to within 0.1 mm using Vernier calipers under a dissecting scope. To 

compare growth rates of Gilbert Bay cod with other studies, standard lengths were 

converted to dry weights using: 

In DW = -9.38 + 4.55 In SL - 0.2046 (log SL) 2 

where SL denotes live standard length (mm) and DW denotes dry weight (mg) (Folkvord 

2005). The following equation was used to account for shrinkage in 95 % ethanol: 

Log SL = 0.056 + 0.978logPSL 

where PSL denotes preserved standard lengths. Parameters were obtained from Otterlei 

(1999). 
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The duration of the egg stage was estimated using temperature-dependent development 

rates described by Page and Frank ( 1989) and constants reported by Geffen et al. (2006). 

H = a (T+2) b 

where T denotes observed water temperature in Gilbert Bay and constants a = 74.131 and 

b = -0.82. 

The estimated hatching period was used to calculate an age-range for pelagic juvenile cod 

sampled in August in order to estimate specific growth rates. Otoliths (lapillus) from nine 

larval cod sampled in 1999 were aged in days by experienced technicians in order to 

corroborate the estimated specific growth rates. 

The specific growth rates of Gilbert Bay cod was compared to a temperature-dependent 

growth model by Folkvord (2005). 

with ci = ai + biTemp, where Temp denotes the average daily temperature (°C) and In DW 

denotes the natural log of the estimated larvae dry weight (mg) on a given day. Average 

daily temperatures from Gilbert Bay collected at 2-3 meters depth were used, 
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corresponding to the depth at which larval cod were sampled. The growth model by 

Folkvord (2005) was used to support predictions of hatching dates based on temperature­

dependent egg development rates, and to validate the specific growth rates observed for 

pelagic larvae and juvenile cod. Previous work demonstrated an approximately linear 

temperature effect on growth (Otterlei eta!. 1999). 

3.4 RESULTS 

During spring the melting winter snowfall accumulations from the surrounding watershed 

produced a strong seasonal increase in freshwater runoff each year (Figure 3.2), referred 

to hereafter as the spring freshet. During spring, a surface layer of low-salinity water 

affected the upper 3-5 meters of the water column; however the stratification observed 

each spring became less prominent during summer (Figure 3.3). 

Surface water temperatures are subzero during winter, but increase rapidly after ice 

leaves the bay in May, and by mid-summer surface temperatures reach 15-16 oc (Figure 

3.4). However temperatures increased earlier in years when the ice melted earlier and 

daily water temperatures at 2-3 m were more variable than temperatures recorded at 8 m 

(Figure 3.5). At 8 m depth, which was the median depth for hook and line sampling (see 

Chapter 2), water temperatures exceeded 0 oc from early June until late December. The 

average cumulative degree days (i.e. summation of daily water temperatures exceeding 0 

oq at 8 m, a typical sampling depth for Gilbert Bay cod, was ~ 1100 (Figure 3 .6). 
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During the egg and larval period in Gilbert Bay water temperature, density, and egg 

concentrations varied widely over a small depth range (Figure 3.5). During the period of 

egg development and larval growth, from mid-May until early August, water 

temperatures averaged 5 oc warmer at 3 m than at 8 m depth. Between early June and 

early August, temperatures at 2-3 m depth ranged from 5 to 14 °C, and at 8 m from 1-10 

°C, (Figure 3.4). However, eggs were not exposed to high surface temperatures because 

they were confined to a deeper, denser layer (> 5 m) of the water column. The highest 

concentrations of cod eggs occurred at or below the bottom of the pycnocline (defined as 

a 10% change in density with a 1 meter change in depth; after Boyra et al. 2003 ), at 

depths >3m (Table 3.1). No Atlantic cod eggs (nor other fish eggs) were collected during 

late May and early June sampling in depths less than 3 m; eggs were only collected from 

below the pycnocline. Maximum concentrations of cod eggs were sampled between 4 and 

10 meters depth depending on sampling year (1998-2011). 

Atlantic cod eggs were sampled at higher concentrations in zone 1a than in the Main Arm 

of Gilbert Bay (P < 0.001 , two-tailed t-test assuming equal variance) (Table 3.1). Stage 1 

cod eggs dominated in early June of each year at both sampling locations, with relatively 

few stage 2 eggs. Based on reported development rates for Atlantic cod eggs, spawning in 

Gilbert Bay likely began in May during the 14-year study. Consistent observation of 

predominantly stage 1 eggs in early June and only pelagic juveniles in early August 

suggests that all egg development in Gilbert Bay cod occurs between May and late June. 
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Ichthyoplankton sampling conducted during the first week of August collected pelagic 

juvenile cod each year from 1998-2011 ; except for 2003 when no sampling was done. 

Early August plankton tows sampled only pelagic juvenile cod with an average SL of 

24.9 mm (Figure 3.7). A similar size range (15-40 mm SL) was observed in pelagic 

juveniles sampled in early August from 1998 to 2011 (Figure 3.7). Using available 

temperature data, and assuming most eggs hatch between June 15-301
h based on 

temperature-dependant egg development rates and a median peak in pelagic juvenile cod 

numbers on the August 51
h sampling date, suggested an average specific growth rate 

between 0.49 - 0. 71 mm per day. 

Counts of daily growth increments for nine pelagic juveniles (15.0 - 43.5 mm SL) 

sampled in early August 1999 were estimated at 35 - 58 days old. Presumably, most fish 

within this size range likely hatched in June given observed annual water temperature and 

egg staging data. 

Annual average densities of pelagic juvenile cod sampled in early August ranged from 

0.2 - 7.0 cod per tow from 1998-2011. Higher concentrations of juveniles were present in 

zone 1 a than the Main Arm of Gilbert Bay for all years except 1998, and 2005 (Figure 

3.8). Concentrations of pelagic juvenile cod were very low in several recent years, 2007, 

2008, 2010, and 2011 in particular. Sampling in zone 1 a during morning hours (7:30-

1 0:30am) yielded only one third as many fish as near dusk (6:30-7:30 pm) sampling. 
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3.5 DISCUSSION 

ln Gilbert Bay, most Atlantic cod overwinter and spawn at the same location - in MP A 

zone 1 a (Chapter 4) - spawning occurs during a relatively short period in the spring. 

During the spring freshet, zone 1 a comprises a highly stratified estuary (Pickard and 

Emery 1982), where freshwater runoff produces buoyancy driven currents flowing 

seaward, mixing as runoff enters the Labrador Sea. Cod eggs were confined beneath the 

low salinity surface layer, likely because of their buoyancy and adult spawning depths 

(Sundby 1983; Norcross and Shaw 1984 and references therein; Sundby 1991 ). Gilbert 

Bay surface density during spawning was less than 10 kg·m-3, and increased to 

>25 kg·m-3 at 7 m. In general, Atlantic cod eggs and early stage larvae are found at 

densities of 22-26 kg·m-3 (Saborido-Rey eta!. 2003 ; ICES 2005), which would limit cod 

eggs to depths that would limit dispersal from zone I a so that a large proportion would be 

retained. Neutrally buoyant eggs between 22 and 26 kg·m-3 would occur at depths of 5 m 

or more below the partially mixed surface layer and below the sill depth separating zone 

1 a from the Main Arm. Despite the retention of eggs and larvae, the abundances of 

pelagic juveniles did not correlate with abundances of older year classes (2-5 yrs) 

sampled using hook and line (Chapter 2). One year old cod were not sampled with hook 

and line or during ichthyoplankton tows. 

Many populations of Atlantic cod spawn over a period of 2-3 months or more (Pinsent 

and Methven 1997; ICES 2005). In Newfoundland and Labrador waters, inshore cod 

aggregations in Placentia Bay and Smith Sound spawn between April and July, and even 

until August (Bradbury et a!. 2000; Knickle and Rose 201 0; Mon·is personal 
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observations). The Gilbert Bay cod population completes spawning, egg development 

and hatching during May and June, begim1ing when water temperatures increase above 0 

oc and coincident with the development of the spring freshet. After hatching in early 

summer, larvae and pelagic juveniles grow during the wmmest and (presumably) most 

productive time window for the Gilbert Bay water column, in conditions generally 

favorable for the development and growth of Atlantic cod larvae and pelagic juveniles 

(Folkvord 2005 ; Geffen et al. 2006). These conditions likely occur at the beginning of the 

short growing season in Gilbert Bay, though specific data on the timing of spring bloom 

are lacking for Gilbert Bay. 

Despite the small spawning population in Gilbert Bay (Morris et al. 2003), and relatively 

small-bodied fish (Chapter 2), egg concentrations during spawning were high. The short 

spawning season, restriction of eggs beneath the low salinity surface layer, and 

bathymetric concentrating mechanism all contribute to the retention of eggs within a 

narrow vertical depth range at the spawning site. At many other locations the reported 

concentrations of Atlantic cod eggs were lower than those in Gilbert Bay. In Placentia 

Bay, Bradbury et al. (2000) reported < 10 eggs·m-3, in Trinity Bay Knickle and Rose 

(2010) reported <1 egg·m-3, on the northeast Newfoundland Shelf Anderson and 

deYoung (1995) reported densities less than 0.1 egg·m-3
, and in the Gulf of St. Laurence 

Ouellet (1997) found egg densities of <1 egg·m-3. The Arcto-Norwegian spawning 

ground off Lofoten, Norway, is exceptional with egg concentrations of 300 eggs·m-3 

(ICES 2005). In the coastal areas of Norway, Knutsen et al. (2007) reported egg densities 

of <3 eggs·m-3 in many fjords (n=20), and concluded that higher egg densities inside 
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sheltered fjords provided evidence of an egg retention mechanism, as evidenced in 

Gilbert Bay, associated with sills near the fjord mouths that contributed to population 

structure (Espeland et al. 2006). 

Bay-scale population structure has been hypothesized in Atlantic cod (Ames 2004; Myers 

et al. 1997; Robichaud and Rose 2004), likely driven by physical environment and 

behaviour of individuals during early life stages and as adults. Studies of coastal Atlantic 

cod in Norway (Espeland et al. 2007; Olsen et al. 2008; Ciannelli et al. 2010 and Knutsen 

et al. 2007) suggest an evolutionary advantage to spawning in the i1mer portion of some 

fjords, where egg flushing from the fjord is less likely. Collectively these studies contend 

that small-scale egg retention explains consistently high concentrations of eggs inside the 

fjord and ultimately the maintenance of local population structure over time. Spatially 

structured adaptive traits, which might include spawning location and adult site fidelity, 

indicative of local adaptive evolution, mirror this population structure (Olsen et al. 2008; 

Ciannelli et al. 201 0). 

The highly stratified outflow plumes of estuaries provide strong stability that dissipates 

wind-induced turbulence within the top few meters (Boyra et al. 2003). In Gilbert Bay, 

temperatures at shallow depths (3 m) near the pycnocline vary more than at slightly 

greater depths (8 m), suggesting there are greater effects of wind and wave turbulence 

than at greater depths, where the eggs occur. Mechanical stress can contribute to fish egg 

mortality during development (Holmefjord and Bolla 1988; Caberoy and Quinitio 1998; 

Hilomen-Garcia 1998). Rollefsen (1 929), as reported by Sundnes et al. (1965), indicated 
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that mechanical forces can easily destroy cod eggs, and suggested that strong wind and 

waves might therefore diminish spawning success. Noting that much of the spawning 

area in Gilbert Bay is less than 30 m deep, the surface layer of relatively fresh water in 

Gilbert Bay may help to protect Atlantic cod eggs (located just 3-5 meters below the 

surface) from physical damage during sensitive periods of development. 

Temperature is perhaps the single most important determinant of growth rates of early 

life history stages of fish in the wild (Houde 1989; Blaxter 1991; Trudgiii et al. 2005; 

Neuheimer and Taggart 2007). Several studies report on temperature-dependent cod egg 

development (Geffen et a!. 2006 and references therein) and larval and pelagic juvenile 

Atlantic cod growth (Folkvord 2005 and references therein). In Gilbert Bay, temperatures 

vary widely within the upper I 0 m of the water column after ice breakup occurs and 

before peak summer temperatures. This period encompasses Atlantic cod development 

for Gilbert Bay from spawning until the pelagic juvenile stage. Although the temperature 

history experienced by individual eggs and larvae was not known, the wann temperatures 

that favour rapid egg development occur for only a limited period in Gilbert Bay. 

The growth of larval and pelagic juvenile cod correlates with temperature (Otterlei et al. 

1999; Folkvord 2005 and references within). Laboratory studies show maximum weight­

specific growth rate potential exceeding 25% per day for larval cod fed in excess at 

temperatures of 14 and 16 oc for Norwegian coastal and Northeast Arctic cod, 

respectively (Otterlei et al. 1999). Vander Meeren et al. (2001) reported growth rates of 

18.1-22.3% per day (dry weight) for cod reared for 46 days as temperature increased 
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from 7 to 16 °C, which is comparable to rates in Gilbert Bay. Gilbert Bay cod would 

require 40 days to attain the observed average size of 24.9 mm (~24 mg dry weight), 

assuming 20% growth (dry weight) per day. Interestingly, cod larvae sampled in the wild 

apparently grow at rates close to their maximum capacity given the water temperature 

they experience (Folkvord 2005), potentially reflecting the importance of growing fast 

during the larval stage (Brown et al. 1989). 

