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Abstract

Growth hormone (GH) transgenic  Atlantic salmon (Salmo  salar) exhibit
tremendous growth rates under hatchery conditions. This phenotypic response has
created interest within the aquaculiure industry; however, possible escapee events have
raised concerns regarding their potential ccological impacts. This thesis applied an cco-

evolutionary approach to empirically assess the potential ecological effects of GH

transgenic Atlantic salmon on

my

goal was 1o explore the relative survival and reproductive success of GH transgenic and

non-transgenic salmon under r- ral it To acc lish this. key fitness-

related traits were compared between GH transgenic and non-transgenic Atlantic salmon
over periods of their life cycle when natural selection is typically intense. Specifically.
this thesis focused on the young-of-the-year stream and the breeding periods.

Two studies (Chapters 2 and 3) compared fitness-related traits between transgenic

and non-transgenic Atlantic salmon during carly life history. Chapter two explored the

potential differences in developmental rate and respiratory metabolism between

transgenic and non-transgenic siblings at three carly stages of life: the eyed-embryo.

alevin (larval) and first-feeding fry (juvenile) stages. Chapter three explored the foraging
behaviour and the growth and survival of transgenic and non-transgenic first-feeding fry

reared under low feed. stream:

ike conditions. Collectively. the results of these chapters

suggest that there is an ontogenetic delay in the phenotypic response induced by the

transgene. such that bi y significant diffe in fitness-related traits between
GH transgenic and non-transgenic Atlantic salmon are minimal during this critical carly

life history period.



The final two studies (Chapters 4 and 5) compared fitness-related traits between
transgenic and non-transgenic Atlantic salmon during the reproductive phase of the life
cycle. The fourth chapter compared the breeding performance of growth hormone
transgenic and non-transgenic Atlantic salmon males of both alternative reproductive

phenotypes to fest for the potential of the transgene to introgress into wild populations.

The fifth chapter used of GH ic and ic Atlantic

siblings to clucidate the effects of growth on precocious parr ion. Collectively.
these data suggest that transgenic males may experience reduced reproductive success
relative 1o non-transgenic individuals. However, the potential for the transgene to

introgress

into wild populations was demonstrated. The empirical contributions of this

thesis inform decisions regarding the potential ecological impacts associated with GH

transgenic Atlantic
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Chapter 1

General Introduction



1.1: Introduction

aptive

Human  history has been inextricably shaped by the exploitation of

animals. In conjunction with plant agriculture, captive-reared animals provided ancestral
humans with an abundant and relatively stable food surplus, resulting in increased

The advent of agriculture permitted the

population densities and stationary communi

diversification of labour leading to rapid advances in technology and more sophisticated.

hierarchical political systems that gradually came to dominate traditional hunter-gatherer

societies.  Diamond (2002) has suggested that increased human population sizes. a

reduction (overexploitation) in large mammal populations, and technological advances

culture. A

leading to food storage were primary reasons for the initial transition to ag
similar. contemporary transition appears to be accompanying the global decline in aguatic
food resources. which has been brought about largely by increased human exploitation
and damage to aquatic ecosystems. In parallel with our Holocene ancestors, we have

escalated the P of new jes for the i of captive aquatic

animals (i.c. )to capture-based fisherics.

quatic organisms, is a primary (ool used to

Aquaculture. the cultivation of
supplement depressed global fisheries and. in the future. may help conserve heavily
exploited populations. Over the last fifty years. the so called “Blue Revolution™ has
transformed aquaculture from a localized agricultural activity producing less than one
million tonnes of food annually to a global industry. producing nearly sixty million tonnes

rly half of all

of food annually (FAO. 2010). Commercial aquaculture accounts for nea

food fish production worldwide and that proportion is expected to continue to grow.



The rapid growth of aquaculiure has been aided tremendously by the application

of science.  Indeed. bi v is partly ible for the un growth in

the volume and diversity of specics involved in modern aquaculture production (Duarte et

al. 2007). Advancing beyond breeding only the largest and healthiest fish. humans can

now select individual fish with the aid of observations at the gene level (e.g. gene

profiles. g trait loci) or mani the genome directly (c.g.

transgenesis). 1t is expected that biotechnologies will continue to aid the development of

traits advantageous for production.

While is ping in the bi v era, it is also ping in
an era of environmental consciousness. There is now considerable pressure to minimize

gely in response

anthropogenic impacts on the environment and biodiversity. which is |
10 the unprecedented environmental changes we are seeing globally.  Commercial

ciated environmental concerns have been a

aquaculture has not escaped attention and a:
centre of debate (Costa-Pierce 2002: FAO 2010). From an cco-evolutionary perspective,
perhaps the most complex concern involves the potential ecological and genetic impacts
of aquaculture escapees on surrounding ecosystems.

There are numerous studies on the ecological and genetic effects of aquaculture
escapees (reviewed in Utter and Epifanio 2002: Naylor et al. 2005: Thorstad et al. 2008).
While the fundamental questions remain similar. it is widely recognized that modern
biotechnologies. such as transgenesis. introduce new challenges 1o this already complex
issue.  This dissertation provides a thorough empirical assessment of the potential
environmental effects of growth hormone (GH) transgenic Atlantic salmon (Salmo salar)

entry into the wild: a leading candidate for commercialization. Prior to presenting the



empirical core of this thesis, | review the eco-evolutionary context and existing literature

on the potential impacts of aquaculture escapees. Specifically. the current chapter focuses

on the similarities and differences between technologies applied in aid of intentional

selection (i.c. marker-assisted broodstock pment) and those involving direct
genetic change (i.e. transgenesis). | shall provide evidence suggesting that the ecological
and genetic impacts of transgenic animals may be more difficult to predict than that of
animals produced through marker-assisted broodstock development and introduce the

empirical work contained in this dissertation.

1.2: Genetic background

A i ies. such as mark isted broodstock P b

that do not involve direct genetic manipulation remain similar to traditional intentional
selection (i.c. artificial selection based strictly on the phenotypic expression of traits)
This is because the only process that differs is that by which parents are selected. In
terms of evolutionary processes. they all involve multiple generations of selection that

result in concurrent genomic changes and novel phenotypes under polygenic control

(Mignon-Grasteau 2005: Jensen 2006). Thus, | will not distinguish between animals
produced using such biotechnologies and those produced using traditional artificial

rains.

selection and will refer to both as farmed s
Farmed species tend o have low genetic diversity within and among populations

relative to that of wild populations. Genetic similarities appear to be the result of: 1) the

low number of initial broodstock source populations and 2) the selection of similar traits

over multiple gencrations.  For example, Atlantic salmon (Salmo salar) breeding



programs have developed with local populations in s stern

veral places, including

Canada. Norway. and Scotland (Ferguson et al. 2007). For each region. howeve

programs have either begun by, or ended up concentrating on no more than a few strains.
which are not likely representative of local population structure (Gjedrem et al. 1991:
Gjoen and Bentsen 1997: Glebe 1998). Morcover. some cultured stocks are transplanted
or hybridized with local cultured strains, further homogenizing strains used in the

strains involved in

industry (Ferguson et al. 2007). Thus. the relatively low number of
broodstock development contributes to genetic similarities among artificially selected

populations and genetic dissimilarities relative to wild populations.

The selective pressures on farmed populations are often very similar: that
selection for high growth and survival under like culture conditions. From an

evolutionary  perspective

. parallel evolution among domesticated strains might be

expected, whereby different lincages share genotypic similarities due to similar

evolutionary pressures (Foster and Baker 2004: Schluter et al. 2004). Indeed. Roberge et

al. (2006. 2008) demonstrated parallels between the transcription profiles of two leading

Atlantic

Imon aquaculture strains  from tern Canada and one from Norway.
Analogous patterns have also been observed in the transcriptome of closely related cotton
congeners (Gossypium barbadense. G. hirsutum) in response to artificial selection
(Chaudhary et al. 2008: Hovav et al. 2008). Evidence for convergent evolution also
exists among  Drosophila  subobscura populations when exposed o laboratory
environments over multiple generations (Matos et al. 2000: 2002). These findings
suggest that both additive and non-additive genetic variation may converge among

distinct populations experiencing similar pressures from artificial selection.



The phenotypic enhancement strategy of is s very dif

erent from

intentional selection. Specific phenotypes are targeted by gene insertion and thus the
traditional. polygenic. process of artificial selection can be bypassed. The most common

injection, where

h currently cytoplasmic mi

method of creating transgenic  fis

multiple copies of the transgene are inserted into the cytoplasm of a recently fertilized egg

and the transgene(s) are i into the developing zygote’s genome haphazardly

(Du et al. 1992; Iyengar et al. 1996; Twyman 2005). Individuals expres
phenotypic trait are crossed with wild-type fish. The transgenic offspring are then
crossed with non-transgenic conspecifics over multiple generations, forming a stable

line. can avoid the time and resources involved in an

artificial selection program. Morcover, transgenesis may allow for the development of

traits not attainable through selective breeding by adding genes that code for proteins not

present within the host genome (e.g. carbohydrate metabolism or freeze resistance:

Fletcher et al. 1994).  As a result, a transgenic broodstock can be developed in the
absence of intentional selection. Therefore, transgenic broodstocks may be more similar

genetically (i.c. with exception of the transgene(s)) to their wild source populations than

e been selected for production traits for generations.

rmed broodstocks, that ha;

are

This may also reduce the negative fitness consequences for transgenic animals in the

wild. The fitness consequences. however, will depend on how the transgene(s) interacts

with the organism’s existing genetic architecture, with which it has not coevolved

(discussed below).



: Phenotypic expression
Phenotypic expression among transgenic organisms has been shown to vary by

integration position. copy number. construct, strain, and species (Twyman 2005: Gong et

al. 2007: Nam et al. 2007). P have noted

r ypic diff between individuals ully i ing the
transgene within the same population. These latter differences are due o epistasis
resulting from molecular level variation during the integration process. The genomic
location of transgene integration during initial insertion is the major cause of this
variation: known as position/integration effects (Iyengar et al. 1996: Twyman 2005).
Essentially. epistatic interactions between the transgene and neighbouring genes affect the
activity of the local molecular region, which may influence the phenotype. Another cause
of molecular level variation is the number of transgene copies that integrate into the host
genome: known as dosage effects (Twyman 2005). Copy number may affect the amount
of protein produced by the transgene loci and. consequently, the overall phenotype.
These sources of phenotypic variation are difficult to predict @ priori and may have

icient

fitness consequences.

Continued efforts to develop or adapt more predictable. ¢
and practical gene transfer methods for fish and shellfish species could be an asset for the
aquaculture industry and the risk assessment process (Nam et al. 2007).

Gienetic recombination may rearrange transgenes o their location. as with any
endogenous gene sequence over time. In some countries. federal legislation requires the
demonstration of genetic stability in a transgenic strain for several generations (CEPA

1999:

ISFDA 2009). Therefore. genetic stability of the transgenic loci and the targeted

phenotype will need to be maintained for several generations to commercialize



aquaculture biotechnologies (Yaskowiak et al. 2006). However. a few stable generations
does not preclude recombination at the transgene loci in future generations. The effect of
recombination on the location and structure of the transgene loci cannot be predicted nor
can the resulting phenotype or effect on fitness. Furthermore. transgenes are invariably
designed to behave as genes of major effect: genes that influence the phenotype more so
than most genes. Therefore. recombination at the transgene loci may result in a greater

There is some

influence on fitness-related traits than ination at most other loci.

evidence of transgene instability among some populati of mud loach (

mizolepis) and carp (Labeo rohita: Nam et al. 1999: Kim et al. 2004: Venugopal et al

2004). Thus, position effects caused by genetic ination may change the phenotyy
of a transgenic line between generations. This is complicated further when we consider

the effect of the background genotype on the phenotypic effects induced by the transgene.

ary considerably

The phenotypic response to a stable transgene construct can
within and between populations and species. Aside from differences caused by construct

design. pleiotropy induced by a particular transgenc is affected by the composition of. and

inte sponse among

action among the genes of the receiving animal. The differential
species 10 a specified transgene construct is well documented (Nam et al. 2008). There
are also examples of this phenomenon among different populations within a species. For

rmed rainbow

example. Devlin etal. (2001) found that the growth response of wild and f;

trout (Oncorhynchus mykiss) populations to transgene (ONMTGH1) introduction differed

The growth response of the wild strain was far greater than that of the farmed strain,

which had been selected for rapid growth over several generations. The non-transgenic

farm strain, however, outgrew the transgenic wild strain. These results might have been



influenced by position or dosage effects. However, a recent study by Neregdrd et al.

(2008a) using GH implants to compare the growth responses of two wild and one farmed
strain of Atlantic salmon (Salmo salar) found similar results (Table 1.2). This confirmed
that genetic background can be a key factor in the degree of response to supplementation.

whether through transgenesis or implantation.

In summary. intentional selection in leads to genetic

homogeneity brought about by the use of few strains and subsequent parallel evolution.
Morcover, intentional selection allows genes. and consequently, phenotypic traits (o co-
evolve over time, Conversely, phenotypes of different transgenic lines can vary due to
transgene position and/or dosage effects or differences in the genetic background of the

rent strains.  This potential for a higher degree of dissimilarity suggests that the

evolutionary pressure on wild from i

with transgenic animals

may induce a greater array of pleiotropic effects than that observed from interbreeding

e intentional

with farmed animals. However, over time, transgenic strains may experien
selection such that fitness reductions are similar to farmed strains. Thus, at least in the
absence of intentional selection, the ecological and genetic impacts of transgenic animals

may be more difficult to predict than those caused by

nimals produced through
traditional intentional selection.

To illustrate the above, | shall compare what is known about potential ecological
and genetic effects caused by aguaculture escapees originating from traditional breeding
programs with those originating from transgenic manipulation. Despite the diversity of

ise of an

species used in aquaculture. the focus will be on salmonid fishes bes

unfortunate paucity of data addressing ccological and genetic effects of other species



Moreover. salmonids are one of few taxon where fitness-related consequences of

transgenesis have been investigated and are also the focus of this dissertation.

q strains are genctically and f ally distinet from their source

wild populations due to the proc

ss of domestication selection (e.g.. Utter and Epifanio

2002: Ferguson et al. 2007). Domestication selection refers to the different forces

affecting genetic change in captive-reared versus wild populations. This genetic change
may occur for a number of dircct and indirect reasons. Direct genetic change or
intentional domestication selection, refers to selective breeding for desired traits, such as

those targeted in traditional aquaculture practices. Gene transfer biotechnologies are also

a direct method of genetic change: however. 4

previously described. they may dift

er in
fundamental ways.

Domestication sclection can also influence both farmed and transgenic animals
through indirect genetic change. That is. rearing a population in captivity with no guided
selection can lead to divergence from the source population. Unintentional selection may
manifest itself through two. most often concurrent, routes. First. changes may result from
genetic drift due to an inadvertent sampling bias in the wild founder population of a

captive-bred line: known as a founder effect (Frankham et al. 200!

Allendorf and Luikart
2007). Second. changes may result from abiotic and biotic differences between wild and
captive rearing environments (Price 1999: Einum and Fleming 2001: Huntingford 2004),

The result i

the potential for indirect selection of traits that increase fitness in the captive

environment (Encomio et al. 2005: Shoemaker et al. 2006) or. conversely. relaxed
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selection on traits that decrease fitness in the wild (Fleming and Gross 1989: 1993:
Waples 1999). Unintentional selection is hypothesized to correlate with the number of
generations in captivity (Araki et al. 2007: Caroffino et al. 2008). So long as the
environment is held constant. farmed and transgenic populations should experience
similar unintentional selective pressures: unless there is some sort of unique interaction
between the transgene and the environment.

The effects of domestication selection on the genetic and  phenotypic
characteristics of aquaculture animals lead to various potential environmental impacts

upon release into nature. Figure 1.1 izes the i ible for such

impacts within four categories; direct ecological effects. indirect ecological effects, direct
genetic effects and indirect genetic effects. Most of these potential impacts depend on

whether the cultured animals are entering habitat occupied by populations with which

they can interbreed. As such. I shall discuss the effects in non-native (exotic) and native

habitats separately.

Effects in Non-native Habitats

The potential genetic effects of farmed and transgenic animals are unlikely to

differ fi y when invading tive habitats that lack genetically compatible
heterospecific populations. This is because the complex genetic effects associated with
species interbreeding and genes introgressing are absent. Interbreeding and introgression

are not synonymous. Interbreeding refers only to the act of sexual reproduction between

wo dis

rete populations. while introgression refers to the successful transfer of genes

from one gene pool to another by interbreeding (Frankham et al. 2002; Allendorf and



Luikart 2007). We recognize that exotic habitats may contain closely related species with

which an invading population can introgr

(reviewed in Allendorf and Leary 2001:

Allendorf and Luikart 2007); however hybridization usually occurs at low rates and
results in infertile offspring or offspring with greatly reduced reproductive success.
Should hybridization result in the introgression of a transgene into a native specics, then
the effects are likely to become similar to those that oceur in native habitats (sce below)

Here. however. I focus on effects in the absence of introgression.

invasions have

The effects on ecology and biodiversity resulting from speci
been reported for decades (c.g. Levine and D’ Antonio 1999: Simberloff and Von Holle
1999: De Silva et al. 2006). The establishment of an exotic species depends on the
frequency and magnitude of the invasion, the relative fitness of the colonizer and the
vulnerability of the ecosystem (Ruesink 2005: Olden et al. 2006). An aquatic species that
is farmed extensively is likely to have ample opportunity and sufficient numbers to
invade host ccosystems due to the potential for recurring escape events and the scale of
farming (e.. Fleming et al. 2000, Bekkevold et al. 2006 Thorstad et al. 2008). Similarly.
most aquacultured specics are reared in environments where their ability to tolerate local
abiotic factors is well understood. Casal (2006) reported a list of the top cighteen
invasive finfish species reported to have negative effects on local ecosystems. of which,
thirteen (72%) have been used in aquaculture.

Many of the ecological effects of escaped aquaculture animals are common to

both non-native and native habitats (see below).  Howev

there are also many

ccosystem-level abiotic and biotic indirect effects that are more likely to occur in non-

native habitats. Indirect effects refer to changes mediated through a third component



(abiotic or biotic) of the ecosystem.  Such indirect mechanisms include habitat

scade effect

fication. apparent facilitation. apparent ition and the trophic ¢
(Goldschmidt et al. 1993: Shurin et al. 2002; White et al. 2006). Indirect effects are more
likely in exotic habitats due to the potential for exotic species to interact with the
environment in a novel manner and. thus, influence community structure and function

The genetic impacts of aquaculture animals entering non-native habitats can be

mediated indirectly through ecological interactions. Indirect genetic effects refer to

changes in local peci i Such i ions may change the selective
pressures experienced by wild populations. resulting in genotypic and phenotypic
adaptations (Waples 1991). In contrast. such changes may manifest themselves through

negative interactions resulting in a reduction in population size and genetic diversity

1.

Effects within Native Habitats
1.6.1: Competition
In terms of risk assessment. the effects of farmed and transgenic animals

with wild ¢ ecific or

ific ions with which they can
interbreed s likely the most critical scenario. This is because the consequences of direct
genetic mechanisms. such as an invasion of farmed fish gene complexes or transgenes.
are exceptionally difficult to predict (Devlin et al. 2006, 2007: Hindar et al. 2006:
Kapuscinski et al. 2007).

Ecological effects can be caused by direct mechanism:

such as discase, predation.

and interference competition. or indirect isms. such as exp competition

(Weir and Grant 2005). In salmonids. competition between farmed and wild conspecifics



is well described.  Salmonids are interference competitors both as juveniles, when

competing for foraging territorics. and as adults. when competing for breeding

opportunities. Lab-based studies generally report increased juvenile aggression and poor

T i iours in farmed indivi s (Einum and Fleming 2001: Fleming and

Petersson 2001; Weir and Grant 2005). These distinet patterns of competition indicate
substantial resource overlap.  Therefore. ccological effects may depend on their

respective densities. their relative competitive abiliti

and the carrying capacity of the

ccosystem (Weber and Fausch 2003). However, it should be noted that gene transfer
modifications. such as, an addition of a gene supporting carbohydrate metabolism
(Pitkiinen et al. 1999) could affect prey choice and large scale foraging patterns. In fact.

there is some evidence of small scale differences between GH transgenic and non-

transgenic coho salmon foraging patterns (Sundstrom et al. 2007).

1.6.2: Interbreeding and introgression
The differences observed in the competitive ability of farmed and wild salmonids
suggest differences in survival and reproductive success. Despite lower survival of

has been observed in

farmed juveniles, petiti i of wild i

Alantie salmon. indicating potentially negative ecological effects (Fleming et al. 2000:

McGinnity 1997: McGinnity et al. 2003). However. adult farmed strains show poor rates
of return to the spawning grounds (McGinnity et al. 2003) and differences in spawning
behaviour that correlate expectedly with reduced reproductive success (Fleming et al.

1996. 2000: Weir et al. 2004). Reduced reproductive success. however. appears not to

carry over to males that mature precociously in fresh water as parr. having never been to
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the ocean. Males of this alternative life history tactic, which are a fraction of the size of
the anadromous males (i.c. males that have been to sea). may breed successfully by

“sneaking™ fertilizations (reviewed by Fleming and Reynolds 2004). Farmed males

this alternati ive phenotype can compete successfully with their

wild for breeding itics, leading 0 cqual or even superior

reproductive success (Garant et al. 2003: Weir et al. 2005). Thus. the available evidence
from salmonid fishes demonstrates that competition can result in the reduced fitness of

wild strains. Moreover, farmed individuals have poor lifetime reproductive success in the

wild. but can contribute to subsequent generations and may therefore influence the fitness

2003; Hindar et al. 20006).

of wild populations (Fleming et al. 2000; McGinnity et a
The interbreeding of farmed and wild populations gives rise to concerns about the

potential negative effects of altering wild gene pools via introgression. Such concerns are

based on the evidence ing that genetic and 1 pic differentiation between

salmonid populations has adaptive significance (Garcia de Leaniz et al. 2007; Carlson and
Seamons 2008) and that this would be threatened by introgression.

