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ABSTRACT 

The chemical compositions, antioxidant activities and oxidative stabilities of 

tree nut oils were examined. The oils of almonds, Brazil nuts, hazelnuts, pecans, 

pine nuts, pistachios and walnuts were extracted using two solvent extraction 

systems, namely hexane and chloroform/methanol. The chloroform/methanol 

system resulted in higher oil yield for each tree nut type examined. Pine nuts had 

the highest oil content while almonds had the lowest. The lipid class compositions 

of tree nut oils were analysed using thin layer chromatography-flame ionization 

detection and showed that triacylglycerols were the predominant lipid class present. 

Smaller amounts of sterols, sterol esters, phospholipids and sphingolipids were also 

present. The fatty acid compositions of tree nut oils were analysed using gas 

chromatography, showing that oleic acid is the predominant fatty acid in all samples 

except pine nut and walnut oils, which contained high amounts of linoleic acid. The 

sterol and stanol content and compositions were analysed using gas 

chromatography; ~-sitosterol was the predominant sterol compound present in all 

samples, with lower amounts of campesterol, stigmasterol, ~5-avenasterol, 22-

nordehydrocholesterol, 24-methylenecholesterol, cholesterol, cholestanol and ~­

sitostanol also present. The tocopherol compositions were analysed using high 

performance liquid chromatography, showing that a- and y-tocopherols are the 

predominant tocopherol isomers present; however o- and ~-tocopherols were also 

detected in some samples. 

The antioxidative components of tree nut oils were extracted using a solvent 

stripping process. The minor component stripped oils that remained after the 
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solvent stripping process were analysed for their chemical compositions as 

described above, and were also used in the oxidative stability studies. The lipid 

composition of the tree nut oil extracts showed that they contained phospholipids, 

sphingolipids, sterols and tocopherols. The total phenolics contents of tree nut oil 

extracts were analysed and showed that chloroform/methanol extracted oils had 

higher amounts of phenolic compounds than their hexane extracted counterparts. 

The antioxidant activity of tree nut oil minor component extracts were assessed 

using the Trolox equivalent antioxidant capacity, 1, 1-diphenyl-2-picrylhydrazyl 

radical scavenging capacity, P-carotene bleaching test, oxygen radical absorbance 

capacity and photochemiluminescence inhibition assay; results of these studies 

showed that extracts of chloroform/methanol extracted oils possessed higher 

antioxidant activities than extracts of their hexane extracted counterparts, while the 

extract of chloroform/methanol extracted pecan oil possessed the highest 

antioxidant activity. 

The oxidative stability of non-stripped and stripped tree nut oils were 

examined under two conditions, namely accelerated autoxidation and 

photooxidation. Progression of oxidation was monitored using tests for conjugated 

dienes, peroxide value, para-anisidine value and headspace volatile analysis. 

Primary products of oxidation persisted in the earlier stages of oxidation while 

secondary product levels increased dramatically during the latter stages of 

oxidation. Hexanal was the major headspace aldehyde formed in all oxidized 

samples except walnut oil, which contained primarily propanal. Results showed that 

chloroform/methanol extracted oils were more stable than hexane extracted oils in 
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both the accelerated autoxidation and photooxidation studies. Oils of pecan and 

pistachio were the most stable while oils of pine nut and walnut were the least 

stable. 
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CHAPTER I 

Introduction 

Several tree nut varieties serve as valuable oil crops due to their high oil yield, 

unique flavours and healthful lipid composition. Tree nut oils are primarily 

composed of triacylglycerols, but also contain diacylglycerols, monoacylglycerols, 

free fatty acids and other minor components, including natural antioxidants and fat­

soluble vitamins. Tree nuts in many cases provide rich sources of food lipids; up to 

75% on a wet weight basis [1]. With a few exceptions, tree nut lipids exist as a 

liquid at room temperature. Generally, tree nut oils are rich in monounsaturated 

fatty acids (predominantly oleic acid), but contain much lower amounts of 

polyunsaturated fatty acids (predominantly linoleic acid) and small amounts of 

saturated lipids [1]. In many parts of the world such as the Middle East and Asia, 

tree nuts are cultivated for use as oil crops and are important sources of energy and 

essential dietary nutrients as well as phytochemicals [2]. Tree nut oils are also 

components of some skin moisturizers and cosmetic products [3]. 

Tree nuts and their oils are known to contain several bioactive and health 

promoting components. Tree nuts have long been considered an important 

component of the Mediterranean diet [ 4] and in July 2003 the U.S. Food and Drug 

Administration approved a qualified health claim stating that consumption of 1.5 

ounces (42 g) per day of most tree nuts may reduce the risk of heart disease. 

Epidemiological evidence indicates that the consumption of tree nuts may exert 

several cardioprotective effects, which are speculated to arise from their lipid 

component that includes unsaturated fatty acids, phytosterols and tocols [4]. Recent 

investigations have also shown that dietary consumption of tree nut oils may exert 
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even more beneficial effects than consumption of whole tree nuts, possibly due to 

the replacement of dietary carbohydrate with unsaturated lipids and/or other 

components present in the oil extracts [ 4]. 

Much of the existing literature attributes the beneficial health effects of tree 

nuts and tree nut oils to their high oleic acid content; however, very little research 

has been conducted on the lipid compositions of tree nut oils and information 

regarding their minor components are lacking. Therefore, the objectives of this 

study were to (1) analyse the lipid composition of tree nut oils; including analysis 

of fatty acids, lipid classes, tocopherols, sterols and stanols, (2) examine the 

antioxidant activity of minor components of tree nut oils using a number of novel 

in-vitro assays, and (3) assess the oxidative stability of tree nut oils under 

accelerated autoxidation and photooxidation conditions. A further objective of this 

work was to ( 4) compare the effects of two oil extraction solvents, namely hexane 

and chloroform-methanol, on the previously stated components and variables. 
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CHAPTER2 

Literature Review 

2.1 Chemistry and Health Effects of Fats and Oils 

Fats and oils are essential dietary nutrients for humans, providing 9 

kilocalories per gram (kCallg) of energy [5]. Fats and oils are the two major types 

of edible lipids; fats are edible lipids from animal origin that are generally solid at 

ambient temperature whereas oils from plant sources are generally liquid at ambient 

temperature. Fats and oils are important dietary carriers of fat-soluble vitamins 

(vitamins A, D, E, and K) and are sources of essential fatty acids. Food lipids also 

impart desirable and in some cases characteristic tastes, flavours, and texture/mouth 

feel to foods [5]. 

Fats and oils contain predominantly triacylglycerols, which consist of three 

fatty acid molecules esterified to a molecule of glycerol. The fatty acid molecules 

of a triacylglycerol can be the same (simple triacylglycerol) or different (mixed 

triacylglycerol) [6]. The types of fatty acids present in fats and oils are largely 

responsible for their chemical and physical properties as well as their health effects. 

Fats and oils also contain a number of other minor components including 

phospholipids, sphingolipids, sterols and sterol esters, tocols, pigments and waxes, 

among others [7]. The amounts and types of minor components in fats and oils have 

long been recognized for their ability to improve the storage and keeping properties 

of fats and oils [8], however, a number of studies have also shown that some minor 
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component classes, such as tocols and sterols, exert beneficial health effects 

including cardioprotective and anticarcinogenic effects [9]. 

2.1.1 Fatty Acids 

Natural fatty acids are alkyl carboxylic acids and generally contain an even 

number of carbon atoms, they are usually unbranched straight chain molecules, 

however, odd carbon and branched chain fatty acids do occur in nature [6]. When 

the carbon atoms of the hydrocarbon chains of fatty acids are bound to their full 

complement of hydrogen they are classified as saturated. When the hydrocarbon 

chains of fatty acids contain one or more carbon-carbon double bonds, they are 

called unsaturated. Fatty acids with one double bond are referred to as 

monounsaturated while those with two or more double bonds are referred to as 

polyunsaturated. Generally, animal lipids contain high amounts of saturated fatty 

acids and tend to remain solid at ambient temperatures whereas most vegetable 

lipids contain predominantly unsaturated fatty acids and exist as liquids at ambient 

temperatures [ 6]. 

Trivial names have been given to many of the common fatty acids, but 

systematic names based on the International Union of Pure and Applied Chemistry 

(IUP AC) system of nomenclature indicate the length of the acid, the position and 

configuration of double bonds as well as the position of any functional substituents 

located on the alkyl chain of the acid. The IUP AC system numbers double bonds 

with relation to their position from the carboxyl group of the acid. However, 

another naming system accounting for the biological activity of fatty acids numbers 

their double bonds from the methyl end group; using this latter system it is only 

necessary to designate the position of the first double bond [10]. 
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2.1.1.1. Polyunsaturated Fatty Acids 

The omega-3 (n-3) and omega-6 (n-6) are the two most common groups of 

polyunsaturated fatty acids [10]. In nature the double bonds of these fatty acids are 

in the cis conformation and are methylene interrupted; this methylene group is 

called the bis-allylic group and is highly prone to hydrogen abstraction, which is 

known to initiate the development of rancidity [11]. Since the n-3 and n-6 fatty 

acids can not be synthesised by the body they must be obtained from dietary 

sources, thus they comprise the two essential fatty acid groups. 

Examples of n-3 fatty acids include their parent compound, a-linolenic acid 

(18:3 n-3), eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexanenoic acid 

(DHA; 22:6 n-3). Alpha-linolenic acid is the main n-3 fatty acid in plants and is 

present in the seeds of flax and evening primrose as well as in walnuts, canola and 

soybeans in significant amounts. EPA and DHA are derived almost exclusively 

from algal and marine sources. The n-6 fatty acids include their parent compound, 

linoleic acid (18:2 n-6), y-linolenic acid (18:3 n-6), and arachidonic acid (20:4 n-6), 

among others. The main sources of n-6 fatty acids in Western diets are the oils from 

cottonseed, soybean, peanut, com, sunflower and canola [12]. 

The parent compounds of the n-3 and n-6 fatty acid families are used to 

synthesise the other fatty acid members of these families in-vivo. Linoleic acid and 

a-linolenic acid are metabolised by a series of alternating enzymes known as the 

desaturases (which introduce another double bond into the fatty acid chain) and 

elongases (which elongate the fatty acid chain by two carbon atoms) [5]. It is 

believed that both n-3 and n-6 fatty acids are metabolized by the same group of 

enzymes and it has been established that the n-3 and n-6 fatty acids compete with 
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each other for entry into the desaturation and elongation pathways [13]. However, 

the enzyme systems have been shown to have a higher affinity for the n-3 fatty 

acids, such that the n-3 fatty acids will be preferentially metabolized [14]. 

In western diets, n-6 fatty acid intake far exceeds that of n-3 fatty acids which 

serves to significantly reduce the production of elongated and desaturated n-3 fatty 

acids by the body, despite the higher affinity of n-3 fatty acids for the enzymes 

involved with these processes. Because of this fact, nutritionists and dieticians 

consider the ratio of n-6 to n-3 fatty acid intake to be a better indication of essential 

fatty acid status rather than just the overall intake of each polyunsaturated fatty acid 

type. Optimal dietary n-6 to n-3 fatty acid ratios have been estimated to be between 

4:1 and 10:1, however, current Western diets have ratios between 10:1 and 20:1 

which indicates the need for dietary modifications in these populations [15]. 

Polyunsaturated fatty acids of the n-6 and n-3 families have several roles in 

the body including modulation of cell membrane structure, formation of short lived 

lipid based hormones known as eicosanoids (prostanoids, leukotrienes and hydroxy 

fatty acids), maintenance of skin integrity, and regulation of cholesterol metabolism 

[12]. A broad range of beneficial health effects have been associated with n-3 fatty 

acids including metabolic, genetic, cardiovascular, immunologic and mental health 

conditions [ 16]. 

2.1.1.2. Monounsaturated Fatty Acids 

Monounsaturated fatty acids contain only one double bond and are the most 

widely occurring fatty acids [10]. More than 100 monounsaturated fatty acids have 

been identified but the most common are the omega-9 (n-9) monounsaturated fatty 

acids such as palmitoleic acid (16:1, n-9) and oleic acid (18:1, n-9), and the n-6 
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fatty acid, namely vaccenic acid (18:1, n-6). Since monounsaturated fatty acids do 

not contain a bis-allylic methylene group, they are far more resistant to oxidation 

compared to polyunsaturated fatty acids [ 17]. With few exceptions, tree nuts and 

their oil extracts are rich sources of monounsaturated fatty acids. Many tree nut oils 

contain oleic acid at levels that exceed those in olive oil. Oleic acid has long been 

associated with cardiovascular health [18] and more recently with modulation of 

cellular signalling cascades in cancer cells [19]. 

2.1.1.3. Health Effects of Fatty Acids 

High dietary intake of saturated fats has been linked to arteriosclerosis and 

coronary disease [20]. Arteriosclerosis is a process in which fatty substances, 

especially cholesterol and triacylglycerols, are deposited in the walls of medium­

sized and large arteries. Cholesterol in the blood is transported in combination with 

specific aggregates of lipids and proteins called lipoproteins. Nonnally, most 

cholesterol is carried in low density lipoprotein (LDL), which is also a significant 

risk factor for coronary heart disease. Other plasma cholesterol in transported in 

high-density lipoprotein (HDL) [21]. Research findings indicate that when plasma 

HDL levels are high, coronary heart disease risk is lowered [22]. 

Saturated fats, particularly myristic and palmitic acids, have been shown to 

increase plasma cholesterol and LDL levels, however, stearic acid has not been 

shown to have atherogenic effects [23]. Consuming mostly polyunsaturated fatty 

acids tends to reduce the levels of both LDL and HDL, while research indicates that 

consuming mostly monounsaturated fats tends to reduce only LDL [24]. Grundy 

[23] has reported measuring plasma LDL and HDL after 4 weeks on a diet 

containing 40% fat from either palm oil (saturated fat), high oleic safflower oil 
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(monounsaturated fat), or high linoleic safflower oil (polyunsaturated fat). The 

poly- and monounsaturated fat diets are known to have equal effects on lowering 

plasma LDL. However, the polyunsaturated diet lower plasma HDL more 

frequently than the monounsaturated diets [23]. 

Studies using porcine endothelial cells show that oleic acid blocks endothelial 

activation [25]. For example, oleic acid reduces the damage caused by oxidation 

within endothelial cells [26], and it blocks the production of proinflammatory 

eicosanoids that cause endothelial inflammation [27]. Oleic acid has also been 

shown to reduce the passing of white blood cells into blood vessel walls, which is a 

key step in endothelial activation and atheroma development. In one study, oleic 

acid decreased the production of vascular cell adhesion molecule-1 that attaches 

white blood cells to the endothelium by 40% [28]. Oleic acid may achieve this 

effect by controlling the genes responsible for making the protein [29]. 

Fatty acids have also been shown to influence the development of cancerous 

tumours, with monounsaturated and n-3 fatty acids receiving the most attention for 

the potential beneficial effects. Recently, oleic acid was shown to reduce the 

activity levels of a gene called Her-2/neu, which occurs at high levels in over a fifth 

of breast cancer patients and is associated with highly aggressive tumours with a 

poor prognosis. In addition to suppression of this gene, oleic acid also improved the 

effectiveness of herceptin, a drug commonly used to fight aggressive breast cancers 

[30]. 

2.1.2. Acylglycerols 

Acylglycerols are acyl esters of glycerol and include monoacylglycerols, 

diacylglycerols and triacylglycerols (Figure 2.1 ). The terminal carbon atoms of the 
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glycerol backbone of acylglycerols are referred to as the sn-1 and sn-3 positions, or 

as the a-positions. The central carbon atom is referred to as the sn-2 orB-position. 

Monoglycerols may be either 1-acyl ( a-monoacylglycerol) or 2-acyl CP­

monoacylglycerol) isomers [10]. Diacylglycerols may be 1,2- or 2,3-diacylglycerols 

(a,p) or 1,3-diacylglycerols (a,a). Mono- and diacylglycerols are present in trace 

amounts in animal and plant lipids; however, significant levels are indicators of 

rancidity and are usually the products of active lipooxygenase enzymes [31]. 

Triacylglycerols are the main class of lipids in natural fats and oils. Natural 

triacylglycerols rarely contain three identical acyl groups; in many cases they 

contain two or three different acyl groups. The potential number of triacylglycerols 

present in a fat or oil rises quickly with the number of fatty acid moieties present, 

such that hundreds of triacylglycerols could be theoretically derived from 10 fatty 

acids. This, along with the fact that physical properties of triacylglycerols do not 

change significantly with fatty acid distribution, makes the analysis of 

triacylglycerols a very tedious and time consuming task [32]. 

Hydrolysis of acylglycerols by acid or alkali gives glycerol and a mixture of 

fatty acids. Enzymatic hydrolysis is another effective method for hydrolysis of fatty 

acids and can be used to perform hydrolysis with higher specificity, for example, 

pancreatic lipase can used be to hydrolyse the terminal fatty acids while leaving the 

P-monoacylglycerol intact [10]. 
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2.1.3. Phospholipids 

The tenn phospholipid denotes any lipid containing a phosphate group as 

either a mono- or diester. Many phospholipids also contain amino groups. 

Phospholipids are divided into two subclasses that include the glycerophospholipids 

and the sphingolipids [33]. All phospholipids contain a negatively charged 

phosphate group and two acyl chains. The hydrocarbon chains are hydrophobic 

whereas the phosphate and amino groups with opposite charges are hydrophilic, 

which makes phospholipids amphipathic molecules. 

A variety of groups can be added to the phosphate moiety of phospholipids 

using a phosphate diester (phosphodiester) linkage, which is referred to as the 

phospholipid head group. Phospholipids are a major component of biological 

membranes that separate cells and intercellular organelles from their external 

environments. Due to their thermodynamic properties phospholipids can 

spontaneously form a double layer in aqueous environments. In a real cell the 

membrane phospholipid molecules create a spherical three dimensional lipid bilayer 

shell around the cell [10]. 

Glycerophospholipids are the most common and abundant group of 

membrane phospholipids. They are essentially a,p-diacylglycerols with a head 

group containing phosphate attached to a terminal position (a-) of the glycerol 

molecule. With the exception of phosphatidic acid, the phosphate group forms a 

phosphodiester bond with the primary hydroxyl group of glycerol (sn-1 hydroxyl 

group) and the hydroxyl group of a polar head group substituent. In animal lipids 

the sn-1 position of glycerophospholipids are usually occupied by a saturated fatty 

acid while the sn-1 position almost always contains an unsaturated fatty acids. 
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There is no general consensus regarding the fatty acid distributions of plant 

glycerophospholipids [34]. Common glycerophospholipids include 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine 

(PS), phosphatidylinositol (PI), phosphatidylglycerol (PG) and phosphatidic acid 

(P A). Phosphatidylcholine (lecithin) is the most abundant glycerophospholipid in 

animals and higher plants; it contains a phosphorylcholine head group and is 

present in all cell extracts [35]. Lysophosphatidylcholine (LPC) is similar to PC 

except that only one of the two available glycerol hydroxyl groups is esterified to a 

fatty acid. Lysophosphatidylcholine is often found in samples containing PC [34], 

and in most cases LPC is unesterified at the sn-2 position [33]. The second most 

abundant glycerophospholipid m animals and higher plants IS 

phosphatidylethanolamine which contains a phosphorylethanolamine head group 

[34]. Phosphatidylserine is a common glycerophospholipid, it is weakly acidic and 

it is usually associated with potassium, calcium, sodium or magnesium ions which 

can be removed by washing the compound with water [33]. Its head group consists 

of phospho-L-serine. Phosphatidylinositol (monophosphoinositide) is a strongly 

acidic glycerophospholipid and is usually associated with calcium or magnesium 

[33]. It is widely distributed among the animal and plant kingdoms. The head group 

of PI is phospho-1-D-myo-inositol, which contains a six carbon cyclic sugar 

alcohol, inositol. Phosphatidylinositol may be further phosphorylated to give 

diphosphatidylinositol and triphosphatidylinositol (the polyphosphoinositides) [35]. 

Phosphatidic acid is a minor but widely distributed glycerophospholipid [35]. It is 

the precursor of all other glycerophospholipids as well as the triacylglycerols [33]. 
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Unlike the glycerophospholipids which contain esterified acyl chains, the 

sphingolipids are phospholipids with fatty acids combined as amides of long chain 

compounds containing an amino and two or more hydroxyl groups [10]. 

Sphingolipids include long chain amines, cerebrosides, gangliosides and 

sphingomyleins. 

2.1.4. Sterols and Stanols 

More than 40 plant sterols (or phytosterols) have been identified, but P­

sitosterol, campesterol, and stigmasterol are the most widespread (Figure 2.2). The 

various sterols differ with respect to the distribution of methyl and ethyl group 

substitutions on their side chains as well as the position and number of double 

bonds in their sterol ring structure. Stanols are saturated sterols, containing no 

double bonds in their sterol ring structure. The major plant stanols are sitostanol 

and campestanol; in nature they are less abundant than sterols. Sterolins are 

phytosterols in the glycoside form (attached to a sugar moiety). Sterols and stanols 

can be esterified with fatty acids to form sterol esters [36]. 

Plant sterols can be obtained using various methods. Purification of sterols 

from edible oils such as soybean, rapeseed, and sunflower oils is commonly carried 

out by different chemical companies to isolate reagent grade phytosterols, which 

are then further purified to produce pure or analytical grade sterols. Another 

interesting source material is tall oil, derived from the process of paper production 

from wood pulp, which contains a high proportion of plant stanols (primarily P-
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Figure 2.2. Chemical Structures of Sterols and Stanols 

sitostanol) than vegetable oils [37]. Sterol esters are more fat soluble than free 

sterols. In the intestine, sterol esters are hydrolysed to free sterols as part of the 

normal digestive process [38]. Approximately 5% of total dietary phytosterols are 

absorbed in humans, with the actual rate varying for individual sterols. Unabsorbed 

sterols are metabolised by intestinal bacteria [39]. 

When ingested, phytosterols are incorporated into micelles within the 

intestinal lumen and displace dietary cholesterol, thereby reducing cholesterol 

absorption [3 7]. Cholesterol absorption from both diet and enterohepatic circulation 

is strongly reduced in the presence of phytosterols [37]. Unabsorbed dietary 

cholesterol is removed from the body with the feces. Plant sterols or stanols may 

also reduce the esterification rate of cholesterol in the enterocyte, and consequently, 
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the amount of cholesterol secreted as chylomicrons [ 40]. Unlike cholesterol, 

phytosterols have a low capacity for intestinal absorption, which together with their 

high rate of biliary excretion by the liver, results in a low level of phytosterols in 

the blood [41]. However, when dietary cholesterol is replaced with phytosterols, the 

concentration of serum phytosterols increases slightly [ 42]. Controlled trials have 

shown that daily intake of 2.0 to 2.5g of plant sterols or stanols increases liver LDL 

receptor expression levels and causes an average reduction of LDL of up to 14% 

[ 43]. Phytosterols and phytostanols have also been shown to reduce LDL oxidation 

and animal studies show that they can reduce atheroma development [ 44]. 

2.1.5. Tocols 

Tocols occur in nature as eight different isoforms, namely a-, p-, y- and <>­

tocopherols and a-, P-, 'Y- and o-tocotrienols (Figure 2.3). Tocotrienols differ from 

tocopherols only in their aliphatic tail. Tocopherols have a phytyl side chain 

attached to their chromanol nucleus, whereas the phytyl chains of tocotrienols 

contain three double bonds. The various tocol isoforms differ in the number and 

location of their methyl substituents on the chromanol nucleus. The a- isoforms 

contain 3 methyl groups, the P- and y- isoforms have two, and the o- isoform has 

only one methyl group [45]. Alpha-tocopherol constitutes about 90% of the 

tocopherol in animal tissues [45]; it was originally designated d-a-tocopherol on the 

basis of its optical activity. There are actually three asymmetric carbon atoms in all 

tocol isomers, one at the 2-position of the chromanol ring, and the other two on the 

aliphatic chain, at the 4' and 8' positions; all being locations of methyl groups. The 

IUP AC advocates an R and S system of stereoisomer designation, rather than the 

"d-" and "1-" prefixes which indicate optical activity. Therefore, the common 
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natural form of a-tocopherol has the IUPAC name 2R,4'R,8'R-a-tocopherol (RRR-

a-tocopherol). 

Plants can synthesise tocopherols whereas animals can not; animals satisfy 

their tocopherol requirements by ingestion of preformed tocopherols. The main 

functions of tocols in both foods and in living organisms are to act as lipid phase 

antioxidants; however, they also have other important biological functions in 

animals. In animals, tocotrienols may not be assimilated as well as tocopherols [ 46, 

4 7]. The first dietary role discovered for the tocopherols was their function as 

essential nutrients for normal development of rat fetus [48]. Tocopherol fertility 
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restoration assays provided a basis for the international unit (IU) quantification 

system. The acetate of RRS-a-tocopherol was arbitrarily assigned the value of 

one IU per milligram (mg). Natural a-tocopherol (RRR-a-tocopherol) had an 

activity of 1.49 IU per mg, whereas synthetic a -tocopherol (a racemic mixture of 

8 to 23 stereoisomers) had an activity of 1.00 IU per mg. Beta-, y- and o­

tocopherols had activities of 0.60 IU, 0.30 IU and 0.015 IU per mg, respectively 

[ 49]. For a-tocopherol, the asymmetric carbon at the 2-position of the chromanol 

ring is the major determinant of its biological activity [45]. Enhanced precision of 

chemical techniques for the analysis of tocopherols and tocotrienols made 

biological activity assays unnecessary after the 1950's. The IU system is now 

considered obsolete and the United States Food and Nutrition Board now quotes 

Recommended Daily Allowances (RDAs) for vitamin E in milligrams rather than in 

IU [50]. 

Currently, the biological activity of tocopherols that attracts the most interest 

IS the prevention of lipid peroxidation. Alpha-tocopherol is the most active 

tocopherol against peroxyl radicals (ROO·) and o-tocopherol is the least active 

(a>y> ~ >o) [51]. The antioxidant activities of tocopherols are based on the ease 

with which the hydrogen on the hydroxyl group of their chroman ring can be 

donated to neutralize a free radical (creating a more stabile tocopheroxyl radical). 

As with phospholipids, the polar chromanol ring tends to stay near the outer edges 

of cell membranes, whereas the hydrophobic core will be buried deep into the 

membrane. When a phospholipid tail becomes peroxidized by a free radical, the tail 

becomes more polar and migrates to the surface of the membrane where it can react 

with the tocopherol chromanol ring to be neutralized, concomitantly forming a 
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tocopheroxyl radical. The tocopheroxyl radical can be regenerated directly by 

ubiquinol or vitamin C. 

Although important as antioxidants, tocopherols have many other biological 

activities and health functions. The different tocopherol isoforms do not have the 

same relative activities for each function. For example, y-tocopherol has been stated 

to be the most effective isoform for preventing breast cancer [52], whereas a­

tocopherol is more effective for reducing LDL oxidation and atheroma 

development [53]. Although y-tocopherol is the predominant dietary form of 

tocopherol in the American diet (mainly from vegetable oil and nuts), the liver 

preferentially loads LDL with a-tocopherol for delivery to the body; a-tocopherol is 

at least 5 times more plentiful in the bloodstream than y-tocopherol. Gamma -

tocopherol concentrates in certain tissues, constituting a third of total tocopherol in 

veins and nearly 40% of total tocopherol in muscle [54]. 

Tocols have the potential to act as pro-oxidants rather than antioxidants when 

co-antioxidants such as vitamin C are not available to neutralize the tocopherol 

radical. This condition is observed in systems under high oxidative stress [55]. 

There has been concern that a-tocopherol also reduces platelet aggregation through 

inhibition of protein kinase C [56]. A study of supplementation with 1000 IU daily 

of RRR-a -tocopherol for 12 weeks in healthy adults indicated that high doses of 

RRR-a -tocopherol may antagonize vitamin K [57]. However, another study of 

healthy elderly individuals taking up to 800 IU (727 mg) per day of RRR-a­

tocopherol for 4 months showed no increase in bleeding time [58]. 
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2.2. Lipid Oxidation 

2.2.1. Introduction to Lipid Oxidation 

Lipid oxidation can be defined as the oxygen dependent deterioration of lipids 

containing any number of carbon-carbon double bonds. Lipid oxidation is initiated 

by compounds known as sensitizers which include heat, light and metal ions. Lipid 

oxidation imparts undesirable flavours, aromas and compromises the nutritional 

quality of fats and oils, and leads to the production of toxic compounds. Lipid 

oxidation has been noticed since antiquity as a major problem in the storage of fats 

and oils and was first reported by Swiss chemist Nicolas-Theodore de Saussure 

(1746-1845) who observed that a layer of walnut oil exposed to air was able to 

absorb 150 times its own volume of oxygen during one year. He also noted that the 

oil became more viscous and developed an off-odour [59]. Systematic studies of 

lipid oxidation have been carried out since the 1940's when it was established that 

hydroperoxides are the primary products of the oxidation (or peroxidation) of 

unsaturated lipids [60]. 

Lipid hydroperoxides are themselves non-radical compounds, but readily 

decompose into toxic compounds. The formation of hydroperoxides occurs via 

several possible reactions involving activated species known as reactive oxygen 

species (ROS), which are also responsible for damage to various tissues in the 

body. Reactive oxygen species include hydroxyl radicals, lipid oxyl or peroxyl 

radicals, superoxide, and peroxinitrite formed from nitrogen oxide. Free radicals are 

defined as species capable of independent existence containing one or more 
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unpaired electrons. They are formed either by the loss or gain of a single electron 

from a non-radical. 

In fats and oils, the lipids involved in the oxidation process contain 

unsaturated fatty acids such as oleic, linoleic, linolenic and long chain 

polyunsaturated fatty acids, however, other unsaturated lipids present in fats and 

oils such as sterols do become oxidized during this process [60]. The rate at which 

fatty acids are oxidized increases with the degree of unsaturation. Lipid oxidation 

can take place via autoxidation, photosensitized oxidation (photooxidation), thermal 

oxidation, hydrolytic oxidation and enzymatic oxidation. 

2.2.1.1. Reactive Oxygen Species 

Lipid oxidation can be initiated when certain ROS abstract hydrogen atoms 

from unsaturated lipids, resulting in stabilization of ROS and the formation of lipid 

free radicals. Superoxide (02·1 is one of the most extensively studied ROS and is 

formed when an electron is added to molecular oxygen. The production of 

superoxide radicals at the membrane level is initiated in specialized cells with 

phagocytic functions (macrophages) and contributes to their bactericidal action. 

The flavin cytosolic enzyme xanthine oxidase found in all tissues and in milk fat 

globules generates superoxide radicals from hypoxanthine and oxygen. Superoxide 

is believed to be the initiator of many vascular diseases; most notably in the 

formation of foam cells by activated macrophages, which is proposed to lead to 

atherosclerosis [61]. Superoxide is acted upon in-vivo by superoxide dismutase to 

form hydrogen peroxide (H202), which is then reduced by catalase to form water. 

The hydroxyl radical ( OH) is a very active ROS which is formed in the 

presence ofFe2+ and H20 2 via the Fenton (1894) reaction: 
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Fe2+ + H202 - Fe3+ + . OH + OH-

This Fe2
+ catalysed decomposition of hydrogen peroxide is considered the most 

prevalent reaction in biological systems and leads to the formation of various 

deleterious lipid peroxidation products [62]. 

Nitric oxide ("NO) is produced in several biological systems and has been well 

studied in vascular tissue. While being poorly reactive, it reacts rapidly with oxygen 

to yield nitrogen dioxide ("N02) which in turn may react with nitric oxide to yield 

dinitrogen trioxide (N20J). The rapid reaction of o2·-, produced in different 

pathological states, with NO gives the extremely reactive peroxynitrite (ONOO) 

which mediates oxidation, nitrosation, and nitration reactions. Peroxynitrite 

decomposition forms ·oH and "N02. The high rate and broad distribution of "NO 

production in-vivo, combined with its high potential to react with oxygen radicals, 

makes ·NO a key interest of researchers studying free radical biology. Multiple 

mechanisms account for the nitration of lipids by "NO-derived species [63]. Nitric 

oxide is naturally formed in activated macrophages and endothelial cells and is 

considered as an active agent in several pathologies based on inflammation, organ 

reperfusion and may also play an important role in atherosclerosis [ 64]. 

The singlet oxygen eo2) form of oxygen is not a true radical but is important 

in reactions related to ultraviolet exposition (UV -A, 320-400 nm). Its toxicity is 

reinforced when appropriate photo-excitable compounds (sensitizers) are present 

with molecular oxygen. Natural sensitizers known to catalyze lipid oxidation 

include tetrapyrroles (such as bilirubin), flavins, chlorophylls and related pigments, 

hemoproteins and reduced pyridine nucleotides (such as nicotinamide adenine 

dinucleotide). Many of these sensitizers occur in foods and cosmetics, which makes 
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singlet oxygen a major concern in the long term storage of these products. The 

presence of metals contributes to the production of singlet oxygen; trace amounts of 

metal ions significantly accelerate the oxidation of unsaturated lipids and formation 

of hydroperoxides [65]. Singlet oxygen formation in lipids may account for the 

chemiluminescence observed during lipid oxidation. 

Similar to singlet oxygen cto2), ozone (03) is not a ROS but can produce 

them; 0 3 has been shown to stimulate lipid peroxidation and induce damage to 

lipids and proteins in-vivo. The exact chemistry of ozone-mediated lipid oxidation 

is not entirely understood, but it is proposed that 0 3 adds on across a double bond 

and then decomposes to form a free radical. The proposed mechanism is given 

below. 

H H H H 

I I 
R'--c=c-R" + o3 

I I 
R'--C C-R" 

I I o-o-o 

H H 

I I 
R'--C----C--R" 

I. I . 
0 00 

2.2.1.2 Autoxidation 

Autoxidation is a chain reaction involving three steps of initiation, 

propagation and termination [5]. The production of free radicals during the 

initiation phase requires an activation energy of approximately 35 kCal. For this 
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reason, initiators such as metal catalysts, light, heat, UV radiation, 10 2, and 

pigments are required. Once initiated, a hydrogen atom from an allylic or a bis­

allylic methylene group of a monounsaturated or a polyunsaturated fatty is lost to 

produce a hydrogen atom and an alkyl radical. The alkyl radical tends to be 

stabilized by molecular rearrangement to form a conjugated diene. 

-H 

Under aerobic conditions, conjugated dienes combine with 02 to give a peroxyl 

(alkoxy) radical, ROO·. Peroxyl radicals are able to abstract a hydrogen atom from 

another unsaturated lipid molecule, especially in the presence of metals such as 

copper or iron, thus causing an autocatalytic chain reaction. When a peroxyl radical 

combines with a hydrogen atom, a lipid hydroperoxide (or peroxide) is formed. 
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Alkyl radicals, peroxyl radicals and lipid hydroperoxides are collectively referred to 

as the primary products of lipid oxidation; these compounds are odourless and 

tasteless to humans and predominate in the early stages of lipid autoxidation [66]. 

Lipid hydroperoxides decompose in the presence of catalysts, thereby forming 

additional radicals; this reaction characterizes the propagation stage. In addition to 

radical formation, the decomposition of hydroperoxides gives rise to the formation 

of secondary products of lipid oxidation which include aldehydes, ketones, 

polymers and hydrocarbons, among others (Figure 2.4). These products are 

responsible for the characteristic off-odours and off-flavours of oxidized fats and 

oils. 

The chain reactions may be terminated by the formation of non-radical 

products and the termination steps are favoured when substrates (unsaturated fatty 

acids) or oxygen have been depleted. Alkyl radicals can react with ROO· to afford 

non-initiating and non-propagating species such as relatively stable dimers 

(ROOR). Stable bonds between lipid peroxides and proteins have also been 

observed. Lipid-phase antioxidants protect unsaturated lipids from oxidation 

because they act to neutralize free radicals before they can react with lipids. 

