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ABSTRACT

Hepatitis B vinls(HBV) is primarily an hepatotropic virus., although evidence ofviral

infection in lymphoid cells has also been observed. The virus induces life-threatening liver

diseases. such as cirrhosis and hepatocellular carcinoma and is a major public health problem

with more than 300 million chronically infected people worldwide. It is also evident that

transmission ofHBV from infected mothers to their babies is the most important mechanism

by which the virus is maintained within the popuJation. Recent findings have established the

existence of a serologically undetectable persistent carrier state of HBV in apparently

completely healthy individuals convalescent from an acute episode of hepatitis B. In these

individuals. traces ofHBV genomes were documented in senun and circulating lymphoid cells

years after recovery. Related findings of the life-long hepadnaviral persistence after a

transient exposure to woodchuck hepatitis virus (WHY) has been demonstrated in this

laboratory in a woodchuck: model of hepatitis B.

The aJlTent. study was undertaken to learn about the risk ofhepadnavirus transmission

to newborn woodchucks from mothers with complete serological recovery from

experimentally induced viral hepatitis and about natural course and molecular features of virus

persistence in these offspring. The specific aims afthis investigation were: (I) to detennine

whether hepadnaviral genomes can be transmitted from maternal woodchucks with a past

episode of acute WHY hepatitis to their offspring; (2) if in fact this vertical transmission

occurs., to identifY reservoirs ofhepadnavirus replication during long-tentt foUow-up of these

newborn animalS; (3) to characterize phys:&cochemical properties of molecules canying WHY



DNA in sera ofthese offipring; (4) to test whether silent carriage ofWHV genomes acquired

after veIticaI transmission reflects the existence ofbiologica1ly competent virus infectious to

WHY-naive woodchucks, and (5) to detennine whether the offspring carrying WHY traces

are susceptible to WHY infection. in this work, II offspring born to 4 woodchuck mothers

convalescent from an acute episode ofviral hepatitis were investigated.

Our results have shown that serologically silent WHY carriage acquired after a self­

limited episode of viral hepatitis is transmittable from mothers to newborns as an

asymptomatic chronic infection. Importantly, all of the offspring tested carried WHY DNA

through the entire follow-up, lasting for more then 3 yean after birth, and remained

nonreadive for immunoviroIogicai marlcers ofWHV infection unless challenged with WHY.

WIN DNA and RNA specific sequences were detectable both in the liver and lymphoid cells

in the majority of the animals, although in some offspring WHY persisted exclusively at a

extrahepatic location in the lymphatic system. Panicles carrying WHY DNA in sera of

offspring with WHY genomes in both the liver and lymphoid cells or the lymphatic system

alone had physicochemical properties comparable to those of complete WHV virions. In

addition, virus contained in offspring sera with or without WHY DNA expression in the liver

as well as, culture supernatant from mitogen-stimulated peripheral blood mononuclear cells

were infectious to WHV-naive woodchucks. Finally, despite silent carriage ofWHV traces,

the offspring were susceptible to WHV challenge. Since there are significant

pathobiological similarities between HBV and WHY, it is possible that a comparable

situation may exist in babies born from mothers with a past history of hepatitis B.
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CIIAPTER ONE - INTRODUcnON

Hepatitis B virus(HBV) is considered to be one ofthe most impoctant viral pathogens

affecting mankind today. There are an estimated 350 million chronic carriers of HBV

worldwide (Robinson, 1994). inc:biingapproxirndely2S0,OOO Canadians 01" about 1% of the

population in Canada (Shennan, 1996). Individuals chronically infected with HBV can

tnnsmit infection to susceptible individuals and they are at risk for significant morbidity and

mortality. Exposure to HBV can lead to chronic hepatitis B,liver cirrhosis and hepatoceUular

carcinoma (RCG), which kill chronic HBV carriers at an annual rate of 1-2 million deaths

worldwide. The source of infectious virus is usually blood, but HBV has also been detected

in a variety of other body fluids, including semen, saliva.. tears, and breast milk. Thus. it

should be assumed that under certain conditions all biological fluids from HBV-infected

patients may be infectious.. In Canada and other" western countries. the virus is mostly spread

horizontally through • parenteral route., usually by intravenous drug use, oca1patiOnal

ecpo5UI'e or sexual contae:t. In the era before donor blood screening. t:ransfusions of infected

blood and blood derived products were the most common way ofHBV spread. However,

in endemic regions, most infections occur in children as a result of perinatal (vertical)

transmission (Shennan, 1996). Almost all individuals infected since birth become chronic

carriers of the virus. Therefore, mother to child transmission represents a very important

mechanism for maintenance of HBV in the human population worldwide (Robson et. 01.,

1994; Hollinger, 1996). Regions ofthe world which are most affected by HBV include sub­

saharan Afiica, south-east and far-east Asian countries, and the coastal belt of Greenland,



where it is estimated that 5% to 20-;' of individuals are chronically infected with HBV

(Maupas and Melnick, 1981).

1.1 ViralHep.titis

fiBV is one of6 presently known hepuotropic viruses that cause viral hepatitis in

humans. These viruses, designated A, B, C. D. E and G all cause some form of liver

inflammation. The mode of transmission, genome structure and course of infection

significantly differ for each of these viruses, as summarized in Table 1.1.

Briefly, hepatitis A (HAY) and hepuitis E virus (HEV; Reyes et 01., 1990) are

tmnsmitted by the faccal-oral (enteric) route. Thus, they are usually spread under unsanitary

conditions via contaminated food and water supplies and poor personal hygiene. Major

outbreaks ofenterically transmitted viraJ hepatitis typicaUy occur in regions with inadequate

public sanitation or malnourished populations. Infections with these viruses are usually self­

limiting leading to complete recovery. For unknown reasons, 10-20% of pregnant women

with. acute HEY infection develop severe and fatal fulminant hepatitis (Koziel, 1996). A

vaccine is available for HAV, but not for HEV.

Hepuitis B and hepatitis C viruses (Hev; Chao e/ aJ., 1989) are spread mainly via

blood, sexual contact or from mother to infant. These viruses are the two most important

ca.usesofviral hepatitis. Ten percent of patients acutely infected with HBV and up to 50%

ofthose infected with HCV develop chronic hepatitis, placing these individuals at greater risk

for developmentof~ diseases, such as liver cinhosis and HCC (Koziel, 1996).



Table. l.l Comparison of the. 6 known types of human viral hepatitis

V~, Family and Mode ofTransmission CIinica.lEffects
Nucleic Acid
Type

Hepatitis A Picornaviridtu Faecal-oral (enteric) Incubation period 14-50
(HAY) single-stranded days; 990/0 recovery, acute

RNA or fulminant hepatitis;
Vaccine available

HepatitisB Hepadnaviridae Horizontal Incubation period I~ mo;
(HBY) double-stranded transmission, blood 90% recovery, acute.

DNA (parentenl), sexual fulminant & chronic
contact & body Ouids; hepatitis. cirrhosis, HCC,
Vertical transmission immune complex diseases;

Vaccine available

HepatitisC Flaviviridae Same as HBV Incubation period 14-18
(HCY) single-stranded days; Acute & chronic

RNA hepatitis, cirrhosis,
HCC

Hepatitis 0 calcivirus Mainly via blood and Incubation period 15-64
(HOY) (viriod.like) blood products days; Only affects HBV

RNA (parentenl) infected patients; HOV
super·infection increases
risk: of fulminant hepatitis,
cirrhosis & liver failure

Hepatitis E F1Ulliviridae Faecal-oral (enteric) Incubation period 15-60
(HEY) RNA days; Infection is mild and

self.limiting in 99% of
patients; Fulminant
hepatitis in 10-20% of
pregnant women

HepatitisG Flaviviridtu Mainly via blood and ~era1lyamiIdinfection

(HGY) RNA bloocl products
(parenteral)



PIasma-derived and~ wccines are avaa.ble for HOV (see Section 1.3.1), but none

ii}"C. :....:illable for HeV.

Hepatitis D virus (HDV) or delta virus has a similar mode oftnutsmission as HBV.

It is a defective ribonucleic acid (RNA) virus thatlacb an envelope and requires HBV in

order" to compk:te its assembly. Thus, the virus only invades individuals already infected with

HBV (Rizzetto et at., 1980). Patients superinfected or co-inft.eted with HOV are at increased

risk: for the devdopment of fulminant hepatitis, cirrhosis and liver failure (Acorn el aI., 1995).

Vaccination against HBV will also prevent HOV infection.

To date, little is known about the recently discovered hepatitis G virus. except that

it can be transmitted via blood. and blood products. It appears that the virus causes a mild

self-limiting infection. The pathological significance ofHGV infection remains unknown, but

moSllikely is very limited (Linnen elat., 1996).

In the past. a group of researchers claimed to have identified the enteric hepatitis F

virus (Dek.a el aI., 1994), however, this finding could not be confumed by othefs.

[,2 Natural History or HBV IlIIrediGIII

HBV primarily affects the liver of infected individuals, although extrahepatic viral

replication has been well documented (e.g., Baginski et al., 1991; Mason el aJ., 1993; Pardoe

and Michalak, 1995; Yolfe et al., t 990). It is generaUy accepted. that the virus itself is not

directly cytopathic, instead liver damage is caused by the host immune responses directed to

the virus epitopes eqJOSed on the surfilce of infected hepatocytes. Individual response to the



vir1ll antigaIic detemmanu varies a great deal, as symptoms ofHBV infection can range from

a complete absence to extremely.sevtn., 6Ltal tiva" injury. Following acute HBV infection.

patients may appeal" to recover completely. progras to d.-onic hepatitis or develop fulminant

hepatitis and die. In genenl, the clinical picture ofHBV infection includes the following

10,,,,,, (I)_omotic(_ inf_ (2) ""'. hepariris; (J) fulminant hepa!im, and

(4) chronic hepatitis, which hiSlO[ogicaUy can be classified as persistent (mild) or active

(aggressive) chronic inflammation.

Approximately 60-70% of individuals infected wjth HBV experience no symptoms,

but produce specific antibodies to the virus antigens and develop an apparently lasting

immunity to the virus. In these cases, clinical diagnosis can only be made after analysis of

serological markers ofHBV infection. as will be described in Section I.J.3. Another25%

ofpeopJe exposed to fIBV devdop aarle hepatitis and ex:perien::e symptoms which can range

from a mild flu-like iUne:ss without jaundice to severe abdominal pain, extreme fatigue. and

anorexia with jaundice. Fulminant hepatitis, which occurs in 1% of adults, is an extremely

severe acute disease caused by rapid Ii~ oeaosis and is often Caw. However. most acute

hepatitis infections ofadults are self-limiting (self-limited acute hepatitis; SLAH). Therefore,

approximately 9QO,.. ofHBV infected individuals show complete serological recovery with

apparent clearance of viral antigens from the circulation and liver. and the development of

apparently pennanent immunity (Hoofuagle el ai., 1987). It is estimated that a portion (5­

loo..'.) ofacutely infected adult individuals develop serologically detectable chronic hepatitis

B. In contrast" approximatdy4O'A ofyoungchildrcn infected at S to 10 years ofage develop



chronic hepatitis (Sherman, 1996) and, in children infected since birth, 70-90"/1 will progress

to a serologically evident persistent hepatitis (pare. 1996). Some chronic carriers infected

since birth experience no clinical symptoms and repon only occasional fatigue. However.

symptoms in these individuals become more severe with age and increased liver damage. In

more severe cases ofchronic hcparitis. 1iver nccroinftammation can progress to liver cirrhosis.

Importantly. the risk ofdeveloping HCC is almost 100 times greater in chronic carriers of

HBV (Pare. 1996) than in uninfceted individuals. Seemingly. only tobacco is a more

important human carcinogen than HBV (Hollinger. 1996). It is hypothesized that two

independent mechanisms may contribute to the development ofHCC in chronically infected

patients. One pathway appears to be related to integration ofHBV deoxyribonucleic acid

(DNA) into host ceO chromosomes which disrupts tumour suppressor gene functions or

activates ceUular oncogenes leading to uncontroUed cell proliferation. The second mechanism

is most likely related to the continuous 1iver ceO death and cell regeneration that increases the

chance of mutations and subsequent tumour development (Robinson, 1994).

l.3 GeaenJ Chanderistics 01 HBV

1.3.1 Particle Types

HBV is classified as a member ofthe family Hepadnaviridae which reflects its liver

tropism and DNA genome. The complete HBV particle or "Dane" particle is a double

shelled. spherical structure tnat is only 42 nanometer (nm) in diameter (Dane et al.. 1970).

The 7 run outer shell or viral envelope is made up ofviral surface proteins, as weD as host



derived lipids. The viral inner sheU consists ofa 27 nm nucleocapsid (core) which encloses

the viral genome. In addition to the infectioo.s Dane particles, noninfectious subviral particles

are also produced in HBV infected individuals. These are 2D-run diameter spheres or

filaments that are composed of viral surface lipoproteins and carry virus surface antigen

(HBsAg) specificity. They are lacking a oocIeocapsid and viral genetic material and therefore,

they are not infectious (Hollinger", 1996). HBsAg particles are produced and circulate in huge

quantities in HBV carriers and are capable of inducing a strong antibody response which can

confer- immunity to infection. For this reason, subviral HBsAg particles purified from infected

serum or generated by recornbirwlt DNA tedmology, have been used as a successful vaccine

against HBV infection (HoUinger et aI., 1986; Stevens el aJ., 1987).

1.3.2 ~Qome OrgaaizatioD and ReplicatioQ Strategy

HBV is one ofthe smallest DNA viroses known to man. as the complete DNA strand

is only 3200 base pairs (bp). The unique, efficiently organized genome is circular. partiaUy

double stranded DNA that contains four overlapping open reading frames (ORF) encoding

virus envelope or surface (S), nucleocapsid (C), polymerase (P) and X proteins (Figure 1.1).

Unlike thegeoomes ofthe majority ofother" viruses, in which each ORF encodes one protein,

one ORF of hepadnavirus can encode more than one protein product. For example, the S

QRF encodes three surface proteins of variable length with different amino-ends, but a

corrunon carboxy~terminus. As well, elements which regulate hepadnaviral gene transcription

are placed within the protein coding regions instead of a separate region of the genome



F...n 1.1 Schematic representation of HBV and WHV genomes. 'The inner circles

represents the partially double stranded virion DNA with the first base pair marked by the

&oRI cleavage site and subsequent marking &1 intervIJ.s of 400 base pairs. The positive

DNA ItJBnd bas a dubcd Iinc to indicate. variable 3' region and a wavy line at the 5' end to

indicate the cova1entIy attached RNA oligonucleotide primer. The minus strand is complete

with • S· attaebed protein primer (closed circle). The broad mows surrounding the DNA

strand. represent viral open reading hmcs: core gene (preC and C regions). swface or

omdope Jl"'C (pRSI, .,..s2 ond S regions), polymenue (P) ond X genes. The ItTowbcads

indicate the direetion ofgene transcription. The length ofthe translated protc::in products is

shown as alll1lDber ofamino acids (u).
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(Seeger et a/., 1991).

The circular structure of hep&dnavirus genome is maintained by a short cohesive

overlap between the 5' ends ofthe two DNA strands. hence this Conn ofvinJ DNA is termed

relaxed circuJar(RC) DNA. A3 shown in Figure 1.1, each HBV DNA strand is ofdifferent

length. The minus strand, which encodes the vinJ proteins, is complete with defined 3'- and

S'-ends. In contrast, the incomplete plus strand has a variable J'-end. creating a single­

stranded gap region ofapproximately 200-300 bp. Another difference occurs at the 5'-end

ofboth strmds. The 5'.end of lhe mirw str2nd contains • covalently linked protein, whereas

the plus strand has an attadted 5' RNA oligonucleotide primer (Ganem. 1996). Both the

protein and RNA oligomer are important for viral replication.. as described below.

The first step ofvi.ral replication occurs in the nucleus ofan infected ceU where the

incomplete, RC DNA genome is converted. by addition ofnucleotides to the J'.·end of the

plus strand. into covalently closed., circular DNA (cccDNA). This cccDNA is then

transcribed. using host RNA polymerase. into virus messenger RNA (rnRNA) and RNA

pregenomes. The mRNA transcripts are tramlated into viral proteins, whereas the RNA

pregenomes are packaged in cores together with the polymerase and reverse trVlscribed.,

using the S' protein primer, into minus strand DNA. After cleavage of RNA-DNA hybrids

by RNaseH, the plus strand orONA is synthesized from the minus strand using the S' RNA

oligomer as a primer. The mature cores, containing the incomplete double-stranded DNA

genome. are packaged into envelope proteins along with host cell lipids to fonn the complete

virions. The c:omplet:e virus or Dane particle is then transported to the endoplasmic retiadum
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(ER) and exported from the cell (Pugh and Bassendine. 1990).

The generation ofcccDNA and the use ofrever.;e transcription (a mechanism nonnaUy

associated with RNA viruses), has enabled investigators to develop methods for studying

Itepadnaviral replication (KOCk and Schlicht, 1993; BTeehe!, 1993). The transfonnation of

RC DNA into cccDNA is considered to be the first step in the hepadnavirus replication cycle.

Therefore. detection ofcccDNA can be used as an indicator of cells which support active

virus replication (Tuttleman et a1., 1986). Accumulation ofcccDNA occurs within infected

ceUs due to the continuous recycling of cytoplasmic core particles. providing a template for

production of new virions. Therefore., cceONA is considered essential for persistent

maintenance ofvirus replication and must be eliminated in order to eradicate the virus. After

the cccDNA is transcribed into RNA., the mRNA transcripts, packaged in cores. ace reverse

transcribed into minus strand DNA. Investigators are able to detect this viral mRNA and

hence, detennine if virus replication is in fact occurring within particular cells or tissues.

Hepadnaviruses arc tlte only DNA viruses known that use reverse transcription in their

replication cycle. Thus, like other RNA viruses, HBV lacks the 'proofreading capacity' of

viruses that replicate using a DNA polymerase. Consequently, HBV has a high mutation rate

in thetranseription ofRNA to DNA, estimated to be about 2 x 10'" substitutions per site per

year (Howard. 1995). Some mutations may enable HBV to persist and escape detection by

the host inunune system., as will be disaJssed below (Section 1.5.2e). However, the small size

and overlapping genes of HBV limit the number of mutations which can occur without

affecting virus viability.
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1.J.J Proteias of HBV

There are four principle translation products oCtile HBV genome. Thus, the C QRF

encodes the virus nucleocapsid polypeptide canying HBV core antigen (HBcAg) reactivity.

This polypeptide sdf-aggregates into the inner 27 nm core of the Dane panicle. The same

ORF also enc:odc:s a protein with e antigen specificity (HBeAs). The HBe translation product

is secreted as a result ofthe presence oran additional signal peptide. which directs the newly

fonned protein to the ER where it is cleaved and subsequently secreted from hepatocytes.

Thus, although HBcAg circulates only as a part of Dane particles, HBeAg can freely occur

in the blood. Detection of serum HBeAg indicates that the patient is highly infectious and

HBV is replicating at its fastest rate.

Theeariiest anb"bodies to appear in the course ofHBV infection are anti-HBe. which

are directed to HBcAg. Anti·HBc are produced by almost til infected patients and persist

indefinitely in serum after recovery. Thus., they are a very good indicator of exposure to

HBV. The antibodies to HBeAs (uti-llBe) may appear in some patients after disappearance

ofHBeAg from the serum. Detection ofanti-HBe is indicative of reduced infectivity and •

decreased rate ofvU-al replication. Anti-HBe can persist for approximately 2 or more years

afterwards.

The envelope ofHBV is formed by 3 related polypeptides: large (L or preS 1), middle

(M or preS2). and major or small (8) proteins. AIl are derived from the same S ORF by

alternate use ofthree start codons. As mentioned before (Section 1.3.2), the three envelope

proteins differ at their amino--ends, but they have a common carboxy-terminus. These
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polypeptides make up the outeI"coat ofthe Dane particle (ratio ofL:M:S is I: 1:4) and the 20­

run subviral envelope particles (mostly S with some M). which are assembled in the

hepatocyte ER (Gerlich et aI., 1993). Overproduction ofthe large envelope polypeptides may

lead to their retention within the ER. giving the cytoplasm the appearance ofopaque ground

glass on histological examination. These cells are called "ground·g1ass hepatocytes"

(Hadziyannis el al.• 1973).

The earliest serological marker ofHBV infection is the appearance ofHBsAg. The

antigen becomes detectable in serum within 2 to 6 months (mo) after exposure to the virus.

The antibodies specific to this antigen (anti-HBs) appear during convalescence, when HBsAg

has been cleared from the circulation. Detection ofanti-Has is considered as an indicator of

complete recovery and life-long inununity to HBV.

The viral X protein is a smaU protein that has a transcriptional activating potential for

triggeringofmany genes and thus may playa significant role in tumorigenesis. Transcription

of the P ORF results in fonnation of a multidomain polypeptide with viral reverse

transeriptase (RT). RNase, and DNA polymerase activities. This protein is also involved in

genomic RNA encapsidation and DNA binding; thus, it plays an essential role in virus

replication (Ganem. 1991).

1.4 The Bepadnavirus Family

1....1 General Features of Bepad.aviruses

HBV is the protOtype member ofagroup ofviruscs which share similar morphology,
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molecular SlI'Ueture, and pathobiological features. To date.. the hepadnavirus family includes:

HBV infecting humans. woodchuck hepatitis virus (WHV) in the eastern woodchucks

(Marmora monax; Sununers et al., 1978). ground squirrel hepatitis virus (GSHV) in

Spermophilus beecheyi (Marion et ai.• 1980) and Spermnphilus richardsonij (Tennant et al.•

1991) as well as., related viruses in tree squirrels (Sciuruscarolinesis, Feitelson et 01., 1986)

and Alaskan arctic ground squirrels (ASHV; Spe,..",ophylus parryi k.ennicolli; Testut et ai,

1996). The avian hepadnaviruses include duck hepatitis B virus (DHBV) in Anas domesticus

(Mason elaJ.• 1980) and heron hepatitis B virus (HHBV) in herons (Ardea cinerea; Sprengel

etal., 1988).

In general, conunon features of hepadnaviruses are: (I) virion ultrastructure

characterized by an envelope surrounding a spherical inner nucleocapsid. (2) small genome

size (ranging from J to 3.3 lciIobases, kb), (3) gene organization and nucleotide sequence

homology, (4) replication strategy. (5) liver tropism, (6) narrow host range. and (7)

pathogenic properties (Tiollais et aJ. 1985). The most divergent members ofthe family are

avian hepadnaviruses. In these viruses., the X gene is absent, the C gene is larger than that

of mammalian hepacinaviruses. the S gene does not encode preS I domain, and surface antigen

tubules do not form. Furthermore., unlike mammalian hepadnaviruses, there is no association

between infection and HCC development (Cova et oJ., 1993).

1.4.2 Woodcbuck Hepatitis Virus (WHV)

It is generally accepted that WHY infection in woodchucks is the most suitable model
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for the study of human HBV infection. WHY shows significant similarities with HBV with

regard to morphology. genome SbUeture., antigenic cross-reactivity ofgene products, targeted

organs. the course ofinfection, and the pathological features of the virus-induced liver disease

(Roggendorfand ToUe, 1995).

The WHV genome is circular, but slightly larger than HBV. It has 3320 nucleotides

in length compared to approximately 3200 bp of HBV and shares approximately 70010

sequence homology with HBV (Figure 1.1). The intact WHY virion is also slightly larger (45

nm) than HBV (42 run), AJso, WHY constituent proteins demonstrate significant antigenic

emu-reactivity with those ofHBV. Consequently, this enables identification of serological

markers ofWHV infection by using the cross-reactivity of commercial assays for indicators

ofHBV infection (Werner et ai., 1979). For example, WHY surface antigen (WHsAg) and

antibody to WHsAg (arni-WHs) can be detected using kits available from Abbon Laboratories

(North Chicago, Q..) developed for detection ofhuman HBsAg and anti-fIBs.

Both WHY and HBV induce acute hepatitis that in about 10-15% of cases progress

to chronic liver disease associated with the development of HCC. However, among

hepadnavil1J5CS. WHY displays the highest oncogenic potential. believed to be caused by

integration ofviral sequences into host ceO DNA resulting in activation ofceIlular oncogenes.

in particularc-myc and n-myc (Hsu etaJ.. 1988 and Wei eta/.. 1992).

WHY can be transmitted horizontally by blood or body fluids and vertically from

infected mothers to offspring (Kulonen and Millman, 1988). In animals infected since birth.

up to 9QO/o deveJop a chronic serologically evident (i.e., WHsAg and anti-WHc positive)
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carrier state. Almost all ofthcse oflSpring inevitably develop HCC. a situation which parallds

that observed in man (Cova el aI.• 1993). Although WHY is hepatotropic, the lymphoid

system appears to be involved from the earliest stages ofvirus infection. A study by Korba

el aJ., 1989 reported that in woodchucks experimentally infected with WHY, viral DNA first

appeared in lymphoid cdls ofthe bone rtWTOW, followed by the liver. spleen. peripheral blood

!ympIKx:ytes, lymph nodes and 6naUy the thymus. Furthennore. mitogen stimulation induced

WHY replication in peripheral blood mononuclear ceOs (pBMe) from a chronically infected

animal. as evidenced by presence ofWHV DNA replication intermediates and WHY RNA

specific transcriptS in the stimulated lymphocytes (Korba el al, 1988). Non-replicating viral

DNA sequences have also been detected in other extrahepatic sites such as the pancreas,

kidney, ovary and testis of chronically infected woodchucks (Korba et ai., 1990).

In summary, the WHY infected eastern woodchuck provides the most adequate model

for studies on the natural course and the pathogenesis ofHBV infection in humans. Infected

woodchucks show similar liver disease profiles. Their relatively short life-span

(approximately 5 years) enables the study of tile development of each disease stage without

having to wait for years. Furthermore, since WHY is not infectious for humans, investigators

are not placed at risk by working with WHY. Thus. conclusions about the natural course of

WHY infection, mode ofWHV transmission, molecular and immunological mechanisms of

WHV·induced liver injury and HCC, as well as ceU tropism ofWHV may be applicable to

HBV infection in man (paroneno and Tennant, 1990; Roggendorfand ToUe, 1995).
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1..5 Viral PersistMce After Adlllt (hud lafectioa

Viruses have evolved a wide variety of mechanisms in order to persist and avoid

detection by the host's immune system. Many persistent viral infections do not cause any

obvious disease symptoms, whereas other's are symptomatic (Mahy, 1985). Vn! infections

can be divided into two general categories, cytopathjc and noncytopathic. In a cytopathic

(lytic) viraJ. infection, virus proliferation disruptS cell membranes or inhibits protein synthesis

causing tissue destruction. However. a cytopathic virus will eventually limit its own survival

by eliminating cells supporting its replication. Therefore. many viruses have evolved to

persist and reproduce in a host cell without killing it or causing excessive damage. These

noncytopathic viral infections may not cause any ovett injury or disrupt cell vital functions.,

but they may still interfere with cell differentiated functions (Oldstone. 1993a. 1993b). The

long term effects of such persistent infections may lead to disturbances in homeostasis and

eventually to diseases not trw:iitionally associated with viral invasion. Furthermore. cell injury

in these infections results predominantly from the host immune responses directed speci6caI.Iy

to the virus antigens exposed on the surface of infected cells.

'The following sections will discuss the antiviral inunune responses and the different

strategies which viruses have developed to evade both nonspecific and specific host immune

surveillance, along with selected examples to illustrate each mechanism.

1..5.1 The Aati-Virallmmuac Response

The primary function of the immune system is the recognition and elimination of
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foreign antigens. including viral pathogens. Defence against a viral infection is mediated by

both natural and specific immunity. In the first few days after invasion., the virus spread is

controlled by the host's innate immune responses, caUed natural immunity. The main

components of natural immunity involve physical barriers., such as skin and mucous

membnUJes, and specialized lymphoid cells that include macropbages and natural killer (NK)

cells. For example, macrophages phagocytose foreign particles and also produce cylokines,

such as alpha interferon (IFN-«) and twnour necrosis factor alpha (1"NF~a). These and other

cytokines act in a complex network to eradicaJ:e viral infections by inhibiting viral replication.,

inhibiting proliferation of infected cens. mediating the inflammatory response or activating

other immune effector cells. NK cells are lymphocytes which lyse virally infected cells. but

the killing is not major histocompatibility complex (MHC) restricted or induced by a specific

antigen. The mr.chan.ism ofNK cell cytotoxicity appeacs to be perforin mediated, as descnbed

below (Abbas ela/., 1994).

There are two main effector arms of the specific irrununc responses involved in

elimination ofpathogens; namely, humoral and cellular immunity. Specific humoral immunity

is mediated by B ceOs which upon encountering foreign antigens differentiate into antibody

producing plasma cells. Antibodies are essential in the early defence against viral infections.

