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ABSTRACT 

The space n of loops over a 1-connected space X possesses a 

natural multiplication, namely the composition of loops. This multiplication 

induces a Pontryagin product in homology, while the properties of the 

multiplication induce, in homology, the structure of an associative algebra 

with identity. 

The first three chapters of this thesis are introductory: The first 

describes the concept of cubic homology, the second, spectral sequences, and 

the third, the spectral sequence of a fiber space. 

In Chapter 4, the Pontryagin product is defined for P , a path space 

over a 1-connected space X. Since P is well known to be a fiber space 

over X with fiber n , the results of the previous chapters may be used 

to determine certain properties of the Pontryagin product in P 

these results are summarized by Theorem (4.45). 

(and n ); 

Finally in Chapters 5 and 6, the two main theorems are presented and 

proven in complete detail. Theorem A , due to Bott and Samelson, determines 

the Pontryagin algebra of the loop space n , where the elements of the 

homology groups of X are transgressive (in the spectral sequence of P), 

and its corollaries determine the Pontryagin algebra of the loop space over 

a sphere, the loop space over the one point union of spheres, and the loop 

space over the suspension of a 0-connected space. Theorem B, due to Samelson, 

gives a relationship between the Whitehead and the Pontryagin products. Two 

proofs are given for Theorem B : the first establishes the relationship up to 

a factor of ~1, the second determines the sign. 

Both Theorem B and the second corollary of Theorem A are valuable in the 

determination of the homotopy groups of the one point union of spheres. 
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(iv) 

INTRODUCTION 

One of the most serious disadvantages of homology is the lack of a 

natural multiplication. When, in 1939, Pontryagin [18] defined a 

multiplication in the homology groups of a topological group, the 

multiplication being induced from the product operation in the topological 

group, he contributed significently to the homology of such spaces. More 

recently ~he Pontryagin product has been extended to a larger class of 

spaces, namely the H-spaces. 

Let X be a 1-connected topological space, let P be the space of 

paths in X , and let st be the space of loops in X, with base point x . 
0 

The space st possesses a natural multiplication, namely the composition of 

loops, which induces a Pontryagin product in its homology groups; if 

u f H (s-6) and v( H (st), then u*v€ H (st). The properties of the p q . p+q 

multiplication in st give rise, in homology, to the structure of an 

associative algebra with identity. 

The first three chapters of this paper introduce the basic tools 

for a consideration of the Pontryagin product in st • The first describes 

the now well known concepts of cubical singular homology, which Eilenberg 

and MacLane [6] have shown to be identical to the usual singular homology. 

Chapter 2 introduces the concept of a spectral sequence, especially that 

of the spectral sequence · of a filtered differential group. Chapter 3 

defines a fiber space and obtains the homology spectral sequence of a 

fiber space. The methods used are similar to those of [22], with the 

modifications of [3] being fully developed. 
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The Appendix to Chapter 3 shows the importance of the spectral 

sequence of a ffber space by mentioning several of its applications. 

With Chapter 4 begins the main part of the thesis where the 

Pontryagin product is defined for the space P. Using the fact that P 

is a fiber space over X with fiber n , useful results may be obtained 

about the Pontryagin product for the space P , including the associativity 

of the product and the existence of an identity. These results are 

contained in theorem (4.45). 

The first of the two main theorems, 

Theorem A. For a given 1-connected space X , we take H(X), with 

coefficients in the principal ideal domain R, as being R-free and all 

the elements of H(X) as being transgressive (in P). 

Now the Pontryagin algebra H*(Q) is the r free associative 

algebra, with unit, generated by a subgroup of H(Q) which is isomorphic 

to the positive dimensional elements of H(X) under a map reducing dimension 

by one., 

which is due to [3], is proven in detail in Chapter 5. The corollaries to 

Theorem A determine the Pnntryagin algebras of the loop space of a sphere, 

of the loop space of the one point union of k spheres,and of the loop space 

of the suspension of a 0-connected space. 

The Whitehead product, originally defined by J. H. C. Whitehead 

(cf. [30]) in 1941, has been redefined (e.g. in _[28~ and [29]) and 

generalized (e.g. in [1] and [19]) many times. In Chapter 6 , a 

relationship is given between the Whitehead and the Pontryagin products. 
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Theorem B. If, for a 1-connected space 

p,q > 1, then 

X , we have a E n l (X) , p+ 

where the map T is the composite of a natural isomorphism 

S ~ n l (X) , q+ 

n 1 (X) % n (Q) and the Hurewicz homomorphism, the operation [ , ] is 
p+ p 

the Whitehead product, and the operation * is the Pontryagin product., 

due to [20], gives this relationship. Two proofs are given for Theorem B 

the first leaves the sign open and the second determines the sign to be 

Both Theorem B and the second corollary to Theorem A are valuable in 

computing the homotopy groups of the one p9int union of k spheres (cf. [9]) . 

. · 



1. 

CHAPTER 1 

Cubic Hcmology 

The usual definition of singular homology uses the unit n-simplex; 

however, to develop the spectral sequence of a fiber space, we need an 

equivalent definition which uses the unit n-cube instead of the unit 

n-simplex. 

We now introduce the basic concepts of the cubic theory. 

(1.1) By a singular n-cube in a space X, we mean a map u : In -+ 

n = 0, then u is interpreted as a single point in X. If n > 0, 

define ith lower and faces 
0 

and l of to be the upper A.U A.U u 
1 1 

singular (n - 1) cubes given by 

(A~u)(xl, ... , xn-1) = u(xl, ... , xi-1' E: 'xi, ... , xn-1)' 

i = 1, ... , n ~ = 0 1 C ) - In-1. "" ' ; xl ' ... ' x 1 "'lliiii n-
Then, we have 

(1. 2) 

since 

n s 
A. 1 A. 
]- 1 

~.s~n. C ) 1\1\ u x 1 , ••• ,x 
2 1 J n-

i < j s, n = o, 1 ; 

A:\J(x 1 , .•• , X. l' E:, X., ••• ,X 2 ) 
J 1- 1 n-

X. 

we 

If 

x., ... , x. 2' n ,x. l, ... ,x 2) 
1 J- J- n-

and A ~ 
1
· A ~u (X l , • • • , X 

2
) = J- 1 n- A ~U (X l ' • • • ' X . 2 ' n ' X . 1 ' • • • ' 1 J- J-

'x., ... ,x. 2' 
1 J- n' x. 1' ... ,x 2) J- n-

We define Qn(X) to be the free abelian group generated by all 

singular n-cubes in X if n > 0, and Qn(X) = 0 if n < 0. 

We define an operation d by the formula 

n i 1 o 
du = Li=l (-1) (Aiu - Aiu). 



2. 

This equation then defines a homomorphism d: ~(X)+ Qn_
1

(X), for every n. 

(1. 3) Lemma {Q (X), d} 
n 

is a chain complex. 

Proof. We need only to show that dd = 0. 

Take u £ Qn (X). 

n i 1 o 
Now ddu = d( L (-1) (A.u - A.u)) 

. 1 l l l= 
\n-l j 1 \n i 1 o o \n i 1 o 

= L (-1) [A. (L·- (-1) (A.u - A
1
.u)) - AJ. (L

1
·=l(-1) (A

1
.u - A

1
.u_))] 

j =1 J l-1 l 

AlAlu -
0 

A1X1u + l 0 n l l AIA~U) = AlA u - A1A2 u + ... - ( -1) (A 1 An u -l l l l l 2 

0 l 0 0 0 l - A1 A1u + A1A1u + A1A2 u 
0 0 

- A l A2U 
n o 1 - . . . + ( -1) (A 1 An u 

0 0 
- AlAnU) 

- AlAlu 0 
+ AlAlu - l 0 n 0 

+ A iA 1 u A2 A2 u - ... + ( -1) (A l A l u - AlA u) 2 l 2 2 2 n 2 n 

+ 

n-1 l l l o l l l o n 1 l o - (- 1) [A A u - A A 1 u - A A u + A 
1

A 2 u + . . . - ( -1) (A A u-A 1 A u) 
n-1 l n-1 n-1 2 n- n-1 n n-1 n 

Now for j < i, we have A ~A~ = An A E 
J l i-1 j s, n 0 and 1, 

so ddu 

AfAi u 
0 0 

AIAfu 
0 0 n 1 o 0 0 

+ AlA 1 u + AlA l p - ... + ( -1) (A lA 1 u - An-lAl u) n-

A1 A1u AiA~U + A1A1u l 0 n 0 l ) - + - A2 A2u - ... +(-1) (A1 ~lu - An-1A2u 2 l 2 2 n--1 2 

A~Aiu 0 0 A~A~U + 
0 0 C )n l o 0 0 

+ - A2A1U - A2A2U + ... - -1 (An-lA 2u - An-1A2u) 

+ ... 



3. 

- .•• + 

Now it is clearly seen that each term appears twice, once with a positive 

sign and once with a negative sign; hence all terms cancel and 

ddu = 0. 

Thus we have a chain complex, since Q (X) 
n 

is an abelian group and 

d Qn(X) ~ Qn_ 1 (X) is such that dd = 0. 

It would be logical to expect that we need only to pass to homology and 

we would have the required cubic homology groups of X. However, if we 

consider the usual definition of a homology theory (as defined by Eilenberg 

and Steenrod [ 7 ] ,pages 10-12), we have for X = { x} , a one point space, 
0 

that H (X) = 0, 
q 

is not the case. 

for q + 0. such For the chain complex { Q (X) ,d} 
n 

Let us take X to be a single point X • 
0 

For each q ~ 0 we have a 

unique generator for Q (X), namely that determined by the unique map 
q 

f : Iq ~ x . Now,if we have q > 0 and i _< q, then 
q 0 

:\~ f 
1 q 

0 
= A. f 

1 q 

and it follows that f is a cycle for each q. 
q 

Hence the group of cycles, Z (Q(X)), is isomorphic to l, the group of 
q 

integers, and the group of boundaries, 

H (Q(X)) ~ l 
q 

B (Q(X)), is zero. q 

q > 0. 

Thus 

We want to eliminate this problem and to do so we introduce the Bott and 
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Samelson [ 3] concept of a degenerate cube. 

(1. 4) Definition; For each integer P ~ 1, we denote by D (P) the subgroup 

generated by those cubes which do not depend on any one of their last P 

coordinates and put D (P) = D (P) n Q • 
n n Such cubes are said to be degenerate. 

Clearly from this definition we have that 

and that 

D (P) = ID~P) 

D(l) C D(2) C ... C D(P) C 

If we put nC=) = U D(P) 
p then we have that 

(1.5) Proposition: {D(P)(X) , d} forms a normal subcomplex of 
n 

Proof. d on D(P)(X) 
n 

hence dd = 0. 

is just the restriction of d on Q (X) 
n 

to D~P)(X); 

To prove this proposition we need the following Lemma,which has been proven 

by Bott and Samelson [ 3 ] . 

(1. 6) Lemma. (a) For each P, such that 1 < P < =, 

(h) The natural homomorphism of the homology group of (Q/D(P)) into 

that of (Q/D(P+l)) and that of (Q/D(=)), induced by 

D(P) r D(P+l) C D(=), 1·s . h. «-- an 1somorp 1sm. 

Proof of Lemma: Case 1 : We consider p < = 

(a) Consider u E D(P)_ We apply d and we have 

du = I~=l (-l)i(AfU- A~u). Now let us assume that u does not depend on 

some coordinate, say the sth coordinate, with n~P~ 5 ; therefore 

Alu(x 1 , .•. , x 
1

) = u(x 1 , ... ,x 
1
,1,x , ... ,x 

1
) = u(x 1 , ••• ,x 

1
,o,x , ... ,x 

1
)= 

s n- s- s n- s- s n-



or, in other words, the terms 

If i < S, E = O,l, we have . ~EU(x 1 , ••• ,xn_ 1 ) = 

and A. 1 u 
s 

5. 

cancel. 

u(x 1 , •• • ,x. 
1

,E:,X. , ••• , 
l- l 

... ,(x ), ... ,x 
1 s n-

and clearly .A ~u € D (P-l) C. D (P). 
l 

If i > s, E = O,l, we have ;..~u(x 1 , ••• ,x 
1

) = 
1 n-

u(x 1 , ••• ,(x ), ... ,x. 
1

,E,x., ... ,x 
1
), s 1- 1 n- and clearly 

(Q, 

Hence it follows that d(D(P) C D(P~ 

(b) We consider the exact homology sequence of the triple 

0 (P+l), 0 (P)) 

:*H (D(P+l), D(P))i: 
q 

where 

Hq(Q,D(P))j: Hq(Q,D(P+l~d: Hq-l(D(P+l),D(P)) :* ... 
are induced by i: (D(P+l) ,DCP)) + (Q,D(P)), 

j : (Q,D(P)) + (Q,D(P+l)), respectively, and d* is the composition of the 

usual d and the homomorphism 

H (D(P+l)) + H (D(P+l) ,D(P)) . d d b h q-l q-l 1n uce y t e map 

(D(P+l) ,xo) + (D(P+l) ,D(P)). 

We want to show that the homomorphism j* is an isomorphism. To do 

this we use the exactness of the sequence and the fact that 

for all q. 

To Show Hq(D (P+l),D(P)) -- 0 "d th 1· t we cons1 er e 1near opera or 

for u t. Q (X). 
0 

We now make the following claim. 

u t Q (X), 
n 

n > 0 ., 
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(1.8) Claim: ~ has the following properties: 

(1) for all P > 1. 

(2) Defining (l.) T 1 + d~ + ~d, (1 = identity map), we have 

T(D(P+l)) C D(P)_ 

Property (1). If u does not depend on x , it is obvious that 
r 

~u 

not depend on X r+l from the definition; hence~if u E D(P)), 

~u t D(P), and Property (1) follows. 

Property (2). Let us take u € Q and apply T. 
n 

TU = lu + d~u + ~du 

does 

,n+l i 1 o 
Tu(x1 , ... ,xn) = u(x 1 , ... ,xn) + Li=l(-1) (Ai~u(x 1 , ... ,xn) - Ai~u(x 1 , ... ,xn)) 

Applying the operators 

and ~ , we have 

,n j 1 o 
+ Lj=l(-1) (~Aju(x 1 , ... ,xn)- ~Aju(x 1 , ... ,xn)) 

(since ~ is linear). 

A~, A~, (e: = O,l;i = l, ... ,n+l; j 
1 J 

1, ... , n) , 

Tu(x 1 , ... ,xn) = u(x 1 , ... ,xn)- u(x 1 , ... ,xn_ 11 lxn) · + u(x1,·~·,xn_ 1 ,0) 

+ u(l,x2 , ••• ,x 1 ,xlx) - u(O,x2 , ••• ,x 1 ,x1x) n- n n- n 

+ 

1
"This definition of 'T differs from than given by Bott and Samelson [ 3]. 

The reason for this difference is that they define du = L· (-l)i(A~U-A~u), 
1 1 1 

whereas,we define du = L-(-l)i(A~U- A~u), and this difference allows to 
1 1 1 

get the same result, namely that H (D(P+l) ,D~P)) = 0. 
q 
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- u(l,x 2 , ••. ,xn_ 1 ,x 1xn) + u(O,x 2 , ••• ,xn_ 1 ,x 1xn) 

+ u(x 2 ,1,x 3 , •.• ,xn_ 1 ,x 1xn) - u(x 2 ,0,x 3 , •.• ,xn_1 ,x 1xn) 

n + (-1) (u(x 2 , •.. ,x 1 ,x 1x ,1)- u(x 2 , ••• ,x 1 ,x 1x ,0)). n- n n- n 

Clearly many of the terms appear twice, each time with a different 

sign, and so cancel; hence we are left with 

Tu(x 1 , ... ,xn) u(x 1 , ... ,xn-l~) 

n+l 
+ (-1) (u(x2 , •.• ,xn,x 1)- u(x2 , .•• ,xn,O)) 

n 
+ (- 1 ) ( U ( x 2 , • • . , X l , X 1 X , 1 ) - U ( x

2 
, • . . , X l , X 1 X , 0) ) 1 n- n n- n 

o~ in other words, 

o n+l o 
TU = A 1 ~u + (-1) ((AA+l~)u- (An+l~)u) 

+ (-l)n(~Al)u- (~A0 )u). 
n n 

We take u ~ oCP+l) and assume that u does not depend on the rth 

d · h d d d h (r + 1) st d · d coor 1nate; t en ~u oes not epen on t e coor 1nate, an 

A 1 ~u is also independent of its (r + l)st coordinate. 
0 

A~~u E D(P). Similarly, we may show that, for u £ D(P+l), 

Hence 

"\ E: u 
/\n+l~ and 

~AE:U belong to oCP) , E: = 0,1. Consequently TU ~ D(P). Should p = 0, 
n 

i.e. ue D(l), we have the terms of TU not depending on the value of £; 

£ = 0,1; hence all the terms of TU cancel. 

We return to the proof of (1.6). 

Let X be a cycle of (P) . (P+l) (P) mod D (1.e. x t D , dx E D ) . 
' 

we have that d~x = TX- ~dx- x (from the definition of T), with ~x € D(P+l) 

(property (1) of (1.8)) and TX and ~dx belonging tp D(P) (from (1.8)). 
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Since 't'X and Mx € D(P) , we have that 't'X - Mx belongs to the 

zero class of 0 (P+l), mod D (P) , and we can say X 'V 0 in 0 (P+l) , mod D(P). , 

so 
(P+l) 0 (P) 

H(D , is 0. 

Case 2: For P = oo · 

The assertion for P = oo now follows from D(oo) = ~(D(P)). 

Now the proof of proposition (1.5) follows from (1.6). 

Using (1.5) we can now consider the various (Q /D (P)) with the 
n n 

boundary d defined as d[x] = [dx] , x € ~ ; this leads us to consider 

the homology groups. 

(1.9) Proposition; The identification of the homology groups of the various 

(~/Dn (P)) is natural. 