24 



(Poly) Unsaturated Fatty Acid 

l 
Alkyl Radical 

02 
--------1~ Activated Peroxide 

PUFA 

Ketones Alcohols 

Figure 2.4. Generalized Scheme for Autoxidation of Unsaturated Fatty Acids 

2.2.1.3. Photosensitized Oxidation 

Photosensitized oxidation is initiated by a sensitizer and light. In fats and oils, 

singlet oxygen can be generated by the action of photosensitizers such as natural 

pigments, including chlorophylls, pheophytins and haem-containing compounds 

[5]. Two pathways have been proposed for photosensitized lipid oxidation [67]. In 

one pathway (type I), the sensitizer absorbs light and reacts with a lipid substrate to 

form intermediates that can go on to react with ground state oxygen (triplet oxygen) 

to yield lipid oxidation products. In another proposed pathway (type II), molecular 

oxygen reacts with the sensitizer after light absorption and gives rise to oxidation 
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products. The products of photosensitized oxygen include both non-conjugated and 

conjugated diene hydroperoxides, whereas free radical mediated lipid oxidation 

produces only conjugated diene hydroperoxides [68]. Photosensitized oxidation is 

efficiently inhibited by carotenoids, which is the main protective role played by 

these compounds in plants. The inhibitory mechanism is thought to be through 

interference with the formation of singlet oxygen from triplet oxygen, which is 

achieved by absorbing light energy before it can react with triplet oxygen. In 

contrast, tocopherols inhibit photosensitized oxidation by quenching the previously 

formed singlet oxygen before it can react with unsaturated lipids, thus stabilizing 

the triplet oxygen form. Previously, it was shown that carotenoids are efficient 

inhibitors of photosensitized oxidation in vegetable oils, but only if tocopherols are 

also present to protect the carotenoids from oxidation [ 69]. 

2.2.1.4. Thermal Oxidation 

Thermal oxidation takes place when fats and oils are subjected to high 

temperatures, such as those encountered during deep fat frying. The breakdown 

products of fats and oils during thermal oxidation include volatile and non-volatile 

decomposition products, which influence the flavour of the oil and fried foods [70]. 

The volatile breakdown products, including aldehydes, lactones and pyrazines, 

influence the flavour of deep fried foods [71]. The non-volatile products include 

cleavage products of acylglycerols as well as polymers arising from formation of 

carbon-carbon bonds or oxygen bridges between radicals [72]. The non-volatile 

oxidation products contribute to the deterioration of frying fats by reducing their 

smoke, flash and fire points, and impart off-flavours and potentially toxic 

compounds to fried foods [73]. 
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2.2.1.5. Hydrolytic Oxidation 

Hydrolytic oxidation is due the reaction of lipids and water in the presence of 

a catalyst or by the action of enzymes. This pathway gives rise to free fatty acids as 

well as salts of free fatty acids [74]. This type of oxidation occurs most commonly 

in fats containing short and medium chain fatty acids. However, it also occurs 

during deep fat frying when the moisture in the material to be fried reacts with the 

triacylglycerols, hence releasing the free fatty acids. 

2.2.1.6. Enzymatic Oxidation 

Lipoxygenases (from plants or animals) catalyze reactions between oxygen 

and polyunsaturated fatty acids containing methylene interrupted double bonds. 

When arachidonic acid is the substrate, the hydroperoxides formed are the 

hydroperoxyeicosatrienoic acids (HpETE), which are then transformed into 

hydroxyeicosatrienoic acid products (HETEs ). These HETEs are also formed 

directly via cytochrome P450 induced reactions (mono-oxygenases) and sometimes 

also via cyclooxygenase enzymes. Six hydroperoxides (5-, 8-, 9-, 11-, 12-, and 15-

HpETE) are known to be formed from arachidonic acid in animal cells. 

Dihydroperoxy compounds may also be formed via the action of 5- and 15-

lipoxygenases. These compounds are important metabolic intermediates but are 

also bioactive. Cyclooxygenases (in plants and animals) catalyze the addition of 

molecular oxygen to various polyunsaturated fatty acids and convert them into 

biologically active molecules called endoperoxides, which are intermediates in the 

transformation of fatty acids to prostaglandins [75]. 
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2.2.2. Assessment of Lipid Oxidation 

Lipid oxidation can be measured by objective or sensory methods. Sensory 

methods of assessing lipid oxidation in foods are widely used but are time 

consuming and taste panels are difficult to maintain. Use of trained panelists has 

also changed the definition and such experiments may now be referred to as 

objective methods. 

Several objective methods have been developed to assess the extent of lipid 

oxidation in fats and oils and these include measurement of conjugated dienes, 

peroxide value, thiobarbituric acid reactive substances, para-anisidine value, 

volatile carbonyl compounds and several spectroscopic methods, including nuclear 

magnetic resonance (NMR) [76] and Fourier transform infrared (FT -IR) [77]. Many 

of the objective methods used to test lipid oxidation are empirical and their 

accuracy depends on standardization of the experimental conditions. 

The analytical methods used to evaluate the oxidative stability of fats and oils 

each have limitations and selecting an optimum test is difficult due to the 

complexity of the chemical processes involved. For this reason it is recommended 

that the progress of oxidation of edible fats and oils be monitored by more than one 

method, including at least one test for each of the primary and secondary lipid 

oxidation products. 

2.2.2.1. Conjugated Dienes 

Oxidation of polyunsaturated fatty acids is accompanied with an increase in 

the ultraviolet absorption of the product. Lipids containing methylene interrupted 

dienes or polyenes exhibit a shift in their double bond position during oxidation, 

which is due to isomerization and conjugate formation. The resulting conjugated 
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dienes can by quantified due to their strong absorption maximum at 234 nm. The 

absorption maximum of conjugated trienes is 268 nm [78]. The conjugated dienes 

of a sample are quantified by diluting a weighed amount of oil in isooctane and the 

absorbance is read spectrophotometrically at 234 nm [79]. 

Carotenoids and other molecules containing double bonds can absorb light at 

234 nm and may interfere with conjugated dienes determination, which is a major 

drawback of this method. However, this method is faster and simpler than other 

tests for primary products of lipid oxidation, requires a small sample size (> 10 mg) 

and does not depend on chemical or colour reactions [76]. 

2.2.2.2. Peroxide Value 

The peroxide value is a measure of the hydroperoxide content of a fat or oil, 

and thus is a test for primary lipid oxidation products. The peroxide value is most 

commonly measured quantitatively using an iodometric titration procedure. The 

principle of the peroxide value determination is based on the reduction of 

hydroperoxides with iodide (f). The liberated iodine is titrated with a standardized 

sodium thiosulphate (Na2S20 3) solution. Therefore, the amount of released iodine is 

proportional to that of the peroxides present. The peroxide value is expressed in 

units of milliequivalents of active oxygen (peroxide) per kg of lipid (meqlkg). The 

peroxide value is a measure of early stage lipid oxidation due to autoxidation and 

photosensitized oxidation, however, it is less useful during thermal oxidation 

because hydroperoxides decompose rapidly under high temperature conditions. 

Although popular, iodometric procedures have several potential sources of 

errors including addition of the liberated iodine to double bonds and also oxidation 

of iodide by air components. Results are also influenced by the structure and 
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reactivity of the peroxides as well as the reaction temperature and timing of the 

experiment. However, most of these problems have been addressed by currently 

accepted peroxide value procedures [76]. 

2.2.2.3. Thiobarbituric Acid Test 

The 2-thiobarbituric acid {TBA) test is a convenient method for the 

measurement of secondary products of lipid oxidation, referred to as TBA reactive 

substances (TBARS). This method tests for carbonyl-containing compounds, and is 

used primarily to quantify malondialdehyde (MA), an important decomposition 

product of unsaturated lipids with three or more double bonds, among others. 

During the TBA test, one molecule of MA reacts with two molecules of TBA to 

form a pink coloured TBA-MA adduct. The absorption intensity of this chromogen 

is measured at 532 nm [17]. 

A major disadvantage of the TBA test is that MA is only formed by fatty 

acids which contain three or more double bonds, however, other products such 

alkenals and alkadienals are also favoured, hence these all must be expressed as 

equivalents of MA. Despite its limitations, the TBA-test is commonly used to test 

lipid oxidation in fats, oils and foods. 

2.2.2.4. p-Anisidine Value 

The anisidine value is empirically defined as 100 times the absorbance of a 

solution resulting from the reaction of 1 g of oil or fat and p-anisidine in 100 mL of 

isooctane, measured at 350 nm in a 1 em cell [76, 80]. 

The anisidine test involves the condensation reaction between conjugated 

dienals or 2-alkenals in the sample and the p-anisidine reagent in isooctane, 

followed by absorbance measurement at 350 nm. In the presence of acetic acid, p-
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anisidine reacts with aldehydes producing a yellowish colour. The molar 

absorbance at 350 run increases if the aldehyde contains a double bond. The test is 

particularly useful with abused oils with low peroxide values such as frying oils. An 

aniside value of 10 or less is considered acceptable for edible oils. 

2.2.2.5. Active Oxygen and Oil Stability Instrument/Rancimat Methods 

The active oxygen method, or Swift test, is a common accelerated method for 

assessing oxidative stability of fats and oils. The method is based on the principle 

that formation of lipid hydroperoxides is accelerated when lipids are subjected to 

high temperatures while aerated [81]. 

Automated versions of the active oxygen method have been developed and 

include the Oxidative Stability Instrument (OSI}, Rancimat and Oxidograph. The 

OSI and Rancimat tests measure changes in conductivity caused by volatile ionic 

organic acids, mainly formic acid, automatically and continuously. This differs 

from the active oxygen method where peroxide value changes are determined. 

Rancimat and OSI tests proceed slowly at first because little amounts of acids are 

produced during the induction period. The endpoint of this test is selected as the 

point at which a rapid rise in conductance begins [82]. The Oxidograph test 

involves heating an oil sample exposed to air or oxygen which results in pressure 

decrease inside the reaction vessel. The change in pressure is measured 

electronically by means of pressure transducers, and the endpoint of the test is 

reached when pressure inside the vessel exhibits a marked decrease. 
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2.2.2.6. Headspace Analysis of Volatiles 

A common group of secondary oxidation products of unsaturated lipids are 

volatile aldehydes such as propanal, hexanal and nonanal which arise from the 

oxidation of n-3, n-6 and n-9 fatty acids. Other aldehyde lipid oxidation products 

include butanal, pentanal, 2-pentenal and octanal, among others. Malondialdehyde 

is a common secondary product of polyunsaturated lipid oxidation [83]. Various 

types of headspace gas chromatographic techniques have been developed to assess 

the composition of volatiles in oxidized fats and oils [83, 84]. Oxidized lipid 

samples are placed in closed vials and heated to vaporize the volatile components 

that result from the decomposition ofhydroperoxides. Following the heating period 

the sample vials are pressurized, and then the volatiles in the headspace above the 

sample are loaded onto a gas chromatograph column to be analysed. The total peak 

area of volatiles in this technique increases with the storage period of a sample. 

This method is particularly suitable for highly volatile compounds because they 

have a favourable equilibrium between a sample and its headspace. This method is 

rapid and suitable for routine analysis, but requires a significant investment of 

money in order to purchase the headspace sampler and a gas chromatograph to 

which it is dedicated [85]. 

The main disadvantage of this headspace analysis of volatiles is the difficulty 

of reaching complete equilibrium with viscous and semi-solid samples. 

Furthermore, polyunsaturated lipid samples can decompose during the heating 

period [86]. 
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2.2.2.7. Free Fatty Acids Test 

Presence of significant amounts of free fatty acids in a fat or oil is an 

indication of hydrolytic rancidity, but other lipid oxidation processes can also 

produce free fatty acids. Free fatty acids in a fat or oil are determined by acid-base 

titration. The free fatty acids value of a fat or oil is expressed as a percentage of a 

fatty acid common in the product being tested. Frequently, values are expressed as 

%oleic acid for tallow or soybean oil. For coconut oil or other oils that contain high 

levels of shorter chain fatty acids, FF A may be expressed as % lauric acid. It may 

also be useful to know the composition of the free fatty acids present in a sample to 

identify their source and understand the cause of their formation. The free fatty 

acids can be separated from lipid samples, which can then be analysed by gas 

chromatography for free fatty acid profiles if this information is needed. 

2.2.3. Control of Lipid Oxidation 

The oxidation of edible fats and oils can be controlled by application of 

antioxidants, using processing techniques that minimize tocopherol and other 

natural antioxidant losses, inactivation of prooxidant metals and enzymes, 

minimizing exposure to oxygen, heat and light, hydrogenation of polyunsaturated 

fats and the use of an inert gas or vacuum packaging to expel atmospheric oxygen 

before long term storage. Natural and synthetic antioxidants should meet certain 

criteria before application in fats and oils including safety, ease of incorporation, 

effectiveness at low concentrations, absence of undesirable odour, colour and 

flavour, and availability at low cost [87]. 
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2.2.3.1. Removal of Oxygen 

Oxygen is an essential reactant in lipid oxidation reactions. For this reason, 

control of oxygen availability is a critical factor in minimizing lipid oxidation. The 

oxygen level can be reduced by vacuum or modified atmosphere packaging and by 

using oxygen scavengers such as glucose oxidase [77]. These precautions reduce 

lipid oxidation, especially when combined with antioxidants and low temperature 

storage in the dark. 

2.2.3.2. Addition of Antioxidants 

Antioxidants are added to fresh fats and oils to retard oxidation and slow the 

development of rancidity. Antioxidants can not restore the quality of oxidized oils. 

Synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated 

hydroxytoluene (BHT), propyl gallate and tertiary-butylhydroquinone (TBHQ) are 

used in fats and oils to inhibit lipid oxidation, however, concern over their use is 

increasing due to their possible negative health effects, and currently there is 

considerable interest in natural replacements for these compounds. The 

effectiveness of natural antioxidants from fruits, vegetables, spices, grains, and 

herbs to combat lipid oxidation has been investigated [88]. 

Rosemary and green tea extracts have been shown to have antioxidant activity 

in lipids and lipid containing foods [89]. The antioxidant activities of rosemary 

extracts could be due to phenolic compounds such as carnosol, carnosic acid, 

rosmarinic acid, rosmanol, and rosemaridiphenol. Tocols are effective lipidic 

antioxidants and are commonly used as replacers of synthetic antioxidants in fats 

and oils [90]. 
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Antioxidants can be categorized as either chain breaking antioxidants 

(primary antioxidants) which interfere with the propagation steps of lipid oxidation, 

or preventative antioxidants (secondary antioxidants or synergists) which reduce the 

rate of initiation of lipid oxidation. Chain breaking antioxidants retard lipid 

oxidation by interfering with chain propagation or initiation by readily donating 

hydrogen atoms to peroxyl radicals. Preventive antioxidants enhance the activity of 

chain breaking antioxidants through such activities as binding of prooxidant metals, 

deactivation of singlet oxygen, absorption of ultraviolet radiation and 

decomposition of hydroperoxides to non-radical products. 

Phenolic compounds such as BHA, BHT, TBHQ and tocols are effective 

chain breaking antioxidants because they produce stable and relatively unreactive 

antioxidant radicals that do not propagate lipid oxidation reactions [91]. Preventive 

antioxidants can inhibit or delay lipid oxidation by decreasing ROS levels in the 

lipid medium. Chelating compounds are an important type of preventive 

antioxidant; these compounds deactivate metal ions which promote initiation and 

breakdown of hydroperoxides, and thus reduce the formation of secondary products 

of lipid oxidation. Chelating compounds include ethylenediaminetetraacetic acid 

(EDTA), citric acid and phosphoric acid [92]. Phenolic compounds are the most 

widely occurring natural chain breaking antioxidants. Tocols are important 

members of this group and serve as both free radical scavengers and singlet oxygen 

quenchers [93]. Carotenoids are the most common natural singlet oxygen quenchers 

[94]. 
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2.2.3.3. Packaging 

Photooxidation occurs in the presence of light and can be prevented if the fat 

or oil is stored in the proper packaging material. Containers that are opaque to light 

and impermeable to air and moisture are ideal for long term storage of fats and oils 

under ambient conditions. Polyvinyl chloride is a preferred packaging material 

because of its high impermeability to oxygen. Coloured or opaque containers are 

also preferred because they retard photooxidation [95]. 

2.3. Antioxidants and Antioxidant Activity Assays 

Antioxidants are defined as substances that when present at low 

concentrations compared to that of an oxidizable substrate, significantly slow down 

or delay the oxidation of that substrate [96]. They perform this function through a 

number of mechanisms, which include decreasing oxygen concentration present in 

foods, deactivating prooxidant metals and by neutralizing free radicals and ROS. 

Antioxidants present in foods are known to improve their shelf life by delaying 

lipid oxidation and development of rancidity. When ingested, antioxidants scavenge 

free radicals and may effect in the prevention of cancer, atherosclerosis and other 

chronic diseases [97]. Antioxidative compounds derived from foods are sometimes 

ingested in capsule form to fight the harmful effects of free radicals in foods and are 

referred to as nutraceuticals. 

Both natural and synthetic antioxidants are commonly added to foods to 

control lipid oxidation. Synthetic antioxidants approved for food use include 

phenolic compounds such as BHA, BHT and TBHQ and non-phenolics such as 

ascorbic acid, ascorbyl palmitate and erythorbic acid [98]. Natural antioxidants 

include carotenoids, ascorbic acid, amino acids and dipeptides, protein 
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hydrolysates, phospholipids, tocols and other naturally occumng phenolic 

compounds [99]. Antioxidants used in foods must be effective at low 

concentrations, stable through various processing conditions and impart minimal 

effects on colour, odour and flavour of foods [87]. 

2.3.1. Testing of Antioxidants and Antioxidant Activity 

Foods contain a complex mixture of antioxidants that can be extracted and 

tested in a variety of ways. Separation and testing of individual antioxidant 

compounds is impractical, time consuming and would not allow researchers to 

assess potential synergistic effects of food antioxidants. For this reason, several 

tests and antioxidant activity assays have been developed to assess the activity of 

natural mixtures of food antioxidants. The antioxidant activity measured by an 

individual assay reflects only the chemical reactivity under the specific conditions 

employed in that assay; for this reason it is appropriate to assess the antioxidant 

activity of complex antioxidant mixtures using a number of methods. 

2.3.1.1. Total Phenolics Content 

The total phenolics content (TPC) assay is a colorimetric test for phenolic 

compounds. This assay is based on the oxidation of phenolic groups with 

phosphomolybdic and phosphotungstic acids. The main reagent for this assay is the 

Folin-Ciocalteu reagent. The TPC assay was initially used to determine the 

phenolics content of beverages such as wine [100], but has also been used for other 

food types [ 101]. The exact chemical nature of steps involved in the total phenolics 

determination assay is unknown but it is believed to be based on one- or two­

electron oxidation-reduction reactions between heteropolyphosphotungstates­

molybdates and phenolic compounds. 
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Phenolic compounds react with the Folin-Ciocalteu reagent under basic 

conditions only. This reaction leads to the fonnation of a blue-green pigment that 

has an absorbance maximum at 750 nm. Many nonphenolic compounds such as 

vitamin C and Cu+ react with the Folin-Ciocalteu reagent, making the TPC assay 

less useful for quantitative detennination of phenolic compounds in antioxidant 

mixtures. However, good correlations have been observed between the TPC assay 

and antioxidant activity assays making the TPC assay a good measure of 

antioxidative strength [1 02]. Despite its non-specific nature, the TPC assay has 

become a routine test in the study of phenolic antioxidants. 

2.3.1.2. Trolox Equivalent Antioxidant Capacity 

The Trolox equivalent antioxidant capacity {TEAC) assay was first reported 

by Miller et al. in 1993 [103] and later revised in 1999 [104]. This assay is used to 

measure the free radical scavenging activity of antioxidants compared to that of 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a water soluble 

vitamin E analogue. In the currently accepted method, the free radical (ABTS"") is 

generated by persulphate oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-

sulphonic acid) (ABTS2
") (Figure 2.5). The ABTs·-, diluted in ethanol or phosphate 

buffered saline, is combined with antioxidants and the decrease in absorbance over 

a 6 min period is followed spectrophotometrically at 734 nm, which corresponds to 

the absorbance maximum of the ABTs·- radical. A standard curve using Trolox is 

prepared and used to calculate the TEAC values of antioxidant samples. In a recent 

modification of the TEAC assay, electrolysis of an ABTS2
- solution is done to fonn 

the ABTS cation radical {ABTs+·), which like ABTs·-, takes part in decolourization 

reactions with antioxidants [105]. 
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Figure 2.5. Scavenging of ABTs·· by Antioxidants 

Due to its simplicity, the TEAC assay is widely used to study the antioxidant 

capacity of foods, antioxidant extracts and pure antioxidant compounds. The TEAC 

values of ascorbic acid (1.05), a-tocopherol (0.97), glutathione (1.28), and uric acid 

(1.01) are almost the same. Ferulic acid (1.90) and p-coumaric acid (2.00) have 

comparable TEAC values. However, caffeic acid has a TEAC value of 1.00 even 

though its structure is similar to that of ferulic acid. The TEAC value difference 

between quercetin (3.00) and kaempferol (1.00) is also unexpected as both 

compounds have similar chemical structures [ 1 06]. 

2.3.1.3. 1,1 Diphenyl-2-picrylhydrazyl Radical Scavenging Capacity Assay 

1,1-Diphenyl-2-picrylhydrazyl radical (DPPH, Figure 2.6) is a stable and 

commercially available organic nitrogen radical and has an absorption maximum at 

515 nm. Upon reduction, the DPPH radical mixture fades and its absorbance at 515 
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nm is lost, making its progress easily monitored by a spectrophotometer. The DPPH 

radical is diluted in methanol or ethanol, and combined with antioxidants diluted in 

the same solvent. The absorbance of the mixture is monitored at 515 nm for 30 min 

or until the absorbance is stable. The percentage of the DPPH remaining at the end-

point of the assay is calculated as being proportional to the antioxidant 

concentration or activity. Another way to describe DPPH radical scavengmg 

capacity is to calculate the concentration of an antioxidant that causes a decrease in 

the initial DPPH concentration by 50%, defined as the IC5o [107]. 

Figure 2.6. Chemical Structure of the DPPH Radical 

The DPPH assay is technically simple, but some disadvantages limit its 

application. The DPPH radical is a relatively long-lived nitrogen radical, which 

bears no similarity to the highly reactive and transient peroxyl radicals involved in 

lipid peroxidation. Many antioxidants that react quickly with peroxyl radicals may 

react slowly or may even be inert to DPPH. Consequently, the antioxidant capacity 

may not be properly rated [108]. 

2.3.1.4. Hydroxyl Radical Scavenging Assay 

In this assay, hydroxyl radicals (HO") are generated by the Fenton reaction 

[109], in which Fe2+ donates an electron to hydrogen peroxide (H202) resulting in 

the formation ofFe3
+, hydroxide ions (HO") and hydroxyl radicals. 
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The production and concentration of hydroxyl radicals can be monitored using 

electron spin resonance spectrometry with 5,5-dimethyl N-oxide pyrroline as the 

spin trap [110]. However, the Fe2+1H20 2 radical generation system has 

disadvantages when applied to a scavenging assay since many antioxidants are also 

metal chelators. When the sample is mixed with the radical preparation, it may alter 

the activity of Fe2+ by chelating it, and as a result, it is impossible to distinguish 

whether an antioxidant is acting as a metal chelator or hydroxyl radical scavenger. 

Antioxidants in food (such as vitamin C) may act as pro-oxidants by reducing Fe3
+ 

to Fe2
+, making the generation of hydroxyl radicals catalytic. Ascorbic acid was 

later used in the Fenton reaction to create a constant flux of hydroxyl radicals [111]. 

Recently, a fluorometric assay has been developed for screening the metal ion 

chelating capacity of dietary antioxidants [112] and is named the hydroxyl radical 

averting capacity (HORAC). The method employs a Co2+ complex mediated 

Fenton-like reaction. Fluorescein (3 ',6' -dihydroxyspiro[isobenzofu.ran-1, 9'­

xanthen]-3-one; FL) is used as the oxidant probe, and the fluorescence decay curve 

of FL is monitored in the absence or presence of antioxidants. The area under the 

fluorescence decay curve (AUC) is then integrated, and the net AUC is calculated 

by subtracting the AUC of the blank from that of the sample antioxidant. A wide 

range of phenolic antioxidants have been analyzed using the HORAC assay [112]. 
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2.3.1.5. Oxygen Radical Absorbance Capacity 

Originally developed by Cutler and Cao [113], the first version of the ORAC 

assay employed P-phycoerythrin (P-PE, a fluorescent protein isolated from 

Porphyridium cruentum) as the probe. The fluorescence decay of P-PE is an 

indication of damage from its reaction with the peroxyl radical. However, later 

studies found that P-PE suffered from several disadvantages; these include, P-PE, a 

protein product, has a large lot-to-lot variability, P-PE is extremely sensitive to 

photobleaching and P-PE interacts with polyphenols due to the nonspecific protein 

binding and loses fluorescence even without added radical generator. 

To solve the problems associated with P-PE, the fluorescent probe was 

replaced with fluorescein (FL) [114]. Fluorescein (Figure 2.7) is a synthetic non­

protein probe that overcomes the limitations of P-PE. The ORAC assay provides a 

direct measure of the hydrophilic and lipophilic chain-breaking antioxidant capacity 

versus peroxyl radicals [115]. In general, samples, controls, and standards are 

mixed with FL solution and incubated at 37 ·c before radical solution (2,2'­

azobis(2-amidinopropane) dihydrochloride; AAPH) is added to initiate the reaction. 

The fluorescence intensity (485 nm excitiation/525 nm emission] is measured every 

min for a predetermined time (usually 30-35 minutes). As the reaction progresses, 

FL is consumed and its fluorescence intensity decreases. In the presence of 

antioxidant, the decay ofFL fluorescence is retarded. 
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HO 

Figure 2. 7. Chemical Structure of Fluorescein 

The ORAC values of samples are obtained by calculating of the area under 

the time resolved fluorescence curve (AUC) and net AUC (AUCsampie - AUCbiank) 

for each sample, and using a standard curve constructed with a reference 

antioxidant to relate the net AUC to antioxidant activity. The advantage of the AUC 

approach is that it applies equally well for both antioxidants that exhibit distinct lag 

phase and those samples that have no lag phase. This approach is particularly useful 

for food samples and extracts, which are often mixtures of multiple antioxidants 

and have complex reaction kinetics. 

The ORAC assay has been broadly applied in the food and supplement 

industry as the method of choice to quantify antioxidant activity. When testing lipid 

soluble antioxidants, compounds that enhance their solubility such as methylated 

cyclodextrins are added to the assay media; these non-antioxidant compounds are 

necessary in order to properly assay the ORAC of lipidic antioxidants [115]. 

Recently, an antioxidant database has been generated archiving ORAC assay and 

total phenolics content assay results for common foods and supplements [116]. 
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2.3.1.6. Photochemiluminescence Inhibition Assay 

In the photochemiluminescence (PCL) inhibition assay, the generation of free 

radicals is achieved by photochemical excitation of a photosensitizer, which is 

accompanied by chemiluminescence of a chemiluminescent detection reagent. The 

chemiluminescence reaction can be accurately measured with fiberoptic based 

photosensors. The PCL inhibition assay is induced by optical excitation of a 

photosensitizer (S) causing the generation of the superoxide radical (0£-). 

S + 02 + hv--+ S*02--+ S* + 02.-

The superoxide radicals generated are visualized through their reaction with 

chemiluminescent detection reagent, resulting in the emission of light. In the PCL 

inhibition assay, luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) is used as 

both the photosensitizer and the chemiluminescence detection reagent. In the 

presence of antioxidants that scavenge superoxide, the extent of the 

chemiluminescent reaction is reduced. The extent of PCL inhibition (in minutes or 

AUC) is used to calculate antioxidant activity of a sample compared to that of a 

standard antioxidant. The steps of the reaction as they take place in the Analytik 

Jena Photochem® (Delaware, OH) are depicted in Figure 2.8. The PCL assay can 

be performed in either the ACW mode for hydrophilic antioxidants or in the ACL 

mode for hydrophobic antioxidants. The main difference in the two modes is that 

the assay mixture in the ACW mode is comprised mainly of carbonate buffer 

whereas the ACL mode assay mixture contains mostly methanol with small 

amounts of carbonate buffer. The presence of methanol in the ACL assay mixture 

allows for complete solubilization of hydrophobic antioxidants when present at low 

concentrations [ 117]. 
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Figure 2.8. Photochemiluminescence of Luminol and Superoxide 

2.3.1.7. Low Density Lipoprotein Oxidation Assay 

Oxidation of LDL is a known risk factor leading to atherosclerosis, and much 

interest in the ability of antioxidants to protect LDL from oxidation exists since this 

may reduce the incidence of cardiovascular disease [118]. Many methods exist that 

examine the ability of antioxidants and food components to inhibit LDL oxidation. 

Copper-catalysed and MPH-mediated oxidation have been widely utilised and the 

inhibitory activities of antioxidants have been assessed by measuring the production 
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of hexanal, conjugated dienes and cholesterol ester hydroperoxides [119]. In the 

copper-catalysed system, antioxidant efficacy can be attributed to both free radical 

scavenging and metal ion chelation activities of antioxidants. The ability of 

phenolic compounds to form complexes with proteins may provide an alternate 

mechanism for their antioxidant activity in the copper-catalysed LDL oxidation 

assay by blocking copper catalysts from binding to the LDL molecule and thereby 

protecting LDL lipids from oxidation [120]. 

2.3.1.8. DNA Scission Assay 

During the early twentieth century, radiation biologists discovered that 

radiolysis of water generates oxygen free radicals (most notably the hydroxyl 

radical), which are responsible for many of the consequences of irradiation in living 

organisms. The characterization of radiation-induced oxidative DNA scission, and 

the connection between radiation and cancer, has led to interest in DNA oxidation. 

DNA scission is referred to single stranded lesions, or nicks, in the sugar phosphate 

backbone of DNA and is caused by oxidation of the DNA molecule by free 

radicals. Living cells do possess DNA repair enzymes, but these systems do not 

function well during oxidative stress when the concentration of oxidants exceeds 

the cells ability to quench these reactive compounds and repair the DNA damage 

they cause [121]. Concerns about artifactual oxidation, combined with the different 

values that have been generated by alternative methods, have promoted ongoing 

debate over the most appropriate techniques for studying DNA oxidation. Current 

methods include GC-MS analysis of oxidatively modified DNA bases, immuno­

histochemistry with antibodies reactive towards altered DNA and gel 

electrophoresis [121]. Each method has advantages and drawbacks. Since DNA 
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strand scission causes significant changes to the three-dimensional structure of 

DNA macromolecules, gel electrophoresis followed by treatment with intercalating 

dyes such as ethidium bromide is the most convenient method for quantitation of 

DNA scission. 

Several model systems have been developed to study the protective effects of 

antioxidants against free radical induced DNA damage, and one popular system 

uses a Fe2+-EDTA chelate incubated with DNA and hydrogen peroxide to induce 

DNA damage by hydroxyl radicals [122]. 

2.4. Tree Nuts 

Tree nuts are widely consumed as snack foods. They are rich sources of 

protein (up to 30%, w/w) and lipids (up to 75%, w/w). They contain several health 

promoting components including monounsaturated fatty acids, dietary fiber, 

phenolics and potentially other healthy components [1, 123]. Currently, there is 

much interest in the health effects of regular nut consumption, particularly in the 

long-term prevention of cardiovascular disease [123] 

2.4.1. Almond 

The almond tree (Prunus de/cis and Prunus amara) and its fruit 

(containing the almond kernel or 'almond') have long been recognised as being 

commercially valuable and nutritionally important. California and Italy are the 

major almond producing regions of the world, however, other parts of Europe, Asia 

and Australia also contribute to a lower level of production [124]. The only other 

economically important product of almond trees is the almond hull, which is 

traditionally used in animal feed preparations. Several studies have reported that 

almond consumption may improve blood lipid profiles by lowering low density 
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lipoprotein (LDL) cholesterol and raising plasma high density lipoprotein (HDL) 

cholesterol levels. Thus, there is much current interest in almond oil as a health 

promoting edible oil [125]. The proximate composition of almond comprises 50.6% 

lipid, 21.3% protein, 19.7% carbohydrate, 3.1% ash and 5.3% moisture(w/w) [1]. 

The defatted meals and hulls of almonds contain several antioxidative 

compounds as well as other health promoting substances. Senter et al. [126] 

performed a comparative analysis of phenolic acids in selected tree nut meals 

including pine nut, almond, hazelnut, chestnut and walnut, among others. The 

results of this study showed that gallic acid was the predominant phenolic 

compound in all tree nut meals except pine nut (caffeic acid), almond and hazelnut 

(protocatechuic acid). Other phenolic compounds identified included p­

hydroxybenzoic, p-hydroxyphenylacetic, vanillic, syringic and ferulic acids [126]. 

The antiradical activity of ethanolic extracts of almond and almond by-products 

including brown skins and hulls have been reported [127]. The Trolox equivalent 

antioxidant activity of brown skins and hulls were 13 and 10 times greater than that 

of the whole almond extracts [127]. At a concentration of 200 ppm, ethanolic 

extracts of almond skins and hulls had strong scavenging activities against 

superoxide radical (95 and 99%, respectively), hydrogen peroxide (91 %), hydroxyl 

radical (100 and 56%, respectively) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

(100%) [127]. Sang et al. [128] isolated nine phenolic compounds from almond 

skins and assessed the DPPH scavenging activity of each compound; catechin and 

protocatechuic acid had the greatest antioxidant activity, followed by 3 '-0-

methylquercetin 3-0-~-D-galactopyranoside, 3 '-0-methylquercetin 3-0-~-D­

glucopyranoside and 3 '-0-methylquercetin 3-0-a-L-rhamnopyranosyl-(1--+6)-~-D-
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glucopyranoside and vanillic and p-hydroxybenzoic acid, nanngerun 7-0-P-D­

glucopyranoside, and finally kaempferol 3-0-a-L-rhamnopyranosyl-(1--+6)-P-D­

glucopyranoside [128]. Frison-Norrie and Spoms [129] quantitatively determined 

the flavonol glycoside composition ofblanched almond skins using matrix-assisted 

laser desorption/ ionization time-of-flight mass spectrometry, showing the presence 

of isorhamnetin rutinoside (51J,tg/g), isorhamnetin glucoside (18J,tg/g), kaempferol 

rutinoside (18J,tg/g) and kaempferol glucoside (6J,tg/g). More recently, Pinelo et al. 

[130] reported the total phenolics content and DPPH scavenging activity of almond 

hull ethanolic extracts at 3.74mg/g and 58%, respectively. Sang et al. [131] also 

isolated potentially health promoting sterols, nucleotides and one sphingolipid, 1-0-

P-D-glucopyranosyl-(2S,3R,4E,8Z)-2-[(2R)-2-hydroxyhexadecanoylamino]-4,8-

octadecadiene-1 ,3-diol, from defatted almond meals. In light of data showing that 

tree nuts, tree nut oils and tree nut by-products contain heath promoting 

phytochemicals, Davis and Iwashi [132] examined the effects of dietary 

consumption of whole almonds, almond oil and almond meal on aberrant crypt foci 

development in a rat model of colon carcinogenesis. This landmark study showed 

that both almond oil and almond meal reduced aberrant crypt foci development, but 

whole almonds showed a significantly stronger anticancer effect in this model, 

implying a synergistic anticancer activity between the lipidic and non-lipidic 

constituents of almonds [132]. 

