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Abstract: 

Huntington's disease (HD) is associated with a wide range of effects including selective 

neuronal death and altered levels of neurogenesis that are ultimately dependent upon altered 

activities of Huntingtin (Htt) interacting proteins. These effects are similar in nature to those 

observed with mutations in the Notch signal transduction pathway. Huntingtin interacting 

protein 1 (Hip 1) shows decreased binding to expanded Htt. Hip 1 plays a key role in 

endocytosis and intracellular transport and activation of the Notch signal requires both. Based 

on this observation links between Hip1 and Notch-dependent neurogenesis were investigated. 

In Drosophila two hipl mRNAs may be naturally produced through the use of alternative 

splicing of the first exon: full length hip] with lipid binding ANTH domain and hipltlANTH 

lacking this domain. Directed expression of hipl decreases while expression of hipltlANTH 

increases microchaetae density in the dorsal notum, a field of sensory bristles on the fruit fly 

back, suggesting a functional role for Hip 1 in neurogenesis. The following studies demonstrate 

genetic interaction between hip] and deltex, a key mediator of Notch signaling, with hipl 

enhancing and hipltlANTH suppressing deltex phenotypes. Reduction of bristle microchaetae 

density associated with NotchMCD alleles is sensitive to hip] and hipltlANTH. This pathway is 

shown to be independent of classical Notch control through E(spl) and tightly controlled by 

both GSK3~ and achaete levels. Building on this the possibility of an analogous pathway in 

human neuronal development was investigated using the Ntera-2/D1 neuronal precursor cell 

line along with siRNA and antibody technologies. These studies demonstrate that the Hip 1 

functions in a similar deltex-dependent, HES1-independent process of neuronal 

differentiation. Hip1 's novel role in neurogenesis provides a functional link between Notch 
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signaling and proteins related to HD advancing the understanding of HD neurogemc 

phenotypes. 

During the course of these investigations it was noted by others in our laboratory that high 

levels of Ga/4 in the developing eye result in elevated apoptosis in the eye imaginal disc. 

Suppression of apoptosis by expression of the caspase inhibitor p35 prevented this phenotype. 

These studies were extended to analyze Gal4 phenotypes associated with microchaetae density 

using the pannier-Ga/4 transgenic line. The reduction in microchaetae density associated with 

pannier-Ga/4 is suppressed by co-expression of p35 but unaffected by expression of GFP. 

These results show that Gal4 has effects outside the Drosophila eye and that similar 

mechanisms of disruption are at work at least in the eye and dorsal notum. 
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Chapter 1: Current understanding of Huntington's 

disease 
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1.1 Introduction to Huntington's disease: 

Huntington's disease (HD) is one of a growing class of neurodegenerative disorders in which 

specific regions of the brain and/or peripheral nervous system are lost over time. The 

neuropathological hallmark of Huntington's disease is the selective elimination of medium

spiny GABAergic neurons of the striatum and disease is accompanied by alterations m 

cognitive, metabolic, and emotional characteristics (reviewed in (Petersen et al. 1999). A 

CAG trinucleotide expansion in the gene Huntingtin (Htt) causes Huntington's disease 

(HDCRG 1993). This CAG expansion, when translated, leads to a long stretch of the amino 

acid glutamine (Q) in the ~350 kDa Huntingtin protein (Figure 1.1). This molecular 

characteristic places Huntington's disease in a subset of degenerative disorders termed Poly-Q 

or CAG-repeat diseases that include Machado-Joseph disease and some spinocerebellar 

ataxias, among others (reviewed in (Ross 2002). However, the basic cellular changes that lead 

to the biological outcome of Huntington's disease have yet to be fully characterized. 

Investigations of the biological role of Huntingtin and its functional protein partners have led 

to great advances in the understanding of the biological basis of HD. Nevertheless, 

preventative therapeutics and/or corrective therapies remain elusive. 

This thesis will attempt to outline our present understanding of basis of Huntington's disease, 

discuss models of HD and explore the foci and controversies of current HD research. This will 

be followed by a presentation of a series of novel experiments that explore a role for 

Huntingtin-interacting protein 1 in the process of neurogenesis. 

1-2 



Repeat Region 

l 

N omtal Huntingtin Mutant Huntingtin 

l l 
No Disens• Disease 

Figure 1.1: Simplified model of the polyglutamine (PolyQ) expansion basis of 
Huntington's disease. Huntington's disease patients typically have polyQ stretches 
surpassing 35-36 glutamine repeats with much larger stretches possible. Patients with less than 
the threshold 35-36 glutamine stretch do not show symptoms ofHD while those with 35-36 or 
more glutamine residues manifest HD. As symptomatic severity and age at onset of HD are 
negatively correlated with polyQ length, function(s)linteraction(s) affected by expansion may 
have roles in pathogenic progression and if so may serve to be prime candidates for 
therapeutic intervention. 
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1.2 Current understanding of Huntington's disease: 

1.2.1 Signs and Symptoms: 

Huntington's disease, also referred to as Huntington's chorea, was originally described as an 

inherited disorder in 1872 by Dr. George Huntington and is characterized by a loss of fine 

motor control, resulting in a so-called 'dancing disorder' (Huntington 1872). Currently, HD is 

characterized by complex symptoms including a disruption in the pathways of fine motor 

control plus additional dysfunctions including difficulties in long term memory formation and 

declines in reasoning ability and learning (Lemiere et al. 2004). HD patients show a decreased 

ability to form and recall long term memories. The earliest onset of HD in asymptomatic 

carriers of the HD gene mutation include changes in attention, working memory, verbal 

learning, verbal long-term memory and learning of random associations (Lemiere et al. 2004). 

Subtle dysfunctions that have been shown to be a result of HD also occur in the pathways of 

neuronal development (Curtis et al. 2003; Tattersfield et al. 2004; Curtis et al. 2005) and in 

hematopoiesis (Metzler et al. 2000). The brains of HD patients have increased numbers of 

adult neuronal stem cells in the subependymal layer which suggests that the HD mutation 

alters the activity of signalling pathways that limit neuronal fate specification. In addition, the 

targeted deletion of the Huntingtin homologue, Hdh, in mice has demonstrated that it is 

required for proper neuronal development (White et al. 1997). Analysis of Hdh null cells from 

mutant mice demonstrate that, under normal conditions, Huntingtin plays at least a partial role 

in the proper differentiation of hematopoietic progenitor cells (Metzler et al. 2000). In 

summation, these data suggest alterations to the proper functioning of the Huntingtin gene 

product through, either poly-glutamine expansion in Huntington's disease, or loss-of-function 

in Hdh -1- mice, lead to changes in the pathways of cellular differentiation. This makes it clear 
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that understanding the molecular mechanics underlying these changes may be vital to 

determining the root cause of Huntington's disease. 

1.2.2 Molecular functions of Huntingtin: 

Since the characterization of the HD mutation (HDCRG 1993), Huntington's disease research 

has focused upon the molecular function(s) of the Huntingtin (Htt) protein (Figure 1.2). 

Unfortunately, the large size of the Huntingtin protein, approximately 350 kDa, has hindered 

both X-ray crystallographic and other three-dimensional modeling techniques. Coupled with 

this, no clearly defined functional motifs have so far been uncovered in Htt with the exception 

of numerous repeated Huntingtin, Elongation factor 3, protein phosphatase 2A, and IOR1 

(HEAT) motifs, each of which are linked in other systems to protein-protein interaction, 

suggesting a role for Htt as a 'docking' protein (Takano and Gusella 2002). Despite these 

limitations several advances into the molecular function of Huntingtin have been uncovered. 

One critical finding has been the role of Htt in cellular survival systems through its inhibition 

of caspase activation (Rigamonti et al. 2000; Reiner et al. 2003). Htt is capable of entering the 

nucleus coincident with the anti-apoptotic NFKB transcription factor dorsal (Takano and 

Gusella 2002). Huntingtin has also been linked to the transcriptional regulation and transport 

of the neuronal survival factor, Brain-Derived Neurotrophic Factor (BDNF), required by the 

striatal neuronal population primarily affected in HD (Reilly 2001; Zuccato et al. 2001; 

Zuccato et al. 2003; Gauthier et al. 2004; Ross 2004; Cattaneo et al. 2005; Pineda et al. 2005; 

Zuccato et al. 2005). Proteolytic cleavage of polyQ expanded Htt and, to a lesser extent, wild 

type Htt by activated caspases leads to the production of nuclear and cytoplasmic inclusions in 

the brain (Taylor and Ikeda 2000; Sanchez Mejia and Friedlander 2001). These findings 

strongly suggest a role for Htt in the maintenance of cellular homeostasis, and that alteration 
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of these functions in HD lead, in tum, to programmed cell death. Additional links to cell 

survival pathways are still being uncovered as evidenced by findings showing that alterations 

in the insulin-signalling pro-survival pathway also exist in HD model and patient systems 

(Humbert et al. 2002; Rangone et al. 2004; Colin et al. 2005; Rangone et al. 2005; Warby et 

al. 2005; Gines et al. 2006). Htt has also been linked to axonal transport systems implicating 

alterations in cellular trafficking in the pathogenesis of HD (Block-Galarza et al. 1997; 

Tukamoto et al. 1997; Feany and La Spada 2003; Gunawardena et al. 2003; Szebenyi et al. 

2003; Lee et al. 2004; Trushina et al. 2004). In order to further understand the normal role of 

Huntingtin in the cell and the changes that must exist under disease conditions, studies have 

focused on the activities of proteins which interact with Htt under normal and mutant 

conditions, a summary of these findings will be discussed below. In attempts to uncover the 

role ofHtt directly, several models of Huntington's disease have been established. 

1-6 



A 

Mitochondria 

1 Caspase 
">Activation 

Figure 1.2: Huntingtin is involved in a variety of molecular processes. Huntingtin has been 
shown to function in: nuclear and cytoplasmic shuttling of several proteins such as brain 
derived neurotrophic factor (BDNF) and nuclear factor K B {NFKB) (A), transcriptional co
activation (B) and mechanisms of cell survival, through direct inhibition of caspase activation 
(C). Adapted from (Ross 2004). 
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1.2.3 Current Huntington's disease Rodent Models: 

Mammalian models of Huntington's disease have been established in an attempt to determine 

the normal function of the Huntingtin protein and as its interaction partners. Three main 

classes of mouse lines have been created to investigate various aspects of Huntington's 

disease: expanded N-terminal Huntingtin transgenics, Htt knockout lines, and Poly-Q knock

in/yeast artificial chromosome (Y AC) lines. In addition, a commonly used rat model of HD 

has been established which uses quinolinic acid to induce cell death in the striatum (Beal et al. 

1986). Early transgenic mouse models, designated R6/1 and R6/2, over-express the first exon 

of the Huntingtin gene including an expanded poly-glutamine stretch (Mangiarini et al. 1996). 

These lines have been extensively used to analyze the effects of the truncated polyglutamine

expanded Htt fragments noted to form inclusions in HD. The R6/2 and R6/1 lines have been 

noted to show neuronal inclusions in the striatum and neurologic phenotypes; however no 

degenerative phenotype has been noted (Li et al. 2005). Both of these lines show fewer 

proliferating cells in the hippocampus than age-matched controls (Lazic et al. 2004; Gil et al. 

2005; Grote et al. 2005). The YAC128 and Poly-Q knock-in mouse models attempt to 

recapitulate the genetic basis of HD by adding full-length poly-Q expanded Huntingtin into 

the mouse genome using different methods, preserving the entire protein context of the HD 

mutation. Aspects of Huntington's disease have been approximated, and these models display 

degenerative neurological symptoms in a similar progressive nature to the disease and, in the 

case of Y AC 128 mice, the specific loss of striatal neurons (Lin et al. 2001; Slow et al. 2003; 

Graham et al. 2006). As varied degrees of neuronal phenotypes have been noted with differing 

protein contexts, these 'in situ-altered' HD models preserve the nature of polyQ expansion in 

patients (Yu et al. 2003). Combined, these varied rodent models display many characteristics 
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of HD and therefore allow, to varying degrees, analyses of the physical changes associated 

with the disease. However, limitations associated with rodent systems reduce the extent of in 

depth genetic analysis possible. Invertebrate models can be used, in combination with rodent 

and in vitro systems, to answer difficult questions about HD pathogenesis and development. 

1.3 Invertebrate models of Huntington's disease: 

Based on their evolutionary similarity to humans, mouse models are often favoured but several 

drawbacks exist which limit the extent of their usefulness. Mouse models are very difficult 

and time consuming to establish and in many mammalian systems gene redundancy may mask 

the effect of genetic alteration (Bernards and Hariharan 2001). In contrast, invertebrate models 

· are very useful in genetic analyses. Numerous Caenorhabditis elegans and Drosophila 

melanogaster strains have been engineered to express poly-Q expanded disease proteins in 

order to take advantage of the well-characterized molecular and genetic systems, and general 

lack of redundancy found in these models (reviewed in (Bernards and Hariharan 2001; Link 

2001; Sipione and Cattaneo 2001; Bonini and Fortini 2003; Marsh et al. 2003; Marsh and 

Thompson 2004). A number of invertebrate models have been utilized to show that poly-Q 

expanded Htt fragments cause nuclear aggregation and neurodegeneration (Jackson et al. 

1998; Warrick et al. 1998; Faber et al. 1999; Marsh et al. 2000; Morley et al. 2002). In 

addition several have shown that these phenotypes can be suppressed by expression of certain 

chaperone proteins and modeled peptides (Warrick et al. 1998; Chan et al. 2000; Kazemi

Esfarjani and Benzer 2000; Higashiyama et al. 2002; Kazantsev et al. 2002). An additional 

model utilizes RNA interference techniques of gene silencing to show that Huntingtin works 

in fast axonal transport (Gunawardena et al. 2003; Lee et al. 2004). Importantly, experimental 

therapeutics are being tested using high throughput in vitro screens in parallel with 
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invertebrate model systems (Bates and Hockly 2003; Shulman et al. 2003; Marsh and 

Thompson 2004). Parallel studies may prove to be the most effective in therapeutic 

development with the accurate replication of disease phenotype in mammalian cellular and in 

vivo systems combined with the genetic advantages of invertebrate models. 

1.4 Areas of controversy in HD research: 

The molecular and cellular nature of the disease and the role of neuronal inclusions are two of 

the key areas of controversy. Early genetic analysis, prior to the characterization of the 

Huntingtin locus, determined that HD displays dominant gain-of-function inheritance (Wexler 

et al. 1987; Myers et al. 1989). Early Hdh knockout models supported the gain-of-function 

inheritance as homozygous null animals died during embryogenesis (Duyao et al. 1995). As 

individuals homozygous for the HD mutation display normal embryogenesis this was 

inconsistent with the progression of HD, the authors thus determined that the gain-of-function 

theory was the most likely (Duyao et al. 1995). The earliest examination of an HD 

homozygous patient and his heterozygous brother also suggested no difference in disease 

progression (Durr et al. 1999). This suggests that an individual with only one mutant HD allele 

would be symptomatically indistinguishable from an individual homozygous for the defective 

CAG-expanded allele, and suggests that the wild type Htt gene has no effect on disease 

outcome. In contrast, recent research suggests that wild type Huntingtin may play a role in 

disease outcome (Cattaneo et al. 2005; Graham et al. 2006). Decreasing wild type Hdh 

expression enhances the deleterious effects of the YAC128 poly-Q Htt chromosome, with 

earlier age at onset and more severe disease progression (Graham et al. 2006). Indeed, Hdh 

depletion is seen in several mouse models of neurologic conditions as well as models of HD 

(Zhang et al. 2003). These findings are further supported by results in an HD knock-in mouse 
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model in which 150 CAG repeats were inserted into the wild type Mus musculus Hdh gene 

(Reddy et al. 1998; Lin et al. 2001). In this system, homozygotes for the HD mutation have 

decreased lag times in disease onset (Reddy et al. 1998; Lin et al. 2001). Further evidence 

supporting a functional role for wildtype Huntingtin in disease progression comes from a 

genetic analysis following 8 homozygous and 75 heterozygous HD patients (Squitieri et al. 

2003). Interestingly, this study found that, while age at onset is unaffected by homozygousity, 

the disease progression and severity were both negatively affected in those individuals 

homozygous for the HD mutation when compared to heterozygous controls (Squitieri et al. 

2003). Several arguments can, however, be identified from these conflicting views. As early 

analyses were performed using statistical prediction of homozygousity, or on very limited 

sample numbers, it is difficult to draw firm conclusions from these data. Additionally, 

variability in the age at onset in relation to CAG length and neurological definition of early 

Huntington's disease mask subtle changes which may be vitally important. Analyses in animal 

models, which have clearly defined symptoms and recognizable end points (Reddy et al. 1998; 

Lin et al. 2001; Graham et al. 2006) along with the more recent analyses using larger numbers 

of patients, along with molecular determination ofhomozygousity, would be expected to show 

more reproducible results (Squitieri et al. 2003). It is apparent that the question of wildtype 

Htt's role in disease progression remains a topic of heated debate and this debate will remain 

until enough detailed molecular and neurological data can be compiled to conclusively define 

age at onset and disease severity in both heterozygous and homozygous HD patients. 

A second area of controversy in HD research is the role of protein inclusions in the disease. 

Theories regarding the function of these protein deposits have ranged from being causative of 

HD cell death (Li et al. 2001; Lee et al. 2004; Ravikumar et al. 2004; Kim et al. 2006) to 
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providing a measure of neuroprotection (Chun et al. 2002; Rao et al. 2002; Arrasate et al. 

2004; Diaz-Hemandez et al. 2005). This is particularly concerning because a number of 

potential therapeutic methodologies currently under study focus on the elimination/prevention 

of these proteinacious inclusions (Kazantsev et al. 2002; Wolfgang et al. 2005). Without a 

clear understanding of the role of these inclusions, these therapeutics may be detrimental. For 

example, in situ time-course microscopy of cells containing aggregates compared to those 

lacking aggregates suggests that cells containing aggregates survive better than non-aggregate 

containing cells (Arrasate et al. 2004). If this protective role is retained in HD patients, 

therapies directed at the elimination of these aggregates or that induce changes in aggregate 

structure may be detrimental to those patients. Based on these findings and the aforementioned 

difficulties in direct functional analysis of Huntingtin (Section 1.2) a great deal of study has 

been done on proteins that interact with Huntingtin in both the normal and mutant state. 

Interactions affected by the HD mutation represent promising targets of therapeutic 

intervention,. Analyzing the molecular function(s) of these interactors could provide an 

indirect method of understanding the molecular function of Htt and effects of the HD 

mutation. 

1.5 Huntingtin-interacting proteins: 

1.5.1 Huntingtin-interacting proteins: 

Proteins identified to interact with Huntingtin fit into several functional categories and have 

varied responses to the HD mutations (as summarized in Table 1.1). Several Htt-binding 

partners are involved in metabolism, such as glyceraldehyde-3-phosphate dehydrogenase 

(Burke et al. 1996) and cystathione-~ synthase (Boutell et al. 1998). A second group is 

involved in protein modification, such as Huntingtin-interacting protein 2 (Hip2), a ubiquitin-
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conjugating enzyme involved in protein turnover (Kalchman et al. 1996). A third group of 

Htt-interacting proteins is. involved in growth signalling. This group includes Grb2, a growth 

factor-receptor intermediate (Liu et al. 1997); Akt, a critical cell-survival kinase (Humbert et 

al. 2002); the proto-oncogenic transcription factor's nuclear factor KB (NFKB) (Takano and 

Gusella 2002); and the transcription factor p53 (Steffan et al. 2000). The fourth group is 

involved in the process of intracellular vesicle trafficking. Members of this group include 

Hipl4, a palmitoyl transferase (Singaraja et al. 2002); Huntingtin-associated protein-1 (Hap-

1), an adaptor involved in vesicle transport (Li et al. 1995); a-Adaptin, a clathrin adaptor 

(Faber et al. 1998); and Huntingtin-interacting protein 1 (Hip1), an endocytic adaptor protein 

linked to numerous roles in the cell (Kalchman et al. 1997; Wanker et al. 1997). Of these, 

Hip14, Hap1, a-Adaptin, and Hip1, possess altered binding in the presence of the HD 

mutation. Hip14, a-Adaptin and Hip1 show decreased binding to the mutant forms of Htt, 

while Hap1 has an increased affinity for poly-Q expanded Htt (Li et al. 1995; Kalchman et al. 

1997; Wanker et al. 1997; Singaraja et al. 2002). As the Hip14, Hap1, a-Adaptin and Hip1 

proteins bind with differential preference to mutated and non-mutated Htt, they clearly 

represent strong candidates for preventative or corrective intervention. Although these diverse 

functional groups of Htt-interactors suggest that an array of biological activities may be 

affected in HD patients, they are involved in several common processes: all of the described 

activities . depend on intracellular vesicle transport and membrane regulation for proper 

activity. 
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Interacting Molecular Affect of Poly-Q Reference 
partner Function on binding 

activity 
a-Adaptin Endocytosis Decrease (Faber et al. 1998) 

Akt Signalling No Change (Humbert et al. 2002) 
CBS Metabolism No Change (Boutell et al. 1998) 

GAPDH Metabolism No Change (Burke et al. 1996) 
Grb2 Signalling Unknown (Liu et al. 1997) 
Hap1 Trafficking Increase (Li et al. 1995) 
Hip1 Trafficking Decrease (Kalchman et al. 1997; 

W anker et al. 1997) 
Hip-2 Protein turnover No Change (Kalchman et al. 1996) 
Hip14 Trafficking Decrease (Singaraja et al. 2002) 

NFKB Signalling Unknown (Takano and Gusella 2002) 
p53 Signalling No Change (Steffan et al. 2000) 

Table 1.1: Huntingtin interacting proteins, the effect of Huntington's disease 
polyglutamine (PolyQ) mutation on binding affmity, and current view of molecular 
function. CBS=Cystathione-13 Synthase; GAPDH= Glyceraldehyde Phosphate 
Dehydrogenase; NFKB= Nuclear factor K B; Hip = Huntingtin-interacting protein; Hap = 
Huntingtin associated protein. 
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1.5.2 Huntingtin-interacting protein 1: 

Huntingtin-interacting protein 1 was originally characterized based upon its binding to 

Huntingtin in the yeast two-hybrid system (Kalchman et al. 1997; Wanker et al. 1997). 