Compared with offshore habitats, development of early life history stages in coastal areas 

may result in higher survival because of decreased predation and higher growth rates 

associated with higher prey densities (Frank and Leggett 1982; Taggart and Leggett 

1987a; 1987b; Pepin and Shears 1995). Zooplankton, particularly copepods and copepod 

eggs including those from Calanus jinmarchicus and the genera Acartia and Temora, 

occur in high densities in Gilbert Bay (Morris unpublished data), and can be important 

food for larval cod (ICES 2005 - Ireland stock). The highest concentrations of Atlantic 

cod larvae on Western Bank, Nova Scotia coincided with gyre-like water masses and 

their associated frontal features at which high copepod concentrations (6500 

individuals·m-3) were measured (McLaren and Avendano 19x95). Prey densities (3900-

7900 individuals·m-3) were similar to those sampled in Gilbert Bay during 2001 (Morris 

unpublished data). Compared to temperate waters, sub-arctic coastal estuaries have a 

shorter period of highly productive waters when food limitation may be unlikely. 

Genetically, the Gilbert Bay cod population has been reported to be the most distinctive 

population in the western Atlantic (Beacham et al. 2002; Ruzzante et al. 2000), at least 
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partly because of contemporary genetic isolation (Bradbury et al. 201 0; Bradbury et al. 

2011 ). Although environmental conditions that limit the dispersal of eggs and larvae may 

contribute to genetic isolation, adult movement patterns also play an important role in 

population connectivity and persistence of locally distinct populations. Gilbert Bay cod 

regularly intenningle with other Atlantic cod populations during feeding migrations, 

however, individuals separate during spawning. Localized physical features that reduce 

the distribution of early stages combined with active behaviour and site-fidelity through 

later life history stages could help to define population structure within the species 

through connectivity. The next chapter develops and tests hypotheses that support site 

fidelity and natal homing behavior of individual Gilbert Bay cod across years, to the same 

spawning area, which approaches 100% (Chapter 4). 

3.6 CONCLUSIONS 

The spawning behaviour, (location and timing) in concert with the physical 

characteristics of freshwater runoff and shallow sills, considered in tandem with 

behaviour of individuals at older life history stages, provides a framework to explain 

how the Gilbert Bay cod population maintains extremely low connectivity with other 

populations. This population provides a valuable addition to the intraspecific 

biocomplexity of Atlantic cod in the Northwest Atlantic. Identifying biocomplexity 

among wild populations infonns applied ecological research and our understanding of the 

adaptive potential of fish populations and their contribution to intraspecific diversity. 
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The conservation and maintenance of adaptive diversity, which includes identifying 

divergence, is widely believed to play a critical role in the stability and persistence of 

populations and species (Hilborn et al. 2003; Schindler et al. 201 0; Bradbury et al. 2012). 

Therefore, infonned management decisions require better understanding of marine 

population connectivity and these ideas are explored further in Chapters 5 and 6. Gilbert 

Bay cod move in and out of the MP A into a much larger Atlantic cod management area, 

NAFO divisions 2J3KL, and this population may decline further (see chapter 5) in the 

absence of adequate protection measures that recognize metapopulation structure. 

Protecting important population structure will require additional protection specific to the 

Gilbert Bay cod population. Chapter 6 suggests that careful use of adaptive decision 

making in Marine Protected Areas could provide a central critical element of a prudent 

conservation strategy. 
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Table 3.1. Concentration and percentage of Atlantic cod eggs in each of 4 development 
stages that were sampled in zone 1 a and Main Arm of Gilbert Bay. No eggs were 
sampled at 2 m depth near the surface. Maximum concentration (eggs·m-3

) of cod eggs 
sampled is indicated. Sampled concentration of eggs were significantly higher in zone 1 a 
than the Main Ann of Gilbert Bay (P = 0.002, two tailed t-test assuming equal variance). 

Maximum Depth 
Developmental stages 

Tot. 
Location Date 

cone. (m) Tows 
%St 1 %St2 %St 3 %St4 

1 June 99 63 7 95 4 1 0 10 

3 June 01 65 5 93 5 1 0 6 

6 June 04 60 7 87 9 4 0 4 

1 June 05 23 4 94 6 0 0 4 
zone 1a 

3 June 07 62 7 100 0 0 0 9 

7 June 08 36 10 95 3 2 0 7 

4 June 09 54 4 94 5 1 0 14 

2 June 11 90 5 94 5 1 0 7 

29 May 01 7 4 9 

Main 5 June 07 5 5 
Ann 

97 3 0 0 3 

3 June 11 4 7 95 3 2 0 3 
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Figure 3.1. Map ofthe study area showing the Gilbert Bay MPA. Red denotes 

MP A zones 1 a and 1 b, yellow denotes zone 2 and green denotes 

zone 3. 
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Figure 3.2. April through August average daily discharge data for the Alexis 

River from 1978-2010. A prominent peak in runoff during the 

spring thaw lasted from mid April until late June. Data from 2006 

and 2009 provide two examples of annual runoff; an early spring 

in 2006 and an 'average' year in 2009. Note low runoff between 

August and April. 
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Figure 3.3. Annual vertical profiles of water density in zone 1 a and Main Ann 

of Gilbert Bay during spring and summer between 1999 and 2011 . 

Data were not collected in all years. 
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Figure 3.3 
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Figure 3.4. Annual mean daily water temperatures in zone 1 a at 2-3 and 7-8 

meters depth. Bottom panel represents average daily temperature at 

each depth from 1998-2010. 
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Figure 3.5. Average daily water temperature at 2-3 and 7-8 meters depth in 

zone I a, during the egg and pelagic larval development period 

from mid-May to early August. The bottom panel is the average 

temperature at each depth the entire time series. 
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Figure 3.6. Average cumulative degree days at 8 meters depth m zone 1 a 

based on thermograph data collected from 1998-2011. 
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Figure 3.7 Average length of pelagic juvenile Atlantic cod sampled in zone I a 

(95% CI) between 1-10 August each year. The number of fish 

sampled each year is indicated. 
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Figure 3.7 
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Figure 3.8. Average number (95% CI) of pelagic juvenile Atlantic cod caught 

per tow in zone la and the Main Arm of Gilbert Bay. Sampling 

was conducted during the day in zone la and Main Am1 (7:30-

10:30 am) and also near dusk (6:30-8:30 pm) in zone la. 
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Chapter Four 

Site fidelity and homing behaviour of Atlantic cod within a sub-arctic Marine 

Protected Area; necessity of experience for navigation and migration 

4.1 ABSTRACT 

To evaluate adult and juvenile contributions to connectivity of Atlantic cod and MP A 

effectiveness, the movement patterns of cod from the Gilbert Bay Marine Protected Area 

were studied using external tagging and acoustic telemetry tracking. Recaptures of 314 of 

82 13 externally tagged cod at the spawning area demonstrated site specificity in most 

individuals. These were typically recaptured within 500 m of the initial tagging location 

for time periods up to nine years after release. An array of moored acoustic telemetry 

receivers showed over a seven year period (2005-2011) that of the Gilbert Bay cod that 

migrated, 93% of adults (58 - 81 em TL) and 70% of the immature (34-38 em TL) 

homed to a specific overwintering and spawning area each year. The home range of the 

Gilbert Bay cod population encompasses an area within 40 km of the population's core 

area. Understanding home range and homing behaviour enabled us to investigate the role 

of experience in migration using transplant and tracking experiments. Immature and adult 

ultrasonically tagged cod transplanted to areas outside an observed home range did not 

return to the home site. In contrast, fish transplanted within the known home range 

returned rapidly, suggesting that experience facilitates cod navigation and migration. If 

experienced adults are to conduct successful migratory feeding behaviours in order to 

improve growth and reproduction, then management strategies should consider the need 
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to maintain a demographic structure that includes older individuals that can facilitate 

leaming of migration and thus assist in successful recruitment and stock recovery. 

4.2 INTRODUCTION 

Until recently the world's oceans were considered an area of broad-scale tmxmg, 

however, recent findings of small, spatially discrete populations prompted interest in 

marine connectivity research (Wamer and Cowen 2002; Palumbi 2003; Dawson et al. 

2006; Almany et al. 2007; Cowen et al. 2007; Jones and Srinivansan 2007). Increasing 

evidence has shown limited dispersal, site-specific and homing behaviour of juveniles 

and adults, and genetic differentiation often related to oceanographic conditions that 

define connectivity pattems (Jones et al. 1999; Wamer et al. 2005; Levin 2006; Botsford 

et al. 2009; Chapter 2). Spatial and temporal differences in environmental characteristics 

that influence survival, growth, and reproduction can also affect life history strategies, 

including migratory behaviour in mobile organisms (Taylor and Taylor 1977), which can 

therefore affect population connectivity. 

Wide dispersal associated with any one life history stage can potentially eliminate 

population structure that might be expected from the limited dispersal of other stages 

(Palumbi 1994; Bohonak 1999). Multiple studies document sub-population structure of 

Atlantic cod across a wide range of environmental conditions, where some sub­

populations exhibit higher connectivity than others (Ruzzante et al. 2000; Beacham et al. 

2002; Smedbol and Wroblewski 2002; Bradbury et al. 20 ll ). In many instances, early 

life stages are identified as primary drivers of population structure because spawning 
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locations interact with oceanographic currents, wind, and bathymetry to determine the 

dispersal of Atlantic cod eggs and larvae (Pepin and Helbig 1997; Knutsen et al. 2007). 

For example, Atlantic cod eggs spawned in offshore areas are expected to disperse widely 

compared to those spawned in sheltered fjords (Pepin and Helbig 1997; Knutsen et al. 

2007; Chapter 3). 

Movements at older life history stages, such as the juvenile and adult stages, can also 

influence population connectivity. Previous studies of juvenile cod (<35-40 em TL) 

movement suggest limited dispersal at this life history stage (Cote et al. 2003; Clarke and 

Green 1990). When Atlantic cod approach sexual maturity however, large portions of a 

population can exhibit an atmual migratory behaviour (Templeman 1974). Thus, 

migration can interact with the dispersal of early life history stages, to influence 

population structure (Skjaeraasen et al. 2011; Svedang et al. 2007). 

Migrations of Atlantic cod populations range from hundreds to only a few kilometers 

(Templeman 1974; Bergstad et al. 2008; Robichaud and Rose 2004; Skjaeraasen et al. 

2011 ). On the one hand, offshore Atlantic cod populations inhabiting the continental 

shelves of Canada (N01iheast Newfoundland Shelf and the Grand Banks) and Barents Sea 

cod off the coast of Norway undertake the most extensive migrations between feeding 

and spawning grounds (Templeman 197 4; Bergs tad et al. 1987; Rose 1993; Taggart 

1997). Inshore populations, on the other hand, have migrations often limited to individual 

bays and fjords. Such populations are common on both sides of the Atlantic (Ames et al. 

1997; Ruzzante et al. 2000; Knutsen et al. 2003 ; Ames 2004). Homing to specific 
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spawning sites appears to be a common element of Atlantic cod life history (Green and 

Wroblewski 2000; Robichaud and Rose 2001; Svedang et al. 2007), despite spatial 

overlap of populations during non-spawning periods. "Homesite" as used here refers to 

the particular locality with which an animal associates (termed "localization" by Scott 

1958), and "homing" refers to the return of an animal to a place fonnerly occupied rather 

than to other equally probable places (Gerking 1959). Spawning sites are often within 

core areas, which are those areas used more frequently than any other areas and that 

probably also contain homesites and refuges (Burt 1943 ; Kaufmann 1962; Ewer 1968). 

Early genetic evidence from small Atlantic cod populations by Ruzzante et al. (2000) and 

Hutchinson et al. (2001) showed that reproductive isolation can exist at bay scales, which 

are considerably smaller scales than previously thought. Since then, many studies 

identified small-scale genetic variability (Knutsen et al. 2003) and even suggested local 

adaptation among Atlantic cod populations (Olsen et al. 2008; Bradbury et al. 2012). 

Multiple studies of Atlantic cod populations associated with inshore features such as bays 

and fjords show that sills, currents, restricted passages, and island archipelagos that help 

in egg and larval retention and separation of spawning grounds often characterize the 

geography of these discrete populations (Bradbury et al. 2000; Knutsen et al. 2003; 

Espeland et al. 2007; Knutsen et al. 2007; Ciannelli et al. 201 0; Knickle and Rose 201 0; 

Skjaeraasen et al. 2011 ; Chapter 2). Although these conditions limit dispersal of early life 

stages, the behaviour of juvenile and adult stages also help maintain persistent, locally 

distinct populations. The mechanisms through which individual adult Atlantic cod 

maintain discrete population structure remains poorly known. 
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Natal homing and spawning-site fidelity are common in Atlantic cod populations (Rose 

1993; Green and Wroblewski 2000; Morris and Green 2002; Robichaud and Rose 2004; 

Wright et al. 2006; Svedang et al. 2007; Knutsen et al. 2007; Ciannelli et al, 201 0; 

Skjaeraasen et al. 2011) but the mechanism(s) remain poorly understood. Rose (1993) 

speculated that learning contributes to migration and opportunities to feed on capelin. 

