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ABSTRACT 

Human papillomaviruses have been implicated as a causative agent in the etiology 

of many human cancers, especially cervical carcinomas. Our laboratory had 

previously shown that the presence of the steroid hormones, dexamethasone and 

progesterone, markedly enhances the transformation of primary rodent cells by HPV 

type 16 DNA in cooperation with the EJ-ras oncogene. This enhancement could 

have been direct, through a previously known glucocorticoid response element (GRE) 

located at nt position 7640 in the transcriptional regulatory region of the HPV 16 

genome. Two additional GRE-like sequences were also found at nt positions 7385 

and 7474. Alternatively, indirect mechanisms could be conceived through hormone

mediated expression of other cellular transcription factors which in turn modulate 

HPV gene expression. To address the role of the GRE located at nt position 7640, 

site-directed mutational analysis was performed. In transformation assays in cultured 

rodent cells and in transient CAT assays with the human cervical carcinoma cell line, 

HeLa, I found that loss-of-function mutations of this GRE retained the response to 

dexamethasone, indicating involvement of other factors. However, converting this 

GRE into the consensus sequence resulted in an increased frequency of 

transformation and a greatly increased expression in transient assays, indicating the 

role of this GRE also. Retention of a hormone response for the loss-of-function 

mutations led me to examine the role of the other two GRE-like sequences in 

transformation and gene expression. A series of single, double and triple mutants, 

containing different combinations of mutations in the three GREs, were tested in 



transformation and transient gene expression assays. The results showed that all 

three elements are individually functional and are required to observe any hormone 

effect in both assays. The two newly identified GREs were further characterised 

using synthetic oligonucleotides. Both GRE sequences were studied for their ability 

to respond to dexamethasone in transient CAT assays. In addition, specific DNA

protein interactions were examined using several in vitro DNA-protein interaction 

assays. Results have shown that both GRE sequences respond to dexamethasone and 

bind specifically to a protein of 97 kDa, the molecular size of the native 

glucocorticoid receptor. 

As the GREat nt position 7640 is a composite GRE with an overlapping AP-1 

motif, that interacts with the cellular c-jun and c-fos transcription factors, the role of 

these cellular oncogenes in glucocorticoid-dependent expression of HPV 16 genes was 

also exantined. The results demonstrated that c-jun conferred a positive response of 

dexamethasone-induced expression of viral genes, whereas, presence of c-fos inhibited 

this response. Interestingly, the composite GRE was responsive to dexamethasone 

only in the presence of c-jun, indicating the special significance of the composite 

GREin HPV gene regulation. 

To exantine if the GREs are functional in the principle host tissue for HPV 

16 infection, primary human ectocervical cells were cultured and used to examine the 

effects of hormones on HPV 16 gene transcription. Viral RNA was examined using 

in situ hybridization, after transfecting either wild type or mutated HPV genomes into 

these cells. Viral transcription was observed for the wild type HPV genome only in 

ii 



the presence of these hormones and could be blocked by RU486, an anti-progestin, 

in a dose-dependent fashion. Constructs with all single or double GRE mutations 

also responded to both hormones, whereas, a triple mutated construct, with all three 

GREs disrupted did not support any detectable induction of viral transcription. Thus, 

steroid hormones appear to be essential for episomal expression of HPV genes in 

primary human cervical cells. This result also emphasizes the role of hormones in 

early stages of HPV infection where the majority of HPV DNA is found episomally. 
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Chapter 1 

HUMAN PAPILLOMA VIRUSES: TRANSCRIPTIONAL 

REGULATION AND ROLE OF STEROID HORMONES 

In 1907, G. Ciuffo while studying the benign lesion "human verruca vulgaris" 

(common warts), found that extracts prepared from these warts were infective even 

after passing them through bacterial filters, thus ruling out any bacterial or protozoal 

etiology (Ciuffo, 1907, cited from Shah and Howley, 1990). It was realised that the 

lesions were caused by a newly recognized submicroscopic particle that later came to 

be known as a virus. These infectious agents were called "papilloma" viruses, because 

of the papillomatous structure of the lesion in microscopy. The first papillomavirus 

was discovered by Shope in 1933, who produced warts in the skin of either wild or 

domestic rabbits by inoculating them with wart extracts from wild cottontail rabbits 

(Shope, 1933). Since then, papillomaviruses have been isolated from a large number 

of species, including humans. Most of them were found associated with benign 

lesions of the skin and only in rabbits was a progression to carcinoma observed (Rous 

and Beard, 1935). Later, through the initial work of Herald zur Hausen (zur Hausen 

et al., 1974, zur Hausen, 1976, 1977a), it became evident that some papillomaviruses 

are linked to human cancers, especially, cancer of the cervix (reviewed in Shah and 

Howley, 1990). Since 1974 many details of these virus have been elucidated. 
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1.1 Characterisation and classification. 

Papillomaviruses belong to the family papovaviridae. Virus particles are about 55 nm 

in diameter and have an icosahedral symmetry with 72 capsomers (the basic building 

blocks of the virus shell). All have a closed circular double-stranded DNA genome 

that is enclosed in an icosahedral virion. Unlike other human viruses, such as 

adenoviruses, it has not been possible to type the papillomaviruses by serological 

methods. No antisera to distinguish the isolates of human papillomavirus are 

currently available. As a result, the virus has been "typed" by liquid DNA 

hybridization under controlled conditions of stringency and different types are 

distinguished, based on the degree of conservation of their DNA sequences as 

measured by hybridization kinetics (Pfister, 1984). Therefore, characterisation of 

HPV s as distinct types is based essentially on the lack of homology between their 

DNAs. Accordingly, HPVs are considered as a different viral type, a subtype or a 

variant, depending on whether the homology is less than 50%, more than 50% or 

identical to another type with single nucleotide changes, respectively. Using such an 

analysis, more than 60 types of HPVs have been characterised (de Villiers, 1989), of 

which more than 20 are associated with lesions of the anogenital tract. These 

anogenital HPV types were further classified as either high risk (such as HPV types 

16, 18, 31, 33, 35, 39, 52) or low risk (such as types 6 and 11), based on the likelihood 

of malignant progression of the lesions that they are associated with (de Villiers, 

1989). 
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1.2 Genomic organization. 

The advent of recombinant DNA technology bas allowed cloning and sequencing of 

several human papillomaviruses. Their genomes are remarkably similar in size (about 

8 kb) and show the same overall organization. All of the potential proteins 

synthesized by these viruses are encoded by only one of the two strands of the viral 

DNA. The other DNA strand is assumed to be non coding. The 8 kb genome is 

organized into three distinct regions and is based on the analogy with the bovine 

papillomavirus (fig. 1.1, reviewed in Giri and Danos, 1988). 

1. An early region that encodes the viral proteins involved in viral DNA 

replication, transcription, and cellular transformation and are designated as E1, E2, 

E4, ES, E6 and E7. 

2. A late region that encodes the viral capsid proteins, L1 and L2. 

3. A non-coding DNA segment exists between the 5' end of the early region and 

the 3' end of the late region. This region is known by different names such as, long 

control region (LCR), non-coding region (NCR) or upstream regulatory region 

(URR) and contains many of the regulatory elements for transcription and 

replication. In this thesis I have used the term LCR for the regulatory region. Most 

ORFs are conserved and all are found at similar positions in all papillomaviruses on 

a single strand of DNA (reviewed in Broker and Botcban, 1986). As all the known 

genomes are organized similarly, it seems reasonable to extrapolate functional data 

from one virus to another. 



Figure 1.1. Genomic organisation of human papillomavirus type 16 and its 

regulatory region. On top, the diagram of organization of the various early (El, 

E2, E4, E5, E6, E7) and late (Ll,L2) genes are shown as rectangular boxes. At 

the extreme right is a region, between the Ll ORF and E6 ORF, called the LCR 

(long control region). In the middle is an enlarged representation of the structural 

organization of the binding sites for various viral and cellular transcriptional 

factors that have been characterized and are listed on the bottom. This part of 

the figure is not to scale. The only characterized promoter for HPV transcription 

is shown as p97. The various symbols used for the different transcription factors is 

shown and number of binding sites for the same factors are in brackets. 
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The best characterised papillomavirus is the bovine papilloma virus type 1 (BPV -1) 

and it has served as a prototype for studying the molecular biology of other 

papillomaviruses. However, in this brief introduction I will discuss mainly the human 

papillomaviruses and discuss BPV only where necessary. In the following sections, 

each of the regions of the genomic organization are briefly discussed. 

1.2.1 Regulatory region 

The long coding region (LCR) contains the regulatory region and contains an origin 

of DNA replication, a promoter for mRNA synthesis, transcriptional enhancer 

sequences and the 5' exons for mRNAs (reviewed in Lazo, 1988). Its size varies from 

454 (HPV -8) to 979 (HPV -1) nucleotides and its sequence is much more variable 

than that of the viral ORFs. 

The 5' extremity includes a domain which is GT-rich in genital 

papillomaviruses and AT-rich in the other viruses and probably includes an origin of 

replication (Waldeck et al., 1984). The 3'end of LCR is the most conserved region 

and contains 2 repeats of an ACC(N6)GGT palindromic sequence and promoter 

elements for RNA polymerase II (TAT A and CAA T boxes). Located between these 

two regions of the LCR are the binding sites for several cell-specific factors and 

ubiquitous transcription factors (discussed later in section 1.5). Differences in the 

organization of some of these elements have been correlated with changes in 

virulence and oncogenic potential of some papillomaviruses (Rando et al., 1986). In 

addition, the LCR appears to be one of the major determining factors for 
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immortalisation and/or transformation of primary human (Romanczuk et al., 1991) 

and rodent cells (Rosen and Auborn, 1991 ). 

1.2.2. E6 and E7 oncoproteins 

Several lines of investigation have conclusively shown that E6 and E7 are the two 

major transforming oncogenes of human papillomaviruses (reviewed in Howley et al., 

1991 and Vousden, 1990; discussed in detail in chapter 2). Here I will discuss only 

the structure-function analysis of the two oncoproteins and the relevance to their 

observed biological properties. 

E6 is an unphosphorylated protein present in the nuclear and non nuclear 

membrane fractions of the cell (Grossman et al., 1989). One prominent feature of 

the protein is the presence of four repeats of the Cys-X-X-Cys motif, found in several 

nucleic acid binding transcription factors. Such repeats are involved in tetrahedral 

coordination of zinc and forms the so called zinc fingers (reviewed in Evans and 

Hollenberg, 1988). E6 protein, like other zinc finger proteins, was shown to be 

competent for zinc binding (Grossman and Laimins, 1989; Barbosa et al., 1989), DNA 

binding (Grossman et al., 1989; Imai et al., 1989; Mallon et al., 1987) and 

transcriptional activation (Desaintes et al., 1992; Lamberti et al., 1990; Gius et al., 

1988). Recent studies have revealed that HPV 16 and 18 E6 protein, like SV 40 large 

T antigen (LT) and adenovirus E1B, can interact with the cellular p53 tumor 

suppressor protein (Werness et al., 1990). However, unlike the LT and E1B, E6 

binds to and promotes the degradation of the wild type p53 protein (Scheffner et al., 



8 

1990) and also the mutant form of p53 (Scheffner et al., 1992). This degradation 

occurs via the ubiquitin-dependent pathway (Scheffner et al., 1990) and is mediated 

through a 100 kDa cellular protein, called E6 associated protein (Huibregtse et al, 

1991, 1993). In addition, E6 of both the high and low risk HPV types are capable 

of interacting with p53, but degradation occurs only by the high risk types (Crook et 

al., 1991c). To date, no mutational analysis data is available to confirm the import

ance of p53 binding for the oncogenic properties of the E6 oncoprotein. 

HPV E7 is a phosphoprotein (Seedorf et al., 1985; Smotkin and Wettstein, 

1986, 1987). Although E7 was initially detected in the cytoplasm (Smotkin and 

Wettstein, 1987), it was subsequently found to be localized in the nucleus in 

association with the nuclear matrix (Sato et al., 1989a; Greenfield et al., 1991). 

Sequence and functional analysis of the protein indicated that it is similar to the other 

DNA tumor virus oncoproteins, SV40 LT and adenovirus E1A (Phelps et al., 1988, 

1992b; Vousden and Jat, 1989). E7 of the high risk and low risk HPV types bind to 

the pRB tumor suppressor, but with distinct affinities (Dyson et al., 1989; Munger et 

al., 1989b; Barbosa et al., 1991; Gage et al., 1990; Heck et al., 1992). Thus, the 

affinity with which E7 binds to pRB was correlated with the in vitro transformation 

potential of the respective virus types. Like SV 40 large T and E1A, E7 also binds 

preferentially to only the underphosphorylated form of pRB (Imai et al., 1991; Dyson 

et al., 1992) that negatively regulates cellular proliferation (reviewed in Green, 1989). 

Recently, E7 has also been shown to interact with other cellular growth regulators, 

such as p107, p130 and cyclin A (Dyson et al., 1992; Tommasino et al., 1993). In the 
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region towards the carboxyl terminus of the pRB binding domain are two serine 

residues which form part of a consensus sequence phosphorylated by casein kinase 

(CK) II (Firzlaff et al., 1991; Barbosa et al, 1990). The carboxy-terminal half of E7, 

like that of E6, contains two repeats of the Cys-X-X-Cys motifs (Watanabe et al., 

1992) and is tetrahedrally coordinated by zinc (Barbosa et al., 1989). E7 induces 

cellular DNA synthesis, apparently through the region which binds pRB (Sato et al., 

1989b; Banks et al., 1990a, 1990b; Rawls et al., 1990). The transforming activity and 

probably the normal function of the protein is related to its ability to bind pRB 

(Edmonds and Vousden, 1989, Chesters et al., 1990., Watanabe et al., 1990., Jewers 

et al., 1992, Phelps et al., 1992b ). In addition, it has been shown that the amino

terminal region of E7 is responsible for the transforming activity of the high risk HPV 

types (Munger et al., 1991; Pater et al., 1992; Takami et al., 1992). Similarly, domi

nant mutations in this region of low risk HPVs can render their E7 transformation 

competent (Munger et al., 1991; Sang and Barbosa, 1992b ), which is probably related 

to the ability of this region to interact with pRB. Another property of E7, shared by 

E1A, is its transactivating activity (Phelps et al., 1988, 1992a; Storey et al., 1990b; 

Munger et al., 1991). Extensive mutational analysis of E7 has revealed the following 

1. pRB binding is necessary (Edmonds and Vousden, 1989; Sang and Barbosa, 

1992; Phelps et al., 1992b)) but not sufficient ( J ewers et al., 1992) for transformation. 

2. CK II phosphorylation might contribute to the transforming activity. Whereas, 

CKII phosphorylation didn't appear to be important for transformation of primary 

cells (Chesters et al., 1990; Storey et al, 1990), transformation of established lines was 
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severely affected (Barbosa et al., 1990). 

3. Mutations in all three regions affected the transactivating activity (Edmonds 

and Vousden, 1989; Storey et al., 1990). However, contradicting results have also 

been presented (Phelps et al., 1992b). 

4. The Cys-X-X-Cys motifs are important for both transformation and 

transactivation (Edmonds and vousden, 1989; Storey et al., 1990; Chesters et al., 

1990; Jewers et al., 1992; Mcintyre, et al., 1993). 

1.2.3. El ORF and protein 

The functional role of this protein is mainly derived from studies on bovine 

papillomaviruses (Groff and Lancaster, 1986; Ustav and Stenlund, 1991), and more 

recently, from studies on HPV types 11, 16 and 18 where it has been shown to play 

an important role in replication of the virus (Chiang et al., 1992a, 1992b; del Vicchio 

et al., 1992; Remm et al., 1992). The E1 protein is a nuclear phosphoprotein, binds 

ATP and non-specifically interacts with DNA (Sun et al., 1990; Santucci et al., 1990; 

Blitz and Laimins, 1991; Lusky and Fontane, 1991; Bream et al., 1993). ATP binding 

has been shown to be important for its biological activity. More recently, specific 

DNA binding of E1 to the viral origin of replication has been demonstrated (Wilson 

and Ludes-Meyer, 1991; Ustav et al., 1991; Yang et al., 1991b; Remm et al., 1992; 

Bream et al., 1993). The E1 protein also interacts with the papillomavirus E2 protein 

which is thought to be involved in facilitating the binding and targeting of the El 

protein to the origin of replication (Mohr et al., 1990; Blitz and Laimins, 1991; Yang 
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et al., 1991b; Lusky and Fontane, 1991; Bream et al., 1993). A role of the E1 protein 

in immortalization of primary human keratinocytes by HPV 16 DNA has recently 

been demonstrated by Romanczuck and Howley (1992) and could be due to its func

tion in HPV replication. 

1.2.4. E2 ORF and transregulatory protein 

This coding region is apparently composed of three domains, the highly conserved 

amino-terminus and carboxy-terminus domains with a variable section overlapping 

with the E4 ORF (Fig. 1.1). The C-terminal region possesses a sequence specific 

DNA binding domain whereas the N-terminus contains a transcriptional activation 

domain (reviewed in Ham et al., 1991). E2 ORF encodes a trans acting factor which 

modulates viral gene expression from early region promoters through a specific cis 

acting sequence in the LCR, called the E2-response element (E2-RE) (Androphy et 

al., 1987; Li et al., 1989). At least four such elements are found in the LCRs of all 

the papillomaviruses sequenced so far. The full length E2 protein functions as a 

transcriptional activator (Spalholz et al., 1985; Phelps and Howley, 1987; Hirochika 

et al., 1987, 1988; Giri and Yaniv, 1988) or repressor (Chin et al, 1988; Bernard et 

al., 1989; Romanczuk et al., 1990), whereas, one or two alternatively spiced proteins 

containing the carboxy-terminal domain of the E2 ORF are transcriptional repressors 

(Lambert et al., 1987; Cripe et al., 1987; Chin et al., 1988; Chiang et al., 1991). The 

importance of this dual regulatory mechanism is discussed later in this chapter in 

section 1.5.1. Recently, another important role of E2 in HPV DNA replication has 

been demonstrated (Chiang et al., 1992a, 1992b; del Vicchio et al., 1992; Remm et 
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al., 1992). The amino-terminal region of the E2 protein is required for HPV DNA 

Replication and was dependent on the presence of E2-REs (Chiang et al., 1992b). 

In addition, replication by E2 protein was significantly enhanced in the presence of 

the E1 gene product (Remm et al., 1992). The alternatively spliced forms of E2 that 

contains only the carboxy-terminal region were found to be repressors of HPV 

replication (Chiang et al., 1992b ). Thus, the alternatively spliced forms of E2 that 

function as transcriptional repressors are also repressors of replication. The 

molecular mechanisms of E2-dependent replication is thought to involve binding of 

E2 near the origin of replication, as a result of which changes occur in the local 

chromatin structure (Moskaluk and Bastia, 1988). The E2 protein was also shown 

to possess DNA bending properties that have been observed in other regulatory 

proteins involved in DNA replication and transcription (Bedrosian and Bastia, 1990). 

1.2.5 E4 ORF and protein 

This ORF overlaps E2 in all the papillomavirus genomes sequenced so far. It is an 

acidic phosphorylated protein and found in the form of several species with distinct 

cellular localizations (Grand et al., 1989; Rogel-Gaillard et al., 1992) . It constitutes 

about 20% of the total protein of HPV -1 infected warts and is principally found in 

the cytoplasmic compartment of the cell, in association with large inclusion bodies 

(Doorbar et al., 1986; Breitburd et al., 1987; Neary et al., 1987; Doorbar et al., 1991). 

It is speculated that E4 may have a role in either virion assembly or maturation 

(Door bar et al., 1986, 1991 ). Recently, HPV 16 E4 gene product has been shown to 
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induce collapse of the cytokeratin matrix (Doorbar et al., 1991 ). However, no 

confirmed role of E4 has yet been deduced. 

1.2.6. ES ORF and protein 

This small ORF, encoding a protein of about 7 kDa, has been described in some, but 

not all, papillomaviruses. It is localized in the variable region of the genome between 

or overlapping the E2 and L2 ORFs (fig. 1.1) and encodes a very hydrophobic 

protein (reviewed in Banks and Matlashewski, 1993). Attention has been focused on 

this ORF because it is one of the two transforming genes of BPV -1. Recent studies 

have implicated a role of HPV E5 in transformation and is discussed in a greater 

detail in chapter 2. 

1.2.7. Ll and L2 ORFs and structural proteins 

L1 ORF is highly conserved among the papillomaviruses and encodes the major 

capsid protein. The L1 protein has a molecular weight of 54-kDa and forms the 72 

pentameric capsomers of the virion shell (reviewed in Broker, 1987) 

L2 ORF encodes minor capsid protein of about 76 kDa that is less conserved 

and quite variable among HPVs. The localisation of L2 in the virion shell and its 

role in capsid assembly is not known. Both L1 and L2 are required for the formation 

of viral particles (Zhou et al., 1991). Nevertheless, in another report, overexpresssion 

of L1 alone is sufficient for particle formation and it is suggested that L2 might have 

a role in facilitating L1 in capsid assembly (Kirnbauer et al., 1992; Rose et al., 1993). 
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Neither of these two proteins are expressed in oncogenically transformed cells. 

1.3 HPV life cycle 

A major difficulty in studying HPVs has been the inability to cultivate a productive 

in vitro host cell culture system. Viral DNA replication, capsid protein synthesis and 

assembly of progeny virions takes place in the superficial highly differentiated 

keratinocytes (Stoler et al., 1989; Durst et al., 1992). Expression of HPV genes is 

related to the differentiated state of the cell (Stoler et al., 1989; Beyer-Finkler et al., 

1990; Iftner et al., 1992), with low levels of viral transcription and replication in 

undifferentiated basal and parabasal cells. It is presumed that viral infection occurs 

in the basal epithelial cells, probably due to mechanical wounding. Recombinant 

DNA technology has made it possible to gain some insights into the regulation of 

viral gene expression and cellular factors involved in this process (Bernard, 1990). 

However, the controls that regulate late gene expression and productive infection 

remain largely unknown. There have been numerous attempts to reproduce the 

differentiation program of normal epithelial cells to allow productive infection. Initial 

studies done by Kreider et al (1987, 1990) have described a system in which HPV 

types 11 and 1 could be propagated in human tissue xenografts implanted in nude 

mice. More recently, two studies have utilized a modified in vitro collagen raft 

culture system ( organotypic culture) to successfully demonstrate production of HPV 

11 and 31 virions (Dollard et al., 1992; Meyers et al., 1992). Another study, using a 
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different approach and the W12 cell line containing episomal forms of HPV 16 DNA, 

has shown virion production (Sterling et al., 1990). These studies can be useful to 

examine the role of the co-factors, such as hormones, that are necessary for 

productive infection. However, the amount of virus recovered would not be sufficient 

to allow genetic analysis of the virus and/or mutant forms of the virus. Another 

problem is that the virus particles formed could not be used to infect cells in culture. 

1.4 RNA transcription 

Transcription initiates in most cases from one major promoter located just 

immediately upstream to the E6 ORF along a single strand of DNA and results in 

the production of complex and many different overlapping mRNAs (Rotenberg et al., 

1989a, 1989b; Smotkin et al., 1989; Doorbar et al., 1990; Palermo-Dilts et al., 1990; 

Rohlfs et al., 1991; Sherman et al., 1992). An important difference between the high 

risk viruses (such as types 16, 18, 31 and 33) and the low risk viruses (such as types 

6 and 11) is the presence of additional splice sites within transcripts spanning the E6 

ORF that leads to the formation of truncated forms of the E6 protein, called E6*I 

* and E6 II (Schneider-Gaticke and Schwarz., 1986; Smotkin and Wettstein., 1986; 

Doorbar et al., 1990; Rohlfs et al., 1991). The E6*I mRNA may allow a more 

efficient translation of the E7 ORF, as the E7 ORF would be more 5' on the mRNA 

for efficient translation initiation (Sedman et al., 1991 ). This difference in 
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production of truncated forms of E6 mRNA has been attributed to a alternate 

splicing within the E6 coding region, that is active only in the high risk HPV types 

and not in the high risk types (Smotkin et al., 1989). Another difference in viral gene 

transcription between the two HPV types is the presence in the low risk of E2 

encoding mRNAs. In cancers, the E1 and E2 ORFs are usually disrupted due to 

integration of the viral genome into the host DNA, resulting in the abrogation of E2 

mRNA synthesis (Baker et al., 1987; Le and Defendi, 1988; Matsukara et al., 1986). 

It has been suggested that altered expression of viral genes leads to progression of 

cervical lesions to increasing dysplasia (Shirasawa et al., 1988; Durst et al., 1992; 

Romanczuk and Howley, 1992; Stoler et al., 1992). Differences in the distribution of 

viral mRNAs was thereby correlated with the severity of the disease. 

1.5 Regulation of HPV type 16 gene expression. 

An important level in the regulation of expression of cellular and viral genes is of 

transcriptional initiation. In most cases, this is determined by the type of cis acting 

elements and their organization in a given promoter. Virus or host encoded trans 

acting factors stimulate transcription of these promoters. Thus, regulation of 

transcription is governed by the combined actions of various sequence specific DNA 

binding proteins (for reviews see: Dynan and Tjian, 1985; Ptashne, 1988; and Mitchell 

and Tjian, 1989). Some of these sequence-specific motifs are located proximal to the 

transcriptional start site and are generally ubiquitously expressed. By contrast, other 

site-specific DNA binding proteins, which regulate spacial and temporal patterns of 
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gene expression, bind to regulatory elements either at remote positions (enhancers) 

or dispersed between the sites for the ubiquitous promoter elements (Muller and 

Schaffner, 1990). Viruses, in particular DNA tumor viruses (for example SV40 and 

adenovirus), have served as useful models to study transcriptional regulation. 

Enhancers were first described in studies done with SV 40 tumor virus (Banerji et al., 

1981). Since my study involves transcriptional regulation of HPV type 16 DNA by 

steroid hormones, I will briefly review the literature on regulation of human 

papillomavirus gene expression and regulation of transcription by steroid hormones. 

As mentioned earlier, one striking feature of all human papillomaviruses is 

their preferential tropism for epithelial tissues. HPVs are strictly epitheliotropic 

viruses and are dependent on differentiating keratinocytes for their replication. 

These viruses require factors that can only be provided by a differentiating cell of the 

permissive tissue. Hence, HPV s have been a good model to study epitheliotropism. 

The oncogenic nature of these viruses has provided a further reason to understand 

the mechanisms of viral gene expression, viral and cellular host factors which regulate 

programmed expression of the early and late genes and the genetic elements that are 

necessary to direct viral gene expression. In recent years, it has become increasingly 

clear that tissue tropism of many viruses is mediated through the complex interplay 

of viral and cellular host factors and is mediated through the regulatory regions of 

these viruses (reviewed in McKnight and Tjian, 1986). Thus the enhancer and 

promoter of the virus may be active in a particular cell type that contains an 
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appropriate supply of specific transcription factors (Mosthaff et al., 1985; Schirm et 

al., 1987; Thiesen et al., 1988; Dollard et al., 1993)). 

All HPV genomes sequenced contain a non-coding region (LCR, or URR) 

located between the stop codon of L1 ORF and the first ATG codon of E6 ORF (fig. 

1.1). Cloning these sequences upstream to enhancer-promoterless reporter genes 

have provided evidence that they contain sequences for both enhancer and promoter 

function (Marshall et al., 1989). Both, tissue-specific and constitutive enhancers, as 

well as, inducible enhancers have been found in many HPV types (Steinberg et al., 

1989; Cripe et al., 1987; Gius et al., 1988; Hirochika et al., 1988; Gloss et al., 1987; 

Swift et al., 1987; Chin et al., 1989; Nakshatri et al., 1990). In this thesis I will stress 

more on the viral and cellular host factors responsible for HPV expression and will 

not delve too much into the structure of the LCR itself. 

