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ABSTRACT 

Silurian-Devonian orogenic gold deposits in Newfoundland are typically situated 
proximal to major regional scale structural lineaments. Such deposits are formed in 
accretionary settings, late in the orogenic process with nearby intrusions of similar age, 
by low-salinity, H20-C0 2 ± CH4 fluids at temperatures ranging from 250-3500C. The 
White Bay area of western Newfoundland contains at least 3 styles of mineralization 
including structurally controlled orogenic gold- base-metal mineralization (Type 1 ), 
stratabound galena mineralization (Type 2), and minor fluorite and molybdenite 
occurrences (Type 3). These deposits are proximal to the Doucer' s Valley fault system, 
an interpreted Taconic thrust surface which offsets Carboniferous strata. This fault system 
may have been episodically active for ca. 150 m.y. providing conduits for mineralizing 
hydrothermal fluids on a regional scale. 

The Viking gold property, located I 0 kilometers south of the community of 
Pollards Point, contains Type 1 orogenic-style gold mineralization west of the Doucer ' s 
Valley fault system in the Humber Zone. High-grade mineralization consists of coarse (50 
to > 140 micron) blebby gold and argentiferous electrum hosted both within quartz 
veinlets and as inclusions in the sulfide assemblage (pyrite, galena, sphalerite, and 
chalcopyrite) of these veinlets. Lithogeochemistry and previous U-Pb geochronology 
demonstrate that the hosts to this mineralization/alteration are ca. I 030 Ma, Grenvillian 
A-type anorogenic granitoids, ca. 61 5 Ma continental tholeiitic dykes and inclined sheets 
of the Long Range dyke swarm and calc-alkaline lamprophyric dykes of unknown 
affiliation. 40 Ar-39 Ar thermochronology on late-syn-kinematic biotite porphyroblasts 
constrains the age of the last peak (ca. 250° C) metamorphism to the latest Silurian at ca. 
4 19 Ma. Hydrothermal sericite from the alteration assemblage yields plateau and pseudo­
plateau ages ranging from 409 ± 12 Ma to 3 77 ± 1.5 Ma. Fluid inclusion assemblages 
have homogenization temperatures that range from 240-320oC and are low salinity. Sulfur 
isotope results indicate that o34S values are heavier than sulfur from magmatic origins and 
Pb model ages suggest that Pb was scavenged from multiple sources. These observations 
collectively suggest that the Viking gold minerali zation represents a unique silver­
bearing, granite-hosted, orogenic gold deposit in the Humber Zone formed in the Lower 
Devonian after orogenic collapse, from auriferous fluids fluxed along the Doucer' s Valley 
fault system. 
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1.1 INTRODUCTION 

CHAPTER 1 

INTRODUCTION 

Orogenic gold deposits constitute an important class of mineral resource and have 

been the subject of enduring scientific interest for the past 30 years. The characteristics of 

orogenic gold deposits have been summarized by a number of authors including Groves 

et. al. (1998), Goldfarb et. al. (2005), Groves et. a!. (2003), and references therein. The 

gold mineralization at the Viking deposit is interpreted to belong to this deposit type. 

The Viking deposit is located within a block of 36 claims known as the Viking 

Property. The Viking Property is located 50 km northeast of Deer Lake and 12 krn west 

of White Bay on NTS map sheet 12/H/1 0-11 situated along the eastern margin of the 

Great Northern Peninsula in western Newfoundland (Figure 1.1 ). Access to the property 

is provided by logging roads that link to Newfoundland provincial highway 420. The 

dominant physiographic features of the area include rugged topography with a total relief 

of over 500 m, coupled with extensive, thick forest cover. 

Mineralization at the Viking deposit (see Section 2.4) is hosted within quartz­

sulfide veins, with varying amounts of calcite. Quartz-sulfide veins, which range in width · 

from millimeter to meter scale, occur in complex networks, are locall y fo lded and steeply 

dipping, and are associated with brittle-ductile shear zones (e.g. Thor trend). The best 

example of high-grade gold mineralization is the Thor vein that has assayed up to 2 18 g/t 

Au over 0.5 m with lower-grade intercepts of 8.7 g/t Au over 1.3 m (Ebert, 2008-20 11 ). 



This chapter summanzes the previOus geological investigations and the 

exploration history proximal to the Viking deposit, the regional geological setting, the 

purpose and scope of this study and the analytical methods used herein. lts location to the 

west of the Doucer's Valley fault system in older basement rocks makes it unique wi th 

respect to gold deposits in the Humber Zone. Classification of the Viking deposit gold 

mineralization will help place it into a regional , temporal context with other examples of 

gold mineralization in the White Bay area, in other parts of Newfoundland and elsewhere 

in the Appalachian Orogen. 

1.2 PREVIOUS INVESTIGATIONS 

The geology of the western White Bay area has been studied for more than a 

century with the first geological investigations conducted by Alexander Murray ( 188 1 ). 

The first attempt at gold mining on the island of Newfoundland is documented to have 

begun in 1 903 at the Browning Mine, 5 km to the northeast of the Viking deposit 

(Snelgrove, 1935). Previous gold production from the island was restricted to the by­

products of copper ore mining prior to thi s date (e.g. Tilt Cove Mine, Notre Dame Bay; 

Snelgrove, 1935). Before 1933 , all of the known gold showings in White Bay were 

situated proximal to Sops Arm were studied by Snelgrove (1935), Heyl (1937), and Betz 

(1948). 

The gold mineralization near Sops Arm has been the focus of a number of more 

recent studies including Tuach (1987) and Kerr (2006a). gold mineralization was 

discovered by prospector Clyde Childs in 1983 within the Late Grenvillian Apsy Granite 

(informally known as the French-Childs granodiorite) of the Jackson ' s Arm area (Tuach 
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and French, 1986). This was the first "significant" gold prospect located within the 

Grenvillian rocks of Newfoundland and Labrador and was studied by Tuach and French 

(1986), Saunders and Tuach (1 988), and Kerr and van Breemen (2007). 

Saunders (1991 ) completed a detailed com pi Jation of the western White Bay area 

documenting three broad styles of mineralization and noted the close spatial relationship 

with the Doucer's Valley Fault System (DVFS). The DVFS and its secondary structures 

may have acted as conduits allowing large-scale, deep-seated, circulation of hydrothermal 

fluids on a regional scale implying the possibility that gold mineralization may have 

formed during a single widespread mineralizing event (Saunders, 1991 ). 

The Geological Survey of Newfoundland and Labrador (GSNL) conducted 

numerous regional mapping projects in the area. Smyth and Schillereff ( 1982) published 

I :25 000 scale maps and summarized the regional geology. A 1:250 000 scale geological 

map, compiled by Owen ( 1991 ), concentrated on rocks of the Long Range Inlier. The 

stratigraphy and structure of the Cambrian and Ordovician rocks in the Coney Arm and 

Jackson's Arm areas was documented by Kerr and Knight (2004). The geochemical and 

metallogenic characteristics of the Devonian Gull Lake Intrusive Suite (GUS), and 

related Devil s Room Granite (DRG), were studied by Saunders and Smyth (1990). These 

authors concluded that both the GUS and the DRG have low potential for significant 

granophile mineralization. The GU S, which is inferred to be cogenetic with the Sops 

Arm Group, was suggested as a priority exploration target for gold by Saunders and 

Smyth (1990). 
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1.3 EXPLORATION HISTORY OF THE VJKJNG PROPERTY 

Prior to 1987, there is no record of industry-supported mineral exploration in the 

area of the Viking deposit. The property consisted of 36 claims under three license 

numbers (12734M, 01 0935M, and 08878M) that were amalgamated to form license 

014079M through the changing of property ownership. The fo llowing summary of the 

exploration activity in the area is modified from Churchill and Voordouw (2006) 

Noranda Exploration Company Limited (Noranda) staked two cla im blocks m 

I 986 that were immediate ly adjacent to BP Resources Canada Limited (BP) claims. The 

Noranda claims eventually became known as the "Viking Property" named after the gold 

showing discovered therein. Noranda's 1987 work program included a total of220 km of 

reconnaissance grid work comprising prospecting, mapping, soil sampling, and 

magNLF-EM surveys carried out under contract by Shear Exploration Limited. The 

result of this work identified a series of high priority gold anomalies that are now known 

as the "Viking Trend" . This is a 6.5 km long zone with widths of up to I 00 m that fol lows 

a prominent northeast-trending topographic linear. Grab samples along the trend returned 

values of 5. 15 grams per tonne (g/t) Au, 2 1 g/t Ag, 0.74% Pb, and 0.62% Zn. Soi l 

sampling identified several target areas with values of greater than l 000 ppb Au. 

In I 988, a series of detailed follow-up surveys were completed by Noranda. A 

grid totalling 46.4km in length with a four kilometer baseline was cut along the trend of 

the main gold anomaly. B-horizon soil samples collected from this grid defined four 

separate Gold anomalies. Lake-bottom sampling proved more successful and resulted in a 

maximum assay value of 55 ppb Au. Diamond-drilling was completed during 1989 and 

returned 0.56 g/t Au over 5.3 m within variably al tered granite . Results from outcrop, 
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float, and inferred subcrop sampling yielded a maximum of 6.95 g/t Au. A total of 218 B­

horizon soil samples were collected yielding a maximum of 500 ppb Au. In 1990, another 

series of sampling surveys returned less than expected results and a recommendation for 

no further work on these claims was made. 

BP Resources Canada Ltd. (BP) completed exploration work in the area during 

the same period as Noranda. A line cutting and soil sampling program in 1987 in the area 

directly west of White Bottom Pond yielded a broad gold-in-soil anomaly. In 1988, BP 

undertook a soil sampling program, along with grid mapping and prospecting, and 267 

samples were collected that coincided with a helicopter-borne magnetic and VLF-EM 

survey. The results of these efforts included the definitions of a 200 by 500 m gold-in-soil 

anomaly with elevated Pb-Mo concentrations. 

Deep Reach Exploration Inc. (DREX) staked portions of the north-eastern part of 

the Viking Trend in 2002. These were subsequently optioned to Messina Minerals in 

2002 who surveyed and collected 24 samples on the northeast end of the Viking grid. 

Assay results from this survey included values of up to 18.4 g/t Au in stockwork veined, 

argillic-altered granite. Messina returned one of the three licenses to DREX and 

subsequently acquired an additional 16 claims before optioning the current Viking 

Property to Altius Resources Inc. in 2006. Northern Abitibi Mining Corporation 

(NAMJNCO) entered into an option agreement with Altius Resources Inc. in July 2007 to 

acquire an interest in the Viking Property. NAMJNCO, through 2007 to 2012, has 

completed trenching, diamond drilling, and systematic assay sampling in order to 

delineate and define the economic potential of the Viking deposit. The property is 

currently under the ownership of Spruce Ridge Resources. 
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1.4 REGIONAL GEOLOGY 

1.4.1 The Appalachian Orogen in Newfoundland 

The Paleozoic Appalachian Orogen in Newfoundland records the effects of 

orogenesis associated with the protracted development and destruction of the Iapetus and 

Rheic Ocean (Williams, 1 995a). Rocks of the Appalachian Orogen are divided into four 

broad temporal categories: early Paleozoic and older, middle Paleozoic, late Paleozoic, 

and Mesozoic (Wi lliams, 1 979). Figure 2.1 A illustrates Williams (1979) zonal divisions 

for the lower Paleozoic and older rocks (from west to east) : the Humber, Dunnage, 

Gander, and A val on zones (Williams, 1 979). The Viking deposit is located within the 

Humber Zone of the Appalachian Orogen. The Humber Zone is separated into external 

and internal parts based on structural and metamorphic styles. The western margin of the 

Humber Zone is defined as the limit of Appalachian deformation (i.e. , the Appalachian 

Structural Front) and the eastern margin is delineated at the Baie Verte- Brompton Line 

(Williams, 1995b). The structural style of the Humber Zone is that of a foreland fo ld-and­

thrust belt, with more deformed and metamorphosed rocks of the internal Humber Zone 

thrust over the largely undeformed rocks of the external Humber Zone (Wi lliams, 1995a) 

1.4.2 Regional Geology of Southern White Bay 

The Humber Zone represents the ancient margin of Laurentia that has been 

extensively reworked during Appalachian orogenesis (Williams, 1979). The Long Range 

Inlier (LRI) is the largest exposure of basement rocks in western Newfoundland 

(Heaman, et a/. , 2002) and consists of mid-Proterozoic Grenvillian rocks (Owen and 

Erdmer, 1988). Rocks of the inlier comprise a series of ca. 1500 Ma granitoid gneisses 
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that have been intruded by granitoid plutons at ca. 1025 and ca. 1000 Ma (Heaman el a!. , 

2002). These granitoid plutons preserve three distinct metamorphic events, the latter two 

of which correspond to the two intervals of magmatism (Heaman el a/. , 2002). All rocks 

of the inlier are crosscut by the late Precambrian (~615 Ma) Long Range Dykes (Kamo, 

et a/. , 1989) that are interpreted to have formed in response to uplift and rifting of the LRI 

(Hinchey and Knight, 2011 ). The eastern margin of the inlier was intruded by the Silurian 

Devils Room Granite (425 ± I 0 Ma), and also by the Silurian Taylors Brook gabbro 

complex ( 430.5 ± 2.5 Ma; Heaman et a!., 2002), causing contact metamorphism of the 

adjacent units. 

Immediately east of the Long Range Inlier is a deformed, autochthonous, 

Cambrian to Ordovician shelf sequence composed of the Labrador, Port au Port, and the 

St. George groups (Kerr and Knight, 2004). The Bradore and Forteau formations 

comprise the lower Cambrian rocks of the Labrador Group and are dominated by 

sandstone, quartzite, and phyllite, with thin lenses of dark limestone, dolostones and 

siltstone. These rocks are east-dipping and exhibit tight, isoclinal folding with both "S" 

and "Z" asymmetry. Conformably overlying the Forteau Formation is the Hawke Bay 

Formation, consisting of well preserved, mixed sil iciclastic and carbonate rocks. The Port 

au Port and the St. George groups comprise late Middle Cambrian to early Midd le 

Ordovician carbonate rocks that overly the Labrador Group (Kerr and Knight, 2004). 

To the east of the DVFS is the Southern White Bay allochthon (Smyth and 

Schillereff, 1982). This Cambrian to Ordovician allochthon includes the Taylor' s Pond 

Formation, Maiden Point Formation, Murray' s Cove Schist, and the Coney Head 

Complex. The Taylor' s Pond Formation is a narrow belt of dark coloured, graphitic and 
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pyritic slate and phyllite which is characterized by laminated limy argillite and abundant 

quartz veins and pods (Smyth and Schillereff, 1982). Fine- to medium-grained, green, 

schistose greywacke and slate make up the Maiden Point Fonnation which is overlain by 

the Murray' s Cove Schist. The Murray' s Cove Schist consists of polydefonned and 

metamorphosed mafic tuff and breccia with rare thin calcareous tuff, red chert and 

metagabbro pods. These rocks are locally intruded by pre-tectonic grey feldspar 

porphyritic felsic dykes (Smyth and Schillereff, 1982). Lastly, the Coney Head Complex 

is a dominantly trondhjemite and tonalite intrusive suite that also includes gabbro, biotite 

microgranite and minor muscovite leucogranite. This package is interpreted to 

structurally overly the autochthonous clastic carbonate rocks described above (Kerr and 

Knight, 2004) and represents vestiges of the Iapetus Ocean that were abducted westward 

across the ancient continental margin of North America during the Ordovician Taconian 

Orogeny (Williams and Stevens, 1974). 

The eastern White Bay area is dominated by the Silurian Sops Arm Group. The 

western sequence comprises the Pollards Point, Jackson ' s Ann, and Frenchman' s Cove 

formations. These consist of a lower package of felsic volcanic and pyroclastic rocks with 

lesser mafic volcanic rocks and conglomerates that are overlain by a fining-upward 

sequence ofterrestrial to fluviatile sedimentary rocks (Kerr, 2006b). The eastern sequence 

is composed of the Simms Ridge and the Natlins Cove formations which are thought to 

be in stratigraphic continuity (Kerr, 2006b ). The western and the eastern sequences are 

separated by the Long Steady Fault which is a reverse fault characterized by highly 

schistose zones (Kerr, 2006b). The present architecture of the Sops Ann Group mainly 

records Salinic and/or Acadian deformation of Silurian to Devonian age (Heyl , 1937; 
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Kerr, 2006b ). These rocks host numerous Gold occurrences (e.g., the Browning Mine) 

and stratabound lead mineralization in brecciated dolostones (Currie, 2004; Saunders, 

1991). 

1.5 AIM OF STUDY 

The aim of this study is to provide a detailed examination of the geology, 

geochemistry, and timing of formation of gold mineralization at the Viking deposit. This 

will help to better understand the geological metallogenic context of the mineralization on 

a local and regional scale and to apply a genetic model for the type of gold 

mineralization. Data collected from fi eld and experimental techniques will be compared 

to similar data from other gold showings in the White Bay area. The specific questions 

investigated in each chapter of this thesis are outlined below: 

Chapter 2: 

1. What are the host rocks to the gold mineralization observed at the Viking deposit and 

what are their lithogeochemical signatures? 

2. What are the structural controls on mineralization from a regional and local 

perspective? 

3. What alteration and ore minerals are associated with mineralized and barren quartz 

veins? What are their relationships and textures? What are the geochemical signatures 

of the gold mineralization 

4. What is the timing of gold deposition at the Viking deposit and how does it fit with the 

timing of the formation of gold mineralization elsewhere in the White Bay area? 
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Chapter 3: 

1. What are the characteristics of the fluid(s) responsible for precipitating gold 

mineralizati on at the Viking deposit? What were the pressure and temperature 

conditions at the site of both mineralized and barren veins? 

2. Can a source for the sulfur within the sulfide assemblage be inferred? On a regional 

scale, are there di fferent sulfur sources? 

3. Can potential sources of metals be pinpointed from the Viking ores and how does it 

compare to sources of metals from similar deposits in the White Bay area? 