Captively reared populations usually have lower genetic diversity because they are
often closed and have reduced effective population sizes relative to those in the wild
(Frankham 2008). This pattern has been observed repeatedly in aquaculture broodstocks
(Exadactylos et al. 1999: Skaala et al. 2005 Frost et al. 2006). Significant one-way gene
flow due to escapees could shifi the genetic composition of the wild populations towards
that of the cultured broodstock (Fleming et al. 2000: McGinnity et al. 2003: Hindar ct al.
2006). Subsequent reductions in the genetic diversity of wild populations would make

them more vulnerable to environmental change and. in extreme cases. could lead to

15



extinction (Frankham et al. 2002; Allendorf and Luikart 2007; Carlson and Seamons

2008).

Species where there is low gene flow between populations and a high degree of
local on, such as salmonids. are particularly o o
C i on refers to combining alleles from different populations adapted to

different environmental conditions. resulting in the reduced fitness of the hybrid

population (Wolf et al. 2000: Frankham et al. 2002: Allendorf and Luikart 2007). Further

harmful effects may oceur if the i disrupt. co-adapted gene

upon ination in jons. Co-adapted gene complexes
are sets of loci that undergo fitness-related epistatic interactions (Wolf et al. 2000;

Frankham et al. 2002: Allendorf and Luikart 2007). Consequently. interbreeding between

a wild and a capti red ion may result in in the hybrid

progeny and the of co-adapted gene complexes in
There is fairly consistent empirical evidence of outbreeding depression caused from the
interbreeding of wild and farmed or wild and non-local salmonid populations (reviewed

in Ferguson et al. 2007: Garcia de Leaniz et al. 2007: Fraser 2008).

1.7: Case study of salmonid growth enhancement
The goal of this thesis is 1o provide empirical information on the potential

environmental and genetic effects of growth hormone (GH) transgenic Atlantic salmon

(Salmo salar) entry into the wild.  The preceding discussion set the cco-evolutionary

context within which the issue of aquaculture biotechnologies may be assessed. The



following discussion provides information on the state of current empirical knowledge

and a commentary on the literature related directly to the focus of this dissertation.

The salmonid

owth-enhancement literature consists of studics investigating the

fitness-related traits of growth-selected (farmed) fish. growth hormone (GH)
transgenic fish and fish administered exogenous GH. The latier group has been utilized

extensively in the last 15 years

s @ proxy for transgenic individuals. Typically. this

method relies on a i sl clease bovine GH fi (Posilac®: Monsanto

Company: St. Loui

USA) that is implanted into the peritoneal cavity (McLean et al.
1997). The appeal of this substitute is that it allows field comparisons of treated and
untreated wild fish: an option not available for transgenic animals. Field experiments
allow for the complexity of nature. which cannot be mimicked fully in laboratory

environments. Furthermore. the use of wild fish eliminates the potentially confounding

effects of the captive rearing environment on f ic d lecular-1

with the development of i lines. such as position or
dosage effects, also need not be a concern.

The obvious limitation of exogenous GH administration is that it is not a complete

physiological equi of the GH ion induced by a transgene

Scientific understanding of the effects of the growth hormone-insulin-like growth factor |
system (GH-IGF-I) on several aspects of salmonid physiology remains uncertain
(Bjornsson 1997: Bjsmsson et al. 2002). Moreover. the endocrinological effects of a GH

implant compared {0 a transgene are not known. This may be particularly significant

when we consider the inherent complexity of biological

es. Specifically. the effects

of seasonality and age on GH-IGF-1 induced phenotypic variation. With this caveat in

17



mind. the effects of exogenous GH administration appear to stimulate similar phenotypic

s (Tables 1.1 and 1.2). This makes it a useful tool

changes as that seen with transgenes

are under the influence of

when studying life history periods where we expect anima
sustained GH production, such as that of juvenile salmonids in the spring and summer

leming et al. 2002). Therefore. 1 shall consider exogenous GH

as anal to GH is for the purposes of this chapter and refer

to them collectively as GH-enhanced fishes.

1.7.1: Comparing growth-selected and GH-enhanced phenon

A range of similar experiments have been performed on growth selected (farmed)
and GH-enhanced (GH transgenic and GH treated) salmonid fishes.  Overall, the

related traits of farmed and GH-enhanced fishes relative

differences observed for fitnes:
to wild-type individuals are quite similar in hatchery-type environments (Table 1.1).

These data generally indicate increased growth potential and feeding motivation,

reductions in antipredator behaviour and differences in various physiological correlates

relative to wild salmonids

‘These similar patterns may 0 equi processes influencing farmed

and GH-cnhanced animals. A principal phenotypic change resulting from G

transgenesis or exogenous treatment is. unequivocally. increased GH production. The
principal phenotype targeted in salmonid aquaculture is growth and farmed salmonids
have been associated with an increase in circulating growth hormone during the juvenile

growth phase of their life history (Fleming et al. 2002; Devlin et al. 2009). Thus, similar



pluripotent effects on fitness-related traits may be intimately associated with the changes

in endoci 'med and GH-enhanced salmonids

ne growth regulation in both f;
Upon comparison of farmed and GH-enhanced individuals relative to wild

individuals in more complex environments. variability begins to emerge (Table 1.2). In

natural and near-natural experimental streams. evidence of increased growth and

decreased antipredator behaviour is consistent. However, the direction of fitn elated

traits such as survival. reproductive success, energy use and competitive behaviour is

inconsistent. Trait divergence between farmed and GH-enhanced individuals relative to

wild individuals may

flect genetic and/or environmental differen For comparison

among studies. it is important to identify and. where applicable. control for such sources

of trait differentiation. Otherwise it is difficult to infer whether a genetic predisposition is

for

erences or. i L if difference:

reflect a plastic response to
unique environments. This is not always casy to accomplish because. for example.
rescarch cannot be conducted with transgenic organisms in the wild. Therefore. unlike

farmed strains. comparing fitness-related traits between wild-reared transgenic and non-

transgenic strains may not be possible. In one study. Bessey et al. (2004) showed similar
patterns of reproductive trait divergence between GH transgenic coho salmon and wild

individuals as has been observed between farmed and wild individuals: suggesting that

for these traits, rearing history may be a more cri an transgenesis (Table 1.2
When GH-cnhanced individuals are compared to wild-type individuals with the

same background genotype and rearing history. under natural or near-natural laboratory

lated 1 For

conditions. many fitness

its appear unaffected by treatment (Table |

example, natural breeding experiments show no differences in courtship behaviour and
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reproductive success between GH-enhanced and -unenhanced individuals when they

share the same background genotype and rearing history (Bessey et al. 2004: Sundi-

Hansen 2008). Similarly, studies measuring traits in juvenile parr (> 2g) under the threat

of predation consistently find increases in growth, but no differences in survival between

on et al. 2000

GH-enhanced and wild individuals (Johnsson et al. 1999: Johns Johnsson

and Bjornsson 2001: Sundstrom et al. 2007: Sundt-Hansen 2008, Sundt-Hansen et al.
2009).

In terms of fitne:

many studies on juvenile fish fail to capture a significant

period of carly life history; the onset of exogenous feeding. The transition to exogenous

food resources is a critical period of s

irvival for young fry. where individuals confront an

environment saturated with competitors and predators; resulting in high rates of mortality

(Elliot 1994: Einum and Fleming 2000: Kennedy et al. 2008). Few studies have

measured fitness-related traits in farmed and GH-enhanced fry (< 2 g). In near- ral

laboratory conditions. Sundst

om et al. (2004; 2005) showed that GH transgenic coho fry
experience inereased predator-induced mortality. reduced dispersal and equal growth
under moderate to high feed levels refative to wild-type fry. However, decreased growth

w

observed under low feed levels. Conversely. a recent mark-recapture study. where
GH-implanted Atlantic salmon fry were released into a natural stream found no

differences in survival or dispersal. and reduced growth of GH-implanted relative to

control fry (Sundt-Hansen et al. 2008). It is unclear whether these inconsistencies reflect

phenotypic differences resulting from intrinsic variation between species. enhancement
methods (i.e. transgenesis versus implantation) or experimental environments (e.g.

relative levels of predation and competition). 1t is. however. likely a combination of such

20



factors. when genetic backg and rearing envi are controlled.
differences in fitness-related traits appear less likely between Gli-enhanced and
unenhanced individuals compared under near-natural conditions. Furthermore, there is
some evidence 1o suggest that high levels of predation and foraging competition can

reduce survival and growth in GH-enhanced individuals at the critical. first-feeding stage.

The above discussion highlights a principal reason why transgenic animals may

have a lower element of predictability than farmed animals with respect to risk

ssessment. ion for

armed individuals have experienced generations of intentional sele

production-relevant

its that are likely controlled by many genes of small effect. This
results in genetic divergence from wild populations. Evidence of consistent, negative

fitness have been between farmed and wild salmon

populations.  Due o low

strain variation and similar selective pressures among

aquaculture broodstocks. variability in the of i is principally
caused by the response of the receiving population to the breakdown of co-adapted

polygenic complexes.

In contrast to aquaculture strains, transgenesis can induce growth in fishes of

unselected and diverse genetic s under led As genes of

major effect. transgenes can have a greater influence on phenotypic expression than most

other genes.  When growth-enhanced fish are compared to wild-type individuals of
similar genetic background. trait differences become evident under laboratory conditions.

However. under natural conditions. fitness-related trait differences are variable. weak or

nonexistent: indicative of gene by environment interactions (Devlin et al. 2004: 2006:

2007: Sundstrom et al. 2007b).  Evidently. it appears the background genome can
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moderate the influence of a transgene on the phenotype in response o the environment.

This suggests that invading transgenic individuals can experience greater fitness relative

1o that of invading farmed strains because they have not undergone intentional selection

on the whole genome and, therefore, may have a greater capacity to exhibit a plastic

response suitable to wild environments. However, transgenic strains that have undergone
intentional selection may experience reduced fitness similar 0. or greater than, that of

farmed strains. The evidence supports this contention, with transgenic strains showing

ly. this

less predictable phenotypic responses to i i (e

may also lead to more variable rates of transgene integration into receiving populations.

Additionally. the phenotypic effects of transgene position/dosage differences among

transgenic lines complicate the ability to accurately conduct risk assessments.

Atlantic salmon (gene construct: opAFP-GHe:

Growth hormone transgeni

transgene: EO-lu: Yaskowiak et al. 2006) are the first genetically modified animal to

undergo extensive regulatory assessment and. thus. stand to be the first approved for

al work addressing

commercial food production. However. there has been little empiri

the potential ceological and genetic effects of this transgenic line.  As the above

attes require empirical data collected on the

specific genetically modified organism under review. The goal of this thesis was to
provide such information by comparing key fitness-related traits between GH transgenic

and non-transgenic Atlantic salmon.

2



The life cycle of Atlantic salmon is complex, thus I have focused my efforts on
periods of strong selection: specifically, the young-of-the-year stream period (Chapters 2

and 3) and the breeding period (Chapters 4 and 5).  Firsi-feeding stream salmonid fry

experience intense competition for food and space that can contribute to low (< 20%)

rates of survival during this period (Elliott 1994; Einum and Fleming 2000: Kennedy et

al. 2008). Thus. any f pic effects on physiological and processes or

foraging and anti-predator behaviour during carly ontogeny could severely impact the

viability of the transgene in nature. Chapters 2 and 3 aim to elucidate such potential

pleiotropic effects. The second chapter compared the developmental rate and respirator

of GH transgenic and ansgenic full sibling Atlantic salmon during carly

the routine ism of GH and

ontogeny.  Specifica

siblings was quantified at three carly stages of ontogeny: eyed-cggs. alevins (larvac) and

first-feeding fry. Furthermore, this chapter tested for differences in hatch time and. near
exogenous feeding. alevin mass, length and the amount of yolk remaining within

(transgenic versus non-transgenic) and among familics. The third chapter examined the

relative competitive ability and performance of first-feeding GH transgenic and non-

transgenic Atlantic salmon fry under low food conditions. The first part of chapier three

consisted of pair-wise i trials that i i the i ips of dominance

and aggression between transgenic and non-transgenic first-feeding fry competing for

food.  The second part of Chapter 3 compared the effect of density and low food

conditions on the survival and growth of transgenic and non-transgenic fry in semi-

natural stream microcosms.
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The genetic effects associated with i ing and introgression are among the

greatest concerns i with the i ion of i i into nature

(Muir and Howard 2002: Howard et al. 2004: Devlin et al. 2006). Morcover. age at

sexual maturity is considered a key fitness

clated trait influencing the invasion of foreign
genes into wild populations because carly maturation reduces generation time and
increases the probability of survival to reproduction (Muir and Howard 2001; Garant et

al. 2008). The fourth chapter used mixed populations of GH tran

sgenic and non-

transgenic Atlantic salmon siblings to elucidate the cffects of growth and energy

on ous parr ion. Specifically, mixed tanks of yearling (0+)

parr were exposed to two different feed levels, and. subsequently. in their second year

(14) exposed to a single feed level, to test the effect of growth and energy accumulation

on the precocious ion of ic and parr. The fifih chapter
compared the breeding performance of growth hormone transgenic and wild-type Atlantic
salmon males of both aliernative reproductive phenotypes to test for the potential of the

transgene to introgress into wild populations. We conducted two separate experiments in

a ised stream mesocosm. The first e iment assessed the ability of farmed. first-
generation transgenic males to contribute reproductively by quantifying the breeding
behaviour and participation of captively-reared. anadromous transgenic and wild males.
The second experiment assessed the ability of transgenic fish to contribute reproductively

as precocial parr by quantifying the breeding behaviour. performance and reproductive

success of captively-reared., transgenic and wild-type precocial parr. The results of these

empirical chapters are discussed within the broader context of the ecological risk

assessment of transgenic organisms.
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Table 1.2. General patterns of fitness-related trait divergence between wild and growth selected (farmed). growth hormone
(GH) transgenic or GH treated salmonid populations compared in natural or near-natural laboratory environments. Trait
direction reflects a comparison of the growth enhanced relative to wild-type fishes. Each numerical value in the direction
column represents one measurement from a single treatment within a given study. Thus. some studies contribute multiple
values to the direction column. References provided are not exhaustive and are intended merely as examples.

Modification

Trait

References

Comments

GH selected

GH treated

GH
transgenic

GH selected

GH treated

Survival

Survival

Survival

Growth

Growth

Direction
305 8
0 4 1
0 3 5
8 11
70 1

Fleming et al. 1996: Einum and Fleming 1997: Fleming and
Einum 1997: McGinnity et al. 1997: Fleming et al. 2000:
McGinnity et al. 2003: Biro et al. 2004 Weir et al. 2004:
Weir et al. 2005: Biro et al. 2006

Johnsson et al. 1999: Johnsson et al. 2000: Johnsson and
Bjornsson 2001: Sundt-Hansen et al. 2008

Sundstrom et al. 2004b: Sundstrém et al. 2005

Einum and Fleming 1997: Fleming and Einum 1997:
McGinnity et al. 1997: Fleming et al. 2000: McGinnity et al.
2003: Biro et al. 2004: Biro et al. 2006: Tymchuk et al. 2006

Johnsson et al. 1996: Johnsson et al. 1999: Johnsson et al.
2000: Johnsson and Bjornsson 2001: Martin-Smith et al,
2004: Sundt-Hansen et al. 2008: Sundt-Hansen et al. 2009

Biro et al. 2004, 2006: Observed increased
survival when predation was absent or
low. Only studies to observe increased
survival.

Three studies show decreased survival
during breeding period.

Sundt-Hansen et al. 2008: Decreased
survival in mature Atlantic salmon parr
during breeding season.

Both studies with first-feeding fry.
Demonstrate high susceptibility to
predation and low food levels.

Martin-Smith et al. 2004: Increased only
in summer.

Sundt-Hansen et al. 2008: Decrease
observed is the only study on first feeding
fry.
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Table 1.2 Continued.
Modification Trait Direction References Comments
> = <
GH = -
. Timetoreddemergence 0 0 1 Sundstrm etal. 2005
transgenic &
) Nagata et al. 1994; McGinnity et al. 1997: ,
/ : "
GH selected Dispeesal 0 0 5 Fleming etal. 2000; McGinnity etal. Reduced dispersal inferred to be example
spatial movement 5003 ¥ of competitive displacement.
—_ — s,
GH treated Dispersal 2003 o pRaitin:Smith et 8L 2004, Increased spatial movement but no effect
spatial movement Sund-Hansen et al. 2009 ; d
on dispersal or diel movement patterns.
GH Dispersal/ Sundstrém et al. 2005 Sundstrom et al.
oo 23
transgenic spatial movement 2007
Johnsson et al. 1999: Johnsson et al. 2000: g?::]’:::;’:::\"‘;lm"“ wilentin
GH treated Energy reserves 03 2 Neregirdtal. 2008a; SundeHarsent . il
: Sundt-Hansen et al. 2009
- : Fleming etal. 1996; Fleming etal. 2000; .
GHselected ~ ReProductivelcourtship | 5 ool 2003; Weir et al. 2004; Weir v oir <t al- 2004: Farmed adult Atlantic
behaviour Sme salmon males make more spawning
e attempts but often fail to release sperm.
Reproductive/courtship
: ( Sundt- 2 )
GRtreafed behaviour RENIES 8 Sundt Hanzen 2008 Mature Atlantic salmon male parr.
GH Divergence found when groups had
y ®
wansgenie  Reproductivelcourtship o pocey o g1 2004 different rearing environments.

behaviour
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Chapter 2

Growth hormone transgenesis does not influence territorial dominance
or growth and survival of first-feeding Atlantic salmon Salmo salar in

food-limited stream microcosms



Abstract

This study explored the relative competitive ability and performance of fir

feeding growth hormone (GH) transgenic and non-transgenic Atlantic salmon Salmo

salar fry under low food conditions. Pair-wise dominance trials indicated a strong
competitive advantage for residents of a contested foraging territory. Transgenic and
non-transgenic individuals. however. were equally likely to be dominant. Similarly. in
stream environments with limited food. the transgene did not influence growth in mass or
survival at high or low fry densities. Fry in low density treatments. however. performed
better than fry in high density treatments. These results indicate that. under the
environment examined, the growth performance of GH transgenic and non-transgenic S.

-feeding, an intense period of selection in their life

salar may be similar during firs

history. Similarities in competitive ability and growth performance with wild-type fish

salar 1o establish in natural streams may not be

suggest the capacity of transgenic S.

inhibited during carly life history.
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: Introduction

There is increasing interest in the development of biotechnologies in support of

the burgeoning aquaculture industry worldwide. Transgenesis. a method of genetic

s one such

modification involving the insertion of novel DNA into the genome.

application that has received considerable attention. In particular. growth hormone

transgenesis has been applied to several popular finfish aquaculture specics. including

tilapia (Orcochromis niloticus (L.). Rahman and Maclean. 1999: Orcochromis spp.
Martinez et al.. 2000: O, niloticus, Maclean et al.. 2002). carp (Cvprinus carpio L. Fu et
al.. 2003). and various salmonids: Atlantic salmon Salmo salar L. (Du et al.. 1992). coho
salmon  Oncorhynchus kisutch (Walbaum), rainbow trout Oncorhynchus  mykiss

(Walbaum). cutthroat trout  Oncorhynchus  clarki - (Richardson).  Chinook  salmon

Oncorhynchus tshawytscha (Walbaum) (Devlin et al.. 1995) and Arctic charr Salvelinus

alpinus (1..) (Pitkanen et al.. 1999). The popularity of growth hormone transgenesis as a

potential aquaculture biotechnology is due largely to the success of achieving
substantially increased growth rates, the desired phenotypic trait.

iated with the

There arc concerns regarding the potential environmental risks asso

commercial production of growth hormone (GH) transgenic S salar.  Salmo salar
aquaculture is largely undertaken through coastal sea cage operations that are subject to
escape events. The occurrence of farmed S. salar escapees entering the surrounding
environment and interacting with local intra and interspecific populations is a well
documented ecological concern (Ferguson et al. 2007: Morris et al. 2008: Thorstad et al

2008). Research on the genetic and ecological interactions between domestic escapees

and wild S, salar have suggested the depression of locally adapted traits through
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and fon, and competitive asymmetries that may have fitness

consequences in nature (Fleming et al.. 2000: McGinnity et al.. 2003: Hindar et al.. 2006).

The potential fate of the transgene and its fitness cffects on wild populations following

such escapee events are uncertain (Devlin et al.. 2006).