Shi et al. [133] assessed the fatty acid composition of almond oil; oleic 

acid was the major fatty acid present (68%), followed by linoleic acid (25%), 

palmitic acid (4.7%) and small amounts (<2.3%) of palmitoleic, stearic and 

arachidic acids. Almond oil is also a rich source of a.-tocopherol (around 390 
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mglkg) and contains smaller amounts of y-tocopherol (12.5 mglkg) as well as 

phylloquinone (70 J.Lg/kg) [1, 134]. Almond oil contains 2.2 to 2.6 glkg 

phytosterols, mainly rl-sitosterol, with trace amounts of stigmasterol and 

campesterol [1, 134]. The compositional characteristics of almond oil show that it is 

rich in several health promoting nutrients. Many of these may be responsible for the 

observed beneficial effects of dietary almond consumption in cardiovascular 

diseases [135] and in weight management [136], however, few investigations have 

explored this topic. Hyson et al. [137] conducted a dietary intervention study to 

determine whether the consumption of whole almonds or almond oil for 6-weeks 

would result in similar or different effects on plasma lipids and ex-vivo LDL 

oxidation. Both groups consumed diets with identical almond oil and total fat 

levels. This study showed that both whole almond and almond oil consumption 

caused similar reductions in plasma cholesterol and LDL (4 and 6%, respectively) 

as well as a 14% decrease in fasting plasma triacylglycerols. These findings 

indicate that the lipid component of almond is responsible for its cardioprotective 

effects and warrants further investigation [137]. 

Several lines of evidence suggest that regular consumption of whole almonds 

as part of a healthy diet can help improve several parameters related to 

cardiovascular health which include lowering of LDL cholesterol and total plasma 

lipids [138]. Sabate et al. [139] compared the effects of two amounts of almond 

intake with those of a National Cholesterol Education Program (NCEP) Step I diet 

on serum lipids, lipoproteins, apolipoproteins, and glucose in healthy and mildly 

hypercholesterolemic adults. The NCEP Step I diet is known to reduce LDL 

cholesterol by 3-10%. The experimental diets included a Step I diet, a low-almond 

50 



diet, and a high-almond diet, in which almonds contributed 0, 10 and 20% of total 

energy, respectively [139]. Inverse relationships were observed between the 

percentage of energy in the diet from almonds and the subject's total cholesterol, 

LDL-cholesterol, and apolipoprotein B concentrations and the ratios of LDL to 

HDL cholesterol and apolipoprotein B to apolipoprotein A. Compared with the Step 

I diet, the high-almond diet significantly {p<O.Ol) reduced total cholesterol by 0.24 

mmol/L or 4.4%, LDL cholesterol by 0.26 mmol/L or 7.0%, and apolipoprotein B 

by 6.6 mg/dL or 6.6%, and increased HDL cholesterol by 0.02 mmol/L or 1.7% 

and decreased the ratio of LDL to HDL cholesterol by 8.8%. Results of this study 

showed that incorporation of 68 g of almonds (20% of energy) into a 2000 kCal 

Step I diet markedly improved the serum lipid profile of healthy and mildly 

hypercholesterolemic adults [139]. Similar findings have been reported by other 

researchers using roasted almonds [140], and animal model studies have also 

reported on the cardioprotective effects of almond consumption [ 141]. 

2.4.2 Brazil Nut 

Brazil nuts (Bertholletia excelsa) are widely consumed but are produced 

mainly in South America, with total world production estimated at about 20,000 

metric tonnes. Bolivia, Brazil and Peru are the main Brazil nut producing nations 

[142]. Brazil nuts are traded mainly in the form of kernels (i.e. shelled) and are used 

in confectionery, bakery and health foods. Brazil nuts contain 66-69% lipid, 14.3% 

protein, 12.2% carbohydrate, 3.5% ash and 3.5% moisture (w/w) [1, 143]. Brazil 

nut oil is used in areas of its production as cooking oil and is being promoted on the 

export market [142]. Since the export value of shelled Brazil nuts is so high, usually 

only defective Brazil nuts (cracked and partially oxidized) are extracted for their 
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oils that can result in oils with acid values and peroxide values as high as 5.9 mg 

KOH/g oil and 7.6 meq 0 2/kg oil, respectively [144]. The fatty acid composition of 

Brazil nut oil includes 29-48% oleic acid, 30-61% linoleic acid, 14-15% palmitic 

acid, 6-8% stearic acid and 0.5% myristic acid [143, 145]. 

2.4.3. Cashew Nut 

The cashew (Anacardium occidentale L.) is an evergreen species native to 

tropical America and contains 47% oil (w/w) [1, 143, 146]. Other components of 

cashew nuts include carbohydrate (27.1 %), protein (18.2%), ash (2.5%) and 

moisture (5.2%). The predominant fatty acid in cashew nut oil is oleic acid (57.3-

65.1 %), followed by linoleic (15.6-18.6%) and palmitic (9.0-14.2%) acids [146]. 

Cashew nut oil contains 1.4% unsaponifiable matter (w/w), of which 76.2 to 82.7% 

is P-sitosterol. Other sterols present in cashew nut oil include 8.5 -avenasterol, 

campesterol, fucosterol, cholesterol and stigmasterol [146]. Cashew nut oil contains 

45.3 to 83.5 mg/100g y-tocopherol, 2.8 to 8.2 mg/IOOg a-tocopherol and 2.0 to 5.9 

mg/lOOg o-tocopherol [146]. The testa of cashew nut serves as a good source of 

tannins [147], catechin and epicatechin, as well as polymeric proanthocyanidins, 

leucocyanidins and leucopelargonidins [148]. 

2.4.4. Hazelnut 

Hazelnuts or filberts (Corylus sp.) are a rich source of energy with a 61 to 

63% lipid content (w/w) [1, 149]. Other components of hazelnuts are protein 

(13.0%), carbohydrate (15.3%), ash (3.6%) and moisture (5.4%) [1]. Turkey is the 

world's largest producer of hazelnuts, accounting for approximately 75% of total 

hazelnut production, followed by Italy which accounts for 10% of total global 

production. In the US, the state of Oregon is the largest producer and in Canada, 
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southwestern British Columbia produces a small amount of hazelnuts; North 

America contributes less than 5% to the total world hazelnut production which is 

about 850,000 metric tonnes (unshelled basis) [150]. 

Few researchers have investigated the potential of hazelnuts as a source of 

natural antioxidants. Yurttas et al. [151] assessed the phenolic composition of 

methanolic extracts of defatted hazelnuts (hazelnut meal), showing that gallic acid, 

p-hydroxybenzoic acid, caffeic acid, epicatechin, sinapic acid, and quercetin as 

being the predominant phenolic acids. The composition of phenolic acid 

constituents in hazelnut meal has also been assessed by Senter et al. [126] who 

showed that protocatechuic acid was the main phenolic present in hazelnut meal 

(0.36 Jlg/g); trace amounts (<0.1 Jlg/g ) of p-hydroxybenzoic, vanillic, gallic and 

caffeic acids were also present. Moure et al. [152] examined the antioxidant activity 

of ethanolic extracts of hazelnut hulls, showing DPPH bleaching activities ranging 

from 86.2 to 94.4%. Similar values were reported by Krings and Berger [153] using 

ethanolic extracts of both roasted and unroasted hazelnut meals. The extracts of 

roasted and unroasted hazelnut meals exhibited comparable antioxidant activities in 

both the DPPH bleaching assay and stripped com oil model system [153]. Wu et al. 

[116] recently examined the antioxidant capacities of both lipophilic and 

hydrophilic extracts of hazelnuts using the ORAC assay with fluorescein as the 

fluorescent probe. Grated hazelnuts were packed into extraction cells with sand and 

extracted with two solvent systems using an accelerated solvent extractor (Dionex 

ASE 200). During the first treatment, lipophilic extracts were obtained with 

hexane/dichloromethane (1:1, v/v), followed by a second treatment with 

acetone/water/acetic acid (70:29.5:0.5, v/v/v) to obtain the hydrophilic extracts. 
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Results of this study [ 116] showed that the lipophilic hazelnut extracts had ORAC 

values of 3.7 J.UllOl Trolox equivalents/g hazelnut, whereas the hydrophilic extracts 

had ORAC values of 92.8 J.llllOl Trolox equivalents/g hazelnut. 

The fatty acid composition of hazelnut oil is as follows: 78-83% oleic acid, 9-

10% linoleic acid, 4-5% palmitic acid and 2-3% stearic acid as well as other minor 

fatty acids [1]. Parcerisa et al. [154] examined the lipid class composition of 

hazelnut oil, showing that triacylglycerols constituted 98.4% of total lipids, 

glycolipids comprised 1.4% of total lipids, while trace amounts (<0.2%) of 

phosphatidylcholine and phosphatidylinositol were also present. Hazelnut oil 

contains 1.2 to 2.2 g/kg of phytosterols primarily in the form of ~-sitosterol and is a 

very good source of a-tocopherol (382 to 472 mg!kg) [1, 134]. The main odorant in 

hazelnut oil responsible for its characteristic flavour is 5-methyl- (E)-2-hepten-4-

one or filbertone, which can produce intense hazelnut oil-like aroma at the very low 

odour threshold value of 5 ng!kg oil [155]. The oil from unroasted hazelnuts 

typically contains about 6 J.lg filbertone/ kg oil whereas the oil from roasted 

hazelnuts contains over 315 J.lg filbertone/ kg oil [155]. 

Several reports have shown that hazelnut is a health promoting food and a 

contributing factor for the beneficial health effects of the Mediterranean style diet 

[156], however, few studies have investigated the health effects of hazelnut oil. 

Balkan et al. [157] examined the effects of hazelnut oil administration on plasma 

peroxide levels, plasma lipid profiles, plasma LDL and VLDL levels, and 

atherosclerotic plaque development in male New Zealand white rabbits. In this 

study, animals were divided into four groups receiving normal diets (control), diets 

rich in cholesterol (0.5% w/w), diets rich in cholesterol (0.5% w/w) with hazelnut 
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oil supplementation (5% w/w) or a diet with hazelnut oil supplementation (5% 

w/w) without cholesterol for 14-weeks. The results showed that hazelnut oil 

supplementation in low cholesterol diets reduced plasma cholesterol and apoB-1 00 

containing lipoprotein levels by an insignificant level (p > 0.05). No differences 

were observed in the high cholesterol diet group supplemented with hazelnut oil 

which implies that hazelnut oil may be an effective health promoting agent in diets 

with normal lipid intake, but can not reverse the effects of high cholesterol intake 

[157]. 

2.4.5. Macadamia Nut 

Macadamia trees (Macadamia sp.) were originally cultivated in Australia, but 

the United States (Hawaii) is currently the world's largest producer of macadamia 

nuts. Edible macadamia nuts are from two species; Macadamia integrifolia 

(smooth-shell type) and Macadamia tetraphylla (rough-shell type). The macadamia 

nut industry in Hawaii, Australia, and many other producing areas, is based 

primarily on the smooth-shell type [158]. Oil yields from macadamia nuts range 

from 59 to 78% (w/w) [1, 159]. Macadamia nuts also contain 7.9% protein, 13.8% 

carbohydrate, 1.1% ash and 1.4% moisture (w/w) [1]. Compositional studies of 

macadamia nut oil shows that it is rich in oleic and palmitoleic acids, has 18-54 

mglkg tocol isomers (predominantly a.-tocotrienol) and up to 1.5glkg phytosterols 

(predominantly campesterol) [160]. Macadamia nut oil has been shown to have a 

relatively high smoke point of 198°C. The Rancimat method has been used to 

assess the oxidative stability of several varieties of macadamia nut oil, resulting in 

induction periods of between 3.6 and 19.8h [160]. Macadamia nut has been shown 

to contain 2,6-dihydroxybenzoic acid, 2'-hydroxy-4'-methoxyacetophenone, 3',5'-
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dimethoxy-4' -hydroxyacetophenone and 3,5-dimethoxy-4-hydroxycinnamic acid 

[161]. 

2.4.6. Pecan 

Pecan tree (Carya illinoinensis) is native to the United States but has also 

been naturalized for commercial pecan production throughout the world, including 

Australia, South Africa, some middle eastern countries and several countries of 

South America [162]. Fat is the predominant constituent in all pecan varieties 

ranging between 65 and 75% (w/w) [1, 163]. Other constituents include 9.1% 

protein, 13.9% carbohydrate, 1.5% ash and 3.5% moisture (w/w) [1]. The 

predominant fatty acids present in pecan oil are oleic (55%), linoleic (33%), 

linolenic (2%), palmitic (7%) and stearic (2%) acids [163]. The most predominant 

tocopherol in pecan oil is y-tocopherol (176 mglkg), followed by a-tocopherol (10 

mglkg), and then o- and J3-tocopherols ( 6.2 mglkg) [ 1]. Pecan oil is also estimated 

to contain 0. 73 glkg phytosterols that exist primarily in the form of J3-sitosterol 

(around 90%) [1]. 

Early studies have shown that pecan oil is a very stable food oil despite its 

high content ofunsaturated fatty acids, thus making it an excellent dietary oil [164]. 

Demir and Cetin [ 165] examined the total yields, compositions and oxidative 

stability of expeller pressed and hexane extracted pecan oils. Total yields were 

higher for solvent extracted batches (67-79%, w/w) than pressed batches [165]. The 

expeller pressed pecan oil had a significantly higher total tocopherol content when 

compared with hexane extracted oil (260 and 23 mglkg, respectively). However, the 

solvent extracted oil exhibited a greater oxidative stability with an induction period 

of 6h at 100°C, as compared to 5.5h for pressed oil. These findings may imply that 
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antioxidative constituents besides tocopherols may be contributing to the enhanced 

oxidative stability of the hexane-extracted oils, however, previous publications 

[162, 163] using similar solvent extraction methods have shown much higher 

concentrations of tocopherols in pecan oils and thus contradict the findings of 

Demir and Cetin [165]. Toro-Vasquez and Perez-Briceno [166] studied the 

oxidative stabilities of solvent extracted pecan oils from 22 Mexican pecan 

varieties; all varieties tested had high oxidative stability values (8.5-1 0.8h at 110 

·c). 

Epidemiological findings have shown that pecan enriched diets can 

favourably alter serum lipid profiles in humans and thus reduce cardiovascular 

disease risk [167]. However, the effects of pecan oil intake on human blood lipid 

profiles have not been reported. 

2.4. 7. Pine Nut 

Pine nuts (pinon or pignolia) are the edible seeds within the pine cone of 

several varieties of pine trees (Pinus sp.) but most commonly Pinus pinea or 'stone 

pine'. Pine nuts are harvested all over the world, most notably Russia, China, North 

Korea, Spain, Italy and Turkey, among others. Pine nuts have been shown to yield 

48 to 61% lipids by weight [1, 143]. Other constituents of pine nut include protein 

(11.6%), carbohydrate (19.3%), ash (2.2%) and moisture (5.9%) [1]. Pine nut oil 

contains predominantly linoleic acid (46.4%) and oleic acid (38.1 %). Maritime pine 

nut (Pinus pinaster) oil also contains two fatty acids that are unique among tree nut 

oils; pinoleic acid and sciadonic acid, both of which exist at 7% each in pine nut oil 

and may have antiatherogenic effects [168]. Caffeic acid is the predominant 

phenolic compound in defatted pine nut meal [126]. 
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2.4.8. Pistachio 

The pistachio tree (Pistacia vera) is native to the Middle Eastern region and 

has been naturalized in many parts of the world. The world's largest producer of 

pistachio nuts is Iran (Kerman province) with an annual output of 300,000 tonnes. 

Other major producers are Turkey, China the United States (California), India, 

France, Italy, Chile and Syria [168-170]. The proximate composition of pistachio 

includes 44% lipid, 21% protein, 28% carbohydrate, 3% ash and 4% moisture 

(w/w) [1], however, some reports have shown that pistachio nuts contain between 

45 and 72% oil, depending on the variety and stage ofharvest [171]. The main use 

of pistachio oil is in the cosmetics and condiment industries. The predominant fatty 

acid of pistachio oil is oleic acid (56-64%), followed by linoleic acid (23-31 %), 

palmitic acid (9-13%) and small amounts of other fatty acids [171]. Pistachio oil 

contains large amounts of phytosterols (5 glkg, 85% P-sitosterol) [172], 270 mglkg 

oftocopherols [1] and has an acid value higher (2.32 mg KOH/g oil) than other tree 

nut oils [172]. Evidence from several epidemiologic studies suggests that pistachio 

consumption can reverse several adverse blood lipid parameters such as 

hypercholesterolemia [173], however, investigations on the health effects of 

pistachio oil consumption are not readily available or have not been conducted. 

2.4.9. Walnut 

The walnut (nux juglandes) is harvested from walnut tree (Juglans regia) 

and is the most popular nut ingredient in North American cooking. Over 30 

varieties of walnut trees have been developed for various characteristics including 

pest tolerance, early/late harvest and shell thickness and these are currently 

harvested. 
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Walnuts contain about 65% lipids, however, considerable differences exist 

among varieties with a range of 52-70% lipid (w/w) [1, 174]. Walnuts also contain 

15.8% protein, 13.7% carbohydrate, 1.8% ash and 4.1% moisture (w/w) [1]. The 

defatted meals of walnuts serve as a good source of natural antioxidants, containing 

predominantly caffeic, vanillic and p-hydroxybenzoic acids [126]. Wu et al. [116] 

showed that lipophilic walnut extracts had ORAC values of 4.8 J.tmol Trolox 

equivalents/g walnut and hydrophilic walnut extracts had ORAC values of 130.6 

JlffiOl Trolox equivalents/g walnut. Gunduc and El [175] have assessed the total 

phenolics contents of ethanolic extracts of several Turkish foods including walnuts 

using the Folin-Ciocalteu colorimetric method, reporting a total phenolics content 

of 7.1 mg/g (as gallic acid equivalents) for whole walnuts. This group [175] have 

also compared the ability of food extracts for inhibiting the in-vitro oxidation of 

LDL, showing that both walnut and red wine extracts inhibited LDL oxidation to 

the greatest degree among food samples tested. Fukuda et al. [176] studied the 

composition and antioxidant activity of butanolic extracts of walnut polyphenols. 

Using semi-preparative liquid chromatography and one and two dimensional NMR 

analyses, Fukuda et al. [176] isolated 14 polyphenolic constituents from walnut 

extracts including three new hydrolyzable tannins, glansrins A, B, and C 

( ellagitannins with a tergalloyl or related polyphenolic acyl group}, along with 

pendunculagin, tellimagrandin I and II, casuarinin, rugosin C, casuarictin, and 

ellagic acid. Adenosine and adenine were also identified in the walnut extracts 

[176]. The 14 walnut polyphenols had superoxide dismutase-like activities and 

strong DPPH bleaching activities, indicating that ellagitannin polyphenols act as 

strong antioxidants [176]. Similar findings were reported by Anderson et al. [177] 
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who studied the composition of methanolic extracts of walnut and their ability to 

inhibit both azo-mediated and Cu2
+ -mediated LDL oxidation in a dose-dependant 

manner. Anderson et al. [177] reported that walnut extracts contained a total 

phenolics content of 20 mglg (as gallic acid equivalents); LC-MS analysis 

confirmed the presence of ellagic acid and other related ellagitannins, but no 

tocopherols were detected in the walnut extracts. Sze-Tao et al. [178] reported the 

hydrolyzable tannin content of several walnut batches was 363 to 1095 mg catechin 

equivalents/ 100 g of walnuts, using two modified vanillin assays. Differences in 

total hydrolyzable tannin contents of the various walnut samples were attributed 

mainly to the different processing and storage conditions employed for each walnut 

batch [178]. Recently, walnut phenolic extracts have been shown to inhibit fibrillar 

amyloid beta-protein (A) production which may exert beneficial effects in 

Alzheimer's disease sufferers since fibrillar amyloid beta-protein (A) is the 

principal component of amyloid plaques commonly seen in Alzheimer's disease 

[ 179]. Fukuda et al. [ 180] have studied the effects of walnut polyphenols on blood 

lipid profiles and oxidative stress in type II diabetic mice (nine week old 

C57/BUK.sJ-db/db male mice). In this study [180] seven mice were supplemented 

orally with purified ethanolic walnut extracts at a daily level of 200 mg/kg body 

weight for four weeks, while eight mice were used as controls. Results of this study 

showed that supplementation of walnut polyphenolics significantly reduced serum 

triacylglycerols and urinary 8-hydroxy-2'-deoxyguanosine (an in-vivo marker of 

oxidative stress) after four weeks. No significant differences were observed in body 

weight, blood glucose or total serum cholesterol between the experimental and 

control groups [180]. 
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The fatty acid composition of walnut oil is unique compared to other tree 

nut oils for two reasons; walnut oil contains predominantly linoleic acid (49-63%) 

and also has considerable amounts of alpha-linolenic acid (8-15.5%). Other fatty 

acids present include oleic acid (13.8-26.1 %), palmitic acid (6. 7-8. 7%) and stearic 

acid (1.4-2.5%) [174]. The tocopherol content of walnut oil varies among different 

cultivars and extraction procedures and ranges between 268 and 436 mglkg. The 

predominant tocol isomer is y-tocopherol (>90%), followed by a.-tocopherol (6%), 

and then ~- and o-tocopherols [181]. Non-polar lipids have been shown to 

constitute 96.9% of total lipids in walnut oil, while polar lipids account for 3.1 %. 

The polar lipid fraction consisted of 73.4% sphingolipids (ceramides and 

galactosylceramides) and 26.6% phospholipids (predominantly 

phosphatidylethanolamine) [181]. Walnut oil contains approximately 1.8 glkg 

phytosterols [1], primarily ~-sitosterol (85%), followed by ~5-avenasterol (7.3%), 

campesterol (4.6%), and finally cholesterol (1.1 %) [181]. 

Evidence from epidemiological studies, intervention studies and clinical 

trials show that walnut consumption has favourable effects on serum lipid levels in 

humans such as lowering LDL, raising HDL and reducing total serum 

triacylglycerol levels, all of which reduce the likelihood of suffering from a 

cardiovascular event [182, 183]. Many of the beneficial findings associated with 

walnut consumption have previously been attributed to the polyunsaturated fatty 

acid intake and have prompted health researchers to investigate which of these 

effects, if any, can be attributed to the lipid components of walnuts. Lavedrine et al. 

[184] conducted a cross-sectional study to assess the association between whole 

walnut and walnut oil consumption and blood lipid levels. This study included 933 
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men and women aged 18-65 years living in Dauphine, France (a major walnut 

producing area). Factors used to assess cardiovascular disease risk included a one­

year dietary recall questionnaire and serum levels of HDL, LDL, total cholesterol 

and levels of the apolipoproteins apoA1 and apoB. Results from this study showed 

that higher levels of HDL cholesterol and apoA1 were associated with higher 

amounts of walnut oil and kernel consumption, with a positive trend existing 

between the various degrees of walnut oil/kernel consumption in this cohort. Other 

blood lipids did not show any significant association with walnut consumption; the 

nature of the cohort group made it impossible to separate the effects of whole 

walnut and walnut oil consumption [184]. More recently, Zibaeenezhad et al. [185] 

examined the effects of walnut oil consumption on plasma triacylglycerol levels in 

hyperlipidemic men and women. In this trial, 29 patients were given 3g/day walnut 

oil (six 500mg capsules per day) for 45 days; 31 patients were given placebo and 

were used as controls. Supplementation of walnut oil reduced serum levels ofLDL, 

triacylglycerol and total cholesterol while increasing serum HDL levels, however, 

only the decrease in serum triacylglycerols reached significance (p ::::; 0.05) [185]. 

The fatty acid composition of walnut oil has been suggested as being responsible 

for its cardioprotective feature, but results from studies such as that of Espin et al. 

[186] show that the antioxidative components of walnut oil have significant 

antiradical properties that may exert a protective effect against the oxidation of 

biomacromolecules such as LDL, a known risk factor for atheroma development 

and thus heart disease. 
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3.1. Materials 

CHAPTER3 

Materials and Methods 

Commercially available shelled and unsalted almonds, Brazil nuts, 

hazelnuts (filberts), pecans, pine nuts, pistachios and walnuts were purchased fresh 

from the market or acquired from the International Treenut Council (Reus, Spain) 

or its affiliates. Samples were stored at -20 ·c until use. All chemicals were 

obtained from Sigma-Aldrich Canada (Oakville, ON) or Fisher Scientific (Ottawa, 

ON), unless otherwise stated. All solvents were of American Chemical Society 

grade, or better, unless otherwise specified. 

3.2. Fat Extraction 

3.2.1. Hexane Extraction 

Forty grams of each tree nut sample were first ground into a fine powder and 

combined with 400 mL of hexanes, followed by homogenization at 8000 rpm using 

a polytron (Polytron model PT 3000, Kinematica, Littau, Switzerland) for 3 

minutes. The resulting mixture was filtered through a Whatman #4 filter paper with 

suction using a Buchner funnel. The residue was re-extracted twice; the filtrates 

from the three extractions were combined and a portion of the solvent was removed 

from the extract using a rotary evaporator (Rota vapor model 461, Buehl, Flawil, 

Switzerland) at 40 ·c. The hexane-oil mixture was then passed through a layer of 

anhydrous sodium sulphate placed over a filter paper in a funnel and the remaining 
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solvent was removed using a rotary evaporator at 40 ·c. The resulting oil was 

weighed and transferred into 10 mL sample vials, capped with nitrogen and stored 

at -80 ·c until use. 

3.2.2. Chloroform/Methanol Extraction 

Forty grams of each tree nut sample were first ground into a fine powder and 

combined with 400 mL of chloroform, followed by homogenization at 8000 rpm 

using a polytron (Polytron model PT 3000, Kinematica, Littau, Switzerland) for 3 

minutes. The resulting mixture was filtered through a Whatman #4 filter paper with 

suction using Buchner funnel. The spent residue was re-extracted twice with 400 

mL of 1:1 (v/v) chloroform/methanol; the filtrates from the three extractions were 

combined and solvent was removed using a rotary evaporator (Rotavapor model 

461, Biichi, Flawil, Switzerland) at 40 ·c. The oil was then redissolved in 

chloroform and then passed through a layer of anhydrous sodium sulphate placed 

over a filter paper in a funnel. The solvent was then removed using a rotary 

evaporator at 40 ·c. The resulting oil was weighed and transferred to 10 mL sample 

vials, capped with nitrogen and stored at -80 ·c until use. 

3.3. Chemical and Instrumental Analysis 

3.3.1. Lipid Class Analysis 

The lipid class composition of the tree nut oil samples were analysed using an 

automated thin layer chromatography-flame ionization detector apparatus [150]. 

(i) Instrumentation. The crude lipids were chromatographed on silica gel­

coated Chromarods S III and then analysed using an Iatroscan MK.-5 (latroscan 
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Laboratories Inc., Tokyo, Japan) analyser equipped with a flame ionization detector 

(FID) connected to a computer loaded with TSCAN software (Scientific Products 

and Equipment, Concord, ON) for data handling. A hydrogen flow rate of 160 

mUmin and an air flow rate of 2000 mUmin were used in operating the FID. The 

scanning speed of the rods was 30 s/rod. 

(ii) Preparation of Chromarods. The Chromarods were soaked in 

concentrated nitric acid overnight, followed by thorough washing with distilled 

water and acetone. The Chromarods were then impregnated by dipping in a 3 % 

(w/v) boric acid solution for 5 min in order to improve separation. Finally, the 

Chromarods were scanned twice to burn any remaining impurities. 

(iii) Standards and Calibration. A stock solution of each of the nonpolar 

lipids, namely free fatty acid (oleic acid), cholesterol ester, cholesterol, 

monoacylglycerol (monoolein), diacylglycerol ( diolein), and triacylglycerol 

(triolein), and the polar lipids, namely phosphatidylglycerol (PG), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), 

phosphatidylcholine (PC), lysophosphatidylcholine (LPC), lysophosphatidyl­

ethanolamine (LPE), and sphingomyelin (SM), were prepared by dissolving them in 

hexane. A range of dilutions of the stock solution from 0.1 to 10 mg/mL was 

prepared for use as working standards. Each standard was developed individually 

and run on the Iatroscan FID to determine its R1 value. The peak area was then 

plotted against a series of known sample concentrations to construct a calibration 

curve. 
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(iv) Iatroscan TLC-FID Analysis of Lipids. The nut oils were dissolved in 

hexane in order to obtain a concentration of 10 mg lipid per millilitre. A 1 J.LL aliquot 

of the sample was spotted on silica gel-coated Chromarods S III and conditioned in 

a constant humidity chamber containing a saturated CaCh solution for 20 min. The 

Chromarods were then developed in two solvent systems. First, hexane/diethyl 

ether/glacial acetic acid (80:19.8:0.2, v/v/v) was used as the solvent system for 

nonpolar lipids. Following this, the Chromarods were dried at 110 ·c for 3 min and 

scanned completely to reveal nonpolar lipids. For polar lipids, the Chromarods were 

first developed in the same solvent system as used for nonpolar lipids and then 

dried at 110 ·c for 3 min to remove the solvents. This was scanned partially to a 

point just beyond the monoacylglycerol peak to burn the nonpolar lipids. These 

partially scanned Chromarods were developed in a second solvent system 

consisting of ethyl acetate/propan-2-ol/chloroform/methanol/0.25 % aqueous KCl 

(25:25:25:10:9, v/v/v/v/v) for the separation of polar lipid classes. After 

development, the Chromarods were dried at 110 ·c for 3 min and scanned 

completely to reveal polar lipids. The identity of each peak was determined by 

comparison with a chromatogram of standards acquired concurrently with the 

samples. The percentages of individual lipid classes (by weight) were determined 

using the calibration curves procured for each authentic standard. 

3.3.2. Fatty Acid Analysis 

Fatty acid methyl esters (FAMEs) were prepared for each oil sample and were 

analysed using gas chromatography [150]. FAMEs were prepared by adding 5 mg 

66 



of oil to 2 mL of 3 % sulphuric acid in methanol followed by the addition of 0.5 mg 

ofhepatadecatrienoic acid as an internal standard and then heating for 16 hat 60 ·c. 

Butylated hydroxytoluene was added as an antioxidant (0.1 mg). The FAMEs were 

extracted with optima grade hexane three times and then analyzed using a Hewlett­

Packard 5890 Series II (Palo Alto, CA) gas chromatograph equipped with a FID 

and an autosampler (Hewlett-Packard model 7673). Samples {lJ..LL) were injected 

into a Supelcowax 10 column (30 m x 0.25 mm i.d., 0.25 J..LL film thickness; 

Supelco, Bellefonte, P A) coated with poly( ethylene glycol). The oven temperature 

was programmed as follows: 180 ·c for 2 min, increased to 200 ·c at 2 "C/min, 

held at 200 ·c for a further 10 min, and then raised to 215 ·cat 2 ·c /min and kept 

there for 10 min. The injector and detector temperatures were 200 and 250 ·c, 

respectively. Helium was used as the carrier gas at a flow rate of 1.5 mUmin. 

Identification of FAMEs was based on retention times and compared with those of 

standard FAMEs. 

To confirm the identity of each FAME peak, samples were also analysed 

using GC-MS (Finnigan-Mat Magnum, Thermo-Finnigan, Montreal, QC). The 

column, column conditions and oven conditions employed were identical to those 

used in the GC-FID analysis and the detector was operated in EI mode (70 eV) with 

a 1.5 scan per second interval over a 40-650 mlz range. 

3.3.3. Sterol Analysis 

The sterol composition of tree nut oil samples were analyzed qualitatively 

using GC-MS and quantitatively using GC-FID. 
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Oil samples (20mg ± 0.1 mg) were transmethylated as described in Section 

3.3.2. Sterols were separated from methylated extracts using column 

chromatography. Glass wool was placed in the tip of a Pasteur pipette so that it just 

filled the tip, and pipettes were then burned in a muffle furnace (450 ·c) for 12 h. 

Approximately 0.8 g of activated silica gel (150 ·c for 1 h) was packed into each 

pipette. Columns were washed with 2 mL of diethyl ether followed by 4 mL of 

hexane. Derivative extracts were applied to the top of the washed column, then 

FAMEs were eluted with 10 mL of 93:7 (v/v) hexane/diethyl ether, and finally 

sterols and alcohols were eluted using 10 mL of 1:1 (v/v) diethyl ether/hexane 

[187]. Solvents in the sterol extracts were evaporated to dryness under nitrogen, and 

two drops of N,O-bis(trimethylsilyl)acetamide and four drops of N,O­

bis(trimethylsilyl)-trifluoroacetamide were added. Samples were then heated for 15 

min at 85 ·c in order to afford trimethylsilyl ethers and then were dried under 

nitrogen and resuspended in 1 mL of a 0.02 mg/mL solution of 5a-cholestane in 

hexane (internal standard); all chromatographic analyses were performed within 6 h 

of silyation. Sterols and related compounds were identified using a Varian 3800 GC 

connected to a Varian 2000 MS (Walnut Creek, CA). The column was a DB-5 

(cross-linked 5% phenyllmethyl-siloxane, 30m length, 0.32 mm i.d., 0.25 J.ll11 film 

thickness; Supelco, Bellefonte, P A). Helium was used as the carrier gas, and the 

pressure was constant at 10 psi g. The column temperature profile was as follows: 

60 ·c for 1.0 min, ramping to 100 ·cat a rate of25 ·ctmin, ramping to 150 ·cat a 

rate of 15 ·ctmin, and holding at 315 ·c for 2 min after ramping at 3 ·ctmin. The 

MS was in the EI mode (70 eV) with a 1.0 scan per second interval over a 40-650 

68 



mlz range. Sterols were identified using Varian Saturn GC-MS workstation software 

version 5.4 with reference to their mass spectra, retention times, known standards, 

published spectral data and the National Institute of Standards and Technology 

{NIST) mass spectral library version 2.0 (Gaithersburg, MD) [187]. 

To more accurately quantify sterols, sterols were also analysed on an Agilent 

6890 GC-FID equipped with an Agilent 7683 autosampler (Palo Alto, CA). The 

column was a DB-5 (30 m length, 0.32 mm i.d., 0.25 J.Uil film thickness; Supelco, 

Bellefonte, P A). The column pressure and temperature profile were the same as 

those previously described for the GC-MS analyses, whereas the detector and 

injector temperatures were set to 310 and 315 ·c, respectively [187]. 

3.3.4. Tocopherol Composition 

3.3.4.1. Tocopherol Extraction 

The tocopherol compositions of tree nut oil samples were analysed as 

previously described [188], with minor modifications. Three grams of oil were 

accurately weighed into 50 mL glass tubes, followed by the addition of 5 mL of 

KOH (60%, w/v), 5 mL ethanol, and 10 mL of ethanolic pyrogallol (6%, w/v). The 

glass tubes were then sealed and subsequently heated at 70°C for 1 h. The tubes 

were then cooled and 5 mL of deionized water were added. The mixture was 

subsequently extracted with 15 mL of hexane/ethyl acetate (9:1, v/v) using a 

desktop vortex (Fisher Scientific; Ottawa, ON) for 3 minutes. Next the hexane/ethyl 

acetate fraction was carefully transferred into a 50 mL round bottom flask using a 
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pipette. The extraction process was repeated three times. The pooled extracts were 

evaporated to dryness and redissolved in 3 mL of HPLC grade methanol and 

filtered through a 3 J.1Ill pore size syringe filter before HPLC analysis. 

The linearity and reproducibility of the extraction process was confirmed for 

each tocopherol isomer by testing the recovery of pure tocopherols and tocopherol 

mixtures from stripped com oil (Acros Organics, Geel, Belgium) with exogenously 

added tocopherols. The tested ranges of tocopherol recoveries were from 20 to 1000 

ppm for each pure tocopherol and for 1:1:1:1 (w/w/w/w) mixtures of the four 

tocopherol isomers. 

3.3.4.2. Tocopherol Analysis 

The tocopherols in tree nut oil samples were analysed using an Agilent model 

1100 HPLCIUV-DAD/MS system (Agilent Technologies, Palo Alto, CA) as 

previously described (189], with minor modifications. Separation of tocopherol 

isomers was achieved using a Phenomenex Luna C18 column (150 mm x 4.6 mm; 

Phenomenex, Torrance, CA) packed with 5 J.1Ill particles. Forty microlitres of the 

tocopherol extract were loaded onto the column and then eluted isocratically using 

98% methanol (v/v) with a flow rate of 1 mUmin at ambient temperature. 