1.6 METHODS 

The initial stages of this project involved one month of planning and logistical 

work during May 2009, followed by three months of fi eld work from June to August, 

2009. Field mapping was primarily completed at the trench scale and included collection 

of samples for petrography, geochemistry, and geochronology. Field work completed 

during 2009 and 20 10 resulted in the collection of 107 lithological samples. Detailed 

analytical methods are presented in (Appendix A). The above questi ons are addressed in 

each chapter using the following analytical methods: 

Chapter 2: 

1. Observation of host lithologies in drill core and outcrop were followed by 

petrographic study. Polished thin sections were prepared by S & T Lap idary 

Limited, St. John's, NL. The thin sections were viewed under a polarizing 

microscope and descriptions of mineral occurrences and textures were noted. Whole 

rock lithogeochemistry was completed on "fresh" and altered host rocks to elucidate 
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their geochemical signatures and to permit regional comparison with other granitoid 

plutons in the White Bay area (including the Devil ' s Room Granite, Apsy Granite 

and the Gull Lake Intrusive Suite). 

2. Outcrop and trench mapping (1 :200 scale) was conducted to map and observe 

stratigraphic and structural relationships between lithologies and mineralization. 

3. A scanning electron microscope (SEM) was used to verify the presence and 

interrelationships of gold and other sulfides, provide essential information on 

textural relationships between ore and gangue minerals, and to identify any 

unknown minerals. 

4. Argon-argon thermochronology on biotite and muscovite mineral separates was 

used to determine the timing of the formation of these minerals. It wi ll be shown 

that a textural link exists between the alteration assemblage ( quartz+pyrite+sericite) 

and gold. Dating of muscovite (i .e. the timing of the formation of the sericitic 

alteration halo) provides constraint on the timing of gold mineralization at the 

Viking deposit. Biotite provides the timing of metamorphism in the area. 

Chapter 3: 

1. Microthermometric fluid inclusion analyses on a Linkam THMSG600 were 

completed on selected quartz-sulfide veins, including both gold mineralized and 

barren veins, in order to determine the pressure and temperature regime of the 

formation for these veins. 

2. In-situ sulfur isotope analysis using secondary ion mass spectroscopy (SIMS), of 

pyrite, chalcopyrite and galena were performed to characterize the sources of sulfur 

in the mineralizing fluid . 
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3. In-situ lead isotope analysis using SIMS of galena within mineralized veins was 

undertaken to identify potential Pb sources. Using ISOPLOT (Ludwig, 2003), 

model ages were calculated and compared to model ages of similar samples taken in 

the Silver Mountain area (Currie, 2004). 
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Figure 1.1: Location of the Viking Property along the eastern margm of the Northern 
Peninsula ofthe island ofNewfoundland. 
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CHAPTER2 

GEOCHEMISTRY OF THE HOST ROCKS AND TIMING OF GOLD­
ELECTRUM MINERALIZATION AT THE VIKING PROPERTY, 

NEWFOUNDLAND 

2.1 INTRODUCTION 

Gold mineralization at the Viking deposit in the White Bay area, western 

Newfoundl and, has been recognized for over 20 years (Deering, 1989). Much of the 

exploration history of the property is summarized in Churchill and Voordouw (2006) and 

Minnett et al. (2010). Recent diamond drilling (Ebert, 2008-20 11 ) has discovered the 

Thor trend gold occurrences hosted by the Main River Pluton (interpreted as a Grenvillian 

granitic pluton) situated at the eastern margin of the Long Range Inlier (Figure 2. 1 ). The 

Thor trend contains the Thor vein, a 30- to I 00-cm thick gold-bearing quartz-sulfide vein 

array that is the focus of this study. 

Known gold mineralization in the greater White Bay area is hosted by potassic-

altered Grenvillian granite and also occurs in younger Paleozoic cover rocks of the Sop' s 

Am1 Group (Kerr, 2006a, b). Saunders ( 199 1) described three broad styles of 

mineralization in the White Bay region in close spatial relationship with the DVFS 

including: I ) structurall y controlled orogenic gold- base-metal mineralization (Type 1 ); 2) 

stratabound galena mineralization (Type 2); and, 3) minor fluorite and molybdenite 

occurrences in the Gull Lake Intrusive Suite and Devil's Room Granite (Type 3). Because 

the DVFS is likely a Taconic thrust surface (Hinchey and Knight, 2011 ; Smyth and 

Schillereff, 1982) that also offsets Carboniferous strata, it may have been episodically 

active for over ca. 150 m.y. This relationship was interpreted by Tuach (1987) to indicate 
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that the fault system provided conduits for mineralizing hydrothermal fluids on a regional 

scale, likely over a protracted period of episodic fault movements. These conduits were 

responsible for precipitating structurally controlled orogemc gold-base-metal 

mineralization in the volcanic and sedimentary rocks of the Silurian Sop's Arm Group 

(e.g. Browning Mine and Unknown Brook; Currie, 2004; Kerr, 2006a), and in 

Neoproterozoic granitic rocks and structurally overlying Cambrian sedimentary rocks 

(e.g. Rattling Brook and Viking deposits; Kerr, 2005; Minnett el al., 2010). Soil and assay 

sampling have been completed over the Viking deposit (French, 1987) that indicate gold­

in-soil anomalies are coincident with fault zones. 

Numerous Grenvillian granitic plutons intruded the LRI during two di stinct 

intervals and their geochemistry and geochronology have been previously studied by 

Owen (1991) and Heaman el al. (2002), respectively. Until this study, whole-rock 

geochemical data were not available for the Main River Pluton. 

Based on geochronological data a temporal range of gold deposition on the island 

of Newfoundland is defined. How the timing of the formation of the gold mineralization 

at the Viking deposit fits into this temporal range is unknown. The 40 Ar-39 Ar incremental 

step-heating analysis of pre- and post-mineralization dykes at the Rattling Brook gold 

deposit constrained the timing of mineralization to the interval ca. 4 15 to 409 Ma, during 

the latest Silurian or earliest Devonian (Kerr and van Breemen, 2007). Geochronological 

data on the timing of gold mineralization at the Viking deposit will help to facilitate 

correlation with regional , tectonic and igneous events. 

This chapter aims to document the stratigraphic and structural controls on 

alteration and gold mineralization within the Thor trend, the geochemical characteristics 
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of the altered and fresh host rocks, and the timing of the formation of the alteration and by 

inference, associated gold deposition. This study was supported by an integrated drillcore 

logging and trench mapping program. 

2.2 HOST ROCKS TO GOLD MINERALIZATION 

The main host to the gold mineralizati on is a potassium feldspar megacrystic 

granodiorite that is cut by sheets of variably textured monzogranite. These granitic rocks 

are crosscut by meter scale mafic to intermediate diorite to amphibolite dykes interpreted 

to be part of the Long Range Dyke swarm. The Thor Vein is associated with fine-grained, 

sericite and carbonate altered, lamprophyre dykes. Both the Bradore and Forteau 

Formation are locally hydrothermally altered and mineralized adjacent to the Thor trend . 

2.2.1 Potassium-Feldspar Megacrystic Granodiorite 

Mineralization and alteration in the Thor trend are mainly developed in 

potassium-feldspar megacrystic to augen granodiorite (Plate 2 .1 ) of the Main River 

Pluton. This porphyritic phase of the pluton has been correlated with the ca. 1036 Ma 

Apsy Granite to the north which hosts the Rattling Brook gold prospect (Kerr, 2005). The 

Main River Pluton granodiorites are characterized by fine-grained, typically chlorite­

altered, biotite crystals that define a fabric surrounding medium- to coarse-grained 

orthoclase megacrysts (Plate 2.1 ) . The potassium fe ldspar megacrysts often show internal 

strain fabric and matrix quartz typically exhibits sutured grain boundaries, consistent with 

them being deformed and metamorphosed to lower greenschist grade. Hydrothermal 

alteration associated with gold mineralization typically overprints both the megacrystic 

feldspars and matrix minerals with sericite, and can range in intensity from weak (1 0- 1 5% 
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total replacement) to intense (80% total replacement; Plate 2.2). Pyrite and local trace 

amounts of chalcopyrite, galena, and fine-grained titanite are disseminated in the 

groundmass. 

2.2.2 Monzogranite 

The structural fabrics developed in the megacrystic granodiorite are locally 

crosscut by metre-scale si lls of variably textured, massive to weakly foliated leucocratic 

monzogranite (Plate 2.3). The sheets of monzogranite are typically salmon-pink to beige 

coloured and are texturally heterogeneous. They range from fine-grained and moderately 

foliated (Plate 2.3) to massive and coarser-grained. This unit hosts fine- to medium­

grained plagioclase and K-feldspar, and over 20% fine- to medium-grained anhedral 

quartz crystals commonly with sutured grain boundaries (Plate 2.4); microcline typicall y 

contains plagioclase exsolution lamellae. The fe ldspars are variably replaced by sericite in 

zones proximal to mineralized quartz veins. Biotite concentration ranges from 

approximately 10% to absent. Epidote is present in minor amounts and fractures contain 

limonite. Trace to 1% disseminated magnetite and pyrite are found throughout unit. 

2.2.3 Metadykes 

Dioritic to gabbroic dykes, with shallow to moderate dip, crosscut both the 

granodiorite and the monzogranite and locally host gold mineralization and alteration at 

its margins (Plate 2.5). It is therefore less significant as a host to gold mineralization 

compared to the granodiorite and monzogranite. These metamorphosed chloritic gabbroic 

rocks (termed metadykes in subsequent discussion) are typically massive, northeast­

trending, and preserve moderately foliated, finer-grained chi lled margins. 
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These mafic to intermediate intrusions are melanocratic, medium-grained, massive 

diorite to gabbro. They have abundant plagioclase feldspars (>40 modal %) that are fine­

grained and sericitized . Together with pleochroic, green to beige, fine- to medium­

grained, hornblende, they produce a local salt and pepper mottled appearance (Plate 2.5). 

Up to approximately 10% recrystallized quartz is present in the groundmass of the diorite 

phase. Accessory phases include very fine-grained apatite, epidote locally as veinlets 

(Plate 2.6), and magnetite. Chlorite alteration is commonly present with sericite alteration 

typically reserved to contact and shear zones proximal to mineralization. Trace, very fine­

to fine-grained chalcopyrite is associated with di sseminated pyrite and magnetite. 

2.2.4 Lamprophyre Dykes 

In the vicinity of the Thor vein, mesocratic, fine-grained dykes (Figure 2.3) are 

typically associated with the mineralized veins (Plate 2.7). They are east-west trending, 

dipping moderately to the south (- 50°), with a thickness of 1-2m. These dykes crosscut 

the granodiorite, monzogranite sheets and the metadykes, but are interpreted to be older 

than quartz vein emplacement, alteration, and gold mineralization. The presence of 

mineralized quartz veins and brecciated fragments of the mesocratic dykes within the 

mineralized Thor vein provides clear evidence for their pre-mineralization emplacement. 

These dykes are biotite porphyritic and have a matrix of quartz, potassium feldspar, and 

minor titanite and pyrite (Plate 2.8). Amphibole and pyroxene are strongly (>70%) altered 

to sericite and carbonate . These dykes are assumed either to comprise part of the 

Precambrian Long Range Dyke Complex or to be associated with a younger, possibly 

Silurian-Devonian, intrusive event. 
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2.2.5 Quartzite 

To the east of the Viking deposit are a series of metamorphosed and deformed 

Cambrian to Ordovician clastic and carbonate rocks interpreted to be part of the Labrador 

Group. Bradore Formation quartzites has an unconformable relationship with the 

Grenvillian basement (Plate 2.9A). The conglomerate is composed of subrounded to 

rounded, fine- to medium-grained, moderately sorted, weakly deformed quartz clasts in a 

matrix of fine-grained sericite, weakly chloritized biotite, recrystallized quartz, and pyrite 

(Plate 2.9B). 

2.2.6 Phyllites 

The phyllites of the Forteau Formation contain 1-2 mm biotite porphyroblasts that 

are typically euhedral and are set in a strongly foliated matrix of fine- to very fine-grained 

sericite, recrystallized quartz, and pyrite. A number of the biotite porphyroblasts preserve 

an internal fabric defined by matrix inclusion trails. Outcrop and petrographic 

observations indicate that these porphyroblasts record east side down, dextral rotation 

relative to the surrounding matrix. Locally, other biotite porphyroblasts completely 

overgrow the foliation . The crenulation cleavage in outcrop is smooth and anastomosing 

composed of sericite and quartz. Pyrite is associated with many mineral phases in the 

phyllite inc luding the biotite porphyroblasts and sericite alteration. 

2.3 LOCAL STRUCTURAL CONTROLS ON MINERALIZATION 

Figure 2.2 presents the simplified geology of the Viking property overlain by both 

interpreted and observed structural features. The DVFS has an orientation of 030° NNE 

and dips steeply to the east. Topographic linears, which are inferred as faults, strike 
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approximately 056° and 062° and intersect the DVFS (dashed black lines in Figure 2.2). 

Narrow fault zones with variable displacements and mineralized fracture zones have an 

orientation of 088° to 091 o (blue dashed lines on Figure 2.2). A penetrative foliation is 

developed within the megacrystic granodiorites and monzogranites which trends NE 

(dipping steeply east) unless disrupted by local structures. The metadykes are typically 

shallow to moderately dipping (Figure 2.4) and are not a receptive host for gold veins and 

mineralization. This unit is a critical structural aspect of the geological system in that it 

acts as a potential aquifer, trapping mineralizing fluids. 

A brittle dextral Riedel shear model is envisaged for the structures observed at the 

Viking deposit (Figures 1.1 3 and 1.14 in Bursnall, 1989; and Figures 6.16a and 6. 19a in 

McClay, 1987). NE-trending linears correspond to the orientation of R l shears in the 

Riedel model while E-trending narrow fault zones represent R2 shears (Figure 2.2). These 

narrow R2 fault zones host the best examples of gold mineralization, including the Thor 

Vein. 

2.4 THOR TREND MINERALIZATION 

An independent resource estimate for the gold mineralization (cut-off grade of 

0.20 g/t gold) in the Thor trend reported an indicated resource of 98 000 ounces 

(3,232,000 tonnes at an average grade of 0.95 g/t) and an inferred resource of 45 000 

ounces (2,123,000 tonnes at an average grade of 0.66 g/t; Ebert, 2011 ). The Thor trend is 

a tabular, 30 to 80 m wide, zone of strong sericite-quartz- pyrite alteration with gold, and 

minor base metal, mineralization. The surface expression of the Thor trend is 
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demonstrated in Figure 2.3. The Thor trend has an open strike length, its lateral extent is 

currently constrained at ca. 1500 m, and the mineralized zone dips to the west. The 

deposit 's vertical extent, as defined by diamond drilling, is 100-200 m (red and yellow 

outlines on Figure 2.4). 

Numerous mineralized quartz sulfide veins of varying thickness (millimeter to 

decimeter scale) have been exposed at surface and intersected in drill core within the Thor 

trend. The Thor vein is an array of asymmetrical, 30- to 1 00-cm thick, openly folded 

veins with a surface extent of 30 m (Figure 2.3). The veins strike east- west, dip to the 

south, and continue down dip for at least 100 m. The subsurface geometry of the Thor 

vein is represented schematically in (Figure 2.5). It is a series of networking gold 

mineralized veins which crosscut the lamprophyre dykes, monzogranite, and the 

granodiorite. 

Native gold forms irregular blebs in the quartz-sulfide vems variably sericite­

altered host rocks. Gold occurs in the Thor vein in two settings: 1) as dispersed blebs in 

the quartz and ; 2) as micro-inclusions in sulfides that are also hosted by quartz veining. 

The gold is typically fine- to coarse-grained, forming anhedral , rounded or e longate 

masses ranging from less than 50 11m to over 140 11m in diameter. Gold occurs locally 

along fractures in the vein quartz and is spatially associated with sulfide assemblage. The 

sulfide assemblage in the veins consists of euhedral, fine- to medium-grained pyrite (2-

3%), anhedral, fine-grained sphalerite and galena (1 - 2%), and lesser amounts of anhedral 

blebby chalcopyrite (typically :::; 0.5%). 
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2.4.1 Scanning Electron Microscope 

Samples from the Thor vein an ay were selected for scanning electron microscopy 

(SEM) to examine the gold and its relationships to both sulfide and silicate minerals. 

Analytical methods are given in Appendix A. I . Plate 2. 1 0 A-C clearly shows that gold 

occurs as inclusions in pyrite and quartz. Gold is also present as inclusions in sphalerite 

(Plate 2 .1 0 D) and is locally associated with galena. The gold grains are silver-bearing 

and locally occur proximal to examples of what is interpreted to be native silver (Plate 

2.1 0 D) Sericite, calcite and pyrite are intergrown with quartz and are spatially and 

texturally associated with gold (Plate 2 .10 E). This textural evidence suggests a genetic 

relationship between the quartz veins, alteration minerals, gold mineralization, and base 

metal sulfides. 

2.5 LITHOGEOCHEMISTRY 

2.5.1 Element Mobility 

Sericite-calcite-pyrite alteration is intense sunounding the mineralized quartz 

veins at the Viking deposit, a common characteristic of orogenic gold deposits (Kerrich, 

1993; McCuaig and Kerrich, 1998). The mineral assemblages produced during alteration 

in these deposits are dependent on host rock types, pressure- temperature conditions, and 

fluid/rock ratios, and typically display enrichments in C02, LILE, S, gold and other 

pathfinder elements (Cassidy, et a!. , 1998). Relative elemental gains and losses were 

calculated, using the technique from Grant (I 986), for the most common host rock type, 

the granodiorite, and the results are presented in Figure 2.6. The actual mass gain and loss 

22 



calculations are located in Table B.3. The most altered sample used in the calculation was 

09MM058 and the least altered was 09MM042 (Table B.l ). 

Relative gains in the major elements were observed for Si02, Ah03, and CaO. 

The relative increase in C02 and a gain in CaO correlate with the presence of calcite 

within the alteration assemblage. The base metals, Ag, and gold display relative 

enrichments compared to the least-altered sample and pathfinder elements such as Sb, As, 

W, and Sc are also enriched. Large-ion-lithophile elements di splay variable depletion, 

with enrichment in Cs and Th, HFSE and REE appear to be depleted within the alteration 

halo. 

The results suggest that certain elements are mobile, including elements that are 

traditionally considered immobile such as the HFSE, some of the REEs, and Al20 3. The 

presence of carbonic fluids can mobilize such elements as Ti02, Zr, and some of the 

REEs; however, Al20 3 should be immobile in high pH fluids. Based on the presence of 

high LOI , Ah03/Na20 ratios, and C02 contents, there is mobility of certain elements 

(e.g. alkali s and LFSE) and there is evidence to suggest that some HFSE and REEs are 

also being mobilized. The "least altered" sample may not represent the perfect control 

sample (i.e. the protolith) since hydrothermal sericite-calcite-pyrite alteration and natural 

variation in the geochemical composition of the Main River granodiorite may be causing 

these traditionally immobile elements to appear mobile. 