GH transgenic . salar possess distinct phenotypic traits that may influence their

survival and reproductive success, including increased rates of growth and respiratory
metabolism (Stevens et al., 1998: Cook et al.. 2000; Deitch et al.. 2006) and decreased

anti-predator behaviour (Abrahams and Sutterlin, 1999). Similar observations have been

made with fast growing domestic salmonid strains that have displayed more foraging

motivation, less anti-predator behaviour and. consequently. experience increased

predator-induced mortality (S. salar, Einum and Fleming, 1997: S. salar, Fleming and
Einum, 1997; O. mykiss, Biro et al., 2004, 2006). Evidence of such pleiotropic responses.
however. has not been investigated in GH transgenic S. salar at first-feeding. a critical
life history period for survival, when juvenile S salar (fry) emerge from the gravel to
begin exogenous feeding.  Upon emergence. young fry experience intense territorial
competition for food and space resources. where <5% are estimated to survive their first
few months of life (brown trout Salmo trutta L., Elliott, 1994: S, salar. Finum and
Fleming. 2000: Nislow et al.. 2004). Thus. any pleiotropic effects on developmental
processes or foraging and anti-predator behaviour during carly ontogeny could severely
impact the viability of the transgene in nature.

Studies with GH transgenic 0. kisurch during carly life history have found
advanced development both at the time of hatch (2-3 days: Devlin et al.. 2004a) and

emergence from the gravel (¢. 14 days: Sundstrom ct al., 2005). Moreover. first-feeding
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O. kisutch fry have also shown an increased susceptibility to predation and food

shortages. ing greater food requi and foraging (Devlin et al..

2004b:

Sundstrom et al.. 2004). Reverse transcription-polymerase chain reaction data

indicate messenger RNA (mRNA) expression of the transgene during these carly stages in

S. salar (M. King and G. L. Fletcher. unpub. data). suggesting that the advanced

P and observed in GH transgenic O. kisuich fry

may be paralleled in GH transgenic S. salar.

If the physiological and/or i iffe observed in older GH

transgenic S. salar exist during early ontogeny. time to emergence may be shorter due to

increased energy requirements and behavioural motivations. Early emergence allows first

access to foraging territories and as a result. a prior resident advantage. The prior resident
effect is the competitive advantage held by existing oceupants over a contested space and

has been observed in numerous animal taxa. including salmonids (Alford and Wilbur,

1985: Snell-Rood and Cristol. 2005: Geange and Stier. 2009). Resident salmonids have

repeatedly demonstrated a tendency to dominate dyadic conflicts with intruders of similar
size (S. salar, Cutis et al., 1999a; Metealfe et al., 2003; 5. frutia, Johnsson ef al.. 1999).
Therefore. first access to feeding territories may provide a competitive advantage for
transgenic fry. Moreover. greater foraging motivation may allow transgenic fry greater

. 1984: Elwood et

success at supplanting resident non-transgenic fry (Leimar and Enqu
al.. 1998). In contrast. increased susceptibility to food shortages may represent a higher
metabolic demand for energy consumption and a disadvantage under conditions where

food

arce or predation pressure is high.



If GH transgenesis affects metabolic rates and foraging motivation in fry as it does
in older juveniles, then transgenic fry can be expected to dominate non-transgenic fry for
prime foraging territorics. Under highly competitive, low-food environments. however,
their increased metabolic demand may reduce survival and growth. To investigate these
ideas. as well as test whether patterns of phenotypic change resulting from GH
transgenesis are similar (o that observed in O. kisutch with a differing transgene construct,

the relative competitive ability and performance of first-feeding GH transgenic and non-

transgenic S, salar fry under low food conditions was tested. Specifically, this study

aimed to (1) quantify territorial competition for food and space between firs

feeding fry

1o test for the influence of the t

ansgene on pair-wise dominance relationships. with and

without prior residency. and (2) quantify the effects of density on the growth and survival

of ic and ic fry during i under low food conditions in

stream microcosms o test how the transgene will affect performance in highly

competitive. food-limited environments.

2.2: Methods

2.2.1: Experimental Animals

In 1989, a gene construct (opAFP-GHe2) consisting of growth hormone
complementary DNA (¢cDNA) from O. rshawyischa. and driven by an ocean pout.
Zoarces americanus (Bloch and Schneider), antifreeze protein gene promater. was
introduced into the genome of wild S, salar collected from the Exploits and Colinet

Rivers. Newfoundland. Canada (Du et al.. 1992). A stable transgenic line was created

(EO-la transgene: Yaskowiak et al.. 2006) and has been maintained in captivity at the



Ocean Sciences Centre since its inception. During August 2005, wild adult S. salar were

collected from the Exploits River (48" 557 N. 40" W). Newfoundland. Canada. and

transferred to the Ocean Science Centre. Memorial University of Newfoundland. The S.

salar population of the Exploits River represents one of the largest in Newfoundland:

isting of one year sca-winter spawning fish (grilse: O"Connell et al.. 2003).

primarily cor

To control for maternal effects. eggs from five wild females were divided evenly

and crossed individually with milt from five wild males and five homozygous transgenic

males on 17 November 2005. Consistent with the basic principles of Mendelian

inheritance for dominant genes on a single chromosome, a homozygous transgenic out-

cross will produce 100% transgenic offspring that are hemizygous carriers of the
transgene.  Following water hardening, all transgenic and wild crosses were pooled

separately and reared in separate Heath incubation trays.

As the yolk-sac fry neared complete yolk absorption (i.e. the start of exogenous
feeding), the transgenic and non-transgenic crosses were transferred into holding tanks (1
m > 1 m)and fed ad libinem. with a combination of Artemia spp. and a salmonid starter
dry feed (Corey Feed Mills Ltd.. Fredericton, Canada: www.corey.ca). Photoperiod was
maintained at a 121.:12D schedule during holding and experimentation. All animals were
treated in accordance with the guidelines provided by the Canadian Council on Animal
Care during holding and experimentation, and approval was granted by Memorial

University’s Institutional Animal Care Committee (AUP 05-03-1F).



2.2.2: Dominance Trials

To compare the relative competitive ability of transgenic and non-transgenic fry.
pair-wise dominance trials were conducted in 40 replicate stream-like contest arenas.
Each arena approximated the territory size used by an emerging fry (Grant and Kramer.

1990; Figure 2.1). Three sets of pair-wise comparisons were made: (1) transgenic v. non-

transgenic cohabitants (no prior-residency ge: 1 = 37). (2) transgenic intruders v

non-transgenic

residents (1 = 41), and (3) transgenic residents v. non-transgenic intruders
(n = 47). For cohabitant contests. individuals were introduced simultancously and

allowed a 48 h acclimation period prior to observation. In prior residence trials. the 48 h

limation period occurred in the separate enclosures. after which the intruder was

introduced by temporarily lifting the partition between contest arenas and guiding the
intruder into the resident arena.  Observations commenced 24 h following the

introduction of the intruder. Preliminary trials with e
the year previous confirmed that the contest arenas and protocol were suitable  for

detecting dominance behaviour.

sh were anesthetized (MS-222. Western Chemical Ing

www.wehemical.com),
and size matched to within a mass (M) range of 5% for cach trial (mean + S.E. My

0209 £ 0.004 2: Myouumgenc = 0208 + 0.004 g: the transgenic and non-transgenic
populations do not diverge in size until later in life: unpubl. data) and were marked by

applying Alcian blue dye (Sigma-Aldrich: www.sigmaaldrich.com) with a fine needle to

opposing pectoral fins to distinguish individuals within pairs. After measurements and
marking, the fish were transferred into the test aquarium. Trials began ¢. 2 weeks

following emergence to ensure all individuals had adjusted to exogenous feeding. and
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occurred between 16 May and 19 June 2006, during which the ambient temperature
ranged between 8 and 13°C. There were no obvious developmental differences (¢.g. size.
yolk absorption) between the original populations of transgenic and non-transgenic fish
prior to experimentation.

Dominance was

essed with a point system accounting for feeding attempts and

spatial position (Metcalfe et al., 1992: Johnsson and Bjornsson. 1994: Metcalfe ct al..

1995

Cutts et al.. 1999b).

X observational trials were performed for each pair. Fach
observation commenced with the introduction of a consistent quantity of live Artemia

spp. (n ¢. 10) through a feeding tube centred at the upstream end of the contest arena

Overt feeding behaviour was defined as a distinet biting or lunging motion following the

trtemia spp. injection. Feeding attempts eamed individuals a single point. In

es

where both fish displayed feeding behaviour, the first to make a feeding attempt received

two points. Spatial position was scored from one to minus one, with a single point

awarded to fish positioned directly downstream of the feeding tube, zero points for fish

positioned along the margins next to the feeding tube and minus one for fish in the

corners. such that their view of the feeding tube was likely hindered. Scores for cach fry
were tallied and winners were defined by an advantage of greater than three points. Trials

in which neither individual exhibited feeding behaviours (n = 6) were excluded from the

analysis.

‘cam Mirocosm
To compare the effects of density on the growth and survival of transgenic and

non-transgenic firsi-feeding fry during ition. cight stream mi were




established. four at high (n = 40) and four at low density (n = 10). This was

accomplished by partitioning four fibreglass troughs length-wise to create cight semi-

natural stream microcosms (2.6 m * 0.25 m x 0.10 m: Figure 2.2). Each trough contained
two stream channels separated with window screening. A current was generated within

cach stream channel using an inflow spray bar positioned behind window screening at the

upstream end of cach channel. Each trough consisted of one channel with a spray bar

crea

ting

atiached directly (0 a facility freshwater supply and the other attached to a pump.
a partially recirculating, unidirectional flow.

Prior to the experiments, fish were selected haphazardly, anaesthetized with MS-
222, measured for M and fork length (Ly). and tagged with visible implant elastomer
(Northwest Marine Technologies Inc.: www.nmi-ine.com) andfor Alcian blue dye
(Sigma-Aldrich). An elastomer tag in the dorsal museulature was used to differentiate

aw

between transgenic and non-transgenic individuals. A second tag made either on the

ora fin (caudal, pectoral or anal) was used to uniquely identify individuals. This was

done for all fry in the low density treatment (1 = 10) and for half of the fry in the high

&

density treatment (1 = 10 for cach type). because of limited numbers of unique 1

combinations. Equal numbers of transgenic and genic individuals were placed in

and high density (20 of each type) treatments.

the low (five of cach type

Similar quantities of Artemia spp. were delivered to each stream one to four times
daily 1o reflect the fluctuating availability of food in nature. The high and low density

0%) and 9.30

channels received mean food levels equivalent to 2.30% (range: 0.65 - |
%% (range: 2.63 - 49.30%) of fish biomass per channel. per day. respectively. The Artemia

spp. were supplied through tubes hidden behind a blind to prevent disturbance. Feeding
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tubes were positioned just above the water surface at 100-140 mm below the upstream

screen and again half way down the microcosm to ensure feed would be accessible the

full length of each channel imates of invertebrate drift in natural

streams coupled
with the pulsated feed delivery method suggested that this food level would be
representative of a strongly food-limited environment (Wilzbach et al., 1986: Keeley and

Grant. 1995). Experimentation occurred ¢. 2 week:

following emergence, between 15

May and 20 June 2006 (37 days). during which the ambient temperature range was §-

3°C. There were no obvious developmental differences (e.g. size. yolk absorption)

between the original i of ic and ic fish prior to

experimentation.

2.2.4: Statistical Analyses

To assess dominance, logistic regressions with binomial error (IR) were used to
evaluate the number of wins v. non-wins (losses and draws) with respect to genotype
(transgenic or non-transgenic). prior residency and M. where A was treated as a

categorical variable indic:

ing the large and small fish from each trial. In the stream
study. Ly (mm) and M (g) measurements of all fry were taken before and after the
experiment and used to calculate instantancous growth rate (G: G = (In Xa - In X) 7).
Initial size and G were compared using general linear models (GLM) with genotype and

density as factors of fixed effects. To ey

mine body condition. initial and final M - ;

relationships were assessed with a similar GL.M that included A as the response variable
and Ly as a covariate (Garcia-Berthou. 2001).  Where applicable. Tukey HSD post hoc

comparisons were performed to compare means among transgenic and non-transgenic fry
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from both density treatments. using P-values adjusted for single-step multiple comparison

procedures. For Tukey HSD post hoc comparisons of body condition, residuals were

produced from a regression analysis of the corresponding A (y and Ly (x-axis)

measurements and used as the response variable. A logistic regression with binomial

error was also used to as:

tream study mortality with respect to genotype and densi
All statistical analyses followed a model simplification approach using the computing

program SAS® 9.13 (SAS Institute Inc.: www.sas.com) and significance was measured at

alpha level of type | error.

2.3: Results
2.3.1: Dominance Trials

Transgenic and non-transgenic fry cohabitants (ic. no prior residency) did not
differ significantly in their ability to dominate a single foraging territory (LR. # = 37. ' -
0.02: P> 0.05, Figure 2.3). Similarly, the transgene did not influence dominance in prior

residence trials (LR, 1 = 88, ' = 2.50: P > 0.03). Residents. however. won significantly

more contests than intruders (LR, n = 88, y 12.73: P < 0.01). M did not influence

dominance in either cohabitant (LR. # = 37. % = 0.02: P > 0.05) or prior residence trials

(LR. 1= 88. % = 2.16: P> 0.05).

2.3.2: Stream Microcosm
Initial Z; (mm) was similar between transgenic and non-transgenic fry (GLM: I
190 = 0.01. P> 0.05) and between density treatments (Table 2.1: GLM. Fy 99 = 0.90.

0.05). A GLM for initial M (g) indicated a significant interaction between genotype and



density (GLM. Fy 159= 5.10, P < 0.05). Tukey HSD post hoc comparisons indicated that

non-transgenic fry in the low density treatment had lower initial M than all other fish

groups. including both transgenic and non-transgenic fish in the high density treatment

and the transgenic fry of the low density treatment. To examine body condition. a GLM

erence between

representing the initial M and Z; relationship indicated a significant di

had no influence

density treatments (Fy 199 = 7.00, 2 < 0.01): however. transgenesis
(GLM. Fy 199= 0.96, P> 0.05). Tukey HSD post hoc comparisons indicated that the low
density non-transgenics had less M for a given Z; than both the high density transgenic

and non-transgenic groups.

Gt 2 day™) wei

Negative mean instantaneous growth rates (Gieng: mm day”

observed for transgenic and non-transgenic fry in both high and low density treatments

antly more Gl than non-transgenic

(

igure 2.4). Transgenic fish maintained signifi

fish (GLM. Fy gy = 4.93. P < 0.05). The transgene. however. did not influence G

across density treatments (GLM. Fy 49 = 0.02, P> 0.05). Individuals in the low density

treatment lost less size than high density individuals (GLM. Gignen: Fi oo = 7.20. P < 0.05:

Ginass: Fio0= 37.17. P < 0.01: Figure 2.5). For body condition. a GL.M representing the

final M and Ly relationship indicated a significant difference between density (I o) =

11.61. P < 0.01): however, transgenesis provided no influence (F; o = 2.50. P > 0.05).

Tukey HSD post hoc comparisons indicated that the low density transgenic fish

maintained more M for a given Ly than the high density transgenic group.

The mean proportion of survivors in the high (mean + S.E. = 0.83 + 0.05) and low
density (mean + S.E. = 0.78 + 0.14) treatments did not differ (LR, 1 = 164, % = 0.66: P

0.05). Likewise. there was no significant difference in survivorship between transgenic
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= 0.81 £ 0.10) and non- 0.79+£0.11:

(mean + nsgenic individuals (mean + S.E.

LR.n =164, "= 0.05: P> 0.05).

No differences were found between GH transgenic and non-transgenic S. salar fry
in any of the fitness-related phenotypic traits measured. During pair-wise dominance

trials. prior residency provided a clear advantage. Transgenic fry. however. were equally

likely to win territorial contests as were sgenic fry. Consistent with
the dominance trials. the survival of GH transgenic first-feeding fry in stream microcosms
under low food availability did not differ from that of non-transgenic individuals.
Moreover. both groups experienced negative growth. though the pattern  differed
somewhal. with transgenic individuals maintaining greater Ly for a given M than non-
transgenic individuals. This result is consistent with previous findings suggesting
preferential investment in skeletal growth in GH transgenic O. kisutch (Devlin et al..
1995).  Having controlled for maternal effects in the experimental design. our results
suggest that competition for a limited resource and vulnerability to conditions of low food

were not influenced by the transgene. Moreover, the similarity in competitive behaviour,

growth and survival of transgenic and non-transgenic individuals, indicates that. in the
absence of predation, the EO-la transgene may not influence the fitness of S, salar

v at the onset of exogenous feeding. While the fry had been fed as they underwent

the transition from endogenous o exogenous resources for two weeks prior 1o the

experiments (i.e. to ensure they had switched to exogenous food). both transgenic and

60



non-transgenic individuals were treated similarly and thus the patierns observed are likely

reflective of competition at this life stage.

The adjustment to exogenous feeding is a period of strong selection in stream
salmonids. during which individuals establish foraging territories in response to

heterogencous habitat quality (S. salar and S. frurta, Kalleberg, 1958: S. salar.

Keenleyside and Yamamoto, 1962: S. rrurta. Elliott. 1994).  The establishment of an

cconomically defendable feeding territory has been suggested to provide an energetic

advantage to territorial over non-territorial individuals [O. kisutch. Puckett and Dill. 1985:
S. salar, S. trutta. O. mykiss. O. kisutch. brook charr Salvelinus fontinalis (Mitchill).

Grant and Kramer, 1990}, thus improving the odds of survival. In salmonids, suc

territorial contests has been linked to aggression (S. frutta. Deverill et al.. 1999). body

size (S. trutta. Johnsson et al., 1999). experience (O. kisutch. Rhodes and Quinn. 1998)

I-enhanced salmonids.

and prior residency (5. salar, Metealfe et al., 2003). Moreover,
including GH transgenic, GH implanted and growth selected fishes. have shown traits
associated with territorial dominance, such as increased size and aggression (O, mykiss.
Johnsson and Bjorsson, 1994; O. kisutch, Devlin et al.. 1999: 8. salar. Metealfe et al..

2003).  The ion between ion and i however, has not been

). kisutch. Sundstrom et al.. 2003:

observed consistently (0. mykiss: Jonsson et al.. 1998;
S. trutta, Neregard et al. 2008). For example, in a study investigating territorial

relationships between GH implanted S, nurta and wild-type parr. Neregard et al. (2008)

observed an increase in aggression among intruding GH treated parr relative to wild-type

individuals.  Nevertheless. this increased aggressive behaviour did not influence the

outcome of territorial conflicts. suggesting motivational changes may not always equate
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w0 foraging success.  Similarly. in the current study. no differences in territorial

dominance due to the transgene in first-feeding S. salar fry were observed. The similarity

in ability of the transgenic fry to withstand low feed stream environments relative to non-
transgenic individuals, however, suggests the results may reflect a delay in the phenotypic
response to the transgene rather than the ineffectiveness of a change in foraging
motivation on territoriality.

Juvenile GH transgenic salmonids have been shown to exhibit greater rates of

metabolism (S. salar, Stevens et al.. 1998: Cook et al.. 2000: Levesque et al.. 2008).

and feeding ivation relative to ic indivi s (O. kisurch.

Devlin et al.. 1999: Sundstrom et al.. 2003, 2004). Much of these data reflect older

juveniles (parr) that have long since the ic shift 10
feeding. Work with GH transgenic O. kisutch first-feeding fry. carrying the ONMTGHI

gene construct, however, supports previous observations on older juveniles. suggesting

metabolism may be driving differences in risk taking and foraging-induced aggressive
behaviour. For example, in O. kisutch the survival of firsi-feeding fry in low feed rearing
tanks has been shown to dramatically decrease due to the presence of GH transgenic

individuals (Devlin et al.. 2004b).  Specifically, low food abundance caused greater

sive behaviour of

mortality in transgenic-containing tanks. brought upon by the ageres
dominant transgenic fry.  Similarly, GH transgenic O. kisutch have demonstrated

increased mortality due to predation and decreased growth rates at first-feeding in low

food stream i relative to ic fry (¢ s etal.. 2004). Further
support for the suggestion that metabolism may be driving differences is provided by

observations of enhanced egg and alevin developmental rates and reduced egg survival

62



under low oxygen conditions in GH transgenic O. kisutch (Devlin et al. 2004a:
Sundstrom et al., 2005; Sundi-Hansen et al.. 2007). Metabolism. however. has not

specifically been measured during early ontogeny.

This study represents the first attempt to quantify phenotypic differences between

first-feeding growth hormone transgenic and non-transgenic S. salar fry. These data

suggest important p ypi I between GH ic S. salar

ind, 1
studied. O. kisutch populations during this critical carly life history period. The observed

simi

ities in behaviour, growth and survival suggest that there is a delayed ontogenetic
response 1o the presence of a growth hormone transgene in S. salar. such that the eritical
period of survival associated with emergence may not influence the fitness of the
transgenic fiy strongly. This may allow a greater proportion of transgenic individuals to
survive past first-feeding, and as a consequence interact ecologically and genetically with

wild fish at later life stages. than that expected based on obs

ervations of older juveniles or
other GH transgenic strains.  However, it is important to acknowledge that this study
represents one of many potential ccological scenarios where empirical investigation is
recommended prior to any future risk assessment efforts.