1.5.1 Role of virus-encoded gene products. 

An enhancer sequence found in all papillomavirus types sequenced so far has been 

shown to be regulated in trans by the viral E2 ORF gene product and is important 

for early gene expression (reviewed in Ham et al., 1991). As discussed earlier, the 

action of the E2 gene product is pleotropic, affecting both transcription and 

replication. The E2 protein binds as a dimer (McBride et al., 1989) to a conserved 

palindromic motif, ACC(N6)GGT (Androphy et al., 1987; Hawley-Nelson et al., 

1988). DNA binding is mediated by the carboxyl-terminal domain of the protein, 

whereas, the amino-terminal is responsible for transcriptional activation (Giri and 
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Yaniv, 1988). However, depending on the virus subtype studied and the context of 

its binding in the LCR, a given E2 gene product can be either a transcriptional 

activator (Thierry and Yaniv, 1987; Chin et al., 1988) or a repressor (Romanczuk et 

al., 1990). In genital HPVs, except HPV1a, the E2-binding motifs are arranged in a 

very characteristic manner. Two sites are situated very close to the ATG of the E6 

ORF. A third site which is a perfect palindrome in HPV 6 and 11 and an imperfect 

one in HPV 16, 18 and 33 is situated about 100 nt further upstream. A fourth highly 

conserved E2 site is found about 400 nt further upstream (see fig. 1.1 ). The two sites 

near the promoter region of HPV 18 (Gius et al., 1988), HPV 16 (Phelps and 

Howley, 1987) and HPV 11 (Hirochika et al., 1988), do not appear to play a role in 

E2-dependent enhancer activity. However, recent evidence indicates that the full 

length E2 product actually represses HPV 16 and 18 transcription from these two E2 

motifs in the context of their own promoter (Thierry and Yaniv, 1987; Bernard et al., 

1989; Gloss and Bernard, 1990; Romanczuk et al., 1990; Dostani et al., 1991; Thierry 

and Howley, 1991; Sang and Barbosa, 1992a). It is hypothesised that this repression 

might be due to steric interference by E2 to the formation of a productive 

transcriptional initiation complex. Recently, Tan et al. (1993) have shown that one 

of the mechanisms of this repression is the displacement of another transcriptional 

activator, Sp1, from its binding site, which is one bp away from the E2 motif. Sp1 

has been shown to be important for transcriptional stimulation of HPV 16 in 

epithelial cells (Gloss and Bernard, 1990). This arrangement of the Sp1 and E2 

motifs is conservatively present in at least nine other genital HPVs, suggesting a 



20 

common regulatory mechanism (Tan et al., 1993). The E2 protein can also cooperate 

in a synergistic manner with other cellular factors (such as AP-1, glucocorticoid 

receptor and NF1), to activate transcription (reviewed in Ham et al., 1991; Gauthier 

et al., 1991; Monini et al., 1991). Transcriptional activation by E2 has also been 

attributed to its DNA-bending property (Bedrosian and Bastia, 1990). 

The obvious question that arises is, "of what significance is E2-mediated 

repression for HPV-associated cancers?" The role of the other two upstream E2 

motifs is also not clear. Indeed, the constitutive enhancers of HPV types 11, 16 and 

18, that are cell specific and contain these E2 motifs, are also E2-independent (Cripe 

et al., 1987; Garcia-Carranca, 1988; Chin et al., 1989). One possible significance of 

this E2 repression comes from studies on the integration patterns of HPV DNA in 

cervical cancers and in vitro immortalized cells. In tumors and cervical carcinoma 

cell lines, integration of HPV DNA often disrupts the E1-E2 ORF (Baker, 1987; 

Durst et al., 1985; Schwarz et al., 1985; Chao et al., 1987). Negative regulation by 

E2 would be consistent with a model in which there is a derepressed regulation of 

HPV promoters after viral integration into the E2 ORF. This loss of E2 could then 

provide a selective growth advantage due to consequent deregulated expression of 

viral oncogenes and hence could represent an important factor in the progression of 

cervical lesions to a fully malignant condition (Sang and Barbosa, 1992a ). Supporting 

this view are studies showing that mutations in either the E1 or E2 ORF increases 

the immortalizing efficiency of human keratinocytes by HPV 16 (Romanczuk and 

Howley, 1992). However, contradictory results have also been obtained which would 
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suggest otherwise (Lees et al., 1990; Storey et al., 1992). It is possible that both the 

transcriptional activating and repressing functions of E2 are stage-specific, depending 

on the differentiated state of the HPV -infected cell. 

A possible role of another gene product, the E6 oncoprotein, in 

transcriptional regulation has been suggested for the HPV 16 and 18 LCRs (Gius et 

al., 1988; Lamberti et al., 1990; Sedman et al., 1991; Desaintes et al., 1992). Also, 

indirect evidence suggests a role of the E1 protein in transcriptional control 

(Romanczuk and Howley, 1992). Although, E6 protein can bind non-specifically to 

DNA and can also activate transcription from HPV and heterologous promoters, 

sufficient evidence is still lacking to implicate this direct mechanism in the controls 

of HPV gene regulation (Grossman et al., 1989; Imai et al., 1989; Lamberti et al., 

1990; Desaintes et al., 1992). 

1.5.2 Role of cellular factors in HPV transcription. 

Although the E2 protein plays a key role in regulation of HPV gene expression, it is 

clear that numerous cellular factors are also intricately involved. One of the major 

questions to be addressed is the epithelial cell-specific nature of viral gene expression. 

Although no clear picture has yet emerged from many studies, the current data 

suggests that different HPVs have evolved distinct mechanisms to regulate their 

expression in the permissive host cell. The epitheliotropic nature of gene expression 

is partially brought about by the complex interaction of various cellular transcription 

factors binding to the viral enhancer-promoter region. So far, there is no single 
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factor that can be implicated in this cell-type specific expression. Binding sites for 

several nuclear proteins have been identified in the HPV 16 and 18 regulatory 

regions by mobilty shift, competition analysis and DNase footprinting (Garcia

Carranca et al., 1988; Gloss et al., 1989a, 1989b; Sibbet and Campo, 1990; Nakshatri 

et al., 1990). Among the known factors are the ubiquitously expressed NFl/CfF, oct-

1, AP-1 and Sp1 transcription factors. Cis elements interacting with these factors 

have been found in the regulatory regions of HPV types 11, 16 and 18, distributed 

at different locations and in varying numbers in the LCR of these viruses. An 

important role of AP-1 in the tissue-specific enhancer activity of HPV 16 (Chan et 

al., 1990; Cripe et al., 1990) and HPV 18 regulatory regions has been suggested 

(Offord and Beard, 1990; Thierry et al., 1992). Binding of cellular jun-B factor to the 

AP-1 motifs in HPV 18 LCR has shown to be essential for enhancer function 

(Thierry et al., 1992). Another group has shown that a keratinocyte-specific 

transcriptional activator protein, KRF1, which binds specifically to the HPV 18 LCR, 

was found to act in concert with AP-1 to stimulate transcription (Mack and Laimins, 

1991). In addition, oct-1 binds to a sequence overlapping this KRF1 motif, such that 

binding of either factor is mutually exclusive. This suggests that oct-1 may have a 

repressor function for HPV 18 gene expression and may partly be responsible for 

cell-type and differentiation-specific expression. Other studies have implicated the 

role of Sp1 factor as a major determinant of promoter activity for HPV 16 and 18 

(Gloss and Bernard, 1990; Hoppe-Seyler and Butz, 1992, 1993). 

Several nuclear factor 1 (NF1) binding sites are protected from DNase I in the 
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HPV 16 LCR and are also found in other sequenced HPVs (Gloss et al., 1989b; 

Nakshatri et al., 1990). In particular, an NF1 motif, located in at least six genital 

HPV s, is spaced exactly two bps away from another consensus element, termed NF A 

for nuclear factor associated factor (Chong et al., 1990). Both the NF1 and NFA 

motifs have been shown to be important for enhancer activity (Chong et al., 1991). 

In HPV 16 this NFA motif is similar to the octamer binding sites for oct-1 and oct-2 

factors (Kemler et al., 1989). However, this sequence diverges in the low risk HPV 

types 6 and 11. Using mobilty shift and competetion analysis Chong et al. (1991) 

have shown that the HPV 16 NFA motif binds to oct-1 in addition to a novel factor, 

NFA. However, the HPV 11 motif exclusively binds to the NFA protein only. 

Similarly, Dent et al. (1991) have shown that the NFA motif binds to a novel octamer 

binding protein which is specifically expressed in cervical carcinoma cells and differs 

from the constitutively expressed oct-1. In contradiction to the study by Chong et al 

(1991), this same group (Morris et al., 1993a) has shown that the novel cervical 

tissue-specific octamer protein (presumably NF A and called cervical protein by this 

group), interacts only with the high risk HPV 16 and 18 NF A motifs and not with the 

corresponding sequence of HPV 6 and 11. Morris et al (1993a) have suggested that 

the constitutively expressed oct-1 behaves as a repressor of HPV 16 and 18 gene 

expression in non cervical cells by displacing the positively acting NF1 protein binding 

adjacent to the NF A motif. However, in the presence of the novel cervical protein 

(present only in cervical cells) and oct-1, the NFA motif acts positively. In light of 

the conserved arrangement of the NF1-NFA sequence and complex interactions of 
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at least three different factors at this site (oct-1, NFA and NF1), which appears to 

be different for HPV 16/18 and HPV 6/11, it is possible that the NF A motif may have 

an important role in tissue and species specificity and might explain some of the 

biological differences between these two virus groups. It is also possible that 

NFNcervical protein is identical to an octamer factor studied by Royer et al. (1991), 

which shuttles between the nuclear and cytoplasmic compartments in a cell cycle

dependent manner. This could be a relevant instrument for HPV to couple its 

transcription to the cell cycle. 

A keratinocyte-dependent enhancer element with a sequence, TTTGGCTT, 

was also found to be conserved in all genital HPV types (Cripe et al., 1987). An 

inverted form of this sequence is also found in the LCRs of several cytokeratin and 

involucrin genes (Blessing et al., 1987). It is tempting to speculate that this could be 

the epithelial cell-type specific element to explain epitheliotropism. However, further 

studies have found that this element binds a factor similar to the adenovirus NF1 site 

(Chong et al., 1991; Cripe et al., 1990) and only contributes to enhancer activity. 

Cell-type specificity was also attributed to another transcription factor called TEF-1. 

TEF-1 and its associated cell type specific co-activator was thought to activate HPV 

expression only in keratinocytes (Ishiji et al., 1992). Another factor called the 

papillomavirus enhancer-associated-factor (PVF), also was found to contribute to cell

type specificity (Chong et al., 1990). This PVF sequence was later shown to bind to 

the transcriptional enhancer factor, TEF-2 (Chong et al., 1991). 

Another very important cis acting element discovered in several genital HPVs 
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are the steroid hormone receptor binding sites in the LCR, which confers hormone

induced expression of HPV genes (Chan et al., 1989; Gloss et al., 1987; Chong et al., 

1990; Mittal et al., 1993a, 1993b ). It is proposed that steroid hormones, progesterone 

and glucocorticoids, might play a very significant role in the HPV life cycle and HPV

mediated oncogenesis (Pater et al., 1988; zur Hausen, 1989a; Pater et al., 1990; Mittal 

et al., 1993a ). Other physiological signals have also been shown to influence HPV 

gene expression. Examples include, EGF (Yasumoto et al., 1991), TGF-,8 

(Woodworth et al., 1990b; Braun et al., 1990), retinoic acid (Pirisi et al., 1992; 

Bartsch et al., 1992; Khan et al., 1993a) and Leukoregulin and a and y-interferon 

(Nawa et al., 1990; Woodworth et al., 1992b; Khan et al., 1993b ). All of these factors 

repressed HPV gene expression in cell lines. Except for EGF, which seems to act 

through an EGF response element in the HPV 16 LCR, the mechanisms of action 

of the other factors are not known. Recently, it was demonstrated that a nuclear 

factor for interleukin 6 expression, called NF-IL6, binds to the HPV type 16 enhancer 

region and represses transcription (Kyo et al., 1993). The roles of any of these 

growth inhibitory factors in HPV life cycle is not clear. 

In conclusion, results from these studies illustrate that ubiquitously expressed 

cellular factors might be the sole determinants for cell-type specific expression of 

HPVs. Some of these factors are associated with co-activators (Mack and Laimins, 

1991; Ishiji et al., 1992; Chong et al., 1991), each binding with different relative 

affinities and/or post transcriptional modifications. Cell-type specific transcription can 

be brought about in two ways: First, by factors that are uniquely present in the cells 
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that supports promoter function. Secondly, due to induction by a factor that interacts 

with a DNA element that is normally occupied by a ubiquitous factor. A classic 

example would be the lymphoid B-cell specific oct-2 factor which binds to a site that 

normally is bound by the ubiquitous oct-1 factor (Kemler et al., 1991). For HPVs, 

it is more likely that neither of these two mechanisms exist. Instead, cell-type 

specificity might be due to a combination of synergistic and cooperative interactions 

between the ubiquitously expressed cellular factors that are expressed in varying 

amounts in particular cell types, and/or are differentially modified. This is supported 

by the observations that although HPV enhancer is inactive in fibroblasts, it binds to 

and gives identical footprints with extracts from different origins (Chong et al., 1991,; 

Cripe et al., 1990; Gloss et al., 1989a; Nakshatri et al., 1990). It is also possible that 

unknown co-activators may function differently in association with the same 

ubiquitous factors. This could explain the cell, tissue and species specific gene 

expression exhibited by different HPV types. 

1.5.3 Role of silencers in HPV LCR and negative regulation by cellular factors. 

In recent years, silencer elements have also been discovered in the HPV LCR. 

Transcriptional silencers, defined by Brand et al. (1985), are cis acting elements which 

operate at a distance in an orientation independent manner to suppress transcription. 

Such cis acting negative elements have been described in HPV 6 (Wu and Mounts, 

1988), HPV 8 (Reb and Pfister, 1990) and HPV 18 LCRs (Bauknecht et al., 1992). 

The HPV 18 silencer was shown to interact with a previously characterised YY1 
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repressor protein (Shi et al., 1991) and was shown to downregulate both constitutive 

and phorbol ester-induced expression of HPV genes at the level of transcriptional 

initiation (Bauknecht et al., 1992). Interestingly, the YY1 core element is also 

present in the anogenital HPV types 11, 16, 31 and 33. However, the relevance of 

these silencers in HPV life cycle and their biological significance is not understood. 

Possibly, the presence of both silencers and activators allows these viruses to be 

regulated both positively and negatively, thus allowing a fine tuning of transcriptional 

control. 

Another interesting control mechanism with some biological significance is the 

involvement of a putative suppressor gene on chromosome 11, which is found deleted 

in many cervical cancers (Atkin and Baker, 1988). Experimental studies have shown 

that chromosome 11 harbours a gene which suppresses expression of HPV 16 and 18 

genes (Smits et al., 1990; Rosl et al., 1988). In addition, cell fusion and 

microinjection studies have shown that chromosome 11 is able to suppress 

tumorigenicity of HPV transformed cells (Rosl et al., 1991; Koi et al., 1989; Saxon et 

al., 1986). This was correlated with a concurrent decrease in the expression of HPV 

oncogenes. HPV 16 enhancer-promoter was also shown to be more active in 

fibroblasts deleted of chromosome 11 (del-11 cells) and could be easily transformed 

compared to normal diploid fibroblasts which were not permissive for HPV 16 gene 

expression (Smits et al., 1988 and 1990). The region responsible for this 

downregulation was delineated to nt 59-112 in the HPV 16 promoter (Smits et al., 

1990). Additional studies provided evidence that deletion of chromosome 11 induces 
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or activates a cellular homolog of SV40 small t-antigen (Smits et al., 1992a). SV40 

small t-antigen interacts with and modulates the activity of the protein phosphatase 

2A subunit, PP2A, (Yang et al., 1991a). In del-11 cells, the steady state levels of 

protein phosphatase 2A subunit are increased (Smits et al 1992b ), indicating that 

HPV promoter region could have been influenced by a PP2A activity present in del-

11 cells. Recently, quantitative differences were observed for proteins binding the 

TATAAA box region of HPV 16 promoter in del-11 and diploid cell extracts (Smits 

et al., 1993). This led to the speculative assumption that either TATA binding 

proteins or a modification of factors binding this region are involved in the 

chromosome 11-mediated repression of HPV 16 genes. The likely involvement of 

chromosome 11 in HPV gene regulation supports the intracellular surveillance 

hypothesis ( CIF theory) of zur Hausen ( 1991) for cervical carcinogenesis (discussed 

in chapter 2). Accordingly, it is postulated that a cellular interfering factor (CIF), 

putatively residing on chromosome 11, suppresses HPV expression in normal cells 

and it is the inactivation of the CIF genes that leads to unregulated increased 

expression of HPV oncogenes and development of cervical carcinomas. Although 

quite attractive, more research is required to substantiate the role of chromosome 11 

in HPV gene expression. 

1.6. Transcriptional regulation by steroid hormones 

Steroid hormones are a group of naturally occuring compounds which act to 
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coordinate complex biological events involved in development, differentiation and 

also responses to a number of physiological stimuli (reviewed in Evans, 1988). Three 

classes of steroids have been identified based on their biological functions. These are 

the adrenal steroids (cortisol and aldosterone), sex steroids (estrogen, progesterone 

and testesterone) and calcitriol (vitamin D 3 metabolite). Through the initial work by 

Jensen and Gorski, it was realized that steroid hormones work through specific 

intracellular receptors (Jensen, 1968; Gorski, 1968). At present, these intracellular 

molecules comprise a superfamily of ligand-dependent transcription factors (reviewed 

in Fuller, 1991). Recombinant DNA technology has played an important role in 

understanding the molecular mechanisms of steroid hormone action and has allowed 

cloning and identification of the various hormone receptors and their DNA 

recognition sequences. A clear picture has emerged about how steroid hormones 

perform their functions. It is thought that the free pool of glucocorticoids, which are 

lipid soluble, enters the cells by diffusion (Furu et al., 1987) and bind with high 

affinity to specific cytoplasmic receptors called the glucocorticoid receptor (GR, 

Yamamoto and Alberts, 1976). Prior to hormone binding, the GR is found in an 

inactive state in a multiprotein complex that appears to contain a single molecule of 

GR associated with several heat shock proteins, including hsp 90, hsp 70, and hsp 56 

(reviewed in Pratt et al., 1992a; and Smith and Toft, 1993). Upon hormone binding, 

hsp 90 dissociates from the GR followed by activation or transformation of the 

hormone-receptor complex. It is thought that the heat shock proteins may be 

involved in the proper folding and stabilization of the receptor molecule (Pratt et al., 
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1992b ), as well as, for high affinity steroid binding to the receptor protein (Bresnick 

et al., 1989; Ohara-Nemato et al., 1990). Following activation, the receptor is 

translocated into the nuclear compartment of the cell, attains a high affinty for DNA 

(Howard and Distilhorst, 1988) and dimerizes either prior to or concurrent with DNA 

binding (Tsai et al., 1988; Wrange et al., 1989). 

1.6.1 Structural and functional analysis of the glucocorticoid receptor. 

Molecular cloning and sequencing of cDNAs have greatly facilitated our 

understanding of ligand-dependent intracellular receptors for steroid hormones and 

have allowed us to group these receptors in one superfamily (reviewed in Evans, 

1988). All of them consist of three major domains: a conserved DNA binding 

domain, joined to a carboxy-terminal hormone binding domain and a non conserved 

amino-terminal domain (Muller and Renkawitz, 1991). The exact locations and 

functions associated with these domains have mainly been derived from the study of 

the GR. I will also discuss other steroid hormone receptors only where necessary. 

The DNA binding domain comprises the central region of the GR receptor 

molecule, is highly conserved and contains eight conserved cysteine residues which 

tetrahedrally coordinate two zinc atoms (Freedmann et al., 1988). This forms two 

zinc fingers important for the structural integrity and sequence-specific DNA-binding 

property of this domain (Hard et al., 1990; also reviewed in Schwabe and Rhodes, 

1991 ). A transactivation function and a hormone-independent nuclear localization 

signal has also been identified in this region (Hollenberg and Evans, 1988; Picard and 
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Yamamoto, 1987; Guiochon-Mantel et al., 1989). Swapping experiments have 

provided evidence that the first zinc finger and few amino acids between the cysteines 

of the second zinc finger confer target gene specificity (reviewed in Freedman, 1992). 

The hormone binding domain lies at the carboxy-terminal end of the GRand 

has a complex structural and functional organization. In addition to binding the 

ligand, this region also contains a dimerization signal which is similar to those for the 

estrogen (ER) and progesterone (PR) receptors (Kumar and Cham bon, 1988; 

Guiochon-Mantel et al., 1989; Fawell et al., 1990). It also contains sequences for 

interaction with the hsp 90 (Denis et al., 1988; Pratt et al., 1988), a ligand-dependent 

nuclear localization signal for the GR and PR (Picard and Yamamoto, 1987; 

Guiochon-Mantel et al., 1989) and a transcriptional transactivation function which is 

common for the GR, ER and PR (Hollenberg and Evans, 1988; Webster et al., 1988; 

Dobson et al., 1989). 

The N-terminal domain of the hormone receptor superfamily is the most 

highly variable region, both in length and amino acid sequence (reviewed in Beato, 

1989). This region of the receptor consists of amino acids which are negatively 

charged and are important for the transcriptional transactivation function of the GR 

(Giguere et al., 1986), PR (Tara et al., 1988), ER (Tara et al., 1989) and the 

androgen receptor (AR, Simental et al., 1991). 

1.6.2 Hormone response elements (HRE). 

Gene transfer techniques and DNA-Protein interaction studies have identified 
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consensus sequence elements which are the binding sites for various steroid receptors 

(reviewed in Beato et al., 1989). Response elements have been found in a variety of 

hormone responsive genes and are sufficiently homologous to derive a consensus 

sequence (see table 1.1). In most cases these sequences have a palindromic structure 

with two unequal halves seperated by three non-conserved nucleotides. The HREs 

can be superficially divided into three subgroups: the GRE/PRE, the ERE and the 

TRE subgroups (table 3.1). One exception to the palindromic rule is the retinoic 

acid response element (RARE) present in the promoter region of the retinoic acid 

receptor gene. This element contains a direct repeat of the sequence (G/A)GTTCA 

seperated by 5 nucleotides (de The et al., 1990). Orientation and spacing between 

the two half sites of HREs have been shown to be important for specificity of 

response to the ligand and also for the receptor molecule (Umesono et al., 1991; 

Naar et al., 1991). In addition, nucleotides important for receptor interaction to the 

DNA have been mapped for several steroid hormone receptors. Studies have shown 

that the functional consensus GRE sequence is 5'G-6G-5T-4A-3c-2A-

1NNNT+1G+Zrr+3T+4c+5T+6 3' (Beato et al., 1989), where N is a degenerate 

nucleotide and the numbers represent positions of the basepairs in the I-IRE 

palindrome. The three bp spacing is very important for DNA binding specificity. 

Interestingly, this sequence can bind to the PR, AR and mineralocorticoid (MR) 

receptors as efficiently as the GR (reviewed in Beato, 1989). Mutagenesis 

experiments with the GREs have demonstrated that changes at nucleotides at posi

tion G +2, T+3, c+5, c-2, and A-3 are not tolerated for either DNA binding or 



Table 1.1. Consensus DNA sequence elements for various steroid hormone receptor 

binding sites. The core consensus sequences for the various members of the steroid 

hormone receptor superfamily are overlined. All the hormone response elements are 

palindromes, except for the RARE which contains a direct repeat of the sequence 

(NG)GTTCA. The response elements are for receptors that bind glucocorticoids 

(GRE), progesterone (PRE), mineralocorticoids (MRE), androgens (ARE), estrogen 

(ERE), thyroid hormone (TRE), vitamin D (VDRE) and retinoic acid (RARE). n 

represents either A, G, Cor T. 
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SEQUENCE NAME 

AGAACAnnnTGTTCT (GRE, MRE, PRE or ARE) 

AGGTCAnnnTGACCT (ERE) 

AGGTCA---TGACCT (TRE) 

TGGTGA-n-TCACCG (VDRE) 

AGTTCAnnnnnAGTTCA (RARE) 
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glucocorticoid inducibility (Noordeen et al., 1990), whereas, changes in other bases 

to a certain degree are. Most of these results were further confirmed from 

methylation interference and DNase protection studies that showed that GR makes 

contacts at the guanines at positions + 2, + 5, -2 and -5 of the palindromic sequence 

(Scheidereit et al., 1984 and 1986). Similarly, the T's at position +3 and +4 appear 

to be very important for target site discrimination (Truss et al., 1990; Cairns et al., 

1991), because changing the T's at these positions to A +3 and c+4 converts it into 

an estrogen response element (Klock et al., 1987). The palindromic nature of many 

steroid hormone response elements suggests that hormone receptors bind to DNA 

as dimers (Perlmann et al., 1990). 

1.6.3 Mechanism of transactivation by steroid hormones and their receptors. 

The MMTV DNA has served as a paradigm for the study of glucocorticoid regulated 

expression of genes transcribed by RNA polymerase II (reviewed in Truss et al., 

1992). In the general model of steroid hormone-activated gene expression, the 

steroid hormone receptor is first converted from a non DNA-binding complex in the 

cytoplasm to a DNA-binding protein in the nucleus. This activated receptor then 

binds in a sequence-specific manner to hormone-regulated genes to induce 

transcription. The MMTV promoter contains 4 copies of the hexanucleotide, 

TGTTCT, each constituting one half of the palindromic receptor binding site. Each 

of these motifs can bind and also respond to the GR, PR, AR and MR in cells 

expressing these receptors (reviewed in Truss et al., 1992). Deletion and insertion 
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mutagenesis has shown that a strong cooperativity exists between the upstream distal 

and the three downstream proximal motifs (Chalepak:is et al., 1988). Two types of 

mechanisms have been described for transactivation of hormone responsive genes by 

steroid hormones and their respective receptors. The first mechanism involves other 

cellular transcription factors while the second involves the role of chromatin structure 

in steroid hormone regulation. 

1.6.3.1 Role of transcription factors in transcriptional activation by steroid 

hormones. 

Development of in vitro reconstituted cell free transcription systems combined with 

other in vitro DNA-binding assays and in vivo studies have greatly enhanced our 

understanding of the molecular mechanism of steroid hormone induction. There are 

two different mechanisms by which hormone receptors might influence transcription: 

(1) modulating the formation of a stable preinitiation complex at the promoter or (2) 

cooperating with other enhancer and/or promoter specific transcription factors. 

(1) Enhancement of an assembly of a stable pre-initiation complex at the 

promoter region. 

Transcription of protein encoding genes begins with the formation of an 

initiation complex (reviewed in Zawel and Reinberg, 1993). In vitro reconstituted 

systems have revealed that assembly of proteins at the transcriptional initiation site 
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occurs in a defined order. The TATA box binding factor (TFIID) first binds to the 

TATA element present upstream of the start site. Next, the general transcription 

factors, TFIIA and TFIIB, associate with the TFIID-DNA complex and lay the 

foundation for the subsequent binding of RNA polymerase II, TFIIF, TFIIE, TFIIH 

and TFIIJ (reviewed in Zawel and Reinberg, 1993). As a result, a transcriptionally 

active complex is formed which is sufficient for basal levels of transcription. 

However, for higher induced levels, other DNA-binding specific transcription factors 

are required (reviewed in Mitchell and Tjian, 1989). Naturally occcuring genes 

contain a variety of cis acting elements that are binding sites for specific DNA

binding transcription factors, also called activators. Basically, transactivators are 

comprised of at least two domains: one for DNA binding and another for 

transcriptional activation. These activation domains are believed to enhance 

transcription by promoting or stabilizing the formation of an initiation complex by 

interacting with the general transcription factors (reviewed in Ptashne and Gann, 

1990). Many studies have implicated TFIID and TFIIB as potential targets for 

transactivators (reviewed in Greenblatt, 1991; Lin et al., 1991). However recent 

studies have shown direct physical interactions between activation domain of these 

activators with the general transcription factors, TFIID, TFIIB and TFIIH (reviewed 

in Zawell and Reinberg, 1992). In addition, other proteins, which are termed 

adaptor, coactivator, mediator, and/or bridging proteins, may mediate protein-protein 

interactions between activation domains and the general transcription factors 

(reviewed in Lewin, 1990). 
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Most of the studies to examine the mechanisms by which hormone receptors 

interact with the general transcription factors came from in vitro reconstitution 

experiments. In such a system the concentration of the receptor, ligand, general 

transcription factors and target genes are amenable to easy manipulation. Using such 

a strategy it was shown that the progesterone receptor is able to confer induction of 

correctly-initiated transcripts of a template DNA in the presence of RNA polymerase 

II and nucleotides (Klein-Hitpass et al., 1990; Bagachi et al., 1990a). Competition 

analysis and kinetic studies have shown that the steroid receptor enhances the 

formation of a rapid start complex by the RNA polymerase II (Klein-Hitpass et al., 

1990; Bagachi et al., 1990b ). This appears to be by enhancing the assembly of a 

committed complex of transcription factors at the TATA box. In a similar fashion 

the glucocorticoid receptor (Tsai et al., 1990) and the estrogen receptor (Elliston et 

al., 1990) were shown to stimulate RNA synthesis in this in vitro system. 