Importantly, this interaction is reduced in the presence of the HD mutation to suggest that the 

function of the Hip1/Htt heteromer could have implications in the onset and progression of 

Huntington's disease (Kalchman et al. 1997; Hackam et al. 2000; Gervais et al. 2002). In 

support ofthis theory, Hip1 is capable of inducing apoptotic cell-death in cell-culture through 

a central coiled-coil domain (Hackam et al. 2000; Gervais et al. 2002). Increased Htt poly-Q 

length in turn increases cell-death (Hackam et al. 2000; Gervais et al. 2002). A novel Hip1 

protein interactor (Hippi) was shown to co-operate with Hip 1 to enhance its toxic effects 

(Gervais et al. 2002). The mechanism of cell death has been undergoing some debate as one 

study shows activation of the mitochondrial Caspase 9-mediated pathway (Hackam et al. 

2000) while another shows activation of the extrinsic Caspase 8-mediated pathway (Gervais et 

al. 2002). Curiously, Hip1 expression promotes cellular survival and is capable of 

transforming ordinary cells into malignant masses (Rao et aL 2002; Rao et al. 2003). In 

addition, Hip1 is highly expressed in prostate and colon cancer and strongly correlates with 

poor prognosis in prostate cancer (Rao et al. 2002). These apparently counter-intuitive roles 

for Hip 1 have been postulated to stem from Hip 1 's role in the complex mechanisms of 

clathrin-mediated endocytosis and cellular targeting. 

Hip1 contains domains related to endocytosis and vesicular-trafficking including an AP-180 

N-terminal homology domain [ANTH, previously referred to as an ENTH (Epsin N-terminal 

homology)], a Talin-like/ILWEQ domain, as well as binding sites for actin, adaptor protein 2, 
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and clathrin (Kalchman et al. 1997; Hackam et al. 2000; Mishra et al. 2001; Rao et al. 2001; 

Legendre-Guillemin et al. 2002; Metzler et al. 2003; Chen and Brodsky 2005; Legendre

Guillemin et al. 2005; Sun et al. 2005). Studies of the biological role of Hip1 in Hipl-null 

mice and cell culture systems show that these domains are functional in the processes of 

endocytosis and trafficking. Hipl-null mice show defects in neurotransmitter receptor 

trafficking as well as aspects of cellular differentiation and overall development; in particular, 

hematopoietic and spermatogenic development are inhibited along with eye and spinal defects 

(Rao et al. 2001; Metzler et al. 2003; Oravecz-Wilson et al. 2004). Biochemical analyses have 

shown that these phenotypes are related to the ability of Hip 1 to participate in endocytosis 

(Mishra et al. 2001; Hyun et al. 2004; Chen and Brodsky 2005; Legendre-Guillemin et al. 

2005; Sun et al. 2005). Hip1 's role in endocytosis and receptor trafficking has been firmly 

established, however the relation of this function to phenotypes in HD and cancer remain 

unclear. 

Hip1 's role in tumourigenesis is believed to be mediated through alterations in epidermal 

growth factor receptor trafficking leading to enhanced cell-survival signalling (Rao et al. 

2003). However, relating the biological functions of Hip1 to HD has proven more difficult. 

Hip1 null mice do display neurological impairments related to AMPA-receptor transport 

(Metzler et al. 2003) but these phenotypes have not been linked to HD. These findings, while 

hinting that Hip1 is involved in HD, leave open for investigation the question of the role of 

Hip1 in HD. 
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1.6 Notch and Neurogenesis: 

1.6.1 Notch signalling in development: 

The Notch signal transduction network (Figure 1.3) was originally described due to its role in 

lateral inhibition during the process of neurogenesis (reviewed in (Hansson et al. 2004). In the 

Drosophila embryo null mutations in Notch lead to over-production of neurons at the expense 

of epidermis (Hansson et al. 2004). Since its original description, the roles of Notch signalling 

in development have expanded with new roles which range from the promotion of cell-cycle 

progression to the activation of apoptotic cell death (Hansson et al. 2004; Radtke et al. 2005). 

With this explosion in cell-type specific reactions to Notch-mediated signalling, comes a 

variety of cross-talk mechanisms and novel Notch regulators. The Delta/Notch signalling 

pathway is responsible for the classic genetic example of lateral inhibition in the development 

of cell fates (reviewed in (Hansson et al. 2004). Delta/,S.errate/,Lag-2, collectively called the 

DSL ligands, is a family of transmembrane ligands which bind to and lead to the activation of 

the transmembrane receptor Notch. In the basic Delta/Notch pathway, a group of cells, that 

express proneural genes, are narrowed down to one cell that will continue to develop into a 

functional neuron. Initially all cells in this 'proneural cluster' express both Delta and Notch at 

relatively equal levels to prevent neuronal differentiation. This balance is achieved through 

inhibition of the neuronal differentiation proteins Achaete/Scute and Neurogenin by Notch 

signalling within the group of cells. Eventually, one cell in the cluster will express an excess 

of Delta to lead to strong inhibition of proneural signals in surrounding cells through a 

corresponding increase in Notch activation. Activation ofNotch occurs through a coordinated 

series of three proteolytic cleavages, termed S1, S2 and S3. The S1 cleavage occurs at the 

trans Golgi network to lead to a functional receptor. The S2 cleavage in the extracellular 
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domain occurs in response to Delta binding and produces a Notch extracellular domain 

(NECD) and a membrane-bound activated Notch-extracellular removed 'NEXT' fragment that 

is subsequently cleaved at the intramembranous S3 site by presenilin. This cleavage event 

releases the Notch intracellular domain (NICD) into the cytoplasm. NICD then binds to the 

Su(H) complex thereby leading to transcriptional activation of the Hairy and enhancer of split 

(HES) complex which down-regulates proneural genes to result in an ectodermal, rather than a 

neuronal fate. Specialized subsets of Notch signalling have been described which deviate 

from this canonical pathway mediated through the Notch regulator deltex. 

1.6.2 Deltex-dependent Notch-signalling: 

Since the discovery of Notch's role in neurogenesis numerous studies have focused on 

defining modifiers of the standard Notch pathway. One such modifier was described very 

early using Drosophila genetics, the deltex locus, identified based on its phenotypic 

resemblance to both the Notch and Delta wing vein phenotypes (Morgan et al. 1931 ). 

Molecular and genetic analyses have since defined deltex as an E3 ubiquitin ligase (Cornell et 

al. 1999) responsible for enhancing Notch's anti-neurogenic effects independent of the 

classical pathways of lateral inhibition thorough HES (Xu and Artavanis-Tsakonas 1990; 

Matsuno et al. 1998; Yamamoto et al. 2001; Matsuno et al. 2002). This deltex-dependent, 

RES-independent pathway has since been shown to have clear roles in early neurogenesis 

(Ramain et al. 2001) and hematopoiesis (Deftos et al. 2000; Suzuki and Chiba 2005). This 

novel Notch pathway and its connections to Huntington's disease will be described in detail in 

later chapters with specific focus on the development of the nervous system. 
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Of particular significance, the deltex-dependent Notch signal has been linked to the 

development of the sensory bristle field in the Drosophila melanogaster dorsal notum, the 

central segment of the fruit fly back (Ramain et al. 2001). Specifically, within the dorsal 

notum the development of the small, microchaetae, bristles is affected by the deltex signal 

while the large, macro chaetae, bristles are unaffected (Ramain et al. 2001 ). Figure 1.4 

illustrates the dorsal notum region highlighting the micro- and macrochaetae. During the 

development of both micro- and macrochaetae a characteristic pattern of cellular 

differentiation is carried out, resulting in one sensory neuron, one bristle socket cell, one 

support cell and one bristle shaft cell (Posakony 1994). This allows for the indirect evaluation 

of neuronal development through the analysis ofbristle formation (Ramain et al. 2001). 
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Figure 1.3: The Delta/Notch pathway (A) its role in lateral inhibiton (B) and its 
regulatory pathways (C). (A) Binding of Delta (Dl) to Notch (N) leads to extracellular S2 
cleavage, forming theN extracellular domain (NECD) and N extracellular truncated (NEXT) 
fragments, followed by intracellular S3 cleavage of the NEXT fragment by presenilins 
releasing the N intracellular domain (NICD) and anti-neurogenic fate. (B) In the proneural 
cluster of equipotent cells Dl is expressed at equal amounts by all cells leading to no change in 
cell fate. Eventually one cell expresses excess Dlleading to inhibition of neural fate for all 
others through increased N dependent inhibition of neural genes. (C) Genetic and molecular 
data have gleaned two systems of regulation in the neuronal development through the Notch 
transmembrane receptor. One regulating pro-neural potential in field of equipotent cells 
mediated through cross talk between the Notch and Wingless networks and the other 
controlling the delineation of individual neurons through the classical process of lateral 
inhibition through the Delta/Notch network (red lines indicate inhibitory processes while 
green lines indicate activatory processes; double-headed arrows indicate protein-protein 
binding; dashed lines indicate proteasomal degradation). Adapted from (Hansson et al. 2004). 
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Figure 1.4: The Drosophila melanogaster dorsal notum. The dorsal notum contains two 
separate sensory bristle systems, the densely packed, smaller, microchaetae and the sparse, 
larger macrochaetae. The scutellum is a shield-shaped dorsal structure posterior to the dorsal 
notum which contains only macrochaetae. 
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1.7 Using Drosophila and mammalian cell culture to model 
human disease: 

1.7.1 Drosophila as a model of human disease: 

The understanding of the biology of the fruit fly, Drosophila melanogaster, exceeds that of 

most commonly studied organisms owing to over one hundred years of genetic analysis (Bier 

2005). This impressive amount of genetic knowledge, coupled with the ease of culture and 

short life span, have resulted in Drosophila becoming one of the premier systems in which to 

carry out biological analysis. Recent molecular advances, such as the sequencing of the human 

and Drosophila genomes, have demonstrated a startling degree of evolutionary conservation 

(Reiter and Bier 2002; Bier 2005). A large proportion of human disease-related genes and the 

genes for basic cellular functions, ranging from 65-80 percent depending on comparison 

methods, have counterparts in the D. melanogaster genome (Reiter and Bier 2002; Bier 2005). 

This includes a well-conserved homologue of the Htt gene (Li et al. 1999). The high degree of 

genetic and functional conservation between the fruit fly and human systems suggests that 

Drosophila can be used to help determine the function of genes related to Huntington's disease 

and, in tum, help to determine points for therapeutic intervention. In addition to the great 

amount of genetic knowledge, the availability of both classical and novel assays of 

biochemical, behavioural, and physical changes allow for the identification and 

characterization of very subtle differences in this model system. Virtually all biochemical 

assays have been translated for use in the fruit fly system. Assays of physical and behavioural 

parameters allow for the approximation of phenotypes seen in complex human disease. For 

example, the natural behaviour of negative geotaxis has been used extensively in fly models of 

Parkinson's disease to demonstrate changes in movement similar to those seen in Parkinson's 
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patients (Feany and Bender 2000; Haywood and Staveley 2004). Novel assays for learning and 

memory allow the effective modeling of diseases, such as HD, in which these functions are 

abrogated (Ge et al. 2004; Presente et al. 2004). Drosophila melanogaster therefore represents 

a fantastic model for the study of complex genetic diseases of the central nervous system. 

One great advantage in employing Drosophila over other model organism systems is the 

availability of both forward and reverse genetic screens. Forward and reverse genetics can 

quickly determine the existence of additional components of complex genetic systems and can 

quickly identify the role and location of these components in the given pathway. In addition, 

the introduction of inducible transgene constructs is a routine activity in Drosophila research 

that allows directed expression of any gene of interest in virtually any tissue/cell type specific 

pattern using the bipartite UAS/Gal4 ectopic gene expression system (Brand and Perrimon 

1993; Brand et al. 1994). This system allows the evaluation of transgene over-expression in 

either normal or mutant backgrounds to efficiently evaluate biologically significant genetic 

interactions. As stated above, Drosophila has already been used in several Huntington's 

disease studies utilizing transgenics expressing poly-Q expanded Htt, or other disease related 

poly-Q protein fragments in order to screen for modifiers of the aggregative/ 

neurodegenerative phenotypes (Jackson et al. 1998; Warrick et al. 1998; Warrick et al. 1999; 

Chan et al. 2000; Kazemi-Esfarjani and Benzer 2000; Marsh et al. 2000; Higashiyama et al. 

2002; Kazantsev et al. 2002). These findings suggest that the molecular basis of polyglutamine 

toxicity are conserved from flies to humans lending strong support for the use of Drosophila in 

the genetic dissection ofHD. 
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1.7.2 Use of Human cell culture to investigate conservation of function: 

Despite the genetic and logistical advantages afforded in the Drosophila model system, it 

remains a lower invertebrate system and the possibility exists that some biological divergence 

in function has occurred. Utilizing mammalian cell culture methods in parallel with 

Drosophila allows independent confirmation of functionally relevant features from either 

system in the other. Those mechanisms which are conserved from Drosophila to human cell 

culture will represent good candidates for directed therapies and, by the nature of this 

methodology, will also provide multiple parallel screening options for existing therapies. This 

methodology will allow for the rapid dissection of genetic networks and identification of 

potential pharmaceutical targets to accelerate drug discovery and design. 

1.8 Research Goals: 

As no preventative or corrective therapies exist for Huntington's disease despite the fact that 

the causative mutation has been unequivocally identified since 1993 (HDCRG 1993) I set out 

to further the understanding of the progression and pathogenesis of this disorder. In order to 

understand the biological dysfunctions that result in Huntington's disease, we must first 

understand the function of Huntingtin itself. Due to the limitations in direct study of the 

Huntingtin protein, one beneficial mechanism to uncover this role is through the functional 

analysis of Huntingtin protein partners, especially those that display altered function under 

disease conditions. Based on my review of the Huntingtin interacting partners characterized it 

was decided that a clear understanding of the biological functions of Huntingtin-interacting 

protein 1 was desirable. As no analysis of the function of Hip 1 in Drosophila had been 

undertaken and given the unique advantages of the fruit fly system, analysis of the Drosophila 
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hip] homologue was selected. Coupling this with mammalian cell culture methods would 

allow independent confirmation of those functions potentially relevant to patient situations. 

The initial goals of this project were to clone and characterize hip] in Drosophila homologue 

and generate transgenic Drosophila which express hip] under the control of UAS enhancer 

element. I analyzed the effects of hip] over-expression in numerous tissue/cell-type specific 

patterns and analyzed several biological parameters for effects. Preliminary results suggested 

that hip] plays a role in the development of the Drosophila nervous system. To evaluate the 

relevance of any findings to human disease some parallel studies were performed in 

mammalian cell culture systems. A secondary goal of this project was to initiate the analysis 

of the Drosophila homologue of Hippi based on the pre-defined role of its mammalian 

counterpart in cell death (Gervais et al. 2002). This consisted of initial cloning and 

characterization of the gene as well as detailed sequence analysis to determine functional 

regions of the protein for future study. 
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Chapter 2: Huntingtin-interacting protein 1 is a 

novel regulator of neurogenesis in Drosophila 
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2.1 Introduction: 

Huntington's disease (HD) is a dominantly-inherited progressive neurodegenerative disorder 

characterized by cognitive, emotional and motor deficits (Petersen et al. 1999; Cattaneo et al. 

2005). The manifestation of HD has been linked to the expansion of a CAG trinucleotide 

within the Huntingtin (Htt) gene which, in turn, results in an expanded stretch of glutamine 

(Q) residues in the Huntingtin protein (HDCRG 1993). Increasing poly-glutamine length 

above a 36-39 repeat threshold leads to progressively earlier onset and more severe 

presentation of Huntington's disease symptoms (Rubinsztein et al. 1996). The mechanism 

underlying this expansion phenomenon has yet to be determined. 

Symptoms observed with HD patients arise from the selective death of neurons in specific 

regions of the brain, primarily the dramatic loss of medium-sized, spiny, GABAergic neurons 

in the striatum (Petersen et al. 1999). The discovery of the Htt gene (HDCRG 1993) has led to 

advances in unlocking the biological and molecular secrets that underlie HD pathogenesis. As 

CAG expansion in the Htt gene leads to Huntington's disease under normal conditions, the Htt 

protein must contribute to the prevention of the cellular basis of HD pathogenesis, likely 

through activities associated with the region of poly-glutamine expansion. The identification 

of proteins that interact with Huntingtin, including Huntingtin-interacting protein 1 (Hip1), 

have been particularly enlightening (Kalchman et al. 1997; Wanker et al. 1997). Interestingly, 

the protein-protein interactions between Htt and Hipl correspondingly decrease as the poly

glutamine length increases above the pathogenic level to suggest an intimate functional link 

between the interaction and the cellular mechanism underlying HD (Kalchman et al. 1997; 

Hackam et al. 2000; Gervais et al. 2002). The identification of a role for Hip 1 in intracellular 
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trafficking and endocytosis suggests that improper protein localization or improper regulation 

of downstream effects may be involved in HD pathogenesis (Mishra et al. 2001; Rao et al. 

2001; Legendre-Guillemin et al. 2002; Rao et al. 2003; Hyun et al. 2004; Chen and Brodsky 

2005; Legendre-Guillemin et al. 2005; Sun et al. 2005). Subtle dysfunctions associated with 

HD involve altered levels of adult stage neurogenesis and reduced numbers of neuronal 

progenitors as found in both post mortem analysis and isolated tissue culture (White et al. 

1997; Metzler et al. 1999; Petersen et al. 1999; Metzler et al. 2000; Curtis et al. 2003; Lazic et 

al. 2004; Tattersfield et al. 2004; Cattaneo et al. 2005; Curtis et al. 2005; Gil et al. 2005; Grote 

et al. 2005; Jin et al. 2005). However, no functional links between Hipl and the HD associated 

neurogenic phenotype have been established. 

Signalling through the Notch transmembrane receptor has been linked to diverse roles in 

developmental and pathological pathways from the activation of programmed cell death 

mechanisms to the promotion of cancer progression (reviewed in (Hansson et al. 2004; Radtke 

et al. 2005). Notch controls lateral inhibition during neurogenesis through interactions with the 

Suppressor of Hairless [Su(H)] protein and subsequent transcriptional regulation of Hairy and 

Enhancer of split (HES) basic helix loop helix (bHLH) transcription factors (Hansson et al. 

2004; Radtke et al. 2005). Recently, a parallel Notch-mediated signalling mechanism has been 

described that features the positive regulator of Notch signalling, deltex (Ramain et al. 2001). 

In fruit flies, this alternative deltex-dependent mechanism regulates the neuronal stem cell 

field in the dorsal notum, the microchaetae sensory organ precursor population (Ramain et al. 

2001). This model of neuronal development allows detailed analysis of novel genetic 

regulators ofNotch-mediated neurogenesis. 
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Given the parallels between HD related neurogenesis and Notch signalling, potential links 

between the Htt/Hipl and Notch!deltex systems were investigated in Drosophila 

melanogaster. We have identified the Drosophila homologue of Hip 1, characterized eDNA 

clones and produced conditional expression transgenic fly lines. Studies utilizing the 

Drosophila UAS/GAL4 ectopic gene expression system, demonstrated that the Hipl gene 

functions in neurogenesis and that this function influences the Notch signalling network. 

Additionally, data suggest that this function is dependent on Hipl 's ability to participate in 

endocytosis, mediated through its AP180 N-terminal homology (ANTH) domain. Based on 

review of the current understanding of Hipl function this novel role in Notch regulation 

represents the first functional link between Huntington's disease and neurogenesis and may 

suggest a therapeutic intervention rationale. 

2.2 Methods: 

2.2.1 Cloning/Sequencing of Drosophila Hipl homologues: 

Through a tBLASTn search (flybase.net!blast) of the Drosophila melanogaster genome 

utilizing the human Hipl homologue (Genbank Accession AAC51257) as reference, a single 

well-conserved Hipl homologue, CG10971, was identified. Two clones, containing putative 

full-length versions of Drosophila hipl, LD20514 and LD30041, were obtained from the 

Berkeley Drosophila Genome Project (BDGP). These cDNAs were subcloned and sequenced 

using a combination of an ABI 3100 genetic analyzer with BigDye v.3.0 chemistries and a 

commercial sequencing service (Cortec DNA Laboratory Services, Kingston, Ontario). The 

longest ORF was determined for each using the Expert Protein Analysis System (ExP ASy) 

translate tool ( ca.expasy.org/tools/dna.html). All sequence data will be submitted to 

appropriate databases preceding publication. 
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2.2.2 In vitro Transcription and Translation: 

In vitro transcription and translation was carried out using the Prom ega in vitro T-n-T Coupled 

reticulocyte lysate system according to manufacturer's instructions. Briefly, 1 j.tg ofLD20514 

or LD30041 were added to in vitro TnT lysate mixture and transcription and translation were 

carried out at 30°C for 90 minutes. Radiolabelled 35S-methionine was incorporated into 

translated products to allow detection. Samples were run onto 4-20% Novex SDS-PAGE gels 

along with appropriate size standards (Invitrogen, Carlsbad, California). Gel was dried for 1 

hour prior to 18 hour exposure to Kodak autoradiographic film and developing. 

2.2.3 Drosophila Culture: 

The apterous and pannier Gal4 transcription factor expression lines were obtained from the 

Bloomington Drosophila Stock Center (BDSC) (University of Indiana, Bloomington) (Calleja 

et al. 1996). The expression ofpannier-Gal4 radiates laterally from the midline throughout the 

dorsal notum, the flies back, and apterous-Gal4 expression is greatest in lateral regions and 

diminishes at the midline (Calleja et al. 1996). Genetic interactions were investigated using 

standard genetic techniques and controlled by outcrosses to the appropriate Gal4 driver lines. 