The phenotypic response 1o transgenesis in fishes may vary considerably in
response to construct design, the genome of the receiving organism and the dominance
and epistatic interactions between the transgene and the background genome (Twyman.
2005: Gong et al.. 2007: Nam et al.. 2007). GH transgenic S. salar and O. kisutch have
been derived from populations of two different species. with two  different gene
constructs. While both transgenic strains display many similar phenotypic changes later

in ontogeny. they also display differences in response to transgenesis during an important
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life history period, the onset of exogenous feeding. Such a difference emphasizes the

importance of assessing the environmental risk of transgenic organisms on a case-by-case

[

s because the phenotypic cffects of transgenesis may vary between species and

constructs designed for the same purpose.
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Figure 2.1, The experimental apparatus used during pair-wise dominance trials with
Salmo salar fry (n = 10). Located immediately downstream of
enclosures. Each enclosure consi

ch other were contest
ted of mesh ends and PVC side partitions. The mesh
partition separating cach enclosure could be raised. allowing intruder entry during prior
residence trials. Freshwater flowed through a spray bar allowing a current across the
width of the apparatus at approximately 30-50 mm sec”. A water depth of 70-100 mm
was maintained by the addition of a modified. grey plastic bottom covered with a thin
layer of a natural gravel substrate. Size differences between the upstream and
downstream contest areas were accounted for in the experimental design. Specifically
prior residence trials were conducted in the downstream contest enclosures and an equal
number of cohabitant trials were conducted in upstream and downstream enclosures.

all
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Figure 2.2. Experimental stream microcosms (1 = 8) used to compare the effects of
density on the growth and survival of transgenic and non-transgenic Salmo salar {

Inflow spray bars were positioned behind a sereen partition at the upstream end of cach
stream, creating a unidirectional. clockwise flow within each trough. Artemia spp. drip
food delivery tubes were positioned just above the water surface at 100-140 mm below
the upstream screen and again half way down the microcosm to ensure feed would be
accessible the full length of each stream. The current speed within each stream ranged
from 120-180 mm s™ upstream to 30-80 mm s downstream. The bottom of each channel
was covered with 5-15 mm gravel and 50-150 mm rocks to create habitat heterogeneity.
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Figure 2.3. The performance. displayed in percentages. of growth hormone transgenic
Salmo salar fry during pair-wise dominance contests with non-transgenic fry under three
scenarios of competition (cohabitant, resident and intruder). Performance was measured
by wins (black). losses (white) and draws (grey)




High Density Low Density
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Figure 2.4, The mean + S.E. instantaneous growth rates (G) for fork length (Giengn: mm
day) and mass (G ¢ day”) of growth hormone transgenic (filled circles) and non-
transgenic (open circles) Salmo salar fry reared at high and low densities in near-natural
stream microcosms under low feed conditions.




L, Relationship (residuals)

Time (days)

Figure 2.5 The body condition [mass (M) - fork length (Ly) relationship] of growth
hormone transgenic and non-transgenic Safmo salar fiy reared at high (HD) and low (1.D)
densities in near-natural stream microcosms under low feed conditions, The fry are
categorized as follows: HD transgenic (filled circle), HD non-transgenic (open circle), 1D
transgenic (filled triangle) and LD non-transgenic (open triangle).  The A and Ly
relationship is represented by mean + S.E. residuals produced with a linear regression of
initial and final natural log-transformed M (g) and Ly (mm) variables.
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Chapter 3

Delayed phenotypic expression of growth hormone transgenesis during early

ontogeny in Atlantic salmon (Salmo salar)



Abstract

There is considerable uncertainty regarding the potential ecological and genetic impacts
that the escape of growth hormone (GH) transgenic Atlantic salmon might have on wild
populations. This study compared the developmental rate and respiratory metabolism of GH
transgenic and non-transgenic full sibling Atlantic salmon during carly ontogeny: a life history
period of intense selection that may provide critical insight into the fitness consequences of

transgenesis.  Transgenesis did not affect the routine oxygen consumption of eyed embryos.

newly hatched larvae (alevins) or fi

-feeding juveniles (fry).

Morcover, the timing of carly |
history events was similar, with transgenic fish hatching less than one day carlier. on average.

than their non-transgenic siblings. By the time emergence neared. however. transgenic fish were

somewhat developmentally behind. having more unused yolk and being slightly smaller than

their non-|

ran

seenic siblings. Although such differences were found between transgenic and non-
transgenic siblings. family differences were considerably more important in  explaining
phenotypic variation. Overall, this rescarch suggests that biologically significant differences in
fitne:

related traits between GH transgenic and non-transgenic Atlantic salmon are minimal

during the critical early life history period.



3.1: Introduction

There i

considerable interest in growth hormone (GH) transgenic Atlantic salmon (Salno
salar 1.) as a candidate biotechnology for aquaculture.  Similar to those associated with
domesticated aquaculture strains (Ferguson et al. 2007: Morris et al. 2008: Thorstad et al. 2008).
there are concerns regarding the potential impacts of ecological and genetic interactions between
transgenic and wild salmon in nature (Kapuscinski and Hallerman 1991: Muir and Howard 2002:

Devlin et al. 2006). Currently. however. there is little empirical data with which to assess the

possible environmental risks of this transgenic fish strain: a leading candidate for
commercialization.

Early ontogeny represents a highly selective life history period for many stream
salmonids, and thus, may provide valuable information regarding the fitness of transgenic salmon
strains relative to wild-type individuals. At fertilization, eggs are buried in gravel nests and
remain immobile until hateh. During this stage. eggs can experience lethally low levels of
dissolved oxygen, resulting in high mortality (Lacroix 1985: Chapman 1988: Peterson and Quinn
1996).  Upon hatch, alevins (larval phase) remain underncath the gravel until their endogenous
volk reserves are near fully consumed. At this point, individuals emerge and commence

exogenous feeding.  First-feedi

e is a critical period of survival and performance for the fry of
many salmonid species (early stage juveniles), where individuals must learn to attain food.

compete for and/or mig,

¢ to foraging territories and avoid predation (Chandler and Bjornn

1988: Brannas 199:

inum and Nislow 2005). Mortality during the first few weeks of life can

be greater than 80% (Elliow 1994:

inum and Fleming 2000: Nislow et al. 2004). Thus. any

duced effects on physiological and foural traits during carly ontogeny may

impact survival and thus. the viability of the transgene in nature.

78



Beyond its affects on growth (Du et al. 1992; Devlin et al. 1994). GH transgensis is
known to have pleiotropic cffects on other phenotypic traits in salmon, including elevated
metabolic rates, increased foraging motivation and reduced anti-predator behaviour (Abrahams
and Sutterlin 1999: Cook et al. 2000: Leggatt et al. 2003: Sundstrom et al. 2003: Tymchuk et al.
2005). Many of these studies have concentrated on juveniles ca. 8 months or older. bypassing the
intense selection experienced during early ontogeny. However, rescarch with GH transgenic
coho salmon, Oncorhynchus kisuich (Walbaum), has shown phenotypic effects during early life
history. These include GH transgenic coho displaying reduced survival as eyed-eggs during

hypoxic (low oxygen) conditions (Sundi-Hansen et al. 2007). advanced embryo and larval

undstrom et al. 2005,

development. (Devlin et al. 2004 Lohmus et al. 2010) and greater
susceptibility of first-feeding juveniles (fry) to predation and starvation ~than non-transgenic

coho (Devlin et al. 2004b: Sundstrom et a

. 2004). Collectively, these studies suggest that the

relative fitness of transgenic and non-transgenic coho salmon during early life history may differ
considerably in nature.

As part of a continuum of correlated traits. resting metabolism has been linked to

variation in behaviour. performance, and life history strategies among individuals at both inter-
and intra-specific levels (Symonds 1999: Sih et al. 2004: Biro and Stamps 2008. Careau ct al.
2008).  In intra-specific laboratory studies with salmonids. high resting metabolic rates correlate
with fast growth (Metcalfe et al. 1995: Yamamoto et al. 1998). foraging-induced aggression and
dominance (Cutts et al. 1998: Cutts et al. 2001: McCarthy 2001: Lahti et al. 2002): all of which
have been observed for GH transgenic salmon parr. Resting metabolism is the minimum energy
requirement of an individual within a specific environment, and represents an internal constraint

on energy allocation that has significant implications for an animal’s survival (Brown et al

2004). For example, fish with clevated resting metabolic rates require more energy and.

79



consequently, more oxygen to maintain normal body function. Thus, the transgene-induced

ory may explain observations of

di

ferences in r

sting metabolic rate during carly life h

increased sensitivity to hypoxia, advanced pment, higher foraging-induced fon and

decreased anti-predator behaviour in GH transgenic salmon.  However. to our knowledge.

m has not been compared between GH (ransgenic and non-transgenic

respiratory metabolis
salmon during carly ontogeny. Morcover, previous work with GH transgenic coho salmon. a
Pacific species that carries a distinct transgene construct. may not represent the early phenotypic
responses of all growth hormone transgenic salmonid strains (Nam et al. 2007)

If the GH transgene elevates metabolic rates during carly ontogeny. as observed for older
juveniles (aged > 8 months; Stevens et al. 1998). then a similarly advanced development to that

of coho salmon may also result in Atlantic salmon. Such phenotypic shifts could influence the

salmon during this eritical life history period

relative survival of transgenic and non-transgenic

from other

To test for these potential phenotypic effects and compare how they may d

of GH salmon is. this study compared the respiratory metabolism and

development of GH transgenic and non-transgenic Atlantic salmon siblings during early
ontogeny.  Using multiple family replicates. we quantified the routine metabolism of GH

transgenic and non-transgenic siblings at three carly stages of ontogeny: eyed-cggs. alevins

re. we tested for diffe in hatch time and. near

(larvae) and first-feeding fry. Further
exogenous feeding, alevin mass. length and the amount of yolk remaining within (transgenic

versus non-transgenic) and among families
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3.2: Methods
3.2.1: Experimental Animals
A gene construct (opAFP-GHe2) consisting of growth hormone ¢DNA from Chinook

salmon. Oncorhynchus tshawyischa (Walbaum). and an antifreeze protein gene promoter from

ocean pout, Macrozoarces americanus into the genome of wild Atlantic
salmon collected from the Exploits and Colinet Rivers, Newfoundland. Canada in 1989 (Du et al
1992). A stable transgenic line (EO-lu transgene) resulting from these gene  insertion

experiments was produced at the Ocean Sciences Centre. Memorial University of Newfoundland

(Yaskowiak et al. 2006). During August 2005. wild adult Atlantic salmon were also collected

from the Exploits River (48°55'N, 55°40°W). Newfoundland. Canada. and transferred to the
Ocean Science Centre.  The Exploits River salmon population is one of the largest in
Newfoundland. A characteristic of anadromy in this system is that fish typically return to the
river following a single year at sea (O°Connell et al. 2003).

Eleven single family crosses were produced between wild, non-transgenic females and

d. transgenic males that were hemizygous for the GH transgene between the 3 and

captive:
22" of November. 2005. True to Mendelian inheritance pattemns. this cross results in
approximately half of the offspring inheriting the GH transgene (Shears et al.. 1992). This
enabled the comparison of full siblings differing primarily by the presence or absence of the
transgene (i.e. other genetic differences tending to be randomized). allowing for the control of
maternal effects and general genetic background.

All families were reared separately in Heath incubation trays.  Shortly following
fertilization. 10 eggs from each family were collected and both wet and dry mass (g) were
determined. At first-feeding. families were pooled into two separate family groups. reared in Im

by Im holding tanks, and fed ad libitum with a combination of Artemia spp. and a salmonid
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starter dry feed (Corey Feed Mills, Fredericton. NB). During holding and experimentation. both
temperature and photoperiod were kept at ambient conditions. except in association with the
respirometry trials (sce below). Following all experiments, a tissue sample of cach individual
was screened for the transgene using the polymerase chain reaction (PCR) protocol described in
Deitch et al. (2006). All animals were treated in accordance with the guidelines provided by the
Canadian Council on Animal Care and with the approval of Memorial University’s Institutional

Animal Care Committee.

3.2.2: Respirometery Systems
To estimate the metabolic rate of individual embryos and fish. we measured their routine
oxygen consumption (Jobling 1994) in one of two respirometery systems. Jobling (1994) defined

routine metabolic rate as a measure of oxygen consumption (mg 0> ¢ hr”) for fasted. unstressed

animals experiencing minimal . In the case of y feeding eyed embryos

and alevins (larvae). we consider our ive of routine
The first respirometer was a custom glass design. used to measure the oxygen consumption of’

individual salmon eyed-cggs. It consisted of an inner experimental chamber. where the animal

VWR

was located. and an outer chamber connected to an external water bath (model 1150

International. Mississauga. ON. Canada) that maintained the inner chamber at 3 Freshwater

w

s pumped into the bottom of the 6.75 ml inner chamber from an oxygenated glass reservoir
(situated in the chiller basin) and returned through an exit port at the top of the chamber with the

aid of a peristaltic pump (Masterflex L/S model 77200-12. Cole-Palmer Inc.. Barrington. USA)

and low gas permeability tubing (Tygon" Food and LFL. Cole Palmer Inc.. Barrington. USA).

Individual eyed-cggs were elevated above the bottom of the inner chamber on the mesh surf
of a perforated. circular glass tube. The entire respirometer was suspended over a magnetic
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stirrer such that the stir bar. located within the inner chamber. ensured water was mixing slowly

irements.

and no oxygen gradients were present. Immediately prior to oxyger

n consumption meas
the peristaltic pump was turned off and the inner chamber was closed with stop-cocks. The drop
in oxygen concentration was then measured using a computer controlled fiber-optic minisensor

3", PreSens GmbH, Regensburg. Germany) and an oxygen sensitive spot attached

(0 the inner surface of the inner chamber. The fiber-optic oxygen system was calibrated regularly

using oxygen-saturated water and water from which all oxygen had been removed by the addition

of sodium sulphite (0.25¢ per 10 ml).

The second respirometer wa Blazka-type respirometer (Brett 1964)

s a custom-buili, glass.

that had an 82 ml inner chamber volume. This device was used to measure the routine

metabolism of individual alevins and firsi-fecding fry. The design and operation of this

respirometer was similar to that previously described in Killen et al. (2007), with one exception.

As with the respirometer used to measure embryo ism, water was

using an outer water jacket that was connected to an external water bath. The water temperature

was maintained at 4.5 °C and 8.5 °C for alevins and first-feeding fry. respectively. A weak

current was induced within the resirometer to ensure proper mixing and prevent the formation of
oxygen gradients. The current, however, was weak and no swimming activity was required by the
animals. A black cloth was draped over the respirometer to prevent disturbance and a mirror was

used to monitor the activity of the fish during the oxygen measurement period.

3.2.3: Respirometry Protocol
Fish used in the respirometry experiments were maintained at the experimental
temperatures for a minimum of two weeks prior (0 measurement.  These temperatures

jed (o the ambient conditions at the initiation of experimentation. For eyed-eggs. the
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oxygen consumption of 6-7 eggs from six families (1 = 39: 0.10-0.16g) was measured at ages

ranging from 385-415 degree days (a developmental index representing the sum of daily mean

). Individual ey

eggs were acclimated to the i for 90 minutes prior to
Oxygen consumption measurements.  Two successive. 30-min measurements. separated by 15
min. were taken on each eyed-cgg and averaged. All eyed-eggs within each family were
measured within an 18-hour period to limit potential developmental effects on metabolic rate. To
imitate both the rearing and natural environments. all measurements were performed in total

darkne:

For alevins, the oxygen consumption of 9-10 individuals from four families (n = 39: 0.12-

0.19g) was measured at ages ranging from 668-725 degree days. Individuals were acclimated to

the respirometer for 90 min prior to a 60-min oxygen i All indivi

within each family were measured over 3 days

to limit potential developmental effects on
metabolic rate. As with the eyed-cggs. all measurements were performed in total darkness.
For first-feeding fry. the oxygen consumption was measured on individuals (1 = 32: 0.13-

0.27g) that had been fasted for 48 hours. These animals were haphazardly selected from two

tanks. each containing 5 and 6 families. respectively. Individuals were acclimated to the

respirometer for 150 min prior o a 30 min of oxygen ¢ All
measurements were performed under low light conditions.

Acc

mation time periods were based on preliminary experiments. and ensured that the

fish/eyed-eggs were in a st

dy staie of constant low oxygen consumption (ic. they had
recovered from any stress associated with handling). Rates of oxygen consumption (mg O, ¢!
hr') for each trial were ealculated using the slope of a lincar regression between water oxygen

level and time. then multiplied by the chamber volume and divided by the animal’s mass. At the

end of cach day. blank measurements were made to ensure minimal background oxygen
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consumption. and the respirometers were cleaned with 100% cthanol. Any observed background

oxygen on rate was from the experi values. Trials where background

oxygen consumption rates were greater than 5% of animal oxygen consumption were not

included in the data set.

3.2.4: Development

Hatch time, alevin yolk surface arca (mr (2) and fork length (mm) near

emergence were used as indices for examining the effect of the transgene on developmental rate.

For each of 8 families. ca. 100 d-eggs were b- led from family-specific
Heath incubation trays and placed into plastic canvas mesh baskets housed within separate trays.
During incubation. the ambient temperature ranged between 2-8 °C. with a temperature of 4 °C at
hatch. Baskets were checked once daily for hatched individuals. At hatch. individuals were

preserved in 95% ethanol for subsequent PCR analysis. For the same 8 families, 40 late stage

near were b-sampled from the family-

alevins (ca. 774 degree days,
specific incubation trays and photographed using the Pixera Viewfinder 2.6 software application
(Pixera Corp., Los Gatos, USA). Fork length (cm). total body surface area (mm?) and yolk

surface area (mm?) were recorded using Image) 1.37v processing and analysis software (Imagel.

http://rsbweb.nih.gov/ij/index.html). ~ Following measurements. the animals were placed into

individual fuge tubes ining 98% ethanol for PCR analysis.

3.2.5: Data Analyses

amily

Mixed model. nested. two-way ANOVA’s were performed to test for the effects of

variables of mass (mg) and

origin and genotype (transgenic or non-transgenic) on the respon:
oxygen consumption (mg Oy ¢ hr''). where genotype was nested within family. Family and
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genotype were treated as random and fixed factors. respectively. For first-feeding respirometry.
families were split into two groups and placed in separate tanks: therefore tank was included as a
fixed factor.

To test for differences in hatch time between familics and genotypes. a mixed effects
binomial logistic regression was fit, where the response variable represented the proportion of all
individuals carrying the transgene. Explanatory variables including hatch day (represented by
degree days) and family where treated as fixed and random factors, respectively. To test for the
effects of family and genotype on yolk surface area (mm?). mass () and fork length (mm) of
alevins near emergence. mixed model, two-way ANOVAs were used with genotype nested into
family.

To explore associations between metabolic rate. size and development during carly
ontogeny. a series of Pearson’s product-moment correlations were performed with family-level

means. The first set explored the relationship between initial dry egg mass and degree days at

50% hatch. mass-ind dent egg oxygen ion (mg O, hr'"). alevin yolk area. mass and

length near emergence. The second set investigated family-level mean between ege

0, consumption (mg O ¢ hr'') and degree days at 50% hatch, alevin O, consumption (mg O, g™
hr') and alevin yolk area near emergence. and degree days at 50% hateh and alevin yolk area

near emergence. Al data were analyzed using the R statistical software application (version: R-

http:/www.r-project.org/).

For all non-correlative data. statistical inference followed a model comparison approach

using the Akaike information criterion (AIC: Burnham and Anderson 2004: Hobbs and Hilborn
2006). Each model can be viewed as a competing hypothesis where the relative weight of cach

hypothesis is compared using model selection measures of relative performance (A,) and Akaike

weights (). AAIC (AAIC: corrected for small sample size) refers to the change in AIC
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between the focal model and the model with lowest AIC score. AAIC interpretation adhered to
the following guidelines. Relative to other candidate models. strong evidence or support was
considered for models with A, < 2. little evidence for models with 4 < A, < 7 and no support for
models with A, >10. Akaike weights represent the probability that the focal model provides the
best representation of the data relative to the other candidate models following repeated analyses.
For all response variables mentioned above. two or three models were compared to assess the
relative influence of family and genotype (transgenic vs. non-transgenic). Model selection
criterion between fixed and mixed models is not appropriate (Bolker 2008). therefore. a separate
set of fixed and mixed models were produced. Interpretation is based predominately on the
mixed models as they capture the experimental design most appropriately. However. the fixed
effects models were used to support inferences on the influence of the fixed effect (genotype)

variable.

3.3: Results
3.3.1: Respiromenry

At both the eyed-cgg and alevin stages. oxygen consumption (MO,) and mass were
strongly influenced by family. with little influence caused by the transgenc (Figure 3.1).

Candidate models for oxygen consumption (MO,: Table 3.1) and mass (Table 3.2) provided

strong evidence that family origin was the most influential predictor for both eyed-egg and alevin

stages.  The overall mean oxygen consumption of transgenics was slightly higher than non-

transgenics during the eyed-cgg stage. with the trend reversing at the alevin stage. However. the

presence or absence of the transgene had effectively no predictive value at the eyed-egg and

alevin stages. Similarly. at the first-feeding stage. the transgene had no influence on oxygen

consumption (mean + S.E.: Transgenic: 0.170 + 0.004 mg O, ¢ hr': Non-transgenic: 0.164 +
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0.007 mg 0> ¢ hr'") or mass (Transgenic: 0.187 + 0.007g: Non-transgenic: 0.172 + 0.01g). All
candidate models for the oxygen consumption of first-feeding fry provided strong support for the
data. however. neither model had substantial Akaike weight (Tables 3.1 and 3.2). This reflects
the little to no relationship observed between the explanatory and response variables. Candidate
models for the mass of first-feeding fry provided strong evidence that holding tank was a strong
predictor. This likely reflects a family effect: specifically a bias for larger families in one holding

tank over the other.