Proof. We want to prove that passing to homology is natural. 

i.e. we want the following diagram to be commutative, for f : X ~ Y any 

mapping. 

x----_.Y 
f 

H l u 
H( Q(X) ) H( Q(Y) ) 

D (P) (X) t: D (P) (Y) 

Let x £~(X) , and let us define a n-dim.cube y of Y by 

y = f 0 x. 

Now if X does not depend on some coordinate, say clearly 

will not depend on coordinate X • r 
We may define 

f' 
Q (X) 

n Q (Y) 
n 

D (P) (X) 
n 

D (P) (Y) 
n 

y 
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by f' [x] = [y] = [f o x] ; f* is induced by f'. 

The proposition now follows by passing to homology and (1.6). 

(1.10) We call any of the Q/D(P) the group C(X) of chains of X and 

its homology group will be called the cubical singular homology group 

H(X) of X. 

For our purposes, we shall use Q/D(oo); any cube X E D(oo) will be 

called degenerate. 

Earlier we saw that the homology groups obtained from the chain 

complex { Q (X), d} 
n 

did not give a homology theory in the Eilenberg-Steenrod 

sense; we now check to see if the factoring of 

this problem. 

We again take X to be the single point 

Q (X) 
n 

by corrects 

x , and for each q > 0 
0 

we have a unique generator for Q (X), determined by f : Iq + x Again~ 
q q 0 

0 
for q ~ 0, i ~ q, Al f = A.f and f is a cycle for each q. But 

i q l q q 

f Iq + x is a constant map and as such is degenerate for all q > 1. 
q 0 

For q = 0, f is no longer degenerate. 
q 

Hence the group of cycles z ( Q(X) 
) is , q oC=) (X) 

is z for q = 0, 

and the group of boundaries, B ( 
Q(X) 

) is 
q oC=)(X) 

Thus 

H ( Q(X) ) 
q oC=)(X) 

~ {?L' 
0, 

for q = 0 

for q > 1, 

and the dimension axiom is satisfied. 

0, for q~ 1 , and 

0, for all q. 

It would be routine to check that the other conditions of an Eilenberg-

Steenrod Homology Theory are satisfied. 
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Clearly all our cubic chain groups are free, and hence our cubic 

homology will hold with arbitrary coefficients. 

In fact the homology groups given by the cubic chain complex {C(X),d} 

'h • 1 2 are the same as those given by the usual singular c .. a1n comp ex . 

Now we know that the results which we have for our usual singular 

homology theory also hold for our cubic homology theory. Because of 

this, since our X is defined to be pathconnected, we may restrict ourselves 

to those cubes all of whose vertices lie at X • 
0 

In the future we refer to our cubic homology simply as singular 

homology. 

2 This is a well known fact and proof of it may be found in [ 6 ] , 

[ 22 ], and others. 
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CHAPTER 2 

Spectral Sequences 

Before proceeding further we need the use of a tool which was 

originally developed between 1947 and 1952 by Koszul [15], Leray [17], 

and Serre[22]; namely the spectral sequence. We shall first define a 

spectral sequence in the general sense; then, in detail,trace the construct-

ion of the Serre spectral sequence. 

Our concept of a spectral sequence is the same as that of Spanier 

[23], page 466. 

(2.1) Definition. A bigraded module E (over a principal ideal domain R) 

is defined to be an indexed collection of R-modules E t, s, 
for all s,tEZ. 

(2.2) Definition. A differential d : E + E, of bidegree (-r,r - 1) is 

defined to be the collection of homomorphism d : E + E , for 
s,t s-r,t+r-1 

s,t £ ~, such that dd = 0. 

(2.3) Definition. The homology module H(E) is defined by 

H (E) 
s,t 

Kernal(d : E + E ) 
s,t s-r,t+r-1 

Image (d · E + E ) · s+r,t-r+l s,t 

Using the above definitions we are able to give the Spanier definition 

of a spectral sequence. 

( 2 4) D f . . t . A Ep t 1 . { Er , dr} . e 1n1 10n. n spec ra sequence 1s a sequence 

r > p, such that 

(1) Ep is a bigraded module and dr is a differential of 

bidegree (-r,r - 1) on 

(2) for r > p , there is an isomorphism 
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We remark that p is usually 0,1, or 2. We also note that this definition 

lends itself to the following illustration. 

We take p = 1. 

<-- E6,2 <-- El <--
1,2 

El <--
2,2 

... <-- El 
0,1 

<-- El 
1 

<-- El <--
1 2,1 

<-- Eb,o <-- El <-- E~ o<--1,0 , 

As r increases, we may use points to represent each of the 

and so forth ... 
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As we are presently only interested in the Serre spectral sequence, 

we shall not continue to develop this general definition. However, during 

the development of the Serre spectral sequence we shall meet properties 

which are just special cases of properties of spectral sequences in 

general; when we meet such properties we shall mention the general case 

as a remark. 

For the development of the Serre spectral sequence we follow the 

original Serre paper [22] adding the details where they have been omitted. 

(2.5) Definition. Given (A,d) a differential group (i.e. an abelian group 

A with an endomorphism d such that dd = 0), we say that a family of 

subgroups (Ap) , p £~, define on A an increasing filtration if the 

following conditions are satisfied. 

(1) l}p Ap = A 

(2) Ap C Ap+l 

(3) d(Ap) C: Ap . 

The definition may be completed by putting 
-00 

A = 0 and += 
A = A. 

For x € A , we let w(x) be the lower bound of all p such that 

x €. Ap. We now claim that the mapping x ~w(x) satisfies the following 

properties: 

(2.6) w(a - b) ~ sup (w(a) , w(b)) 

w(da) ~ w(a) . 

The second follows immediately from d(Aw(a)) C: Aw(a) . In the first 

case, we take a e Aw(a) , b € Aw(b). If 

since Ap C Ap+l. Aw(b) is a subgroup so 

w(a) ~ w(b) , we have a €Aw(b) 

(a - b) € Aw(b) ; hence 



14. 

w(a _b)~ w(b). Should w(b) ~ w(a) the reasoning is similar; then com

bining both we have the result. 

Conversely, we may use (2.6) to obtain (2.5). If we have given a 

function w defined on a group A with integral values such that (2.6) 

is satisfied, we can define an increasing filtration { Ap} by taking 

Ap = {a € Ajw(a) < p} . This definition can be shown to satisfy the conditions 

of (2.5). 

We now introduce the following notations 

zr = {x €. Ap I d (x) 6 Ap-r} 
p 

zoo = {x ~ Apjd(x) = 0} 
(2. 7) p 

Br {x G: Apjx dy y ~ Ap+r} 
p 

Boo = {x € Apjx = dy , y ~ Aq q ez} p 
, 

Clearly from the definition of these subgroups of Ap and the fact 

that Ap CAp+l, we have the following inclusions 

(2. 8) 

(2. 9) 

Bo C 1 r -1 r oo oo 
B c ... C.B C.B C ···C.B CZ C.··· p p p p p p 

Since Zr 
p+r 

• .• c.zr C zr-1 C.. 
p p 

{x£ Ap+rjd(x) E AP} and 

d(Zr ) 
p+r 

we have 

c zl c. z0 

p p 

(2.10) Definition. We put 

From (2.8) and (2.9) we have 

(2.9) and the fact that dd = 0, we have 

Br 
p-r 

d(Zr-1 
~- p-1 

r c ... c. z p-r 
+ 8r-l) = 8r-l 

p p-r 

and from 

hence 



our d is compatible with the passing to quotient which defines 

Now d induces a homomorphism 

(2.11) 

defined by 
r 

d [ z] = [ dz] , z E. Z . p 

We investigate further our induced homomorphism 

(2.12) Claim. (i) kernel dr = (Zr+l + 2r-l)/ (Zr-1 + 
p p p-1 p-1 

(ii) image dr = (Br + 2r-l)/(Zr-l + 
p+r p p-1 p-1 

Proof of Claim. 

(i) We want the kernel of the homomorphism 

Since Er = zr I (Zr-1 + 8r-l) an element of 
p-r p-r p-r-1 p-r 

, 

and only if it belongs to 

( 
r-1 r-1 ) z + B 
:e-r-1 :e-r 

r-1 r-1 
z + B p-r-1 p-r 

zr 

8r-l) 
p 

8r-l). 
p 

Er is zero if 
p-r 

15. 

Now = dr ( p 
P r-1 

\ 
) 

by (2.11), and 

z + p-1 
r-1 

B 
p 

Zr-1 r-1 
+ B 

p-r-1 p-r 

an element of dr(Er) is zero if and only if it belongs to 
p p 

(Zr-1 + 8r-l)~ 
p-r-1 p-r 

1 1 i.e. if and only if it belongs to 
(Zr- + Br- ) 

p-r-1 p-r 

1'1 (Zr-1 r-1)) p-r-1 + 8p-r 

n (Zr-1 + 8r-l) ' 
p-r-1 p-r 

since by (2.9). 



i.e. 

i.e. 

Br 
Now n zr-l = Br+l , by applying the definition , and 

p-r-1 p-r-1 p-r 

8r-l = 8r-l 
p-r p-r 

Hence 

r dr) dp(ker p 

ker dr 
p 

= 

= 

since Br-1 C Br 
p-r p-r 

= 
r+l 

B p-r-1 

8
r+l 
p-r-1 

dr(Zr+l + 2r-l 
p p p-1) 

r+l r-1 B + B p-r-1 p-r 

r-1 
+ B p-r 

r-1 
+ B p-r 

2
r+l r-1 + z 

p-1 p 

r-1 r-1 z + B 
p-1 p 

by (2.8). 

c 

by (2.9), 

by (2.11). 
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(ii) The proof of (ii) follows immediately along similar lines. 

Applying (2.8) to (2.12) we see that Im dr Cker dr which implies p+r p 

that dr o dr = 0 and we are able to consider the homology groups. 
p p+r 

(2.13) Lemma. 

Proof. We consider the quotient of the kernal of and the image of 

ker dr 
p 

Im dr 
p+r 

= 

= 

r-1 z p-1 

r-1 z p-1 

zr+l 
p 
r-1 

z p-1 

+ 

+ 

+ 

r-1 
+ z 

p-1 
r-1 

+ B 
p 

zr-1 
p-1 

r-1 z 
E-1 

Br 
p 

zr+l 

(Zr-1 + Br) (\ zr+l 
p-1 p p 

by (2.12) 

by an algebraic property 

of quotients. 

since if an element belongs 

to r-1 z p-1 
it also belongs to 

the 0-class. 



= 

i.e. 

r+l z 
p 

since Br C 
p 

zr+l 1) zr-1 
p p-1 

the definitions. 

by (2.10). 

From these results we obtain our spectral sequence. 

(2.14) Definition. We put Er = l: Er . The summands Er 
p p p 

The elements of Er are said to be of 
p a graded structure. 

17. 

by (2.8) and 

by applying 

define on Er 

filtered degree p , 

dr define on Er a homogeneous differential dr of degree-r 
p the homomorphisms 

with respect to the filtered degree.· The sequence of graded differential 

groups (Er) , r = 0,1, ... , is the Serre spectral sequence or the spectral 

sequence attached to the filtered differential group A. 

Now (2.13) tells us that the homology group of Er , calculated in 

Er, is isomorphic to 
p 

H(Er) = Er+l , ... 

Er+l , and we have 
p 

H (E 1) = E2 ; • . . ; 

We now look at the beginning and ending terms of the spectral sequence. 

= 

= 

By definition (2.10) we have 

Z0 I (Z-l + B- 1 ) 
p p-1 p 

{ x € A p I dx G. Ap} 

from (2. 5). 

by (2.7) 

(2.15). This tells us that E0 is the direct sum of successive quotients 

and we call it the graded group associated with the filtered 

_group A. 
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From (2.11) we see that maps into itself and that it is 

obtained from the differential d of A by passage to quotient. 

The next stage would naturally be El = H(E0
) = H(Ap/Ap-l). 

00 

E 

(2.16) Definition. We define the terminal group ' of the spectral sequence 

to be the term E
00 = E E

00 

, defined by putting 
p p 

This definition clearly corresponds with the definition of the term 

Er and we may interpret it either as the limit of the terms Er (in a 

way to be defined later), or as closely bound to H(A). Hence it forms a trans

ition between the Er and H(A). 

We now give a more precise definition of the connection between 
00 

E 

and H(A). 

(2.17) Definition. We let D be the image of H(Ap) 
p 

the inclusion mapping of Ap into A. 

This definition immediately gives us that 

(2. 18) 

and we make the following claim 

(2.19) Claim.: D /D l 
00 

= E 
p p- p 

Proof of Claim: D /D l = 
(Zoo /Boo) 

P E p p-
00 00 

(Z 1/B 1) p- p-

00 

I 
00 00 

= z (Z 1 + B ) p p- p 

00 

= E 
p 

by (2.16). 

in H(A) induced by 

by (2. 18) 

by (2.7) and (2.8) 
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Now (2.19) implies that if we consider H(A) as filtered by the D , 
p 

the group E
00 is only the graded group associated with the filtered group 

H(A). 

Remark: The concept of a terminal group also holds for spectral sequences 

in the general sense, although it is usually called the limit of the spectral 

sequence; see Spanier [23], page 467. 

We now consider the case when our filtered d~fferential group 

A is also a graded group. Here the results will be parallel to the ones 

for the ungraded case; hence we number the results with the same number as 

in the ungraded case and affix a prime. This holds true even if the result 

is not explicitly stated below. 

(2.20) Definition. We assume that A is graded, i.e. A is the direct sum 

of subgroups nA , n EZ:., (we write instead of the more usual 

A so that we can avoid confusion with the filtered groups AP); we will 
n 

assume that d is of degree -1 with respect to the graduation (i.e. 

d(nA) c n-lA) and that the filt~ation is compatible with the graduation 

(i.e. We put 

and we denote by H (A) n the nth homology group of A. 

We now wish to graduate the terms of the spectral sequence. The 

or 

existence of a graduation on A allows us to define a graduation on those 

groups which we defined before, and we have 

zr = {x € Ap,qjd(x) ~ Ap-r,q+r-l} 
p,q 

Br = {x G Ap,qjx = d(y) Ap+r,q-r+l , y t } 
(2.7)' 

p,q 

zoo = {x ~Ap,qjd(x) = 0} p,q 

00 

{x E Ap,qlx = d(y) As,t s,t €Z} B , Y€. , 
p,q 
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(2.17) 1 0 = image of H(Ap,q) in H(A) induced by the inclusion 
p,q 

mapping of Ap,q in A, 

and 

(2.18) 1 D = Z00 /Boo 
p,q p,q p,q 

Zr Br B00 Zoo D th b f we note that p,q , p,q , p,q , p,q , p,q are e s~ groups o 

zr Br 
p , p 

degree 

00 
, B , 

p 

p + q. 

zoo D , respectively, formed by the hom_ogeneous elements of p , p 

Each of Zr Br Boo , Z00 
, D is the direct sum of Zr p , p , p p p p,q' 

Br , Boo zoo D , respectively, for -oo < q < <P • We demonstrate for 
p,q p,q , p,q , p,q 

r r r p ql p-r q+r-1 
the case of Z and Z By (2. 7) 1 

, Z = {x e A ' d (x) t: A ' } , p p,q p,q 

and for -oo < q < oo , we consider 

{x € E Ap,qjd(x) € E Ap-r,q+r-l} 
q q 

= {x e Apjd(x) ~Ap-r} since graduation is compatible with filtration 

in A. 
= by (2.7). 

As in the ungraded case we have the corresponding inclusions (which we number 

(2.8) 1
) and see that 

(2. 9) I d(Zr ) 
p+r,q-r+l = 

(2.10) 1 Definition. We put = zr /(Zr-1 + Br-1) 
p,q p-l,q+l p,q 

for 0 < r < oo. 

Now the Er grade 
p,q 

Er , and the corresponding results follow; the 
p 

term Er of the spectral sequence is bigraded by the r 
E ; where p is p,q 

the filtered degree; q the complementary degree; and (p + q) the total 
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( ) corresponds to the degree of A). As before we have a degree ( P + q 

differential dr which now reduces filtered degree by r , total degree by 

1 and increases complementary degree by r - 1. , 

(2.14)' Our sequence of bigraded differential groups 
r 

(E) , r = O,l, ... , 

is the Serre spectral sequence (for graded filtered differential groups) or 

the spectral sequence attached to the graded filtered differential group A. 

(2.21) Theorem: The Serre spectral sequence just defined is a well defined 

spectral sequence. 

Proof. Clearly this is an E
0 

spectral sequence; (2.4) follows immediately 

from ( 2 . 1 0) ' , ( 2 . 11) ' , and ( 2 . 13) ' 

... 
We now consider Serre's "hypothese supplementaire", [22], page 431; 

but we define it as the condition for a filtration to be regular, see, for 

example, Hu [12], page 236. 

(2.22) Definition. A filtration on A is said to be regular if x f 0 is 

a homogeneous element of A, then 0 < w(x) ~ deg(x). 

This definition just states that the filtration and the degree are 

non-negative and the weight does not exceed the degree. If we go back 

to (2.20), the definition of Ap,q, we see that the regularity conditionmay 

be expressed as 

(2.23) if p < 0 . 

We now introduce the concept of a first-quadrant spectral sequence, 

see [23], page 468. 
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(
2

. 24 ) oefini tion. A first qua~rant spectral s =equence is a spectral sequence 

having the property that Er = 0 
p,q 

if p < 0 or q < 0, for 0 < r < =. 
E 

we novl have the following lemma. 

( 2 . 2 5) Lemma. If the filtration on A is regular then the associated spectral 

sequence E is a first quadrant spectral sequence. 

Proof. Firstly we want E
0 

= 0 p,q if p < 0 or q < 0. Now (2.23) gives 

that, for p < 0, Ap,q = 0 ; which by (2.7)' implies that Z0 
= 0. 

p,q 

If q < 0 , (2.20) implies that w(x) ~ deg(x), for p > 0; hence 

Ap,q must be trivial, and again (2.7)' implies 

By (2.10)', 

p < 0 or q < 0. 

