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INTRODUCTION 

If q : Y ~ B is a fibration and Z is a space, then the free range mapping 
space Y!Z has a collection of partial maps from Y to Z as underlying set, 
namely those maps whose domains are individual fibres of q. 

It is shown in [B3] that these maps have applications to several topics 
in homotopy theory. Three results [B3, Ths. 5.1, 6.1 and 7.1], concerning 
identifications, cofibrations and sectioned fibrations, are given in complete 
detail. The necessary topological foundations for two more complicated 
applications, to the cohomology of fibrations and the classification of Moore­
Postnikov systems, are also given. The applications themselves are outlined 
in Chapters 8 and 9 of [B3]. 

The argument of [B3] is in the context of the usual category of all topo­
logical spaces, and this necessarily introduces some limitations. Whenever 
we work with exponential laws for mapping spaces in that category, we usu­
ally find that we are forced to assume that some of the spaces are locally 
compact and Hausdorff. These conditions detract considerably from the 
generality of the results obtained. 

In this thesis we develop the aforementioned topological foundations in 
the category of compactly generated or CG-spaces, which is free of the in­
convenient assumptions mentioned above. Furthermore we do not require 
the Hausdorff condition for CG-ification as in [S]. Thus we obtain the CG­
space versions of the applications to identifications, cofibrations and sec­
tioned fibrations, a theorem on infinite CW-complexes, and establish im­
proved foundations for the CG-versions of the other two applications, i.e. the 
cohomology of fibrations and the classification theorem for Moore-Postnikov 
factorizations. 
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1. COMPACTLY GENERATED SPACES 

Let X be a topological space. We define kX to be the space X retopolo­
gized with the final topology (in [Brl, Pg. 92, 4.2]) relative to all incoming 
maps from a compact Hausdorff spaces. 
Thus if 

g:C___,X 

is a map, where C is compact Hausdorff, then 

g: C ____, kX 

is a map and, in fact kX has the finest topology for which all maps 

are maps. 
If kX and X have the same underlying set and the same topology, then 

X will be said to be a compactly generated space or CG - space, and we 
will write kX =X. We will refer to kX as the CG- ification of X. For 
more details, concerning CG- spaces in this sense see, [V]. The following 
alternative definition of CG-spaces is given by Steenrod. 

Definition 1. [8, 2.1 J If X is a Hausdorff space, and if for each subset M 
and each limit point x of M there exist a compact set C in X such that x is 
a limit point of M n C, then X is a CG-space. 

The above definition coincides with our definition except for the Hausdorff 
condition which is not relevant in our theory. Kelly and other authors use 
the term k - space for these objects. For another set of references under 
which the space X has to be Hausdorff as a condition for being CG-ified see, 
[Brl], [Br3], [K] and [S]. 
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Theorem 1. Universal Property of the space kX. Let X, and Y be 
spaces and h : X ---+ Y be a map. Then the composite maps h o g : C ---+ 

X ---+ Y are maps for all 
g:C---+X 

with C compact Hausdorff, if and only if 

h: kX---+ Y 

zs a map. 

Proof. Firstly suppose that 

h: kX---+ Y, 

and 

are maps, then 
g: C---+ kX 

is a map, and go h is a map. 
Conversely, let h o g be maps for all maps 

g: C---+ X, 

where C is a compact Hausdorff, we wish to prove that h : kX ---+ Y is a 
map. Let U be open in Y. Then 

is open implies that h-1 (U) is open in kX, since kX has the final topology 
with respect to all maps 

g: C---+ kX. 

Proposition 1. The identity 

1: kX---+ X 

is a map, for all spaces X. 
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Proof. From the Universal Property the identity 1 : kX ----> X is a map if 
and only if for any map 

g: C----> kX 

with C a compact Hausdorff space, the composite 1 o g is a map. Since 1 and 
g are maps, then so is the composite 1 o g and hence so is 1 : kX ----> X. 0 

Proposition 2. If 

is a map, and X andY are spaces, then 

kf : kX ----> kY 

is a map, where (kf)(x) = f(x). 

Proof. Suppose that Cis a compact Hausdorff space, and let 

be a map. Then 

is a map. Hence 
kf o g : C ----> kX ----> kY 

is a map, for any incoming map 

g: C----> X. 

It follows that 
fog : C ----> kY 

is a map, and that kf is a map by the Universal Property. 0 

Proposition 3. If X is a CG- space, andY is any space, then f : X ----> Y 
is a map if and only if 

j': X----> kY 

is a map, where j' (x) = f(x) for all x EX. 
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Proof. Let f be a map. Then 

f:kX=X---+kY 

is a map by the previous proposition. 
Conversely, let 

/:X---+kY 

be a map. Then 
f=loj' :X---+Y 

is a map, where 
1: kY----+ Y 

is the identity map (see Proposition 2). 

8 

0 

Proposition 4. If G is a compact Hausdorff space, then a map g : G---+ X 
is a map if and only if 

g:G---+kX 

is a map. 

Proof. The only if part follows from the definition of kX, as was explained 
on page 5. 
Conversely, let 

g:G---+kX 

be a map. Since 
l:kX---+X 

is a map, and so the composite 

log:G---+X 

is a map. 0 

Proposition 5. If G is a compact Hausdorff space, then G is a GG- space. 

Proof. From Proposition 1, 

l:kG---+G 

is a map. Thus the identity map 

g: G----+ kG 

is a map by Proposition 4. Then kG = G, and so G is a GG - space. 0 
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Proposition 6. If X is any space, then kX = k(kX). 

Proof. The proof lies in the observation that kX, and k(kX) have the final 
topology relative to all maps 

g:C----+X 

and all maps 
g: C----+ kX 

respectively, and by Proposition 4 these are the same maps in each case. D 

Corollary 1. For any space X, kX is a CG- space. 

Proof. From the previous proposition. D 

Proposition 1. If Y has the final topology with respect to a family of maps 

{fj : xj ____, Y} jEJ, 

where all Xi are CG- spaces, then Y is a CG- space. 

Proof. Let 
g: c ____, xj 

be a map, for all j E J, with C a compact Hausdorff. Then 

fJog:C----+Y 

is a map, and if U is open in kY, then 

is open in C, by the definition of final topology. Thus 

g-1 uj-1 (u)) 

is open in C. Hence fj- 1(U) is open in kXi = Xj for all j E J by the 
definition of final topology. Then U is open in Y, again by the definition of 
final topology, and soY= kY as we required. D 

Corollary 2. If 
f:X----+Y 

is an identification, and X is a CG- space, then Y is a CG- space. 
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Corollary 3. If { X1 }jEJ is a family of CG- spaces, then the disjoint topo­
logical sum 

is a CG - space. 

Remark 1. We define the n-cell as 

the unitary (n-1)-sphere 

sn-1 = {x ERn llxl = 1}, 

and the unit open ball 

Let K be a not necessarily Hausdorff space. A cell structure on K is a 
family of maps 

{h.>.: En>. ---t K}.>.EA> 

called characteristic maps. Let {D.>. = h.>. (En>-)} .>.EA be a family of open cells. 
The n-skeleton of the cell structure is 

Furthermore, the characteristic maps satisfied the following conditions: 

CMJ. The restriction h.>.IBn>- is a bijective correspondence from Bn>- to D.>. 
for all A EA. 

CM2. For all A, p, E A, h.>.(Bn>-) nh11 (Bm,) is empty unless n = m and A= p,. 

CM3. For all A E A, h.>.(Sn>--1 ) c Kn- 1 . 