Neutralizing antibodies may bind to viral envelope proteins preventing viral attachment and

entry into host ceUs. enhancing phagocytosis of viral particles as weU as, activating

complement lysis of fuU virions. Thus., antibodies help to reduce the amount of freely

circulating virus. Anti~vints specific antibodies can also mediate antibody-dependent ceUular



19

cytotoxicity (ADCC). Therefore, they can bind to infected cells that express viral antigens

on their surface. Then, the bound antibodies are recognized by Fe receptors of killer cells

which in tum will preferenterially kill the coated target ceO!. Specific antibody responses are

very imponant in preventing re-infection upon subsequent exposure to the same virus.

Memory B ceUs that appear after antigen stim.llation can persist long after the initial infection.

Then. upon subsequent exposure to the same antigen, stimulation of memory B cell clones

results in a rapid inunune response and production oflarge amounts of specific antibodies

with increased affinity for a particular foreign antigen (Abbas et a/.. 1994). These antibodies

can be passively uansferred from mother to offspring via the placenta providing protection

from infections until the newborn immune system matures (Zinkernagel. 1996).

Cellular immunity is mediated by two main groups ofT ceu.s. cytotoxic T lymphocytes

(eTLs), which kill target cells, and helper T cells, which provide help to B cells and other

immune effector cells. Almost all T cells mature in the thymus and express T cell receptors

(TCR) that are specific for particular foreign antigens presented by MHC molecules. The

MHC molecules are encoded by extremely polymorphic genes and they differ in their ability

to bind and present antigenic epitopes. There are two types ofMHC gene products, class I

MHC, which is expressed on almost all nucleated cells (except neurons and only at low levels

on hepatocytes), and class II MHC. which has a more restricted expression (Le.• B

lymphocytes, macrophages and dendritic cells etc.). Infected cells which display viral epitopes

in the context of class I MHC are lcilJed by cn.s which express CDS molecules. Helper T

cells, which express CD4 molecules. interact with ceUs presenting phagocytosed viraJ antigens
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in association with class n MIle (Abbas et al., 1994).

The principle mechanism of specific immunity against established viral infections is

virus-specific CDS· crt response. However, full activation of CTLs requires cytokines

produced by CD4. helper T cells and other ceUs afthe immune system (e.g., macrophages).

The antiviral effects ofCTLs include release of cytokines in the infected tissues and killing

ofinfccted target cells using either perforin or Fas-mediated pathways (Franco et al.• 1995).

In the perforin-dependent pathway. CTLs secrete and deposit perlorin granules onto the

target cell membrane. Perforin undergoes assembly into trans-membrane pores and thus

"punches holes" in the plasma membrane of the infected cell. In the second pathway,

interaction of Fas ligand on the surface of the en with Fas receptor on the target ceU

membrane induces programmed cell death (apoptosis) of the target cell (Whitton and

Oldstone. 1996). The T cell-mediated killing has an advantage over antibodies in that they

can recognize low levels of viral peptides. including regulatory and nonstructural proteins

which are not exposed on the virions (KAgi and Hengartner. 1996). Since the non-structural

proteins are usually made early in infection., CTLs can act to eliminate ceUs before they start

producing viral structural proteins and virions (Oldstone, 1994). Once an infection is

established. it is much more difficult to clear virus and therefore. efficient and rapid, virus­

specific inunune responses are ofprimary imponance in preventing virus persistence.

1.5.2 Strategies of Virus Escape from Host ImmuDe Responses

Viruses have evolved multiple ways to avoid recognition by specific T cells and
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antibodies and to establish a persistent infection. Each escape strategy can interfere with one

or more mechanisms of the antiviral immune responses described above (Section 1.5.1).

These viral escape strategies include: (I) silencing of viral gene expression (latency); (2)

infection ofimmunologicaUy privileged sites (e.g., neurons); (3) infection of immune effector

cells (e.g., T ceUs); (4) interference with antigen presentation on infected ceUs (e.g.,

modulation ofMHC molecule assembly); (5) mutation ofviral gene sequences to generate

escape variants (i.e., within T cell and antibody-recognition epitopes); and (6) induction of

immunological tolerance (Franco et al., 1995). It should be noted that most viruses which

can persist have established a complex virus-host relationship and utilize more than onc

immune escape mechanism. However, in order to simplify descriptions of these mechanisms,

a specific example is provided to illustrate each viral escape strategy. In many cases. the same

virus example is used for different immune escape mechanisms.

t.S.h ....tcnt InrectioD

Latent infection is defined as a persistent carriage of virus in which the viral genome

is present but only traces ofinfectious virus an: produced (Banks and Rouse, 1992). In order

for a virus to persist, it must be able to maintain its genome within the ceU, even if the cell

divides. For example, the retroviruses achieve this by integrating a DNA copy of their RNA

genome into the host cell chromosomes. In this form, viral gene products are not expressed

and the virus is undetected by the immune system since immunity is directed against foreign

proteins and is not programmed to distinguish between "self' and "foreign" nucleic acid. In
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general, the expression ofviral proteins during any persistent viral infection is down~regulated

rdative to their levels during acute infection (Oldstone. 1989).

One ofthe best examples ofviruses which develop a latent infection is herpes simplex

virus (HSV) (Banks and Rouse. 1992). HSV establishes a latent infection in neurons where

its gene expression is restricted, as only one region of the genome is transcribed. The latency

associated transcripts (LAn do not encode any protein products. but since neurons do not

express MHC antigens, viral antigenic epitopes would not be recognized by T cells anyway.

HSV also employs another strategy, i.e., infection ofimmunologicaUy privileged sites, as

described below (Section l.S.2b). Another member of the herpes virus family,

cytomegalovirus (CMV), also establishes a latent infection but its transcripts are not

detectable during the latency period (Bruggeman, 1993). Downregulation of the expression

ofviral proteins can also occur during chronic HBV infection. It is known that HBV DNA

sequences can integrate randomly into host cell genome. This may result in extensive viral

genomic rearrangements. which may reduce expression of virus gene products on the cell

surface and consequently. their recognition by the host immune system (Chisan and Ferrari,

1995).

1.5.2b Infec:tiOD or ImmuDologically Privileged Sites

Inununologically privileged sites are cells and tissues that are not easily accessible to

the immune system. For example, many viruses such as HSV, lymphocytic choriomeningitis

virus in nUce (LeMV), variceUa zoster virus (VZV) and measles establish persistence in the
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central nervous system. This system appears to be a filvourable site for virus persistence;

most likely, because it is protected from lymphocyte recognition by the blood-brain barrier

and contains neurons which do not express MIle molecules. Since neurons cannot be

replaced once destroyed and are essential for brain function, they have evolved unique

strategies to avoid injury, e.g., failure to present viral peptides in the context of MHC

molecules (ICIly el ai.• 1991). Similar strategy may be used by HBV during chronic infection

ofextrahepatitic tissues. HBY DNA sequences suggesting the presence of replicating viros

have been detected in many organs, including lymph nodes.. spleen., kidneys. pancreas, brain

and some endocrine tissues, such as, testis, ovary. adrenal and thyroid gland (Mason el aI.,

1993; Ogslon el aJ., 1989; Yaffe et al., 1990). Thus, extrahepatic sites which could be

inaccessible to CTLs due to microvascular barriers may serve as a reservoir of continuous

virus replication and virus particles released from such inununologically privileged sites could

reinfect the liver (Crusan and Ferrari, 1995).

1.5.2c lnrec:tioo of Immune ElTector Cells

It has been noted that all viruses known to be able to persist in their host are

Iymphotropic. as they infect cells ofthe immune system (Oldstone, 1990). These viruses can

also abrogate functions of the inunune system. The effector ceUs (lymphocytes and

monocytes), which nonnally participate in clearing the virus, can be themselves infected.

resulting in a selective immunosuppression against the virus itself or even a generalized

suppression of ceUular immune responses. For example, measles virus infects B and T
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lymphocytes and their progenitors (and also monocytes), arresting all these ceUs in the G,

phase and suppressing functions requiring ceil tenninal differentiation. This can result in

generalized immunosuppression, but does not prevent acutt infection (McChesney et aI.,

1987). In rare cases. foUewing acute measles infection, the virus can establish a slow

persistent infection in the brain leading to a fatal neurological disease, subacute sclerosing

pancncephalitis. It has been postulated that this viral persistence is caused by a diminished

CTL response (Dhib-Ia1but et aJ.• 1988), possibly via a similar mechanism seen during the

aane stage ofmeasles infection (Oldstone, 1990). Human immunodeficiency virus (HIV) is

another well known example of a Iymphotropic virus. The virus selectively infects CD4'

helper T lymphocytes and establishes a latent infection with periodic reactivation (Embretson

et al.. 1993). However, CD4· T ceU levels eventually decline due to specific CD8' eTL

response against infected ceUs that express viral peptides in association with class I MIle.

There are two possible consequences of CTL recognition; eTLs can either directly lyse

infected cells or the CTLs can release cytokines (e.g., lFN·y and TNF-IX) that interfere with

viral replication. Eventually, the depletion oflllV- infected helper T lymphocytes can lead

to generalized immunosuppression and severe disease (Oldstone el a/., 1996).

1.5.2d lnterfenace with Presentation of Virus Antigenic Epitopa on Infected ceus

"The abovcstnl.tegy can include: (I) blocJcing the assembly and/or transport ofMHC

molecules to the ceU surface and (2) suppressing elCpression of accessory and adhesion

molecules on the ceD surface which ensure that the TCR effectively recognizes the MHC-
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peptide complex and induces T-cel.I activation (Abbu et oJ.. 1994). Thus, impaired

prescnbon ofboth MHC and oeD recognition molecules on infected cells may deaease en.

recognition and consequently. virus can escape from inunune clearance. as the following

examples suggest (Rinaldo et oJ•• 1994).

Several rlifferent subgroups of adenoviruses are known to establish pcnistent

infections in humans by interfering with class I MHC expression. For example., experiments

perfonned with lymphoid and nonlymphoid ceU lines infected with subgroup C adenovirus

indicated that the virus early protein (EJ/19K) forms complexes with class [ MHC in the ER,

preventing the MHC from reaching the ceI.I surface (Komer and Burgert, 1994). In addition,

evidence from studies of subgroup A adenovirus infection has shown that the virus directly

interferes with class [ MHC mRNA transcription (Shemesh el aI.• 1991). Oecrea.sed

ex:pres!lion ofclass I MHC also occurs in Bw1citts~homa patients with persistent Epstein­

Barr virus {EBV} infection by a mechanism Icnown as "allele sdective downregulation".

Thesc: patients lack expression ofone or more class I alleles and this defect is associated with

resistance to killing by EBV-specific cn..s (Masuca:i el ai., 1989). Similarly, stUdies of

human CMV infection in vitro showed that the virus disrupts expression of class I MHC

molecules by causing their rapid degradation prior to export to the cell membrane.

Consequently, the CMV infected ceUs are resistant to lysis by virus-specific CTLs (Warren

eta/., 1994).

Downregulation of class II MHC is also known to occur during persistent CMV

infection in t.J.mans. Scdmak el oJ., 1994 pre:serUd evidence that CMV downmoduJates IFN-
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Y function. whicn is normally responsible for enhancing class n MIle mRNA and

gfycoprotein expression. The same mechanism has also been reported during infection with

measles virus(Leopardi etaJ., 1993) and mY (petit f!/aJ., 1987).

Other studies have shown that decreased expression ofadhesion molecules, such as

lymphocyte function associated antigen (LFA-3) and intraceUulaT adhesion molecule (lCAM­

1), is involved in EBV escape from specific CTLs. However, the mechanism ofsuppression

of these adhesion molecules is unknown.

Although there is no direct evidence that HBV can influence expression aCthe MHC

or the cell surface accessory or adhesion molecules contributing to the TCR·MHC·peptide

interactions, studies have shown that HBcAg can inhibit IFN-P gene transcription (Whitten

ela/., 1991). In addition. the virus polymerase protein appears to be able to inhibit cellular

immune responses induced by 11 and y IFNs(Fostcretal.• 1991). Thus. HBV may be able

to indirectly downregulate expression aCthe class I MHC and accessory molecules (Chisan

and Femri, 1995). Observations from our laboratory have shown that WHV interferes with

expression of class l MHC heavy chain on infected hepatocytes in chronic WHY infection

(Michalak er at.• unpublished).

I.S.2e Viral Variaatl

Many viruses can mutate rapidly, especiaUy those which lack proof-reading enzymes

during replication. as mentioned in Section 1.3.2. The variants which emerge may have

increased ability to evade both T and B cell immunity. For example, the mutations can
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interfere with antibody recognition or alter residues critical for MIle binding or TCR

recognition (Ahmed el aI., 1996).

Antibody resistant viral variants are very common, as the alteration of viral proteins

essential for antibody recognition allows effective escape from humoral immune responses.

For example, amino acid substitutions in the envelope protein armY affects its recognition

by neutralizing antibodies (Shioda el aJ.• 1994). In an analogous manner, viruses can also

nuate epitopes which are presented to T cells. Thus, alterations in viral peptides can occur

at residues which bind to MHC molecules or those that directly contact the TCR. These

mutations can either fail to activate or may even antagonize the T celJs responsiveness to wild

antigenic peptide (Franco et aJ., 1995). Such viral escape mutants have been demonstrated

in lymphoid tissues during persistent LCMV infection of mice (Salvato el aJ" 199 [). It has

been found that mice persistently infected since binh spontaneously give rise to viral variants

with a single amino acid c1W1ge in the TCR contact site, resulting in suppression of the CTL

response and virus persistence. TCR antagonism is a process whereby amino acid

substitutions afTCR contact sites creates variant peptides that can still interact with the TCR

but are unable to deliver a full stimulatory signal, thus they may act as antagonists. These

viral variants can also inhibit T cell activation by the nonna! (wild) stimulatory antigen. For

example, HBV variants with one or two amino acid substitutions in the HBcAg T ceU

immunodominant epitope (amino acids 18-27) were shown to antagonize CfL recognition

of the wild-type epitope in chronically infected patients (Bertoleni el aI., 1994). In this

situation, cells which expressed both wild-type and mutant variants on their surface were
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protected from elimination by CTLs specific for the wiJd·type epitope enabling persistence

ofHBV (Chisan and Ferrari, 1995).

1.5.zr Tolerance Dariag Adult Ollftt InfKnoD

In adult onset viral infection, invnunological tolerance might be caused by the antiviral

CTL response to a high virus load. An excess of viral antigens on numerous antigen

presenting ceOs (APC) may induce a strong antigen-specific effector T cell response.

Eventua1.Iy, the mature effector cells will aU die within a few days, resulting in the deletion of

this specificity from the repenoire (Zinkemagel, 1996). In other words. virus-specific CDS'

CTLs which are overstimulated by a high viral load can be driven to clonal exhaustion

(deletion) in the periphery (Aluned eral.• (996). This situation has been reponed during

LCMV infection in mice, which fails to eradicate infection and leads to virus persistence

(Moskophidis el aJ., 1993). It is also poSSIble that during adult onset oflffiV infection some

ofthe virus-specific T ceUs may be deleted in the periphery through overs'timulation by high

doses ofviral antigen. Evidence for this theory comes from observations of chronic healthy

HBV carriers who demonstrate large amounts ofHBsAg in hepat.ocytes and in the circulation.

It has also been documented that chronic WHY infection is associated with expression of

large quantities ofvirw envelope in hepatocyte plasma membranes (Michalak and Lin. 1994).

This may provide an immunologically resistant barrier at the hepatocyte surface. which may

contribute to virus persistence by protecting virus from elimination within infected ceUs.

ThJs, in both examples ofHBV and LCMV infections. the virus may successfully persist by
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evading the immune responses through their overstimulation with an excess of viral antigens.

1.6 Virus Vertical Trammissioo

Mother to child transmission is a major cause ofHBV spread in areas of the world

with high incidence ofthe virus and is the main route for HBV to establish a chronic carrier

state. As mentioned before (Section 1.2), 70-90"10 of children infected with HBV since birth

become chronically infected, whereas less than 10-/0 of adults exposed to HBV develop a

persistent infection. Therefore, it is likely that the immune system maturity influences the

host's response to HBV infection. The fonowing section will discuss. among others, the

devdopment of persistent viral infection in the context of an immature inunune system.

1.6.l Facton lnOuendog Virus Vertial Transmiuion, Viral Penistcnce aDd Oiniul

Outcome

The probability ofvertical transmission and the clinical outcome ofvira.l infection in

offspring is influenced by a number offaetors. They include: (I) routes of transmission; (2)

viral load (viraemia). (3) differences in viral strain, i.e., its cetl tropism and replication

efficiency, and (4) host anti-viral immune response. i.e., presence of matemal antibodies and

anti-viral CTLs in the newbom and maturity of the immune system. Although all of these

taaOI'5 are known to influence the risk of mother to child infection and the clinical outcome

ofinfection in the newborn, they mayor may IlOt have an effect on virus elimination or viral

persistence. In some perinatal viral infections, the virus appears to be rapidly cleared after a
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brief acute infection, whereas in others the virus can establish a chronic infection, without

causing symptomatic disease. As it will be discussed, virus persistence in offspring is more

likely to be detennined by filctors such as differences in vind strain and maturity ofthe fetal

immune system.

l.6.1. Routes orVutial TnaSDlWioo

Vertical transmission from infected mothers to their children can occur by three

possible routes: (1) in uleTO (congenital) via tlte placenta, (2) at binh (natal). i.e., during

passage through the birth canal and, (3) after birth but during the neonatal period (postnatal),

;.e., via maternal milk during breastfeeding. There are a number of viruses which can be

transmined from mothers to newborns. These perinatal viral infections in humans include:

infections with: coxsackieviruses B, CMV. HeV, HSV. my, human T-Iymphotropic virus

type I (HfLV-I). measles, rubella, parvovirus 819, VZV, as well as LCMV in mice(Ueda

eta/., 1992).

There are different routes ofvirus transmission. For example, HSV, HeV, HTLV-I

and coxsackieviruses B are transmitted during the natal and postnatal period. congenital

infection occurs in rubella, CMV. VZV and parvovirus 819, whereas mv is believed to be

transmitted via all three routes (Ruff, 1994). In children born to mothers with acute or

chronic HBV infection (i.e.. with serologically evident infection), transmission ofthe virus

during the nataJ or neonatal period is known to occur, but congenital infection is not as

common (Hollinger, 1996).
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Generally, it appears that the earlier in development the infection occurs, the more

serious it is (Donley. 1993). ThecJ.injca1 outcomes ofcongenital (i.e. in utero) viral infections

tend be more severe. including embryo resorption, abortion, stillbirth, malformation,

premanuity, and growth retardation. For e:xampIe. during congenital rat parvovirus infection,

the virus targets mitotically active cells. Thus, since embryos with rapid cell division are

particularly susceptible to the virus. the early infection in utero can result in stillbirth,

congenital malformations, and neorwal death (Gaertner et aL. 1996). However, the outcome

can also be less serious and it could be more similar to viral infections OCCUfTing during the

naral or postnatal period. which can result in acute disease, persistent symptomatic infection

or in an asymptomatic infection in apparently healthy infants (Donley. 1993; Stamos and

Rowley, 19(4). HBV infected infants can display a nwnberofsymptoms ranging from severe

acute hepatitis causing death, serologically evident chronic infection, self-limited disease or

an apparent asymptomatic infection.

t.6.1b Viral Load

It was thought that threshold concentntions ofa virus are required in order to breach

the placenta and cause lethal infection aCthe fetUs. For example. studies have shown that

perinatal transmission ofHBV is dependent on a high maternal viral load, using the presence

ofHBeAg as an indicator of viremia (Okada el a/., 1976). A more precise determinant for

predicting risk of infection, according to Burk el a/. (1994), is the level ofHBV DNA in

maternal serum. Infants born to mothers with circulating serum HBV DNA greater than 1.4
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ngIml had significantly higher rates ofserologicaIJy evident infection. Similarly, babies born

to Hev infected mothers with high IeYels ofWae:mia (~Io' Hev RNA/ml) had increased

risk of infection (Ohto et oJ.• 1994; AizaIci et oJ., 1996). In addition. pregnant women

infected with human papilloma-virus type 16 (HPV-16) and with a high viral load in ccrvical

cells more frequently transmit HPV-16 DNA to their inUnu then those with a lower vims

load (Kaye et aI.• 1994; Cason 1ft aI., 1995). Specifically, it has been determined that aU

women in which amplification by polymerase chain reaction (peR) ofcervical cells resulted

in more than 32S HPV-16 genome copies peT peR sample transmitted infection to their

infants, whereas aU those with less than 22 HPV-16 genome copies failed to pass symptomatic

infection to their children (Kaye et aI., 1994). However, the viral load does not influence

development of. penistent infection. Infants found HPV DNA positive 24 hours after binh

were still positiveu6 weeks irrespective ofwhethcrtheirmothr:r had a high or low vinlioad.

Comparable results were found in studies of rat parvovi.ru.s infection (Jacoby et aL. 1988).

In this investigation. prc:gnam I11S were inoculatt.d either with 2 x 1cY or 2 xla'median tissue

wlture infective dose (TCID,J. Although virus was not detected in fetuses from dams gi~

the lower doseofvirus (LI!., 2 x loJ reID), fetuses from matema111l1S challenged with higher

doses (i.e.. 2 x 10' TeID.> were severely malfonned and carried infectious virus.

Nevertheless, the researchers bel.ieved that small amounts ofvirus appeared to be adequate

to sustain persistent infection, and that immunological status and genetic constitution may

influence viral persistence.
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U.lt Viral V.riaab

A characteristic feature ofmmy viral infections is the presence ofheterogeneous virus

populations. 'These complex mixtures of related but non-identical genomes have been termed

viral q.JaSispecies. Such mutations are most typical efRNA viruses because their polymerases

lack a proofreading function. Although HBV is a DNA vinJs, it uses reverse: transcriptase in

its replication cycle, thus it is also subject to a high mutation rate during replication (see

Section 1.3.2). Heterogeneous viral populations have been detected in HBV. HeV and mY.

infected mothers, howevez-. usually only a minor fraction ofthe many viral quasispecies from

the mother is predominant in the infected infant (Wolinsky et al., 1992; Weiner et al., 1993;

Von Wei2Siclc:eretal., 1995). As the following examples suggest, selection ofcertain variant

genomes could increase the rate of vertical transmission and hence influence the course of

neonatal viral infection.

As mentioned above (Section 1.6.1c). previous studies have shown that infants born

to HBeAg-positive carrier mothers usually become chronic camers reactive for HBsAg and

HBeAg. A HBV variant with mutation in the pre-eore region of the C gene has been

identified as unable to express e antigen. This variant is believed to be a HBV escape mutant

from specific eTLs and is usually associated with chronic hepatitis and severe liver diseases

(Carman e/ al., 1989). In babies born to anti-HBe--positive mothers, HBV DNA sequences

showed a mixture of wild-type and this HBeAg non-expressing variant. In contrast, HBV

DNA from babies born to HBeAg~positive mothers showed wild type sequences only.

Newborns infected by mixed HBV populations seemingly recovered from hepatitis and
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seroconverted to anti-HBs.. while those with wild type alone became chronic canicn

(Raimondo el aL, 1993). In general, only • small fraction of the mothers vinI

subpopulations appears to be transmitted to her child. It is possible that the strains

transmitted have only reoentJy appeared in the mother. thus an antibody response has not yet

been mounted allowing their sdec::tive trans:nUsion to the chikt (Von Weizslclc.er et ai., 1995).

Selective transmission of variant genomes have also been demonstrated for Hev

infection. The hypervariable region (HVR) of the HeV genome encodes the viral envelope

gIycoproteins and is the most rapidly evolving region ofthc HeV genome. In addition. the

HVR is known to encode protectiYe epitopes lhat are subject to immune selection. In infants

infected by vertical tnnsnUssion. unique vanantll with mutation in the HVR differed

significandy &om the nwemal viral popuJation. It is suggested that these variants may have

some: selective advantage over other viral species in its ability to escape inunune surveillance,

cross the placenta or replicate efficiently in the host (Inoue etoJ.• 1992; Weiner el aI.• 199);

Aizaki et ai., 1996).

Analysis of molher to child transmission of HIV has also revealed significant

differences in the maternal and infant vinI populations. Maternal viral sequences show

greater sequence variation. whereas the prevalent virus genotype in the infant was derived

from a single form present in its mother (Wolinsky el aI., 1992). Furthcnnore, viral variants

which have been identified show sequence mutations which affect cell tropism and replication

efficiency (De Rossi et aJ., 1991; Scarlatti et a/., 1993). Studies by Scarlatti et aJ. (199])

have isolated (W() types of HIV viral isolates called "s1owllow" and "rapidlhigh". The
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"rapidlhigh" viral variant is able to productively infect ceil lines and is efficiently transferred

from mother to c.'illd. In addition, vinJses with the "rapidlhigh" phenotype yield a higher viral

titre in PBMe and can induce ceU fusion. 80th ofthese processes enhance virus spread and

are correlated with vertical transmission and a poorer prognosis in infected children. A

similar study by De Rossi el aI. (1991) identificd three types offfiV variants in children

infected by vertical transmission. The rapid (R) type variant replicates rapidly, shows a high

viral copy IIUII1ba" in PBMe. and demonstrates a tropism for T lymphocytes. Infection with

this variant correlated with severe clinical symptoms. Children infected with an intennediate

(SIR) or the slow (5) variants have a reduced viral replication. a lower HIV copies per

infected PBMe. and demonstrate monocytotropism resulting in a milder or even an

asymptomatic viral infection.

t.6.1d Maternal and Fetal Immune Responses

The outcome of any viral infection is influenced by a struggle between the host

immune response., which acts to recognize and destroy foreign materials, and strategies

adapted by the virus to avoid cli.mination. In many cases. the clinical signs ofviral infection

are a result ofthe host's immune reactions toward the virus and destruction of infected cells

(see Section 1.5.1). 'ThJs, the maternal and fetaJ inunune responses against a virus are critical

determinants ofvertical transmission, clinical effects of infection, and the likelihood of virus

persistence.

For elCample, several studies have suggested that the presence of matemal antibodies
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against the envelope glycoprotein ofmv is correlated with a lower vertical transmission rate

(Rossi et m.. 1989; Goedert e/ aJ.. 1989; Devash el aL. 1990; Ugen et oJ., 1997). The

presence of these maternal antI.'bodies may prevent mother to child transmission by providing

immunological protection through virus neutralization. inhibition of virus binding to cen

surface receptors or prevention of vinJs..<:eU fusion. In addition, passive transfer of ffiV

antibodies which can mediate ADCC appears to be correlated with a bener clinical outcome

in the newborn. such as providing protection against disease progression to acquired

immunodeficiency syndrome (AIDS; Ljunggren et al., 1990). A similar correlation was

observed in the caseofvertical transmission ofHBV and the presence ofmatemal antibodies

to the HBeAg (anti-liBe) (Okada et oJ.• 1976). Almost all HBeAg positive mothers transfer

HBV to their infants. who usually develop a chronic carrier state. In children born to anti·

HBe positive mothers, a symptomatic infection is rare but when it does occur, it is usually

mild and self-limiting. [t is pOSSIble that passive transfer of anti-HBc may playa role in

neutralizing HBeAg and reduce its capacity to induce immunological tolerance, as it will be

discussed below (Raimondo el af.• 1993). VUU5-specific CTI..s are an impolUnt arm of the

cell-mediated immune responses against viruses. They act to destroy vira.lly infected cells

after infection and hence they may restrict virus spread (Whitton and Oldstone, 1996). For

example, specific CTLs against mY-I have been detected in children of mY-infected

motheB. Acorrdation was observed between tUgh activity ofanti-ffiV-1 eTLs detected less

then 2 mo after birth and the lack of disease progression. However, with the onset of

symptomatic AIDS in some children, the virus specific en. response declined. In other
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cbiJdren. who became seroIogjcaUy negative for HI\'. specific CTLs could still be detected

(Ow::ynieretaL. 1992). 1la1s, it isbelieYed that a strong en. response helps to control. virus

infection in childrat born to H1V-infected mothers.

Fwtber evidence for the importance of CTI.s in the antiviral immune response is

prov;dcd by ecperiments with athymic rats. It is apparent that both CTI..s and helpc1" T cdls

mature in the thymus and are essential to prevent persistent viral infection in some situations.

For example, in neonatal rats, infected with rat puvovUus via vertical transmission, ralS that

lacked a thymus (athymic) had morc difficulty with cleannce ofviral DNA than euthymic

rats, in which case virus vertical transmission resulted in viral persistence (Gaertner el al.•

1996).