Now (2.13)' gives us Er+l = H(Er ) so p,q p,q 
, 

Er+l = 0 
' 

hence we can say that Er = 0, if p,q p,q 

Clearly it be shown 
00 

may also that E = 
p,q 

By (2.19)', 
00 

D /D E = and by p,q p,q p-l,q+l ' 

Z0 
:;::;: 0. 

p,q 

; thus 

if Er = p,q 

p < 0 and 

0, if p < 

00 

= 0 , if 

0, then 

q < 0. 

0 or q < 

= . (2.25), E -l,n+l 0 
' 

0. 

hence 

we have D = 0. -l,n+l We know D = z= /Boo 
n,O n,O n,O by (2.18)' and hence equal 

to H (A). 
n 

(2.26) Thus we have the composition sequence 

o-o c.o c_ ... ro co 1 1 0 ~ -1 1 0 - ,n+ ,n n , n, 

n o = o. 
p p 

H (A) and clearly 
n 

(2.27) Proposition. If the filtration on A is regular, then 

= Er+l = 
p,q 

00 

= E p,q 
, for r > sup (p , q + 1 ) . 
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Proof. If r > p, all elements of Er are cycles for dr, since dr 
p,q 

reduces the filtered degree by r from (2.14)'; and Er = 0 by 
p-r,q+r-1 

(2.25), since p - r < 0. 

If r > q + 1, no non-zero element of Er can be a boundary for 
p,q 

since increases the complementary degree by r- 1, from (2.14)', and 

Er = 0 by (2.25), since q - r + 1 < 0. 
p+r,q-r+l 

Now for r > sup(p,q + 1) we have Er = Er+l = since 
p,q p,q 

H(Er q) = E;:~, by (2.13)'. 
p, 

For the case of E
00 

, it is sufficient to say that for 
p,q r 

enough we have 
00 

= z p,q 
and 

large 

Going back to what we said previously, this proposition allows us to 

00 

see in what sense we can say that the group E is the limit of the groups 

r E : for a total degree n given, there exists an r large enough,so that 

the groups formed by the terms of total degree n of Er and 
00 

E are 

isomorphic. 

(2.28) Remarks (1) We may introduce the concept of convergence of a spectral 

sequence. Following Spanier [23], page 467, we have the 

following definitions. 

definition(l): A spectral sequence E is said to conve.rge if 

for every p and q there exists an integer r (p' q), such 

that for r > r (p ,q) dr . Er -+ Er is trivial. , . 
p,q p-r,q+r-1 

definition(2): A spectral sequence E is said to converge in 

the strong sense if for p and q given, there exists an r (p ,q) 

such that for r (p, q)' Er ~ Er+l :t ~ 
00 

r > ... E p,q p,q p,q 
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Hence our condition in (2. 27) is simply conve_rgence in 

the strong sense. 

(2) Spanier [23], page 468, gives that a first quadrant 

spectral sequence is convergent in the strong sense; 

therefore, we can now give a trivial proof for (2.27). 
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CHAPTER 3 

The Homology Spectral Sequence of a Fiber Space 

we now consider the concept of a fiber space, which, as we shall see 

in Chapter 4, is an essential tool in the consideration of the Pontryagin 

multiplication in loop spaces. Actually, fiber spaces are essential for 

much more than this; they are useful in the axiomatization of homotopy, 

the computation of homotopy groups, and the application of homotopy to 

problems in geometry. 

Here we want to establish the homology spectral sequence for a fiber . space. 

To do this we follow the approach of Serre [22], developing fully the suggested 

modifications of Bott and Samelson [ 3]. 

Before defining a fiber space we require the following concepts. 

(3.1) Consider a map p P 7 B of a space P onto a space B. For X a 

given space, f X 7 B a given map, and ft X+ B t ~I, a given 

homotopy of f, we say that a map f' . X + p covers f (relative to p) . 

if pf' = f, and that a homotopy f' . X+ p covers ft (relative to p) t 
. 

if pf' = ft t e I . f' is said to be a covering homotopy of ft The t ' ' t 

map p . p + B has the covering homotOEY EroEerty (CHP) for X if, for 

every map f' X+ p and every homotopy ft 
. X+ B, t E. I, of the map . 

f = pf' X7 B, there exists a homotopy f' t 
X+ P, t e. I, of f' 

' such 

that f' covers ft. The map p . p + B has the absolute covering homotoEy t . 

property (ACHP) if it has the CHP for every space X. The map p : P + B 

has the Eolyhedral covering homotopy EroEerty (PCHP) if it has the CHP 

for every polyhedra X. 
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(3 .2) Definition. A fiber space is defined to be the triple (P,p,B), 

where P and B are spaces and p : P ~ B is a mapping of P onto 

B such that p has the PCHP. 

A fiber space defined in thBmanner is often called a Serre fiber space; 

we note that the PCHP corresponds to Serre's condition R, [ 2~, page 443. 

This is not the only definition for a structure of this nature; we have 

the Hurewicz fiber space, where the ACHP replaces the PCHP, and the 

concept of a locally trivial fiber space or fiber bundle , which is defined 

in a slightly different manner. Both the Hurewicz and the locally trivial 

fiber space contain the Serre fiber space in most cases 3 • 

We now give the following Proposition which will be useful later. 

(3.3) Proposition. Let (P,p,B) be a fiber space, A and X be two finite 

contractible polyhedra, A C X, 

then , if f : X~ B and g' : A~ P are maps such that p • g' = fjA, 

we have that g' has an extension f' X~ P such that pf' = f. 

We do not give the proof of this proposition; the proof may be found in 

[22], page 443, or may be obtained from Theorem 3.1 on page 63 of [12]. 

(~.4) Definition. For x E P, b = p(x) € B, we call 
-1 

F = p (b) the 

fiber. 

Henceforth, we assume that B and F are arcwise connected. Clearly 

it follows that P is arcwise connected. This assumption allows us to use 

exclusively those cubes with vertices at x( or b) without changing any 

of our homology groups. (See end of Chapter 1). 

3 
For more details and definitions see either of [2~, [1~, [2~, or others. 
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We will now examine the effect of 1r 1 (B) upon the homology groups of F. 

(3.5) Definition. If for a fiber space (P,p,B) and a loop v on B, with 

endpoints at b, there is a mappi.ng C which assigns to to an n-dimensional 

singular cube u of F an (n + I)-dimensional singular cube C(u) of P, 

it is called a construction for v when the following conditions are 

satisfied. 

(1) 

( 2) (p • C ( u) ) ( t , t 1 , . . . , t n) = v ( t ) , 

(3) 
£ £ 

C(~.u) = ~- 1C(u), 
l l+ 

£ = 0,1, 

(4) if u € nC=) , C(u) 6: nC=) 

We denote by s 
c 

the endomorphism of cubic chains of F 

S u (t 1 , ... , t ) = C (u) (1, t 1 , ... , t ) . c n n 

defined by 

From condition (4) S u is clearly degenerate whenever u is degenerate 
c 

d . £ £ £ an, Slnce s c~.u)(t1, ... ,t) = C(~.u)(l,tl, ... ,t) = ~- lC(u)(l,tl, ... ,t) c 1 n 1 n 1+ n 

~~(S u)(t 1 , ... ,t) from the definition, we can see that S commutes with 
1 c n c 

the boundary. 

(3.6) Lemma. For each loop v, there exists at least one construction for v. 

If and are two homotopic loops, and if c1 

constructions for v 1 and v 2 , respectively, then 

equivalent to S 
c2 

and c2 are the 

is homotopically 

We will delay the proof of this lemma until we have introduced certain 

constructions later in the chapter. 

We take a lo<?p v on B of homotopy class a. E 1r 1 (B), a construction 

c for v d , an S , the endomorphism defined by 
c 

c. Now s 
c 

defines an 

endomorphism of the homotopy groups of F; we denote this endomorphism by 
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a. 

as it can only depend on a 
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from (3.6). 

(3 .7) Proposition. The mapping a -+ T 
a 

is a representation of in 

the automorphism group of H(F). 

Proof: We know that rr 1 (B) is equipped with group properties obtained from 
4 

the composition of loops, denoted by o , with e as the constant loop 

We need only show that T = 1 e and T o T = T f3 • a f3 ae 

T = 1: Consider the cube Cu(t,t 1 , ... ,t) = u(t 1 , ..• ,t ). 
e n n 

In view of condition 

(2) of (3.5), Cu is clearly a construction for the constant loop at b £ B, 

since p o Cu ( t, t 1 , ••• , t ) = p o u ( t 1 , ••. , t ) = b. 
n n 

Now S u(t 1 , •.. ,t) = Cu(t,t1 , ..• ,t) = u(t 1 , •.. ,t ), for all u, so c n n n 

that T = 1. 
e 

T o TS = T a a•S 
For v £ a, v' E. f3 we have v v v' S; we take C 

and C' as constructions for v and v' respectively. We now define a 

construction C" in the following manner: 

C"u ( t, t 1 , ... , t ) = 
n 

[c 'u (2t, t 1 , ..• , t ) , 

lees ,u)(2t-l,t 1 ~ ... ,t) c n 

0 < t 
1 

< 2 -

1 
t 1 - < < 2-

Clearly C" is a construction for v" = v • v' by definition. Also 

C"u(l,t 1 , •.. ,t) = C(S ,u)(l,t 1 , .•. ,t) = S (S ,u)(t 1 , ••• ,t) = n c n c c n 

that is S 11 = S o S , 
c c c 

and by passing to homology 

groups T o T = T which proves the proposition. 
a B a&B 1 

Hence we have shown that rr 1 (B) ope~ates on H(F) and H(F) forms a 

local system on B. 

4 
Composition of loops is defined in detail in Chapter 4. 
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we also mention the following result, proven in [22], page 445. 

(3. 8) If (P,p,B) is a fiber bundle with an arcwise connected structure 

group, then rr 1 (B) operates trivially on H(F). 

The Filtration of C(P). 

we now filter the complex A= C(P), the singular cubic complex of P, 

and obtain a spectral sequence which we shall use to obtain a relation 

between the homology of P and that of B and F. We again follow the 

Serre approach [ 221 with the adaptions of [ 3 ] . 

From Chapter 1 we see that to filter A= C(P), we need only filter 

Q(P) r r+l d k h Ar by su.bgroups . . . C T C T c. ... , an ta e t e 

these subgroups Tr in A. We now define Tr,q C Q (P). 
r+q 

as the image of 

(3.9) Definition. Tr,q is defined to be the subgroup of Q(P) generated 

by the (r + q)-dimensional cubes u of P such that the cube p o u, the 

projection of u on B by p, does not depend on the last q coordinates. 

We put Tr = L Tr,q. 
q 

Now by (3.9) we can say that a cube u E Q(P) is of filtration~ r, 

if the cube p o u £ Q(B) depends only on the first r coordinat~and hence, 

Tr C Tr+l. r Clearly this filtration defined by T is regular, for if (2.22) 

were not satisfied (3.9) would be meaningless. 

(3.10). Now if u € Tr, we also have s r A.U E T , for all 
1 

i , and 

(3.10) follows from the fact that p o u depends only on the first r 

coordinates. Consequently, for i > r, p(A7u) 
l 

still depends only on the 
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first r coordinates~ and for i .::_r ~ p ( A.~u) 
1 

can only depend on the 

. t r 1 coordinates. from (1.1). f1rs - ~ 

Now (3.10) implies that the Tr are stable for the boundary operator 

and our Ar~ defined as 

(3.11) = 

is a suitable filtration of C(P). The results of Chapter 2 imply that we 

now have a Serre spectral sequence for P; we shall directly determine the 

terms and the differentials 

Term E
0

: From (2.14) and (2.15) we have 

d0 is obtained from the boundary operator on Ar by passing to the 

quotient. 
0 Hence by (3.11), E is isomorphic to the group generated by 
r 

linear combinations of cubes u such that w(u) .::_ r~ modulo the linear 

combinations of degenerate cubes and cubes such that w(u) < r - 1. Now 

if u is a cube such that w(u) .::_ r, we have 

(3. 12) d 0 u I (-l)i(A.~u 0 in Eo = - A..u) 
i>r 1 1 r 

since >..~u E r-1 whenever i from (3.10). T < r , 
1 

(3.13)Definition. For a cube u € Tr,q , we define two operations B and 

F in the following manner: 

Bu (t 1 , ... , t ) 
r 

= p 0 u (t 1, ... , t ~ y 1 , ... , y ) 
r q 

Fu(t 1 , ... ,t) = u(O , ... ,0, t 1 , ... ,t ). 
q q 

, Y. anything 
1 

(3.14) Lemma. Bu and Fu have the following properties: 

(1) Bu is an r-dimensional cube of B and Fu is an q-dimensional cube 

of F 
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(2) if w(u) < r - 1, Bu is degenerate 
-

(3) if u is degenerate, then either Bu or Fu is degenerate 

(4) BA~U = Bu , F;x.~ = >.~ Fu , if i > r , E = 0,1. 
1 1 1-r 

Proof. (1) is obvious. 

(2): if w(u) ~ r- l, p o u can not depend on all the first 

r-coordinates and, by (3.13), neither can Bu. 

(3): if u does not depend on any of the first r coordinates; 

clearly, neither can p o u , so Bu E. D (=) · , if u does not depend 

on any of the last q coordinates, Fu must be degenerate by (3.13). 

(4) follows immediately from (3.13) and (1.1). 

(3.15) Definition. We put J = C (B) ® C (F) and define a differential 
r r 

(3.16) Definition. We define a homomorphism ¢ 

¢(u) = Bu ® Fu. 

E
0 -+ J by 
r r 

Because of (3.14), (3.16) is compatible with the definition of 

¢ commutes with the differentials. 

and 

The term El: Using the following Proposition, we will be able to calculate 

£1. 

(3.17) Proposition. The homomorphism ¢ E~-+ Jr , defined by (3.16), is 

a chain equivalence. 

Proof. The proof of this proposition requires us to construct a homomorphism 

~ : J -+ E0 
, such that ¢ o ~ = 1 and ~ o ¢ = h, h being a homotopy. r r 

operator. 
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(3 .l8) Lemma. To each pair of cubes (u,v), u a r-dimensional cube of 

B and v a q-dimensional cube of F, we may associate a cube W = K(u,v) 

situated in P, of degree n - r + q, of filtration < r, and such that 

(1) B o K(u,v) = u , F o K (u, v) = v , 

(2) for all i < q, we have 
E E 

K(u,A.v) =A. K(u,v) , 
1 1+r 

E = 0, l_, 

(3) if u or v degenerate, then K(u,v) degenerate. 

Proof. The proof will be by induction on the integer q. 

Part 1 : q = 0 

Since there is only one 0-cube, the cube v is reduced to the point 

x , and our problem is, given a map u Ir + B, which sends all the vertices 

of Ir into bE B, we have to find a map w : Ir + P, which sends all the 

vertices of Ir into X e P, such that p 0 w = u. 

We put X= Ir and A= {w}. [In future, w will denote the point 

(0, ... ,0)]. Now applying (3.3) to the pair (X,A), we have a m~p w' 

such that pow' = u and w'(w) = x. We let sa be the vertices of Ir 

and put f = w' (s ) . We have f £ F ; since F is assumed arcwise connected, 
a a a 

there exist maps g : I + F 
a such that g (0) = f and 

a a 
g (1) = X. 

a 
We 

use these paths to deform the cube w' into a cube w with the same pro-

jection and whose vertices are all at x. 

Now we X Ir I and A 
r . 

{0} {s } X I. Both X and put = X = I X u 
a 

are obviously contractible. We now define two maps, f Ir X I -+ B by 

f(x1, ... ,x ,t) = u (x 1, ... , x ) , r r 
and g A -+ p by {w' (x 1 , ... ,xr) if (x 1, ... ,x:tt) € 

g (x 1 , ... , xr, t) = 
g (t) , if (x 1, ... , x t) e. a r 

g is well defined since 

f = w' (s ) . 
a a 

A 

Ir X 

{s } 
a 

{( 

X 
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Applying (3.3) we have a map h extending g and such that 

f We define w : Ir + P by p 0 h = . 

w(y) = h(y,l), y e Ir . 

Since h extends g, h clearly satisfies conditions (1) and (2). 

Should u be degenerate (v can not be degenerate as it is a zero cube), 

we clearly have that w' is degenerate and hence g : A+ P is degenerate. 

we now collapse A along those coordinates on which g does not depend and 

extend g to X as before. C 1 1 h : I r x I --- P ear y our --r also does not 

depend on those coordinates along which we have collapsed A, for otherwise 

h would contradict the fact that hjA = g. 

Since w(y) = h(y,l), w is also degenerate. 

Part 2 : from q - 1 to q 

We take q > 1 and assume, for q' < q, that we have constructed a 

function K(u,v) satisfying our three conditions. We now construct K when 

v is of dimension q. 

We transform the problem of constructing our cube w = K(u,v) into the 

problem of covering a mapping. 

We put and 
•q 
I denotes 

the boundary of Iq. Again it is easy to see that X and A are contractible. 

We define f X+ B by 

f(x1, ... ,x ,y1, ... ,y) = u(x1, ... ,x), 
r q r 

and g : A + P by 

[:

(YI,···,Y ), if (xl, ... ,x ,yl, ... ,y) E. {w} 
= q r q 

E: 
K(u,A.v)(x 1 , ... ,x ,y1 , ••• ,y 

1
) E: = 0,1, 

1 r q-
r •q 

if (xl,· . . ,x ,yl,·· .,y) E. I X I . 
r q 
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we check that g is well defined 

(1) Consider the point a= (O, ... ,O,yl, ... ,yi-1' E,yi, ... ,yq-1). 

and = v (y1 , ... , y 0 1 , E , y 0 , ••• , y 1 ) = A ~v (y 1 , ... , y 1 ) 1- 1 q- 1 q-g(a) 

g(a) = K(u, A~V) (0, ... ,O,y 1, ... ,y 1 ) = FK(u, A~v) (y 1, ... ,y 1 ). 
1 q- 1 q- The two 

definitions of g at the point a are identical, since 
E E 

AoV = FK(u,A.V) 
1 1 

by the induction hypothesis. 