The UAS-deltex line was obtained from Dr. Kenji Matusno (Xu and Artavanis-Tsakonas 1990; 

Matsuno et al. 1998). The NotchMCDI allele was obtained from Dr. Pascal Heitzler (Ramain et 

al. 2001). All crosses were performed at 25°C or 19°C as noted and all flies were maintained 

on standard cornmeal yeast molasses agar media based on recipes available from the BDSC 

(University of Indiana, Bloomington). 
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2.2.4 Drosophila Transgenesis: 

The Drosophila melanogaster cDNAs LD30041 and LD20514 were individually directionally 

cloned into the pP[UAST] transposable element vector (Brand and Perrimon 1993), 

transgenics were generated by injection into white1118 (w1118
) embryos along with the 

transposase producing helper plasmid pHSn and selection for mini-w + marker gene expression 

m progeny. All data are representative of multiple independent transgenic lines for each 

trans gene. 

2.2.5 Microchaetae density analysis: 

Notum preparations were oriented with dorsal notum facing up on aluminum scanmng 

electron miCroscope (SEM) studs, desiccated overnight, gold scatter coated and then 

photographed using a Hitachi 570 SEM. All micrographs were taken at 70X magnification, 

Polaroid images were scanned and analyzed using ImageJ digital image analysis software 

(Abramoff 2004). Counts of dorsal microchaetae number in the entire field, as defined by the 

edges of the dorsal notum (red dotted lines· in Figure 2.2), were performed for each image. 

Total dorsal notum area (11m2
) was calculated with calibration of the software to an internal 

size standard (red dotted lines in Figure 2.2). Individual microchaetae counts and their 

respective area measures were used to calculate density values, expressed as number of 

microchaetae per 100 11m2
, via Microsoft Excel (Microsoft, California). Values for each 

genotype group were imported into the GraphPad Prism 4 program (Graphpad Software, San 

Diego California) for display and statistical analysis purposes. Means ± standard error of the 

mean were plotted and individual groups were subjected to one-way ANOV A analysis along 

with Neuman-Keuls posthoc-test to determine significance between pairs. 
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2.3 Results: 

2.3.1 Cloning and characterization: 

The Drosophila rnelanogaster hipl homologue was identified by a search of the Berkeley 

Drosophila Genome Project (BDGP) utilizing the tBLASTn search algorithm 

(www.ncbi.nim.nih.gov/BLAST). The hipl gene is located on the left ami of the third 

chromosome in the polytene chromosome section 69E. Two Drosophila hipl eDNA clones, 

representing alternate mRNA's from the CG10971 locus, clone LD30041 (CG10971-RA) and 

clone LD20514 (CG10971-RB) were obtained from the Berkeley Drosophila Genome Project 

and sequenced. As shown in Figure 2.1A, the variants have alternative inclusion of the first 

exon such that exon 1a (CG10971-RA) begins upstream of exon lb (CG10971-RB). The 

cDNAs share a core of six identical exons 2-7. The two cDNAs differ in the site of 

transcriptional termination within the non-coding region of the eighth exon. CG10971-RA 

represents a 3881 bp transcript which encodes a predicted peptide of 1124 amino acids. 

CG10971-RB is a 3938 bp transcript containing two potential initiation codons spaced 18 bp. 

apart. The Kozak sequence (Kozak 1986) for the second potential start codon is a match for 

the Drosophila Kozak consensus of (C/A)AA(NC)ATG) (Cavener 1987) while the first 

possible start codon is less similar. Based on Kozak conformity, a 1026 amino acid protein 

may be the predominant protein produced from the CG 1 0971-RB transcript. 

At the amino acid level, the proteins are highly conserved in structure when compared to the 

predicted mammalian versions of Hip1 (Figure 2.1B). Protein domain predictions of each 

variant were performed using the Pfam webtool (www.sanger.ac.uk/cgi-bin/Pfam). Both the 

1124 AA and 1026 AA variants contain a complete, well-conserved (Pfam E-value=7.5e-64) 
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IL WEQ domain at the C-terminus (Red box in Figure 2.1B). In addition, both variants contain 

well-conserved central pseudo death effector domain structures (Blue box in Figure 2.1B). 

The protein variants differ at the amino terminus. Importantly, the longer variant encodes a 

complete AP180 N-terminal homology domain (Orange box in Figure 2.1B, Pfam E

value=2.6e-106), which includes the putative lipid binding pocket (black box in Figure 2.1B). 

This region is found in all ANTH domains while it is absent in the related Epsin N-terminal 

homology (ENTH) domain (Sun et al. 2005). Removal of the lipid-binding pocket has been 

shown to eliminate the function of Hip 1 in endocytic regulation of membrane receptors (Rao 

et al. 2003; Sun et al. 2005). The lipid binding region of Drosophila Hip 1 approximates the 

consensus sequence of (K/G)A(T/I)x6(P/L/V)KxK(H/Y), with the exception of L20 which is 

normally aT or I residue based on the consensus (Sun et al. 2005). In contrast, CG10971-RB 

is incapable of producing a complete ANTH domain containing this lipid-binding region and 

may be incapable of mediating endocytosis and vesicle trafficking. The putative start 

methionine residue of CG10971-RB (Arrow head in Figure 2.1B) illustrates that this variant 

does not encode a fully functional ANTH domain (Pfam E-value=2.4e-25 compared to 2.6e-

106 in hip1). The variants are denoted as hipl, for CG10971-RA, and hiplMNTH, for 

CG10971-RB. 

In vitro transcription and translation of both Drosophila transcripts was carried out in order to 

confirm that both open reading frames could form complete proteins as predicted by 

bioinformatic analysis (Figure 2.1 C, ca.expasy.org/tools/#primary). Translation of hip] 

produced a product of ~125 kDa (predicted= 128 kDa) while hiplMNTH formed a product 

of~ 113 kDA (predicted = 117 kDa) to conclude that both cDNAs could produce the predicted 

versions of the Hip 1 protein. 

2-42 



A 

B 

L020514-hip1AANTH 3983bp 

AE003540 Genomic Region 

L030041-hip1 3881bp 

....... -... Dnlaa,bila 

h:,..OOhlo 

....... --DI'oaophila 

»rta.oona. 

lfOWiexo ,_,., 
»roa<!PbUa 

l#ia.OOJit. 

-· -... Dt-otophila 

td.a.ooaa. _ ... ........ 
DroaCIIIMla 

ki:M.QOna. 

-·· --· ............ 
il'ia.~·· _ .. 
,_., 
II~BQPhila 

Pri•.'CIOM· 

-·"' ·-Dl'claopbUa 

Prilll.cona. 

10 20 10 I I J 
Mr.M7oi~:IIM:.~Af!IIE 
.......... ~~au:s 
~~-.................. ~-·----.. ------tl".~f!Ju>K& 

~ " ~ ~ ~ m ~ = m m rn 
..... ...~.,,...,.,.,.,.,,II• TC!UI1'fl~Qh()'l'1"'4vJw,.t.M.IS~Kf't!llt01~!<tr.ROOI1~'?DSt..lY~".IW.8Xo.b.s>:GYCQt.C~tY!.Kr,LJ.'tF~ 

II!NTQIWAW&KI :tcH,(J'l'HHIXG!I.\l!'FW81'f'JlfRtY~IfA\ILCWKf'C!lV!"i1:KL;.1!.WHl'tfVi:KDSLaY1UW<4t\HS11MWGRLS£0Y<'",QLCSIYU<l.C.JtK!< 

~ ~ • • '~ • ',, ~ • ~~~~:~tnl!~~:u rs~:~Stm'J>.~:K::$1~t..1;!':.V:::-.G:~$AlJliW~ll<.Kitr:L~>'G!i~;>;t~flDl(~i:QA¥~K:~1·~:_ 

= ~ ~ m ~ m ~ ~ ~ 
l I I I I I I I I I I I I I I 

A()ltSL'l'£ttil~~YSJd.t~l;ftSITLVQNHAOT,J.-------------RK Ql.l~\,lSVJ,l\QAQIIDIJ:R&l:<XRtMS¥"Mt---~-·-II'Qf'i,QQJlV'tP.H1,WD£u.TSROBLOVJ,fiSNLU:TSA\l.nAKWL1'UtML!.'{JIQOOl AWAI\ 
N;lRSLSJ;t~Kt.!!:tllitS!!:i.'IQN!tAAtL•--•-•------11 QV$!Wl')AQ'Int$~I.f:lSt'IJtl$~St,WQZU.TSQNU:.QY'LQG$i,)':T~Q$l-1\NVJIEJ'At':~,!'XD:DST,VSGIJ', 
rntlrul!Q:tt,ll.tQSpe&?<IJU<I<Sl<QWSQL!.U:~-U'WI:t :ttQF:Q!t':IRKQtMi$JlVKNE'.MitntJ'I)IW"'J(QntQBLDlt$'t'S'l:N.tHJill;lLXWtUfGMU1M'!,'i'ctaAi{A'€S;,}IIllHl'tst!ff"RMt.lCMVd!k.!. 

~ '~ ! h \ 1 H:, 1; .. ~~ ~:~: ;.( : , •.·~: , .• ~:.,<",\I!~.'~ \\ ::H ;•: ; 

--X-~m..rur..~WUIXI ~DI'r31UJ2Q2222'1'Q&Q~3m1'83lEt.QV1.333LftSAQtl&l3tflA33HW0:33SL333AA 

m rn rn ~ m ~ m m m m m m m m m 
t I I I I I I t I I I I I I I 

Qlllw_.. .......... --.. --.. --...... ..itt.;:,SAIJlOOJ:XSTt,;URUI.Gl\O&Sr«XXQ'IK!lQI.t-••-·---·-K'l!.I.ACJI~IQAALBOIZIJ'rt,ISCAG$~Ll.SXVSSVSS--••----------·-<:V.Q 
IIU--•-••w~----·-·"'--~-.tt:.$.AlolUtSt.\.101\ll.Kt.J\tl't£1!lSM(:QLM!)Qn••••••-•••--'"'l':MJ.LWSfVIAAt:QVlQJ:>.'\UtJl&IPJI'J.:tSCAG!:!AllNLLS'l'V''l'SiSS•-••••••••••••-•-••••..Cl(\l 
~IRUAQRAQLQiltON"u:QXORM"iJRW!>QLSSMSQISt.JW.miClQILlW'IABQVIJ.'l'I(IIlQLGI!!llJINSRAO-'lhQU)L'flJJ!ftBOHIS!\l.QQTQE!I!'NQ:~tcLStmYxl.~ 

::~. ,;:;.,;::~,,,; • .;, . : ! ~ ~ .J I ~;• •* •, .~ '~ • •,., • . ,~ 

~~u~~~3~Wt.UGlllltAA&31tJQUL3Qtah'31.ISCMS3om.u3VJS3~bLQ8lU.8t.ft'lltt.1QC3110 

~ m ~ = ~ ~ ~ 
I I I I I I 1 t I I I I I I I 

1.EJ31$$Qn,acnP:t:!liLt.ll81'tt.IoML:tClrtliQ('v-O.'Uw.Jil*l'ADSUl'U~QYO•Ml"LAYl:;SLE---·-··---·---·----··----···-··-····~·--->t;;:GtMI".JINJVTALltNCLSR'-''1'1'W 
t.:1lUWSO'!l.AefttltSCrt.HSi'ft.l.MitftbA~A~Pt't?AbSLftACKC~-ltl!:'l'!Attl'>SL£-------------------------------------------i!~QSLmiADS't'IWJL~frt<:tM:G 
tOAV'tSS'!'QlCS'l'D!<!ll:l:i\KliVt~;;ttt.SGaiQQtt.OAVMt~l~Kt"NJJAS:h!MYY~$n:G~!KtrnQCtNIYIT!TAIB'l'QQBifSX'ftftU:'tl)tCQLI'QYLUllli.1!1!PI.RQte!ToiQ1X!,ffD:z 
l< ",' "- ~,•; ~ I ,; •: ~ • ~ •1 1 ·'"' ,<, ""~ * •; \ ~ ,, , "" ' 
UX33JQYt.M:nDtSILUISt'l't.Llllf63J)3:l3!GSll't3Lnl~~GLQN\IM2tGYVrlXLYOQC!mYlt'l"n'AU'J'GCJ~l~l3101CtJJl!W3tG 