Definition 2. Let K = Un>o Kn be a not necessarily Hausdorff space, with 
cell structure {h.>.hEA, as above, with finite or infinite set A. The space K is 
said to be an infinite CW - complex if the following conditions are satisfied: 
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CW1. Let An = {A E Aln.x = n} and let An have the discrete topology. Then 
the map 

defined by 

{ 

X if X E Kn- 1 , 

qn(X) = h:(e), (' ) A En " "' e E n X , 

is an identification. 

CW2. A set U C K is open if and only if U n Kn is open in Kn for all n. For 
more details about the definition of infinite CW-complexes see (Br1, 
Pg. 128}. 

Theorem 2. Every infinite CW-complex K is a normal Hausdorff space. 

Proof. Let A and B be any two disjoint closed sets in K. We assert that 
there exist two open sets U and V in K such that 

A c U, B c V, U n V = 0. 

For each n ~ 0, the intersections 

are disjoint closed sets in Kn. Since K 0 is normal space, then there exist two 
open sets Uo and Vo in K 0 such that 

Ao c Uo, Bo c Vo, Uo n Vo = 0. 

Now we wish to construct for each n > 0 two open sets Un and Vn of Kn 
such that 

An c Un, Bn c Vn, Un n Vn = 0, 

Un-1 = Un n Kn- 1, Vn- 1 = Vn n Kn-I. 

For this purpose, let n > 0 and assume that Ui and Vi have been constructed 
for every i > n. Then 

Cn =Ann Un-1, Dn = Bn n Vn-1, 

are closed sets in Kn. We know that Kn is normal space. Therefore, there 
exist two open sets Gn and Hn such that 

Cn c Gn, Dn c Hn, Gn n Hn = 0. 
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Since Un-1 and Vn_ 1 are open sets in Kn- 1 , the restriction 

is an embedding and so Kn- 1 is closed in Kn. The sets 

are open in Kn. 
Consider now 

Un = Gn n Ln, Vn = Hn n Mn. 

Obviously Un and Vn are open sets in Kn and satisfy the required condi­
tion, that 

An c Un, Bn c Vc,, Uo n Vo = 0. 

This complete the inductive construction of the two open sets Un and Vn for 
all n ~ 0. Now let us consider the two sets 

00 00 

n=o n=o 

in the infinite CW-complex K. Since 

for every n ~ 0, it follows that U and V are open in K. Furthermore, it is 
easy to verify that 

A c U, B c V, U n V = 0. 

Hence an infinite CW-complex K is normal space. Now let x be an arbitrary 
point in K. Then there exist n ~ 0 such that x E Kn, since K = U~=o Kn. 
Since Kn is T1 space, { x} is a closed set in Kn. Since Kn is closed in K, 
this implies that {x} is closed inK. Hence K is T1-space. Thus K is normal 
Hausdorff space. 0 

Proposition 8. The closed n-cell D>. = h>.(En>-) is the closure of the open 
n-cell D>. inK and is a compact Hausdorff subspace of K. 

Proof Since En>. = Bn>., by the property of maps 
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then D>. CD>,. 
As a continuous image of a compact set En>., D>. = h>.(En>-) is compact. 
Since K is a normal Hausdorff space by Theorem 2, hence D>. is closed inK 
and so a compact Hausdorff subspace of K. D 

Proposition 9. Every infinite CW- complex K has the final topology with 
respect to the family of inclusion maps { i>. : D>. ---+ KhEA· 

Proof. Firstly we are going to prove that K has the final topology with 
respect to the family of inclusion maps {i>.: D>.---+ KhEA, where D>. are 
the closed cells of an infinite CW - complex K. 

Thus U c K is open if and only if i~ 1 (U) = U n D>. is open in D>. for all 
.X EA. 

Necessity, it is obvious, since D>. is subspace of K, so has the relative 
topology. 

For sufficiency, let U be a set in K such that U n D >. is open in D >. for 
every .X EA. We now prove that U n Kn is open in Kn for every n;;?: 0. 

For n = 0, U n K 0 is always open in K 0 since the 0-skeleton K 0 = 
Uo>.=o D>. = Ao, since D>. = h>.(B0

) ={A}. 
Let n > 0 and assume that U n Kn- 1 is open in Kn- 1 . Consider the 

inverse image of the identification 

with V = q:;; 1(U n Kn), is open in Kn- 1 and An x en. Since V n Kn- 1 = 
U n Kn- 1 it is open in Kn-1 by inductive hypothesis. On the other hand, An 
is discrete by the definition of infinite CW-complex, and so v n (.X X En) is 
open in An X En for all A E A. Since D>, = h>.(En>.) = qn(A x En) it follows 
that v n (.X X En) = q;: 1(U n D>.) n (.X X En). Since u n D>, is open in D>,, 
this implies that v n (.X X En) is open in A X En. D 

Corollary 4. Every infinite CW- complex is a CG- space. 

Proof. The family { D>.} >.EA are the closed cells of an infinite CW-complex 
K, and so K has the final topology with respect to the family of inclusion 
maps 

{i>.: D>,---+ KhEA> 

in which h>.(En>-) = D>. are closed compact Hausdorff spaces since each h>. is 
a map and K is Hausdorff. 
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We wish to prove that K is identical to kK. We know that the identity 
map 

kK~K 

is a map, so we just have to prove the continuity of the identity 1 : K ~ kK. 
Now the 1 o i .x are maps from a compact Hausdorff space into K for all A E A 
and so, by Proposition 4, are maps. It follow by Theorem 1 that 1 : K ~ 
kK is a map, and so K is identical to kK. Hence K is a CG- space. 0 

Remark 2. Let X carry the initial topology (see [Brl, Pg.153}), relative to 
the family of maps 

{gi: X~ XiLEJ· 

If the spaces Xi are CG - spaces, it does not necessarily follow that X is a 
CG- space. The product space Y x Z carries the initial topology relative to 
the projections 

P1 :Y x z~Y, 

and 
P2 :Yx z~z, 

however there are well known examples (i.e. [Br2j and [Dj), where Y and Z 
are CW- complexes, yet Y x Z is not a CG- space. The following result 
tells us that the CG - ification of the initial topology in the usual sense is 
the appropriate model for a CG - space initial topology on X, and hence is 
a CG-space. 

Theorem 3. The Universal Property for CG-sense Initial Topology 
on X. Let {Xi}iEJ be a family of a CG- spaces, and X carry the initial 
topology relative to a collection of maps 

Then kX is the initial topology of X in the CG- sense, that is it satisfies 
from the following Universal Property, 

(a) each of 

are maps, and 
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(b) If W is a CG- space and 

h:W----+X 

is a map, then 
h: W----+ kX 

is a map if and only if the composites 

are maps, for all j E J. 

Proof. (a) follows from Proposition 2, (b) from Proposition 2, and the Uni­
versal Property of initial topology in the usual sense. D 

Definition 3. If X andY are sets, then a map 

a:W----+XxY 

is of the form < cx1, cx2 >, where 

cx1 : W ----+ X, 

and 

thus a(w) =< cxl,cx2 > (w) = (cxl(w),cx2(w)), for all wE W. 
If W, X and Z are spaces, then the Universal Property of products spaces 

asserts that a is a map if and only if cx1 and a 2 are map. 
We define X xk Y = k(X x Y). For a CG- spaces X andY, it follows 

from Theorem 3 that X xk Y is the product of X andY in the CG- sense. 

Definition 4. Given maps 

p: X----+ B, 

and 
q : y ----+ B, 

then we will define the pullback space or fibred product space of X and Y, 
to be the subspace of X x Y with underlying set 

X n Y = {(x, y)ip(x) = q(y)}. 
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In this situation 
p*q: XnY ---+X, 

and 
q*p : x n Y ---+ Y 

will be denote the corresponding induced projections. Let W be a space. Then 
it is standard that X n Y carries the initial topology relative to the maps p*q, 
and q*p. The typical map 

W---+XnY 

will be denoted by (h, k), where h E M(W, X) and k E M(W, Y) with ph = 
qk, thus (h, k)(w) = (h(w), k(w)) where wE W. 