The dfectivmess ofthe host immune response against a virus also depends upon the

marurity ofthe immune system, tOOs viral. persistence is affected by the age at which infection

occurs. For example, ms infected at birth with rat parvovirus or during early infancy

devdopc:d a persistent. infection for up to 6 mo aftCf' infection, but in juvenile or younger rats,

the symptomatic infection was usually quicldy resolved (Jacoby et al., 1991). Although the

mechanisms ofviral penistcnce in younger rats is not well understood. it has been attributed

to immune system immaturity and the development of immunologic tolerance. It is believed

that tolerance to an antigen is acquired during the development of the immune system. The

antigens which are encountered during embryogenesis are regarded as self, whereas antigens

seen after the immune system has matured are considered foreign and elicit an immune

response. nw. durins congenital viral infections the developing immune system mistakenly
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~ the virus as 'sdf' and atrj virus speci6c T cd1s are deleted or inactivated, resulting

in the abscDce ofboth anti-viraJ. en.. as wdl as, virus specific anbOocfies. This could possibly

result in life-Zong viral persistence instead of virus recognition and its dimination by the

immune system (Atmoc1I989). ToIennce has also been suggesced as a mechanism for viral

persistence in other vinJ Cnfec:tions that persist after exposure of the fetus or neonate to such

virusesasLCMVinfect:ionofmic:e, HBV. CMV. B19 parvovirus. HSV. HTI..V-l, mv, and

rubella infection in humans (Ahmed and Stevens, 1990). Congenitally acquired LCMV

infection in mice is one of the best studied models of tolerance to a viral infection. Mice

infected since birth become life-long carriers and fail to develop a specific CTL response.

However. experiments have demonstrated lhat it is possible to cure these mice of a chronic

viral infection. Transfer ofLCMV-specific cn.s into mice with congenitally acquired LCMV

infection is able to dear vinJ antigens from the thymus and eliminate viral persistence. After

the thyrru is cleared ofvirus, LCMV-specific T ceUs which subsequently emerge are able to

mount an efficient immune response and abrogate tolerance to the virus (Jamieson el aL.

\99\).

Induction of immunological tolennce is probably the reason why exposure to HBV

during early development most often results in a life-long persistent viral infection (Atuned.

1989). In this respect, a possible role for HBeAg has been suggested (Milich et aJ.,1990).

Although the function of HBeAg in the HBV life cycle and in the pathogenesis of infection

is unknown, some investigaton believe that there is an association between transplacental

passage of circulating matcmal HBeAg and the induction ofT cell tolerance to the HBV
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oocleocapsid in infants born to chronically infected mothers. Both HBcAg and HBeAg share

substantial amino acid sequence identity (see Section 1.3.3) and as a result they have common

epitopes important for T ceU recognition and hence they demonstrate significant antigenic

cross-reactivity. Thus, in lltero exposure to HBeAg could affect the immune response to both

HBcAg and HBcAg at the T cell level, resulting in a failure to clear the virus and leading to

the development ofpersistent infection in the newborn. In addition. these infants also fail to

produce amj-HBe probably because of their exposure to circulating maternal HBeAg, which

induced tolerance at the B ceU level. Since the HBcAg does not freely occur in the

ciro.dation. most infected infants develop anti-HBc (Milich etaJ., 1990 and 1995). However,

it is postulated that the absence of anti-HBc in some infants is also caused by the induction

of B cell tolerance. if there are sufficient levels of transplacental HBeAg and given the

susceptibility ofthe neonatal. irrumme system. This serological profile appears to be transient

since in several cases reponed, tolerance cventua1Iy wanes and seroconversion to specific viral

antibodies occurs with immune system maturity (Ni et aI., 1993). Furthermore, newborns can

produce specific antibodies after immunization against HBV with the HBsAg vaccine,

indicating that tolerance induced by early exposure to HBV surface antigens may still be

reversed (Milich et a/., 1990). However, in addition to HBeAg, exposure to other HBV

antigens in utero could also be responsible for induction orimmunological tolerance and the

consequent development ofa persistent viral infection (Chisan and Ferrari, 1995).
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l.7 1.0_1'"Term CODRqUtllces or Penisttllt VinllDfectiODS

(n summary, many viruses Maiu'l indut::;e cluonic infections are major human pathogens

causing significant morbidity and mortality. Although the virus may not cause severe tissue

destruction by interfering with a vital ceU function, such as protein synthesis or cell membrane

integrity, it may subtly alter the cell's differentiated or, so called, luxury function (i.e.,

production afhormones or cytokines). Over time. this persistent disruption could lead to

disrurbances in homeostasis and eventually disease. In fact, many diseases of the lymphoid,

endoaine and nervous systems, whose causes are wrrendy unknown, may be caused by low­

lcvd persistent viral infections. For example, in mice persistently infected with LCMV since

birth, the virus was able to replicate nonnally in the pituitary without causing any cell lysis or

disrupting the cell morphology. However, the infected cells showed a deficiency in growth

hormone synthesis which interfered with the animal's growth and development resulting in

a significant decrease in the animal's body weight and length (Oldstone, 1993a). As

mentioned before (Section 1.2), chronic persistence ofHBV infection is clearly linked to the

development of HCC. either by a direct mechanism ofvinLl gene integration and activation

ofceUuIar oncogenes or indirectly, via the host immune system induced hepatoceUular injury

and hepatocyte turnover (Ganem, 1996). However, the viral persistence, especially at

extrahepatic sites, could lead to the development of other diseases presently not being

recognized as those associated with HBV infection.
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1.1 Purpose ortJautltd)'

Vertical transmission of HBV is an important mechanism by which the viJUs is

mairnined within the b.unan popu!aDon. The majority of infants infected since birth become

chronic carriers of the virus and represent an important reservoir for infection of healthy

people. Futthmnor"e, they are II significant risk: for the development of severe liver diseases.

including cirrhosis and HCC. Recent studies have documented that apparently heaJlhy

individuals, years after complete clinical and serological recovery from acute HBV infection,

still cany low levels ofHBV in the circulation and in lymphoid ceUs. to addition, findings in

a woodchuck model of hepatitis B have demonstrated that the hepadnavinJs can persist at

trace quantities for life in animals after complete spontaneous recovery from experimentally

induced acute viral hepatitis. Therefore., it is conceivable that the virus persistently carried

by convalescent mothers can be tBnsmitted to their offspring. In the present study. the

woodchuck model of HBV infection was used to detennine whether such vertical

transmission ofhepadnavirus is possible and usa. what are the implications of this infection

in the offspring.

The specific objectives of this investigation were as foUows:

(I) To determine wbethervertical transn'Ussion ofthe hepadnaviral genome occurs from

woodchuck mothers with a past history of recovery from acute vin.I hepatitis to their

offspring.

(2) To identifY tissue reservoir! of persistent hepadnavirus replication in these offspring.

(3) To characterize physicochemical properties ofparticles canying WHY DNA in sera
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and in circulating lymphoid cells of the offspring.

(4) To test whether the offspring carry biologically competent WHY which is infectious

to WHV·naive woodchucks.

(5) To determine ifthese offspring are susceptible to challenge with infectious WHV and

can dcvelop serologically evident WHY infection and hepatitis.



CHAPTER lWO - MATERIALS AND MEmODS

Eleven oflSpring (3 males and 8 females) born to four woodchucks convalescent from

a past episode ofacute WHY hepatitis weI"e the focus of this study. All the offspring were

born in the woodchuck facility maintained by the Laboratory of Molecular Virology and

Hepatology Research at Memorial University ofNewfoundland, St. lohn's., Newfoundland.

The animals were kept under dietary, environmental and biosafety conditions established

specifically for this species in our colony. The newborns wen: nursed by their naturaJ mothers

unti1 weaning at approximately 6 to 8 weeks (wks) ofage. Then, they had unrestricted access

to a standard herbivore woodchuck diet of fresh vegetables and water ad libitum.

1.1 Materaal woodcbucks

Among four females whose offspring were investigated in this project, three animals

(#A, #B and #C) were infected with WHY in this laboratory by intravenous (i.v.) injection

with an infectious virus pool (Michalak: et ai., 1989). whereas the fourth woodchuck (flO)

was exposed under undetermined conditions to WHY prior to arrival to our colony. All

animals inoculated with WHY developed acute hepatitis and subsequently completely

recovered from the disease. Onset ofacute infection was regarded as when WHV DNA and

WHsAg or antibodies to WHY core antigen (anti-WHc) appeared in the circulation after

administration of virus. In two mothers (#A and #8), &CUte hepatitis was confinncd by

histological examination of liver biopsies which were taken approximately 6-8 wks after the
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emergence of serum WHsAg or anti-WHc. Resolution of the aeute episode of WHY

infection was diagnosed when WHsAg wu perTlW'lCRtIy cleared from the circulation.

Importantly, an J WHV·inoculated woodchucks (MA. lIB, and NC) devel.oped anti-WHs

foUowing WHsAg disappearance and one ofthcm (ND) remained &nbbody reactive until the

birth ofthein\l'estigaled offspring. Overall, the episode ofserologicalJy evident (i.e., WHsAg

positive) acute infection lasted between 3 and IS wks (mean ± SO, 9 wIcs ± 6). The period

between WHsAg clearance from the serum and parturition in these females ranged between

17 and 2S wks(mean± SO, 21 w!cs± 3.6). All these woodchuclcJ were a part aCthe animal

cohort participating in the study aimed at the determination of the longevity of WHY

persistence and pathological consequences of WHY DNA carriage acquired after a self­

limited episode ofacute hepatitis (Mjchalak et aL. manuscript submitted) and they wen the

only animals wtEh prociJa:d offSpring. The buth maternal woodchuck (#0) was anti-WHc

reactive and WHY DNA positive and had no WHsAg or anti-WHs at the timc ofarrival to

the Iabond:ory. This arimal cleared anti-WHc 7 wks prior to parturition. Two liver biopsies

obtained at 12 and 17 wIa afta" the animal's arrival showed normal liver morphology. Taken

together. these data indicate that although I#D woodchuclc was evidently exposed to WHY

in the past, it completely resolved the disease. as judged by both serological and histological

criteria, but remained a persistent carrier ofWHV DNA

2.2 OffspriDg

The numbcrofoffspring, available forinvcstigation, that were born to each aCthe





Table 2.1 Maternal woodchucks convalescent from acute WHY hepatitis and their offspring
investigated in this study

Offspring

To"" WHYMother Observation
Animal Period Challenge

(roo)' (mo)'

#A IAIF' n.a.·

#B 2BIF 4
3B1M' IS
4BIM 42

#C ICIF 22

NO 6D1F 31 23
7D1F 42 23
801M 42 30
9DIF 42 30
IODIF 42 u
lIDIF 42 n.a

l mo, months after birth
IF. female
) M, male
• n.L, not applicable

46
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longa- then a 6 mo period. liver biopsies were performed at least once yearly. In the case of

autopsy (2BJF, 381M, SCIF and 6DIF), serum. PBMe, and samples from liver and lymphoid

organs (spleen. bone marrow, lymph nodes and occasionally, thymus) were coUected. From

animaliAIF, only liver and fragments of spleen, thymus and lymph nodes were available for

investigation.

2.•U Blood Sampling

Blood was collected under a general inhalant anaesthesia using isofiuorane (CDMV

Inc.• SL Hyacinthe. Quebec. Canada). Approximately 10-15 mI of blood was collected from

the digitalis vein in either leg using a butterfly catheter. The blood sample was divided into

two parts, approximately 10 mI was aliquoted into vacutainers containing sodium

ethylenediamine tetra-acetic acid (EDTA; lavender top; Becton Dickinson Vaeutainer

Systems, Rutherford, N.J.) from which plasma and PBMC were isolated, as described in

Sections 2.3.3 and 2.3.4. The remaining approximately 5 mI sample was collected using a

vacutainer which ltad no additives (red top; Bceton Dickinson) and used for isolation of

serum, as described in Section 2.3.2.

2.3.2 Serum IJOlatiOD

For isolation of serum, the blood sample coUected was left for approximately I hour

(h) at room temperature until a clot had fonned. Then, each tube was spun at 720 x g for 10

minutes (min), the serum was removed and placed into sterile I.S-ml eppendorftubes. To
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prevent contamination. each blood samp~ was handled separately and serum divided into

smaD aIiquots (approximatefy 0.5 rn1 each), undef" aseptic conditions.. using disposable sterile

plastic ware, and stored at -80·C.

1.3.3 Plasata CoIIectioD

Plasma was collected after density gradient centrifugation of whole blood used for

PBMC isolation (see Section 2.3.4). The upper clear layer of supernatant (plasma) was

carefully removed, poured into sterile plastic tubes (approximate1y 1-2 ml per tube) and stored

at -80·C. To prevent contamination. the same precautions as those described above for

serum collection were undertaken.

2.3•• Isolatio. or PBMe aDd Splmocyta

FIve mI ofblood was layered over 4 mI ofa Histopaque-1077 (Sigma Chemical Co.,

Sl l...ouis. MO) density~ and centrifuged &1400:c g for 30 min. Cells were harvested

from the intaface, washed 3 times by centrifugation at 400r g for 10 min with a tola! of45

ml ofHanks' balanced salt solution (HBSS; G1bco SRI.. Gaithersburg. MD). The final wash

was saved, spun at 720r g for 30 min. dec:antc:d into a sterile 15 ml tube and stored at -20·C.

CdIs were counted in a haemocytometerafter staining with trypan blue (Gibeo BRL). Then,

cells were aliquoted at a concentration of I x 107 per ml in 9QOA heat-inactivated fetal calf

serum (FCS-HI; lmmunocorp, Montreal. Quebec. Canada) and 10% dimethyl suIfolcide

(DMSO; Sigma Chemical Co.) into sterile 1.8-mI polypropylene tubes (Nunc CryoTubeTW
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vials; Gibco BRL). Finally, vials were frozen at _10°C overnight before storage in liquid

nitrogen.

2.3.5 ....parotomits and CoDec:tioa or Liver Biopsies

In animals observed for longer then 6 mo, serial liver biopsies were perfonncd at

yearly intervals to determine WHY genome expression and status oftiver histology. In some

offSpring, up to 4 biopsies wer-ctaken during the course oCthis study. Each liver biopsy was

perfonned by surgica1laparolomy foDowing standard aseptic methods. In preparation for

surgery. the animal was sedated by an intramuscular injection of a mixture ofketamine (23

mglkg, Ketaset; CDMV [nc.) and :cylazine (10 mglkg. AnaSed®; Lloyd Laboratories,

Shenandoah. la), and then anaesthetised with 24% isofJuorane (CDMV Inc.) provided by an

anaesthetic machine (Pneumotech, Dartmouth, Nova Scotia, Canada) with a face mask. An

incision was made along the midline ofthe abdominal wall (1.5-2.0 em below the diaphragm)

and a piece of Liver tissue (approximately 0.5 eml
) was taken using surgical forceps. After

cessation ofany bleeding with absorbable haernostat gauze (Johnson & Johnson Medical Inc.,

Arlington. Tx), the abdominal wall [ayers were closed by standard surgical procedure,

Laparotomies were perfonned by Dr. T.I. Michalak with assistance from Ms. C.L. Trelegan

and Mr. L. Grenning or the author in the Animal SurgeI)' Unit, Faculty of Medicine,

Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

The liver tissue fragment was divided under sterile conditions into several pieces,

which were preserved for DNA or RNA extraction and for histological and



50

immunohistochemical examinations. Preparation and storage oftissuc samples for each of

the abo....e purposes is described in Section 2.3.8.

2.3.6 COIkdiOD of Spec:.imeJll at AulOpl}'

For autopsy, animals were injected with a xylazine and ketamine mixture. Then,

approximately 10 mI of blood was collected for serum isolation (as described in Section

2.3.1), followed by an injection into the same vein of 10 mI of an anticoagulant, citrate

phosplwe dextrose adenine solution (CPDA-I; Fenwalill; Baxter Healthcare Co., Deerfield.

IL). Then, 50-100 mI of blood was collected by heart puncture and used for isolation of

plasma and PBMC. as described in Sections 2.3.3 and 2.3.4. After opening the abdominal

cavity, organs were removed under aseptic conditions. Typically, samples aCthe following

tissues were collected; liver. spleen, lymph nodes, bone marrow, and skeletal muscle. In some

cases, thymus was also obtained. In seJected cases, most of the splenic tissue was used for

isolation oflymphoid cells (splenocytes). as described below.

2.3.1 Isolation of Splenocytes

In some autopsy cases (381M, 60IF, #2601M, #269/F, and #278/F) splenocytes.

containing mainly lymphocytes. were prepared from spleen. For this purpose., spleen tissue

obtained at autopsy under aseptic conditions was chopped into small pieces. washed with an

excess of cold HBSS and then, gently pressed through a fine wire mesh as it had been

previously described in detail {Michalak etaJ.. 1995). The suspension thus obtained was used
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for isolation ofsplenocytes following the procedure described in Section 2.3.4.

2.3.' Processial of Liver Biopsies ud Autopsy r ....e Specimetls

Tissue fragments obtained at autopsy, were preserved for DNA or RNA isolarion.

histological analysis and immunohistochemistJy. DNA or RNA extraction was canied out

by the author. For this purpose. severa1 smaD (0.5 - I mm~ tissue fragments, collected under

aseptic conditions. were placed in Nunc CryoTubenc vials (Gibco BRL), snap frozen in liquid

nitrogen. and stored at -80·C until use. Isolation of nucleic acids was done as described in

Sections 2.5.2-2.5.3. Preparation of samples for immunohistochemistry or histology wa5

done by other investigatof3 in the laboratory, as described elsewhere (Michalak ~l al., 1989

and 1990).

2.4 SttolctPcal AssaYJ

2.4.1 Detectioa ofWoockhudc Hepatitis Sarf.ce Aatize:a (WHsA&)

WHsAg was detected by a "sandwich" radioimmunusay (RIA) using cross-reactive

AUSRlA-U kit for detection ofHBsAg (Abbott Laboratories. N. Chicago. IL). Serum or

plasma samples were tested directly for WHsAg or after fractionation through I S% sucrose

layered onto a 6QOA. sucrose cushion, as described in Section 2.6.3. Thus, 200 lit ofeach test

and control sample was incubated for 16 h at room temperature with beads coated with anti­

HBs. following a procedure recommended by the manufacturer. After washing, the beads

were incubated for I h at 45·C with 200~ wI_labeUcd anti-HBs. The bound radioactivity
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was counted in a gamma counter. Specimens giving counts pet" minute (cpm) equal 10 or

greater than the cutoffvalue. which was determined by multiplying the negative control mean

(NCx) count rate by. factor or2.1. were considered WHsAg reactive. Based on detection

ofpurified WHsA.& the way sensitivity was estimated to be 3.25 ng proteinlml (Michalak

~l aJ., 1989).

2....2 DetectioD of ADtibodia to WllsAg (••t~WB.)

Anti-WHs was mc:asumt using a cross-reactive enz:yme-tinked immunoassay (ELISA;

AUSAB·EIA. Abbott Laboratories), originally designed for the detennination ofanti·HBs

in human serum or plasma. The assay applicability for detection ofanti-WHs was established

in previous studies (Michalak et aI., 1989 and 1990). Polystyrene beads coated with human

HBsAg were incubated overnight at room temperature with 200 ill of either woodchuck

serum or plasma Ol'" the appropriate positive (n - 2) and negative (n" J) controls supplied by

the maoofac:turer. Unbound malerial was removed by washing and the beads inoJbated with

200 Jl1 of a mixture of HBsAg tagged with biotin and rabbit anti-biotin conjugated with

hocseradish perolcidase (HRPO) for 2 h at 40°C. Then, the beads were washed to remove

any unbound conjugates and incubated with 300 ,ul of freshly prepared o-phenylenediarnine

solution containing hydrogen peroxide. After incubation at ambient temperature for 30 min.,

the beads were transferred to provided tubes and the enzyme reaction was stopped by

addition of I mJ of IN~O•. The intensity ofyellow colour which developed in the sample

in proportion to the amount of bound HRPO-labeUed antibody, was evaluated at 492 nm



53

wavelength using a Quantum: n dual-wavdength analyser (Abbott Laboratories). The

~ or absence ofantj·WHs was cak:uIa1ed automatically using the spearoanalyser by

comparing the absorbance values of the sample tested to the cutoff value.. which wu

detemined by Idding a factor o£O.OS to the Nell. Samples with absorbance values greater

than or equal to the cutoffvalue wert considered anti·WHs reactive.

1.4.3 Ddectioo of Aatibodieslo WRtAK (••ti-WBc)

Anti-WHc was detected using a specific competition ELISA developed in this

laborauxy (0J.Jrchill and Michalak; unpublisht.d). This assay is based on a principle that anti­

WHc present in the test sample competes with HRPO-labeUed anti-WHc for binding to

immobilized woodcOOck hepatitis virus COft antigen (WHcAg). For this purpose, a ~wdl.

fla.t-bottom EJ.A platt (LinbmlTitettek; ICN Blomedicals. Aurora., OH) was coated with

woodctu:k anri-WHc at 1 #8prou:in in 50 p.I ofphosphate buffered saline. pH 1.4 (PBS) per

wen. incubated at 4°C overnight and then washed throe times with PBS. Nonspecific binding

wu blocked by filling the weUs with 300 Jl1 of0.25% Tween-20 (Sigma Chemical Co.) in

PBS (bkxking buffer) and incubating at room temperature for 2 h. After washing, the platt

was directly used or stored at-20-C. Beforethe assay, the plate that had been kept at -20·C

was thawed and the weUs washed with PBS. To each weU, 0.5 #8 ofWHcAg in 50 III of

blocking buffer was added and the platt was incubated at ambient temperature for 2 h in a

humid chamber. Then, the plate was washed 4 times with PBS, blotted dry and 20 ~l of

bIocJcing buffer, 5~ ofthe test serum sample ()(" appropriate controls and 2S ~I ofanti-WHc
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labelled with HRPO (diluted 1:2,500 in bloclcing buffer-) was added to each wdI. After

incubation for another 2 h, the wells were washed ] times with PBS. and SO ~ of freshly

pRparCd 3, ]', 5, S'-tc:tramethyIlc(TMB) substrate (Biobd Uboratories, Richmond,

CAl was added to each welL The reaction was Slopped after 3D min by addition of 50~ of

IN H:SO•. Absorbance was read &1450 nm using. micropIale reada' (BioRad Laboratories).

IU negative controls, $CB. from healthy animals were used. The positive controls included

sera from WHV·infected woodchucks which had previously tested anti-WHc positive. The

degree to which the test sample inhibited the binding of HRPO-Iabelled anti·WHc was

calculated as foUows: percent inhibition = 100 - (test sample 00..;. negative control 00 >t

100). The assay results were accepted. when the positive controls inhibited ~95% of the

HRP()..anti-WHc binding to WHcAg and the negative controls gave no inhibition. Samples

that produced ~ SO"'.... inhibition wa-e consideud positive for anti-W'Hc.

1.4.4 Y-&l.taDlyltraDSf~(GGT) Ddltd:iu

Increases in the serum kvds ofGGT can 0CQJf during hepatic disease. such as viral

hepatitis or HCC. Elevated serum GGT in woodchuclcs is considered a highly specific

indicator of the developing HCC (Hornbuckle el aI., 1985). GGT was tested using the

Venest assay system (Vettest SA. Neuchatel. Switzerland). Sera obtained from the animals

in this study showed noma! GOT values, unless otherwise indicated (nonna! range 0-2

International Units, IU).
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2.5 MoIeclllar BioIoIJ Pro«d_ra

2.S.1 Slet-Blot BybridiutioD for Detectio. olWHV DNA

Fifty JlI of serum was bkKted onto a nylon membrane (Hybond-N; Amerstwn.

Arlington Heights, n.) by VlOJum suction using a Bio-Dot SF apparatus (BioRad

Laboratories). After the sample aliquot had completely passed through. the membrane was

placed, sample side Up. onto 3MM Whatman filter paper (Whatman International Ltd.,

Maidstont; U.K.) soaked with la-Ii sodiumdodecyl sulfate (50S). Then, the membrane was

sequentially transferred to three sheets onMM paper, each time leaving the membrane for

5 min Thefintsheet wassatura1cd with denaluring solution (1.5 MNaCI and 0.5 M NaOH),

thesccond wetted with neutralizing solution (1.5 M NaCI in 1 MTris-HCl pH 8.0) and, the

third saturated with 6X standard saline citrate (SSe; diluted from lOX sse; 3 M NaCI in 0.3

M N~Cit.2IitO. pH 7.0). Then, the blot was air-dried. placed between two pieces of dry

JMM paper and baked for 2 h at 80·C in a vacuwn oven. The nylon membrane was

hybridized to a n P-Iabelled recombinant WHY probe., as descnbed in Section 2.S.6c. Each

assay was performed in paraDel with serum from a chronic WHY carrier, as a positive control

and sterile PBS. as a negative control.

The assay limit for WHY DNA detection was determined using serial dilutions of

recombinant WHY DNA (Section 2.S.6c). The assay sensitivity was 160 pg WHY DNAImi

that corresponded to a level of 10' WHY genome copies per mi.
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2.S.2 DNA Euradio_

2.5..1a StaDdard DNA IsoIatio_ Proadun:

DNA was extracted from 100 ~ of sawn, 1 x 10' PBMe or splenocytes, or

approximately SO rng of tissue. Twue lngments. PBMC and spleoocyte5 wen washed at

least twice in 15 m! ofHBSS by centrifugation for 5 min at 700 z g to remove any possible

cell debris, and homogenized in.finaI volume 0£100~ HBSS. A mock sample ofTE buffer

(I mMEDTAin 10 mMTris--HCl, pH 8.0) was included as a standard control and extracted

in parallel with DNA from the test sample.

For DNA isolation, a 100~ sample ofhomogeniztd tisaae, cdls or serum was placed

in a sterile U-ml eppendorftube and inoJbated 81 42"C for J h with proteinase K (50 ~g per

reaction;GibcoBRL) in 2OOJAofalysi.sbuffi:r"oontaining 10 mM HaCI, I mM EDTA, 0.5%

50S in 10 mM Tris-HCl, pH 8.0. Then, each samplewu mixed with 300.'tJ of phenol for

15 min at ambient temperature and centrifuged for 2 min at 10,OOO:r g. Approximatdy 300

~I ofthe clear aqueous uppc:r-layerwas transftned to a new I.S--mJ tube, and mixed for 5 min

at room temperature with 300 JA of a chlorofomMsoamyi alcohol mixture, 24: I (Sigma

Chemical Co.). The upper aqueous layer was coUected and DNA precipiwed overnight at

-lO"e...nth 750 JA of lOO'/i ethanol and 40.5 ~I ofl M sodium acetate. After precipitation.

the sample was centrifuged 8116. OOO:c g for 30 min at 4"C. The supernatant was removed.

the peUet ofONA washed with 750 ~I of700/o ethanol and centrifuged again at 16,000 x g

for 15 min at 4"C. After removal of the ethanol wash, the peDet was resuspended in TE

buffer. DNA extracted from sen was suspended in 20,u1 ofTE. DNA from PBMC or
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splenocytes was dissolved in TE to achieve a concentration of 4.ug ofONA per 10 ~.t1. this

usuaIly corresponded to the amount ofDNA obtained from extraction of 1 x 10' ceUs. Tissue

derived DNA was first dissolved in 40 Jtl ofTE and then, 2~ ofeach sample was quantitated

by spectrophotometric analysis at 00260 to detennine DNA content.

!.3.2b DNA boiatioD BsinK TRIzoIlXl Reagent

In some instances, DNA was extracted from PBMC using TRIzoI® reagent (Gibco

BRL) following manufacturer's instruction. Thus. 1-2 x 107 cells were homogenized in I ml

of TRIzoI®, the supernatant was removed and used for isolation of RNA, as described in

Section 2.5.3. The phenol phase was used for DNA isolation. For this purpose. 3oo.u1 of

!OOO/o ethanol was added to the phenol phase and extensively mixed. The mixture was kept

at room temperature for 3 min and then, centrifuged at 2000 r g for 5 min at 4°C to pellet

DNA. After removal of supernatant, DNA pellet was washed twice with 0.1 M sodium

citrate in 10% ethanol by centrifugation at 2000 x g for 5 min at 4"C. The final peDet was

suspended in 1.5 ml of75% ethanol, kept at room temperarure for 20 min. and centrifuged

again under the conditions described above. After vacuum drying, the DNA peUe[ was

dissolved in 8 mM NaOH. Each sample was quan[ita[ed by spectrophotometric analysis as

described previously (Section 2.S.2a). For amplification of DNA by polymerase chain

reaction (peR). [he pH of the test sample was adjusled to 8.4 with 0.1 M HEPES (Sigma

Chemical Co.) and checked using an alkacid litmus paper (Fisher Scientific Ltd.• Nepean,

Ontario. Canada).
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1.5.3 RNA Idtractio.

Total RNA was caracu.d from tiuuc 01" PBMC using. commercial TRIzoI«l reagent

(Gibco BRI.). A similar reagent. TIl1zotCl LS. was used for RNA isolation from liquid

samples. such as plasma or serum.