2.5.2 Major Element Chemistry 

The rock types from the Viking property have variable major-element chemistries, 

influenced to a large extent by post-crystallization hydrothermal alteration. As such, 
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classification and interpretations of their primary chemistries and petrology using mobile 

elements is very suspect. The potassium-feldspar megacrystic biotite granodiorite of the 

Main River Pluton exhibits major-element composition that is not strongly fractionated 

and is characterized by intermediate Si02 (59.25-70.74 wt. %) and Mg# values (ca. 22-

35; Table B.l ). The monzogranite has the lowest Mg#s (average = 30) and highest Si02 

concentrations. With decreasing silica content there is a correlative decrease in Ah03, 

FeO, MgO, CaO, Na20 , K20 , Ti02, MnO, and P20 5. The metadykes that crosscut the 

granitoid rocks are the geochemically most primitive samples, characterized by low Si02 

and moderate Mg#s ranging from 31 .2 to 55. They have a wide range of K20 and exhibit 

FeO* and Ti02 enrichment with differentiation. The lamprophyre dykes have 

intermediate Si02, Cr, Ni, Sc, and Co, and high K20, are strongly sericite and carbonate­

altered as reflected by enriched C02, LOI and K20, and have Mg#s that overlap with 

those of the metadykes. 

2.5.3 Trace Element Chemistry 

Owing to the variably altered nature of the host rocks, trace elements that are 

considered to remain immobile during hydrothermal processes were used for further 

interpretations. The granodiorite has Zr/Ti02 and Nb/Y ratios which characterize it as 

transitional from Andesite/Basalt to Rhyolite-Dacite on a revised Winchester and Floyd 

(1977) plot (Figure 2.7 A). It contains high Gal AI ratios (ca. >2.5) indicating an A-type 

geochemistry (Figure 2. 7 B) (Whalen, et a/., 1987). 

Figure 2 .8 A shows a NMORB-normalized multi-element plot for the granodiorite 

a long with plots for the correlative Apsy Granite and Potato Hill Pluton (Owen, et al. , 
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1992). This is underscored by a strong enrichment in LIL elements and LREE [(La/Sm)cN 

= 3.05-4.25] relative to HREE [(Gd/Yb)cN = 1.84-2.58] , Rb and Ba enrichment relative to 

Sr and Ce and, di stinct troughs in the patterns at Ta-Nb, P and Ti. The granodiorite and 

Apsy Granite have depleted HFSE and HREE relative to the Potato Hill Pluton. The 

pattern exhibited by the granodiorite is comparable to those of shoshonitic rocks (e.g. 

Macdonald, et a f. , 1985; Mauger, 1988; Wyman and Kerrich, 1989) and similar to that of 

the Apsy Granite and the Potato Hill Pluton (Figure 2.7 A) 

The monzogranites have ]-type chemistry (Figure 2.7 B) and have the most 

depleted REE patterns compared to all other rock types at the Viking deposit. Akin to the 

granodiorite, the monzogranite exhibits enrichment in the LILE compared to Sr and Ce 

and has distinct troughs at Ta-Nb, P, and Ti (Figure 2.8 B). The monzogranite sheets 

exhibit a wide range in LREE enrichment [(La/Yb)cN = 2.44-81.08] with less variable 

HREE ratios [(Gd/Yb)cN = 1.06-5.43]. The most LREE-enriched sample contains the 

most depleted HREE concentrations. A number of samples show a concave upward REE 

pattern with a positive Eu anomaly, suggesting feldspar accumulation. The REE patterns 

for the monzogranite sheets are similar to these for the equigranular granite of Owen eta/. 

(1992). 

The lamprophyre dykes are subalkaline (Nb/Y < 0.8; Pearce, 1996). They have 

compositions similar to calc-alkaline lamprophyres, characterized by low Nb/Pb and high 

V /Cr ratios (Figure 2.7 C). Figure 2.8 B displays a NMORB normalized plot for the 

lamprophyre dykes. They show a strong enrichment in the more incompatible elements 

and display strong LREE-enriched [(La/Sm)cN = 2.01 -6.02] negatively sloped patterns. 

MORB-Iike concentrations are observed for Y, Ti, and HREEs. Lamprophyres typically 
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exhibit H20, C02, F, Cl, LILE, P, Rb, Ba, LREE and Th concentrations at levels two to 

three orders of magnitude higher than MORB, but MORB-like levels of Y, Ti, HREE, 

and Sc (Rock, 1991 ). 

The metadykes contain substantial Cr (30-130 ppm) and Ni (30-80 ppm) and are 

classified as subalkaline and tholeiitic based on their mobile major element and immobile 

trace-element chemistry (Irvine and Baragar, 1971 ; Pearce, 1996; Winchester and Floyd, 

1977). The metadykes have the most diverse multi-element plots of the rock types 

studied. There are four types of dykes that can be distinguished by their LREE, Nb, and 

HFSE abundances (Figure 2.8 C). Type I metadykes have consistent, mutually parallel 

patterns with a shallow negative slope indicating only slight LREE enrichment relative to 

the HREE. A second variety (Type 2; n=2) have more fractionated patterns with 

significant LREE enrichment relative to Th and Nb. This type also shows a distinct 

negative Ti anomaly and depleted HREE abundances relative to Type 1 and 3 metadykes. 

Type 3 metadykes (n= I) have a similar pattern to Type 2, however, they display a 

positive Nb anomaly. Type 4 metadykes (n= l) have depleted LREE compared to the 

other types and have a weakly negative sloped pattern with depleted HREE. Differences 

in REE abundances, Nb concentrations, and overall patterns suggest variable continental 

crust contamination. 

2.6 ASSAY RESULTS 

Fourteen analyses of gold-bearing quartz sulfide Thor vein array samples were 

added from the Northern Abitibi Mining Corporation assay database to complement the 

lithogeochemical dataset presented in this study. Gold values range from 589 to 222950 
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ppb (mean=57220 ppb) with higher assay results ascribed to the 'nugget effect' of gold. 

Gold concentrations correlate well with the base metals (Cu, Zn, Pb), and Ag (Figure 2.9) 

and correlate weakly with Cr, Co, Ni, Sr and Ce. As is not meaningfully correlated with 

gold. Gold-bearing veins exhibit variable enrichments in Cu, Zn, and Pb. Au/Ag ratios 

range from 0.6 to 14 (average = 5; Table 2.1) indicating that gold is enriched relative to 

silver. These ratios are generally greater than 5/ 1 (Au/ Ag) typical in most orogenic gold 

systems (Groves et a!. , 2003). 

2.7 
40

AR-
39 

AR THERMOCHRONOLGY 

Four samples were collected for 
40 

Ar-39 Ar thermochronological analysis; three 

strongly sericitized granitoids (two monzogranites and one granodiorite) from the Main 

River Pluton within the alteration envelope of the Thor trend, and a strongly fol iated 

phyllite belonging to the Forteau Formation of the Labrador Group. Argon-argon analysis 

of euhedral biotite porphyroblasts was designed to address the age of metamorphism and 

deformation and constraints on fine-grained pervasive muscovite formation and therefore 

the inferred timing of gold deposition. Brief descriptions of the samples and their UTM 

co-ordinates are presented _in Table 2.2. 

The two monzogranite samples are heavily fractured and contain I% disseminated 

pyrite accompanied by strong pervasive sericite alteration (Plate 2.11 A, B). Sample 

09MM099 was collected 10 meters north of the Thor vein (Figure 2.3) and sample 

09MM 11 3 was taken two hundred metres south of the Thor vein, at surface. The sericite­

altered granodiorite sample is located 15 m northwest of the Thor vein and also contains 
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disseminated pyrite. The phyllite of the Labrador Group is located along the eastern 

property boundary and was exposed through trenching. 

In the monzogranite (09MM 113 and 09MM099), pervasively sericitized 

potassium feldspar and plagioclase (Plate 2.11 B) are intergrown with polycrystalline 

aggregates of fine-grained quartz. Fine-grained disseminated pyrite is commonly rimmed 

by magnetite and hematite and associated with the altered feldspars and locally quartz. 

The granodiorite exhibits similar alteration mineralogy, however, it also locally contains 

biotite that encloses megacrystic potassium feldspar. The phyllite (09MM024) is 

characterized by a very strong vertical dominant foliation defined by aligned, fine-grained 

sericite, biotite, and quartz (Plate 2.1 I C, D). An asymmetric crenulation cleavage and 1-2 

mm-scale biotite porphyroblasts can be observed on broken foliation surfaces. 

2.8 STEP-HEATING RESULTS 

An aliquot of biotite from the deformed phyllite (09MM024) yielded a very well­

defined, consistently flat gas-release spectrum (Figure 2. 1 OA). This analysis produced a 

total gas, integrated age of 418 ± 2 Ma. Eleven of 14 steps, representing 99. 12 % of the 

total 
39 

Ar released, gave a plateau age of 419 ± 2 Ma [(MSWD) = 0.84; probability of fit 

(POF) = 0.62] overlapping within error of the integrated age. The corresponding inverse­

correlation age e6
Ar-

40
Ar versus 39Ar-40Ar) of 418 ± 1.5 Ma (MSWD = 0.84) also 

overlaps within error with the plateau and integrated ages. These data collectively 

indicate that an age of 419 ± 1.5 Ma represents a robust cooling age for this biotite and 

therefore represents the time at which the sample cooled through ca. 280°C (McDougall 
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and Harrison, 1988). A simple thermal history is inferred for this sample because of close 

agreement of integrated, plateau and isotope correlation ages. 

A single aliquot of fine-grained sericite concentrate from monzogranite sample 

09MM 113 produced a well-defined argon release spectrum with young ages recorded in 

the low-power gas steps, a series of mutually consistent steps in the middle, and 

significantly older ages produced at higher power (Figure 2.1 OB). Five of 13 gas steps, 

representing 6 1.7 %of the 39 Ar released yielded a plateau age of 384 ± 2 Ma (MSWD = 

1.2; POF = 0.30). An inverse isotope correlation age for the same five steps of 364 ± 2 1 

Ma is significantly younger than, but overlaps within error, the plateau age. The plateau 

age is therefore interpreted as a reasonable estimate of the cooling age when the sericite 

passed through ca. 350° C (McDougall and Harrison, 1988; Singer and Pringle, 1996; 

Snee, et at., 1988). 

Sericite from another monzogranite sample (09MM099) yielded a poorly defined 

argon release spectrum (Figure 2. 1 OC). The pattern for this sample is comparable to that 

of sample 09MM 11 3 with young ages at low power, a pseudo-plateau through the middle, 

and an older pseudo-plateau segment at higher power. The pseudo-plateau age of 399 ± 2 

Ma for the central segment represents 57.9 % of the 39 Ar released during four steps 

(MSWD = 0. 68, POF = 0.51 ). The higher power pseudo-plateau segment representing 

only 17.3 % of the 39 Ar released (MSWD= 0.034: POF= 0.992), yielded an age of 409 ± 

12 Ma. The incrementally ascending spectrum for this specimen suggests that the higher 

power gas steps may represent a maximum age of gold deposition. This age overlaps 

within error the age constraints on the mineralization at the Rattling Brook deposit (Kerr 

and van Breemen, 2007). The younger, lower power, gas release steps suggest partial 
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resetting of the 
40 

Ar-
39 

Ar systematics during a younger hydrothermal (or tectonothermal) 

event at ca. 380 Ma. 

A sample of a sericite-altered granodiorite (09MM098) produced a gas release 

spectrum very similar to that of 09MM099 in having incrementally increasing ages for 

higher power gas release steps. The high power pseudo-plateau consisting of five of 

eighteen steps and representing 25.7 % of the 39 Ar released gave an age of 3 86 ± 2 Ma 

(MSWD = 0.68, POF = 0.60). The lower power pseudo-plateau, comprising six of 

eighteen steps and representing only 37.9 % of the total 39 Ar released (MSWD = 0.38; 

POF = 0.86: Figure 2.1 OD) yielded an age of 377 ± 2 Ma. This spectrum suggests a ca. 

388 Ma primary cooling age for the sericite, but that this has been partially reset during 

later, ca. 377 Ma hydrothermal activity. 

2.9 DISCUSSION 

2.9.1 Ore Mineralogy 

Orogenic gold deposits are characterized by quartz-dominant vein systems with 

:S3-5 % sulfide minerals (typically Fe-sulfides) and :S5-1 5 % carbonate minerals (Groves 

et a!. , 1998). Pyrite (and/or pyrrhotite) is the most common sulfide in deposits hosted by 

metamorphosed igneous rocks. Gold-bearing veins exhibit variable enrichments in As, B, 

Bi , Hg, Sb, Te, and W; Cu, Pb, and Zn concentrations are generally only slightly elevated 

above regional backgrounds (Groves et al. , 1998). The gold-silver veins within the Thor 

trend contain Cu, Pb, Zn, and Cr concentrations above regional background with Au/Ag 

overlapping the typical range for these deposit types. Silver-bearing gold grams are 

present throughout the mineralized vems, but the absence of arsenopyrite is striking 

30 



considering its abundance in the Rattling Brook deposit to the north (Kerr, 2005; 

Saunders and Tuach, 1988, 1991 ). Also, the presence of base metals within the high­

grade veins at the Viking deposit is also a notable difference from what is observed at 

Rattling Brook. This sulfide assemblage at Viking suggests similarities to mineralization 

present in the Browning Mine and Unknown Brook deposits (Figure 2.1 B). 

Gold mineralization observed at the Rattling Brook deposit (Figure 2.1 B) is 

hosted by potassic-altered Apsy Granite and, primarily by, sil icified carbonates of the 

Lower Cambrian Labrador Group (Kerr, 2005). It is a large, low-grade deposit that lacks 

the larger and more continuous quartz veins so common in orogenic systems, and like 

those present at the Viking deposit. The gold at Rattling Brook is refractory (i.e., is in 

solid solution with the host arsenopyrite and pyrite), and there is very li ttle associated Ag, 

Cu, Zn, Pb, Co, or Ni (and their sulfide minerals) in the mineralized rocks. Mineral ization 

at the Viking deposit, in contrast, does contain associated Ag, and Cu, Zn, and Pb 

sulfides. Furthermore, the mineralization is not refractory based upon metallurgical 

studies (Ebert, 201 0). 

The West Comer Brook Prospect, the Browning Mine, and the Sims Ridge 

Prospect are examples of auriferous mineralization hosted within the Silurian Sops Arm 

Group that have been described as being orogenic (Currie, 2004; Kerr, 2006b ). The 

mineralization at these prospects is associated with syn- to post-deformational quartz and 

quartz-carbonate veins that contain pyrite, chalcopyrite, galena, and sphalerite; Au-Ag 

correlations are noted at all prospects. The Thor Trend mineralization at the Viking 

deposit is epigenetic and is hosted by quartz-carbonate veins with similar sulfides as these 
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deposits. These similarities suggest a possible genetic link between the Thor Trend and 

the Sops Arm Group gold mineralization. 

2.9.2 Lithogeochemistry 

The Main River granodiorite has an arc-like, A-type geochemical signature. 

Halogen enrichments (e.g., F > 1000 ppm), a ferroan composition along with high GaiA!, 

and Zr, are characteristic of relatively anhydrous, lower crustal, within plate, A-type 

granitic magmas typical of deep crustal anorogenic extensional environments (Frost, et 

a/. , 2001 ; Pearce, et a/. , 1984 ). Other Grenvi II ian granitoid plutons of the LRl , such as the 

Apsy Granite and the Lake Michael Intrusive Suite (Owen, I 991 ), were emplaced 

contemporaneously with, and have geochemical features similar to , the Main River 

Pluton. These plutons were emplaced over a period of ca. 50 my, between 1032 and 985 

Ma, and are termed Group I and Group 2 granitoids, respectively (Heaman el a/. , 2002). 

The A-type nature of all of these roughly synchronous granite suites suggests an interval 

of deep crustal anatectic granitoid plutonism during the emplacement of Group 1 

granitoids into the LRI. 

The monzogranite sheets have calc-alkaline affinities with ULE enrichment. They 

are volcanic-arc granitoids and straddle the divide with syn-colli sional granites (Figure 

2.11 ). As the monzogranite sheets locally crosscut fabrics observed in the granodiorite, 

they may be contemporaneous wi th the younger, ca. I 000 Ma, Group 2 granitic rocks of 

the LRl (Heaman et a/. , 2002). 

The metadykes exposed at the Viking deposit are within-plate, continental 

tholeiitic basalts with variably developed negative HFSE anomalies (Figure 2. 7 C). 
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Variable LREE, Nb, and HFSE abundances suggest that crustal contamination may have 

produced the heterogeneity in these elements. Their general northeast-trending orientation 

and overall geochemical signature suggests correlation with the ca. 615 Ma Long Range 

Dykes (Kamo et al., 1989). The Long Range Dykes are interpreted to represent the 

products of rifting of the Grenvillian continental crust during the opening of the proto­

Atlantic Ocean (Strong and Williams, 1972). 

Globally, calc-alkaline lamprophyres are thought to overlap gold mineralization in 

both space and time (e.g. Wyman and Kerrich, 1989). Rock ( 1991) suggested that 

because of their unusual mineralogy and bulk chemistry (e.g., high LIL elements, C0
2

, 

Ba, and moderate S), lamprophyric melts are similar to mineralizing fluids and they may 

easily transport gold . Although the absolute timing of the crystallization of the calc­

alkaline mesocratic lamprophyres associated with the mineralized Thor vein array has not 

been constrained, field and textural evidence suggest they were emplaced either pre- or 

syn-vein formation and gold deposition. 

2.9.3 Timing of Gold Deposition at the Viking Deposit 

Conformable deposition ofthe Forteau Formation above the Bradore Formation is 

constrained to the late Early Cambrian (Williams and Stevens, 1974). The minimum age 

of last, peak low-grade metamorphism has thus been constrained through analysis of syn­

to late-kinematic biotite porphyroblasts in a late Early Cambrian phyllitic schist located at 

the western edge of the contact between the Bradore and Forteau formations. The biotite 

cooled through ca. 280oC in the Late Silurian at 419 ± 1.4 Ma. This determination 

overlaps, within error, the ca. 425 ± I 0 Ma age of emplacement of the Devil ' s Room 
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Granite to the north (Figure 2. 12). The syn- to post-kinematic nature of the biotite 

porphyroblasts suggests that peak metamorphism likely occurred during emplacement of 

the Devil' s Room Granite and the region then rapidly cooled through ca. 280° C. Latest 

high temperature deformation along this segment of the DVFS therefore occurred during 

the Late Silurian , corresponding to the Salinic Orogeny (van Staal, 2007). 