The CG- ification of X n Y will be denoted by X nk Y. It follows from 
Theorem 3 that X nk Y carries the CG - sense initial topology relative to 
k(p*q), and k(q*p). 

EXPONENTIAL RULES FOR A CG - spaces 

If X andY are spaces, then M(X, Y) will denote the set of all maps from 
X to Y. In this chapter, in cases where M(X, Y) is a topological space, 
it will be assumed to have the compact-open topology. In the category of 
topological spaces, we have the following propositions. 

Proposition 10. The Proper Condition. [H, Ch. V, Lm. 3.1] Let X, 
Y and Z be an arbitrary spaces. Iff : X x Y ---+ Z is a map, then the rule 
g(x)(y) = f(x,y), where x EX andy E Y, determines a well defined map 

g: X~ M(Y,Z). 

Proposition 11. The Admissible Condition. [H, Ch. V, Cr. 3.5 and 
Pr. 3. 6] Let X, Y and Z be spaces. If either 

(a) Y is locally compact and Hausdorff, or if 

(b) X andY are both first countable and Hausdorff spaces 

and if 
g: X---+ M(Y, Z) 

is a map, then 
f:XxY---+Z 

is a map, where f(x, y) = g(x)(y) for all x EX, y E Y. 
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Corollary 5. Let Z be a space, and C be a locally compact Hausdorff space. 
Then 

ec: M(C, Z) x C ____. Z, 

defined by ec(f, c)= f(c), where f E M(C, Z) and c E C, is a map. 

Proof. We simply apply Proposition 11 to the identity map on M(C, Z), and 
then obtain ec. D 

Lemma 1. If X is a CG- space, and C is a compact Hausdorff, then X x C 
is a CG - space. 

Proof. We need to prove that the identity map 

1: X X c ---t X Xk c 
is a map. The first step is to show that X x C has the final topology relative 
to all maps 

h x 1c : K x C ____. X x C 

where K is a compact Hausdorff, and hE M(K, X). 
Let Z be an arbitrary space and 

be a map. We will assume that 

f o (h x 1c) : K x C ____. Z 

is a map for every compact Hausdorff spaces K, and all h in M(K, X). It 
follows by the proper condition for the category of all topological spaces 
(Proposition 11) that there is an associated map 

determined by the rule 

u: K ____. M(C, Z) 

u(y)(c) = f o (h x 1c)(y, c) 

= f(h(y), c) 

= (gh(y))(c) 
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where y E K and the map 

g: X -t M(C,Z) 

corresponds to f by the rule g(x)(c) = f(x, c), for x E K and c E C. Hence 
go h = u is a map for all choices of K and h. The Universal Property, 
associated with the CG-space topology on X, implies that 

g: X -t M(C,Z) 

is a map. 
The admissible condition for the category of all spaces (Proposition 11) 

now ensures that f is a map. Hence the maps 

h x lc : K x C -t X x C 

satisfy the Universal Property associated with the final topology on X x C, 
so X x C has that topology. 

We will again assume that K is a compact Hausdorff space, and that 
h : K -t X is a map. Then 

h x lc : K x C -t X x C 

and 
h x lc : k(K x C) -t k(X x C) 

are maps, where k(X x C) =X x C. Now K x C is compact Hausdorff, so 
it is a CG-space, i.e. k(X x C) = X x C; hence 

h x lc: k(K x C) -t X xk C 

is a map. 
Now this last map is the composite 

KxC~XxC 

lo~ ll 
X xkC 

so it follows by the Universal property established earlier in this proof, that 

1: X x C -t X xk C 

is a map. 
Hence X x C = X xk C, and so is a CG- space. 0 



1. COMPACTLY GENERATED SPACES 19 

Theorem 4. The Exponential Law for a CG-spaces. Let X, Y and 
Z be CG - spaces. Then 

f: X Xk y ---7 z 

is a map if and only if 
g: X__..... kM(Y, Z) 

is a map, where f(x, y) = g(x)(y) for all x EX, y E Y, and M(Y, Z) is the 
space of maps from Y to Z with the compact open topology. 

Proof The prooffollows immediately from Propositions 11 and from Propo­
sition 12 below. 0 

Proposition 12. The Proper Condition for a CG-spaces. Let X, Y 
and Z be a CG- spaces, and f :X xk Y __..... Z be a map. Then the rule 
g( x) (y) = f ( x, y), where x E X and y E Y, determines a well defined map 

g: X__..... kM(Y, Z). 

Proof Fixing x EX, let 
g(x) : Y __..... Z 

be defined by g(x)(y) = f(x, y) where y E Y. Then g(x) is clearly a well 
defined map. Now we need to prove that g(x) is a map. If ex : X __..... Y is 
the constant map at value x, then 

defined by < ex, ly > (y) = (x, y) is a map (see Remark 2). It follows that 
g(x) = f o <ex, ly > is a map. 

Let C be a compact Hausdorff space, and a E M ( C, X). We wish to prove 
that go a is a map for all choices of a. Then, by the Universal Property 
associated with the CG-topology on X, g is a map. 

Now if 
ax ly: C x Y __.....X x Y 

and k(a x ly) are maps, then 

f o k(a X ly) : C X Y __..... Z 
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is a map by the previous Lemma. It follows by the proper condition in the 
ordinary sense; (see Proposition 10), that 

h : C --+ M (Y, Z) 

is a map, where 
h(c)(y) = f(a(c), y) = g(a(c))(y), 

and where c E Candy E Y. Hence 

h(c) = g(a(c)) =(go a)( c). 

Thus g o a = h is a map for all a E M ( C, X), and the result follows. D 

Proposition 13. If Y and Z are CG- spaces, then the map 

e: kM(Y, Z) xk Y--+ Z, 

defined by e(J, y) = f(y), for all f E kM(Y, Z) andy E Y, is a map. 

Proof. Given that C is compact Hausdorff, and 

a : C --+ kM (Y, Z) x k Y 

is a map. We want to prove that eo a is a map, where a( c) = (a1 (c), a 2 (c)), 

a 1 : C--+ kM(Y, Z), 

and 
a2: c --t y 

are maps. Now, it follows by Proposition 4 that 

a 1 : C--+ kM(Y, Z) 

is also a map, and 
a; : M(Y, Z) --+ M(C, Z), 

a*(h) = h o a 2 is a map, where hE M(Y, Z). Now 

ec: M(C,Z) x C--+ Z 

is a map since C is compact Hausdorff (Corollary 5). Then eo a is a map 
because 
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Hence e is a map. 0 

Proposition 14. The Admissible Condition for a CG-spaces. If X, 
Y and Z are CG - spaces, and 

g: X~ kM(Y,Z) 

is a map, then 
f:XxkY~z 

is a map defined by the rule f(x,y) = g(x)(y). 

Proof. The proof follows because f is the composite 

and 

Hence f is a map. 

X xk Y 9~ kM(Y,Z) xk Y ~ Z, 

e(g Xk lv)(x,y) = e(g(x), ly(y)) 

= e(g(x), y) 

= g(x)(y) 

= f(x,y). 