3.3.2: Development
The majority of individuals (> 60 %) within cach family hatched over a three to four day
period (Figure 3.2). The proportion of transgenics that hatched was strongly influenced by both

family and hatch time (Table 3.3). such that transgenic individuals tended to hatch less than one

day (i.c. 4 degree days) carlier (mean + S.E.: Transgenic: 493.8 + 8.2 degree days: Non-
transgenic: 497.2 + 8.1 degree days). The model representing family had strong support:
however, the Akaike weight indicated this was unlikely to be the best candidate model, whereas
hatch time had virtually no support. Thus, (o some extent, the effect of transgenesis on hatch

time was dependant on family. Comparing the time to hatch of transgenic and non-transgenic

individuals within families indicated that the tendency for transgenics (o hatch earlier was strong

in some families (e.g. E. F: Figure 3.2) and weak in others (e.g. A, G).

Near emergence (i.c. the start of exogenous feeding). tr

nsgenic

levins had a slightly

& 338+ 0.27

reater amount of yolk remaining than non-transgenics (mean + S.E.: Transgenic:

mm’; Non-transgenic: 12.99 + 0.26 mm?). The amount of yolk-sac remaining was represented

figure 3

best by a model containing both family of origin and genotype (Table 3. 3). With
respect (o both mass (Transgenic: 0.148 + 0.001 g: Non-transgenic: 0.151 £ 0.002 g) and length
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(Transgenic: 25.08 £ 0.09 mm: Non-transgenic: 25.26 + (.12 mm). non-transgenic alevins were

slightly larger than the transgenics. Mass and length were also represented best by models

containing both family of origin and genotype (Table 3.4: Figure 3.3). Similar to hatch time

there was considerable variation between families such that not all followed these overall trends.

Oxygen consumption increased with size during carly ontogeny. Initial cgg dry mass

cor

lated strongly with all but one of the measured variables (Table 3.5). Positive associations

with mass-independent cgg oxygen consumption, alevin yolk arca, mass and length

near

emergence were found. In contrast. there was no correlation between initial egg dry mass and

degree days at 50% hatch. Nor were there lations between ¢ (mg Oy ¢!

2 0,
hr') and degree days of 50% hatch, alevin O consumption (mg Oy g hr''y and alevin yolk area

or degree days of 50% hatch and alevin yolk arca.

ussion
Family differences had a stronger influence on the routine metabolism and developmental

rate of Atlantic salmon during early ontogeny than did GH transgenesis (Figures 3.1. 3.3 and

3.4). Transgenesis did not affect the oxygen consumption of individuals at the eyed-embryo,
alevin (larval) or first-feeding fry (juvenile) stages. Hatching followed the characteristic pattern

observed for salmonids. where the majority of individuals (= 60%) within each family hatched

over a three or four day period (Gustafson-Marjanen and Dowse 1983) and the effect of

transgenesis was weak.  Transgenic fish hatched

than one day carlier than their non-
transgenic siblings. Conversely. near emergence. transgenic individuals contained more yolk and

were smaller in terms of both mass and length. However. the influence of genotype on all these

measures was less than that of

mily. suggesting that family of origin contributes more o the
variation of these traits than the GH transgene.
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The vulnerability of salmonid cggs to low oxygen conditions has been demonstrated
previously (Peterson and Quinn 1996: Rubin and Glimsater 1996: Einum et al. 2002). If GH

transgenesis were to affect the basal metabolic rate of Atlantic salmon eggs. there could be

survival differences during egg i ion relative to se ividuals (Alderdice et al.

undt-Hansen et al. 2007).  However. both metabolic and developmental measurements

1958: S
were similar between transgenic and non-transgenic eggs of Atlantic salmon. suggesting that the

threat of exposure to periods of hypoxia in the gravel beds would be similar.

The transition from o feeding at is i a
critical period of survival for stream salmonids (Elliott 1994: Einum and Fleming 2000: Nislow

ituation that

et al. 2004). Suitable spawning habitat can contain dense aggregations of nests.
results in density-dependant competition among emerging fry for foraging territories (Einum and
Nislow 2005: Einum et al. 2008). Body size at emergence and timing of emergence are thought
1o be important determinants of survival during this period. Larger fish tend to win laboratory-
based contests against smaller fish, and this has been shown to carry over in the performance of
individuals in wild release experiments (Johnsson 1993: Rhodes and Quinn 1998: Einum and
Fleming 2000). However. the advantages and disadvantages of emerging early or late, relative to
the rest of the population. are likely dependant on local environmental conditions. — Farly
emergence may provide the beneficial opportunity to establish prime foraging territories (prior
residency). and perhaps. an additional chance to grow (Cutts et al. 1999: O'Connor et al. 2000:
Johnsson and Forser 2002). Conversely. environmental stressors such as temporal variation in

fics provide possible selective

predation pressure, food resources and suitable habitat character

pressures against carly emergence (Brannas 1995: Jensen and Johnsen 1999: Nislow et al. 2000)

Thus. transgenc-induced changes in body size at emergence and/or the timing of emergence. in
£ Y B g 2

cither direction. have the potential to influence the fitness of the transgene in nature
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hile consistent differences were observed in the yolk area, mass and length measures

clos

between transgenic and non-transgenic alevins close to emergence, such small differences may

not have large effects on relative fitness at emergence. More importantly, family of origin was
responsible for more variation in alevin characteristics than was the transgene.  From a

population perspective, the most dominant trait influencing emergence time may be spawning

time (Brannon 1987 Heggberget 1988: Fleming 1996). 1f we are to assume the transgene does
not influence female spawn time then the key traits influencing fitness at emergence are the rate

of development (emergence time) and size at emergence. In the current study. non-transgenic

alevins contained less yolk reserves and were slightly larger near emergence, suggesting that

transgenic Atlantic salmon may be competitively disadvantaged at the onset of first-feeding.

However, the differences in the mean value of these three measurements between transgenic and

non-transgenic individuals were less than 5%. Stream-dwelling salmonid fry have demonstrated
considerable variation in the amount of yolk remaining at emergence (De Leaniz et al. 2000:

Skoglund and Barlaup 2006). Thus. the small differences observed in yolk reserves between

transgenies and non-transgenics suggest that emergence time would be similar, unless the

transgene affects the emergence behaviour of yolk-sac fry. Previous studics assessing the effect

of emergence time on performance in the wild have found that early emergence provides a

competitive advantage. Such studies. however, have either compared individuals with substantial

differences in emergence time (5.6 days: Einum and Fleming 2000) or the early emerging group

had a confounding. albeit natural. size advantage (Nislow et al. 2004). The body size differences

detected in the current study. using photo imaging sofiware capable of measuring small

differences. may be so small as to not influence contests for foraging territories in stream

salmonids as suggested by previous behavioural experiments (Johnsson et al. 1999 Metcalfe et

al. 2003: Moreau e 2011). Thus. the high levels of family variation combined with the small
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transgene-induced differences in characteristics of emerging alevin siblings suggest that

may not have a consi influence on fitness at first-feeding.
The similarity in metabolic and developmental rate measures of GH transgenic and non-
transgenic Atlantic salmon siblings™ contrast with observations made with GH transgenic coho
salmon during early ontogeny. GH transgenic coho salmon have been shown to experience
increased mortality under hypoxic conditions (Sundi-Hansen et al. 2007). hatch 2-3 days carlier
(Devlin et al. 2004a; Lohmus et al. 2010) and emerge from the gravel 12 weeks carlier
(Sundstrom et al. 2005; Lohmus et al. 2010). An increased sensitivity to hypoxic conditions

s observed in older GH

suggests higher basal metabolic rates (Metcalfe et al. 1995), ansgenic

salmonids (Cook et al. 2000; Deitch et al. 2006). A higher metabolic rate during early ontogeny

may speed the mobilisation of yolk-sac reserves to body tissues and/or for maintenance processes

(Metcalfe et al. 1995) and is thus a plausible explanation for observations of advanced

pment 1o first-feeding and greater susceptibility of eyed eggs to low oxygen conditions in

nic coho salmon carrying the ONMTGHI gene construct. However. the current study

has shown the opAFP-GHe2 gene construct (EO-lu line) has little to no phenotypic effect on pre-

emergent Atlantic salmon. This suggests there are ecologically important phenotypic differences

between two GH transgenic lines during a critical period of survival.

Elevated respiratory metabolism has been shown to correlate with fast growth (Metcalfe

et al. 1995: Yamamoto et al. 1998), f g-induced ion and i (Cutts et al.
1998: Cutts et al. 2001: McCarthy 2001: Lahti et al. 2002) in juvenile salmon. In addition. it is
hypothesized that higher basal metabolic rates concomitantly increase energy requirements that

are addressed by a suite of compensatory behavioural changes toward greater foraging motivation

and risk taking actions (Cutts et al. 2002: Biro et al. 2006: C u et al. 2008). GH transgenic

as fir

coho salmon juveniles. from as young feeding have shown changes in behaviour and
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performance that are consistent with this hypothesis (Devlin et al. 2004b: Sundstrom et al. 2004).

he current study is the first to measure the respiratory metabolism of GH transgenic salmon fry
at first-feeding and we find no effect of transgenesis on the metabolic rate of fry up to one month
following emergence. Our results support the findings of a study conducted concurrently. where
Moreau et al. (2011) observed no differences in the competitive ability or survival of first-feeding
GH transgenic and non-transgenic Atlantic salmon fry reared in low feed. near-natural stream
environments.  Collectively. our work with GH transgenic Atlantic salmon indicates a delay in
the phenotypic expression of the transgene. suggesting that fitness may not be affected during
this critical period of early ontogeny. Previous measurements on GH transgenic Atlantic salmon

arr (> 2 months posi-emergence) have demonstrated elevated routine metabolic rates that are

consistent with shifts in behaviour and performance relative to the non-transgenics (Stevens et al.

1998: Abrahams and Sutterlin 1999). We have observed changes in growth prior to this time

(personal observations). The absence of an effect during this most critical period of survival.
however. suggests that the early recruitment of transgenic parr may be similar to that of non-
transgenic individuals in the wild.

T'he relationships between metabolic rate. size and development. while based on a small
sample of families. are consistent with the patterns observed in previous studies.  Oxygen
consumption increased with size in eyed-eggs: however. did not correlate with any measures of

development (hatch time and alevin yolk area). Morcover, hatch time was unrelated to egg mass

and alevin yolk area near emergence. These relationships. or lack thereof. are consistent with
previous studies (Einum and Fleming 1999; Einum et al. 2002: Valdimarsson et al. 2002:
Pakkasmaa et al. 2006).

In the current study. we controlled for genctic background by comparing transgenic and

non-transgenic full siblings such that we accounted for intra-population variation in the traits
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measured. We found that family of origin explained considerably more trait variation than did
transgenesis. Pakkasmaa et al. (2006) found a similarly strong family effect on the metabolic rate
of Arctic charr (Salvelinus alpinus) eyed-cges. This suggests that selection acting upon the GH

transgene during carly life history may be overshadowed by selection acting at the family level.

This finding is relevant to ing the potential implicati of the offspring of GH

transgenic Atlantic salmon escapees.  Firstly. it suggests that there may not be a set of

nvi itions that differentially affect the fitness of the transgene during carly life
history. because any fitness effect would be less than that acting on trait variation due to other

parental effects. Secondly. as transgenic invasions would most often occur in systems with

di

ferent background strains, any fitness differences during carly life history may represent
differences in background genotype more so than differences due to transgenesis. Thus. the
strong effect of family contributes to the uncertainty in predicting the fate of the transgene in

nature.
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Table 3.1.  Candidate models (ANOVA) describing the effects of family origin and growth
hormone transgenesis on the routine oxygen consumption (mg O» g™ hr'; response variable) of
Atlantic salmon (Salmo salar) at three stages of early life history. & represents the number of
predictors in each model. Model fit is represented by comparing AAIC: and Akaike weights
(w). AAIC, refers to the change in AIC. between one model and the model with lowest AIC,
score and w; refers to the probability that the focal model provides the best representation of the
data relative to the other candidate models following repeated analyses (w; sum to 1.0). Both
fixed and mixed models are presented because a single selection criterion was inappropriate
Interpretation is based predominately on the mixed models. with fixed effects models used for
inferences about the fixed effect variable (genotype).

Model Type Explanatory Variables Kk AIC. NAIC, w

Egg Respirometry

Mixed effects Genotype nested within Family 3 -381.25 0 0.7

Mixed effects Family 237981 144 033

Fixed effects Genotype nested within Family 3 -387.16 0 0.70

Fixed effects Family 238499 206 024
ixed effects Genotype 2 -38225 4.90  0.06

Alevin Respirometry

Mixed effects Genotype nested within Family 3 -208.60 072 0.41
Mixed effects Family 220030 0 059
Fixed effects Genotype nested within Family 355 0.4
Family 0 084
Genotype 801 002
Fry Respirometry
Fixed effects Tank and Genotype 3 003 035
Fixed effects Tank 2415550 0 036
Fixed effects Genotype 2 039029
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Candidate models (ANOVA) describing the effects of family origin and growth
hormone transgenesis on the mass (mg: response variable) of Atlantic salmon (Salmo salar) at
three stages of early life history. & represents the number of predictors in each model. Model fit
is represented by comparing AAIC, and Akaike weights (w). AAIC, refers to the change in
 between one model and the model with lowest AIC. score and w; refers to the probability
that the focal model provides the best representation of the data relative to the othey
models following repeated analyses (w; sum to 1.0). Both fixed and mixed models
because a single selection criterion was inapprof is based

the mixed models. with fixed effects models used for inferences about the fixed effect variable
(genotype).

Table

Model Type Explanatory Variables k AIC. NAIC, w
Egg Respirometry

Mixed eff Genotype nested within Family 3 245 023
Mixed effects Family 2 0 0.77
Fixed effects Genotype nested within Family 3 -283.90 0.32
Fixed effects Family 2 28540 0.68
Fixed effects Genotype 220270 0

Alevin Respirometry

40 313 017
60 0 083

Genotype nested within Family 3
Family

Genotype nested within Family 3 -264.06 536 0.06
Family 2026943 0 094
Fixed effects Genotype 221613 5330 0

Fry Respirometry

Tank and Genotype
k
Fixed effects Genotype

052 044
) 0.56
,||774) 13.48 0

P
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Table 3.3.  Candidate models (binomial logistic regression) describing the effects of family
origin and growth hormone transgenesis on the hatch time of Atlantic salmon (Salmo salar). The
response variable represents the proportion of hatched individuals carrying the transgene. &
represents the number of predictors in cach model. Model fit is represented by comparing AAIC
and Akaike weights (w;). AJAIC refers to the change in AIC between one model and the model
with lowest AIC score and w; refers to the probability that the focal model provides the best
representation of the data relative to the other candidate models following repeated analyses (w;
sum to 1.0). Both fixed and mixed models are presented because a single selection criterion was
inappropriate. Interpretation is based predominately on the mixed models. with fixed effects
models used for inferences about the fixed effect variable (genotype).

Model Type  Explanatory Variables & AIC AAIC  w;

Hatch Time

Degree days and Family 3 124.11 0.82

Family 2 12715 0.18

Fixed effects  Degree days and Family 3 25693 0 0.96

Fixed effects ~ Family 2 26341 648  0.04
2 26793 11.00 0

Fixed effects  Degree Days
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Table 3.4, Candidate models (ANOVA) describing the effects of family origin and growth
hormone transgenesis on alevin physical characteristics [response variables: yolk-sac arca (mm?).
mass (g). and length (mm)] of Atlantic salmon {Sstwo sulavs, represents the number of
predictors in cach model. Model fit is represented by comparing AAIC and Akaike weights ().
AJAIC refers to the change in AIC between one model and the model with lowest AIC score and
w; refers to the probability that the focal model provides the best representation of the data
relative to the other candidate models following repeated analyses (w; sum to 1.0). Both fixed
and mixed models are presented because a single selection criterion was  inappropriate.
Interpretation is based predominately on the mixed models. with fixed effects models used for
inferences about the fixed effect variable (genotype).

Model Type  Explanatory Variables kK AIC AAIC

Yolk-sac Area

Mixed effects ~ Genotype nested within Family 3 1056.42 0 0.90
Mixed e s Family 2 106083 441 0.10
Genotype nested within Family 3 102475 0 0.74
Fixed effects — Family 2102682 208 026
Fixed effects  Genotype 2143945 41471 0

Mass
Genotype nested within Family 3 0 099
Family 2 880 0.01
Genotype nested within Family 3 -2 0 099
Family 2 22462 901 001
Genotype 24160521 64852 0

Length

Mixed eff Genotype nested within Family 3 57820 0 088

Mixed effects mily 2 58217 397 012
55737 230 024
555.07 0 0.76
794.06 23899 0

Genotype nested within Family
Family
Fixed effects  Genotype
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Table 3.5. Pearson’s product-moment correlations performed using family-level means to
explore associations between egg charact of ic and ic Atlantic
salmon (Salmo salar). Egg characteristics included initial dry mass (Meg,). degree days at 50%
hatch (ddse,) and mass-i oxygen fon (eggMO, . mg O, hr'). and alevin
characteristics near emergence. including yolk arca (A, ). wet mass (Myevin) and length (Lyeun).

Variables Genotype 0o 95% C.I. Pvalue
Mg vs. ddsoe, Transgenic 8 017 -051<r<1 0.340
Non-transgenic 8 0.16 -0.52< r<l 0.350
Mege vs. eggMO;,, Transgenic 6 082 00257098 0054
Non-transgenic 6 0.90 031 < r<0.99 0.016
Mege VS, Ayl Transgenic 8 090  063<r<l 0001
Non-transgeni 0.85  048< <1 0.004
Mege VS, Matevin Tran 8088 0.002
Non-transgenic 8 0.88 0.002
Mege V8. Latevin Transgenic 8 088 0.002
Non-transgenic 8 0.94 0.000
ceMO, vs. ddsr,  Transgenic 6 041 0.79
Non-transgenic 6 0.49 0.84
alevinMO, vs. Ay Transgenic 302097 n/a" 0.06
Non-transgenic 3 -0.66 wa' 0.27
Transgenic 8 006 -052<r<1 035

Non-transgenic 8 023 -0.46< r=1 0.29

Sample size was not large enough to generate confidence intervals
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Figure 3.1. The mean (+S.E.) routine oxygen consumption (mg O» ¢ hr') of transgenic and
non-transgenic Atlantic salmon (Salmo salar) cyed-cgg and alevin full siblings. Transgenic and
non-transgenic mean values within families are represented by black and white circles.
respectively. The short and long dashed lines represent the overall transgenic and non-transgenic
means. respectively
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Figure 3.2. The time of hatch (degree days) of full-sibling transgenic and genic Atlantic

salmon (Salmo salar) from cight familics. These data are represented as cumulative proportions
of approximately 100 individuals per family.
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Figure 3.3. Mean (£8.E.) yolk surface area (mm’). mass (g). and fork length (mm) of transgenic
and non-transgenic Atlantic salmon (Salmo salar) alevins near emergence
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Chapter 4

Reproductive performance of alternative male phenotypes of growth hormone

transgenic Atlantic salmon (Salmo salar)
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Abstract

Growth hormone (GH) transgenic Atlantic salmon (Salmo salar) are one of the fi

transgenic animals being considered for commercial farming. yet ecological and genetic concerns
remain should they enter the wild and interact reproductively with wild fish. Here we provide the

first empirical data reporting on the breeding performance of GH transgenic Atlantic salmon

males. including that of an male rep ive phenotype (. small. precocially

mature parr). in pair-wise competitive trials within a ised stream mesocosm.  Wild

anadromous (i.c. large, migratory) males outperformed

in terms of nest fidelity. quivering frequency and spawn participation.  Similarly. despite

displaying less ager

sion, captively-reared non-transgenic mature parr were ~superior
competitors to transgenic counterparts in terms of nest fidelity and spawn participation
Moreover. non-transgenic parr had higher overall fertilisation success than transgenic parr and
their offspring were represented in more spawning trials. Although transgenic males displayed

reduced breeding performance relative to non-transgenics, both male reproductive phenotypes

the ability to 1 in natural spawning events and thus, the potential to

contribute genes o subsequent generations.
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Growth-enhancil ic bi gies have attracted consi interest from

the global aquaculture industry, particularly with regards to Atlantic salmon. However, similar (o

domesticated strains, concerns have been raised regarding the ecological and genetic effects that

may arise i these organisms were to enter the wild (Kapuscinski and Hallerman 1991: Devlin et

al. 2006; Kapuscinski et al. 2007). A principal concern involves the potential genetic impacts of

fertile isms i ing with wild fons into which their genes may
introgress. For example, risk models indicate that Trojan gene effects may oceur. whereby the
transgene spreads by enhanced mating advantage but the resulting offspring have reduced

and Howard 1999. 2002:

viability. which leads to the eventual extinction of populations (Mui
Howard et al. 2004). However. there has yet to be any empirical rescarch documenting the
ability of growth hormone (GH) transgenic Atlantic salmon to breed naturally and introgress with
wild populations. Moreover. there is little understanding of the role that alternative reproductive
phenotypes may play in such introgression.