A small fragment of tissue or 1-2 x 101 cells was homogenized in I ml TRIzoI~

reagent or 75O,u1 ofTRlzole LS was added to 250,u1 of. liquid sample tested. Then, the

sample was incubated at room temperature for 10 minutes. lfthe sample was incompletely

solubilized. it was cleared by centrifugation at 12,000 r g fOf 10 min at 4°C and the

supernatant transfem:d to a fresh tube. Two hundrtdJA ofchlofofonn (Sigma Chemical Co.)

was added to the supernatant and after vigorous shaking for IS sec. the sample was kept at

ambient temperatUre for IS min and centrifuged at 12,000 x 8 for 15 min at 4·C.

Approximately 6OO,u1 aCthe upper aqueous phase was transferred to a new tube and RNA

pnripitaled by mixing with 500,u1 ofisopropanol (Sigma Chemical Co.) for 10 min at room

ternper31Ure. 'Ilw::n.thenUt'urewasspunul2,OOOrgfor 10 min at 4°C. 1llesupcmatant

was removed and the RNA pellet washed with 1.0 mI of 75% ethano~ vonexed and

centrifuged at 7,500 r g for 5 min at 4·C. lbe final pellet erRNA was air dried. dissolved

in RNase-free water. prepared by treatment with diethyl pyrocarbonate (DEPe; Sigma

Chemical Co.), and stored at -70·C until use. The quality of isolated RNA was assessed by

using 2.u1 for gel electrophoresis in 0.9010 agarose with 0.5 ,uglml ethidiurn bromide (ED­

agarose). as described in Section 2.5.6a and enabling analysis of the pattern of RNA bands

representing 28S and LaS ribosomal RNA molecules. The amount of RNA in each sample
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was determined by spectrophotometric analysis at On,.

2.5•• """'erue Cbaill Readioa (PeR) for WBV DNA Ddectioe

PCR employing WHY DNA specific primers was used to amplify WHY gene

sequences in isolated DNA samples. Due to the low levels ofvirus present in most aCme

samples tested, both direct and nested PCR were employed.

2.3••• WHY DNA Specirlc OligoDudeotide Primen

(n general. primers for PCR amplification of WHY gene fiagments were selected

based on a consensus offour previously n:porud complete nucleotide sequences of the WHY

genome{Galibert~taJ., 1912: Kodomaet aJ... 1985; Cohen f!1aJ.. 1988; Girones f!t ai., 1989).

Primers specific for 3 separate. oon-evaiapping genomic regions ofWHV DNA. i.ft., core

(C). surface (S) and X genes, were designed (Figure 2.2). For each subgenomic sequence,

two sets ofoligonucleotide primcn (external and internal) were selected (fable 2.2). The

extemaI primer pair was used for the first (direct) round ofPCR amplifjcation. If the PCR

product was not detectable after dectrophoresis in EB-agarose. an aliquot of the first reaction

was amplified with an internal primer pair by nested PeR. Each pair of primers was matched

according to GC content (approximately 5Q1'/e) and length (17-25 bases) in order to ensure

the most efficient amplification aCUte target sequence. Oligonucleotides were synthesized by

the University Core DNA Services. University ofCalgary, Calgary, Alberta, Canada.



Ficare 1.2 Schematic representation of the approximate kx:aboa of direct aDd nesred

oligonucleotide primer pain specific for the WHY C. S IDd X genes alperimpoIed on the

map ofthc complete WHY genome.





Table 2.2 Oligonucleotide primers used for amplification ofWHV DNA sequences.

Primer pairs Sequence 5'-3' Position l Target sequence (bp)

CORE GENE
External primers

PCNV(sense) 5'·TTCAAGCCTCCAAGCTGTGCCTTGG 1983-2007 623
COR (antisense) S'·TTATOTACCCATTGAAG 2602·2586

Internal Primers
PPCC(.....) 5'-CCCTATAAAOAA11TOO 2033·2049 428
CCOV (antisense) S'·GTATGTTCCGGAAGAGTCGAGA 2460-2439

SURFACE GENE
Extemal primers

PSW(.....) S'-GGTAAACCATATTCTTGGGA 2947·2966 1290
SUW{antisense) 5'·ATGGCOOTAAGATGCTCAGAAOTG 917-894

Internal primers
NSW(sense) 5'-CATCAAGTCTCCTAOOACTC 30]·322 SO,
SSW (antisense) 5'·TGAGCCAAGAGAAACGGQCTAAO 803·781

XGENE
External primers

PXO(.....) S'-GCCAACTGGATCCTGCGCGGGACGTC 1522·1547 386
XPC (antisense) S'·ATGCCTACAGCCTCCTA 1907·1891

Intemal primers
PXX(sense) 5'-CCTCAATCCAGCOOAC 1568·1584 193
XXC (antisense) 5'-GTTCACQGTOOAATCCAT 1760-1742

INumbers dcnoIc the position ofme lCquences in WHV (Kodama tt al., 1985; GenB&nk accession number M11082).
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2.5.4b Amplif'.teatioa of WHV Gtae SeqUeDces by PCR

For PCR amplification ofWHV subgenomic fragments. 10 Jotl orONA isolated from

an equivalent of50 p.1 ofserum or I J.l.g orONA from PBMe and tissue samples was used.

unless otherwise indicated. Samples were amplified in a 100 J.l.1 reaction volume containing

200 J./moVl ofeach deoxynucleotide triphosphate (Le., deoxyadenosine triphosphate, dATP;

deoxycytidine triphosptwe. dCfP; deoxyguanosine triphosphate. dGTP and deoxythymidine

triphosphate, dlTP). 100 ,umolll ofeach primer specific for WHY C, S or X gene sequences,

2 units of heat stable TO<! polymerase (Promega Corporation, Madison, WI), 1.5 J,lmolll

MA and 1OJ,t1 ofreactionbuffer(SOOmMKC~ 1% TritonX-IOO in 100 mM Tris. pH 9.0;

Promega Corp.). The reaction was perfonned using a progranunable thermal cycler

(TwinBlock System., Ericamp Inc., San Diego, CAl. For both direct and nested

amplifications. samples were denatured at 92°C for 5 minutes. annealed at S2°e for 2 min.

and elongated at 7QoC for 3 min. Then, amplification was carried out for 30 cycles at 9rC,

52°C. and 7Q·C for 30 5 at each step. The last cycle was foDowed by an elongation step at

70°C lasting 5 min. The second, nested round ofPCR amplification was done using 10 J,ll

ofthe reaction mixture obtained after the direct amplification and the same PCR conditions

as described above. In general, the conditions for PCR amplification ofWHV DNA were

established in previous experiments done in this laboratory using recombinant entire WHY

DNA genome (e.g., Pardoe and Michalak, 1995) (see also Section 2.5.6c).
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2.S.4c PCR Controls aad Asuy Sensitivity

All amplifications~ carried out in parallel with contamination controls consisting

ofwat« added to the direct and nested peR mixture instead ofONA. the "mock" extracted

sample prepared in the absence ofONA (see Section 2.5.2a), and positive controls which.

depending upon the type of material tested, consisted ofONA isolated from sera., PBMe or

tissue specimens derived from WHsAg-positivt chronic WHY carriers.

The PCR assay sensitivity was calculated based on amplification ofserial dilutions of

recombinant WHY DNA (pardoe and Michalak, 1995). It was estimated that a direct peR

was able to detect llY_IOlW}N genome copies per ml (10') pg WHY DNA/mI), whereas

nested peR between 10 and 101 genome copies per ml (I0-~ pg WHY DNA/mI) were

detected. To avoid contamination, rigorous laboratory precautions were undertaken, as

descnbed elsewhere (Michalak elal, 1994). For example, all assays were set up with sterile

disposable plastic ware, gloves were worn at all times and changed frequently, and separate

areas and instruments wert used for PeR setup or handling ofamplified peR products.

2.5.5 Renne TraDKriptaJe PCR for WHV RNA DetectiGa

For detection ofWHV messenger RNA (mRNA), the total RNA was amplified by

revtt5e transeriptase PCR (RT-PCR). In this method, random hexanucleotides were used to

prime RNA species and reverse transcriptase from Moloney murine leukemia virus {MMLV­

Rn was used for synthesis of the complementary DNA strand (eDNA). WHY eDNA was

detected by a standard PeR with WHY specific primers, described in Section 2.5.4.
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Approximately I J.J.g of RNA isolated from PBMe or tissue samples that were

previously found WHY DNA reactive by PeR. was mixed with 150 ng of random hcxamers

(100 ng/,I.I.I; New England Biolabs, Inc.• Beverly, MA) and 4,!L1 of5X RT buffer (315 mM

KCI, 15 mM MgCI1 in 250 mM Tris-HCI, pH 8.3; Gibco BRL) and incubated for 4 min at

75 e e and then. quick chilled. Subsequently, each sample was mixed with 2 Jotl of

dithiothreitol (OTT; 0.1 M; Gibco BRL), 2 ,1.1.1 of dNTP mixture (I0mM of each dNTP;

Promega Corp.), 10 U of RNase inhibitor (RNasin«l; 40 unitslJ,ll; Promega Corp.) and 400

units ofMMLV-RT (200 units/Jolt; Gibco BRL). After incubation at 37°(: for I h roUowed

by 5 min at 95°C, WHY eDNA specific sequences were amplified using peR with C or S

gene specific primers, as described in Section 2.5.4. Each reaction was set up in parallel with

a negative control which had aU the ingredients except reverse transcnptase, and a respective

positive contro~ which consisted oftotal RNA isolated from the liver, spleen or PBMe of a

chronic WHY carrier.

Detection ofWHV mRNA in PBMe. liver and lymphoid organs was compared with

that in serum. For this purpose. RNA was extracted from I.S ml ofa serum sample coUected

from a woodchuck convalescent from self-limited acute WHV hepatitis and a WHsAg­

positive. chronic WHY camero Two~gofserum-derivedRNA and l/Jg of RNA isolated

from spleen and liver of the same chronic WHV carrier were amplified in parallel. The RT

reaction was performed., as described above. foUowed by standard peR and Southern blotting

ofamplified WHY gene sequences.
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l.S.' AaaIyJis of AmplUled WBV ee.e Seq.nus

1..5.6& Aprose Gel Ekdrophorti"u:

Twent)'~ ofthe wnpfified WHY gene sequences during either direct or nested PCR

was mixed with I ~ of6X blue/orange loading dye {Promega Corp.) and loaded into the

wells of a 0.9"4 EB-agarose gd. A molecular DNA nw1cer (phiX 174 DNN Hac marker;

0.25 JLg/JLI; Promcga Corp.) was also loaded in a parallel well to determine the size of

amplified peR products. Following electrophoresis in IX TAE buffer (1 mM EDTA in 40

mM Tris-HC~ pH 8.0) at 100 V for 30 min, DNA bands were visualized by ultraviolet (UV)

light and photographed using a UV transilluminator with camera (Fotodyne Inc., Rio/Can

Scientific. Mississauga, Ontario, Canada) and Polaroid film (type 667; Polaroid Corporation,

Cambridge., MA).

2.5.6b So.the,. Blot ADalysis

To confinn authenticity of the amplified WHY genome sequences, Southc:m blot

hybridization with a recombinant WHY DNA probe (see Section 2.S.6c) was perfonned. For

this purpose. after completion ofelectrophoresis, the agarose gel was soaked in denaturing

solution for 30 min then, in neutralizing solution for 1.5 h at room temperaNre with constant

shaking (see Section 2.5.1). A capiUary transfer ofONA from agarose to a nylon membrane

(Hybond-N; Amersham) wu done following the standard procedure described elsewhere

(Maniatis et aL, 1989). Briefly, the gel was inverted onto a platfonn which has been placed

in a raervoir 61led with lOX sse. The gel wu covered with a nylon membrane, 2 layers of
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3 MM filter paper (Whaunan Intcmarional) and then with a 5-8 em high stack of paper

toWds.. Glass plates wa'e placed on the top ofthe saack to ensure a tight connection between

the layers. After" capillary transfer of DNA overnight, the nylon membrane was placed

between 2 pieces of 3 MM paper and baked for 2 h at 80·e~ vacuum. 11M: baked

I1'IIl:rI'ltnnc was immersed in approximately 10 mJ ofprehybridization buffer (6X sse. 0.5%

50S and SOX Dc:nhardts' solution containing IOO~gI mJ denatured. sonicated salmon spenn

DNA, sssDNA).lteat sealed in a plastic bag and incubated for 2 It at 6S-C while constantly

shalcing. After removal of all of the prehybridization fluid, the membf1l.ne was hybridized

overnight at6S·C with 10 mI of6X sse. 0.5% 50S. IOO~gImI sssDNA supplemented. with

25-50 jJ.1 oCnp-tabelled., recombinant WHY DNA (see Section 2.S.6c). After hybridization.

the membrane was incubated twice with 50 mI ofZX sse. 0.1% 50S for 10 min at 6S·C and

with a.lx sse. 0.05% SOS for IS min at room temperatUre. Then, the membrane was rinsed

briefly with 0.1 X sse, air-dried., covered with plastic wrap, and exposed to X-ray 6lm at ­

70·C overnight (XRP-I; Kodak, Eastman Kodak Company, Rochester, NY) with an

intensifYing screen.

2.5.6c Recombio.ot WBV DNA Probe

A plasmid containing the entire WHY genome cloned as an £caRl fragment into a

pSP65 plasmid vector (Galibert eta/.. 1982), designated in our laboratory as pSP.WHV.1 or

pSP.WHV.2, was used as a source of recombinant WHY DNA This plasmid construct was

kindly provided by Dr. 1. Summers from the University ofNew Mexico. Albuquerque., NM.
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WHY DNA labelling was done using a rraUtiprime IabeUing kit {Atnersham}. In this labelling

system, a rdatively small amount of template DNA is primed by r3nd0m sequence

hexanucleotides and DNA is synthesised by the 'Klenow fngment' of DNA polymerase L

A radioisotope labelled-dNTP. added to the mixture. is incorporated into the newly

synthesised DNA producing a labeUed probe with, usually, vecy high specific activity. Thus.,

foDowing rnaI'lJ&ctuters' instruction, 25 ng ofONA wa.s boiled for 5 min and quickly chilled.

Then. DNA was milc:cd with 10 Jotl ofln1ltiprime buffer solution (dATP, dGTP. dTfP. MgCl}

and 2-mercaptoethanol in Tris-HCI buffer. pH 7.8), SJ,t1 of primer solution (random

hexanudoetides), 18 Jotl ofsterile water,S Sod ofl'lp- dCTP (SO J.tCi. specific activity 3000 Ci/

mmol; Amersham) and 2 Jotl ofKlenow enzyme (1 unit/Jotl in 50 mM potassium phosphate

buffer, pH 6.5 with 10 mM 2-mercaptoethanol and SO'/e glycerol). After incubation for 5 h

at: room lemper2tW'e, the mixrure was diluted with 200 pi TE buffer and labelled DNA

separuc:d by oercrifugation through a Sephadex G-SO column which was prepared according

to standard procedure (Maniatis et aJ... 1982). The recovered aliquot was stored at 4·C until

use. The specific aaivity of the labelled probes was approximately 2.5 x 10' disintegrations

per min (dpmYJ.tg DNA.



69

SPECIFIC EXPERIMENTS

1.6 Charac:terization ofPb)'sic:ocbemiul Properties of

Partida Carrying WBV DNA

2.6.1 Sedimentation Velodty and Baoyaat Density Analyses

lbe sedimentation velocity of particles suspended in a solution can be analysed by a

procedure called differential ultracentrifugation. In this method. the test sample is spun

through a homogeneous supporting solution, e.g., sucrose, in order to separate particles of

different weight. In theory, heavier particles (e.g. WHY virions) should sediment to the

bottom afme tube, but lighter molecules (e.g. protein·free DNA or DNA fragments), should

remain at the top of the separative medium.

In another ultracentrifugation method, known as density gradient centrifugation, a test

sample is layered over a supporting column of fluid whose density continuousJy or stepwise

increases towards the bottom of the tube. Individual particles are separated during

cenbifugation by scdimenting to a position at which the gradient density is equal to their own

density. Thus. denser particles (e.g. DNA) should migrate to the bottom., but buoyant. less

dense molecules (e.g. WHY virions which contain a lipopmtein envelope) should sediment

to the lower density closer to the top ofthe gradient.

In the present study. both sedimentation velocity and buoyant density ofWHV DNA

molecules present in test samples were determined and compared with those of intact WHY

virions and recombinant protein·free WHY DNA. Each control was prepared as described

below.
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2.6.2 PrepantioD or WHY DNA-Reactive Controls for Vltncentrifucation Analysts

2.6.2. Purification ofWHV Virions

Approxinwely 8 mI ofpooled serum samples derived from a single WHsAg-positive

chronic WHV carrier was spun for 10 min at 10,000 x g at sac in a 1-20 rotor using a

Beckman 1-21B centrifuge (Beckman Instruments Inc., Palo Alto, CA ) to remove any

poSSIble protein aggregates. Then, 7.5 mI of supernatant was coUected and aliquoted to 2.5­

m! samples which were layered over equal volumes of 300/0 sucrose (wtlvol) in TNE buffer

(140 mM NaCI and 10 mM EDTA in 10 mM Tris-HCI buffer, pH 7.2.) and centrifuged at

200,000;r g for 30 h using a SW 50.1 rotor (Beckman Instruments Inc.). Subsequently, the

supernatant was carefuUy removed. leaving approximately 300 ,Ill aliquot in each tube, in

which the peUtts were resuspended. The suspensions were combined and enriched WHY

particles washed with 5 mI aCTNE buffer by centrifugation at 200,000 x g for 24 h under the

above indicated conditions. The final pellet was resuspended in I mI TNE buffer and stored

at 4°C until use. It has been previously established that this procedure resulted in isolation

of the complete enveloped WHY particles (Michalak and Lin, 1994). This preparation was

used as a reference to detenninc position ofWHV virions after centrifugation in sucrose and

cesium chloride (esCl) gradients.

2.6.1b Preparatioa of Free WHY DNA Fragments

For preparation ofprotein-free, fragmented WHY DNA, DNA derived from a plasmid

containing the complete WHY genome (described in Section 2.5.6c) was digested with
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restriction enzyme Mnl-I (New England Biolabs). Computer-assisted analysis (PCIGene;

Intdligenetics., Mountainview, Ca.) of restriction enzyme sites witJ·,in ~.;: WHY ger.o=

sequtDOe. pr-edictt.d thatAml-l recogrizes 32 sites. Therefore. digestion ofWHV DNA with

M"I-[ would lead to generation of rrwltiple WHY DNA fragmenu with sizes that should

range from J to 431 bp.

For this purpose, SA Jig of recombinant pSP.\VHV was digested with 10 U (5 Ullil)

ofMnl·Iin lXNE Buffer (50 mMNaCl, IOmMMgClt, ImM OTT in IOmMTris-HCl. pH

7.9; New England Biolabs) supplemented with 100 ,u.WmJ of bovine serum albumin (BSA;

SigmaChemi.cal Co.). 1be mixture was made up to SO iii in sterile distilled water, incubated

for 90 min at 37·C and then for 20 min at 6S·C in a metal heating block to inactivate the

enzyme. lbc digested plasmid wasstoml al4"C until rt was used as a marker of fragmented,

protein-free viral DNA.

1.6.3 ADalysis of Sedimeatatioa Velocity ofWHV DNA ia Tat ud Coatrol Samples

One hundred Jotl of serum from 4BIM offspring. obtained at 32 mo after birth. and

from 7DJF offspring. collected at 22 mo after birth, wu centrifuged through 4.5 ml oflW.

(wtIvol) sucrose in TNbuffer(l40mMNaCi in 10 mMTris-HC~ pH 8.0) layered onto aO,5

m16O"1o sua-ose cushion. Samples ofpurified WHY particles and Mnl-I digested WHY DNA

were centrifuged in parallel. All tubes were spun at 2oo,ooo:r g for 4 h at S'"C in a SWSO.I

rotor (Beckman Instruments Inc.). Fifteen fractions or approximately 340-,u1 each were

collected using a 21-gauge needle i:nsc:rtcd into the bottom ofthe tube. Sucrose concentration
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was determined in each fraction by a refractometer (Fisher Scientific). Subsequently, DNA

extracted from 100 III or each fraction was tested forWHV DNA by PeR using WIN C or

S gene specific primers. To further characterize lite particles carrying WHY DNA in

offspring sera, sucrose fractions which were found WHY DNA reactive were subjected to

DNase digestion and analysed again by PCR (see Section 2.5.4). In addition, fractions 1-3

collected from the bottom ofeach gradient were assayed for WHsAg, as described in Section

2.4. I. Relevant sucrose fractions obtained after centrifugation of 1OO-.ul sample ofnonnal

woodchuck. senun (NWS) were used as negative controls.

2.6.4 Aoalylis of the Buoysat D~sityofWHV DNA ia Test and Control Samples

Two hundred-.ul samples of sera collected at 32 mo after birth from 4BIM offspring,

a culture supernatant obtained after LPS-stimulation of PBMe collected from the same

animal at 32-34 mo after birth (see Section 2.7.1), and serum from offspring 7D1F obtained

at 22 mo afterbirth were layered sepanudy onto 5-ml continuous gradients of 1.1-1.7 f/cmJ

esCI (Sigma Chemical Co.) in TE buffer. Two hundred .ul of a purified WHY virion

preparation (Section 2.6.2a) was centrifuged under the same conditions. After centrifugation

at 200,OOOxg for 18 hat lOoe in an SW50.1 rotor (Beckman Instruments Inc.), 13 fractions

ofapproximaJ.dy 400 Jil each were coUected bq9nnins from the bottom ofeach gradient tube

and evaluated for esC! density (gIan~ using a refractometer (Fisher Scientific). One hundred

Ji[ offractions 1·13 recovered after centrifugation ofthe WHY virion preparation were used

for DNA extraction and tested for WHY DNA by direct PCR using WHY C gene specific
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primers. After identifYing the WHY reactive fractions obtained after centrifugation ofWHV

virions, the corresponding fractions (i.e., 9-13) obtained from the test offspring samples were

examined for WHY DNA by nested PeR using WHY C gene specific primers.

2,6.5 EnDlinatioD of the Effect of DNase DigntioD on WHV DNA from Sucrose

Fractions

There are a few poSSIble forms ofWHV particles which could occur in the circulation

of a WHY infected animal. These forms may include intact (enveloped) WHY virions.

fragments ofunenveloped viral DNA, and probably defective virion particles or those with

a damaged or a partial protein envelope. In order to determine whether WHV DNA reactivity

detected in the sucrose gradient fractions could originate from intact virions. WHY DNA

positive fractions were subjected to DNase digestion and then tested again for WHY DNA

In theory. WHY DNA contained within intaet virions should be resistant to DNase digestion

due to the protective lipoprotein envelope. In contrast, free DNA molecules and damaged

WHV virions should be susceptible to enzyme treatment. Thus, a sample containing intact

WHY virions shouJd remain WHY DNA reactive after DNase treatment.

2.6.5. Preliminary Esperiment

To establish conditions for differentiation of virions from freely circulating,.

unenve[oped WHY DNA molecules. WHY DNA reactivity was examined both before and

after DNase digestion in serum ofa chronic WHY carrier containing circulating virions and
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in a preparation ofrecombinant WHY DNA. Thus. 50~lofsenun from a WHsAg-positive

chronic WHY carrier was supplemented with 10 ~I of DNase digestion buffer (100 mM

MgCl1 in 500 mM Tris-HCI. pH 8.0), 5 ~I of DNase (I mglmJ. activity 20-50 " 10' Ulm1;

Boehringer Mannheim Canada, Laval. Quebec. Canada) and 35 loll ofdeionized water and

then, incubated for t hr at 37°C. Recombinant WHY DNA (i.e.• unenveloped. free WHY

DNA) at concentrations of 1.8 ng or 0.18 ng was suspended in 50 .ul ofNWS and digested

undtI"the same conditions as those for the serum ofachronic WHV carrier. After incubation.

100.u1 oreach digested sample was treated with proteinase K (see Section 2.5.2a) and DNA

was extracted. In parallel. DNA was extracted from undigested samples that included 50.u1

of serum from the same chronic WHsAg-positive woodchuck and 1.8 .ug of recombinant

WHY DNA suspended in NWS. After extraction. DNA was analysed by peR using WHY

DNA specific primers.

The results ofthis experiment revealed that WHY DNA reactivity detected in serum

from a chronic WHY carrier was resistant to DNase treatment. The same treatment of

recombinant WHY DNA. even at concentrations of 1.8 ng, completely eliminated WHY DNA

reactivity as determined by nested PeR Thus., we can conclude that at least part of the WHY

DNA detectable in sen.un of a WHsAg-positive animal was protected from DNase action by

an outer protein coat and therefore, reflects the existence ofcomplete. intact virions.

2.6.Sb DNase Treatmeat of Sucrose Framoos from Test and Control Samples

To differentiate the intact WHY virions from unenveloped WHY DNA in sucrose
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hctions.. fractions which had demonstrated the highest WHV DNA reactivity by PCR (i.e.,

bottom &actions 1-3 for- WHY virion prepaRtion. fractions 1.-4 and 8-12 for 4BIM serum,

and &actions 9-11 forMn/-1 digested recontlinarc WHY DNA; Section 2.6.3) were combined

and eamined for WHY DNA prior to and foDowing digestion with DNase. For this pwpose,

100 Jll ofthe combined &actions was trealed with 5~ of DNase in 10 ~I of DNase digestion

buffer. as descnbed in the preliminary experiment (Section 2.6.5a). After DNase digestion,

the samples were treated with proteinase K and DNA was extracted. In parallel, DNA was

extracted from 1000~J samples of the same sucrose fractions untreated with DNase. DNA

from both DNase-digested and untreated fractions wert tested for WHY DNA by peR using

primers specific for WHY S gene and the obtained products analyzed by Southern blot

hybridiz.ation.

1.7 Determiutioo. or~e Effect o(Mit.- StimU..tiOD

o. WBV Traaxriptioa La POMe

2.7.1 rOMe StimulatioD with LipopolysuclLaride (LPS) aDd CODeau.valiD (CoDA)

This experiment was designed to determine the efft.ct ofmitogen stimulation on WHY

mRNA expression in PBMC ofoffspring born to mothers with a past history of acule WHY

hepatitis. CeUs were isolated, extensively washed and the final wash saved, as described in

Section 2.3.4. Then, the ccU number was adjusted to 2.0 x lo'/mI. For stimulation, PBMC

were cultured in RPMI 1640 medium (Gibco ORL) with S% FCS-fD (Immunocorp), 2 mM

g1utantine (Sigma Chemical Co.l, SO .g/m1fl-mercaptocthanol (Sigma Chemical Co.l, and
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a mixture of 500 VIm! penicillin and 500 I-tWml streptomycin (lCN Pharmaceuticals, Inc.•

Costa Mesa, CAl supplemented with 10 I-tglml LPS or 5~g/mlConA for 3 days at J7°C in

a S% CD,; atmosphere. ApproximateJy 2 x 107 cells from the same isolation were pelleted in

a I.S-m1 eppendorftube and the pellet frozen at _70°C for further use as a control. PBMe

isolated at 33.5 mq after birth from offspring 7D1F. 801M, 9DIF. IOOIF and IIDIF were

stimulated with LP$ whereas PBMe isolated at 34.5 mo after birth from the same

woodchucks were stimulated with eonA, following the procedure described above. In

addition, PBMe from 4BIM offspring harvested at 32. 33.5 and 34 mo after birth were

aJ1tured in the presence ofLPS, whereas those obtained at 33 mo after birth were stimulated

with ConA.

After J-day culture, cells were peUeted at 4oo:r g for 10 min, supernatant decanted

and saved. Subsequently, cells were washed with 15 ml ofRPMI medium and counted. The

final cell pellet was transferred to a L5-mJ eppendorf tube and along with the pellet of

unstimulated ceUs, extracted using TRIzoI® reagent to isolate total RNA (described in

Section 2.5.3). WHY RNA was transcribed to eDNA by RT-PCR and the amplified products

were analysed by Southern blot hybridization, as described in Section 2.5.6b.

2.7.2 EvaluatioD orwuv DNA in Stimulated PBMC, Final CtU Wub and Culture

Supernatant

To determine whether virus might be released by mitogen stimulated PBMC. WHY

DNA reactivity was evaluated in the culture supernatant and compared to that in the final
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wash obtained from the same cells prior to mitogen stimulation. Thus. for offspring 7D1F,

IIDIF and 4B1M, both the final ceO wash recovere:I before rOMe culture and PBMe culture

supernatant collected after 72·h mitogen stimulation in the presence of LPS or ConA

(approximately 9.0 mI each) were centrifuged at 140,000 x g for 18 h using a SW 40 rotor

(Beckman Instruments Inc.). The resulting pellet was suspended in I ml of sterile 0,9010

sodiwn chloride solution (Travenol Canada Inc., Mississauga, Ontario. Canada). DNA was

extracted from 100 ~I of each sample and then tested for WHY DNA by peR using WHY

S gene specific primers. The remaining portions ofthese samples were stored at -4G C until

funher use.