0 

Definition 5. A map q : Y ~ B in which Y and B are CG-spaces is a 
Hurewicz fibration in the CG-sense if, whenever we are given a CG-space A, 
a map f: A~ Y and homotopy H: Ax I~ B that starts with q of, 
there exists a homotopy G : A x I ~ Y that starts with f and satisfies 
q o G = H making commutative the following diagram: 

Ax{O}~Y 
io 1 / G /~ l q 

Axi~B, 

where j 0 : A X {0} ~A X I is defined by the rule j 0 (a) =(a, 0). 
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Theorem 5. If 
q: y -----" B 

is a Hurewicz fibration in the sense of usual category of spaces, then 

kq : k Y -----" kB 

is a Hurewicz fibration in the CG - sense. 

Proof Let A be a CG - space, and 

f: A X {0}-----" kY, 

and 
F : A x I -----" kB 

be maps such that F(a, 0) = kq(J(a, 0)) for all a EA. We wish to prove that 
there is a map 

F* : A X I -----" k y 

such that F*(a, 0) = f(a, 0) for a E A, and kp o G =F. 
Taking ly, and lB to be the identity maps kY -----" Y, and kB -----" B, 
respectively, then 

ly 0 f : A X {0} -----" Y, 

and 
lB oF : A x I -----" B 

are maps such that lB o F(a, O) = q o (ly o !)(a, 0), for all a E A. Then it 
follows from the covering homotopy property for p, that we can find a map 

H:Axi----"Y 

such that lB oF= q o Hand H(a, 0) = ly f(a, 0), for all a EA. We define 

G : A X I -----" kY 

as having the same underlying map as H. Now Ax I is a CG- space (Lemma 
1), so H is a map by Proposition 3. The result follows. 0 
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THEORY 

Definition 6. A topological space B is said to be weak Hausdorff if 

f::.B = {(b, b) I bE B} c B X B, 

is closed in B xk B. 

An alternative definition of weak Hausdorff is, that for every compact 
Hausdorff C, and every map f : C --t B, the image f (C) is closed in B. 
More details about this definition which is equivalent to the one above, can 
be found in [St]. 

Definition 7. If Z is a space, we will define z~ to be the set Z U { w} where 
w ¢ Z. We give z~ the topology whose closed sets are z~ itself, and the 
closed sets of Z. Let C be a closed subspace of Y, and 

f:C--tZ 

be a map, so f is a partial map from Y to Z. Then there is an associated 
map 

f~: Y-- z~ 

defined by the rule 

f~( ) = { f(y), if y E ~; 
y w, otherwzse. 

Definition 8. Let B be a T1 - space, and 
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be a map. We define the set 

Y!Z = u M(Y I b,Z) 
bEB 

where forb E B, Y I b = q-1 (b) is the fibre. We also define the map 

q!Z : Y!Z --+ B 

to be the function that sends all maps 

Ylb--+Z 

to b, for all b E B. Since B is a T1 -space, each fibre q-1(b) = Y I b is 
closed in Y. It follows that iff E M(Y I b, Z), then i(J) = f~ defines a map 

i: Y!Z--+ M(Y, z~). 

Definition 9. We define the modified compact-open topology on Y!Z to be 
the initial topology relative to i, and q!Z. We call Y!Z the free range mapping 
space determined by Y, q and Z. It has a subbase consisting of all sets of the 
form ( q!Z)-1 (U), where U is open in B, together with all sets of the form 

W(A, V) = {! E Y!Z I f(A n dom(J)) c V}, 

where A ranges over the compact subsets of Y, and V ranges over the open 
subsets of Z. 

We now introduce a CG- version of the free range mapping space Y!Z, 
i.e. k(Y!Z). Thus this space carries the initial topology relative to k(q!Z), 
and k(i) in the sense of CG - spaces, i.e. it is the CG-ification of the 
previously defined topology on Y!Z. We now remind the reader of the Fibred 
Exponential Law, due toP. Booth. It is followed by our CG version. 

Theorem 6. Fibred Exponential Law. [B3, Th. 3.3 and 2.4.3] Let B be 
a Hausdorff space, Z be a space, and 

p:X--+B 

and 
q:Y--+B 

be a maps. 
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(a) Proper Condition: If 

J> : X n Y ---+ z 
is a map, then the rule J<(x)(y) = J>(x,y) determines afibrewise map 

J< :X---+ Y!Z, 

where p(x) = q(y). Thus J< is a map such that (q!Z) o J< = p. 

(b) Admissible Condition: Let us assume that either 

(i) Y is locally compact and Hausdorff, or 

(ii) X andY are first countable and Hausdorff, or 

(iii) W is a space, 
p:BxW---+B 

the projection, and Y x W a CG-space. 

Then, given a fibrewise map 

J< : X ---+ Y!Z, 

the above rule determines a map 

J> : X n Y ____. z. 

Theorem 7. Fibred Exponential Law for CG-spaces. Let X, Y, Z 
and B be CG- spaces, with B weak Hausdorff space, and 

p: X---+ B, 

q:Y---+B 

and 
r:Z---+B 

be maps. Then there is a bijective correspondence between 

(a) maps 

and 



2. MAPPING SPACES AND FIBREWISE HOMOTOPY THEORY 26 

(b) fibrewise maps 
j< : X ----? k(Y!Z) 

determined by the rule J>(x,y) = J<(x)(y) when p(x) = q(y). 

Proof There is a map 

p X q: X X y----? B X B, 

and so 
p xk q: X xk Y----? B xk B 

is a map where X xk Y = k(X x Y). The weak Hausdorff condition ensures 
that l::.B is closed in B Xk B. Hence 

is a closed subspace of X x k Y, so it follows that our theory of partial maps 
from Y to Z, with closed domains, is relevant to the situation under consid­
eration. 

Let 
F : X nk Y ----? z 

be a map. Then J> determines a map 

by the rule 
> (x ) = { J> (X' y)' for (X' y) E X n y, 

9 'y w, otherwise. 

We know by the proper condition (Proposition 12) that there is an asso­
ciated map 

g< : X ----? kM(Y, z~) 

defined by g<(x)(y) = g>(x, y), where x EX, andy E Y. So 

g<(x)(y) = w 

if and only if 
p(x)-/= q(y). 

We now define 
J< : X ----? k(Y!Z) 
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by f<(x)(y) = g<(x)(y) for (x, y) EX n Y. Then 

f<(x)(y) = g<(x)(y) 
= g>(x, y) 
= f>(x, y). 

However, f<(x)(y) is undefined when p(x)-=/=- q(y). If p(x) = b, then f<(x)(y) 
is defined for all y E Y I b. i.e. f<(x) E Y!Z, and (q!Z)(J<(x)) = b. So 
(q!Z) of< = p, and (q!Z) of< is a map. Also, recalling our definition of the 
topology on Y!Z, i of< = g< is a map. It follows by the Universal Property 
of the CG initial topology on Y!Z, and by Proposition 3, that f< is a map. 

Note that the step that uses the continuity of g< to establish the conti­
nuity of f< the admissible condition for CG-spaces, is the place where we 
use the fact that X and Y are CG-spaces. The argument is reversible, and 
so the proof is complete. D 

Definition 10. If X and Y are spaces, then [X, Y] will denote the set of 
homotopy classes of maps from X to Y. If X and Y are based spaces, then 
M 0 (X, Y) denotes the set of based maps from X to Y, with the CG-ified 
compact-open topology. In this case [X, Y] 0 will denote the corresponding set 
of based homotopy classes. If Y and B are based spaces, and 

is a map, the set of based sections to q, i.e. 

is equipped with the CG- ified compact-open topology. 
In addition, if B and Z have basepoints ba E B and Z0 E Z, then the constant 
map 

Cz0 : Y I bo ----- Z 

is defined to be Czo(Y) = Z0 • We take Cz
0 

as basepoint for Y!Z. The space 
M(X, A; Y, B) denotes the set of maps from X to Y for which f(A) ~ B, 
again with the CG-ified compact-open topology, and [X, A; Y, B] the corre­
sponding set of homotopy classes. 