m m m m ~ m ~ m ~ - - - ~ ~ rn 
I I I I 1 I I 1 I I I I I I I 

~1iltl-lh.LGD'Wbltt¥.b.'rSr..A!CAA'f'\'lttmRttd)J(!!~Girnt VNSl'llLGSCT$1YOAtrVtfJVMJ(DLCrslVRSG!tGTAS~EFYA.'WS?Wl'S'GLlSMK"~'t'IiM":M!ii.V'·~·GKJ'I,;tMVCli!;~IJ;A 

~~~~~~:~==i-~~~i:r~= f::~~:;;;~~~=~:~~:~~:==~:;~~!~~~:~=~~:;.~~~=~~~~;~ 
~nGLD~rm;.~:.na~;~,;~~ 1 :~ 1 • 1 ) •. >~• ~~~~ 1 H 1 .n.•; ~, i~,wo ~ .~.H.:•H :~~~~~~is~~;;· 

c 
113.7kDa-

Figure 2.1: The Drosophila melanogaster genome contains a single well-conserved Hipl 
homologue. Alternative first exons are coloured as green for hip] MNTH and yellow for hip], 
shared exons are shown in red and exons containing alternative termination sites are in blue. 
Letters represent relevant restriction enzyme sites: E=EcoRI, H=Hindiii, X=Xhol, and 
N=Nhel (A). Multiple alignment of the longest ORF in the hipl transcript shows that the fruit 
fly homologue is well conserved including: AP180 N-terminal homology (ANTH) domain 
(orange boxed region), pseudo death effector domain (blue boxed region), and IL WEQ 
domain (red boxed region). The consensus lipid-binding pocket within the ANTH domain is 
located in the amino terminus of longest hipl ORF (black box) (B). Characterization of two 
Drosophila hipl cDNAs showed that LD30041 encodes a full length protein of ~128 kDa and 
LD20514 encoded a truncated product lacking the lipid-binding region of~ 117 kDa. In vitro 
transcription and translation showed proteins of approximately the expected sizes (Control 
=Poly-ADP ribose polymerase C). ~ in B indicates putative start methionine for hip] MNTH. 
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2.3.2 Novel role for Hipl in Sensory Bristle formation: 

Expression of hipl was directed throughout the dorsal notum by pannier-Ga/4 and apterous-

Ga/4, and the bristle development patterns were examined. The gross morphology and 

development of both microchaetae and macrochaetae, as well as the density of microchaetae 

per 100 f.tm2
, of critical class individuals were analyzed. Expression of hipl by pannier-Ga/4 

led to a decrease in density of the microchaetae bristle type throughout the dorsal notum 

compared to controls (Figure 2.2A&B). Similar results were obtained with apterous-Ga/4 

(Figure 2.2C&D). No differences between experimental and control samples were seen in the 

number or position ofmacrochaetae in response to hipl expression under either transgene (see 

Figure 2.2A&C). No differences in gross bristle morphology were seen in response to hipl 

expression as multiple bristle/shaft or empty socket cells were not observed (see Figure 

2.2A&C). 

2.3.3 Hipl function in Sensory Bristle formation is altered by the absence of the ANTH 
Domain: 

To clarify the role of the ANTH domain in Hipl function hiplMNTH was expressed under 

the control of pannier-Ga/4 and apterous-Ga/4. As hip] expression decreased microchaetae 

density, density values were calculated on flies over-expressing hiplMNTH. Expression of 

this short variant of hiplled to density being significantly greater than controls (Figure 2.2A-

D). As with hipl expression, no changes in gross bristle morphology or macrochaetae 

number/position were apparent in response to hiplMNTH expression. Thus, the lipid-binding 

ANTH domain is required for hip] to regulate microchaetae density in the sensory bristle field 

of the Drosophila dorsal notum. 
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Figure 2.2: Directed expression of hipl and hip14ANTH in the dorsal notum 
differentially affects microchaetae density. Expression of hip] decreases and hip] MNTH 
increases microchaetae density under the control of either the pannier-Gal4 (A and B) or the 
apterous-Gal4 (C and D) drivers. Graphic representations of microchaetae density are shown 
in Band D. Total dorsal notum areas visible in micrographs, represented as red dotted lines in 
A and C, were included in dorsal microchaetae counts and area measurements (Scale bar in A 
and C represents 340 J-Lm; Values represent mean ± SEM. *** = P<O.OOl; ** = P<O.Ol; 
*=P<0.05 by Neuman-Keuls posthoc-test). 
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2.3.4 Hipl interacts with Deltex: 

To determine the relationship of alteration to microchaetae density and deltex-mediated Notch 

signalling, deltex (dx) was co-expressed with hipl or with hiplMNTH directed by pannier

Ga/4. Expression of UAS-deltex by apterous-Ga/4 in this pattern led to pupal lethality. At 

25°C, pnr-Ga/4/UAS-deltex expression leads to a near complete loss of microchaetae in the 

dorsal notum (Ramain et al. 2001). At l9°C, dx expression greatly reduces the number of 

microchaetae in the region of pannier expression. Many remaining bristles develop improperly 

as socket only, double, triple, or groups of five or more bristles, presumably, as excess 

proneural cluster cells adopt the bristle fate (Figure 2.3A). When deltex and hipl are co

expressed this phenotype is greatly enhanced to near complete elimination of microchaetae in 

the region of pannier expression (Figure 2.3A&B). Contrary to the effects of hip], co

expression of hiplMNTH partially suppresses the pannier/deltex phenotype, to significantly 

increase total microchaetae number (Figure 2.3A&B). In addition, the presence of abnormal 

bristle formations is reduced (Figure 2.3C). This indicates that hip] and deltex co-operate in 

the specification of microchaetae in the Drosophila dorsal notum. As hiplMNTH can 

counteract the effects of deltex expression, both upon bristle morphology and bristle number, 

these data suggest a dual role for the ANTH domain in microchaetae differentiation. 
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Figure 2.3: Interaction between hipl and deltex. Both hip] and hiplll4NTH were co
expressed with deltex in the pannier-Gal4 expression pattern. (A) hipl enhances while 
hiplll4NTH suppresses the effects of pannier-Gal4/deltex alone. (B) Analysis of total single 
bristle number shows marked rescue of the deltex phenotype by hip lll4NTH and enhancement 
by hip I. (C) Analysis of abnormal bristles shows that hiplll4NTH is capable of suppressing 
the developmental defects of bristle formation associated with deltex expression (Scale bar 
represents 340 f.Lm; Values represent mean ± SEM. * in B =P<O.OOl by Neuman-Keuls 
posthoc-test *inC= P<O.OOOl by two-tailed T-test). 
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2.3.5 Hipl interacts with microchaetae deficient alleles of Notch: 

As hipl and hiplMNTH are capable of modifying the effects of deltex expression in the 

dorsal notum, analysis of expression in a NotchMCDJ (~CDI) genetic background (Ramain et 

al. 2001) was undertaken to investigate an additional link to the deltex-dependent Notch 

signalling pathway. The pannier-Gal4 driver was used to direct hipl and hiplMNTH 

expression in the ~cDJ background at 25°C and analyzed as above. Both hipl and 

hiplMNTH are capable of modifying the microchaetae densities of the ~CDI phenotype 

(Figure 2.4A&B). The ~CDI phenotype is enhanced by hipl while hiplMNTH suppresses 

the microchaetae deficiency. 
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Figure 2.4: hipl interacts with NotchMCDI. Both hipl and hiplMNTH were expressed in a 
NotchMCDI genetic background in the pannier-Ga/4 expression pattern progeny were compared 
to NotchMCDI; pannier-Gal4 animals. (A) hipl enhances while hiplMNTH suppresses the 
NotchMCDI phenotype. (B) Analysis of microchaetae density shows suppression of the 
NotchMCDI phenotype by hiplMNTH and enhancement by hipl (Scale bar represents 340 ).lm; 
Values represent mean± SEM. **=P<O.Ol; *=P<0.05 byNeuman-Keuls posthoc-test). 
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2.4 Discussion: 

Originally, Hip 1 was discovered as a binding partner of the Huntingtin protein (Kalchman et 

al. 1997; Wanker et al. 1997). As this interaction is reduced with polyglutamine expansion, 

Hip1 is a strong candidate for involvement in HD pathogenesis (Kalchman et al. 1997; 

Gervais et al. 2002). Since initially discovered, a clear role for Hip1 in clathrin-mediated 

endocytosis and intracellular trafficking has been well established (Kalchman et al. 1997; 

Wanker et al. 1997; Gervais et al. 2002; Rao et al. 2002; Metzler et al. 2003; Rao et al. 2003; 

Hyun et al. 2004). Although Hip1 "knockout" mice have dysfunctions in spermatogenesis, in 

hematopoietic differentiation and in the regulation of AMP A receptor trafficking, the role of 

Hip1 in development is not well understood (Rao et al. 2001; Metzler et al. 2003; Oravecz

Wilson et al. 2004). While activation of apoptotic cell death pathways by Hip1 suggests a 

neuronal cell death mechanism in HD (Hackam et al. 2000; Gervais et al. 2002), other studies 

indicate that Hip 1 over-expression promotes tumourigenesis and is necessary for cellular 

survival (Rao et al. 2002; Rao et al. 2003). As a result, the biology ofHip1 remains elusive. 

The Drosophila notum develops from a neuronal precursor tissue field and through the 

directed expression of hip 1 throughout the dorsal notum; we have demonstrated that full 

length hip] decreases microchaetae density and that hipllacking a functional ANTH domain 

leads to an increase in microchaetae density (Figure 2). As the number of individual bristles 

can be correlated to the number of sensory neurons formed (Jan and Jan 1994; Ramain et al. 

2001), these very different changes in bristle density show that hipl is capable of a dual

regulatory role in neurogenesis mediated by the presence of a functional ANTH domain. To 

the best of our knowledge this is the first account of a neurogenic phenotype associated with 

2-50 



Huntingtin-interacting protein-1 and, importantly, the first account of complex neurogenic 

regulation by any Huntingtin-interacting protein. 

As the presence or absence of the lipid-binding ANTH domain changes the role of Hip 1 in 

neurogenesis, this suggests that Hip 1 executes its regulation through altered vesicle 

endocytosis or trafficking. Originally, the amino terminus of Hip 1 was suggested to include an 

Epsin N-terminal homology (ENTH) domain that is structurally related to, but functionally 

distinct from, the ANTH domain family (Sun et al. 2005). The larger ANTH domain 

participates in internalization of endocytotic vesicles at Phslns( 4,5)P2 rich regions of the lipid 

membrane through the highly conserved lipid binding pocket (black box in Fig 1A), absent in 

all described ENTH domains (Sun et al. 2005). The removal of this domain from Sla2P, the 

yeast homologue of Hip 1, leads to an ablation of Sla2P's endocytic ability (Sun et al. 2005). 

Early deletion studies removed the lipid-binding pocket to produce a "dominant negative" 

product similar to our D. melanogaster hip] &1NTH construct (Rao et al. 2002). Multiple 

splice variants of human Hip1 transcript (Chopra et al. 2000), coupled with two 

immunoreactive bands detected in Western blots (Chopra et al. 2000; Gervais et al. 2002), 

suggest the possibility of multiple protein isoforms of human Hip 1. This suggests neurogenic 

control via a binary switch mechanism from the anti-neuronal full length to the pro-neuronal 

MNTH variants. 

The deltex-dependent Notch (N/dx) signal maintains the pre-neuronal stem-cell population 

and modification of this signal leads to alteration of the dorsal microchaetae neuronal field 

fate. The hip 1 and deltex protein products physically interact in whole genome yeast two

hybrid analysis (Giot et al. 2003). Increasing the activity of positive modifiers or decreasing 
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the activity of negative regulators of the N/dx signal lead to enhancement of the reduced 

microchaetae density phenotype of the Microchaetae Deficient (MCD) alleles of Notch, a 

phenotype duplicated by deltex over-expression (Ramain et al. 2001). Over-expression of 

deltex in the dorsal notum at 25°C led to a near complete loss of microchaetae while loss-of

function alleles of Notch or deltex result in increased microchaetae density (Ramain et al. 

2001; Tattersfield et al. 2004). hipl over-expression is reminiscent of Notch activation and 

deltex over-expression (Figure 2.2A&B). Conversly, directed expression of hiplAANTH leads 

to an increase in microchaetae density that mirrors the N/dx pathway mutations (Figure 2.2A& 

B; (Ramain et al. 2001)). When expressed with deltex, hipl was capable of enhancing the 

phenotype (compare Figure 2.3A panels 1 and 3). Conversely, hiplMNTH suppresses the 

bristle reduction phenotype and deltex-dependent bristle deformation (Figure 2.3A-C). 

Therefore, hipl and deltex appear to be intimately linked and the nature of hipl's effects 

depends on the presence or absence of a functional ANTH domain. 

Our data support a model of altered neuronal development in HD resulting, to some degree, 

from a change in the balance of activity of Huntingtin interacting protein 1. Hip1/Htt 

interactions are decreased when poly-Q levels reach pathologic levels (Kalchman et al. 1997; 

Wanker et al. 1997). The finding that increased poly-Q levels lead to increased levels of 

neuronal precursor proliferation in human patients may reflect an imbalance in the activities of 

the pro- and anti-neurogenic Hipl isoforms caused by altered Htt binding (Curtis et al. 2003; 

Tattersfield et al. 2004; Curtis et al. 2005). Disruption of interactions in the disease may be 

expected to alter the ability of Hip 1 to lead to changes in both the number of neuronal 

precursors and mature neurons formed. The novel role of Huntingtin interacting protein- I in 
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neurogenes1s may aid m the clarification of the molecular mechanisms underlying 

Huntington's disease. 
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Chapter 3: Hipl and deltex regulate neurogenesis 

through Achaetae-Scute 
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3.1 Introduction: 

Notch signalling has been linked to diverse roles in developmental and pathological pathways 

(reviewed in (Hansson et al. 2004). Primarily, Notch is involved in lateral inhibition in the 

process of neurogenesis. This occurs through interactions with the suppressor of Hairless 

[Su(H)] protein and subsequent transcriptional regulation through hairy and enhancer of split 

(HES) basic helix loop helix (bHLH) transcription factors. More recently, a novel Notch

mediated signalling mechanism has been described which functions in parallel with the 

canonical pathway of transcriptional regulation (Ramain et al. 2001 ). This pathway involves 

the positive Notch regulator deltex and the negative Notch regulator dishevelled. Deltex was 

subsequently shown to be an E3 ubiquitin ligase, capable of altering the transcriptional activity 

of Achaete-Scute Homologue 1 (ASH1), a pro-neural bHLH transcription factor that is 

antagonized by Notch activation (Yamamoto et al. 2001; Hori et al. 2004). Negative regulation 

of ASH1 levels has been linked to transcriptional activity, through the classic Notch pathway, 

and protein stability and turnover through the ubiquitin proteasome degradation pathway 

(Sriuranpong et al. 2002). The E3 ubiquitin ligase responsible for this proteasomal regulation 

of ASH1 has yet to be determined. Chapter 2 of this thesis demonstrates that Huntingtin

interacting protein 1 (Hip1) is a novel regulator of the deltex-dependent Notch signal. Here a 

potential mechanism for this regulation involving the direct actions of Hip 1 and deltex on 

protein and transcript levels of ASH1 is described. Both Drosophila genetic models and the 

human pre-neuronal cell line Ntera2-D1 demonstrate that mechanisms involved in the 

Hip1/deltex/Notch signalling pathway are well conserved between insects and mammals. 

Short interfering RNA-directed knockdown of Hipl and deltexl in the Ntera2-D1 cell line 

prior to neuronal differentiation led to a significant decrease in ASHJ mRNA levels. In 
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addition, Hip1 associates with ASH1 at endogenous levels in undifferentiated Ntera2-D1 

cells. Genetic studies in the fruit fly using our recently described model of hipl-regulated 

neurogenesis demonstrate that the observed effects of hipl, and the inhibitory hiplMNTH, are 

sensitive to acheate gene dosage. 

3.2 Methods 

3.2.1 siRNA effects upon Hipl!Deltex in retinoic acid-induced neuronal differentiation: 

Custom siRNA duplexes were designed against 3'UTR regions of hipl and deltexl, and 

siRNA duplexes against GL2 luciferase were included as a control (Sigma-Proligo, Boulder, 

Colorado). siRNA sense and antisense sequences used in this experiment are as follows: hipl

sense-5'-CUC AUU GGU GGU AGC CAU CdT dT-3', hipl-antisense-5'-GAU GGC UAC 

CAC CAA UGA GdT dT-3'; deltexl-sense-5'-UUG UCU UCG GCC AAC CAG GdT dT-3', 

deltexl-antisense-5'-CCU GGU UGG CCG AAG ACA AdT dT-3'; GL2 sense-5'-CGU ACG 

CGG AAU ACU UCG AdT dT-3', GL2-antisense-5'-UCG AAG UAU UCC GCG UAC GdT 

dT-3'. All siRNA duplexes were premixed and diluted to 50 !lM in sterile ribonuclease free 

water. 

NT2-D1 cells were plated at ~15-30,000 per well of 24-well Falcon cell culture plates (BD 

Biosciences, Mississauga, Ontario) in GIBCO GlutaMax™ high glucose media containing 

sodium pyruvate and antibiotics. Cells were allowed to attach for 24 hours prior to 

experimental manipulations. siRNA transfection was carried out using Lipofectamine 2000 

reagent (Invitrogen Canada Inc, Burlington, Ontario) according to manufacturers instructions 

for siRNA transfection. At 24 hours post-seeding (~25-30% confluency) cells were transfected 

with siRNA duplexes (20 pmol) or transfection reagent (1 !ll) alone as noted. Cells were 

3-60 



grown for 48-72 hours in the presence of transfection mixture prior to the induction of 

differentiation to ensure adequate gene silencing. Cells were then treated with 10 )!M all-trans 

retinoic acid (RA) dissolved in dimethyl sulfoxide (DMSO) as described previously (Andrews 

1984). Total cellular RNA was collected at 0 h, 24 h, 48 h, and 72 h post RA treatment using 

QIAShredder and RNeasy mini columns with additional DNase digestion as per 

manufacturer's instructions (Qiagen, Mississauga, Ontario). 

3.2.2 Gene Expression measured by TaqMan Real Time PCR: 

Total RNA concentrations and quality for each sample were determined using a NanoDrop 

spectrophotometer. 100-200 ng total RNA was used as template in RT-PCR reactions using 

Multiscribe™ reverse transcription reagents as per manufacturer's instructions (PE Applied 

Biosystems, Foster City, California). Relative mRNA expression for hip I, deltexl, ASHI, 

HESJ, Notchl, DLKI, Neurogenin, NeuroDI, or GRIN I in each sample were determined 

using Applied Biosystems 7500 Real Time PCR instrument with commercially available 

probe/primer mixes for each gene and human 18S ribosomal RNA control according to 

manufacturer's instructions (PE Applied Biosystems, Foster City, California). MCt was 

calculated based on 18S ribosomal RNA and untreated control counts and is represented as a 

fraction of untreated levels. Figures represent means ± standard error of the mean of three 

replicates per treatment. Statistical significance was determined using one-tailed ANOV A 

analysis along with Neumann-Keuls posthoc-test for significance between pairs. 

3.2.3 Western/Co-IP Protocol: 

Co-immunoprecipitation studies were conducted essentially as described (Gervais et al. 2002). 

Briefly, confluent NT2-D1 cells from two T75 culture flasks were collected and lysed in 
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buffer containing nonidet P-40 (NP-40) (Gervais et al. 2002). Approximately 500 ~g of total 

protein lysate was brought to a final volume of 1000 ~1 using ice-cold NP-40 buffer. 

Antibodies were added as follows to separate lysate aliquots: 10~1 of Hip14B10 (Abeam, 

Cambridge UK), 25~1 of MASH1 (Chemicon, Temecula California) (Figure 3.3) and samples 

were placed at 4 OC on an end over end mixing platform over night to allow formation of 

antibody-protein complexes. EZview™ Protein G/A sepharose beads (Sigma Canada Ltd, 

Oakville, Ontario) were added as appropriate and immunoprecipitation was carried out for 2-3 

hours at 4°C on an end over end mixing platform. Bead complexes were washed three times 

with ice-cold NP-40 buffer after which samples were split into two equal aliquots. One aliquot 

of each pair was boiled in 2X sodium dodecyl sulfate (SDS) sample buffer, containing 0.8% 

SDS, 20mM Tris HCl pH6.8, 4% Glycerol, 0.02% bromophenol blue, supplemented with 0.14 

M P-mercaptoethanol while the other was boiled in 2X SDS-buffer without P

mercaptoethanol. Samples were then separated onto 4-20% Novex SDS-PAGE gels 

(Invitrogen Canada Inc, Burlington, Ontario), Western blotted, and probed with indicated 

antibodies (1: 15,000 dilution of each). Visualization of protein bands was carried out using 

appropriate HRP-conjugated secondary antibodies, goat anti-mouse-HRP for Hip14B10 and 

mouse anti-rabbit-HRP for ~ASHl (BD Biosciences, San Diego, California) along with pico 

chemiluminescent reagent (Pierce Biotechnology Inc., Rockford IL) and images were captured 

using Kodak Biomax autoradiographic film (Kodak, New Haven CT). Mock 

immunoprecipitation lacking primary antibody, immunoprecipitation using various members 

of the Notch signalling network, and 50 ~g of untreated NT2 lysate were used as specificity 

controls. 
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3.2.4 Genetic interaction of Deltex and Hipl systems with achaete, Enhancer of split, 
andGSK3p: 

To assess the sensitivity of pannier-Ga/4; UAS-hipl and pannier-Ga/4; UAS-hiplAANTH 

phenotypes to dosage of achaete, crosses to a hypomorphic allele, achaete4 (ac4
), were 

performed. Briefly, ac4/ac4 homozygous virgin females were crossed to pannier-Ga/4; UAS-

hipl and pannier-Ga/4; UAS-hiplAANTH. The control arose from similar crosses to pannier-

Ga/4 males. Critical class male and female progeny were collected for microchaetae density 

analysis as described previously (Chapter 2 of this thesis). Similarly, to determine if UAS-

hipl and UAS-hiplAANTH are capable of modifying increased density ofmicrochaetae seen in 

Enhancer of split [E(spl)] mutants, the transgenes were expressed in E(spl)1 mutant 

backgrounds. To determine the effects of GSK3fJ expression on pannier-Ga/4; UAS-hipl and 

pannier-Ga/4; UAS-hipl AANTH phenotypes UAS-GSK3fJ was co-expressed with each and the 

pannier-Ga/4 driver alone. Both ac4 and E(spl)1 alleles were obtained from the Bloomington 

Drosophila Stock Center. UAS-GSK3fJ was made through standard subcloning and 

microinjection procedures (BES, unpublished). All crosses were performed at 25oC on 

standard cornmeal-yeast-molasses-agar medium. 

3.2.5 Microchaetae density analysis: 

Notum preparations were oriented with dorsal notum facing up on aluminium scanmng 

electron microscope (SEM) studs, desiccated overnight, gold scatter coated and then 

photographed using a Hitachi 570 SEM. All micrographs were taken at 70X magnification, 

Polaroid images were scanned and analyzed using ImageJ digital image analysis software 

(Abrarnoff 2004). Counts of dorsal microchaetae number in the entire field, as defined by the 

edges of the dorsal notum (red dotted lines in Figure 3.2), were performed for each image. 
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Total dorsal noturn area (~-trn2) was calculated with calibration of the software to an internal 

size standard (red dotted lines in Figure 3.2). Individual microchaetae counts and their 

respective area measures were used to calculate density values, expressed as number of 

microchaetae per 100 ).!m2
, via Microsoft Excel. Values for each genotype group were 

imported into the GraphPad Prism 4 program for display and statistical analysis purposes. 

Means ± standard error of the mean were plotted and statistical significance was determined 

using one-tailed ANOV A analysis along with Neumann-Keuls post-test for significance 

between pairs. 

3.2.6 Immunocytochemistry in N-tera2/Dl cells: 

Cells were plated on Lab-Tek II chambered coverglass (4-well format .5ml total culture 

volume, Nalge Nunc International, Rochester NY), precoated with Poly-L-Lysine (Sigma, St. 

Louis, MO) and grown overnight in normal DMEM medium (Invitrogen Canada Inc, 

Burlington, Ontario). Cells attached to the bottom of chamber were washed twice with PBS 

then fixed in 3% paraformaldehyde-PBS solution (pH 7.5) for 30 min at room temperature. 

Cells were washed twice for 10 min in PBS supplemented with 10 mM glycine. Cells were 

permeabilized by incubation in 1% Triton-PBS solution for 5 min at room temperature 

followed by two washes in PBS supplemented with 10 mM glycine. Cells were blocked 

overnight at 4 °C in a humidified chamber with 4% Normal Donkey Serum (NDS) in PBS. 

Cells were stained for 1 hat 4 °C with 1:100 dilution ofHip14B10 and active Notch1 antibody 

or control solutions lacking primary antibody followed by two washes in PBS-glycine buffer. 

Cells were then incubated for another hour in the dark at 4 °C with secondary antibodies, 

Alexa 594 donkey-anti-rabbit IgG and Alexa 488 donkey-anti-mouse IgG (Molecular Probes, 

Eugene, OR), at a 1 :200 dilution. Cells were given a final round of two washes in 
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PBS+glycine (in a light protected chamber) before mounting overnight with ProLong Antifade 