(2) Consider the point a' = (x1, ... ,x ,y~ ... ,E, ... ,E', ... ,y 2), 
r q-

where E is in the ith position and E' is in the i'th position, i < i'. 

The two definitions of g at this point are 

g (a') 
E 

= K(u,A. v)(x 1, ... ,x ,y 1, ... , E', ... ,y 2 ) 1-r r q-
E' E 

= Ao, 1K(u,Ao v)(x 1, ... ,y 2 ) and 1 - 1-r q-

' E = K(u,Ao, v)(x 1 , ... ,x ,y 1 .. 
1 -r r ' · ' 

E E' 
= AoK(u,Ao, v) (x 1 , ... ,y 2). 

1 1 -r q-

E ~~ ' • • • 'y ) 
q-2 

g (a') 

Now the induction hypothesis gives 

' ' ' A~, 1 K(u,A~ v) = K(u,A~, 1 A~ v) and A~K(u,A~, v) 1 - 1-r 1 -r- 1-r 1 1 -r 

hence the definitions of g are equivalent from (1.2). 

' 
K(u,A~ A~, v); 1-r 1 -r 

Applying (3.3) we have the existence of a map w : X+ P extending g 

and such that p o w = f. Since w extends g, w = K(u,v) clearly satisfies 

conditions (1) and (2). 

Condition 3: Should u o» v be ~egenerate, we have defined g so that 

it will also be degenerate, -· · hence we may collapse A= ({w} x Iq) V (Ir x iq) 

along those coordinates on which g does not depend. We extend g to X as 

before. Clearly w = K(u,v) does not depend on these coordinates, for other

wise it would contradict the fact that w!A = g. Hence K(u,v) is degenerate 

and Lemma (3.18) is proven. 
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Returning to the proof of (3.17), we give the following definition. 

(3.19) Definition. We define ~ : J + E0 by the following formula: 
r r 

'!' (u 0 v) = K(u,v), 

where K(u,v) is taken as an element of E0 
. 

r 

In view of (3.18), condition (3), our definition of ~ is clearly 

compatible with our definition of J . 
r 

Since (3.18), condition (2), gives 

A~ K(u,v) = K(u,A~v), we can say that dr(K(u,v)) = K((-l)ru,dv). In 
1+r 1 

other words, dr o ~(u ~ v) = ~ o dF(u ~ v), which means that '!' 

commutes with the boundary operators. 

(3.20) Lemma. We now have ¢ o '!' = 1. 

Proof: We need to show that ¢ o ~(u ~ v) = u ~ v. 

Now ¢ o ~(u @ v) = ¢(K(u,v)) by (3.19) 

= B(K(u,v)) {i) F(K(u,v)) , by (3.16) 

= u (3) v , by (3.18), condition 1. 

It now remains to show that is a homotopy operator on 

(3.21) Lemma. To each cube u of P , of filtration < r and dimension 

n = r + q, we can associate a cube Su of P , of filtration < r and of 

dimension ti + 1, such that 

(1) B o Su = Bu 

( 2) Su ( 0, ... , 0, t , X 1 , ... , X ) = U ( 0, ... , 0, X 1 , ... , X ) 
q q 

(3) Ao Su = u and A1 Su = K(Bu,Fu) r+l r+l 

(4) for all i > r ; E: = 0,1 ; SA~U 
1 

E: = A .. 
1
su 1+ 

(5) if q > 0 and u is degenerate, then Su is degenerate. 
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Since the proof is similar to that of Lemma (3.18); namely by induction 

on the integer q and the use of (3.3), we do not give this proof. However, 

a proof may be found in [ 221 . 

(3.22) Definition. 

r 

For u E E0 we define an operator k by the formula 
r 

k(u) = (-1) Su. 

k is well defined with respect to since (3.21) implies that,if 

w (u) ..::_ r - 1, then w(Su) ..::_ r - l, and, if 

Calculating d0 ku + kd0 u we have 

= Ln+l (~l)i+r(A~Su 
i=r+l 1 

= 

0 
A.. Su) , 

1 

0 
SA.. u) 

1 

Ln+l (-l)i+r+l(A.~Su - A.~Su) 
. 2 1 1 1=r+ 

and so 

0 0 
I
n+l . 

d ku + -kd U 1 +r 1 = . (-1) (A..Su 1=r+l 1 
0 

A..Su) + 
1 

from (3.2l);condition 4, 

In+l (-l)i+r+l(A.~Su - A.~Su) 
. 2 1 1 1=r+ 

-- (-1) 2r+l (1. 1 Su - 1. 0 

1
su) ( th t - 1) A A o er erms cance . r+l r+ 

=-K(Bu,Fu) + u from (3.21), condition 3, 

= u '¥ o cp (u) from (3.16) and (3.19), 

= u h(u) ; 

hence h is a homot9py operator and proof is complete. 

Now let G be an abelian group and fil ·ter the group A ® G, the 

group of chains in P with coefficients in G, by means of A r ® G. The 

new E~ term is obtained by taking the tensor product of G and the E0 

r 

associated with the filtration of A. Now (3.17) shows that the new 

is homotopically equivalent to Cr(B) (&} C (F) €) G = C (B) 
r 

@ C (F; G). 
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Well known results, see for example [23], give that the homology groups of 

c (B) @ C (F; G) are isomorphic to the groups C (B) ® H (F ;G), since 
r q r 

C (B) is a free group. 
r 

Hence we have proven 

(3. 23) Theorem. There is an isomorphism between the term of the 

spectral sequence attached to the filtration of C(P;G), and the groups 

cr(B) @ Hq(F;G) induced by the homomorphism <P defined by (3.16). 

also just write El ~ C(B,H(F)). 

We 

Term E2 : We are now interested in finding out what the differential d 1 

has been transformed into by the isomorphism in (3.23), and hence, obtain 

£2 = H(El). Since we will now need to use the homomorphisms cp, ~, B, F, 

and K for more than one value of r, we shall now index them with an 

upper right index to avoid any confusion which might arise. 

We take x = b Q h E C (B) 'X' H (F ;G) and consider a cycle c of r ~ q 

the homology class of h; where c is of the form c = L g u ' g E G, a a a a 

ua € C (F). We now take an element y E Cr (B) ® Cq (F ;G) which is a cycle 

of the homology class of x; clearly y may be of the form 

y = b ® 
We apply ~ to y and choose an element z € Ar which gives ~(y) in 

passing to the quotient by r-1 A . , in view of (3.19), 

form z =I g ~(b,u ). Applying d, we have 
a a a 

(3.24) L Ln ) i 1 r o r dz = . 1 (-1 g (A.K (b,u) - A.K (b,u )), 
a 1= a 1 a 1 a 

which may be decomposed into two parts 

z may be of the 
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(3.25) LaLi<T(-1)i ga(:\{Kr (b,ua) - :\~Kr (b,ua)) + LaLi>r(-1)iga(:\{Kr (b,ua) 

o r 
- A . K (b , u ) ) . 

1 a 

However, if i > r, (3.18), condition 2, gives A~Kr(b,u) = Kr(b,A~ u ), 
1 a 1-r a 

£ = 0,1. Since we have assumed c to be a cycle, the expression 

\ ~ g (-l)i(A~u - A~u ) must be a linear combination of degenerate 
LaLi=l a 1 a 1 a 

cubes of F. The same holds true for the second partial sum of (3.25) 

bv (3.18), condition 3. Hence this partial sum is null in C(P) and we 

write 

(3.26) 

Now each term of (3.26) is of filtration ~r- l, by (3.18) and the 

fact that each term is of the form 
E r 

A.K (b,u ),E = 0,1. 
1 a 

We may obtain 

dd = 0 by direct computation and using (1.2); hence dz is a cycle. 

By applying the operator 
r-1 

<P to each term of (3.26), we obtain 

r-1 1 
<P (dz), and subsequently obtain d X. To accomplish this in the light 

of (3.16), we need only consider the cubes and 

Fr-lA E. Kr(b,u ) , . 0 1 1 ~ r, E = , • 
1 a 

By (3.18), condition 1, 

(3. 27) 
E 

A.b, 
1 

and by (3. 13) 

(3. 28) r-1 E r 
F A . K (b , u ) ( x 1 , • . . , X ) 

1 a q 
r K (b,u )(0, ... ,0,E,O, ... ,O,x1,···,x ), 

a q 

where E . . h . th 1 1s 1n t e 1 p ace. 

To interpret (3.28), we introduce, for all b, i ~ r, E = 0,1, the 

construction u ~> C(u) defined by 

(3.29) r 
C ( U) ( t , X 1 , . • • , X ) = K (b , U ) ( 0 , . . . , 0 , t E , 0 , . . . , 0 , X 1 , • • • , X ) , 

q q 

where t . . h . th 1 u . (3 18) h c ( ) 1 1 E 1s 1n t e 1 p ace. s1ng . we see t at u c ear y 
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satisfies (3.5) and is, therefore, a well defined construction for the 

(t) b(o 0 t 0 0) h t l·s 1·n the 1.th ·t· loop v = , ... , , e: , , ••• , , w ere e: pos 1 10n. 

We now denote by s b . c, ,l,e: 
the endorrnorphism of C(P) associated 

to this construction, and we have by (3.5) 

and (3.28). Now we obtain a cycle t e c 1 (B) CD c (F ;G), whose class r- q 

will be equal to that of dlx . in Cr-l (B) @ Hq (F; G) ; t may be written 

in the form 

(3.30) \ \r i 1 o t = L L . l (- 1) g ( (A . b) @ S b . 
1

u - (A . b) a 1= a 1 c, , 1, a 1 

Denoting by Tb . ,l,e: 
the automorphism of H (F ;G) 

q 

(i)s b.Ou] c, ,1, a 

defined by 

S b . , we have from (3.6) that Tb . depends only on the homotopy 
c, ,1,e: ,l,e: 

class of our loop v(t). Now (3.30) yields 

(3.31) 

Should the local system formed by 

becomes 

(3. 32) 

and we have proven 

H (F ;G) 
q 

on 

(3.33) Proposition : The isomorphism induced by ¢ 

C (B) 
r ® H (F;G) 

q 
transform the differential 

operator on C (B). 
r 

We can now determine the values of the group 

in fact, we have proven 

B be trivial (3.31) 

of E1 on r,q 

into the natural boundary 

since E 2 = H (El ) · 
r,q r,q ' 

(3.34) Theorem. There is an isomorphism between the terms E2 of the Serre r,q 

spectral sequence attached to the filtered complex C(P;G) and the groups 

Hr(B;H (F;G)). We just write E2 ~ H(B;H(F)). q 
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(3.34) allows us to start with partial information on the homology 

groups of P, B, and F, or in other words, partial information on E2 and 

and argue towards more complete knowledge. The passage from E2 
r,q 

00 

E is effected by repeatedly taking quotient groups of subgroups. 
r,q 

The transgression. We will now introduce a property of the spectral 

sequence of a fiber space : the concept of transgression. 

to 

This concept may be introduced in the general situation for spectral sequences, 

but we only need it in a particular case. The concept of transgression has 

been dealt with by [ 22], [ 12], [ 23 ] , and elsewhere. 

Although there are several known definitions, we shall only give two 

classical ones, see [15] or [ 22]. 

(3.35) Definition. The transgression T is defined to be the differential 

n 
-+EO n-1· , 

For n > 2, T maps a certain subgroup of 

quotient of H 1 (F;G). 
n-

H (B;G) 
n 

into a certain 

This statement may be understood in the following manner: 

For n ~ 2, there can be no non zero element of asa boundary for 

dP, since dp increases the complimentary degree; hence we have a sequence 

of monomorphisms 

En -+ 
n,O 

-+ E 3 -r E 2 = H (E 1 ) 
n,O n,O n n,O 

and H (E 1 ) = H (B;G) from (3.23). n n,O n 

For n ~ 1, all the elements of Ep 
O,n-1 

' 

are cycles for dp since , 

reduces the filtered degree; hence we have a sequence of epimorphisms 

and 

El -+ E2 -+ ... 
O,n-1 O,n-1 

n 
-+ EO,n-1 

El 
O,n-1 

H (A
0

) from (2.15). Now A0 is formed by elements of 
n 

A = C(P) of null fibration with vertices at x, so that it is contained 



in the fiber F passing by x. Thus, Ao,n% C (F;G). 
n 
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(3.36) Definition. Given, for n ~2, the two homomorphisms 

Hn_ 1 (F;G) 
d H (P/F;G) 

n 
-----':>H (B;G), 

n 

we denote by M the kernel of p* and by M' the image of p*. Now for 

x E M' and y € H (P/F;G) 
n 

such that p*(y) x, we have 

such that, as y varies, d(y) describes a class modulo 

to quotient we have a homomorphism 

T : M' + H 1 (F;G)/d(M). 
n-

called the transgression. 

d·(y) ~ Hn-l (F ;G) 

d(M). By passing 

(3.37). The elements of M' may be called the transgressive elements of 

Hn(B;G); and a cycle of (B;G), of which a homology class is transgressive, 

is called a transgressive cycle. Translating into terms of chains, we see 

that,for a cycle x of B to be transgressive, it is necessary and 

sufficient that there exist a chain y on P, projected on x by P + B, 

and such that dy is a chain of F. 

We now state a result, the proof of which was stated in [15] and 

detailed in [22]. 

(3.38) Proposition. The groups M' and Hn_ 1 (F;G)/d(M) are isomorphic to 

the groups En and 
n,O 

En , respectively; by this isomorphism (3.35) and 
O,n-l 

(3.36) are equivalent. 

Among other things this tells us that 

in H (B;G) by the projection. 
n 

is the image of 

We now consider a diagram due to Serre [22], page 452. 

H (P/F;G) 
n 



(3.39) 

(3. 40) Lemma. 

d 
n 

--------------~~ 

En 
O,n-1 

d ~ 
--------~Hn_ 1 (F;G) 

T 
----~ITn-l (F)® G 

(3.39) is a commutative diagram. 

Clearly the top half commutes because of (3.38). 
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Now the homomorphism from IT (X) 'X' G -+ H (X;G), as used above, is just n ~ n 

the composite io(h x 1), where h is a Hurewicz homomorphism and i is the 

natural embedding of Hn (X) @ G into H (X;G) 
n 

as a direct summand with 

factor group Torn_ 1 (X,G) (from the Universal Coefficient Theorem, see [1~). 

Now commutativity of the bottom half of (3.39) follows from the fact that h 

commutes with boundaries and induced maps, see [2~, Theorem 3, page 389. 

(3.41) Definition. A cycle whose homology class is in the image of the 

Hurewicz homomorphism is called a spherical cycle,and its class a spherical 

homology class. 

(~42) Lemma. Each spherical homology class of B is transgressive. 

Proof. Corollary 9, page 377 of [23], gives us that the homomorphism 

ITn(P/F;G) -+ ITn(B;G) is an isomorphism. Then from (3.39) we see that the 

image of IT (B) @ G 
n 

in H (B;G) 
n 

is contained in 
n 

E o· n, 

definition of transgression, we have the required result. 

We now give the proof o£ (3.6). 

Now using the 

Proof. We let v be a loop on B and put C(u) = K(u,v); clearly the 

conditions 1- 3 of (3.18) imply that the required conditiornl- 4 are 
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satisfied. Hence there is at least one such construction. 

To complete the proof of this lemma, we introduce another lemma. 

(3.43) Lemma. Given h : I 2 + B is a 2 dimensional cube of B, such that 

h(O,t') = h(l,t') = b, for all t' E I if we put v1(t) = h(t,O) and 

v 2 (t) = h(t,l), v 1 and v 2 are homotopic loops of B. We take c1 and 

c2 to be constructions for the loops v1 and v2 , respectively. Now for 

each n-dimensional cube u of F, the~exist a cube of F, say Hu , of 

dimension n + 2 and of filtration < 2, such that 

(1) BHu = h 

0 
(2) A.1Hu(t,yl,···,Y) = u(yl, ... ,y) n n 

(3) A.~Hu = C2u . 

E: E: 
(4) HA..u =A.. 2Hu , 

1 1+ 
E: = 0,1 , 1 < i < n. 

(5) if u £ D(oo) then 

Proof of (3.43). 

The proof is by induction on the integer n. 

Case 1 : n = 0. 

Since there is only one 0-cube, the cube u is reduced to the point x. 

We transform our problem into that of covering a map. 

Here our cube Hu will be a 2-dimensional cube of F. We put X = I 2 

and A = (I x · {O}) U (I x · {1}) U .({0} x I); clearly both X and A are 

contractible. 

We define f X + B by putting f = h, and g A+ P by 



g (t' 0) = Ell u (t) 

g(t,l) = C2u(t) 

, (t,O) e: I X {O} 

(t,l) € I x {1} 

g(O,t) = X (O,t) t {O} X I. 

44. 

Clearly g is well defined and we are able to apply (3.3), thereby 

obtaining a map w : X~ P such that p o w = f and which extends g. We 

put Hu = w. Since w extends g, the definition of g insures that Hu 

satisfies the required conditions. 

Case 2 : from n - 1 to n. 

We assume that n > 1 and that, for all n' < n, we have already 

constructed Hu satisfying the required conditions. We now construct Hu 

when u is of dimension n. The method we shall use is to transform this 

problem into that of covering a map. 

We put X = I 2 x In and A = (I x {O} x In) U (Ix {I} x In) l) 

( {O} xI x In) U (I xI x in). Clearly A and X are contractible. 

We define f : X ~ B by 

f (t, t' , Xl, ••• , X ) = h (t, t') , 
n 

and g : A ~ P by 

/ g(t,O,x1 , •.. ,x ) C1u(t,x 1 , ... ,x ), 
n n 

g(t,l,x1 , ••. ,xn) C2u(t,x 1 , ..• ,x ), 
n 

g ( 0, t, x1 , ... , xn) = u(x 1 , ... ,x) n 

if (t,O,x 1 , ... ,x) n E I X 

if (t,l,x 1 , .•• ,x) € I X 
n 

if (O,t,x 1 , ••. ,x) E. {0} n 

{ 0} 

{1} 

X I 

g(t,t',x1 , ••• ,x. 1 ,e:,x., ... ,x 
1

) = Ht.:=u(t,t',x 1 , ••• ,x 1), if 
1- 1 n- 1 n-

X 

X 

X 

(t,t',x1 , ... ,x. -
1
,£,x., ... ,x 

1
) L! I I I•n c;. X X 

1- 1 n-

It is not difficult to show that g is well defined, so we omit the 

details and just remark that it follows from the definitions, the induction 

hYPothesis, and, in one case, from (1.2). 