The understanding of the mechanisms of hormone stimulation was highlighted 

in studies of the ovalbumin promoter and induction of in vitro transcription by 

COUP-TF, a member of the steroid hormone receptor superfamily. It was shown 

that a second factor, S300-II, was required for in vitro transcription of the ovalbumin 

promoter (Sagami et al., 1986). This factor itself did not bind DNA, but functioned 

indirectly by stabilizing the binding of COUP-TF to its recognition sequence (Tsai et 

al., 1987). Thus S300-II exhibited properties of an adaptor molecule. Subsequent 

cloning of this factor established its identity as the general transcription factor, TFiffi 

(Ha et al., 1991; Malik et al., 1991). These results revealed that TFIIB, not only 
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functions as a passive target for activators, but also, actively stabilizes the binding of 

upstream factors to their respective regulatory elements. More interestingly, these 

data suggested that TFIIB could be a general target for the steroid receptor 

superfamily of proteins. 

As mentioned earlier, steroid hormone receptors have multiple activation 

domains localized in various regions of the molecule. In a recent report it was shown 

that the action of at least three members of the steroid receptor superfamily, COUP

TF, estrogen and progesterone receptors was mediated by a direct interaction of 

these receptor molecules with TFIIB (Ing et al., 1992). It was proposed that TFIID 

and the steroid receptor initially and continously associate and dissociate with their 

respective binding elements. However, in the presence of TFIIB, both factors are 

likely to bind more stably to their recognition elements and thus assist in forming a 

more stable initiation complex to initiate transcription in a productive manner. This 

interaction of the steroid receptor with TFIIB might be a critical step since the 

association of TFIIB with the transcription initiation complex is known to be rate

limiting (Lin and Green, 1991 ). More recently, another target of hormone receptor 

mediated transactivation was established by demonstrating a functional interaction of 

estrogen receptor with TFIID (Bran et al., 1993). 

(2) Cooperation with other site-specific DNA-binding transcription factors. 

Several reports suggest that steroid receptors act by cooperating with other cellular 

transcription factors. Cooperativity has been observed for a variety of heterologous 
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binding sites, including NF1, Sp1 and oct-1 factors (Schule et al., 1988a, 1988b; 

Strahle et al., 1988). A downstream NF1 site was shown to be important for 

glucocorticoid and progesterone induction of the MMTV promoter (Kalff et al., 1990) 

in cell free transcription systems. Mutational analysis (Miksicek et al., 1987; Buetti 

et al., 1989) combined with gene transfer experiments (Bruggemeier et al., 1990) have 

also established an essential role of the NF1 motif in hormone induction of the 

MMTV promoter. However, quite unexpectedly, it was revealed that purified 

hormone receptor did not cooperate, but rather competes with NF1 for binding 

(Bruggemeier et al., 1990). This is because the binding sites for both factors overlap 

with each other by several base pairs. This hormone effect and the observed 

requirement of the NF1 motif for optimal steroid response led to some classical 

studies regarding the involvement of chromatin structure which is discussed in the 

following section. 

Two degenerate octamer binding motifs ( oct-1) were also shown to be involved 

in mediating hormonal induction of the MMTV promoter (Bruggemeier et al., 1991). 

Mutations at this site significantly reduced hormone induction of this promoter 

(Toohey et al., 1990). In contrast to the NF1, which competes with the receptor for 

binding, the binding of oct-1 to its recognition sequence is strongly enhanced in the 

presence of the GR or PR (Bruggemeier et al., 1991 ). Therefore, oct-1 in this system 

acts not only to cooperate with DNA binding, but also in functional synergism. 

1.6.3.2 Role of chromatin structure in hormonal regulation. 



41 

The MMTV paradigm has again served as a useful model to explore the role of 

chromatin structure in hormone-mediated regulation. As mentioned earlier, 

competetive binding was observed in vitro at the MMTV promoter between the 

hormone receptor and NFL However, in vivo data suggested that glucocorticoid 

treatment induces NF1 binding to the MMTV promoter (Cordingley et al., 1987). 

In the absence of hormones no binding was observed at the NF1 site. Beato's 

laboratory has explored the possibility that glucocorticoids alter the chromatin 

structure of the DNA such that it allows NF1 binding. Two preliminary studies had 

indicated that the MMTV LTR becomes hypersensitive to DNase1 digestion after 

hormone treatment in the region which contains the HREs (Zaret and Yamamoto, 

1984). In addition, this region is also organized into three well positioned 

nucleosomes (Richard-Fay and Hager, 1987), one of which covers the regulatory 

region containing the hormone response elements. Increased hypersensitivity to 

DNase I digestion suggested that the hormone has induced a structural change in the 

DNA by displacing or removing the nucleosome covering the HREs. In vitro 

nucleosome reconstitution experiments have shown that the MMTV HRE region has 

an inherent ability to adopt a preferred conformation with the DNA double helix and 

positions itself in a very precise manner on the surface of the histone octamer 

(Perlmann and Wrange, 1988; Pina et al., 1990). Detailed analysis of this preferred 

path made it clear that two of the four HREs present in the MMTV LTR have their 

major groves facing outward, whereas the NFl motif faces inwards (Pina et al., 1990). 

In agreement with this it was also shown that the glucocorticoid receptor can bind to 
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the MMTV promoter when it is organized into nucleosomes (Perlmann and Wrange, 

1988). The current model of transactivation would then be that receptor binding 

displaces a nucleosome which then uncovers the NF1 binding site and allows 

formation of a stable transcriptional initiation complex. In the absence of hormones, 

the promoter is silent due to the masking of NF1 binding site by the nucleosome. In 

this respect, hormone receptor acts as a modulator of transcription by serving as an 

entry point for other promoter specific and basal transcriptional factors. 

1.6.4. Positive and negative regulation of steroid hormones through overlapping 

factor binding sites. 

Positive or negative regulation of expression of genes by glucocorticoid hormones has 

been identified at sequences where the GRE overlaps the binding sites for non

receptor transcription factors that negatively or positively regulate these genes. Such 

a mechanism would involve steric inhibition of binding for positive or negative factors 

at these overlapping motifs (reviewed in Ponta et al., 1992). In another situation, no 

competitive inhibition is involved, rather the steroid hormone receptor interacts with 

other transcription factors and binds as a complex to these overlapping motifs. Such 

an element with overlapping factor-binding sites has been referred to as "composite 

GREs" ( cGRE) and was first described by Diamond et al. (1990) for the rat proliferin 

gene. 

Negative and/or positive regulation by steroid hormone receptors, in particular 

GR, has been described for several genes (reviewed in Wahli and Martinez, 1991). 
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The prolactin gene is both positively and negatively regulated by estrogen and 

glucocorticoids, respectively. Estrogen induction is through an ERE (Adler et al., 

1988) and requires cooperative interaction with the pituitary specific "pit-1" factor 

(Day et al., 1990). Glucocorticoids on the other hand inhibit prolactin gene 

expression, apparently through a composite GRE which has binding sites of some 

unknown cellular factor (Sakai et al., 1988). Such negatively regulating GREs were 

called "nGRE" (n for negative). Similar nGREs were also reported for the pro

piomelanocortin gene (Drouin et al., 1989) and choroinic gonadotropin a-subunit 

gene (Akerblom et al., 1988) which apparently act by sterically interfering with the 

binding of a positively acting cAMP response element binding (CREB) protein 

(Nakai et al., 1991; Akerblom et al., 1988). This inhibition was mediated by the 

DNA-binding domain of the GR indicating that DNA binding of GR is required 

(Akerblom et al., 1988; Oro et al., 1988). GR also negatively regulates genes by 

binding to GREs overlapping with other regulatory elements, e.g. AP-1 in the case 

of a-fetoprotein gene (Guertin et al., 1988; Zhang et al, 1991) or the TATAA box 

element in the case of human osteocalcin gene (Stromstedt et al., 1991 ). The human 

osteocalcin gene is also positively regulated by vitamin D and retinoic acid. This 

occurs through a vitamin D response element (VDRE), that is also a target of a 

negatively acting AP-1 protein (Schule et al., 1990; Owen et al., 1990). In this case, 

induction by these hormone receptors is due to competitive inhibition of a negatively 

acting protein. 

Cooperative interactions at composite elements was demonstrated for the ER 
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and AP-1 for the chicken ovalbumin gene (Gaub et al., 1990) and between GRand 

AP-1 for the rat proliferin genes (Diamond et al., 1990). In both cases the 

overlapping binding sites were indeed bound by both AP-1 and the steroid receptors. 

However, in the case of the rat proliferin genes, AP-1 behaves as a selector of, either 

a positive or negative regulator by hormones (Diamond et al., 1990). Thus, the 

element was inactive in the absence of AP-1, and was either positively regulated (in 

the presence of c-jun homodimers) or negatively regulated (in the presence of c-jun/c

fos heterodimers) by glucocorticoids (Diamond et al., 1990). This phenomenon is 

interesting because it allows diversity and regulatory versatility of gene expression. 

However, regulation of such a kind remains a model and has been demonstrated only 

with cloned composite elements of the proliferin gene promoter. Whether or not 

such a regulation actually happens at the complex proliferin promoter is yet to be 

established. More recently, differential regulation between the GR and MR was 

demonstrated at the proliferin cGRE (Pearce and Yamamoto, 1993). Although both 

GRand MR interact with the same sequence, yet they behaved in opposite manners 

(Pearce and Yamamoto, 1993). It is also suggested that this mode of complex 

regulation might be relevant and important for many physiological signals governed 

by steroid hormone receptors, nonreceptor cellular factors and composite elements 

that bind with these factors (reviewed in Funder, 1993). It is also possible that dif

ferent members of the AP-1 and steroid hormone receptor families interact with each 

other to result in different physiological responses of cGRE regulated genes 

(reviewed in Miner and Yamamoto, 1991; and Lamph, 1991). It is interesting to note 
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that HPV 16 regulatory region also possesses a cGRE at nt position 7640, which 

contains an AP-1 motif overlapping a non-canonical GRE (Chan et al., 1990). In this 

thesis (chapter 5) I have studied regulation of this cGRE by GR, c-jun and c-fos in 

the context of both, the full length HPV 16 enhancer region and also with an isolated 

sub-region of this enhancer. 



CHAPTER2 

HUMAN PAPILLOMA VIRUSES AND THEIR ROLE IN 

TRANSFORMATION. 

2.1 Introduction 

Several decades after the first demonstration that cell free extracts from wart tissue 

transmitted HPV, the malignant potential of cottontail rabbit papillomavirus was 

observed in rabbits (Rous and Beard, 1935). Decades later, it was shown that 

cervical cancers contained genetic material that specifically hybridized with DNA 

isolated from human warts (zur Hausen et al., 1974) and it was hypothesized that 

cervical cancers are caused by papillomavirus infections (zur Hausen, 1976 and 1977). 

It was during this later period that papillomavirus-specific cytopathic changes were 

demonstrated in cervical lesions (Meisels and Fortin, 1976; Purola and Savia, 1977; 

Laverty et al., 1978) and the genetic heterogeneity of human papillomaviruses was 

recognized (Gissmann and zur Hausen, 1976). Specific HPV types 5 and 6 were then 

identified in skin cancers from patients with epidermodysplasia verucciformis and 

additional types were identified in a wide variety of benign and malignant human 

tumors of the skin, cervix, anogenital region, respiratory tract and oral cavity 

(reviewed in Shah and Howley, 1990). To date, over 60 types of HPVs have been 

identified (de Villiers, 1989), more than 20 of which are associated with anogenital 

lesions. In addition, more than 85% of cervical carcinomas contained HPV DNA, 

predominantly of the high risk HPV types (Lorincz et al., 1992). 
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2.2 Assay systems to study transformation in vitro 

Most of the early observations about the tumorigenic nature of 

papillomaviruses were based on tumors occuring in domestic or laboratory animals, 

which were amenable to both epidemiological and experimental studies (reviewed in 

Pfister, 1984). In contrast to the animal models, however, in humans a logarithmic 

relation exists between cancer incidence and age, suggesting that not one but several 

random events must be required for the development of a tumor (Armitage and Doll, 

1957; recently reviewed in Vogelstein and Kinzler, 1993). It became increasingly 

clear that most human malignancies could not be attributed to a single infectious 

agent. 

One of the major limitations to human papillomavirus research was the 

inability to propagate the virus in culture. HPVs infect only epithelial tissues and the 

viral replication cycle is linked to the process of epithelial cell differentiation (Blanton 

et al., 1991). Mature virions are found only in the superficial highly differentiated 

keratinocytes (Stoler et al., 1989; Durst et al., 1992). Since this state of 

differentiation has not been achieved in tissue culture, propagation of HPVs has 

been, for the most part, frustrating. However, with the advent of recombinant DNA 

technology, it has been possible to clone and sequence viral DNA from infected 

tissues, enabling researchers to recognize multiple HPV types exhibiting distinct tissue 

tropisms associated with clinical lesions. Using such techniques, it has also been 

possible to dissect different sub-regions of the viral DNA and assess some of their 

biological properties when introduced into cultured cells by DNA transfections. Thus, 
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these techniques have allowed us to introduce cloned viral DNA into established or 

primary cells and look for cell biologic effects such as morphological transformation, 

anchorage-independent growth, cooperation with cellular oncogenes, life span, 

immortalization, differentiation and cell growth. 

2.2.1 Transformation of established lines by HPVs. 

It was shown earlier that DNA from tumors introduced into established mouse 

fibroblasts (NIH 3T3) could impart a malignant phenotype (Tabin et al., 1982; Reddy 

et al., 1982). Similar experiments have shown that the genomic DNA taken from a 

cervical adenocarcinoma induced focus formation in NIH 3T3 cells (Tsunokawa et 

al., 1986). It was revealed that the transforming sequences were derived from HPV 

16 sequences present in the tumor DNA. Mouse NIH 3T3 and C127 cells and rat 

3Yl cells have been extensively used to study the oncogenic potential of several HPV 

types and have provided us with much information on the mechanisms of 

transformation. These established lines have been very useful to study morphologic 

transformation. Ordinarily, these cells are contact inhibited and grow as a flat 

monolayer. However, upon transformation, these cells become more refractile, lose 
• 

their contact inhibition and form a focus of densely packed cells. Cells cloned from 

these foci display characteristics of transformed cells, including growth in low serum, 

higher saturation density, anchorage independence and tumorigenicity in nude mice. 

The oncogenic potential of HPVs was directly demonstrated by transfecting 

a cloned dimer of HPV 16 into 3T3 cells (Yasumoto et al., 1986 and 1987). Foci 
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which displayed characteristics of a transformed phenotype appeared and were 

tumorigenic in nude mice. Employing a different strategy, HPV early region driven 

by strong heterologous promoters (usually SV 40 early promoter or retroviral LTR) 

demonstrated transformation of 3T3 cells (Matlashewski et al., 1987) and anchorage

independent growth (Tanaka et al., 1989; Vousden et al., 1988; Yutsudo et al., 1988). 

Subsequently it was shown that HPV 16 and 18 E7 ORF is sufficient for morphologic 

transformation but required the E6 ORF for tumorigenicity in nude mice (Phelps et 

al., 1988; Tanaka et al., 1989; Bedell et al., 1987, 1989). 

A variety of different HPV types were also tested in a similar fashion. 

Transformation of C127 cells by HPV types -1, 5, 16 and 18 were reported (Watts 

et al., 1984, 1987; Morgan et al., 1988). Differences were observed among different 

HPV types, correlating with the oncogenic potential of these viruses. The E6 and not 

E7 encoding ORF of HPV 8, which is associated most commonly with cutaneous 

carcinomas in EV patients, was able to transform C127 and Rat 1 cells only after 

G418 selection (Iftner et al., 1988). The E5a gene of HPV 6c can induce 

morphologic transformation and anchorage-independent growth of 3T3 and C127 

cells (Chen and Mounts, 1990). 

The rat 3Y1 cells have also been used to show that HPV 16 and 18 (Kanda 

et al., 1987; Noda et al., 1988; Watanabe and Yoshiike, 1988) and their respective E7 

genes (Kanda et al., 1988b; Tanaka et al., 1989) are sufficient for transformation. 

HPV la could impart features of transformation in 3Yl cells (Green et al., 1986). 

It was also recently demonstrated that the E6 genes of HPV types 5, 8, and 47 
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induced morphological transformation of 3Y1 cells more frequently than those of 

HPV types 14, 21, and 25 (Kiyono et al., 1992). Morphological changes induced by 

the E6 genes of several HPV types was also correlated with the risk of malignant 

transformation of lesions associated with these HPVs (Hiraiwa et al., 1993). One 

important consequence of using these transformation assays was the identification of 

regions required for oncogenicity (Watanabe et al., 1990). It also enabled 

investigators to dissect the structural and functional properties of the HPV 

transforming genes (discussed earlier in chapter 1 ). 

2.2.2 Transformation of primary rodent epithelial cells by HPV s. 

It was soon realized that morphologic transformation of established cells was not 

sufficient to convincingly conclude that HPV genes were the only determinants for 

oncogenicity, since established lines cannot be considered as normal cells. As 

mentioned before, in the multi-step model of tumorigenesis other cellular genetic 

events are important for transformation (reviewed in Vogelstein and Kinzler, 1993). 

Consequently, in vitro assays were developed to explain this multi-step process. In 

this process it is assumed that a tumorigenic cell evolves as a consequence of a series 

of gene activations/inactivations, each one of which contibutes to the overall 

phenotype of a malignant cell (Burnet, 1957; Foulds, 1958; Nowell, 1976). Studies 

of two virally encoded oncogenes, the middle (MT) and large T (LT) genes of 

polyomavirus (Rassoulzadegan et al., 1982), set the initial relationship between 

oncogenes and the multistep nature of oncogenesis. Neither of the oncogenes alone 
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was able to transform primary cells but the two were able to cooperate to elicit a 

fully malignant phenotype. This model was then extended to a number of cellular 

and viral oncogenes. Using this type of cooperation, oncogenes were grouped into 

two main classes: The establishment class of genes which are capable to establish 

primary cells in vitro and the transforming class which required the cooperation of 

an establishment gene in order to transform primary cells. Over the years, it has 

become a standard assay to assign an oncogenic property to a gene if it is able to 

cooperate with one of the transforming class of oncogenes (includes EJ-ras, c-fos, c

myc etc). Using such a cooperating assay, the early region of several oncogenic HPV 

types (16, 18, 33 and 35) driven by heterologous promoters were found to be able to 

cooperate with cellular oncogenes to transform primary baby rat or baby mouse 

kidney epithelial cells (Matlashewski et al., 1987; Storey et al., 1988; Phelps et al., 

1988; Kanda et al., 1988a). Neither HPV DNA nor the oncogenes alone were 

sufficient for transformation. In this assay the early region of low risk HPV types 6 

and 11 were either inactive or transformed at a very low frequency, only if expressed 

at sufficiently high levels (Storey et al., 1990a ). These studies also showed that 

continous expression of the E7 gene is required for maintenance of the transformed 

phenotype and for continued cell proliferation (Crook et al., 1989b; Storey et al., 

1991 ). The above mentioned studies were performed using strong heterologous 

promoters and the full length HPV 16 or 18 genomes were very inefficient in these 

assays. In a landmark experiment, the role of co-factors required for HPV 

transformation was stressed when it was shown that the full length HPV 16 genome 
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could cooperate with the EJ-ras or c-fos oncogenes to efficiently transform primary 

cells provided steroid hormones, dexamethasone or progesterone, were present in the 

media (Pater et al., 1988; Crook et al., 1988; Pater et al., 1990). Cooperating activity 

was greatly diminished without hormones. These studies were able to identify a very 

important co-factor essential for the transforming activity of HPV 16 DNA. It was 

suggested that oral contraceptive pills, which contained progesterone like derivatives, 

may be capable of stimulating the expression of HPV oncogenic proteins in infected 

individuals through the hormone response element present in the HPV regulatory 

region (Pater et al., 1988; Gloss et al., 1987). The hypothesis gained support from 

reports that oral contraceptives were associated with a high risk of developing 

invasive cervical cancers (Melamed and Flehinger, 1973; Stern et al., 1977; Swan and 

Brown, 1981; Vessey et al., 1983; Ebeling et al., 1987). Interestingly, the non

oncogenic HPV types 6 and 11 were unable to transform even in the presence of 

hormones even though HPV 11 LCR contained a hormone-responsive GRE (Pater 

et al., 1988; Crook et al., 1988; Gloss et al., 1987). However, as suggested by Pater 

et al. (1988), hormone-induced expression levels of HPV oncogenes are important 

for transformation. This was reflected in another study where duplication of the 

HPV 11 LCR, in the context of the whole genome, resulted in a glucocorticoid

dependent transformation of the non-oncogenic HPV 11 DNA (Rosen and Aubom, 

1991). 

2.2.3. Transformation of primary human and rodent fibroblasts by HPV DNA. 
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Transfected HPV 16 DNA can extend the in vitro life span of primary human 

foreskin fibroblasts and rat embryo fibroblasts (Cerni et al., 1990; Matkaleshewski et 

al., 1988; Pirisi et al., 1987). The E6/E7 region of HPV 16 expressed from an SV 40 

promoter was sufficient for immortalization of primary human lung fibroblasts 

(Watanabe et al., 1989). The E6/E7 regions of HPV types 6, 16 and 18 could 

cooperate with activated EJ ras oncogene to fully transform primary rat embryo 

fibroblasts (Bedell et al., 1989; Chester and McCance 1989). These results are 

interesting, because although HPV naturally infects only epithelial cells, in vitro the 

viral oncoproteins are capable to immortalize primary fibroblasts. However, unlike 

epithelial cells, the full length HPV genomes were either inefficient or deficient in 

immortalizing human fibroblasts (see below). This differential activity could be a 

property of the LCR region which is the prime determinant of epithelial cell 

specificity (as discusssed in chapter 1). Studies by Romanczuk et al. (1991) and 

Rosen and Auborn (1991) for primary human and rodent epithelial cells also support 

this suggestion. 

2.2.4 Transformation of primary human epidermal and cervical keratinocytes by 

HPVs. 

Since HPV is an epitheliotropic human virus, it became essential to demonstrate the 

properties of the transforming genes in human keratinocytes. It was possible to 

obtain stable cell lines by transfecting HPV 16 and 18 DNA into primary foreskin 

keratinocytes. These cells were immortalised, contained HPV DNA and expressed 
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HPV-specific RNA, but were not tumorigenic in nude mice (Durst et al., 1987a; Pirisi 

et al., 1987 and 1988; Kaur and McDougall 1988, 1989). The E6 and E7 regions 

were found to be responsible and sufficient for this immortalization (Kaur et al., 

1989; Hawley-Nelson, 1989; Munger et al., 1989a; Halbert et al., 1991) and altered 

differentiation (Barbosa and Schlegel, 1989; Hudson et al., 1990). Subsequently, 

much effort was put into characterising these cell lines, including their patterns of 

keratin gene expression and differentiation capability (Durst et al., 1987a, 1991; Pirisi 

et al., 1988; Kaur and McDougall, 1988, 1989; Tsutsumi et al., 1992). It was also 

observed that late passages of some of these lines became tumorigenic in nude mice 

(Kaur and McDougall, 1989; Hurlin et al., 1991), indicating that additional genetic 

events had happened. A similar observation was made for HPV-immortalised rat 

embryo fibroblasts (Inoue et al., 1991). The immortalizing efficiency of various HPV 

types were also correlated with the in vivo oncogenic potential. Thus, HPV types 16, 

18, 31, and 33 were able to readily immortalize human epidermal cells, whereas, HPV 

types 1a, 5, 6b and 11 were inactive (Woodworth et al., 1988, 1989). However, some 

recent studies have provided evidence for a weak immortalizing /transforming activity 

for the low risk HPV types in human and rodent cells (Storey et al., 1990a; Rosen 

and Auborn, 1991; Halbert et al., 1992). In addition, E6 genes from the low risk 

viruses were able to complement the E7 of high risk viruses in immortalization of 

primary cells (Halbert et al., 1992). The two-step model of oncogenesis was also 

investigated and it was shown that subsequent transfection of activated ras oncogene 

rendered the cells transformed and tumorigenic (Rhim et al., 1989; DiPaolo et al., 
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1989; Matlasheswski et al., 1988; Cerni et al., 1990). 

In parallel experiments, HPV types 16, 18 and 33 DNA was able to 

immortalize human ectocervical and endocervical epithelial cells, the presumed 

progenitor cells of cervical carcinomas and targets for HPV infection (Pecoraro et al., 

1989; Woodworth et al., 1990a; Tsutsumi et al., 1992; Gilles et al., 1993). HPV 6b 

DNA however did not display immortalizing activity. In another very interesting 

study it was observed that HPV 16-immortalized endocervical cells displayed a 

carcinoma in situ-like pathology after transplantation into nude mice, whereas, the 

immortalized ectocervical and foreskin keratinocytes displayed mild dysplasia (Sun 

et al., 1992). This study addressed the interesting question about the origins of 

squamous cervical carcinomas. 

2.3 Mechanisms of transformation by HPV s. 

In the analysis of many tumor viruses, two consistent features emerge for the 

mechanism of tumor induction by these viruses (reviewed in Green, 1970): 

1. Viruses introduce at least one functioning gene into their respective host cells. 

This gene( s) may or may not become covalently linked to the host cell DNA. 

2. Expression of this persisting gene is required to maintain the transformed state 

of this cell. 

The genetic studies described in previous sections provided ample evidence 

that the E6 and E7 genes are the primary HPV genes involved in transformation of 

cultured cells. These genes are consistently retained and expressed in cervical 
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carcinomas (Lehn et al., 1985; Pater et al., 1986), cell lines derived from them (Yee 

et al., 1985; Pater and Pater, 1985) and in vitro HPV-immortalized and/or 

transformed cells. Much work has gone into understanding the mechanisms of 

transformation by HPVs and it would be far from true to say that we have been 

completely successful in arriving at a single mechanism. However, over the years 

several theories and speculations have been considered, some of which I have tried 

to recapitulate below. 

2.3.1 zur Hausen's "CIF" theory. 

As is currently understood, DNA tumor viruses behave as effectors of cellular 

transformation by stimulating host cell DNA synthesis. Such viruses would require 

host cell DNA replication for their DNA synthesis and seem to depend on a 

replicating cell for their propagation (Green, 1970). Induction of cellular DNA 

synthesis appears to depict an adaptive mechanism acquired to overcome this 

restriction, thus permitting viral gene expression and productive infection. Viruses 

defective in late functions would continue to initiate cellular DNA synthesis without 

viral replication, leading to unrestricted cell growth. According to the HPV-cancer 

hypothesis of zur Hausen, it is proposed that HPV encodes a transforming factor 

(E6/E7 genes), that is normally suppressed in cells by a cellular interfering factor 

referred to as "CIF" (zur Hausen, 1977b, 1989a). This theory assumes a balanced 

control of viral transforming factors. According to this model, CIF counteracts the 

transforming "effector" genes to suppress or disrupt the function of their gene 



57 

products. Mutational events affecting one CIF gene, mediated by initiators, such as 

mutagenic co-factors or arising spontaneously, could disturb the effector gene 

balance, leading to increased cellular DNA synthesis and cell growth. Inactivation of 

both alleles would then result in viral carcinogenesis (zur Hausen, 1986). The "CIF" 

theory would predict the following: tumor progression in a stepwise manner, long 

latency periods between infection and cancer, monoclonal origin of tumors, 

chromosomal abnormalities and aneuploidy of tumor cells, recessive nature of 

malignancy after fusion with normal cells, synergism between viral effectors and 

mutagenic co-factors and/or initiators and tumor promotion by growth stimulating 

events. Many of these predictions have been verified and several lines of evidence 

support the "CIF" theory. 