Tocopherol isomers were quantified using an ultraviolet-diode array detector (UV­

DAD) at a wavelength of 290 run. Quantification of tocopherol isomers was 

achieved by comparison of each sample peak response to that of the corresponding 

authentic standard. In order to confirm the identity of each tocopherol peak, the 

HPLCIUV-DAD effluent was channelled into an Agilent 1100 APCI-MS (Palo 
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Alto, CA) operating in the negative mode. The MS conditions were as follows: 

auxiliary gas flow, 10 units; sheath gas pressure, 70 psig; capillary temperature, 150 

·c; vaporizer temperature, 400 ·c; corona current, 5 ~ps; scan time, 1s; scan 

range, 40-600 mlz. Analysis of chromatographic and spectral data was performed 

using Agilent Chemstation software (Palo Alto, CA). 

3.3.5 Iodine Values of Tree Nut Oils 

The iodine values of tree nut oils were determined using the Wijs method 

[80]. Briefly, 0.100 ± 0.001 g of oil samples were accurately weighed into 250 mL 

Erlenmeyer flasks wrapped with aluminium foil. Twenty-five millilitres of Wijs 

iodine solution (0.3 N) were then accurately pipetted into the flask which was then 

allowed to stand at room temperature for 30 min in the dark. Subsequently, 10 mL 

of 15% KI solution were added to the solution followed by 100 mL of deionized 

water. The mixture was then titrated with 0.1 N sodium thiosulphate (Na2S203) 

until the sample mixture became a light yellow colour. Starch indicator was then 

added to the sample and the titration was continued until the blue colour of the 

starch-iodine complex disappeared. The iodine value (IV) was calculated using the 

following formula: 

IV= mL ofNa2.S2-02JB)- mL ofNa2.S2.ili (S)- N ofNa2.S2-02 x 12.692 
Weight of sample taken (g) 
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3.4. Antioxidant Activity of Tree Nut Oil Extracts 

3.4.1. Extraction of Minor Components and Stripping of Tree Nut Oils 

Minor components were extracted from tree nut oils as previously described 

[190], with minor modifications. Twenty grams of oil were combined with 200 mL 

of hexane in a lightly tarred 500 mL separatory funnel. To this 1 OOmL of methanol 

were added, and the separatory funnel was sealed and agitated for 5 min with 

periodic venting. The separatory funnel was then sealed with nitrogen and stored at 

4 OC for 1 h. The methanol fraction was decanted into a 1L round bottom flask. The 

methanol extraction was repeated 4 times and the pooled extracts were evaporated 

down to 20 mL, resulting in an extract with a final concentration of 1 g oil 

equivalent per mL. The extracts were stored in methanol at -80 OC until use within a 

maximum of one week. 

After the methanol extraction process the hexane fraction was washed once 

with cold (4 OC) deionized water, and then the hexane fraction was passed through 

sodium sulphate. Hexane was removed from the elutate using a rotary evaporator at 

40 °C. The resulting stripped oil was weighed to assess oil recovery and to calculate 

the weight of the minor component extract by difference. The stripped oil was then 

transferred to 10 mL sample vials and stored under nitrogen at -80 OC until use. 
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3.4.2. Total Phenolics Content (TPC) of Tree Nut Oil Extracts 

The total phenolics content of oil extracts was assessed using a modified 

version of the method described by Singleton and Rossi [191]. Folin and Ciocalteu's 

reagent (1 mL) was added to centrifuge tubes containing 1 mL of oil extract, 

followed by 6 mL of deionized water and finally, 2 mL of sodium carbonate 

solution (75 giL). The mixture was then vortexed and allowed to stand for 60 min 

with subsequent centrifugation at 4250g for 5 min. The absorbance of supernatants 

was read at 725 nm. A blank containing 1 mL of methanol rather than extract was 

used for background subtraction while standard curves, using gallic acid and a.­

tocopherol, were constructed. The total phenolics content of the oil extracts 

represents the total extracted phenolics expressed as milligrams of gallic acid or a.­

tocopherol equivalents per g oil. 

3.4.3. Trolox Equivalent Antioxidant Capacity (TEA C) 

The free radical scavenging capacity of extracts was determined as previously 

described [192]. All solutions were made in 0.1 M phosphate buffer (pH 7.4) 

containing 0.15 M NaCl (phosphate buffer saline, PBS). Equal volumes of 2.0 mM 

2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonate) solution (ABTS) and 2.5 mM 

2,2'-azo-bis (2-methylpropionamidine) dihydrochloride (AAPH) were mixed for 

production of the ABTS radical {ABTS-). This solution was then heated at 65 oc 

in the dark for 12 min. Blank measurements (decrease in absorbance of the ABTS­

solution without any sample added) were made for each radical preparation. A 

standard curve was prepared by measuring the decrease in the absorbance at 734 nm 
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over a 6 min period with increasing concentrations of Trolox, a vitamin E analog. 

Trolox equivalent antioxidant capacity values for the tree nut oil extracts were 

determined in the same manner by mixing 0.1 mL of the oil extract with 2.9 mL of 

radical solution, then measuring the absorbance of this solution every minute for 6 

min. The TEAC value of an extract represents the concentration of a Trolox 

solution that has the same antioxidant capacity as the extract. The TEAC values 

were determined as follows: 

~ATrolox = ( At=O Trolox - A t=6min Trolox ) - M solvent (0-6 min) 

~ATrolox = m* [Trolox] 
TEACextract = (~Aextract /m)*d 

Where; ~A is the reduction in absorbance; A, absorbance at a particular time; m, 
slope of the standard curve; [Trolox], molar Trolox concentration; and d, the 
dilution factor. 

3.4.4. DPPH Scavenging Capacity of Tree Nut Oil Extracts 

Scavenging activities of tree nut oil extracts towards the DPPH radical was 

assessed as previously described [193], with some modifications. The DPPH radical 

was dissolved in methanol and a standard curve of DPPH concentration versus 

absorbance at 540 nm was prepared to establish the linear absorbance range for 

DPPH concentration, which was found to be between 0.01 and 0.3 mM DPPH. 

Based on these studies, an initial concentration of0.125 mM DPPH was selected for 

use in the scavenging assay; at this concentration, the absorbance of the DPPH 

mixture remained stable over a 2 h period. The reaction mixture contained 2 mL of 

0.25 mM DPPH and 2 mL of tree nut oil extracts or methanol as a blank reaction. 

The absorbance of the reaction mixture at 540 nm was measured after 20 min (A540 

t20) and the percent DPPH scavenged was calculated using the following formula. 
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% DPPH Scavenged= ((As4o to-As40 t2o) I As4o to)* 100 

Tree nut oil extracts were assayed undiluted (1g oil equivalent I mL extract) 

and diluted 2, 4, 8 and 10 times; the data were used to construct a % DPPH 

scavenged versus extract concentration expression. This expression was then used 

to calculate the extract concentration required to scavenge 50% of the DPPH in the 

assay media, referred to as the IC50. The DPPH scavenging capacity of a-tocopherol 

was also assayed at concentrations of 6.25, 12.5, 25.0, 50.0 and 100 J.LM to develop 

a DPPH scavenging capacity standard curve for a-tocopherol. 

3.4.5. fl-Carotene Bleaching Test with Tree Nut Oil Extracts 

The f3-carotene bleaching test was performed as previously described [194], 

with some modifications. A solution of 5 mg I 10 mL of P-carotene was prepared in 

chloroform and 3 mL of this solution were pi petted into a 100 mL round bottom 

flask. Chloroform was removed under vacuum using a rotary evaporator at 40 °C, 

then 40 mg linoleic acid, 400 mg Tween 40 emulsifier and 100 mL of aerated 

distilled water were added to the flask with vigorous shaking. Aliquots of 4.8 mL of 

this emulsion were transferred into a series of test tubes containing 200 J.LL of the 

tree nut oil extracts or methanol (control). Alpha-tocopherol was used as the 

reference antioxidant (1 0 J.LM). Immediately after the addition of the emulsion to 

each tube, the zero time absorbance was measured at 4 70 nm. Subsequent 

absorbance readings were recorded over a two-hour period at 20 min intervals by 

keeping the reaction tubes in a water bath set to 50 °C. Blank samples devoid of P-
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carotene were prepared for background subtraction. The capacity of the extracts to 

protect against oxidation of P-carotene was determined as follows. 

[ { Ar-o Sample-At=O Blank)-{ At= 120 min Sample-At= 120 min Blank)] I [ { Ar-o Control)-{ At= 120 min Control)] = C 

P- Carotene retention(%)= 100%- (C)*100% 

Where; A is the absorbance at a particular time; and C, carotene depletion factor. 

3.4.6. Photochemiluminescence Inhibition Capacity of Tree Nut Oil Extracts 

The photochemiluminescence (PCL) inhibition capacity of tree nut oil extracts 

was assessed as previously described [195] with some modifications. The principle 

of the PCL inhibition capacity is based on measurement of inhibition of the 

superoxide mediated oxidation of a chemiluminescent compound, luminol, by 

antioxidants. In this system the reaction is initiated by optical excitation of a 

suitable photosensitizer, which exclusively results in the generation of the 

superoxide radical. The radicals are then visualized with a chemiluminescent 

detection reagent. Luminol plays a dual role, acting as both the photosensitizer and 

the radical detection reagent. An automated PCL inhibition capacity analyser 

system (Analytik Jena Photochem, Analytik Jena USA, The Woodlands, TX) was 

used operating in the antioxidative capacity of lipids (ACL) mode. For lipid-soluble 

substances, the assay mixture contained 1 mL of methanol, 1.5 mL of 0.1M 

carbonate buffer with 0.1mM Na2-EDTA (pH 1 0.5), 25 ~L of 1 ~M luminol, and 10 

~L of a-tocopherol (0.05-0.25 mM) or 10 ~L of tree nut oil extracts (1g oil 

equivalent/mL) dissolved in methanol. When necessary, extracts were diluted with 

methanol so that the PCL inhibition time fell within the linear range of the a-
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tocopherol calibration curve. The chemiluminescence lag time of the tree nut oil 

extracts was used to calculate the PCL inhibition capacity, expressed as a­

tocopherol equivalents. 

3.4.7. Oxygen Radical Absorbance Capacity (ORAC) of Tree Nut Oil Extracts 

The ORAC of tree nut oil extracts was studied as previously described [196], 

with modifications using a FLOUstar Optima fluorescence microplate reader 

equipped with two reagent injectors (BMG Labtechnologies, Durham, NC). Non­

transparent 96-well microplates (Costar model 3095, Corning Life Sciences, 

Corning, NY) were used in the ORAC assay. Fluorescence filters with an excitation 

wavelength of 485 nm and an emission wavelength of 520 nm were used; these 

conditions correspond to the fluorescence properties of fluorescein. All solutions 

were prepared with 75 mM phosphate buffer (pH 7.4). Samples were diluted by a 

factor of 30 with 5% randomly methylated cyclodextrin solution (Cyclodextrin 

Technologies Inc., High Springs, FL) before being assayed. Twenty microlitres of 

diluted tree nut oil extracts were manually pipetted into sample wells of the 

microplate which was then placed in the microplate reader and incubated for 15 min 

at 37 ·c. During the first cycle 120 J.lL of fluorescein solution (disodium salt, 20 

J.lM) were injected into each well using the first automated reagent injector, each 

injection was followed by a 1 s mixing cycle. During the second cycle 60 J.lL of 

AAPH ( 45 mM) were injected into each well using the second automated reagent 

injector, followed by a 1 s mixing cycle. Following the mixing cycle, the initial 

fluorescence measurement of the assay mixture was read. Fluorescence readings 
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were then taken every 30 s, with a total assay time of 30 min. A standard curve was 

prepared with a-tocopherol using a concentration range of 12.5 to 150 J.LM. The 

relative fluorescence versus time graph of each sample was recorded by the 

FLOUstar Optima computer software (BMG Labtechnologies, Durham, NC), from 

which the area under curve (AUC) of each sample was calculated. The AUC of 

each sample was used along with the standard curve to calculate the ORAC of each 

extract, expressed as nmol a-tocopherol equivalents I g oil equivalent. 

3.4.8. Lipid Composition of Tree Nut Oil Extracts 

The lipid class compositions of the tree nut oil extracts were analysed as 

described in Section 3.3.1. The tocopherol compositions were analysed as described 

in Section 3.3.4.2. 

3.5. Oxidative Stability of Tree Nut Oils 

3.5.1. Accelerated Oxidation Studies 

The oxidative stability of stripped and non-stripped tree nut oils were studied 

using two accelerated oxidation conditions, namely accelerated autoxidation and 

accelerated photooxidation. 

3.5.1.1. Accelerated Autoxidation Conditions 

Six grams (± 0.01 g) of stripped or non-stripped tree nut oil samples were 

accurately weighed into I 0 mL clear glass sample vials and loosely capped before 

being placed in a forced air oven (Precision Scientific Company, Chicago, IL) in the 
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dark and heated to 60 ·c. For each sample, six vials were loaded into the oven and 

one was removed after 12 h, 1, 3, 6, 9 and 12 days, and stored at -80 ·c until used 

for testing. Each sample was analysed in triplicate [197]. 

3.5.1.2. Accelerated Photooxidation Conditions 

Stripped or non-stripped tree nut oils (2.0 g ± 0.01 g) were accurately weighed 

into 4 mL clear glass sample vials and placed in stainless steel transmethylation 

blocks, such that light was able to come into contact with the oils from the top of 

the vials only. The transmethylation blocks containing samples were then placed in 

a mirrored box (70 em (1) x 35 em (w) x 25 em (h)) equipped with 2 cool white 

fluorescent lights suspended 10 em above the sample vials. The fluorescent 

radiation was at 2650 Lux and the temperature within the photooxidation chamber 

was maintained at 27 ·c (± I "C). For each sample, six vials were loaded into the 

photooxidation chamber and one was removed after 4, 8, 12 and 24 hours, and 2 

and 3 days and then stored at -80 ·c until tested. Each sample was analysed in 

triplicate [198]. 

3.5.2. Quality Indicator Tests 

The quality indicator tests used to assess the oxidative deterioration of 

stripped and non-stripped tree nut oils were conjugated dienes and peroxide values 

and these were used for assessing primary oxidation products. The p-anisidine 

values and headspace chromatographic analysis of volatile aldehydes were used for 

monitoring secondary oxidation products. 
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3.5.2.1. Conjugated Dienes 

Conjugated diene values of oil samples were measured using the IUP AC 

method [79]. Oil samples (0.2-0.4 g ± 0.01g) were accurately weighed into 25 mL 

volumetric flasks, dissolved in isooctane (2,2,4- trimethylpentane) and made to the 

mark with the same solvent. The mixture was then thoroughly mixed and the 

absorbance was read at 234 nm; isooctane was used as the reference. Conjugated 

diene values were calculated as follows: 

CD = A234 I ( c * d) 

Where; A234 is the absorbance of the mixture at 234 nm; c, concentration of 

the sample mixture (g I 100 mL); and d, length of the spectrophotometer cell 

(em). 

3.5.2.2. Peroxide Value 

The peroxide value was measured using the official method of the American 

Oil Chemists' Society [80]. Oil samples (1.0-2.0 g ± 0.01 g) were weighed into 250 

mL glass stoppered Erlenmeyer flasks and dissolved in 30 mL of glacial acetic acid/ 

chloroform (3:2, vlv) while stirring, followed by the addition of 0.5 mL of saturated 

potassium iodide (K.I). The stoppered flasks were placed in the dark and allowed to 

stand for exactly 1 min and then mixed with 30 mL of deionized water. The 

liberated iodine was titrated against a standardized solution of 0.01 N sodium 
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thiosulphate (Na2S20 3) while shaking constantly until the yellow colour had almost 

disappeared, at which point 0.5 mL of a starch indicator solution (1 % wlv) was 

added to the Erlenmeyer flask and the titration was continued until the blue colour 

of the mixture disappeared. Blank titrations were made before each sample titration. 

Peroxide value was expressed as the uptake of milliequivalents of oxygen per kg of 

oil using the following formula. 

PV = (Vsample- Vbtank) * N Na2S203 * 1000 I sample mass (g) 

Where; Vis the volume of titrant used (mL); and N, is the normaility of the 

thiosulphate solution. 

3.5.2.3. Anisidine Value 

The anisidine value is defined by convention as 100 times the optical density 

measured at 350 nm in a 1.0 em cell of a solution containing 1.0 g of oil in 100 mL 

of isooctane and p-anisidine reagent according to the method described herein 

(AOCS method CD 18-90) [80]. Oil samples (0.5-1.0 g ± 0.01g) were accurately 

weighed into 25 mL volumetric flasks and brought to mark with isooctane, 

absorbance of this solution was measured at 350 nm. Five millilitres of this solution 

were transferred into a test tube and 1.0 mL of p-anisidine reagent (0.25 g p­

anisidine I 100 mL glacial acetic acid) was then added to it. The absorbance of this 

solution was read after 10 min at 350 nm. A solution containing 5 mL of isooctane 

and 1 mL p-anisidine reagent was used as blank. The anisidine value (An V) was 

calculated using the following formula. 
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AnY= [25 * (1.2 As- Ab)] I m 

Where; As is the absorbance of the sample containing reaction mixture after 

10 min; Ab, absorbance of the blank reaction mixture after 10 min; and m, 

mass of the sample used (g). 

3.5.2.4. Static Headspace Gas Chromatographic Analysis 

Quantitative analysis of volatile aldehydes during the oxidation of oil samples 

was carried out using static headspace gas chromatographic method [ 199]. A 

Perkin-Elmer 8500 gas chromatograph equipped with a HS-6 headspace sampler 

(Perkin-Elmer Corp., Montreal, QC) was used for headspace analysis. Volatile 

aldehydes were separated using a Supelcowax-10 fused silica capillary column (30 

m length, 0.32 mm i.d., O.lOJ,tm film thickness; Supelco, Oakville, ON). Ultra high 

purity (UHP) helium was used as the carrier gas, employed at 17.5 psig and a split 

ratio of 7:1. The oven temperature was maintained at 40 ·c for 5 min and then 

ramped to 200 ·c at 20 "C/min and held there for 5 min. The injector and FID 

temperatures were set at 280 ·c during the analysis. 

Prior to headspace sampling, oils were melted and 0.1 to 0.2 g (± 0.01 g) 

accurately weighed into 6 mL headspace vials (Supelco Canada Ltd., Oakville, ON) 

followed by addition of 14 mg of 1% 2-heptanone (internal standard; diluted with 

stripped com oil containing 250 ppm a-tocopherol). Headspace vials were capped 

with Teflon-lined septa, crimped and then loaded into the HS-6 headspace sampler 

assembly. While in the assembly, the samples were incubated at 90 ·c for 30 min, 

followed by a 6 s pressurization phase, then a vapour sampling phase was carried 

out to load the headspace volatiles onto the gas chromatograph column. After the 
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sampling phase the oven temperature program was initiated. Volatile aldehydes 

were identified by comparison of their retention times with those of the authentic 

standards. 

3.6. Statistical Analysis 

All experiments were performed in triplicate; mean values and standard 

deviations were calculated for each case. Analysis of variance (ANOV A) followed 

by Tukey's studentized range test were performed at the p :S 0.05 level using 

Mini tab statistical software version 14 (Mini tab Inc., State College, P A) to evaluate 

the significance of differences among different mean values [200]. 
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CHAPTER4 

Results and Discussion 

4.1. Oil Yield, Chemical Characteristics and Stripping of Tree Nut Oils 

The oils used in this study were extracted from fresh raw tree nuts. 

Comparison of the two fat extraction processes, namely hexane and 

chloroform/methanol, show that the latter solvent system resulted in a higher oil 

yield for all tree nut varieties studied, whereas the hexane solvent system afforded 

oil with higher clarity; implying that the hexane solvent system provides a more 

refined oil extract compared to the chloroform/methanol solvent system. Pine nuts 

yielded the highest amount of oil; 73.9 ± 0.5 %with hexane and 75.4 ± 0.2% with 

chloroform/methanol, whereas almonds had the lowest oil yield; 51.2 ± 0.5 % with 

hexane and 53.5 ± 0.2 %with chloroform/methanol (Table 4.1). The oil yields of 

several tree nut varieties have previously been reported and show that the oil 

contents being 50.6% (w/w) for almond, 66.4% (w/w) for Brazil nut, 72.0% (w/w) 

for pecan, 68.4% (w/w) for pine nut, 46.4% (w/w) for pistachio and 65.2% (w/w) 

for walnut [1, 123]. Results from this study are therefore in good agreement with 

those reported previously. 

The oxidative qualities of the extracted oils were examined usmg the 

conjugated dienes, peroxide value and anisidine value tests, all of which were well 

below the recommended values for oil acceptability (Table 4.1) [201]. No 

headspace aldehydes were detected in fresh tree nut oils (data not shown). These 
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Table 4.1. Oil Yields and Chemical Characteristics of Hexane Extracted and 
Chloroform/Methanol Extracted Tree Nut Oils1

•2 

Samgle Oil Yield {% ww} CD PV {meg/kg oil} Q-Av 

Hexane-Extracted 

Almond 51.2 ± 0.5h 1.67± 0.01h 0.040 ± 0.0028 0.120 ± 0.003m 

Brazil Nut 67.4 ± 0.2c 1.77 ± 0.01g 0.047 ± 0.0038 0.189 ± 0.0061 

Hazelnut 60.4 ± 0.48 2.28 ± 0.01 8 0.031 ± 0.001 8 0.591 ± o.oo8c 

Pecan 71.5 ± 0.48 1.50 ± 0.01j 0.030 ± 0.0038 0.433 ± 0.007h 

Pine Nut 73.9 ± o.58 1.54 ± 0.01 1 0.030 ± 0.0028 0.267 ± 0.002J 

Pistachio 52.3 ± 0.2g 1.36 ± 0.01k 0.023 ± 0.0028 0.545 ± 0.0068 

Walnut 70.6 ± 0.48 0.99 ± 0.01 1 0.030 ± 0.0048 0.230 ±0.005k 

Chloroform/Methanol -Extracted 

Almond 53.5 ± 0.2' 2.74 ± 0.01c 0.030 ± 0.0028 0.561 ± 0.004d 

Brazil Nut 68.9 ± 0.3b 2.42 ± 0.01d o.o3o ± o.o038 0.821 ± 0.0048 

Hazelnut 61.9 ± 0.2d 3.80 ± 0.01b o.058 ± o.0058 0.288 ± 0.0031 

Pecan 73.4 ± 0.38 1.87 ± 0.01' 0.023 ± 0.0028 0.294 ± 0.0051 

Pine Nut 75.1 ± 0.28 4.07 ± 0.01 8 0.015 ± 0.0028 0.735 ± 0.002b 

Pistachio 54.1 ± 0.4' 1.64 ± 0.01h 0.015 ± 0.0028 0. 735 ± 0.002b 

Walnut 72.5 ± 0.38 1.52 ± 0.01j 0.015 ± 0.0028 0.462 ±0.005g 
Values in the same column bearing different superscripts are significantly (pS0.05) different. 

2 1odine values {g iodine /1 OOg oil) of hexane extracts were 102.3 ± 0.8d for almond oil; 
98.6 ± 0.98 for Brazil nut oil; 87.0 ± 0.9' for hazelnut oil; 107.1 ± 0.8cfor pecan oil; 145.8 ± 
0.4b for pine nut oil; 97.9 ± 0.88 for pistachio oil; and 154.0 ± 0.48 for walnut oil. 

findings show that the fat extraction processes employed here were gentle 

enough to preserve the oxidative integrity of the oils, as expected for fresh 

products. 

A liquid-liquid phase partitioning system was used to strip minor components 

from tree nut oil samples (solvent stripping process). This method was chosen over 

solid phase stripping processes [198] because of the relative ease of the solvent 

stripping process, and to reduce oxidative deterioration of the minor components; 

thereby preserving their antioxidant activity. The recovery of stripped oil was 
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between 95.2% and 97.8%, with hexane extracted almond oil affording the highest 

stripped oil recovery and chloroform/methanol extracted Brazil nut oil affording the 

lowest stripped oil recovery (Table 4.2). A similar solvent stripping process was 

employed by Ramadan et al. [190] to extract antioxidative components from black 

cumin, coriander and Niger oils, reporting DPPH radical scavenging activity for oil 

extracts examined. However, the nature of the active compounds involved was not 

investigated [190]. 

4.2. Fatty Acid Composition of Tree Nut Oils 

The fatty acid compositions of tree nut oils used in this study are reported in 

Table 4.3. Oleic acid was the predominant fatty acid in all samples examined, 

except for pine nut oil and walnut oil which contained predominantly linoleic acid. 

The extraction solvent did not significantly (p>0.05) influence the fatty acid 

composition of the oils (Table 4.3). Fatty acid compositions of the stripped tree nut 

oils were not significantly different from their parent oils (p>0.05). 

Among samples tested, hazelnut oil had the highest oleic acid content at 83.4 

and 83.0% for hexane and chloroform/methanol extracted oils, respectively. 

Almond oil contained the second highest oleic acid level at 69.9 to 70.0%. Walnut 

oil contained the lowest amount of oleic acid of around 12.1 %. Among the tree nut 

oils studied, walnut oil was the only significant source of both myristic acid 

(14.4%) and a-linolenic acid (12.9%). Brazil nut oil was the richest source of 

palmitic acid (15.0 to 15.7%), stearic acid (10.0%) and total saturated fatty acids 

(25.0 to 25.7%). The fatty acid compositions oftree nut oils have been previously 
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Table 4.2. Recovery of Stripped Oils Using the Solvent Stripping Process from 
Hexane and Chloroform-Methanol Extracted Oils1 

Nut Oil Yield{%) 
Hexane-Extracted 
Almond 97.8±0.1 8 

Brazil Nut 96.0±0.1d 

Hazelnut 96.9±0.1c 

Pecan 96.2±0.1d 

Pine Nut 97.7±0.1 8 

Pistachio 96.7±0.1c 

Walnut 96.6±0.1c 

Chloroform/Methanol Extracted 
Almond 97.3±0.1b 

Brazil Nut 95.2±0.1' 

Hazelnut 96.1±0.1d 

Pecan 95.5±0.1 8 

Pine Nut 97.1±0.1b 

Pistachio 96.2±0.1d 

Walnut 96.2±0.1d 
1 Values bearing different superscripts are significantly (ps0.05) different for each type 

of solvent extracted oil. 
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Table 4.3. Fatty Acid Compositions (weight%) of Tree Nut Oils1
•
2

•
3

•
4 

Fatty Acid A-H A-CM BN-H BN-CM HN-H HN-CM P-H P-CM PN-H PN-CM PO-H PO-CM W-H W-CM 
14:0 o.ood o.ood 0.07c 0.08c o.ood o.ood 0.09c O.llc o.ood o.ood 2.55b 2.54b 14.448 14.428 

14:1 n-9 o.oob o.oob o.o5" o.oob o.oob o.oob o.oob o.oob o.oob o.oob o.o8• 0.078 o.oob o.oob 
15:0 o.oob o.oob o.oob o.oob 0.098 0.078 o.oob o.oob o.os• o.oob o.oob o.oob o.oob o.oob 
16:0 7.28c 7.43c 15.048 15.718 5.32e 5.35e 7.64c 7.70c 5.22e 5.25e 8.49b 8.53b 6.52d 6.57d 
16:1 n-9 0.771 0.788 0.40b 0.40b 0.19c 0.19c O.llc 0.14c 0.09c o.ood o.n• 0.768 o.ood o.ood 
18:0 1.89d 1.86d 9.978 10.028 2.86c 2.81c 2.52c 2.56c 2.19d 2.15d 1.39e 1.38e 3.54b 3.55b 
18:1 n-9 69.89b 70.01b 37.80e 37.49e 83.43 3 83.31 8 49.60d 49.72d 28.90f 29.43f 58.43c 58.41 c 12.148 12.118 

18:1 n-6 0.52b 0.32c 0.02d 0.03d o.ooe o.ood o.ood o.ood o.ood o.ood 1.638 1.658 0.57b 0.58b 
18:2 n-6 19.57f 19.49f 35.92d 35.59d 8.228 8.358 37.71c 37.34c 59.608 59.298 25.15e 25.lle 49.56b 49.55b 
18:3 n-3 o.ooe o.ooe o.ooe o.ooe o.ooe o.ooe 1.47b 1.55b 0.17d 0.15d 0.37c 0.43c 12.868 12.858 

20:0 o.ood o.ood 0.38b 0.40b o.ood o.ood 0.34b 0.34b 1.338 1.338 0.14c O.llc o.ood o.ood 
20:1 n-9 o.ood o.ood 0.28c 0.28c o.ood o.ood 0.52b 0.53b 1.348 1.388 0.62b 0.64b 0.37c 0.38c 
20:1 n-6 0.07' 0.11 8 o.oob o.oob o.oob o.oob o.oob o.oob o.oob o.oob 0.308 0.30' o.oob o.oob 

Total Fatty Acids (gllOOg oil) 94.616 94.476 94.98" 94.646 94.85' 94.708 94.921 94.808 93.99c 93.79c 94.12c 94.948 95.178 95.038 

1 Abbreviations used: A-H, almond oil - hexane extracted; A-CM, almond oil - chloroform/methanol extracted; BN-H, Brazil nut oil- hexane extracted; BN-
CM, Brazil nut oil- chloroform/methanol extracted; HN-H, hazelnut oil- hexane extracted; HN-CM, hazelnut oil - chloroform/methanol extracted; P-H, 
pecan oil - hexane extracted; P-CM, pecan oil -chloroform/methanol extracted; PN-H, pine nut oil- hexane extracted; PN-CM, pine nut oil- chloroform/ 
methanol extracted; PO-H, pistachio oil- hexane extracted; PO-CM, pistachio oil- chloroform/methanol extracted; W-H, walnut oil- hexane extracted; 
W-CM, walnut oil -chloroform/methanol extracted; UI, undifferentiated isomers. 

2 Standard deviations of sample fatty acids from triplicate injections did not exceed 0.05% (data not shown). 
3 Values in the same row with different superscripts are significantly (ps0.05) different. 
4 Heptahecanoic acid (17:0) was detected in BN-H (0.08%) and BN-BD (0.07%), heptadecenoic acid (17:1) was detected in PO-H (0.08%) and PO-BD 
(0.08). Eicosadienoic acid (20:2 n-6) was detected in PN-H (1.12%) and PN-BD (1.02%). 
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reported, showing that in most cases oleic acid is the predominant fatty acid in most 

tree nut oils, excluding pine nut and walnut oils which contain predominantly 

linoleic acid [1, 123]. The fatty acid compositions reported in this study are in good 

agreement with those reported previously by others [1, 123]. 

4.3. Lipid Class Compositions of Tree Nut Oils 

The lipid class composition of stripped and non-stripped tree nut oils were 

analysed using an Iatroscan TLC-FID system. Lipid classes detected in tree nut oils 

included triacylglycerols, sterols and sterol esters, phospholipids and sphingolipids; 

no hydrocarbons or free fatty acids were detected in oil samples examined. Stripped 

oils contained higher amounts of triacylglycerols than their non-stripped 

counterparts, and lower amounts of sterols, phospholipids and sphingolipids (Table 

4.4). Stripped oils contained between 98.9 and 99.4 % triacylglycerols and no 

significant differences (p>0.05) were detected among stripped oil samples. Among 

stripped oil samples, walnut and almond oils contained the highest triacylglycerol 

content while pistachio and pecan oils had the lowest levels. Similarly, among the 

non-stripped oil samples, almond oil contained the highest triacylglycerol content 

while pistachio and pecan oils contained the lowest amount. No significant 

differences in the sterol ester contents of stripped and non-stripped tree nut oils 

were observed in this work; however, sterol esters were the smallest detectable 

lipid class present in tree nut oils (0.03 to 0.09% oftotallipid). 

The stripping process employed in this study was intended to recover 

representative samples of minor components of the oils responsible for their 

antioxidant activity. This process effectively reduced the levels of sterols and polar 
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lipid classes in tree nut oils (p~0.05) (Table 4.4). Sterol levels in stripped oils were 

reduced by 24 to 53% while phospholipids and sphingolipids were reduced by 25 to 

50%. Among individual phospholipids classes, phosphatidylcholine was most 

effectively removed by the solvent stripping process (Table 4.4). Phosphatidic acid 

was present in hazelnut oils at trace amounts (0.02 to 0.05%) and was not detected 

in stripped hazelnut oil. 

Few reports on the lipid class composition of tree nut oils exist [123]. Using 

column chromatography, hazelnut oil lipids have been separated and quantified; 

showing 98.4% triacylglycerols and less than 0.2% of phospholipids 

(phosphatidylcholine and phosphatidylinositol) [154]. The lipid class composition 

of hazelnut oil has also been studied using latroscan; revealing 98.8% 

triacylglycerols and 1.2% polar lipids. Among polar lipids, phosphatidylcholine, 

phosphatidylethanolamine and phosphatidylinositol were present at 56.4, 30.8 and 

11.7%, respectively [150]. The lipid class composition of walnut oil has been 

reported to contain 96.9 % non-polar lipids (acylglycerols, fatty acids, sterols and 

sterol esters) and 3.1% polar lipids. Polar lipids included sphingolipids (73.4%) and 

26.6% phospholipids (primarily phosphatidylethanolamine) [181]. 