Definition 11. Vertical Homotopy. Let 
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be a map, and fo and £1 be sections to q. A homotopy 

F:Bxi--+Y 

such that 
Ft = F(-,t): B--+ Y 

is a section to q, for all t E I, is said to be a vertical homotopy. The sections 
£0 , and £1 are said to be vertically homotopic if there is a vertical homotopy 
from fo to £1. 

Corollary 6. Section Rule. [B3, Cr. 3.4] Let B be a Hausdorff space, 
and 

q:Y--+B 

be a map. 

(a) If 
l:Y--+Z 

is a map, then the rule 

l•(b) = li(Yib) : Ylb--+ Z 

where b E B, defines a section l• to q!Z. Equivalently, we may define 
l• by l•(b)(y) = l(y), where q(y) =b. 

(b) If Y is CG-space and z• is a section to q!Z, then the rule stated in (a) 
determines a map 

l: y--+ z. 
Let (Z, zo), and (B, bo) be based spaces, B being weak Hausdorff sapace, 

and 
q:Y--+B 

be a map. 
If 

is a map, then we define 
r(b) : Ylb--+ z 

to be the restriction of I! to Ylb. 
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Corollary 7. Section Rule for CG-spaces. Let X, Y and Z be CG­
spaces. There is a bijective correspondence 

(a) e: M(Y, Ylba; z, Za) -t Seca(q!Z), 

defined by O(f) = r' for all f E M(Y, Ylba; z, Za). 

(b) Let fa, f1 E M(Y, Ylba; Z, Za). Then fa~ f1 via a homotopy 

F: (Y X f; (Yiba) X I) -t (Z, Za), 

if and only iff~ :::: fi via a based vertical homotopy. 

(c) The rule [f] 'V't [r] defines a bijection 

A: [Y, Ylba; Z, Za] -t 11'a(Seca(q!Z)), 

where 11'a(Seca(q!Z)) denotes the set of based vertical homotopy classes 
of based sections to q!Z, (or equivalently the path components of Seca(q!Z) 
with the compact open topology). 

Proof. 

(a) The domain of f•(b) is Ylb so q 0 f =lB. Also £-(ba) = fi(Yiba) = CZo) so 
f• is base point preserving. If B n y is the pullback of lB, and 

q:Y--+B, 

then the projection 
1r:BnY--+Y 

is a homeomorphism. Thus we have a bijective correspondence between maps 

and maps 
fo1r: BnY--+ Z. 

The map 
e-: B--+ Y!Z, 

defined earlier, is the image off o 1r under the Exponential correspondence, 
so f•(b)(y) = f o 1r(b, y) = f(y), where q(y) = b. The above argument is 
reversible, so the result follows. 
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(b) It follows by arguments similar to those in the proof of (a), that 

F: (Y X I; (Yibo) X I) ---+ (Z, Z 0 ) 

is a map, if and only if 

G: (B X I, {ba} X I) ---+ (Y!Z, CzJ 

is a map, where F(y, t) = G(b, t)(y), for all y E Y, t E I and b = q(y). 
Moreover, F(Yiba X I) = Z 0 if and only if G(ba X I)(y) = Z 0 for ally E Ylb0 • 

Now 
(B n Y) xI 9:i. (B xI) n Y, 

and so £0 ~ .e 1 if and only if £~ ~ £i, as required. 

(c) This follows easily from (a) and (b). 0 

Comparison 1. Note that the inconvenient assumptions built into the ad­
missible condition of Theorem 6 are avoided in the CG-version of Theorem 
7. In the same way in the inconvenient assumption of Corollary 6 of [B3] are 
avoided in Corollary 7. 

Example Let 
q:Y-+B 

be a map, Z a space and Z 0 E Z. Then there is a map 

defined by the rule O'zJb)(y) = Z0 for ally E Ylb where 

is the constant map with value Z0 • 

Now O'z
0 

corresponds, via Corollary 6, part(a), to the constant map 

Y-+Z 

valued at Z0 • Hence O'z
0 

is a map. It is easily seen that it is also a section to 
q!Z. 
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Definition 12. We now introduce some fibrewise terminology. Fibrewise 
spaces in the free sense are simply maps of spaces into B. Let 

p:X----+B 

and 
q:Y----+B 

be fibrewise spaces in the free sense. Then a fibrewise map from 

p:X----+B 

to 
q:Y----+B 

in the free sense is a map 
f:X----+Y 

such that q of= p. 
A fibrewise space in the based sense is a pair (p, s), where 

p:X----+B 

is a map, and 
s:B----+X 

is a section to p. The reader can observe that if B is a point *, then 

is essentially just the point s( *) E X, so (p : X ----+ *, s : * ----+ X) is 
essentially just the based space (X, s( *)). 

If (p,s) and (q,t) are fibrewise based spaces, then (pnq,(s,t)) is also a 
fibrewise based space. 

A fibrewise map in the based sense, from (p, s) to (q, t) is a map 

f:X----+Y 

such that q of= p and f o s = t. The set of based maps of this sort will be 
denoted by MB(X, Y). 
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Definition 13. Iff, g E MB(X, Y), then a fibrewise based homotopy from f 
to g is both a fibrewise map 

F:Xxf-+Y 

and a based homotopy such that F(x, 0) = f(x) and F(x, 1) = g(x), for all 
xEX. 

Thus a fibrewise based homotopy from f to g is just a homotopy in the 
ordinary sense from f tog, which is a fibrewise based map at each stage of 
the deformation. We write f -::::=B g. 

Definition 14. The fibrewise tertiary system (q, s, m) consists of a fibrewise 
based space Y over B, i.e. a based map 

q:Y-+B, 

a based section 
s:B-+Y 

to q, and a fibre wise based map 

m:YnY-+Y. 

The map m is a fibrewise multiplication. Thus m is fibrewise in the sense 
that q o m = q n q, 

qnq:YnY-+B 

is define by (q n q)(yi, Y2) = q(yi) = q(y2) where (y1, Y2) E Y n Y 

Definition 15. The fibrewise multiplication m is fibrewise homotopy com­
mutative if m -::::=8 moT, where T is the switching fibrewise homeomorphism 

r: YnY __,. YnY 

defined by r(y, y') = (y', y), for (y, y') E Y n Y. 

Definition 16. The fibrewise multiplication m is fibrewise homotopy asso-
ciative if 

m(mn ly) -::::= 8 m(ly n m) 

where 
YnYnY 1~YnY ~ Y, 

and 
YnYnY~YnY~Y. 
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Definition 17. The fibrewise multiplication m has a fibrewise homotopy 
identity, or satisfies the fibrewise Hopf condition if 

m(ly n (so q))L, :::::. 8 ly :::::.8 m((s o q) n ly )L,, 

in which L, : Y ----> Y n Y denotes the diagonal map, and where 

Y ~ YnY ly~q) YnY ~ Y, 

and 

Definition 18. The fibrewise based map 

t-t:Y--->Y 

is a fibrewise homotopy inversion for the fibrewise multiplication m if 

m(ly n t-t)L, :::::.8 so q :::::.B m(t-t n ly )L,, 

where 
Y~YnY 1~YnY~Y, 

and 
Y~YnY~YnY~Y. 

Definition 19. A homotopy associative fibrewise tertiary system satisfying 
the fibrewise Hopf condition, and for which the fibrewise multiplication admits 
an inversion, is called a fibrewise H-group. If a fibrewise H-group is fibrewise 
homotopy commutative, then it will be said to be fibrewise homotopy Abelian. 
More details concerning fibrewise homotopy are given in a locus classicus [Jj. 