1.8 Enlu.tioD ofWHV DNA E:lprasioD in POMe

.fter DNase ud Tryp,tio Treatment

To detem\ine whether WHY DNA reactivity detected in offspring PBMe was ofan

intracellular origin or the consequence ofWHV virion or WHY DNA attachment to the cell

9.JI'face, viable PBMe were subjected to DNase and limited trypsin digestion prior to DNA

extraction. For this purpose, PBMe were isolated from approximately 12 mI of blood

coUected from 4BJM offspring at 40 mo after birth and from a WHsAg·positive carrier with

histologically confirmed chronic hepatitis., as described in Section 2.3.4. The final PBMC

wash after cell isolation was saved and stored at ·20·C as well as, I x 107 untreated PBMC

from each isolation were peUeted and stored at -70·C. The remaining ceUs (approximately

3 x 101 for 4BIM offspring and I x 101 for a chronic WHY carrier) were supplemented with
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100 ,ul of lOX DNase buffer and 1O.u1 of DNase (1 mglml; Boehringer Mannheim) and

digested for I hat 37-C. Then. 10 iii of0.1 M CaCI2and 1O,u1 oftrypsin (10 mg/mI; Sigma

Chemical Co.) was added and the mixture treated forJO min on ice. Finally. each sample was

washed with three 15-ml changes ofHBSS containing I mM EDTA and I rnglml trypsin

inhibitor (ovomucoid from chicken egg white containing ovoinhibitor; Sigma Chemical Co.)

by pelleting cells for 10 min at 1130;r: g. The supernatant after each wash was decanted.,

centrifuged for 30 min at 1130 x g and stored at ·20°C. DNA was extracted from peUeted

PBMe and from the final wash obtained after PBMe isolalion but prior to digestion and from

the final wash after PBMe treatment with DNase and trypsin. Then, each DNA sample was

tested for WHV genome expression by peR.

2.9 DeterminatioD of tbe Infectivity of WBV Penutendy

Carried by the OffSpriDI

2.9.1 Prep....tion oflDocula from Off.priDI Plum. or Serum

N"me m1 samples of sera or plasma collected from 381M offspring during autopsy at

15 rno after birth. 4BIM offspring at 32-34 mo after birth, and 7D/F offspring at 11-22 mo

after birth were centrifuged at 200,000 x g for 18 h using a SW 50.1 rotor (Beckman

Instruments Inc.). The supernatant was removed and the pellet from each sample suspended

in 1 ml sterile distilled water. DNA extracted from 100 Jil of each sample was tested for

WHV DNA by peR.
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2.9.2 CbaUeDle of WHY-Naive Woodcbucks with laocula Derived (rom Offspring

Sf:rum. PIJUIma or LPS-Stimulated PBMC

The suspended peUets from serum or plasma samples (Section 2.9.1) were injected

Lv. into WHY-naive. completely healthy woodchucks. Thus, a sample derived from serum

of3BIM offspring was injected into #2601M woodchuck, whereas concentrated plasma from

1D1F and 4BIM were administered into #276/F and #269/F. respectively. Furthennore.,

WHV-naive woodchuck #278JF was inoculated with concentrated culture supernatant from

LPS-stinRJlated. PBMC of4BIM offspring. as descnbed in Section 2.7. Animals #-2601M and

#276fF were euthanised at 110 and 79 day post inoculation (dpi). respectively, whereas

autopsy ofwoodchuclcs #269/F and #278IF was perfonned at dpi 215 and 218, respectively.

Serial serum samples were coUected from woodchucks #269fF. #278!F and #276fF

at 0, 2, 4, 7, 10, 14 and 21 dpi. Subsequent samples were obtained approximately every two

weeks at 36, 49, 63, 78, 89. 104, and ll9 dpi and then coUected monthly until autopsy.

PBMC were isolated at 0, 4, 10, 21 dpi and subsequently once a month until the end of

follow-up. From #2601M woodchuck. sera were collected 0, 7, 13, 22, 35, 48 dpi and then

monthly, whereas PBMC were isolated at days 0 and 7 and from then on, at monthly intervals

up to the end ofobservation. liver- tissues were obtained from all woodchucks apprmcimately

2 mo before and 2 mo after inoculation by laparotomy and at autopsy (Figure 3.3). Serum,

PBMC and liver biopsy samples taken before and after administration of me inocula as well

as, autopsy samples were analysed for WHY DNA by peR (for details see Section 2.5.4).

Straand plasma samples were also assayed for WHsAg and anti-WHc as described above in
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Section 2.4.

2.10 lD.oculation of OfI'sprma: witll Culture Supernatant from

PBMC of Woodchucks Convalescent (rom aD Episode of SLAB

In another experiment, lODIF and IIDIF offspring at 5 mo after binh were injected

with a peUet ofallture supernatant obtained after PBMe stimulation with LPS, as descnlled

in Section 2.7.1. The inoculum was derived from PBMe that were isolated from adult

woodchucks months after complete recovery from an experimentally induced self-limited

episode of&CUte WHY hepatitis (Michalak et al., manuscript submitted). After inoculation.

serum samples were coUected 0, 2, 4, 7, 10 dpi, then biweekly for 4 months. and finally

monthly, and analysed for immunovirological markers ofWHV infection and WHY DNA, as

presented in Sections 2.4 and 2.5.

1.11 Cballenge of the OfflpriDI Studied witb Infectious WBV

The pool of infectious WHY used for inoculation of the offspring had been prepared

from sera of a WHsAg-positive, chronically infected woodchuck. This pool was shown to

be able to induce acute hepatitis in >95% of WHY-naive woodchucks (Michalak et a/.,

unpublished). The pool was sterilized through a 0.22 ~m filter (MilI~GS; Millipore

Products Division, Bedford, MA), diluted 1:2 with sterile physiologic saline, and 0.75 ml

administered i.v. under general anaesthesia to each woodchuck offspring. Thus. 6D1F and

7DIF offspring were inoculated. at 23 roo after birth, whereas 7D1F and 801M offspring were
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injected at 30 rna after birth. Sera from the inoculated anima!s were collected biweekly for

3 mo after inoculation and then monthly, and tested for WHsAg, anti-WHs, anti-WHc. and

for WHY DNA. as described in Sections 2.4 and 2.5.



CHAPTER THREE - RESULTS

3.1 TraDsmissioD of SuolocicaDy Sileot WHV lafectioa from MQtben to Offspring

All the offspring were examined for serological markers of WHY infection such as.

WHsAg. anti-WHs, and anti-WHc., with the exception of IA/F animal. as no serum samples

were available from this woodchuck In aU cases tested. there were no serological indicators

of WHV infection detected at any time point during the entire follow~up, except after

experimental inoaJIarion with WHY, as described in Section 3.10. In animals which were: not

subjected to WHY challenge. serum or plasma samples coUected begi!'1ning at 2~3 rno up to

42 me aftl:'" birth were found negative for WHsAg, anti-WHs and anti-WHc (Figure 3.3). In

addition, analysis ofWHsAg reactivity in sucrose fractions obtained after centrifugation of

selected offSpring sera through 15% sucrose (Section 2.6.3) also gave negative results. This

finding was in contrast to detection of WHsAg in late convalescent sera from adult

woodchucks with complete recovery from an acute episode ofWHV hepatitis. which were

analysed under comparable centrifugation and assay conditions (Michalak et a/., manuscript

submitted). Overall. the obtained data implies that serological markers ofWHV infet.'ti.on

tested were not present in any ofthe offspring investigated. or they occurred at levels below

the detection limit of the assays used.

3.2 WHY DNA Remamed Dd«table m Sera Througbout

the Entire FoUow~up of the Offspring

All sera from the studied offspring were negative for WHY DNA by slot~blot



Fipre 3.J FoUow-up ofmarcmal woodchucks coovalescatt from ACU!t WHY hepatitis and

their offspring. Sequential sera from four mothers (IIA, B, C and D) and ten offspring

(except lAlF) were tested for WHsAg (red), anti-WHs (blue), anti-WHc (green) and WHY

DNA by sIot-blot hybridization (black) and by direct (dark grey) or DeSted PCR (light grey)

with WHV genome specific primc:rs, IS described in Materials and Metbods. The foUowing

clwtsillusrme tbemomentofbitth<f; time 0), the total obserYatioo. period in momhs (mo),

and the appearux:e and dUlUion (m.ded region) of sc:roIogical markers ofWHV infection

and serum WHY DNA The time-poiDts of acquisition of liver biopsies~ ; Lbx) and

autopsy tis:s\a <+;auropsy), c:ha1Jalae with an infectious WHY pool <V; WHY) or with

PBMC-derived iDocuJum <' ;PBMCfs) are iDdicated (pqes ~).
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hybridization (sensitivity 10' genome equivalentslml) except after experimental WHY

rc:infection, as descnbed in SectionJ.IO. However, when the same sequential serum samples

were tested by nested peR with primers specific for WHV genes., all offspring were found

WHY DNA-reactive. The sensitivity of a nested PCR assay was estimated to be IO·IOZ

genome equivalc:rrts per mi. Due to the genera1Iy very low quantities ofWHV genomes in the

circulation aCthe analysed animals, the direct PeR (sensitivity 16' genome equivalent&'ml)

was insufficient for detection ofthc amplified WHY DNA by EB-agarose. However, the

direct PeR products could be occasionally identified by Southern blot hybridization with a

WHY DNA specific probe (data not shown).

The results of nested peR analysis revealed the persistent presence of virus DNA in

the circ:ulation ofall offspring studied. beginning at the earliest sample up until the last serum

sample coUected (see Figure 3.3). In animals observed for longer then a 6 rno period. sera

were tested at least once every 6 mo using nested peR with C and S and/or X gene specific

primers (mean monthly interval betWeen samples tested ± standard deviation, SO; 2.0 mo:l:

0.7). In aU these animals., WHY genome was identified at least once during the 6 mo period

(mean interval between WHY DNA positive samples ± SO; 3.2 mo ± 1.4). Table 3.3

sununarizcs results on WHY DNA assessment by PCR in sera from all cases investigated

(except lAIF and 2BfF). As shown, 48.1% ofsera coUected before WHY challenge were

found WHY DNA-reactive when amplified with WHY C gene specific primers. However.

when DNA from the same .sera which were tested with WHY C gene primers. were also

amplified with WHY S and/or X sene specific primers, 70.1% were found WHY DNA
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Table 3.3 Detection ofWHV gene sequences by nested peR with WHY C gene primers or with
C and X and/or S gene specific primers in offspring sera prior to and after WHV challenge.

Offspring

WHVCsene

positive I total no. of sera tested

WHY C and S and/or X gene

positive I total no. of sera tested

beforeWHV oft",WHV beforeWHV
challenge challenge challenge

381M In n.a. l 417

.81M 9/14 12114

5CJF 13/16 13116

601F 6112 5f5 8112

7D1F 6111 5f8 8/11

801M lllO m 6110

901F 3/10 m 7110

IOOIF 14/26 19126

IIDIF 7127 17127

Total 64/133 (48.1%) 24/27 (88.90/0) 94/133 (70.1%)

I n.a., not applicable

oft",WHV
challenge

5f5

818

m
m

27/27 (1000/0)
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positive (an increase of220/o). Importantly, aU the serum samples that were tested with three

pairs ofWHV DNA specific ptimen (n = 25) were found to be WHY DNA positive with at

least one primer set. In general, when the first and the final serum samples obtained from

each animal were analysed by PeR with WHY C, S and X gene specific primers., aU of the

samples were found WHY DNA~reactive.

Four of the offspring (6DIF, 7DIF, 801M, and 901F) were challenged with an

infectious WHY pool (see Section 3.10). DNA isolated from sequential sera of these

of"'spring were evaluated for WHY genome expressional mean intervals± SO of 1.6 mo±

0.5. Only 88.9"10 of ONA samples amplified with C gene primers were found reactive but

!OOO!D of the samples tested positive when amplified with both C. S and/or X primer pairs

(Table 3.3). This finding clearly demonstrated that WHY challenge increased WHY DNA

detection in the circulation.

These results showed that amplliYing the same DNA samples with primers specific for

multiple, non-overlapping WHY genomic regions greatly improved detection ofWHV DNA.

They also revealed. that identification ofa given WHY gene sequence. either C, S or X genes

tended to fluctuate during foUow-up ofa particular offspring. AJso, in a given sample. WHY

DNA could be detected with one set. of primers. but not with another primer pair specific for

a different part ofthe virus genome (see Figure 4.3). Serum samples collected from the same

animal only a few months prior to or later than the tested sample could show the reverse

situation. Nevertheless., all samples which were analysed using all three primer sets were

found WHY DNA-reactive at least with one pair of primers. These fluctuations were most



Ytpre 4.3 Dctcction ofWHV C, S and X gene IClqUCDCCI in ICIialIeRIDI samples collected

&om -4BIM offspring. Sen obtained between 2 and 36 mo after binh were tested for WRY

DNA reactivity by nested POl wing WHV C, S and X p::ne specific primers and the

amplified products analysed by Southern blot bybridizatioa to a recombiDutt WHY DNA

probe.. Each assay was performed in paraUeI with DNA DoWed &om aerum ofa cbroaic

WHV carrier (poWve """""'l and_(~ """""'l. The _ .... oflhe

_lifiodWHVC,SandX_~... _aolheloftof_""'"
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Iikdy related to very low quantities ofvirus DNA in the sera tested that were at the detection

limit ofotherwise very sensitive assays used. Thus, due to technical limitations. it may not

always be possible to detect each virus gene sequence in the analysed serum.

Figure 4.3 shows an example ofWHV DNA detection in serial sera from offspring

4BIM which were collected from 2 up until 36 mo of age. In all samples examined. viral

DNA could be identified by nested PeR with at least one set ofoligonucleotide primers and

by subsequent Southern blot hybridization with a WHY DNA specific probe. As illustrated,

detection of a particular virus gene sequence in the test samples fluctuated from strongly

positive, through moderately or wealcly reactive to negative. This example demonstrates that

the identification ofWRY gene sequences ciraJlating at trace quantities can drastically change

and that the use of more than one primer pair greatly improves the chance ofWHV DNA

detection. In some cases, analysis ofthe amplified nested peR products by Southern bloning

with recombinant WHY DNA showed the presence ofhigh molecular weight DNA species

accompanying the WHV DNA band of predicted size. This unexplained phenomenon was

also observed occasionally when DNA from offspring PBMe and tissue samples were tested

(e.g.• Figures S.3 and 12.3).

3.3 EIprtSSion orWHV Specific DNA .nd RNA Sequences

in PBMC rrom Offspring

PBMC were obtained from all offspring investigated except INF and 2BJF. The first

PBMC sample from offspring 381M. 4B1M, SCIF, lOOIF, and IIDIF was coUected between
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3 and 4 rna after birth. In animal 6DIF, the first sample was taken at 7 rna of age. whereas

in cases 7D1F. 801M and 901F the initial samples were not harvested until 10-11 rna after

birth.

3,3.1 Penislent Carriage ofWHV DNA in Offspring POMe

DNA derived from sequential POMe wert tested for WHY DNA by nested peR

using primers specific for WHY C. S and X genes. In all offspring examined before WHY

challenge., both the first sample and the last sample tested were found positive for WHY DNA

using at least one ofthe primer pairs. On avenge, considering all animals tested. peMe were

assayed approximately every 6-8 rna (mean interval between tested samples:t: SO; 3.4 mo *­

1.1) and they were found WHY DNA positive at least once during this period (mean interval

between positive samples ± SO; 3.8 rno ± 1.1).

In PBMe evaluated for WHY DNA expression using only the C gene specific primers,

57,3% afthe samples tested were found positive (Table 4.3). If the same samples. lhat were

amplified with C primers were also tested with S and/or X primers, SOO/., arPBMe samples

were reactive. as indicated in Table 4.3. In two offspring, 4BIM and 901F, DNA from

sequential POMe was amplified with all three WHY DNA primer pairs. Cells collected at 15,

17. 24, 26, 28 and 30 mo of age from offspring 9DIF. before re-infection with WHY, all

tested positive with at least one out of three primer pairs (dala not shown). Figure 5.3

illustrates an example of WHY DNA detection in serial PBMe from offspring 4BIM that

were harvested from 3 to 34 mo after birth and analysed for WHY DNA with both C. S and



96

Tab&e 403 Detection ofWHV gene.sequences by PeR amplification with WHY C gene primers
or with C and X and/or S gene specific prirncn in offspring PBMC prior to and after WHY
challenge.

WHVCsenc WHV C and S and/or X sene

212

212

2J2

616(1000/0)

positive I total no. ofPBMC tested positive I total no. ofPBMC tested

afterWHV
challenge

Offspring
beforeWHV afterWHV beforeWHV

challenge challenge challenge

4BIM 7/1\ n.a. l 10/11

SCIF 3n m
.OIF 115 n.tl 215

7DIF 115 212 215

8DIM 4/4 212 4/4

901F 4/11 212 8/11

100lF 51. 51.

IlDlF 819 819

Total 35/61 (51.3%) 6/6 (100-/0) 49/61 (80%)

I n.&., not applicable
1 n.t., not tested



Figure s.3 Comparison ofWHV C, S and X gene sequences expression in serial PBMC

samples of4BJM otrspring. Cells coDected between 3 and 34 mo after birth were tested for

WHVDNA ractivity by nested PeR using WHV C. S and X gene specific primers and the

amplified products analysed by Southern blot hybridizabon to • recombinant WHY DNA

probe. Each assay wu performed in paraIId with DNA isolated from serum of. chronic

WHY carrier (positive comroJ) and water (neg;atiYe controI). The molecular Iizes of the

amplified WHY nucleotide tngmcnu are indicated Oft the 1c:ft side ofeach panel.
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Xgene prirneB. As shown., each cdI sample was found WHY DNA positive with at least one

primer pair. T'hus. it is evident that the detection of WHY genome can be significantly

improw:d by using t'NO or more pain oCprimers arnpIifying nucleotide lRgments homologous

10 different regions of the WHY genome. Similarly, as it wa.s observed in sequential serum

samples, detection ofeach WHV gene sequence in serial PBMe samples tended to drastically

fluctuate during fonow-up (Section ].2).

In offspring which were challenged with WHY (as described in Section 3.10), aU

PBMe samples examined after reinfection were found positive for WHY DNA (fable 4.3).

As it was already demonstrated by the results from WHY DNA evaluation in sera (Section

].2), WHY inoculation clearly increased expression ofWHV DNA in ciraJlating lymphoid

cells.

3.3.2 OfTJprial PBMC Carried TraDKriptiouDy Active WBV Geaomes

The presence of WHY mRNA sequences was evaluated by reverse tnnsaiption

reaction followed by nested PCR using WHY Sore gene specific primers in sdected PBMe

samples of 9 offspring. Transcriptionally active WHY genomes were identified in the cells

derived from 5 of these offspring. i.e., 4BJM. 7DIF, 801M, 9D1F, and IIDIF. In the

remaining 4 cases. i.e., 381M. 5C1F. 6DIF and lOOIF, WHV RNA sequences were not

detected.

Figure 6.3 is an example ofWHV RNA detection in sequential PBMe collected at 3

different time points during foUow-up of offspring 4BIM and 7D1F. In offspring 4B1M,



Figure 6.3 Identification ofWHV RNA sequences in consecutive PBMC samples from

4BIM and 7D1F oflSpring. PBMC were isolated at 18, 30 and 32 mo after birth from 4BIM.

In the case of7DfF. PBMCwere collected at 18 rno afterbirth, and 9 and 10 rno afterWHV

challenge (32 and 33 mo after birth, respectively). Total RNA extracted from each cell

sample was used for eDNA synthesis by reverse ttanseription (RT+) and the eDNA amplified

by nested PCR with WHY 5 or C (*) gene specific primers. The PCR products obtained

were ana\ysed by Southem-blot hybridization to recombinant WHY DNA As controls, RNA

samples were subjected to the same reaction conditions in the absence ofreverse transeriptase

(RT-).
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specific WHY RNA sequences were detedc:d at 18, 30 and 32 me after birth. Offspring 7DIF

was challenged with WHV at 23 rna of age (see Section 3.lD), however viral RNA was

readily detectable before fe-infection at 18 mo and after WHY administration 32 and 33

months of age. The negative control in each case consisted ofPOMe RNA tested under

identical conditions except RT was omitted liaring the eDNA synthesis step. As shown in this

figure. no amplification products were observed in any ofthe RT negative controls.

3.3.3 Mitogen Stimulation Upregalated WHY Genome Expression in PBMe

In an anempt to determine whether mitogen stimulation might enhance expression of

virus genome and its transcripts within POMe in the offspring studied, freshly isolated cells

were cultured in the presence ofa nonspecific mitogen, such as ConA or LPS. for 72 h. After

culture, total RNA was extracted and analysed for WHY mRNA. Results were compared

with WHY RNA detection in unstimulated POMe isolated at the same time from the same

offspring. As shown in Figure 7.3, ConA stimulation afPBMe from animal t IDIF led to

detection ofviraJ RNA, although the same cells unstimulated were WHY RNA nonreactive.

Similar results were seen in PBMC from offspring 801M and 9DIF after chaUenge with WHY

(see Section 3.10). In Figure 8.3, WHY RNA was not detected in nonstimulated PBMC from

offspring 801M. but PBMC stimulated with LPS for 72 h tested positive. Although WHY

RNA signal was identifiable before stimulation ofPBMC from offspring 9DIF, cells tested

after LPS stimulation showed evident enhancement in the expression of WHY DNA

transcripts. The negative control included ceUs isolated from a WHY-naive, healthy



Fip" 7.3 Evaluation ofWHV RNA exprc::ssion in Concanaw1in A aiIru1atcd aDd non­

mitogen etirnJlated PBMC &om IIDIF offspring It :J.4.S mo after birth. Total RNA wu

"""""" &om~PBMC (-CooA)ond &om.panIId ...... oflhe ..... cdIs that

had been sWftJIated with CoDA (+ConA) fur 3 days bc:fcn RNA iJolation. CoIlA stUwlatcd

PBMC from a beaJthy, WHV-naive woodc:buck 1lI'tI'e uxd u a negative cootroI (CODb'OI

PBMC). RNA_&omlho"""",of.~""",,",,WHV e&<rior_u>ed

u a potitiYe control for the RT reaction. I III ofthe c:mw::ted RNA was UJed for eDNA

.,....,... .... (+) 0<""'" (-) _ (R.1) _ by -..I PCR

amplificol;oa oflhe rauItiog pn>ducb WHV c ..... opoci6e primon. The uaptified

42S-bp GOCIeoOde ................. ideolmed by Soutbom-bIot bybridization to~

WHVDNA
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Fipre 1.3 Evaluation of WHY RNA e:qnssion in~ aDd

unscirradacd PBMC from 801M and gOlF offspriDg obtained at 3 mo after WHV cbaUenge

(33.5 mo Ifter birth). In both off'sprin&, total RNA was extracted &om IIDItimulated PBMC

(-U'S) UllI &om ponIld _leo olthe .....__ bod bealllimuIolod"'" LPS (+LPS)

for 3 days before RNA isolation. LPSoItim.J1ated PBMC &om • bcakhy, WHY-naive

woodduc:k were used u. negative. control (control PBMC). 2~ oCtile extncted RNA

wu ..... ilrd>NA.,........_(+) witbout(-) (1tn_by

_PCR~a{the products...me WHY S -"'"' primen. The

amplified SO1~ CDCicotide sequences we::re identified by Soutbem-bIot hybridizarion to

recombinant WHV DNA
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woodchuck: which were stimulated with LPS or ConA under similar conditions as PBMe

fromtheotfspring. ~iDustratcd inF1gUl'CS7.3 and 8.3. WHY specific: RNA sequences were

undetected in these PBMe. Total RNA purified from spleen ofa WHsAg-positive, chronic

WHY carrier was used as a positive control and produeed amplicons of the predicted

molecular size (Figures 7.3 and S.l). Each RT reaction was performed in panllel with.

negative control in which reverse transai.ptaSe was omitted during eDNA synthesis. There

were no products observed after amplification of any ofthese negative controls.

To determine whether Wus might be secreted by PBMe due to mitogen stimulation.

WHV DNA expression was evaluated in the concentrated supernatant of cells cultured in the

prcse:nce cfLPS and in the final wash from the PBMe that was obtained prior to their culture

(see Section 2.7.2). Although WHY DNA was not detected in the wash, all PBMe culture

supernatants tested positive (data not shown). In further experiments. described in Section

3.8. it was also tested whether the supernatant from mitogen-stinwJ1l.1ed PBMe ofoffspring

with long-term fol.low-up after birth from • WHV-<:OnValescent mother contain infectious

virus.

1lte above results indicate that lymphoid cells of the offspring support WHY

replication. Thus, not only WHY DNA and transcriptionally active virus genomes were

detected in PBMe for up to 32 mo after birth, but also mitogen stimulation of the cells

yielded an increase in WHY RNA levels suggesting a higher ratc of virus replication. Since.

WHY DNA was undetectable in the final wash after PBMC isolation, this implies that virus

genome sequences detected were of an intraceUular origin Further evidence has been
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provided by the results presented below.

3.3." DNase aad Trypsia Tra~eat Ju,d DO EKeet OIl WHV DNA DdectioD ill

OfI"spriagPBMC

To further exclude the possibility that detection ofWHV genome sequences in PBMe

could be attributed to cdJ surl"ace associated viral particles or free WHY DNA fragments.

viable cdIs were subjected to limited DNase and trypsin digestion prior to DNA extraction.

In both test PBMe from 4BIM and control PBMe from a WH5Ag-positive, chronic WHY

carrier, treatment of intact circulating lymphoid ceUs with DNase reUawed by trypsin before

DNA isolation had no effect on the expression ofWHV DNA signal. Furthermore., WIN

DNA was WJdetected in the 6na1 wash from the PBMe isolation procedure as well as. in the

final wash after DNaseIuypsin treatment (Figure 9.3), indicating that there were no

extncelIuIar viral particles presenl which could be responsible for the obSCf'VCd positive signal

after PCR amplification. Since. any ext:r3C:dkJIar vinl DNA or virus DNA·protein complexes

wouJd have been removed or destroyed in this process. the WHY DNA detected is attnbuted

to virus located inside the ceU.

3.3.5 WHY RNA SeqUf:Dces earned in PBMe did Dot Originate from Serum

An additional control experiment was perfonned to compare WHY RNA detection

in liver and lymphoid tissues with that in serum. The experime=lt was set up using I .us of

RNA isolated from sp6cen II1d liver of. WHsAg-reactive., chronic WHY carrier, and 2 .ug of



Ficure 9.3 Effect ofDNase and trypsin treatmeIIl on detection ofWHV DNA in PBMC

collected from 4BIM ofFspring at 40 me after birth and &om • WHsAg-positive. chronic

WHY carrier. Both PBMC samples were extensively washed, diaated with DNase and

trypsin and washed .... u described in Materials and Methods. DNA extracted &om cells

(C ) and final PBMC wash (W) obtained before and after PBMC enzymItic: treatment was

amplified by nested PCR using C ll""" specific primen Il>d products __ to

recombirwlt whole WHY DNA probe. PositiV'c samples sbowcd the expected 428-bp,

nucleotide fragment.
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RNA from sown ofthe same chronic carrier and from In aduJt woodchuck convalescent from

acute WHV hepatitis. Results oflhis experiment pr:esented in Figure 10.3 showed that

although Iivtt and spleen from. chronicaIty inft.ctcd animal evidently carried transaiptionally

active virus. WHY mRNA was not detected in a serum sample from the same animal or from

another" convalescent woodchuck., although they were tested at the quantities 2·fold greater

than those from hepatic and splenic tissues. Th.is provides further proof that WHY RNA

sequences detected in ciraJJating PBMC did not originate from extraceUular virus which has

adhered to the ceIl membrane, otherwise serum would also carry transcriptionaUy active virus

genomes.

3.4 Oft'spriDI Liven with Diff~tStatus of WHV DNA [s:prnsio.

Liver biopsies were obtained on ulea.st yearly intervals from surviving offspring. In

cases IAIF and 2BIF. only autopsy specimens were available for investigation as both these

offspring did not live long enough to perform liver biopsies. In the remaining offspring, up

to 4 liver samples wae coUectcd during the reponed foUow..up. A1J liver tissue samples were

tested foe WHY DNA by nested PeR. with aU three pairs ofWHV genome specific primers

(i.e. C, S and X). After evaluation ofall liver samples, the II offspring investigated could be

divided into J groups based on the statusofWHV genome expression in the liver (Table 5.3).

The first group included 6 animals. In these offspring. WHY DNA could be detected

in all scquentialliver samples coUected during the entire foUow-up using at [east one pair of

virus genome specific primers for PCR amplification. This group constituted offspring 2B/F,



F"apn 10.3 Analysis ofWHV RNA in taWD ofa woocIcI:Iuc:Jc convalelCellt &om acute

WHY hepatitis and in ICIUm, spieen and iMrtrom. aWHsAa-rac:tive., cbroDic WHY carrier.