Textural evidence indicates that gold-electrum mineralization is intergrown with 

hydrothermal sericite. The 
40 

Ar-39 Ar thermochronological analysis of sericite from altered 

rocks in the Thor trend produced a range of cooling ages. Their Late Silurian to Early 

Devonian pseudo-plateau age of 409 ± 12 Ma overlaps, within error, with both the 

minimum age of peak low-grade metamorphism (ca. 4 19 Ma, sample 09MM024), and the 

emplacement age for the Devil 's Room Granite, and correlates with the inferred timing of 

gold mineralization at the Rattl ing Brook deposit ( 41 5-409 Ma; Kerr and van Breemen, 

2007). This ca. 409 Ma sericite age thus provides a minimum age, and may best 

approximate the age of gold deposition at the Viking deposit. 

The well-defined Earl y to Middle Devonian pseudo-plateau ages of serici te 

(Figure 2. 1 OC, D) represent reliable estimates for possible later episodes of fl uid flow, 

alterati on and gold deposition in the Thor trend at ca. 350° C. Fluid inclusion analysis on 

the Viking gold occurrences (Chapter 3) suggests that the fl u ids responsible for 

deposition of gold were at ca. 240- 3200 C at depths of 5- I I km. This temperature range 

and the uncertainties in the results (+/- so·) overlap with the c losure temperature for 

sericite- muscovite. These data therefore permit the proposal that the serici te and gold 

were ini tially deposited at ca. , 409 Ma (oldest high power steps in the three sericite 
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spectra) and that the sericite has been partially reset during later hydrothermal events 

(lower power steps). 

On a regional scale throughout the northern Appalachian Orogen, the 409 Ma age 

of gold mineralization at the Viking deposit correlates with Lower Devonian Re-Os age 

determinations at the Stog' er Tight deposit (411 ± 7 Ma; Kerr and Selby, 2011) and at the 

Ovens deposit in Nova Scotia (Figure 2.11 ; 407 ± 4 and 409 ± 5 Ma; Morelli, et a!. , 

2005). 
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Figure 2.1: (Previous page) (A) Tectonostratigraphic map of the island of Newfoundland 
showing the location of the study area (red box) within the external Humber Zone. (B) 
Simplified regional geology of the White Bay area, western Newfoundland , modified 
after Churchill and Voordouw (2006) (UTM NAD27 for Canada). The Thor trend is 
highlighted within the Viking Property. Large circles indicate gold deposits discussed in 
the thesis. 
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Plate 2.1: Typical, moderately foliated, mesocratic potassium feldspar megacrystic 
granodiorite displaying em-scale potassium feldspar megacrysts or augen (pink) in a fine­
grained sericite-altered matrix. 

Plate 2.2: Photomicrograph of Plate 2.1 showing intense sericitization (80% replacement) 
of feldspars and groundmass (cross-polarized light). 
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Plate 2.3: Drillcore photograph of a medium- to coarse-grained, salmon-pink colored 
monzogranite. 

Plate 2.4: Photomicrograph of the monzogranite displaying sutured grain boundaries and 
granophyric textures (cross-polarized light). 
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Plate 2.5: Close-up, outcrop photograph of typical metadyke exhibiting a salt and pepper 
mottled texture. 

Plate 2.6: Photomicrograph of the mafic dyke showing plagioclase laths comprising the 
matrix with porphyritic texture and a sericite-chlorite-epidote vein let (left) (cross -
polarized light). 
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Plate 2.7: Bleached carbonate-altered lamprophyre dyke from hole 08-VK-03 (18.2 to 
18.5 m depth) which is cut by mm to em scale quartz sulfide veinlets. 

Plate 2.8: Carbonate- and sericite-altered matrix of a lamprophyre dyke which is crosscut 
by the Thor Vein (Figure 2.3) (cross-polarized light). 
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Figure 2.2: Simplified geologic map of the Viking Property (previous page) with 
corresponding legend (this page). The Thor vein is the northern most gold occurrence in 
the Thor trend. The location of the Viking trend occurrence is outlined along a prominent 
Rl shear. 
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Figure 2.3: Simplified geological map of the Thor vein trench exposures. A well­
developed sericitic alteration halo surrounds the east- west trending vein array which dips 
to the south. Metadykes do not outcrop in this map area. 
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Figure 2.4: Simplified geological long section of the Thor trend gold mineralization. Black box in the Thor vein area indicates 
extent of Figure 2-3 and blue box indicates extent of Figure 2-5. Modified from NAMINCO's online map gallery 
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Figure 2.5: (Previous page). Interpreted geulogical cross section through the Thor vein 
using drill holes 08-VK-01 , 02, 03, and 05 from Figure 2-3 (A-A '). The Thor vein (red) 
dips steeply to the south and crosscuts the lamprophyre dyke (grey). The lithologies of 
this section, excluding the metadykes, are strongly sericite-altered. 
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Plate 2.9: (A) Outcrop photo showing the Main River granodiorite (MRP), to the right, 
unconformably overlain by Bradore Formation (BdF) sedimentary rocks to the left. 
Alteration and conjugate joint sets crosscut the unconformity. Geotool is 1 meter in 
length. B) Photomicrograph of the Bradore Formation quartzite (cross-polarized light) 
with rounded quartz clasts (Qt) in a matrix of sericite (Se ), biotite (Bt), recrystallized 
quartz (Qtx), and opaque pyrite (Py). 
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Plate 2.10 (Previous Page): (A) Backscatter image of a free gold grain (white) within 
quartz (dark grey) . Note small inclusion of gold within pyrite (light grey). (B) Reflected 
light photomicrograph of a fractured pyrite (Py) grain with galena (Ga) and sphalerite 
(Sp) occuring at the margins within quartz (Qt). Fine-grained gold occurs disseminated 
along fractures within the quartz, forming adjacent to, and as inclusions in, the pyrite. (C) 
Element map of (B) emphasizing the association between sulfide mineralogy and gold 
and illuminates the Ag-rich association with gold. (D) Embayed sphalerite grain (white) 
within pyrite (blue) which contains inclusions of gold (yellow) and is locally rimmed by 
what is interpreted as silver (green). An electrum grain (yellowish-green) is located 
adjacent to the pyrite. Note galena (pink) inclusions in pyrite, sphalerite and quartz. (E) 
Element map showcasing the relationships between sulfide mineralogy (galena - pink, 
lower left; pyrite - blue), electrum mineralization (or native silver; yellowish-green), 
sericite (pinkish-purple, upper right), carbonate (orange), and quartz (black). 
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Figure 2.6: Relative 
elemental loss and gains in 
the Main River granodiorite 
during hydrothermal 
alteration at the Viking 
deposit. (A) Major elements 
and C02, (B) transition 
elements, base-metals, 
mineralization, and LILE, 
(C) HFSE and REE. 
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Figure 
Custom 

2.8: (A) 
NMORB 

normalized multi­
element plot (Sun 
and McDonough, 
1989) for the Main 
River granodiorite 
(orange), Apsy 
Granite (red), and 
the Potato Hill 
Pluton (grey; see 
text for discussion). 
(B) Similar plot as 
(A) but for the 
monzogranite sheets 
(pink) and the 
mesocratic dykes 
(green). (C) 
Primitive mantle 
normalized multi-
element plot for the 
metadykes. Type 1 
is the most dominant 
with other types 
exhibiting variations 
in the LREE and 
HFSE. 
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Figure 2.9: Gold correlation plots with Cu (correlation coefficient, R=0.6), Zn (R=0.7), 
Pb (R=0.7), Ag (R=0.6), and As (R=7). 
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Plate 2.11 : (A) Outcrop photo of the argon sample site (09MM 113 ), a strongly sericite­
altered and folded monzogranite within the Thor Trend. Sledge hammer is ca. 1.2 m in 
length. (B) Photomicrograph of the strongly sericite-altered monzogranite from (A). 
Feldspars are being replaced by fine-grained sericite (cross-polarized light). (C) Outcrop 
photo of the Forteau Formation phyllite with a shallowly east-dipping fabric and an 
upright foliation (following pen magnet). (D) Photomicrograph of the same phyllite 
displaying a rotated biotite porphyroblast with an internal strain fabric (lines running 
north to south through the biotite) cutting a foliation of quartz, sericite, and pyrite (cross­
polarized light). 
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Figure 2.10: The 40 Ar-39 Ar release spectra for biotite (A) and sericite (B-D) plotted as 
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Figure 2.11: Tectonomagmatic discrimination diagrams after Pearce et al. (1984) for the 
granites of the Viking deposit. Since Rb is considered mobile, a more robust plot using 
Nb vs Y is given on the right. The Main River granodiorite exhibits within-plate to 
transitional trace-element geochemistry, whereas the monzogranite displays a volcanic­
arc signature. Symbols as in Figure 2.7. 
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Figure 2.12: Summary chart modified after Kerr and van Breeman (2007) displaying the 
results of 40 Ar-39 Ar dating at the Viking deposit and its relationships with other 
geochronological constraints on the timing of gold deposition, metamorphism, and 
plutonism in the White Bay area of western Newfoundland, as well as ages for other 
orogenic gold deposits throughout Newfoundland and Nova Scotia. 
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Table 2.1: Assay results for 14 diamond-drill hole samples from the Thor vein. Gold concentration is given in parts per billion 
(ppb) and the remaining elements are reported in parts per million (ppm). UTM coordinates given in NAD27, zone 21 format and 
represent the collar locations from diamond-drill holes and not their surface projections. DL denotes the detection limit for the 
given element and n/a denotes not analyzed. 
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Table 2.2: Rock type, location (UTM, eastings and northings) and brief descriptions of the analyzed samples for 40Ar_39 Ar 
thermochrono I ogy. 

UTM co-ordinate s :t lnte gnate d Plate au age 

Sample Zo ne Easting Northing Unit Mine ral De s criptio n" age (M a) (Ma) 

09MM024 21 5000')X 550-l21l I LabraJor Group Biotite 
1-'ine-gruincd biotile porvh~ Tohlaslic ph' llitc ,,·ith 

-118.3 ± 1.5 4 10.-l± l. :' 
strong upright loliation. 

09MMI I.1 21 500598 5504175 Mnin Ri\'cr Pluton Muscovite 
Strong sericite-pyrite-quart!. altered nnd minernli1.ed 

387 1 ± 1.4 J8-1.3 ± 1.8 
mon7.ogranite in 'llJOr Trend. 

500578 Main River Pluton Muscovite 
Strong sericite-pyrite-quartz altered and mineralized 

398 ± 1..1 .\98.9 ± 2.2 09MM099 21 550-1453 
monzogra nile in !'ootwa ll to Thor Ve in. 

09Ml\1098 21 500570 5504-+57 Main Ri\'er Pluton Muscovite 
Strong sericite-pyrite-quartz altered and minera li7.ed 

382.8 ± 1.1 377.1 ± 1.5 
gran<xliorite in footwall to ll1or Vein. 

(1 - I JTM co-ordinates gi\'en in N/\D27 projection. 
h - Field descr~1tion sttpplemenled hv pelrograph\ . 
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CHAPTER3 

FLUID CHEMISTRY OF THE VIKING DEPOSIT GOLD 
OCCURRENCES 

3.1 INTRODUCTION 

This chapter presents fl uid inclusion, stable and radiogenic isotope data collected 

from gold occurrences within the Thor trend and the Viking trend (Figure 2.2) at the 

Viking deposit. Fluid inclusions are believed to be the only direct evidence for the 

characteristics of the fl uid during geological processes (van den Kerkhofand Hein, 2001). 

Fluid inclusion microthermometric analysis was completed on both mineralized and 

unmineralized quartz ± calcite veins in an attempt to constrain the characteristics of the 

mineralizing fl uids and to detem1ine pressure and temperature conditions at the time of 

fluid entrapment. 

Sulfur isotope geochemistry has had a long history of application in the study of 

sulfide-bearing mineral deposits, beginning in the 1940s and 50s (Jensen, 1957, 1959; 

Kulp, et a!., 1956). In-situ SIMS analysis of sulfide 834S (pyrite, chalcopyrite and galena) 

within gold mineralized veins is presented in an effort to interpret a source for the sulfur. 

SIMS Analyses of galena for its Pb isotopic composition are presented to complement the 

834S data. Model ages fo r galena formation using thi s data, and how they relate to the 

timing of gold mineralization at the Viki ng deposit (Section 2.9.3), are also discussed. 

3.2 FLUID INCLUSIONS 

Wilkinson (200 I) states that the best evidence for a temporal genetic relationship 

between ore and gangue minerals is the occurrence of fine-grained ore mineral inclusions 
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within the gangue mineral itself. Petrographic and SEM analysis of high-grade samples 

from the Viking deposit (Section 2.4) indicate that gold grains are texturally and spatially 

associated with both the base metal sulfide assemblage and the quartz+sericite gangue 

(Plate 2.1 0). Fluid inclusions within the quartz gangue that is spatially associated with 

both "free" gold and gold-bearing sulfide minerals were targeted for microthermometric 

analysis. None of the fluid inclusions observed within the mineralized samples contained 

daughter ore mineral s, although this relationship would also provide evidence for a 

temporal genetic relationship between ore and gangue minerals (Wilkinson, 200 I). 

Microthermometric analytical procedures are outlined in Appendix A.4. 

3.2.1 Fluid Inclusions Types 

There are at least three types of fluid inclusions present within the mineralized and 

unmineralized quartz ± calcite veinlets distingui shed on the basis of their inferred bulk 

composition and texture: (I) euhedral , mixed H20-C02 inclusions, (JI) non-euhedral 

mixed H20-C02 inclusions, and (III) naturally decrepitated/leaked inclusions. 

Type I: These inclusions are typically occurring as trails along secondary 

transgranular healed fractures but also occur proximal to Type II inclusions (Plate 3. 1). 

They are small (1 -5 !Jm) euhedral inclusions containing two liquid phases (liquid C02 + 

H20) and a vapour C02 phase at room temperature. 

Type II : Are the most common fluid inclusions found within the veinlets . They are 

characterized by regular to irregular shapes, generally between 5 and 20 !Jill in size (Plate 

3 .2). They contain an undersaturated aqueous liquid phase and a two-phase bubble of 

liquid and vapour C02 at room temperature. 
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Type Ill : Represent secondary, natura lly decrepitated inc lusions which are 

typically 20 )lm in size. 

3.2.2 Microthermometry 

A total of 55 fluid inclusions were analyzed , compnsmg 17 fluid inclusions 

assemblages (FIAs) from gold occurrences w ithin the Thor and Viking trend . A fluid 

inclusion assemblage represents fluid inclusions of the same type that have similar Thror 

(within ± I 0-1 5° homogenization temperatures) and were microthermometrically analyzed 

together. T hi s indicates that the fluid inc lusions represent the same trapped fluid. The 

procedures for calculating pressure, depth, and salinity is given in Appendix A.4. 

Type I inclusions are typically more saline and have higher ThTOr than those of 

Type II inclusions (Figure 3 .1 ). Microthermometric analysis revealed significant 

variability between FIAs of Type II inc lusions with respect to salinity and Thror. T he 

results of microthermometric analysis and pressure calculations are d iscussed below and 

the data is presented in Table D . I . 

Type I inc lusions were analyzed from samples taken from the Thor vem 

(09MM043; 3 FIA; n=8) and Valha lla mine ralization (09MM 167; I FIA; n=3), both of 

which are high-grade gold vein occurrences within the Thor trend . Homogenization 

temperatures were consistent (wi thin ± 1 OOC), ranging from 3 15-3 19°C for FIAs of Thor 

vein inclus ions (FIAs 4a, 7a, and 6: Figure 3. 1 ) . Salinity calculations on these FIAs range 

from 8.3 to 9.4 wt% NaCl equivalent. Pressures of 1.7-2 .5 kilobars (kbars) were 

calculated for the Type I fluid inclusions from the Thor vein which correspond to depths 

of 6-9 km. Type I Valhalla inclusions have a salin ity of 8.3 wt% NaCI equivalent and a 
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Thror of 317.6oC overlapping that of FIA 7a of the Thor vem inclusions. Pressure 

calculations indicate that pressures of 1.8-2.4 kbars correspond to depths of formation 

ranging from 6-8 km. 

Mineralized Thor vein (09MM043) Type II inclusions have salinities rangmg 

from 8.3-8.7 wt% NaCl equivalent and homogenization temperatures ranging from 280-

313oC. The three analyzed FIAs (FIA 3, 4, and 7) fit into two categories . The data 

suggests a low temperature, low salinity FIA (FIA 7), and two overlapp ing higher 

temperature, higher salinity FlAs (FIAs 3 and 4, Figure 3.1 ). Pressure calculations 

suggest depths of formation of 6- 10 km for the mineralized veins. 

Analysis of Type II inclusions from the barren Thor vein (09MM 1 05) showed that 

the three FlAs have identical salinity (8. 7 wt% NaCJ equivalent) but varying Thror (FIAs 

I , 2b, and 2c; ThrOT=265-305°C). Salinity measurements for the barren Thor vein 

inclusions overlap those of the higher temperature and higher salinity mineralized zone 

Thor vein inclusions. However, their homogenization temperatures overlap (within 

± I SOC) with those of the lower temperature and lower salinity inclusions from the 

mineralized zone Thor vein. The barren Thor vein Type II inclusions returned depths of 

formation of 7- 11 km (2.0-3 .3 kbars). 

Type II inclusions analyzed from high-grade mineralization to the north of the 

Thor vein (North Thor occurrence, 09MM 1 08) yielded similar results to those of the 

high-grade Thor vein. Homogenization temperatures for FIAs 2 1 and 22 (265-273°C) 

overlap with FIA 7 (within ± 15°C) of the mineralized Thor vein but salinity calculations 

indicate that FIA 22 has a much lower salinity (7.1 vs 8.1 wt% NaCl equivalent). FIA 22 
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overlaps well with the salinities of both the mineralized and barren Thor vein samples, 

particularly FIA 2b (Figure 3.1). Pressure calculations indicate a depth of6-9 km ( 1.8-2.8 

kbars) for the formation of the high-grade mineralization observed at the North Thor 

occurrence. 