Proposition 15. Let Y, Z and B be a CG-spaces, Z an H- group, B weak 
Hausdorff space, and a 

q:Y--->B 

a map. Then there is a fibrewise map 

n : Y!Z n Y!Z ----> Y!Z, 

n(f, g) = m(f x g)L,b, where b E B, j, g E M(Yib, Z), m denotes the 
operation on Z, L,b is the diagonal map for Ylb, and m(f x g)L,b is the 
following composite of maps 

Ylb ~ Ylb x Ylb ~ Z x Z ~ Z. 
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Then, defining r7e as in the latest example, the tertiary system 

( q!Z, f7(e), n) 

is a fibrewise H-group. Further, if Z is homotopy Abelian, then (q!Z, r7e, n) 
is fibrewise homotopy Abelian. 

Proof. If Y is a space and Z is an H - group, then the operation 

n: M(Y, Z) x M(Y, Z)---. M(Y, Z), 

defined by n(f, g) = n o (! x g) o 6y, together with the identity map Ce : 

Y ---> Z, makes M(Y, Z) into an H- group. In fact, the proof of this 
preliminary result is as follows. There are maps 

M(Y, Z) x M(Y, Z) x Y---> M(Y, Z) x Y x M(Y, Z) x Y, 

(!, g, y) ---> (!, y, g, y), where J, g E M(Y, Z) andy E Y, and 

M (Y, Z) x Y x M (Y, Z) x Y ---. Z x Z, 

(f,y,g,y)---> (f(y),g(y)) where again J,g E M(Y,Z) andy E Y. The for­
mer is obviously a map, the continuity of the latter follows from Proposition 
11. Composing these two maps with the operation on Z, that is 

Z X Z---> Z, 

M(Y, Z) x M(Y, Z) x Y ---> Z, 

(!, g, y) ---> f(y) · g(y). If we now apply the Proper Condition (Proposition 
10), we obtain the map 

M(Y, Z) x M(Y, Z)---. M(Y, Z), 

(!,g) ---> (y ---> f (y) · g(y)) namely the map n defined above. It is now 
routine to verify that (M(Y, Z), n), with the constant map value the identity 
of Z as identity, is an H-group. If Z is homotopy Abelian, then so also is 
M(Y,Z). 

The proof of Proposition 15 is a direct generalization of that argument 
just given, using the fibred exponential law of Theorem 7, rather than the 
usual exponential law for spaces. 0 
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Proposition 16. If (q : Y ---+ B, t : B ---+ Y, m : Y n Y ---+ Y) is 
a fibrewise homotopy Abelian H - group, where B and Y are CG-spaces, 
then Sec0 (q) is a homotopy Abelian H- group. Thus ifh, t 2 E Sec0 (q), the 
operation +B on Sec0 (q) is defined by 

and the identity for Sec0 (q) is t. 

Proof There is a map 

Sec0 (q) X Sec0 (q) X B ---+ Y, 

given by (t1, t2, b) ---+ m(t1(b), t2(b)) where t1, t2 E Sec0 (q) and b E B. Its 
continuity can be verified by and argument similar to that used in the proof of 
Proposition 13. Applying the Proper Condition (Proposition 10), we obtain 
a map 

Sec0 (q) X Sec0 (q) ---+ M(B, Y), 

given by (t1, t2)---+ (b---+ m(t1(b), t2(b))), where t1, t2 E Sec0 (q) and bE B. 
Now qom(t1(b), t2(b))) = q(t1(b)) = b, for all bE B. Sob---+ m(t1(b), t2(b)), 
which is the map t1 +B t2, is a section to q, and (t1, t2) ---+ h +B t2 is a map 
from 

as required. 
It is then routine to verify that (Sec0 (q), +8 ) with identity t, is a homo­

topy Abelian H-group. 
0 

Corollary 8. Let (Z,zo) be a CG-space and an Abelian H- group, (B,ba) 
a based weak Hausdorff space, and q : Y ---+ B a map. Then Sec0 (q!Z) is 
an Abelian H- group, and 7r0 (Sec0 (q!Z)) an Abelian group. 

Theorem 8. Let (Z, z0 ) be a CG-space and an Abelian H- group, (B, b0 ) 

a based weak Hausdorff space, and q: Y---+ B a map. Then 

(a) the set 
[Y, Ylbo; Z, Zo] 

carries an Abelian group structure, defined by pointwise addition of homotopy 
classes, and 
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{b) the bijection of Corollary '7, part {c), i.e. 

defined by>.([£]) = [£•], is an isomorphism of Abelian groups. 

Proof. The proof of part (a) is routine. (b) The two group structures are 
both induced by the H-group structure on Z; it is routine to verify that, as 
expected, ). is an isomorphism of Abelian groups. D 

Theorem 9. [B3, Th. 4.1] Let B, Y and Z be spaces, where B is Hausdorff 
andY is locally compact Hausdorff. If q : Y ---t B is a Hurewicz fibration, 
then q!Z is also a Hurewicz fibration. 

Theorem 10. Let Y, Z and B be CO-spaces, B weak Hausdorff space, and 

q:Y---tB 

a Hurewicz fibration in CO-sense. Then 

q!Z : Y!Z ---t B 

is also a Hurewicz fibration in the CO-sense. 

Proof. This is just the argument that proves Theorem 4.1 of [B3], but rein­
terpreted in the CG-context. We assume that 

F:Axi---tB 

is a homotopy and the restriction F I Ax 0 is denoted by F0 • We then have 
pullback spaces (A X I) n Y, and (A X 0) n Y, induced by the homotopy F 
and the map Fo, respectively, and associate projections 

and such that 

F* q : (A x I) n Y ---7 A x I, 

(Fo)*q : (A X 0) n y ---7 A X I, 

q* F : (A x I) n Y ---t Y, 

q* Fa : (A x 0) n Y ---t Y, 

q o ( q* F) = F o ( F* q) 
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and 
q 0 (q* Fa) = Fo 0 (Fo)*q. 

We recall that (A x 0) n Y is a retract of (A x I) n Y. The proof of this, 
in the usual topological context, is given in [B3, Lm. 4.2]; the CG proof is 
similar. Let 

k< : A X 0 ---+ Y!Z 

be a map such that (q!Z) o k< = F0 • It follows, by the Fibred Exponential 
Law for CG-spaces, that there is an associated map 

P : (A x 0) n Y ---+ Z 

defined by k>(a, 0, y) = k<(a, O)(y) where (a, 0, y) E (AxO)nY. So (AxO)nY 
is indeed a retract of (A x I) n Y. 

Let 
R: (Ax I) n Y---+ (Ax o) n Y 

be a retraction. Then the composite 

k> oR : (A x I) n Y ---+ z 
corresponds, via the fibred exponential law, to 

K: A X I---+ Y!Z, 

where K(a, t)(y) = (P o R)(a, t, y), and (a, t, y) E (A x I) n Y. Then K 
is fibrewise over B, i.e. (q!Z)K(a, t) = F(a, t), so (q!Z) o K = F. Also if 
(a,O,y) E (Ax 0) n Y, 

K(a, O)(y) =(Po R)(a, 0, y) = P(a, 0, y) = k<(a, O)(y). 

So K(a,O) = k<(a,O) for a EA. i.e. K extends k<. Thus K lifts F and 
extends k<, and q!Z is a Hurewicz fibration. 0 



3. APPLICATIONS TO HOMOTOPY THEORY 

In this chapter we wish to give the CG results which are analogous of ones 
given in [B3], which there require the rather specific, and inconvenient as­
sumptions that the CG approach seeks to eliminate. We also wish to sketch 
the proofs. Now the initial results (Theorem 15, 16 and 17) depend on the 
CG analogues of three theorems from [B3] (Theorems 5.1, 6.1 and 7.1 of that 
reference). Our Theorem 11, 12 and 13 below, indicate how the CG approach 
eliminates these specific conditions. In this chapter we do not assume 
that spaces are CG-spaces, unless we specifically say so. 