The breeding system of Atlantic salmon exhibits two alternative male reproductive

phenotypes. large anadromous adults that have migrated 1o sea and returned to their natal

ms. and small precocial parr that have matured in freshwater, having never been to sea.

adromous males develop specialized secondary sexual characters to fight other males and

court fora

ess 1o ovipositing females, while precocial parr mature. at a fraction of the size of the
anadromous phenotype. use their small size and cryptic colouration to sncak fertilisations
(reviewed in Fleming 1996).  Both male reproductive phenotypes may form dominance

aggressive behavioural

hicrarchies among themselves for access to spawning females throu

interactions. While the fertilisation success of anadromous males is typically greater than that of

mature parr. reports of precocial parr fertilization rates have ranged from 11-65% of the available

(AR



cogs (reviewed in Fleming and Reynolds 2004). Thus. both male reproductive phenotypes can
contribute substantially to the next generation and represent potential routes for the introduction

of transgenes into wild populatior

The extent of transgene introgression into wild populations would depend on the fitness
of transgenic individuals in the receiving environment, which may vary along a continuum

h fitness. leading to the fixation of the transgene. at one end and low fitness. leading

featuring h

o its elimination within a few generations. at the other (Muir and Howard 1999, 2002). Perhaps
more commonly. however, the fitness of transgenic organisms would lie between these poles and
depression scenario where transgene-induced maladaptive

create, for example, an outbreedir

traits pose a threat (o the viability of the entire receiving population (Hedrick 2001).

This. ion scenario is ive of the concerns associated with

wild salmonid populations exposed to strains that have experienced domestication selection
(McGinnity et al. 2003: Tymchuk et al. 2007: Fraser et al. 2008). In Atlantic salmon.
anadromous adults from aquaculture strains (farmed) exhibit atypical spawning behaviour.
including reductions in aggressive displays toward other males. quivering and nest fidelity. which
may contribute to observations of reduced reproductive success (Fleming 1996: Fleming et al

2000: Weir et al. 2004). In contrast. studies exploring the relative reproductive behaviour and

success of mature farmed and wild parr have found that farmed parr perform similarly to or better
than wild parr (Garant et al. 2003; Weir et al. 2005). Regardless of the relative spawning success

of farmed and wild males. both reproductive phenotypes have demonstrated the potential for the

introgression of farmed genes into wild populations and the disruption of locally adapted
phenotypic traits (Hindar et al. 2006; Garcia de Leaniz et al. 2007 Fraser et al. 2010).
Comparisons of reproductive performance between growth hormone (GH) transgenic and

non-transgenic salmonids are limited.  Similar to observations with farmed adults. previous
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efforts have reported reduced reproductive performance in hatchery-reared transgenic relative to

wild coho salmon (Oncorhynchus kisutch: Bessey et al. 2004: Fitzpatrick et al. 2011). While
these results represent the expectations of a first generation transgenic escapee scenario. GH
transgenic Atlantic and coho salmon represent two species carrying two unique transgene

constructs with two distinct life histories (e.g. rarely do coho salmon mature precocially as parr:

Fleming 1998). For example. previous work has demonsirated differences in the onset of

trans duced pi between the two species. which may have important
implications for early survival (Sundstrom et al. 2004. 2005: Lohmus et al. 2010: Moreau et al.
2011). Potentially more important are the distinct differences in reproductive phenotypes that
may have important implications for introgression (Valosaari et al. 2008). as seen in the
reproductive performance differences between anadromous and mature parr Atlantic salmon
males of farmed origin (Fleming 1996: Fleming et al. 2000: Garant et al. 2003: Weir et al. 2005).

The aim of this study was to compare the breeding performance of growth hormone

transgenic and non-transgenic Atlantic salmon males of both alternative reproductive phenotypes
{0 test for the potential of the transgene to introgress into wild populations. We conducted two
separate experiments in a naturalised stream mesocosm. First. to assess the ability of  first-

generation, farmed  transgenic males to contribute reproductively. the breeding behaviour and

participation of captively-reared, anadromous iransgenic males (approximating farmed fish) were

observed in pair-wise competitive trials with wild males. as well as alone with wild females.

Second. to assess the ability of transgenic fish to contribute reproductively as precocial par. the

breeding behaviour, performance and reproductive success of captively-reared, transgenic and

non-transgenic precocial parr were compared in pair-wise competitive trials.



4.2: Methods
4.2.1: Experimental Fish

In 1989, a transgene construct consisting of growth hormone cDNA  from Chinook

salmon, Oncorhynchus ishawyischa (Walbaum), and an ocean pout, Macrozoarces americanus

antifreeze protein gene promoter (opAFP-GHe2) was inserted into the genome of wild
Atlantic salmon collected from the Exploits and Colinet Rivers. Newfoundland. Canada (Du et al.

1992). A stable transgenic line was created (EO-la: Yaskowiak et al. 2006) and has since been

cultured at the Ocean Sciences Centre (OSC), Memorial University of Newfoundland. The
competitive breeding trials between transgenic and wild anadromous salmon were conducted in

2006 and involved fifth and sixth generation anadromous males from this

captive transgenic line.
Wild anadromous males and females for these trials were collected from the Exploits River
(48'55'N. 55°40'W). Newfoundland, Canada, in September of that year and transferred o the
OSC. Parr. both mature and immature individuals. were also included in the 2006 trials to
simulate the natural structure of the breeding system. They were derived from eight single pair
crosses produced in the fall of 2004 that involved wild. Exploits River salmon. with the
subsequent offspring captively-reared to the parr stage at the OSC.

The competitive breeding trials to assess the ability of transgenic relative to non-

transgenic fish to contribute reproductively as precocial parr were undertaken in 2007, The
mature transgenic parr were age 0+, having been produced in the fall of 2006 by cight single pair
crosses between St. John River (aquaculture strain) males, hemizygous for the EO-la transgenc.
and wild Exploits River females. True to Mendelian inheritance patterns. crosses of hemizygous
10 wild-type individuals result in ca. half the offspring inheriting the GH transgen (Shears et al

1992). Due to the tremendous growth induced by transgenesis. it is difficult to compare size and

age matched transgenic and sgenic indivi . Therefore. to reduce these potential
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sources of variation. half of the mature non-transgenic parr used in the trials were 0+ offspring

from the above 2006 crosses and the other half were 1+ offspring from S single pair crosses in

2005 of wild, Exploits River parents. To facilitate natural breeding and competitive interactions.
anadromous females and males. collected from the Exploits River during September 2007 were

transferred to the OSC and used in the trials.

Prior to both the anadromous and parr competition experiments. all animals were housed

in fibreglass tanks under a natural photoperiod and fed a standard salmonid dry feed (Corey Feed

Mills, Fredericton, NB. Canada) ad libitum. 3-5 times weekly. Feeding of the anadromous

transgenic fish ceased in carly fall, preceding the breeding season (wild anadromous fish captured

in carly fall were not fed). Parr continued to be fed until they were introduced into the breeding

trials.  Prior to experi fon. all potential transgeni iduals were screened using the
polymerase chain reaction (PCR) amplification protocol described in Deitch et al. (2006). To

d 10 a low-

facilitate night behavioural observations in the breeding trails. the fish were expos

light regime with standard facility light installations. All and tagging 1

were performed under mild anaesthesia (MS-222. Western Chemical Inc.. Ferndale, USA) and

fish were treated in accordance with the guidelines provided by the Canadian Council on Animal

Care and with the approval of Memorial University’s Institutional Animal Care Committee.
4.2.2: Experimental Design

A fully contained stream mesocosm was constructed out of a large. indoor concrete
raceway and used for the competitive breeding trials (Figure 4.1). To divide the mesocosm into
two replicate breeding channels (125 m » 7.8 m * 0.25 m). a fibreglass partition was placed
along the centre of the mesocosm and screens of plastic mesh fencing. framed with PVC pipe.

were installed at cach end. Twao external pumps (1.5 hp. Dynamo®. Pentair Water Pool and Spa.
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Inc.. Sanford. NC, USA) were placed at opposite ends of the mesocosm to generate a

unidirectional. circulating current (mean + SE: 22.3 £ 0.24 cm/s). The bottom of the mesocosm

40 cm deep) and large rocks (20-30 em diameter)

was covered with cobble (~5-10 ¢cm diametes

1o naturalise the breeding channels and provide the salmon with nest substrate.

Anadromous Male Experiments

The behaviour of anadromous transgenic and non-transgenic males was compared during
pair-wise competitive breeding trials between 18 November — 16 December 2006. Fach trial
consisted of a single female, a focal pair of anadromous males and a complement of parr (5
mature males and 10 immature) to naturalise the mesocosm with respect to the Atlantic salmon
breeding system. Six weeks prior to the onset of experimentation, fork length (cm) and mass (g)
measurements were recorded for all anadromous males and females. It was not possible to size-

between the

match i males due to ial size di
and non-transgenic fish (Table 4.1).  To allow for individual identification. anadromous fish

were marked with uniquely coded Petersen disc tags (3.4 em diameter: Floy Tag and

cattle. WA. USA) just below the dorsal fin.

Manufacturing

Each breeding trial (n=11) consisted of two phases: the competitive and non-competitive
phases. The competitive phase included both the anadromous transgenic (n=11) and non-
transgenic (n=11) males competing directly for breeding opportunities with the female. To

separate the effects of courting and mate choice from intersexual competition on breeding

se involved providing cach of the transgenic (n=8) and

performance, the non-competitive pha

non-transgenic (n=6) males sole access to the female. The order by which each of the two males

10 the female was alternated among trials. Each trial phase consisted of 1

had sole acces

spawning events (a female will spawn 3-8 times typically. depending on her size: Fleming 1996)
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However, to standardize among trials, a maximum of two spawns per phase were included in the
behavioural analyses. The duration of cach phase was dependent on the spawning behaviour of

the individuals.

with a phase being terminated following two confirmed spawning events. In
cases where no spawning oceurred (n=4: all transgenic males in the absence of competition). a

maximum duration of 36 hours was applied to cach phase.

Precocious Male Parr Experiments
The behaviour of transgenic and non-transgenic precocious male parr were compared in

pair-wise competitive breeding trials (n=11) between 15 November — 22 December 2007. Each

trial consisted of an anadromous male and female pair. a focal pair of mature male parr and 4

immature parr (2 transgenic and 2 non-transgenic). In most cases, it was not possible to size-

match competing mature parr due to ial size diff between transgenic and non-

transgenic parr (Table 4.1).

ch breeding trial consisted of 1-4 spawning events. however. a
maximum of the first two spawns per trial (referred to subscquently as spawn A or spawn B)
were included in the behavioural analyses. Similar to the 2006 experiments. the anadromous fish
were measured for fork length (cm) and mass (g). and tagged with uniquely coded Petersen disc

tags. all of which was completed three weeks prior to the experiments. The parr to be used in the

experiments were cither tagged with a passive integrated transponder (PIT: model RI-TRP-
WRHP: Texas Instruments Inc.. Dallas. TX. USA: 23.1 x 3.9 mm and 0.6 g) or marked using
Inc

visible implant elastomer (Northwest Marine Technolog; Shaw Island. WA. USA) six

weeks prior to the experiment. PIT tags were inserted into the body cavity through a small.
ventral incision made anterior to the pelvic girdle. which was closed with a single suture using
surgical thread. For parr deemed too small for a PIT tag (i.c. < 10 em). elastomer was injected

ventrally. just under the skin with a fine needle to provide a small, unique mark. Just prior to the
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beginning of each trial. the fork length (cm) and mass (g) of the experimental parr were
measured. Adipose fin clips were collected following the trials for all fish involved and placed in

1.5 ml microcentrifuge tubes containing 99% ethanol and stored in a -20°C freezer.

3 h following cach spawning event, the trial was tempora

Between Iy disrupted (o

collect the eggs laid for subsequent parentage analyses. Eggs were excavated from the gravel

with the aid of a suction system based on the venturi effect and then counted. transferred into
spawn-specific plastic mesh baskets and reared in Heath incubation trays. The effect of these
disruptions appeared to be limited to the lateney of breeding behaviour resumption, which ranged

from 15 minutes to 3 hours.

4.2.3: Behavioural Observations
For the anadromous male experiments, breeding behaviour was monitored 24 h per day

using a combination of live and recorded video observations. The video monitoring system

included two overhead surveillance cameras. equipped with remote pan. tilt and zoom
capabilities that recorded directly to a computer. and underwater cameras (SEA-CAM: Borel
Manufacturing Inc.. Alameda, CA. USA) positioned near female nest sites that recorded directly

to individual HDD/DVD recorders.  Each spawn was monitored with one overhead and 2-3

underwater cameras, simultancously.

During the anadromous male experiments. behavioural data were collected for 60 min

before (pre-spawn) and 30 min afier (post-spawn) each spawning event. For trial phases where

ed. observations were conducted for 5 min intervals every 30 min for

no spawning event oceur

the duration of the phase (i.c. a total of 360 min of observation time). The behaviours recorded

included. nest fidelity. anadromous male-male aggression. quivering and spawn participation

(Table 4.2).



For the precocious male parr experiments, breeding behaviour was also monitored 24 h
per day. A PIT tag detection system was used in addition to live and recorded video observations
from 3-4 underwater cameras stationed around the nest site. The PIT tag detection system
monitored presence/absence and time data on parr around the nest site (Armstrong et al. 2001)
and was designed in a manner similar to that detailed in Roussel et al. (2000). Each unit (n=2)
consisted of a double gate loop antenna (100cm diameter) that was positioned so as to encircle an

individual nest site of a spawning female. The antennae was connected to a PIT tag reader (model

Series 2000: RI-CTL-MB2A: Texas Instruments Inc. Dallas. TX. USA) powered by a 12V
battery. Data were input into a palmtop computer (Dell™ Axim™ X5 1. Round Rock. TX. USA)
with a custom-designed software program (Roussel et al. 2000). Both cameras and PIT tag
systems were positioned at nest sites shortly following female nest site selection (as indicated by
the female’s consistent digging at a focal site).

Based on observations d d

during the male experiments, parr

behavioural data collection and analyses were adjusted to capture perceived differences between

the two rep ive phenotypes. As such. oural data were collected over a continuous 75
minute period. 52.5 minutes before and 22.5 minutes after cach spawning event. For analysis.
these data were segregated into three time periods including the spawn period (12.5 minutes
before and afier the spawning event). the pre-spawn period (40 minutes prior o the spawn

period) and the post-spawn period (10 minutes immediately after the spawn period). Behaviours

recorded included. nest fidelity. parr-parr aggression. and spawn participation (Table 4.2).

4.2.4: Parentage Analyses

Parentage analyses were conducted exclusively for the mature parr experiments because

the i results from the male experiments made it unnecessary 10 assess
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breeding success at the genetic level (see results, page 138). Shortly following hatching. a

tubes with 99%

subsample of offspring from cach spawn was placed in 1.5 ml microcentrifi

ethanol and stored in a -20°C freezer. A total of 32 alevins were sampled from each spawn.
unless fewer had survived. Parentage analyses were conducted on individuals from all 11 trials.
with representation ranging from 1-4 spawns per trial. 27-119 eggs per trial and 13-32 eggs per
spawn for a total of 715 eggs.

Microsatellite analyses were conducted at 3 highly polymorphic. tetranucleotide loci usir

primer sequences developed specifically for Atlantic salmon (S5a202. O'Reilly et al. 1996;

SS5p2215.

5yp2216. Paterson et al. 2004). The DNA of potential parents and offspring were
extracted and purified using the Wizard® SV 96 Genomic DNA Purification System (Promega
Corp. Madison. WI. USA), following the protocol provided by the manufacturer. PCR
amplifications were performed in 10 pl solutions. containing 2-10 ng of sample DNA template.
0.2 mM of cach dNTP. 0.5 uM of each of the labelled and unlabelled primers. 1* KCI buffer
(10mM Tris-HCI, pH 8.3). 2.5 mM MgClyand 0.5 U of Tag DNA polymerase. Thermal eyclers
(model 2720, Applied Biosystems™. Foster City. CA. USA) were programmed under the
following regime: (94°C for 2 min)* 1. (94°C for 45 sec, 58°C for 45 sec, 72°C for | min)*35,
(72°C for 15 min)* 1. and finished with a 4°C hold. Subsequent to DNA amplification. the PCR
products representing different primer sets from like samples were combined and purified using
the MiniElute® 96 UF PCR Purification method (Qiagen Inc.. Hilden, NRW. Germany).

following  the e *s protocol i

fragments were then separated and
visualised with an Applicd Biosystems™ 3130 Genetic Analyzer and the accompanying
GeneMapper® 4.0 software (Applied Biosystems™. Foster City. CA. USA) Two known

reference samples were used as standards and run on each plate to monitor for allele size shifts

and function as an internal plate indi
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Given that each spawn involved a single female and 3 potential males. we used an allele
exclusion-based approach to assign parentage. where potential parents arc climinated on the
basis of Mendelian inheritance patterns at primer loci (O'Reilly et al. 1998). Specifically.
offspring genotypes were compared 1o all potential parental genotype combinations from all
breeding trials. using a custom-designed Microsofi® Excel exclusion macro. In cases where

multiple parental crosses shared the most complete genotypic match (allelic match at two or

three loci) 1o an offspring. assignment was assumed to the parental cross representing the
particular trial and spawn corresponding to that offspring. In no circumstance did two parental

crosses from the same trial and spawn share the most complete genotypic match. Moreover. all

offspring were successfully assigned to a parental cross corresponding 1o the trial and spawn

from which they were collected. All exclusion-b:

were with the

likelihood-based assignments produced using Cervus 3.0.3 (Field Genetics Ltd.. London. UK).

Statistical Analyses

For the anadromous male experiment, nest fidelity was modelled as a binomial logistic

regression (LRy) with trial and genotype ic or ) as explanatory variables.

Pre-spawn and spawn periods were analy

d separately for the competitive phase. however. all
periods were summed during the non-competitive phase to allow for the comparison of the two
genotypes because half of the transgenic males failed to spawn. Spawn participation was also
modelled as a binomial logistic regression with explanatory variables that included genotype and

phase. Quivering count data from pre-spawn and spawn periods were summed. as there were no

differences between the periods. and a logistie regre:

sion with poisson error (LR;) was fit. where

genotype. phase and trial served as explanatory variables. For simi

ar reasons. overt aggression

count data were summed across spawn periods and phases and analysed with the Wilcoxon
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signed rank test with continuity correction. In cases where data were available for multiple
spawns within a phase. the mean value of the behavioural measure was used for analyses. All

observations were standardised with respect to observation time.

imilar statistical models to those used for the competitive phase of the anadromous male

experiments were used for analogous behavioural data in the mature parr experiments. Spawn

identity (spawn A or B) was used in an analogous fashion (o experimental phase in the

of male fertil

anadromous male experiments. For analys

sation success in the parr experiments,

the number of eggs fathered by cither the male. ic parr or

parr from cach trial was summed across spawns and tested using two approaches.

irst. a series

of Wilcoxon signed rank tests were used to compare the relative fertilisation success between all

three male types. Second, the overall proportions of offspring fertilized by transgenic and non-
transgenic parr across all trials was compared by a two sample test of binomial proportions.

Any over-dispersed data were accounted for by applying an empirical scale parameter by
specifying cither quasi-likelihood binomial or poisson errors in the model. All data were

analyzed using the R statistical software application (version: R-2.10.1: hitp:/swvww.r-

project.org) following a hypothesis testing approach.  Statistical significance was measured at a

5% alpha level of type | error.

4.3: Results

4.3.1: Anadromous Males

The captive-rearcd, transgenic males were significantly larger than the wild. non-

transgenic males in terms of both ms

S 0= 6.03. P < 0.001) and

(Table 4.1: paired t-t
length (paired t-test: o= 5.14, P < 0.001). Despite a clear size advantage for transgenic males.

there were no differences in the frequency of overt aggressive behaviours relative to non-
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transgenic males (Figure 4.2A: Wilcoxon signed rank test: Vi o= 34.20. P = 0.057). However.

males a competitive advantage over transgenic males in all other
breeding behaviours measured. In the presence of competition. non-transgenic males spent
significantly more time at the nest with the females (nest fidelity) than did transgenic males
during both the pre-spawn and post-spawn periods (Table 4.3). Non-transgenic males also had
higher nest fidelity than transgenic males in the absence of competition: although the difference

was much less. Moreover, unlike both the pre-spawn (LRy: 7° = 0.40, P = 1) and post-spawn

(LRy: ¢ = 6.79. P = 0.731) periods of direct competition. there was a significant trial effect on

nest fidelity (LRy: 7~ = 20.56. P < 0.001) in the absence of competition. indicative of the high

variation in behaviour observed.

he quivering frequency of non-transgenic males was greater

than that of transgenic males (LR: o = 41.45. P < 0.001): with no effect of competition (Figure

272 = 1.00. P = 0.606) or trial (LRy: = 1

63, P =0.111). Furthermore, non-transgenic

males participated in more spawning events than transgenic males regardless of the presence or

absence of competition (Figure 4.3; LRy: 7= 22.60. P < 0.001).
4.3.2: Precocious Male Parr
In trials involving 1+ non-transgenic and 0+ transgenic parr. there were no significant

differences in mass (paired t-test: t; 5= -1.37. P=0.231) and length (paired t-test: t; 5= -1.63. P =

0.163) between the two groups (Table 4.1). However, in trials where both parr types were

0+, the ic parr were y larger than the genic parr in terms of both

5. P = 0.006) and length (paired t-te;

mass (paired (-1 s =347, P = 0.026),

St 4 4=
Similarly. when age is ignored and the above data are analysed collectively. the transgenic parr

were significantly larger than the ansgenic parr in terms of both mass (paired (-test: 11 1~ -

3.42. P < 0.001) and length (paired t-test: t; 1o = -3.26, P < 0.001). There were no significant
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diffe

ences in behaviour between trials involving 0+ and 1+ non-transgenic parr. thus these were

combined fc

r subsequent analyses. Transgenic parr performed more overt aggressive behaviours

than non-transgenic parr (Figure 4.2; Wilcoxon signed rank test: Vy 1o = 26.5. P = 0.042).