Approximately 1~8 oftouJ RNA extracted from spkcn and liver u well as 21J.1 of total

oorumRNAwu ..... bcDNAsymbooio_(+)"'-.(-) -.....(RT).

Tho _prodlxu-. ""I'Iifiod by .-.dPCll_ WHY C ....,;fic primon'"

the 421-bp .... geee &...-. _ by 5<lutbcn>bIo< Ilyt>ri<bDoo to _

WHY DNA probe.
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Table S.J Detection ofWHV C. S and X gene sequences in serial liver samples collected during
follow-up ofthe offspring studied l

OffspriDg WHVg= Liver sample number (off.sprinj: age in !DO'" sample collection)
pn-

IAIF _ (1)2

2BIF C _ (4)2

5
X

3BIM C - (6) - (15P
5
X

'BIM C - (6) + (19) + (31)
S ·X ·5CIF + (14) + (22)2· .·601F C + (II) + (22) + (31)2.)

5 ·X ·7DIF C - (II) - (22) + (31)1
5 ·X

'DiM C + (11) + (23) + (36)1
5 . ·X ·901F C - (II) - (23) - (39»)
5
X

JOOIF C + (6) - (9) - (22) + (36)
5 · ·X · ·1101F C + (6) + (9) - (22) + (36)
5 · ·X ·I WHY DNA aequences dctcctcd bynestcdPCR using WlNC, Smd Xgencspcciticprimcrs

, Liver sample collected during IWop$y

• Liver sampleeollected after WHY chalIeugc
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SCIF, 6DIF. 8D!M, 10M, and 11M.

Evaluation ofWHV DNA in liver sampb from 4 other" animals gave very unexpected

results. InttUseoood group. which indudedoffspring IAIF. 381M. 7DIF and 901F, WHY

DNA was not detected in the liver even up to 39 mo after birth. despite repeated testing by

nested PCR usios aD. tine SClS ofWHV DNA specific primers and Southern blot analysis of

the resulting reaction mixtures. The autopsy liver tissue obtained from offspring INF It I

mo ofage was found negative for WHY DNA using C. S and X gene primer pairs. In case

381M.. a liver biopsy collected at 6 rno orage and at autopsy performed at 15 rno after birth

was aJso negative after repeated testing with all three pain of primers. Before WHY

challenge. WHY DNA was not identifiable in liver biopsies collected at II mo ofage from

offspring 7DIF and 901F, and in the liver biopsy collected at 22 mo ofage from 1D1F and at

23 mo from 901F. After WHY challenge, liver biopsy from offspring 7DIF at 37 mo after

birth was found WHYDNA~ Even more swprising was finding that WHV c:hallenge

of9DIF did not induce WHY DNA appearance in the liver and the third biopsy obtained at

39 mo after birth from this offspring remained negative.

"The third category was represented by just one case. offspring 4B1M. In this animal,

WHY DNA was undetectable in the first liver biopsy coUect.ed at 6 mo after birth. However,

the remaining two biopsies obtained at 19 and 31 mo cfage tested positive for WHY DNA

using at least one ofthe virus genome specific primer pairs.

The data ofWHV DNA testing ofliver samples di1fend from the results on evaluation

of the WHV DNA expression inPBMC or scrumsamplcs. Thus, WHVDNA could always
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be detected in serum or PBMC by PCR amplification with at least one of the three WHY

genome specific primers which were routineJy used (Sections 3.2 and 3.3.1). Conversely,

liver biopsies from.some ofthe oftSpring(LC. 1M, 381M, 7DIF. and 901F) were completely

nonreactive f« WHY DNA using aD tine primer pairs, even when the amount arlota! DNA

analysed was increased to 5 118 per reaction (data not shown). lbese results are the first of

this kind and they document that long-term virus persistence can be maintained exclusively

at an extrahepatic location.

3.5 ComparisoD of WHV DNA Detec:tiOD in PanOd

Serum, rOMe ad Livu Samples.

In all offspring studied. serum. PBMe and liver samples collected at approximately

the same time points of foUow-up were evaluated for WHY DNA expression. Results

sboweda fluctuation not only in thedctection ofa particular WHY DNA sequence., eitherC.

S or X genes. but also in the virus genome expression that varied at different cell or tissue

sites in a given offspring when tested at the same time of foUow-up. This obsc:rvation is

illustrated in Figure 11.3 whereby WHV C gene expression was compared in sequential

serum, POMe and liver biopsies collected at the same time from IIDIF offspring. Thus. at

6 mo afterbirth, C gene sequences were identified in serum and PBMe, but not in the liver,

In contrast. the liver was WHY DNA positive at 9 mo orage, but serum and POMe negative.

By 22 mo, serum wu reactive. whereas liver and POMe were WHY DNA nonreactive.

FmaIJy, WHY C gene sequences were delccted in both serum. PBMC and liver at 36 roo after



Serum

428 bp>

Uver

428 bp>

PBMC

428 bp>

MoANEH'BJrth

692236



Figure 11.3 Evaluation of WHY DNA expression in serum, liver and PBMC samples

coUecled from 11I>IF offspring at 6, 9, 22, and 36 rna after birth. Each sample was tested by

nested peR using WHY C gene specific primers and the amplified 428-bp nucleotide

fragments were identified by Southern blot hybridization to • recombinant WHY DNA probe.
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It became evident that a single negative result from testing ofa paniallar serum or

tissue sample does not mean that WHY DNA is in hct absent. For example. repeat testing

oflivtt" biopsy Nl from IIDIF offspring with C gene specific primers eventually yielded •

positive resuh (oompare TatMe 5.3 and Figure 11.3). WHY DNA was also readily detectable

when nested PeR with S and X gene primers were used to test the same sample (Table 5.3).

Consequently, a sample was considered to be truly WHY DNA negative only after extensive

testing with all three WHY gene specific primers that was supported by negative results after

Southern blot analysis of the nested peR amplification mixtures. These results also indicate

the importance ofanalysing different types of samples., such as serum, PBMC and liver. to

compJetely exclude that the test animal is free ofvitus.

3.' EIPruaioa or WBV DNA aad RNA ia A.topsy Liver aad L)'IIlpboid TISS.es

F"rveotrspring~ autopsied during themune ofthis study (e.g., IAIF.2BIF. 381M.

SCIF and 6DIF). In 6D1F offspring, the autopsy was performed after WHV challenge (see

Section 3.10). Liver and spleen tissues were coUected from all the cases. Bone marrow was

obtained from 181M. SC/F and 6DIF, lymph nodes from I AIF and 381M, and thymus from

1M and 6D1F woodchucks. As indicated in Table 6.3. WHY DNA expression was assessed

by nested peR with WHV C, S and X gene specific primers. whereas WHY specific RNA

sequences were detected after reverse transcription reaction by nested PeR with WHY C or

S gene primers.
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3.6.1 Lr-piloid Ratrided Expressioll .(WUV Gft~e

Evaluation of WHY DNA sequences in autopsy liver" and lymphoid tissue samples

showed that aU investigated offspring carried virus genome in the cdls of the lymphatic

system, but not aU in the liver" (Table 6.3). Then:fore, in genenJ the cases could be divided

into two categories. In the 6nt group (Le., 2BIF. SCIF and 6DIF). both liver and all lymphoid

organs tested were fCKmd positive using at least onc pair ofWHV gene specific primers. In

2BIF offSpring, the liver was only weakly reactive for WHY X gene sequences yet spleen was

strongly WHY DNA positive when tested with all three WHY DNA primer pairs. The spleen

from SCJF offspring was found WHY DNA positive with aU three pairs ofWIN genome

specific primers. However. virus gene sequences were only detectable in the liver and bone

marrow after amplification with primer pairs specific either for C and S genes or C and X

genes. respeaivdy. 6DIF offspring was euthanised after WHY challenge (see Section 3.10).

As expected. liveI-. spleen, bone marrow and thymus from this animal were evidenUy WHY

DNA-«active. Vuus C. S and X gene sequences were detected in the liver, however only

C and S gene sequences were identifiable in the splenic and bone marrow tissues of this

offspring. The thymus was positive with WHY S gene specific primers. C gene sequences

were undetectable. and X gene expression was not tested..

In the second group ofautopsy cases (i.e.• IAIF and 381M). WHY genomes could

not be identified in the liver despite repeated testing with both WHY C. S and X gene

primers and Southern blotting. However, lymphoid tissues from both these offspring

evidently carried WHY DNA, as detected by PCR using I1lcast one of three WHY gene
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specific primer pairs. T1ws. in IAIF animal C gene sequences were identified in the spleen.

lymph node and thymus. The spleen and lymph node from this offspring were also WHY

DNA-reactive when tested with S and/or X gene specific primers. Figure 12.3 illustrates an

example oflymphoid tissue restricted WHVDNAex:pression in 381M offspring. In two liver

samples from this animal. obtained at 6 and 15 mo after birth, WHY DNA was undetectable

using both C and X gene primen as weU as. with S gene primers (Table 6.3). In contrast.,

WHY DNA was readily detectable in the spleen, bone marrow and lymph node tissues with

WHY C and X gene primers (Figure 12.3). VlI"US S gene sequences were also found in the

spleen, but not in bone rTWTOW and lymph node in this animal (Table 6.3).

In summary. WHY genome was detected in all lymphoid tissues collected from each

of the autopsy ca.ses analysed. However, virus DNA was evidently undetectable in the liver

of 2 out of the 5 offspring examined.

1,6.2 WBV GeDome Trnscriptioa in Autopsy Uven aad Lymplloid Twues.

Autopsy tissues were analysed for WHY RNA sequences by reverse tnnscription and

the synthesized eDNA detected by nested PeR with WHY C or S gene specific primers

(Table 6.3). WHY RNA was undetectable in all autopsy tissues obtained from IAIF

offspring. As shown in Figure 13.3, WHY RNA sequences were detected in the spleen from

2B/F and 381M offspring. In the case of5CIF and 6D1F (6DIF after WHY challenge), WHV

RNA could be identified in liver, spleen and bone marrow (Figures 14.3 and 15.3). In

summary, transcriptionally active WHY gene sequences were found in the lymphatic system



Flcare 11.3 Evaluation of WHY DNA expression in liver, PBMC and Iympboid tiuues

collected from 3BJM offspring. DNA was exttaetcd &om liver samples obtained by

laparotomy at 6 mo of .. ud at autopsy performed at 15 mo db:r birth. &om PBMC

coBoctod at 14.S mo cL.. aDd &om Ip&eeD.Iympb DOde., boDe marrow aDd Jkdeta1 nude

acqu:irocIatlUtOpSy. WHY gene scque:nca Mre idadicld by IIItIted Pal usiDg C or X gme

specific primen fonowed by Soutbem-bIot hybridiDDoa of the ompIified products to

recombinant WHY DNA. PositM aamplcs showed the expected molcc:ular size of the

ampIi6ed Wus C or X aenc Iiagmalu. indicIted on the left. of the panel.
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FilUft 13.3 Evaluation ofWHV RNA expression in the spleen ofthrce oflipring born to

mothenc;:oavalescent &om. put episode ofllaJte vinLI hepatitis. Total RNA extncted from

the spleen of2BIF, 3BIM and SCIF obtained 114, IS and 22 mo after birth, respectivdy. wu

used for eDNA synthesis with (+) or without (-) reverse traftSCriptue (R.1). After

amplification of eDNA by nested PeR using WHY S gene specific primers, the resulting

produeu were detected by Southem-blot hybridization to recombinant WHY DNA. The

eKpeCled mo1ecuIar size ofthe amplified WHV DNA sequeoocs is Ibown 00 the right side of

the pando



2B/F
4mo

I<T - +

3B/M
15mo

5C/F
22mo

< 501 bp



F"1IJU"e 14.3 Ddcction ofWHV RNA in the liver and Iympboid orpns ofan offspring born

toamotbercotl\'8Je:socnt&omIClJteWHVbepatitis. Total RNA extracted from liver, spleen

and bone marrow obtained at 22 me after birth from SCIF' offspring wu used for revax

transcription reaction. The synthesized eDNA was amplified by nested PeR using C gene

specific primers and the resulting products analysed by Southern blot hybridization to

rccombinanr: WHY DNA The viaJalized bands showed the expected mo*ular size of42g..

bp. As a control, each way was performed with (+) and without (-) revc:rsetr'lnlCriptase

(itT).
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FIpre l!.3 Evaluation ofWHV RNA expn::ssion in the liver and lymphoid orpns obtained

&mt 6DIF of&pri:ng at Bmo following chalJenae with WHY (i.e., ) 1 me after birth). RNA

........s fh>m_. spIoo>. bone """"'". U>d """'" wu fo< dlNA syntheoio with (+)

"'without (-) ....... _ ...... (RT). A oonlroI RNA _ from spleen of

• cm::ac WHY carrier (positive CXXlCrOI) was IUbjec:ted to the same tre:atmenl. The rau1tins

p"""""' .....~ by -.d PCR ...... WHY C ..-me primon followod by

Southao-blot _ to _ WHY DNA ""'-I lhe

expected molecular size of.2J.bp.
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in4outoftheS otrsprin@;anaIysed. Howew:r. in 2 out of3 offspring reactive f~ WHY DNA

in the liver WHY RNA specific sequences were also identified in hepatic tissues.

As mettioned previously (Section 2.5.5). each RT reaction was set up in panlId with

a negative control that had aU the ingredients except reverse mnscripta.Se. The negatm

result of this control excludes the possibility that virus genome sequences detected in the

tested samples were caused by WHY DNA contamination instead ofvirus specific mRNA.

[n addition, as shown in Section 3.3.5 WHY specific mRNA sequences were not found in

serum either from a woodchuck: convalescent from acute WHY hepatitis or a chronically

infected animal, but were detected in total RNA prepared from the liver and spleen of the

latter animal. Thus., the viral mRNA reactivity detected in the liver and lymphoid tissues

could not originate from viral particles which may occur in the circulation.

3.7 Pbysicocbt..ka1 Prapertin orWHV DNA-Radive

Partides Carried by OIfspriJlC

3.1.1 Sedimcotatiu Vdoc::ity orWHV DNA-Reactive Particles (rom Sera

To assess whether WHY DNA detected in the offspring sera could be contained

within virion particles. the sedimcflwion velocity ofWHV DNA in sera from 4BIM and 7D1F

offspring was compared to that ofpuri6ed WHY virions and fragments of recombinant WHY

DNA. Sera from 4BIM and rolf animals were selected for this evaluation because they

displayed opposite status ofWHV genome expression in the liver. Thus. liver of7D1F was

repeatedlyWHV DNA unreactive prior to collection of the analysed serum, whereas the liver



132

of 48IM offspring displayed virus genome at the time ofserum acquisition.

Figure 16.3 ilJustrates the results of WHY DNA determination in 15 fractions

coUected from the bottom ofeach gradient after uttraeentrifugation of test sen. and col'ltrOl

preparations. The resulu ofWHV DNA testing ofeach fraction, determined by PeR with

S gene spec::ific primeB. is plotted in relation to the sucrose concentration ofeach fraction (as

described in Section 2.6.3). In fractions collected after centrifugation of purified WHY

virions., the peak ofWHV DNA TCllCtivity sedimented to the bottom of the sucrose gradient.

Thus., WHV DNA could be detected in bottom sucrose fractions 1-3 and in a second peak

located in the top fractions 13-15 when tested by direct PeR. In sucrose fractions collected

after centrifugation of the recombinant WHY DNA. viral DNA could only be detected by

nested PeR. with the strongest WHV DNA reactivity detected in the middle of the gradient

in &actiorri 9-11 and in the top fraction 15. In sucrose hctions collected after sedimentation

ofsen.from 48/Mand 7DiFoffspring. two peaJcs ofWHV DNA reactivity were detected by

nested peR. The first peak. found in bottom fRctions 1-5, corresponded to WHY DNA­

reactive fractions 1-3 from the WHV virion pI'q)UUion. However, there was also the second

peaIc observed in the middle ofthe gradient in mctions 8-12. The location oflhis peak was

comparable to that of the WHV DNA positive fractiOIl5 9-11 obtained after centrifugation of

recombinant WHY DNA.

Therefore, the above findings indicate that a part efWHV DNA reactivity detected

in offspring sera wu associated with panicles migrating in sucrose with velocity similar to

that of purified WHY virions, suggesting the presence of intact (complete) viral particles.



Fipre 10 ADaJysisofledimc:nWion velocity ofWHY DNA entera coUec:ted from two

oftSpring born to mothers c:onvaIesc:aIt from In IaIIe qJisode ofvDl hepatitis. Tcst sunpIcs

included: serum from 4BIM otrspriDs with WHY DNA eqRIIion en both Iivec and PBMC

at the time of serum acquisition at 32 rna after- birth (blue), IeNID obtained at 22 me after

birth from 7DIF offspring with WHY DNA c:xpression en PBMC but not en Iivec (ydJow),

purified WHY virions (red), and recombinant WHY DNA (green). All umples were

centrifuaed separately through 15% alCrOle over • 60% IlICrMC alShion, as desc:ribed ill

Matc:riab and Methods. FLf\cal, &acticms coIlcctcd from the bottom ofe.ch gndienl were

talcd for WHY DNA by din:ct or nested PeR using WHY S &CDC specific primen aDd

....wotedby~ Co< """"'" """"""""' (%; I"Y). The dope ofWHY DNA

.-Mty .... _bylbc of__........ ofPCllprodua ......

..__ WHY DNA delecOoo F1ldod occonfio& to .. ubOn<y ocoIo. - ""8Cd
ftomO(_)to)( ...a.a.,v. _ ....... _

lbc expoctcd WHY nucleotide u.ao- ofSOI-bp.
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However. WHY sequences in the tested offspring sera sedimented also with velocity

companblc to that ofrecombinant fragmented WHY DNA, indicating that viral nucleic acid

fragments also c:x:amed in the cin::ulation ofthese animals. To further characterize the WHY

DNA·reactive particles detected in the offspring sera. WHV DNA-reactive fractions were

subjected to DNase treatment and analysed again by PeR, as described in Section 3.7.2.

3.7.1 Effett ofDNue Digestion on WHY DNA Detected in Sucrose Fractions

Sedimentation analysis revealed that a WHY DNA-reactive serum sample could

contain several distinct fonns ofviral particles. either intact WHV virions or free WHY DNA

fragments. Undamaged WHY virions should be resistant to DNase treatment due to the

presence of a protective. outer lipoprotein coat. In contrast. free WHY DNA, as well as

damaged virions.. should be suscepbble to the DNase digestion and eliminated by the enzyme

action.

In order to differentiate WHY virions from partially or unenveJoped WIN DNA,

sucrose fractions which had demonstrated the strongest WHY DNA reactivity by peR were

combined and examined for WHY DNA before and after treatment with DNase. As described

in Section 3.7.1 and presented in Figure 16.3, the peaks of WHY DNA reactivity were

detected in bottom fractions 1-3 for purified WHY virions, in fractions 1-4 and 8·12 for

serum from 48/M offspring, and in fractions 9-11 for Mn/-I digested recombinant WHY

DNA. Figure 17.3 shows that WHY DNA was detectable before DNase treatment in all

samples analysed. Following DNase digestion, the bottom fractions obtained after



YIpI'e 17.3 Effect ofDNase digestion on WHY DNA detection in pooled fractions coUected

after centrifugation through 15% over a 60% sucrose cushion ofsenun from 4BIM ofrsprina.

prijed WHY Wions, and rec:ombinant WHY DNA. Sucrose fractions with strongest WHV

DNA rac:tivity &om the above samples were pooled and DNase tratcd (0), u deIcn"bed in

Mataials and Methods. Tested samples included: fractions 1-3 (bottom) for WHV viriOllS,

hctioos 14 (boaom) and fractions 8·12 (top) for 4BJM serum, and fractiOrtS 9-11 (top) for

rtlCOIIIbinant WHV DNA (seeFIgW'e 16.3 fordctails). DNA extraeted from eachsamplewu

tested fur WHY S gale sequenoes by nested PCll and the amplified producu were identified

by Soutbem-bIot hybridization to recombinant WHY DNA. For each digested sample (D).

a RmpIe oftbe samepoo1ed sucrose fractions untreated with DNase (NO) was evaluated for

WHY DNA reactivity. Positive samples showed the expec;:ted WHY nucleotide bgment of

501 bp.
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centrifugation of the WHY virions and the corresponding mctions coDected after

oc:ntrifiJption of4BIM remained WHY reactive.. Conversely, the same DNase treatment of

fractions harvested from the top of the gradients after fractionation of recombinant WHY

DNAand4B1Mscrumentin::lydirni:naledWHVDNA teICtivity. Since WHV DNA detected

in the bottom fractions from offipring sen were n:mtant to DNase digestion. this experiment

provides further evidence that intact WHY virions circulated in these offspring long after

birth.

3.7.3 Buoyut Dauity Analysis ofWHV DNA-Radin Partida: in OtrspriDI Sf", aDd

PBMC-Derivul Culhlre SuperuataaL

The buoyant density of WHY DNA-reactive molecules was analysed in serum

coDected from 4BIM offspring at 32 mo after birth and in culture supernatant obtained after

72 h stim.JIation with LPS ofPBMe from the same animal and in serum from 7DIF offspring

obtained at 22 mo after birth. In para1lel. as described in Section 2.6.4, & puparation of

purified WHY virions was also fractionated through escl gradient. Direct PeR testing of

fractions obtained from WHY virion gradient revealed that WHY genome reactivity was

detectable only in fractions 9-13. corresponding to esCl density of 1.21-1.32 g/anJ
• All the

tested samples from offspring 4BIM and 7D1F. centrifuged under the same conditions.

demonstraled WHY DNA reactivity by nested peR in fractions 9-11 showing a esCI density

ofI.21-1.32FjcmJ . Thus. for48/M offspring serum, WHY DNA was detected in fractions

9-13. whereas in the c:utture supernatant from PBMC ofthc sarnc: animal fractions 10-13 were



13'
WHV DNApositM:. In the case ofserum from 7DIF offspring. fractions 10-12 were found

WHV DNA-;.:..:tivc (Figo.ue 18.3). Therefore, fractions coUected from the offspring CsCl

gradients which were found WHY DNA-reactive edu'bited a buoyant density that is

chancteristic for WHY virions.

3.1 IDfectivity of WHY Carried by Off.priDg

To detennine whether silent carriage ofWHV genomes by the offspring is infectious.

either concentrated serum or plasma (Section 2.9.1) or culture supernatant from LPS­

stimulated PBMe (Section 2.7) was administered intravenously into healthy, WHY-naive

woodchucks. All serum samples coUected from the healthy woodchucks prior to inoculation

tested negative for anti-WHc by specific ELISA and were WHY DNA negative by nested

PCR with virus gene specific primers. In addition, PBMe and liver biopsies coUected from

these normal animaJs were found WHY unreactive by nested PeR. All these results

confirmed that the animals were WHY naive prior to the inoculation.

3.1.1 Iaocub Derived from Plasma aDd PBMe of Liver WHY DNA Positive OfT.prine

ladueN SerologicaUy Evideat WHY IarectioD

WIN genome was expressed in both the liver, POMe and serum ofoffspring 4BIM

at the time of plasma and POMe coUection predestinated for preparation of inocula. To

determine infectivity ofWHV carried by this animal. plasma collected at 32-34 mo after birth

was ultnccntrifuSed and the rcsultinj pellet injected i.v. into woodchuck. #269/F. POMe



rtpre 11.3 AJWysi.s ofbuoyaot density ofWHV DNA in scn. aDd • cultu:R su:paDIWII.

&om LPS-sbm.J1atcd PUMe of offspring born to mothers coavalcscmt &om IQIte WHY

hepais. Test samples i:ndudcd: purified WHV virions. serum coUected 11 J2 mo after birth

and PBMC-deriwd aq:JeI'MWlt at 32-34 mo after birth from 4BJM ofrspring which eJq)t'CSMd

WHY genome in both liver and PBMC at the time ofsample collection, and serum obtained

11.22 mo after birth &om offspring 1DIF in which WHY DNA wu present in PBMC but DOt

in the liver. All samples were centrifuged separa1ely throup • 1.1-1.7 gmIcajl CICJ.

tp"Idiem, as desab:d in Materials and Methods. Thirteen &actions were c:oUected &om the

00.... of ..... gndiCOl IN! ewhwed by mnctomotty for CJCI _ fJlmIom'J. All

ftw::boas~ after c:entrifiJpIioo ofthe WHY viriOII preparuioa were tested tOr WHV

DNAbycliRaPCRwUh WHVC_ opecifioprimon. 00Iy _

~ of'" oI&priog ....... thol comspoodod to ... WHV DNA poWYo_

I'tlCOVeRd after virion fractionation were tested by DCSted PeR with WHY C primen.
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isoWed II the same time wa-e~ foc 12 h in the presence ofLPS (Section 2.7) and the

culture supernatant concentrated by uhnccntrifugation and injected into WHY-naive

woodchuck #278/F.

~inocuIation, I/2(f)/f and ff1.78IF len. weft; tested fOr WHsAg and anti-WHc (see

Figure 19.3). In toUl. 9 sequential serum sampes were evWIted from each animal begiming

81 14 dpi. WHsAg was detected in sera coUected at 49 and 63 dpi from #269/F and at 6) dpi

from #278/F. AnU-WHc was found positive in N269/F beginning from dpi 49 until the end

offoUow-up. whereas animal #278/F became anti-WHe-reaetive after 72 dpi and remained

positive throughout the entire observation period.

WHY DNA was detected by nested PeR in sera obtained at dpi 10 from #1.78/F and

by direct PCR beginning at dpi 49 in sen. from ff269/F and #278/F woodchucks. All

subsequent serum samples from both woodcOOcks tested WHV DNA positive by direct or

nested PCR amplification with virus genome specific primers.

PBMe fium both tr1fIJIF and tf278IF also canied WHY DNA. In #269/F, viral DNA

was detected by nested PeR at dpi 49 and after direct PeR amplification at dpi 63. but could

not be detected at dpi 215. In the case of#278/F, PBMe collected at dpi 10, 21, and 49

tested WHY DNA positive by nested PCR and even by direct PeR at dpi 12. However by

dpi 218 a nested peR was again necessary to detect WHY DNA in PBMe from #278/F

(Figure 19.3).

Liver samples were obtained from #2691F and #218IF approximately 2 rna prior to

inoculation and then at approximately 80 dpi and at autopsy. As indicated above., liver



F"tpft 1'.3 Fonow-up ofWHY.naive, healthy woodchucks after inoa1lation with pJuma,

Il!I'Um or. supemaunt from LPS-stimulated PBMC (LPS-PBMCls) derived from offspring

born to mothers with a put episode ofaane WHY heparitis. Sequential sera obtained betore

and after inoculation were tested for WHsAg (red), anti-WHc (green) and WHY DNA by

di=t (daric grey) "' ....od (light grey) PeR. u descnbed .. Maleriab ond Melhods. The

foDowing charts illustrate the total observation period in days., the moment ofinoculation

(V ; time 0), ond the oppeannce ond duntion (slwlod rqion) ofseroIopealuwbn of

WHV infection. The time of acquisition and WHY DNA expression ( + or - ) in liver

bioplies ( "), PBMC (!) on<! autopsy tissues ( ~) "" Uldieated.



YtgUft 19.3 Follow-up ofWHV-naive, healthy woodchucks after inoculation with plasma.

serum or & supernatant from LPS·stimu1ated PBMC (LPS-PBMCls) derived from offspring

born to mothen with & past episode ofBalte WHY hepatitis. Sequential sera obtained. before

and after inoa.dation were tested for WHsAg (red), anti-WHc (green) and WHY DNA by

direct (clark lVey) or nested (light llJey) PeR, as descn1>ed in Materiah and Methods. The

following charts illustrate the total observation period in days, the moment of inoculation

(V ; time 0), and the appeannce and duration (shaded r<gion) of serological markers of

WHY infection. The time of acquisition and WHY DNA expression ( + or - ) in liver

biopsies ( A), PBMC (1) and autopsy tissues (~) are inWeated.
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biopsies coDected before inoculation were WHY DNA negative by nested PeR. In both

animals., liver" tissue taken II. about 2.S me after inoculation tested WHV DNA positive at the

level of direct PeR whtteas those obtained at autopsy were reactive by nested PeR.

Furthermore. WHY DNA wasdeudt.d by nested PeR in lymphoid tissues (i.e., spleen.,. bone

nlIm)W.oo lymph node) from 1f1.69IF" _(215 clp). Int=stmgIY. although the WHY

genome could not be detected. in the final PBMC sample, it was identifiable in lymphocytes

from spleen. Evaluation ofautopsy lymphoid tissues obtained at dpi 218 from #278/F yielded

similar results. Thus. WHY DNA was detected by nested peR in spleen and lymphoid «Us

derived from splenic tissue. however bone marrow and lymph node were WHY DNA

unreactive (Figure 19.3).