The following Theorem is the CG-version of the corresponding result in 
[B3, Th. 8.1(b)]. 

Theorem 11. Let 
q:Y----+B 

be a fibration in the CG-sense, and B be a weak Hausdorff space. Then there 
is a canonical bijection: 

e: Hm(Y, Y/b; G) ----+ 7r0 (Sec0 (q!K(G, m))) 

where the map () is determined by the rule ()[l] = WJ, where t•(b)(y) = l(y) 
and q(y) =b. 

Proof. This is the proof of [B3, Th. 8.1(b)] except that we substitute our 
Theorem 7 and Corollary 7 for Theorem 3.3 and Corollary 3.4 of that paper. 

D 

If we follow the n - spectrum approach to cohomology theory which uses 
Eilenberg-MacLane spaces in its definition, then the associated cohomology 
groups are defined by 

Hm(Y, Ylb; G)= [Y, Ylbo; K(G, m), e], 

(for more details concerning this spectra the reader can see [Ma, Section 8.4]). 
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We now give the promised analogues of the theorems from [B3], which are 
needed in the proofs of our main theorems. We will not state the correspond­
ing CG-results, but rather indicate their existence in remark 4 below. 

Theorem 12. [B3, Th. 5.1] Let A be a CG-space and B be a Hausdorff 
space. If 

q:Y----rB 

is an identification and 
f:A----rB 

is a map, then 
j*p : Y n A ----r A 

is an identification. 

Theorem 13. [B3, Th. 6.1] Let 

q:Y----rB 

be a Hurewicz fibration, where B is a Hausdorff space andY is locally compact 
Hausdorff. If 

A----rB 

is a closed cofibration, then 
YIA ---t y 

is also a closed cofibration. 

Remark 3. Let 
q:Y----rB 

be a map and 
t:B----rY 

be a section to q. If 
f:A----rB 

is a map, then 
a : A ----r Y n A, 

defined by a( a) (tf(a), a), for all a E A, is a section to the projection 
f*q : Y n A ----r A. 
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Theorem 14. (B3, Th. 7.1] Let 

q:Y----+B 
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be a Hurewicz fibration, with closed co fibration section t, B be Hausdorff and 
Y locally compact Hausdorff. If 

is a map, then 
f*q: YnA----+ A 

is a Hurewicz fibration with a closed cofibration section CT. 

Remark 4. The last two Theorems depend on our Theorem 6 and Corollary 
6 (Theorem 3.3 and Corollary 3.4 of [B3]}. If we modify those results and 
proofs by assuming that all spaces are CG-spaces, that B is weak Hausdorff 
space, and replacing the use of Theorem 6 and Corollary 6 in the proof by our 
Theorem 7 and Corollary 7, we obtain the following analogies of the results 
above due to P. Booth. 

Theorem 15. Let Y, A and B be CG-spaces, B weak Hausdorff space, 

an identification and 

a map. Then 
f*q: YnA----+ A 

is an identification. 

Theorem 16. Let Y, A and B be CG-spaces, 

a Hurewicz fibration in the CG-sense, B weak Hausdorff space, and 

A----+B 

a closed cofibration. Then 
YIA----+ y 

is also a closed cofibration. 
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Theorem 17. Let Y, A and B be CG-spaces, B weak Hausdorff space, 

q:Y----+B 

Hurewicz fibration in the CG-sense with closed cofibration section t, and 

a map. Then 
j*q: Y n A----+ A 

is a Hurewicz fibration in the CG-sense with a closed cofibration section a-. 

Comparison 2. The reader will notice that the locally compact Hausdorff 
assumption of Theorems 13 and 14 have been eliminated in Theorems 16 and 
17. 

The final application, given in Ch.9 of [B3], concerns the classification of 
3-stage Postnikov towers, see [Ba] and [St1]. 

Let G and H be Abelian groups and m and n be integers with 1 < m < n. 
Then 

q1 : PK(G, m + 1)----+ K(G, m + 1) 

and 
q2 : P K(H, n + 1) ----+ K(H, n + 1) 

will denote the path fibrations over the Eilenberg-MacLane spaces K(G, m+ 
1) and K(H, n + 1) respectively (see [Sp, Pgs. 75 and 99]). Let (B, ba) be a 
space with a basepoint. Then a 3-stage Postnikov tower T(k1 , k2) = p1 o p2 , 

over B with fibres K(G, m) and K(H, n), consists of principal fibrations 

and 
P2 : E2 ----+ E1 

with fibres K(G, m) and K(H, n) respectively. So p1 is induced from q1 by a 
first k-invariant 

k1 : B----+ K(G, m + 1), 

as shown in the following pullback diagram: 
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E1 --PK(G,m+ 1) 

Pl 1 1 Ql 

B~1K(G,m+1), 

i.e. E 1 = B n PK(G, m + 1), p1 = k~q1 . Now p2 is induced by q2 from a 
second k-invariant 

k2 : E1 ---7 K(H, n + 1), 

as shown in the following pullback diagram: 

E2--PK(H,n+1) 

P21 1 Q2 

E1 ---'k
2
K(H, n + 1), 

i.e. E2 = E 1 n PK(H, n + 1) and P2 = k~q2. 
We picture a 3-stage Postnikov tower T(k1 , k2) = p1 o p2 , over B as a 

diagram of the form: 

K(G,n)~E2 
>2 1 

P2 

K(H, m)-- E 1 ------+k K(H, n + 1) 
>1 l 2 

Pl 

B ~/(( G, m + 1). 

Using the principal fibration 

q1 : PK(G,m + 1) ---7 K(G, m + 1) 

we define PK(G, m+ 1)!K(H, n+ 1). The path component of this space that 
contains the maps from fibres of q1 to K(H, n + 1) will be denoted by M00 • 

The main idea in this approach is that the second k- invariant 

k2 : B n PK(G, m + 1) ---7 K(H, n + 1) 
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should correspond, via a fibred exponential law, to a map 

ki : B --+ M 00 • 

Further, ki should then act as a classifying map for the tower r(k1, k2). 

However, if we work with Theorem 6 in the category of all spaces, we have 
to deal with the difficulty that P K ( G, m + 1) is not likely to be locally 
compact. In that case part (b) of Theorem 6 can not be applied and the 
anticipated argument breaks down. To get round this, we work in the CG­
context, we assume that B is a weak Hausdorff CG-space, and recall that 
the CW-complexes K(G, m + 1) and K(H, n + 1) are CG-spaces. We then 
use the path fibrations 

kq1 : kPK(G,m+ 1)--+ K(G,m+ 1) 

and 
kq2 : kPK(H,n+ 1)--+ K(H,n+ 1) 

and form pullbacks in the CG-sense. We can now use Theorem 7 rather than 
Theorem 6, and the question of whether spaces are locally compact is then 
no longer relevant. 

We recall the concept of fibre homotopy equivalence [DL]. 

Definition 20. Let F and B be spaces, where F has just two non-zero homo­
topy groups, i.e. G in dimension m and H in dimension n. Then F H E(F, B) 
will denoted the set of all fibre homotopy equivalence classes of 3-stage Post­
nikov Towers over B, with fibre of the homotopy type of F. 