4.4. Sterol and Stanol Contents and Compositions of Tree Nut Oils 

Sterol and stanol contents of stripped and non-stripped tree nut oils were analysed 

using gas chromatography. Qualitative analysis of trimethylsilyl ethers of sterols 

and stanols were carried out using GC-MS with reference to published spectral data 

and peak retention times. Quantitative analyses were then performed using GC-FID, 
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Table 4.4. Lipid Class Compositions ofNon-stripped (a) and Stripped (b) Tree Nut Oils1
'
2 

LiQid Class {g/1 OOg oil} A-H A-BO BN-H BN-80 HN-H HN-80 P-H 
Non-Stripped Oils 

98.2 ± 0.1b 98.0 ± 0.1b 98.0 ± 0.1b Triacylglycerols 96.7±0.1 8 96.6 ± 0.1 8 97.6 ± 0.1 c 96.4 ± 0.1 8 

Sterols 0.22 ± 0.01 8 0.25 ± 0.038 0.18 ± 0.02b 0.19±0.02b 0.21 ± 0.03b 0.22 ± 0.02b 0.26 ± 0.028 

Sterol Esters 0.05 ± 0.01b 0.05 ± 0.01b 0.05 ± O.o1b 0.05 ± 0.01b 0.04 ± 0.01b 0.04 ± 0.01b 0.07 ± 0.01b 

Phosphatidylserine 0.21 ± 0.048 0.32 ± 0.03d 0.26± 0.028 0.32 ± 0.02d 0.27 ± 0.01 8 0.36 ± 0.01c 0.39 ± 0.03c 

Phosphatidylinositol 0.11 ± 0.05c 0.17 ± 0.03b 0.09 ± 0.03c 0.10 ± 0.02c 0.06 ± 0.02c 0.08 ± 0.02c 0.15 ± 0.02b 

Phosphatidylcholine 0.21 ± 0.03d 0.56 ± 0.01b 0.34 ± 0.04c 0.78 ± 0.068 0.24 ± 0.03d 0.48 ± 0.03b 0.21 ± 0.06d 

Phosphatidic Acid NO NO NO NO 0.02 ± 0.01 8 0.05 ± 0.01 8 NO 
Sghingholigids 0.53 ± 0.028 0.63 ± 0.05d 0.83 ± 0.03b 0.91 ± 0.028 0.26 ± 0.041 0.32 ±0.031 0.48 ± 0.028 

Ligid Class { g/1 OOg oil} P-80 PN-H PN-80 PO-H P0-80 W-H W-80 
Triacylglycerols 96.3 ± 0.1 8 97.6c± 0.1 97.1 ± 0.1d 96.2 ± 0.1 8 95.8 ± 0.1 1 97.2 ± 0.1d 97.1 ±0.1d 

Sterols 0.28 ± 0.038 0.13 ± 0.03b 0.16 ± 0.01b 0.19 ± 0.02b 0.21 ± 0.02b 0.26 ± 0.038 0.28 ± 0.028 

Sterol Esters 0.07 ± 0.01b 0.06 ± 0.01b 0.05 ± 0.01b 0.03 ± 0.01b 0.03 ± 0.01b 0.09 ± 0.01 8 0.09 ± 0.01 8 

Phosphatidylserine 0.47 ± 0.01b 0.23 ± 0.028 0.33 ± 0.03d 0.47 ± 0.04b 0.59 ± 0.048 0.37 ± 0.02c 0.46 ± 0.03b 

Phosphatidylinositol 0.18 ± 0.03b 0.14 ± 0.01b 0.19 ± 0.02b 0.21 ± 0.01b 0.28 ± 0.038 0.25 ± 0.048 0.31 ± 0.028 

Phosphatidylcholine 0.52 ± 0.04b 0.19 ± 0.02d 0.37 ± 0.05c 0.52 ± 0.06b 0.68 ± 0.048 0.34 ± 0.05c 0.52 ± 0.04b 

Phosphatidic Acid NO NO NO NO NO NO NO 
Sghingholigids 0.55± 0.048 0.45 ± 0.028 0.57 ± 0.038 0.73 ± 0.03c 0.82 ± 0.01b 0.54 ± 0.028 0.68 ± 0.02d 

Ligid Class {g/1 OOg oil} A-H A-BO BN-H BN-80 HN-H HN-80 P-H 
Stripped Oils 
Triacylglycerols 99.3 ± 0.1 8 99.2 ± 0.1 8 98.9 ± 0.1 8 99.0 ± 0.1 8 99.3 ± 0.1 8 99.1 ±0.1 8 98.9 ± 0.1 8 

Sterols 0.14±0.01b 0.16 ± 0.02b 0.09 ± 0.01c 0.11 ± 0.02c 0.09 ± 0.01c 0.11 ± 0.03c 0.14 ± 0.03b 
Sterol Esters 0.04 ± 0.01b 0.05 ± 0.02b 0.04 ± 0.01b 0.05 ± 0.02b 0.04 ± 0.01b 0.04 ± 0.01b 0.06 ± 0.02b 
Phosphatidylserine 0.16 ± 0.031 0.21 ± 0.038 0.14 ± 0.031 0.24 ± 0.028 0.16 ± 0.02' 0.23 ± 0.038 0.24 ± 0.01 8 

Phosphatidylinositol 0.04 ± 0.02c 0.09 ± 0.02c 0.08 ± 0.02c 0.08 ± 0.01c 0.03 ± 0.01c 0.05 ± 0.03c 0.08 ± 0.03c 

Phosphatidylcholine 0.13 ± 0.038 0.36 ± 0.04c 0.23 ± 0.03d 0.39 ± 0.04c 0.13 ± 0.028 0.27 ± 0.01d 0.11 ± 0.038 

Phosphatidic Acid NO NO NO NO NO NO NO 
Sghingholigids 0.32 ±0.021 0.39 ± 0.058 0.51 ± 0.038 0.62 ± 0.02d 0.27 ± 0.041 0.30 ±0.031 0.27 ± 0.021 

Ligid Class {g/1 OOg oil} P-80 PN-H PN-80 PO-H P0-80 W-H W-80 
Triacylglycerols 98.9 ± 0.1 8 99.1± 0.1 8 99.2 ± 0.1 8 98.9 ± 0.1 8 98.8 ± 0.1 8 99.4 ± 0.1 8 99.3 ± 0.1 8 

Sterols 0.13 ± 0.02b 0.08 ± 0.01c 0.09 ± 0.02c 0.08 ± 0.01c 0.09 ± 0.01c 0.15 ± 0.01b 0.14 ± 0.03b 
Sterol Esters 0.07 ± 0.01b 0.06 ± 0.01b 0.04 ± 0.02b 0.03 ± 0.01b 0.03 ± 0.01b 0.09 ± 0.01 8 0.09 ± 0.01 8 

Phosphatidylserine 0.23 ± 0.028 0.13 ± 0.031 0.18±0.021 0.26 ± 0.028 0.31 ± 0.02d 0.20 ± O.Q11 0.29 ± 0.01 8 

Phosphatidylinositol 0.11 ± 0.02c 0.08 ± 0.03c 0.11 ±0.01c 0.12 ± 0.02c 0.16 ± 0.01b 0.13 ± 0.01c 0.18 ± 0.04b 

Phosphatidylcholine 0.29 ± 0.02d 0.09 ± 0.038 0.23 ± 0.04d 0.28 ± 0.03d 0.38 ± 0.02c 0.22 ± 0.02d 0.28 ± 0.02d 

Phosphatidic Acid NO NO NO NO NO NO NO 
Sghingholigids 0.22 ± 0.041 0.18 ± 0.021 0.29 ± 0.031 0.44 ± 0.038 0.49 ± 0.038 0.29 ±0.021 0.39 ± 0.048 

1 Abbreviations used: A-H, almond oil - hexane extracted; A-CM, almond oil -chloroform/methanol extracted; BN-H, Brazil 
nut oil - hexane extracted; BN-CM, Brazil nut oil - chloroform/methanol extracted; HN-H, hazelnut oil - hexane extracted; 
HN-CM, hazelnut oil - chloroform/methanol extracted; P-H, pecan oil - hexane extracted; P-CM, pecan oil -chloroform/ 
methanol extracted; PN-H, pine nut oil - hexane extracted; PN-CM, pine nut oil -chloroform/methanol extracted; PO-H, 
pistachio oil - hexane extracted; PO-CM, pistachio oil -chloroform/methanol extracted; W-H, walnut oil - hexane 
extracted; W-CM, walnut oil- chloroform/methanol extracted; ND, not detected. 

2 Values for each lipid class with different superscripts are significantly (pS0.05) different. 
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using 5a-cholestane as internal standard. Results showed that P-sitosterol was the 

predominant sterol in tree nut oils, with stigmasterol, campesterol and ~5-

avenosterol also being widely distributed among samples, but at lower levels (Table 

4.5). Small amounts of stanols (:S 0.1 mg/g oil) were present in Brazil nut, hazelnut, 

pine nut and pistachio oils. Walnut oil contained the highest amount of total sterols 

(2.9 mg/g oil), followed by almond oil (2.7 to 2.8 mg/g oil) and pecan oil (2.6 to 2.7 

mg/g oil). Among non-stripped oil samples, hexane extracted pine nut oil contained 

the lowest amount of total sterols, with 1.3 mg total sterols per gram of oil. The 

solvent stripping process reduced the total sterol content of tree nut oils by 24 to 

53%. Stripping of sterols was most effective with Brazil nut oil and least effective 

with pine nut oil. Poor results for the stripping of total sterols from pine nut oil may 

be due to its low total sterol content in combination with a high degree of 

unsaturation, which may have negatively influenced the partitioning of sterols and 

similar compounds into the methanol phase during the stripping process. Minor 

sterols (:S 0.05 mg/g oil) present in non-stripped samples were completely removed 

during the solvent stripping process. 

Results for total sterols from gas chromatography and TLC-FID analyses of 

tree nut oils were similar, with oils from walnuts, almonds and pecans having the 

highest sterol contents and pine nut oil having the lowest. The TLC-FID analyses 

performed in this work allowed for quantification of both free and unesterified 

sterols, whereas the gas chromatographic protocol used in this study was not 

suitable for quantitative determination of free sterol and sterol ester compositions. 

However, since sterol esters are present in tree nut oils at much lower amounts than 

free sterols, the difference in results for total sterols from the two analytical 
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Table 4.5. Sterol and Stanol Contents (mg/g) and Compositions ofNon-stripped and Stripped 
Tree Nut Oils1.2 

Compound A-H A-CM BN-H BN-CM HN-H HN-CM P-H 

Non-stripped Tree Nut Oil 
22-Nordehydrocholesterol NO NO 0.11±0.011 0.14±0.021 NO NO NO 
Cholesterol 0.02±0.01c 0.03±0.01c 0.12±0.031 0.18±0.031 0.13±0.021 0.13±0.021 0.07±0.02b 
Cholestanol NO NO 0.02±0.01b 0.02±0.01b 0.08±0.01" 0.09±0.0011 NO 
Campesterol 0.09±0.02b 0.09±0.01b 0.12±0.01b 0.15±0.011 0.17±0.021 0.17±0.021 0.22±0.031 

Stigmasterol 0.19±0.05b 0.19±0.07b 0.22±0.05b 0.23±0.04b 0.32:t0.08b 0.39±0.07b 0.44±0.03b 
24-Methylenecholesterol 0.00 0.00 0.12±0.01" 0.13±0.01" 0.01±0.01c 0.01±0.001c 0.05±0.01b 
13-Sitosterol 2.30±0.098 2.29±0.06" 1.11±0.02c 1.12±0.07c 1.07±0.06c 1.10±0.09c 1.67±0.08b 
13-5itostanol NO NO NO NO NO NO NO 
~5-Avenasterol 0.10±0.01b 0.11:t0.01b 0.10:t0.001b 0.11±0.02b 0.07±0.01b 0.09±0.01b 0.10±0.02b 
Total 2.68±0.071 2.75±0.068 1.92±0.08b 2.06±0.07b 1.8~±0.06b 1.99±0.09b 2.§2±0.071 

ComQound P-CM PN-H PN-CM PO-H PO-CM W-H W-CM 
22-Nordehydrocholesterol NO 0.04±0.016 0.05±0.016 0.04±0.026 0.04±0.016 NO NO 
Cholesterol 0.08±0.02b 0.02:t0.01c 0.02±0.01c 0.03±0.01c 0.04:t0.02c 0.08:t0.01b 0.10±0.01" 
Cholestanol NO 0.01:t0.01b 0.01 ±0.01 b NO NO NO NO 
Campesterol 0.24±0.03" 0.19±0.021 0.22±0.021 0.20±0.02" 0.21±0.021 0.18±0.02" 0.19±0.021 

Stigmasterol 0.60±0.071 0.13±0.08b 0. 15:t0.09b 0.10±0.05b 0.11:t0.06b 0.33±0.09b 0.35:t0.08b 
24-Methylenecholesterol 0.05:t0.01b NO NO NO NO NO NO 
13-Sitosterol 1.75:t0.06b 1.20±0.08c 1.12±0.07c 1.14:t0.08c 1.19±0.09c 2.16±0.091 2.25±0.071 

13-Sitostanol NO NO NO 0.08±0.01" 0.10±0.021 NO NO 
~5-Avenasterol 0.11:t0.01b 0.06:t0.01b 0.07:t0.01b 0.13±0.011 0.15±0.01 1 0.17±0.02" 0.18±0.021 

Total 2.76:to.o~· 1.29±0.07c 1.60±0.07b 1.52±0.08b 1.69~.07b 2.92±0.Q~ 2.~±o.o~~ 

ComQound A-H A-CM BN-H BN-CM HN-H HN-CM P-H 
Stripped Tree Nut Oils 
22-Nordehydrocholesterol NO NO 0.05±0.01b 0.06±0.01b NO NO NO 
Cholesterol NO NO 0.07:t0.01b 0.08±0.01b 0.07:t0.01b 0.07:t0.01b NO 
Cholestanol NO NO 0.001±0.01b 0.01:t0.01b 0.04±0.01b 0.04±0.01b NO 
Campesterol 0.06±0.01b 0.06:t0.01b 0.05±0.01b 0.07±0.01b 0.10:t0.01b 0.11±0.01b 0.13±0.01b 
Stigmasterol 0.07:t0.02b 0.02±0.04b 0.06:t0.03b 0.08:t0.03b 0.17±0.06b 0.20±0.04b 0.16±0.07b 
24-Methylenecholesterol NO NO 0.05±0.01b 0.06±0.01b NO NO NO 
13-Sitosterol 1.56:t0.08b 1.65±0.08b 0.58±0.08d 0.59±0.0~ 0.61±0.09d 0.64±0.08d 1.14±0.05c 
13-Sitostanol NO NO NO NO NO NO NO 
~5-Avenasterol 0.05:t0.01b 0.06±0.01b 0.04:t0.01b 0.05:t0.01b 0.04:t0.01b 0.05:t0.01b 0.05:t0.01b 
Total 1.6~±0.Q8b 1. 78:t0.08b 0.90±0.0~ 0.99±0.06d 1.03:t0.08d 1.11±0.~ 1.47:tO.Q7b 

ComQound P-CM PN-H PN-CM PO-H PO-CM W-H W-CM 
22-Nordehydrocholesterol NO NO NO NO NO NO NO 
Cholesterol NO 0.01:t0.01c 0.01 ±0.01 c 0.01:t0.01c 0.02:t0.01c 0.03:t0.01c 0.04:t0.01c 
Cholestanol NO NO 0.01±0.01b NO NO NO NO 
Campesterol 0.14±0.01b 0.10±0.02b 0.14±0.01b 0.11:t0.01b 0.12±0.01b 0.09±0.01b 0.10:t0.01b 
Stigmasterol 0.09±0.03b 0.04:t0.02b 0.06:t0.002b 0.1 O:t0.02b 0.13±0.07b 0.12:t0.07b 0.13:t0.06b 
24-Methylenecholesterol NO NO NO NO NO NO NO 
13-Sitosterol 1.08±0.08c 0.93±0.06c 0.96±0.05c 0.49±0.05d 0.51±0.0~ 1.18±0.04c 1.22:tO.o8• 
13-Sitostanol NO NO NO 0.05:t0.001b 0.06:t0.01b NO NO 
~5-Avenasterol 0.07:t0.01b 0.04:t0.01b 0.04:t0.01b 0.07±0.02b 0.08±0.01b 0.08±0.02b 0.09±0.01b 
Total 1.39:t0.06c 1.11±0.0~ 1.21±0.0~ o.8a~.o~ Q.!i!Q±0.08d 1.51~.07b 1.~~.07b 

1 Abbreviations used: A-H, almond oil - hexane extracted; A-CM, almond oil -chloroform/methanol extracted; 
BN-H, Brazil nut oil - hexane extracted; BN-CM, Brazil nut oil -chloroform/methanol extracted; HN-H, hazelnut 
Oil - hexane extracted; HN-CM, hazelnut oil - chloroform/methanol extracted; P-H, pecan oil - Hexane extracted; 
P-CM, pecan oil -chloroform/methanol extracted; PN-H, pine nut oil - hexane extracted; PN-CM, pine nut oil -
chloroform/methanol extracted; PO-H, pistachio oil - hexane extracted; PO-CM, pistachio oil - chloroform/ 
methanol extracted; W-H, walnut oil- hexane extracted; W-CM, walnut oil -chloroform/methanol extracted; NO, 
not detected. 

2 Values for each compound with different superscripts are significantly (pS0.05) different. 
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methods was negligible. Comparison of the two solvent extraction systems showed 

that the chloroform/methanol extracted oils had total sterols contents that 

were between 6 and 9% higher than those of their hexane extracted counterparts, 

but the difference reached significance (p ~ 0.05) only in pine nut oil. 

The sterol compositions reported in this work are in good agreement with 

those reported previously in the literature [123]; however, little information exists 

regarding the minor sterol and stanol compositions of tree nut oils [202]. Silicic acid 

column chromatography was used to purify sterols and related compounds from oil 

samples before gas chromatographic analysis. This preparative step allowed for 

injection of sample sterols at higher concentrations and purity than could be 

achieved with direct injection of transmethylated or saponified samples. Thus, the 

preparative step allowed for quantification of minor sterol and stanol components, 

including 22-nordehydrocholesterol in Brazil nut, pine nut and pistachio oils as well 

as 24-methylenecholesterol in Brazil nut oil, hazelnut oil and pecan oils, both of 

which have not been reported previously in tree nut oils. 

The sterol compositions of almond, hazelnut, pecan, pistachio and walnut oils 

have been previously reported by others. Almond oil has been reported to contain 

between 2.2 to 2.6 glkg phytosterols, mainly as f3-sitosterol, with trace amounts of 

stigmasterol and campesterol [1, 134]. Hazelnut oil contains 1.2 to 2.2 glkg of 

phytosterols primarily in the form of f3-sitosterol [1, 134]. Pecan oil has been 

reported to contain 0.73 glkg phytosterols, primarily f3-sitosterol (around 90%) [1]. 

Pistachio oil has been reported to contain 5 glkg phytosterols, of which 85% is f3-

sitosterol [172]. Walnut oil has been shown to contain 1.8 glkg phytosterols [1], 

with f3-sitosterol comprising 85% of total sterols, followed by ~5-avenasterol 
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(7.3%), campesterol (4.6%), and finally cholesterol (1.1 %) [181]. These values are 

in good agreement with those reported in our study. 

4.5. Tocopherol Contents and Compositions of Tree Nut Oils 

The tocopherol compositions of tree nut oils were analysed in reversed-phase 

using HPLC; detection was achieved using both ultraviolet detection at 290 nm for 

quantitative analysis, and negative mode mass spectrometric detection for 

qualitative analysis of tocopherol isomers. No tocotrienols were detected in tree nut 

oil samples. Comparison of the hexane and chloroform/methanol extracted oils for 

total tocopherol contents shows that the chloroform/methanol extraction system 

afforded oils with higher tocopherol contents, with differences reaching significance 

(p ~ 0.05) in all nut oil samples studied {Table 4.6). Among non-stripped samples, 

walnut oil contained the highest tocopherol content (519 to 584 mg/kg oil), 

followed by hazelnut oil (494 to 525 mg/kg oil) and then pecan oil (479 to 509 

mg/kg). Hexane-extracted Brazil nut oil contained the lowest amount of tocopherols 

(192 mglkg oil). Interestingly, chloroform/methanol extracted Brazil nut oil 

contained more than twice the amount of total tocopherols than its hexane extracted 

counterpart, and the difference was due primarily to increased inclusion of o­

tocopherol (201 mglkg oil) into chloroform/methanol extracted Brazil nut oil. The 

difference may be attributable to the enhanced ability of the chloroform/methanol 

extraction solvent to remove lipidic components from the skins of Brazil nuts, 

which are known to contain high amounts antioxidative components such as 

tocopherols but are not extracted well with non-polar solvents alone [128]. 
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Table 4.6. Tocopherol Content (rnglkg) and Compositions of Non-stripped and 
Stripped Tree Nut Oils 

Compound a-Tocopherol y-Tocopherol 6-Tocopherol 13-Tocopherol Total 

Non-Stripped Oils 
A-H 
A-CM 
BN-H 
BN-CM 
HN-H 
HN-CM 
P-H 
P-CM 
PN-H 
PN-CM 
PO-H 
PO-CM 
W-H 
W-CM 

Stripped Oils 

203.4 ± 0.9f 
311.6 ± 1.2d 

14.1 ± 0.81 

16.0 ± 1.35 

388.5 ± 0.98 

377.5 ± 1.4b 
14.8 ± 0.91 

19.9 ± 0.6r 
123.9 ± 0.7h 
178.4 ± 1.09 

296.7 ± 0.68 

332.1 ± 0.8c 
34.1 ± 1.1q 
38.0 ± 1.7P 

20.9 ± 0.41 

21.0 ± 0.61 

138.7±1.3k 
175.3 ± 1.0' 
105.2 ± 1.2' 
147.6 ± 1.1 1 

464.6 ± 1.8c 
488.8 ± 1.6b 
240.0 ± 1.28 

265.1 ± 0.7d 
32.6 ± 1.05 

49.7 ± 1.7P 
463.7 ± 1.1c 
522.8 ± 1.98 

NO 
NO 

38.9 ± 0.3c 
222.4 ± 0.48 

ND 
NO 
NO 
ND 
26.4 ± o.5d 
23.7 ± 0.1 8 

18.3 ± 0.29 

23.5 ± 0.68 

20.7 ± 0.4f 
23.4 ± 0.38 

NO 
14.2 ± 0.2d 
NO 
NO 
NO 
NO 
NO 
NO 
32.5 ± 0.58 

20.7 ± 0.2c 
NO 
NO 
NO 
NO 

224.3 ± 1.i 
346.8 ± 2.2k 
191.7 ± 2.4m 
413.7 ± 2.51 

493.7 ± 1.78 

525.1 ± 1.4b 
479.4 ± 2.39 

508.7 ± 1.8d 
422.8 ± 1.6h 
487.9 ± 1.2' 
347.6 ± 2.4k 
405.3 ± 1.81 

518.5±1.7c 
584.2 ± 2.38 

A-H 63.1 ± 0.4" 6.5 ± 0.3w NO NO 69.5 ± 0.8v 
A-CM 96.6 ± 0.31 6.5 ± 0.4w NO NO 103.1 ± 0.7u 
BN-H 4.4 ± 0.2Y 43.0 ± 0.6r 5.0 ± 0.21 NO 56.8 ± 1.1w 
BN-CM 5.0 ± 0.3x 54.3 ± 0.3° 71.0 ± 0.2b NO 130.3 ± 1.38 

HN-H 120.4 ± 0.81 32.6 ± 0.38 NO NO 153.0 ± 1.1 q 
HN-CM 117.0±0.71 45.8±0.5q NO NO 162.8±1.4° 
P-H 4.6 ± 0.2Y 144.0 ± 0.81 NO NO 148.6 ± 1.2r 
P-CM 6.2±0.2w 151.5±0.9h ND ND 157.7±1.1P 
PN-H 38.4 ± 0.7P 74.4 ± 0.6" 8.2 ± 0.3h 10.1 ± 0.28 131.1 ± 1.88 

PN-CM 55.3 ± 0.5° 82.2 ± 0.5m 1.3 ± 0.31 6.4 ± 0.38 151.2 ± 0.8q 
PO-H 92.0 ± 0.9m 10.1 ± 0.3v 5.7 ± 0.2k NO 107.8 ± 1.1u 
PO-CM 103.0 ± 0.9k 15.4 ± 0.3u 7.3 ± 0.3h NO 125.6 ± 1.51 

W-H 10.6 ± 0.2v 143.7 ± 0.71 6.4 ± 0.21 NO 160.7 ± 1.2° 
W-CM 11.8±0.2u 162.1 ±0.99 7.3±0.31 NO 181.1 ± 1.7" 

1 Abbreviations used: A-H. almond oil- hexane extracted; A-CM, almond oil - chloroform/methanol 
extracted; BN-H, Brazil nut oil - hexane extracted; BN-CM, Brazil nut oil - chloroform/methanol 
extracted; HN-H, hazelnut oil - hexane extract; HN-CM, hazelnut oil - chloroform/methanol 
extracted; P-H, pecan oil - hexane extracted; P-CM, pecan oil - chloroform/methanol extracted; 
PN-H, pine nut oil - hexane extracted; PN-CM, pine nut oil - chloroform/methanol extracted; PO-H, 
pistachio oil- hexane extracted; PO-CM, pistachio oil -chloroform/methanol extracted; W-H, walnut 
oil- hexane extracted; W-CM, walnut oil- chloroform/methanol extracted; NO, not detected 

2 Values in the same column with different superscripts are significantly (ps0.05) different. 
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The solvent stripping process employed in this work was able to reduce the 

amount of total tocopherols in tree nut oils by approximately 70%; however, no 

individual tocopherol isomer could be completely stripped from oil samples. Alpha­

tocopherol and y-tocopherol were present in all tree nut oils, with a.-tocopherol 

predominating in almond, hazelnut and pistachio, while y-tocopherol predominating 

in pecan, pine nut and walnut oils as well as hexane extracted Brazil nut oil. Delta­

tocopherol was the predominant tocol isomer in chlorofonnlmethanol extracted 

Brazil nut oil, and was also present in pine nut, pistachio and walnut oils at much 

lower amounts (5 to 26 mglkg oil). Beta-tocopherol was detected only in 

chlorofonnlmethanol extracted almond and pine nut oils at trace amounts (< 33 

mglkg oil). Alpha-tocopherol is the predominant tocol in almond oil (390-439 

mglkg) and hazelnut oil (382 to 472mglkg); both are reported to contain smaller 

amounts of y-tocopherol (12.5 and 61.2 mglkg, respectively) [1, 134]. The most 

predominant tocopherol in pecan oil is y-tocopherol (176 mglkg), followed by a­

tocopherol (10 mglkg), and then~- and ~-tocopherols (6.2 mglkg) [1]. Pistachio oil 

has been reported to contain 270 mglkg of tocopherols (primarily a-tocopherol) 

[1]. Walnut oil has been reported to contain between 268 and 436 mglkg of 

tocopherols. The predominant tocol isomer is y-tocopherol (>90%), followed by a­

tocopherol (6%), and then~- and ~-tocopherols [181]. The tocopherol compositions 

reported here are in agreement with those reported previously [123]. 
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4.6. Lipid Compositions of Tree Nut Oil Extracts 

The lipid class compositions of tree nut oil minor component extracts, analysed 

usmg TLC-FID, revealed the presence of sterols, phosphatidylserine, 

phosphatidylinositol, phosphatidylcholine and sphingolipids. Tocopherol 

compositions were analysed using reversed-phase HPLC. Lipid classes and 

tocopherols were expressed as parts per million of the final methanolic extract 

described in section 3.4.1 {ppm; mg/kg oil equivalent). The minor component 

extract of chloroform/methanol extracted walnut oil contained the highest total 

tocopherol content (403 mg/kg oil equivalent), followed by chloroform/methanol 

extracted hazelnut oil (362 mg/kg oil equivalent) (Table 4. 7). The minor component 

extract of hexane extracted Brazil nut oil contained the lowest total tocopherol 

content (135 mg/kg oil equivalent). The relative percentages of individual 

tocopherols in tree nut oil extracts did not significantly differ (p > 0.05) from 

the relative percentages in their non-stripped counterparts. 

The minor component extracts of chloroform/methanol extracted tree nut oils 

contained higher amounts of phospholipids and sphingolipids than their hexane 

extracted counterparts. The minor component extract of chloroform/methanol 

extracted pistachio oil possessed the highest amount of phospholipids and 

sphingolipids among all samples tested (1 0.3 g/kg oil equivalent), followed by 

chloroform/methanol extracted walnut oil (9.3 g/kg oil equivalent) and then 

chloroform/methanol extracted pecan oil (8.6 g/kg oil equivalent). The minor 

component extract of hexane extracted hazelnut oil possessed the lowest amount of 

phospholipids and sphingolipids (2.6 g/kg oil equivalent). Phosphatidic acid was 

only detected in the extracts of hazelnut oil. 
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Table 4.7. Lipid Class Contents (mg/kg oil equivalent) and Compositions of Tree Nut Oil Extracts1
'
2 

Lipid Class Sterols3 Phosphatidylserine3 Phosphatidylinositol3 Phosphatidylcholine3 Phosphatidic Acid3 Sphingolipids3 Tocopherols4 

A-H 800 ± 1528 500 ± 99c 700 ± 73c 800 ± 92d NO 2100 ± 1428 154.6± 0.4k 
A-BO 900 ± 1088 1100 ± 137 b 600 ± 52c 2000 ± 149c NO 2400 ± 1668 240.4± 0.31 

BN-H 900 ± 998 1200 ± 186b 200 ± 35t 1 000 ± 1 07d NO 3200 ± 1858 135.1 ± 0.81 

BN-BO 800 ± 1258 1200 ± 205b 200 ± 48t 3900 ± 2378 NO 2900 ± 1828 283.4± 0.2h 
HN-H 1100± 1848 1100± 163b 300 ± 378 1100± 175d 200± 39b 100 ± 26b 340.7±0.7d 
HN-BO 1100 ± 1938 1300 ± 138b 300 ± 288 2100 ± 226c 500 ± 638 200 ± 46b 362.3± 0.4 b 
P-H 1200 ± 1578 1500 ± 263b 400 ± 34d 1000 ± 78d NO 2100 ± 2388 330.8± 0.6t 
P-BO 1600 ± 1798 2400 ± 2068 700 ± 75c 2300 ± 287c NO 3200 ± 2808 351.0± 0.3d 
PN-H 500 ± 688 1000 ± 149b 600 ± 47c 1000 ± 95d NO 2700 ± 261 8 291.7± 1.29 

PN-BO 700 ± 1288 1500±242b 700 ± 19c 1400±125d NO 2800±2358 336.7±0.68 

PO-H 1100±1428 2100±1728 900 ± 64b 2400±277c NO 2900±2638 239.8±0.81 

PO-BO 1100 ± 1238 2800 ± 2388 1200 ± 368 3000 ± 284b NO 3300 ± 2138 279.7± O.i 
W-H 1100±1188 1700±127b 1200±1498 1200±115d NO 2500±1738 357.8±0.4c 
W-BO 1500 ± 1348 2700 ± 2368 1300 ± 2338 2400 ± 203c NO 2900 ± 2188 403.1± 0.78 

1 Abbreviations used: A-H, almond oil- hexane extract; A-CM, almond oil - chloroform-methanol extract; BN-H, Brazil nut oil- hexane extract; BN-CM, 
Brazil nut oil -chloroform-methanol extract; HN-H, hazelnut oil - hexane extract; HN-CM, hazelnut oil - chloroform-methanol extract; P-H, pecan oil -
Hexane extract; P-CM, pecan oil- chloroform-methanol extract; PN-H, pine nut oil - hexane extract; PN-CM, pine nut oil -chloroform-methanol extract; 
PO-H, pistachio oil - hexane extract; PO-CM, pistachio oil -chloroform-methanol extract; W-H, walnut oil - hexane extract; W-CM, walnut oil -
chloroform-methanol extract; NO, not detected 

2 Values in the same column with different superscripts are significantly (p:S0.05) different. Experiments performed in triplicate. 
3 Analysed using TLC-FIO. 
4 Analysed using HPLC. 
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4.7. Total Phenolics Contents of Tree Nut Oil Extracts 

The TPC of tree nut oil extracts, determined by the method of Singleton and 

Rossi [191], were expressed as equivalents of gallic acid I kg oil equivalent (Figure 

4.1, Table 4.8) and as equivalents of a.-tocopherol I kg oil equivalent (Figure 4.2, 

Table 4.8). These two reference standards were because of their different solubility 

characteristics; gallic acid is a water soluble phenolic while a.-tocopherol is a lipid 

soluble phenolic. Minor component extracts of chloroform/methanol extracted oils 

had higher TPC than their hexane extracted counterparts, expressed as gallic acid 

equivalents or a.-tocopherol equivalents. This strongly suggests that 

chloroform/methanol was more effective than hexane for extraction of phenolic 

compounds. Since several antioxidative phenolic compounds occur in tree nuts 

[123], inclusion of these compounds in tree nut oils is expected to enhance their 

antioxidant activity as well as their content of minor components. 

Among the oil extracts studied, chloroform/methanol extracted pecan oil had 

the highest TPC (711 mg/kg gallic acid equivalents or 783 mg/kg a.-tocopherol 

equivalents) followed by chloroform/methanol extracted walnut oil (689 mglkg 

gallic acid equivalents or 759 mg/kg a.-tocopherol equivalents) and then 

chloroform/methanol extracted Brazil nut oil (381 mglkg gallic acid equivalents or 

429 mg/kg a.-tocopherol equivalents). Hexane extracted almond oil extracts had the 

lowest TPC ( 40 mg/kg gallic acid equivalents or 124 mg/kg a.-tocopherol 

equivalents). The a.-tocopherol equivalence values of chloroform/methanol 

extracted pecan and walnut oil extracts were almost two-fold greater than their total 

tocopherols contents as determined using HPLC, which implies that phenolic 

compounds other than tocopherols that are present in these extracts enhance their 
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Figure 4.1. Total Phenolics Contents (TPC) of Tree Nut Oil Extracts as Gallic Acid 
Equivalents1 
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Values with different alphabetical identifiers are significantly (p ~ 0.05) different. 
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Figure 4.2. Total Phenolics Contents (TPC) ofTree Nut Oil Extracts as a-Tocopherol 
Equivalents1 
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Values with different alphabetical identifiers are significantly (p ~ 0.05) different. 
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Table 4.8. Total Phenolics Contents (mg/kg) of Extracts from Tree 
Nut Oils 

Nut Hexane Extracted Chloroform/Methanol Extracted 

Gallic Acid Equivalents1 

Almond 124 ± 11d 16a ± 15d 

Brazil Nut 153 ± 12d 429 ± 19b 

Hazelnut 159 ± 13d 33a ± 14c 

Pecan 196 ± 15d 783 ± 188 

Pine Nut 14a ± 12d 423 ± 16c 

Pistachio 15a ± 12d 379 ± 15c 

Walnut 210 ± 16d 759 ± 228 

a-Tocopherol Equivalents1 

Almond 40 ± 5d 73 ± 7d 

Brazil Nut 48 ± 4d 381 ± 11b 

Hazelnut 91 ± 12d 163 ± 17c 

Pecan 54± ad 711 ± 328 

Pine Nut 53± 11d 157 ± 15c 

Pistachio 59± ad 173 ± 1ac 

Walnut 63 ± 7d 689 ± 238 

1 Values with different superscripts are significantly (p:::: 0.05) different. 
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antioxidant activities. No obvious correlations could be observed between a­

tocopherol equivalence values (TPC) and total tocopherol contents (HPLC), with 8 

out of 14 extracts having lower a-tocopherol equivalence values than total 

tocopherol contents (HPLC). The difference between a-tocopherol equivalence 

values and total tocopherol contents did not exceed two fold for any sample. These 

differences could be due to the presence of non-tocopherol phenolics or other 

compounds in some samples that reacted with the Folin and Ciocalteu's reagent, and 

thus increased their TPC beyond what would be expected from their total 

tocopherol contents alone. 

There are no previous reports on TPC of tree nut oils. The total phenolics 

contents of minor component extracts of black cumin (Nigella sativa L.) oil, 

coriander (Coriandrum sativum L.) oil, and Niger (Guizotia abyssinica Cass.) oil 

have been reported as 24, 11 and 5 mg caffeic acid equivalents per kg oil equivalent 

[190]. The TPC of olive oil has been studied by a number of research groups who 

have reported values ranging from 11 to 76 mg syringic acid per kg oil equivalents 

[203]. However, in both of these reports the TPC were considerably lower than the 

total tocopherol contents of the oils studied, implying that the TPC assay employed 

in these studies did not adequately assess the total amounts of phenolic compounds 

present in the oil samples. 

4.8. Trolox Equivalent Antioxidant Capacity of Tree Nut Oil Extracts 

The Trolox equivalent antioxidant capacity measures the ability of 

antioxidants to scavenge the 2.5 mM 2,2'-azo-bis (2-methylpropionamidine) 

dihydrochloride (AAPH' ) I 2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonate) 

(ABTS' ) radical pair; the antioxidant activities are expressed as equivalents of 
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Trolox, a water soluble vitamin E analogue. The TEAC value is defined as the 

molar concentration of Trolox solution having the antioxidant capacity equivalent to 

the sample solution being tested. Trolox equivalent antioxidant capacity values of 

tree nut oil extracts were calculated using a Trolox standard curve and were 

expressed as JlM Trolox equivalents I g oil equivalent (JlM Trolox I g oil). Results 

showed that minor component extracts of chloroform/methanol extracted nut oils 

possessed greater TEAC values compared to their hexane extracted counterparts 

(Figure 4.3, Table 4.9). All minor component extracts exhibited antioxidant activity; 

chloroform/methanol extracted pecan oil had the greatest TEAC value 

(2047 JlM Trolox I g oil), followed by chloroform/methanol extracted Brazil nut oil 

(1217 JlM Trolox I g oil), and then chloroform/methanol extracted walnut oil (959 

JlM Trolox I g oil) (p ~ 0.05). The minor component extracts of hexane extracted 

almond oil and hexane extracted Brazil nut oil had the lowest TEAC values ( 68 and 

82 JlM Trolox I g oil, respectively). The high TEAC value of chloroform/methanol 

extracted pecan oil may stem from its tocopherol composition that is very rich in y­

tocopherol. However, the presence of other antioxidative components acting alone 

or synergistically with y-tocopherol is likely involved since the TEAC value of 

chloroform-methanol extracted pecan oil greatly exceeds that of its hexane 

extracted counterpart. 

These results indicate that the chloroform/methanol extraction system affords 

oils with higher amounts of antioxidative components, which are expected to 

improve oil stability and potentially exert beneficial health effects. 