Historically, the behaviour of offshore northern cod was characterized by an inshore 

summer feeding migration as offshore spawning and post-spawning aggregations moved 

shoreward to feed on capelin (Templeman 1974; Rose 2007). However, migration can be 

energetically costly, and some researchers speculate that selection in some spec1es 

reduces feeding migration distances to an area within which necessary energy 

requirements can be met (Finstad and Hein 2012). For example, inshore Atlantic cod 

populations could access capelin or other food sources in relatively productive coastal 

areas with much shorter migration distances than offshore populations. Nonetheless, the 

factors affecting an individual's decision to migrate and navigational mechanisms 

involved remain poorly understood. 

Adult behaviour could play an important role in maintaining discrete populations, 

including spawning behaviour (Chapter 3) and also through site-specific natal homing. 

Information on natal homing is critical to understanding the mechanism of population 

isolation and the efficacy of management strategies such as Marine Protected Areas 

(MPAs). Based on earlier work by Green and Wroblewski (2000) and Morris and Green 

(2002), more recent observations of population decline (Chapter 2) and consistency in the 
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location and timing of spawning in Gilbert Bay (Chapter 3), it was decided that more 

infonnation on juvenile and adult cod was needed in order to improve MPA 

effectiveness. The goal of this study was to establish the degree to which juvenile and 

adult cod in Gilbert Bay exhibit site fidelity and contribute to population isolation, and 

thus MPA effectiveness. 

This study was designed with two objectives. First, to describe migration timing and 

distance, and the size at which Gilbert Bay cod commence migration. The second 

objective was to build upon these observations to formulate and test hypotheses related to 

the role of experience that Gilbert Bay cod use to home. If experience were important to 

migration, then individuals from local populations would be incapable of returning from 

distances outside the population's home range because they lacked previous experience 

doing so. The experimental hypothesis is that Atlantic cod transplanted to an area within 

a known home range would return to the home site, whereas those transplanted outside 

their home range are less likely to return. Telemetry work on small cod (33-34 em TL) 

by Morris et al. (2007) suggested that the home range of this size group of fish spans less 

than 5 km, and tracking data from the current study defined the home range of larger fish. 

4.3 METHODS 

4.3.1 External Tagging 

Annual tagging of cod in Gilbert Bay with external Floy® tags began in 1998 and since 

then some 8213 individuals have been marked, the methods were previously described by 
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Morris and Green (2002). Since then additional data have been collected during 20 

subsequent field trips to Gilbert Bay during 2002-2011. Briefl y, sampling was conducted 

from small boats, between 4 and 7 m in length, twice each year; first during late May­

early June (spring) and again in early August (summer). Healthy fi sh larger than 30 em, 

were marked with an external individually numbered tag (Floy® t-bar tag) and released at 

the location of capture. Any recaptured cod with an external tag from previous tagging 

were sacrificed; however, recaptures per trip rarely exceed 20 individuals. Sacrificed fish 

were measured and, when sea conditions permitted, weighed before removing otoliths, 

identifying stomach contents, and estimating gut fullness. Fish were captured by angling 

at 33 sampling locations in zone 1 a during each trip. Sampling sites averaged 2 hectares 

in size with spacing from 500 to 7500 meters apart within zone 1 a. Most fishing locations 

were initially selected based on fish availability, and generally ranged from 5-10 m deep. 

Occasionally, sampling was conducted outside zone 1 a, in Gilbert Bay and coastal areas, 

but Atlantic cod catch rates were very low in these areas during spring, and effort was 

limited by time constraints. 

4.3.2 Internal tagging 

Atlantic cod were caught for ultrasonic tagging from 2005 to 2009 (Table 4.1) in depths 

of 5-15 m using a straight one ounce fishing lure (Gibbs Minnow Jig™) on a handline. 

During surgery, fish were maintained in a wet trough, and covered with a cold wet cloth 

to reduce temperature-related stress. An ultrasonic transmitter was inserted into the body 

cavity through a 2-cm long incision along the abdomen, approximately 6 em anterior to 

and above the vent. The incision was closed with 2 or 3 non-absorbable silk sutures 
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(Sofsilk™ Tyco Healthcare) after a total handling time of less than 2 minutes. Fish were 

briefly (generally less than 5 minutes) allowed to recover in a holding container, with 

water pumped from the depth at which the fish was caught, before release. Tagging 

procedures followed standards and guidance provided by the Canadian Council on 

Animal Care, and approved protocol was obtained from the Northwest Atlantic Fisheries 

Centre Animal Care Committee and Memorial Universities Animal Care Committee each 

year during the study. 

The experimental protocol used to tag Gilbert Bay cod included two size groups and two 

release types. Ultrasonic transmitters (intemal tags) were inserted into small (34-38 em 

TL) and large (58-81 em TL) individuals. The tagged cod were also divided into two 

groups, those released at the capture site ('replanted') and those released distances of 15, 

25, and 55 km ('transplanted') from their capture location (Table 4.1). The size of fish 

tagged and the transplant distances were based on previous research. Morris et al. (2007) 

found that Gilbert Bay cod from 33-34 em TL were not migratory, and occupied a small 

home range. Observed changes in length-frequency distributions between May and 

August (Morris and Green 2002) suggested that Gilbert Bay cod begin to migrate when 

between 35 and 40 em TL. Information from commercial tag retums in areas outside the 

MPA indicated that larger commercial sized fish(> 45 em TL) moved away from zone l a 

to areas including those outside the MP A. 

Fish were tagged intemally with Vemco model V13 and V16 ultrasonic transmitters 

(www.vemco.com) with dimensions of 13 x 36 mm and16 x 68 mm respectively, having 
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transmit intervals between 1.5 to 5 minutes and the same power output (158 dB re 1 f.!Pa 

@ 1m). The tag weight in air was less than 1 % of the body mass of the fish . All tags 

were tested before insertion into the body cavity. 

4.3.3 Data collection 

Beginning in 2005, a network of Vemco ultrasonic receivers (models VR2 or VR2W ) 

was established to detect and track individuals having ultrasonic transmitters, year round 

(Figure 4.1 ). The receiver network developed over a several year period, building from 

10 receivers in 2005-2006, 20 receivers in 2008, and 35 receivers since 2009 which 

largely covers the entire range of the population. The completed detection array covered 

approximately 330 km2
. One receiver was located at each station except for MPA zone 

I a (Figure 4.I) which had six receivers. Movement outside zone I a distinguished 

between resident individuals and those that moved seasonally. Receiver stations were 

positioned to detect fish movement throughout the study area (Figure 4.I ), often in 

narrow passages and near headlands around which fish would have to pass while moving 

from one inlet to another. Receivers were also placed away from areas of fishing 

activities such as scallop dragging which damaged and removed moorings during this and 

earlier studies in the area (MotTis et a I 2001 b). 

Receivers were deployed in depths rangmg from 10 to I 50 meters with an attached 

buoyed line to suspend the receiver several meters above the sea floor. A I 0-kg weight, 

connected to a ground-line stretched along the bottom, anchored the buoyed line to the 
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seafloor. Ground lines (18 mm polysteel rope) were held in place by a 10 kg chain on 

each end and 1- 4 equally spaced concrete cinder blocks (13 kg) along its length. The 

end-positions of each ground line was recorded using a Garmin model 60CSx hand held 

GPS. In order to retrieve the receivers a "creeper", a specialized grappling hook designed 

to catch rope, was dragged between the ground line end-positions, a procedure known as 

"creeping" . Receivers were brought to the surface to replace batteries and/or retrieve 

transmitter data. 

Various small boats (4- 12m) were used to set and retrieve receivers. Receiver positions 

were recorded using a GPS in order to improve retrieval success. Receiver retrieval 

success was high during calm conditions compared to poor weather conditions with large 

swell, high winds and tide. In shallow depths (<15 m) the receivers were retrieved by 

hand using a smaller boat, whereas deeper sites required larger boats equipped with a 

hydraulic hauler. In both cases, a boat speed of approximately 2-4 km·h{ 1 proved most 

effective for creeping. As depths increased, particularly at depths greater than 100 m, 

additional rope was deployed to increase the scope of the creeping line from 

approximately 2:1 to 3:1 (rope: depth) and added additional weight (a 1 0-kg chain 30-40 

meters in front of the creeper) to help maintain creeper contact with the bottom, 

particularly during periods of large swells. 

4.3.4 Data analysis 

Data from receivers were incorporated into an Oracle relational database that contained 

tagging data, receiver data and deployment-retrieval history. To remove the likelihood of 

false detections from the receiver data, tag detections were considered valid only when at 
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least two detections were received from a tag within a 30 minute period on a given 

receiver. A fish was then considered to have been within 1 km ofthat receiver. Single tag 

detections were only included in the analysis when multiple detections from the same tag 

were recorded on two adjacent receivers before and after a single detection. 

One hundred and nineteen Atlantic cod were tracked between 2005 and 2011 (Table 4.1 ). 

Of the 72 fish caught and "replanted" at the capture location, 59 were large (58-81 em 

TL) and 13 were small (34-38 em TL). Large fish transplanted in 2006 and 2009 (n=19) 

within Gilbert Bay were included with replanted data analysis once fish were at large for 

one year because they returned rapidly to their release site and resumed behavior typical 

of replanted fish for the remainder of the observation period. The 4 7 fish "transplanted" 

15, 25 or 55 kilometers from their original capture site within zone 1 a (Figure 4.1) 

included 30 large and 17 small individuals. Fish that moved away from zone 1a and did 

not return to overwinter were classi fied as strays, whereas those that moved out of zone 

1 a and returned during the same year were considered migratory. 

4.4 RESULTS 

Recapture of externally tagged cod provided data on site fidelity of fish within the zone 

1 a core area. Although zone 1 a is an overwintering area for large fish, it is also an 

important area for early life history stages; many juvenile and adults fish resided there 

year round. From 1998 to 2009, 314 of 8213 cod were recaptured during spring and 

summer research sampling, of which 274 tags had legible infonnation upon recapture. 
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Recaptures during research sampling in zone la indicate very site specific fish. Most fish 

were recaptured less than 500 meters from their initial tagging location, up to 9 years at 

large, both during the spawning season and during summer (Figures 4.2, 4.3, 4.4). 

Because most sampling sites were greater than 500 m apart, most fish listed as recaptured 

within 500 meters of the initial capture site were recaptured at their initial tagging site. 

The high degree of site fidelity of tagged fish sampled in zone I a is biased in that our 

sampling was restricted to this area. Sampling the entire home range was simply not 

feasible during the limited sampling period available, and low catch rates outside zone I a 

further complicated broader spatial sampling. Therefore, predictions of homing behaviour 

and limited dispersal over time were tested primarily through acoustic telemetry studies. 

4.4.1 Movement of Gilbert Bay cod 

The annual movement of large cod tagged with an internal transmitter out of zone I a 

occurred during late May and June. Fish returned to zone 1 a over a longer time period, 

between July and November (Figure 4.5). The annual timing of fish movement out of 

zone I a typically occurred after the spring sampling period, with the exception of 2006. 

Fish began to move out of zone 1 a substantially earlier in 2006 than in other years. All 

ultrasonically tagged fish had moved out of zone 1 a during 2006 before any ultrasonically 

tagged fish moved out of this zone in all subsequent years. Completion date of the spring 

freshwater runoff period occurred earlier in 2006 than any other subsequent year which 

could contribute to the timing of the spring outmigration (Figure 4.6). 
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Large and small fish that moved away from zone 1 a during 2009-2011 did not move 

beyond 40 km from zone I a (Figure 4.7), indicating a population home range ofless than 

330 km2 (the maximum area of Gilbert Bay within 40 km of zone 1 a). Most fish that 

moved beyond the boundary of the MPA nonetheless remained within I 0 km, with only 9 

fish detected by the most distant hydrophones to the north and south. Small cod (34 -

38cm TL) remained residents of the MPA during the first year after tagging but more 

small fish were likely to migrate during the second and third year of tracking. These 

small cod moved as far as large cod. The amount of time migratory fish (large and small) 

spent away from zone 1 a varied, but never exceeded four months (Figure 4.8). Movement 

away from zone Ia during 2009-2011 was directional in that cod moved toward zone 3 

rather than zone 1 b. Beyond zone 3, Gilbert Bay cod had the opportunity to disperse, into 

more open coastal areas and Alexis Bay (Figure 4.9). 