In 

In 

In 
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We apply (3.3) and obtain a map w X + P which extends g and is 

such that p o w = f. We put Hu = w. 

Since Hu extends g, the first four conditions follow immediately. If 

u E'. D ( oo) , we have so defined our g that it is also degenerate. Before extend-

ing g from A to X we collapse A along the coordinatffion which g does 

not depend. Hence Hu = w will also have to be degenerate or else the con-

dition wjA = g would not hold. 

Hence (3.43) is proven. 

We return to the proof of (3.6). 

We consider SC = s1 , SC = s2 • obtained from c1 ,c 2 ,in the manner of 
1 2 

(3.5), and define an n + 1 dimensional endomorphism k(u) of chains of F 

by 

Now calculating dku + kdu we have 

dku = I~= 1 (-l)i(Aiku- A~ku) 

= I~= 1 (-l)i(AI+lHu- A~+l Hu) 
' 

,n i 1 o 
kdu = Li=l(-1) (HAiti- HAiU) 

\n )i 1 o 
= L i = 1 (- 1 (A i + 2 Hu - A i + 2 Hu) ' 

by (3. 43), condition 4, 

and dku + kdu = I~= 1 (-l)i(AI+l Hu- A~+l Hu) 

In )i 1 o + . 
1 

( -1 (f.. 
2 

Hu - J.. 
2 

Hu) 1= 1+ 1+ 

A~Hu, since all other terms cancel. 
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Now (3.43), condition 3, implies that 

Since SC U (X 1 , •.. , X ) = C . U ( 1 , X 1 , .•. , X ) 
. n 1 n 
1 

by (3.5):, we have 

Hence s 1 and S2 are homotopically equivalent and we have proven (3.6). 
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CHAPTER 3 APPENDIX 

Applications 

We will now examine some general applications of the spectral sequence 

of a fibration. 

We recall that, for a field G, H. (X;G) 
1 

is a vector space over G 

and that we may define the Euler characteristic x of the space X in the 

following manner 

X(X) =I. (-l)ix. 
1 1 

, 

where X. 
1 

the Betti number (dimension of 

zero for i large enough. 

H. (X;G)), is finite for all 
1 

Relating this to a fibration, as defined by (3.2), we have 

(3a.l) Proposition. When G is a field and 

(1) the local system formed by H. (F ;G) 
1 

on B is trivial for all 

i ~ 0, and 

i 

(2) the Betti numbers b. 
1 

and f. 
1 

(of B and F, respectively) are 

finite for all i and zero for i large enough, we have the Euler 

characteristics of P,B and F satisfying the relation 

X(P) = X(B) • X(F) . 

Proof. By the Universal Coefficient Theorem (see (13] for a definition) and 

the fact that G is a field, 

E2 = H(B;G) Q H(F;G) 

and hence is of finite dimension,since both H(B;G) and H(F;G) are of 

finite dimension. Now by (2.13)' 2 00 , E , ••. ,E are finite dimensional graded 

vector spaces over G; hence, we may consider the Euler characteristic of 

and 
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these terms. 

Condition (2) in the statement of (3a.l) implies that dp will be 

1 f 1 h th f Ep ~ E00 and trivia or p arge enoug ; ere ore, v 

00 p 
X(P) = X(E ) = X(E) 

for sufficiently large p. From the well known properties of tensor products, 

we have 

x(E2 ) = x(H(B;G) @ H(F;G)) x(B) · x(F). 

Using (2.13)' 

Combining the above results, we have 

2 p 00 

X(B) · X(F) = X(E) = ... = X(E) = X(E) X (P). 

Should B be a finite polyhedron, we could relax the conditions of 

(3a.l); in fact, we may drop condition (1) completely, see [22] for the 

details. 

This application of the spectral sequence of a fiber space shows one of 

the relationships which exist between the three spaces P,B , and F. Another 

general relationship has been given by [17] and proven in detail by [22]. 

We merely state the result. 

(3a.2) Proposition. If G is a principal ideal domain, and the local system 

formed by H. (F; G) 
l 

on B is trivial for all i, then, if the homology 

groups (with coefficients in G) of two of the three spaces P, B, and F 

are finitely generated, so is the third. 

If we place certain restrictions on one or more of the three spaces P, 

B, and F, we will obtain stronger results. Consider, for example, the 
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situation in which either F or B is a homology n-sphere. 

(3a.3) Proposition. If G is a principal ideal domain and if B is a simply 

connected r-sphere, r > 1, we have the exact sequence 

. . . + H. 
1

(P;G) 1+ +H. 1 (F;G) +H. (F;G) +H. (P;G}+ 1-r+ 1-r 1 

Proof. We give a proof which is similar to that given in [11], page 432, 

for another result. 

(3a.4) 

(3a.S) 

Since B is a homology r-sphere, we have, from (3.34), that 

0 for p f O,r and, consequently, that 

From (2.18) 1 

Ek = 0 for p f O,r. 
p,q 

0 C D0 . c . . . c. D l . l c D . c. . . . c. D . O = H . ( P ; G) . - , 1 - - r- , 1-r+ - r, 1-r - - 1, 1 

Now (3a.4) implies that, for i > r, all quotients except 

D . /D 1 . 1 and D0 ./0 are zero. r,1-r r- ,1-r+ ,1 

Hence we have 

00 

E ~ 
0 

• · v 

,1 
DO . % ••• ~ D 1 . 1 ,1 r- ,1-r+ 

and 

oo "" I "" E . rv D . D l . l rv r,1-r r,1-r r- ,1-r+ ••• % H. (P;G)/D l . l 1 r- ,1-r+ 

this gives us the exact sequence 

(3a.6) 
00 

0 + E
0 

. + H.(P;G) + 
,1 1 

00 

E . + 0. r,1-r 

Now (3a.4) implies that the only non-zero differential is of the form 

d
r r r 

: E . + EO . 1 r,1 ,1+r-

For k ~ 2, every element of Er 
O,i+r-1 is a cycle for dk by (2.25), since 

(3.9) implies that the filtration of C(P) is regular. For 2 < k. < r, our 



hypothesis implies Ek = 0, 
k,i+r-k so that no non-zero element of 

is a boundary for dk. Hence 

E2 
O,i+r-1 % ... ~ Er 

O,i+r-1 

(2.27) implies that 

Er+l ~ ~ 
00 

O,i+r-1 EO,i+r-1 

50. 

Ek 
O,i+r-1 

since the filtration of C (P) is regular. Therefore, there is an exact 

sequence 

(3a.7) 

r 
Er __ d __ :> Er ---:::> Er+l ---:::> 0 r,1 O,i+r-1 O,i+r-1 

E2 
O,i+r-1 

00 

EO,i+r-1 

Using similar methods, we have , mapped 

momomorphically into , and Er . ~ E2 . ; consequently there is an 
r,1 r,1 

exact sequence 

(3a.8) 

(3a. 9) 

00 

E . r,1 

Er 
O,i+r-1 

Now, combining (3a.7) and (3a.8), we have an exact sequence· 

00 

0 -+ E . -+ E2 . 
r,1 r,1 

E2 
O,i+r-1 

00 

-+ Eo . 1 -+ o . ,1+r-

Using (3a.9) and (3a.6) we have an exact sequence 

(3a.lO) -+H. 1 (P;G) -+ E2 . l-+ E02 . -+H. (P;G) -+ 1+ r,1-r+ ,1 1 

Since B is a homology r-sphere, (3.34) implies that, for total degree 

i given, the non-zero terns of E2 are 
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(3a.ll) 

[

. E
0
2 . ~ H (B; H.(F;G)) ~H. (F;G) 

,1 0 1 1 

E~ . ~ H (B;H. (F;G)) ~H. (F;G) 
~,1-r r 1-r 1-r 

Substituting (3a.ll) in (3a.l0) we obtain the required exact sequence. 

This sequence is called the Wang Exact Sequence. There are several • 

proofs available, see, for example [ 27], [22 ], or [23 ]. 

Placing the restriction of (3a.3) on the space F instead of on the 

space B, we obtain a similar result. 

(3a.l2) Proposition. If G is a principal ideal domain and F is a homology 

s-sphere, s ~ l, such that the local system formed by 

trivial, there is an exact Gysin sequence 

p* 

H (F;G) s 

. . . ~ H . l ( B ; G) ~ H. ( B ; G) ~ H . ( P ; G)-> H . ( B ; G) ~ . . . 1+ 1-S 1 1 

on B is 

We do not give a proof for (3a.l2) as the proof would directly parallel 

that of (3a.3); however, proofs of (3a.l2) may be found in [ 8 ], [22 ], and 

others. 

Another interesting situation arises when both F and B are homology 

spheres; for example, F could be a homology s-sphere,s ~ l, and B could 

be a homology r-sphere, r > 2. In such a case we may use either the W~ng 

or the Gysin Exact sequence to directly calculate the homology groups H. (P) . 
1 

This has been done in [12] using the Wang Exact Sequence. 

The method of proof used in (3a.3) and suggested for (3a.l2) may be 

also used when there are certain other restrictions on the spaces P, B, 

and F. In fact, this approach was employed by Hilton and Wylie [11] to 

prove the following proposition: 
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(3a.l3) Proposition. If G is a principal ideal domain, we assume that 

the local system formed by H.(F;G) 
l 

on B is trivial for all i > 0, 

that H. (B;G) = 0, 
l 

for 0 < i < p, and that H. (F;G) = 0, 
l 

for 0 < i < q. 

Under these conditions we have the exact sequence 

H 
1

(F;G) ~ H 
1

(P;G) ~ H 
1

(B;G) p+q- p+q- p+q-

T T 
~ H 2 (F;G) ~ ... ~ H2 (B;G) ~ H1 (F;G) 

p+q-

, 

where T H (B;G) ~ H 
1

(F;G) 
n n-

0 < n < p + q - l, 

is the transgression. 

Placing more restrictions on our spaces, we have the following 

corollaries: 

(3a.l4) Corollary. 

H. (F; G) ~ H. (P; G) 
l l 

If H. (B;G) = 0 for all i > 0, the homomorphism 
l 

is an isomorphism. 

Proof follows from (3a.l3) by putting p 00 , q = 1. 

(3a.l5) Corollary. If H. (F;G) = 0 _ for all i > 0, the projection 
l 

p : p ~ B defines an isomorphism of H.(P;G) 
l 

onto H. (B;G) 
l 

for all 

Proof is immediate if we put p = l, q = oo in (3a.l3). 

There are a number of other useful applications of the spectral 

i > 0. 

sequence of a fiber space. In the next chapter we shall use this spectral 

sequence to obtain results concerning the Pontryaginproduct in a loop space. 
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CHAPTER 4 

The Pontryagin Product in a Loop Space. 

In 1939, Pontryagin [18] introduced a multiplication in the homology 

groups of certain topological groups; the homology product being induced 

from the group operation in the topological group. Today the term 

"Pontryagin Product" has come to refer to the homology product which may be 

induced from the multiplication operator of an H-space. 

(4.1) Definition. An H-space consists of a pointed space X with a continuous 

multiplication operator m : X x X + X for which the constant map c : X + X 

is a homotopy identity; that 

X (c,l) ~ X x X m 

is, the compositions 

~ X and X (l,c) 

ae homotopic to the identity lX. 

:>X X X m 
-----:>X 

An H-space is called an H-group if the multiplication m is homotopy 

associative and if there exists a homotopy inverse for m. 

It is well known that both topological groups and loop spaces are 

H-groups and that the Pontryagin multiplication may be defined for both. Here 

we shall consider in detail the Pontryagin multiplication for a path space. 

We shall use the concepts of cubical homology in our approach, which is that 

of [ 3 ], although the concept of singular simplical homology may be equally 

well used (see [11 ], page 359) for the definitions of the product. However, 

later considerationslend themselves moreconveniently to the use of the 

cubical concepts. 

Recalling the results of Chapter 1, we consider a map 

( 4. 2) 11 from Q (X) ® Q (Y) into Q (X x Y) 

induced by the association of a p-dimensional cube u in an arcwise connected 



54. 

space X and a q-dimensional cube v in an arcwise connected space Y with 

the (p + q)-dimensional cube u x v in the cartesian product X x Y de-

fined by 

(4. 3) u x v(x1 , ••. ,x ) = (u(x1 , ••• ,x ), v(x 
1

, ... ,x )). p+q p p+ p+q 

The tensor product Q(X) ~ Q(Y) will be equipped with the usual 

differential d = d ® 1 + w ® d, where w(x) = ( -l)qx , for x E: ~(X). 

Clearly d has the property that dd = 0, since the differentials on Q(X) 

and Q(Y) have this property; while (4.3) allows us to write x x y for 

~ex ® y). Now ~d(x (R> y) = ~(dx @ Y. + wx ® dy) 

= ~ (dx ® y) + ~ (wx ® dy) = dx x y + wx x dy = d (x x y) = d~ (x 0J y); so 

that 

(4. 4) d and ~ commute. 

(4.3) implies that, should u or v be degenerate, then u x v is 

also degenerate, so that ~ is compatible with the definition (1.10). Hence 

we have a map, also called ll, from C (X) @ C (Y) into C (X x Y), defined 

by 

( 4. 5) 1J{[x] @ [y]) = [lJ(X @ y)]. 

Now (4.4) and (4.5) imply that this ll also commutes with the 

differentials. In addition, Bott and Samelson [3] have shown that 

~ : C(X) ® C(Y) -+ C(X x Y) is a chain equivalence. 

By passing to homology, ll induces a homomorphism ll* : H(X) Q9H(Y)-+ H(X x Y); 

should the coefficients be in a principal ideal domain, the Kunneth formula 

(see [ 13], for a definition) can be applied and ll* imbeds H(X) 0 H(Y) 

into H(X x Y) as a direct summand. 



The results of Chapter 1 allow us to choose a point X 
0 
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in an arcwise 

and simply connected space X and to say that the vertices of all singular 

cubes are at this point. 

(4.6) Definition. The space P of paths in X may be defined in the follow-

ing manner; 

p = {f I -+ XI f(l) = X } • 
0 

(4.7) Definition. The space Q of loops in X may be defined in the follow-

ing manner: 

Q = { f : I -+ XI f(O) = - f(l) = x } . 
0 

Clearly both spaces may be equipped with the compact open topology (for a 

definition see [14 ]); hence, in future, we will assume both P and Q to 

have this topology. 

(4.8) Definition. We define a projection p P -+ X by the formula 

p(f) = f(O). 

(4. 9) Definition. We define a multiplication m P x Q -+ P in the following 

manner: For x € P , y € Q , the composition x o y of paths x and y 

may be defined by 

X 0 y(t) fx(2t) 0 < t < 
1 

= 
' 2 

y(2t 1) 
1 t 1 

' 
-< < 
2- -

We put m(x,y) = X 0 y. 

Since, for 
1 

t = z 1 1 
x(2(2)) = x(l) = x

0 
= y(O) = y(2("2) -1), we have 

that m is well defined. Because x o y(O) = x(O), we have 



(4.10) p o m(x,y) = p(x o y) = p(x) 

(4.11) Definition. We define a constant loop e : I~ X by 

e(t) = X 
0 

, t ~ I 
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Now the results of Chapter 1 allow us to say that the vertices of all 

cubes in P and n may be at e. 

Our multiplication m : P x n ~ n clearly induces a map 

(4.12) 
# 

m : Q(P x n) ~ Q(P)~ 

which from (4.9), is obviously compatible with the definition (1.10) and 

commutes with the differentials. 

(4.13) Definition. We define a chain map 

z:; : Q(P) @ Q(n) ~ Q(P) 

to be the composite 

Q(P) ® Q(n) ----=~---> Q(P x n) 
# 

m 
-----,> Q(P), 

where and 
# 

m are defined by (4.2) and (4.12), respectively. 

(4.14) Lemma. z:; commutes with the differentials. 

Proof. Proof is immediate from (4.4) and (4.12) 

(4.14) implies that we also have a homomorphism z:;* = m* o ~* of the 

homology groups. 

(4.15) Definition. We define u * v = z;(u ® v) and z * w = z;*(z @ w) 

to be the Pontryagin Multiplication. 

(4.16) Remark. (4.9) implies that, if we restrict m to n x n , we have a 

map from n x n into n . We use no special notation for this special case. 



(4.17) Lemma. The constant loop e has the property e • e = e. 

The proof is obvious from (4.11). 

( 4. 18) 

defined 

and 

Proof. 

Proposition. 

i r 

by i (x) r 

i.Q.. (x) 

Case 1 : i 
r 

= 

= 

The compositions 

p -+ p X n -+ P, 

m (x,e) = X . e , 

m(e,x) e . X 

i.Q., n -+ n x n -+ n , 

are homotopic to the identity. 
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We take f E P , and define a family of paths f 8 
0 < 8 < 1, by the 

formula 
/' f( 2t ) 

fe (t) = t xo e + 1 

8 + 1 0 < t < 
2 

8 + 1 1 --,2:--- < t < 

This formula gives us that f 8 (1) = x
0 

, so that f 6, is a path. Since 

f
0 

= ir and f1 = lp , the fact that (f ,e) rv> f 8 is clearly a continuous 

mapping of P x I -+ P implies that 

stationary e. 

Case 2 i.Q... 

1 is homotopic to 
r 

We take f E n, and define a family of loops f 8 
0 < 8 < 1, by the 

formula 

[:: 2t - 8 
2 - e) 

o < t < e/2 

, 8/2 .::._ t < 1 . 