Indeed, like the SV 40 and adenovirus counterparts, HPV E7 gene has been 

shown to induce cellular proliferation, DNA synthesis and progression of the cell 

cycle (Sato et al., 1989b; Banks et al., 1990a, 1990b; Rawls et al., 1990). Fusion 

studies of an HPV-positive cervical cancer cell line and normal cells resulted in non 

tumorigenic hybrids despite normal levels of HPV E6/E7 gene expression (Bosch et 

al., 1990). Innoculation of these non tumorigenic hybrids or HPV immortalized cells 

into nude mice resulted in a remarkable decrease of HPV gene expression (Bosch 

et al., 1990, Durst et al., 1991). However malignant cells continued to transcribe their 

E6/E7 genes at higher levels. These results indicated that under in vivo situations the 

putative CIF gene was activated in non malignant cells, by unknown humoral 

mechanisms, resulting in supression of HPV expression. It is postulated that 
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inactivation of the CIF gene in malignant cells allows continous expression of HPV 

genes. In vitro 5-azacytidine treatment suppressed HPV expression only in the non

tumorigenic hybrids or immortalized cells and not in the malignant cells (Rosl and 

zur Hausen, 1988). This effect was interpreted as activation of CIF genes in the 

former by demethylation. In another study, the bacterial CAT gene driven by the 

HPV 18 regulatory region was stably transfected into cervical carcinoma cells and 

then fused with normal cells (Rosl et al., 1991). In the non malignant hybrids, CAT 

gene expression was again suppressed at the level of transcriptional initiation. 

Cycloheximide treatment abrogated this response, pointing out the existence of a 

suppressor protein molecule. Finally, it has been speculated that this putative CIF 

gene might be located on chromosome 11 (Rosl and zur Hausen, 1988). Evidence 

is available from somatic cell fusion and microinjection studies that chromosome 11 

contains a tumor supressor activity (Stanbridge 1976, Saxon et al., 1986, Koi et al., 

1989). Interestingly, human embryo fibroblasts with deletions in chromosome 11 are 

more susceptible to transformation by HPV 16 DNA (Smits et al., 1988). The role 

of genes located on chromosome 11 in transcriptional regulation of HPV has been 

discussed earlier in section 1.5.3. 

2.3.2 HPV and the oncogene activation theory. 

Amplification and increased expression of cellular oncogenes have frequently been 

observed in cervical carcinomas. In a majority of tumors c-myc amplifications and 

gene rearrangements have been described (Riou et al., 1985, 1987, 1990a, 1990b, 
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Ocadiz et al., 1987; lwasaka et al., 1992). However, contraditory results are also 

available (Ikenberg et al., 1987). Increased levels of the c-myc oncogene have also 

been observed in cell lines derived from cervical carcinomas (Durst et al., 1987b; 

Couturier et al., 1991) and cells immortalized by the high risk HPVs (Crook et al., 

1990; Sun et al., 1992). The potential role of ras has been recognized in experimental 

studies (discussed in section 2.2.2), but conflicting results have been obtained about 

the frequency of ras activation in cervical tumors and HPV-related cancers (Riou et 

al., 1988; Sagae et al., 1990; Anwar et al., 1992 and 1993; Pelisson et al., 1992). The 

early advocates of the oncogene hypothesis postulated that latent viruses and covert 

cancer genes pre-exist in normal cells and are "activated" to tumor viruses and cancer 

genes by mutations (Huebner and Todaro, 1969). Although the oncogene hypothesis 

gained momentum for cancer-causing retroviruses, it did not correlate well with the 

picture for DNA tumor viruses. In conclusion, oncogene activation as a sole 

mechanism for HPV transformation is conflicting and disputable. 

2.3.3 Inactivation of tumor supressor genes. The "Howley" hypothesis. 

Recent biochemical studies have suggested another mechanism by which the 

transforming proteins of HPVs might exert their effect on cellular proliferation. A 

class of cellular genes, variously named anti-oncogenes, tumor supressor genes or 

recessive oncogenes have been described (reviewed in Weinberg, 1991; Marshall, 

1991 ). Inactivation of such genes, by deletions or mutations, has shown to be 

associated with a number of different human tumors (Lee et al., 1988). Two such 
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genes of interest are the retinoblastoma pRB and the p53 gene. 

Substantial interest in the RB gene was generated when it was discovered that 

its protein exists within DNA tumor virus transformed cells in the form of complexes 

with various viral encoded oncoproteins. The SV 40, human BK and human JC large 

T antigens (DeCaprio et al., 1988, Dyson et al., 1990), adenovirus E1A (Whyte et al., 

1988) and HPV E7 oncoproteins (Munger et al., 1989b ), have been shown to interact 

with the pRB protein. Regions mapped for pRB binding on E7 and other viral 

proteins were also essential for their transforming activity (Barbosa et al., 1990). In 

addition, in vivo or in vitro oncogenicity of various HPV types was clearly correlated 

with the efficiency with which E7 binds to pRB (Munger et al., 1989b, 1992; Gage et 

al., 1990, Heck et al., 1992; Sang and Barbosa, 1992b). What is the fuctional 

consequence of this interaction ? pRB has been shown to be a cell cycle regulator, 

switching betwen hyperphosphorylated and relatively hypophosphorylated forms 

during the cell cycle (Buchkovich et al., 1989). It is a negative regulator of growth 

(DeCaprio et al., 1989) and inhibits progression of the cell cycle into the S phase 

(Goodrich et al., 1991). HPV E7 gene product binds to the underphosphorylated 

form of pRB (Munger et al., 1992), thereby removing the constraints imposed on 

progression to the S-phase. 

Another line of evidence has indicated that the cellular transcription factor, 

E2F, is the candidate target for viral oncoprotein action (Huang et al., 1993). It has 

been shown that the hypophosphorylated form of pRB binds to E2F (Chellappan et 

al., 1991, 1992). Thus, it is postulated that, following an HPV infection the E7 
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protein binds to pRB and releases E2F, which then activates the genes involved in 

cell proliferation and DNA replication (Morris et al., 1993b ). Release of E2F from 

pRB complexes was also correlated with the differential pRB binding efficiencies of 

the high and low risk HPV E7 oncoprotiens (Wu et al., 1993). E2F binding sites 

have been found in a group of cell proliferating genes, such as c-myc and c-myb 

(Mudrij et al., 1990) and also in genes involved in DNA replication, such as DNA 

polymerase alpha (Pearson et al., 1991) and dihydrofolate reductase (Blake and 

Azizkhan, 1989). The hypothesis proposed is that viral oncoproteins release growth

promoting transcription factors from pRB complexes. Other mechanisms, involving 

cyclin-dependent kinases, cyclin A and p107 (a pRB related product) have also been 

suggested (reviewed in Nevins, 1992). All these studies supports a model in which 

the proliferating status of a given cell is controlled by cellular regulatory proteins. 

These proteins in turn modulate the activity of E2F and perhaps other transcription 

factors. Viral proteins would function by driving E2F into different multiprotein 

complexes, each activating and/or repressing a given set of growth promoting and/or 

inhibiting genes. 

Another tumor suppressor gene of interest is the p53 gene product, a nuclear 

phosphoprotein and a negative regulator of cell proliferation. This protein interacts 

with a number of different DNA tumor virus-encoded proteins (reviewed in Levine, 

1990). It has been shown that, like the SV40 LT Ag and adenovirus E1B, HPV 16 

E6 protein interacts with the p53 gene product (Werness et al., 1990). The biological 

properties of HPVs were correlated with their abilities to associate with p53. Thus, 
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E6 of the high risk (16 and 18) but not the low risk HPV types (6 and 11) were 

capable to interact with p53 (Wemess et al., 1990). However, unlike the SV40 and 

adenovirus counterparts, HPV E6 binds to p53 and targets its degradation via the 

ubiquitin-dependent pathway (Scheffner et al., 1990). In contrast, another study has 

shown that E6 proteins of both the high risk and low risk categories are capable to 

interact with p53, but degradation occurs only by the high risk HPV E6 protein 

(Crook et al., 1991c). Also, HPV transformed cells did not contain detectable levels 

of p53 protein despite the presence of p53 mRNA (Matlashewski et al., 1986). Like 

pRB, p53 is a negative regulator of cell growth (reviewed in Marshall, 1991) and is 

found to be mutated in many tumors (Levine et al., 1991, Nigro et al., 1989). p53 is 

probably involved in regulation of DNA replication (Gannon and Lane 1987) and acts 

as a transcriptional activator (Weintraub et al., 1991). In support of the suggestion 

for the role of pRB and p53 in the etiology of cervical cancer, it has been shown that 

all HPV positive cell lines had the wild type pRB and p53 gene, whereas the HPV 

negative lines contained mutated forms (Scbeffner et al., 1991, Wrede et al., 1991, 

Srivastava et al., 1992, Crook et al., 1991a). A similar inverse correlation was 

observed between HPV positivity and somatic mutations in the p53 gene in naturally 

occuring primary anogenital tumors (Crook et al., 1991d, Crook et al., 1992). 

Inactivation of p53 gene as an essential step in HPV -mediated oncogenesis was 

further substantiated by the demonstration that only the mutant form of p53 could 

potentiate the transforming function of E7 (Crook et al., 1991b) and specific loss of 

p53 expression in HPV E6 immortalized cells (Band et al., 1991). From these 
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biochemical studies, Howley has postulated that inactivation or loss of these negative 

growth regulators would constitute a prime mode of HPV -mediated or non HPV

mediated oncogenesis (Howley et al, 1991 ). However, recent studies have also 

indicated that in primary cervical cancers, inactivation of p53 gene by mutations is a 

rare event which does not correlated with HPV status in these cancers (Crook and 

Vousden, 1992; Fujita et al., 1992; Chao and Chong, 1993). In addition, these studies 

did not address the expression levels of p53 protein, independent of the HPV status 

in primary tumors. Hence, further studies will be required to establish this 

correlation and disparity. 

2.3.4 Viral induced chromosomal instability and abnormalities as cause of cervical 

cancer. 

Chromosomal abnormalities are the oldest, and as yet, the only consistent observation 

made of cancer cells. It was rightly postulated by Boveri in 1914, even before the 

discovery of DNA and point mutations, that cancer would be caused by abnormal 

chromosomes (reviewed in Sandberg, 1990). It is very interesting to note that most 

benign and low grade cervical lesions contain viral DNA in the extrachromosomal 

form, whereas in most cervical carcinomas the viral DNA is found integrated and 

covalently linked to the host cell genome (Durst et al., 1985; Pater et al., 1986; Lehn 

et al., 1988; Cullen et al., 1991 ). The random integration events, can lead to 

activation of cellular oncogenes (Riou et al., 1988, 1990a, 1990b; Ocadiz et al., 1987; 

Couturier et al., 1991; lwasaka et al., 1992), loss of chromosomal regions carrying 
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putative tumor suppressor genes (Rosl et al., 1988; Atkin and Baker, 1988) or 

chromosomal abberations causing illegitimate rearrangements or recombinations 

creating new cellular genes with novel functions (Duesberg, 1987). Chromosomal 

regions 8q24 and 12q 13 are frequent integration targets for HPV 16 and 18 

transformed cells (reviewed in Lazo et al., 1992). A few reports have also stressed 

some preferential integration sites for HPV 16 and 18 transformed cells at fragile 

sites (Cannizzaro et al., 1988; Popescu and Dipaolo, 1989, 1990). In addition, viral 

DNA integration in most cases disrupts the E1-E2 region (Schwarz et al., 1985, Baker 

et al., 1987) which is believed to lead to deregulation of viral gene expression from 

the inhibitory influences of the E2 ORF (Schneider-Maunoury et al., 1987; Chao et 

al., 1987). 

Chromosomal instability in HPV -immortalized cells have been observed and 

this lack of genomic stability most likely plays an important role in the progression 

of lesions (Durst et al., 1987b, Kaur and McDougall1988, Woodworth et al., 1990a). 

Interestingly, aneuploidy has been described for HPV 16 or 18 positive lesions (Crum 

et al., 1985) but not for the those of low risk HPV types (Fu et al., 1981). More 

recently, it has been shown that HPV 16 E7, but not E6, is capable of inducing 

chromosomal abnormalities in mouse and human keratinocytes (Hashida and 

Yasumoto, 1991). It is postulated that virus-induced genetic instability could be an 

important determinant of progression of HPV related lesions ( zur Hausen, 1991) and 

may be dependent on viral oncoprotein expression at an early stage of HPV infection 

(Lorincz et al., 1990). 
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2.3.5 Role of HPV ES ORF in transformation. 

HPV research has to date concentrated largely upon the two major transforming 

genes, E6 and E7, for obvious reasons: first, integration events of the viral genome, 

often seen in cervical carcinomas, results in the deletion and disruption of the E5 

region (Schwarz et al., 1985; Baker et al., 1987). Secondly, it was only recently 

discovered, due to previous sequencing errors, that HPV is capable to encode an E5 

protein (Halbert and Galloway, 1988). However, the first observation can still be 

questioned since some in vivo studies have suggested that HPV DNA can remain 

episomal and intact until very late stages of malignancy (Matsukura et al., 1989; Durst 

et al., 1992). Furthermore, there is no evidence to exclude a role of HPV E5 in the 

early stages of cervical cancer. Some recent studies have addressed the role of ES 

gene in transformation. However, I will first briefly discuss BPV E5 which, unlike 

HPV, is the major transforming protein for this virus. BPV E5 is a small 

hydrophobic protein localized in the membrane within the golgi apparatus (Schiller 

te al., 1986; Schlegel et al., 1986; Burkhardt et al., 1989). It is thought to act through 

the EGF receptor by extending the half life of the receptor (Martinet al., 1989) and 

also possibly by activation of the PDGF receptors (Petti et al., 1991). Recently it was 

shown that BPV E5 complexes with a protein component of the vacuolar ATPases 

which are present in cellular compartments involved in the internalization and 

processing of growth factor receptors (Goldstein et al., 1990, 1991). Thus BPV ES 

appears to modulate signal transduction from at least two growth factor receptors. 

HPV ES also encodes a very hydrophobic protein of about 10 kDa (Halbert 
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and Galloway, 1988). Initial studies had indicated that HPV E5 may also contain a 

weak transforming activity (Bedell et al., 1989). In addition, HPV type 6 E5 gene was 

capable to transform NIH3T3 cells and murine epidermal keratinocytes which formed 

tumors in nude mice (Chen and Mounts., 1990; Leptak et al., 1991). To examine the 

role of E5 and EGF receptors, two seperate studies have demonstrated that HPV 16 

E5 gene cooperates with the EGF receptor to promote anchorage-independent 

growth of NIH3T3 cells (Pim et al., 1992; Leechnachai et al., 1992) and it appears 

to act by induction of the c-fos gene. No role has yet been assigned to E5 in the 

immortalization of primary cells, except that it induces proliferation of primary 

keratinocytes (Storey et al., 1992). Since E5 may act by inducing c-fos, it is possible 

that c-fos upregulates the expression of viral genes through AP-1 binding elements 

present in the regulatory regions of several HPV types (Chan et al., 1990). Another 

interesting finding was the existence of a cellular homologue to E5. This protein was 

found to have homology with conserved regions of several viral and cellular growth 

factors (Kahn et al., 1992). In light of these findings it remains a possibility that the 

HPV E5 gene could play an important role in the early stages of oncogenesis by 

modulating signal transduction and HPV gene expression. 

2.4 Role of co-factors in HPV-mediated transformation. 

Role of co-factors have been increasingly emphasized in the multi-factorial etiology 

of papillomavirus related tumors. For example, CRPV require additional stimuli, 

such as exposure to chemical carcinogens, before tumors occur in animal models 
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(Rous and Friedewald, 1944 ). Ultraviolet radiation was considered to be a co-factor 

in the malignant progression of HPV 5 and 8 containing cutaneous carcinomas in 

patients with Epidermodysplasia Verrucciformis (Jablonska et al., 1972). 

Similarly, in the development of cervical carcinomas, the long delay between 

onset of infection and development through the successive stages of increasing 

dysplasia, points to the involvement of additional factors in this multistep process. 

It was postulated that papillomaviruses may act as promoter-like agents acting in 

synergy with carcinogenic initiators, such as cigarette smoking or Herpes Simplex 

Virus infection (zur Hausen, 1982). Indeed epidemiological data has supported the 

involvement of co-factors in the developement or progression of cervical cancers 

(reviewed in Brinton, 1992). Smoking has been identified as an important risk factor 

(Vessey 1986, Trevathan et al., 1983; Winkelstein, 1990) and tobacco metabolites 

have been demonstrated to be selectively increased in cervical secretions (Sasson et 

al., 1985; Holly et al., 1985). Chemical carcinogens can synergise with HPV 16 and 

18 to fully transform human keratinocytes (Li et al., 1992; Garrett et al., 1993). 

Similarly, in the presence of a chemical carcinogen, NIH3T3 cells could be fully 

transformed by HPV 16 but not by the low risk HPV type 6 DNA, indicating a 

differential cooperation between HPV and carcinogens (Mitrani-Rosenbaum and 

Tsvieli, 1990 and 1992). In vivo evidence of the requirement of additional mutagenic 

stimulation was provided by the report of Sasagawa et al. (1992) in which 

recombinant HPV 16 E6/E7 in a retroviral vector was injected into the vagina or 

cervix of mice. Invasive squamous cell carcinomas were only induced in the presence 
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of either a tumor promoter (TP A) or a mutagen (MNNG ). Herpes Simplex Virus 

infection has long been proposed to be a co-factor in HPV-mediated oncogenesis 

(reviewed in Rapp and Reed, 1976). It was also considered as the cause of cervical 

cancers until HPV was discovered. Recently, it was shown that HSV 2-induced 

tumorigenicity in HPV -immortalized human keratinocytes (DiPaolo et al., 1990). The 

role of mutagenic co-factors also fits very well with the "CIF" theory of zur Hausen 

(zur Hausen, 1989a), in which it is assumed that such factors may be involved directly 

or indirectly in inactivating the putative CIF gene/s. 

One of the more important co-factors involved in the progression of cervical 

cancer is steroid hormones (Stem et al, 1977). The role of hormones has recently 

been emphasized in several studies (Pater et al., 1988, 1990; Durst et al., 1989; Mittal 

et al., 1993a ). Epidemiologically, oral contraceptive pills have been shown to be an 

important risk factor for the developement of invasive cervical neoplasia (reviewed 

in Brinton, 1992). In addition, duration of oral contraceptive used was associated 

with this increased risk (Peritz et al., 1977; Brinton et al., 1990; Negrini et al., 1990). 

In addition, pregnancy, a condition associted wih elevated levels of progesterone, is 

also shown to be a risk factor for the development of cevical cancer (Raker et al., 

1982; Ferenczy, 1989; Bokhman and Urmancheyeva, 1989). As discussed earlier, 

steriod hormones could increase the transforming potential of HPV type 16 DNA in 

rodent epithelial cells (Pater et al., 1988, 1989; Crook et al., 1988) and also in human 

cells (Schlegal et al., 1988; Durst et al., 1989; Sexton et al., 1993). Steriod hormones, 

dexamethasone and progesterone have also been shown to be essential for the 
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expression of HPV 16 RNA in primary human cervical cells (Mittal et al., 1993a). 

The role of steroid hormones gained a lot of attention, both epidemiologically and 

experimentally, when it was found that the regulatory region of several oncogenic 

HPV types contained hormone response elements in their regulatory regions (Chan 

et al., 1989). 

2.5 Objective of this study. 

Our laboratory had previously reported that steroid hormones, glucocorticoid and 

progesterone, markedly enhances transformation of primary baby rat kidney (BRK) 

epithelial cells by HPV type 16 DNA in cooperation with activated ras oncogene 

(Pater et al., 1988, 1989). Since BRK cells are epithelial in origin and do not require 

hormones for growth, it is a good system to critically assess and examine the role of 

hormones in HPV -mediated transformation. Moreover, HPVs are strictly 

epitheliotropic viruses and therefore BRK cells are suitable to study transformation 

by HPVs. It was hypothesized that this hormone-dependent transformation could 

occur due to increased expression of viral oncoproteins by hormones, which was 

thought to act through the hormone response element (GRE/PRE) located in the 

HPV 16 regulatory region (Pater et al., 1988; Gloss et al., 1987). Alternatively, the 

effect of hormones could have been indirect by modulating other cellular 

transcription factors. 

The objective of my study was to address the molecular mechanisms of 

hormone-dependent transformation of BRK cells by HPV 16 DNA To achieve this 
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goal I pursued the initial hypothesis of a direct role of hormones and examined the 

involvement of a known GREat nt position 7640 of the HPV 16 genome (Gloss et 

al., 1987) by using site-directed mutatgenesis. In the search for a possible direct 

mechanism, I found two other putative GRE-like sequences, upstream to the one that 

had previously been characterised. These two other novel GREs were also 

experimentally mutated and their role in hormone-induced transformation was 

investigated (chapter 3). 

Steroid hormones, glucocorticoids and progesterone, have been shown to be 

involved in the regulation of HPV 16 gene expression (Chan et al., 1989). Therefore, 

it was essential to demonstrate the role of these GREs in the transcriptional 

regulation of HPV 16 (chapter 4) and the levels at which this regulation occurs 

(chapter 6). For this purpose, different combinations of GRE mutations were used 

in the context of the HPV 16 enhancer, cloned upstream to a bacterial 

chloramphenicol acetlytransferase (CAT) reporter gene, and tested for the role of 

GREs in glucocorticoid induction. Transient CAT assays are very suitable for this 

purpose. This assay directly assays the in vivo effects of hormones and the cloned 

enhancer on the expression of the CAT gene. Since HPV is a strictly epitheliotropic 

virus, it was suitable to use HeLa cells, a human cervical carcinoma keratinocyte cell 

line, for transfections and transient expression assays. In addition, I wished to 

characterise the newly identified GREs for their ability to respond to glucocorticoids 

and to examine if they are competent for in vitro DNA-protein interactions. Since 

the GRE at nt position 7640 is a composite GRE with an overlapping AP-1 binding 
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site, a P19 embryonal carcinoma cell line was used to study the role of cellular 

oncogenes c-jun and c-fos in hormonal regulation at this element (chapter 5). In 

addition, cultured primary human ectocervical cells, the natural host tissue of HPV 

infection, were used to demonstrate the functional involvement of all three GREs in 

glucocorticoid-mediated HPV transcription (chapter 6). 



Chapter 3 

Molecular mechanisms of glucocorticoid-dependent transformation of primary 

rodent cells by HPV type 16 DNA 

3.1 Introduction 

To date, the following experimental studies have indicated an important role and 

involvement of hormones in HPV-mediated oncogenesis: a). HPV oncoproteins 

expressed from strong heterologous promoters do not require hormones for 

transformation of rodent cells (discussed earlier in chapter 2). b). RU486, a 

competitive inhibitor of the glucocorticoid receptor mediated trans-activation, results 

in a dose-dependent inhibition of glucocorticoid induced transformation of BRK cells 

(Pater et al., 1991). c). HPV 11 DNA is inactive in transforming BRK cells (Pater 

et al., 1988). However, duplication of its LCR which contains a hormone responsive 

GRE (Chan et al., 1989), confers dexamethasone-dependent transformation of these 

cells by HPV 11 (Rosen and Aubom, 1991). This activity could have been due to 

increased expression of the E6 and E7 viral oncoproteins. d). Immortalization of 

primary epithelial keratinocytes by HPV 16 is markedly increased in the presence of 

glucocorticoids (Schlegel et al., 1988; Sexton et al., 1993). 

In the present study, I have examined the molecular mechanism of steroid 

hormone-induced transformtion of rodent epithelial cells by HPV 16 and EJ-ras. It 

is very clear from experimental data that other co-factors are required for HPV-
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mediated oncogenesis. Understanding the mechanisms of these effects in a rodent 

cell transformation system would not only provide insights into but also strategies to 

prevent or to inhibit progression of the disease. For this purpose, mutations in the 

hormone response element located at nt position 7640 of the HPV 16 genome were 

undertaken by using site-directed mutagenesis. Mutations were created that would 

destroy the hormone receptor binding site or convert it into a consensus sequence. 

In vitro co-transformation assays were done in primary rodent cells using these 

mutants in the context of the full length HPV genome. 

3.2 Materials 

Restriction endonucleases were obtained from New England Biolabs, Bethesda 

Research Laboratories (BRL) or Boehringer Mannheim. T4 DNA polymerase and 

ligase, calf intestinal phosphatase (CIP) and reverse transcriptase were purchased 

from BRL, Boehringer Mannheim, and Life Sciences, respectively. Radioactive [35S]

dATP for dideoxy-sequencing was purchased from Amersham. The dideoxy

sequencing kit was obtained from United States Biochemical Coorporation 

(Sequenase version 2.1 ). Flow Laboratories supplied the tissue culture medium, 

Dulbecco's modified media (DME), penicillin-streptomycin, phosphate buffered saline 

(PBS) and the trypsin-EDT A. Bockneck Laboratories supplied the bovine fetal calf 

serum. Synthetic oligonucleotides were purchased from the Regional DNA Synthesis 

Lab, University of Calgary and mutagenesis was performed using the mutagene kit 
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from Biorad. BRK cells were prepared from inbred fischer rats in our laboratory. 

HPV 16 DNA was a kind gift from Dr. Herald zur Hausen. 

3.3 Methods 

3.3.1 Plasmids and site-directed mutagenesis. 

Table 3.1 illustrates the positions of all the three GREs, the wild type and mutated 

sequences and their percentage homology with the consensus GRE. Site-directed 

mutagenesis was performed using appropriate oligonucleotides, the Biorad 

mutagenesis kit and the uracil incorporation method of Kunkel (Kunkel, 1985). 

Briefly, mutagenesis was performed on a 2554 bp BamHI-Kpnl fragment (nt 6150-

880) subcloned into the pTZ19 vector (termed pTHBK) provided in the kit and 

following the manufacturer's instruction. All mutations were screened and confirmed 

by dideoxy sequencing (Sanger et al., 1977). To avoid any fortuitous mutations in the 

HPV coding region, a Sphl-PpuMI (nt 7467-112) fragment containing mutations of 

the GREat position 7640 was subcloned into a similarly digested wild type pTHBK 

construct. To insert the mutagenised fragment into the context of the whole HPV 

genome, a BamHI-Ncol fragment (nt 6150-863) from the mutants were ligated into 

a partial BamHI-Ncol digested wild type HPV genome. Mutants HPV 5 and HPV 

6 created a BamHI and Nsil restriction site and mutations were pre-screened by 

restriction analysis and confirmed by sequencing, and were similarly ligated into the 

whole HPV genome. Double and triple GRE mutants were constructed by using 



Table 3.1. Wild type (WI') and mutated glucocorticoid response elements present in 

the regulatory region of human papillomavirus 16 plasmids. Nucleotide sequences 

and their positions in the HPV 16 genome for the first nucleotide of each WT 

glucocorticoid response element are indicated. Mutations introduced by site-directed 

mutagenesis are indicated by lower case letters and the WT nucleotides of these 

mutants are indicated by dashes. 



Plasmids 

pHPV (WT) 

pmHPV2 

pmHPV4 

pmHPV5 

pmHPV6 

Homology to consensus glucocorticoid response elements 

83% 
7389 
GCTACATCCTGTTTT 

---------------
---------------
---gg------a---

---------------

75% 
7474 
GGCACAAAATGTGTT 

---------------
---------------
---------------
-----------ca--

75% 
7640 
TGTACATTGTGTCAT 

--gt-------a---

g-----------tc-

* Consensus glucocorticoid response element. 

* 
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the appropriate single stranded substrate for site-directed mutagenesis and one or 

two rounds of hybridization with appropriate oligonucleotides. 

3.3.2 Preparation of primary baby rat kidney cells. 

Five day old inbred Fischer rats were used to prepare primary kidney epithelial cells. 