Although small fish were more likely to stray, high rates of homing to the same 

overwintering and spawning location were observed for both large (93%) and small 

(70%) fish over several years. Most small fish did not move outside zone 1a during the 

first year of tagging (1 0 of 13 individuals) but several (11 individuals) did migrate in 

subsequent years of the three-year period. Those small fish that moved outside zone 1 a 

were significantly more likely to stray than large fish (P=0.01 7, Fisher exact test, Table 

4.2). Interestingly, some stray fish (three large and one small) spent the winter in the 

main ann of Gilbert Bay, but moved back into zone 1 a, a well known spawning area 

(Chapter 3), during the spawning period (May - June) before they retumed to the Main 

Ann of Gilbert Bay. 
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Small fish were less migratory than large fish (Table 4.3). Comparison of the movements 

of large and small fish that included 2009 data or pooled data from 2005-2009 and 2011 

both showed consistent and statistically significant differences in their movement patterns 

(Table 4.3). The behaviour of small and large fish transplanted 15 and 25 km also 

differed significantly. Large transplanted fish returned to the capture site and small fish 

did not (Fisher's exact P=0.007) (see section 4.4.2). 

Ultrasonic tags used in this study lasted for several seasons and provided data for three 

years. Twenty-one large cod and 9 small cod were tracked for approximately 900 days 

each, until their tags expired. The small cod (35 em TL SO 1.5 em, n=9) became 

increasingly more likely to move away ("migrate") from zone la during each subsequent 

year they were monitored. Once a small cod moved away from the tagging area it 

continued to seasonally migrate in subsequent years (Figure 4.1 0). Although most large 

cod moved away from zone I a during the first year of tagging, they became increasingly 

less likely to move in subsequent years (Figure 4.1 0). After a large cod did not move 

from zone 1 a during a given year, it remained there in subsequent years. One small fish 

did not migrate during the third tracking year, after migrating during the previous two 

years. 

4.4.2 Transplanted fish 

The movement pattern of transplanted fish provided observed data, which was compared 

to the movement pattern of replanted fish that provided expected movement patterns of 
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both large and small fi sh in the population. Based on movement of replanted individuals, 

the transplant distance of 15 km was expected to be within the home range of large fish 

but outside the home range of small fi sh. On the one hand, 70% of small transplants were 

not expected to retum to the capture or "home site" after transplanting because the replant 

data (observed data) showed that 70% of small fish were not migratory. Therefore the 

working hypothesis predicted that small transplanted fish would lack the experience 

necessary to retum. On the other hand, 78% of large transplanted fish were expected to 

retum to the home site (see Table 4.3). An exact binomial test of goodness-of-fit 

confirmed predictions based on data from a balanced design in 2009 and also from 

pooled data from different years (Table 4.3). Small fish showed no significant difference 

between expected and observed movement pattems (P=0.3 and P=.054 for balanced and 

pooled data respectively, see Table 4.3) as did large fish (P= 1.0 and P=O.l3 for balanced 

and pooled data respectively). 

A higher, but not significantly different (P=0.12 Fisher Exact) proportion of large 

transplants retumed (I 00%) than expected (78%). Most (11 of 17) retumed within a 2-

week period before the end of the spawning season, and then resumed a seasonal 

migration pattem typical of large replanted fish. 

Small cod did not retum to the home site directly after transplant, and most never 

retumed during the 900 days over which they were tracked (Figure 4.11). Only two 

individuals retumed in their first year, another in its second year and a fourth small cod 

retumed to the home site for the first time three years after tagging. Thirteen other small 
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transplanted fish did not return during the 900 day life expectancy of ultrasonic tags. 

Some of these fish were detected while moving increasing distances away from the home 

site until they were last detected by the most distant seaward hydrophones in our 

detection array. Of the four small fish that returned to their release site, three of them 

were among the largest of this group (34-38 em TL), and could have been one or two 

years older than the smallest fish in this group (Chapter 2). 

Assuming that small cod did not return to the home site because they lacked experience 

outside the home range, it was also expected that large fish would not return to a home 

site when transplanted a similar distance (15 km) beyond their home range. In June 2011 , 

11 large cod were transplanted from the capture location in zone 1 a during the spawning 

season to a release site 55 km away, a distance that exceeded the expected home range of 

large Gilbert Bay cod by at least 15 km, based on the movements of large replanted fish . 

Fish were released in St. Michael's Bay near the community of Pinsent's Ann (Figure 

4.1 ). After the initial release at the St. Michael's Bay site, several fish returned repeatedly 

to the release site sometimes weeks apart, but not the home site. One of the transplanted 

fish was captured in a commercial whelk pot on July 18111
, approximately 2 km from the 

release site, and was returned by the harvester to Fisheries and Oceans Canada. Between 

June and October, hydrophones detected two other fish along the northern periphery of 

the Gilbert Bay array, but those individuals did not return to zone 1 a. Interestingly, the 

one fish that returned to zone 1 a followed a non-direct route into an area that many 

Gilbert Bay cod are presumably familiar with. After by-passing the northern entrance to 

Gilbert Bay as it moved south along the coast, it entered the mouth of Alexis Bay where 
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some replanted cod were detected. It then moved northward into Gilbert Bay back to zone 

1 a, and arrived at the capture site on August 1 i 1
\ 2011. Only one of 11 large cod 

transplanted to St. Michaels Bay retumed to the capture site within 12 months after 

transplant, suggesting that Gilbert Bay cod transplanted outside their home range are 

unlikely to retum to the home site. 

4.4.3 Mortality 

Sources of potential mortality among our experimental fish include tagging, natural 

causes, and fishing. In our study tagging mortality was < 1% (1 of 11 9 individuals). This 

low mortality was attributed to the fact that fish were caught in shallow depths, mostly 

during cold conditions, tagged, and released quickly by experienced pers01mel. During 

summer 2008, a group of 4 fi sh died as a result of warm water conditions during a long­

distance (40 km) transplant. These fish were detected for less than one day after release, 

and mortality was assumed because of the short detection period. It is possible that these 

fish moved quickly away from the receiver array never to be detected again but it is 

unlikely given that all other fish in this study were detected for much longer time periods 

and often on multiple receivers. Unexpected tag disappearances from within the array, 

long before the tag expiration date but after a period of regular detections, provides an 

estimate of mortality. 

Disappearances of ultrasonically tagged cod from within the study area were low, 

indicating low mortality from natural causes and fishing combined, during the 2009-2011 

monitoring period. One of 13 (8%) small, replanted fish disappeared from within the 
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detection array during the entire 3 year period (~900 days). For large fish, 2 of22 (9%) in 

2008, 6 of 40 (15%) in 2009, and 2 of 20 (15 %) in 2010 disappeared from within the 

detection array area. Fish detections that disappeared from the detection array during a 

third year post tagging were not considered potential mortalities because tag batteries 

likely expired. Detections from only one fish disappeared while in zone 1 a, which 

occurred in March 2010. Within 30 days, detections disappeared from two other tags 

located in the Main Ann of Gilbert Bay. 

4.5 DISCUSSION 

4.5.1 Timing of Migration 

Ultrasonically tagged cod, both small and larger adults, from the unique Gilbert Bay 

population moved within a distance of 40 km from the zone 1 a location where they were 

initially tagged during the spawning season. Almost all individuals returned to the same 

specific location during late summer and fall and overwintered there, while some 

individuals spent an entire year or more within zone 1 a. This small region provides a core 

area for much of the existing population. Fish within zone 1 a, were mostly recaptured 

less than 500 meters from the initial capture location, and were typically recaptured 

within an area of 2 hectares during spring and summer sampling. Although sampling was 

concentrated in zone 1 a, telemetry data indicated strong homing and site fidel ity among 

large and small fish to this core area. This finding emphasizes the importance of 

protecting fish in this specific area; otherwise, fish are highly vulnerable to overfishing. 

Timing of the outmigration began near the end of the spring freshet each year (Chapter 
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2), after the spawning period as water temperatures increased but before the early July 

atTival of capelin (Figure 4.12). The end of the spring freshet occurred earlier in 2006 

than other years and tagged cod also moved out earlier that year, suggesting that the 

spring freshet, at least in part, is somehow related to out-migration. 

Large Atlantic cod can migrate distances of many hundreds of kilometres and it is widely 

assumed that most individual cod spawn each year and then undertake a feeding 

migration (Taggatt 1997; Templeman 1974; Bergstad et al. 1987). In this study, most 

large fish moved away from the spawning area during the first year tagged, but were only 

half as likely to migrate to coastal areas in consecutive years. This observation could 

represent a sampling bias towards active fish, since fish were sampled by angling during 

the spring spawning period and potentially favouring individuals most likely to migrate 

that year. It is unlikely that tagging itself increased the likelihood of migration because 

large cod tagged during summer (Morris and Green unpublished data, one cod in this 

study) and most small cod tagged in spring did not migrate after tagging. 

4.5.2 Locally adapted spawning and migration behaviour 

Cod typically feed less during spawning (Fordham and Trippel 1999; Skjaeraasen et al. 

2004), and therefore likely increase foraging activity after the spawning season. In 

Gilbert Bay, the timing and location of spawning occurred early in the ice free season 

over a short time period that correlated with the timing of the spring freshet (Chapter 3). 

A short distance and short duration seasonal feeding migration occurred after spawning 

(Chapter 5) when water temperatures were within the preferred temperature range of cod 
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( 4-10 °C, from late June until November) (Righton et al. 201 0; Chapter 2). The low 

energetic cost associated with a short migration distance and duration could reduce 

mortality (Finstad and Hein 20 12). There are local adaptive advantages for Gilbert Bay 

cod to spawn at a time and place that retains eggs and larvae and over a short time period 

that enables the longest foraging period possible during a relatively short growing season 

(Chapter 3). Together, these behavioural characteristics likely enhance growth and 

reproductive success in the Gilbert Bay environment, and provide indirect evidence of 

locally adaptive behaviour. 

4.5.3 Experience (habitat selection versus home site-familiarity) 

The failure of Gilbert Bay cod (both small and large) to return to their home site after 

transplant 15 km outside their known home range is consistent with the hypothesis that 

homing requires migratory experience. Nonetheless, in the absence of data of small and 

large fish with and without experience, this inference remains somewhat speculative but 

consistent with the mechanism proposed by the adopted migrant hypothesis (McQuinn 

1997). Small fish that remain within a small area lack such experience and large fish with 

migratory experience within a relatively small area (within 40 km of zone la), did not 

return when transplanted just 15 km outside their estimated home range. It is unlikely that 

differences in sensory capabilities, including olfaction, between large and small fish are 

the reason larger fish can return from a 15-km transplant distance whereas small fish can 

not. Only 3 of 14 small transplanted fish returned to the release site and they remained 

there for the duration of that summer and through the following winter, whereas the other 

small transplanted fish continued to move over a larger area. Some small replanted fish 
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that moved more than 15 km away from their home site returned successfully. The 

pattern observed in Gilbert Bay cod suggests they can home to a known site based on a 

single experience with new areas. The pattern is also consistent with learned piloting, 

during which fish can move across familiar areas by referring to learned land marks 

(either through exploration or following others) (Dodson 1988; Kieffer and Colgan 

1992). When large cod were transplanted 55 km from the capture site (15 km outside the 

known home range) their behavior appeared similar to small cod transplanted 15 km from 

their home site; most did not return to the home site and did not remain at the transplant 

site. Preliminary data from 2012 indicated that none of the large transplanted cod 

returned to the release site in St. Michael's Bay between October 2011 and June of2012, 

and no additional fish had returned to the home site by September 2012. Whether Atlantic 

cod in other populations rely on experience to conduct long distance migrations remains 

unknown, but other authors (Rose 1993 ; Windle and Rose 2005) have speculated that 

some do. Furthermore, learning is described as an important part of natal homing and the 

fonnation of locally adapted populations in other species such as salmon (Hansen and 

Jonsson 1994). 

This study found that most small transplanted fish continued to move, often over 

increasingly large distances after being moved out of their home range. Several fish 

moved outside the population' s home range and beyond our detection area. Cote et al. 

(2004) suggested that site-specific behaviours observed in juvenile cod reflected habitat 

preferences that reduced predation risk. In the current study, however, small fish 

transplanted outside their home range did not remain near the release site and moved 
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greater distances than the replanted fish. Small transplants did not appear to reside in 

areas between two hydrophones or within the detection range of a single hydrophone for 

a long period of time. Two small fish that did return to the home site remained at the 

home site, overwintered, and then migrated to the coast the following spring, a pattern 

among large replanted individuals. 

Large cod exhibited site-specific homing behaviour. Most large fish transplanted within 

their home range rapidly returned to the home site over distances of 15-25 kilometers. 

Those large fish that did not return within several days, returned later in the season during 

the typical return migration period expected for replanted fish. However, most large fish 

transplanted to areas outside the home range (55 km) did not return. This pattern suggests 

a critical role for experience, and possibly the use of learned cues, in Gilbert Bay cod 

homing. 

The inference that these fish would return to a specific home site if they had the ability to 

do so can be implied, based on observed homing behaviour of other individuals and the 

importance of homing described in previous studies (e.g. Rose, 1993). Previous work also 

emphasizes the importance of natal homing in Atlantic cod for maintaining separate 

populations (Svedang et al. 2007). For coastal cod populations in Norway, Olsen et al. 