Now this fromula gives = x , so that 
0 

is a loop. Since 

f = 1 and o n f 1 = i.Q.. , the fact that (f' 8) 'V> f 
8 

is clearly a continuous 

mapping of n x I -+ n implies that i.Q.. is homotopic to ln 

stationary e. 

We also note that (4.16) implies that 

to the identity on n. 

i restricted to n 
r 

with 

is homotopic 
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(4.19) Proposition. The multiplication m is homotopy associative. 

Proof. We consider two maps and p 

defined by and 

g 1 (q 1 ,q2 ,q3 ) = q 1 • (q2 • q 3 ) and define a homotopy fe , 0 < e < 1, by 

the formula 

4t e + 1 
ql( e + 1 

) , 0 < t < 
4 

qz (4t - e 1) 
e + 1 e 

fe (ql ,qz ,q3) (t) 
- < t < 

= 4 

(4t - e - 2) e + 2 
q3 2 - e 4 

< t < 1 

Now this formula implies that fe has the followi.ng properties: 

(1) f = g 
0 0 

, 

(3) fe(e,e,e) = e 

.. 

for all e 

+ 2 
4 

These properties together with the usual continuity relation imply that 

g
0 

~ gl ; hence m is a homotopy associative. 

(4.16) implies that m is still homotopy associative in the restrictive 

case. 

(4.20) Proposition. The space of loops has homotopy inverses. 

Proof. We define a map y : n + n by the formula Y(f)(t) = f(l- t) and 

claim that y(f) is a homotopy inverse for f, f € n. 

With f€ n, we define a family of loops fe, 0 < e < l, by 

X .. 0 < t < e/2 
0 

f(2t e) e/2 < t 1 - <-
-2 

fe (t) = 
f(2 - 2t e) 

1 
(1 e/2) - , - < t < -

2-

X , (1 - e/2) < t < 1 
0 
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This formula gives f
8 

(0) = f
8 

(1) = x
0 

; consequently f
8 

is a loop. Also 

f = e and f = f • y(f), so that the obvious continuity relation implies 
1 0 

that the space ¢£, leops has homotopy inverses. 

It now follows immediately from (4.17) - (4.20) that n is an H-group. 

The H-group structure induces a group structure in H(n), so we may speak 

of the Pontryagin algebra, where the zero class, defined and denoted by e, 

is the unit. 

We state a well known proposition. 

(4.21) Proposition. The triple (P,p,X) is a fiber space with fiber n . 

A proof of this proposition may be found in [22] and others. 

Now (4.21) and (3.9) tell us that Q(P); and subsequently, by factoring 

out the degenerate cubes, C(P) may be filtered, giving rise to a spectral 

sequence. We shall use the terms of the spectral sequence determined in 

Chapter 3. 

( 4 . 2 2) Lemma . For u 41:: ~ (P) and v 4:: Q (n), 
q 

the filtration of the 

Pontryagin product u * v is equal to the filtration of u. 

Proof. From (4.10) p(x • y) = p(x), so that 

p(u(x 1 , ••• ,x) • v(x 
1

, ... ,x )) = p(u(x 1 , ... ,x )). p p+ p+q p 

The result follows from (3.9). 

(4.23) Definition. We put A = C(P) ® C(n) and define a differential d 

on A by 

d = d p 

where w(x) = (-l)Px 

® 1 

, 

+ 

for 

w €) dn , 

X£ C(P). 
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Since A p (P) is a direct summand of C (P) , we may fi 1 ter C (P) 0 C (Q) 

by the subgroups Ap (P) ® C (Q) ; so that 11. may be filtered by the sub

groups AP (A) = AP (P) ® C (Q). The definition of z; and (4. 9) imply 

that if we restrict z; to Ap (P) @ C (Q), we have a map 

( 4. 24) 

Now (4.24) induces maps 

(4.25) 

Together, the 
r z; form a map z; of the spectral sequence of II. into that 

of P. Since the 
r z; are induced from the original z;, they obviously 

commute with the differentials dr. 

(4.26) Lemma. There is an isomorphism 

Proof. 

and 

0 
a 

\ Ap(ll.) 
By (2.15) , E

0
(11.) = L 

p AP-1 (A) 

= Ap(P) (i) C(Q) 

~ AP-l (P) ~ C (Q) 

= I 
p 

Ap(P) 

AP-1 (P) 
® c (Q). 

Since AP-l(P) is a direct summand of AP(P), we have 

a 
0 

E
0 

(P) ® C (Q) ~ E
0 

(A) with respect to the differentials d
0 ® 1 + w ® dQ, 

where w(x) = (-l)p x, x ~ E0 (P), and d 0
. 

Now using the notations of Chapter 2, and letting Z be the group of 

cycles and B be the group of boundaries of C(Q), we see that the identity 

map of C (P) @ C (Q) -+ II. induces maps 



(4. 27) 
r 

a 

(4.28) Pr-oposition. The maps 
r 

a induce a map 

such that 
r 

a 

r 
a 

takes the differential 
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r > 1. 

r > 1, 

to the differential 

Proof. We want to show that 
r 

a is compatible with the definition of 

To do this we must show three thi_ngs: 

(1) ar(Zr(P) 
p ® B) c zr-1 C ) 

p-1 /1. 
+ Br-1 C ) 

p A ' 

(2) a r (Zr-1 (P) ® Z) c. r-1 
zp-1 (A), p-1 

(3) r(Br-l(P) 
a p ® Z) c. Br-1 C ) p /1. • 

Clearly all three follow from (2.7), (2.8), and the fact that 

induced from the identity map C(P) ® C(r2) -+ /1. • 

Now by passing to quotients we have an induced map 

r r r 
a : E (P) {8) H(r2) -+ E (A). 

Since the original 
r 

a is induced from the identity map of 

c 4. 29) Definition. 

0 
7;

0 
0 'IT = a 

r sr 0 'IT a 

and we write z * v 

Since and 

We put 

0 
E

0 
(P) ® c (r2) E

0 
(P) -+ 

r Er(P) @ H (r2) Er(P) 1, -+ r > , 
r 

® v) 0. 'IT (z , r > 

r 
a commute with the differentials, we have 

with the differentials, or 

r 
'IT 

r 
a 

( 4. 30) r > 1 , r z ~ E (P), v G. H (r2) . 

is 

commuting 
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Since the * operation is derived from the original Q9 operation in 

c (P) (3) C (0) by passage to quotients, we have 

c 4. 31) [z * v] = [z] * v 

[z * v] = [z] * [v] 

z cycle of Er(P), r ~ 1, v t H(~), 

z cycle of E0 (P), v € Z(~). 

By Proposition (4.19) the multiplication m is homotopy associative. 

(4.32) Proposition. The * operation in H(~) is associative. 

Proof. We use the same notations and symbols as used in the proof of (4.19). 

For ann-cube w = w(x 1, ... ,x) in P x ~ x ~ , we define an (n + 1)
n 

cube 

c 4. 33) 

where 

(4.19). 

kw by 

n 
kw(x1, ... ,x 

1
) = (-1) f 

1
(w(x 1 , ... ,x )), n+ · n+ n 

f n+l is the connecting homotopy between g
0 

and gl defined in 

Clearly (4.33) implies that if w is degenerate then so is kw , and 

that k raises dimension by 1. 

We have 

and 

so that 

dkw 

kdw = (-l)n-lf 
n 

dkw + kdw 

o n 
A.(-1) f 

1
w) 

1 n+ 

0 
A. f 

1
w) 

1 n+ 

0 
A. w) 

l 

0 
A. f 

1
w) 

1 n+ 
0 

f A. w) 
n 1 



If we apply the definitions of f
6 

and >. ~ 
l 

the alternating sums except 

(-l)n+l(-l)n(f 1w- f
0

w) 

disappear. We write 

dk + kd = 
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, E = 0,1, all the terms of 

since f
8 

is the connecting homotopy between g
0 

and g1 (see the proof 

of (4.19). 

Hence we have a chain homotopy between g
0 

and g 1 , and the induced 

maps 

H(P) @ H(Q) @ H(Q) + H(P) 

are identical. 

From (4.16), Q x Q x Q is carried into Q by f
8 

operation in H(Q) is associative. 

hence the * 

It follows immediately from (4.18) that the zero homology class, defined 

and denoted by e is the unit for H(Q). 

We now consider the chain equivalence 

due to Serre [ 2~, which we defined by (3.19). We also recall that ~ commutes 

with the differentials when we take C(X) with d = 0. 
X 

(4.34) Definition. We define two maps K .1 and K 2 

by 

where 

Since 

K 1 , K 2 : C (X) ® C (Q) <3) C (Q) + E
0 

(P) . 

and 

is defined from (4.13) and 

0 
K 2 = 1T o c~ ® 1) , 

0 
1T by (4.29). 

and 0 
1T are chain maps, so are both and 
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We understand definition e4.34) in the following manner: For a 

given p-dimensional cube u of X and q~q' dimensional cubes v~w 

of Q ~ we may form cubes Keu~v * w) and Keu~v) * w. Now · e3.18) and e4.15) 
p 

imply that - if u,.v~ or w belongs toT or is degenerate, then so are both 

Keu,v * w) arrd K~Y,v) * w. Hence we have the induced maps 

e 4 . 35) Lemma. 

Proof. From e3.16) 

<PeKeu,v) * w) = seKeu~v) * w) @ FeKeu,v) * w) ~ 

while from e3.18)_, property 1, 

seKeu,v) * w) ~ FeK(u,v) * w) = u ® v * w. 

If we apply ~ , we have from e3.19) 

~ eu ® v * w) = K eu, v * w) . 

Hence K1= ~ 0 <j} 0 K2 

e4.36) Lemma. For x £ C(X), u,v ~zest), we have 

~ (x ~ u) * v rv ~ex (3) eu * v)) in E
0 eP). 

Proof. We want to show that in E0 eP)~ 

~ex @u) * v 'V ~ex ® eu * v))~ 

i.e. 0 ® u) ® v) ® 7f e~ex 'V ~ex eu * v)), 

0 
o e~ (j) l)ex ® ® v) rv ~e1 (g) t;:) ex ®u ® · v)~ 7f u 

i.e. K 1 (x ® u @ v) rv K 2 (x @ u €) v). 

Now if there were a chain homotopy between Kl and K2 , we would have 

our result. 

We consider the operator k defined by e3.22) and put s = kK 2 . Now 
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+ sd + 

, since n° and ~ commute with the differentials. 

0 
kd )K2 

= (1 , from the proof of (3.17), see page 36 

Kl from lemma (4.35). 

Hence a chain homotopy exists between K1 and K2 so that, if x is a 

chain of X, and u,v are cycles of n , then 

and K 1 (x @ u @ v) are homolog9us. 

Using (4.36) and the fact that * commutes with passage to homology, we 

have, going to 

( 4. 37) (x ® u) * v = x ® (u * v) in E1 (P) , 

where x € C (X) u,vE H(n). 

(4.38) Proposition. In Er(P), we have 

z * (v * w) (z * v) * w 

whenever r z £ E (P) , r > l, v, w 6 H(n). 

Proof. Now (3.23) implies that El(P) is identified with C(X) ~ H(n) 

by the induced map ~*, so that 

(x ® u) * v for x £ cccx), u,v e H(n). 

From (3.33) we see that the differential dl of El is transformed into 

the natural boundary operator d @ 1; 
X 

while from (3.34) we see that 

is the homology group of C (X) (3) H(O) by d @ 1. 
X 

Taking x E Z(X) , u,v € H(n) and using the natural embedding of 

H(X) ® H(n) into E2 = H(C (X) ® H(n)), we have 



[x] €) (u * v) 

= [ (x @ u) * v1 

[x ® (u * v)] 

~ from (4.37) 
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= [x ® u] * v = ( [x] ® u) * v since both * and ® commute with 

passage to homology. 

Now we see from (4.32) that the * operator is associative on H(Q); 

consequently (4.37) gives 

( 4. 39) (x 0 u) * (v * w) = ( (x ® u) * v) * w in El(P), 

whenever X£ C(X) , u,v,w e H(Q). In view of (3.23), expressions of the 

form x ® u span El ; hence, passing to homology we have, for 

r 
z € E (P) , r > ' 1, · v, w €. H (Q) , 

z * (v * w) = (z * v) * w. 

(4.40) Proposition. In Er(P) we have 

z * e = z , for r z E:. E (P) , e unit of H(n). 

Proof. We take e as the unit of H(~). 

Replacing v by e in (4.37), 

(x {g) u) * e = x ® (u * e) = x ® u in El(P), 

with X e c (X), u, e E. H (Q). Again X ® u span El and passing to 

homology we have 

z * e = z for z ~ Er(P), e unit of H(n). 

It is clear from (4.3) that the map ~ of (4.2) may be written in 

detail as 

~ : Qp (X) @ Qq (Y) -+ ~+q (X X Y) . 

# 
It is also clear from (4.9) that the map m of (4.12) may be written in 

detail as 

m# Q (P x Q)-+ Q (P). 
p+q p+q 
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Now combining both, we see that our s of (4.13) may be written as 

s : 0 (P) @ Q (rl) -+ 0 (P) , 
1> q 'J>+q 

and consequently our induc~d :homomorp_hism s·:x: · · may be written as 

(4.41) s * : H (P) @ H (Sl) -+ H (P) • p q p+q 

We recall that our chain equivalence ~ may be written in detail as 

~ : C (X) @ C (st) -+ E
0 

(P) , 
p q p,q 

so that K 1 (= ~ o (1 x s)), and consequently K2 , may be written as 

c 4. 42) cP (X) ® c (st) ® c (st) q n 

If we again apply ~ we have a map 

( 4. 43) E
0 

(P) @ C (Q) 
p,q n 

-+ E
0 

(P) p,q+n . 

-+ E
0 

(P) p,q+n . 

Now by using the methods described earlier in this chapter, we have 

from (4.42), by passing to homology, the maps 

( 4. 44) , r > 1. 

Together, the results of this chapter have proven the following theorem 

of Bott and Samelson [ 3]. 

(4.45) Theorem. For a !-connected space X, the map m P x st -+ P induces 

the following homomorphisms 

(1) H (Sl) 
p 

(g) H (Q) -+ H (Q). 
q p+q 

(2) E
0 

(P) ® c (Q) -+ E
0 

(P) p,q n p ,q+n , 

(3) Er (P) ® H (n) -+ Er (P) r ..::._ 1, p,q n p,q+n 

where the pairing is written * and has the following properties: 



(1) The pairing is bilinear, and associative, that is, for 

u,v,w€ H(~); the relations 
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r 
x€E,r>l, 

(x * u) * v = x * (u * v) and (u * v) * w = u * (v * w) 

hold; e satisfies 

e * v = v * e = v , for v E. H(~) , 

and 

X * e = X , for r 
x E: E (P) , r > 1. 

(2) * commutes with the differentials 

(3) * commutes with the passage to homology. 

(4) In E1 and E2 we have, for x E C(X), respectively 

H(X) , u,v e H(n). 

(x ® u) * v = x ® (u * v) , 

where E1 is identified with C(X) ~ H(~), and 

where H(X) (g) H(Q) is imbedded into E2 = H(X,H(~)). 

We take the coefficients for the groups C(Q), H(~), C(X), H(X) and Er 

from the group of integers. 

We again note here that H(~), with * as multiplication, is called 

the Pontryagin algebra H*(~) of Q . 

(4.46) Remark. Batt and Samelson [ 3] have also generalized this theorem 

and T. Kudo [16] has given a similar theorem in a general form. 
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CHAPTER 5 

Theorem A 

We are now ready to investigate the first of our two major theorems 

and its corollaries. We follow the methods of [ 3 ]. 

As in the previous chapter, P is the space of paths in a 1- connected 

space X, ending at x , considered as a fiber space over X, 
0 

with fiber n , 

the space of loops in X, at X • 
0 

(5.1) Definition. An element x of H (X) , p > 0, 
p is transgressive if 

(5.2) Claim. This definition implies (3.35) and (3.36). 

Proof of Claim. Since (3.35) and (3.36) are equivalent by (3.38), it is 

sufficient to show that (5.1) implies (3.35). To do this we must show that 

a certain subgroup of H (X) 
p 

is mapped into a factor group of H 1 (n) 
p-

the differential dP. 

Taking e as the generator of H of any space, given by a point, 
0 

may identify H(X) with H(X) ® e and H(n) with e ® H(n) in E2. 

From (4.45) these identifications are compatible with the * operation. 

Now d 2x represents d2(x ® e) or d 2 (e ® x). 

by 

we 

Since d2 is trivial, any x E E2 is a cycle of E2 and determines 

an element of E3, namely [x], its homology class. In E 3 , we again denote 

[x] by x and repeat the process, so that eventually, any element x € Er 

is a cycle for r 
E , r = 2, . .. ,p - 1. Hence, the element 

certain factor group of H 1 (n), since the differential 
p-

Ep ( C E2 'V H (X) ~ e) p,o p,o 'V p ~ into Ep 
o,p-1· 

We again state Theorem A. 

dpx belongs to a 

maps 
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(5.3) Theorem A. We take H(X), with coefficients in the principal ideal 

domain R, as being R-free and all elements of H(X) as bei.ng transgress-

ive (in P). 

Now the Pontryagin algebra H*(Q) is the free associative algebra, 

with unit e, generated by a subgroup of H(Q) which is the isomorphic 

image of the positive dimensional elements of H(X) under a map reduc~ng 

dimension by one. 

Proof of Theorem A. The proof follows that of [ 3 ]. 

Since H(X) is R-free, theorem (3.34) gives 

E2(P) = H(X;H(Q)) = H(X) @ H(Q). 

(5.4) Definition. If, for any element z of all the 

differentials 2 p-1 d z, ... ,d z are trivial, is said to be totally 

transgressive. 

(5.5) Claim. We claim E2 (P) to be totally transgressive. 

Proof of Claim: 

From (4.45), 

d 2 (x ® v) = d 2 ((x 6D e)* v) = d 2 (x * v) = (d 2x) * v 

and 

[x * v] (:X] * V = X * V in E3 (P) , 

so that, for z = (x ® v) E E2 (P) , 

d 2z = d 2 (x ® v) = (d 2x) * v. 