medium (Molecular Probes, Eugene, OR) supplemented with 1.5 f.lg/ml DAPI nuclear co-

stain. Images were scanned with a Zeiss LSM 510 META confocal microscope. 

3.3 Results: 

3.3.1 siRNA knockdown of Hipl or deltex reduces ASHJ expression during NT2 
neuronal differentiation: 

In order to clarify the molecular mechanics of the co-operation between Hip 1 and deltex, NT2 

cells were treated with several different siRNA duplexes directed against 3' UTR regions of 

Hipl or deltex. SiRNA duplexes directed against GL2 luciferase were included as a control 

and all mRNA levels were standardized to levels calculated for Lipofectamine 2000-treated 

controls. The hipl and deltex mRNA levels were reduced by 60-70% by respective siRNA 

treatment (Figure 3.1A/B). The ashl mRNA levels were significantly reduced by treatment of 

NT2 cells with either hipl or deltex siRNAs prior to RA induced differentiation (Figure 3.1C). 

These data show that both Hip 1 and deltex are required during the process of RA induced 

neuronal differentiation of Ntera-2 Dl cells. These findings confirm our previous findings 

that Hip 1 and deltex co-operate in the process of neurogenesis and that this function is 

conserved between Drosophila and mammals. 

3.3.2 siRNA knockdown of Hipl or deltex have no effect on HESJ expression during 

NT2 neuronal differentiation: 

Upon activation of the canonical Su(H)-dependent Notch mechanism hairy and Enhancer of 

split (HES) mRNA levels are increased to prevent neuronal differentiation (Kageyama et al. 
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1997). Studies of the deltex-dependent Notch signalling network have noted that HESJ 

mRNA levels are not increased upon activation of this alternative pathway (Hori et al. 2004). 

Similarly, levels of HESJ mRNA, a common transcriptional marker for activation of the . 

canonical Su(H)/Notch anti-neurogenic signal (Kageyama et al. 1997), remained unchanged in 

response to all siRNA treatments suggesting that the canonical Notch pathway is not 

influenced by Hipl or deltex siRNA treatment (Figure 3.1D). 
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Figure 3.1: Effects of Hipl or deltex (Dlx) siRNA treatment on their respective mRNAs 
and the ASHJ and HESJ mRNA messages as measured by TaqMan Real Time PCR 
assay. Treatment of NT2 cells with either Hipl or deltex siRNA significantly reduces the 
expression levels of respective mRNAs relative to control siRNA treated cells A and B, 
respectively. After 72 hours of differentiation induced by retinoic acid, levels of ASHJ mRNA 
were significantly reduced relative to controls in response to Hipl or deltex siRNA treatment 
(C) while levels of HESJ mRNA remained unaffected (D) (Values represent mean± SEM. 
*=P<O.OOl in A/C and P=<O.Ol in B by Neuman-Keuls posthoc-test). 
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3.3.3 siRNA knockdown of Hipl/Deltex has no effect on Notchl, DLKJ, Neurogenin, 

NeuroDJ, or GRINJ expression during NT2 neuronal differentiation: 

Notch] and DLKJ: 

Gene expression of Notchl was analyzed to ensure that the observed changes in ASHJ mRNA 

levels were not secondary responses to changes in this upstream modifier of the ASHJ gene 

(Kageyama et al. 1997). The expression levels of Notch] remain unchanged in response to 

siRNA treatment ofNT2 cells (Figure 3.2). This suggests that the observed changes in ASHJ 

levels are mediated by the loss of Hipl or deltexl and not by changes in upstream modifiers. 

Expression levels of DLKJ between replicate samples were inconsistent and therefore no 

conclusions could be drawn (data not shown). 

Neurogenin, NeuroDJ, and GRJNJ: 

Expression of Neurogenin, NeuroDJ, and GRINJ indicate the sequence of gene expression in 

the progression from stem cell to differentiated neuronal fate in Ntera2-Dl cells (Hartley et al. 

1999; Przyborski et al. 2000). Within the 72 hour period of retinoic acid induced 

differentiation no changes in Neurogenin, NeuroDl, or GRINJ were observed (data not 

shown). This indicates that within the period of RA treatment naive NT2 cells had not 

progressed fully to the neuronal fate. 
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Figure 3.2: Hipl or deltex siRNA treatment has no effect on expression levels of Notchl. 
Treatment of NT2 cells with either Hipl or deltex siRNA has no effect on the expression 
levels of Notch I, as measured by TaqMan Real Time PCR assay, indicating that no changes 
occurred in this upstream regulator of ASHJ expression (Values represent mean ± SEM. 
Insignificant changes =P>0.05 by Neuman-Keuls posthoc-test). 
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3.3.4 Hipl interacts with ASHl in NT2 neuronal precursors: 

Figure 3.3A and B demonstrates that Hipl antibody is capable of co-precipitating ASHl while 

the ASHl antibody is capable of co-precipitating Hipl at endogenous levels from untreated 

NT2-Dl cellular extracts. This suggests that Hipl and ASHl interact physically within the cell 

and lends further evidence to the theory that Hipl is functional in ASHl regulation. Taken 

together the results of Hipl and deltex siRNA treatment along with co-immunoprecipitation 

studies demonstrate that Hip 1 co-operates with deltex in transmitting a HES !-independent, 

deltex-dependent Notch signal in human pre-neuronal cells. 

3.3.5 ASHl protein is stabilized in deltex siRNA treated cells: 

Given that ashl mRNA levels are reduced in response to siRNA treatment, either ashl is 

transcriptionally down-regulated in response to RA treatment (Ichimiya et al. 2001) or ASHl 

is spared from proteasomal degradation and leads to its own transcriptional down-regulation. 

To determine if siRNA knock down of Hipl or deltex led to ASHl protein stabilization 

protein samples were collected at 0 hand 72 h post RA treatment. Western blotting using anti

hASH! antibody showed that in deltex siRNA treated samples that had undergone 72 h RA 

treatment ASHl protein was detectable whereas ASHl was undetectable in control and pre

treatment samples (Figure 3.3C). The finding that ASHl protein levels are increased when 

ASHJ mRNA levels are decreased suggests that protein stabilization and not up-regulation of 

transcription is responsible for the increase in ASHl protein presence. 
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Figure 3.3: Hipl interacts physically with ASHl in naive NT2 cells and ASHl is 
stabilized following differentiation in deltex siRNA treated cells. Immunoprecipitation of 
NT2lysates using antibodies directed against mammalian ASHl (MASRI), Hipl (Hip14B10), 
and protein A sepharose beads lacking primary antibody show that Hipl and ASHl 
specifically co-precipitate. Hipl is co-precipitated using anti-MASHl (A) while ASHl is co
precipitated with anti-Hip14B10 (B). This experiment was performed in triplicate with similar 
results. Western blotting of protein extracts from pre-differentiation (0 hours ofretinoic acid 
treatment) or post-differentiation (72 hour retinoic acid treatment) deltex siRNA or control 
treated cells shows that in deltex siRNA treated samples ASHl protein levels are significantly 
higher than control levels as triplicate blots show similar results (C). 
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3.3.6 Neurogenic phenotypes in Drosophila: 

3.3.6.1 hipl requires achaete to regulate neurogenesis: 

In Drosophila hipl plays a dual role in the regulation of deltex-dependent ~otch signalling in 

the dorsal notum microchaetae sensory bristle field (Chapter 2). The directed expression of 

hipl in the developing dorsal notum results in a decreased bristle density while hiplMNTH 

leads to increased bristle density consistent with the effects of altered Notch activity. To 

determine if the effects of hip I and hiplMNTH over-expression are modified in response to 

the gene dosage of achaete, we expressed each transgene in both a heterozygous female and 

hemizygous male's ac4 genetic backgrounds. As the achaete locus is present on the 

Drosophila X chromosome, analysis of heterozygous females for ac4
, a severe hypomorphic 

allele, would be expected to have a reduction in achaete expression (Dubinin 1932) and ac4 

hemizygous males should have little or no acheate function. hipl over-expression in ac41+ 

females was capable of reducing microchaetae density (Figure 3.4A). Importantly, expression 

of the same transgene in the ac4/Y males did not lead to a reduction in bristle density (Figure 

3.4B). hiplMNTH expression in either the ac4/+ or ac4/Ybackgrounds did not lead to altered 

bristles densities. Taken together these data show that hip] and hiplMNTH require the 

presence of functional levels of achaete to modulate dorsal notum microchaetae density. In 

addition, these results demonstrate that the increased microchaetae phenotype seen with 

hiplMNTH over-expression is sensitive to changes in achaete expression. 

3-72 



A 

B 

~ ·u; 
c 
(I)N 

c E 
~ 
~ 
n:l 

.c:: 
0 
0 ... 
0 

:IE 

~ ·u; 

::!. 
0 
0 ..... ... 
Cll c. 

c 
(I)N 

c E 
Cll ::!. 

.ms 
n:l ..... 

.c:: .. e ~ 0.1 

.2 
:ill 

Figure 3.4: achaete gene dosage modifies the effects of hipl and hiplilANTH on 
microchaetae density. When achaete gene dosage is reduced in heterozygous females for the 
achaete4 allele pro-neurogenic phenotypes associated with hiplMNTH are blocked while 
anti-neurogenic hipl phenotypes are not (A). In males hemizygous for ac4

, approximating a 
null situation, both pro- and anti-neurogenic phenotypes are blocked (B) (values represent 
mean± SEM. *=P<0.05 by Neuman-Keuls posthoc-test). 
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3.3. 6.2 hipl does not alter E(spl/-mediated increases in bristle density: 

Mutations in Enhancer of split lead to increased microchaetae density through the canonical 

deltex-independent, HES1-dependent subsection ofthe Notch signalling pathway. As NT2/D1 

cells (Figure 3.1) and experiments in Drosophila (Chapter 2) have suggested that Hip 1 acts 

through the deltex-dependent arm of the pathway, sensitivity of hip] to the HES !-dependent 

portion of the neurogenic pathway was examined. When hipl and hiplMNTH are actively 

expressed in an E(sp/)1 mutant background, no changes to the E(sp/)1 -mediated increase in 

microchaetae density was observed (Figure 3.5). This suggests that Hipl 's function in 

neurogenesis occurs through the E(spl) -independent pathway. 
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Figure 3.5: hipl and hiplAANTHhave no effect on Enhancer of split induced increases in 
microchaetae density. E(spl)/+ heterozygous females have significantly increased 
microchaetae density compared to control animals. Expression of hipl or hipl MNTH has no 
effect on this E(spl)-'induced increase (values represent mean± SEM). 

3-75 



3.3.6.3 Co-expression ofGSK3P blocks the effects ofhipl and hipl.tl.ANTH on 
neurogenesis: 

The deltex -dependent, HES !-independent Notch signal has been linked to the activity of 

shaggy, the Drosophila GSK3/3 homologue, with mutations in shaggy suppressing the effects 

of NotchMCD alleles (Ramain et al. 2001). To determine if the anti-neurogenic and neurogenic 

activities associated with the hipl isoforms are altered by GSK3P we co-expressed hipl and 

hip] M.NTH with human GSK3f3 and analyzed microchaetae density. The expression of 

GSK3f3 alone did not alter microchaetae density from control levels (Figure 3.6). Interestingly, 

the microchaetae density of animals co-expressing either hip I or hip I MNTH with GSK3f3 

also showed no differences from control levels (Figure 3.6). This finding suggests that over-

expression ofGSK3P blocks the activity ofboth hipl and hiplMNTH. 
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Figure 3.6: GSK3P co-expression prevents hipl and hiplilANTH-induced neurogenic 
phenotypes. Expression of GSK3fJ alone has no effect on microchaetae density as no 
significant change from the pnrl+ control is apparent. However, co-expression of GSK3fJ with 
hipl or hiplMNTH prevent the anti- and pro-neurogenic effects, respectively (values 
represent mean± SEM). 
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3.3.7 Activated-Notchl co-localizes with Hipl in NT2 cells: 

Confocal analysis of Hipl (Green) and activated Notchl (Red) immunostaining in NT2 cells 

show that the two proteins extensively co-localize throughout the cytoplasm (Supplemental 

Figure 3.1). This suggests that Hipl and activated-Notch! may interact during signal 

activation. As these findings are preliminary additional experiments will be necessary to 

confirm the nature of this potential interaction. The Notch receptor is transported from the 

plasma membrane to various endocytic compartments during activation (Le Borgne 2006) and 

Hip 1 has been shown to alter endocytic transport of membrane bound receptors (Rao et al. 

2003). The present findings of co-localization of Hipl and activated-Notch! when taken with 

these findings suggest that Hip 1 may be critical for the proper endocytosis, trafficking, and 

endocytosis ofNotch. 
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Activated Notchl Hipl Overlap 

Figure 3.7: Hipl colocalizes with activated-Notch! in NT2-Dl cells. Immunostaining for 
Hipl (green) and activated Notchl (red) show extensive co-localization throughout the 
cytoplasm ofNT2-Dl cells (yellow/orange). 
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3.4 Discussion: 

In the standard version of the Notch pathway, ligand binding leads to anti-neuronal fate by up

regulation of transcription by Hairy and Enhancer of split (Kageyama et al. 1997). During 

mammalian neurogenesis, Notch signalling alters protein and transcript levels of the pro

neural ASH1 transcription factor (Sriuranpong et al. 2002). The degradation of ASH1 protein 

occurs rapidly through a proteasome-dependent pathway while down-regulation of ashl 

transcription occurs over a longer time period following the up-regulation of the HES 1 anti

neural transcription factor (Sriuranpong et al. 2002). This activity appears to involve the poly

glutamine. OPA, domain of the Notch receptor as OPA deletion mutants block the 

proteasomal degradation of ASH1 (Sriuranpong et al. 2002). Analysis of MNS neuronal 

precursor cells reveal that deltex, like Notch, is capable of reducing activity from an ASH1 

responsive transcriptional reporter independent of HES1 activity (Yamamoto et al. 2001). 

Consistent with findings in Drosophila (Ramain et al. 2001), this suggests the existence of 

deltex-independent, HES1-dependent and deltex-dependent, HES1-independent functions of 

Notch in mammalian neurogenesis. 

Huntingtin-interacting protein 1 was demonstrated to be a novel regulator of neurogenesis 

through deltex-dependent Notch signalling in Drosophila melanogaster (Chapter 2). To 

determine if this novel neurogenic role for Hip 1 was conserved, we analysed human neuronal 

precursor, Ntera-2/Dl, cells that express Hipl (Gervais et al. 2002) and additional Notch 

pathway components (Ichimiya et al. 2001; Walsh and Andrews 2003). Pre-neuronal Ntera-

2/D 1 cells could be induced to differentiate into mature neurons by retinoic acid treatment 

(Andrews 1984). The siRNA-mediated knockdown of Hipl or deltex in Ntera-2 cells led to 
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down-regulation of ASHJ mRNA levels after 72 hours of differentiation (Figure 3.1 C). As 

mRNA levels of HESJ remain unchanged in response to siRNA treatment, the observed 

changes in ASHJ do not appear due to the typical Notch!Su(H)/HES1 pathway (Figure 3.1D). 

As ASHJ levels are reduced in response to RA-induced differentiation in Ntera-2/D1 cells, 

ASHJ down-regulation may be necessary for continued differentiation along the neuronal 

lineage (Ichimiya et al. 2001). As no expression changes occur in the additional upstream 

modifiers of ASHl, Notch] and DLKJ, in response to siRNA treatment (Figure 3.2A/B) the 

changes in ASHJ are likely due to the direct action of Hip1 and deltex. ASH1 activates 

downstream determinants of neuronal fate, the transcriptional down-regulation of ASHJ may 

therefore represent a feedback mechanism by which ASHl is removed once it has performed 

its required activities. Alternatively, the ASHl protein levels could be quickly decreased by a 

proteasome-dependent mechanism indicating that protein stabilization may be involved in the 

mRNA decrease. As it has been shown that Hipl and deltex interact physically (Giot et al. 

2003) and genetically (Chapter 2) the finding that Hipl complexes with ASHl at endogenous 

levels (Figure 3.3A/B) suggests a potential mechanism for the ASHI proteasomal degradation. 

As deltex has been shown to be an E3 Ubi qui tin ligase, the coincident interaction of Hip 1, 

ASHI, and deltex may promote ASHI degradation. As ASHI is stabilized upon differentiation 

in deltex siRNA treated cells supports this theory and suggests that at least under our 

conditions deltex may be functioning as the E3 Ubiquitin ligase responsible for ASH1 

regulation (Figure 3.3C). Notably, this model does not exclude the negative feedback loop of 

ASHl on its own transcript. If ASH1 persists at high levels in the cell, it may act to repress its 

own transcription by an undefined mechanism. 
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As achaete is required for progression along the neuronal fate, reduced levels of the protein in 

mutant hemizygous males and heterozygous females would be expected to alter the anti- and 

pro-neural activities previously described for the directed expression of hip I and hip I f).ANTH, 

respectively. The finding that the anti-neurogenic function of hip I is blocked in the absence of 

achaete, in achaete4 hemizygotes, while maintained when achaete gene copy number is halved 

suggests that achaete is the target of hipl's anti-neural activity (compare first and third column 

of Figure 3.4). If functional levels of achaete remain, as in the female achaete heterozygotes, 

hip I can still perform its anti-neural function by blocking the activity of remaining achaete, 

consistent with results in NT2 cells. In contrast, the pro-neural activity of hiplMNTH is 

blocked upon both reduction and absence of functional achaete (Figure 3.4). This finding can 

also be explained in the context of our proposed model of Hipl/deltex regulation of achaete. 

As achaete appears to be a key mediator ofHipl/deltex-related neurogenic regulation, it would 

be predicted that the anti-neural form of Hipl, hiplf).A.NTH, would also act through achaete 

regulation. Activation of achaete, in response to hiplMNTH would be negated upon the 

reduction of functional levels of achaete in either heterozygous or hemizygous states. 

Importantly, as hip] and hip] f).A.NTH are both insensitive to mutation in the traditional Notch

signalling pathway, E(spl/, suggests that the deltex-dependent, HES !-independent pathway 

and not the traditional Notch pathway is involved in Hipl-mediated effects on neurogenesis. 

As Drosophila hip] induced anti- and pro-neurogenic phenotypes are sensitive to achaete gene 

dosage (Figure 3.4) and insensitive to changes in E(sp[) levels (Figure 3.5), this indicates the 

evolutionary conservation ofthe Hipl/deltex/ASHl pathway in the control ofneurogenesis. 

Early characterization of the deltex-dependent, RESt-independent Notch signal suggested 

links between this network and Wingless signalling (Ramain et al. 2001). In particular it was 
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shown that mutations in shaggy, the Drosophila version of GSK3~, suppressed the effects of 

microchaetae deficient alleles of Notch. Consistent with this both hip] and hip] MNTH 

actions in neurogenesis are blocked by co-expression of GSK3fJ (Figure 3.6). This suggests a 

key role for Wingless signalling in maintaining activity of Hipl with GSK3~ correcting 

perturbations in microchaetae density in either direction in response to increased hipl or 

hiplMNTH. It will be interesting to determine if the control of Hipl activity displayed by 

GSK3~ is dependent on its classical role in kinase signalling cascades or an independent 

function yet to be fully characterized. 

Overall these findings clearly show that Hipl 's role in neurogenesis is conserved from fruit 

flies to human neuronal systems. In particular the deltex-dependent, HESl-independent nature 

of Hipl 's role neuronal development in both systems is clearly shown by these data. Further 

study, especially in the characterization Hipl/Deltex regulation of ASHl and the GSK3~ 

regulation of Hipl activity will aid in detailed characterization of this novel neurogenic 

mechanism. In turn these findings may allow for a better understanding of the neurogenic 

dysfunctions associated with Huntington's disease and other neurological conditions. 
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Chapter 4: Further characterisation 

relationship between huntingtin and hipl 

of the 
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4.1 Introduction: 

The following studies were undertaken to determine if Drosophila and humans followed 

similar functional trends with respect to the co-localization of Hip 1 and Huntingtin and Hip 1 

function in neurogenesis. 

In mammalian cell culture and mouse immunocytochemical analyses Huntingtin and Hipl co

localize in both NT2 cells and in situ in brain sections (Kalchman et al. 1997; Hackam et al. 

2000; Gervais et al. 2002). As these interactions have been characterized in either neuronal 

cell systems or the mammalian brain, investigations of Hipl and Huntingtin in Drosophila 

focussed on the brain. Based on Western blot analyses of immunoprecipitation and protein 

extract samples, it was determined that a human polyclonal anti-Hipl antibody [described in 

(Kalchman et al. 1997)] recognizes a protein in Drosophila resembling Hipl while an anti

human Huntingtin antibody recognizes a very large molecular weight protein resembling the 

Drosophila Huntingtin protein. 

In addition, studies utilizing novel tools under development and testing for further studies on 

hipl and hipl fl.ANTH function are presented. An inhibitory RNA method for the down

regulation of endogenous huntingtin in Drosophila using a transgenic construct (Gunawardena 

et al. 2003) was evaluated. Expression of this construct in the dorsal notum does not appear to 

have an effect on microchaetae density in combination with hipl or hipl AANTH transgenes. 

Data from potential P-element mutations within the hipl locus are also presented here. 

Homozygous insertional mutants display increased microchaetae density when compared with 

control animals. As loss-of-function mutations in deltex, Notch, and GSK3fJ all lead to 
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increased microchaetae density (Ramain et al. 2001) these results suggest that the insertion 

may represent a mutation in the hipllocus. In particular, based on the dual role of hipl and 

hiplMNTH in neurogenesis, this insertion may represent a loss-of-function of hipl or a gain

of-function of hiplMNTH. 

4.2 Materials and Methods: 

4.2.1 Analysis of Drosophila protein extracts using anti-human polyclonal antibodies: 

Whole Drosophila protein extracts were obtained as follows: 4 to 8 frozen flies were placed 

into a 1.5 mL microcentrifuge tube and 150 J.lL of ice-cold Hepes/EDT A buffer containing 

phosphatase/protease inhibitor cocktail was added. Hepes/EDTA buffer composition was as 

follows: 100 mM KCl, 20 mM Hepes, 5% glycerol, 10 mM EDTA, 0.1% Triton X-1 00, 1 mM 

dithiothreitol, 1 Complete Mini protease inhibitor tablet (Roche Molecular Biochemicals, 

Mannheim, Germany), 20 mM ~-glycerophosphate, and 1 00 ).lM orthovanadate. Flies were 

homogenized on ice until consistent using a rotary homogenizer. Samples were centrifuged at 

14,000 rpm and 4°C for 5 min. Clarified supernatant containing protein was isolated to a new 

tube. 50-100 J.lg of total protein extracts were separated on 4-20% SDS-PAGE gels and 

electroblotted onto nitrocellulose membranes for subsequent Western blotting. 

4.2.2 Immunoprecipitation: 

Protein for immunoprecipitation experiments was isolated as above. 250-500 Jlg of total 

protein extract was immunoprecipitated overnight essentially as described (Gervais et al. 

2002) with the exception that Hepes/EDTA buffer was used instead of NP-40 buffer. Anti

Hip1, anti-Hippi, and anti-Huntingtin antibodies were added to aliquots and samples were 

placed at 4 OC on an end over end mixing platform overnight to allow formation of antibody-
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protein complexes. Protein A sepharose beads (Sigma, St. Louis, MO) were added and 

immunoprecipitation was carried out for 2 to 3h at 4 OC on an end over end mixing platform. 

Bead-antibody-protein complexes were washed three times with ice-cold Hepes/EDT A buffer. 

Aliquot was boiled in 2X SDS-buffer without B-mercaptoethanol. SDS-buffer lacking B

mercaptoethanol is incapable of separating antibody light and heavy chains allowing the 

visualization of immunoprecipitates which may run at levels similar to either the light or 

heavy chains in SDS-PAGE. Samples were then separated onto 4 to 20% Novex SDS-PAGE 

gels, Western blotted, and probed with indicated antibodies. Mock immunoprecipitation 

lacking primary antibody was used as a control for precipitation specificity. 