Briefly, rats were decapitated and their kidneys removed through incisions made in 

the posterior sub-costal (kidney area) region. The kidneys were then cleaned free of 

connective tissue and washed five times in sterile PBS. Kidneys were then minced 

using a scalpel and trypsinized for about 1 hour using trypsin-EDT A at a volume of 

1 ml/ pair of kidneys. The trypsinized cells were then suspended in DME containing 

10% FCS, passed through a piece of sterile guaze and then plated at a concentration 

of 105 cells/60 mm tissue culture dish. 

3.3.3 In vitro Transformation Assays. 

For in vitro transformation assays BRK cells were fed with fresh medium (DME plus 

10% FCS) and an hour later 5 J..Lg each of HPV 16 and activated form of human c

Ha ras oncogene were cotransfected according to a modified calcium phosphate 

precipitation method (Chen and Okayama, 1988). Briefly, 1 ml of a CaC12/DNA mix 

(50 J..£1 of 2.5M CaC12 plus DNA in dH20) was slowly mixed with 1 ml of 2X N,N

bis[2-hydroxyethyl]-2-aminoethanesulfonic acid (BES)-buffered saline (50 mM BES, 

280 mM NaCI and 1.5 mM Na2HP04.2H20) and incubated for 10-20 minutes at 

room temperature. The mixture (500 J..£1/dish) was then slowly added into the dishes 



78 

with gentle swirling and left for 12-16 hours at 37°C in a humified incubator at a C02 

concentration of 5%. The cells were then washed two times in PBS and fed with 

medium containing 10 % FCS in the presence or absence of 100 nM dexamethasone 

as described previously (Pater et al., 1988). Forty eight hours later the media was 

changed to DME with 2 % FCS with 0 or 100 nM dexamethasone. Foci of 

transformed colonies appeared in 3-4 weeks. 

3.4 RESULTS 

3.4.1 Effect of mutations at the previously characterised GRE on dexamethasone 

induced transformation of BRK cells. 

The GRE at nt position 7640 was mutated to generate a loss-of-function mutation, 

or changed into a consensus GRE sequence (Table 3.1). With the wild type HPV 16 

genome an approximately three-fold increase was observed in transformation in the 

presence of dexamethasone (Dex) (table 3.2). The loss-of-function mutation 

(pmHPV2) retained its response to dexamethasone in transformation assays and the 

response did not significantly differ from that of the wild type sequence. The 

consensus GRE mutant (pmHPV4) resulted in an overall increased frequency of 

transformation in the absence and/or presence of dexamethasone. As for the wild 

type construct, a three-fold induction was also observed in the presence of 

dexamethasone for this mutant. However, the number of colonies that appeared 



Table 3.2. Effect of mutations of the known GREat nt position 7640 on steroid 

hormone-mediated transformation of primary BRK cells by HPV 16 and activated 

EJ -ras oncogene. 

Primary BRK cells were transfected with the indicated HPV 16 plasmids and 

activated EJ-ras and were cultured in the absence (-) or presence ( +) of 100 nM 

dexamethasone. Colonies were counted after 4 weeks of selection in DME 

supplemented with 2% FCS. The number for each experiment represents the total 

number of colonies in sixteen 60 mm tissue culture plates. 

3 Wild type non induced (- Dex) transformation levels are normalized to 1.0 + 

Standard deviation and values for mutated plasmids are given relative to wild type, 

to allow comparison of the experiments for the mutant HPV genomes. 

blnduction levels are indicated as the + Dex:-Dex ratio. 

79 



Plasmid Number of 

- DEXAMETHASONE 

Expt.No: 1 2 3 4 5 6 

pHPV16(WT) 12, 15, 10, 16, 18, 16 

pmHPV2 10, 10, 12, 10, 14, 12 

pmHPV4 18, 25, 14, 28, 35, 30 

colonies 

+ DEXAMETHASONE 

1 2 3 4 5 6 

42, 48, 34, 39, 52, 50 

38, 42, 38, 32, 40, 46 

68, 70, 50, 78,114,110 

Transformation8 

- Dex. + Dex. 

1.00±0.20 3.0±0.3 

0.78±0.11 2.7±0.3 

1.70±0.5 5.6±1.7 

Inductionb 

3.0 

3.5 

3.3 

Co 
0 
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was about 2 times more and the colonies appeared about a 7-10 days earlier 

compared to the wild type genome, indicating that this mutant is more effective than 

the wild type HPV in transforming BRK cells.. Retention of a glucocorticoid 

response with mutations of the known GRE lead me to speculate that either 

dexamethasone had an indirect effect in addition to a direct effect on transformation 

or that there were other unidentified GREs present in the regulatory region of the 

HPV 16 genome. An increased frequency of transformation by the consensus GRE 

mutant, confirmed that hormones have a direct effect. Overall, the results from this 

experiment indicated the known GRE at nt position 7640 was not sufficient to 

account for the dexamethasone induced transformation of BRK cells. 

3.4.2 Identification of two novel GREs in the regulatory region of HPV 16 DNA. 

The HPV 16 regulatory region was reexamined with a computer search for the 

existence of other putative GREs. Two more GRE like sequences 5' to the one 

already known were found. These two putative GREs were located from nt positions 

7385-7499 and 7474-7488 and were strikingly similar to the one present at nt position 

7640 (Table 3.1). Importantly, the GRE present at 7640 is not a typical GRE and 

diverges from the consensus GRE by three nucleotides (Pater et al., 1988). The two 

newly identified putative GREs also diverge from the consensus sequence, but at 

different positions. 
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3.4.3 Role of the two newly identified GREs in dexamethasone induced 

transformation of BRK cells. 

To examine the possible involvement of these two putative GREs, site-directed 

mutagenesis was performed as shown in Table 3.1. The mutated GRE constructs at 

nt positions 7385 and 7474 are referred to as mHPV5 and mHPV6, respectively, in 

the context of the intact HPV 16 genome. For in vitro transformation assays only a 

double GRE mutant (pmHPV56) and a triple GRE mutant (pmHPV256) were used 

to examine the direct role of these GREs in glucocorticoid induced transformation. 

As HPV 16 DNA transforms BRK cells at a low frequency (average of 3-4 colonies 

per 60 mm dish), it was difficult to use all the possible combinations of GRE 

mutations in transformation assays and to arrive at a rational conclusion. Instead, a 

double GRE mutation (pmHPV56) was used to address whether the known GRE at 

nt position 7640 is sufficient by itself to respond to dexamethasone for 

transformation. This mutant retained a dexamethasone response and resulted in a 

two-fold increase in transformation (table 3.3) as compared to the three-fold observed 

for the wild type HPV genome. This retention of a dexamethasone response was 

significant, considering the low transforming activity of HPV 16 in BRK cells. It is 

not possible to comment on the relative contribution of the three GREs for 

transformation but it appears that the GREs at nt position 7385 and 7474 are 

functional because plasmid pmHPV2 did not significantly differ from the wild type 

HPV DNA in transformation assays (table 3.2). A triple mutant (pmHPV256) 

containing mutations at all the three GREs was then used. As shown in Table 3.3 



Table 3.3. Effect of mutations of the all three GREs on dexamethasone induced 

transformation of BRK cells. 

Primary BRK cells were transfected with the indicated HPV 16 plasmids as in table 

3.2. Colonies were counted after 4 weeks of selection in DME supplemented with 

2% FCS. The number in each experiment represents the total number of colonies 

in sixteen 60mm tissue culture plates. Colonies with the consensus GRE mutant 

(pmHPV4) gave rise to early appearing colonies compared to the other plasmids. 

a Wild type non-induced (- Dex) transformation levels are normalized to 1.0 and 

values for mutated plasmids are given relative to wild type, to allow comparison of 

the experiments for the mutant HPV genomes. 

blnduction levels are indicated as the + Dex:-Dex ratio. 



Plasmid Number of colonies 

- DEXAMETHASONE + DEXAMETHASONE Transformation8 

Expt.No: 1 2 3 4 1 2 3 4 - Dex. + Dex. Inductionb 

pHPV16(WT)22, 20, 16, 18 50, 55, 48, 45 1.0±0.14 2.6±0.4 2.6 

pmHPV56 10, 10, 8, 10 18, 25, 16, 20 0.5±0.05 1.0±0.2 2.0 

pmHPV256 18, 24, 16, 20 24, 27, 14, 22 1.0±0.18 1.1±0.3 1.1 
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this mutant almost completely abolished the wild type dexamethasone response. 

Results from the triple mutant demonstrated that dexamethasone induced 

transformation might occur through all three GREs and is most likely to be a direct 

effect since there was no significant residual dexamethasone response after destroying 

all three GREs. 

In the following study, I have further confirmed the role of the three GREs 

for gene expression and also characterized the two newly identified GREs for specific 

in vitro DNA-protein interactions. 



Chapter 4 

Regulation of HPV type 16 gene expression in HeLa cells by steroid 

hormones and characterisation of two novel GREs in the HPV 

regulatory region 

4.1 Introduction 

Cervical carcinoma is one of the most common cancers in the world and second only 

to breast cancer as the leading cause of cancer related mortalities in women (Parkin 

et al., 1988). As discussed in previous sections, a large body of evidence suggests a 

causal role of human papillomaviruses in the pathogenesis of various human 

malignancies, especially cervical carcinoma. However, it is also clear that HPV 

infection alone is not sufficient to account for the transforming abilities of these 

viruses and that other cofactors and cellular genetic events are required for a fully 

malignant phenotype. More recently, attention has been focussed to study the 

various cofactors involved in HPV-induced cancers. In my previous study I had 

attempted to address the role of one of the physiologically important cofactor, steroid 

hormones, in HPV-mediated transformation of cultured rodent cells. 

In this chapter, the direct role of steroid hormones in HPV gene expression 

was examined in detail to explain some of the results obtained in the transformation 

assays. In this regard two novel GREs were found, in addition to a previously 

characterised GRE at nt position 7640. Mutations created in the known and the two 
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newly identified GREs were used to ask if they are required for induction of HPV 

16 gene expression by hormones. For this purpose, the full enhancer fragments of 

the HPV 16 DNA, containing all three GREs, were cloned upstream to a reporter 

CAT gene driven by the tk promoter in pBLCAT2 expression vector (Luckow and 

Schutz, 1987). Different combinations of the three GRE mutations were used to 

study their role in hormone induction. In addition the two newly identified GREs 

were further characterised for their ability to respond to glucocorticoids and to 

interact with the steroid hormone receptor. 

4.2 Materials 

Some of the materials used in this study have already been described in previous 

sections. Thin layer chromatography (TLC) plates and X-ray films were purchased 

from Kodak. Acetyl coenzyme A, 0-Nitrophenyl ,8-D-Galactopyranoside (ONPG), 

and protease inhibitors antipain, pepstatin A and phenylmethylsulfonyl fluoride 

(PMSF) were obtained from Sigma. [32P]-dCTP and [35S]-methionine were obtained 

from Amersham. The glucocorticoid receptor-expressing (pHGO) and ,8-

galactosidase-expressing (pCH110) plasmids were a generous gift from Dr. P. 

Chambon, whereas, the plasmid pBLCAT2 was obtained from Dr. B. Luckow. 

4.3 Methods 

4.3.1 Plasmids. 
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Site-directed mutagenesis and construction of the GRE mutations have been 

described earlier in chapter 3. For the pCPH series of constructs, a pSti-HpHI (nt 

7007-7770) fragment of the wild type and mutated HPV genomes was blunt ended 

by T4 DNA polymerase and cloned in the correct orientation into a reverse 

transcribed BamH1 site of the pBLCAT2 vector (Luckow and Shutz, 1987). The 

pCD series of constructs were prepared by cloning a 232 bp blunt-ended Dral-Dral 

(nt 7522-7754) fragment of the wild type and mutated HPV genomes into the 

reverse transcribed BamH1 site of pBLCAT2 vector. 

Double-stranded oligonucleotides with Xbal overhangs and corresponding to 

the GREs at position 7385 (GRE5WT) and 7474 (GRE6WT) were annealed in 

buffer containing 40 mM Tris-HCl pH 7.5, 20 mM MgC12, and 50 mM NaCl, kinased 

with T4 polynucleotide kinase and then ligated into the Xba1 site in pBLCAT2 vector 

as a monomer. The sequence of the double stranded ( ds) oligonucleotides used in 

this study is as follows with the GRE shown in bold and Xbal overhangs in lower case 

letters : 

GRE5WT 5' 

GRE6WT 5' 

ctagATITGCTACATCCTG'I'I"I"I'IGT 3' 
3' TAAACGATGTAGGACAAAAACAgatc 

ctagATITGGCACAAAATGTG'I'I"I"I"I' 3' 
3' TAAACCGTGTI I IACACAAAAAgatc 

5' 

5' 

The HPV 16 sequences for GRE5WT and GRE6WT were from nt 7381-7402 and 

7471-7488, respectively. 
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4.3.2 Cell lines and culture. 

All the cell lines used in this study (He La, CVl) were maintained in Dulbecco's 

modified Eagle's medium (DME) supplemented with 10% fetal calf serum (FCS). 

4.3.3 Transfections and transient CAT assays. 

For transfections HeLa cells were cultured in DME containing 5% dextran-coated 

charcoal treated FCS. Dextran-coated charcoal treatment was done according to 

Horwitz and McGuire (1978). Ten JJ.g of the indicated CAT construct were 

transfected, by the calcium phosphate precipitation method (Sambrook et al., 1989), 

into 70% confluent cells with 2 JJ.g HGO (glucocorticoid receptor expressing plasmid) 

and 5 JJ.g pCHllO (a ,8-galactosidase expressing plasmid as an internal control for 

efficiency of transfection) to a total of 20 JJ.g DNA per 100 mm tissue culture plates. 

Transient assays were performed as previously described (Gorman, 1982) and 

normalized with equal amounts of ,8-galactosidase activity. ,8-galactosidase activity 

was determined according to the protocols by Pharmacia. Briefly, extracts were 

mixed with Z-buffer (60 mM Na2P04, 40 mM NaH2P04, 10 mM KCl, 1 mM 

Mg2S04, 50 mM ,8-mercaptoethanol, pH adjusted to 7.0) in a total of 200 JJ.l reaction 

volume. Reactions were initiated by adding 40 JJ.l of ONPG ( 4 mg/ml in 100 mM 

phosphate buffer, pH 7.0) and incubating at 37°C untill a faint yellow colour appears. 

Reactions were stoped at this time by adding 100 JJ.l of 1M Na2C03. Absorption was 

measured at A 420 and ,a-galactosidase activity/ml extract was measured as per the 

calculations given below: 



8-galactosidase units 
ml extract used 

- A4201'--!/0=.0=0~4=5 ___ _ 
Reaction time (min) X Volume (ml) 

4.3.4 Preparation of whole cell extracts. 
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Preparation of whole cellular extracts were according to Tasset et al. (1990). Briefly, 

cultured cells were scraped and collected in Falcon tubes, washed twice in PBS and 

lysed with equal pellet volumes of high-salt extraction buffer (0.4 M KCl, 20 mM 

Tris-HCl pH 8.0, 2 mM DTT, 20% glycerol and protease inhibitors: 5 mM PMSF and 

1JJ.g/ml each of pepstatin A and antipain) by three cycles of feeze-thaw in liquid 

nitrogen and ice, respectively. The homogenate was microcentrifuged at 4°C for 15 

min and supernatant aliquoted, flash frozen in liquid nitrogen and then stored at -70° 

C. Protein concentration was measured by the method of Bradford (1976). 

4.3.5 Preparation of probes. 

For mobility shift and south-western blotting, GRE5WT and GRE6WT ds 

oligonucleotides were end labelled by filling in the Xba1 overhangs using [32P]-dCTP 

and reverse transcriptase. 

Probes for UV-crosslinking were prepared by nick-translating GRE5WT and 

GRE6WT ds oligonucleotides in the presence of 0.15mM bromodeoxyuridine and 

4.3.6 Mobility Shift Assays and UV-crosslinking. 



91 

Mobility shift assays were done according to the methods of Chadosh et al. (1988) 

with slight modifications. Binding reactions of 10 J.£1 were carried out in buffer 

containing 12 mM Hepes (pH 7.9), 4mM Tris-HCl (pH 7.9), 10% (w/v) glycerol, 0.1 

mM EDTA, 1 mM DTT, 5 JJ.g of poly (di-dC), 60 mM KCl, 1x104 CPM of end

labelled probes and the indicated amounts of cellular extracts for 20 min at room 

temperature. Free and protein bound DNA were seperated on 4% nondenaturing 

polyacrylamide (acrylamide:bisacrylamide, 29:0.5, v/v) gels which were run at 4°C and 

a constant voltage of 100 V in 22 mM Tris-borate, 0.5 mM EDT A Gels were then 

dried and autoradiographed. Where indicated, radioinert specific and non-specific 

competitors were included in binding reactions. 

For UV -crosslinking, binding reactions of 25 J.£1 were done as described for 

mobility shift assays using 15 JJ.g of poly ( di-dC), 5x105 CPM of radiolabelled probes 

and the indicated amounts of cellular extracts for 20 min at room temperature and 

then exposed to UV irradiation under the Fotodyne UV lamp (maximum emmission 

wavelength 310 nm and maximum intensity of 7,000 fw/cm2) for 15 min. The 

reactions were stopped by adding equal volumes of 2X SDS-loading buffer (100mM 

Tris-HCl pH 6.8, 200mM DTT, 4% SDS, 20% glycerol and 0.2% bromophenol blue). 

The reactions were not treated with DNAasei and micrococcal nuclease, since the 

size of the probe used was less than 50 base pairs. To determine the molecular 

weight sizes of the protein/s interacting with the probe, the reaction mixture was 

boiled for 3 min and then subjected to electrophoresis on a 7.5% SDS-polyacrylamide 

gel at a constant voltage of 100 volts. The gel was then dried on a 3mm Whatman 
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paper and exposed for autoradiography. 

4.3.7 South-Western Blot Analysis. 

South western blotting was done according to the methods of Silva et al. (1987) with 

some minor modifications. The indicated amounts of cellular extracts were seperated 

on a 7.5% denaturing SDS-PAGE gel and transferred to a BA85 nitrocellulose 

membrane by wet electro-transfer in Tris-Glycine buffer (25mM Tris-HCI, 190mM 

glycine). The filters were blocked in binding buffer (containing 5% nonfat dry milk 

in 50 mM NaCl/10 mM Tris-HCl,pH 7.4/1 mM EDTA) in a heat sealable plastic bag 

overnight (12-15 hrs) and then probed, in the same buffer (containing 0.25% nonfat 

dry milk), using 106cpm/ml of the indicated end-labelled Oligonucleotides (GRE5WT 

and GRE6WT) for 2-3 hours at room temperature. After binding, the filter was 

washed in four 30 min washes in the binding buffer, air dried and then exposed for 

autoradiography. 

4.4 RESULTS 

4.4.1 Role of the three GREs in dexamethasone induced HPV 16 gene expression 

in cervical keratinocytes. 

To examine the functional role of steroid hormones in inducing HPV 16 gene 

expression in a transient assay system, the full enhancer fragment of HPV 16 DNA 
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were used. These enhancer fragments were cloned in the CAT expression vector, 

pBLCAT2. Single, double and triple GRE mutants were transfected in the cervical 

keratinocyte cell line (He La) and harvested for the expression of CAT gene in the 

absence or presence of 100 nM dexamethasone. The wild type construct (pCPHWT) 

showed an approximately three-fold activity in the presence of dexamethasone (fig. 

4.1), which is in agreement with the results for transformation assays (table 3.2). As 

shown in fig 4.1 single GRE mutant pCPH2, retains a 2.7-fold response to 

dexamethasone, whereas pCPH4, which contains the consensus GRE mutation results 

in a considerably higher induction (more than ten-fold), compared to the wild type 

construct. Mutants pCPH5 and pCPH6 were still responsive to dexamethasone even 

though the level of induction had decreased. Double GRE mutants pCPH26 and 

pCPH56 resulted in a lower level of inducibility but did not completely eliminate 

induction. The triple mutant (pCPH256) completely abolished dexamethasone 

induced HPV gene expression. These transient gene expression studies support the 

conclusion that all three GREs are responsive to dexamethasone and supports the 

suggestion that glucocorticoid induced transformation of BRK cells is due to 

increased HPV 16 gene expression by steroid hormones (Pater et al.,1988, 1990). 

4.4.2 Effect of an "A to C" conversion at the +5 position of the nt 7640 GRE. 

The GRE at nt position 7640 is a composite GRE ( cGRE) which contains an 

overlapping AP-1 binding site (Table 4.1, Chan et al., 1990). In the consensus GRE 

mutant the overlapping AP-1 motif is destroyed and therefore it was possible that the 



Figure 4.1. Glucocorticoid induction of gene expression from HPV enhancer region 

containing different combinations of the three GRE mutations. Ten J..Lg of the 

indicated CAT constructs were transiently transfected in HeLa cells in addition to a 

.a-galactosidase expression vector as described in Methods. pCPHWT refers to the 

wild type Pstl-Hphl fragment of HPV 16 enhancer region. Constructs containing 

mutations at the three GREs have been shown in table 3.1 and are numbered 

accordingly. pCPH2 and 4 are single GRE mutants, pCPH26 and 56 are double 

GRE mutants and pCPH256 is a triple GRE mutant. CAT values are expressed as 

a percentage of acetylated chloramphenicol conversion and has been normalized with 

equivalent amounts of .a-galactosidase activity present in the extracts. Induction (fold 

induction) by dexamethasone for the various plasmids has been corrected for the 

observed downregulation of CAT expression by dexamethasone for the control 

plasmid pBLCAT2. 



Fold Induction 

1.1 pCPH256 • + Dexamethasone 

2.5 pCPH56 
D • Dexamethasone 

2.6 pCPH26 

2.6 pCPH6 

2.4 pCPH5 

11.0 pCPH4 

2.7 pCPH2 

3.5 pCPHWT 

1 pBLCAT2 

0 20 40 60 80 
%CAT conversion 
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observed induction levels with this mutant could be either due to higher binding 

affinity of the glucocorticoid receptor, or as suggested previously, due to release from 

possible steric hinderance or mutual competitive inhibition between the GRand AP-1 

factors (Chong et al., 1990). In search for suitable explanations for the very high 

levels of hormone induction observed with the consensus GRE mutation (pCPH4) 

and to examine the possibility of a competitive inhibition between GR and AP-1, 

several different mutations were created in the overlapping AP-1 motif without 

disrupting the nucleotides important for receptor interaction (shown in table 4.1). A 

Drai-Drai (nt 7522-7754) HPV 16 enhancer fragments containing only the nt 7640 

GRE, and either wild type or the indicated AP-1 mutations, were cloned in the 

pBLCAT2 vector. These plasmids were tested for dexamethasone induction of CAT 

expression in transiently transfected HeLa cells. As shown in fig. 4.2 only those 

plasmids with AP-1 mutations containing the "C" at position +5 of the GRE (pCD7.1 

and pCD7.2) resulted in dexamethasone induction comparable to the consensus GRE 

mutant (pCD4), whereas, constructs (pCD7.3 and pCD7.4) containing an "T" (table 

4.1) did not. In addition, these constructs gave lower levels of induction compared 

to the wild type sequence in pCDWT. Although these four constructs had the 

mutated form of AP-1 motif, only those with a "C" at +5 position gave high induction 

levels by dexamethasone, indicating that this effect could be due to increased affinity 

of the GR to bind to this sequence and not due to loss of AP-1 motif. If a 

competitive inhibition model existed, one would expect to see similar induction levels 

with all four mutants. Supporting this view is the finding that a "C" at position + 5 



Table 4.1. Mutations created in the AP-1 motif overlapping the GREat nt position 

7640. The pCD series of plasrnids represents a Drai-Drai fragment (7522-7754) of 

the HPV 16 enhancer region. Shown are the sequences of the consensus GRE 

muta6on and consensus AP-1 binding site. The GREin the wild type HPV construct 

(pCDWT) and the consensus GRE mutation (pCD4) is shown in bold and the 

nucleotides important for AP-1 binding in the concensus AP-1 sequence is shown 

double-underlined. Mutations created in the overlapping AP-1 motifs in pCD7.1 to 

pCD7.4 are underlined. 



Plasmids 

consensus (pCD4) 

consensus AP-1 motif 

pCDWT (7640) 

pCD7.1 

pCD7.2 

pCD7.3 

pCD7.4 

Sequence 

GGTACATTGTGTTCT 

TGAGTCA 

TGTACATTGTGTCAT 

GCTGTAC 

GATGTAC 

GCTGTAT 

GATGTAT 

98 



Figure 4.2. Glucocorticoid induced CAT gene expression from plasmids containing 

mutations of the AP-1 motif overlaping the composite GRE. CAT assays and 

transfections were done as described in figure 4.1. CAT values were normalized with 

equal amounts of .a-galactosidase activity and dexamethasone fold induction was 

normalized with the control plasmid, pBLCAT2. 



Fold Induction 

1.7 pCD7.4 

2.2 pCD7.3 

7.5 pCD7.2 

10.0 pCD7.1 

8.8 pCD4 

2.0 pCDWT 

1.0 pBLCAT2 

0 

• + Dexamethasone 
D - Dexamethasone 

20 40 60 80 
0/o CAT conversion 

too 
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of a GRE palindrome is important for high affinty receptor binding (Noordeen et al., 

1990). However, the above mentioned experiments do not address the function of 

tbis AP-1 binding motif in glucocorticoid mediated induction of the wild type HPV 

16 cGRE. This question bas been dealt with in greater detail in chapter 5 of this 

thesis and the possible role of jun/fos oncogenes in glucocorticoid induction bas been 

addressed. 

4.4.3 Functional analysis of the newly identified GREs for gene expression and 

specific DNA-Protein interactions. 

(a). Transient assays. 

To ascertain glucocorticoid induction by the two GREs at nt positions 7385 

and 7474, double stranded oligonucleotides corresponding to both elements 

(GRE5WT and GRE6WT) were cloned upstream to the CAT expression vector, 

pBLCAT2. These constructs were then tested for their ability to confer a hormone

induced CAT gene expression in HeLa cells. As shown in fig. 4.3, both sequences 

resulted in more than 2.5-fold induction, indicating that both putative GREs are in 

fact glucocorticoid responsive sequences. 

(b). Mobility shift assays. 

Mobility shift assays were done using GRE5WT and GRE6WT double-stranded 

oligonucleotides as probes and crude cellular extracts from HeLa cells and from a 



Figure 4.3. Glucocorticoid induced gene expression from plasmids containing 

GRE5Wf and GRE6Wf ds oligonucleotides in a cervical carcinoma cell line. Ten 

J.Lg each of pBLGRESWT and pBLGRE6WT were transfected along with {3-

galactosidase internal control plasmid into HeLa cells. CAT values were normalized 

to equal amounts of {3-galactosidase activity and fold induction by dexamethasone 

was normalized to the control plasmid, pBLCAT2. 



Fold Induction 

2.3 pGRE6WT 

2.7 pGRE5WT 

1 pBLCAT2 

0 2.5 

• + Dexamethasone 
D - Dexamethasone 

5 7.5 10 
0/0 CAT conversion 

103 
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monkey kidney cell line CVl. CV1 cells were used as a control as a source of low 

glucocorticoid receptor levels compared to HeLa cells (Pearce and Yamamoto, 1993). 

As shown in fig. 4.4 both GRESWT and GRE6WT bound to a protein present in the 

HeLa cell extracts resulting in a retarded band. Similarly, retarded bands of identical 

mobility were also observed from CV1 extracts, but as is clear from fig. 4.4, the 

intensity of these bands were much lower than that obtained from HeLa cell extracts. 