In summary. the above experiment revealed that inocu1& derived from 4BJM offspring,

either plasma or PBMC 0Jkure supernatant carried biologjca1Jy competent WHY which was

transr'Mtable to healthy woodchucks. The induced infection was serologically evident since

WHsAg was transiently detected and anti-WHc was persistently expressed in the cicculation

in both #2691F and #278/F. In some serum. PBMC and liver samp!es WHY DNA was

detected even by direct peR. indicating that the virus load was relatively high.

3.8.1 la.ocula Dttived (rom Plasma or Serum of Liver WBV DNA Negative OfTspri0S

were Infectioulto Healthy Woodchucks

WHY genome sequences were undetectable in scquentialliver samples obtained from

both 3BJM and 7DIF offspring prior to WHY chaI.lensc. however both animals carried WHY
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in cin:ulating lymphoid cells and serum. To determine whether virus present in the offspring

was infectious., inocula derived from serum of3BIM and plasma of 7D1F was injected into

WHY-naive woodchucks #2601M and #276fF, respectively. FoUowing inoculation, both

animals were assayed for serological markers ofWHV infection, WHsAg and anti-WHc, as

well as for WHV DNA in serum, liver and PBMe, as described in Section 3.8. Before

inoculation, all WHY infection markers were not detectable in these woodchucks.

After inoculation, all serum samples collected from #2601M and #276IF tested

negative for WHsAg and anti-WHc. However. WHY DNA was detectable in sera by nested

peR beginning at dpi 49 in #2761F and at dpi 22 of#260IM. paMe became WHY DNA­

reactive at 10 and 13 dpi from #276/F and #260!M, respectively. Thus, WHY DNA

apparently appeared in PBMe of#2601M even prior to its appearance in serum.

As mentioned above. the first liver biopsy from #2601M, coUected before inoculation,

tested negative for WHY DNA. However. the liver biopsy obtained at dpi 76 from this

animal as well as, that collected 110 dpi at autopsy were also found WHY DNA negative.

Testing ofthese samples with pairs of primers specific for the WHY C, S and X genes gave

repeatedly negative results confinning the complete lack ofvirus genome expression in the

liver ofthis animal. Most interestingly, serum, PBMC. splenocyte&, spleen and bone marrow

obtained at autopsy from #2601M tested WHY DNA-reactive (Figures 19.3 and 20.3).

Animal #1.76/F was injected with inoculum derived from 7DIF offspring, in which

WHY DNA could not be detected in the liver. As expected, WHY DNA was not detectable

in the first liver biopsy obtained prior to inoculation, but in contrast to #2601M woodchuck,



r.,.re ZO.3 EvaJuatioo ofWHV DNA expreuioo ill .serum, 1Mr, PBMC aDd tympboid

tissues of 260JM woodcbudc obtained 3.5 mo after inocuJaI:ion with sc::nun from 3BIM

offspring. Serunl. coIIcc:tcd 15 me after birth from JBIM of&priDs; with WHV DNA

expreuiOD racricted to the IympbItic system was prcpulld u dc:a:ribed iD MIterials and

Methods and injecud LV. imo a bealthy, WHV.-ive wooddIudr:: 26O/M. DNA extracted

_liwd..",,;,,colJecled atopproxDnatdy2 mo bef... (l) .... oftcr (2) inoaJIation, ....

from serum. IMr (3), PBMC and lymphoid tiuues obc&iDed at autopJy of2601M wen tested

fur WHY DNA by"""'" PeR uoioa WHY C _1pOCific prim<n. The RIU11Dl& products

were uaJysed by Soutban blot bybridiutiora to a l'IICOaIbi:Daat WHY DNA probe. Each

assay was performed in paraDc:I with DNA isolated &om Ia'\IID ofa c:broaic WHY canier

(positive conuol) aDd two neptivc coDtrOls which iDcluded water and a mock e:xtraeIed

lample (u described in MataWs .... _). Po_....,,&oo obowod the oxpocte<l

IDOlecular me or428 bp, iDdica&ed OQ the wt Iide orthe pmd.



428 bp>

Mock Serum Uver Splenocyfes Positive Control

Woter 1 2 3 PBMC Bone Marrow



150

the liver obtained at autopsy at dpi 19 tested positive for WHY DNA All lymphoid tissues

from dB animal, ie.. spIem. bone marrow and lymph node.. as well as serum and PBMC were

also WHY DNA·reactive (Figures 19.3 and 21.3).

In summary, serum or plasma dmved from either offspring 381M or 7DIF, which did

not carry WHY in the liver. was infectious to WHV·naive wooe:k:hucks. However. in contrast

to infection induced by inocula prepared from 4BIM offspring with WIN DNA in the liver,

the infection was serologically silent (i.e., WHsAg and anrl-WHc negative) and WHY DNA

was detectable omy by nested peR amplification. In il'276!F inoculated with plasma from

7DIF offspring, both liver and lymphoid tissues tested positive for WHV DNA In #26OfM

infected with 381M serum., the Liver remained continuously WHY DNA negative. Overall.

the obtained resuJts indicate thar. inocula derived from animals with undetectable WHY DNA

in the liver could carry infectious vinas which is traNmittable to healthy woodchucks.

However. the uiggtted infection was serologically silent and vinJs DNA sequences occurred

only at very low levels. In one of the inoculated animals. WHY DNA expression was

restricted to the lymphatic system.

3.9 PBMC-Dtrivtd laocululII (rom Adult Woockhackl with SLAB did Dot loree.

OffSpriDg

PBMC-derived inoculum from woodchucks after recovery from an episode of self­

limited acute hepatitis was injected i.v. into WOlF and IIDIF offspring (see Section 2.10).

Sera coUected from these animals were evaluated for WHsAg. anti-WHs.. anti-WHc as weD
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as. tested for WIN DNA Anti-WHs was detected intermittently during follow-up of IOOIF,

but no other serological marker ofWHV infection appeared in this anirnaI during the entire

observation period after injection with the PBMC-derived supernatant. WHV DNA could

be detected by nested PeR prior to inoculation and virus genome levels appeared to be

WlChanged fonowing injection with inoaJlum (Figure 3.3). Thus, PBMe culture supernatant

originating from woodchucks with SLAH was not infectious to these offspring.

3.10 OfTspriag ChaUenged with Infectious WBV Devdoped Acute Rep_litis

In this experiment, 6D1F and 801M offspring with WHY DNA positive liver, and

1D1F and 9DIF woodchucks with WHV DNA negative liver were challenged with a highly

infectious WHY inoaJIum derived from serum oca WHsAg-positive WHY carrier. Following

inoculation, all the offi;pring were tested forWHsAg, anti-WHs, anti-WHc. and serum WHY

DNA (Figure 3.3).

Aftercha1lenge of6DIF offspring, anti-WHc was detected in the circulation at dpi 28,

42 and 56, anti-WHs transiently appeared at 82 dpi, and WHsAg remained undetectable.

Levels ofseru.-n WHY DNA appeared to increase somewhat. although the virus genome was

still only detectable by nested PeR and returned finally to pre-inoculation levels. GGT

increased to 26 beginning at dpi 147, suggesting the possible development of HCC.

However, liver obtained at autopsy (i.e., dpi 244) did not show evidence of liver tumour.

WIN DNA sequences were identified by nested PCR in all autopsy tissues obtained from this

ani:maI. including liver, spleen, bone marrow and thymus, as described previously in Section
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3.6. Autopsy liver, spleen and bone marrow also tested positive for WHY specific RNA,

indicating presence of transcriptionally active WHY genomes, as illustrated in Figure 15.3.

In 70IF offspring, WHsAg and anti-WHs remained undetectable after challenge with

WHY. However, serum became anti-WHc-reactive at dpi 14 and remained positive until the

end offollow·up (i.e., dpi 440). Serum WHY DNA levels transiently increased, as it could

be detected by direct peR amplification at dpi 14 and even by slot blot hybridization assay

at dpi 28, which is approximately lOS_fold less sensitive then direct peR assay. Subsequently,

as observed for 60IF, serum WHY DNA levels ultimately decreased to the pre-inoculation

level. As expected, liver biopsy collected from 7D1F at 14 mo after WIN challenge tested

positive for WHY DNA, whereas two biopsies collected prior to inoculation were virus

negative.

Similar results were obtained after WHY challenge of 801M offspring. Again, as

observed forIDlF, WHsAg and anti-WHs were not detected, but anti-WHc appeared in the

circulation at dpi 14 and remained positive until the end offolJow-up (i.e., dpi 216). WHY

DNA could be detected in serum by direct PCR at dpi 35 but thereafter, a nested PCR was

necessary to identifY virus gene sequences. A liver biopsy was collected 6 mo after injection

with WHY and, like the previous two biopsies from the same animal, was found WHY DNA­

reactive.

The same pattern of WHV genome expression was also observed in 901F offspring

following WHY challenge. However, unlike 6OIF, 701F and 801M, WHsAg could be

detected during a short period between dpi 35 and 42. Anti-WHs was undetectable in this
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animal. whereas its serum became anti·WHc-nactive beginning at dpi 14 and except for.

brief'interval cfnon-reactivity at dpi 35, remained positive until the last sample tested at dpi

216. WHV DNA was detectable by direct PeRu dpi 35, but sen coUected foUowingdpi

100 tested positive only after amplification by nested PeR WHY DNA was not detected in

any of three liver biopsies taken from thisarimal. inc/oding • sample collected 9 mo following

WHVchallcnge.

In summary, 6D1F. 7DIF, 801M. and 901F offspring were susceptible to WHY

infection after challenge with a highly infectious virus and there was no apparent difference

in the panern of the induced infection between offspring with and without WHV DNA

expression in the liver. except 7D1F. In all cases. senun became anti-WHc-reactive. Also

serum collected from 901F offspring became WHsAg positive and anti-WHs couJd be

detected in 1DIF offspring serum. A transient increase in serum WHY DNA levels was

observed in all the offspring injected with WHY, as it is ilJuStrlued for 901F animal in Figure

22.3. In this offspring. WHY S gene sequences were detectable by nested PCR in sera

collected 60 and 30 days prior to WHY inoaJlarion and at dpi 0 and 14 after WHY challenge.

In contrast, a direct PCR was sufficient to amplify WHY DNA present in sera collected at dpi

3S and 42. Subsequently, serum WHY DNA levels retUrned to pre-.inoculation titres. as

shown for sample coUected at dpi 251. As mentioned previously in Section 3.2 and shown

in Table 3.3, a greater percentage of samples tested positive for viral DNA after WHY

challenge. For example., 48.1% of all serum samples tested positive prior to injection with

WHY by PCR with C gene specific primers, wberus 88.9"/0 ofserum samples examined were
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WHY DNA-reactive after WHY challenge. Similar results were obtained when WHY DNA

expression was evaluated in PBMC. Prior to inoculation, PBMC were 80"10 positive when

tested with C. S and/or X primers, but tw/o ofPBMC coDected after inoculation were WHY

DNA-reactive (Table 4.3). Liver samples were collected from each offspring analysed

foUowing WHY challenge. In two cases. 6D1F and 801M. liver had tested positive prior to

and remained reactive after WHY inoculation. with no apparent change in the levels ofWHV

DNA However. WHY DNA had not been detected in both liver biopsies taken before WHY

challenge from eithet" 7DIF or 9DIF olfspring. The third liver biopsy, obtl\ined after injection

ofWHV from 7DIF tested WHY genome positive. but in 9DIF the liver remained WHY DNA

negative (Table 5.3). Thus., results indicate that WHY re-infcction led to increased expression

of WHV genome sequences in serum and PBMC from all the offspring. However. only

offspring 7D1F showed a significant increase ofvirus load in the liver. The level ofWHV

DNA in hepatic tissues remained unchanged in all other cases. Since liver samples were

coUectedfrom6up to 14 mo after WHV challenge., it is possible that WHY DNA in the liver

transiently increased in 6D1F and 8DIM woodchucks or appeared in offspring 9DIF but has

subsequently returned to pre-inoculation levels.



CHAPTER FOUR ~ DISCUSSION

4.1 Offspring 80m to Mothe" Convalescent from Viral Hepatitis are

Seroktgically Sikat Carrie" o(WUV

For the first time, this study provides evidence that vertical transmission of

hepadnavirus to offspring occurs despite the apparently complete recovery of mothers from

vila! hepatitis. We have demonstrated in the woodchuck model ofbepatitis B that the virus

can persist for a very long time, ifnot for life, in such offspring as an asymptomatic infection

characterized by the absence ofaD WHY serological markers. In these newborn animals, the

only indication of WHY infection was the continuous presence of trace amounts of viral

genomes in the circulation. liver and lymphatic organs.

The persistence of low-levels ofWHV DNA despite the absence ofany serological

marker ofWHV infection was observed in all ofthe offspring analysed, ell:cept those animals

which were challenged with infectious WHV in the late phase of our study. Although, we

could not detect any WHY antigens or relevant anti-viral antibodies, it is possible that they

were present but at levels below the detection limits of the assays used. However, even after

concentration ofoffspring sera by fractionation in sucrose we failed to detect WHsAg. This

is in contrast to the findings in sera from maternal woodchucks convalescent from acute

WHY hepatitis (Michalak et ai, manusaipt submitted) and from patients after recovery from

acute HBV infection (Michalak et oJ., 1994) which documented presence of the antigen traces

after similar fractionation. Thus, it is evident that although the offspring lacked aU

conventional serological markers of infection they persistently carried WHY genomes. This
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situation could be explained by a combination ofa few coinciding events, i.e., infection very

early in life., o. even in utero. with very low levels of the vinJs which caused a low rate of

persistent virus replication and induced immune tolerance to viral antigens. This immune

tolerance cooJd be because antigens encountered during the development of the fetal immune

system are regarded as "self' and fail to elicit specific cellular and humoral immune responses

(Ahmed etai.• 1989). VIJUS-induced immunological tolerance is accepted as a reason for the

development oflong.tenn infection in children born to mothers with chronic hepatitis B (see

Section 1.6.1d). However. unlike previous investigations showing that tolerance eventually

wanes with immune system maturity, in our study, the animals did not develop any immune

response during faUow-up.

In sequential serum and PBMC samples obtained as early as 2 mo after binh and up

until 42 mo from the offspring studied, WHY genome sequences could be detected by nested

PCR roDowed by Southern blot analysis. In order to increase the sensitivity ofour detection

and not to miss mutated viral genome sequences, WHY DNA expression was routinely

evaluated using oligonucleotide primers specific for three non-overlapping regions of the

WHY genome, namely C, Sand X genes. As indicated in Tables 3.3 and 3.4, by using this

approach, we were able to improve the detection oflow-Ievels ofviral DNA in serum by at

least: 2-fold and in PBMC by a third in comparison to amplification with WHY C gene primers

only. These findings parallel results reported by other investigators in HBV-infected patients

(Chazouilleres et at., 1994; fIlg et at., 1995; Patcrtini et at., 1990). We also observed

significant variability in the detection of ~erent WHY gene sequences in the offspring
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investigated. For example, WHY DNA could be identified with one primer pair but not

detected using another pair specific for a different part of the WHY genome in the same

serum or PBMe sample. Yet, the reverse situation could be found in the next sample from

the same animal. This is not surprising given the very low levels of template viral DNA

present in these samples. 1bercfore. even small fluctuations in virus levels or slight variations

in recovery or Iota! DNA from test sample and in peR conditions could affect WHY DNA

detection, especially when the two-step peR procedure is employed. However, it is also

possible that lhe observed variations ace caused by the presence of virus mutants. As

mentioned before (Section 1.3.2), WHY uses reverse transcription in its replication cycle thus.,

the virus is naturally subjected to a high mutation rate and can generate many genomic

variants which may predominate at a given time during infection. Ifmutations occur within

a primer binding site, tms may consequently affect WHY DNA amplification using that

particular primer pair. On the other hand, identification ofWHV DNA in the same sample

with all three primer sets specific for distinct genomic regions may suggest that v;ral DNA

existed in a complete uninterrupted form. This could be considered as evidence for the

presence ofcomplete virions.

The existence of intact WHY virions in the offspring was supported by the results

from analysis of physicochemical properties of circulating WHY DNA-reactive molecules.

As mentioned above. concentration of serum samples by fractionation in sucrose enabled

WHsAg detection in matemal woodchucks, yet the same treatment failed to identify similar

particles in the offspring sera. NevenheJess. WHV DNA-reactive particles in the same
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offspring sera did show physicochemical properties similar to those of intact WHY virions.

For example. the WHY DNA particles migrated in sucrose with a velocity identical to that

of WHY virions and they were resistant to DNase digestion, suggesting that they were

protected by protein coat. However, there was also evidence that incomplete viral particles

as well as freely circulating WHY DNA were present in the same samples. This was based

on the finding that migntion of some aCthe WHY DNA·rea.ctivc panicles in sucrose was

compatible to that of protein-free DNA fragments obtained by digestion with restriction

enzyme ofrecombinant WHV DNA Furthermore., centrifugation in esCl gradients indicated

that WHY DNA-reactive particles in the offspring sera also exhibited a buoyant density which

corresponded to that ofWHV virions with an intact lipoprotein envelope. Taken together,

these results convincingly indicate that at least part orWIN DNA reactivity detected in the

offspring sera was contained within intact virions. These findings ace comparable to those

obtained from analysis of sera from individuals who completdy recovered from acute hepatitis

B (Michalak et at., 1994). In these patients., serum HBV DNA-reactive molecules also

displayed physicoch.emical characteristics similar to those of purified Dane particles. In

addition. the sedimentation velocities and buoyant densities of the different HBV DNA­

reactive particles detected in these convalescent sera (e.g.• intact virions and free HBV DNA)

corresponded to those observed in the present study. This is not surprising since both HBV

and WHY demonstrate very similar molecular, structural and physical properties (Section

1.4.2). However. definitive evidence for the presence of structurally complete and

biologically competent WHY virions was established when inoculum prepared from the
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concentnIted plasma ofthe offspring studied induced serologically evident acute hepatitis in

WHY-naive woodchucks (discussed in Section 4.5).

In adult woodchucks convalescent from acute WHY hepatitis, carriage of WHY

genomes in the absence ofall serological markers ofWHV infection. except anti-WHc. was

associated with the ultimate development ofHCC in 2 out of9 animals studied (Michalak et

aI., manuscript submitted). Similarly, in the human situation. persistence ofRBV DNA in the

context ofserologjca1 immunity to virus (i.e., serum reactivity for anti-HBc and/or anti-HOs)

has been implicated in the development ofHCC (Blum et ai., 1991; Fong et al.• 1993; Liang

et a/.• 1990; Paterlinietal.. 1990). For example, in one well studied patient, HCC was seen

with integrated HBV DNA in the tumorous part of the liver 23 yr after complete serological

and clinical recovery from acute hepatitis B and continuous presence of virus-specific

antibodies (Blum et al., 1(91). Furthermore, serum taken from this individual and injected

into a chimpanzee resulted in serologically evident acute HBV infection (as discussed below).

Other studies have described development of HCC in patients without symptoms of

hepatocellular injury or inflammatory changes in the liver and in the absence of serological

markers ofHBV infection (Kamito e/ aI., 1996). The only indication of previous HBV

exposure in these individuals was the presence ofHBV DNA in serum and liver tissue. In the

above studies, it: was postulated that the integration ofHBV DNA into the host genome could

result in cellular genome rearrangements and mutations which may eventually lead to tumour

formation. Although, the WHY genome has persisted in the offspring from our study for

more than 3 yr after birth in the absence ofserological indicators of infection, we have not
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observed any evidence of liver inflammation or HCC development. Thus., the possible long­

term consequences of this low-level virus carriage have yet to be detennined.

In add.~ it is also poSSIble that serologically immune individuals who silently carry

HBV could be resporwble for bansmission ofvira.l hepatitis to healthy recipients ofblood or

organ transplants (ChazouiUen:s elaJ., 1994; Lowell et aI.• 1995; Wachs et al., 1995). It has

been suggested that HBV can persist at trace quantities in extrahepatrtic tissues. especially

in the lymphatic system. which may serve as the potential virus reservoir for re-infection of

the liver (ChazouiUeres et al.. 1994; Feray eta/.. 1990; Jiang et oJ, 1994). Therefore, these

data together with findings from the present study show that infectious hepadnavirus

undetectable by all conventional assays can persist in the absence of serological markers of

infection. It is evident that potential transplant donors and recipients should be tested for the

presence ofHBV using sensitive molecular techniques. i.e., peR followed by Southern blot

analysis of the amplified products.

A5 mentioned above, the offspring investigated were negative for all serological

markers ofWHV infection. including anti-WHc antibodies. Antibodies to WHY or HBV

nucleocapsid appear soon after virus invasion and usually persist for life. Hence, they have

been applied as a reliable serological indicator of current or past hepadnavirus infection. The

lack of anti-HBc response is very rare and has been attributed to aberrant inununological

responses of the host or infection with HBV variants. For example. in one study of children

born to HBsAg-positive camer mothers (Lee el ai., 1989), it was postulated that the absence

of anti-HBc was due to the babies' immune incompetence. These infants also failed to
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develop antiwHBc and anti-HBs, although they were positive for HBsAg and HBeAg during

a foUow-up period 00 to 5 yean. Therefore. it appeared that these infiults were incapable

ofproducing antiOOdies to HBV antigens. It was not determined, however. whether this was

caused by a generalized immunosuppression or a defective immune response specific for

HBV. since the authors did not challenge the infants with unrelated antigens. The authors of

the above study believed that these children will eventually develop antibodies against HBV

when litey become immunocompetent. A comparable finding was reported in an anti~HBc

nonreactive adult chronically infected with HBV (Lee et al.• 1992). In this study, the

investigators suggested that the lack of anti-HBc response was a consequence of HBV­

specific immune defect probably involving antigen presenting cells. Although.. the described

individual appeared to be immunocompetent, his monocytes did not ingest or process beads

coated with HBcAg.

In other investigations, it has been reported that even some immunocompetent

individuals infected with HBV by either vertical or horizontal transmission failed to produce

anti-HBc. In these cases, the lack ofanti-HBc response has been attributed to transmission

of a HBV variant., since sequencing analysis revealed mutations in the C gene region

containing important B and T cell recognition epitopcs (Fiordalisi eloJ., 1994; Valliammai

et a/., 1995; Zoulim eta/., 1996). In another work already mentioned above. it was reported

that a chimpanzee acquired acute HBV infection after inoculation with serum from a

convalescent individual that had developed HCC years after complete resolution of acute

hepatitisB (Blwn etaJ., 1991; Liang eta/., 1990). Although the chimpanzee became positive
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fof" other serological markers ofHBY infection (ie .• HBsAg and HBeAg and subsequently,

anti·JIBs and amHme). the animal did not produce an early (unmunoglobulin class M) anti·

HBc response. In IIddition. DNA sequence ....ysis oCtile inoculum predicted II single amino

acid change in a highly conserved fragment of the prcC region of the C gene. Thus. it was

postulaled that this substitution could be re5pOnsJblc for altering the earty immune response

to the C gene immune dominant epitope. Overall, the above mentioned 5tudies suggest that

the lack of an antibody response to the hepadnavinJs nucleocapsid could be due to virus

specific immune defect or viral variants. Whether these or other mechanisms underlie the

observed antibody unresponsiveness to WHY antigens in the offspring studied needs to be

determined in future investigations. One aCthe first approaches should be determination of

the nucleotide sequence ofWHV occurring in lhese offspring.

".1 Lympllatk System. is bolima.eIy lDvotved i.. the

Penistuec of VertiaDy Traas..i"td WHV

In aU offspring from which serial serum samples were available for analysis (n-IO).

WHY genome was dete:eted during the entire foUow-up period. In most of the cases. WHY

DNA were also found in the Uvcr and lymphoid cells (n '" 7). Most interestingly, in a

significant number ofoffspring (n .. 4), the life-long persistent carriage ofhepadnavirus was

restricted to the lymphatic system.

Hepadnaviral detection in lymphoid cells is weU doc::wnented (Hurison. 1990; Lamelin

et a/., 1995). It has been reported that during the natural course ofWHV infection, viral
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DNA appeared in Iympboid odIs ofthe bone marrow at least 4 weeks before being detect.able

in the Iiva" (Kcxba rl oJ. 1987&). SubscqucmJy. WHV genome was detected in the spleen and

lymph nodes. and then in PBMC. In our laboratory, woodchucks tested for WHY genome

expression in PBMe by nested PCR with primers specific for the WHY C gene and followed

by Southern blot hybridization showed that WHY DNA appears as early as 10 days after

inoculation with virus. this was 1-2 wks prior to detection in the liver by the same method

(pardoe and Michalak, unpublished data). Another recent study from our laboratory

identified an amino acid sequence in the preS I domain ofWHV envelope which recognizes

in a strict!y host specific nwuter woodchuck hepatocytes and lymphoid cells (Trn et 01., 1996).

Interestingly, synthetic analogs oflhis epitope interacted with the host lymphoid cells to a

much greater extent (approximately lOoo-fold) than with !'Iepatocytes. This study suggests

that lymphoid cdls may provide more l3vourabIe taJgcts than hepatoc::ytes for WHY invasion.

Neverthel.ess, there is still some debate on whether hepadnaviruses can acn13.lly replicate in

lymphoid ceils and establish • productive infection.

4.2.1 Lympboid Cdb Support WHY Replication

The results from the current study indicate that WHY establishes a productive

infection in lymphoid cells. We base this conclusion on several observations., namely: (I)

Both WHY DNA and RNA specific sequences could be detected in lymphoid organs and in

serial PBMe samples collected for more than 3 yr after birth, implying continuous presence

afnot only vital DNA but abo trvI!criptionally ICtive (replicating) virus genomes io the host
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lymphoid cells; (2) No WHY RNA was detected in sera of a woodchuck convalescent from

acute WHV infection and a WHsAg-positive chronic camer with a high virus load. This

finding indicates that virus-specific RNA does not circulate freely and therefore, WHY RNA

detected in PBMC has to originate from a virus pool replicating intraceUularly; (3) WHY

DNA was detectable in PBMe that had been extensively treated 10 remove any adsorbed

virus. demonstrating that the detected WHV DNA was unlikely oran extracellular origin; (4)

Stimulation ofthe offspring PBMe with non-speci:fic mitogen increased leveJs ofWHV RNA

expression, confinning that the cells maintained replicating virus; (5) The supernatant

obtained from mitogen-stimulated PBMe carried WHV panicles with physicochemical

properties similar to those ofintaet virions and, most importantly, (6) Culture supernatant

derived from offspring mitogen-stimulated PBMe was infectious to WHV-naive woodchucks.

In the following paragraphs, the findings mentioned above will be discussed in more detail.

The detection ofWHV DNA in serial PBMe, as well as in thc spleen, bone marrow,

thymus and lymph nodes, provides strong evidence for WHY infection of the lymphatic

system, This colTelates weU with previous reports on WIN DNA replication in lymphoid

ce1Is(Korba elaJ., 1981a, 1981b; Michalak el aJ., manuscript submiued; Ogston et al.. 1989;

Pardoe and Michalak (995). However. the actual transcription ofviral DNA was confirmed

by the detection ofWHV mRNA in lymphoid tissues and PBMC by using viruswspecific PCR

with a reverse transcription step (Sections 3.3.2 and 3.6.2). Some investigators argue.,

however. that the viral genomes detected in PBMC may originate from circulating viral

particles adhered to the ceU surfilce (Kook et al., 1996). We do not believe that this is true
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because WHV mRNA was not detected in serum from a control woodchuck with

serologically evident chronic WHY infection, but it was detected in balfthe amount oftota!

RNA from corresponding liver and spleen samples from the same arumal Similarly, total

RNA isolated from serum ofa woodchuck with complete recovery from acute hepatitis also

tested negative for WHY mRNA (Section 3.3.5). These findings indicate that WHY RNA

in PBMC unlikely originate from serum.

To further address the possibility of contamination ofPBMC with circulating viral

particles, viable PBMC were isolated from a chronic WHsAg carrier and from a

representative offspring. These ceUs were thoroughly washed and then treated with DNase

and trypsin to remove any free viral DNA or virus particles from the cell surface (Section

].3.4). Even after this procedure, PBMe remained positive for WIN DNA and there was

no detectable viral DNA signal in the cell washes obtained before and after enzymatic

treatment, implying that the detected viral genome was ofan intracellular origin. Additional

proof for active virus replication in the offspring PBMC was obtained when mitogen­

stimulated cells were analysed for WHY-specific mRNA (Section 3.3.3). This stimulation

unregulated viral mRNA expression implying an increase in viral genome transcription in

these cells. The induction ofhepadnaviral replication in lymphoid cells upon stimulation with

nonspecific mitogens has also been reported by other authors (Korba et aI., 1988; Baginski

etal., 1991). However, some critics argue that the activation ofPBMC may induce only low­

level viral replication, but not necessarily release of complete virions. Therefore, in the

current study, the WHY DNA-reactive molecules detected in the PBMe supernatant after
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mitogen stimlIation were evaluated for their physical properties and infectivity. Our resulu

demonsuar.ed thal the WHY panicles in the P~~.~C o.:.!tute supernatant exhi»ted

sedimentation velocity in sucrose and buoyant density in esCl gradients. similar to those of

irnct WHY virions. Even more convincing evidence doc:umenting the release ofinfcctious

virions by stim.lJated PBMC was the transmission ofWHV infection by inoculation ofWHV­

naive woodchucks with this culture supernatant (see also Section 4.5). In summary, it is

evident that the offspring not only show persistent WHY replication within the lymphatic

system but that the proliferating virus is complete and biologically competent.