4.2.3 Western Blotting: 

Drosophila protein extracts were immunoblotted with a rabbit polyclonal antibody directed 

against the human Hippi protein (Hackam et al. 2000; Gervais et . al. 2002). 

Immunoprecipitates were also immunoblotted with anti-Hippi. Blots were blocked in 5% non

fat milk in Tris buffered saline-Triton X-1 00 (TBS-T) prior to incubation with primary 

antibodies, 1:1000 dilution in TBS-T, for 2 to 4 hours at room temperature on a shaking 

platform. Blots were washed 3 X 20 minutes in TBS-T prior to incubation with horseradish 

peroxidase-linked secondary antibodies, 1:10,000 dilutions in TBS-T, for 1 hour. Membranes 

were washed 3 X 20 minutes in TBS-T to reduce background, exposed to chemiluminescent 

reagent and documented on autoradiographic film (for suppliers see Methods for Chapter 3). 

4.2.4 DIG-labelling of hipl: 

To determine the mRNA expression pattern of hipl, digoxigenin (DIG) labelled DNA probes 

directed against each transcript were made. DIG labelling was carried according to 
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manufacturer's instructions (Roche Molecular Biochemicals, Mannheim, Germany). Briefly, 

~1000 ng of hipl full length eDNA product were denatured by boiling for 10 minutes 

followed by quick chilling on ice to prevent renaturation. Hexanucleotide random labelling 

primers, dNTP labelling mix, and Klenow enzyme were added to denatured DNA and 

labelling was carried out at 37 oc overnight. The reaction was halted by the addition of 2 1-11 

0.2MEDTA. 

4.2.5 In situ hybridization to larval brain/discs: 

Third instar w1118 larvae were dissected in phosphate buffered saline (PBS), fixed in 4% 

formaldehyde for 15-20 minutes and dehydrated in a methanol and ethanol series. The 

carcasses were probed with the previously described DIG labeled anti-hipJ DNA probe. To 

visualize hipl mRNA alkaline phosphatase labeled anti-DIG antibodies were incubated with 

the carcasses. Following antibody treatment samples were subjected to alkaline phosphate 

treatment as per the Roche Applied Science DIG application manual. The larval CNS and 

imaginal discs were dissected out completely and examined under light microscopy. 

4.2.6 Immunohistochemical analysis of Hip pi in frozen sections of Drosophila: 

Staining of the adult CNS was carried out as follows. Whole Drosophila heads were mounted 

in O.C.T. mounting medium (Tissue Tek, Elkhart, IN) before being sliced in a cryotome at-

20°C. Sections were mounted on microscope slides. As these experiments were performed at 

Merck Frossts centre for therapeutic research access to fresh Drosophila material was limiting 

thus frozen sections of the Drosophila head were used in these studies. Slides were blocked for 

one hour in phosphate buffered saline containing 0.3% Triton X-100 and 10% normal donkey 

serum (1 0% NDS/PBT). The slides were then exposed to primary antibody at a 1:100 dilution 
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m 10% NDS/PBT overnight at 4°C. Slides were then rinsed 3 X 5 minutes in PBT and 

incubated in anti-rabbit Alexa 488 secondary antibody (Molecular Probes, Eugene, OR) at a 

1 :250 dilution in NDS/PBT in 10% NDS/PBT for one hour. Slides were rinsed an additional 3 

X 5 minutes and stored at -20°C prior to image capture on a Ziess Axiovert confocal 

mtcroscope. 

4.2.7 Co-expression of hipl or hipla4NTHwith epidermal growth factor receptor 
(EGFR): 

Pannier-Gal4; UAS-hipl or pannier-Gal4; UAS-hiplt:.ANTH flies (described in Chapter 2) 

were crossed to a UAS-EGFR line obtained from the BDSC (University of Indiana, 

Bloomington IN). Effects of EGFR Progeny were controlled by crossing to pannier-Gal4 

alone. Critical class progeny were prepared for SEM as described in Chapter 2 and 

photographed using a Hitachi 570 SEM. 

4.2.8 Expression of Drosophila huntingtin inhibitory RNA transgenic in the dorsal 
no tum: 

UAS-htt RNAi transgenic construct was obtained from Dr. L.S. Goldstein (Gunawardena et al. 

2003). UAS-htt RNAi was crossed to pannier-Gal4 and w1118 to investigate the effects of UAS-

htt RNAi on microchaetae density in the dorsal notum. Both pannier-Gal4 and UAS-htt RNAi 

were crossed to w1118 as controls for UAS-htt RNAi effects. Critical class progeny were 

prepared for SEM as described in Chapter 2 and photographed using a Hitachi 570 SEM. 

Microchaetae density was then calculated and plotted as described in Chapter 2. 

4.2.9 P-element 'local hop' mutagenesis of the hipllocus: 

Bioinformatic analysis of the 69E chromosomal region, containing hip], using the BDGP 

transposon insertion BLAST tool identified one transposon, EP3193, ~17kb from the 
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transcriptional start of hipl. This transposable element was mobilized by crossing the EP3193 

mutant line to a transposase source fly line as previously described (Tower et al. 1993). Sub-

lines were isolated which had undergone mobilization and stable re-insertion of the EP3193 

element. These lines were evaluated for phenotypic similarity to Notch and deltex alleles in 

both wing vein and microchaetae density defects. 

4.3 Results: 

4.3.1 Probing immunoprecipitates and Drosophila protein extracts using anti-human 
Hipl and anti-human Huntingtin antibodies reveal proteins similar to Hipl and 
Huntingtin: 

Western blots of both protein extract and immunoprecipitations using the anti-human Hipl 
I 

antibody recognized several bands which could represent the Drosophila Hip 1 protein (Figure 

4.1A and B). The largest of these proteins (~125 kDa) is very similar to the predicted size of 

hipl and is recognized in both western blots of whole fly extracts and immunoprecipitations. 

This strongly suggests that the anti-human Hipl antibody is capable of recognizing the 

Drosophila Hipl protein. Importantly, non-specific bands present in whole fly western blots 

visualised with this antibody are not present in immunoprecipitation blots, to suggest that 

these are independent of the anti-human Hip 1 antibody. These experiments could be easily 

expanded using the hipl and hiplMNTH transgenic lines described in Chapter 2. These 

transgenic lines can over express hipl under the control of the Gal4 transcription factor. 

Performing Western blot, immunoprecipitation, or immunostaining studies on samples from 

both expressing and non-expressing animals would show, definitively, if the human anti-Hipl 

antibody is recognizing the Drosophila protein. 
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Figure 4.1: Anti-human Hipl polyclonal antibodies recognize proteins similar in size to 
Drosophila Hipl in whole protein extracts and immunoprecipitations. Both whole fly 
extracts (A) and immunoprecipitation samples (B) show bands of approximately 115 to 125 
kDa similar to the predicted size of Hip 1 and matching those bands seen in in vitro 
transcription and translation (Figure 2.1 C). 
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4.3.2 Preliminary results of in situ hybridization of hipl: 

Localization of the hipl transcript using a DIG labeled probe showed that hipl is widely 

expressed in the Drosophila third instar larvae. Brown regions in Figure 4.2 represent positive 

staining (Note: imaging problems led to false capture of colouration). Patterned staining was 

observed in the central brain and optic lobes of the larval central nervous system, in addition 

bright staining was observed in the larval fat body. Importantly, this staining pattern is 

identical to that seen for the hippi transcript (Figure 5.3) suggesting that hipl and hippi are 

expressed in a similar tissue/cell specific pattern. As these are preliminary findings, these 

experiments must be confirmed for reproducibility of this pattern of expression. 
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Figure 4.2: DIG-labelled in situ hybridization to hipl shows mRNA expression pattern in 
larval central nervous system and fat body. Patterned staining was seen in the central brain 
(Arrow) and primitive optic lobes (Arrowhead) of the larval CNS as well as the larval fat body 
(Star). 

4-95 



4.3.3 Immunohistochemical staining of Hipl and Huntingtin: 

Confocal analysis of Hip1 immunostaining in frozen brain sections (Figure 4.3) shows 

extensive positive staining throughout the optic lobe and central brain regions resembling the 

staining pattern of Hippi (Figure 5.4). Negative control samples lacking primary antibody 

show that staining is dependent on the presence of anti-human Hip1 antibody. This suggests 

that the anti-human Hip1 antibody recognizes a protein in the Drosophila central nervous 

system. When combined with data from immunoprecipitation showing immunoreactive bands 

similar in size to the predicted size of Hip 1 this CNS expression suggest that the 

immunostaining is of the Hip 1 protein. 

Co-localization studies using an anti-human Huntingtin antibody in combination with anti

human Hip1 show areas of co-staining throughout the CNS (Figure 4.4). In particular, strong 

co-staining is seen in the central complex, with lighter co-staining throughout most regions of 

the optic lobes and CNS. Combined these results suggest that the Hipl/Huntingtin interaction 

reported in mammalian systems is conserved in the Drosophila brain. 
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Anti-Hipl Negative-Control 

Figure 4.3: Immunohistochemical localization of Hipl in frozen sections of adult 
Drosophila CNS. Sections treated with anti-human Hipl polyclonal antibodies show strong 
immunoreactive regions throughout the optic lobes/retinal array (red arrowhead), and central 
brain (orange arrow). Scale bar= 100 )lm. 
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Figure 4.4: Co-localization of Hipl and Huntingtin immunoreactive regions throughout 
the Drosophila CNS. Co-immunostaining of Hipl (C-green) and Huntingtin (A-red) 
antibodies show areas of co-localization (B-yellow) throughout the central complex and optic 
lobes. Control samples lacking primary antibodies show light background staining D-F. 
Arrows indicate regions of strong co-localization. Scale bar in A= 1 OOJ..lm 
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4.3.4 Co-expression of hipl or hiplJ.ANTll fails to modify the effects of EGFR on 
microchaetae density: 

EGFR signalling has been linked to microchaetae development in the dorsal notum 

(Abdelilah-Seyfried et al. 2000; Culi et al. 2001; Ramain et al. 2001; Escudero et al. 2003). 

Because of these previously characterized links to microchaetae development hipl and 

hipl~NTHwere individually co-expressed with the EGFR usingpannier-Ga/4 in hopes of 

further delineating the pathway of hipl/hipl~NTH neurogenic signalling. Over-expression of 

the EGFR in the pannier-Gal4 pattern using a UAS-EGFR transgene leads to an extreme over-

production of microchaetae bristles and central clefts (Figure 4.5A). Co-expression of hip] or 

hipl~NTH has no effect on this pannier/EGFR phenotype based on qualitative analysis 

(Figure 4.5B&C). Due to the severity of the pannier/EGFR phenotype no analysis could be 

performed to determine quantitative changes in microchaetae density and in tum subtle effects 

of hipl or hipl~NTHupon the observed phenotypes. 
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Figure 4.5: EGFR dorsal notum phenotypes are not modified by co-expression of hipl or 
hipl~NTH. Expression of EGFR under the pannier-Ga/4 pattern leads to over-production of 
microchaetae and central clefts (A). These phenotypes are not altered in animals co-expressing 
EGFR and either hip] MNTH (B) or hip] (C). Scale bar= 340 J...Lffi. 
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4.3.5 Reduction of huntingtin expression using n double-strnnd RNAi trnnsgene hns no 
noticable effect on microchaetae density: 

Huntingtin expression was reduced using a UAS-htt RNAi transgenic construct (Gunawardena 

et al. 2003). Analysis of microchaetae density in this transgenic line both with and without 

pannier-Ga/4 show that the UAS-htt RNAi construct has no effect on microchaetae density 

(Figure 4.6). 

4.3.6 Potential P-element insertion into hipJlocus increases microchaetae density: 

During the course of this investigation the EP3193 P-element, inserted near hipl, was induced 

to transpose and reinsert and a number of sub lines are being analyzed to uncover mutations in 

the hip] locus. Microchaetae density analysis was performed on of one of these sublines, 

EP3193-B54A, which was noted to have a wing phenotype reminiscent of members of the 

Notch pathway (data not shown). Homozygous females for the EP3193-B54A show an 

increase in microchaetae density when compared to control animals (P-value= 0.0191 by 

student's T-test n=7 for w1118
; n=3 for B54A homozygotes, Figure 4.7). 
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Figure 4.6: Reduction of huntingtin expression using a double-strand RNAi transgene 
has no effect on microchaetae density. Expression of double stranded huntingtin RNAi in 
the dorsal notum had no measurable effect on microchaetae density as compared to control 
animals expressing pannier-Gal4 alone. (Genotypes: w1118

= no transgene control UAS-htt 
RNAi= non-expressing control, pannier-Gal4; UAS-htt RNAi experimental genotype, and 
pannier-Ga/4= Gal4 expression control. Values represent mean± SEM. P>0.05 by Neumann
Keuls posthoc-test for significance between dshtt/pnr and pnr/+ genotypes). 
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Figure 4.7: Homozygous EP3193-B54A P-element transposition mutant near hipllocus 
leads to increased microchaetae density. B54AIB54A females show significantly increased 
microchaetae density when compared with w1118 (P=0.0191 by student's T-test). 
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4.4 Discussion: 

To determine details of the conservation of Hip 1/Huntingtin interactions and the genetic basis 

underlying hipllhiplMNTH-mediated neurogenic fates, a number of preliminary studies were 

carried out. As Hipl and Huntingtin co-localize in the mammalian nervous system (Kalchman 

et al. 1997; Wanker et al. 1997; Hackam et al. 2000; Gervais et al. 2002), in situ hybridization 

to hipl and immunolocalization studies of Hipl and Huntingtin were carried out in 

Drosophila. Messenger RNA localization shows that htpl is expressed in the larval central 

nervous system and fat body (Figure 4.2). This may be functionally equivalent to the 

expression pattern seen in mice where Hipl is expressed in all regions of the brain and in high 

levels in the kidney and liver (Gervais et al. 2002). Both of the latter tissues share some 

functions with the Drosophila fat body (St Jules et al. 1991). This conserved staining pattern 

tends to suggest that the Drosophila and human genes may have highly similar tissue and cell 

type specificity, and possibly conserved functions. This hypothesis is further supported by 

Western blot and immunoprecipitation experiments performed on whole fly protein extracts. 

As the antibodies recognize protein bands at the predicted levels for Hipl (Figure 4.1A&B), 

this suggests that the Drosophila proteins may be well conserved. Immunocytochemical 

staining (Figures 4.3 and 4.4) shows that both antibodies recognize antigens in the Drosophila 

brain and have a degree of co-localization similar to mammals. Additional studies with these 

reagents and the production of antibodies specific to Drosophila Hip 1 and Huntingtin should 

serve to further clarify these preliminary findings. In particular, production of Hipl and 

Hip1MNTH specific screening tools should allow for detailed cytological investigations into 

the cell/tissue specificity and ratios of each isoform. These tools should assist in the 
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elucidation of the mechanisms controlling Hipl versus HiplMNTH function and functions 

mediated by altered localization of these isoforms and/or their interaction partners. 

While the above experiments suggest the conservation of Hip 1/Huntingtin interactions in flies, 

we initiated studies into the role of huntingtin on the neurogenic role of the Hip 1 isoforms. 

These studies depended upon a UAS-huntingtin RNAi transgenic line obtained from Dr. L.S. 

Goldstein which had been used previously to demonstrate that reduction in huntingtin mRNA 

levels altered fast axonal trafficking (Gunawardena et al. 2003). Using this transgenic under 

control of the pannier-Ga/4 driver line, reduced levels of huntingtin mRNA should be induced 

in the dorsal notum. However, this method has shown no noticable effects of UAS-huntingtin 

RNAi presence upon microchaetae density (Figure 4.6), therefore further experiments are 

required. UAS-htt RNAi expression fails to alter bristle density from control levels, this finding 

reflects several possibilities as to the role of huntingtin mRNA in microchaetae neurogenesis. 

Neither the normal expression levels of huntingtin nor the degree of huntingtin knockdown 

was measured in the dorsal notum. If the levels of huntingtin mRNA are unaltered it will be 

difficult to determine if UAS-htt RNAi transgenics will be useful in unraveling the mechanisms 

of hipllhiplMNTH -neurogenic regulation. For this reason assays must be developed to 

determine changes in huntingtin mRNA, if any, induced by UAS-htt RNAi expression. 

Several pathways have been shown to have roles in the delineation of the dorsal notum 

microchaetae (Abdelilah-Seyfried et al. 2000; Culi et al. 2001; Ramain et al. 2001; Escudero 

et al. 2003). One of these is the EGFR signalling pathway which has been shown to act 

antagonistically to Notch activity (Culi et al. 2001; Escudero et al. 2003). The role of EGFR 

on microchaetae development was investigated with respect to hip] or hip] MNTH co-
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expressiOn. Consistent with previous studies, pannier-Gal4 expression of EGFR led to greatly 

increased microchaetae density and large clefts in the dorsal notum (Culi et al. 2001). 

However, due to the severity of these phenotypes, it was difficult to determine if hipl or 

hip] MNTH altered EGFR signalling effects upon microchaetae density or clefts of the notum 

(Figure 4.7). Detailed evaluations of potential links between the hipl and hiplMNTH and 

EGFR must be re-examined under adjusted conditions. Examination of hipl/hiplMNTH 

neurogenic signals in EGFR mutant animals would be particularly useful in defining potential 

links between these separate signalling mechanisms. In addition examining changes in the 

microchaetae phenotype of deltex/hipl transgenics in the EGFR mutant background would aid 

in these investigations. 

Another key tool that will allow further genetic dissection of the role of hipl and hiplMNTH 

is the production of null mutations in each transcript as well as the entire hipl loci. At the 

present time several P-element insertional mutations have been created in the genomic regions 

surrounding hipl using P-element local transposition of the EP3193 P-element (Zhang and 

Spradling 1993; Golic 1994). At this point one derivative line, EP3193-B54A, displays 

increased microchaetae density (Figure 4.7) and deltex-like wing phenotypes (data not shown) 

when homozygous similar to mutations in deltex and Notch (Ramain et al. 2001) to suggest 

that this mutant may represent the first mutant allele of hip I. 

Overall these data demonstrate that the Hip1/Huntingtin interaction likely occurs in 

Drosophila and tools are available to better define these interactions both genetically and 

molecularly. In parallel, tools are under development to better define links between the 

confirmed pathways involved in hip]/ hip] MNTH-mediated events and well studied genetic 
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pathways. However, additional study is necessary to draw firm conclusions using these new 

technologies. 
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Chapter 5: Preliminary characterization of hippi in 

Drosophila 
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5.1 Introduction: 

Huntingtin interacting protein 1 (Hip1) regulates neurogenesis through the deltex-dependent/ 

HES1-independent Notch signalling pathway which is common between flies and humans 

(Chapters 2 and 3 of this thesis). Parallel with studies on Hip1 's role in neurogenesis, 

investigations into the role of Hip 1-protein interactor (Hippi, also called IFT57) were initiated. 

Hippi was originally characterized based on its modulation of Hip1 's pro-apoptotic function 

(Gervais et al. 2002). Under conditions ofpolyQ-expanded Htt, free Hip1 binds Hippi and this 

heterodimer may activate the extrinsic apoptotic cascade through direct binding to caspase 8 

(Gervais et al. 2002). This novel cell death pathway suggested a potential polyQ-dependant 

cell death mechanism in Huntington's disease patients with Hippi being a potential target for 

therapeutic design (Ferrier 2002; Wanker 2002). To further the hypothesis that Hippi plays a 

role in cell death, the apoptotic activity of Hippi has been linked to the activity of the 

bifunctional apoptosis inhibitor (BAR) protein (Roth et al. 2003) and the Apoptin protein 

(Cheng et al. 2003) by co-immunoprecipitation and co-localization studies. Unexpectedly, the 

function of Hippi in the BAR and Apoptin systems appears to oppose apoptosis contrary to its 

role with Hip 1. This suggests that the nature of Hippi in cell death may be cell type specific. 

Drosophila hippi was identified and early investigation and characterization was undertaken. 

5.2 Materials and Methods: 

5.2.1 Identification of the Drosophila hippi homologue: 

The tBLASTn algorithm (flybase.netlblast) was used to search the Drosophila melanogaster 

genome utilizing the human Hippi homologue (Genbank Accession AF245220) as reference 

(Altschul et al. 1997). The longest ORF for the predicted transcript were determined using the 
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Expert Protein Analysis System (ExP ASy) translate tool ( ca.expasy.orgltools/dna.html). 

Sequence similarity was determined usmg the BLAST2 program 

(www.ncbi.nlm.nih.gov/blast/bl2seg/wblast2.cgi). The ClustalW webtool (www.npsa-

pbil.ibcp.fr/cgi-bin/npsa _ automat.pl?page=npsa _ clustalw.html) was used to compare the 

human, mouse, and Drosophila hippi proteins to determine conservation of domain 

architecture (Thompson et al. 1994). 

5.2.2 RT -PCR: 

Reverse transcriptase PCR was used to attempt to clone the hippi eDNA for further sequence 

analysis and creation of . transgenic Drosophila for additional studies. Briefly, 1 ~g of 

Drosophila brain poly A+ RNA (Clontech Laboratories, Mountain View, CA) was reverse 

transcribed using a poly T primer and MuL V reverse transcriptase. The eDNA pool was then 

screened using the following PCR primers and conditions: hippi exon1 Forward-1: 5'-ATG 

CAG CAA GAT GAT GAA CAG GA-3'; hippi exon2 Forward-1: 5'-CTG AAT TAG ATG 

CTC GCA TGA GC-3'; hippi exon2 Forward-2: 5'-TCC AGC CCA ATA AGC TGA TTC 

GT-3'; hippi exon2 Reverse: 5'- OCT CAT GCG AGC ATC TAA TTC AG -3'; hippi exon3 

Reverse: 5'-TGC AGC AAA TCA GOA AAG CGA TC-3'. PCR cycling protocol: 2 min at 

95°C for denaturation followed by 30 cycles of 1 min denaturation at 95°C, 1 min of primer 

. annealing at 55°C and 1.5min of extension at 72°C. Cycling was followed by one final round 

of extension of 5 min at 72°C and soak at 4°C. PCR was carried out using 1 unit of Taq 

polymerase (Roche Molecular Biochemicals, Mannheim, Germany). 
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5.2.3 eDNA library creation and screening: 

A Marathon eDNA library was then established according to manufacturer's instructions for 

additional PCR screening and full-length clone isolation (Clontech Laboratories, Mountain 

View, CA). Briefly, 1 ~g of Drosophila brain poly A+ RNA (Clontech Laboratories, Mountain 

View, CA) was converted into first strand eDNA using the supplied eDNA synthesis primer, 

AMC reverse transcriptase, and supplied eDNA synthesis buffer and nucleotides for 1 hour at 

42°C. Second strand synthesis was carried out using znd strand enzyme cocktail at 16°C for 1.5 

hours. The complete eDNA was then purified by phenol/chloroform extraction followed by 

ethanol precipitation. The Marathon adaptor sequence was ligated to an aliquot of the re-

dissolved eDNA sample. The eDNA library was then amplified via nested PCR as per 

manufacturer's instruction using primers directed against the Marathon adaptor sequence and 

the hippi specific primers listed above. Successful PCR products were isolated and cloned 

using the TOPO T/A system (Invitrogen Corporation, Carlsbad, CA) according to 

manufacturer's instructions. 

5.2.4 Analysis of Drosophila protein extracts for proteins cross-reactive to anti-human 
Hippi polyclonal antibodies: 

Whole Drosophila protein extracts were obtained as follows: 4 to 8 frozen flies were placed 

into a 1.5 mL microcentrifuge tube and 150 ~L of ice cold Hepes/EDTA buffer containing a 

phosphatase/protease inhibitor cocktail. Hepes/EDTA buffer composition was as follows: 100 

mM KCl, 20 mM Hepes, 5% glycerol, 10 mM EDTA, 0.1% Triton X-100, 1 mM 

dithiothreitol, 1 Complete-Mini protease inhibitor tablet (Roche Molecular Biochemicals, 

Mannheim, Germany), 20 mM ~-glycerophosphate, and 100 ~M orthovanadate. Flies were 