Specificity of binding was confirmed in both cases using a 1000-fold molar excess of 

the homologous unlabelled oligonucleotide as a specific competitor. A region II NF1 

binding motif of the JC virus was utilized as a non-specific competitor (Kumar et al., 

1993). Gel shift assays demonstrated formation of a specific complex (shown by 

arrows in fig. 4.4 ). A second faster migrating complex was also observed even in the 

presence of specific competitor. Analogous banding patterns have been observed in 

previous studies using enriched partially purified glucocorticoid receptor preparations 

(Nemoto et al., 1990). Although similar banding patterns obtained from two distinct 

probes points out that both might be interacting with a common protein, it cannot 

be ruled out that some other host cellular factor(s) also interacts with an unknown 

overlapping sequence(s). Due to the unavailability of the glucocorticoid receptor 

monoclonal antibody it was not posssible to conclusively say that the protein 

interacting with the two sequences is the glucocorticoid receptor. However, these 

results indicated that host protein(s) in cellular extracts from HeLa cells forms a 

specific complex with the two GREs. 



Figure 4.4. Mobility shift assays with GRESWf and GRE6Wf oligonucleotide 

probes. 10 J.Lg protein of either CV1 or HeLa cellular extracts were incubated with 

1x104 cpm (0.1 ng) of end-labelled GRESWT (a) or GRE6WT (b) and analysed on 

a 4% polyacrylamide gel as described in methods. A 1000-fold molar excess (100 ng) 

of non-radioactive homologous specific (S) or heterologous non-specific competitors 

(NS) containing human JC virus NF1 motif were used in the binding reactions. F = 

Free (no protein); B = Bound (no competitor). Arrows indicate the formation of 

specific complexes. 
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(c). UV-crosslinldng. 

To further continue with the assumption that glucocorticoid receptor is the most 

likely protein interacting with these sequences, a more sensitive method of UV

crosslinking was used. The same cellular extracts were used to examine the 

molecular sizes of the proteins binding to the GREs in the gel shift assays. As shown 

in fig. 4.5, two major bands were detected, one about 96-kDa and the other 45-kDa 

in size (indicated by arrows in fig. 4.5). Both oligonucleotides gave an exactly similar 

pattern from CV1 or HeLa cellular extracts, though in CV1 extracts the bands were 

considerably weaker. Specificity of binding was further confirmed using non

radioactive specific and nonspecific competitors as indicated. Since the 96-kDa band 

corresponds to the native size of the glucocorticoid receptor phosphoprotein 

(Hollenberg et al., 1985), the results strongly indicate that the receptor protein is 

capable to interact with both GREs. The 45-kDa and a few slower migrating bands 

could be degradation products of the receptor molecule. Similar and several other 

proteolytic degradation products have been commonly described in the literature and 

frequently observed in receptor purification studies (Govindan and Sekeris, 1978; 

Singh and Moudgil, 1985; Govindan and Gronemeyer, 1984). The marked similarity 

of banding patterns combined with competition analysis suggest that both GREs are 

competent for receptor interaction. 

(d). South-western blot analysis. 

Selective and specific protein interactions to the GRE oligonucleotides was further 



Figure 4.5. UV-Crosslinking with GRE5Wf and GRE6Wf oligonucleotide probes. 

5x104 cpm of nick translated and 5'-bromodeoxyuridine incorporated GRE5Wf (a) 

and GRE6Wf (b) probes were incubated with 30 J.Lgs of either CVl or HeLa cellular 

extracts, UV irradiated and then subjected to SDS-P AGE. A 1000-fold molar excess 

(800 ng) of non-radioactive homologous oligonucleotide (S) or heterologous DNA 

containing the JC virus NFl motif were used in the binding reactions (NS) as 

competitors. F = Free (no protein); B = Bound (no competitor). Arrows indicate 

the 96-kDa and 45-kDa proteins respectively. High molecular weight standard 

protein markers are indicated. 
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studied using a southwestern blot analysis in which HeLa cellular extracts were 

separated by SDS-PAGE, immobilized on a nitrocellulose membrane and then 

probed with end-labelled oligonucleotides corresponding to the two GREs. As 

expected and shown in fig. 4.6, both oligonucleotides bound to a 96-k:Da protein, the 

glucocorticoid receptor, present in the extracts (Hollenberg et al., 1985). With 

GRE5WT, a 45-k:Da band also appeared (fig. 4.6), although this was not a consistent 

finding with either probe. Another very prominent band of about 29-k:Da size was 

also observed in cellular extracts with the GRE5WT probe. This band most likely 

represents histones present in the whole cellular extracts. Depending on the washing 

conditions this particular band was variably present sometimes using either probe. 

It is likely that both GREs are binding the glucocorticoid receptor because although 

they do not share an identical sequence, they do give similar patterns of interactions 

with three different assays. 

In the following study, I have examined the function of the overlapping AP-1 

motif at the nt 7640 GRE and the role of the c-jun and c-fos protooncogenes in 

glucocorticoid-mediated induction of HPV expression. 



\ . . 

Figure 4.6. South-Western blotting with GRE5Wf and GRE6Wf probes using BeLa 

cellular extracts. 300 JJ.g of whole cell extracts from HeLa cells were seperated by 

SDS-P AGE, transferred on a BA85 nitrocellulose membrane and probed with lx106 

cpm/ml of end-labelled GRE5WT (a) or GRE6WT (b). A prominent 96-kDa band 

(arrow) and a 45-kDa band (arrow head) were observed for GRESWT. A smaller 

29-kDa protein also bound to the GRE5WT probe, which most likely represents 

binding to histones. High molecular weight standard protein markers are indicated. 
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Chapter 5 

Role of c-jun and c-fos protooncogenes in glucocorticoid-mediated 

induction of HPV 16 gene expression. 

5.1 Introduction 

Eukaryotic gene regulation is a complex process which is usually regulated at the 

level of transcription and involves a multitude of transcription factors interacting with 

specific DNA sequence elements located upstream to or within the promoter region 

(McKnight and Tjian, 1986; Dynan, 1989; Maniatis et al., 1987). Recently, novel 

patterns of gene expression have been demonstrated by regulatory factors belonging 

to different families that seem to interact with each other at DNA sequence elements 

possessing weak or low-affinity binding sites. One such element that has attracted 

some recent attention is a "composite GRE" ( cGRE), which consists of binding sites 

for the glucocorticoid receptor and AP-1 protein and was first described in the rat 

proliferin gene promoter (Diamond et al., 1990). As discussed earlier in chapter 1, 

section 1.6, glucocorticoid receptors are members of the steroid hormone receptor 

superfamily. AP-1 protein, on the other hand, comprises of a distinct set of products 

encoded by a gene family characterized by the presence of a DNA binding 

dimerization motif called the leucine zipper (reviewed in Landschulz et al., 1988). 

The transcription factor AP-1 is generally regarded as a homodimer of c-jun or a 

heterodimer of c-jun/c-fos oncogenes (Chiu et al., 1988) and binds with high affinity 
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to an AP-1 motif, also called TPA response element ( Lee et al., 1987). More 

recently, several studies have demonstrated the physical and functional interaction of 

glucocorticoid receptor and the AP-1 class of proteins, which modulates transcription 

by a variety of different mechanisms (reviewed in Schule and Evans, 1991 and 

references therein). The rat proliferin gene cGRE is regulated either positively or 

negatively, depending on whether the glucocorticoid receptor interacts with c-jun 

homodimers or c-jun/c-fos heterodimers (Diamond et al., 1990; Miner and 

Yamamoto, 1992). In addition, cell type-specific factors belonging to other members 

of the steroid hormone receptor and the AP-1 family, regulates transcription from the 

proliferin cGRE in diverse ways, quite often with opposite effects (reviewed in Miner 

and Yamamoto, 1991; Pearce and Yamamoto, 1993). 

The nt 7640 GRE in the HPV 16 LCR is actually a cGRE with an overlapping 

AP-1 binding motif (Chan et al., 1990). The objective of this study was to examine 

the role of this cGRE and the AP-1 class of proteins, c-jun and c-fos, in the 

glucocorticoid-mediated activation of HPV 16 gene expression. For this purpose, I 

have used the embryonal carcinoma cell line, P19, which is thought to contain none 

or very low levels of AP-1 activity (de Groot et al., 1990). The full-length HPV 16 

enhancer containing the wild type nt 7640 GRE or mutated forms of this element 

were cloned upstream to a CAT reporter gene to address the role of AP-1 in 

glucocorticoid-mediated activation. In addition, a definitive role of the cGRE was 

established using enhancer fragments containing only this element. 
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5.2 Materials. 

P19 cells were obtained from Dr. H. Hamada. The c-jun and c-fos expressing 

plasmids were a kind gift from Dr. P. Chambon. Flow Laboratory supplied the a

minimal essential media (a-MEM). The rest of the materials used in this study have 

been previously described. 

5.3 Methods. 

5.3.1 Plasmids 

All the plasmids used in this study have been described earlier in Chapter 4, section 

4.3 (table 5.1). 

5.3.2 Cell culture, transfections and CAT assays. 

P19 cells were maintained in a-MEM supplemented with 10% heat-inactivated fetal 

calf serum. For transfections, cells were passed in 60 mm tissue culture plates in a

MEM containing 5% heat inactivated fetal calf serum. 12-16 hours later cells were 

fed with the same media and transfected 1 hour later, by the calcium phosphate 

precipitation method, with the indicated CAT construct, a glucocorticoid-receptor 

expressing plasmid, a ,a-galactosidase expressing plasmid as an internal control and 

the indicated amounts of c-jun and c-fos expressing plasmids. Cells were glycerol 

shocked after 4 hours for 3 minutes and fresh media was added with 0 or 100 nM 

dexamethasone. Cells were harvested 48 hours after transfection for CAT assays 

(Gorman et al ., 1982). The values are given as a percentage of CAT conversion 



Table 5.1. Plasmids and mutations created at the nt 7640 cGRE. Shown are the 

wjld type and mutant composite GRE sequence. Nucleotides important for AP-1 

binding are double-underlined in the wild type sequence, whereas, the mutations 

created are shown underlined. The GRE palindrome represents sequences from nt 

7640-7654 of the HPV genome. 

* Partially destroyed AP-1 motif. 

** Completely destroyed AP-1 motif. 



J 17 

Plasmids cGRE Sequence Motif destroyed 

pCPHWT/ pCDWT TGTACATTGTGTCAT none 

pCPH2/ pCD2 TGGTCATTGTGACAT GRE and AP-1 * 

pCPH4/ pCD4 GGTACATTGTGTTCf AP-1 * 

pCD7.2 TGTACATGATGTACf AP-1 ** 
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after normalizing with equal amounts of J3-galactosidase activity present in the 

extracts. 

5.4 Results 

5.4.1 Effect of c-jun and c-fos in glucocorticoid-mediated induction of wild type 

HPV 16. 

To examine the role of c-jun and c-fos in glucocorticoid-mediated activation of HPV 

16, I have used the pCPHWT construct which contains the full-length wild type HPV 

16 enhancer. As shown in fig. 5.1a, increasing amounts of c-jun resulted in a 

progressive increase of the basal level non-induced activity. Addition of 

dexamethasone resulted in a further increase in expression, indicating that c-jun 

confers a positive hormone-response to the wild type HPV 16 enhancer. However, 

the presence of c-fos, either transfected alone or with c-jun, inhibited this positive 

response. Thus, like the rat proliferin gene, c-jun and c-fos behaves as selectors of 

hormone response. No significant effect of c-jun or c-fos was observed on the 

hormone response of the control plasmid, pBLCAT2 (fig. 5.1b). 

5.4.2 Effect ofc-jun and c-fos in glucocorticoid-mediated activation of mutated HPV 

16. 

Next, I used the pCPH2 and pCPH4 plasmids to examine if the above observed 
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effect was mediated through the nt 7640 cGRE. In pCPH2, both the GR-binding and 

AP-1 motifs are destroyed, whereas in pCPH4, the cGRE is converted into a simple 

consensus G RE with the AP-1 motif partially destroyed (table 5.1 ). Thus, the loss-of

function mutation of both the GRE and overlapping AP-1 motif in pCPH2 was used 

to establish whether this sequence is required for AP-1-regulated hormone response 

of the HPV 16 enhancer. The pCPH4 construct was used to ask if this particular AP-

1 motif is involved. As shown in fig. 5.2, cotransfection of increasing amounts of c-jun 

with either construct fails to confer a positive dexamethasone-mediated activation, as 

observed for the wild type construct. In addition, presence of c-fos inhibited 

hormone response. These results indicate that the positive glucocorticoid response 

by c-jun is mediated by the nt position 7640 cGRE (pCPH2, fig. 5.2a), and also, the 

overlapping AP-1 motif appears to be required for this effect (pCPH4, fig. 5.2b ). It 

also appears that in the presence of low concentrations of c-jun, both pCPH2 and 

pCPH4 responded to dexamethasone. This result might indicate that the adjacent 

AP-1 motif at nt 7629 which is only 4 base-pairs away from the cGRE might have 

some influence on hormone response. 

5.4.3 Effect of c-jun and c-fos on glucocorticoid-mediated regulation of cGRE 

containing plasmids. 

Since there are three GREs and three AP-1 motifs in the HPV 16 LCR (Chan et al., 

1990; Mittal et al. , 1993), it was important to examine the effects of c-jun and c-fos 

in constructs that do not contain the two other GREs at nt position 7385 and 7474. 



Figure 5.1. Effect of c-jun and c-fos on glucocorticoid-mediated induction of wild 

type full-length enhancer. P19 cells were transfected with 5 J..Lg of the reporter 

plasmid pCPHWT (a), or the control plasmid pBLCAT2 (b), 2 J..Lg of GR expressing 

plasmid, 1 J.,Lg of .a-galactosidase-expressing plasmid and the indicated amounts of AP-

1-expressing plasmids. Cells were harvested after 48 hours and CAT activity 

determined as the percentage conversion of [14C]-chloramphenicol to acetylated 

forms . CAT values have been normalized relative to the .a-galactosidase activity. 
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Figure 5.2. Effect of c-jun and c-fos on glucocorticoid-mediated induction of 

mutant full-length enhancer. P19 cells were transfected with the reporter plasmid 

pCPH2 (a), and pCPH4 (b). Labels are as for fig. 5.1. 
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For this purpose the pCD-series of constructs, that contains only the nt 7640 GRE 

were used. These constructs also contained an additional consensus AP-1 motif from 

nt position 7629-7636, that is 4 base-pairs from the cGRE. However, mutations of 

the AP-1 motif overlapping the nt 7640 GRE were useful to establish a definitive role 

of the cGRE in hormonal regulation of HPV expression. 

As shown in fig. 5.3a, the wild type cGRE in pCDWT gave results that were 

similar to the full-length HPV enhancer containing plasmid (pCPHWT, fig. 5.1a). 

Increasing amounts of c-jun increased the basal level activity which was further 

increased in the presence of dexamethasone. c-fos, on the other hand inhibited this 

positive regulation by hormones. Interestingly, the wild type sequence was not 

responsive to glucocorticoids in the absence of transfected c-jun (fig. 5.3a). 

Activation by dexamethasone was observed in the presence of c-jun, indicating that 

this particular GRE is functional only in the presence of c-jun. No significant 

dexamethasone-activation was observed in the presence of c-fos or c-jun/c-fos. 

Instead, c-fos inhibited the positive dexamethasone response mediated by c-jun. In 

contrast to these results, the full-length enhancer was responsive to dexamethasone 

even in the absence of transfected AP-1 (pCPHWT, fig. 5.1a), indicating that the 

other two GREs at nt position 7385 and 7474 were probably responsible for this 

induction. 

Mutations of both the GRE and AP-1 in pCD2 confirmed that the positive 

effect of dexamethasone is mediated through the cGRE (fig. 5.3b). Partial 

destruction of the AP-1 motif in pCD2 and pCD4 resulted in a similar loss of 



Figure 5.3. Effect of c-jun and c-fos on glucocorticoid-mediated activation of wild 

type and mutant cGRE containing plasmids. P19 cells were transfected with the 

reporter plasmids pCDWf (a) and pCD2 (b), pHGO and a ,a-galactosidase

expressing plasmid. CAT activity was determined as for fig. 5.1. 
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Figure 5.4. Effect of c-jun and c-fos on glucocorticoid-mediated activation of 

mutant cGRE containing plasmids. P19 cells were transfected with the reporter 

plasmids pCD4 (a) and pCD7.2 (b). 
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hormone-regulation by c-jun (fig. 5.3b and 5.4a). Enhancement of transcription by 

GR from simple GREs in pCD4 and pCD7.2 was not significantly affected by 

transfection of c-jun (fig 5.4). However, unlike the wild type construct (pCDWT), the 

pCD4 mutant responded to dexamethasone without any transfected c-jun. This result 

has clearly indicated that cGREs require c-jun for positive regulation, whereas, simple 

GREs do not. To establish a definitive role of the AP-1 motif, I have used another 

mutation, pCD7.2 (table 5.1, Chan et al., 1990), which completely destroys the AP-1 

motif overlapping the cGRE. Similar results were also obtained by this mutant 

indicating that the AP-1 motif is required for positive dexamethasone regulation by 

the c-jun protooncogene (fig 5.4b ). Interestingly, all three cGRE mutations, pCD2, 

pCD4 and pCD7.2, responded to c-jun and c-jun/c-fos in enhancing the basal level 

activity with increasing amounts of these proteins (fig 5.3 and 5.4). This enhancement 

occurred even with the partial or complete loss of AP-1 motif in the above mentioned 

constructs and indicated that the induced basal levels could be due to the adjacent 

AP-1 motif at nt 7629. Another interesting observation is that transfected c-fos alone 

stimulated CAT expression above the basal expression from all plasmids, although 

c-fos alone does not dimerize and has no AP-1 activity. This suggests that P19 cells 

express a protein from the jun family with low intrinsic activity (den Hertog, et al., 

1992) and heterodimerizes with c-fos to form functional AP-1. 



Chapter 6 

Human papillomavirus type 16 gene expression in primary cervical 

keratinocytes: Role of progesterone and glucocorticoids. 

6.1 Introduction 

As previously discussed, HPV 16 is the most prevalent high-risk HPV strongly 

associated with high grade cervical intraepithelial neoplasia (CIN) and invasive 

cervical carcinomas. In addition, HPV 16 DNA-containing lesions also have a strong 

tendency to progress through successively higher grades of CIN (Weaver et al., 1990; 

Kadish et al., 1992). Significantly, the DNA of HPV 16 is episomal in benign and low 

grade CIN lesions, while in most cervical tumors and all cervical tumor cell lines it 

is integrated into the host genome (Durst et al., 1985; Cullen et al., 1991; Durst et 

al., 1983; Pater et al., 1985). These integration events have been shown to cause 

oncogenic changes in viral (zur Hausen, 1991; Smits et al., 1991; Durst et al., 1987a) 

and cellular (Durst et al., 1987b) gene expression. Progression from low grade 

dysplasia to invasive carcinoma is likely to depend on the cumulative effect of a 

number of other cellular genetic changes (Sreekantaiah et al., 1988; Riou et al., 

1988). Hence, it is essential to understand not only the events occurring at the early 

stages of HPV infection, but also the viral and/or host regulatory factors and the 

physiological signals (such as steroid hormones) that modulate responses of these 

regulators. Normal increases of these hormones, especially progesterone, during 
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pregnancy and female ovulatory cycles or nonphysiological increases as seen for oral 

contraceptive users, can result in disturbances of the normal controls of HPV 

expression by cellular regulators. 

The objective of this study was to address the role of the three GREs in 

modulation of HPV type 16 gene transcription in primary human ectocervical 

keratinocytes, the natural host cell for HPV infection. In chapter 4 and 5, I studied 

the functional requirement of HPV 16 GREs in the context of heterologous 

promoters. The levels at which hormones directly regulate HPV 16 expression from 

its own promoter has not been addressed. To achieve this goal, HPV 16 whole 

genomes with various combinations of mutated GREs were prepared and transfected 

into cultured primary human cervical cells. Due to the limited supply of human cells, 

in situ hybridization was used to detect the presence of virus-specific mRNA as a 

function of HPV 16 gene expression. 

6.2 Materials 

Cervical tissues for preparation of ectocervical cells were kindly provided by Dr. J. 

Williams, L. Simms and the staff of St. Clare's Mercy hospital, St. John's, 

Newfoundland. All tissue culture was performed with keratinocyte growth media 

(KGM) obtained from Clonetics, San Diego, CA. Lipofectin, Biotin-7-dATP, nick

translation kit and the DNA detection kit were obtained from BRL (Gaithersberg, 

VA). Biotin-11-dUTP was obtained from Enzo Diagnostic Inc., New York, NY. 
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RU486 was a kind gift from D. Martini, Roussel Uclaf, Romainville, France. Ki67 

monoclonal antibody was obtained from Dakopatts, High Wycombe, Bucks, U.K. 

Biotrace HP membranes for Southern blotting were obtained from Gelman Sciences. 

6.3 Methods: 

6.3.1 Plasmids 

Constructions of plasmids (HPV genomes with wild type or mutated GREs) used in 

this study have been described in chapter 3. The constructed mutations are shown 

in Table 6.1. 

6.3.2 Preparation and transfection of primary cervical cells 

Ectocervical epithelial cell cultures were derived from cervical specimens obtained 

from hysterectomies performed for benign conditions and shown to be free of cervical 

intraepithelial neoplasia by histological examination. Primary cultures were initiated 

by G. Jin in our laboratory and done according to the methods of Turyk et al. (1989). 

Briefly, cervical tissues were washed twice in solution A containing keratinocyte basal 

media (KBM) supplemented with penicillin, streptomycin and amphotericin B. Using 

a punch biopsy, small tissue explants containing both stroma and epithelium were 

removed from the ectocervical region and digested in collagenase for 2 hours. The 

epidermis was subsequently seperated, minced with a scalpel and trypsinized for 3 

minutes at room temperature in a 1:1 ratio of trypsin-EDTA in PBS. Trypsin 



Table 6.1. Wild type (WT) and mutated GREs present in the regulatory region of 

human papillomavirus 16 plasmids. Nucleotide sequences and their positions in the 

HPV 16 genome for the first nucleotide of each WT GRE are indicated. Mutations 

introduced by site directed mutagenesis are indicated by lower case letters while the 

WT nucleotides of these mutants are indicated by dashes. 



Homology to consensus the glucocorticoid response element 

Plasmids 83% 75% 75% 

7389 7474 7640 
pHPV (WT) GCTACATCCTGTTTT GGCACAAAATGTGTT TGTACATTGTGTCAT 

pmHPV2 --------------- --------------- --gt-------a---

pmHPV4 g-----------tc- * --------------- ---------------
pmHPV26 --------------- -----------ca-- ---gt------a---

pmHPV25 ---gg------a--- --------------- --gt-------a---

pmHPV56 ---gg------a--- -----------ca-- ---------------
pmHPV256 ---gg------a--- -----------ca-- --gt-------a---

* Consensus GRE. 
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digestion was stopped by adding PBS containing 10% FCS and cells were briefly 

centrifuged and plated in KGM in 100 mm tissue culture plates. For transfection, 

cells were seeded onto coverslips (22 X 22 mms) placed in 30 mm tissue culture 

plates, incubated for 48 hours in hydrocortisone-free KGM and transfected by 

lipofection using 3 JJ.g of the indicated HPV genomes and 10 J.£1 of lipofection 

solution. After transfection, cells were incubated in hydrocortisone-free KGM or 

media containing the indicated hormones ( dex., prog. or dex. plus RU486) for 

another 48 hours before preparing them for in situ hybridization detection of HPV 

RNA. 

6.3.3 In situ hybridization 

In situ hybridization detection of viral message was done as described by Lawrence 

and Singer (1986). Briefly, the cells grown on coverslips were fixed in 4% 

paraformaldehyde in PBS containing 5 mM MgC12 and either were used immediately 

for hybridization or stored in 70% ethanol for later use. The cells on coverslips were 

rehydrated for 10 minutes in both PBS plus 5 mM MgCl2 and 0.2 M Tris-Hcl pH 7.4, 

0.1 M Glycine. Prior to hybridization the cover slips were transferred to 50% 

formamide, 2X SSC and incubated at 65°C for 10 min. The probe was prepared 

from HPV 16 genomic DNA (BamHI fragment) nick-translated in the presence of 

biotin-7-dATP or biotin-11-dUTP, precipitated in the presence of 20 JJ.g tRNA and 

20 JJ.g sheared salmon sperm DNA and dissolved in 100% deionized formamide. 

After heat denaturation the probe was brought to a final concentration of 50% 
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formamide, 2X SSC, 0.2% BSA, 10% dextran sulfate and vanadyl-sufate 

ribonucleotide complex RNAase inhibitor. The probe was used at a concentration 

of 5-10 ng/J.Ll and detection was with alkaline phosphatase using the BRL DNA 

detection kit. The results shown are typical for cells observed in a minimum of three 

independent experiments. 

6.3.4 Indirect immunofluoresence 

For indirect immunofluoresence assays, HPV 16 transfected ectocervical cells were 

incubated in either hydrocortisone-free KGM or media containing a 1:5 molar ratio 

of 100 nM dexamethasone to RU486 for 48 hours. Cells were fixed in 50% acetone

methanol and processed for immunofluoresence according to Bartek et al (1990), 

using a 1:500 dilution of Ki67 monoclonal antibody. 

6.3.5 Hirt extraction and Southern blot analysis 

Ectocervical cells were plated in 60 mm tissue culture dishes, transfected by 

lipofection with 10 J.Lg of wild type HPV 16 plasmid and incubated in KGM in the 

presence of 0 or 100 nM dexamethasone. Mter 48 hours, cells were washed twice 

in PBS and then lysed in 500 J.Ll Hirt lysis buffer (O.OlM Tris-HCl pH 8.0, O.OlM 

EDTA and 0.6% SDS) for 15 min at room temperature (Hirt, 1967). NaCl was 

added to a final concentration of 1M and samples were placed at 4 °C for 12-16 hrs. 

The mixture was microcentrifuged at 8000 rpm for 90 min to pellet cellular DNA and 

debris. The supernatants were extracted once with phenol and phenol-chloroform 
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and twice with chloroform, and precipitated overnight at -20 °C with three volumes 

of 95% ethanol. Low molecular weight (LMW) DNA of the supernatant was 

resuspended in 25 J,£1 of 1X TE. High molecular weight (HMW) genomic DNA was 

also extracted from the cellular pellet by resuspending and incubating the pellet in 

digestion buffer (100 mM NaCl, 10 mM Tris-HCl pH 8, 25 mM EDTA, 0.5% SDS, 

0.1 mg/ml proteinase K) for 12-16 hrs at 50°C, extracted once with phenol and 

phenol-chloroform and ethanol precipitated. The recovered DNA was resuspended 

in 25 J .. Ll of 1X TE. 

Southern blotting was performed according to the protocols provided by 

Gelman Sciences. Equal amounts of LMW and HMW DNA were digested with 

indicated restriction enzymes, electrophoresed on a 1% agarose gel, transferred to 

Biotrace HP membranes, baked at 80°C for 1 hr, prehybridized for 30 min at 65°C 

in hybridization buffer (containing carnation 1% non-fat dry milk, 1 mM EDT A, 7% 

SDS and 0.5 M NaH2P04) and probed in the same buffer with a nick-translated 

(e2P]-dCTP labelled) BamH1 fragment of HPV 16 DNA. After washing the filter 

in wash solution I (40 mM NaH2P04, 1 mM EDTA, 5% SDS and 0.5% skimmed 

milk) and wash solution II (20 mM NaH2P04, 1 mM EDTA and 1% SDS ), it was 

exposed to a Kodac X-ray film at -70°C with intensifying screens. 
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6.4 RESULTS 

6.4.1 In situ detection of viral message transcribed from HPV 16 genomes 

containing wild and/or mutant GRE sequences. 

Intact HPV 16 genomes were introduced by lipofection into cultured human 

ectocervical cells and viral gene expression was monitored by in situ hybridization. 

In the absence of hormones there was no detectable RNA signal (Fig. 6.1, left panel). 