(2008) suggested that life history divergence is maintained on a scale of tens of 

kilometers in coastal cod. Local population ranges calculated from microsatellite DNA 

divergence patterns, capture-recapture data and site fidelity research suggest similar 

small-scale population structure (Knutsen et al. 2003 ; Jorde et al. 2007; Espeland et al. 
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2006). However, individuals from different populations could occupy the same habitats 

as a result of seasonal movement patterns. Therefore, it was concluded that fish not 

returning within several months and up to a year after transplant were unable to navigate 

back to the home site. Individuals that lack experience with a migratory route are unlikely 

to return. 

Whether fish use social learning to aid in navigation during large-scale migrations 

remains an open question (Odling-Smee and Braithwaite 2003); however, Rose (1993) 

suggested learning is important in bank-scale feeding migrations and other complex 

behaviours in Atlantic cod. Atlantic cod fonn large aggregations during spawning and 

migration (Rose 1993), exhibit mate competition and choice (Hutchings et a!. 1999; 

Rowe et a!. 2007), and exhibit complex vocalizations (Brawn 1961; Rowe et a!. 2004; 

Rowe and Hutchings 2006). It has been suggested that younger individuals may learn 

migration routes from older individuals while shoaling (Rose 1993). Atlantic cod in 

Placentia Bay that were tagged and transplanted during spawning were more likely to 

return to the same ground if they were released along a known migration route compared 

to those released in potentially unfamiliar areas of the bay (Windle and Rose 2005). From 

a fisheries perspective, the role of learning has been raised with respect to population 

recoveries (ICES 2007; Petitgas et a!. 2006), however, demonstrating an effect of loss of 

experienced fish on population recovery has proven difficult with little direct evidence 

available. 
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Since the northem cod population collapsed two decades ago, high total mortality rates 

(Z) have continued such that few northem cod > 6 years old were observed in the 

offshore for many years (DFO 2011 CSAS). Atlantic cod throughout their range typically 

become sexually mature at 4-6 yrs, and require more energy for reproduction, which 

could influence migratory behaviour (Olsen et al. 2004; 2005) and/or mortality rates. 

Studies assume that the instantaneous rate of natural mortality (M) for northwest Atlantic 

cod was 0.2 per year historically (Hutchings et al. 1999) but assessments of survey data 

suggest even higher values of M for offshore Atlantic cod stocks in the Newfoundland 

and Labrador region during portions of the (1998-2012) time period of our study (DFO 

2011 CSAS). High offshore total mortality (Lilly et al 2006) contrasts with lower inshore 

mortality including our study and for Atlantic cod tagged in Smith Sound (Brattey et al 

2008). In Smith Sound, Brattey et al. (2008) observed high rates of homing to a specific 

area to overwinter and very low total mortality rates, <14% Z (combined fishing and 

natural mortality) per year. Differences in mortality between inshore and offshore areas 

may explain the persistence of older cod (i.e. > 6 yrs) among inshore Atlantic cod 

populations in the Newfoundland and Labrador region while the abundance of older age 

classes in offshore populations remained low during much of the post-moratorium period. 

The expulsion of tags implanted into the body cavity of fish has been reported to be 

common among some fish species, e.g. catfish, (Jepsen et al. 2002), but does not appear 

to be common among the Atlantic cod in this study. The long term tracking periods and 

low number of tag dissapearances in this study suggests that tag expulsion is low. A small 

number (three) of cod dissapeared for unkown reasons from within the detection array 
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and it is possible that the tag was expelled, but the fish could have died from natural 

mortality or if the tag malfunctioned. It is perhaps unlikely that these three fish were 

caught because they disapeared during winter, when the area was covered with ice and 

cod fishing at this time of year is unlikely. However, all other disappearances of 

ultrasonically tagged cod occurred outside the spawning grounds during the fall and early 

winter, when fishing mortality is more likely. During the study, two tags were caught in 

commercial fishing activities and returned; however, unreported tag recaptures are 

common in this area (Morris 2003). 

4.6 CONCLUSIONS 

Homing and site-specific behaviour observed in this study, and other accounts of extreme 

site-specific behaviour for cod populations elsewhere (Skjaeraasen et al. 2011 and 

references therein) indicates the importance of home sites. External and ultrasonic 

tagging experiments in this study demonstrated strong site fidelity and homing behavior 

in small and large Gilbert Bay cod. Transplant experiments of ultrasonically tagged cod 

examined the role that experience may play in the migration and navigation ability of 

Gilbert Bay cod. These experiments indicated that experience plays an important role in 

the ability of Gilbert Bay cod to return to their core areas after migrations to the coast. 

Specific habitat did not appear to affect the behaviour of large or small cod, in that 

individuals moved through a wide range of potential habitats. These findings are similar 

to those of discrete populations of Atlantic cod located in close proximity (30 km) to each 

other in Norway which display site-specific behaviour even where suitable habitat 1s 

available over larger spatial areas (Knutsen et al. 2003 ; Jorde et al. 2007). 
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Movement patterns of immature and adult Atlantic cod in Gilbert Bay helps to maintain 

the local population through strong homing and site-specific spawning behavior. 

Primarily sedentary small fish become migratory at approximately 35-40 em TL, 

corresponding to a size typical for sexual maturation in this species. This change in 

behaviour may be driven by increased energetic requirements for reproduction. The 

migratory behaviour of Gilbert Bay cod relates to feeding opportunities along coastal 

areas, which the following chapter addresses. 
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Table 4. 1. Summary of ultrasonic tagging information for replanted and transplanted 
Gilbert Bay cod. Small cod ranged in size from 34-38 em TL and large cod were 58-81 
em TL. 

Experimental Size Tag 
Year 

Mean TL Transplant Sample 
group category season (SD) distance (km) SIZe 

Fall 2005 64.8 (3.9) 10 

Spring 2006 64.0 (1 1.3) 2 

Spring 2008 65.9 (4.8) 22 
Large 

Summer 2008 76 (na) 1 
Replants 0 

Spring 2009 60.1 (4.3) 10 

Spring 2011 57.5 (7.0) 14 

Summer 2007 34.7 (3.1) 3 
Small 

Spring 2009 36.1 (1.5) 10 

Spring 2006 69.5 (10.7) 25 5 

Spring 2006 61.3 (4.8) 15 4 
Large 

Spring 2009 62.0 (3.4) 15 10 

Transplants Spring 2011 57.2 (5 .3) 45 11 

Summer 2007 34.6 (0.5) 25 4 

Small Summer 2007 34.7 (0.5) 15 3 

Spring 2009 36.6 (1.4) 15 10 
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Table 4.2. Summary of straying for 11 replanted Gilbert Bay cod. Fish were considered to 
stray if they did not return seasonally to zone I a. A Fisher exact test showed a significant 
difference in straying (P=0.017) between large and small fish. Some fish stayed away for 
one winter and returned the following year. Strays are indicated as the number of fish that 
strayed among the number of fish tagged during a particular tagging experiment. Fish that 
spent <1 winter away are fish that stayed in Gilbert Bay's Main Ann during winter but 
returned to zone 1 a during the spawning season. 

Size 
Strays 

TL Tag Stray Overwintering Winters 
Group (em) year year Location Away 

38 2009 2009 Gilbert Bay 2 
2 of5 

36 2009 2009 Gilbert Bay 2 

Small cod 35 2009 2010 Gilbert Bay <1 
2 of5 

34 2009 2010 Gilbert Bay 1 

1 of3 38 2007 2009 Gilbert Bay <1 

72 2006 2006 Gilbert Bay <1 

3 of 50 62 2009 2009 Gilbert Bay I 

57 2009 2009 Gilbert Bay 2 
Large cod 

62 2008 2009 Alexis Bay 2 

3 of36 64 2008 2009 Gilbert Bay 1 

65 2008 2009 Alexis Bay 2 
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Table 4.3. Observed and expected behaviour patterns of large and small fish. The 
expected proportion of small and large fish to have migratory experience, and thus 
homing ability upon transport, was based on replanted fish behaviour. Observed data 
based on transplanted fish was similar to expected data. Balanced experimental design 
data from 2009 are presented separately. Data from other years are pooled (as indicated). 
A significant difference was found between large and small replanted fish (Fisher' s exact 
p=O.OOll) and those that were transplanted (Fisher's exact P<O.OOl ). Replanted fish 
tagged in 2008 (n=22) were not included; 21 of 22 moved outside zone 1 a but several did 
not move or were not detected as far as the transplant site (15 km). 

2009 2005, 2006, 2007, 2009, 
(Balanced design) (Pooled data) 

Resident Migratory Resident Migratory 

Small 7 3 10 3 
2007 (n=3), 

Replanted 2009 (n= 10) 

fish 
(Expected) 

2005 (n= l 0), 

Large 1 9 4 18 
2006 (n=2), 
2009 (n= lO) 

Did not 
Returned 

Did not 
returned 

return retum 

Transplanted Small 8 2 14 3 
2007 (n=7), 
2009 (n= lO) 

fish 
(Observed) 

Large 0 9 0 17 
2006 (n=8), 
2009 (n=9) 
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Figure 4.1. Map of study area indicating MP A (Zones 1-3), Alexis Bay, and 

the coastal area where tagged cod were detected. Green dots 

indicate receiver stations. Zone 1a encompasses the spawning area. 

Most sampling was conducted in the area represented by 7 

receivers closest to Shinneys River, zone 1 a. 
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Figure 4.2. Distance between mark and recapture locations for Gilbert Bay cod 

tagged extemally during spring. Left panels include fish 40 em or 

larger and right panels include fish smaller than 40 em. Top panels 

include fish recaptured during spring and bottom panels include 

fish recaptured during summer. Fish recaptured within the same 

year are identified as 0 winter. Fewer small fish were recaptured 

because they grew into a larger size category while at liberty. 

Fewer fish were caught and tagged during summer. 
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Figure 4. 3. Distance between sites of mark and recapture for Gilbert Bay cod 

tagged during summer. Left panels include fish 40 em or larger 

and right panels include fish smaller than 40 em. Top panels show 

fish recaptured during spring and bottom panels show fish 

recaptured during summer. Fewer small fish were recaptured 

because they grew into the larger size category while at liberty. 

Fewer fish were caught and tagged during summer. 
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Figure 4.3 
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Figure 4.4. Distribution of distances moved between initial capture and 

recapture during the 1998 to 2011 study period, for all 274 Gilbert 

Bay cod with legible data. The longest known period between 

mark and recapture where tag information was legible was 10 

years. 
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Figure 4.5 . Annual timing of spring migration from (blue) and back to (pink) 

zone 1 a, based on telemetry of replanted fish with ultrasonic 

transmitters. Left panels shows data for the year fish were tagged, 

and right panels show data for the second year after fish were 

tagged. Two fish moved back into zone 1 a before all fish had 

moved out in June, and another moved out after other fish started 

to return; these fish were considered outliers and are indicated by 

the three black squares (2007, 2008, and 2009). Data from 2011 

are incomplete because 40% of cod had not returned to zone 1 a at 

the time data were downloaded from receivers in October of that 

year. The lower right panel includes all data, including outliers. 
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Figure 4.5 
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Figure 4.6. Annual flow data from the Alexis River indicating the timing of 

the spring freshet 2006-2010. The red line illustrates that in 2006, 

the spring runoff finished earlier than other years (Data for 2011 

was not available at the time of writing). 
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Figure 4.6 
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Figure 4.7. Maximum distance distributions of large (left) and small (right) 

ultrasonically tagged fish that were replanted, and subsequently 

moved out of zone 1 a. Distance increases are shown in 

approximately 10 km distance intervals. The full array of receivers 

was not established until 2009, so earlier data were therefore not 

included. 

127 



Figure 4.7 
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Figure 4.8. Length of time that replanted ultrasonically tagged migratory fish 

spent away from zone 1 a each year (2009-2011 combined) before 

returning that same year. Fish typically left zone 1 a in June (see 

figure 2). The full array of receivers was not established until 

2009, so earlier data were therefore not included. 
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Figure 4.8 
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Figure 4.9. Percentage of replanted ultrasonically tagged cod detected at each 

receiver station, indicating seasonal dispersal from the tagging site 

(zone la). Scale (1 00%) is represented by a black bar at each 

receiver station. The full array of receivers was not established 

until 2009, so earlier data were therefore not included. 
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Figure 4.1 0. Migration patterns of small (n=9) and large (n=23) replanted 

Gilbert Bay cod, tracked over a 3-year period. Each column 

represents individual fish, where red represents non-migratory 

behaviour and blue represents migratory behaviour for each of 

three years during which an individual was tracked. Not all cod 

were tagged during the same year. 
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Figure 4.10 
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Figure 4.11. Return time (days) for small and large transplanted fish. Seventeen 

small (34-38 em) and 17 large fish (57-81 em) were transplanted 

distance of 15 and 25 km from zone 1 a. Pink dots denote 13 small 

fish that never returned to zone 1 a within the 900 day expected tag 

life. None of the five smallest fish (34 em TL) returned, and only 

one of the 35 em fish returned. 
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Figure 4.11 
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Figure 4.12. Timing of spring freshet entering Gilbert Bay, summer water 

temperature at 8 meters depth in zone 1 a, and migration of Gilbert 

Bay cod (out of and returning to the overwintering area) in relation 

to the spawning season and feeding season (time when capelin are 

available). The cod spawning period (see Chapter 2) is indicated in 

red and capelin availability (see Chapter 4; Templeman 1948) is 

indicated in Gray. 