104 



0 2500.0 
C> .._ 
+-' 
c 
Q) 2000.0 
co 
.> s- 1500.0 
L1J 
>< 
0 

e 
1-
::E 
~ 

1000.0 

500.0 

a 

• Hexane 
Extracted 

• Chloroform/ 
Methanol 
Extracted 

Figure 4.3. Trolox Equivalent Antioxidant Capacity (TEAC) of Tree Nut Oil Extracts1 

1 
Values with different alphabetical identifiers are significantly (p ~ 0.05) different. 

Table 4.9. Trolox Equivalent Antioxidant Capacity (J.LM Trolox Equivalents I g oil) of 
Tree Nut Oil Extracts1 

Nut Hexane Extracted Chloroform-Methanol Extracted 

Almond 67.6 ± 19.4g 345.3 ± 11.68 

Brazil Nut 81.8 ± 9.8g 1216.9 ± 12.6b 

Hazelnut 216.9 ± 22.6' 412.8 ± 15.48 

Pecan 329.1 ± 12.5' 2047.3 ± 27.68 

Pine Nut 254.7 ± 18.6' 689.9 ± 17.5d 

Pistachio 258.7 ± 13.7' 585.9 ± 18.7d 

Walnut 298.0 ± 16.2' 958.9 ± 20.7c 
1 Values with different superscripts are significantly (p ~ 0.05) different. 
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4.9. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Capacity of 
Tree Nut Oil Extracts 

The DPPH radical scavenging capacity assay was used to examine the 

antioxidant activity of tree nut oil extracts. Tree nut oil extracts were assayed over a 

range of dilutions to establish the concentration of each extract required to scavenge 

50% of the DPPH radical present in the assay medium, referred to as the ICso. 

Under the assay conditions employed here, the IC50 of pure a.-tocopherol was 23.6 

J.Lg. The minor component extracts of chlorofonn/methanol extracted oils possessed 

greater DPPH radical scavenging activity than their hexane extracted counterparts. 

Among the chlorofonn/methanol extracted oils, pecan oil had the greatest DPPH 

radical scavenging capacity with an IC50 of 0.03 g oil equivalent which equates to 

787J.Lg a.-tocopherol equivalents per gram oil equivalent, followed by walnut and 

Brazil nut oils (337 and 295 a.-tocopherol equivalents per gram oil equivalent, 

respectively), then pistachio and pine nut oils (215 and 182 a.-tocopherol 

equivalents per gram oil equivalent, respectively), followed by hazelnut oil (112 a.-

tocopherol equivalents per gram oil equivalent) and finally, almond oil (62 a-

tocopherol equivalents per gram oil equivalent) (p ~ 0.05) (Figure 4.4, Table 4.1 0). 

Among the hexane extracted oils, pecan and walnut oils exhibited the greatest 

DPPH scavenging activity (1 07 and 98 a.-tocopherol equivalents per gram oil 

equivalent, respectively), followed by pistachio, hazelnut and pine nut oils (87, 84 

and 76 a.-tocopherol equivalents per gram oil equivalent, respectively), then Brazil 

nut oil (66 a.-tocopherol equivalents per gram oil equivalent), and finally almond oil 

(46 a.-tocopherol equivalents per gram oil equivalent) (p ~ 0.05). 
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Figure 4.4. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Capacity of Tree Nut 
Oil Extracts 1 

1 
Values with different alphabetical identifiers are significantly {p::; 0.05) different. 

Table 4.10. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Capacity 
(Jlg a-Tocopherol I g Oil) ofTree Nut Oil Extracts1 

Nut Hexane Extracted Chloroform/Methanol Extracted 
Almond 46.3 ± 7.4° 62.1 ± 9.9' 

Brazil Nut 65.5 ± 10.5' 295.0 ± 23.6c 

Hazelnut 84.3 ± 13.58 112.4 ± 18.0d 

Pecan 107.3 ± 17.2d 786.7 ± 31.58 

Pine Nut 76.1 ± 12.28 181.6 ± 29.0c 

Pistachio 87.4 ± 14.o• 214.5 ± 34.3c 

Walnut 98.3 ± 15.7d 337.1 ± 27.0b 
1 Values bearing different superscripts are significantly (p:S0.05) different. 
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The relatively strong antioxidant activities of pecan and walnut oil extracts 

may be due to their high tocopherol content that is rich in y-tocopherol. However, 

the a-tocopherol equivalence values of tree nut oil extracts obtained using the 

DPPH radical scavenging assay do not strictly correlate with their actual tocopherol 

contents since the chloroform/methanol extracts exhibited significantly higher 

antioxidant activities than their hexane extracted counterparts, although both 

contained similar tocopherol contents. This indicates that non-tocopherol 

components present in the chloroform/methanol extracts also contributed to the total 

antioxidant capacity of the extracts. Besides tocopherols, other anti oxidative minor 

components of tree nut oils include phospholipids [204], phytosterols and 

phytosterol conjugates [205], and possibly non-tocopherol phenolics, among others 

[206]. Synergistic antioxidant activities have been reported between tocopherols 

and nitrogen-containing phospholipids such as phosphatidylcholine, 

phosphatidylethanolamine and phosphatidylserine [207], all of which are present in 

tree nut oils and their minor component extracts and may help explain the high 

antioxidant activities observed m this report, particularly of the 

chloroform/methanol extracted oil extracts. 

The DPPH radical scavenging capacity of tree nut oil extracts have not previously 

been reported. The DPPH radical scavenging activity of black cumin (Nigella sativa 

L.), coriander (Coriandrum sativum L.), and Niger (Guizotia abyssinica Cass.) oil 

extracts have been studied, showing that coriander oil exhibited the greatest DPPH 

radical scavenging activity, followed by black cumin oil and then Niger oil [190]. 

The antioxidant activities were attributed to both phenolic and non-phenolic 

compounds such as phospholipids present in the minor component extracts. 
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4.10. Inhibition of P-Carotene Bleaching of Tree Nut Oil Extracts 

The ~-carotene bleaching test is a convenient test used to measure the ability 

of a compound or a mixture to inhibit the oxidation of ~-carotene. In this assay, ~­

carotene is subjected to decolourization due to oxidation by free radicals formed 

from polyunsaturated fatty acids added exogenously to the assay medium. Thus, 

antioxidant activity in this assay is related to the ability of compounds to inhibit the 

initiation and/or propagation steps in oxidation of linoleic acid in aqueous media. 

The retention of ~-carotene over 120 min of assay was used to evaluate the 

antioxidant activities of tree nut oil extracts. The control assay devoid of any 

antioxidant lost 99% of its initial ~-carotene after 120 min of assay. Among nut oil 

extracts tested, extracts of chloroform/methanol extracted oils possessed higher 

antioxidant activities when compared to the extracts of their hexane extracted 

counterparts (Figure 4.5 and Figure 4.6). Results showed that the extract of 

chloroform/methanol extracted pecan oil exhibited the highest antioxidant activity, 

with 79% of ~-carotene remaining after 120 min of assay (Table 4.8). The 

chloroform/methanol extracted walnut oil possessed the second highest activity 

(70% ~-carotene remaining after 120 min assay), followed by chloroform/methanol 

extracted Brazil nut oil (63% ~-carotene remaining after 120 min assay). Hexane 

extracted almond oil exhibited the lowest antioxidant activity (7% ~-carotene 

remaining after 120 min assay). 
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Figure 4.5. Effect of Hexane Extracted Tree Nut Oil Extracts on the Retention of~-Carotene over a 120 min P-Carotene Bleaching Test1 

1 Symbol widths represent standard deviations for each data point. 
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Figure 4.6. Effect of Chloroform-methanol Extracted Tree Nut Oil Extracts on the Retention of ~-Carotene over a 120 min ~­
Carotene Bleaching Test1 

1 Symbol widths represent standard deviations for each data point. 
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Table 4.11. ~-Carotene Retention (%) after 120 min ~-Carotene Bleaching Test 
with Tree Nut Oil Extracts1 

Sample 
Almond 
Brazil Nut 
Hazelnut 
Pecan 
Pine Nut 
Pistachio 
Walnut 

Hexane Extract (%) 

7.4 ± 0.1 1 

12.3 ± o.si 
24.2 ± 0.4i 
35.6 ± 0.89 

10.2 ± 0.2k 
15.0 ± 0.4i 
33.6 ± 0.89 

Chloroform-methanol Extract (%) 
30.1 ± 0.9h 
62.5±1.1c 

45.2 ± 1.38 

79.2 ± 1.28 

38.6 ± o.8t 
48.5 ± 0.7d 
70.0 ± 1.4b 

Values with different superscripts are significantly (p ~ 0.05) different. 

The ~-carotene bleaching test is similar to an oil-in-water emulsion system; 

differences in the solubilities of antioxidant compounds influence their activity in 

this assay. Hydrophobic antioxidants are reported to perform more efficiently than 

hydrophilic antioxidants in the ~-carotene bleaching test by orienting themselves in 

the lipid phase and the lipid-water interface, thus directly combating lipid radical 

formation and ~-carotene oxidation [208]. The strong activity of 

chloroform/methanol extracted oil minor components may be due to their higher 

level of hydrophobic antioxidants such as tocopherols and phospholipids. 

4.11. Oxygen Radical Absorbance Capacity of Tree Nut Oil Extracts 

The ORAC assay is a free radical scavenging assay; it is based on the time 

resolved fluorescence of an oxidizable compound, namely fluorescein. In the 

presence of antioxidants, the oxidation and subsequent loss of fluorescence by 

fluorescein is inhibited and the extent of this inhibition is directly related to 

antioxidant activity and/or antioxidant concentration, usually expressed in Trolox or 

a-tocopherol equivalents. The ORAC values of samples are derived by calculating 
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the area-under-curve (AUC) of the time resolved fluorescence graph for the assay 

containing the sample, which is then used along with a standard curve to calculate 

the ORAC value as equivalents of a pure antioxidant. Results showed that extracts 

of chloroform/methanol extracted oils possessed higher ORAC values than their 

hexane extracted counterparts (Figure 4.8, Table 4.11) (p ~ 0.05). Among 

chloroform/methanol extracted oils, pecan oil extract possessed the highest ORAC 

value ( 4.04 J..LIDOl a-tocopherol equivalents I g oil equivalent), followed by walnut 

oil (3.41 J..LIDOl a-tocopherol equivalents I g oil equivalent), hazelnut oil (2.93 J..LIDOI 

a-tocopherol equivalents I g oil equivalent), pistachio oil (2.24 J..LIDOl a-tocopherol 

equivalents I g oil equivalent), almond oil (2.12 J..LIDOI a-tocopherol equivalents I g 

oil equivalent), and finally, pine nut oil and Brazil nut oil (1.99 and 1.96 J..LIDOl a­

tocopherol equivalents I g oil equivalent, respectively) (p ~ 0.05). Among the 

hexane extracted oils, walnut oil, hazelnut oil, pine nut oil and Brazil nut oil had 

similar ORAC values (1.53, 1.48, 1.39 and 1.34 J..LIDOl a-tocopherol equivalents I g 

oil equivalent, respectively), followed by pistachio oil and almond oil (1.08 and 

0.97 J.lmol a-tocopherol equivalents I g oil equivalent, respectively) and finally, 

pecan oil (0.75 J..LIDOl a-tocopherol equivalents I g oil equivalent) (p ~ 0.05). 

The ORAC of hexaneldichloromethane (1:1, vlv) extracts of tree nuts have 

previously been reported by Wu et al. [116], showing that lipidic extract of Brazil 

nut possessed the highest antioxidant activity (5.6 J..LIDOl of Trolox equivalents I g), 

followed by walnut ( 4.8 J..LIDOl of Trolox equivalents I g), then cashew ( 4. 7 J..LIDOI of 

Trolox equivalents I g), pecan (4.2 J..LIDOI of Trolox equivalents I g), hazelnut (3.7 

J..LIDOl of Trolox equivalents I g), pine nut (2.8 J.lmol of Trolox equivalents I g), and 
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Figure 4.7. Oxygen Radical Absorbance Capacity (ORAC) of Tree Nut Oil Extracts1 

1 Values with different alphabetical identifiers are significantly (p :5: 0.05) different. 

Table 4.12. Oxygen Radical Absorbance Capacity (J.lffiol a-Tocopherol Equivalents/ g 
Oil Equivalent) of Tree Nut Oil Extracts1 

Nut Hexane Extracted Chloroform/Methanol Extracted 

Almond 0.97 ± 0.03h 2.12 ± 0.058 

Brazil Nut 1.34 ± 0.05b 1.96 ± 0.04f 

Hazelnut 1.48 ± 0.04g 2.93 ± 0.09c 

Pecan o.75 ± o.oi 4.04 ± o.oa• 

Pine Nut 1.39 ± 0.02g 1.99 ± 0.04f 

Pistachio 1.08 ± 0.07h 2.24 ± 0.06d 

Walnut 1.53 ± 0.07g 3.41 ± 0.03b 
1 Values bearing different superscripts are significantly (pS0.05) different. 
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finally, almond (1.7 JlffiOl of Trolox equivalents I g) [116]. Since Wu et al. [116] 

used a different antioxidant extraction procedure and ORAC standard, therefore 

direct comparison of ORAC values obtained here with their results is impossible; 

however, when comparing the overall trends among samples some striking 

similarities exist. These include relatively high antioxidant activities for lipidic 

extracts of Brazil nuts, walnuts and pecans and lowest activities for almond extracts. 

The observed differences between this work and that of Wu et al. [ 116] may be 

attributable to cultivar for nut varieties studied and/or cultivation and climatic 

conditions. 

4.12. Photochemiluminescence (PCL) Inhibition Assay for Evaluation of 
Antioxidant Activity of Tree Nut Oil Extracts 

The PCL inhibition assay measures the superoxide scavenging capacity of tree 

nut oil extracts. In the early PCL inhibition methods, superoxide generation was 

mediated by the xanthine oxidase system [209]; however, problems associated with 

enzyme activity and method reproducibility led to the development of PCL 

inhibition methods using photogenerated superoxide [195]. In this work, an 

automated version of the PCL inhibition assay was used with luminol acting as both 

the photosensitizer and the superoxide radical detection agent. 

Among oils tested, extracts of chloroform/methanol extracted oils possessed a 

higher antioxidant activity in the PCL inhibition assay compared to hexane 

extracted oils (Figure 4.8, Table 4.13). Among chloroform/methanol extracted oils, 

pecan oil extract exhibited the highest PCL inhibition activity (8.63 JlffiOl a-

tocopherol I g oil), followed by walnut oil extract (6.88 JlffiOl a-tocopherol I g oil), 

pistachio oil extract (3.89 JlffiOl a-tocopherol I g oil), pine nut oil extract (2.47 JlffiOl 
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Figure 4.8. Photochemilumenescence (PCL) Inhibition Capacity of Tree Nut Oil 
Extracts1 

1 Values with different alphabetical identifiers are significantly (pS0.05) different. 

Table 4.13. Photochemilumenescence Inhibition Capacity (J..lmol a-Tocopherol I g Oil 
Equivalent) ofTree Nut Oil Extracts1 

Nut Hexane Extracted Chloroform/Methanol Extracted 
Almond 1.30 ± 0.148 2.11 ± 0.22d 

Brazil Nut 1.22±0.188 1.81±0.12d 

Hazelnut 1.92±0.19d 2.12±0.11d 

Pecan 1.85±0.17d 8.63 ± 0.258 

Pine Nut 1.33 ± 0.128 2.47 ± 0.20d 

Pistachio 2.57 ± 0.19d 3.89 ± 0.21c 

Walnut 2.96 ± 0.26d 6.88 ± 0.24b 
1 Values bearing different superscripts are significantly (pS0.05) different. 
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a.-tocopherol I g oil), hazelnut and almond oil extracts (2.12 and 2.11 J.llllOl a.-

tocopherol I g oil, respectively), and finally, Brazil nut oil extract (1.81 J.llllOl a.-

tocopherol I g oil). Among hexane extracted oils, walnut oil extract had the highest 

PCL inhibition activity (2.96 Jlmol a.-tocopherol I g oil), followed by pistachio oil 

extract (2.57 J.llllOl a.-tocopherol I g oil), then hazelnut oil extract (1.92 Jlmol a.-

tocopherol I g oil), pecan oil extract (1.85 Jlmol a.-tocopherol I g oil), pine nut oil 

extract (1.33 J.llllOl a.-tocopherol I g oil), almond oil extract (1.30 J.llllOl a.-

tocopherol I g oil), and finally, Brazil nut oil extract (1.23 J.llllOl a.-tocopherol I g 

oil). 

The observed differences in PCL inhibition activity between the mmor 

component extracts of chloroform/methanol extracted oils and their hexane 

extracted counterparts are likely due to compositional differences between the 

minor component extracts. Since chloroform/methanol extracted oils possessed 

higher amounts of antioxidative minor components such as tocopherols and 

phospholipids, their enhanced antioxidant activities can easily be attributed to this 

difference. 

4.13. Oxidative Stability of Tree Nut Oils under Accelerated Autoxidation 
Conditions 

The oxidative stability of non-stripped and stripped tree nut oils were 

examined using the Schaal oven method at 60 ·cover 12 days [197]. The progress 

of oxidation was monitored using tests for conjugated dienes, peroxide value, p-

anisidine value and headspace analysis of volatiles. Results showed that 

chloroform/methanol extracted oils were more resistant to oxidation than hexane 
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extracted oils. Minor component stripped oils were less stable than their non­

stripped counterparts, which shows the importance of oil minor components on their 

oxidative stability. The stripping process was equally effective for both 

chloroform/methanol extracted and hexane extracted oils, since both stripped oil 

types exhibited similar low autoxidative stability. Among oils studied, 

chloroform/methanol extracted pecan oil showed the highest oxidative stability, 

with the lowest levels of conjugated dienes, peroxide value, p-anisidine value and 

headspace volatiles after 12 days of accelerated autoxidation. The relatively high 

resistance of chloroform/methanol extracted pecan oil to autoxidation is likely due 

to its minor component composition which is rich in tocopherols and phospholipids 

and in combination with its low degree of unsaturation, as indicated by its low 

iodine value. The effectiveness of chloroform/methanol extracted pecan oil minor 

components against lipid oxidation is apparent when comparing its oxidative 

stability to that of its hexane extracted counterpart, which contained identical fatty 

acid composition but lower amounts of minor components; however, hexane 

extracted pecan oil did exhibit the highest oxidative stability among the hexane 

extracted oils examined. Chloroform/methanol extracted pistachio oil also exhibited 

high oxidative stability, which was second only to chloroform/methanol extracted 

pecan oil. Pine nut oils and walnut oils exhibited the lowest autoxidative stabilities 

among samples examined, which was to be expected since these oils had the highest 

degree of unsaturation among tree nut oils examined. Interestingly, 

chloroform/methanol extracted pine nut and walnut oil exhibited higher stability 

than their hexane extracted counterparts, which further implies that the 

chloroform/methanol extraction system affords oils with higher amounts of 
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antioxidative mmor components which in turn enhances the stability of the 

extracted oil. Future studies examining the effects of nut oil minor component 

extracts on oxidative stability of a single oil system will be of aid when studying 

their antioxidant activities, since this will allow for direct comparison of the 

antioxidant activities of the minor component extracts. Oils of almond and hazelnut 

exhibited intermediate stabilities. Chloroform/methanol extracted Brazil nut oil 

exhibited very high stability compared to its hexane extracted counterpart; however, 

hexane extracted Brazil nut oil exhibited similar stability to stripped hexane and 

chloroform/methanol extracted Brazil nut oil, which implies that the hexane solvent 

system did not effectively extract the antioxidative components from this nut. 

4.13.1. Conjugated Dienes and Peroxide Values of Autoxidized Tree Nut Oils 

Conjugated dienes and peroxides are both primary products of oxidation and 

persist during the early stages of lipid oxidation. Formations of conjugated dienes in 

tree nut oils during the 12 day autoxidation test are tabulated in Table 4.14. In all 

oils examined, chloroform/methanol extracted oils were more resistant to the 

formation of conjugated dienes than hexane extracted oils, and similarly, stripped 

chloroform/methanol extracted oils were more resistant to conjugated diene 

formation than stripped hexane extracted oils. Among samples examined, stripped 

hexane extracted almond oil possessed the highest initial conjugated dienes value 

(2.6}, followed by stripped chloroform/ methanol extracted almond oil (2.3). 

Hexane extracted pistachio oil had the lowest initial conjugated dienes (0.5). 

Stripped chloroform/methanol extracted almond oil had lower conjugated diene 

levels than stripped hexane extracted almond oil after 12 days of autoxidation (15.3 

and 15.9, respectively). The chloroform/methanol extract ofBrazil nut oil showed 
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Table 4.14. Formation of Conjugated Dienes in Tree Nut Oils during Autoxidation at 60 OC I.2 

Storage Period {Da~s} 
0 1 3 6 9 12 

Almond Oil 
Hexane Extracted 0.956d 1.0959 1.5789 1.969° 4.796p 6.4511 

Chloroform/Methanol Extracted 1.744b 1.8128 2.096' 2.455" 4.863p 6.7571 

Stripped Hexane Extracted 2.6368 2.929c 3.519d 9.4758 15.289' 15.914c 
Stril:!!:!ed Chloroform/Methanol Extracted 2.270b 2.492d 2.528' 8.832' 12.9301 15.331d 
Brazil Nut Oil 
Hexane Extracted 1.768b 2.455d 3.0498 4.1631 7.741m 15.767d 
Chloroform/Methanol Extracted 0.6928 0.820h 2.060' 2.421" 2.899r 3.6861 

Stripped Hexane Extracted 1.301c 1.7938 2.131' 8.725' 14.7839 15.341 8 

Stri~~ed Chloroform/Methanol Extracted 1.423c 1.9658 2.464' 7.5939 13.401h 14.430' 
Hazelnut Oil 
Hexane Extracted 1.096d 1.8588 2.277' 4.789k 6.951" 7.19gl 
Chloroform/Methanol Extracted 1.492c 2.422d 2.8838 4.491 1 5.789° 6.131k 
Stripped Hexane Extracted 1.704b 2.0868 2.339' 6.9251 11.85gl 12.0339 

Stril:!!:!ed Chloroform/Methanol Extracted 1.467c 2.241d 2.7578 6.3741 10.857' 11.092h 
Pecan Oil 
Hexane Extracted 0.5028 0.547h 0.8491 1.305p 1.920t 2.821m 
Chloroform/Methanol Extracted 0.267' 0.281' 0.34sl 0.394q 1.029v 1.245° 
Stripped Hexane Extracted 0.945d 1.1839 1.4299 2.398" 5.829° 6.71gl 
Stri~!:!ed Chloroform/Methanol Extracted 0.897d 1.259° 1.709° 2.720m 5.791° 6.036k 

Pine Nut Oil 
Hexane Extracted 1.216c 1.537' 2.9538 7.628° 19.8658 24.745b 
Chloroform/Methanol Extracted 1.067d 1.0589 1.6239 2.315" 5.829° 7.9201 

Stripped Hexane Extracted 1.509c 2.322d 4.043c 17.962d 34.677b 0.493p 
Stri~~ed Chloroform/Methanol Extracted 1.524c 2.0088 3.0998 18.472c 37.351 8 5.825k 

Pistachio Oil 
Hexane Extracted 0.481 8 0.4731 0.49sl 1.292p 2.3798 3.8981 

Chloroform/Methanol Extracted 0.992d 1.0029 1.029h 1.237p 1.401u 1.689" 
Stripped Hexane Extracted 1.145c 1.1859 1.219h 1.934° 4.635p 6.94sl 
Stri~~ed Chloroform/Methanol Extracted 0.936d 1.0479 1.138h 1.789° 4.253q 6.6731 

Walnut Oil 
Hexane Extracted 0.5548 0.681h 4.161c 7.247h 13.1531 29.9988 

Chloroform/Methanol Extracted 0.5358 0.9869 1.5939 4.2791 11.494k 17.507c 
Stripped Hexane Extracted 0.6848 4.8348 13.6238 41.2628 27.953d 5.965k 
Stril:!~ed Chloroform/Methanol Extracted 0.6938 4.291b 12.315b 39.742b 28.512c 7.4521 

1 Values in the same row bearing different superscripts are significantly (p:S0.05} different. 
2 Standard deviations did not exceed 0.100 for any data point (data not shown). 
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very low levels of conjugated dienes after 12 days of autoxidation (3.7), which is 

very interesting considering that this oil has a high degree of unsaturation 

compared to other oils examined, and also because its hexane extracted 

counterpart and stripped counterparts contained 4.5 to 5 times higher conjugated 

diene levels. Hexane and chloroform/methanol extracted hazelnut oils exhibited 

similar conjugated diene levels as almond oils after 12 days of autoxidation, 

however, the stripped hazelnut oils possessed lower conjugated dienes than the 

stripped almond oils which is likely due to the fact that almond oils have higher 

degrees of unsaturation than hazelnut oils, as indicated by the significantly (p:S0.05) 

higher iodine values of almond oils compared to hazelnut oils {Table 4.1 ). This 

implies that the antioxidative components in almond oil are more effective in 

reducing lipid oxidation than those present in hazelnut oil. Chloroform/methanol 

extracted pecan oil possessed the lowest level conjugated dienes among samples 

examined after 12 days of autoxidation (1.2), followed by chloroform/methanol 

extracted pistachio oil (1. 7). Among hexane extracted oils, hexane extracted pecan 

oil had the lowest conjugated diene level after 12 days of autoxidation (2.8), 

followed by hexane extracted pistachio oil (3.9). Hexane extracted walnut oil 

contained the highest level of conjugated dienes after the 12 days of accelerated 

autoxidation (30.0), followed by hexane extracted pine nut oil (24. 7); the 

chloroform/methanol extracted counterparts of these oils were considerably more 

stable, with conjugated diene levels of 17.5 and 7.9, respectively, but were still 

highest among all non-stripped oils examined. The stripped oils of walnuts 

possessed the highest conjugated diene levels among all samples examined, 
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followed by the stripped oils of pine nuts; this observation can easily be attributed 

to the high degree of unsaturation of these oils, in combination with their lack of 

antioxidative minor components. 

The results of the peroxide value tests for tree nut oils subjected to accelerated 

autoxidation are shown in Table 4.15. Examination of these results show that the 

rate of formation of peroxides during autoxidation resembles the formation rate of 

conjugated dienes in oils examined, and the ranking order of oxidative stability, 

derived using maximum peroxide value levels, were identical to the order obtained 

using maximum conjugated diene values (pecan oil > pistachio oil > hazelnut oil ~ 

almond oil > Brazil nut oil > pine nut oil > walnut oil; chloroform/methanol 

extracted oils> hexane extracted oils; non-stripped oils> stripped oils). 

4.13.2. p-Anisidine Values and Heads pace Volatile Compositions of 
Autoxidized Tree Nut Oils 

The p-anisidine value and headspace analysis are both tests for secondary 

products of lipid oxidation. The p-anisidine value is an empirical test, while 

headspace analysis can produce quantitative data on oil volatiles formed during 

lipid oxidation. Para-anisidine values of autoxidized tree nut oils are shown in 

Table 4.16. Results showed that chloroform/methanol extracted oils were more 

resistant to the formation of p-anisidine reactive substances when compared to 

hexane extracted oils. Also, non-stripped oils were more stable than stripped oils for 

all nut samples studied. Among samples studied, chloroform/methanol extracted 

pistachio oil exhibited the lowest p-anisidine value after 12 days of accelerated 

autoxidation, followed by hexane extracted pistachio oil, chloroform/methanol 

extracted pecan, almond and Brazil nut oils, and chloroform/methanol 
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Table 4.15. Increase in Peroxide Values (meq oxygen I kg oil) of Tree Nut Oils during Autoxidation 
at 60 ·c l,2 

Storage Period (Days} 
Oil 0 3 6 9 12 
Almond Oil 
Hexane Extracted 0.0408 0.0769 0.102h 0.1531 0.3359 

Chloroform/Methanol Extracted 0.030b 0.0449 0.057' 0.107' 0.164h 

Stripped Hexane Extracted 0.023b 0.2128 0.285' 0.3939 0.531' 
Strieeed Chloroform/Methanol Extracted 0.015b 0.157' 0.246' 0.3469 0.4589 

Brazil Nut Oil 
Hexane Extracted 0.0478 0.142' 0.233' 0.3709 0.661 8 

Chloroform/Methanol Extracted 0.030b 0.061 9 0.104h 0.1401 0.197h 
Stripped Hexane Extracted 0.015b 0.156' 0.554d 1.195d 1.992c 

Strieeed Chloroform/Methanol Extracted 0.023b 0.162' 0.446d 0.9358 1.415d 

Hazelnut Oil 
Hexane Extracted 0.031b 0.0799 0.1259 0.200h 0.3079 

Chloroform/Methanol Extracted 0.0598 0.0659 0.094h 0.1501 0.200h 
Stripped Hexane Extracted 0.015b 0.280c 0.3898 0.458' 0.519' 
Strieeed Chloroform/Methanol Extracted 0.015b 0.252d 0.3698 0.437' 0.4679 

Pecan Oil 
Hexane Extracted 0.030b 0.0539 0.085h 0.1191 0.158h 
Chloroform/Methanol Extracted 0.023b 0.0269 0.03ol 0.0361 0.0451 

Stripped Hexane Extracted 0.023b 0.0979 0.1499 0.228h 0.3469 

Strieeed Chloroform/Methanol Extracted 0.015b 0.0739 0.131 9 0.205h 0.3099 

Pine Nut Oil 
Hexane Extracted 0.030b 0.2068 0.466d 0.8228 1.317d 

Chloroform/Methanol Extracted 0.016b 0.081 9 0.1559 0.228h 0.291 9 

Stripped Hexane Extracted 0.023b 0.296c 0.859c 1.506c 2.305b 

Strieeed Chloroform/Methanol Extracted 0.015b 0.274c 0.827c 1.428c 2.259b 

Pistachio Oil 
Hexane Extracted 0.023b 0.0359 0.0651 0.0881 0.116h 
Chloroform/Methanol Extracted 0.015b 0.021 9 0.0311 0.0361 0.037' 
Stripped Hexane Extracted 0.015b 0.0379 0.098h 0.211h 0.4389 

Strieeed Chloroform/Methanol Extracted 0.015b 0.0379 0.097h 0.206h 0.4289 

Walnut Oil 
Hexane Extracted 0.030b 0.839b 1.711b 1.921b 2.142c 

Chloroform/Methanol Extracted 0.015b 0.2088 0.238' 0.287h 0.3349 

Stripped Hexane Extracted 0.015b 1.1098 2.2768 3.6568 4.7368 

Strieeed Chloroform/Methanol Extracted 0.015b 1.0658 2.2268 3.5858 4.6298 

1 Values In the same row bearing different superscripts are significantly (pS0.05} different. 
2 Standard deviations did not exceed 0.050 for any data point (data not shown}. 
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Table 4.16.p-Anisidine Values ofTree Nut Oils during Autoxidation at 60 ·c !,2 

Storage Period {Da~s} 
Oil 0 3 6 9 12 
Almond Oil 
Hexane Extracted 0.120' 1.437h 2.335" 3.2478 3.9238 

Chloroform/Methanol Extracted 0.561b 1.095h 2.015" 2.4641 3.061 1 

Stripped Chloroform/Methanol Extracted 0.267d 4.839' 11.7398 19.7438 29.058c 
Stri~~ed Hexane Extracted 0.465b 5.2948 11.201' 17.493° 24.389' 
Brazil Nut Oil 
Hexane Extracted 0.1898 1.936h 3.8531 6.059p 8.576p 
Chloroform/Methanol Extracted 0.821 8 1.272h 1.780" 2.3921 3.321' 
Stripped Hexane Extracted 0.264d 4.429° 9.221° 13.948h 19.746g 
Stri~~ed Chloroform/Methanol Extracted 0.371c 3.700g 7.1391 11.1371 16.0481 

Hazelnut Oil 
Hexane Extracted 0.592b 2.138h 4.1201 6.023p 8.262p 
Chloroform/Methanol Extracted 0.288d 1.695h 3.274m 4.893r 6.555r 
Stripped Hexane Extracted 0.255d 3.943g 8.193h 12.2941 16.4281 

Stri~~ed Chloroform/Methanol Extracted 0.343c 3.492g 7.4191 11.48gl 15.38sl 
Pecan Oil 
Hexane Extracted 0.433b 2.162h 4.0061 5.589q 7.172q 
Chloroform/Methanol Extracted 0.294d 0.7021 1.398° 2.3301 3.2431 

Stripped Hexane Extracted 0.344c 2.583h 5.3021 8.153m 11.876m 
Stri~~ed Chloroform/Methanol Extracted 0.257 2.683h 5.732k 8.6821 12.6861 

Pine Nut Oil 
Hexane Extracted 0.267d 2.081h 4.359k 10.286k 17.567h 
Chloroform/Methanol Extracted 0.493b 2.105h 4.423k 8.473m 14.029k 
Stripped Hexane Extracted 0.281d 7.043c 14.382c 22.395c 29.711b 
Stri~~ed Chloroform/Methanol Extracted 0.552b 6.382d 13.492d 21.014d 28.549d 
Pistachio Oil 
Hexane Extracted 0.545b 0.7631 1.017p 1.484u 1.910u 
Chloroform/Methanol Extracted 0.635b 0.691 1 0.790q 1.285u 1.731u 
Stripped Hexane Extracted 0.518b 2.385h 5.0921 7.854" 10.473" 
Stri~~ed Chloroform/Methanol Extracted 0.493b 2.372h 4.72i 6.937° 9.361° 
Walnut Oil 
Hexane Extracted 0.230d 4.202° 9.535g 18.826' 29.591b 
Chloroform/Methanol Extracted 0.462b 1.472 6.64ol 13.782h 24.8808 

Stripped Hexane Extracted 0.1938 9.7368 20.4728 34.2848 52.5628 

Stri~~ed Chloroform/Methanol Extracted 0.237d 8.583b 18.936b 30.847b 48.8368 

1 Values in the same row bearing different superscripts are significantly (ps0.05) different. 
2 Standard deviations did not exceed 0.150 for any data point (data not shown). 
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extracted hazelnut oil. Hexane extracted walnut oil had the highest p-anisidine value 

among non-stripped samples examined after 12 days of accelerated autoxidation. 

None of the oil samples examined had reached their p-anisidine value post-plateau 

phase after 12 days of accelerated autoxidation; the p-anisidine value was still 

increasing after 12 days of autoxidation, implying that oxidizable substrate was still 

available in all samples examined. 

Hexanal and nonanal were the most widely detected headspace volatiles 

observed in tree nut oils subjected to accelerated autoxidation; propanal was present 

only in walnut oil (Table 4.17). Hexanal is an oxidation product of linoleic acid, an 

omega-6 fatty acid. Its presence in meat and other lipid sources containing linoleic 

acid has been reported in the literature [ 199]. In addition, nonanal is an oxidation 

product of oleic acid, an omega-9 fatty acid [210]. No headspace aldehydes were 

detected in oil samples before commencement of the autoxidation studies. 

Chloroform/ methanol extracted oils contained lower amounts of headspace 

aldehydes compared to their hexane extracted counterparts at each sampling point 

of the accelerated autoxidation studies. Stripped oils contained 2 to 4 times the 

amount of headspace aldehydes of their non-stripped counterparts. Hexanal was the 

most abundant headspace aldehyde in almond, Brazil nut, hazelnut, pecan, pine nut 

and pistachio oils, corresponding to oxidation of linoleic acid in these samples. 