homogenized on ice until consistent using rotary homogenizer. Samples were centrifuged at 
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14,000 rpm and 4°C for 5 min. Clarified supernatant containing protein was isolated to a new 

tube. 50 to 100 J.lg of total protein extracts were separated on 4-20% SDS-P AGE gels and 

electroblotted onto nitrocellulose membranes for subsequent Western blotting (See Methods 

section of Chapter 4 for details of Western blotting protocols). 

5.2.5 Immunoprecipitation: 

Protein for immunoprecipitation experiments was isolated as above. An amount between 250 

and 500 J.lg of total protein extract was immunoprecipitated overnight essentially as described 

(Gervais et al. 2002) with the exception that Hepes/EDTA buffer was used instead ofNP-40 

buffer. Anti-Hipl, anti-Hippi, and anti-Huntingtin antibodies were added to aliquots and 

samples were placed at 4 OC on an "end-over-end" mixing platform overnight to allow 

formation of antibody-protein complexes. Protein A sepharose beads (Sigma, St. Louis, MO) 

were added and immunoprecipitation was carried out for 2-3 hours at 4°C on an "end-over

end" mixing platform. Bead-antibody-protein complexes were washed three times with ice

cold Hepes/EDTA buffer. Aliquots were boiled in 2X SDS-buffer without B-mercaptoethanol 

(See Methods section of Chapter 4 for details of immunoprecipitation and Western blotting 

protocols). Samples were then separated onto 4-20% Novex SDS-PAGE gels, Western 

blotted, and probed with indicated antibodies. Mock immunoprecipitation lacking primary 

antibody was used as a control for specificity. 

5.2.6 Western Blotting: 

Drosophila protein extracts were challenged with a rabbit polyclonal antibody directed against 

the human Hippi protein (Hackam et al. 2000; Gervais et al. 2002). Blots were blocked in 5% 

non-fat milk in Tris-buffered saline-Triton X-100 (TBS-T) prior to incubation with primary 
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antibodies, 1:1000 dilution in TBS-T, for 2 to 4 hours at room temperature on a shaking 

platform. Blots were washed 3 X 20 minutes in TBS-T prior to incubation with horseradish 

peroxidase-linked secondary antibodies, 1:10,000 dilutions in TBS-T, for 1 hour. Membranes 

were washed 3 X 20 minutes in TBS-T to reduce background, exposed to chemiluminescent 

reagent and documented on autoradiographic film. 

5.2.7 DIG-labelling of hippi: 

To determine the mRNA expression pattern of hippi, digoxigenin (DIG) labelled DNA probes 

directed against the hippi transcript were made. DIG labelling was carried according to 

manufacturer's instructions (Roche Molecular Biochemicals, Mannheim, Germany). Briefly, 

~ 1000 ng of hippi genomic PCR product were denatured by boiling for 10 minutes followed 

by quick chilling on ice to prevent renaturation. Hexanucleotide random labelling primers, 

dNTP labelling mix, and Klenow enzyme were added to denatured DNA and labelling was 

carried out at 37 oc overnight and stopped by addition of2 J..Ll of0.2 M EDT A. 

5.2.8 In situ hybridization to larval brain and imaginal discs: 

Third instar wm8 larvae were dissected in phosphate buffered saline (PBS), fixed in 4% 

formaldehyde and dehydrated in methanol and ethanol. The carcases were incubated with the 

DIG labelled anti-hippi DNA probe. To visualize hippi mRNA, alkaline phosphatase labelled 

anti-DIG antibodies were incubated with the carcases and subjected to alkaline phosphate 

treatment as per the Roche Applied Science DIG application manual. The larval CNS and 

imaginal discs were dissected and examined under light microscopy. 
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5.2.9 Immunohistochemical analysis of hippi in frozen sections of Drosophila: 

Staining of the adult CNS was carried out by mounting whole Drosophila heads in O.C.T. 

mounting medium (Tiss~e Tek, Elkhart, IN) prior to slicing by cryotome at -20°C. Sections 

were mounted on microscope slides. Slides were blocked for one hour in phosphate buffered 

saline containing 0.3% Triton X-100 and 10% normal donkey serum (10% NDS/PBT). The 

slides were exposed to primary antibody in 10% NDS/PBT overnight at 4°C. Slides were then 

rinsed 3 X 5 minutes in PBT and incubated in anti-rabbit Alexa 488 secondary antibody 

(Molecular Probes, Eugene, OR) in 10% NDS/PBT for one hour. Slides were rinsed an 

additional 3 X 5 minutes in PBT and stored at -20°C prior to image capture on a Ziess 

Axiovert confocal microscope. 

5.3 Results: 

5.3.1 Hippi is well conserved from Drosophila melanogaster to Mammals: 

A tBLASTn search of the Drosophila genome with the human Hippi protein sequence as 

reference, led to the identification of sequence CG8853 of the Drosophila genome as the sole 

homologue of Hippi in Drosophila. The longest ORF for CG8853 was determined to be 429 

amino acids, or approximately 47 kDa, which is very similar to the 405 amino acid protein of 

human Hippi. A BLAST2 comparison of the human Hippi amino acid sequence and the 

predicted sequence of the CG8853 transcript shows a high degree of conservation, with 36% 

identical and 57% similar residues and will hereafter be referred to as Drosophila hippi. The 

central myosin-like domain is highly conserved (Figure 5.1). Interestingly, the carboxy 

terminal pseudo death effector domain (Gervais et al. 2002) is poorly conserved suggesting 

that either this region does not exist in Drosophila hippi or the predicted CG8853 transcript 

may not be accurate. 
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Figure 5.1: The Drosophila melanogaster genome contains a single well-conserved Hip-1 
protein interactor (Hippt) homolog. Multiple alignment of the longest ORF in the Drosophila 
hippi transcript shows that the fruit fly homolog is well conserved including the amino
terminus and central Myosin-like domain (blue box). Notably, little identical conservation is 
seen in the carboxy-terminal pseudo death effector domain (red box). Red letters indicate 
identical amino acids, green letters indicated similar amino acids in all sequences, and blue 

·letters indicate partially conserved amino acids. 
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5.3.2 RT -PCR and Marathon eDNA library screening for hippi full length transcript: 

RT-PCR of Drosophila brain PolyA+ RNA and subsequent PCR screening revealed that in the 

Drosophila brain the predicted third exon of hippi may not included in the transcript. PCR 

utilising the hippi ex1-Fl/ hippi ex3-R primer pair failed to produce product while the hippi 

ex1-F1/ hippi ex2-R produced a product of the predicted 650 bp (data not shown). Cloning and 

sequencing of this fragment confirmed that it represents the first 217 amino acid coding 

sequence of hippi. To further characterize and clone the 5' untranslated region upstream of 

the hippi start codon and sequences downstream ofbase pair 650 from the RT-PCR fragment 

the Marathon eDNA library was examined using an overlapping PCR cloning strategy. This is 

based on overlapping gene specific primers and the nested adaptor primers included with the 

Marathon eDNA system and a touch down PCR approach as per manufacturer's instructions. 

Clearly defined bands were gel purified and cloned for further sequence analysis. All positive 

clones were sequenced; however no additional sequence information has yet been obtained. It 

appears that non-specific eDNA sequences were created during the eDNA production process. 

Additional screening for 5'and 3'sequence is necessary to fully characterize and clone hippi. 

5.3.3 Immunoprecipitation using anti-human Hippi antibody reveals Drosophila hippi 
candidates: 

Western blots of crude protein extract and immunoprecipitations using the anti-human Hippi 

antibody recognized several bands which may represent the Drosophila hippi protein. Figure 

5.2A shows that examining extracts with the anti-Hippi antibody reveals two proteins of~ 115 

kDa and 90 kDa, both which are much larger in size than the predicted hippi. Figure 5.2B 

shows that probing the native state gel of immunoprecipitation samples, which were not 

exposed to B-mercaptoethanol, revealed two smaller proteins at ~60 kDa and ~42 kDa, much 

5-118 



nearer the predicted size of hippi at 4 7 kDa. Additional analysis will be necessary to confirm 

the identity of these proteins. 
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Figure 5.2: Anti-human Hippi polyclonal antibodies recognize proteins similar in size to 
Drosophila hippi in immunoprecipitates but not in western blots. Whole fly extracts show 
banding at 215 kDa and 90 kDa much larger than the predicted 47 kDa of hippi (A). 
Immunoprecipitation samples show bands of approximately 60 kDa and 42 kDa much closer 
in size to that predicted for hippi (B). 
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5.3.4 Preliminary results of in situ hybridization of hippi: 

Localization of the hippi transcript using a DIG labelled probe showed that hippi is widely 

expressed in the Drosophila third instar larvae. Brown regions in Figure 5.3 represent positive 

staining (Note: imaging problems led to false capture of colouration). Patterned staining was 

observed in the central brain and optic lobes of the larval central nervous system, in addition 

bright staining was observed in the larval fat body, functionally analogous to the mammalian 

liver. Importantly, this staining pattern is identical to that seen for the hip] transcript (Figure 

4.2) suggesting that hipl and hippi are expressed in similar tissue/cell specific pattern. All 

experiments need to be confirmed by repetition. 

5-121 



Figure 5.3: DIG-labelled in situ hybridization to hippi shows mRNA expression pattern 
in larval central nervous system and fat body. Patterned staining was seen in the central 
brain (Arrow) and primitive optic lobes (Arrowhead) of the larval CNS as well as the larval fat 
body (Star). This expression pattern is identical to that seen for hipl (Figure 4.2). 
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S.3.S Immunohistochemical staining of hippi~ 

Confocal analysis of anti-human Hippi immunostaining in frozen brain sections (Figure 5.4) 

showed extensive positive staining throughout the optic lobe and Gentral brain regions 

resembling the staining pattern of the anti-human Hipl antibody (Figure 4.3). Negative control 

samples lacking primary antibody show that staining is dependent on the presence of anti

human Hippi antibody. This suggests that the anti-human I-li'ppi antibody recognizes a protein 

in the Drosophila central nervous system. Combined with data from immunoprecipitation of 

whole Drosophila extracts showing immunoreactive bands similar in size to the predicted size 

ofhippi (Figure 4) these data suggest that the protein target may be hippi. 
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Anti-Hippi Negative Control 

Figure 5.4: Immunohistochemical localization of hippi in frozen sections of adult 
Drosophila CNS. Sections treated with anti-human Hippi polyclonal antibodies show strong 
immunoreactive regions throughout the optic lobes/retinal array (red arrowhead) and central 
brain (orange arrow) identical to staining seen using anti-human Hipl antibodies (Figure 4.3). 
Scale bar = 100 Jlm. 
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5.4 Discussion; 

Hipl has been described as a mediator of cell-death (Hackam et al. 2000; Gervais et al. 2002), 

cancer progression (Rao et al. 2002; Rao et al. 2003), and as a novel regulator of neurogenesis 

(Chapters 2 and 3). Due to the complex roles of the Hipl protein in such diverse cellular 

pathways, detailed analysis of modifiers of Hipl, which may act to switch the functions of 

Hipl from one end point to another, are critical. One such modifying protein is the Hipl 

protein interactor, Hippi, which was originally characterized based on its ability to bind to and 

enhance the apoptotic activity ofHipl through shared pseudo death effector domains (pDED) 

and co-interactions with caspase 8 (Gervais et al. 2002). At the molecular level Hippi has been 

shown to participate in the assembly of ciliated and flagellated structures through protein 

interactions with members of the intraflagellar transport system (Baker et al. 2003). The 

apoptotic role of Hippi has been further linked to the BAR (Roth et al. 2003) and Apoptin 

systems (Cheng et al. 2003; Rohn and Notebom 2004) indicating that Hippi functions to 

counter apoptosis in some situations. As all studies of Hippi function have been undertaken in 

mammalian cell culture systems, we have initiated studies to characterize hippi in Drosophila 

melanogaster. This system will allow a thorough genetic study on the function(s) of hippi. 

At present the Drosophila homologue of hippi has been identified using bioinformatic tools 

and the predicted sequence shares significant homology at the amino acid and domain 

architectural levels with mammalian Hippi proteins (Figure 1 ). As no clones of the hippi gene 

exist, several methods were used to attempt to clone the full-length transcript. It was shown 

that the predicted third exon of the hippi transcript was incorrect as RT-PCR screens using a 

third exon specific primer failed to give PCR product. Repeated attempts to determine 
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additional 5' and 3' sequences to identify a full-length clone of hippi failed. Thus far the first 

650 bp of the hippi transcript have been cloned into the pCR2.1 vector. As a full length clone 

is necessary to further study hippi function in vivo this will be a primary goal of future 

research. 

Studies of the localization of hippi transcript and protein have been promtsmg. in situ 

hybridization studies in third instar larval tissues have demonstrated that hippi is expressed in 

the larval CNS and fat body, mirroring the expression pattern of hipl (compare Figure 5.4 

with Figure 4.3). This similar staining pattern is shared at the protein level as shown by 

immunohistochemical staining because anti-human Hippi immunoreactive staining is present 

throughout adult brain frozen sections (Figure 5.4). Native state immunoprecipitation of whole 

Drosophila extracts using the same anti-human Hippi antibody showed two bands of similar 

size to the predicted hippi protein sequence (Figure 5.2B). Importantly, anti-human Hippi 

western blots under denaturing situations show two larger immunoreactive bands suggesting 

that this antibody does not recognize hippi under denaturing conditions. In particular the 

cloning of full length hippi will allow for correct determination of the full length amino acid 

sequence. This will allow for delineation of expression patterns of hippi and the potential for 

hipl/hippi interactions in Drosophila. This full-length hippi transcript will be particularly 

important for the future determination of mutants in the hippi locus by allowing thorough 

genetic rescue studies. 

Based on the preliminary data presented here, study of the function of hippi in the fruit fly is 

promising. Studies of hippi localization suggest that the relationship between Hipl and Hippi 

seen in mammalian systems (Gervais et al. 2002) may be conserved in the fly. These findings 
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on Hippi and Hipl co-localization and the definition of a dual role for hipl and hipl MNTH in 

neurogenesis leads to the interesting possibility that Hippi's role in Hip1 activity may extend 

beyond merely enhancing its cell death activity. These findings raise the possibility that Hippi 

may act in the anti-neurogenic/neurogenic balance between hip1/hip1MNTH, respectively, 

through differential binding to individual isoforms. Such differential binding could explain the 

pro-apoptotic/anti-apoptotic controversy seen in several studies of Hippi function (Gervais et 

al. 2002; Baker et al. 2003; Roth et al. 2003; Majumder et al. 2006). In-depth analysis to 

determine if there are indeed changes in the balance ofHip1 isoforms and in tum Hip1/Hippi 

heterodimer ratios between the cell types investigated will help answer this question. Future 

studies will further define the role of Hip 1/Hippi interactions both on cell death and 

neurogenesis and in tum the basis of cellular differentiation processes under both disease and 

normal conditions. 
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Chapter 6: pannier-Ga/4-mediated decreases • In 

microchaetae density are suppressed by expression of 

the p35 anti-apoptotic protein. 
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6.1 Introduction: 

The Gal4/upstream activation sequence (UAS) bipartite expression system is perhaps the most 

widely utilized tool in Drosophila genetics (Duffy 2002). The ectopic expression of Gal4 is 

believed to be benign due to the lack of complete consensus Gal4 binding sites in the 

Drosophila genome (Berkeley Drosophila Genome Project). Despite this, recent reports have 

demonstrated that in some cases expression of Gal4 transgenes alone have detrimental effects 

(Haywood et al. 2002; Kramer and Staveley 2003). It was shown that these phenotypes were 

likely a result of programmed cell death as numbers of dying cells stained by acridine orange 

increased with GMR-Gal4 transgene copy number (Kramer and Staveley 2003) and 'rough 

eye' phenotypes could be genetically suppressed by the co-expression of p35, an anti

apoptotic protein or the E3 ubiquitin ligase parkin. Increasing the number of Dopa 

decarboxylase Gal4 transgenes greatly reduced lifespan (Haywood et al. 2002). 

As previous co-expression studies were carried out using optimized Gal4 binding sites for 

transcriptional activation, the UAS promoter region, the possibility remained that the presence 

of these 'enhanced' binding sites for Gal4 would reduce 'toxic' effects in all circumstances. 

As these studies demonstrate clear effects of Gal4 on several biological phenotypes it was 

decided to analyse the effect of ectopic Gal4 expression by the pannier-Ga/4 transgenic line 

for effects on microchaetae density. It has been noted that the pannier-Ga/4 transgenic line is a 

hypomorphic allele of the pannier locus but that it also displays neomorphic effects including 

loss of macrochaetae on the head (Heitzler et al. 1996) and also occasionally displays a 

thoracic cleft and altered microchaetae (Pena-Rangel et al. 2002). The data presented here 

show that pannier-Ga/4 alone leads to a decrease in microchaetae density from wild-type 
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control levels. Importantly, the observed phenotype was sensitive to p35 expression but 

insensitive to green fluorescent protein expression dismissing the general benefit theory and 

supporting the theory that Gal4 induces apoptotic cell death in a p35 sensitive manner. 

6.2 Materials and Methods: 

6.2.1 Microchaetae density analysis: 

Critical class female progeny were analysed for dorsal notum microchaetae density as 

described in chapter 2 of this thesis. Briefly, animals were anaesthetized at -70°C, mounted, 

and photographed by SEM. The following genotypes were analyzed: wlll
8

, pannier-Gal4, 

UAS-GFP; pannier-Gal4, pannier-Gal4/UAS-p35. Statistical differences were determined by 

one-tailed ANOV A with Neuman-Keuls posthoc-test for significance between pairs. 

6.2.2 Genomic screen for UAS-like regions in the Drosophila melanogaster genome: 

An optimized nucleotide sequence of the upstream activating sequence (UAS) element, CGG 

AGT ACT GTC CTC CG (Webster et al. 1988), was used to screen release 4.3 of the 

Drosophila melanogaster genome sequence for similar contiguous sequences using the basic 

local alignment search tool (BLAST) of the flybase network (www.flybase.net). All hits were 

analyzed for chromosomal location, associated genes, number of identities, and BLAST E-

value. 

6.2.3 Genomic screen for siRNA-like homologies between Gal4 DNA sequence in the 
Drosophila melanogaster genome: 

The 3271bp Gal4 mRNA sequence (Genbank Accession: Z73604) was used to screen release 

4.3 of the Drosophila melanogaster genome sequence for short homologous regions similar to 

high confidence siRNA complexes, the sequences AA-NwTT or NA(N21) where N is any 
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nucleotide were used as high confidence and low confidence siRNAs respectively (Elbashir et 

al. 2001a). All sequences showing 18 base pairs or more of nucleotide homology were 

analyzed for potential as siRNAs. The candidates were evaluated based on sequence, length, 

and intronic/exonic location to determine if they represent potential siRNAs. All candidates 

were also further categorized for cytologic location, gene, and gene function. In order to be 

considered siRNA candidates the homologous regions must fit into either the high or low 

confidence siRNA consensus, match exonic gene sequence, and have no internal mismatches 

(Elbashir et al. 2001a). 

6.3 Results: 

6.3.1 Microchaetae density: 

The pannier-Ga/4 transgene alone decreases the dorsal notum microchaetae density from that 

ofthe w1118 genetic background control (Figure 6.1; P-value < 0.01). This pannier-Gal4 effect 

is unaltered in the presence of optimized Gal4 binding sites when activating GFP expression 

by the UAS-GFP transgene (P-value > 0.05). The pannier-Gal4-dependent decrease in 

microchaetae density is suppressed back to wild-type levels when pannier-Ga/4 is co

expressed with UAS binding sites coupled to the p35 anti-apoptotic protein (P-value pnr/+ vs. 

pnr/p35 < 0.001; P-value w1118 vs. pnr/p35 > 0.05). 
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* I 

Figure 6.1: pannier-Ga/4 decreases microchaetae density in a p35 dependent manner. 
Expression of Ga/4 decreases microchaetae density. Co-expression of the anti-apoptotic p35 
protein but not green fluorescent protein suppresses this phenotype back to wild type levels 
Figure legend: w1118= wild type control, pnr/+= pannier-Ga/4 control, GFP;pnr= pannier
Ga/4 driving expression of green fluorescent protein, and pnr/p35= pannier-Ga/4 driving 
expression of p35(values represent mean ± SEM. * = P<O.OOl by Neuman-Keuls posthoc
test). 
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6.3.2 UAS-like sequences in the Drosophila genome: 

BLAST of the optimized sixteen base pair Gal4-binding sequence revealed nine sequences 

sharing either 13 or 14 contiguous bases with the optimized consensus described in methods. 

These sequences are summarized in Table 6.1. Of the nine sites identified three were not 

associated with recognized transcriptional units. Of the remaining six all occur within 

described transcriptional units with varied molecular functions. Due to the high level of 

similarity these regions could potentially act as binding sites for the Gal4 transcriptional 

activator in the absence of complete UAS elements. 
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Table 6.1: Description of genomic regions resembling optimized Gal4 binding sequence. 
Characterized genes are denoted by standard gene names. Non-associated = not associated 
with recognizable transcriptional unit; N/A= not applicable. (data was obtained using Berkely 
Drosophila Genome Project webtools). 

Sequence Chromosomal Identities, Associated Gene function 
location E-value genes 

1= 2L; 37A1 14, E=0.83 Grip71 y-tubulin 
ggagtactgtcctc binding 

2= cggagtactgtcc 2L; 37A7-B2 13, E=3.3 burgundy purine-
biosynthesis 

3= agtactgtcctcc 3H 13, E=3.3 Non-associated N/A 
4= agtactgtcctcc 3H 13 E=3.3 Non-associated N/A 
5= agtactgtcctcc 3R; 82E4 13, E=3.3 CG2016 N/A 
6= agtactgtcctcc 3R; 84E5 13, E=3.3 CG10445 spliceosome/ 

transcriptional 
regulation 

7= ggagtactgtcct 3L; 62A8-9 13, E=3.3 CG7955 defence 
response; 

heme 
transporter 

8= cggagtactgtcc 3L;63A3 13, E=3.3 always early spermatogene 
sis; 

transcriptional 
activation 

9= agtactgtcctcc 2R 13, E=3.3 Non-associated N/A 
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6.3.3 Regions of the Gal4 mRNA homologous to Drosophila melanogaster genomic 
sequence which could act as siRNA: 

Thirty-one sequences with at least 18 base pairs of identity to regions in the Drosophila 

genome were characterized. Of those, 27 were between 18-20 nt in length, below the common 

21-25 nt limit for efficient RNAi activity (Elbashir et al. 2001a; Elbashir et al. 2001b; Elbashir 

et al. 2001c). Of the remaining four all contain internal nucleotide differences which would be 

expected to abolish any siRNA activity (Elbashir et al. 2001a). In addition none of the 31 

sequences met the characteristics defined for efficient RNAi activity for one or more of the 

following reasons: sequence did not match siRNA consensus, homology was not directed to 

exonic regions, or internal mismatch nucleotides were present (Table 6.2). 
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Table 6.2: No sections of the Gal4 transcript fit the criteria .for efficient inhibitory RNA down regulation of characterized 
Drosophila transcripts. Specific characteristics are further described in text. N/ A= not applicable. 

Sequence Chromosomal Identities Gene Function lntronic/ Matches SiRNA 
(at least 18bp) location Exonic siRNA candidate 

Y/N Y/N 
tgttaatttgttgtaataat 16A5-81 20/20 CG8557 Unknown intronic N N 
tatgtaaatactttgaaat 3C9-01 19/19 dunce cAMP signal intronic N N 

ttcattattcatgaagttatcatgaac 982 25/27 N/A N/A N/A N N 