However, non-transgenic parr demonstrated greater nest fidelity than transgenic parr during all

the comparisons save one: nest fidelity was similar during the post-spawn period of spawn A
(Table 4.4). There were no trial effects observed on nest fidelity. Greater nest fidelity was

accompanied by greater spawn participation by non-transgenic relative to transgenic parr (Figure

4.3; LRy = 11

0. P < 0.001) and the levels of participation were similar across spawns (LR;:
=013, P=0.72).

The fertili

ation success of both transgenic and non-transgenic parr was low (Table 4.5).

Wilcoxon signed ranked tests fi that di

males i both transgenic (Vi 10

66.0. P < 0.001) and non-transgenic (V, 1o~ 66.0. P < 0.001) parr in fertilization success across

success did not

breeding trials. F ic and sgenic pare fertili

differ significantly across tria

Is (Wilcoxon signed rank test: Vi o= 16.0. P =0.295). The overall
(trial ignored) fertilisation success of non-transgenic parr, however, was significantly higher than
that of transgenic parr (binomial test; 7* = 15.98. P < 0.001) and offspring fathered by non-

transgenic parr were represented in more trials.

4: Discussion
This study provides the first empirical observation on the breeding of. and potential for

transgene introgression by G transgenic male Atlantic salmon. including that of alternative

reproductive phenotypes.  Transgenic @

adromous males (ic. large, fighter males), reared to

maturity in captivity. were b d by their wild in terms of nest

fidelity. quivering frequency and spawn partici milarly. despite having similar rearing



histories and displaying more aggression, transgenic male parr (i.c. precocially mature, sneaker
males) were inferior competitors to wild-type parr in terms of nest fidelity and spawn

articipation. Morcover, wild-type parr had higher overall fertilisation success than transgenic

and their offs

pring were represented in more spawning trials. Although transgenic males

parr
displayed reduced breeding performance relative to non-transgenics. both male reproductive
phenotypes demonstrated the ability to participate in natural spawning events and. thus. the

potential to contribute genes to subsequent generations.

The reduced reproductive performance of capti 5 genic males

reared salmon to

relative to wild males parallels the results of similar studies comparing captively-
wild salmon. Varying degrees of exposure to captive environments and domestication selection
have been shown to affect the breeding behaviour and success of adult salmonids negatively
(Fleming and Gross 1993: Fleming et al. 1997: Berejikian et al. 2001a: Weir et al. 2004)
Moreover. Bessey et al. (2004) observed that wild-exposed coho salmon males out-competed
captively-reared transgenic males in terms of spawn participation. courtship and aggressive
behaviours.  However. Bessey et al. (2004) also observed that when transgenic and non-

transgenic males were both reared in the laboratory, performance was poor irrespective of

transgenesis (see also Fitzpatrick et al. 2011). Thus, the captive rearing environment appears to

diminish the competitive and reproductive performance of the anadromous salmonid phenotype.

irrespective of genetic background (Berejikian et al. 1997, 2001a. 2001b). The current study can.

therefore, not climinate the possibility that the poor performance of the anadromous transgenic

males has more 1o do with rearing environment than transgenesis because these variables were

confounded.  Nevertheless. comparisons of captively-reared transgenic and wild andromous

males mimic the environmental differences that represent an initial transgenic escapee invasion



scenario and are thus valuable for predicting the probability of first generation intraspecific
hybridisation.

Reproductively isolated populations are predicted to genetically diverge due to adaptive
and/or non-adaptive evolutionary pressures. such as selection to environmental variation. genetic
drift. gene flow and chance mutations (Frankham et al. 2002: Allendorf and Luikart 2007: Garcia
de Leaniz et al. 2007: Carlson and Seamons 2008). This evolutionary theory provides some
perspective on two elements of the current study. First. the captively-reared. anadromous
transgenic males did not have an identical genetic background to the wild anadromous males with

which they were compared.  Specifically. the genctic of the ic males

consisted of two wild populations. one of which was the same as that of the wild males. Thus. in
addition to captive rearing, intraspecific population differences may also have contributed to

observations of reduced reproductive performance in transgenic relative to non-transgenic males.

Second. evolutionary divergence among wild Atlantic salmon populations can potentially
influence their relative reproductive performance when competing against transgenic invaders

(Devlin et al. 2006: Kapuscinski et al. 2007: Hutchings and Fraser 2008). This study correctly

on s

mimics a likely inv enario. where the genetic background of the transgenic population
differs from that of the wild population. However. contextualising these results with the general

on into wild populations must be done so with caution. It

concerns of GH transgene introgres

remains uncertain how the rep ive performance of this GH transgenic population would

compare with other wild populations.  Similarly. it is uncertain how the reproductive

performance of this wild population would compare with other GH transgenic populations.
Previous studics comparing the reproductive behaviour and success of farmed and wild-

type mature male parr have suggested that this aliernative male reproductive phenotype may

ate the interbreeding and introgression of farmed genes into wild populations (Garant et al.
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2003: Weir et al. 2005). This rationale is

based on observations of equal or greater breeding
performance among farmed parr relative to wild-type parr coupled with the fact that maturation
prior to anadromy increases the probability of survival to maturity and reduces generation time.
In the current study. we found that the breeding behaviour and success of transgenic parr was
inferior to that of wild-type parr, despite transgenic parr displaying more aggression. Moreover.

transgenic parr sired fewer eggs than non-transgenic parr. When the data were paired by trial.

however. no differences were observed in fertilisation success between the two groups. which

may be due largely to a number of spawns where there was no parr contribution and the

associated low statistical power.  Interpretations based on the entirety of the behavioural and

fertilization findings suggest that the sgenic parr margi ansge

during spawning. Nevertheles

. transgenic parr a i interest in spawning

and contributed gametes to the next generation. Thus. the alternative male reproductive

phenotype of carly maturation in Atlantic salmon may facilitate the introgression of transgenes

into wild populations in a similar manner to that observed with farmed strains.

In an effort to limit size differences between transgenic and non-transgenic parr during the

paired behavioural trials, age existed between ing parr in some of the trials.

There was no significant difference in transgenic performance, whether competing with 0+ (n=5)
or 1+ (n=6) non-transgenic parr, although we acknowledge the statistical limitations associated

with the low sample sizes. Morcover, despite holding a significant body size advantage.

irre:

pective of non-transgenic parr age. and exhibiting increased overt aggressive behaviour. the
reproductive success of transgenic parr was less than that of non-transgenic parr. While there is

evidence both for (Thomaz et al. 1997: Koseki and Mackawa 2000) and against (Jones and

Hutchings 2001, 2002) parr body size influencing spawning success.

it has been suggested that

e body size may be a stronger predictor of dominance under scenarios with few competing
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parr (Hutchings and Myers 1994: Jones and Hutchings 2001). However.

iin the present study. the
breeding performance of transgenic parr appears o be inferior independent of size.
The reduced breeding performance of transgenic parr may be due, in part, to behavioural

changes i with GH is. Juvenile sal ids have shown distinct shifts in

behavioural phenotypes in response to GH transgenesis. including increased foraging-induced
aggression and reduced anti-predator behaviour (Abrahams and Sutterlin 1999: Sundstrom et al.
2003. 2004). The reduced nest fidelity and spawn participation by mature transgenic parr relative
10 non-transgenic parr may be driven by transgene-induced hormonal changes.  Gonadotropin

releasing hormone (GnRH) is thought to increase the expression of reproductive behaviours in

many species (Maney et al. 1997: Yamamoto et al. 1997: Johnson et al. 2007: Munakata and

salmonids (Bel

Kobayashi 2010). including jikian et al. 2003). For example. studies with the
dwarf gourami (Colisa lalia) have indicated that male nest building behaviour is reduced when

GnRH function is disrupted (Yamamoto et al. 1997: Munakata and Kobayashi 2010).

Morcover, there is an existent. but poorly understood, association between the GH-1GF-I axis and

the GnRH-gonadotropin-sex steroid axis (Holloway and Leatherland 1997a. 1997b: Mercure et

. 2001; Bjornsson et al. 2002). Thus, GH transgenesis may influence the interactions between

these two hormonal axes such that the breeding behaviour of mature male parr is negatively
affected.  However, empirical investigations are required to explore the effects of GH on
reproductive hormones and behaviour.

A common method for risk involves the use of

quantitative models that estimate a defined measure of risk. For genetically modified organisms.
the prospect of gene flow from transgenic escapees into wild populations is a key issue due o the
potential influences the transgene may have on fitness. In response. models have been developed

to estimate the fitness outcome of transgene introgression into wild populations (Muir and
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Howard 1999. 2001: Aikio et al. 2008: Valosaari et al. 2008: Ahrens and Devlin 2010).

Frequently. the model parameters consist of empirical measurements of fitness-related life history

traits such as growth, survival and reproductive probabilities

age at sexual maturity. female
fecundity and male fertility (Muir and Howard 2002). The current study provides data on the
relative breeding success of male salmon that are applicable 1o such predictive quantitative

models. Specifically, we contribute to observations indicating captive-reared GH transgenic and

farmed adult male salmon have a mating di e relative (o wild individuals: a gene flow

scena

rio indicative of an initial invasion. Morcover, captive-reared non-transgenic precocial

male parr demonstrated a modest mating advantage over transgenic individuals:

a gene flow

scenario comparable to subsequent generations following an invasion. Similar to the Japanese
medaka (Oryzias latipes) work of Pennington et al. (2010), these findings are inconsistent with
the assumption of a transgenic male mating advantage used in previous quantitative models

(Hedri

k 2001: Aikio et al. 2008: Valosaari et al. 2008). but see Howard et al. (2004) and

emphasise the importance of basing parameter values on empirical data

The present study. however, only provides an estimate of breeding success under a single

ons cons

set of physical and demographic environmental condi sting of paired males competing

for single female:

In the wild, male salmon will typically have access to multiple females
simultancously and have to contend with multiple competitors (Fleming 1996: Fleming and
Reynolds 2004). Morcover, should transgenic animals get exposure to the wild environment
prior to breeding (i.¢. escape prior maturation), this may well alter their reproductive performance
ina similar way. but opposite. 1o the effects captive rearing has on wild fish (¢.g. Bercjikian et al

1997. 2001

Bessey et al. 2004). As pointed out by Devlin et al. (2006). there are limitations and

difficulties associated with collecting the breadth of empirical data required to aceurately

represent the full range of genotype by environment interactions affecting fitness-related life
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history traits in the wild. The findings of this study are valuable with respect to a first generation

invasion scenario: but beyond that, reproductive performance is difficult to predict and is.
therefore. an unavoidable source of epistemic uncertainty for both quantitative and qualitative

invasion models. Further work is thus required to compare the breeding performance of

transgenic and non-transgenic salmon in a range of ecologically relevant scenarios.
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Figure 4.1. An i of the stream (1.25m x 7.8 m x 0,

m per

channel), which was divided into two channels and used to compare the reproductive
performance of growth hormone transgenic and non-transgenic Atlantic salmon (Salmo salar)

males, both as anadromous fish and precocial parr.

Behavioual data were collected usin

combination of video observation and PIT tag detection. with the respective underwater cameras

and antenna moved in response (o the location of female nesting activity

the direction of water flow.
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Figure 4.2. Standard box plot fi es of (A) overt aggressi i ¥ transgenic a
non-transgenic anadromous and parr males during paired competitive breeding trials and (1)
quivering by transgenic and non-transgenic anadromous males during the competitive and non-
competitive phases.  For graphical purposes. these data were standardised 10 a 90 minute
observation period. The top and bottom of cach box represents the upper (75%) and lower (
quantiles. respectively. The horizontal line within cach box indicates the median.  The vertical
lines (whiskers) extending from the upper and lower quantiles represent the maximum and
minimum values of the distribution. excluding the outliers. The outliers are represented by the
dots located beyond the maximum and minimum whiskers.
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Figure 4.3, The spawn participation (presence/absence during a spawning event) of growth
hormone transgenic and non-transgenic Atlantic salmon (Salmo salar) males during paired
competitive breeding trials. Spawning behaviour and success was measured between transgenic
and non-transgenic males of both the anadromous (A) and parr (B) reproductive phenotypes.
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Table 4.2. An ethogram describing the spawning behaviours mea

ured during paired competitive

trials between transgenic and non-transgenic Atlantic salmon males of both the anadromous and

parr reproductive phenotypes.

Behaviour

Nest Fidelity

Overt Aggression

Quivering

Spawn
Participation

Des

iption

The time the focal male spends with a
nesting female.

Male-male overt aggressive actions
including chasing. charging. biting
and fighting (Fleming 1996).

A courting behaviour, where the focal
male vibrates its body while aligned
in parallel with the female.

The active participation of the focal
male during a spawning event.

Unit of Measure

| male

Proportion of time the fo
attends the nest with the female
present.

Frequency of all overt aggressive
behaviours performed by the focal
male.

Frequency of all quivers performed
by the focal male.

Presence or absence of active
participation during a spawning
event.
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Table 4.5. The fertilisation success (proportion of cges fertilized) of wild anadromous
males and growth hormone transgenic and non-transgenic mature male parr during 11
pair-wise competitive breeding trials. fon indicates the number of trials where
successful fertilisation was observed by a male type.

Male Type  Median .25 Quantile .75 Quantile Range Representatio
Anadromous male” 098 092 1 0.59-1 1"
Transgenic parr 0 o 0.06 0-0.22 1
Non-transgenic parr 0 0 0 0-0.41 5

* indicates the anadromous males fertilised signifi
genotype

tly more offspring than cither pare
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Chapter 5

Enhanced growth reduces precocial male maturation in Atlantic salmon

(Salmo salar)



Abstract

ion of

Understanding the proximate and ultimate mechanisms shaping the expr
alternative reproductive phenotypes in fishes is a fundamental question in life history

one such alternative phenotype. has been thought to

evolution.  Precoc
reflect rapid growth and/or energy accumulation: however. mechanistically linking these

specific traits to diserete life history patterns is complex and poorly understood. Here we

use mixed populations of growth hormone trans Atlantic salmon

enic and non-transgen

(Salmo salar) siblings to elucidate the effects of intrinsically fast growth on precocious

maturation at the freshwater parr stage. Despite facilitating growth to sizes typical of
one-year-old mature wild-type parr. transgenesis did not influence maturation in the first

vear of life. In the second year, the number of maturing transgenic parr was 46% less

than that of non-transgenic individuals. By manipulating intrinsic growth and controlling
for both environment and genetic background (i.e. beyond the transgene). this study

provides direct empirical evidence gesting that the physic i cha

promoting growth do not necessarily play a causative role in precocial male maturation in

fish. such as Atlantic salmon. The significance of these data is discussed in light of the

of genetically modified organisms.
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Introduction

Phenotypic variation within populations can be expressed in discrete life history
forms that evolve through disruptive selection. A well documented category of discrete.

4 with i where

alternative phenotypes are those
intraspecific (usually male) individuals adopt discrete traits or tactics that are believed to
be part of a single conditional strategy maintained by both frequency- and condition-

eck et al. 2002).

Gross 1996: C

dependent selection (Hutchings and Myers 1994:

witches. which are

Many of these alternative phenotypes are controlled by threshold

genetically-determined. internal triggers that direct the expression of one phenotype over

another and are responsive to the envi jons experienced during ontogeny
(Shuster and Wade 2003: Oliveira ct al. 2008). Threshold switches are thought to initiate
distinct internal resource allocation pathways leading to alternative phenotypes: however.
the underlying proximate mechanisms are not well documented.

Atlantic salmon, Salmo salar. provide a model system with which to study the

The breeding

underlying mechanisms i ing alternative rep ve t

system includes anadromous (ocean migratory) and precocially maturing male (i.c. non-
migratory parr) phenotypes that compete for fertilizations with spawning females.
Anadromous males. which are large and display specialized secondary sexual characters.
fight for access to breeding females. while mature male parr adopt a breeding tactic
reliant on small size (often weighing two orders of magnitude less than anadromous
males) and crypsis to sneak fertilization attempts (Fleming and Reynolds 2004).

An intriguing feature of this life history dichotomy involves the proximate and

ultimate mechanisms  that determine whether stream-dwelling male parr follow a
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developmental trajectory toward precocial maturation or anadromy. Current evidence

suggests that precocious maturation is initiated by parr reaching a polygenic performance
threshold that, within populations. correlates with fast growth/size at age (Aubin-Horth
and Dodson 2004; Baum et al. 2004; Hutchings and Myers 1994). Proximate causation is

thot

2ht 10 be associated with the available energy (lipid) reserves. and the rate of energy

reserve allocation, an individual has attained prior to the onset of environmental triggers

initiating sexual development (Thorpe et al. 1998; Jonsson and Jonsson 2003: Mangel and

Satterthwaite 2008). A similar proximate causation. however. is thought to underlie an

alternative life history trajectory that involves phenotypic transformation for m

sea (i.e. smoltification). whereby the largest fish from within a cohort are those most

likely to exceed the performance threshold to become sea-migrating smolts.  Thus. a
developmental conflict may exist between precocial maturation and smoltification.
Proximate models suggest that parr maturation oceurs if an energetic threshold is

reached and maintained for a year prior to the fall breeding season. while smoltification

oceurs if a growth rate/size threshold is surpassed seven months prior to the spring

seaward migration (Metcalfe 1998: Thorpe et al. 1998: Mangel and Satterthwaite 2008).

Under these models. smolt transformation is viewed as an alternative developmental
pathway for individuals that have not obtained enough energy reserves to produce
sufficient gametic tissue by the breeding season. However, the allocation of energy

between storage tissues. which may support maturation. and structural tissues (growth).

which may promote remains poorly
Growth hormone (GH) transgenesis allows a unique opportunity to empirically

test this proximate life history framework by permitting the manipulation of intrinsic

148



growth (Du et al. 1992: Cook et al. 2000a). while controlling for other genetic effects not

associated directly with the transgene. Based on observed covariation between size at

age. fast growth. and lipid inves with parr GH is may allow

precocial maturation thresholds to be reached faster and in greater proportion relative to

s. as previously proposed (Valosaari et al. 2008). Fast

rowing

transgenic parr, however, have greater metabolic requirements and preferentially invest

energy into structural rather than storage tissues relative to non-transgenic parr (Stevens
ctal. 1998; Caok et al. 2000a, b). Such physiological differences may alter the internal

triggers and conditional requirements necessary to reach maturation  thresholds:

potentially toward life history trajectorics f

ouring smolt transformation (Metcalfe 1998:

Saunders et al. 1998: Thorpe and Metcalfe 1998). Thus, GH transgenesis may provide

empirical insight, allowing the separation of proximate mechanisms responsible for parr

maturation from characteristics that cova

Using mixed populations of GH transgenic and non-

nsgenic Atlantic salmon

siblings we test the effect of growth on precocious maturation. 1f growth has a causative
role in parr maturation, then GH transgenesis should increase the likelihood of early male

maturation over the first and second years of life.  However. if energy accumulation

causes maturation, then GH transgenesis may reduce the incidence of parr maturation duc

1o higher routine metabolic rates and preferential investment in structural tissues.

Method

During September 2006, wild adult Atlantic salmon females were collected from

the Exploits River. Newfoundland. Canada and transferred to the Ocean Science Centre,
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Memorial University of Newfoundland.  Upon cgg ripening (21 November

December), male gametes of hemizygous growth hormone transgenic Atlantic salmon
(Gene construct: opAFP-GHe2; transgene: EO-Tu [Yaskowiak et al. 2006]) were crossed

e family crosses. The background genome of

with the wild females to produce cight sin

from Saint John River (NB. Canada) salmon.

this transgenic strain is derived lary

True to Mendelian inheritance patterns. such hemizygous crosses result in ca. half the

offspring in cach family inheriting the GH transgene (Shears et al. 1992). This allows for

the comparison of full siblings, facilitating the control of general genetic background and
maternal effects.

During carly ontogeny. all families were reared separately in Heath incubation

tely in randomly-

trays. AU first-feeding (May 28 2007), families were reared sep:
assigned. individual compartments of two rearing troughs (261 em % 24.5 cm * 10 em)
and fed 4-8 times daily with a combination of Artemia spp. and a salmonid starter dry
feed (Corey Feed Mills, Fredericton, NB). Temperature and photoperiod were kept at
ambient conditions throughout the lives of these animals.

On July 30, 2007. 32 fry from cach of cight families were haphazardly assigned (o
one of six Im circular rearing tanks (=256 per tank) and subsequently fed dry feed from
automated feeders every 30 min. throughout each day. Initially. the tank replicates were
split into high (8% tank biomass per day) and low feed (2%) treatments. In October
2007, both high and low feed treatments were decreased to accommodate reduced feeding

10 4% and 1% tank biomass per day. respectively). In January 2008, high and

levels (i

low feed were dis i and mai; feed levels were delivered to all

six tanks with hand feedings 1-3 times daily. Previous observations of salmon from the
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same source wild population indicate that such conditions produce high male maturation
rates (ca. 50%) in the second year of life (1+: unpubl. data).

In February 2008, the number of individuals in each tank was reduced (n=100) to
accommodate expected biomass increases in the following spring/summer growing

To prevent sampling bias in both family and transgenic composition, a mass

frequency-based selection process (5 g intervals) was used whereby individuals were
haphazardly removed in a manner consistent with maintaining the mass distribution
among fish within cach tank. To assess the ratio of transgenic to non-transgenic fish, a
representative sample (n=40 per tank) of individual adipose fin clips were placed in
microcentrifuge tubes containing 9% ethanol and  subsequently screencd for the
transgene using a previously described polymerase chain reaction (PCR: Deitch et al.
2006).