Theorem 18. Let the CG-space B have the homotopy type of a CW-complex, 
and m and n be integers greater than 1. If r(k1 , k2 ) denotes a 3-stage Post­
nikov tower over B with distinguished fibre K(G, m) x K(H, n), then there 
is an associated based map 

defined by the rule ki(b)(y) = k2 (b,y), where bE B, y E kPK(G,m+ 1), 
and k~(b) = kq1(y). Further, there is a bijection from FHE(K(G,m) x 
K(H, n) : B) to an orbit set of [B, kM00 ]

0 determined by and action of the 
group of homotopy classes of self-homotopy equivalences of K(G, m) xK(H, n), 
where [r(k1, k2 )] denotes the fibre homotopy equivalence class ofr(k1 , k2), and 
[ki] the based homotopy class of the map ki. 
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The last Theorem is the subject of current research by P. Booth. Its proof 
is beyond the scope of this thesis, we wish to make some remarks which we 
hope will clarify some remarks made by Booth in [B3]. 

We quote the said comments, together with the paragraph preceding it 
([B3; pp.428/429]), then comment on how they are fulfilled here in this work. 
In fact the quotation bellow follows a paragraph which is similar to our last 
one above, so that the thoughts of the quotation follow naturally after the 
thought of the latter paragraph. 

"Applying Theorem 3.3(a) to k2 : AnPK(G,m+1)-----> K(H,n+1), 
we obtain a fibrewise map, i.e. k :A -----> PK(G, m + 1)!K(H, n + 1) such 
that (q!K(H, n + 1)) o k = k1 . So k determines both k1 and k2 ; the former 
by composition with q!K(H, n + 1), the latter by the fibred exponential law. 

However, this argument is best given in a convenient category context, as 
PK(G, m + 1)!K(H, n + 1) can then shown to act as a classifying space, and 
k as a classifying map, for such 3-stage tower." 

Since the basic methodology of the proof of Theorem 18, is at the very 
heart of this thesis, we define the classifying bijection on representatives, and 
indicate precisely why the ordinary topological version fails to go through. 
According let r(k1 , k2) be a 3-stage Postnikov tower. As mentioned earlier 
the proper condition of the fibred exponential law applied to k2 , gives a map 
of the bijection in Theorem 18. 

The point of course is that the admissible condition does not hold in the 
ordinary topological category. In particular the function defined above by 
the proper condition is not a bijection, and the classification fails. On the 
other hand the CG context gives a map 

and in this context both the proper and the admissible conditions hold. 

Comparison 3. We have already explained that the arguments just refer­
eed to, work well in the CG-space situation, but not with topological spaces 
generally. We conclude by discussing the question of how 3-stage Postnikov 
towers in the CG sense relate to the corresponding construction in the cate­
gory of all topological spaces. 

Definition 21. If X and Y are spaces, a map f : X -----> Y is said to be a 
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weak homotopy equivalence if 

is a one to one correspondence, and 

is an isomorphism for all r 2 1. 

More details concerning to this important idea are given in [W]. 
The following result is well known, for details concerning a proof (see 

either [Ma, Th.7.5.4] or [Sp, Cor.7.6.24]). 

Theorem 19. Whitehead's Theorem. If 

is a weak homotopy equivalence of CW- complexes, then f is a homotopy 
equivalence. 

Corollary 9. If 
f:K--+L 

is a weak homotopy equivalence, and K, L have the same homotopy type of 
CW-complexes, then f is a homotopy equivalence. 

Proposition 17. Let X be a space. 

(a) The identity map 
1: kX--+ X 

is a weak homotopy equivalence. 

{b) If X has the homotopy type of a CW-complex, then 

1: kX--+ X 

is a homotopy equivalence. 
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Proof. The proof of part (a) cames from the observation that the induced 
homomorphisms of homotopy groups 

1. : 1rr(kX, x)-----+ 1rr(X, x) 

are isomorphisms for all r 2: 1, and 

1. : 7r0 (kX, X) -----+ 7r0 (X, X) 

is a one to one correspondence. Hence 

1: kX-----+ X 

is a weak homotopy equivalence. For part (b), there are maps 

h:X---+K 

and 
h:K---+X 

such that h o h c::: 1x and h o h c::: lK where lx and lK are the identity 
maps and K is a CW-complex, since X has the same homotopy type of a 
CW-complex. By Proposition 2 and Corollary 4, 

kh: kX-----+ K 

and 
kh: K-----+ kX 

are maps such that kh o kh c::: lkx and kh o kh c::: lK, then kX has the same 
homotopy type of a CW-complex. Hence by (a) and Corollary 9 

1: kX-----+ X 

is a homotopy equivalence. 0 

Let A, D and E be spaces and maps f : D -----+ A and r : E -----+ A. Then 
we can define the pullback space D n E, and use the maps kf and kr to 
define the pullback space kD n kE. 
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Proposition 18. If 
p:E---+B 

and 

are maps, then 
k(D n E)= k(kD n kE). 

Proof. Firstly suppose that C is a compact Hausdorff space, and let 

g:C---+DnE 

be a map. By the Universal Property for final topologies, f is a map if and 
only if, both composites 

(f*r) o g : C ---+ D 

and 
( r* f) o g : C ---+ E 

are maps, where (f*r) and (r* f) are the projections over D and E respec­
tively. So by Propositions 3 and 5 

(f*r) o g: C---+ kD 

and 
(r* f) o g : C ---+ kE 

are maps. Hence 
C---+ kD n kE 

is a map since k(f*r) and k( r* f) are a map. The above argument is reversible, 
so it follows by the definition of kX, that k( D n E) = k( kD n kE). 0 

Proposition 19. Let T(k1, k2) be a 3-stage Postnikov tower 

K ( G, n) --:---'>- E2 
~2 1 

P2 

K(H, m) ~ E1 -----k K(H, n + 1) 
~1 1 2 

Pl 

B --;J((G, m + 1), 



3. APPLICATIONS TO HOMOTOPY THEORY 

in the sense of the category of topological spaces with k-invariants 

k1 : B ____. K ( G, m + 1) 

and 
k2 : E1 ---t K(H, n + 1). 

Then T(kk1 , kk2) is the 3-stage tower 

K(G,n)~kE2 
t2 

kp21 
K(H, m) ~ kE1 ~ K(H, n + 1) 

tl kpl l 2 

kB ---ri<(G, m + 1), 

in the CG-sense with k-invariants 

kk1 : kB ---t K(G, m + 1) 

and 
kk2 : kE1 ---t K(H, n + 1). 
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Proof. This follows using Proposition 17 twice. We have a commutative 
diagram: 

kE2~E2 

kp2 t E
2 

!P2 
kE1~E1 

kpl l El tPl 

kB~B, 

where the underlying maps of 1s, 1e1 and 1e2 are the identity maps on B, 
E 1 and E2 , respectively. D 

Proposition 20. If B has the homotopy type of a CW-complex, then 1s, 
1e1 and 1e2 are homotopy equivalences. 
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Proof. In fact 18 is a homotopy equivalence by corollary 9. Now the fibre 
p!1(bo) = K(G, m) and B have the same homotopy type of CW-complexes. 
Thus by Theorem 2 of [RS], E 1 has the same type of a CW-complex and 
so 1E1 is a homotopy equivalence by Corollary 9. For the proof of 1E2 the 
argument is the same. 0 

Note: Let us assume that B is a CG-space. If would be useful if we could 
now show that 1E1 must be a fibre homotopy equivalence between the 3-stage 
Postnikov towers r(kb k2 ) and r(kk1 , kk2). The obvious way to do this would 
be to use Theorem 6.1 of [DL]. However, r(kkb kk2) is only known to have 
the covering homotopy property with respect to CG-spaces, so that theorem 
is not applicable. In particular E2 may not be a CG-space, r(kk1 , kk2 ) may 
not have the covering homotopy property relative to E2, and an attempted 
proof of the required result breaks down over that issue. 
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