137 



Figure 4.12 
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Chapter Five 

A temporally and spatially limited feeding migration by inshore Atlantic cod in 

Gilbert Bay, Labrador 

5.1 ABSTRACT 

During 2009-2011 the movements of resident inshore Atlantic cod were tracked 

continuously throughout their home range in Gilbert Bay, Labrador, using acoustic 

telemetry. Atlantic cod moved toward the coast, away from the overwintering and 

spawning areas at the head of Gilbert Bay, shortly before capelin arrived and returned 

after the capelin spawning season. During 2009, most migratory fish ( 15 of 21) were 

detected in close proximity to a capelin spawning site when capelin were spawning. Cod 

aggregated at the spawning beach for approximately two weeks during each of two 

discrete time periods in 2009. Each aggregation of Atlantic cod began to fonn on a full 

moon. The directional seasonal movement pattern towards the coast occurred during the 

same time and over similar distances each year. This small-scale summer feeding 

migration represents an important characteristic of the resident inshore Atlantic cod 

population in Gilbert Bay. 

5.2 INTRODUCTION 

Animal movement is a generalized tenn that refers to some activity on a local scale, 

whereas migration refers to a specialized behaviour that has its origin in natural selection 

(Tyus 2011 ). Animal migrations are diverse and have been interpreted in several different 
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ways, briefly described here but see Dingle and Drake (2007) for details. They describe 

migration as encompassing four concepts: (1) persistent locomotory activity, undistracted 

and straightened (2) relocation on a large scale over a longer duration than normal daily 

activities; (3) a seasonal to-and-fro movement between regions where conditions are 

altemately favorable or unfavorable (including one region in which breeding occurs); and 

(4) movements leading to redistribution within a spatially extended population. For the 

purposes of the current study, and in many studies of fish populations, migration follows 

concept 3 as outlined by Dingle and Drake (2007). Fish commonly exhibit migratory 

behaviour for feeding and spawning (Tyus 2011 ). 

On both sides of the North Atlantic, Atlantic cod undergo well known large-scale feeding 

migrations, often in high abundances (Rose 2007; Bergstad et al. 1987). Cod typically 

spawn during winter and spring when feeding is reduced (Fordham and Trippel 1999) and 

subsequently migrate in search of prey. Although cod feed opportunistically on a wide 

variety of prey types (Scott and Scott 1988), they prefer fish prey but especially capelin 

(Lilly 1987; Bundy et al. 2000; Rose and O'Driscoll 2002; Sherwood et al. 2007), which 

some authors speculate may have contributed to their evolutionary success in colonizing 

offshore areas (Rose 2007). While many offshore cod migrate inshore, some smaller 

sedentary inshore groups of cod move only short distances seaward in search of food 

(Robichaud and Rose 2004; Rose 2007). 

The local population of cod in Gilbert Bay exhibits a small home range and strong 

homing and site fidelity (Chapter 4). The core area for most of the population is likely 
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defined by MP A zone 1 a (Morris and Green 2002, Chapter 4). During summer however, 

some Gilbert Bay cod move as far as 40 km from zone 1 a, but return each fall (Chapter 

4). This summer movement is consistently seaward, avoiding areas near the head of 

Gilbert Bay. This chapter describes observations of cod in relation to the occurrence of 

capelin along coastal areas from 2009-2011 . Specifically, the hypothesis is that Gilbert 

Bay cod time their migration towards the coast in order to feed in more productive areas, 

where they prey upon schools of spawning capelin. The return migration of Gilbert Bay 

cod occurs soon after the capelin spawning season. 

5.3 METHODS 

Anecdotal observations on the occurrence of capelin in Gilbert Bay during 2009-2011 , 

come from local residents of the community of Williams Harbour, located at the mouth of 

Gilbert Bay. Red Bay Beach (Figure 5.1) is well-known locally as a capelin spawning site 

where many local residents of Williams Harbour collect capelin during the spawning 

season for local use. Fortuitously, observations on capelin arrival dates during 2009-2011 

were recorded in a log book kept at the local electrical power generation plant in 

Williams Harbour by the plant operators (Howard Russell and George Russell, residents 

of Williams Harbour). These operators also provided local knowledge on capelin. In 

2009, a local aboriginal fishery guardian (Wayne Russell) monitored Red Bay Beach for 

capelin spawning activity in an effort to collect tissue samples as part of a capelin 

genetics study (Nakashima et al. in press). 
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Gilbert Bay cod movement was studied over several years using a network of acoustic 

telemetry receivers, as described in detail in Chapter 4. To detect the movements of 

ultrasonically tagged Gilbert Bay cod throughout their home range, multiple hydrophones 

were deployed throughout Gilbert and Alexis Bay, including one hydrophone near Red 

Bay Beach, where capelin are known to spawn. Details pertaining to hydrophones, 

numbers and types of ultrasonic tags, and surgical methodologies area described in detail 

in Chapter 4. 

5.4 RESULTS 

Interview information indicated that local residents harvest capelin regularly for food 

when capelin arrive at Red Bay Beach to spawn. During several years from 1992-2008, 

no capelin spawning occun·ed on Red Bay Beach and local residents often captured 

capelin elsewhere. When spawning did occur elsewhere during these years, abundances 

were low. During 2009-2011 , capelin spawned on Red Bay Beach each year, and in 

relatively high abundances in 2010 and 2011 compared to 2009. Log book data and 

sample collections identified the onset of the capelin spawning season near Williams 

Harbour. Historically at least, local harvesters report that capelin spawn on Red Bay 

Beach more than once during the same season, described locally as the small run and 

large run (Wayne Russell personal communication). 

Figure 5.1 indicates the dispersal area of migrating cod, tagged with ultrasonic 

transmitters, from zone 1 a to other areas of the MP A and outside the MP A boundaries 

142 



during 2009-2011. Beginning on July i 11 2009, and for approximately two weeks 

thereafter, a single hydrophone located 1.5 km from Red Bay Beach detected the majority 

of migratory ultrasonically tagged cod in Gilbert Bay at a time when capelin were 

observed spawning. In 2009, 21 large cod migrated outside zone I a and most (15 of 21) 

were detected at the capelin spawning location (Figure 5.2). The number of cod detected 

near the beach remained high for approximately two weeks and then decreased for 

approximately two additional weeks before detections at this location increased a second 

time. By August 4111 a similar second peak in tagged cod numbers (13 of2l) occun·ed and 

then remained high for an additional 2-week period. Increased abundances of cod near 

the capelin spawning site in 2009 corresponded with a full moon (Figure 5.2). After the 

second peak in detections near Red Bay Beach, tagged fish moved back into zone 1 a 

where they subsequently overwintered. 

Although a similar aggregation of tagged cod was not detected at a specific location 

during 2010 or 2011 (Figure 5.2) when capelin abundance was high along the coast, 

tagged cod moved away from the overwintering area before the arrival of capelin and 

spent considerable time in coastal areas where capelin were reportedly abundant before 

returning to the overwintering site in zone 1 a. 

5.5 DISCUSSION 

Gilbert Bay cod utilize coastal areas during summer, likely to access better foraging 

opportunities, resulting in a short summer feeding migration. Long-term sampling 
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conducted in zone 1 a , at the head of Gilbert Bay, caught Atlantic cod almost exclusively, 

and very few other fish species were observed at this location (Chapter 2). Areas more 

toward the coast, including zone 3 and beyond support a comparatively diverse fish 

community including capelin and sandlance (Wroblewski et al. 2007). Feeding likely 

provides the impetus for the summer migration of Gilbert Bay cod. 

In Labrador, Arctic charr (Salvelinus a/pinus) conduct a short summer marine feeding 

migration from rivers, often located near the head of a fjord, to coastal areas (Dempson 

and Kristofferson 1987; Morris and Green 2012), not unlike the migration of Gilbert Bay 

cod. During the short summer growing season, a diet of capelin and other fish promotes 

faster Arctic charr growth than a diet of shellfish, suggesting that fish are an important 

and potentially preferred food source (Dempson 1995). Previous work showed that charr 

from Shinneys River migrated and foraged along the same coastal areas as those utilized 

by Gilbert Bay cod, avoiding the inner portions of Gilbert Bay (Morris and Green 2012). 

This pattern offers further evidence of improved feeding opportunities along the coast 

compared to the inner portion of Gilbert Bay. 

Observations in 2009 captured an important interaction between cod and capelin that has 

never been recorded with such specificity, despite its ecological significance. Capelin 

spawning activity in Gilbert Bay began approximately July 6-81
\ 2009, corresponding 

with the full moon when higher tides may benefit capelin spawning (Templeman 1948; 

Nakashima personal communication). Cod moved away from overwintering areas during 

June, just prior to the arrival of capelin. The intense aggregation of migratory 
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ultrasonically tagged cod at the capelin spawning site also suggests that a large proportion 

of the entire migratory Gilbert Bay cod population was also present at this site in 2009, 

likely feeding on capelin. 

A second aggregation of cod one month later agam coincided with the full moon, 

suggesting capelin availability and a possible second capelin spawning event. Capelin 

were not specifically observed during the second aggregation of cod. However, in this 

and other areas capelin often spawn in two or more separate spawning events within a 

season (Nakashima 1996). Historically, capelin appear along the south coast of Labrador 

between June 28111 
- August 31 51 (Templeman 1948), which overlaps with the migration 

timing of Gilbert Bay cod to the coast (Chapter 4). 

After the second aggregation at Red Bay Beach, Gilbert Bay cod dispersed and moved 

back to the overwintering area in zone 1 a. The observations of the timing of cod 

migration towards the coast immediately after spawning (Chapter 4), the inshore 

migration and timing of capelin spawning during a full moon, and the degree to which 

cod aggregated to feed on capelin, provide an example of the complex ecological 

interaction that may occur between cod and capelin. 

The mechanism cod use to locate capelin or other preferred food items is not well 

understood. Rose (1993) speculates that feeding migrations in Atlantic cod are partly 

leamed (Rose 1993). Atlantic cod likely utilize vision and olfaction while foraging, 

which could also play roles in migration (Rose 1993; Tyus 20 12). Data in Chapter 4 
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suggest the importance of individual expenence in the migration of Gilbert Bay cod. 

Although speculative, it is possible that the experience of favorable feeding conditions at 

pa11icular sites during migration could influence an individual's return to that area in the 

future. A specific analysis of individual movement patterns, particularly of juvenile fish 

with limited experience, could be extremely infonnative in better understanding how 

Atlantic cod learn and navigate. For example, smaller and presumably naive fish 

monitored during this study appeared to revisit familiar sites before moving to more 

distant new sites but detailed analysis of this specific behaviour requires more study. 

The same intensity of aggregation was not observed among tagged cod at Red Bay Beach 

in 2010 and 2011 ; however, several ultrasonically tagged cod visited the site for at least a 

short time period. Local reports indicated that capelin were more abundant and wide 

spread in the area during 2010 and 2011 , compared to 2009. It is suspected, although not 

confirmed, that capelin were less abundant and less widely distributed in 2009, 

concentrating cod as they followed capelin to the spawning beach. 

5.6 CONCLUSION 

The highly localized Atlantic cod population in Gilbert Bay resides in a small area 

(Chapter 3), however, a portion of the population migrates annually from core areas used 

during overwintering, spawning, and as a nursery area, towards the coast to feed. Cod 

avoid some areas of Gilbert Bay but use other areas extensively in summer but not in 

winter. This seaward migration suggests greater foraging opportunities near the coast 

during the short subarctic growing season. Observations of cod movement in 2009 
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suggest a potential link between the migration of ultrasonically tagged cod to the 

occuiTence of capelin, a prefeiTed prey item and potentially better feeding conditions. 

The following chapter considers the spatial distribution and timing of migratory 

behaviour of Gilbert Bay cod in relation to the MPA boundaries and fishing seasons. 

Specifically, it addresses whether the migratory behaviour of cod to coastal areas outside 

the MP A increases cod vulnerability to capture during fishing activities that coincide with 

migration timing. This scenario could explain the population decline (Chapter 2), that 

raises concerns for management of the MP A. This information provides the basis for 

adaptive management decisions that could potentially improve MP A effectiveness. 
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Figure 5.1 . Dispersal of migratory ultrasonically tagged cod from zone 1 a. 