Type II inclusions from Valhalla mineralization display variability of 

homogenization temperatures and salinities within the FIAs. Homogenization 

temperatures are all within ± 1 ooc indicating that the analyzed fluid inclusions are a part 

of the same FIA and likely represent the same trapped fluid. The ThTOT for FIA 15 

(237°C) are the lowest observed within the dataset, but the salinities overlap with those 

from the other gold occurrences. FIA 17 gave homogenization temperatures which were 

30oC higher than those from FIA 15; however, salinities for this assemblage were only 

approximately 1 wt% NaCl equivalent lower. These differences may indicate that these 

FIAs represent discrete fluids . Pressure estimates suggest a depth of formation of 8-10 km 

(2.4-2.9 kbars). 

Three fluid inclusion assemblages of Type II inclusions from a sample of high­

grade stockwork mineralization from the Viking trend (09MM081) contain some of the 

least saline fluid inclusions (e.g. FJA 11 and 13), and FJA 13 displays the highest 

homogenization temperatures (316-320°C) recorded for the Viking deposit occurrences. 

There is a linear trend that can be observed from Figure 3.1 for the FIAs of this sample. 

With increasing salinity (from 6.2 to 8.3wt% NaCl) there is a decrease in the temperature 

of homogenization from 320 to less than 260°C. The Viking trend stockwork sample also 
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has the shallowest implied depth of formation of 4 km ( 4-10 km range) with equivalent 

pressures of 1.4-2.9 kbars. 

3.3 SULFUR ISOTOPES 

The o34
S values of 60 in-situ sulfur isotope analyses conducted by SlMS are listed 

m Table E.1. Multiple grains of the same sulfide mineral within each sample were 

analyzed, in order to delineate any possibly heterogeneity. The measured i534S were all 

positive and averaged 7.7%o. There is a mineralogical trend, with isotopic heaviness 

increasing between chalcopyrite and pyrite and galena (Figure 3.2). 

A total of 21 analyses were completed on pyrite grains from the Thor Trend. The 

average i5
34

S for pyrite within the high-grade Thor Vein was 6.7 ± 0.2%o (1 cr) with values 

ranging from 4.7 to 8.2%o. Pyrite from lower grade intercepts of the Thor Vein returned 

i5
34

S values between 3.2 to 1 0.4%o with an average of 7.0 ± 0.3%o (1 cr) (Plate 3.3). The 

i5
34

S values for high-grade mineralization north of the Thor Vein range from 2.0 to 4.2%o, 

averaging 2.6 ± 0.3%o (1 cr). 

A total of 11 analyses were completed on galena. A range of o34S of 10.7 to 

15.6%o (average = 12.9%o) is present in the high-grade Thor Vein. Galena from 

mineralization north of the Thor Vein returned the highest o34S values among mineralized 

samples, ranging from 15.6 to 20.9%o (average = 19.3%o; Plate 3.4). 

The o34
S composition of chalcopyrite grains within the Thor Vein ranged from 4. 7 

to 8.9%o with an average of 7.1 ± 0.3%o (la). This average overlaps with the o34S 

composition of pyrite observed within the same sample (09MM043). A sample of 

chalcopyrite from moderate to high-grade mineralization outboard of the Thor Trend was 
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analyzed for comparison, and returned 634S values rangmg from 1.0 to 7.7%a. These 

chalcopyrite analyses constituted the lightest 634S compositions present in the sample set 

(Plate 3.5). 

3.4 LEAD ISOTOPES 

The Pb isotope compositions for 24 in-situ galena samples from gold occurrences 

at the Viking deposit are listed in Appendix F. The samples were selected to ascertain if 

there were substantial differences between the Pb isotope signatures of galena grains 

within a sample, and signatures from the different occurrences. A total of 7 measurements 

were made from the high-grade Thor vein (09MM043), I 0 measurements from a lower­

grade quartz vein offshoot from the Thor vein (09MM057), and 7 from the stockwork­

style mineralization at the Viking trend occurrence (09MM081). 

The Pb isotope data was reduced using ISOPLOT (Ludwig, 2003) which 

calculated model ages and preformed regressions. The Pb model age for stockwork style 

veining at the Viking Trend occurrence was ca. 483 Ma, whereas galena from the Thor 

Vein and its lower grade offshoots yielded model ages of ca. 423 and 383 Ma, 

respectively. 

206PbP 04Pb ratios overlap within error between samples. When error is taken into 

account the apparent spread between the samples with respect to 207Pb is also negligible. 

The Pb isotope ratios have a restricted range of values, all which fall near the 0.4 b.y. 

isochron on Zartman and Doe' s (1981) Pb-Pb growth curves (Figure 3.3). The samples 

plot close to the orogene growth curve suggesting they were influenced by both mantle 

and crustal Pb sources (Zartman and Doe, 1981 ). 
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3.5 FLUID CHEMISTRY OF WHITE BAY GOLD DEPOSITS 

Fluid inclusion, as well as sulfur and lead isotope, data are avai lable for some of 

the gold prospects and showings of the White Bay area (Currie, 2004). Currie (2004) 

compared seven auriferous showings hosted by felsic volcanic and fine-grained 

sedimentary rocks of the Sops Arm Group, as well as samples from the Jackson ' s Arm 

area. The main conclusions of this work is that the mineralization was structurally 

control led and formed during the Silurian to Carboniferous from low salinity (<6 wt%. 

NaCl) hydrothermal fluids at temperatures of 200 to 350oC. For the West Corner Brook 

prospect, the Browning Mine, and the Simms Ridge prospect, 634S ratios ranged from 0.0 

to 8.8%o falling within the 6
34

S range of most orogenic systems (Hofstra and Cline, 

2000). Sulfur isotope data for the Rattling Brook mineralization are not avai lable. 

Analysis of fluid inclusion assemblages from the Thor Vein within the Thor Trend 

at the Viking deposit indicates the presence of at least 3 types of inclusions. The ThTOr, as 

well as salinities for Type I and II inclusions, overlap with those for the West Corner 

Brook prospect, the Browning Mine, the Simms Ridge prospect, and mineralization 

hosted by the Apsy Granite (Rattling Brook/Jackson 's Arm area). The o34S values, for 

Thor Trend sulfides, also overlap those seen in the Sops Arm Group showings ( -0.9 to 

9.3%o). 

3.6 DISCUSSION 

Fluid inclusion data derived from microthermometric analysis on both gold 

mineralized and barren samples from the Viking deposit provide insight into the fluids 

responsible for the precipitation of gold-bearing quartz±calcite veins and the associated 
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lower-grade sericite+pyrite alteration halo. A key question in many fluid inclusion studies 

of orogenic gold deposits is how do the observed inclusions relate to the gold depositing 

event? There is a high possibility of overprinting by later, unrelated fluids in these 

deposits (e.g. Kerrich and Cassidy, 1 994) and lower Th inclusions are commonly 

paragenetically late. The purpose of collecting microthermometric data during thjs study 

was to determine the pressure and temperature conditions of the formation of these gold 

occurrences and to compare these data with the current understanding of orogenic gold 

systems. 

Figure 3.4 is a compilation of homogenization temperature and salinity data from 

various ore deposit types (after Roedder, 1984). The homogenization temperatures and 

salinities determined from the Viking deposit gold occurrences overlap the field for 

orogenic gold deposi ts. 

Fluid inclusion microthermometric data can also be used to identify and constrain 

physical processes of fluid modification. Two processes that commonly provide the 

necessary conditions for effective ore mineral precipitation are boiling and fluid mixing 

(Wilkinson, 200 1 ). Figure 3.5 schematically shows typical trends in T h-sal inity space 

caused by various fluid evolution processes (Shepherd, el a/., 1 985). Boiling results in the 

production of vapour which causes partitioning of salts into the liquid-like phase resulting 

in a more saline residual liquid (Wilkinson, 2001 ). Adiabatic expansion may promote a 

decrease in temperature. When this is applied to the Viking gold occurrence 

microthermometric data, similar trends can be observed for FIAs from the Viking trend, 

Valhalla, and North Thor samples. Higher temperature, low salinity FIAs are present and 

evolve towards lower temperature, higher salinity FIAs (Figure 3. 1 ). Mineralized Thor 
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vein fluid assemblages show a reverse trend, with high temperature and high salinity FIAs 

evolving to lower temperature and lower salinity FIAs. This trend resembles the process 

of boiling (Figure 3.5) generating low salinity, C02-bearing inclusions that are present as 

3 phase inclusions (Type II) in these samples (Plate 3.2). However, with the tight salinity 

values quantitatively distinguishing between boiling or surface dilution trends is difficult 

(Figure 3.5). The process of simple cooling is interpreted from the results of the barren 

Thor vein FIAs. These FIAs evolve from higher temperature to lower temperature 

without change in salinity. 

Pinpointing which FIA best correlates with episodes of gold mineralization (i.e. 

high temperature/low salinity or low temperature/high salinity) has proven difficult. 

Because the microthermometric analysis was conducted in free gold-bearing quartz 

gangue proximal to gold-bearing sulfides, the argument could be made that these data 

represent the window of temperature and salinity conditions at the time of gold 

deposition. It is possible, however, that lower temperature F1As represent paragenetically 

late episodes of fluid overprinting related to protracted hydraulic fracturing and 

movement along the DVFS. Type I inclusions are found as transgranular trai ls that 

indicate a paragenetically late formation , but have high homogenization temperatures and 

salinities for the Thor vein and Valhalla samples. This may indicate one of two scenarios, 

either they correspond to a later high temperature thermal event or there were errors in the 

determination ofT h owning to their very small size. 

The pressure-temperature conditions obtained from FIAs suggest that orogenic 

gold formed over a wide range of depths in the crust (e.g. the crustal continuum; Groves, 

1993). Results from pressure calculations completed from the Viking gold occurrences 
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indicate that pressures ranged from I.4 to 3.3 kbars corresponding to depths ranging from 

as shallow as 4km (one measurement), to as deep as II km, and with an average depth of 

8km. 

Sulfur isotope ratios suggests that the o34S values for the sulfides within the 

Viking gold occurrences are generally heavier than sulfur from purely magmatic origins, 

which are typically in the range of 0 ± 3%o (Ohmoto and Rye, I979). The results suggest 

there is a uniform, heavy sulfur source with an uncertain origin. Normal granitoids would 

be unlikely to supply such a heavy sulfur source. 

Pb isotope data suggest that Pb is from an orogene-like source; however, the 

actual source is uncertain. Different model ages from the Viking deposit samples suggest 

that Pb was scavenged from multiple Pb reservoirs (i.e. different aged source rocks). Pb 

isotope values thus represent variable mixtures of two or more Pb sources. A spatial and 

textural relationship between galena and gold in mineralized samples suggests they 

precipitated together but their origins are unkown. Therefore, the model ages have no 

explici t meaning for dating these samples. 
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Plate 3.1 Photomicrograph of a trans granular trail (center) of Type I fluid inclusions at 
6.6°C ( 1 OOx magnification, 09MM043 ) . 

• 
• 

• 

Plate 3.2 Photomicrograph of aqueous carbonic, three-phase, Type II fluid inclusions at 
6.6°C from the mineralized Thor vein (09MM043, lOOx magnification). 
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Figure 3.1: Homogenization temperature CC) versus salinity (wt% NaCl equivalent) plot 
of microthermometric data for the FIAs analyzed on samples from the Viking deposit. 
Type I inclusions are open (e.g. 4a) and Type II inclusions are colored. Colors represent 
samples and shapes represent individual FlA. Viking Trend analyses indicate an 
interpreted boiling trend marked by black arrow. Key: blue = Thor vein mineralized 
(09MM043), orange = Thor vein barren (09MM105), yellow= Viking trend stockwork 
(09MM08l), grey = North Thor mineralized (09MM108), and green = Valhalla 
mineralized (09MM 167). 

73 



634S 
~--------------------------------------------------

12 

11 

10 

9 

8 

7 c 
:J 

8 6 

5 

4 

3 

2 

2 .5 5 .0 7.5 10.0 12.5 15.0 17.5 20 .0 

I opy I g•l•n• I pyrite 

Figure 3.2: Histogram of 834S values of sulfides from the Viking deposit gold 
occurrences. Fractionation factors for chalcopyrite ( cpy) and pyrite generally overlap but 
note the high and heterogeneous values for galena. 
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Plate 3.3: Sulfur isotope values from pyrite (dark pits) hosted by quartz (dark grey) from 
the Thor Vein (09MM043). Average o34S for sulfur in these samples is 6.7%o. 

Plate 3.4: Sulfur isotope values from galena (triangle pitted) associated with sphalerite 
(grey, upper left) hosted by quartz (dark grey, upper right) from high-grade mineralization 
located north of the Thor Vein. o34S values for these galena's are the highest observed 
within the sample set. 
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Plate 3.5: Isotopically light chalcopyrite (yellow) with galena (grey, unanalyzed) from the 
Viking trend. This sample has the lightest 634S compositions observed from the Viking 
gold occurrences. 
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4.1 INTRODUCTION 

CHAPTER4 

CONCLUSIONS 

The ultimate aim of the research was to: document the Viking gold deposit using 

geology, geochemistry, and geochronology; understand the controls on mineralization; 

place the deposit within a spatial and temporal context with regards to other gold 

prospects in the region; and to create a genetic model for the mineralization. 

4.2 OROGENIC GOLD MODEL 

Table 4.1 outlines the major characteristics of orogemc gold deposi ts and 

compares them with features observed at the Viking deposit. It is readily apparent that the 

Viking deposit shares many characteristics with the orogenic gold model, as do most 

other White Bay occurrences in the Sops Arm Group based on the available information. 

Figure 4.1 A schematically displays the tectonic setting of gold-rich epigenetic deposits 

(Goldfarb et a/. , 2005). The Viking mineralization is associated with lower order 

structures proximal to a major compressional structural break (e.g. the DVFS) and is 

proximal to synchronous granitic p lutons (e.g. Devil ' s Room Granite) . 

Microthermometric analysis of mineralized samples indicates a depth of formation 

ranging from 4-11 km with corresponding temperatures of 237-320°C. These data would 

classify the mineralization as being mesozonal in the scheme of Goldfarb et. a/. (2005) 

(Figure 4.1 B). 
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4.3 RECOMMENDATJONS 

This study has focused on documenting the lithogeochemistry of host rocks and 

determining the timing of gold mineralization at the Viking deposit. Further examination 

would benefit from the collection of 0 , C, and H stable isotope data, which may give 

indications on possible fluid source reservoirs. Similar deposits elsewhere in the 

Newfoundland Appalachians (e.g. Hammer Down, Ritcey, et al. , 1995) are interpreted to 

have fluids derived from a mixed ori gin but dominantly from a metamorphic reservoir. 

Such analysis on Viking samples would provide evidence for or against fluid s which are 

magmatic or metamorphically (or both) derived . Since gold has been observed as 

inclusions within pyrite (Section 2.4), if this pyrite was to contain suffi cient 

concentrations of Os, then acquiring a Re-Os model age might substantiate the ca. 409 

Ma age for gold deposition as acquired by argon thermochronology (Section 2.9.3). 

Acquiring precise U-Pb geochronology for the monzogranite and lamprophyre dykes 

would better constrain the maximum age of mineralization. 

4.4 CONCLUSJONS 

1) Gold mineralizati on in the White Bay area is interpreted to have formed in response to 

protracted strike-slip movement along the Doucer 's Valley Fault System during the 

Late Silurian to Early Devonian (Kerr. 2005, 2006a; Kerr and van Breemen, 2007; 

Kerr, el a/., 2006; Saunders and Tuach, 1988, 1991; Smyth and Schillereff, 1982; 

Tuach, 1987; Tuach and French, 1986). The highest grade mineralization appears to 

be hosted by east-west trending shear zones that are interpreted to be R2 shears. 
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2) Gold-electrum mineralization at the Viking deposit is hosted by quartz ± calcite + 

sulfide veins and small veinJets within the surrounding sericite-altered host rocks. The 

veins exhibit a simple sulfide assemblage of pyrite, galena, sphalerite, and 

chalcopyrite. Gold-electrum mineralization in the veins occurs as both ' free ' blebs 

and as inclusions within sulfides that are associated with quartz. 

3) The host rocks to the gold mineralization have geochemical signatures as follows: the 

Main River granodiorite exhibits similar chemistry to other Grenvillian granitic 

plutons that have intruded the external LRI , and has been crosscut by ]-type 

monzogranites similar to the equigranular granites within the Potato Hill Pluton 

(Owen et a!. , 1992). Calc-alkaline, strongly altered and mineralized, lamprophyre 

dykes are associated with the mineralized veins. 

4) Hydrothermal alteration is most intense proximal to quartz veins and shear zones and 

decreases in intensity away from these shear zones (i.e. is spatially zoned). The 

alteration assemblage is composed of muscovite (sericite), pyrite and quartz. 

5) The timing of final peak metamorphism is constrained at ca. 419 Ma from a 40 Ar-39 Ar 

cooling age of syn-late kinematic biotite porphyroblasts in the adjacent Labrador 

Group. This age corresponds to the waning stages of the Silurian Salinic orogeny and 

suggests that the gold-bearing/transporting fluids were derived via metamorphic 

processes (i.e. are orogenic) that were ongoing in the White Bay region through the 

Late Silurian. 

6) Argon thermochronological analysis of sericite from a shear zone proximal to the 

Thor Vein yielded an age of ca. 409 Ma. Textural evidence suggests that gold is 

spatially associated with the sericite alteration, and thus ca. 409 Ma may also 
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represent the timing of gold deposition. Younger thermochronological ages are 

thought to represent resetting of hydrothermal sericite through the Early Devonian. 

7) The presence of tensional, gold mineralized veins in competent rocks suggests depth 

of formation in excess of 3km. Fluid inclusion data supports this interpretation. These 

veins formed at pressures corresponding to 4 to 11 km depth at temperatures ranging 

from 237 to 320°C. 

8) A lack of magmatic-related elements (e.g. Hg), along with 634S values in the 

mineralized zones and host rocks that are heavier than typical magmatic sulfur, argues 

against an intrusion-related style of mineralization. 

9) Although the actual source of Pb is uncertain, Pb isotope data suggests an orogene­

like source where Pb was scavenged from multiple reservoirs. 

I 0) Fluid inclusion data suggests that boiling, and possibly mixing, accompanied by 

changes in temperature lead to the precipitation of gold from the ore-bearing fluid. 

Evidence suggests that there were multiple generations of fluids that are likely 

metamorphic in nature. 

11 ) From an exploration perspective, zones of intense sericite + pyrite + quartz alteration 

proximal to shear zones are a primary target for identification of high-grade gold 

mineralization at the Viking deposit. 