However, a marked increase in the levels of HPV RNA was observed after treatment 

with either dexamethasone (Dex) or progesterone (Prog). To examine whether the 

absence of detectable HPV gene expression in hormone-free medium involved a 

block in cell proliferation, expression of nuclear antigen for Ki67 monoclonal antibody 

was used (Gerdes et al., 1983). Positive Ki67 staining verified the presence of 

dividing cells in cultures grown in the absence of steroid hormones (Fig. 6.1, bottom 

left panel). These results indicated that neither the presence of HPV 16 episomes 

nor the transfection process prevented cell-cycling, and the induction of viral RNA 

by hormones was not due to release of cells from growth arrest, but was specific for 

HPV expression. The ability of the in vitro model system to distinguish different 

expression levels was examined. First, the consensus GRE-mutated plasmid was used 

to examine the mutations effect on HPV transcription. Compared to the wild type 

HPV 16, this mutant, pmHPV 4, displayed a much greater level of gene transcription 

after induction by either hormone (Fig. 6.2). The ability of these assays to detect 



Figure 6.1. Effects of hormones and antiprogestin RU486 on HPV 16 gene 

expression in primary human keratinocytes as detected by in situ hybridization of 

viral mRNA. Ectocervical cells were transfected with wild type HPV 16 DNA and 

cultured in the absence of hormones (none) or in the presence of 100 nM 

dexamethasone ( dex) or 100 nM progesterone (Prog, left panel). On the right, cells 

were grown in media with molar ratios of 100nM dexamethasone to RU486 

(DEX:RU486) as indicated. Ki67 antibody staining, shown at the bottom, was for 

ectocervical cells cultured for 48 hrs in the absence of hormones or in the presence 

of 1:5 molar ratio of dexamethasone to RU486. Positively stained dark spots found 

predominantly in the cytoplasm, represents specific hybridization signals. 
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lower levels of hormone induction was also analyzed by using RU486, a progesterone 

and glucocorticoid hormone antagonist. This antagonist is known to inhibit hormone

induced expression by competetively interacting with the hormone receptors (Baulieu, 

1991). Clearly, a progressive decrease in the level of HPV 16 wild type gene 

expression was observed with increasing concentrations of RU486 relative to 

dexamethasone (Fig. 6.1, right panels). Immunofluoresence assays for expression of 

Ki67 antibody reactive nuclear antigen showed that this decrease was not due to the 

loss of proliferative potential of the cells due to RU486 (Fig. 6.1, bottom right panel). 

These results illustrate that this in vitro model system could be used to detect 

expression levels which range between the undetectable uninduced level (none) and 

the higher than wild type induced level for the consensus mutant (pmHPV4). 

Therefore, this in vitro system was suitable to test the functional role of the three 

GREs for HPV 16 gene transcription. 

Induction of HPV 16 gene expression in the presence of hormones, could have 

involved the direct interactions of hormone-receptor complexes with the previously 

identified GRE at nt 7640 on HPV 16 DNA. Therefore, a loss-of-function mutation 

introduced into this GRE, pmHPV2, (table 6.1), was tested for its ability to respond 

to hormones. This mutated HPV 16 genome remained responsive to both 

dexamethasone and progesterone (fig. 6.2), suggesting that hormone induced 

transcription also involved the two newly identified GREs. Alternatively, hormones 

might have been acting directly or indirectly through other viral or cellular sequences. 

Mutated forms of the two newly identified GREs at position 7385 and 7474 



Figure 6.2. Viral gene expression from plasmids with mutated hormone responsive 

elements. In situ hybridization was done as for figure 6.1, with the plasmids described 

in Table 6.1. The results were part of the experiment shown in figure 6.1. Consensus 

GRE mutation in pmHPV 4 produced stronger staining signal, whereas a loss-of

fuction mutation at this site in pmHPV2 had no effect. 
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Figure 6.3. Viral gene expression from plasmids with only one functional hormone 

response element. The results were part of the experiments shown in figure 6.1, with 

the plasmids described in Table 6.1. Positive staining was maintained in the presence 

of single elements in pmHPV26, pmHPV25 and pmHPV56, but the intact site at 

position 7474 in pmHPV25 gave a weaker signal. Dex = dexamethasone; Prog = 

progesterone. 
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were next used to test whether or not these individual GRE-like sequences are 

functionally essential for hormone-induced HPV transcription. For this purpose, 

three double mutation plasmids containing only one intact GRE sequence 

(pmHPV26, pmHPV25 and pmHPV56, Table 6.1) were prepared. All three double 

mutants remained responsive to both dexamethasone and progesterone (Fig. 6.3), 

implying that all three elements are functional. The HPV 16 genome containing the 

wild type sequence at position 7474 only (pmHPV25) was induced to a qualitatively 

lower level than the other two plasmids. This suggested that the three sequences are 

differentially effective and it remained possible that other factors are involved in 

hormone induction. It is difficult to comment on the quantitative differences using 

this technique. However, qualitative differences were observed with each of the 

double mutants. To emphasize even more on the qualitative differences, the 

consensus GRE mutant at position 7640 (pmHPV 4, fig 6.2) resulted in message levels 

which were far higher than the wild type HPV 16 sequence. 

6.4.2 Effect of triple GRE mutations on hormone induced transcription of HPV 16 

DNA. 

Since all three double mutation plasmids responded to either hormone, HPV 16 

genomes containing loss-of-function mutations in all three potential GREs 

(pmHPV256, Table 6.1) were used. This construct, pmHPV256, failed to support any 

detectable induction of HPV 16 transcription by either hormone (Fig. 6.4). The 

results with the double and triple mutants have convincingly demonstrated a direct 



Figure 6.4. Viral gene expression from a plasmid containing loss of function 

mutations in all three GREs. The results were part of the experiments shown in 

figure 6.1, with the plasmid described in Table 6.1. Mutations of all three GREs in 

pmHPV256 abolished positive staining for viral RNA in the presence of either 

dexamethasone (Dex) of progesterone (Prog). 
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role of all three GREs for hormone-mediated transcription of HPV 16 genes. Any 

one of these three elements were not only sufficient, but also appeared to be directly 

responsible for hormone-induced expression of HPV 16 transcription in human 

ectocervical cells. 

6.4.3 Physical state of HPV DNA in transfected ectocervical cells. 

It is generally considered that transiently transfected DNA, initially remains in the 

episomal form in cells and is gradually lost over a period of time (Coffin, 1990). 

However, after longer cultures and appropiate selection, occasional colonies of cells 

would arise that have integrated the transfected DNA. To confirm that the 

transfected ectocervical cells contain only episomal form of HPV DNA, low (LMW) 

and high molecular weight (HMW) DNA was extracted from cells transfected with 

HPV 16 genomes. This was done after incubating the cells for 48 hrs in media with 

or without 100 nM dexamethasone. As shown in figure 6.5, cells harboured only 

episomal form of the DNA after digesting LMW DNA with a single cut (BamHI) 

restriction enzyme. HMW DNA digested with a non-HPV cutting enzyme (Xbal) 

revealed the presence of a high molecular weight band in a longer exposure. This 

band could be either integrated form of HPV or concatamerised form contaminated 

from the supernatant. However, digestion of the same DNA with the single cut, 

BamHI, demonstrated that HPV was most likely concatamerised and was present in 

the episomal form only (fig. 6.5c). It is interesting to note the slightly increased 

intensity of bands obtained for cells grown in the presence of dexamethasone. A 
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possible explanation has been discussed in chapter 7. 



Figure 6.5. Hirt extraction and southern blotting for episomal presence of 

transfected viral DNA. 

Primary ectocervical cells were transfected with the wild type HPV 16 DNA and 

cultured in the absence (lanes 2, 4, and 6) or presence (lanes 3, 5 and 7) of 100 nM 

dexamethasone for 48 hrs. LMW (lanes 2 and 3) and HMW (lanes 4-7) DNA was 

extracted and digested with either BamHI (lanes 2, 3, 6, 7) or Xbal (lanes 4 and 5). 

Lane 1 is a marker containing HPV 16 DNA linearized with BamHI. Southern blots 

were probed by a nick-translated BamH1 fragment of HPV 16 plasmid. b). The gel 

in (a) was overexposed for 4 days to reveal a high molecular weight band (in thin 

arrows). c). HMW DNA was digested with single-cut BamHI restriction enzyme. 
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Chapter 7 

DISCUSSION 

7.1 Role of steroid hormones in HPV-mediated transformation. 

It has been believed for a long time that the glucocorticoid-mediated transformation 

of primary rodent cells in culture occurs through a GRE known to be located in the 

enhancer of HPV 16 regulatory region (Pater et al., 1988, 1990; Crook et al., 1988; 

Gloss et al., 1987). This GRE has been characterised in detail and has been shown 

to be functional (Gloss et al., 1987; Chan et al., 1989). If this GRE was the only 

determinant of the observed increase in transformation of rodent cells in the 

presence of dexamethasone, then destroying this GRE should abrogate the hormone 

response. It is important to address the molecular mechanism by which this 

enhanced transformation occurs since steroid hormones have been implicated as an 

important risk factor in the outcome of cervical intraepithelial neoplasia and its 

progression to a fully malignant carcinoma (Stem et al., 1977; Beral et al., 1988; 

Hildesheim et al., 1990; Honore et al., 1991; Brinton, 1991 ). There have been 

numerous epidemiological studies that support this association and makes it 

important to understand and study the mechanism by which hormones act. In 

addition, a substantial body of experimental, clinical and epidemiological evidence 

indicates that hormones play an important role in the pathogenesis of many human 

cancers (Henderson et al., 1982). Hormone-related tumors account for more than 
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20% and 40% of all newly diagnosed cancers in males and females, respectively, in 

the United States (Henderson et al., 1991). 

To study the molecular mechanisms of hormone-induced transformation of 

BRK cells, I generated two different mutations at the known HPV 16 nt 7640 GRE: 

one that completely destroys the glucocorticoid receptor binding site (pmHPV2) and 

another which converts this GRE into a consensus sequence (pmHPV4) (table 3.1). 

The latter mutant was used to examine whether or not a further increase in 

transformation can occur as a result of this change. My results clearly show that loss

of-function mutations of this GREin pmHPV2 does not significantly affect the wild 

type positive dexamethasone response for transformation (table 3.2). A slightly 

reduced frequency of transformation was consistently observed with pmHPV2. It is 

difficult to determine small differences in transformation assays by HPV 16 because 

of low efficiency, experimental variability and appearance of secondary colonies. For 

pmHPV 4, a marked increase in transformation was observed. This could be due to 

an increased affinity of the hormone receptor at this site. It is interesting to note that 

the wild type GRE at nt position 7640 is a composite GRE ( cGRE) consisting of an 

AP-1 binding motif overlapping the GRE (Chan et al., 1990). Composite GREs are 

sequences that contains a GRE overlapping with a non-receptor transcription factor 

binding site (Diamond et al., 1990). These GREs have been described for several 

eukaryotic genes (reveiwed in Ponta et al., 1992). In pmHPV4 the overlapping AP-1 

site is destroyed. The markedly increased transforming potential shown by pmHPV 4 

could be due to two possibile factors. First, it could be due to an increased affinity 
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of the glucocorticoid receptor to interact with this sequence resulting in a stronger 

response element. A second possibility is that binding of the AP-1 protein to the wild 

type sequence might inhibit or sterically hinder the binding of the glucocorticoid 

receptor. A mutation of AP-1 would then allow unrestricted binding of the receptor 

molecules and result in increased hormone response. Chong et al (1990) also found 

a marked increase in glucocorticoid response in transient assays when they mutated 

this AP-1 motif. They have suggested that mutations of this AP-1 site either allows 

the GR to bind to the GRE without competitive interference or, alternatively, the 

GR binds with a higher affinity to this sequence. Another significant observation is 

that this particular AP -1 motif does not respond to phorbol esters, such as TP A 

(Chan et al., 1990), unlike other AP-1 motifs (Lee et al., 1987). In addition, 

mutations introduced at this sequence resulted in an increased TP A induction of 

HPV 16 gene expression (Chan et al., 1990), indicating that this motif could be 

negatively acting. Thus, a third possibilty could be that AP-1 mutations in pmHPV 4 

resulted in the rescue of gene expression from this negative regulation. However, 

recent analysis of the complex nature of interactions of the GR and AP-1 at 

composite GREs have shown that both GRand AP-1 proteins can physically interact 

and bind to the cGRE as a protein complex with no competition involved (reviewed 

in Miner and Yamamoto, 1991; Konig et al., 1992). I have attempted to address the 

reasons for this observed increase in hormone induction by the consensus GRE 

mutant in chapter 4. In addition I have also probed into the role of AP-1 at this 

composite element in chapter 5. 
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Since mutations of the known GRE did not abrogate dexamethasone-induced 

transformation, other GRE-like sequences were searched for in the HPV 16 

regulatory region. Two other GRE-like sequences were found by my computer 

search. One sequence was as divergent as and the second was less divergent than the 

originally identified nt 7640 GRE from the consensus GRE (table 3.1). To examine 

the likely involvement of these two other GREs in glucocorticoid-induced 

transformation, site-directed mutagenesis was performed to create loss-of-function 

mutations (Table 3.1). In order to directly address the involvement of these two 

other GREs, it was thought worthwhile to use only a double GRE mutation 

(pmHPV56) and a triple mutant (pmHPV256) for transformation assays. The double 

GRE mutant, pmHPV56, was responsive to dexamethasone and resulted in a two-fold 

increase in transformation in the presence of dexamethasone (table 3.3). The triple 

mutation in pmHPV256 eliminated the wild type dexamethasone response. Due to 

the insensitivity of the assay, only a semi-quantitative result was obtained. 

My transformation results, probably addresses the very controversial issue of 

how steroid hormones in the form of oral contraceptive pills might act. One of the 

reasons for this controversy is due to the biases arising from epidemiological studies, 

including behavioural differences between women who use oral contraceptives and 

women using other forms of contraception (reviewed in Swan and Pettiti, 1982). So 

far it has been argued that oral pills have an indirect effect in either increasing the 

susceptibility of cervical tissue to HPV infection or increasing the persistence of HPV, 

and thereby explain the epidemiological finding that oral pills are associated with an 
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increased risk of developing cervical cancer (Vandenvelde and Beers, 1992). The 

alternative explanation was that steroid hormones act directly by increasing the 

expression of HPV 16 oncogene expression after infection (Lorincz et al., 1990; 

Gitsch et al., 1992; Mittal et al., 1993a). 

In this regard, mammary gland tumor developement in mice infected with the 

hormone-responsive mouse mammary tumor virus (MMTV) is a good example of the 

relationship between hormones and viruses in the incidence and progression of 

tumors (Nandi and McGrath, 1973). A variety of hormonal stimuli, including steroid 

hormones and other peptide hormones, have marked effects on the incidence and 

progression of mammary tumors in mice (Bern and Nandi, 1961). Treatment of mice 

or primary tumor explants with glucocorticoids results in an accumulation of MMTV 

particles within the tumor tissue (Smaller et al., 1961). Using a raft culture system, 

steroid hormones have been shown to enhance MMTV particle formation (Yang et 

al., 1977). In addition to this glucocorticoid effect on particle production, a rapid 

increase in the steady state levels of intracellular viral RNA was also observed (Parks 

et al., 1974; Ringold et al., 1975a, 1975b; Scolnick et al., 1976). Subsequently, several 

studies have strongly supported the contention that the glucocorticoid induction of 

MMTV RNA, is indeed the primary hormonal response. Furthermore, it was also 

demonstrated that this induction is direct (Stallcup et al., 1978; Ucker et al., 1981) 

and is mediated through several GREs located in the MMTV regulatory region 

(reviewed in Truss et al., 1992). Drawing a parallel from the MMTV model, it is 

reasonable to hypothesize that increased HPV oncoprotein expression induced by 
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hormones would enhance transformation by the virus and confer a growth advantage 

for HPV-containing cells. It is also significant that the E7 gene product induces 

cellular DNA synthesis and progression of the cell cycle (Sato et al., 1989b; Banks et 

al., 1990a; Rawls et al., 1990). The present study has indicated that glucocorticoids 

act directly through three putative hormone responsive elements present in HPV 16 

LCR. Another important consideration is that, in the context of naturally occuring 

cervical cancers, this hormone-induced expression should be relevant at an early stage 

of dysplasia where HPV is mainly found in the extrachromosomal form (Lehn et al., 

1988; Cullen et al., 1991 ). It is postulated that steroid hormones may have an 

important role in the progression of early dysplastic lesions to a more malignant stage 

(Stern et al., 1977; Mittal et al., 1993a). Recent epidemiological studies have also 

strengthened this hypothesis and provide evidence for an important role of hormones 

in the outcome of cervical intraepithelial neoplasia (Herrero et al., 1990; Hildesheim 

et al., 1990; Honore et al., 1991; Debritton et al., 1993). 

In addition to hormone-induced expression of viral oncoproteins, increased 

expression of other viral genes could also be important. Significantly, E1, E2 and E5 

proteins can all be expressed, predominantly when HPV is in the early stage episomal 

form (Smotkin and Wettstein, 1986; Chow et al., 1987; Crum et al., 1988; Higgins et 

al. , 1992), because integration events in transformed cells usually results in the 

disruption of these ORFs (Schneider-Maunoury et al., 1987; Chao et al., 1987). For 

example, increased expression of the HPV 16 E5 gene, especially at an early stage, 

could be a positive feedback mechanism for early gene expression, by modulating AP-
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1 activity through growth factor-mediated signal transduction pathways (Leechanachai 

et al., 1992; Pim et al., 1992). Similarly, increased expression of E1 and E2 genes, 

could result in increased replication of the virus (Chiang et al., 1992a, 1992b; del 

Vicchio et al., 1992; Remm et al., 1992). As for the MMTV model, hormone-induced 

replication could play an important role in the virus life cycle. Supporting the role 

of increased E2 expression as an early stage event, is the demonstration that 

overexpression of E2 in rodent cells resulted in an extremely high frequency of 

transformation by HPV 16 (Lees et al., 1990). Another study has shown that a 

naturally-occuring isolate of HPV 16 with mutations in the E2 ORF, was unable to 

immortaHze primary human epitheHal cells (Storey et al., 1992). Cotransfection with . 

an E2-expressing plasmid restored its immortalizing potential. However, 

contradicting results have also been observed as discussed in previous sections. 

Early stage events almost certainly determines the final outcome of an HPV

infected cell (Durst et al., 1992) and I would presume that a complex sequence of 

events occur during these different stages. These events should be dependent not 

only on the expression levels, but, also on the transcription patterns of HPV genes 

(Sherman and Alloul, 1992, Sherman et al., 1992). One significant finding that 

emerged from studies done in our laboratory regarding dexamethasone resistant 

growth of HPV 16 transformed BRK cells, is the observation of differences in 

transcriptional initiation sites and patterns between dexamethasone sensitive and 

resistant transformed cells (Pater et al., unpublished observations). One can envision 

that glucocorticoid-induced gene expression, occuring in collaboration with other cell-
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type or stage-specific host transcription factors, could result in preferential 

transcription and translation of certain viral ORFs. HPV mRNAs are generally 

polycistronic and differences in initiation sites and/or transcription patterns, could 

result in preferential translation of viral products, formed at a particular stage of 

HPV infection and important for disease progression. Clearly there is much more 

to be learned about the role of hormones in HPV 16-mediated transformation. 

However, it is useful to have the knowlege that hormones act directly through GREs 

in the HPV 16 regulatory region. Considering the recognized role of hormones in the 

progression of cervical cancer, the possibility of preventing this progression by 

inhibiting hormone-induced expression of viral oncoproteins by suitable anti

hormones becomes evident. Support for this comes from the demonstration of 

inhibition of glucocorticoid-enhanced transformation by the antiprogestin, RU486 

(Pater et al., 1991 ). Similar strategies have been used for the treatment of breast 

cancers (Bakker et al., 1990) and inhibition of experimental tumor formation in mice 

(Bakker et al., 1987, 1990; Klijn et al., 1989). 

However, before one can draw conclusions about the role of these newly 

identified GREs, it was important to characterize them and show that they are 

actually functional for expression and specific interaction with the glucocorticoid 

receptor. In the previous chapters, the functional requirement of these two GREs 

for steroid hormone-induced HPV gene expression has been addressed and both the 

elements have been further characterised for expression and DNA-protein 

interactions (chapter 4). In addition, I have also addressed the levels at which 
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hormone-induced expression occurs in primary cervical cells (chapter 6). 

7.2 Role of steroid hormones in HPV type 16 gene expression. 

The objective of this study (chapter 4) was to address the role of the three GREs in 

the glucocorticoid-induced expression of HPV in HeLa cells, a cervical carcinoma 

derived cell line. Also, the two GREs were characterised for expression and specific 

DNA-protein interactions. It has been previously shown that HPV 16 enhancer is 

responsive to dexamethasone and progesterone in transient gene expression assays. 

Bernard's group has characterised the GREat position 7640 and has clearly shown 

that partially purified glucocorticoid receptor binds to this GRE (Gloss et al., 1987; 

Chan et al., 1989). However, mutations destroying this GRE did not completly 

eliminate dexamethasone response when they used a maximum enhancer fragment 

of the HPV 16 regulatory region. Instead, a two-fold induction was still observed. 

This induction could be due to the putative GRE at nt position 7474 since their 

constructs contained this GRE. In my study, the full length HPV 16 wild type 

enhancer or constructs containing single, double or triple GRE mutations were tested 

in transient gene expression assays in HeLa cells to establish their role in 

glucocorticoid-induced HPV gene expression. As shown in fig. 4.1 all single (pCPH2, 

4, 5, and 6) and double (pCPH26 and 56) GRE mutations retained dexamethasone 

response, whereas, the triple mutant (pCPH256) abrogated induction. The consensus 

GRE mutant in pCPH4, resulted in more than a ten-fold induction compared to less 

than three-fold for the wild type sequence in pCPHWT. It is likely that these higher 
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levels of expression by the consensus mutant (pmHPV 4) was responsible for the more 

efficiently transforming virus as shown in the transformation assays (Table 3.2). 

Results from transient assays support a direct role of the GREs in glucocorticoid

induced HPV 16 gene expression. 

One very important question that remained unanswered was the observation 

of very high levels of expression with the consensus GRE mutant. It is important to 

consider here that this GREis a composite GRE containing an overlapping AP-1 

binding site. Two possibilities, that I have raised earlier in this chapter are 

conceivable. One possibility for increased expression, could be an increased affinity 

of the receptor for the consensus sequence. Another possibility could be the release 

of steric hinderance by AP-1 protein, thus allowing the receptor molecules to bind 

more efficiently. Evidence of such regulation by competitive inhibition of factors 

binding to composite hormone responsive elements have been described for several 

eukaryotic genes, such as the gonadotropin a-subunit gene (Ak:erblom et al., 1988), 

rat a-fetoprotein gene (Guertin et al., 1988; Zhang et al., 1991), human osteocalcin 

gene (Stromstedt et al., 1991 ), bovine prolactin gene (Sakai et al., 1988) and rat pro

opiomelanocortin gene (Drouin et al., 1989). In all of the above-mentioned examples 

steroid hormones negatively regulate expression of these genes by competitively 

inhibiting binding of positively acting cellular factors to binding sites overlapping the 

GREs (discussed in chapter 1, section 1.6.4). To examine either of the two 

possibilities, four different mutations were created in the AP-1 motif (fig. 4.2). It is 

presumed that all four mutants fail to bind AP-1, based on nucleotide sequences 
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important for AP-1 binding in the literature (Risse et al., 1989; Gaub et al., 1990; 

Okuda et al., 1990). As shown in figure 4.3, mutants pCD7.1 and pCD7.2, which 

have a Cat nt position +5 of the GRE, result in CAT expression comparable to the 

consensus mutant pCD4. The latter construct also has a C at + 5 position. The other 

two mutants, pCD7.3 and pCD7.4, however, fail to respond in a similar fashion even 

though the AP-1 binding site is mutated. This indicates that the C at position + 5 is 

important for high levels of hormone induction and confirms results from previously 

done studies demonstrating the importance of this nucleotide in hormone induction 

and GR binding (Noordeen et al., 1990; Scheidereit et al., 1984, 1986). It is unlikely 

that the AP-1 motif creates steric hindrance for the binding of GR to this composite 

GRE. Instead, it is possible that some form of regulatory cross-talk occurs between 

GRand AP-1 at this composite GRE. This possibility has been further studied and 

is described in chapter 5 of this thesis. 

Results from the transformation and transient assays strengthen the contention 

that all three GREs are involved in transformation and gene expression, but it still 

does not prove that the newly identified GREs are in fact authentic. To further 

characterize the two GREs, double-stranded oligonucleotides corresponding to both 

elements were inserted into plasmids used and tested for their ability to respond to 

dexamethasone in transient assays and also for specific DNA-Protein interactions in 

vitro. As shown in figure 4.4, both GRE5WT and GRE6WT, cloned in pBLCAT2 

expression vector, were able to confer a more than two-fold induction with 

dexamethasone. This is probably the single most important evidence that both 
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putative GREs are in fact glucocorticoid response elements. Mobility shift assays 

done with these oligonucleotides demonstrated that these sequences bound to a 

highly specific protein or protein complex in HeLa cell extracts (fig 4.5), which 

constitutively expresses sufficient levels of glucocorticoid receptor. Similar complexes 

were also obtained in extracts from a monkey kidney cell line, CVl. However, the 

intensity of the retarded bands in CV1 extracts was far less than that obtained from 

equal amounts of HeLa cellular extracts and this confirms the fact that glucocorticoid 

receptor levels in CV1 cells are low (Pearce and Yamamoto, 1993). Further, UV

crosslinking experiments performed on the same cellular extracts demonstrated that 

at least two major proteins of 96-KDa and 45-kDa bind to both sequences. In 

addition, a few minor species in the 50 to 65-kDa range were also observed (Fig. 4.6). 

The 96-kDa protein corresponds to the size of the native glucocorticoid receptor 

(Hollenberg et al., 1985). The 45-kDa protein could be the major degradation 

product of the receptor (Singh and Moudgil, 1985) and the other slower migrating 

faint bands might represent other proteolytic degradation products. The 45-kDa 

proteolytic product has been shown to possess both the DNA binding and steroid 

hormone binding domains (Govindan and Gronemeyer, 1984; Singh and Moudgil, 

1985; Smith et al., 1989a). This could explain its interaction with DNA in fig 4.6. 

However, it cannot be assumed that glucocorticoid receptor is the only protein 

interacting with these GREs and the possibility of other cellular proteins binding to 

these sequences cannot be excluded. The remarkable similarities of bands obtained 

from both mobility shift and UV-crosslinking experiments to two different DNA 
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sequences strongly suggests interaction with a common protein( s ). Assuming an 

interaction of multiple proteins at both GRE5WT and GRE6WT, it is possible that 

they do so only in the form of a complex (as seen in mobility shifts or UV 

crosslinking) where protein-protein interactions are required for efficient binding. To 

exclude this possibility, proteins from HeLa cellular extracts were first seperated on 

a denaturing gel, transferred on a nitrocellulose membrane and then probed with 

radiolabelled GRE oligonucleotides (Fig. 4.7). This type of protein blotting analysis 

indicated that both GREs bound to a major 96-kDa protein which corresponds to the 

molecular size of the native glucocorticoid receptor (fig. 4.7). GRE5WT probe also 

occasionally bound to a faster migrating 45-kDa protein. In addition, a faint band of 

more than 97-kDa also appeared with both probes. However with the conditions 

employed and depending upon the amount of renaturation of the bound proteins, this 

band was not a consistently detectable finding. Denaturation of proteins by this 

method did not give reproducibly good results as far as interaction with the 45-kDa 

protein is concerned. However, the 96-kDa band always appeared with either 

oHgonucleotides and resulted in an exactly similar pattern. Similar binding patterns 

were also obtained from HeLa cellular extracts, in which this technique was first 

described to study interactions of GR with the GRE (Silva et al., 1987). In their 

study too, a minor 45-kDa and a faint band above 97-kDa was also seen with the 

MMTV GRE. It is highly unlikely that the two sequences, in spite of being very 

different, produce an exactly similar pattern in South-western blots. From these 

experiments it can be confidently concluded that the glucocorticoid receptors bind to 
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these putative GREs in vitro. 