Since H(X) is transgressive, and, subsequently, 
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Similarly, from (4.45), for r > 2, 

dr (x ~ v) = dr (x) * v and [x * v] = x * v in 

so that, for 2 2 r 2 p - 1 

r r 
d z = (d x) * v = 0 

from the transgressivity of H(X) and the claim is proven. 

Our argument for proving (5.3) follows from the fact that, since P is 

00 

contractibles, H(P) and E (P) can contain no non trivial elements and 

that, therefore, the elements of E2 (P) must be killed under the differentials 

dr. 

(5.6) Definition. For a space Y, we denote by H (Y) 
+ 

the elements of H(Y) 

of positive dimension. 

We choose a base 

(5. 7) B = {x.} , i ~ J, an index set, of H (X), consisting of 
1 + 

homogeneous-dimensional elements. 

(5.8) Definition. For each x. ~ B, we define an element x.' of H (st) 
1 1 + 

by 

with p = dimension of X. • 
1 

This definition is possible because, for 

since H(X) is transgressive. 

x. E: H (X) 
1 p 

(5.9) Definition. We define an element x'. . . of H(S"G) by 
1112 ... 1k 

X r • • • x'. * x'. * ... * x'. 
1112 ... 1k 11 12 1k 

where k> l, i. € J, j = l, ... ,k. 
J 

The length of is defined to 

SWell known fact which may be found in [23 ], and others. 
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be k and the height of X' . . 
11 •.• 1k 

is defined to be the dimension of 

We denote the collection of elements x'. . by M. 
11 .•• 1k 

Should the elements of M be independent and, together with e, form 

a basis for H(n) our theorem would obviously be proven; the required 

subgroups of H(n) being generated by the X' . • 
1 

( 5 . 1 0) Lemma. The elements of M are linearly independent. 

Proof of Lemma. We shall assume that there are linear relations between the 

elements of M and we shall see that this assumption gives rise to a 

contradiction. 

We examine those linear relations in which the maximum length occuri_ng 

is as small as possible, say , ~ . Take such a relation 

r = Ic z 0, a a 

where z ~.: M and has length 2._ ~. 
a 

Since r is a linear relation, we may write it as a sum r = r 1 + r 2 , 

where r 1 contains all the elements of maximum height p. Since z (£ M, 
a 

we see from (5.9) that z may be written as x' * z , where x' is 
a a a a 

defined by (5.8) and (5.9) and where z belongs to M or is equal to e. 
a 

Now x E H(X) and z E. M C H(n), so that we may form elements of the 
a a 

form 

We put Y = I 

y = X 
a a 

c y 
a a 

= y 1 + y 2 ·, 

r 2 respectively. 

where Y 1 _. and correspond to a:md 
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We now consider the case in Ep+l(P). Since dq (x ~ z ) = (dqx ) * z 
a ~ a a a 

from (4.45) and (dqx ) * z = x' * z from (5.8), the elements X !':;\ Z 
a~ a a a a a 

are mapped onto the x' * z a a in by the appropriate differentials 

By (5.9) the height of X 
1 * Z a a would be the dimension of x' 

a 
so 

that, considering the facts that r1 contains all the elements of maximum 

height p and that dq reduces dimension by one, we have q ~ p. Total 

transgressivity implies that the dq, q ~ p, are all trivial; hence 

is 0 in EP+l. 

r1 + r2 = r = 0 . implies r1 is also 0 in EP+l. Since 

dq(x rv"\z) = (dqx) * z from (4.45), (dqx) * z = x' * z from (5.8), 
a ~ a a a a a a a 

and r1 contains the elements of maximum height 

are mapped onto r1 by the differential dP+l. 

p, the elements of Y1 

Hence 

Because of total transgressivity we have dq 0, q ~ p, so Y1 is not 

00 

image under any dq, q < p; therefore, Y1 = 0, or else E (P) would contain 

a non trivial element. 

From (5.9), we have that, since the z = x' * z are of maximum 
a a a 

length ~ i, the z , occuring in .Y1 , are of length < i. , Then, because of 
a 

the _minimality assumption .on i, the z 
a 

form a free subgroup of H(~). In 

addition to this free subgroup of H(~), we have assumed H(X) free (in the 

statement of Theorem A); therefore, the elements x @ z , occuring in Y1 , 
a a 

are independent in E2 , and, because of total transgressivity, the elements 

X 
a 

is 

z 
a 

0 

are also independent in However, we have already shown that 

in 
P+l 

E ; hence we have a contradiction and have proven that the 

elements of M are linearly independent. 
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(5.11) Lemma. The elements of M, together with e, form a basis for H(~). 

Proof of the Lemma. We again prove by contradiction. 

Let us assume that there are elements in H (n) which are not linear 
+ 

combinations of elements of M. Let n be the smallest dimension in which 

this happens. 

All elements of 

q < n, with dimension 

E2 
n-q,q 

are of the form 

Ix a 

t = q < n 
a 

t , 
a 

the t 
ex 

being generated by M and 

We consider the action of the differentials 2 n+l 
d , . . . ,d , where 

2 < q + 1 < n + 1. 

dq+l : Eq+l -+ 
n+l,O 

Eq+l 
n-q,q 

e. 

Recalling that, whenever dimension x = p, dP(x (3> t) = ((dPx) * t) 

modulo the images of 2 p+l d , ... , d = (x' * t) modulo the images of 

2 p-1 d , ... ,d , then En+2 
O,n 

is a quotient group of H (n) n by a subgroup which 

is contained in a subgroup generated by M, 

(2.25)6. However, from (2.27)6, 

En+2 
O,n = En+3 

O,n 
= = 

00 

E 
O,n 

since from 

and, since p is contractible, the~can be no non trivial element in 

hence En+ 2
0 

= 0. 
n, 

00 

E (P) 

We have a contradiction to the assumption that there are elements in 

H (n) which are not linear combinations of elements of M; hence the Lemma 
+ 

is proven. 

6we recall from Chapter 3 that the filtration on C(P) is regular. 
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We return to the proof of (5.3). 

From lemmas (5.10) and (5.11), the element e 

form a basis for H(Q). Clearly the algebraic structure follows from the 

relation 

X' . . = X' . . . . 
1 1" 0 0 1k 1 1 ••• 1kJ 1 ••• J 9., 

and clearly the required map, reducing dimension by one, is the differential 

dp. 

The following well known result is a corollary to this theorem. 

(5.12) Corollary. The Pontr)'agin algebra of the space Q of loops in the 

space Sn 1 , n > , is the free associative algebra on one generator of 

dimension n - 1. 

Proof. From lemma (3.42) all spherical homology cycles are transgressive, so 

that we may apply Theorem A and the result follows. 

Generalizing corollary (5.12), we have 

(5.13) Corollary. The Pontryagin algebra of the space Q of loops in the one 

point union of k spheres of dimension n. > 1, i 
1 

associative algebra on -k .... generator.; of dimension 

Proof. Identical to that of (5.12). 

l, ... ,k, 

n.- 1. 
1 

is the free 

This corollary due to [3 ], has been very important in homotopy theory, 

being one of the results required by Hilton [9] in his determining of the 

homotopy groups of the one point union of k spheres of dimension 

i=l, ... ,k. 

n. > 1, 
1 
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We give the usual definition of the suspension of a space7. 

(5.14) Definition. The suspension of a space X, denoted by SX, is defined 

to be the quotient space of X x I in which X x 0 is identified with some 

point x , and X x 1 
0 

is identified with some point 

(5.15) Proposition. If SX is the suspension of a 0-connected space X, then, 

in the spectral sequence of P, the space of paths over SX, all elements of 

H (SX) are transgressive. 
+ 

Proof. Clearly from (5.14), SX is !-connected. 

We put 

{(x,t) X = 
0 

xl = { (x, t) 

and identify each X E. X 

We define a map f 

lx E 
1 

X 0 < t < -} 
- 2 

lx ~ X 
1 

t 1} - < < 2-

with (x, 
1 
2) '- sx. 

. (X ,X) + (SX,X1 ) . 
0 

1 
0 < t < 2 

x ex. 

{x } u 
0 

u {xl} 

by 

Clearly f is homotopic to the inclusion map 

We may also consider f as a map from (X ,X) to 
0 

csx,x,). 

Since X - X = SX - X1 from the de£initions,the inclusion 
0 

7see [ 23 ], page 41. 

8For a definition of excision see [ 23 ], page 187. 
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From [23], page 188, Theorem 1, an excision map induces an isomorphism in 

homology, so that 

H(X ,X) ~ H(SX,Xl)· 
0 

Because we have defined X1 in such a way as to be contractible, we have 

Thus 

is an isomorphism. 

Recalling that we have an inclusion X C SX , we can find a map 
0 

g : X + P, such that p o g = f, since X is defined in such a way as to 
0 0 

be contractible. Now, if we let ~ be the fiber of P over x 1 , g maps 

the subset X C X into ~ and so defines a pair map 
0 

Clearly 

g : (X ,X)+ (P,~). 
0 

where p* maps H(P,~) onto H(SX,x 1 ). 

Now the result follows from (3.36), the definition of transgression. 

(5.16) Corollary. The Pontryagin algebra of the space ~ of loops in SX, 

the suspension of a 0-connected space X, is a free associative algebra 

whose generators can be determined from a knowledge of H (SX). 
+ 

Proof. Immediate, since (5.15) implies that we may apply Theorem A. 
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CHAPTER 6 

Theorem B 

Lastly we study a relationship between a product in homotopy and the 

Pontryagin product in homology. This homotopy product is the Whitehead 

product, which was introduced by J.H.C. Whitehead [30], in 1941, and which 

has been redefined and generalized many times since. 

We take PX to be the space of paths in a !-connected space X, 

ending at x
0

, considered as a fiber space over X, with fiber nX' 

the space of loops in X, at x . 
0 

(6.1) Definition. For a given map f 
n •n 

(I ,I)+ (X,x ), we define a map 
0 

T.f 
1 

I n-1 
+ nx by 

T.f(x 1 , ..• ,x 1 )(t) 
1 n-

f(x 1 , ••• ,x. 
1
,t,x., ... ,x 

1
), 

1- 1 n-

where i, n £ ~ , 1 < i < n. 

It is obvious from (6.1) that the operator T. 
1 

induces an isomorphism 

(6.2) T. : 'IT ex, X ) = 'IT (X) + 'IT 1 cnx) , 1 < i _< n, 
1 n o n n-

where the basejoint of nx is the degenerate loop e, at x , defined by 
0 

(4.11). If we replace addition in rrn_ 1 (nX) by the multiplication in nx, 

as defined by (4.9), we also have an isomorphism when i = 1. 

We take another !-connected space YC X, such that x E Y and denote 
0 

by PyCny) the space of paths (respectively, loops) in Y; obviously PYC PX. 

Clearly 

(6.3) 

T. 
1 

induces an isomorphism 

T. 
1 

rr (Y) + rr 1 Cny)· n n-
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The exactness of the homotopy sequences of the pairs (X,Y) and 

(S1X,S1Y), together with (6.2) and (6.3), allows the application of the "five 

lemma" (see [13], for a definition); hence, the operator 

an isomorphism 

(6.4) i < n, 

T. 
l 

also defines 

and commutes with the boundary operator. Now T = T2 0 
(T = T2 = -T1 for 

0 

the group rr 2 (X,Y)) maps the homotopy sequence of (X,Y) isomorphically 

onto that of (S1X,S1Y) with degree -1. We may replace T2 by -T1 because, 

since the interchange of two axis is an orientation reversing homeomorphism 

of 

(6.5) , i < i,j < n. 

(6.6) Definition. We define an isomorphism T 

by putting 

T = d o -l Px 

from rr (X) 
n 

where ~ rr (X) 
n 

is the isomorphism induced from the projection Px 

9X ~X and where d, the boundary operator : rrn(PX,S1X) ~ rrn_ 1 Cnx), is an 

isomorphism because rrn(PX) = 0 in the homotopy sequence of (PX,QX), since 

PX is contractible. 

Samelson [20], page 747, has shown that T, applied to rr (X) , 
n 

is the 

same as the isomorphism T 
n 

defined above. 

We note that the isomorphisms from rr (X) , 
n 

rrn~l(QX)' respectively rrn_ 1 Cny), may be given by 

n -1 
(-1) d o Py . 

respectively n (Y) , 
n 

to 

n -1 
(-1) d o fX , respectively 



(6.7) Definition. We define a map T between rr (X) n 

T = h o T : rr ex) -+ H 1 Cr2x) , n n-
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where T is defined above and where h is the Hurewicz homomorphism. 

(6.8) Definition. For a ~ rr (X) , 
p 

S € rr (X) , we define the Whitehead product 
q 

of a and S to be the element 

[ rv , D] = ( v 0 a v D 0 w) ~ Tr (X) 
u. IJ IJ ~ p+q-1 , 

where 

v : X V X -+ X is the folding map, 

a V S : sP V Sq -+ X V X is induced from 

sP -+ X and 

w Sp+q-l -+ sP V Sq is the attaching map 

used to attach the boundary of a p + q - cell 

ep+q to sP V Sq ( = e 0 
Uc. eP Uc. eq) in the definition of 

Sp+q as a cell complex9. 

Clearly the Whitehead product depends only on the homotopy class and 

not on the representative of these classes. 

We .again state Theorem B. 

(6. 9) Theorem B. If, for a !-connected space 

S ~ rrq+l(X), p,q ~ l, 

T [a, S] = ± 

then 

X, we have a E: rr 
1

(X), p+ 

where the map T is defined by (6.7), the operation [ , ] is defined by (6.8), 

and the operation * is defined by (4.15). 

9A definition of cell complexes and attaching maps may be found in [23] and 

others. 



Proof of Theorem B. 

The proof follows that given by [20]. 

st 1- Proof. 

(6.10) Definition. We put X= Sp+lXSq+l and Y 

(6.11) Lemma. For X and y defined by 

~ Hi Cnx,ny) ~~ 0, 

Proof of Lemma. 

We recall that 

(6.12) H. (Y) 
l 

= H. (Sp+l V 
l 

E., 

so that, applying the Kunneth formula to 

(6.10) we have 

i < p + q + 1 

l = p + q + 1 

i = 0, p + 1, q + 1 

otherwise 

H. (X), we have 
l 

81. 

. 
' 

(6. 13) H. (X) = H. (Sp+l x Sq+l) ~ 
l l 

i = 0, p + 1, q + 1, p + q + 2 ~ 

i < p + q + 1, i f 0, p + 1, q + 1 

and 

(6.14) H. (X) % H. (Y) 
l l 

for i < p + q + 2. 

In view of (6.12) and (6.14), the exactness of the homology sequence of 

the pair (X,Y) implies 

(6.15) H. (X, Y) 
l ~ r 0, 

\_ Z, 

i 2. p + q + 1 

i = p + q + 2. 

' 
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Now using the relative Hurewicz theorem1 0 ~ we have 

(6.16) n i (X~ Y) % fo ~ 
(_z, 

i .::._ p + q + 1 

i = p + q + 2. 

Applying the isomorphism T 
0 

(as defined earlier)~ it follows that 

(6.17) i < p + q + 1 

i = p + q + 1 

and, by the relative Hurewicz theorem, that 

(6.18) i = p + q + 1. 

In the case where p or q = 1~ the result still holds~ since the 

H-space QX is simple ([22]~ page 479). 

Returning to the proof of Theorem B, we determine the image of the 

homomorphism 

d 1T (Q Q)-+n (Q) 
p+q+l X' Y p+q Y 

in the homotopy sequence of the pair (QX,QY). 

In the relative homotopy sequence of the pair (X,Y) the map 

nn(Y) -+ nn(X), for all n, is an epimorphism; hence, by exactness, 

(6.19) d ( n 
2 

(X, Y)) ~ p+q+ np+q+l(Y) , 

or, in other words, 

(6. 20) kernel (1r 1 (Y) -+ np+q+l (X)) 
'V Z, 'V 

p+q+ 

since 'U n 2 (X,Y) rv p+q+ z. 

lOfor a statement of the relative Hurewicz Theorem see Theorem 4 on page 397 

of [23]. 



(6.21) If a. ~ 
0 

the identity maps on 

83. 

S t n (Sq+l) are defined from 
0 q+l 

we denote by a.', respectively S', 

the images of a. , respectively 
0 

S , under inclusion in 
0 

Y. 

Clearly a. ' E: TI 1 (Y) p+ and S ' E. TI l (Y) . q+ 

Because of the way we have defined a.' and S' , it follows from 

definition (6.8) that 

(6. 22) [a.',S'] generates the kernel of the map TI (Y) + TI (X) 
p+q+l p+q+l ' 

that is, 

d(n 2 (X,Y)) is the infinite cyclic group generated by [a.' ,S']; p+q+ 

so that, 

(6.23) is the infinite cyclic group . generated by 

T[a.',S']. 

(6.24) Lemma. H*(~X)' the Pontryagin algebra of ~X , with unit e , is 

generated by 'TO. 
0 

and TS 
0 

subject to the relation 

' 
where the operation * is defined by (4.15). 

Proof of the Lemma. 

We let ~1 , respectively ~ 2 , be the space of loops over 

respectively Sq+l. From (5.12), H*(~I), respectively H*C~2)~ is the free 

associative polynomial a~gebra in the variable 'TO. 
0 

of dimension p , 

respectively in the variable TS 
0 

Since, by (4.7), ~ = {f 
X 

of dimension q. 

I+ X(= Sp+l x Sq+l),f(O) = 

and since, by the properties of the cartesian product 

f ( 1 ) = X = Sl X S2 } 
0 
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X = Sp+l x Sq+l , {f : I~ Xjf(O) = f(l) = x
0

) 

{ f 1 : I ~ sP + 1 I f 1 co) = f 1 c 1 ) = ·s 1 } x { f 2 : I ~ s q + 1 I f 2 co) 

' we have 

(6.25) 

Now, applying the Kunneth formula to H(QX) = H(Q 1 x Q2), 

(6.26) 

(6.27) m(x,y) e QX , 

where m is defined by (4.9); so that QX is the direct product of Q1 and 

Q2 with respect to m. 