82 



Table 4.1: Summary of the major characteristics of orogenic gold deposits in comparison to 
the main characteristics of the Viking deposit gold mineralization . 

Major Characteristics of Orogenic Gold Deposits Characteristics of the Viking Gold 
(Goldfarb et al., 2005) Mineralization 
Setting: 
Re lated to major structural breaks ......................... Doucer's Valley fault system 
2"d-3rd order structures .... .. . . ......... . .. . . . . .............. Shearing and veining 
Host Rocks: 
Mineralization occurs in all rock types .. . . .. . .. . . .. .. . .. . Hosted primarily by intermediate megacrystic 

granodiorite 
Ore Mineralogy: 
Quartz ± carbonate veins .... .... ... ....................... Are present as predominant host 
Py, gal , cpy, sph common in ve ins . . . .............. . ..... . Typically 3-5% by volume 
Anomalous Hg in deep deposits assoc iated with sph ... No Hg reported (not hypozonal) 
PGE enrichments where fluids interact with mafic 
oceanic rocks .. . ......................................... . .. .. Unknown PGE contents 
Au :Ag of 5: I typical .. . .................................. ... . Average 5: I 
High Au grades associated with carbonaceous rocks .. . Intermediate carbonate-rich mineral ized 

lamprophyre dykes 
Alteration Mineralogy: 
Metamorphic minerals overprinted by hydrothermal 
a lteration minerals ..... ....... ........ .... ... .. ... . .. ..... .. Observed 
Alkali metasomatism : sericitization common .... .. .. .. . Most intense proximal to mineralized vein systems 

and shear zones 
Addition of sulfur, H20 and C02 ...... ... . .. .. . .. ... . ... Sulfides and carbonates present 
Alteration ha lo varies in s ize .. . ...... .... .. .. ............ 30-80 meter wide Thor Trend identified 
Ore Geochemistry: 
Aqueous-carbonic fluid of low sa linity* ................. Multi-phase fluid inclusions (typica lly 8wt% NaCI) 
Formed at 250-350°C (mesozonal) ........................ ThTOT rang ing from 237.0 to 325.0°C 
Au carried as reduced near-neutra l bisulfide complex .. Inferred for Viking deposit 
.S34S ranges from 0- 1 O%o but equivoca l . . ... . . . . . . . . . . . . . 3 .2- 10.4%o for pyrite, average 19%o for galena 
T iming of Au deposition: 
Typically late in orogenic process post-dating regiona 
metamorphism* ......................... . ... ..... ... ... .. .... Au deposited post regional metamorphism (ca. 419 

Ma) at ca. 409 Ma 
3 dominant periods of gold endowment Example of Phanerozoic minera lization 
worldwide .. . ...... .. .. .... 
Relation to magmatism: 
Intrus ions nearby of roughly same age* .... .. ............ Intermediate Devil 's Room Granite emplaced ca. 425 
Typically fe lsic to intermediate composition ..... . ..... . Ma (Heaman eta/. , 2002) 
* C haracteristic not used to discriminate between orogenic and intrus ion-re lated model 
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Figure 4.1: Schematic of the tectonic settings of gold-rich epigenetic mineral deposits. 
(A) Orogenic gold systems are emplaced proximal regional scale compressional faults 
within the upper crust. (B) Classification of the crustal environments of orogenic gold 
deposits with regard to depth of formation, structural setting and associated elements 
(modified from Goldfarb et af., 2005). Viking deposit mineralization is classified as 
mesozonal ( 5-l 0 km depth) based upon microthermometric studies; however, contains 
little As (no data forTe). 
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APPENDIX A 

ANALYTICAL METHODS 

A.l SCANNING ELECTRON MICROSCOPY 

Standard thin sections were coated in carbon before being mounted on a stage 

which is then placed into the FEI Quanta 400 SEM in the Bureau Center at Memorial 

University of Newfoundland. The sections are held under a vacuum at 25.0 kV where a 

fine beam of electrons is focused on the sample surface. The beam then rasters in a 

rectangular pattern and the intensities of the signals created are mapped as variations in 

brightness corresponding to an elements atomic number. Semi-quantitative maps (e.g. 

Plate 2.1 0 C) were processed using in house software and saved as jpeg images. 

A.2 LITHOGEOCHEMISTRY 

Lithogeochemical samples collected during traverses and from diamond drill core 

include altered host rocks adjacent to, and within, mineralized zones as well as unaltered 

samples collected remote from mineralization. As such, the whole-rock compositions of 

many host rocks collected for this study were probably modified by post-crystallization 

hydrothermal fluid-rock interaction to some ex tent. Samples of plutons exposed 

elsewhere in the region were also analyzed for comparison with the Main River Pluton. A 

total of 48 samples were analyzed from both bedrock exposures and drill core; the 

lithogeochemical data are presented in Table B.1 . 

Major elements were determined by ICP-OES at the Geochemical Laboratory of 

the Department of Natural Resources, Howley Building (Higgins Line, St. John's NL), 

following analytical methods described in (Finch, 1998). Pulverization of the samples 
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was completed using an alumina zirconia swing mill. Fluoride was determined by ion 

specific electrode, also at the Howley Building. High-field-strength elements (HFSE; Y, 

Zr, Nb, Hf, Ta, and Ga), large-ion-lithophile elements (LILE; Cs, Ba, Rb, Sr, Th, and U), 

transition elements (V, Cr, Co, Ni), base metals (Cu, Zn, and Pb), volatile elements (Sn, 

Sb, Tl, and As), and rare-earth elements (REE; La-Lu) were determined by lithium 

metaborate/tetraborate fusion ICP-MS at Activation Laboratories in Ancaster, Ontario, 

using the methods documented on their website (http://www.actlabs.com). Gold and Sc 

were analyzed at Becquerel Laboratories by Neutron Activation Analysis (following their 

analytical procedure at http://www.becquerellabs.com). 

Assay data of mineralized quartz vein material from the Thor vein were obtained 

from the Northern Abitibi Mining Corporation database to complement the 

lithogeochemical database from this study and those results are presented in Table 2. 1. 

Gold (as well as Cu, Zn, Pb, As, Ag, Cr, V, Co, Ni, Sn, Sb, W, Ba, Sr, La and Ce) 

contents were determined by standard fire assay ICP methods at Eastern Analytical , 

Springdale, Newfoundland, and samples with greater than 5 g/t gold were re-assayed 

using a metallic sieve procedure to reduce the nugget effect created by free gold particles 

in the samples. 

A.3 ARGON THERMOCHRONOLOGY 

The 40 Ar-39 Ar laser step-heating data were obtained at Queen' s University 40 Ar-

39 Ar Thermochronology Laboratory. All weathering surfaces were removed and a fist­

sized whole-rock portion of each specimen was carefully milled by mortar and pestle. The 

crushed material was then sieved to a -40+60 mesh (0.422- 0.25 1 mm) size fraction. The 
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grain separates were ultrasonically agitated in a dilute (2.5 %) solution of reagent grade 

HN03 . The samples were frequently cleaned in de-ionized water, dried, and then 

processed through a Frantz isodynamic magnetic separator after a hand magnet was 

passed over the crushed material. Approximately 500 mg of high purity biotite and 

sericite concentrate were packed in aluminum foil and stacked sequential ly and 

interspersed with reference flux monitors of known age (Hb3gr: 1072 Ma; Roddick, 

1983). These were evenly spaced with the unknowns, to enable precise determination of 

the irradiation parameter, "J", throughout the irradiation tube. Unknowns and flux 

monitors were irradiated with fast neutrons in position SC for 40 hours (3 MWH) at the 

McMaster University Reactor, McMaster University, Hamilton, Ontario. 

Total-gas, integrated ages (equivalent to a K-Ar age: IA), plateau ages (PA) and 

inverse isotope-correlation ages (CA) are reported. Traditionally, a plateau is defined by 

three contiguous steps overlapping in error and comprising greater than or equal to 50% 

of the 39 Ar released, and reasonably low excess scatter (mean square of the weighted 

deviates (MSWD) < 2.2; McDougall and Harrison, 1988; Singer and Pringle, 1996; Snee 

et a!. , 1988). These criteria were not satisfied by all of the gas release spectra for the 

samples under investigation. The gas steps used in the calculation of the plateau ages, as 

well as the inverse isotope-correlation ages, are marked by asterisks in Table C. 1 and are 

fill ed black boxes in Figure 2.1 0. The approximate argon closure temperatures for sericite 

(muscovite: ca. 350°C) and biotite (ca. 280°C) were applied to these minerals and are 

used to aid in the interpretation of the cooling history of the host rocks (McDougall and 

Harrison, 1988; Reynolds, 1992) (McDougall and Harrison, 1988; Reynolds, 1992). All 

age calculations used the 40 Ar-39 Ar age spectrum module of Ludwig (2003 ). 

95 



A.4 FLUID INCLUSION ANALYSIS 

Fluid inclusion analysis was completed in house at the fluid inclusion laboratory 

in the ]nco Innovation Centre, Memorial University ofNewfoundland. The analyses were 

completed on a Linkam THMSG600 heating freezing stage, mounted on an Olympus 

BX51 microscope outfitted for use with reflected- and transmitted-visible and ultraviolet 

light using 4x, 1 Ox, 40x and 1 OOx Olympus long-working distance objective lenses. This 

system allows phase transitions to be observed in fluid inclusions over the temperature 

range of -193 to 600°C. Digital images of fluid inclusions are captured using an Olympus 

DP71 camera. Rock thin sections and doubly polished fluid inclusion wafers were 

prepared at Memorial University using standard techniques. 

The fluid inclusions were first observed at a temperature of 15°C to observe their 

morphology, relation to host mineral, and degree of fill. This enabled groups of fluid 

inclusions with similar properties, or fluid inclusion assemblages (FIA), to be targeted for 

microthem1ometric analysis. The FIA was then cooled at a rate of 40aC per minute to -

I ooac which caused the freezing of all phases in the inclusions. The FIA is then heated at 

30"C/min to -60aC and through to -55°C at a slower rate of 3 aC/min. The melting of C02 

phases (Tmc02) occurs roughly at -56.6aC and a slow heating rate promotes a more 

accurate temporal observation of this temperature, to within ±0.1 ac. Heating continues 

through OOC where at approximately +6.6°C, the clathrate phase melts (Tmc~ath) and the 

vapour C02 bubble within each fluid inclusion in the FIA moves freely. At temperatures 

of approximately 20 to 25°C, homogenization of the vapour and liquid C02 phase occurs 

(Thc02). How the vapour and liquid phase interact upon reaching Thc02 gives information 
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on the C02/H20 ratio of the inclusions; if the H20 phase disappears upon Thc02 then 

there is a high C02/H20 ratio and if the C02 phase disappears then there is a low ratio 

(Shepherd et a/. , 1985). The final step is to heat the FIA to the temperature at which all 

phases in the inclusion homogenize (Th1oT). 

Calculation of salinity and density of the fluid inclusions was completed using the 

computer package "Clathrates" created by Bakker ( 1997). The program "Q2" in this 

package used the measured TmCiath, Thc02, and the mode of homogenization of the C02 

phase to calculate salinity and density using the algorithms of Duan et a/. (1995). The 

program "Loner 15" within the "Fluids" package of Bakker (2003) was used to calculate 

pressure. Bulk fluid properties (xC02, xH20 , xNaCl, xKCl) are calculated in the Q2 

program and are used to calculate pressure, along with ThTOT and the fluid inclusions 

molar volume (also calculated in Q2). These calculations are completed within a H20-

C02 fluid system (Anderko and Pitzer, 1993a, b; Duan et a/. , 1995). Pressure is given in 

MPa and bars which is converted to depth in kilometers. 

A.S STABLE AND RADIOGENIC ISOTOPE ANALYSIS 

Stable isotope analysis for sulfur and radiogenic isotope analysis for lead was 

completed by in-situ microanalysis of sulfide minerals using the secondary ion mass 

spectrometer (SIMS) located in the Inco Innovation Centre at Memorial University of 

Newfoundland. A focused beam of charged Cs sputters the sample surface and secondary 

ions are measured using a mass spectrometer (Seal, 2006). Spatial resolution is typically 

better than 20 !Jm with an analytical uncertainty ranging from ±0.2 to 0.5%o. Sulfide 
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minerals analyzed were a part of the mineralization assemblage of the high-grade veins 

and are associated with gold. 

A total of 12 mounts were prepared from high-grade zones that contained sulfide 

minerals amendable to in-situ analysis. Samples were placed face-down inside a 2.5 em 

diameter metal ring (i.e. the mount) and this assembly is attached to a piece of double­

sided tape on a glass plate. A solution of epoxy is prepared using 100 parts resin to 39 

parts hardener which is poured into the metal ring under a fume hood. The epoxy is 

stirred to remove any air bubbles trapped around the rock sample. After the epoxy has 

solidified after a period of about 24 hours the mount is removed from the double-sided 

tape and placed in the Struers Tegra Force 5 polishing system. Polishing was completed 6 

mounts at a time using the "fine-sulfides" program on the Struers. The mounts were 

washed in an ultra-sonic agitator between steps to remove any free grit and excess 

material. One mount at a time can be placed into the mass spectrometer for analysis. 
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APPENDIXB 

UTHOGEOCHEMICALDATA 

B.l INTRODUCTION 

This appendix will present and discuss the precision and accuracy for the data, 

includes a table of the entire lithogeochemical dataset (Table B.l ), and a table of the mass 

gain/loss calculation (Table B.2). Classification of precision and accuracy is taken from 

Jenner (1996) and is as follows: excellent (0-3%), very good (3-7%), good (7-10%), and 

poor(> I 0%). All data used to calculate precision and accuracy is in the digital appendix. 

Major and trace element precision was determined using duplicate analysis of 

unknown samples (i.e. samples from the dataset of this study). Precision (a measure of 

analytical reproducibility) was calculated as relative standard deviation (RSD) = [(X 1 -

X 2)/((X 1 + X 2)/2)]* I 00, where X 1 is the original analysis and X 2 is the duplicate analysis. 

Duplicate analysis of samples 09MM006 (diorite), 09MMIII (monzogranite), and 

09MM054 (granodiorite) were used to calculate major element precision. Duplicate 

analysis of samples 09MM006, 09MM Ill , 09MM057 (granodiorite), 09MM065 

(diorite), and 09MM 11 3 (monzogranite) were used to calculate trace element precision. 

Analytical accuracy is a measure of correctness or how close an analysis is to the 

"true" or "accepted" value . It is typicall y measured using international geochemical 

reference materials but can also be measured using internal " secondary standards" that are 

developed by analytical companies. These materi als are typically chosen to best represent 

the composition of the unknown sample (i .e., are matrix matched). It may be reported as a 

percent difference to the "true" value, relative difference (RD) = ((X1ab -
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Xaccepted)!Xaccepted)* 1 00, where X lab is the lab analysis of a standard and X accepted is the 

"true" or "accepted" value. The standards which were analyzed to calculate major 

element accuracy include FK-N, AND-I, and VS-N fo llowing methods of Finch (1998). 

Standards SY-4 (diorite gneiss) and WGB-1 (gabbro) were used to calculate trace element 

accuracy. Trace element standard data was acquired from the GeoREM online database 

(GeoREM, 2011). 

B.2 PRECISION AND ACCURACY 

B.2.1 Major Element Precision 

Precision is dominantly excellent (0-3%) to very good (3-7%) for the maJor 

elements of the samples analyzed (Figure B.l ). Poor precision (> I 0%) was obtained only 

for CaO, MnO, P20s and LOI. 

B.2.2 Major Element Accuracy 

Major element accuracy for standards AND-1 and VS-N were predominantly 

excellent to very good. Standard FK-N was the only standard to return poor precision for 

Ti02, Fe20 3, MnO, MgO, and P20s (Figure 8.2). 

B.2.1 Trace Element Precision 

Trace element precision is somewhat variable ranging from excellent to good with 

poor precision dominated by the duplicate analysis for sample 09MM 11 3 (monzogranite). 

The average RSD is primarily very good (Figure B.3). Transition and volati le elements 

have typically excellent to very good precision and base metal elements generally have 

very good to good precision. Only Cs, of the LFSE, has poor precision for one sample; 

however, there is a wide range of precision for the HFSE (e.g. Y, Zr, Ta). The REEs have 
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typically excellent to good precision, dominated by very good precision with one sample 

(09MM 113) returning poor precision. 

B.2.2 Trace Element Accuracy 

Standards SY -4 (n=5) and WGB-1 (n=3) show variation in their trace element 

accuracies with few trace elements for SY -4 having excellent a and no trace elements of 

WGB-1 having excellent precision (Figure B.4). WGB-1 contains very low 

concentrations of trace elements and requires low detection limits to produce excellent 

accuracy. The accuracy for SY -4 over numerous analyses is dominantly very good. 