Propanal was the predominant headspace aldehyde in walnut oil, which can be 

attributed to oxidation of a-linolenic acid, an omega-3 fatty acid, present in these 

samples. Among non-stripped samples, hexane extracted walnut oil contained the 
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Table 4.17. Headspace Aldehyde Compositions (J.lg Aldehyde I g Oil) of Tree Nut Oils 
during Autoxidation at 60 ·c 1 

Storage Period (Da~s) 
Aldeh~de Da~3 Da~6 Da~9 Da~ 12 

Almond Oil 
Hexane Extracted Hexanal 4.1 16.0 32.6 56.0 

Nonanal 0.0 2.1 7.4 17.0 
Chloroform/Methanol Extracted Hexanal 0.0 22.0 29.5 36.0 

Non anal 0.0 0.0 1.4 9.0 
Stripped Hexane Extracted Hexanal 21.1 60.4 85.4 122.3 

Nonanal 2.5 6.7 11.4 16.6 
Stripped Chloroform/Methanol Extracted Hexanal 25.7 64.4 92.7 134.4 

Nonanal 0.0 3.5 8.4 14.2 
Brazil Nut Oil 
Hexane Extracted Hexanal 7.6 31.7 49.6 81.7 

Non anal 0.0 0.0 0.0 13.2 
Chloroform/Methanol Extracted Hexanal 2.3 18.7 24.4 37.4 

Nonanal 0.0 0.0 0.0 2.5 
Stripped Hexane Extracted Hexanal 31.5 79.4 109.7 150.4 

Nonanal 2.7 21.4 28.4 42.4 
Stripped Chloroform/Methanol Extracted Hexanal 28.5 73.6 100.5 123.9 

Nonanal 3.4 14.5 26.4 34.7 
Hazelnut Oil 
Hexane Extracted Hexanal 3.2 37.5 49.6 82.6 

Nonanal 0.0 0.0 0.0 7.22 
Chloroform/Methanol Extracted Hexanal 8.1 28.4 42.5 66.1 

Nonanal 0.0 0.0 0.0 2.14 
Stripped Hexane Extracted Hexanal 24.6 61.6 79.4 136.1 

Nonanal 0.0 6.3 11.6 23.2 
Stripped Chloroform/Methanol Extracted Hexanal 17.5 48.3 87.4 124.2 

Nonanal 0.0 7.2 12.6 20.3 
Pecan Oil 
Hexane Extracted Hexanal 1.7 13.8 19.5 27.8 

Nonanal 0.0 0.0 0.0 2.5 
Chloroform/Methanol Extracted Hexanal 0.0 8.5 11.8 19.7 

Nonanal 0.0 0.0 0.0 0.0 
Stripped Hexane Extracted Hexanal 20.5 57.6 86.7 120.5 

Nonanal 0.0 4.8 8.7 12.4 
Stripped Chloroform/Methanol Extracted Hexanal 14.6 57.6 72.8 116.5 

Nonanal 0.0 4.8 8.4 15.3 

... Continued on next page 
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Table 4.17 continued ... 

Storage Period {Da~s} 
Oil Aldeh;tde Da;t 3 Da;t 6 Da;t9 Da;t 12 
Pine Nut Oil 
Hexane Extracted Hexanal 2.5 64.7 126.7 166.3 

Nonanal 0.0 19.6 28.4 48.5 
Chloroform/Methanol Extracted Hexanal 1.7 42.7 64.7 120.0 

Nonanal 4.6 19.5 29.6 37.6 
Stripped Hexane Extracted Hexanal 42.7 138.7 216.8 302.1 

Nonanal 5.1 18.6 26.8 37.8 
Stripped Chloroform/Methanol Extracted Hexanal 48.3 127.9 201.3 286.5 

Nonanal 3.7 17.5 23.5 34.4 
Pistachio Oil 
Hexane Extracted Hexanal 3.5 18.5 31.3 43.5 

Nonanal 0.0 1.7 5.6 13.3 
Chloroform/Methanol Extracted Hexanal 1.4 14.3 26.9 34.7 

Non anal 0.0 2.8 7.5 10.8 
Stripped Hexane Extracted Hexanal 14.7 41.4 63.5 94.6 

Nonanal 0.0 3.7 5.8 12.5 
Stripped Chloroform/Methanol Extracted Hexanal 10.4 39.6 52.7 92.4 

Non anal 0.0 2.3 5.1 9.3 
Walnut Oil 
Hexane Extracted Propanal 43.8 69.5 118.6 188.3 

Hexanal 31.6 49.4 78.4 72.7 
Nonanal 9.5 19.8 31.8 43.2 

Chloroform/Methanol Extracted Propanal 21.6 58.3 84.8 137.5 
Hexanal 5.9 20.6 34.6 53.2 
Nonanal 2.1 12.3 21.5 29.4 

Stripped Hexane Extracted Propanal 43.8 118.6 163.6 262.4 
Hexanal 31.6 78.4 116.7 167.3 
Nonanal 9.5 31.8 53.7 82.6 

Stripped Chloroform/Methanol Extracted Propanal 39.8 119.6 149.7 251.5 
Hexanal 20.8 68.3 102.6 154.3 
Nonanal 12.3 29.5 52.6 68.0 

1 Sample means were calculated from triplicate analyses; standard deviations were with the range 
of 0.1 to 9.0 IJg/g, with higher mean values having larger standard deviations (data not shown). 
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highest amount of total aldehydes after 12 days of accelerated autoxidation, 

followed by chloroform/ methanol extracted walnut oil, hexane extracted pine nut 

oil and chloroform/methanol extracted pine nut oil. Chloroform/methanol extracted 

pecan oil contained the lowest amount of total aldehydes at each sampling point. 

Surprisingly, chloroform/methanol extracted Brazil nut oil contained the third 

lowest level ofheadspace aldehydes at day 12, after chloroform/methanol extracted 

pecan oil and hexane extracted pecan oil, which was unexpected considering its 

high level of linoleic acid. Nonanal was detected in all samples at day 12 except 

chloroform/methanol extracted pecan oil, and was the least predominant aldehyde 

in all samples in which it was detected. 

4.14. Photooxidative Stability of Tree Nut Oils 

The photooxidative stability of stripped and non-stripped tree nut oils over 72 

h were examined using previously described protocols [198]. Conjugated dienes 

and headspace volatiles were monitored to assess the deterioration of oil quality 

throughout the photooxidation period. Results of the photooxidation studies showed 

that chloroform/methanol extracted oils were more resistant to conjugated diene 

formation than hexane extracted oils. None of the non-stripped oils had reached 

their post-plateau phase of conjugated diene formation after 72h, which implies that 

the length of the photooxidation test may not have been long enough to adequately 

assess the photooxidative stability of the samples examined. Stripped oils were less 

resistant to conjugated diene formation than their non-stripped counterparts (Table 

4.18). Among non-stripped samples, hexane extracted walnut oil had the highest 
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Table 4.18. Formation of Conjugated Dienes in Tree Nut Oils during Photooxidation1
,2,J 

Sam~ling Period {h} 0 4 8 12 24 48 72 
Non-Stripped Oils 
A-H 0.956d 1.8621 2.6839 3.347p 8.153q 10.967" 14.257° 
A-BO 1.744b 4.950c 3.563f 4.174° 8.267q 11.487m 14.933" 
BN-H 1.768b 4.174d 5.1838 7.077m 13.160" 26.8048 34.8458 

BN-BO 0.6928 1.3941 3.502f 4.116° 4.9281 6.266r 8.146r 
HN-H 1.096d 3.159f 3.871f 8.141k 11.817° 12.238k 15.9101 

HN-BO 1.492c 4.117d 4.901e 7.6351 9.841p 10.423° 13.550p 
P-H 0.5028 0.930k 1.4431 2.219r 3.264v 4.7965 6.2345 

P-BO 0.267' 0.4881 0.588k 0.6705 1.749w 2.117u 2.751u 
PN-H 1.216c 2.613h 5.0208 12.9689 33.771 8 42.067b 54.686b 
PN-BO 1.067d 1.7991 2.7599 3.936° 9.909p 13.4641 17.5031 

PO-H 0.481 8 0.804k 0.8421 2.196r 4.044u 6.627q 8.615q 
PO-BO 0.992d 1.3031 1.749h 2.103r 3.382v 3.971 1 4.7331 

W-H 0.5548 1.1581 7.074c 12.320h 22.3601 50.9978 66.2968 

W-BO 0.5358 1.6761 2.7089 7.274m 19.5401 29.762c 38.690c 
Stripped Oils 
A-H 2.6368 4.979c 5.982d 16.1088 25.991f 27.054d 35.170d 
A-BO 2.270b 4.236d 4.298f 15.014f 21.9811 26.063f 33.882f 
BN-H 1.301c 3.0489 3.623f 14.833f 25.131 9 26.080f 33.904f 
BN-BO 1.423c 3.341f 4.189f 12.9089 22.782h 24.531 9 31.8909 

HN-H 1.704b 3.546f 3.976f 11.7731 20.160k 20.456h 26.593h 
HN-BO 1.467c 3.8108 4.6878 10.8361 18.457m 18.857' 24.5141 

P-H 0.945d 2.011 1 2.4299 4.077° 9.909p 11.422m 14.849" 
P-BO 0.897d 2.1401 2.9059 4.624" 9.845p 10.261° 13.340p 
PN-H 1.509c 3.9478 6.873c 30.535d 63.4978 0.838v 1.090u 
PN-BO 1.524c 3.414f 5.268e 31.402c 58.951b 9.903p 12.873q 
PO-H 1.145c 2.0151 2.072h 3.288p 7.880r 11.807' 15.348m 
PO-BO 0.936d 1.7801 1.935h 2.948q 7.2305 11.344m 14.747" 
W-H 0.6848 8.2188 23.1598 70.1458 48.520c 10.141° 13.183p 
W-BO 0.693e 7.295b 20.936b 67.561b 47.470d 12.6681 16.469k 

1 Abbreviations used: A-H, almond oil - hexane extracted; A-CM, almond oil - chloroform/methanol 
extracted; BN-H, Brazil nut oil - hexane extracted; BN-CM, Brazil nut oil - chloroform/methanol 
extracted; HN-H, hazelnut oil - hexane extract; HN-CM, hazelnut oil - chloroform/methanol 
extracted; P-H, pecan oil - hexane extracted; P-CM, pecan oil - chloroform/methanol extracted; 
PN-H, pine nut oil- hexane extracted; PN-CM, pine nut oil - chloroform/methanol extracted; PO-H, 
pistachio oil- hexane extracted; PO-CM, pistachio oil- chloroform/methanol extracted: W-H, walnut 
oil- hexane extracted; W-CM, walnut oil- chloroform/methanol extracted. 

2 Values in the same column with different superscripts are significantly (p~0.05) different. 
3 All samples were analysed in triplicate. Standard deviations did not exceed 0.100 for any data point 

(data not shown). 

129 



levels of conjugated dienes after 72h, followed by hexane extracted pine nut 

oil, and then hexane extracted Brazil nut oil. Chloroform/methanol extracted pecan 

oil had the lowest levels of conjugated dienes after 72h of photooxidation, 

followed by chloroform/methanol extracted pistachio oil. Interestingly, 

chloroform/methanol extracted Brazil nut oil was considerably more stable than its 

hexane extracted counterpart; this trend was also observed for conjugated diene 

formation in Brazil nut oil during the autoxidation studies and may indicate the 

presence of antioxidants that render stabilities to the oil under both autoxidation and 

photooxidative conditions. 

Results of headspace analyses of photooxidized tree nut oils are given in 

Table 4.19; hexanal and nonanal were the most prevalent aldehydes present, with 

propanal existing only in walnut oil. Chloroform/methanol extracted pecan oil 

contained the lowest level of total headspace aldehydes among all samples after 

72h, followed by hexane extracted pecan oil, chloroform/methanol extracted Brazil 

nut oil, and then chloroform/methanol extracted pistachio oil. Among the non­

stripped samples, hexane extracted walnut oil contained the highest amount of total 

headspace aldehydes after 72h of photooxidation, followed by 

chloroform/methanol extracted walnut oil, and then hexane extracted pine nut oil. 

The headspace aldehyde compositions of photooxidized tree nut oils were similar to 

those observed for autoxidized oils, but higher amounts of total headspace 

aldehydes were detected during the accelerated autoxidation studies; future studies 
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Table 4.19. Headspace Aldehyde Compositions (J.tg Aldehyde I g Oil) of Tree Nut Oils 
during Photooxidation 1 

Storage Period {Hours} 

Oil Aldeh~de 12 24 48 72 
Almond Oil 
Hexane Extracted Hexanal 3.0 15.9 26.9 37.4 

Nonanal 0.0 1.5 4.8 11.4 
Chloroform/Methanol Extracted Hexanal 1.2 12.3 23.1 29.8 

Nonanal 0.0 2.4 6.5 9.3 
Stripped Hexane Extracted Hexanal 12.6 35.6 54.6 81.4 

Nonanal 0.0 3.2 5.0 10.8 
Stripped Chloroform/Methanol Extracted Hexanal 8.9 34.1 45.3 79.5 

Nonanal 0.0 2.0 4.4 8.0 
Brazil Nut Oil 
Hexane Extracted Hexanal 6.5 27.3 42.7 70.3 

Nonanal 0.0 0.0 0.0 11.4 
Chloroform/Methanol Extracted Hexanal 2.0 16.1 21.0 32.2 

Nonanal 0.0 0.0 0.0 2.2 
Stripped Hexane Extracted Hexanal 27.1 68.3 94.3 129.3 

Nonanal 2.3 18.4 24.4 36.5 
Stripped Chloroform/Methanol Extracted Hexanal 24.5 63.3 86.4 106.6 

Nonanal 2.9 12.5 22.7 29.8 
Hazelnut Oil 
Hexane Extracted Hexanal 2.8 32.3 42.7 71.0 

Nonanal 0.0 0.0 0.0 6.2 
Chloroform/Methanol Extracted Hexanal 7.0 24.4 36.6 56.8 

Nonanal 0.0 0.0 0.0 1.8 
Stripped Hexane Extracted Hexanal 21.2 53.0 68.3 117.0 

Nonanal 0.0 5.4 10.0 20.0 
Stripped Chloroform/Methanol Extracted Hexanal 15.1 41.5 75.2 106.8 

Nonanal 0.0 6.2 10.8 17.5 
Pecan Oil 
Hexane Extracted Hexanal 1.5 11.9 16.8 23.9 

Nonanal 0.0 0.0 0.0 2.2 
Chloroform/Methanol Extracted Hexanal 0.0 7.3 10.1 16.9 

Nonanal 0.0 0.0 0.0 0.0 
Stripped Hexane Extracted Hexanal 17.6 49.5 74.6 103.6 

Nonanal 0.0 4.1 7.5 10.7 
Stripped Chloroform/Methanol Extracted Hexanal 12.6 49.5 62.6 100.2 

Nonanal 0.0 4.1 7.2 13.2 

... Continued on next page 
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Table 4.19 continued ... 

Storage Period {Da~s} 
Oil Aldeh~de 12 24 48 72 
Pine Nut Oil 
Hexane Extracted Hexanal 2.2 55.6 109.0 143.0 

Nonanal 0.0 16.9 24.4 41.7 
Chloroform/Methanol Extracted Hexanal 1.5 36.7 55.6 103.2 

Nonanal 4.0 16.8 25.5 32.3 
Stripped Hexane Extracted Hexanal 36.7 119.3 186.4 259.8 

Nonanal 4.4 16.0 23.0 32.5 
Stripped Chloroform/Methanol Extracted Hexanal 41.5 110.0 173.1 246.4 

Nonanal 3.2 15.1 20.2 29.6 
Pistachio Oil 
Hexane Extracted Hexanal 3.0 15.9 26.9 37.4 

Nonanal 0.0 1.5 4.8 11.4 
Chloroform/Methanol Extracted Hexanal 1.2 12.3 23.1 29.8 

Nonanal 0.0 2.4 6.5 9.3 
Stripped Hexane Extracted Hexanal 12.6 35.6 54.6 81.4 

Non anal 0.0 3.2 5.0 10.8 
Stripped Chloroform/Methanol Extracted Hexanal 8.9 34.1 45.3 79.5 

Nonanal 0.0 2.0 4.4 8.0 
Walnut Oil 
Hexane Extracted Propanal 37.7 59.8 102.0 161.9 

Hexanal 27.2 42.5 67.4 62.5 
Non anal 8.2 17.0 27.3 37.2 

Chloroform/Methanol Extracted Propanal 18.6 50.1 72.9 118.3 
Hexanal 5.1 17.7 29.8 45.8 
Nonanal 1.8 10.6 18.5 25.3 

Stripped Hexane Extracted Propanal 37.7 102.0 140.7 225.7 
Hexanal 27.2 67.4 100.4 143.9 
Nonanal 8.2 27.3 46.2 71.0 

Stripped Chloroform/Methanol Extracted Propanal 34.2 102.9 128.7 216.3 
Hexanal 17.9 58.7 88.2 132.7 
Nonanal 10.6 25.4 45.2 58.5 

1 Sample means were calculated from triplicate analyses; standard deviations were with the range 
of 0.1 to 9.0 ~g/g, with higher mean values having larger standard deviations (data not shown). 
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may be required to extend the photooxidation period in order to more accurately 

assess the photooxidative stability of tree nut oils. However, it appears 

that the oils examined enjoyed a reasonable photooxidative stability under the 

conditions examined. 

The overall trends observed in the photooxidative stability studies are similar 

to those observed in the accelerated autoxidation studies; oils that exhibited high 

photooxidative stability also exhibited high autoxidative stability. This implies that 

the antioxidative minor components of in oils such as chloroform/methanol 

extracted pecan, pistachio and Brazil nut oils impart both photooxidative and 

autoxidative stability to them. Further studies on minor component compositions of 

these and other tree nut oils are warranted. 

133 



CHAPTERS 

Summary and Recommendations 

Tree nuts are abundant sources of lipids that are rich in unsaturated fatty acids, 

lipidic antioxidants and phytosterols, as well as other health promoting substances 

such as phospholipids and non-tocopherol phenolics. With the exception of walnut 

and pine nut oils, the predominant fatty acid in tree but oils examined was oleic 

acid. Brazil nut oil contained approximately equal amounts of oleic and linoleic 

acids, while pine nut and walnut oils contained predominantly linoleic acid. The 

fatty acid composition of walnut oil was unique among nut oils examined because it 

was the only significant source of a-linolenic acid, an n-3 fatty acid. 

Triacylglycerols were the main lipid class in tree nut oils examined, 

phosphatidylcholine and phosphatidylserine were the predominant phospholipids 

present. Gamma- and a-tocopherols were the predominant tocopherols detected, 

with walnut and pecan oils containing the highest amounts; no tocotrienols were 

detected in the tree nut oils examined. Chloroforrnlmethanol extracted Brazil nut oil 

was the only significant source of o-tocopherol. The chloroforrnlmethanol 

extraction system was able to extract more of the minor oil components from raw 

tree nuts than hexane extraction system. Thus, chloroforrnlmethanol extracted oils 

possessed higher amounts of lipid phase antioxidants, which imparted higher 

oxidative stability to these oils and enhanced the antioxidant activity of their minor 

component extracts compared to hexane extracted oils. The solvent stripping 
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process developed in this study was capable of extracting antioxidative minor 

components from the tree nut oils for evaluation of their antioxidant potential. 

The tree nut oil minor component extracts were tested for their total phenolic 

content and their antioxidant activity was examined using the TEAC assay, DPPH 

radical scavenging assay, P-carotene bleaching test, PCL inhibition assay and 

ORAC assay. Similar antioxidant activity trends were observed in all tests 

employed in our studies, with extracts of chloroform/methanol extracted oils 

exhibiting higher activities than extracts of hexane extracted oils. Minor component 

extracts of chloroform/methanol extracted pecan and walnut oils possessed the 

highest antioxidant activities among samples tested, which is likely due to their high 

amounts of tocopherols and other antioxidative minor components such as 

phospholipids and possibly other unidentified phenolic and/or non-phenolic 

components present in these extracts. Minor component extracts of almond oils 

were the least active among samples examined in this study. Isolating the active 

components of tree nut oil minor component extracts and identifying their 

individual contribution to the overall antioxidant activity would be of paramount 

importance in understanding the reason(s) for the observed high activities of certain 

nut oil extracts examined. This is particularly important for extracts of 

chloroform/methanol extracted pecan, walnut and Brazil nut oils. 

Non-stripped tree nut oils exhibited greater oxidative stability than their 

stripped counterparts under both accelerated autoxidation and photooxidation 

conditions. Hexane extracted oils were less oxidatively stable than their 

chloroform/methanol extracted counterparts. Oils of pecan exhibited the highest 

stabilities while oils of walnut were the least stable. The results of the oxidative 
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stability studies show that oils rich in antioxidants and low in polyunsaturated fatty 

acids were more stable than those with lower levels of antioxidants and higher 

degrees ofunsaturation. 

Future research on the antioxidant activities and minor component 

compositions of tree nut oils may be of interest in order to identify whether a single 

compound or a group of compounds acting synergistically are responsible for the 

enhanced antioxidant activity and oxidative stability of chloroform/methanol 

extracted oils. These studies may shed light on the physiological and disease 

modifying functions of these components, and may also help explain the observed 

health benefits of regular consumption of tree nuts and their oils. Research should 

also focus on the economic feasibility of large scale tree nut oil production and 

isolation of active components to assess their absorption, metabolism, removal from 

the body as well as possible allergic, genotoxic and cytotoxic potencies of these 

components. 

136 



References 

[1] United States Department of Agriculture (USDA) Nutrient Database Version 17. 
www.nal.usda.gov/foodcomp.Accessed May 28 . 2005. 
Ref Type: Electronic Citation 

[2] Bonvehi JS, Coli FV, Rius lA. Liquid chromatographic determination of 
tocopherols and tocotrienols in vegetable oils, formulated preparations, and 
biscuits, Journal of the AOAC International, 83 (2000) 627-634. 

[3] Madhaven N. Final report on the safety assessment ofCorylus Avellana (Hazel) 
seed oil, Corylus Americana (Hazel) seed oil, Corylus A vellana (Hazel) seed 
extract, Corylus Americana (Hazel) seed extract, Corylus A vellana (Hazel) leaf 
extract, Corylus Americana (Hazel) leaf extract, and Corylus Rostrata (Hazel) leaf 
extract, International Journal of Toxicology, 20 (2001) 15-20. 

[ 4] Hu FB, Stampfer MJ. Nut consumption and risk of coronary heart disease: a 
review of epidemiologic evidence, Current Atherosclerosis Reports, 3 (1999) 204-
209. 

[5] Nawar WW. Lipids, in: Fennema OR (Ed.), Food Chemistry, Marcel Dekker, 
New York, NY, 1985, pp. 139-244. 

[6] Taylor RJ. The Chemistry of Glycerides, Unilever Information Division, London, 
1973. 

[7] de la Puerta R, Martinez-Dominguez E, Ruiz-Gutierrez V. Effect of minor 
components of virgin olive oil on topical antiinflammatory assays, Journal of 
Biosciences, 55 (2000) 814-819. 

[8] Sherwin ER. Oxidation and antioxidants in fat and oil processing, Journal of the 
American Oil Chemists' Society, 55 (1978) 809-814. 

[9] Fernandez M~, Vega-Lopez S. Efficacy and safety of sitosterol in the 
management of blood cholesterol levels, Cardiovascular Drug Reviews, 23 (2005) 
57-70. 

[10] Robinson DS. Fats and Oils, in: Robinson DS (Ed.), Food Biochemistry and 
Nutritive Value, John Wiley and Sons, New York, NY, 1987, pp. 247-300. 

[11] Chan HWS, Levett G. Autoxidation ofmethyllinolenate: analysis ofmethl 
hydroxylinolenate isomers by high performance liquid chromatography, Lipids, 
12 (1977) 837-840. 

[12] Horrobin DF. Nutritional and medicinal importance of gamma-linolenic acid, 
Lipid Research, 31 (1992) 163-194. 

137 



[13] Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, 
deltaS, and delta9 desaturases, Annual Review ofNutrition, 24 (2004) 345-376. 

[14] Sprecher H. Biochemistry of Essential Fatty Acids, Progress in Lipid Research, 
20 (1982) 13-22. 

[15] Simopoulos AP. New products from the agri-food industry: the return ofn-3 fatty 
acids into the food supply, Lipids, 34 (1999) S297-S301. 

[16] Shahidi F, Miraliak:bari H. Omega-3 (n-3) fatty acids in health and disease: Part 1-
-cardiovascular disease and cancer, Journal of Medicinal Food, 7 (2004) 387-401. 

[17] Del Rio D, Stewart AJ, Pelligrini N. A review on recent studies on 
malondialdehyde as a toxic molecule and biological marker of oxidative stress, 
Nutrition, Metabolism and Cardiovascular Diseases, 4 (2005) 316-338. 

[18] Khor GL. Dietary fat quality: a nutritional epidemiologist's view, Asia Pacific 
Journal of Clinical Nutrition, 13 (2004) S22. 

[19] Wahle KW, Caruso D, Ochoa JJ, Quiles JL. Olive oil and modulation of cell 
signaling in disease prevention, Lipids, 39 (2004) 1223-1231. 

[20] Upritchard JE, Zeelenberg MJ, Huizinga H, Verschuren PM, Trautwein EA. 
Modem fat technology: what is the potential for heart health, The Proceedings of 
the Nutrition Society, 64 (2005) 379-386. 

[21] Li Cl, Palinski W. Peroxisome proliferator-activated receptors: how their effects 
on macrophages, Annual Review of Pharmacology and Toxicology, 46 (2005) 1-
39. 

[22] Shachter NS. Apolipoproteins C-1 and C-111 as important modulators of 
lipoprotein metabolism, Current Oppinion in Lipidology, 12 (2001) 297-304. 

[23] Grundy SM. Influence of stearic acid on cholesterol metabolism relative to other 
long-chain fatty, The American Journal of Clinical Nutrition, (1994) 986S-990S. 

[24] Binkoski AE, Kris-Eterton PM, Wilson TA, Mountain ML, Nocolosi RJ. Balance 
of unsaturated fatty acids is important to a cholesterol-lowering diet: comparison 
of mid-oleic sunflower oil and olive oil on cardiovascular disease risk factors, 
Journal of the American Dietetic Association, 105 (2005) 1080-1086. 

[25] Hart CM, Gupta MP, EvanoffV. Oleic acid reduces oxidant stress in cultured 
pulmonary artery endothelial cells, Experimental Lung Research, 23 (1997) 405-
425. 

[26] Karman RJ, Garcia JG, Hart CM. Endothelial cell monolayer dysfunction caused 
by oxidized low density lipoprotein: attenuation by oleic acid, Prostaglandins, 
Leukotrienes and Essential Fatty Acids, 56 (1997) 345-353. 

138 



[27] Hennig B, Meerarani P, Ramadass P, Watkins BA, Toborek M. Fatty acid­
mediated activation of vascular endothelial cells, Metabolism, 49 (2000) 1006-
1013. 

[28] Carluccio MA, Massaro M, Bonfrate C, Siculella L, Maffia M, Nicolardi G, 
Distante A, Storelli C, De CaterinaR. Oleic acid inhibits endothelial activation : A 
direct vascular antiatherogenic mechanism of a nutritional component in the 
mediterranean diet, Atherosclerosis, Thrombosis and Vascular Biology, 19 (1999) 
220-228. 

[29] Toborek M, Lee YW, Garrido R, Kaiser S, Hennig B. Unsaturated fatty acids 
selectively induce an inflammatory environment in human endothelial cells, The 
American Journal of Clinical Nutrition, 75 (2002) 119-125. 

[30] Menedez JA, Vellon L, Colomer R, Lupu R. Oleic acid, the main 
monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression 
and synergistically enhances the growth inhibitory effects oftrastuzumab 
(Herceptin ™) in breast cancer cells with Her-2/neu oncogene amplification, 
Annals of Oncology, 16 (2005) 359-371. 

[31] Ramezanzadeh FM, Rao RM, Windhauser M, Prinyawiwatkul W, Marshall WE. 
Prevention of Oxidative Rancidity in Rice Bran during Storage, Journal of 
Agriculture and Food Chemistry, 47 (1999) 2997-3000. 

[32] Holmer G. Triglycerides, in: Ackman RG (Ed.), Marine Biogenic Lipids, Fats and 
Oils, CRC Press Inc., Boca Raton, FL, 1989, pp. 139-174. 

[33] Christie WW. Lipid Analysis, Pergamon Press, Oxford, UK, 1982. 

[34] Prasad R. Structure and Distrubution of Membrane Lipids, in: Prasad R (Ed.}, 
Manual on Membrane Lipids, Springer-Verlag Berlin Heidelberg, New York, NY, 
1996, pp. 1-15. 

[35] Vaskovsky VE, Terekhova TA. HPLC of phospholipid mixtures containing 
phosphatidylglycerol, Journal of High Resolution Chromatoraphy, 2 (1979) 671-
677. 

[36] Ling WH, Jones PJ. Dietary phytosterols: a review of metabolism, benefits and 
side effects, Life Sciences, 57 (1995) 195-206. 

[37] Quilez J, Garcia-Lorda P, Salas-Salvado J. Potential uses and benefits of 
phytosterols in diet:present situation and future directions, Clinical Nutrition, 22 
(2003) 343-351. 

[38] Goldstein MR. Effects of dietary phytosterols on cholesterol metabolism and 
atherosclerosis, The American Journal of Medicine, 109 (2000) 72-73. 

139 



[39] Whittaker MH. Effects of dietary phytosterols on cholesterol metabolism and 
atherosclerosis: clinical and experimental evidence, The American Journal of 
Medicine, 109 (2000) 600-601. 

[ 40] Child P, Kuksis A. Investigation of the role of micellar phospholipid in the 
preferential uptake of cholesterol over sitosterol by dispersed rat jejunal villus 
cells, Biochemistry and Cell Biology, 64 (1986) 847-853. 

[41] Ostlund RE Jr, McGill JB, Zeng CM, Covey DF, Stearns J, Stenson WF, Spilburg 
CA. Gastrointestinal absorption and plasma kinetics of soy Delta(5)-phytosterols 
and phytostanols in humans, American Journal of Physiology. Endocrinology and 
Metabolism, 282 (2002) E911-E916. 

[ 42] Vanhanen HT, Miettinen TA. Effects of unsaturated and saturated dietary plant 
sterols on their serum contents, Clina Chemica Acta: International Journal of 
Clinical Chemistry, 205 (1992) 97-107. 

[43] Plat J, Mensink RP. Plant Stanol and Sterol Esters in the Control of Blood 
Cholesterol Levels: Mechanism and Safety Aspects, The American Journal of 
Cardiology, 4 (2005) 15-22. 

[ 44] Rainwater DL, Lewis DS, Swanson M, Arndt B, Rainwater DL, Stewart J. A 
single daily dose of soybean phytosterols in ground beef decreases serum total 
cholesterol and LDL cholesterol in young, mildly hypercholesterolemic men, The 
American Journal of Clinical Nutrition, 76 (2005) 57-64. 

[ 45] Packer L, Stefan U, Rimbach W, Rimbach G. Molecular Aspects of a-Tocotrienol 
Antioxidant Action and Cell Signalling, Journal ofNutrition, 131 (2001) 369S-
373S. 

[ 46] Ikeda I, Imasato Y, Sasaki E, Sugano M. Lymphatic transport of alpha-, gamma­
and delta-tocotrienols and alpha-tocopherol in rats, International Journal for 
Vitamin and Nutrition Research, 66 (1996) 217-221. 

[ 4 7] Stocker A. Molecular mechanisms of vitamin E transport, Annals of the New 
York Academy of Sciences, 1031 (2004) 44-59. 

[48] Putnam ME, Comben N. Vitamin E, The Vetinary Record, 121 (1987) 541-545. 

[ 49] Naguib Y, Hari SP, Passwater R, Huang D. Antioxidant activities of natural 
vitamin E formulations, Journal ofNutritional Science and Vitaminology, 49 
(2003) 217-220. 

[50] Herrero C, Granado F, Blanco I, Olmedilla B. Vitamin A and Vitamin E content 
in dairy products: their contibution to the recomended dietary allowances (RDA) 
for elderly people, The Journal ofNutirition, Health and Aging, (2002) 57-59. 

140 



[51] Huang SW, Frankel EN, German JB. Effect of individual tocopherols and 
tocopherol mixtures on the oxidative stability of com oil triglycerides, Journal of 
Agriculture and Food Chemistry, 43 (1995) 2345-2350. 

[52] Kline K, Yu W, Sanders BG. Vitamin E and Breast Cancer, Journal ofNutrition, 
134 (2004) 3458S-3462S. 

[53] Dutta A, Dutta SK. Vitamin E and its Role in the Prevention of Atherosclerosis 
and Carcinogenesis: A Review, Journal of the American College ofNutrition, 22 
(2003) 258-268. 

[54] Traber MG, Rader D, AcuffV, Ramakrishnan R, Brewer HB, Kayden HJ. 
Vitamin E dose-response studies in humans with use of deuterated RRR- alpha­
tocopherol, The American Journal of Clinical Nutrition, 68 (1998) 847-853. 

[55] Kontush A, Finckh B, Karten B, Kohlschutter A, Beisiegel A. Antioxidant and 
prooxidant activity of alpha-tocopherol in human plasma and low density 
lipoprotein, Journal of Lipid Research, 37 (1996) 1436-1448. 

[56] Freedman FE, Farhat JH, Loscalzo J, Keaney JF. a-Tocopherol Inhibits 
Aggregation of Human Platelets by a Protein Kinase C-Dependent Mechanism, 
Circulation, 94 (1996) 2434-2440. 

[57] Booth SL, Golly I, Sacheck JM, RoubenoffR, Dallal GE, Hamada K, Blumberg 
JB. Effect of vitamin E supplementation on vitamin K status in adults with normal 
coagulation status, The American Journal of Clinical Nutrition, 80 (2004) 143-
148. 

[58] Meydani SN, Meydani M, Blumberg JB, Leka LS, Pedrosa M, Diamond R, 
Schaefer EJ. Assessment of the safety of supplementation with different amounts 
of vitamin E in healthy older adults, The American Journal of Clinical Nutrition, 
68 (1998) 311-318. 

[59] Braconnot H. Memoire, Annales De Chimie, 3 (1815) 268-277. 

[60] Lundberg WO. Autoxidation and Antioxidants, in: Lundberg WO (Ed.), Free 
Radicals in Biology, John Wiley, New York, NY, 1961. 

[61] Liochev SI, Fridovich I. The role of02·- in the production ofHO': in vitro and in 
vivo, Archives ofBiochemistry and Biophysics, 318 (1995) 408-410. 

[62] Monteagudo JM, Carmona M, Duran A. Photo-Fenton-assisted ozonation ofp­
Coumaric acid in aqueous solution., Chemosphere, 60 (2005) 1103-1110. 

[63] O'Donnell VB, Freeman B. Interactions Between Nitric Oxide and Lipid 
Oxidation Pathways : Implications for Vascular Disease, Circulation Research, 88 
(2001) 12-21. 

141 



[64] Ferdinandy P, Schulz R. Peroxynitrite: Toxic or Protective in the Heart?, 
Circulation Research, 88 (2001) 12-13. 

[65] Miller FJ, Gutterman DD, Rios D, Heistad DD, Davidson BL. Superoxide 
Production in Vascular Smooth Muscle Contributes to Oxidative Stress and 
Impaired Relaxation in Atherosclerosis, Circulation Research, 82 (1998) 1298-
1305. 

[66] Kelly SA, Harivalla CM, Bradky TC, Abramo KH, Levin ED. Oxidative stress in 
toxicology: established mammalian and emerging piscine model systems, 
Environmental Health Perspectives, 106 (2005) 52-59. 

[67] Chan HWS. Photosensitized oxidation ofunsataturated fatty acid methyl esters. 
The Identification of different pathways, Journal of the American Oil Chemists' 
Society, 54 (1996) 104. 

[68] Rawls HR, Santen PJ. A possible role for singlet oxygen in the initiation of fatty 
acid autoxidation, Journal ofthe American Oil Chemists' Society, 47 (1970) 121-
125. 

[69] Miyazawa T, Kunika H, Fujimoto K, Endo Y, Kaneda T. Chemiluminescence 
detection of mono-, bis-, and tris-hydroperoxy triacylglycerols present in 
vegetable oils, Lipids, 11 1001-6 (1995) 1001-1006. 

[70] Chang SS, Lee YJ, Ho CT. Chemical reactions involved in the deep fat frying of 
foods, Journal of the American Oil Chemists' Society, 55 (1978) 718-727. 

[71] Perkins EG. Effect of Lipid Oxidation in Oil and Food Quality in Deep-frying, in: 
St.Angelo AJ (Ed.), Lipid Oxidation in Foods, American Chemical Society, 
Washington, DC, 1992, pp. 310-321. 