Figure includes only fish detected moving outside zone 1, 

represented by 100% detections at the exit of zone 1 a. Scale 

(100%) is represented by a black bar at each receiver station. The 

full array of receivers was not established until 2009, so earlier 

data were therefore not included. 
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Figure 5.2 Number of large cod (58-8 1 em TL) with sonic tags detected per day 

during the summer migratory period, at stations located outside zone 1 a, 

2009-2011. The black line represents tags detected at 1 station near Red 

Bay Beach, while the shaded area represents the number of fish detected 

per day at all other 18 monitoring stations outside zone 1 a. Open circles 

indicate the date of the full moon. Tags available include 28 in 2009, 34 in 

2010 and 34 in 2011. 
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Chapter Six 

Adaptive management to improve MP A efficacy 

6.1 ABSTRACT 

Although an important conservation tool , Marine Protected Areas sometimes fall short of 

intended goals. Efforts to develop an MP A in Gilbert Bay, Labrador, Canada, began in 

1998 as a precautionary measure to protect a unique Atlantic cod population and its 

habitat from overfishing. Despite MP A measures the cod population decline continued, 

requiring adaptive management to protect the Gilbert Bay cod while they are susceptible 

to fishing in areas outside the MPA. Acoustic telemetry and external tagging was used 

over several years of monitoring to detennine when cod moved outside the MP A, the 

duration of time outside, distance moved, and when fish returned. Fishing seasons 

overlapped with the time Gilbert Bay cod move outside the MP A. Public consultations 

and a phone survey with Atlantic cod harvesters suggest that changing the fishing season 

would not have a significant adverse affect on commercial fishing. To increase MP A 

efficacy, an adaptive management strategy that changes the commercial fishing season to 

a period when Gilbert Bay cod are inside the MP A is recommended. However, because 

unplanned changes to MP A regulations are difficult to implement in established MP As, 

future MP A planning should recognize that adaptive management strategies may be 

necessary if an MPA is to achieve its objective. 

152 



6.2 INTRODUCTION 

Marine Protected Areas (MPAs) represents a potentially important fisheries management 

tool worldwide (Agardy 1994; Pauly et a!. 2002; Roberts et a!. 2005), gamering 

significant intemational commitments (CBD 2006; Wood et a!. 2008) that ensure their 

continued implementation into the foreseeable future. The umbrella tenn MPA can 

include a variety of spatial management measures that completely or partially protect an 

area from a variety of activities. Because ill-considered MPAs may be detrimental (e.g. 

Mullowney et a!. 2011) it may be misleading to promote them as devices which are 

always likely to improve yields (Hilbom eta!. 2004). As Marine Protected Areas become 

increasingly popular, evidence suggests that not all will be successful (Agardy et a!. 

2011 ), emphasizing the importance of improving MP A effectiveness when problems are 

identified and thus invoking adaptive management. Adaptive management refers to the 

systematic acquisition and application of reliable infonnation to improve natural 

management over time, which has been promoted as essential to management under 

uncertainty (Wilhere 2002). For MPAs to be an effective fishery management tool they 

must be examined on a case by case basis, with due consideration being given to the 

spatial c01mectivity of larval dispersal , juvenile and adult swimming, and activities of 

fishennen (Hilbom eta!. 2004; Botsford eta!. 2009). 

Substantial declines in the Gilbert Bay cod population occurred while the population was 

under MP A protection, apparently from fishing and variable recruitment (Chapter 2). 

Gilbert Bay cod begin to seasonally migrate outside the MPA and into commercial 

fishing areas as they reach sexual maturity, at sizes greater than 35 em total length (5+ yrs 
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old) (Chapter 4). However, recruitment to a size vulnerable to typical fishing gear 

(gillnets) only occurs at 45 em and approximately 7 year of age. Fishery removals of 

strong year classes, followed by several years of poor recruitment has resulted in low 

overall biomass and abundance of commercial size Gilbert Bay cod (Chapter 2). 

Although multiple researchers tout MP As and MP A networks as a means to ensure old­

growth age structure and complex spatial structure in populations of ground fish 

(Berkeley et a!. 2004; Baskett et a!. 2005), not all MP As prove successful. However, 

given the considerable cost and efforts necessary to create and maintain MP As (Balm ford 

et a!. 2004), and because they represent an important future management tool (CBD 

2006), efforts should prioritize identifying means to improve current and future MP As. 

Given the potential for MPA shortcomings, MPA implementation should be guided by 

the scientific principles of adaptive management: experimental treatments, controls and 

evaluation (Walters 1986; Hilborn eta!. 2003). 

Evidence from science monitoring and community consultations was used to describe a 

potential adaptive management strategy to improve MPA efficacy in Gilbert Bay. 

Consideration of specific harvest control rules, in consultation with local stakeholders, 

could help prepare managers to implement effective changes quickly. Recognizing 

management problems and adopting science-based changes to correct or minimize them 

could represent a prudent adaptive management strategy in the case of Gilbert Bay's 

MPA. 
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6.3 METHODS 

6.3.1 Acoustic telemetry 

The Gilbert Bay Marine Protected Area boundaries extend approximately 20 km from 

zone 1 a, which is a core area for much of the population that is particularly important for 

overwintering and spawning. The movement patterns of small non-commercial ( <40 em), 

and larger commercial (58-75 em) sized fish were contrasted using tagging and tracking 

methodologies described in Chapter 4. To examine the potential effects of fish 

movement in relation to MP A boundaries, acoustic telemetry data described in chapter 4 

was re-analyzed considering only migratory fish and then grouped in relation to MP A 

boundaries, considering how far migratory fish moved and when they returned to the 

MPA. 

6.3.2 Interview survey 

The results of a telephone survey contracted by DFO regarding the commercial cod 

fishing season in southern Labrador, were discussed at a public MP A meeting held in 

Port Hope Simpson on March ih, 2012, and those results are summarized here. The DFO 

survey questions are included in appendix 1 of this thesis. The survey was contracted to a 

group outside DFO and conducted during fall of 2011 , through interviews with 47 

commercial Atlantic cod fishermen representing 34% of all commercial license holders 

along the southern coast of Labrador. The survey areas considered the area from Black 

Tickle in the north to Mary's Harbour in the south. Based on cod tag returns and acoustic 
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telemetry (Chapter 4) 16 of 47 people interviewed fished in areas frequented by Gilbert 

Bay cod. During the survey, Atlantic cod fishennen were asked if they would be 

negatively affected by limiting the commercial fishing season between September 7'h and 

October 7'h, and between September 151h and October 151h. 

6.4 RESULTS 

Large Gilbert Bay cod leave the MPA between July and early September, and some 

individuals do not retum until October (Figure 6.1 ). Small fish leave the Marine Protected 

Area during summer (July - September) and retum to the MPA by late September 

(Figure 6.2). The time spent ouside the MP A each year lasted less than 2 months (Figure 

6.3). Thus, most large and small fish returned to the MPA by mid-September (Figure 

6.3). A low proportion of fish with ultrasonic tags were detected at single hydrophone 

stations outside the MPA, indicating that fish generally spread over wide areas outside 

the MPA (Figure 6.4). Most fish that migrated from the spawning area travelled to zone 3 

or within about 10 km of existing MP A boundaries (Figure 6.5). Very few fish were 

detected at the furthest hydrophones after they were deployed in 2008, suggesting that 

few fish move this great a distance. More fish were detected by hydrophones located 

outside, but geographically closer to MP A boundaries. 

The timing of commerical fishing and individual quotas varied since 1998 (Table 6.1 ), 

but comprised the largest known source of fish removals in the vicinity of Gilbert Bay. In 

some years the commercial fishing season included separate summer and fall 

components. As a conditions of their commercial license, fishermen are required to 
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participate in the collectection of fishery data, such as dock-side monitoring of their 

catch. 

Of the 47 participants m the phone survey, 65% indicated no negative impact of a 

September i 11 
- October 7th season, and 57% indicated no negative impact of a 

September 15th - October 15111 season. Harvesters preferred an early fall fishery, because 

poor weather in late fall could limit fishing opportunities. 

6.5 DISCUSSION 

Given that Gilbert Bay cod moving outside the MPA may be removed by commercial 

fishing; changes to the timing or location of fi shing activities could improve MP A 

effectiveness. MP A consultations during 2008 and 2009 indicated little support for 

changing the boundaries of the MPA (Jennifer Janes, DFO Marine Protected Areas 

program coordinator, personal communications). Boundaries were initially determined 

through an extensive consultation process that incorporated scientific advice (Morris and 

Green 201 0) and was agreed upon by stakeholders during an eight year period before the 

MP A was established in 2005. Given that multiple stakeholders, including fish 

harvesters, do not support changes to the MP A boundaries, this strategy represents an 

unlikely option at this time. However, the exploration of changes to the fishing season 

appears more favorable among stakeholders as a means to improve MP A effectiveness. 

For rebuilding to succeed, managers must work together in using various tools provided 

by both the Oceans Act and Fisheries Act to identify and address periods of vulnerability 

through flexible adaptive management decisions. Restricting fishing activities in the 
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vicinity of Gilbert Bay until cod return to the MPA will better protect the Gilbert Bay cod 

population. Based on fish movement patterns in relation to the timing of commerical 

fishing, commercial fishing from July until September likely has the largest impact on 

Gilbert Bay cod. The 2007 fishery, conducted from July 23-August 4 caught nearl y 

18,000 kg of Atlantic cod, and likely had the largest impact on Gilbert Bay cod in recent 

years. The largest decrease in spring scientific catch rates, based on monitoring data, 

occurred between 2007 and 2008, which included the 2007 commercial fishing season 

(Chapter 2). 

Harvesters reported availability of northern cod, the targeted commercial stock of 

Atlantic cod fished in the vicinity of Gilbert Bay, during the fall in recent years and have 

fished commercially during this time period. Therefore a successful fall fishery is a 

realistic strategy with a proven track record. A fall fishery would enable Gilbert Bay cod 

to migrate outside the MP A during summer and return to the MP A without impact by 

commercial fishing. A later season could therefore represent an effective adaptive 

management policy to help the Gilbert Bay cod population rebuild. 

In our experience, stakeholders, managers and scientists recognized problems related to 

the effectiveness of the Gilbert Bay MPA since 2008, and in 2010 sufficient data were 

available to fonnally describe them (Morris and Green 201 0; DFO SAR 201 0). Initial 

suggestions in 2009 to alter the MP A boundary as a means to protect fish that moved 

outside the MPA received limited suppoti. Therefore, in 2010 researchers suggested that 

changing the fishing season could improve MP A efficacy. Management actions often 
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take considerable time. MPAs are not independent of other harvest control rules (Hilborn 

2002; Halpern et al. 2004) and should not be expected to work as an isolated strategy. 

Therefore, additional or alternative harvest control rules should be considered during 

MP A planning to reduce required implementation time and ensure stakeholders are 

informed of potential management actions if MPA goals are not met. If fishers are made 

aware early in the process of potential and sometimes temporary rule changes that either 

increase or decrease access may be necessary in order to meet MP A objectives then they 

may be more willing to consider such actions should they become necessary. Without 

such planning and future flexibility, the likelihood of an MP A achieving its objectives 

may be compromised. 

Several sources other than commercial fishing may contribute to Atlantic cod fishing 

mortality in the vicinity of Gilbert Bay, including directed recreational and aboriginal 

fishing for Atlantic cod and by-catch during charr and salmon gillnet fishing. The relative 

importance each of these sources of mortality is difficult to measure and data exist only 

for commercial fishing, with little infonnation describing catch and effort from the other 

fisheries. Since 2007, the recreational cod fishery has included a 3-4 week period in late 

July and first half of August and a second shorter (9 day) period in late September-early 

October. Recreational fishing is not permitted inside the MP A at this time because the 

population is at a low level; should the population increase in abundance, MPA 

regulations allow recreational fishing in MPA zone 3 (Canada Gazette 2005). The 

recreational catch estimate reported in Morris et al (2003) during 1999 was just one ton, 

much less than commercial reported landings from that area. Directed aboriginal cod 
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fishing is typically a communal harvest with dedicated harvesters. Reportedly, the local 

harvesters have caught cod allocations from areas outside the range of Gilbert Bay cod 

(Wayne Russell , NunatuKavut fishery guardian, personal communication). Ther is no 

infonnation available describing by-catch of cod during salmonid gillnet-fishing. 

Regardless of its source, fi shing mortality on Gilbert Bay cod is currently more 

problematic than in the past because population abundance has dropped to such low 

levels. Improved data collection during other fisheries could help to understand better the 

fishing pressure on the cod population and assist with its future management. Currently, 

however, population rebuilding for Gilbert Bay cod requires additional restrictions to 

reverse this decline. 

6.6 CONCLUSIONS 

The Gilbert Bay MPA has partially fulfilled its mandate of protecting the local cod 

population and its habitat (Chapter 2). The MP A protects the most important spawning 

area (Chapter 3) and a large portion of the population's migratory range (Chapter 4). 

Without this protection the population would likely have experienced direct fishing 

pressure within its core areas, as it did during 1998 and 1999 (Morris and Green 2002; 

Morris et al. 2003), resulting in catches comprised almost entirely of Gilbert Bay cod. 

This pressure would have resulted in considerably larger declines. However, information 

provided by scientific monitoring and research suggests that the MP A can be much more 

effective through implementing the suggested adaptive management decisions. Because 

Gilbert Bay cod migrate a short distance outside the MP A during a short time period in 
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summer, delaying the annual fishery within a relatively small spatial area until a time 

when Gilbert Bay cod return to the MPA could provide a potentially valuable adaptive 

management measure. 
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Table 6.1. Commercial Atlantic cod catches (round weight) reported by Department of 
Fisheries and Oceans dockside monitoring program at locations where tagged Gilbert Bay 
cod were caught. Fishing areas encompass headland areas from Salmon Point (N 52° 37. 
44, W 055° 44. 51) in the north, to Cape Spear (N 52 26 35, W 055 37 38) to the south, 
and all of Alexis Bay. The northern cod fishery was closed from 2003-2005. 