B.3 LITHOGEOCHEMICAL DATA 

Table B. 1 reports geochemical data for samples taken from the Main River Pluton 

as well as other granitic plutons in the White Bay area. All oxides are in weight % and 

trace elements are in ppm (gold in ppb ). F e20/ denotes total iron as ferric iron and F eO* 

is the total iron as ferrous iron. Mg# = (molecular MgO/(molecular MgO+FeOT)), Fe# = 

FeO*/FeO*+MgO, and modified alkali-lime index (MALI) (Frost et al., 2001 ), eN 

Chondrite Normalized (Sun and McDonough, 1 989). N/A denotes not analyzed. Values 

which are one half of the detection limit signify that the analysis was below detection 

limit for the given element and is used to define a background for comparison with other 

samples. 
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Figure B.1: Major element precision (RSD) for three duplicate analysis of unknown 
samples. The precision is better than 7% for the majority of analyses. Excellent precision 
<3% RSD (short dashed line), very good precision is 3-7% RSD (between short and long 
dashed lines), good precision is 7-10% RSD (between long dashed line and solid line), 
and poor precision is > 10% RSD (above solid line). 
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Figure B.2: Major element accuracy (RD) based upon analysis of 3 international 
reference materials. Poor accuracy (<10% RD) is reported only for FK-N. Excellent 
accuracy <3% RSD (short dashed line), very good accuracy is 3-7% RSD (between short 
and long dashed lines), good accuracy is 7-10% RSD (between long dashed line and solid 
line), and poor accuracy is > I 0% RSD (above solid line). 
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Figure B.3 : Trace element precision for duplicates of five analyses of samples from the Viking deposit. 
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Figure B.4: Trace element accuracy for multiple analyses of standards SY -4 and WGB-1. 
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Table B.l (Next Page): Lithogeochemical compositions for the rock types at the Viking 
deposit and surrounding granitic plutons. All oxides are in weight % and trace elements are 
in ppm (gold in ppb). Fe20/- total iron as ferric iron, FeO* -total iron as ferrous iron, Mg# 

T = IOO*(molecular MgO/(molecular MgO+FeO )), Fe#= 100*(Fe0*/Fe0*+Mg0), MALI-
modified alkali-lime index (Frost et al. , 2001 ), CN Chondrite Norrnalized (Sun and 
McDonough, 1989). N/A denotes not analyzed . 
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Sa mple 

Rock Type 

Eas tin g 
Northin g 
Drill 11 o le 

From 

To 

S i02 

Al 203 

Fe203 

FeO 

MgO 
CaO 

Na20 

K 20 

Ti02 

MnO 

P20s 
LOI 

Total 

Fc203t 
FeO* 

C02 
Mg# 
Fe# 

MALl 

Sc 
v 

C r 

Co 
N i 

Cu 
Zll 

Pb 
Au 

Ag 
S n 
Sb 
w 
F 

s 
Tl 
A~ 

Cs 
Ba 

Rb 

Sr 
Th 

u 
y 

Zr 

DL 

0.02 

0.01 

0.01 

0.01 
0.01 
0.01 

0.01 

0.01 

0.001 

0.01 

0.001 

0.01 
n /a 

n /a 

n /a 

0.01 
n /a 
n /a 
n/a 
0.1 

5 
20 

1 

20 
10 
30 
5 
2 

0.5 

0.2 
0.5 
5 

0.01 

0.05 
5 

0.1 

3 
l 

2 

0.05 
0.1) I 

0.5 

09MM034 09MM042 09MM054 091\1M056 09MM057 09MM058 091\11\1063 

AG' 

50 14 2 5 

5505328 

69. 13 

14.84 

2.96 

0.38 
0.88 
0.28 

3. 11 

5.54 

0.702 

0.028 

0.2 14 

1.39 
99.43 

3.38 

3.04 

0.09 

3 1.59 
0.30 

8.37 
4.6 
41 
10 

6 
10 
5 

30 
15 
2 

0.8 

3 
0. 1 
6.4 
592 
0.0 1 
0.72 

2.5 
1.6 

17 10 
120 
165 

7.32 
1.49 
38. 1 
390 

AG' 

500582 

5504442 

08 - VK-01 

58.75 

59 .15 

6 1.1 6 

16.65 

2.22 

2.7 1 
1.64 
3. 14 

4.3 1 

4.75 

0.995 

0.088 

0.336 

1.08 
99.08 

5.23 

4.7 1 

0. 19 

35.78 
0.62 

5.92 
n/a 

60 
10 

9 
10 
20 
11 0 
29 

1.5 
5 

0.4 
2.9 

1362 

0.12 
1.02 
2.5 
0.9 

2500 
145 

573 
I 1.1 

3.38 
70.2 
674 

AG' 

500651 

550465 1 
08- VK-04 

23.2 6 

23.78 

70.74 

10.80 

1.33 

1.56 
0.50 
3.38 

1.08 

4.00 

0.687 

0.05 1 

0.194 

4. 19 
98.50 

3.07 

2.76 

n/a 

22.53 
0.76 

1.70 
n/a 

47 

10 
6 

10 
70 

2 10 
329 
n/a 

3.7 
3 

1.1 
2 1.4 
11 55 
n/a 

0.7 1 

65 
0.9 

1050 
108 
11 6 
5. 19 
1.46 
36.2 
409 

AG' 

50065 1 

5504651 
08-VK-04 

45 

45.8 

65. 19 

12.95 

1.1 0 

2.77 
1.02 
2.9 1 

3.07 

4. 10 

0.768 

0.068 

0.2 17 

4 .74 
98.90 

4 .18 

3.76 

n/a 

30.26 
0.73 

4 .25 
n/a 

45 

10 
6 
10 
50 

520 
259 
n/a 

3 

4 
1.4 

14.7 
107 1 

n/a 

0.85 
46 
I 

1270 
107 

363 
7.85 
2.24 
42.3 
4 15 

AG' 

50065 1 

550465 1 
08-VK-04 

48 .23 

48 . 95 

59.25 

16. 17 

1.73 

2.9 1 
1.22 
3.72 

3.90 

4.90 

1.045 

0.086 

0.307 

4. 11 
99.36 

4.96 

4.47 

n/ a 

30.55 
0.70 

5.08 
n/a 

59 
10 
7 

10 
40 
240 
48 
n/a 

2.5 

6 

13.8 
1238 
n/a 

1.1 3 
120 
1.4 

1520 
135 

373 
19.4 
3.47 
78 

57 1 

AG' 

500651 

550465 1 

08-VK-04 

52.1 

52.2 8 

59.74 

15.60 

1.1 6 

2.46 
0.94 
3.87 

4.0 1 

4.62 

0.865 

0.082 

0.245 

5.20 
98.78 

3 .89 

3.50 

n/a 

30.0 1 
072 

4.76 
n/a 

53 
10 
5 

10 
30 
100 
18 
n/a 

1.8 
5 

1.1 
13 .5 
1032 

n/a 

0.95 
42 

0.9 
1460 
11 9 
358 
13.4 
2.63 
56.2 
492 

AG' 

500582 

550 4 43 1 

08-VK-05 

3 4.4 5 

34.85 

59.57 

16.28 

2.44 

3.16 
1.52 
3.22 

4.43 

3.43 

1.1 36 

0 .063 

0.340 

2.46 
98.05 

5.95 

5.36 

n/a 

3 1.22 
0.68 
4.64 
n/a 

62 
10 
8 

10 
10 

100 
12 
n/a 

1.9 
4 

0.2 
0.25 
1554 
n/a 

0.87 
2.5 

2 
1380 
109 
390 
8.89 
2.05 
57.2 
553 
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S am pie 09 MM 0 34 0 9 MM 0 42 091\1 M 05 4 0 9 M M056 09M M057 09M M OS S 09 M M 063 

R o ck T y p e AG' AG' AG ' AG ' AG' AG' AG' 

Eas t i n g 50 14 2 5 5005 8 2 50065 1 50065 1 50065 1 50065 1 500582 
No rthin g 55 0 532 8 5504442 550465 1 550465 1 5 50 ~ 65 1 550465 1 55044 3 1 
D r ill 11 o le 08- VK-0 1 0 8 -V K-04 08-V K-04 08-VK-0~ 08-V K-0 4 08 - V K-0 5 

Fro m 58.75 23.2 6 45 4 8.2 3 52 . I 34.4 5 
T o D L 59. 15 23.7 8 4 5. 8 4 8.95 52.2 8 34 . 85 

Nb 0.2 19.7 25.2 12.2 15.2 23 .9 18.2 20. 1 
Hf 0.1 8.8 13.9 8.7 8.9 12.6 10.7 11.9 
Ta 0.01 1.78 1.85 1.0 I 1.1 5 179 1.37 1.69 
Ga 2 1 25 20 22 27 27 26 
Ge 0.5 1.3 1.5 2.3 2.2 2. 1 2. 1 1.6 
La 0.05 72 93. 1 68 .8 74 .3 123 10 1 11 0 
Ce 0.05 165 22 1 156 167 270 2 17 250 
Pr 0.01 21.5 30.2 19.3 20.6 33.6 26 3 1 
Nll 0.05 74.4 11 4 70 .7 75 .9 124 94.3 11 3 
S m 0.01 11.3 19 11.7 12.8 22.2 16. 1 18.9 
Eu 0.005 1.97 3.24 2.09 2.23 3.22 2 .75 3.08 
Gd 0.01 8.99 15.7 9.32 10.6 19.7 13.4 15 
Tb 0.01 1.32 2.28 1.23 1.42 2.76 1.87 1.98 
Dy 0.01 6.93 12.4 7.06 8.22 16 II 11.3 
Ho 0.01 1.33 2.4 1 1.3 1 1.54 2.95 2.05 2.07 
Er 0.01 3.94 7.06 3.84 4.48 8.52 6.06 6. 11 

Tm 0.005 0.58 1 1.03 0.537 0.643 1.1 9 0.866 0.849 
Yb 0.01 3.75 6.33 3.25 3.92 7.07 5.24 5.08 
Lu 0.002 0.556 0.925 0.502 0.63 1 1.1 I 0.834 0.805 

(La/Yb)cN n/a 13.8 10.5 15.2 13.6 12.5 13.8 15.5 

(La/S m)cN n/a 4 .11 3. 16 3.80 3.75 3.58 4.05 3.76 

(Gd/Yb)cN n/a 1.98 2.05 2.37 2.24 2.3 1 2. 12 2.44 
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Sa mple 091\11\1098 091\11\1 102 091\1 1\110 7 091\11\1112 

RockTyp< AG' AG' AG' AG' 

Eas tin g 500570 50059 1 500557 5006 19 
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Drill Hole 

From 
To 

Si0 2 

Alz0 3 

Fc20 3 

FcO 
MgO 
CaO 
Na20 

K20 
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MnO 

P20 s 
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Tota l 

Fe1 0 3t 

FeO* 

COz 
Mg# 
Fe# 

MALl 

Sc 
v 

C r 
Co 
Ni 

Cu 
Zn 
Pb 

Au 

Ag 

S n 

S b 
w 
F 

s 
T l 

As 

Cs 
Ba 

Rb 

S r 
Th 

ll 
y 

Z.r 

62.20 

15.74 

2.04 

2 79 
1.38 
1.90 

4.45 

4.93 

0.946 

0.07 1 

0 .333 

1.73 

98.5 1 

5. 14 

4.63 

0.61 

32.37 
0.67 
7.49 

9.0 

59 
10 

9 
10 

10 

90 
26 

6 
1.1 

4 

0.6 

3.5 
1273 

0.09 
0.97 

12 

3 .8 

2520 

133 

475 
8.5 1 

1.95 
62.4 
552 

62.03 

15.24 

1.26 

1.36 
0.78 
4 .95 

3.91 

3.47 

0.594 

0.065 

0.185 

5.29 
99. 14 

2.78 

2.50 

0.94 

33.47 
0.63 
2.42 

7. 1 

54 
10 

8 
10 

20 

70 
15 

1.1 

4 

0 .7 

3. 1 
1060 

0.005 
0.74 

2.5 

3 .4 
1920 

111 

389 
7.29 
2.02 

58.9 

583 

6 1.43 

16.42 

2.50 

2.81 

1.72 
2.79 

4.34 

4.45 

1.071 

O.D75 
0.355 

0.87 
98.84 

5.63 

5.06 

0.03 

35.24 
0.62 
6.00 

13.0 

64 
10 

9 
10 

5 
120 
24 

I 

1.3 

7 

2.5 

1.1 

1526 

0.05 

1.06 

2.5 
1.1 

2280 

147 

504 
10.8 

3 .65 

80.2 
689 

6 1.92 

16.30 

2.67 

2.46 

1.39 
2. 19 

4. 17 

4.80 

1.073 

0.075 

0.363 

1.53 
98 .94 

5.41 

4.87 

0.34 

31.35 
0.64 
6.77 

9.0 

59 
10 

9 
10 

20 

280 
48 

1.1 

5 

1.2 

17.7 
1497 

0. 12 

0.94 
2.5 

2.2 

2230 

130 
497 

9. 15 
2.56 

66.6 
599 

091\11\1 115 091\11\1160 09MM006 

AG' AG' Dio rite 

500620 499856 4 99867 

5504020 5504741 5504137 

60.79 

16. 19 

2 .27 

3.09 
1.62 
3 .5 1 

4 . 11 

3 .8 1 

1.087 

0.065 

0.378 

1.17 

98 .08 

5 .70 

5.13 

0 .02 

33.60 

0.66 
4.40 
10.0 

60 
10 
11 

10 

70 
80 
23 

1. 1 

4 

1.2 

2.4 
111 7 

0 .12 

0.73 
2 .5 

1.2 

2 150 

93 
578 
7.56 
1.4 

70.3 
624 

64.70 

14.57 

2.14 

2.23 

1.38 
2.57 

3 .93 

4 .71 

0 .916 

0.065 

0.3 15 

0.59 
98. 11 

4 .62 

4 .16 

0.04 

34.73 

0 .62 

6 .07 
7 .2 

48 
10 

8 
10 

5 
11 0 
22 

1 

0 .9 

4 

0 .1 

2 .2 
237 

0.02 

0.78 
2.5 

0.4 

1990 

11 8 
554 

13.3 

1.58 
64.7 
5 14 

49.31 

12.65 

4.90 

10.07 
4.63 
7.95 

2.90 

1.09 

2.644 

0.234 

0.282 

0.72 

97.38 
. 16.09 

14.48 

0.06 

33.89 
0.69 
-3 .96 

38.5 

449 
10 
46 

60 

270 

170 
10 

0 .25 

2 

5.4 
4 .2 

306 

0.07 

0.1 
2.5 

0.4 

329 

28 
232 

2.3 1 
0 .64 

45.7 
2 19 
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Sa m pie 09MM098 09MMI02 09MMI07 091\11\1112 09!\11\1 115 09 1\11\1160 091\11\1006 

R oc k Type AG' AG' AG' AG' AG' AG' Diorit e 

Easting 500570 50059 1 500557 500619 500620 4 99856 4 99867 
No rthing 5504457 5504374 5504529 5504 180 5504020 5504741 5504137 
Drill H o le 

From 
To 

Nb 19.3 19.8 3 1.4 23 .2 26.5 25 .5 13.6 
Hf 11.6 12. 1 14.6 12.1 13 I 1.3 5 
Ta 1.65 1.62 2.6 1.96 1.99 2.65 0 .86 

Ga 24 23 27 24 24 2 1 2 1 
Gc 1.4 1.2 1.5 1.5 1.4 1.4 1.7 
Ut 105 9 1.9 99.2 106 11 0 127 16.7 
C c 22 1 216 250 24 1 26 1 279 39.4 

Pr 3 1.7 29.8 33.6 33.2 36.7 35.4 5.7 
Nd 11 7 11 3 125 122 137 123 25.7 
S m 19.4 18.5 2 1 20.3 22.6 19.3 6 .52 
Eu 3.34 3.22 3.39 3.45 3 .78 3 . 14 2. 18 
Gd 15.7 15.2 17.6 16.4 18.2 15.5 8.62 
Tb 2.23 2. 19 2.6 2 .33 2.6 2 .23 1.43 

Dy 11.7 11 .6 14 12.4 13.7 12. 1 8.24 
Ho 2.17 2. 16 2.74 2 .29 2 .6 2 .27 1.63 
Er 6. 18 6 .19 8 .17 6 .64 7 .38 6 .73 4 .63 

Tm 0.86 0 .882 1.26 0 .942 1.03 1.02 0.675 

Yb 5.04 5 .2 1 7.93 5.74 6.2 6 .29 4 .29 

lAl 0.725 0.715 1.1 6 0.82 0 .852 0.902 0 .67 

(UI/Yb)cN 14.9 12.7 9.0 13.2 12.7 14.5 2 .8 

(UI/Sm)cN 3.49 3.2 1 3 .05 3.37 3 .14 4 .25 1.65 

(Gd!Yb)cN 2.58 2.4 1 1.84 2 .36 2.43 2 .04 1.66 
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Sa m p le 09MMOIO 09MMOII 09MM012 09MM016 0 9MM064 09MM065 09MM066 

R oc k Type Diorit e Dio rite Dior-ite Dio ri te Dio rit e Diorite Diori t e 

[ a s ti ng 497753 4980 76 49 7585 49 7380 50 0582 500582 500582 

No rthin g 5506016 550659 7 5506680 5505719 5504431 55 0 4431 550443 1 

Drill Hole 08 -VK-0 5 08-VK-05 08-VK-05 

Fro m 4 I 53.9 4 6 8 . 0 5 
T o 

S i02 

AJ203 

Fe203 

FcO 

M gO 
C aO 

N a20 

K 20 

Ti0 2 

MnO 

P20 s 

LOI 
Total 

Fe 20 3t 

FcO* 

C02 

Mg# 

Fe# 
MALI 

Sc 
v 

C r 
Co 
Ni 

C u 

'bJ 

Pb 
Au 

Ag 
S n 

Sb 
w 
F 

s 
Tl 

As 

Cs 
Ba 

Rb 

S r 
Th 

u 
y 

Zr 

47.91 

11 .44 

5.53 

9.52 
6. 18 

9.38 

2.44 

1.3 1 

2.080 

0.332 

0.329 

1.00 
97.45 

16. 11 

14.50 

0.02 

40.59 

0.6 1 
-5 .63 

31.4 

268 

30 
40 

40 
220 

2 10 

8 
I 

0.25 
4 

0.1 

0.25 
1578 

0.35 

0.25 

2.5 

0.05 

40 1 

13 
343 

1.85 

0 .85 
42 .6 

250 

49 .76 

14.35 

2.78 

9.39 
5.63 
9.68 

2.50 

0.90 

1.954 

0.202 

0.2 11 

0.95 

98 .32 

13.21 

11 .89 

0.06 

43.17 

0.63 
-6.28 

36.5 

336 
70 
42 

60 
2 10 
120 

2.5 
I 

0.25 
2 

1.4 

176 
0.03 

0.25 

2.5 

0 .5 
2 11 

2 1 

258 

1.39 
0.39 
32 
160 

55.23 

16.48 

3 .0 1 

5.05 

3.16 
5 .72 

4 .0 1 

2 .56 

1.827 

0.107 

0.599 

0.77 
98.52 

8.62 

7.76 

0. 1 

39.50 

0.62 

0 .86 
16.0 

140 

10 
25 

30 
30 
130 
14 

3 
0 .1 

0.25 
11 28 
0.11 

0.4 1 

2.5 

0 .4 

11 40 

73 

749 

2.96 
0.72 

37.6 
463 

54.59 

15.87 

2.54 

5.93 
4 .6 1 

6. 12 

3.63 

2.33 

1.870 

0.098 

0.655 

0.9 1 
99. 16 

9 .14 

8.22 

0 .09 

47.33 

0.56 
-0. 16 

15.0 

120 

30 
31 

50 
20 

11 0 
10 

I 

0.25 

3 
0 .1 

0.25 
1564 
0.15 

0.66 

2.5 

0 .7 

838 
107 

77 1 

3.22 

0.7 
3 1.5 

227 

41.33 

48.59 

12.29 

6.25 

8.44 
4 .3 1 

7 .94 

2 .40 

2.00 

2.554 

0.23 1 

0.3 10 

1.76 
97.07 

15.62 

14.06 

0 .83 

32.96 

0.66 
-3.54 

38. 1 

423 
10 

39 

40 
3 10 
420 

10 

7 

0.6 
2 

0.5 

2.5 

595 

0.09 

0.46 

2.5 

2.2 

577 

66 

238 

2.42 

0 .77 
48 .1 
239 

54.42 

47.4 1 

12.25 

7. 19 

7.93 
4.47 

9.34 

2.36 

0.48 

2.533 

0.233 

0.295 

2.83 
97.34 

16.00 

14.40 

1.38 

33.22 

0.64 
-6.50 

39.6 

439 
10 

39 

40 

450 
140 
12 

I 

0.25 

2 

0.5 
0.25 
257 
0.1 

0.25 

2 .5 

0. 1 

144 

7 

249 
2. 16 

0.62 
43.5 

198 

68 . 55 

51.1 2 

12.69 

5.38 

9.40 
4 .34 

7.45 

3 .28 

1.18 

2.576 

0.237 

0.354 

1.06 
99.08 

15 .82 

14.24 

0.42 

32.84 

0.68 
-2 .99 

38.4 

402 
10 

41 

40 

270 
140 
10 

0.25 

2 
0 .2 

0.25 

363 
0. 13 

0.08 
2.5 

0 .6 

384 

28 

2 11 

2.6 1 

0.76 
52.3 

257 
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Sa mp le 091\11\10 10 0 9 1\11\1 0 11 09 1\11\1 0 12 091\11\10 16 091\11\1064 091\11\1065 091\11\1066 