[72] Onal B, Ergin G. Antioxidative effects of alpha-tocopherol and ascorbyl palmitate 
on thermal oxidation of canola oil, Nahrung 46 (2002) 420-426. 

[73] German JB. Food processing and lipid oxidation, Advances in Experimental 
Medicine and Biology, 459 (1999) 23-50. 

[74] Lopez-Varela S, Sanchez-Muniz FJ, Garrido-Polonio C, Arroyo R, Cuesta C. 
Relationship between chemical and physical indexes and column and HPSE 
chromatography methods for evaluating frying oil, Zietschaft fur 
Emahrungswissschaft, 34 (1995) 308-313. 

[75] Vance DE. Metabolism ofGlycerolipids, Sphingholipids and Prostaglandins, in: 
Zubay G (Ed.), Biochemistry, Addison-Westley, Don Mills, ON, 1996, pp. 569-
661. 

[76] Shahidi F, Wanasundara UN. Methods ofMeasuring Oxidative Rancidity in Fats 
and Oils, in: Akoh CC and Min DB (Eds.), Food Lipids: Chemistry, Nutrition and 
Biotechnology, Marcel Dekker, New York, NY, 1998, pp. 465-487. 

142 



[77] Shahidi F, Wanasundara UN. Methods for evaluation of the oxidative stabilty of 
lipid containing foods, Food Science and Technology International, 2 (1996) 73-
81. 

[78] Logani MK, Davies RE. Lipid oxidation: biological effects and antioxidants: a 
review, Lipids, 15 (1980) 485-495. 

[79] IUPAC. Standard Methods for the Analysis of Oils and Fats and Derivatives, 
Blackwell Scientific Publishing Ltd., Oxford, UK, 1987. 

[80] AOCS. Official Methods and Recommended Practices of the American Oil 
Chemists' Society, AOCS Press, Champaign, IL, 1990. 

[81] Matthaus B, Bruhl L. Quality of cold-pressed edible rapeseed oil in Germany, 
Nahrung, 47 (2003) 413-419. 

[82] Liu J, Chang SK, Wiesenborn D. Antioxidant properties of soybean isoflavone 
extract and tofu in vitro and in vivo., Journal of Agriculture and Food Chemistry, 
53 (2005) 2333-2340. 

[83] Guillen MD, Cabo N, lbargoitia ML, Ruiz A. Study ofboth sunflower oil and its 
headspace throughout the oxidation process. Occurrence in the headspace of toxic 
oxygenated aldehydes, Journal of Agriculture and Food Chemistry, 53 (2005) 
1093-1101. 

[84] Sanches-Silva A, de Quiros AR, Lopez-Hernandez J, Paseiro-Losada P. 
Determination of hexanal as indicator of the lipidic oxidation state in potato crisps 
using gas chromatography and high-performance liquid chromatography, Journal 
of Chromatography A, 1046 (2004) 75-81. 

[85] Frankel EN. Formation ofheadspace volatiles by thermal decomposition of 
oxidized fish oils vs. oxidized vegetable oils, Journal of the American Oil 
Chemists' Society, 70 (1993) 767-772. 

[86] Jimenez A, Beltran G, Aguilera MP. Application of solid-phase microextraction 
to the analysis of volatile compounds in virgin olive oils, Journal of 
Chromatography A, 1028(2):321-4 (2004) 321-324. 

[87] Coppen PP. The Use of Antioxidants, in: Allen JC and Hamilton RJ (Eds.), 
Rancidity in Foods, Blackie Academic and Professional, Glascow, UK, 1994, pp. 
102-194. 

[88] Buckley DJ, Morrissey PA, Gray JI. Influence of dietary vitamin E on the 
oxidative stability and quality of pig meat, Journal of Animal Science, 73 (1995) 
3122-3130. 

143 



[89] Rababah TM, Hettiarachchy NS, Horax R. Total phenolics and antioxidant 
activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu 
kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone, Journal of 
Agriculture and Food Chemistry, 52 (2004) 5183-5186. 

[90] Rudzinska M, Korczak J, Gramza A, Wasowicz E, Dutta PC. Inhibition of 
stigmasterol oxidation by antioxidants in purified sunflower oil, Journal of the 
AOAC International, 87 (2004) 499-504. 

[91] Ozcan M. Antioxidant activities of rosemary, sage, and sumac extracts and their 
combinations on stability of natural peanut oil, Journal of Medicinal Food, 6 
(2003) 267-270. 

[92] Nielsen NS, Petersen A, Meyer AS, Timm-Heinrich M, Jacobsen C. Effects of 
lactoferrin, phytic acid, and EDT A on oxidation in two food emulsions enriched 
with long-chain polyunsaturated fatty acids, Journal of Agriculture and Food 
Chemistry, 52 (2004) 7690-7699. 

[93] Cuppet S, SchnepfM, Hall C. Natural Antioxidants- Are They a Reality?, in: 
Shahidi F (Ed.), Natural Antioxidants: Chemisry, Health Effects and Applications, 
AOCS Press, Champaign, IL, 1997, pp. 13-24. 

[94] Lee SH, Min DB. Effects, quenching mechanisms and kinetics of carotenoids in 
chlorophyll-sensitized photooxidation of soybean oil, Journal of Agriculture and 
Food Chemistry, 38 (1990) 1630-1634. 

[95] Faria JAF, Mukai MK. Use of a gas chromatographic reactor to study lipid 
photooxidation, Journal ofthe American Oil Chemists' Society, 60 (1983) 77-81. 

[96] Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, Oxford 
University Press, New York, NY, 1999. 

[97] Gahler S, Otto K, Bohm V. Alterations of vitamin C, total phenolics, and 
antioxidant capacity as affected by processing tomatoes to different products, 
Journal of Agriculture and Food Chemistry, 51 (2003) 7962-7968. 

[98] Lee KH, Yung MY, Kim SY. Quenching mechanism and kinetics of ascorbyl 
palmintate for the reduction of the photosensitized oxidation of oils, Journal of the 
American Oil Chemists' Society, 74 (1997) 1053-1057. 

[99] Kontogiorgis AC, Pontiki AE, Hadjipavlou-Litina D. A review on quantitative 
structure-activity relationships (QSARs) of natural and synthetic antioxidants 
compounds, Mini Reviews in Medicinal Chemistry, 5 (2005) 563-574. 

[100] Singleton VL, Esau P. Phenolic substances in grapes and wine, and their 
significance, Advances in Food Research, 1 (1969) 261. 

144 



[101] Singleton VL, Orthofer R, Lamula-Roventos RM. Analysis of total phenols and 
other oxidation substrates and antioxidants by means ofFo1in-Cioca1teu reagent., 
Methods in Enzymology, 299 (1999) 152-178. 

[102] Gil MA, Toma-Barbena FA, Hess-Pierce B, Holcroft DM, AdelA. Antioxidant 
activity of pomegranate juice and its relationship with phenolic composition and 
processing, Journal of Agriculture and Food Chemistry, 48 (2000) 4581-4589. 

[103] Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A. A Novel 
method for measuring antioxidant capacity and its application to monitoring 
antioxidant status in premature neonates, Clinical Science, 84 (1993) 407-412. 

[104] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans CA. 
Antioxidant activity applying an improved ABTS radical cation decolorization 
assay, Free Radicals in Biology and Medicine, 26 (1999) 1231-1237. 

[105] Ivekovic D, Milardovic S, Roboz M, Grabaric BS. Evaluation ofthe antioxidant 
activity by flow injection analysis method with electrochemically generated 
ABTS radical cation, The Analyst, 130 (2005) 708-714. 

[106] Halliwell B. How to characterize a biological antioxidant, Free Radical Research, 
9 (1990) 1-32. 

[107] Jime'nez-Escrig A, Jime'nez-Jime'nez I, Sa'nchez-Moreno C, Saura-Calixto F. 
Evaluation of free radical scavenging of dietary carotenoids by the stable radical 
2,2-diphenyl-1-picrylhydrazyl, Journal of Agriculture and Food Chemistry, 80 
(2000) 1686-1690. 

[108] Bondet V, Brand-Williams W, Berset C. Kinetics and mechanisms of antioxidant 
activity using the DPPH· free radical method, Food Science & Technology, 30 
(1997) 609-615. 

[109] Fenton HJH. On a new reaction of tartaric acid, Chemistry News, 33 (1876) 190. 

[ 11 0] Madsen HL, Nielsen BR, Bertelsen G, Skibsted LH. Screening of anti oxidative 
activity of spices. A comparison between assays based on ESR spin trapping and 
electrochemical measurement of oxygen consumption, Food Chemistry, 57 (1996) 
331-337. 

[111] Fenton HJH. The oxidation of tartaric acid in presence of iron, Chemistry Society 
Proceedings, 10 (1894) 157-158. 

[112] Ou B, Hampsch-Woodill M, Flanagan J, Deemer EK, Prior RL, Huang D. Novel 
fluorometric assay for hydroxyl radical prevention capacity using fluorescein as 
the probe, Journal of Agriculture and Food Chemistry, 50 (2002) 2772-2777. 

[113] Cao GH, Alessio HM, Cutler RG. Oxygen-radical absorbency capacity assay for 
antioxidants, Free Radicals in Biology and Medicine, 14 (1993) 303-311. 

145 



[ 114] Cao GH, Prior RL. The measurement of oxygen radical absorbance capacity in 
biological samples, Methods in Enzymology, 299 (1999) 50-62. 

[115] Huang D, Ou B, Hampsch-Woodill M, Flanagan J, Deemer EK. Development and 
validation of oxygen radical absorbance capacity assay for lipophilic antioxidants 
using randomly methylated cyclodextrin as the solubility enhancer, Journal of 
Agriculture and Food Chemistry, 50 (2002) 1815-1821. 

[116] Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhart SE, Prior RL. Lipophilic 
and hydrophilic antioxidant capacities of common foods in the United States, 
Journal of Agriculture and Food Chemistry, 52 (2004) 4026-4037. 

[117] Klebanov GI, Kapitanov AB, Teselkin YuO, Babenkova IV, Zhambalova BA, 
Lyubitsky OB, Nesterova OA, Vasil'eva OV, Popov IN, LewinG, Vladimirov 
YUA. The antioxidant properties oflycopene, Membrane and Cell Biology, 12 
(1998) 287-300. 

[118] Thomas SR, Stocker R. Molecular action ofvitamin E in lipoprotein oxidation: 
Implications for atherosclerosis, Free Radicals in Biology and Medicine, 28 
(2000) 1795-1805. 

[ 119] Moon JH, Terao J. Antioxidant activity of caffeic acid and dihydrocaffeic acid in 
in lard and human low density lipoprotein, Journal of Agriculture and Food 
Chemistry, 46 (1998) 5062-5065. 

[120] Satue-Gracia MT, Heinonen M, Frankel EN. Anthocyanins as antioxidants on low 
density lipoprotein and lecithin-liposome systems, Journal of Agriculture and 
Food Chemistry, 45 (1997) 3362-3367. 

[121] Beckman KB, Ames BN. Oxidative decay ofDNA, The Journal ofBiological 
Chemistry, 232 (1997) 19633-19636. 

[122] Hu C, Kitts DD. Evaluation of antioxidant activity of epigallocatechin gallate in 
biphasic model systems in vitro, Molecular and Cellular Biochemistry, 281 (2001) 
147-155. 

[123] Shahidi F, Miraliakbari H. Tree Nut Oils, in: Shahidi F (Ed.), Bailey's Industrial 
Oil & Fat Products (6th Edition), Wiley-Interscience, Hoboken, NJ, 2005, pp. 175-
193. 

[124] Martins M, Tenreiro R, Oliveira MM. Genetic relatedness of Portuguese almond 
cultivars assessed by RAPD and ISSR markers, Plant Cell Reports, 22 (2003) 71-
78. 

[125] Spiller GA, Jemkins DAJ, Bosello 0, Gates JE, Cragen LN, Bruce BJ. Nuts and 
plasma lipids: an almond-based diet lowers LDL-C while preserving HDL-C, 
Journal of the American College ofNutrition, 17 (1998) 285-290. 

146 



[126] Senter SD, Hovat RJ, Forbus WRJ. Comparative GLC-MS analysis of phenolic 
acid of selected tree nuts, Journal of Food Science, 48 (1983) 798-799. 

[127] Siriwardhana S, Shahidi F. Antiradical activity of extracts of almond and its by­
products, Journal of the American Oil Chemists' Society, 79 (2002) 903-906. 

[128] Sang S, Lapsley K, Jeong WS, Lachancs PA, Ho CT, Rosen RT. Antioxidative 
phenolic compounds isolated from almond skins (Prunus amygdalus Batsch), 
Journal of Agriculture and Food Chemistry, 50 (2002) 2459-2463. 

[129] Frison-Norrie S, Spoms PJ. Identification and quantification of flavonol 
glycosides in almond seedcoats using MALDI-TOF MS, Journal of Agriculture 
and Food Chemistry, 50 (2002) 2782-2787. 

[130] Pinelo M, Rubilar M, Sineiro J, Nu'nez MJ. Extraction of antioxidant phenolics 
from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster}, Food 
Chemistry, 85 (2005) 267-273. 

[ 131] Sang S, Kikuzaki H, Lapsley K, Rosen RT, Nakatani N, Ho CT. Sphingolipid and 
other constituents from almond nuts (Prunus amygdalus Batsch), Journal of 
Agriculture and Food Chemistry, 50 (2002) 4709-4712. 

[132] Davis PA, Iwashi CK. Whole almonds and almond fractions reduce aberrant crypt 
foci in a rat model of colon carcinogenesis, Cancer Letters, 165 (2001) 27-33. 

[133] Shi Z, Fu Q, Chen B, Xu S. Analysis of physicochemical property and 
composition of fatty acid of almond oil, Chinese Journal of Chromatography, 17 
(1999) 506-507. 

[134] Maguire LS, O'Sullivan M, Galvin K, O'Connor TP, O'Brien NM. Fatty acid 
profile, tocopherol, squalene and phytosterol content of walnuts, peanuts, 
hazelnuts and the macadamia nut, Intemation Journal of Food Sciences and 
Nutrition, 55 (2004) 171-178. 

[135] Sabate J, Fraser GE. Nuts: a new protective food against coronary heart disease, 
Current Oppinion in Lipidology, 5 (1999) 11-16. 

[136] Fraser GE, Bennett HW, Jaceldo KB, Sabate J. Effect on body weight of a free 76 
Kilojoule (320 calorie) daily supplement of almonds for six months, Journal of the 
American College ofNutrition, 21 (2002) 275-283. 

[137] Hyson DA, Schneeman BO, Davis PA. Almonds and almond oil have similar 
effects on plasma lipids and LDL oxidation in healthy men and women, Journal of 
Nutrition, 132 (2002) 703-707. 

[138] AbbeyM, Noakes M, Belling GB, Nestel PJ. Partial replacement of saturated 
fatty acids with almonds or walnuts lowers total serum cholesterol and low­
density-lipoprotein cholesterol, American Journal ofClinicial Nutrition, 59 (1994) 
995-999. 

147 



[139] Sabate J, Haddad E, Tanzman JS, Jambazan P, Rajaram S. Serum lipid response 
to the graduated enrichment of a Step I diet with almonds: a randomized feeding 
trial, American Journal ofClinicial Nutrition, 77 (2003) 1379-1384. 

[140] Spiller GA, Miller A, Olivera K, Reynolds J, Miller B, Morse SJ, Dewell A, 
Farquhar JW. Effects of plant-based diets high in raw or roasted almonds, or 
roasted almond butter on serum lipoproteins in humans, Journal of the American 
College ofNutrition, 22 (2003) 195-200. 

[141] Yan XS, Wang J, Liang S. Effects of nuts rich in monounsaturated fatty acids on 
serum lipids ofhyperlipidemia rats, Wei Sheng Yan Jiu, 32 (2003) 120-122. 

[142] Economic viability of Brazil nut trading in Peru. 
www.nri.org/NRET!brazilnuts.pdf.Accessed June 18. 2005. 
RefType: Electronic Citation 

[143] Beuchat LR, Worthington RE. Fatty acid composition of tree nut oils, Journal-of­
Food-Technology, 13 (1978) 355-358. 

[144] Gutierrez EMR, Regitano-D'Arce MAB, Rauen-Miguel AMO. Oxidative stability 
ofBrazil nut oil, Ciencia e Tecnologia de Alimentos, 17 (1997) 22-27. 

[145] Ecky EW. Vegetable Fats and Oils, van Nostrand Reinhold Publishing, New 
York, NY, 1954. 

[146] Toschi TG, Caboni MF, Penazzi G, Lercker G, Capella P. A study on cashew nut 
oil composition, Journal ofthe American Oil Chemists' Society, 70 (1993) 1017-
1021. 

[147] Madhaven-Pillai KS, Kedlaya KJ, Selvarangam R. Cashew skin as a source of 
tanning material, Leather Science, 10 (1963) 317-323. 

[148] Mathew AG, Papria HAB. Polyphenols of cashew nut testa, Journal of Food 
Science, 35 (1970) 140-145. 

[149] Alasalvar C, Shahidi F, Liyanapathirana CM, Ohshima T. Turkish Tombul 
hazelnut (Corylus avellana L.). 1. Compositional characteristics, Journal of 
Agriculture and Food Chemistry, 51 (2003) 3790-3796. 

[150] Alasalvar C, Shahidi F, Ohshima T, Wanasundara U, Yurttas HC, 
Liyanapathirana CM, Rodrigues FB. Turkish Tombul hazelnut (Corylus avellana 
L.). 2. Lipid characteristics and oxidative stability, Journal of Agriculture and 
Food Chemistry, 51 (2003) 3797-3805. 

[151] Yurttas HC, Shafer HW, Warthesen JJ. Antioxidant activity ofnontocopherol 
hazelnut (Corylus sp.) phenolics, Journal ofFood Science, 65 (2000) 276-280. 

148 



[152] Moure A, Franco D, Sineiro J, Dominguez H, Nunez MJ. Simulation of 
multistage extraction of antioxidants from Chilean hazelnut (Gevuina avellana) 
hulls, Journal of the American Oil Chemists' Society, 80 (2003) 389-397. 

[153] Krigs U, Berger RG. Antioxidant activity of some roasted foods, Food Chemistry, 
72 (2001) 223-231. 

[154] Parcerisa J, Richardson DG, Rafecus M, Codony R, Boatella J. Fatty acid 
distribution in polar and nonpolar lipid classes of hazelnut oil (Corylus avellana 
L.), Journal of Agriculture and Food Chemistry, 45 (1997) 3887-3890. 

[155] Pfuuer P, Matsui T, Grosch W, Guth H, Hofmann T, Schieberle P. Development 
of a stable isotope dilution assay for the quantification of 5-methyl-(E)-2-hepten-
4-one: application to hazelnut oils and hazelnuts, Journal of Agriculture and Food 
Chemistry, 47 (1999) 2044-2047. 

[ 156] Kris-Eterton PM. A new role for diet in reducing the incidence of cardiovascular 
disease: evidence from recent studies, Current Atherosclerosis Reports, 3 (1999) 
185-187. 

[157] Balkan J, Hatipoglu A, Giilcin A, Uysal M. Influence on hazelnut oil 
administration on peroxidation status of erythrocytes and apolipoprotein B 100-
containing lipoproteins in rabbits fed on a high cholesterol diet, Journal of 
Agriculture and Food Chemistry, 51 (2003) 3905-3909. 

[158] Ako H, Okuda D, Gray D. Healthful new oil from macadamia nuts, Nutrition, 11 
(1995) 286-288. 

[159] Croy C. Surfactants and detergents, Inform, 4 (1994) 1312-1339. 

[160] Kaijser A, Dutta P, Savage G. Oxidative stability and lipid composition of 
macadamia nuts grown in New Zealand, Food Chemistry, 71 (2000) 67-70. 

[161] Quinn LA, Tang HH. Antioxidant properties of phenolic compounds in 
macadamia nuts, Journal of the American Oil Chemists' Society, 73 (1996) 1585-
1588. 

[162] Wakeling LT, Mason RL, D'Arcy BR, Caffin NA. Australian pecan nut 
production and processing, Food Australia, 52 (2000) 574-578. 

[163] Walding LT, Mason RM, D'Arcy BR, Caffin NA. Composition of pecan cultivars 
Wichita and Western Schley (Carya illinoinensis (Wangenh.) K. Koch) grown in 
Australia, Journal of Agriculture and Food Chemistry, 49 (2001) 1277-1281. 

[164] Pyriadi TM, Mason ME. Composition and stability of pecan oils, Journal of the 
American Oil Chemists' Society, 45 (1968) 437-440. 

149 



[165] Demir C, Cetin M. Determination oftocopherols, fatty acids and oxidative 
stability of pecan, walnut and sunflower oils, Deutsche Lebensmittel Rundschau, 
95 (1999) 278-282. 

[166] Toro-Vazquez JF, Charo-Alonso MA, Perez-Briceno F. Analytical and physical 
chemistry - fatty acid composition and its relationship with physicochemical 
properties of pecan (Carya il/inoensis) oil, Journal of the American Oil Chemists' 
Society, 76 (1999) 957-967. 

[167] Walnut Industry Fact Sheet. 
www.walnut.org/pdfs/walnuts_factsheet.pdf.Accessed May 19,2005.2005. 
RefType: Electronic Citation 

[168] Asset G, Bauge E, WolffRL, Fruchart JC, Dallingeville J. Effects of dietary 
maritime pine seed oil on lipoprotein metabolism and atherosclerosis development 
in mice expressing human apolipoprotein B , European Journal of Nutrition, 40 
(2001) 268-275. 

[169] Walnut Industry Fact Sheet. 
www.walnut.org/pdfs/walnuts_factsheet.pdf.Accessed May 19.2005. 
Ref Type: Electronic Citation 

[170] Global pistachio production and marketing challenges. 
http://economics.ca/2003/papers/0460.pdf.Accessed June 14. 2005. 
RefType: Electronic Citation 

[ 1 71] Asian M, Orhan I, Sener B. Short communication. Comparison of the seed oils of 
Pistacia vera L. of different origins with respect to fatty acids , International 
Journal ofFood Science and Technology, 37 (2002) 333-337. 

[172] Yousfi M, Nedjmi B, Belial R, Bertal DB, Palla G. Letters to the editor- fatty 
acids and sterols ofPistacia atiantica fruit oil, Journal ofthe American Oil 
Chemists' Society, 79 (2002) 1049-1051. 

[173] Edwards K, Kwaw I, Matud J, Kurtz I. Effect ofpistachio nuts on serum lipid 
levels in patients with moderate hypercholesterolemia, Journal of the American 
College ofNutrition, 18 (1999) 229-232. 

[174] Zwarts L, Savage GP, McNeil DL. Fatty acid content ofNew Zealand-grown 
walnuts (Juglans regia L.), International Journal of Food Sciences and Nutrition, 
50 (1999) 189-194. 

[175] Gunduc H, El SN. Assessing antioxidant activities ofphenolic compounds of 
common Turkish food and drinks on in vitro low-density lipoprotein oxidation, 
Journal ofFood Science, 68 (2003) 2591-2595. 

[176] Fukuda T, Ito H, Yoshida T. Antioxidative polyphenols from walnuts, 
Phytochemistry, 63 (2003) 795-801. 

150 



[177] Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM. 
Walnut Polyphenolics Inhibit In Vitro Human Plasma and LDL Oxidation, 
Journal ofNutrition, 131 (2001) 2837-2842. 

[178] Sze-Tao KWC, ShrimpfJE, Teuber SS, Roux KH, Sath SK. Effects ofprocessing 
and storage on walnut (Juglans regia L) tannins, Journal of the Science of Food 
and Agriculture, 81 (2001) 1215-1225. 

[179] Chauhan N, Wang KC, Wegiel J, Malik MN. Walnut extract inhibits the 
fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils, 
Current Alzheimer Research, 1 (2004) 183-188. 

[180] Fukuda T, Ito H, Yoshida T. Effect of the walnut polyphenol fraction on oxidative 
stress in type 2 diabetes mice, Biofactors, 21 (2004) 251-253. 

[181] Savage GP, Dutta PC, McNeil DL. Fatty acid and tocopherol contents and 
oxidative stability of walnut oils, Journal of the American Oil Chemists' Society, 
76 (1999) 1059-1065. 

[182] Sabate J, Fraser GE, Burke K, Knutsen SF, Bennet H, Lindsted KD. Effects of 
walnuts on serum lipid levels and blood pressure in normal men, New England 
Journal ofMedicine, 328 (1993) 603-607. 

[183] Zambon D, Sabate J, Munoz S, Campero B, Casals E, Merlos M, Laguna JC, Ros 
E. Substituting walnuts for monounsaturated fat improves the serum lipid profile 
of hypercholesterolemic men and women, Annals of Internal Medicine, 132 
(2000) 538-546. 

[184] Lavedrine F, Zmirou D, Ravel A, Balducci F, Alari J. Blood cholesterol and 
walnut consumption: a cross-sectional survey in France, Preventitive Medicine, 
28 (1999) 333-341. 

[185] Zibaeenezhad MJ, Rezaiezadeh M, Mawla A, Ayatollahi SM, Panjahshahin MR. 
Antihypertriglyceridemic effect of walnut oil, Angiology, 54 (2003) 411-414. 

[186] Espin JC, Soler-Rivas C, Wichers HJ. Characterization of the total free radical 
scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-
picrylhydrazyl radical, Journal of Agriculture and Food Chemistry, 48 (2000) 
648-657. 

[187] Copeman LA, Parrish CC. Lipids Classes, Fatty Acids, and Sterols in Seafood 
from Gilbert Bay, Southern Labrador, Journal of Agriculture and Food Chemistry, 
52 (2004) 4872-4881. 

[188] Gomez-Coronado DJ, Barbas C. Optimized and validated HPLC method for 
alpha- and gamma-tocopherol measurement in Laurus nobilis leaves. New data on 
tocopherol content, Journal of Agriculture and Food Chemistry, 51 (2003) 5196-
5201. 

151 



[189] Chatzimichalakis PF, Samanidou VF, Papadoyannis IN. Development of a 
validated liquid chromatography method for the simultaneous determination of 
eight fat-soluble vitamins in biological fluids after solid-phase extraction, Journal 
of Chromatography B, 15 (2004) 289-296. 

[190] Ramadan MF, Kroh LW, Morsel JT. Radical Scavenging Activity ofBlack 
Cumin (Nigella sativa L. ), Coriander ( Coriandrum sativum L. ), and Niger 
(Guizotia abyssinica Cass.) Crude Seed Oils and Oil Fractions, Journal of 
Agriculture and Food Chemistry, 51 (2003) 6961-6969. 

[191] Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic­
phosphotungstic acid reagents, American Journal ofViticulture and Enology, 16 
(1965) 144-158. 

[ 192] van den Berg R, Haenen GRMM, van den Berg H, Bast A. Applicability of an 
improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of 
antioxidant capacity measurements of mixtures, Food Chemistry, 66 (1999) 511-
517. 

[193] Banda PW, Sherry AE, Blois MS. Column cation-exchange separation of 
melanin-related metabolites in urine from cases of melanoma, Clinical Chemistry, 
23 (1977) 1397-1401. 

[194] Miller HE. A simplified method for the evaluation of antioxidants, Journal ofthe 
American Oil Chemists' Society, 48 (1971) 91. 

[195] Popov IN, Lewin G. Photochemiluminescent detection of antiradical activity; IV: 
testing oflipid-soluble antioxidants, Journal of Biochemical and Biophysical 
Methods, 31 (1996) 1-8. 

[196] Dalavlos A, Gomez-Cordoves C, Bartolome B. Extending Applicability of the 
Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay, Journal of 
Agriculture and Food Chemistry, 52 (2004) 48-54. 

[197] Khan MA, Shahidi F. Effects of natural and synthetic antioxidants of the 
oxidative stability of borage and evening primrose triacylglycerols, Food 
Chemistry, 75 (2001) 431-437. 

[198] Khan MA, Shahidi F. Photooxidative stability of stripped and non-stripped borage 
and evening primrose oils and their emultions in water, Food Chemistry, 79 
(2002) 47-53. 

[199] Shahidi F, Pegg RB. Hexanal as an indicator of meat flavour deteroration, Journal 
ofFood Lipids, 1 (1994) 177-186. 

[200] Snedecor GW, Cochran NG. Statistical Methods, Iowa University Press, Ames, 
lA, 1980. 

152 



[201] M.Dobarganes, G.Ruiz. Regulation ofused frying fats and validity of quick tests 
for discarding the fats, Grasas y Aceites, 49 (1998) 331-335. 

[202] Crews C, Hough P, Godward J, Brereton P, Lees M, Guiet S, Winkelmann W. 
Study of the main constituents of some authentic walnut oils, Journal of 
Agriculture and Food Chemistry, 53 (2005) 4853-4860. 

[203] Gomez-Alonso S, Salvador MD, Fregapane G. Phenolic Compounds Profile of 
Cornicabra Virgin Olive Oil, Journal of Agriculture and Food Chemistry, 50 
(2002) 6812-6817. 

[204] Hildebrand DH, Terao J, Kito M. Phospholipids plus tocopherols increase 
soybean oil stability, Journal ofthe American Oil Chemists' Society, 61 (1984) 
552-555. 

[205] Wang T, Hicks KB, Moreau R. Antioxidant activity ofphytosterols, oryzanol and 
other phytosterols conjugates, Journal of the American Oil Chemists' Society, 79 
(2002) 1201-1206. 

[206] Jung MY, Yoon SH, Min DB. Effects ofprocessing steps on the contents ofminor 
compounds and oxidation of soybean oil, Journal ofthe American Oil Chemists' 
Society, 66 (1989) 118-120. 

[207] Segwa T, Kamata M, Totani HY. Antioxidant activity of phospholipids for 
polyunsaturated fatty acids of fish oil. III. synergism of nitrogen-containing 
phospholipids with tocopherols, Journal of the Japanese Oil Chemists' Society, 44 
(1995) 36-42. 

[208] Frankel EN, Meyer AS. The problems of using one-dimensional methods to 
evaluate multifuntional food and biological antioxidants, Journal of the Science of 
Food and Agriculture, 80 (2000) 1925-1940. 

[209] Ricci D, Fratemale D, Giamperi L, Epifano F, Curini M. Chemical composition, 
antimicrobial and antioxidant activity of the essential oil ofTeucrium marum 
(Lamiaceae), Journal ofEthnopharmacology 98 (2005) 195-200. 

[21 0] Ramirez MR, Estevez M, Morcuende D, Cava R. Effect of the type of frying 
culinary fat on volatile compounds isolated in fried pork loin chops by using 
SPME-GC-MS, Journal of Agriculture and Food Chemistry, 52 (2004) 7673-
7643. 

153 



APPENDIX 

154 



Chromatogram Plot 
File: e:lj .. nellelgcm a filea\15·02·05101·03·05\po·h 02·03·05 .am a 
Som pie: PO·H 
Seen Ronge: 1 ·2750 Time Ronge: 0.00 • 35.98 min. 

8pecl1 

0 perotor: J .. nette W eHa 
Oote: 02/03/05 10:23 AM 

BP 318 (181141•100"') po-h 02-03-05.am• 25.tH5 min. Scan: 2000 Ch•n: 1 lon: 285 u• RIC: 111!11412 BC 

tQQ'j, 398 

a 

75" 

50" 

147 

25 .. ., 

417 441 414 

3. b 
22-nordehydrocholestero 

3. 

2. 

2. 

1. 

1. 

0. 

18:.Ct 

411 1514 

e a mlz 

Figure A.l. GC-MS spectrum (a), and chromatographic data (b) of22-nordehydro­
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Figure A.3. GC-MS spectrum (a), and chromatographic data (b) of cholestanol 

157 



Chromatogram Plot 
File: e :\joonettelgc m 1 flleo\15-02-0 5\0 1·03 -05\po· h 02-03-05 .om 1 
Sample: PO-H 
Scan Range: 1 • 2750 Time Range: 0.00 • 35.98 min. 

Sp•cl1 

0 per•tor: Jeanette W eU1 
Dote: 02/03/05 10:23 AM 

BP 382 (83800•1 OOIJ.) po-h 02-03-0S.Iml 29.415 min. Scan: 2207 Ch•n: 1 lon: 420 us A IC: 120260 B C 

100'J. 
382 

a 

75" 

50" 

120 

73 
25" 

05 255 

2. ampesterol 

2. 

1. 

1841 2048 

472 

Figure A.4. GC-MS spectrum (a), and chromatographic data (b) of campesterol 

158 



Chromatogram Plot 
File: e :lje onettelg em a fllea\15-02·0 510 1·03 ·D 5\po- h 02·03·05 .am 1 
Somple: PO-H 
Scon Ronge: 1 • 27 50 Time Ronge: D.DD • 35.98 m ln. 

Specl1 

o perotor: Jeonotto W oUa 
Dote: 02/03/05 10:23 AM 

BP 314 (54104•100"') po·h 02·03·05.•m• 29.114 m ln. Sc•n · 2240 Ch•n: 1 lon: 311 ua RIC: 1100481 BC 

100 .. ••• 
a 

•• 255 

.... 
129 

25" , .. 
... 

MCoun 

b 
3. 

stigmasterol 
3. 

2. 

2. 

1. 

1841 

... 

Figure A.5. GC-MS spectrum (a), and chromatographic data (b) of stigmasterol 

159 



Chromatogram Plot 
File: e:ljeanettelgcm 1 llleo\1 5-02-0 5101-03 -05\po-h 02-03-05 .om 1 
Sample: PO-H 
Scan Range: 1 -2750 Tine Range: 0.00-35.98 min. 

Sp•ct 1 

0 perator: Jeanette W eHo 
Date: 02/03/05 10:23 AM 

BP 382 (11141•100,.,) po-h 02-03-0!S.ama 28.117 min. Sean: 21015 Chan: 1 lon: 852 ua RIC: 111010 BC 

10016. 312 

a 

75" 

oo .. 

, 34 

91 
414 

200 
25" I 232 

315 

3. 

3. 

2. 

24-methylenechole terol 
2. 

11'41 

400 

Figure A.6. GC-MS spectrwn (a), and chromatographic data (b) of24-methylene­
cholesterol 
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Figure A.7. GC-MS spectrum (a), and chromatographic data (b) of~-sitosterol 
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Figure A.8. GC-MS spectrum (a), and chromatographic data (b) of~-sitostanol 
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Figure A.9. GC-MS spectrum (a), and chromatographic data (b) of ~5-avenasterol 
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Figure A.l 0. Representative HPLC-UV chromatogram of tocopherol isomers, showing resolution of a-, p-, y- and o­
tocopherols 
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Figure A.ll. Mass spectrum of a-tocopherol 
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Figure A.l2. Mass spectrum of P-tocopherol 
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Figure A.B. Mass spectrum of y-tocopherol 
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·~SD1 SPC, time=7.011! af HOMAN\HM1373D.D APCI, Neg, Scan, 70 
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Figure A.l4. Mass spectrum of a-tocopherol 
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"MSD1 SPC, time=H.341 of HOUAN\HM1373D.D APCI, Neg, Scan, 70 
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Figure A.l5. Mass spectrum ofy-tocotrienol 

169 



1 

• 

2 

5 

6 

3 
7 

4 
1\ 

- '-J 
u \J \. \.J \._ 

Figure A.16. Representative headspace gas chromatogram of aldehyde 
standards. 
Key: 1, propanal; 2, butanal; 3, pentanal; 4, hexanal; 
5, heptanone; 6, octanal; and 7, nonanal. 
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Figure A.17. Headspace chromatogram ofunoxidized (day 0) walnut oil. 
Key: 1, heptanone (lSD). 
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Figure A.18. Headspace gas chromatogram of moderately oxidized (day 3) 
walnut oil. 
Key: 1, propanal; and 2, heptanone (IS). 
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Figure A.l9. Headspace gas chromatogram of highly oxidized (day 12) 
walnut oil. 
Key: 1, propanal; 2, hexanal; 3, heptanone (IS); and 4, nonanal. 
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