Year Fishennen Catch (kg) IQ (kg) 
%quota 

Season dates 
Caught 

1998 12 8,135 1125 60 
September 24- October 16 

1999 1 I 12,057 4082 27 
July 8-31 and 

September 13 - October 16 

2000 3 613 3810 5 
June 16 - July 19 and 

September II - November 30 

2001 2 928 3810 12 
July 9 - September 30 and 

November 5 - 30 

2002 9 5,740 3810 17 July 30- October 13 

2003 

2004 No Fishery 

2005 

2006 10 6,598 1361 48 August 16 - September 22 

2007 19 17,672 1134 82 July 23 - August 4 

2008 23 17,631 1474 67 September 8 - 6 October 

2009 17 14,385 1700 50 September 7 - October 3 

2010 14 11 ,500 1700 48 August 28 - October I 

201 1 II 9,400 1700 50 August 29 - September 25 
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Figure 6.1. Cumulative percentage of ultrasonically tagged large cod that 

moved from (left) and cumulative percentage that returned to 

(right) the MPA. Top panels show data from 2009 to 2011, and 

bottom panels combine these data to indicate the general timing of 

large fish moving outside and inside the MP A, which extends 

approximately 20 km from zone la. 
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Figure 6.2. Cumulative percentage of ultrasonically tagged small fish that 

moved from (left) and cumulative percentage that returned to 

(right) the MPA. Top pannels show data from 2010 and 2011, and 

bottom pannels combine the data to indicate the general timing of 

small fish movements from and returning to the MP A, which 

extends approximatley 20 km from zone 1 a. Ten small fish were 

tagged in 2009 but were smaller than migratory size in that year. 
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Figure 6.2 
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Figure 6.3. Duration of time that large fish (top) and small fish (bottom) 

spend outside the MPA, before returning to zone la annually. No 

small fish moved outside the MPA in 2009. 
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Figure 6.3 
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Figure 6.4. Map of areas where ultrasonically tagged migratory cod moved 

during summer. Coloured bars denote the percentage of fish 

detected at each receiver station during each year of migration 

(2009-2011 ). Scale (1 00%) is represented by a black bar at each 

receiver station. The full array of receivers was not established 

until 2009, so earlier data were therefore not included. 
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Figure 6.5. Distribution of the estimated maximum distances travelled by large 

(left) and small (right) fish that moved away from zone 1 a. 

Distances increase in approximately 10 km intervals. 
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Figure 6.5 
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Chapter Seven 

Conclusions 

Multiple studies have documented inshore Atlantic cod populations throughout the 

species' range, particularly along the coast of Norway. Some of these reports suggest that 

areas of the western Atlantic once supported a greater number of inshore Atlantic cod 

populations than currently exists, including areas in Maine (Ames eta!. 1997, 2004), and 

along the coasts of Newfoundland and Labrador (Myers eta!. 1997; Rose 2007). In some 

cases, these populations were likely overharvested and wiped out (Myers et a!. 1997; 

Ames et a!. 1997, 2004 ). The persistence of some local inshore populations during 

periods when historically larger offshore populations in the Newfoundland and Labrador 

region failed to rebuild further emphasizes the importance of inshore populations, and the 

need to protect and conserve biocomplexity in the face of ongoing threats such as fishing. 

Gilbert Bay supports a unique, well-defined coastal Atlantic cod population that appears 

to display local adaptation to its environment and behavioural attributes that distinguish 

it from other Atlantic cod populations. During this long-term study, research identified a 

decline in the population since the Gilbert Bay MPA was implemented in 2005. A need to 

improve the efficacy of the Gilbert Bay MPA emerged. Further research evaluated 

elements of population connectivity and potential ways to improve MP A effectiveness. A 

consistent spawning location and spawning period linked to physical attributes that 

increase egg and larval retention suggests low connectivity of this population to others, 

and that changes in spawning location or dispersal did not contribute to variable 

recruitment patterns. Strong homing and site fidelity of both juveniles and adults further 
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reduced the connectivity of this population with others. More specifically, this study 

documented the timing and spatial distribution of Gilbert Bay cod, which includes areas 

outside the MPA where commercial fishing has likely affected the population's 

abundance. 

This research identified potential ways in which adaptive management could be applied 

to improve the effectiveness of the Gilbert Bay MP A by drawing on increased 

understanding of the population's connectivity. Field studies of this type are necessary to 

identify potential sources of biocomplexity that could benefit from specific conservation 

efforts to help sustain healthy aquatic living resources. The Gilbert Bay Marine Protected 

Area was established to achieve just this very objective for the local cod population. 

Fisheries management must consider population complexity in decision making 

(Stephenson 1999; Sterner 2007; Reiss et al. 2009). Establishing an MP A in Gilbert Bay 

helped to protect the local cod population which likely would have declined much faster 

in the absence of the MPA, however the efficacy of the MP A can be improved. This 

study suggests that changes to seasonal commercial fishing dates could enable large 

Gilbert Bay cod to return to the MPA before the start of commercial fishing, and thus 

help to conserve the local Atlantic cod population. Progress toward implementing 

adaptive management solutions has been slow; it took eight years to designate the MP A 

and four years have passed since concerns regarding populations abundance and 

demographics were recognized (DFO 201 0). To avoid such delays in taking action in 

future and to expedite the process, potential alternative management options should be 
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considered during MP A planning and long-tenn monitoring, so that stakeholders are well 

infom1ed of potential management actions should an MP A fall short of its goals and 

objectives. 

Understanding why some fish populations do not recover after collapse remams a 

challenge for fisheries research. ICES (2007) and Petitgas et al. (2006) provided 

circumstantial evidence that leaming could play a role in maintaining fish populations for 

multiple species including clupeids, tuna, striped bass and whiting, suggesting that long 

delays in the retum of historical migratory pattems within populations may result from 

the loss of experienced fish. Such behavioural considerations have received relatively 

little attention as an important component in the persistence and rebuilding of collapsed 

or depleted populations; rather management efforts have focused on monitoring and 

responding to trends in biomass or abundance (see Fogarty and Murawski 1998; 

Hutchings 2000). Abundances of migratory populations typically exceed (often more than 

ten times) those of resident populations within and between related species (Fryxell et al. 

1998), presumably because reproductive and/or feeding benefits offset the energetic costs 

of migration. In some species, the loss of migration precedes dramatic population 

declines or local extinctions (Bolger et al. 2008; Newmark 2008). Petitgas et al. (201 0) 

suggest that loss of structural elements related to life-history diversity, and loss of 

socially transmitted behaviour (through a curtailed age range) could limit recovery of 

depleted populations. Although our study did not test social transmission of knowledge, it 

identified the importance of experience to navigation and migration for the Gilbert Bay 

cod population. 
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The increasing rate of anthropogenic impacts of marine environments over multiple 

spatial scales emphasizes the urgent need to sustain biological diversity and protect the 

ecological and evolutionary processes that sustain and generate diversity (Moritz 1994; 

Cowling & Pressey 2001; Olsen et al. 2008). Areas that exhibit local adaptations and 

diversity, and add biocomplexity, can help maintain healthy and resilient ecosystems 

(Hilborn et a!. 2003; Schindler et a!. 201 0). This need is particularly relevant if 

differences among populations result largely from phenotypic plasticity, in which case 

changes in behaviour or increased straying could contribute to the rebuilding of other 

depleted populations. Within salmonids at least, changing environmental conditions can 

change phenotypes and lead to modified migratory behaviour (Jonsson and Jonsson 1993; 

Olsson eta!. 2006). Rose (2007; Rose et a!. 2011) speculated that changes in behaviour 

of cod could explain the occurrence of an inshore cod aggregation in Smith Sound, 

Newfoundland, which persisted for more than a decade since 1995. Moreover, 

individuals from that population perhaps always have been and could be once again 

c01mected with offshore regions to contribute to future offshore production (Rose 2012; 

Brattey personal communication). If such connectivity and variability among populations 

exists, it further validates the need to establi sh inshore MP As as a tool to encourage a 

more rapid rebuilding of other populations, including those in offshore areas. Although 

this spillover benefit appears unlikely for Gilbert Bay cod given its genetic 

distinctiveness (Bradbury et a!. submitted), local adaptations and population specific 

characteristics, it nonetheless contributes to regional biocomplexity. Moreover, the future 
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of this population and its role in regional metapopulation structure is unpredictable given 

rapid changes in climate in the north that may influence populations in myriad ways. 

Morphology, behaviour, physiology, genetics, or life history can define distinct 

populations (Taylor 1991 ; Marcil et al. 2006). However, a significant challenge remains 

in separating genetic from environmental influences on phenotypic variation (Olsen et al. 

2008). Nonetheless, conservation of biocomplexity and intraspecific diversity hinges on 

identifying these differences (Hilborn et al. 2003 ; Schindler et al. 201 0). In the absence 

of common garden experiments, genetic evidence coupled with fi eld observations can 

identify potential local adaptations to advise conservation efforts based on a 

precautionary approach, until the technology necessary to link genes to phenotypic 

differences, and thus identify local adaptation, becomes readily available. 

Ciannelli et al. (20 1 0) asked "why has local population structure of Atlantic cod evolved 

and what might be the fitness advantage of fjord-specific home ranges?" Typically, 

inshore populations migrate less than offshore populations. Migration can be partly 

explained by a tradeoff between migration costs and benefits of not migrating (Finstad 

and Hein 2012) and should be favoured when the use of multiple habitats improves 

lifetime fitness (Gross et al. 1988). Short (less risky) migrations could be advantageous 

during periods of reduced food supply, and under these conditions non-migratory 

populations located in more productive coastal areas would likely experience higher 

growth rates and lower mortality (better overall fitness) than migratory populations that 

spend considerable time in areas of lower productivity. This study, and similar telemetry 
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studies conducted in Newfoundland fjords (Brattey et al. 2008) showed low rates of 

mortality (Z<0.2) compared to mortality estimates for cod (M=0.5) in offshore areas 

(DFO 2012). The expected mortality rates for cod in offshore areas are blamed for 

continued low levels of abundance and growth in this area (DFO 20 12). Coastal areas are 

among the most productive regions of the ocean, typically with higher concentrations of 

potential prey than adjacent offshore waters (Denman and Powell 1984; Rissik et al. 

1996). Coastal residency of Atlantic cod could represent a successful strategy, compared 

to large-scale offshore feeding migration, given the recent (two decades) population 

structure of cod in offshore areas and low abundance of capelin and other prey. 

The Gilbert Bay population clearly exemplifies the susceptibility of local inshore 

populations to overharvesting when managed under broadly applied fishing regulations 

inappropriate to the scales of population connectivity. Connectivity, which may involve 

egg and larval transport and retention and/or specific adult behavior, clearly helps define 

the small spatial scales at which independent populations exist. Management strategies 

such as MP As can protect diversity, but to do so effectively requires understanding 

population c01mectivity, often at small spatial scales (km to I OOs of km), and 

implementing adaptive management decisions when scientific advice deems such actions 

necessary. This long-term study of the small Atlantic cod population in Gilbert Bay 

provides insight into intraspecific diversity in Atlantic cod populations (i.e. inshore 

populations), and the role population connectivity plays in that diversity. Specifically, it 

demonstrates how knowledge of dispersal, behaviour, and harvesting practices can be 

used to improve MPA effectiveness as a fisheries management tool. 
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Appendix 1. DFO telephone survey questions to assess the effects of fishing season on 

harvesters in southem Labrador (see Chapter six). 

Questions asked to harvesters Answer choices 

Do you harvest cod commercially in the area surrounding 
A) Yes 

William's Harbour (2Jm) or area between Salmon Point (52 
B)No 

38 N 55 44 W south) to Spear Point (52 27 N 55 37 W)? 

Do you harvest cod recreationally in the area surrounding 
A) Yes 

William' s Harbour (2Jm) or area between Salmon Point (52 
B)No 

38 N 55 44 W south) to Spear Point (52 27 N 55 37 W)? 

a) July, 

What time of year are cod fish typically most abundant in 
b) August, 

this area? (circle more than one answer if required) 
c) August 15 to Sept 15, 
d) September 7 to October 7, 
e) Sept 15 to October 15 

a) July, 

What time of year are cod fish typically of best quality in 
b) August, 
c) August 15 to Sept 15, 

this area? (circle more than one answer if required) 
d) September 7 to October 7, 
e) Sept 15 to October 15 

Would you expect to be negatively impacted ifthe 
A) Yes 

commercial cod fishing season was regularly set for 
B)No 

September 15 to October 15? 

If yes, would you expect to be negatively impacted ifthe A) Yes 
season was regularly set for September 7 to October 7? B)No 

a) July, 

What period would you prefer for the opening of the 
b) August, 
c) August 15 to Sept 15, 

commercial cod fishery? 
d) September 7 to October 7 
e) Sept 15 to October 15 

Do you have any further questions or concems about the 
Commentary 

Gilbert Bay Marine protected Area? 
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