aacaattccaggcaaaata 1284-10 19/19 CG10990 apoptosis/ intronic N N 

protein 
synthesis 

gttaacaatgcttttata 1 E1 18/18 CG3655 Unknown exonic N N 
ttgcagctgttgctgttg 9E1 18/18 CG32677 ~-Amyloid exonic N N 

binding 
tgcagctgttgctgttgc 10F1 18/18 CG15740-1 Unknown exonic N N 
tgcagctgttgctgttgc 10F1 18/18 CG15740-2 Unknown exonic N N 

tatgggtactaggactgc 1785 18/18 CG15044 Unknown exonic N N 
cagtctccactgaagccaat 7007 20/20 N/A N/A N/A N N 

agctcataaaacagaaaaag 78E1 20/20 N/A N/A N/A N N 
tgcagctgttgctgttgc 63E8-F1 18/18 CG32664 Unknown exonic- N N 

R8 
agtagagtctttatgggt 64C1-2 18/18 CG17150-RB motor acitivty exonic- N N 

R8 
aatgtatttttca caagt 65C1 18/18 N/A N/A N/A N N 

ctattcaagcccaatgat 7201 18/18 CG13070 Unknown exonic N N 
tgcttcttggtattgtcactgg 75C2 21/22 N/A N/A N/A N N 
tcatttaaaaaattctata 93F14 19/19 CG6678 Unkown intronic N N 

tcataaaacagaaaaagg 82F6 18/18 N/A N/A N/A N N 
ggtaaaattagtgaaaaa 8301 18/18 N/A N/A N/A N N 
tgtacaaataatcctgtt 8582-7 18/18 po/ychaetoid JNK Cascade intronic N N 
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Table 6.2 continued: No sections of the Gal4 transcript fit the criteria for efficient inhibitory RNA down regulation of 
characterized Drosophila transcripts. Specific characteristics are further described in text. N/ A= not applicable. 

Sequence Chromosomal Identities Gene Function intronic/ Matches siRNA 
(at least 18bp) location exonic siRNA candidate 

Y/N Y/N 
gaaggtgtgcttcttggt 8681 18/18 Rfx RNA exonic N N 

Polymerase II 
gcagctgttgctgttgcc 88A2 18/18 N/A N/A N/A N N 
tccatttgtaaaaacttt 93E9 18/18 N/A N/A N/A N N 

aaatatccatttgtaaaaacttt 35E2 22/23 N/A N/A N/A y N 
tgaaagaaattgagatggt 35E4 19/19 N/A N/A N/A N N 

attcgattttgagtttga 21E2 18/18 drongo transporter intronic N N 
aaaattattgagataactttga 2586 21/22 N/A N/A N/A y N 

catttaaaaaattctata 32F3 18/18 N/A N/A N/A N N 
gctcataaaacagaaaaa Ill h 18/18 scare crow NK homeobox intronic N N 

tgcagctgttgctgttgc 55C2 18/18 N/A N/A N/A N N 
gtgaaaattattgagata -- 57F2 18/18 N/A N/A N/A N N 

--- ~--
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6.4 Discussion: 

Due to the widespread use of the UAS/Gal4 ectopic gene expressiOn system throughout 

Drosophila genetic studies the discovery that numerous Gal4-driver constructs have 

deleterious effects has the potential for far reaching consequences. Several theories can be 

proposed to explain the observed Gal4 phenotypes; our findings serve to better define and/or 

dismiss these in turn. As the Gal4 protein is a transcriptional activator it may alter normal 

transcriptional activities within associated cells through uncharacterized interactions with the 

endogenous transcriptional machinery. 

Unfortunately, the Gal4 17bp consensus binding sequence, CGG-Nu-CCG (Marmorstein et al. 

1992), cannot be directly screened using standard genome wide data-mining tools. Direct 

analysis of Gal4 genomic DNA binding would require a direct analysis of Gal4 DNA binding, 

such as a chromatin immunoprecipitation assay as has been used in yeast (Ren et al. 2000). 

This, in tum, inhibits the clear definition of Gal4 binding sites in the fruit fly genome. In 

addition, many Gal4 regulated transcripts in Saccharomyces cerevisiae require multiple 

binding sites for proper transcription and activity can vary depending on chromosomal state 

(Liang et al. 1996; Ren et al. 2000). Despite this, from Table 1 we see that at least six sites 

resembling the optimized Gal4 consensus sequence exist within recognizable transcriptional 

units. Gal4 binding at sites internal to transcription may disrupt the proper formation of the 

associated mRNA, or nearby transcriptional units, in a manner similar to transcriptional 

repressor proteins (Courey and Jia 2001). These findings demonstrate that transcriptional 

repression is unlikely as a basis for the pannier-Ga/4-dependent reduction of microchaetae 

density for several reasons. The microchaetae density phenotype is repressed by the addition 
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of the anti-apoptotic p35 protein but not by green fluorescent protein under the control of the 

optimized Gal4 binding UAS sequence (Figure 6.1). If transcriptional dysregulation was 

primarily responsible for the observed pannier-Gal4 phenotype then placing optimized UAS 

sequences into the Gal4 background would be expected to alleviate these effects by reducing 

the amount of free Gal4 available at dysregulated sites. The independence of UAS presence 

suggests that the anti-apoptotic activity of the p35 transgene is responsible for the observed 

suppression. In addition, based on the analysis of the Drosophila genome for optimized Gal4 

binding sites none fit the consensus Gal4 binding site as all lack the CGG-N-CCG format 

(Table 1 ). As the CGG/CCG sites ar~ the only regions directly bound by the Gal4 protein none 

of the sites recognized in the BLAST analysis would be expected to allow Gal4 binding. 

Aside from transcriptional dysregulation, the transcription of Ga/4 itself, an mRNA foreign to 

Drosophila has the potential to elicit immunological responses similar to those operating in 

untargeted RNA interference (Scacheri et al. 2004). If the Gal4 mRNA induced the activity of 

the dicer enzyme to form short RNAs, several regions of Gal4 with homology to Drosophila 

transcripts could elicit the RNAi response. Table 2 shows that a BLAST of the fruit fly 

genome searching for candidate siRNA regions within the Ga/4 transcript revealed that no 

siRNA candidate regions are present. Further to this, it has been shown that a single nucleotide 

mismatch within an siRNA duplex can abolish effects, further decreasing these candidates 

(Elbashir et al. 2001c). The data serve to dismiss these theories still further as the anti

apoptotic p35 protein is capable of suppressing the pannier-Gal4 phenotype while GFP has no 

effect, suggesting that the apoptotic process and not the RNAi response is elicited in these 

cells. 
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Pannier-Ga/4 has been suggested to behave as a hypomorphic allele of the pannier locus 

associated with changes in the dorsal notum surface and bristles (Heitzler et al. 1996; Perra

Rangel et al. 2002). Further characterization of this phenotype suggest additional mechanisms 

may be involved. The data suggest that the pannier-Ga/4 reduced microchaetae phenotype 

may be related to the expression of Gal4 itself rather than simply hypomorphic activity of 

pannier as the pannier-Gal4 phenotype behaves similar to other Gal4 constructs in which 

defects have been noted. In particular the finding that the pannier-Ga/4 microchaetae 

phenotype is suppressed by the anti-apoptotic p35 protein, as has been found in the GMR-Gal4 

driver line, suggests that Gal4 is directly or indirectly inducing apoptotic cell death. Other than 

the presence of Gal4 the drivers are unrelated with GMR-Gal4 expression primarily in the eye 

imaginal disc posterior to the morphogenetic furrow (Freeman 1996) while pannier-Ga/4 is 

expressed primarily in the wing disc in the regions of the primitive dorsal midline and wing 

(Calleja et al. 1996). Despite unrelated expression patterns both systems share sensitivity to 

p35. As the sole similarity between the systems is the presence of Gal4, this suggests that the 

p35 sensitive process is Gal4-induced and not related to the expression system. In further 

support, the nature of the pannier-Ga/4 and GMR-Ga/4 transgene constructs differs greatly; 

pannier-Gal4 was created by the insertion of the pGawB transposable element into the 

endogenous pannier promoter region (Calleja et al. 1996). GMR-Ga/4 (Hay et al. 1994) was 

created by inserting a P element containing four glass binding sites from the Rhl promoter 

region (Hay et al. 1994) fused to the Gal4 coding region (Brand and Perrimon 1993). Several 

independent insertions of the GMR-Ga/4 transgene have been noted to display a rough eye 

phenotype (Helms et al. 1999; Hiesinger et al. 1999; White and Jarman 2000) shown to be 

associated with increased apoptosis (Kramer and Staveley 2003). This suggests that the 
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associated phenotype is independent of chromosomal location and dependent only on the 

presence of Gal4 expression further supporting a direct role of Gal4 in observed effects. 
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Chapter 7: General Conclusions and Future 

Directions 
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7.1 Huntingtin interacting protein 1 regulates neurogenesis: 

Approximately 1 in 10,000 individuals in the Western world are diagnosed with Huntington's 

disease (HD) (Petersen et al. 1999). This number is compounded when we consider the 

emotional and physical stress imparted on relatives and caregivers alike. Given these factors, it 

is critical that we uncover the molecular alterations underlying this debilitating condition. One 

leap forward in understanding HD came with the discovery of the genetic change underlying 

the disease, a CAG trinucleotide expansion in the gene Huntingtin (HDCRG 1993). Despite 

13 years of intensive research since this original discovery, we still lack both preventative and 

curative therapies for HD. In order to develop these therapies we must first fully understand 

the multifaceted changes associated with polyglutamine expansion. Polyglutamine expansion 

of Huntingtin has been linked to the processes of endocytosis/intracellular transport 

(Tukamoto et al. 1997; Gunawardena et al. 2003; Trushina et al. 2004), intracellular 

signalling/cellular survival (Liu et al. 1997; Steffan et al. 2000; Reilly 2001; Humbert et al. 

2002; Song et al. 2003; Gauthier et al. 2004; Colin et al. 2005; Warby et al. 2005; Zuccato et 

al. 2005; Gines et al. 2006), and recently neuronal stem cell proliferation (Curtis et al. 2003; 

Lazic et al. 2004; Tattersfield et al. 2004; Curtis et al. 2005; Gil et al. 2005; Grote et al. 2005; 

Jin et al. 2005). Analyzing protein interactions and associated activities altered when the 

Huntingtin mutation is present represents one mechanism to understand and, in turn, prevent 

the cellular changes which result in HD. One interaction that is altered when Huntingtin is 

expanded involves Huntingtin interacting protein 1 (Hip 1 ). 

Hipl was originally described based on its reduced binding affinity for polyglutamine 

expanded Huntingtin (Kalchman et al. 1997; Wanker et al. 1997; Hackam et al. 2000; Gervais 
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et al. 2002). Similar to Huntingtin, Hipl has been linked to endocytosis/intracellular transport 

(Mishra et al. 2001; Rao et al. 2001; Legendre-Guillemin et al. 2002; Metzler et al. 2003; Rao 

et al. 2003; Hyun et al. 2004; Chen and Brodsky 2005; Legendre-Guillemin et al. 2005; Sun et 

al. 2005) and intracellular signalling/cellular survival processes (Hackam et al. 2000; Gervais 

et al. 2002; Rao et al. 2002; Rao et al. 2003). This suggests that the function ofHipl is closely 

related to that of Huntingtin itself. 

It is clear that the proliferation of neuronal stem cell populations is altered in HD patients 

(Curtis et al. 2003; Tattersfield et al. 2004; Curtis et al. 2005). However, no clear links have 

been established to classical pathways of stem cell proliferation. As stem cell replacement 

therapies have been touted as one promising treatment for HD (Lindvall et al. 2004), links 

between polyglutamine expansion and classical neurodevelopmental pathways may aid in the 

development of these treatments. Functional similarities between Hip 1 and Huntingtin and 

reduced binding ofHip1 to polyglutamine expanded Huntingtin suggest that Hip1 may play a 

role in HD pathogenesis or normal Huntingtin function. Based on these similarities potential 

roles for Hip1 in the process of neurogenesis were investigated. In particular, links between 

Hip 1 and previously described pathways of neurodevelopment were investigated. The present 

findings have led to the conclusion that Hip 1 does indeed function in a specialized pathway of 

neuronal development. 

Studies encompassed in Chapter 2 of this thesis clearly demonstrate that Hip1 plays a 

regulatory role in the process of neurogenesis in the Drosophila melanogaster. Two variants 

of hipl are produced in Drosophila through alternative splicing, hip] and hipl !lANTH. These 

variants differ in that hipl includes a complete ANTH domain while hiplMNTH lacks a 
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critical lipid binding region of the ANTH domain necessary for endocytotic function. 

Overexpression studies demonstrated that the isoforms play a dual role in the process of 

neurogenesis with hipl decreasing and hipl MNTH increasing neurogenesis as measured by 

changes in microchaetae density. This represents the first description of a role for Huntingtin 

interacting protein 1 in neurogenesis in any system. 

Further characterization of this novel neurogenic function demonstrates that hipl works in 

combination with deltex, a positive regulator of the Notch pathway (Chapter 2). Deltex has 

been shown to act in a specialized Notch signal independent from the classical pathways of 

lateral inhibition (Ramain et al. 2001). Co-expression studies show hipl acts to enhance while 

hiplMNTH acts to suppress the anti-neurogenic and developmental phenotypes seen with 

deltex expression (Figure 2.3). In addition, hipl enhances and hip] MNTH suppresses the 

microchaetae reduction phenotype seen in a NotchMCD mutant background (Figure 2.4). When 

taken together it can be concluded that hipl plays a dual role in neuronal development through 

a deltex-dependent Notch pathway and that the anti-neurogenic/neurogenic role of hipl is 

dependent on its ability to function in endocytosis, mediated through the lipid binding pocket 

of the ANTH domain. 

The experiments in Chapter 3 demonstrate that hipl-lhiplMNTH -mediated changes in 

neurogenesis in Drosophila are independent of Enhancer of (split) but require signalling 

through GSK3~ and achaete (Figure 3.4-3.6). Using siRNA technologies and 

immunoprecipitation in human cell culture Chapter 3 also shows that this novel role for Hip 1 

in neurogenesis, including the deltex-dependent, RES-independent nature, is conserved 

between Drosophila and human development (Figure 3.1). SiRNA-mediated downregulation 
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of either hip] or deltexl mRNA levels in pre-neuronal N-tera2/Dl cells led to reductions in 

the level of achaete/scute homolog 1 (ashl) mRNA with no changes in Notchllevels (Figures 

3.1 and 3.2). Figure 3.3 shows that Hip1 and ASH1 physically interact and that reduced 

expression of deltex, an E3 ligase, leads to stabilization of ASHl after the initiation of 

neuronal differentiation. These findings define a molecular genetic pathway in which hipl, 

hiplMNTH, and deltex co-operate in the regulation of neurogenic and anti-neurogenic signals 

(Figure 7.1). Hipl and Hip1AANTH act to transmit either anti- or pro-neurogenic signals, 

respectively, by modifying the effects of deltex and Notch (Figure 7.1A). These anti- or pro

neurogenic signals, while independent of Hairy and Enhancer of split (Figure 7.1 B), are 

intimately linked to GSK3P activity (Figure 7.1C). Finally, Hip1, Hip1AANTH, and deltex 

enact neurogenic regulation through direct binding, stabilization, and transcriptional 

modification of the bHLH transcription factor ASH1 (Figure 7.1D). 

When taken as a whole it can be concluded from these findings that Hip1 is a novel, well

conserved regulator of neurogenesis in both Drosophila and humans. As the Hip 1/Huntingtin 

interaction is reduced under conditions causing HD, these findings suggest that changes in 

Hipl 's activity in neuronal development may result from this reduced interaction. If so, altered 

levels of neurogenesis noted in HD patient brains (Curtis et al. 2003; Tattersfield et al. 2004; 

Curtis et al. 2005) could be a result of altered Hip1 activity. These proliferating cells have 

been suggested as a potential target of therapeutic intervention. By harnessing the regenerative 

power of these proliferating neuronal stem cell populations it could be possible to replace 

those cell populations most affected by the HD mutation. If altered Hip 1 activity is indeed the 

root cause of changes in neurogenesis seen in HD then it may also represent a powerful new 

target to prevent or reverse these changes. 
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In addition to the potential for these findings in the treatment and prevention of HD our results 

show that Hip1 is a novel and complex regulator of neuronal development through the deltex

dependent Notch signalling pathway. This pathway is critical in the development of not only 

neuronal cell populations but also in the proliferation and maturation of cellular systems as 

diverse as the hematopoietic and myogenic fates (Hansson et al. 2004). Because of this, these 

data have the potential to link Hip 1 to overall mechanisms of cellular development outside the 

nervous system advancing the basic biological knowledge of cellular development. As well, 

the Notch signalling network has been implicated in diverse medical conditions including 

cancer and inflammatory conditions (Hansson et al. 2004). Further study into the function of 

Hip1 in Notch signalling may gamer new insights into the development and progression of 

these conditions. 
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Figure 7.1: Huntingtin interacting protein 1 (Hip1) plays a complex role in the regulation 
of neuronal fate choices. Hipl isoforms, Hipl and HiplMNTH, transmit anti- and pro
neurogenic signals through interactions with the deltex, and in tum, Notch proteins (A). Hipl 
neurogenic signalling is independent of classical Notch regulation through the Hairy and 
Enhancer of split protein, HESl (B), while inhibited by increased glycogen synthase kinase 3~ 
expression (C). Neurogenic regulation through Hipl and deltex occurs through physical and 
transcriptional interactions with the Achaete/Scute homolog (ASHl) transcription factor 
family (D). Green arrows indicate activatory interactions, red bars indicate inhibitory 
interactions, blue-dashed lines indicate potential proteasomal regulation. 
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7.2 pannier-Gal4 reduces microchaetae density through a p35 
sensitive apoptotic mechanism: 

Recent findings have raised concerns surrounding the proper use of controls when using the 

Gal4/UAS ectopic gene expression system (Haywood et al. 2002; Kramer and Staveley 2003). 

In particular these studies demonstrate that Gal4 expression alone in the absence of UAS 

target sequences is capable of producing a range of phenotypes including apoptotic cell death 

(Kramer and Staveley 2003) and reduced life span (Haywood et al. 2002). As the Gal4/UAS 

system is one of the most widely used tools in Drosophila genetics these findings show that 

proper experimental controls for any potential Gal4 phenotypes must be incorporated into 

experimental design. While the apoptotic phenotypes associated with GMR-Gal4 expression 

have not been fully defined, it has been shown that the phenotype is sensitive to the expression 

of the anti-apoptotic p35 protein and the Parkinson's disease related gene parkin (Haywood et 

al. in preparation). Based on these findings the effect of pannier-Gal4 on microchaetae density 

was examined and the results of this study are reported in Chapter 6 of this thesis. These 

studies show that pannier-Gal4 decreases microchaetae density, and hence pannier-Gal4!+ 

animals have been used throughout all studies in this thesis as a control for effects of 

expression on microchaetae density. In addition to analysis of pannier-Gal4 effects on 

microchaetae density, detailed analysis was performed to further define Gal4 phenotypes as a 

whole. 

In particular, it has been suggested that UAS binding sites may exist in the Drosophila genome 

and that improper transcriptional activity may result in the observed phenotypes. Table 6.1 

shows the closest matches to the UAS consensus, CGG AGT ACT GTC CTC CG (Webster et 
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al. 1988), in the Drosophila genome. As none of these sequences contain the flanking 

CGG/CCG sequence necessary for Gal4 binding (Marmorstein et al. 1992) transcriptional 

activation from these sites is not expected. However, this genomic screen could not 

incontrovertibly demonstrate the lack of Gal4 binding consensus CGG-N11-CCG sites 

(Marmorstein et al. 1992) due to the lack of complexity and unique features within the Gal4 

binding consensus. Due to this the possibility of Gal4 binding sites in the Drosophila genome 

still exists. 

It has also been suggested that in the absence of U AS sequences, fragments of the Gal4 

mRNA itself could activate the immunological RNA inhibitory response. Table 6.2 shows that 

no fragments of the Gal4 mRNA share significant sequence homology to efficiently activate 

the RNAi response based on current understanding of the limitations of RNAi responses 

(Elbashir et al. 2001a; Elbashir et al. 2001b; Elbashir et al. 2001c). Based on this it can be 

concluded that the Gal4 mRNA does not induce RNAi-like responses and that the observed 

phenotypes are derived though some other mechanism. 

In an effort to better define the mechanism underlying observed Gal4 phenotypes co

expression studies using two transgenes, UAS-p35 and UAS-GFP, in the pannier-Gal4 

background were undertaken. Chapter 6 shows that co-expression of p35 rescued the pannier

Gal4 microchaetae density phenotype while GFP had no effect. Importantly, the UAS 

constructs used to form each transgene were identical. As the phenotype was shown to be 

independent of UAS-GFP, while sensitive to UAS-p35, this argues against transcriptional 

dysfunction as a cause of the observed phenotype. Both transgenes offered similar 

opportunities for Gal4 binding, while only the anti-apoptotic p35 gene was successful in 
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rescuing the phenotype. It can be concluded that the microchaetae density decrease was caused 

by a p35-sensitive apoptotic mechanism. These results parallel those seen in the otherwise 

unrelated GMR-Gal4 system; therefore, it can also be suggested that Gal4 has wide-ranging 

effects on apoptotic activation and that studies using the Gal4/UAS system should be well 

controlled, in particular if apoptotic pathways are under investigation. 

7.3 Future Directions: 

7.3.1 The role of Hipl in HD-related neurogenesis: 

The evidence presented herein strongly suggests that Hip1 functions in Notch-dependent 

pathways of neurogenic control and its regulation in vivo are important in the progression of 

HD. Detailed analysis in patient samples is required to confirm these relationships. In 

particular, a detailed analysis of deltex-dependent Notch activation in patient samples would 

help clarify this role. In addition, detailed expression analyses for Hip 1 variants at both the 

mRNA and protein levels in both the human and Drosophila systems will help to better define 

the mechanism of hipl and hip] ~NTH activity. Reducing the expression levels of all Hip] 

mRNAs in N-tera2/D1 cells (Chapter 3) was successful in eliciting a change in neuronal 

differentiation. The use of variant specific siRNAs would allow for detailed functional 

analyses of Hip1 isoforms in this process. At the same time variant specific mutants in 

Drosophila will help to further characterize the biological functions of these hipl variants. 

Expanding upon the preliminary findings of chapters 4 and 5, the conservation of the 

Hipl/Huntingtin and Hipl/Hippi interactions, respectively, as well as the development of 

novel tools to better study these and additional interactions will greatly improve the 

understanding of this biological system. 
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Based on the biological conservation demonstrated between the Drosophila and human 

systems in Hip 1 function, the tools created through the course of these studies represent an 

extraordinary opportunity. Using the combination of genome-wide forward and reverse 

genetic screens in Drosophila, in parallel with detailed, high-throughput, biochemical analyses 

available in human NT2 cells will provide a system to rapidly and systematically define the 

molecular genetic pathways of Hip 1 function. This parallel system will allow for both in vivo 

and in vitro analysis of therapeutic agents at all stages of research. In tum these tools will help 

to better define the pathways modified in HD pathogenesis. 

7.3.2 Phenotypes associates with pannier-Gal4: 

In the case of pannier-Gal4 microchaetae phenotypes, future research will help to define the 

exact mechanism of Gal4 effects. Co-expression of the Parkinson's related gene, parkin, has 

been shown to negate the effects of Gal4 in the eye, presumably through its ubiquitin-protein 

ligase activity (Shimura et al. 2000). Chapter 6 demonstrates that the suppressive effects of 

p35 expression are conserved from the eye to the notum systems; it will thus be interesting to 

test for suppression of the pannier-Gal4 microchaetae phenotype using parkin transgenics. 
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