Although the above experiments conclusively prove the existence of infectious virus

in the offspring lymphoid cells., the detection of WHY DNA replicative intermediates and

WHY cccDNA could provide an indication whether the virus employs the same replication

strategy in lymphoid organs as in the liver. N mentioned in Section 1.3.2, virus DNA

replicative intermediates include ReDNA (Il1COmpiete DNA genome before conversion into

cccDNA). single stranded DNA fragments (present after reverse transcription of RNA

pregenomes), and linear double stranded DNA (synthesized using the single stranded DNA

as a templaJ:c before circularization and packaging). The levels of single stranded and line&r

double stranded DNA species are very low in compuison to mature., circularized, double

stranded WHY DNA and in f'act. they are detectable only in chronic carriers with a high virus

load. Since detection ofWHV DNA in the samples analysed in this study required very

sensitive nested peR assays followed by Southern blotting, we could not expect that

reptiCllling DNA intermediates would be_Iein the offipring samples. Thu~ U- was
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no point in any attempt to find these DNA species in our samples.

We also did not obsuYe anyevidcD::efOl"the prc:sence ofWHV cccDNA either in the

liver or in extrahepatic tissues in the offspring analysed. 1'4 described previously in Section

1.3.2, formation of cccDNA species, geotnlc:d by repair of RCDNA of invading vinJs.

represents the eartiest step in hepadnavirus replication. The cccDNA remains within infected

cdls and serves as a constant template for transcription into viral mRNA. Thus., detection of

tms replicating DNA form would provide further evidence of an active. continuous viral

infection (TuttIeman et oJ.• 1986). Even though cccDNA has been detected within livers of

chronic HBV carriers. its presence has not been documented in PBMe from the same patients

(LameIinelaL. 1995). The diffioJIty with cccDNA detection could be attributed to their low

copy nUlMer, estimated to be ]0-40 genome copies per infected hepatocyte in chronic

hepatitis B which is at least lOOO-foid less then that ofHBV DNA. Thus., given the already

vtrj 1ow.Jevels ofWHV DNA in the animals investigated (lQ..IOZ genome copies per I~g of

total DNA), it would be surprising awe could detect cccDNA in lymphoid cells and livers of

the offspring. Hence, we decided not to test for WHV specific cccDNA in the offspring

srudied. On the other hand, it is poSStole that the virus employs a yd: unknown replication

strategy while propagating in the host lymphatic system. It has been noted that since HBV

cccDNA cannot be detected in PBMe of chronic HBV caniers., there might be some other

mechanism by which viral genome is replicated and maintained at extrahepatic sites (Lamelin

etal, 1995). The results from a HaV transgenic mice lineage containing 1.3 kb construct

of the HBV genome apparently support this hypothesis (Guidotti et ai., 1995). In this
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transgenic mice model animals show high levels ofviJaI replication in the liver and kidneys,

comparable to that in the infected livers of patients with chronic hepatitis B. There is no

difficulty with the detection of HBV DNA replicative intermediates and viral mRNA in

hepatocytts and kidneys ofthese mice, yet the investigators cannot detect any viral cccDNA

In the same study, cccDNA was readily detectable in a human liver sample showing

equivalent levds ofHBV replication. The authors also noted that these HBV transgenic mice

showed high levels ofHBsAg and HBeAg in sera and urine as weU as. HBcAg in liver and

kidneys. Furthermore., potentially infectious complete viral particles, which were

indistinguishable from human Dane particles, were found in the mice sera (Guidotti et al.,

1995). Thus. despite the lack ofHBV cccDNA, high level viral replication can still occur,

perhaps by a mechanism which does not require the Rennal viral transcriptional template.

4.2.2 Lympboid Tissue-Restricted EJ:preuion o(WHV

The presence of WHY genomes was tested in liver samples collected from all the

offspring studied by using three different sets ofoligonucleotide primers specific for the virus

C. S and X gene sequences (see Table 5.3). In most ofthe cases. liver samples were obtained

at yearly intervals. As expected. the majority of the animals with detectable WHY DNA in

serum andlor PBMC (2BIF, 5C1F, 6DIF, 8DIM, lOOIF, and IIDIF) showed persistent

carriage of virus genome in the liver during the entire observation period. However, we

noticed occasionaUy a discrepancy in the detection of a particular WHY gene sequence

between liver, PBMC and sera obtained at the same time points offollow-up. For example,
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WHVC gene sequencescou1d be detected in PBMe, but not in liver or serum (Figure 11.3).

Again, as posruIated above (Section 4.1), the most likely reasons could be the varied amounts

of viral DNA within samples used for analysis and the lack of peR reproducibility when

testing for very low-levelsofviral DNA. However, it is also posstblethat viral variants with

tropism for either hepatocytes or lymphoid ceUs or with mutations in primer binding

sequences can predominate at cenain times.

Analysis ofWHV DNA in autopsy tissues from 5 out of 11 woodchucks studied also

revealed presence of the virus in lymphatic organs, including spleen, bone marrow, lymph

node and thymus. In addition, replicating forms ofthe WHY genome could be detected in

spleen and bone marrow. Most surprisingly, in 4 of the offspring (INF. 381M, 7D1F and

9D/F), WHY DNA was not identifiable in the liver, despite repeated testing by nested peR

and Southern blot analysis of the resulting reaction mixtures. It is noteworthy that offspring

born to the same mother could have vcry different tissue paUems ofWHV expression. For

example, 2 offspring born to maternal woodchuck lID (7D1F and 9DIF) did not have any

detectable WHY DNA in sequential liver biopsies taken before challenge with WHY. yet the

viral genome could be detected in livers of 4 other offspring from the same litter (6DIF.

801M, lOOIF and II OfF). Unfortunately. we could not obtain liver samples until at least 6

rno after birth from some of these animals. Thus. we cannot completely rule out the

possibility that the liver had initially been positive but then cleared the virus. We do not

believe, however, that this was the case, since even the earliest liver sample coUected at I rno

after binh from 1AIF was found negative for WHY DNA. In addition. we have never
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observed WHY clearance from the liver tha1 had been found previously reactive for WHY

DNA. In contn.st.. there was a case (offspring 4B1M) when the initially tymphoid-restricted

WHV infection spread to the liver at 19 mo after birth and the virus was readily detectable

thel-eafterinhepatictissue.

In the offspring with undetcc:table WHY sequences in the liver, WHY DNA and RNA

were relatively easily identifiable in PBMC and lymphoid organs. The serum from these

offspring also c:anied intact WHY virions, since WHY DNA-reactive particles exlubited

properties similar to lhose of purified virions. Furthermore, injection of WHY-naive

woodchucks with sera from lhe liver WlN~DNA negative offspring resulted in the lymphoid

cell-restricted pattern of WHY infection in one of two inoculated woodchucks (1#2601M;

Figures 19.3 and 20.3). Thus. it is evident that this Iyrnphotropic virus is mnsminable to

uninfected animals and induces infection apparently limited to lymphoid ceUs (see Section

4.5). Although hepadnaW'us infection within the Iympharic: system has been well documented

(Korbaela/.• 1987.. 1987b. 1989: Mason el ai.• 1993; Michalak el ai., 1994; Ogston el ai.,

1989; Pardoe and Michalak. 1995). this is the first report ofhepa.dnavirus absence in the liver

during the course oflong-term infection. In fact. a dissociation in hepadnavirus expression

between liver and lymphoid tissue has only been described in HBV-infected patients

transplanted with livers from baboons (Lanford et of., 1995). In these patients. HBV

genomes were detected exclusively at multiple extrahepatic siles. Since baboons are not

susceplible to HBV, xenotransplantation of the baboon liver is considered to have a better

prognosis then liver aUotransplants which are invariably re--infectcd with HBV. In the same
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study, it was reponed that HOV DNA can persist for • long time in extrahepatic tissues

without infecting the baboon liver graft.. In another study (Fen.y I!t aI, 1990). 30 HBV·

infected patients were subjected to IiYer transplantation and lhen treated with high doses of

anri-HBs irnrnJnogtobuli Twenty-three ofthem cleared HBsAg and remained HBV DNA

negative in liver grafts by direct PeR and Southern blotting during I} ma of follow-up.

However. 7 of those patients retained HBV DNA in PBMe, demonstrating persistent

presence of the virus in lymphoid ceUs in the absence ofHBV in the liver. In another repon.

67 patients who underwent chronic haemodiaJysis were studied to detenninc the risk of

infection with HBV. None oCthese patients was found positive for HBsAg or HBV DNA in

serum. However, in S of these individuals. who were also anti-HBc negative. the only

evidenc:eofHBV infi::ctionwasthepresenceofviral genomes in PBMe (Oesterreicher I!t al.•

1995). The above studies provide evidence that lymphoid cdIs may constitute a reservoir for

reinfection of the liver and that testing of PBMe for HBV DNA could be useful in the

positive identification of potentially infectious patients. In this context, our current study

clearly demonstrates that ceI.ls of the lymphatic system in woodchuck hepatitis in fad

constitiMe a site of active hepadnavirus replication and that replicating virus is biologically

competent and able to invade the liver.

We do not know the mechanism which caused the lymphoid tissue-restricted viraJ

expression in some of the offspring. This could be a consequence of transmission of a viral

variant which specifically targets lymphoid celIs. It is possible that matemalJy WHV- infected

PBMC or freely cirwIaIing virions crossed the placenta. tlVWnitting a virus which selectively
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established a productive infection oflymphoid cells. Other investigators nave suggested that

vertical transmission ofHBV infected matemal PBMC could be associated with the onset of

aarte or fulminant hepatitis in infancy (Shimizu et ai., 1991). As mentioned above (Section

4.2.1). previous results from our laboratory have demonstrated that lymphoid ceOs could be

favourable targets for WHY attack, given that they demonstrate higher affinity for vinas

binding than hepatocytes (Tm et aI., 1996). Perhaps, because of very low doses of the

invading virus. WHY may prefer"entiaDy m:ognizc high affinity binding sites on lymphoid cells

and establish infection in the lymphatic system. Concomitantly, higher levels ofvirus might

be required to invade hepatocytes. However. it is possible that lymphoid cells of the liver

carry the virus even ifhepatocytes are not infected.

Vertical transmission ofviral variants is considered to be a cause of many perinatal

viral infections. including HBV. Hev and mv (see Section 1.6. Ie). It is postulated that

transmission ofa particular variant can influence virus organ tropism and outcome ofinfection

in the newborn. LCMV provides one ofthe best examples of how viTal variants can differ in

their tissue tropism and influence the natural course of infection (Ahmed el at.• 1984 and

1988). In this regard, LCMV infection of mice resembles HBV infection because affected

newborns develop a mild disease and a life-long viral persistence in the brain, liver. kidneys

and the lymphatic system, whereas infection ofadult mice leads usually to more severe disease

and virus clearance. LCMV isolates from the brain, liver and kidneys have the wild-type

phenotype and when inoculated into adult immunocompetent mice induce a vigorous anti­

viral immune response, which normally results in virus clearance. In contrast, viral isolates
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from lymphoid ceUs are characterized by single amino acid changes in viral polymerase and

glycoprotein. In comparison to the wild-type strain, these two mutations confer enhanced

ability ofthe virus for attachment, penctJation and replication in macrophages (Matloubian

elal.. 1993). Furthe:rmore. inoaIlation ofadult LCMV-naive mice with this particular variant

induces chronic infection associated with suppressed T cell responses and susceptibility to

opportunistic pathogens. Since macrophages are critical components arbatn natural and

virus-specific cel.luIar immune responses (see Section 1.5.1), this LCMV strain avoids immune

surveillance by infecting macrophages. A comparable situation may exist in the woodchuck

offspring in our study. It is possible that a specific viral variantls has invaded the lymphatic

system early in life leading to the life-long asymptomatic infection. However, it is also

conceivable that organ-specific WHY genetic variants could be selected during the

progression ofinfection. This could explain why in offspring 4BIM WHY infection restricted

initially to the lymphatic system spread subsequently to the liver. At this point., we do not

know whether different viraJ variants were present in the offspring studied, if there were

differences in vi:raI. sequences occurring in the liver and lymphoid tissues of the same host, and

whether viral populations in maternal woodchucks were different from those in offspring.

Sequencing analysis., which is currently in progress, is necessary in order to answer these

questions.
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4.3 ChaUenge of Offspring with WHY Induces Serologically Evident Infection

Four of the offspring were selected for challenge with a serum pool containing

infectious WHV. Two ofthese woodchucks carried WHV genomes in the liver and lymphatic

system (6DIF and 801M), whereas in the other 2 (7DIF and 90fF) WHY DNA was not

detected in liver biopsies obtained prior to WHV challenge. The purpose of this experiment

was to determine susceptibility ofthese animals to re-infection with WHY. Another purpose,

which is beyond the aims of this thesis, is to assess long-term pathological consequences of

re-exposure to virus in carriers with traces efWHV. Injection of the offspring with the WHV

serum pool induced serologically evident infection in all 4 offspring. Thus, shortly after

inoculation, we observed transient increases in serum WHV DNA levels and the appearance

ofanti-WHc. The antibodies remained positive in offspring 7DIF, 801M and 901F up until

the end of the observation period. but they were cleared from offspring 6D1F at dpi 56. Other

immunovirological markers of WHY infection, such as WHsAg and anti-WHs, were only

transiently detected in offspring 9DIF and 7DIF, respectively. We also noticed that after

challenge with WHY a greater percentage ofserum and PBMe samples were found positive

for WHY DNA (see Tables 33 and 4.3), demonstrating that the re-exposure increased virus

replication. Furthermore, liver biopsy collected from offspring 7D1F at 14 mo after WHY

challenge tested WHY DNA positive, although all biopsies obtained previous to the challenge

had been virus negative. This finding demonstrates that the animal was evidently reinfected.

Strangely, we did not observe the same situation in offspring 9DIF after WHY inoculation.

This animal had also tested negative for WHY DNA in sequential liver biopsies taken prior
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to WHY chaUenge., but liver tissue obtained 9 mo following viru.s administration remained

negative. This result is surprising, since the animal became tnnsientfy serum WHsAg

positive., indicating evident re-infection with WHY. Unfortunar.eIy. liver biopsy from the

WHsAg-positive phase was not available for analysis. It is rather" unlikely that in this case

iqection with WHY 'ed to transient 1iver infection. ~ mentioned above (Section 4.2.2) and

reported in our previous study (Michalak: el ai.• manuscript submitted), we have never

observed WHY genome clearance from the liver once it was infected.

Overall, the results of this experiment clearly indicate that the animals with silent

penistent carriage ofWHV genomes acquired from mothers convalescent from hepatitis were

not protected from WHY infection. This observation is in contrast to our previous findings

in adult woodclJ.Jcks carrying tow \evds ofWHV afttt recovery from experimentally induced

aaJtc hep:!..t!tis (Michalak er oJ., rnaraucript submitted). In these adult animals, challenge with

the same WHV infectious pool as !he offspring. did not induce any increase of virus

expression, indicating their unresponsiveness to WHY re-infection. These woodchucks also

carried virus genomes in 5eS'. PBMC and in liven at levels compuable to those detected in

the offspring. Considering all serological ma:rkcn of WHY infection. the main difference

between the offspring in the present study and in the adult woodchucks in the previous

investigation was persisr:ent presence ofanti·WHc in the adult animals. It is possible that the

carriage ofthe viral genome alone does not coincide with immunological protection, but the

presence ofanti-WHe is retlective of life-long inununity to WHY. It is generally accepted

thI1 ant1bodies to hepadnavirus nucleocapsid (i.e., anti-HBe or anti-WHe) do not neutralize
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viraJ infectivity and they are present at high titres during both acute and chronic infection.

Instead., ambodies to viral errveIope(ie.. utti-HBs or anti-WHs) are believed to play a aiticaI

role in viral clcaJwIce and in providing immunity to virus. Resolution ofacute infection is

associated with the development of this protective antibody response and they are not

detected in chronic hepatitis.

The potential protective importance of the host immune response to hepadnavirus

nucleocapsid has been suggested in the recent report by Menne el at (1997). The authors

have shown that immunization with a WHcAg-derived peptide can induce protection against

WHY despite the absence ofanti·WHc. They suggest that the core antigen may stimulate

helper T ceUs, which in tum activate virus--spccific CTLs able to eliminate infected

hepaJ:ocytes and therefore., prevent chronic viral infection. Furthermore. it is also postulated

that vigorous hdper T cd] response 10 muJtiple epitopes of the HBV nucleocapsid is of

aitica1 importance in virus clearance in humans (Chisari and Ferrari, 1995).

It has been reported that the penistence ofWHV DNA traces is evidence of low-level

ongoing WHY repl.ication and vinemia in the adult woodchucks convalescent from SLAH

(Michalak et aI.• maroscript submitted). This is consistent with similar findings in individuals

analysed long after recovery from aa.rte hepatitis B (Michalak et al., 1994; Rehermann el 01..

1995. 1996a, I996b; Sanchez-Quijano et ai.. 1993; Scully ~l 01., 1994). These patients not

only carried minute amounts ofvirus genornes in serum and PBMC years after recovery from

acute HBV infection, but they also demonstrated a vigorous CfL response against viral

antigens (penna el al., 1996; Rehennann tl ai., 1995, 1996a, 1996b). This could be I
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consequence of the continuous presence of long-lived memory CTLs specific for

~ in the absence ofviral antigens. However. it is moSllikdy a result of5UStaincd

en.. response due to protracted stimulation with trace quantities of antigens genera1ed by

low-level chronic virus replication. It is also conceivable that virus can escape to

immunOlogically privileged sites (;.~ .• dendritic cells. rnac:rophagcs) and be periodically

released into the cin:uJation in sufficient amounts to maintain a CTL response. Although. the

ceUular immune response has not yet been examined in the woodchucks convalescent from

WHY infection, given the similarities to hepatitis B, we would expect a similar sustained CTL

response which may provide protection against WHY re-exposure.

..... WlIV £:lpressioo ia OffspriaC is Dol Affected by Cbalka&c

witk PBMe-Derived IODeul...

A previous study in our Iabonlory had shown that mitogtn-stirwLated PBMe isolated

from adult woodchucks convalescent from SLAH transmitted WHY to normal animals and

induced serologically deteaable acute infection (Michalak et ai. manuscript submitted). We

were inter-ested to test whether the offspring in our study could also be infected with the same

type of inoculum. For this purpose. IODIF and II DIP offspring were challenged with lhe

same PBMC-derived inoculum as the normal woodchucks mentioned above. Following

inoculation, WHY DNA levels in serum and PBMC remained unchanged and we did not

detect WHsAg or anti-WHc in either IOOIF or IIDIF'. The only immunological response

obocm:d wuperiodic ofIllli-Wl!J;"of!lprins 100IF (Fogure3.3). These resullJ
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revealed th:aJ: although virus carried in lymphoid cells was infectious to normal, WHY-naive

wooddu::ks. it coukt not infect the offspring. We do not know a reason for this difference,

~ thtn: coukt be. few possible explanations. AJthough the offspring were apparently

healthy. they carried trace amounts ofWHV and perhaps this was associated with some

degree ofprotective anti-viNS specific immune responses undetectable by the assays used.

It is possible that this limited response was not sufficient to protect against higher doses of

WHV (Section 4.3). but provided protection against lower amounts of virus derived from

PBMC. Another possible explanation could be that viral variants carried within the lymphoid

cells caused a pattern of WHY infection different from that induced by senJrn-derived

inoculum. lfthis is the case, it can be further hypothesized that the partia.l!ar WHY variants

carried by the offspring provided protection against the lymphoid cell-derived virus. but not

against the heterologous population ofvariants that may occur in sera. As mentioned above..

it is necessary to perform sequencing analysis to determine if such variants indeed exist.

Funhermore., the observed development of anti-WHs response in IOOIF offspring after

injection with this PBMC-derived supernatant may suggest that the inoculum contained

sufficient amounts of WHsAg to induce this antibody response, but not enough virus to

reinfect the offspring.

4.5 WHV Curled by Offspring is IDrertlous to Virus-Naive Woodchucks

In the preceding sections.. we have discussed a variety of data supponing our

conclusion that the offspring born to mothers convalescent from viral hepatitis were
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penistc:ntly infected with WHV. l1a!s., we have doc:umented that tnnseriptionaUy active vnl

genomes were carried for a very kmg time. if not for life, in these animals. Furthermore.

biophysical analysis dWHV DNA-reactive particles in sen. and PBMC-derived supernatant

showed thai: some of them exhibited properties identical to those ofmma WHY. However.

definitive prooCfor the presence offully biologically competent virions in these offspring was

obtained by demonstration ofWHV transmission to healthy animals.

In order to determine whether the offspring were infectious, we used two types of

inocula: (I) derived from an offspring with .,enistent carriage ofWHV both in the liver and

the lymphatic system (liver-positive infection; i.e., 4BIM offspring) and (2) obtained from

offspring with WHY infection restricted to lymphatic: tissue (liver-negative infection; i.e,

381M and 7D1F). It was shown that inoo.IIa from both liver-positive and liver-negative

animals could transmit WHY infoction, hovrfever. thae was one imponant difference (Section

J.8). Namely, nonnaI woodchucIcs injected with concentrated pJasma and PBMC supernatant

from the liver-positive offspring developed serologjcaUy evident acute WHY infection.

whereas those injected with inocula from the 1iver-negative offspring became serologically

silent virus carriers. The reason for dus difference can only be speculated. We do not think

that there was a difference in the amounts of infectious vims present in these two types of

inocula, since their PeR analysis revealed approximately similar levels ofWHV DNA. It is

more likely, however, that inocula from Iiver·positive and liver·negative offspring contained

different virus variants capable of inducing different patterns ofWHV infection. This could

be due to the existence ofa viral mutantls with preferable or exclusive tropism for lymphoid
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c:dls Q[" the presence ofvirus with hip binding affinity for receptors expressed by lymphoid

cells than for those on hepatocytes (see also Section 4.2.1).

The effect of virus muwions on the pattern of HBV-induced disease has been

described in some patients. As swmwized in Section 1.6.1c. HBV isolates unable to

synthesize HBeAg because of. m.rtation in the slop codon of the virus pce-core region were

found in some individuals with fulminant hepatitis or severe chronic liver disease leading to

cirrhosis (Carman eI aJ., 1989). In other cases. HBV variants transmitted from mother 10

child have been shown to influence the course ofperinatal infection (Raimondo el aJ.• 1993;

Von Weizsacker et ai., 1995). Therefore, in cases ofsymptomati<; serologically evident HBV

infection. the disease profile could be affected by the genetic heterogeneity of the virus. V traI

variants may also determine the course ofWHV infection in woodchucks.

On the other hand. the contnoution of host factors to the outcome ofhepadnavital

infection needs to be considered In the human situation. it is commonly observed that

patients who receive HBV-infected blood from the same donor and children born to the same

infected mothers can de'Y'dop distinct disease patterns (Foster and Thomas. 1993). Because

ofdiffeR:n1. genetic background, woodchucks may also be predisposed to react differently 10

virus and hence, develop variable patterns of infection. In the present study, this possibiliry

is suggested by the fact that some of the offspring born to the same mother developed liver­

negative infection, but others were WHY DNA liver-positive. As described in Section 1.5.1,

a vigorous en. response to specific viral epitopes presented by MIle class I molecules is one

of the important facton determining resolution of acute hepadnaviral infection. Since the
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viral epitope fOl" CTL recognition varies in patients with different MHC backgrounds. the

CTL response can be affected both by genetic make-up of the host and nutations in virus

en. epttopes. This mechanism coold also be an imponant element in a complex networit of

virus-host intef'aClions determining different patterns of WHY infection in the offspring

studied.

..6 Suaations for Future Studia

TIle results ofws stUdy have raised several important questions which warrant future

investigation of offspring bom to mothen convalescent from hepadnaviral hepatitis. Some

ofthese questions include:

(I) What arc the possible long-term con.sequences, if any, of low-level virus

persistence in these offspring? For example. further follow-up may prove that asymptomatic

virus carriage can lead to the development ofHCe or resuk in other extrahepatic diseases

which are not traditionally associated with bepadnavira1 infection.

(2) Are thrn any diffttcnots between the virus genome subpopuJations ortlle mother

and her offspring? Future work involving nucleotide sequence ana.Iysis ofthe matemaJ and

offspring viral quasi-species may track transmission ofputiwlar variants as well as. determine

the extent ofgenetic divergence in different offspring born to the same mother.

(3) Is there an association between different viral genomic variants and virus tissue

tropism? For example, sequencing could determine iftherc are specific viral mutants present

in the IymphItic system. It is possible thIt :lICh genomic variants preferentially or exclusively
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targtt lymphoid cdIs and induce fymphoid tis:sue-restric infection. as was observed in some

of the offspring.

(4) Why did inocula from diffinnt offipring induceeither' a serologically evident &a.lte

infection 01" cause a serologically silent WHY infection? Sequencing ofthe infectious pools

from WHY DNA liver-positive and liver-negative offspring could identify WHY genetic

variants which may induce different profiles and outcomes of infection.

(5) Finally and most importantly, does a similar situation exist in babies born to

mothers with a past history ofsdf-limited hepatitis B virus infection? Based on our findings,

it is possible that vertical transmission of the virus from mothers convalescent from either

clinically evident or serologically undetectable HBV infection could induce a low.levd.

asymptomatic infection of infants which cannot be detected by current (classical) serological

or biochemical assays. Only very sensitive molecular lestS (i.e., PeR amplification) would

be able to detect the virus in these cases. Consequently, these babies may represent a

reservoir ofvirus for transnUssion to healthy individuals and could be at the risk for distant

development aCliver diseases and poSSIbly yet unidentified extrahepatic disorders.

4.7 Summary aDd CODdu,iOIlJ

lbis study doaunents for the first time that offspring born to mothers after complete

recovery from an episode of hepadnavirus infection persistently carry traces of infectious

virus. There have been no previous reports showing that such apparently healthy mothers

could be infectious to their oftipring. The results obtained in the course ofour investigation
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in the woodchuck mood ofhepatitis B can be sumnwized u foUows.:

(I) Complete serological and histological recovery from an experimentaUy induced

episode of&ane hepadnaviral hepatitis is foUowed by long-term penistence ofvirus which

is transmittable and induces serologically undetect.able chronic infection in the newborn

woodchucks lasting for morc than 3 yean after birth.

(2) In the majority of the offspring studied. WHY genome sequences were detectable

both in the liver and lymphoid tissues. However, in some of the offspring, the persistent

hepadnavirus carriage was restricted omy to ceUs of the lymphatic system. Liver tissue

samples from these animals wert WHY DNA negative despite extensive testing by nested

peR and Southern blotting. These results provide evidence that hepadnavirus can persist

exclusively at an extrahepatic location throughout the entire course of infection.

(3) Anatym ofphysic:ochemical properties ofWHV DNA-reactive particles occurring

in sera from the offspring ana.lysed revealed the presence of virus particles which resisted

extensive DNase treatment and displayed sedimentation velocity in sucrose and buoyant

density in cesium dtIoride gradients identical to those of purified intact virions., indicating that

complete WHY was persistently carried by these offspring.

(4) Transmission of WHY infection and induction of serologjcally evident acute

hepatitis in viru5-naive woodchucks by inocula derived from the offspring sera or peripheral

blood mononuclear ceUs prove that the offspring in fact carried biologically competent,

infectious virus.

(5) The offspring born to mothers with a past episode of viral hepatitis were
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susc:eptibIe to chaIJenge with WHY present in SICIUm ofa symptomatic. chronic WHV carrier.

but they did DOt respond to challenge with otherwise infectious inoculum prepared from

rritogen-stim.dated PBMe ofwoodchJcks convalescent &om acute vial hepatitis. suggesting

that exposure to WHY as a newborn did not provide complete immunological protection

against reinfection with this virus.

Since there are significant similarities between HBV and WHY and the nanJr'II

patterns of infection induced by both viruses. this study raises the possibility that HBV can

also be vertically transmitted from apparently healthy mothers convalescent from hepatitis B

to their babies. Consequently, infants bom to these mothers may represent a reservoir of

virus for infection of healthy people and they may be at increased Iong.term risk fOf the

development of liver and extrahepatic disorders.
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