The results in this study further clarify the results obtained for the 

transformation assays. It also addresses the issue of how steroid hormones, in the 

form of oral contraceptive pills, might act. According to my working hypothesis, 

steroid hormones most likely act directly by increasing the expression of HPV 16 

oncogenes after infection. It has been demonstrated in several studies that the levels 

of expression of the transforming genes of HPV 16 are important for in vitro 

transformation of primary or established cells (discussed in chapter 2). HPV 11 DNA 

is inactive in transforming BRK cells in the presence of dexamethasone (Pater et al., 

1989), although it contains a hormone responsive GREin its regulatory region (Chan 

et al., 1989). Interestingly, duplication of the HPV 11 enhancer region rendered the 

viral DNA oncogenic in the presence of dexamethasone in BRK transformation 

assays (Rosen and Auborn, 1991). This suggests that one GRE was not sufficient to 

induce expression of HPV 11 oncogenes to support BRK transformation. This could 

have some biological significance and might explain the presence and requirement 

of several GREs in the regulatory region of the oncogenic HPV type 16 DNA. It is 

also suggestive of an important role of steroid hormones in the multistep model of 

cervical cancer. 

7.3 Role of c-jun and c-fos in glucocorticoid-mediated expression of HPV 16. 

As mentioned earlier in this chapter, the GREat nt 7640 is a composite GRE with 

an overlapping AP-1 motif. The only other cGRE known to be able to interact with 
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both the GRand AP-1 proteins is the rat proliferin gene promoter cGRE (Diamond 

et al., 1990). Studies performed to establish the role of AP-1 in glucocorticoid

mediated induction have been done on sequence elements represented by 

oligonucleotides. To date, no data is available regarding the regulation of and role 

of the rat proliferin gene cGRE in the context of its whole enhancer. All studies 

done on this cGRE have used oligonucleotides (Diamond et al., 1990, 1990b; Miner 

and Yamamoto, 1992; Pearce and Yamamoto, 1993). Thus results obtained with 

cloned oligonucleotides do not necessarily address the biological significance of this 

element in expression of rat proliferin gene. It is very important to demonstrate that 

the effects one sees in isolated fragments also hold true in the context of an 

enhancer. Another important consideration is that not even a single study has shown 

by site-directed mutagenesis that both the GRE and overlapping AP-1 motif are 

indeed involved in this complex regulation. In this study, mutations of the nt 7640 

GRE or its overlapping AP-1 motif were used to demonstrate their role in 

glucocorticoid-mediated regulation. It is clear from fig. 5.2 and 5.3 that, in the 

context of the full-length HPV enhancer, presence of c-jun stimulated the basal level 

activity which was further enhanced in the presence of dexamethasone. On the other 

hand, c-fos negatively regulated hormone induction. Mutations of the GRE and AP-1 

site in pCPH2 and that of AP-1 in pCPH4 have undoubtedly demonstrated that both 

elements are required to observe this kind of regulation (fig. 5.3). In addition, 

smaller enhancer fragments of HPV 16 DNA, containing only the cGRE, directly 

addresses the functional requirement of c-jun for hormonal regulation (fig. 5.4a). 
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Interestingly, the pCDWT construct was inactive for dexamethasone-induction in P19 

cells (fig. 5.4a), whereas, simple GREs in pCD4 and pCD7.2 were responsive to 

hormone-induction even in the absence of c-jun (fig. 5.4). This indicates that c-jun 

is essential for hormone regulation at this HPV cGRE. This is further supported by 

the evidence that pCDWT responds to dexamethasone in HeLa cells (fig. 4.3), but 

not in P19 cells. This difference is probably because AP-1 activity in HeLa cells is 

derived mainly from the c-jun protein (Vogt and Bos, 1990), whereas, P19 cells 

consists of very low levels or no AP-1 activity (de Groot et al., 1990). Similar results 

have been shown for the proliferin cGRE (Diamond et al., 1990). Furthermore, 

mutations at the GRE and/or AP-1 site abrogated this response (fig 5.3b and 5.4), 

indicating that both GR and AP-1 binding is essential. However, although I do not 

have direct evidence that this HPV cGRE is occupied by both the GR and AP-1, 

indirect evidence is available in the literature. Thus, it has been shown that the nt 

7640 cGRE binds to the GR (Chan et al., 1989) and AP-1 (Cripe et al., 1990). Chan 

et al (1990) have demonstrated formation of at least 5 complexes at the cGRE in 

mobility-shift assays with HeLa cellular extracts. Competition analysis provided 

evidence that one of these complexes consists of AP-1 and it is likely that the GR 

also takes part to form any one of these retarded complexes. 

I might also add that the HPV 16 cGRE is the second example in the 

literature where c-jun and c-fos function as selectors of glucocorticoid-mediated 

induction, as previously hypothesized by Yamamoto (Diamond et al., 1990). 

According to this hypothesis, the ratio of functional c-jun and c-fos present in cells 
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and not their absolute amounts determines whether a cGRE responds positively or 

negatively to hormones. Thus, an interesting cross-talk has unfolded in the regulation 

of HPV 16 expression by two different signalling pathways. It might also be possible 

that different members of the AP-1 and steroid-hormone receptor family behave 

differently in hormonal regulation of HPV 16 expression, as demonstrated for the 

regulation of proliferin cGRE (Pearce and Yamamoto, 1993). It would also be 

interesting to examine if AP-1 also regulates progesterone-induction of HPV 16 

cG RE in a similar manner. 

7.4 Effect of steroid hormones on HPV type 16 transcription. 

In this study I have used cultured human ectocervical cells as a model system to 

examine the early events and the role of steroid hormones during HPV 16 infection. 

Transient transfection of whole HPV 16 genomes in cervical keratinocytes were 

assumed to resemble an HPV infection. Expression of HPV 16 RNA in this model 

system required either progesterone or glucocorticoid hormones (fig. 6.1). The 

progressive decrease in transcription of HPV genes by the hormone antagonist, 

RU486, demonstrated that this response was mediated by the hormone receptor. 

It has been suggested that hormones promote cervical cancer (Stem et al., 

1977; Beral et al., 1988; Bokhman and Urmancheyeva, 1989; Hildesheim et al., 1990; 

zur Hausen, 1991; Brinton, 1991; Honore et al., 1991; Bosch et al., 1992). This 

might occur through enhanced HPV oncogene expression in the target cells due to 
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their release of growth arrest by hormones. The Ki67 result (Fig. 6.1) suggests that 

this does not apply in this system, but does not exclude the possibility that a block in 

cell cycling in vivo is overcome by hormonally induced HPV 16 gene expression. 

Alternatively, hormones might first modulate the expression of other cellular genes, 

which then regulate HPV gene expression. However, the markedly enhanced 

induction observed with the consensus GRE mutant (pmHPV 4, Fig. 6.2), suggested 

a direct hormone action. Direct induction of viral gene expression was confirmed, 

as there was no detectable viral message when all the three HPV hormone responsive 

elements were mutated (pmHPV256, Fig. 6.4). In addition, all three double GRE 

mutations were also responsive to dexamethasone and progesterone, indicating that 

all three hormone response elements are independently functional and each one of 

them is sufficient for steroid hormone-dependent expression of HPV 16 mRNA in 

human ectocervical keratinocytes. In addition to the direct transcriptional role of 

hormones, it is possible that hormones could also be playing a role in stabilization of 

viral mRNA. In several systems, steroid hormones have been shown to be involved 

in the post-transcriptional stabilization of mRNA (Paek and Axel, 1987; Peterson et 

al., 1989; Nielsen and Shapiro, 1990; Mendelson and Boggaram, 1991; Pilkis and 

Ganner, 1992). However, in the case of HPV, our laboratory has already looked into 

the possible role of steroid hormones in post-transcriptional stabilization of HPV 

mRNA (Belaguli et al., 1992 unpublished data). Using actinomycin-D chase 

experiments, no significant differences were observed in the half life of HPV 16 E7 

mRNA, either in the presence of dexamethasone or progesterone. Thus the 
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increased RNA signals observed in the presence of hormones is likely to be at the 

level of transcription. 

This in vitro model system has a number of advantages, including many 

similarities to the cervical tissue and cervical lesion that it models. Primary human 

ectocervical cells are natural targets for hormone action (Gorodeski et al., 1989) and 

are permissive for expression of HPV 16 (fig. 6.1). As discussed earlier, in benign 

and low grade dysplastic cervical lesions HPV DNA is principally found in an 

episomal form, whereas, in most cervical carcinomas it is found integrated in the host 

genome (Durst et al., 1985; Cullen et al., 1991;). Since, only full length HPV 16 

genomes were transfected into the cervical cells, it would be reasonable to assume 

that this type of model mimics the natural early-stage HPV infection. As in benign 

lesions, HPV DNA in these transfected cells is also episomal (fig. 6.5), with all the 

viral ORFs under the control of their own regulatory region. This indicates that 

steroid hormones should have a pivotal role in early stages of HPV infection in which 

the bulk of HPV DNA is found in an episomal forrn.Another significant consideration 

is that progression to invasive cervical carcinoma almost always involves integration 

of viral DNA into the host chromosome (Durst et al., 1985; Schneider-Maunoury et 

al., 1987). It has been demonstrated by von Knebel Doebertiz et al. (1991) that these 

integration events can eliminate hormone-inducible expression of viral genes due to 

regulatory influences of flanking cellular sequences. In an episomal form, expression 

of the viral DNA will not be under the influence of cis acting cellular regulatory 

sequences and should always be responsive to hormones (von Knebel Doebertiz 
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et al., 1991). Based on these assumptions, it can be postulated that steroid hormones 

play an important role in the early stages of cervical carcinogenesis. 

For HPV 16-associated lesions, progression occurs in approximately half of the 

cases and also the frequency of progression increases with disease severity (Fuchs et 

al., 1989; Lorincz et al., 1992; Weaver et al., 1990), suggesting that early stage events 

are pivotal for progression. One important early stage event is the ability of the virus 

to replicate in infected cells. Replication of HPV requires the host cellular 

replication machinery and the virally encoded E1 and E2 proteins (discussed in 

chapter 1, section 1.2.3 and 1.2.4). Also, the cellular transcription factor, E2F, is 

proposed to be the prime target of E7 protein function (discussed in chapter 2, 

section 2.2.3). It is thought that E7 functions by releasing the transcriptional 

regulatory E2F factor from pRb complexes. The evolution of this function in HPV, 

as well as in SV 40, is not etiologically clear since there is no evidence that either one 

of these viruses uses the E2F factor for the transcription of viral genes. However, 

each of these viruses use host cell components for DNA replication. Interestingly, 

E2F is a critical factor for the expression of several proliferation associated genes, 

such as c-fos, c-myc, c-myb, and also for genes essential in DNA replication, such as 

DNA polymerase a: and dihydrofolate reductase (discussed in chapter 2, section 

2.2.3). Thus, as initially hypothesized by zur Hausen, it is possible that E7-mediated 

release of E2F from pRb complexes promotes cells entering the S phase, resulting 

in a favourable environment for viral DNA replication and, thus, viral growth. 

Expression of these viral regulatory genes in the absence of a lytic infection could 
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lead to continuous cellular proliferation and oncogenic transformation in concert with 

other cellular genetic events. Hormone-induced expression of E7, E1 and E2 

proteins at early stages could, therefore, be an important factor for the virus to 

replicate. As discussed earlier in this chapter, increased replication of viral DNA 

would also indirectly result in increased transcription and expression of HPV genes. 

Considering the above speculation, it was interesting to observe that in transfected 

ectocervical cells and in the presence of dexamethasone, a stronger signal was 

detectable in Southern blot analysis of low molecular weight DNA (fig. 6.5). It is 

intriguing to consider that hormones could have caused transient replication of viral 

DNA in this system. Alternatively, this increase could be due to differences in 

transfection efficiency. However, recently, transient replication of whole HPV 

genomes was demonstrated in transfected cells (del Vicchio et al., 1992). In this 

study, interestingly, replication of HPV 16 genomes could be achieved only by 

overexpressing the viral E1-E2 proteins. However, overexpression of these proteins 

was not required for replication of HPV 6, 11 and 18 DNA. This study has clearly 

indicated that the HPV 16 promoter is not strong enough to express sufficient levels 

of the viral E1/E2 proteins and that other inducing factors (such as hormones) may 

be required. In addition, increased detection of HPV DNA in oral contraceptive pill 

users (Vandenvelde and Beers, 1992) and during pregnancy (Schneider et al., 1987; 

reviewed in Ferenczy, 1989) has been demonstrated in HPV-positive lesions. 

Schneider et al (1987) demonstrated a 10-fold higher number of viral copies in lesions 

from pregnant women, compared to non-pregnant. Similar results were also obtained 
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from another study by Harding et al (1990). It is likely that increased detection of 

HPV in these cases was due to replication of the viral DNA. Similarly, in oral 

contraceptive users and during pregnancy, increased recurrence of HPV 11 infection 

has been observed in clinical cases of condylomata acuminata (Franceschi et al., 1983; 

Daling et al., 1986). Although indirect, these studies indicate that hormone-induced 

viral DNA replication could account for the increased detection or HPV positivity in 

clinical lesions. In most epidemiological studies, increased detection of HPV bas also 

been correlated with higher grades of clinical lesion, indicating that hormone-induced 

replication of virus could also be an important factor for progression of clinical 

disease (Negrini et al., 1990). This in vitro system, in my opinion, is a good model 

system to address the role of hormones in replication of transiently transfected HPV 

genomes. 

In conclusion, based on results obtained from many different studies and my 

study on the role of steroid hormones as an important cofactor for HPV -mediated 

oncogenesis, I would like to propose the following model (fig. 7.1). It is well known 

that the E6/E7 oncoproteins are involved in cell biologic effects, such as growth 

promotion (Von Knebel Doebertiz et al., 1988, 1991), immortalization (Hawley

Nelson et al., 1989) and altered differentiation (McCance et al., 1988; Woodworth et 

al., 1990a, 1992a). More recently, the HPV 16 E7 oncogene has been shown to 

induce chromosomal abnormalities in transfected mouse and human keratinocytes 

(Hashida and Yasumoto, 1991; Swisshelm et al., 1992). Thus, E7 has the potential 

to induce the various chromosomal deletions, translocations, duplications and 



Figure 7 .1. Hypothetical model of the possible role of steroid hormones in the 

pathogenesis of cervical carcinoma. 
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anueploidy typically observed in cervical carcinomas (Reid et al., 1984; Durst et al., 

1987; Sreekantaiah et al., 1988; Smith et al., 1989b ). In addition, hormone-induced 

expression of the viral E1 and E2 proteins will be important for viral replication. 

Considering these properties of viral proteins, I would like to propose that hormone

induced expression of the viral oncogenes in pre-neoplastic cervical cells would 

initiate altered cell growth, differentiation and chromosomal instability and 

abnormalities of the host genome (figure 6.6). These events could possibly be 

involved in facilitating or initiating integration of viral DNA into the host 

chromosome. Some of these random integration events would then deregulate 

expression of viral and cellular genes and probably initiate unkown pathways of 

progression into malignancy (zur Hausen, 1991). Similarly, increased replication of 

the virus at early stages might play an important role in progression of CIN lesions. 

Another important consideration is that RU486 abolished steroid hormone

dependent expression of HPV 16 genes in ectocervical cells (Fig. 6.1). Our 

laboratory had previously reported that the antihormone, RU486, inhibits 

transformation of primary rodent cells by HPV 16 (Pater et al., 1990). This raises the 

issue of whether RU486 or other antiprogestins could be used for prophylaxis and/or 

treatment of HPV -induced lesions. The development of new and safe antiprogestins 

could provide the prospect of a treatment modality for HPV-induced early cervical 

lesions. Significantly, clinical trials have indicated a potential use of RU486 as an 

alternative form of contraception (Nieman et al., 1987). My in vitro model system 

could be utilized to assess some of these potential therapeutic agents. 
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In summary, my work has established a definitive and direct role of steroid 

hormones in HPV-mediated oncogenesis of rodent cells and in HPV gene expression 

in cervical cells. Further studies are required to establish the role of hormones in 

progression of early-stage lesions and are discussed in the next chapter for future 

studies. 



Chapter 8 

FUTURE DIRECTIONS 

The studies initiated in this thesis are just a beginning towards the understanding of 

the role of hormones in HPV-mediated oncogenesis. The results shown for BRK 

transformation using HPV genomes with the GRE mutations are encouraging. 

However, a definitive role in the transformation process of cervical cells, the primary 

host cell of HPV infection, remains to be established. Although, many 

epidemiological, clinical and experimental studies support the hypothesis that 

hormones have a role at an early stage of the disease, further experimentation is 

required. The GRE mutations that I have generated in the HPV 16 LCR can 

provide useful information about the role of steroid hormones in HPV -mediated 

immortalization of primary human keratinocytes. A quantitative immortalization 

assay has been described by Schlegal et al ( 1988). In this study, the glucocorticoid 

hormone, hydrocortisone, was required for efficient immortalization of cultured 

primary human keratinocytes by HPV 16. In the absence of this hormone the 

immortalizing efficiency of HPV 16 DNA was about 5-fold less compared to those 

treated by hormone. More recently, similar results were also obtained for 

immortalization of oral keratinocytes by HPV 16 DNA (Sexton et al., 1993). 

However, it is not clear whether enhanced immortalization is due to the proliferative 

effects of hormones on cells (Gey et al., 1952; Rheinwald and Green, 1975) or is 
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related to hormone-induced expression of HPV oncogenes (discussed in chapter 7). 

These two different effects of hormones can be seperated and examined by using the 

different combinations of the GRE-mutated HPV 16 genomes in quantitative 

immortalization assays. For this purpose, I have designed and initiated the 

preparation of a triple consensus GRE mutation (termed pmHPV489), with all three 

GREs converted into consensus glucocorticoid receptor binding sites. The triple 

consensus GRE mutant (pmHPV 489), loss-of-function triple GRE mutant 

(pmHPV256), and nt 7640 consensus mutant (pmHPV4) can be used to directly 

examine the role of glucocorticoids in HPV -mediated immortalization of primary 

human cells. It would be most appropriate to use primary ectocervical cells. 

However, primary human foreskin keratinocytes can also be used, because both cell 

types give identical results in immortalization assays (Sun et al., 1992). In this type 

of experiment, one would expect the pmHPV 4 construct and the triple consensus 

GRE mutation to immortalize at a quantitatively higher frequency compared to the 

wild type HPV 16 genome. Similarly, the triple GRE mutant (pmHPV256) might be 

unable to immortalize or may do so at a very low frequency. Such experiments would 

indicate that hormones, which act directly through the GREs, are important for 

immortalization of these cultured cells. The results would also correlate very well 

with the BRK transformation assays and provide an appropriate model system to 

study the role of hormones in HPV-mediated oncogenesis. 

Recently, many investigators have focused their attention on the histological 

features imparted by HPV -immortalized cells in vivo, after transplantation in nude 
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mice. Similar experiments done in our laboratory have recently demonstrated that 

HPV 16-immortalized human foreskin or ectocervical cells displayed mild dysplasia 

after transplantation in nude mice (Sun et al., 1992). It would be interesting to 

examine the effect of hormone treatment in mice, especially of progesterone, on the 

in vivo histology of these immortalized cells. Also, cells immortalized by the single 

consensus GRE mutant (pmHPV4) and the triple consensus GRE mutant could be 

similarly implanted in nude mice. It is possible that in vivo, higher grades of dysplasia 

would be observed with these mutated HPV genomes. Such experiments would 

directly address the role of hormones in transformation and also in the progression 

of HPV -infected lesions. A more suitable experiment to examine the role of 

hormones in progression would be to use the human cervical cancer-derived cell line, 

W12, which contains only episomal forms of HPV 16 DNA (Stanley et al., 1989). 

These cells displayed mild dysplasia after in vivo transplantation. It would be 

interesting to examine whether hormones injected into nude mice make any 

difference in the in vivo histological pattern of HPV -containing cells after 

transplantation. It is possible that treatment of nude mice with progesterone and/or 

glucocorticoids will result in higher grades of dysplasia. If so, this would be 

experimental evidence of progression of HPV-containing lesions by hormones. 

Similarly, experiments can be done using anti-progestins, such as RU486, to examine 

if these hormonal effects can be reversed. 

Apart from a direct role in enhancing the expression of viral oncoproteins, 

hormones could also have an important role to play in HPV replication. The major 
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proteins involved in HPV replication are the E1 and E2 proteins (del Vicchio et al., 

1992; Remm et al., 1992; Chiang et al., 1992a). Thus, increased hormone-induced 

expression of these proteins during the early stages of HPV -infected cervical lesions, 

which contain viral DNA mainly in the episomal form, could result in an increase of 

viral copy number. This increase in viral copy number could then indirectly cause an 

increase in viral transcription due to template effect. This prediction is supported 

from several clinical studies demonstrating an increased detection of virus and the 

presence of higher viral DNA copy number during pregnancy and among oral 

contraceptive users (Vandenvelde and Beers, 1992; Schneider et al., 1987; reviewed 

in Ferenczy, 1989). The in vitro cervical cell system described in chapter 6 is a 

suitable system to study transient replication of HPV genomes. Recent studies have 

also demonstrated transient replication of whole HPV genomes in transfected cells. 

Interestingly, one study by del Vicchio et al (1992) has shown that HPV 16 genomes 

were unable to replicate in the absence of co-transfected E1 and E2, whereas, those 

of HPV 6, 11 and 18 were able to. Their study has emphasized the role of other 

viral and/or cellular factors which could be involved in the induction of HPV gene 

expression after infection. It is possible that steroid hormone-induced expression of 

HPV 16 E1 and E2 proteins result in increased replication of viral DNA. In addition, 

zur Hausen (1989a, 1991) has proposed that one of the roles of hormones could be 

amplification of viral DNA at an early stage of HPV infection. Studies could be 

carried out using primary ectocervical cells to demonstrate the role of hormones in 

viral DNA replication. Cervical cells could be transiently transfected by HPV 16 wild 
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type or mutant GRE-genomes and low molecular weight DNA extracted at different 

times. Presence of Dpni-resistant plasmid would then indicate the presence of 

replicating DNA. The GRE mutants can be very useful to delineate the putative role 

of hormones in viral DNA replication, especially the consensus GRE mutations and 

the loss-of-function mutations. Significance of this effect on replication, if any, in 

HPV-mediated oncogenesis is speculative at this point. However, it is clear that any 

positive result would indicate an important role of hormones in the virus life-cycle. 

At the molecular level, experiments could be initiated to examine the role of 

other cellular/viral factors, in addition to c-jun, NF-1 and OCT-1, in hormone

dependent transcription of viral genes. It is interesting to note that one of the HPV 

16 E2 protein-binding sites (nt 7450-7461) is located near the nt 7474 GRE. To date 

no definitive function has been assigned to the role of the two E2 motifs located in 

the HPV 16-enhancer region. It is presumed that these two sites might be solely 

responsible for the transactivating properties of the E2 protein. The two E2-binding 

sites near the promoter region have been shown to be involved in repression of HPV 

transcription (Tan et al., 1993). In addition, Gauthier et al (1991) have 

demonstrated, using cloned cellular factor binding sites, that E2 can cooperate with 

other cellular transcriptional factors, such as NF-1, AP-1, and the GR. Mutational 

analysis of the E2-binding site at nt position 7450 and the nt 7474 GRE mutation 

might shed some light on the possible interaction of the E2 protein and GR in 

modulating HPV expression. 

Another interesting area to study is hormone-independent transformation by 
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HPV 16. The HPV 16 transformed BRK cells obtained in the presence of hormones 

are dependent on these hormones for continous growth. However, upon withdrawal 

of hormones from the media, these transformed cells increasingly or over some time 

die and occasionally give rise to the appearance of colonies that are resistant to the 

growth stimulatory effects of glucocorticoids. Similarly, colonies that have appeared 

in the absence of dexamethasone could also be considered as glucocorticoid-resistant 

(results in chapter 2). Our laboratory has attempted to characterize the mechanisms 

involved in glucocorticoid resistance and have used hormone-resistant BRK 

transformed cells arising from a previously dependent cell line. Results have shown 

changes in the transcriptional initiation sites between the glucocorticoid-dependent 

and independent clones. It is clear from my studies that hormone-dependent 

transcription is directly through three GREs present in the HPV 16 regulatory region. 

It would be interesting to examine if the transformed colonies arising in the absence 

of dexamethasone also have changes in the transcription initiation sites compared to 

the ones obtained in the presence of hormone. In addition, the consensus GRE 

mutation in pmHPV 4 and the triple consensus GRE mutations in pmHPV 489 could 

be used to obtain transformed BRK cells that are more tightly regulated by 

hormones. Hormone-independent clones arising from these transformed cells could 

then be used to study the transcription and splicing patterns and compare them with 

their parental lines. Alternatively, clones arising in the absence of dexamethasone 

with these HPV constructs can also be used to examine such differences. These 

differences could be responsible for efficient translation of the E7 oncogene, which 
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is the major transforming gene of genital HPVs. It is reasonable to assume that 

differences in transcription and/or splicing patterns are responsible for the increased 

transforming frequencing of HPV in the presence of hormones (discussed in chapter 

7). Although this speculation has so far not been experimentally tested, it remains 

a posibility. A quick method to examine such transcriptional differences is the use 

of RNA-polymerase chain reaction technique (Falcinelli et al., 1992). 

In addition to the role of glucocorticoids and progesterone, it will also be 

interesting to examine the role of another steroid hormone, estrogen, in HPV

mediated oncogenesis. HPV gene expression in the HPV 16 containing cell line, 

SiHa, is induced by estrogens (Mitrani-Rosenbaum et al., 1989), although, no 

estrogen responsive element has been found or described in the HPV 16 LCR. This 

response could have been due to indirect effects, unlike the direct role of 

glucocorticoids and progesterone. So far, not many studies have addressed the role 

of estrogen in HPV -mediated oncogenesis. Importantly, the more commonly used 

forms of oral contraceptive pills contain both estrogen and progesterone as their 

major ingredients. This fact raises an interesting possibility of whether or not the 

combined effects of both hormones are largely responsible for the observed risk of 

developing cervical cancer in oral contraceptive users. A recent epidemiological study 

has shown that both the progesterone and estrogen components of oral 

contraceptives seem to be responsible for the observed risk associated with these pills 

(Vandenvelde and Beers, 1992). Estrogens could affect HPV gene expression by two 

different indirect mechanisms. First, it is known that estrogen treatment of target 
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cells, such as breast and oviduct, results in the induction of expression of 

progesterone receptors (Nardulli et al., 1988; Kastner et al., 1990). Estrogens could 

thus modulate HPV expression by induction of progesterone receptor expression in 

the target tissue. This hypothetical indirect mechanism can also result in synergistic 

effects of both hormones and can easily be tested in a transient gene expression assay 

using HPV enhancer regions cloned in CAT expression vectors. The breast 

carcinoma cell line, MCF-7, would be suitable to test this synergistic effect, since 

estrogen is known to stimulate progesterone receptor expression in these cells 

(Kastner et al., 1990). If results are positive then primary cervical cells should be 

used since they are also targets for estrogen action (Gorodeski et al., 1989). The 

second mechanism could be via induction of the cellular c-jun oncogene by estrogen 

(Wiesz et al., 1990; Chiappetta et al., 1992). As demonstrated in my present study, 

c-jun confers a positive response to dexamethasone in transient gene expression 

assays (chapter 5). However, it has also been demonstrated that estrogen induces 

expression of the c-fos protooncogene (Hyder et al., 1992), which negatively regulates 

hormone induction at composite GREs. Interestingly, the steroid hormones, 

progesterone and dexamethasone, but not, minerlocorticoids or androgens, inhibits 

estrogen-induced expression of c-fos (Kirkland et al., 1992). This indicates that the 

overall effect of estrogen and progesterone would be to enhance the expression of 

only c-jun. In this manner target cells will be more permissive for HPV expression 

in the presence of both hormones. Estrogen-mediated expresssion of c-jun can also 

directly stimulate HPV expression through the multiple AP-1 motifs in many HPV 
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LCRs (Chan et al., 1990; Thierry et al., 1992). As described earlier, nude mice 

implantation studies might provide in vivo evidence of any synergistic effect of both, 

estrogen and progesterone. 

In conclusion, it would be challenging to demonstrate, in the context of the 

natural target cell, a definitive role of steroid hormones in HPV-mediated 

oncogenesis and progression. The role of estrogen in HPV-mediated oncogenesis and 

that of progesterone and dexamethasone in replication of the viral DNA should be 

initiated. Using several of the above mentioned in vitro and in vivo studies, it is 

possible to understand more about the role of hormones as an important cofactor in 

the HPV life-cycle. 
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