(6.28) A(x,y) = (y,x) , 

it is well known that 

(6. 29) A (v ® u) = ( -l)pq(u <2$> v) 

Now it follows from the definitions of m and A that we have the 

following commutative diagram: 

m 
(Q1 X Q2) X (Q 1 X Q2) 

____ ____;;:::. 

(6. 30) 1 X A X 1 I% 
(Ql X Q1) X (Q2 X Q2) 

m x m 
--------;;:::. 

Diagram (6.30) implies that the multiplication in H(QX) = H(Q 1 x Q2 ) 

has the property 
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(6.31) (u @ v) * (u 1 @ v 1
) = (-l)pq(u * v 1

) @ (v * v 1
) ; 

clearly the Pontryagin algebra H*(QX) is the skew tensor product of the 

Pontryagin algebras H*(n 1 ) and H*(n 2 ). 

Identifying Ta
0 

with Ta
0 

@ e and TS
0 

with e ® TS
0 

in 

(6.31) gives 

(6.32) = 

so that~ in view of (5.12)~ the Pontryagin algebra H*(QX) is generated by 

and subject to (6.32). 

Hence the lemma is proven. 

We return to the proof of Theorem B. 

We recall from (5.13) that H*Cny), the Pontryagin algebra of ny~ with 

unit e ~ is the free associative algebra on two generators Ta 1 and TS 1 ~ 

where Ta 1 ~ respectively TS 1
, is the spherical homology element determined 

from Ta 1 ~ respectively TS 1 
• 

Since~ from (4.9)~ the inclusion i ny + QX is cl.early homomorphic to 

m~ i induces a homomorphism~ also called i ~ from the Pontryagin algebra 

H*Cny) to the Pontryagin algebra H*(QX); therefore Ta 1 and TS 1 ~ the 

generators of H*Cny)~ are mapped into Ta
0 

and TS
0 

~ the generators of 

H*(QX). It now follows from lemma (6.24) that~ in dimension p + q~ 

(6. 33) The kernel of the homomorphism i 

cyclic group generated by 

Ta 1 * T S 1 
- ( -1) pqT S 1 * Ta 1 

• 

Because from (6.18)~ the exactness of 
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the relative homology and the relative homotopy sequences of the pair 

(nx~ny) imply that the Hurewicz homomorphism h must map the generator 

T[n',S'] of the infinite cyclic group d(n 1 cnx~ny)) onto ± the p+q+ 

generator Ta' * TS' - (-l)pq(TS' * Ta') of the infinite cyclic group 

Hence 

(6.34) T[a',S'] = ± (Ta' * TS'- (-l)pq(TS' * Ta')), 

where a' £. 7T 1 (Sp+l v sq+l) , s' E TI (Sp+l sq+l) and 
p+ q+l v , 

[a' ,S'] E np+q+l(Sp+l\1 Sq+l)~ a' and S' defined by (6.21). 

Blakers and Massey [2] , page 300, have shown that the space 

and the elements and S' (sp+l 8q+l) 
€. TI V q+l 

a' and S' defined by (6.21), is an universal example for binary homotopy 

constructions. Therefore, (6.34) may be extended to 

(6.35) 

where a G. TI 1 (X) , S G TI 1 (X) , and [a, S] e. TI 1 (X), p+ q+ p+q+ 

X being an arbitrary space. 

Thus Theorem B is proven. 

Second Proof of Theorem B. 

Again we take X to be a 1-connected space and X 
0 

to be a point in 

The proof will be geometrical in nature and will require one of the 

older definitions of the Whitehead product~ which is well known to be equiv-

alent to (6.8). 

X. 



(6.36) Definition. Let a : (Ip+l,ip+l)-+ (X,x) 
0 
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represent the homotopy classes of the respective homotopy groups. Now 

the Whitehead product [a,S] of a and S is represented by the map k, 

k : Sp+q+l = ip+q+ 2 = (Ip+l X iq+l) U (ip+l X Iq+l) -+ (X,x
0

) 

defined by 

k(s,s') a (s) s'e 
·q+l = I 

l S (s') 
•p+l 

s E I 

the base point of sp+q+l being w = (0, ... ,0). 

(6.37) Definition. We put Ii+l = Ii X I, i = p,q, so that 

Ip+q+2 = IP x I X Iq X I and define a subset K of sp+q+l C = fP.+q+2) 

K = (Ip X I X 
·q I X I) V (iP X I X Iq X I) V (Ip X 0 X Iq X 0). 

by 

If we collapse the two factors I in the first two terms, K becomes 

and we may contract this to the point w , since Ip x 0 x Iq x 0 is clearly 

contractible. Hence K is contractible into w • 

(6.38) Definition. We define a map 

a : Ip+q+l = 

in the following manner: 

a maps the interval x x y x I, in piecewise linear fashion, on that 

S
p+q+l ( = ip+q+2) with vertices 

interval of the closed polygon in 

w and (x,O,y,O) 0 < t < 1/4 - -

(x,O,y,O) and (x,l,y,O) , 1/4 < t < 3/8 

(x,l,y,O) and (x,l ,y, 1) 3/8 < t < 1/2 

(x,l,y,l) and (x,O,y,l) , 1/2 < t < 5/8 

(x, 0, y, 1) and (x,O,y,O) 5/8 < t < 3/4 

(x,O,y,O) and w , 3/4 < t < 1. 
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(6.39) Claim. 

Proof of Claim. Case 1 . t = 0,1. Should t = 0 or 1, (J maps the point . 

(x,y,t) to the point w , which obviously belongs to K from (6.37) . 

Case 2 . X f ·p I . Should X ~ Ip , we have from (6.38) that 

a(x,y,t) [ jP X I X Iq X I, which is contained in K from (6.37). 

Case 3 . y € iq. Should y E iq , we have from (6.38) that 

a(x,y,t) € Ip X I X iq X I, which is contained in K from (6.37). 

(6.40) Lemma. For x E Ip - iP , y G Iq - iq , 1/4 < t < 3/8, a is locally 

1 : 1 and onto in the neighbourhood of (x,y,t). 

Proof of Lemma. Given a point /" sp+q+l (x,t' ,y,O) c , it is immediate that the 

point 
t'+2 

(x,y, -8-) satisfies the required conditions on x,y and 
t'+2 

t( t = --) 
8 

and is such that t'+2 
a (x, y ,--8-) = (x,t',y,O). 

Given two points (x,y,t), (x',y',t'), (x,y,t satisfying the conditions 

of (6.40)) such that (x,8t- 2,y,O) = (x',8t'- 2,y',O), it is immediate 

from checking the values of t that (x,y,t) = (x' ,y',t'), hence (x,y,t) 

I
p+q+l 

i s the only point of mapped onto (x,8t - 2,y,O) by a . 

Now a is locally 1 1 and onto in the neighbourhood of (x,y,t) 

and the lemma is proven. 

(6.41) Lemma. Under the conditions of (6.40), a has local degree (-l)P. 

Proof of Lemma. 

orientations of 

The result follows from the nature of a 

Ip+q+l and sp+q+l. 

and the natural 
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Together, the results (6.39),(6.40), and (6.41) prove the following 

lemma. 

(6.42) Lemma. 0c c.) ( -l)P n ' 

where c. is the generator of rr (Ip+q+l ip+q+l) represented by the 
p+q+l ' ' 

identity, and n is the generator of rrp+q+l(Sp+q+l,K), represented by 

the identity. 

(6.43) Definition. Letting s · Ip + sP and 
1' 

s
2 

: Iq + Sq be defined by 

collapsing the boundary to a point, we define a map: 

5 = 

to be the map induced by 

(6.44) Lemma. 

5 
1 

and 

T(k o cr)(x,y)(t) = k o cr(x,y,t), 

where T = T p+q+l is defined by (6.1) and k represents the Whitehead product 

as defined by (6.36). 

Proof. The proof is immediate, since 

T 
1 

f(x
1

, ... ,x )(t) p+q+ p+q 

from (6.1) . 

= f(x
1

, ... ,x ,t) p+q 

When T and T p+l q+l are defined by (6.1) and a~ TI 1 (X) is represented p+ 

by a: (Ip+l, ip+l) +(X,x ) 
0 

and S € TI 
1 

(X) is represented by q+ 

S : (Iq+l,iq+l) +(X,x) , it is clear from the definitions that the maps 
0 

Tp+l a: Ip+l+ nX and Tq+l S: Iq+l+ nX can be factored into a'~ s 1 , 

respectively S' os 2 

into nx . 

, where a' maps sP into nX and S' maps 
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(6.45) Definition. We put 

c(x,y) = (e • (a' (x) • S' (y)) • ((y(a' (x)) • y(S' (y))) • e), 

where represents the composition of loops as defined by (4.9) and 

Y(f(x)) is the homotopy inverse of f(x) (considered as a loop in QX) as 

defined in the proof of Proposition (4.20). 

Since k represents the Whitehead product as defined by (6.36), we 

have that, if x € iP, T(k o a)(x,y) depends on y only, and,if yG iq, 

T(k o a)(x,y) depends on x only. Hence we have proven: 

(6.46) T(k o cr) may be factored in the form c o s, where c is defined 

by (6.45) and s is defined by (6.43). 

Because e is the degenerate loop at X , 
0 

c (as defined by (6.45» 

is homotopic to the map d defined by 

(6.47) d(x,y) = (a'(x) • S'(y)) • (y(a'(x)) • y(S'(y))). 

(6.48) Definition. We define a deformation ft of 

the identity on sp+q+l, by extending to sp+q+l 

itself into w • 

with f 
0 

the contraction of 

as 

K over 

Npw, using methods similar to those used in the case of T(k o~, we 

can show that, for each t, 

(6.49) T(k o ft o a) may be factored in the form ct o s , and consequently, 

the form a homotopy of c = c . 
0 

Since ft Sp+q+l is a deformation of 

f 1 o a is homotopic to f o a = a 
0 

. , hence 

with f = identity, the map 
0 



91. 

(6.50) , 

because homotopies induce isomorphisms in homotopy. 

From (6.48) and (6.39), we have 

f1 0 a cip+q+l) = w , 

so that, in view of (6.50), 

(6.51) 

(-l)P. 

f 1 o a maps (Ip+q+l, ip+q+l) into (Sp+q+l, w) with degree 

Now it follows from (6.36) that k o f 1 o a represents (-l)p[a,S] 

and, consequently, maps E into (-l)p[a,S]. By (6.4), T(k o f 1 o a) 

map the natural generator of H (Ip+q ip+q) 
p+q ' 

into 

(-l)PT(a,S] e Hp+q(QX,e). from (6.49) we have that T(k o f 1 o a) may be 

factored into c 1 o s. 

Since s is known to be a relative homeomorphism, and consequently, 

Hi(Ip x Iq, (Ip x Iq)•) ~ Hi(Sp x Sq,Sp V Sq), since 

Hp+qcsP x sq, sP v Sq) ~ Hp+qcsP x Sq) from (6.13) and (6.15), and since 

(6.48) and (6.49) implies c 1 (Sp v Sq) = e , we have that c 1 and, because 

homotopies induce isomorphisms in homology, that c and d map the natural 

generator of into 

(6. 52) 

where l is the natural generator of 

i.e 

H (Sp x Sq). 
p+q 

the following~oposition will prove the theorem. 

(6.52) together with 

(6.53) Proposition. d(l ~ ~ ) = Ta * TS - (-l)pqTS * Ta, p q 

where lp' tq are the natural generators of Hp(SP), Hq(Sq). 
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Proof. It is immediate from (6.47) that d may be written as the following 

composition: 

m o (m x m) o (1 x 1 x Y x Y ) o (a' x B' x a' x $') o (1 x A x 1) o 

( 01 X o 2 ) sP x sq -+ nx 

where o1, 02 are the diagonal maps 01 sP -+ sP x sP and 

02 . sq -+ sq x sq , 

A is the permutation map A sP x sq-+ sq x sP defined by (6.28). 

y is the inversion y : nx-+ nx defined in (4.20), and 

m is the multiplication m: stX X stX-+ stX defined by (4.9). 

We let lp be the natural generator of Hp(Sp) and lq be the 

natural generator of Hq (Sq), so that by definition a' ( ~) = Ta and 

and 

(6.54) 

Again we let e be the generator of 

We want to determine d ( ~ ~ l ) . 
q 

Since 61 and o2 are diagonal maps, we have 

o1 x o2Ct 

)l g, e+e 

l ® e + e ~ q 

X \. ) . p q 

H (x ). 
0 0 

= l ~ e l ® e + lp e e ® l + e ® ~ ® lq ® e + e (29 ~ ® e p q q 

From (6.24) A(l ® lq) ( -1 )pq l ® lp p q 

A ( l e) = e lp p 

A(e @ lq) lq ® e 

so that applying 1 x A x 1 , (6.54) becomes 

l . 
q 



(6.55) 

Now 

(6.56) 

\. ® t (i e 
1? q 

e + J:. @ e 
p 

e @', + e @ (-l)pql ® l @ e 
q q p 

+e @ e ® t ® l· p q 

a. 1 
X f3 1 

X a. 1 
X f3 1 

( 1 X A X 1) ( 0 1 X 0 2) ) ( J.p 0 l q) 
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a. 1 (l ) ($J S 1 (l ) ® e @ e + a.'(l) ® e ® e ® S 1 (l) p q p q 

+ e ® S 1 
( ( -1) pq l ) ® a.' ( l ) G) e + e ® e ® a. 1 

( 1.. ) ® S 1 
( l ) , q p p q 

and, if we consider the effect of 1 x 1 x y x Y , (6.56) 

becomes 

(6.57) a. 1 
( ~ ) @ S' ( l ) 69 e (g; e + a.' ( l ) (f) e @ e @ Y (S' ( l ) ) p q p q 

+ e @ (- 1 ) p qS ' ( l ) @ Y (a. ' (( t ) ) e + e ® e (8) Y (a. ' ( l ) ) @ Y ( S ' ( l ) ) . 
q p p q 

Applying m x m , (6.57) becomes 

(6.58) a.' ( t ) * S' ( ~ ) @ e * e + a.' ( l ) * e tJj) e * Y (S' ( l ) ) p q p q 

+ e * C -1) pqs' C l ) @ Y (a. 1 C l ) ) * e + e * e @ Y (a.' C l ) ) * Y Cs 1 C l ) ) , q p p q 

so that by applying m , we have 

(6.59) d( l ® l) = (a.'( l. ) * S'(l )) * (e *e)+ (a.'(l )*e)*(e * Y(S'(l )) p q p q p q 

+ (e * (-l)pqS' (lq)) * (Y(a.' (tp)) * e) + (e*e)*(Y(a.' C)l))*Y(S' (Lq)). 

Since e is the unit of the Pontryagin algebra, (6.59) may be written 

as 

a.'(~)* S'Ctq) + a.'("P)*Y(S'(tq)) + (-l)pq S'( ~q) * 

y (a. ' c 1.. ) ) 
p 

+ Y (a.' ( ~)) * Y (S' ( tq)) . 

We consider the composite 

(6.61) m o (1 X Y) o (a.' X a.') o 01 , 
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which is clearly identical to the composite 

m o (1 x Y) o 8 o a' 

where 8 is the diagonal map 8 Now the composite 

m o (1 X Y) o 8 : DX ~ DX is null homotopic from (4.20), since Y(f) is 

the homotopy inverse of f. Hence (6.61) is null homotopic. 

Now 

m(l x Y (a' x a ' ( 8 1 ( lp)) ) ) 

= m(l x Y (a' x a' ( l ® e + e t&) J,.p) p 

m(l x Y (a' ( l ) & e + e ® a'(l ))) 
p p 

m (a' ( l ) ~ e + e ® Y (a' C l ) ) ) 
p p 

= a' ( ~) * e + e * Y (a ' ( lp)) 

= a' C lp) + Y (a' ( l ) ) p 

so that a' C t ) = - Y(a'(~)). Similarly 
p 

s' ( \.q) = -Y (S' ( \.q)) · 

Substituting in (6.60) , 

d(tp Q9 lq) = a'(lp) * S'(\.q)- a'(~)* S'(tq)- (-l)pqS'(lq) * a'(lp) 

+ a I ( ~) * f3 I c \.q) 

= a ' C L) * S ' ( \q) - ( -1) pqs ' ( l ) * a ' (\ · p q q~ 

Substituting Ta for a' C ~) and TS for f3 I ( .l._q) , 

we have 

d(~ ® \.q) = Ta * TS - (-l)pqTS * Ta, 

which completes the proof of (6.53). 

Combining (6.53) and (6.52) we have 

T[a,S] = (-l)p(Ta * TS - (-l)pqTS * Ta) 

which completes the proof of Theorem B. 
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Remark. We note that this second proof has precisely determined the sign to 

be (-l)P, whereas the first proof left this sign open. 

We used the concept of a universal example for a binary homotopy 

construction in the (first) proof of Theorem B. We also note it is partially 

because of a universal example for an n-ary homotopy construction that this 

theorem (and the Corollary (5.13) to Theorem A) is important in homotopy 

theory. 

(6.h~) Definition. We put s = s 1 v s2 v ... v s , 
n 

where the S. , 1 < i < n, 
1 -

are oriented spheres of dimension k. with a point x 
1 0 

let l· £ nk (S,x) be the inclusion (S.,x) ~ (S,x ). 
1 . 0 1 0 0 

1 

Blakers and Massey [2] have shown that S and the 

in common, and ' 

L. , 1 ~ i ~ n is 
1 

a universal example for an n-ary homotopy constructio~from dimensions 

k1, ... ,k to any other dimension~ ; such constructionsbeing in 1 : 1 
n 

correspondence with the elements of n ~ (S). Clearly, to prove general 

theorems about such constructions, we often need only consider the universal 

example. Hence Hilton [9] showed the importance of Theorem A, Corollary 

(5.13), and Theorem B by using them to calculate the homotopy groups of S. 
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