In 2007 and 2008, male maturation was assessed on all fish once weekly between
mid-October and the end of December, by gently squeezing the belly along the length of

The mass (g) and

the body and looking for the presence of sperm at the genital papilla.

fork length (mm) of cach mature parr was upon v.a
tissue sample of cach mature parr was collected for transgenic identification and the

2 (Western Chemical Inc.. Ferndale. USA) prior to

animals were cuthanized with M$

(2) was later collected

being frozen whole (-20°C). Frozen gonadal and whole body m;
1o determine the gonadal-somatic investments of transgenic and non-transgenic mature

parr.
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1: Data Analyses
Logistic regressions with binomial error (LR) were used to test for tank effects on
proportions of transgenic parr and to evaluate the proportion of mature parr with respect

w0 feed level during the ¢

growth phase (July — December 2007) and genotype
(transgenic or non-transgenic). General linear models (GLM) were used to compare fork
length. body mass. gonad mass and body condition (mass as the response variable and
length as a covariate (Garcia-Berthou 2001) with respect to genotype and carly feed level.
Data fit with GLM’s that did not meet the requirements of normality were either fit to a

gamma distribution (link: inverse) or natural log transformed prior to insertion into a

linear model. All data were analyzed using the R statistical software application (ve

R-2.10.1

UP://WWW.T-Proj

5.3: Results

In 2007, the first year of life (0+). 1.3% of the total population consisted of mature

male parr (Figure 5.1). While more transgenic (n=11) than non-transgenic (n=8) parr

matured, there was no significant difference in the rates of maturity (LR: n = 19: %’

0.90: P = 0.35). Similarly. feed level did not influence the rates of carly maturity (LR: n
19: % = 0.18: P = 0.67). Among 0+ mature parr, mass and fork length were greater in

high than low feed tanks (GLM: n = 19; mass: 7 = 14.26, P < 0.01: length: = 13,10, P -

0.01) and transgenic fish were larger than non-transgenics (GLM: n = 19: mass: '

102.05. P < 0.01: length: 48.82. P < 0.01: Figure §

2A. B). Testing for differences in

body condition (length-adjusted mass) between 0+ transgenic and non-transgenic mature

parr indicated a three-way interaction between length, feed level and genotype (n = 19: P
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<0.001: Figure 5.3A). Qualitatively. the transgenic parr tended to have a higher mass for
a given length than the non-transgenic parr.

Among the immature fish. the proportion of transgenic (n = 119) 1 non-
transgenic (n = 120) parr did not differ (Exact Binomial test: ¥° = 0.12. P = 0.73):

moreover, this pattern was cons

nt across tanks (LR: n = 239

L = 0.44. P = 0.51)
There was a strong interaction between feed level and genotype on fish mass (P < 0.01).

indicating that transgenic and non-transgenic parr responded differently to the feed

T ies outgrew ies. being heavier in both high (mean + SE
transgenies: 31,85 + 1.26 g: non-transgenics 6,39 + 0,25 g; GLM: n = 119; o = 783,37, P

< 0.01) and low feed treatments (transgeni

18.45 + 0.71g: non-transgenics 6.41 + 0.54
2: GLM:n = 120; X: = 127.43. P < 0.01). However. the size of non-transgenics did not
differ between feed levels (GLM: n = 120: )(:f 0.001, P = 0.98). while that of transgenics
did (GLM: n = 119: 7’ = 97.62, P < 0.01).

In 2008, the second year of life (1+). 35% of the total population consisted of

mature male parr (F

pure 5.1). of which non-transgenics (n=129) were 1.8 times more
likely to mature than transgenics (n = 70: LR: n = 199: ¢ = 14.12: P < 0.01). Maturation
was not influenced by the feed level in the first year (LR: n = 199: 7= 1.55: P = 0.21).
Similar to the immature parr. mature parr showed strong interactions between feed level
and genotype for all size measures (P < 0.05). Transgenics outgrew non-transgenics.
being larger in both high (GLM: n = 106: mass: ' = 563.22, P < 0.01: length: ' = 542.74.
P < 0.01) and low feed treatments (GLM: n = 91: mass: 3* = 69.52. P < 0.01: length:

68.76. P < 0.01:

igure S2A. B). Under low feed. body condition (length-adjusted mass)

did not differ between transgenic and non-transgenic parr (GLM:n = 91: 3 = 221 P
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0.13f

: Figure 5.3B). Under high feed. a strong interaction occurred between length and

genotype (n = 106: P < 0.001). These data qualitatively suggest that sgenic parr
had a greater length-adjusted mass than transgenic parr at the larger end of the size
distribution, with the opposite pattern occurring among smaller fish. However. the small
overlap in size distribution between transgenic and non-transgenic parr makes
interpretation difficult. The growth effects of differing feed levels during the first year

persisted among transgenic mature parr into the following year, with those from high feed

being larger than those from low feed at age 1+ (GLM: mass: n = 70: %* = 10.30. P < 0.01:

length: n = 70; ' = 11.43, P < 0.01: Figure 5.2A. B). However. the opposite occurred

among ic parr. with those T
p

low feed during the first year being

larger than those (GLM: mass: n = 129: = 14.05, P < 0.01:

periencing high fe

length: n = 12

7.02P<0.01).

Comparing size acro

years, mature 0+ transgenic parr (29.6 +

: mean +

S.E.) did not differ in mass from that of I+ non-transgeni

P = 0.64:

igure 5.2A). However. 1+ non-transgenic parr (132.4 + 1.7

0= 140:

-) wer

significantly smaller in length (113.6 9.9 mm: GL

8.58. P < 0.01: Figure 5.2B). Thus. mature 0+ transgenic parr were heavier for their
length relative to 1+ non-transgenic parr (GLM: n = 140; = 15.50. P < 0.01).

At age 1+, the absolute gonadal mass of mature transgenic parr was greater than

15.69. P < 0.01). howeves

that of non-transgenic parr (GLM: n = 163; | this was

mainly due o their larger body size (Figure 5.4). For a given body mass. non-transgenic

parr actually invested proportionately more in gonadal mass than transgenic parr (GLM, n

163. slope: F = 0.61. P = 0. 4.20. P < 0.01). Unlike the non-

intercept:
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transgenic parr. many of the immature transgenic parr. both as 0+ and as 1+, exhibited

secondary smolt characteristics, including long. silver bodies with darkened fins.

During the first year of life (O+). growth hormone trai

sgenic parr showed
accelerated growth, reaching sizes typical of two (1+4) or three (2+) year old non-
transgenic parr (Hutchings and Jones 1998). Moreover. while transgenics exposed to

high feed outgrew those exposed to low feed, the size of non-transgenics in both feed

was equal. that transgenic indivi were limiting the energy

of non-transgenics through direct I this fast

growth and domination of food resources, precocious maturation was low (1.3%) and not

influenced by transgenesis or feed level.  With the feed treatment eliminated for the
second year of life. the incidence of 1+ non-transgenic mature parr was nearly twice that
of the much larger transgenic parr. Moreover. while the absolute gonadal mass of mature
I+ transgenic parr was greater than that of non-transgenic parr. the relative investment for
4 given somatic mass was less. These results suggest that growth rate and/or size at age

are not_proximate mechanisms responsible for pr

cocial male maturation in Atlantic
salmon and support the idea that energy accumulation thresholds dictate the proximate

basis of this life history decision. a pattern that may be common to organisms with simi

alternative life histories.

Prior to the current study. it had been difficult to identify the direct effects of

intrinsic growth and the potential implications of eners

accumulation on precocious

maturation. Contemporary thought suggests that. in late summer. large Atlantic salmon




parr that have exceeded a threshold level of energy reserves will mature that fall: whilst.

those large parr lacking such energy reserves may undergo smolt transformation

(Metcalfe 1998: Thorpe et al. 1998: Thorpe and Metcalfe 1998). Supporting evidence

ch

includes observations that precocious maturation is more common in resource-

environments (Berglund 1995: Letcher and Terrick 1998: Rowe and Thorpe 1990:

aunders et al. 1982).  Moreover. within populations, both parr maturation and

smoltification correlate with high growth rates (Metcalfe et al. 1988: Saunders et al. 1994:

Kadri et al. 1996). By manipulating intrinsic growth and controlling for both
and genetic background excluded). this study provides direct
empirical evidence ing that the physiologi isms p growth do

not play a causative role in the carly maturation of male parr, and may even hinder it.

Growth hormone contributes to a wide array of biological processes. The most

well documented effect of

is growth stimulation, which oceurs in part by promoting
lipolysis and protein synthesis (Bjomsson 1997: Bjornsson et al. 2002 see also Raven et

al. 2006).  High levels of circulating growth hormone. such as that experienced by

transgenic fish. have been shown to reduce energy reserves in stream salmonids. which

likely reflects the metabolic effects mentioned above (Johnsson et al. 1999: Neregird ct

al. 2008). In addition to stimulating growth. GH is known to be involved in smolt
transformation: both directly and as a regulatory factor (McCormick 1996: Pelis and
McCormick 2001: Bjornsson et al. 2002, 2011). Growth hormone is also implicated in

the maturation of salmonids (Bjornsson et al. 1994: Benedet et al. 2010): however. the

exact role remains uncertain (Bjérnsson 1997: Bjornsson et al. 2002). While the extent of

physiological changes associated with the GH transgene may not be fully understood. a
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suite of pleiotropic effects

have been observed including higher metabolic demands.

increased activity and preferential investment in somatic tissue over en

v reserves
(Stevens et al. 1998: Cook et al. 2000b, 2000c). These physiological differences. coupled
with the reduced maturation rates and secondary smolt characteristics observed here.
suggest that the transgene may induce physiological pathways toward smoltification

preferentially: an observation that is cons

stent with previous research on GH transgenic

salmonids (Saunders et al. 1998: Devlin et al. 1994. 2000. 2004a). Collectively. these

results suggest that the proximate mechanisms under

ving intrinsically fast growth
promote life history shifis toward smolt transformation as opposed 1o precocial
maturation.

Presumably. the investment of energy into structural tissues leads to high growth

rates at the expense of investment into storage tissues for other purposes. Thus. from an

ultimate perspective. it is unclear why fast growth consistently correlates with precocial
maturation. in natural populations, if it may reduce available resources for other
functions. such as maturation. This may be explained in part by the importance of body
size in the breeding success of precocial males. with selection likely stabilizing. Large
size affords larger gonads (Fleming 1998) and an ability to behaviourally dominate
smaller parr during competition for access to breeding females (Thomaz et al. 1997
Koseki and Mackawa 2000): although this advantage appears to decline at high parr
densities (Jones and Hutchings 2001, 2002). By contrast, small size may afford crypsis
during sneak mating and reduce the likelihood of targeted aggression by anadromous

¢ with

adults. Thus. the present study suggests that patterns of fast growth/large size at a
precocious maturation are correlations reflecting limits (o plasticity in the partitioning of
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energy between structural and storage tissues. Neither growth rate nor s

z¢ at age are
proximate mechanisms responsible for precocial male maturation in Atlantic salmon.
Rather. energy accumulation thresholds may be dictating the proximate basis of this

ion.

alternative life history deci:

The results of this study suggest that growth rate and/or size at age are not

proximate mechanisms responsible for precocial male maturation in Atlantic salmon.
Further. it is proposed that these data support the hypothesis that energy accumulation
thresholds dictate the proximate basis of this alternative life history decision. However.
this study did not quantify energy accumulation in mature or immature parr and. therefore

gical effects of GH 2 on

cannot rule out alternative hypotheses. The 1

Atlantic salmon maturation are not known. while the effects of GH on internal biological

processes are broad, and complex (Bjdrsson 1997 Bjormsson et al. 2002). Thus, the

reduced maturation rates induced by GH transgenesis may be the result physiological

interactions unrelated to energy accumulation.

S5.4.1: Implications

The genetic effects associated with i ing and i ion are among the

greatest concerns associated with the potential entry of transgenic organisms into nature

(Muir and Howard 2002: Howard et al. 2004: Devlin et al. 2006).  Morcover. age at

sexual maturity is 14 key fitness-related trait i ing the invasion of forcign
genes into wild populations because carly maturation reduces generation time and

increases the probability of survival to reproduction (Muir and Howard 2001 Garant et

al. 2003). This study provides the first empirical data on the relative incidence of
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process.

Imon str ied as a

Among farmed Atlantic s ins. mature male parr have been identi
potential means of increasing the pace of farmed gene introgression into wild populations

(Garant et al. 2003; Weir et al. 2005). From a demographic perspective. the reduced

expression of precocial male maturation among GH transgenic parr relative (o non-

transgenic parr ests that the rate of trangene introgression may be limited by the

number of maturing parr. However, mature male parr compete with one and other for

proximity to nesting females (Fleming 1996). Thus. differences in competitive ability
could either enhance or reduce the influence of proportional differences between mature
male transgenic and non-transgenic parr. While our observations are valuable. caution is

required when inferring risk scenarios from these data because the relative incidence and

size of mature male transgenic and non-transgenic parr under natural conditions is not
known.  Previous efforts have shown that there are strong genotype by environment

sundstrom et

interactions on juvenile growth in transgenic salmon (Devlin et al. 2004b;

al. 2007: Moreau et al. 2011). Therefore. when used contextually. these data may provide

valuable information for decision makers assessing the risks of GH transgenic salmonid

biotechnologies.
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Figure 5.1. The incidence (%) mature male transgenic and non-transgenic Atlantic
salmon parr (Salmo salar) during the first (0+) and second (1+) years of life. High and
low feed levels were applied only during the first year of life. Thereafier maintenance
levels were used. The error bars represent the 95% confidence intervals around the mean.
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(14) years of life. High and low feed levels were applied only during the first year of

Thereafter maintenance levels were used. The error bars represent the 95% confidence
intervals around the mean.
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lines of best fit represent the non-transgenic and transgenic parr. respectively
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Chapter 6

General Discussion
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This thesis applied an eco-evolutionary approach to empirically assess the
potential environmental effects of growth hormone (GH) transgenic Atlantic salmon
(Salmo salar) entry into the wild. Specifically. my goal was to explore the relative

survival and reproductive success of GH transgenic and non-transgenic salmon under

To accomplish this, key fitness-related traits were compared

betw:

en GH transgenic and non-transgenic Atlantic salmon over highly selective periods

of their life cycle. Specifically, this thesis focused on the young-of-the-year stream and

the breeding periods.

T'wo studies (Chapters 2 and 3) compared fitness

related traits between transgenic
and non-transgenic Atlantic salmon during carly life history. Chapter 2 explored the
potential differences in developmental rate and respiratory metabolism  between

transgenic and non-transgenic siblings at three carly stages of life; the eyed-embryo,

Overall. the effect of GH

alevin (larval) and first-feeding fry (juvenile) stages.

iransgenesis was weak (o non-existent, with family differences having a much stronger

influence on both routine metabolism and developmental rate. In Chapter 3. the foraging.

behaviour and the growth and survival of © and

feeding fry

1Sg

d under low feed. stream-like conditions were explored. Similar to Chapter 2. the
transgene did not influence any of the fitness-related phenotypic traits measured. During

pair

wise dominance trials. transgenic fry were equally likely to win territorial dominance
contests as were non-transgenic fry. Consistent with the dominance trials. the survival of
GH transgenic first-feeding fry in stream microcosms under low food availability did not

differ from that of non-transgenic individuals. Morcover, both groups experienced

negative growth, though the pattern differed somewhat. with transgenic individuals
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maintaining greater length for a given mass than non-transgenic  individuals.
Collectively. these chapters suggest that there is an ontogenetic delay in the phenotypic
response induced by the transgene, such that biologically significant differences in
fitness-related traits between GH transgenic and non-transgenic Atlantic salmon are
minimal during this critical carly life history period.

The final two studics (Chapters 4 and 5) compared fitness-related traits between
transgenic and non-transgenic Atlantic salmon during the reproductive phase of the life
cycle. The fourth chapter compared the breeding performance of growth hormone

transgenic and wild-type Atlantic salmon males of both alternative reproductive

phenotypes to test for the potential of the transgene to introgress into wild populations.

Although transgenic males displayed reduced breeding performance relative to non-

genics. both male rep ive 1 vy the ability to participate in
natural spawning events and. thus. the potential to contribute genes to subsequent
generations.  The fifth chapter used mixed populations of GH transgenic and non-

owth on precocious part

transgenic Atlantic salmon siblings to elucidate the effects of

maturation. Precocious maturation was low (1.3%) during the first year of life and was
not influenced by transgenesis or feed level. With the feed treatment eliminated for the
second year of life. the incidence of 1+ non-transgenic mature parr was nearly twice that

of the much larger transgenic parr. This reduction in transgenic maturation rates relative

10 non-transgenics suggests that the ability to reach threshold levels of energy required 1o

accommodate maturation is negatively affected by transgenes
Collectively. the empirical studies contained in this thesis provide insight into the

venetic effects that GH transgenic Atlantic salmon may have on

potential ecological and
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natural conspecific ons. Specifically. is did not influence any fiiness-

related traits measured during the critical egg through first-feeding stages. suggesting that

selective pressures would affect transgenic and non-transgenic individuals in a similar

manner.  Additionally. data collected during the reproductive phase suggest that
transgenic males may experience reduced reproductive success relative (o non-transgenic
sene (o introgress into wild populations. however.

individuals. The potential for the trans

was demonstrated.
Ecological risk assessments frequently make use of quantitative models that

estimate a defined measure of risk. Consistent with the data produced by this thesis.

model parameters ofien consist of empirical measurements of fitness-related life history

traits such as growth, survival and reproductive probabilitics. age at sexual maturity.
female fecundity and male fertility (Muir and Howard 2002). While it is imperative to

use empirical data to derive parameter values. it is also essential to consider the

limitations of such models when incorporating their results into an overall risk assessment

framework.  These limitations address the ecological complexities associated with

empirical data collection and can be categorised as either: (1) genotype by environment
interactions and (2) strain specificity.

ative models to accurately predict the outcomes of real transgene

For quant
invasion scenarios. representative parameter values for a given phenotypic trait are
required for the broad range of environments that may be experienced. As detailed in
Chapter 1. previous work has demonstrated that phenotypes of transgenic salmon display

ed environmental pressures (Devlin et al. 2004, 2006,

highly plastic responses (o va

2007: Kapuscinski et al. 2007: Lohmus et al. 2010a. b).  This suggests that the
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b

ackground genome can moderate the effect of a transgene on the phenotype in response

0 the envi . Given the complexity and dynamism of natural envi and the

s of

time and monetary expense of empirical data collection, predicting the fitne:
transgenic organisms is a difficult and uncertain task. Thus. from a risk assessment
perspective. quantitative models are limited by the narrow environmental scenarios

represented by the empirical data representing parameter values.

has been shown to vary

The 1 i fon of transg
considerably by transgene construct and background genome: both within and between

populations and species (Devlin et al. 2001: Nam et al. 2008). The current thesis provides

further evidence of this

phenomenon.  Specifically. there appear to be ecologically
important phenotypic differences between existing strains of GH transgenic Atlantic and
coho salmon populations. which carry unique GH transgene constructs. During carly life

in Atlantic salmon appear to be delayed or

history the phenotypic effects of transgenesi

ter 1., 2. . 2004,

reduced relative to that observed for coho salmon (Cl < Sundstrom et

2005: Lohmus et al. 2010b). Such observations suggest that the fitness of young-of-the-

year transgenic Atlantic and coho salmon may differ considerably relative to wild-type

conspecifics. From a risk perspective. the fated with
predicting such responses and how they may influence fitness accentuates the importance
of strain-specific empirical data requirements.

Acknowledging the limitations discussed above. ccological risk assessment
protocols will require a more qualitative approach that recognises and accounts for the

| da

limitations and inties inherent with empirical data in support of

quantitative risk assessment models. A precautionary regulatory policy must not exclude
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the use of quantitative models. The parameterised data, however, must be contextualised
(0 the ccological scenario it represents and the model assumptions need to accurately

reflect the ccology of the organism. The data provided here represent an initial step

toward unders

anding the potential ccological and genetic effects of GH transgenic

Atlantic salmon on wild conspecific populations.

6.2: Conclusion
Our ability 1o understand and predict the environmental consequences of

transgenic organisms is lagging behind its technological development. We can engineer

gene transfer biotechnologies with viable, attractive production traits for aquaculture.
However. it is difficult to predict the effects of genetic and environmental variation on

complex phenotypes, like that resulting from the interbreeding of fish populations in

natur

Transgenesis adds another layer of complexity to the challenge of estimating risks

associated with aquaculture escapees.  In many countries. regulator

slation will

respond o this scientific uncertainty by administering detailed environmental risk

assessments and potential restrictions on  the commer

ialization of gene transfer
biotechnologies deemed unsafe.
A long term solution to dealing with the uncertainty and risk associated with

iotecl vies is the develoy of biological i methods.

There is little doubt that I gies will have an i ingly important

role in the global food supply of the 21° century. The challenge is to ensure that
aquaculture development does not contribute to further declines in the health of aquatic

ccosystems.  Aquaculiure biotechnology can play a major role in the sustainable
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development of the industry by developing practical biological containment methods.
The challenge of the biotechnology community is to develop ecologically neutral
technologies: that is. animals that cannot contribute genetically to wild populations and

have little or no impact on the ecosystem. To accomplish this. public and private

itutions will need to prioritize rescarch into chromosome set manipulations, sterility

transgenes, sex-control and other such ies o
traits. while recognizing there may also be inherent dangers with these applications as

well.
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