Rock T y p e Dio rit e Dio rit e D io rit e Dio r i l e Dio ri te Dio rite Dio rit e 

Eas tin g 4 9775 3 4 9 8 076 4 9 7 5 85 4 9 7 380 500 5 8 2 500582 500582 
N o rthin g 5 50 6 016 5506597 5 5 06680 5 5 0 5 7 19 55 0 4 43 1 550 4 43 1 550 4 43 1 
Drill H o le 0 8 -V K -05 08 - V K- 05 08-VK-05 

From 41 53 . 94 6 8 . 05 
To 4 1.33 54.42 68 . 55 

Nb 35 9.6 23.2 18.7 14.2 13.1 14.8 
Hf 5.4 3.8 9 .7 5 5.4 4 .7 5.7 
Ta 0.89 1.49 1.3 1.06 0.9 1 0.83 0.99 
Ga 23 19 26 21 2 1 2 1 21 
Ge 2.4 1.8 1.4 1.4 1.9 1.9 1.7 
Ut 24 .5 12 .6 70.2 66.4 19.9 17.5 2 1 
Ce 56 30. 1 152 134 45 .1 40.5 47.4 
Pr 8. 15 4.52 20 17.2 6.41 5.84 6.78 
Nd 34. 1 20 .9 77.4 63.4 28.5 25.9 30.6 
Sm 7.27 5.24 13 I 0.4 7.3 6.49 7.86 
Eu 2.53 1.8 2.97 2.27 2.38 2. 14 2.54 
Gd 8.09 6.81 10.7 8.93 9.52 8.53 10.3 
Tb 1.29 1.07 1.46 1.1 8 1.52 1.44 1.62 
Dy 7.53 6.2 1 7.43 6. 1 8.93 8.55 9.4 
Ho 1.48 1.21 1.3 1.1 1.78 1.67 1.88 
Er 4.34 3.41 3.65 3.03 5.02 4.69 5.44 

Tm 0.634 0.483 0.504 0 .434 0.7 16 0.673 0.782 
Yb 4.02 2.98 3.07 2.76 4.52 4.29 4.97 
lAJ 0.639 0.448 0.459 0.4 16 0.712 0.664 0.769 

(UtNb)cN 4.4 3.0 16.4 17.3 3.2 2.9 3.0 
(Ui/S m )cN 2. 18 1.55 3.49 4.12 1.76 1.74 1.72 
(GdNb)cN 1.66 1.89 2.88 2.68 1.74 1.64 1.7 1 

11 1 



Samp le 09MM068 09MM086 09MM09 1 09MMIIO 09M MII9 09MM I3 7 

RockTyp c Diorite Diorite Diorite Diorite Diorit e Dio rite 

Eas ting 500867 499323 500627 500509 500734 500388 

Northing 5504418 5504316 5504286 5504380 5504423 5503275 
Drill Hole 

From 

To 

Si0 2 

AI203 

Fc203 
FcO 

MgO 
CaO 

Na20 

K 20 

Ti0 2 

MnO 

P20 s 
W I 
Total 

Fc20 3t 

FeO* 

C02 

Mg# 
Fe# 

MAU 
Sc 
v 

C r 
Co 
Ni 

Cu 
'hi 
Pb 

Au 

Ag 
S n 

Sb 
w 
F 

s 
Tl 

As 

Cs 
Ba 

Rb 
S r 

T h 

v 
y 

Zr 

51 09 

13.25 

6.56 

7.85 

4.60 
7.08 

3.04 

1.46 

2.537 

0.235 

0.355 

1.1 5 

99.20 

15.28 

13.75 

0.05 

34.92 
0.63 
-2 .59 

37.4 

388 
10 

41 

30 
280 

130 
13 

0.25 
2 

2.5 
0.25 

282 

0.04 

0 .08 
2.5 

0.3 

462 

26 

283 
2.49 

0.76 
50.4 

246 

47.18 

14 .37 

3. 10 

8.84 
6.70 

10 .59 

2.40 

0.38 

1.887 

0.202 

0. 181 

1 77 

97.60 

12.9 1 

11 .62 

0.22 

48 .03 
0.57 
-7.8 1 

41.7 

308 

130 
47 

80 
230 

80 
6 
5 

0.25 

0.5 
1.2 

1.5 

155 
0.02 

0.25 
12 

0.3 

62 
5 

26 1 
0.68 

0.16 
29.1 

123 

50.73 

12 .60 

4.95 

9 .12 
4.08 
8.18 

3 09 

0.83 

2.487 

0.226 

0.4 10 

1.17 

97.87 

15.09 

13.58 

0.3 1 

32.5 1 
0.69 
-4 .26 

38.3 

393 

10 
40 

30 
270 

140 
II 

8 
0.5 

2 
0.1 

5.1 

266 
0.04 

0.25 
2.5 

0 .5 

233 
16 

231 
2.67 

0.77 
53 .6 

258 

50.82 

12.74 

4 .63 

10.06 

4 02 
8.13 

2.71 

0 .84 

2.6 12 

0.238 

0.368 

0.62 

97.79 

15.8 1 

14.23 

0.01 

3 1.18 

0 .7 1 
-4.58 

37.1 

357 

10 
40 

30 
240 

130 

7 

I 

0.25 
2 

0 .6 
2. 1 

3 19 

0.2 

0.25 

2.5 
0.2 

232 
14 

235 

2.48 

0.77 
53.6 

259 

50.29 

12.71 

6 .25 

8.48 
4 .27 

7 .70 

2.96 

1.1 I 

2.597 

0.225 

0.320 

1.29 

98.21 

15.67 

14. 11 

0 .36 

32.67 

0.67 

-3.64 

36.3 
376 

10 

38 

30 
260 

130 

9 

0 .25 
2 

0 .9 
2.4 

204 
0.06 

0. 12 

2.5 

1.2 

306 
25 

225 

2.32 

0.7 
49.1 
230 

49.46 

13.2 1 

4.04 

9.38 

5.20 
8.23 

3.05 

0.92 

2.05 1 

0.2 19 

0.257 

1.02 

97.04 

14.46 

13.01 

0.03 

39.08 
0.64 
-4.26 

40.6 

348 

30 
42 

40 
220 

120 

6 

4 
0.25 

I 

0.8 
4.3 

155 1 

0.06 

0.07 
2.5 

0.3 

313 
18 

254 

1.48 

0.44 
36 

168 

H S09- IA 

Dyk e 

5 15143 

5534772 

46.61 

14. 18 

5.40 

7. 11 

6.49 

10.10 

1.06 

1.44 

1.725 

0.192 

0. 172 

2.74 

97.22 

13.29 

11 .96 

n/a 

46.54 

0.52 

-7.60 

n/a 

275 

100 

29 

70 
280 

130 
25 

n/a 

0.25 
0.5 

0. 1 
0.25 

245 
n/a 

0.23 

2.5 

0.9 
141 

34 

455 

1.03 

0.4 
28.5 

127 
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S am p ie 09MM 06 8 09 MM 086 0 9 MM0 9 1 0 9 M M 110 09MM 119 09 M M 137 HS09- IA 

Rock Ty p e Dio rit e Dio rit e Oio rite Dio rit e Dio ril e Dio rite D y k e 

Eas tin g 500 8 67 4 99323 5006 2 7 50 0 509 5007 34 50038 8 SIS 14 3 

No n h ing 550 4418 55043 16 5 50 42 86 55 0438 0 550 442 3 5503 275 553 4 7 7 1 
Drill l·l o le 

F ro m 

T o 

Nb 14.4 7.8 12.8 16.4 14 .6 10.4 8.7 
Hf 5.6 3. 1 6 . 1 5.9 5.3 4 3 
Ta 0.94 0.55 0.97 l.O I 0.98 0.63 0 .55 

Ga 2 1 I 8 20 2 1 20 19 19 
Ge 1.8 1.8 1.6 1.7 1.7 1.7 2.2 
La 19 .9 8.51 2 1.2 22 19.6 15.3 13.3 

Ce 45.7 21.2 49.4 51. I 45.7 35. I 29.2 
l' r 6.7 3.34 7.14 7.45 6.6 1 5 .05 3.88 
Nd 29 .7 16 32.6 33.3 29.6 22.9 17 

S m 7.57 4.48 8.14 8.35 7.46 5.76 4.28 
Eu 2.44 1.6 1 2.52 2.55 2.42 1.93 1.46 

Gd 9.62 6.0 1 10.6 10.4 9.6 7.5 1 5.68 
Tb 1.56 0.98 1.68 1.68 1.5 1.2 1 0.87 

Dy 9.1 I 5.79 9.99 9.9 8.96 6.99 5.34 

H o 1.8 1.11 1.95 1.96 1.82 1.39 1.07 
Er 5.13 3.09 5.6 5.57 5.23 3 .9 1 3. 15 

Tm 0.743 0.439 0 .796 0 .826 0 .742 0 .563 0.447 
Yb 4.79 2.76 5.03 4.97 4.63 3 .53 2.87 

lAJ 0.747 0.42 1 0.777 0.774 0 .707 0 .53 1 0.474 

(LaNb)c~ 3.0 2.2 3.0 3.2 3.0 3. 1 3.3 

(La/S m)cN 1.70 1.23 1.68 1.70 1.70 1.7 1 2.0 1 

(Gd/Yb)cN 1.66 1.80 1.74 1.73 1.72 1.76 1.64 
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Sam pie 

Rock Type 

Eas ting 
No rtbin g 

Drill Hole 

From 
To 

Si02 

Al203 

Fe20 3 

FeO 
MgO 
CaO 

Na20 

K 20 

Ti0 2 

MnO 

P20 s 
WI 

Total 

Fe203t 
FeO* 

C02 

Mg# 
Fe# 

MALI 

Sc 
v 
Cr 
Co 

Ni 
C u 

Zn 
Pb 

Au 

Ag 

Sn 

Sb 
w 
F 
s 
Tl 

As 

Cs 
Ba 

Rb 
Sr 
Th 

u 
y 

Zr 

09MM041 

D y ke 

500582 
5504442 
08-VK-01 

77.6 

77.83 

63 .3 I 

I5 .58 

1.60 

1.90 
2.05 
3.64 

3.73 

3.03 

0.608 

0.048 

O. I 92 

4.47 
IOO. I7 

3.72 

3.34 

2.49 

49.52 

0.48 
3. I3 
6.9 

62 

30 
IO 

20 
20 

50 
I4 

I 

0.25 

I 

0.1 

2.6 
527 

0.07 

0.37 

2.5 
1.8 

718 

89 
347 
10.5 

2.43 
12 .1 
204 

09MM046 

Dyke 

500582 
5504431 

08- VK-03 
18 .2 

18.5 

63.58 

14.0I 

0.69 

2.42 

1.76 
3.65 

2.77 

3.65 

0.536 

0.058 

0.16 1 

6.06 
99.35 

3.38 

3.04 

4.77 

48 .15 
0.58 
2.77 

6 .5 

60 
30 

9 
20 

5 

40 

58 

32 
0.25 

2 

2.2 

8.8 
1274 

0.39 

0.66 

2 1 
1.4 

632 

134 
34 1 

9.84 

2.29 
10.5 
186 

0 9 MM0 6 2 

Dyk e 

500582 
5504431 

08-VK-05 

2 5.75 

26.1 

61.26 

15.31 

0.97 

2.27 
1.63 
3.44 

2.9 1 

4 .01 

0.568 

0.058 

0.175 

6.13 
98.73 

3.50 

3 .15 

nla 

45.45 

0 .58 
3.47 

nla 

55 
20 

7 

20 

5 
50 
II 

n/a 

0 .7 
1 

0.7 

5 .9 
1490 

n/a 

0.89 
14 

l.7 
469 

136 
292 
10.2 

2.47 
10.5 
19 1 

09MMI03 

D y k e 

500584 
5504443 

6 1.65 

16. 19 

2.50 

2.28 

1.40 
2.57 

4.9 1 

3.43 

0.954 

0.053 

0.3 10 

2.36 
98.6 1 

5 .03 

4 .53 

2 .43 

33.22 
0.62 
5.77 
8.3 

55 

30 
10 

10 
10 
70 

8 
I 

0.25 

1 

2 
1.9 
744 

0.05 

0.4 

2.5 
1.8 

1300 

82 
357 
I 0.4 

2.23 
11.2 
192 

09MMI06 

Dyk e 

50055 4 
5 5045 39 

63 .1 3 

15.49 

1.74 

1.65 
1.84 
3.37 

4 .1 0 

2.96 

0 .604 

0.043 

0. 187 

4.50 
99.60 

3.57 

3 .2 1 

3.74 

47.87 

0.47 
3 .68 
6.7 

53 

30 
9 

20 
10 

60 
16 

I 

0.25 

I 

1.2 
0 .9 
599 
0.12 

0.7 
12 

2. 1 

797 
126 

332 
10.3 

2.2 1 
12 

193 

HS 09-59C 

Dyke 

50058 2 
5504566 

6 1.24 

15.23 

1.68 

1.70 
1.68 
3.80 

3.43 

3.36 

0.595 

0.050 

0. 170 

6.46 
99.40 

3.58 

3.22 

nla 

45 .50 

0.50 
3.00 
n/a 

53 
30 
7 

30 
20 

60 
14 

n/a 

0.6 
0 .5 

1.1 

0.7 
452 

nla 

0.66 

2.5 
1.4 

11 00 

97 
266 
9.46 

2. 13 
9.5 
176 

09 MM051 

Mzg ' 

499 6 57 
5503874 

75 .2 1 

14.12 

0.63 

0 .0 1 
0. 12 

0 .25 

4.57 

4.44 

0.059 

0.004 

0.009 

0.39 
99.82 

0.64 

0.57 

0.03 

25.62 

0.07 
8.76 
0.7 

2.5 
10 

0.5 

10 

5 

120 
42 

I 

0.25 
0 .5 

0 .1 

1. 1 

80 
0.005 

0.86 

2.5 
0.1 

548 
134 

104 

3.53 

5. 15 
5.3 
48 
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Samp le 09MM041 09MM046 09MM062 09MMI03 09MM I06 HS 0 9 -59C 09MM05 1 

R o < k Type D y ke Dyke Dyke Dyke Dyke D y ke Mzg J 

Eas ting 500582 500582 500582 500584 500554 500582 499 6 5 7 
North ing 5504442 550443 1 550443 1 5504443 5504539 5504566 55038 7 4 
Dri ll Hole 08-VK-01 08-VK-03 08- VK-05 

From 77.6 18 . 2 25.75 
To 77 . 83 18 . 5 2 6. 1 

Nb 6.3 6.6 6 6.4 6.5 5.4 4 .5 
Hf 4.3 3 .9 4 .2 4.2 4.3 3.9 1.9 
Ta 0.44 0.38 0.4 0.42 0.41 0.37 0. 13 
Ga 21 23 22 20 19 19 20 
Ge I 1.8 2.1 I I I 
u. 39.2 36.6 38.9 44.2 42.3 37.3 1.94 
Ce 73 .9 68.9 74 74.8 75 .6 70.2 4.51 
Pr 8.58 7.93 7.9 1 9.11 8.89 7.47 0.44 
Nd 30.3 27 .4 27 31.8 30.8 25.7 1.8 
Sm 4.81 4.24 4 .22 4 .74 4.55 4.01 0.52 
Eu 1.23 1.05 1.01 1. 16 1.1 6 1.03 0.336 
Gd 3.8 3.4 1 3.13 3.7 1 3.69 3.12 0.73 
Tb 0.48 0.43 0.38 0.46 0.46 0.37 0. 14 
Dy 2.35 2. 17 2.15 2.34 2.33 1.97 1 
Ho 0.42 0.3 8 0.37 0.4 1 0.4 1 0.36 0.22 
Er 1.09 1.04 1.05 1.1 3 1.11 1.0 I 0.65 

Tm 0.152 0.144 0.145 0.155 0.151 0. 134 0.094 
Yb 0.95 0.88 0 .9 0.9 0.91 0.82 0.57 
Lu 0. 136 0.127 0. 143 0.131 0.135 0.123 O.D78 

(L:INb)cN 29.6 29.8 3 1.0 35.2 33.3 32.6 2.4 
(U./S m)cN 5.26 5.57 5.95 6.02 6.00 6.00 2.4 1 
(Gd!Yb)cN 3.3 1 3.2 1 2.88 3.41 3.35 3. 15 1.06 
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Sample 09MM055 09MM099 09MMI09 09M MIII 09MMII3 

RockTy pe Mzg' M zg' Mzg' Mzg ' Mzg ' 

Eas tin g 500651 500578 500553 50052 1 500598 
Northing 5504651 5504453 5504528 5504452 5504175 
Drill Hole 08-VK-04 

From 2 9.8 
To 30.4 

Si02 

Al20 3 

Fc203 
FcO 
MgO 
C aO 

Na20 

K 20 

Ti02 

MnO 

P20s 
LOt 

Total 

Fc203t 
FeO* 

C02 
Mg# 

Fe# 
MALI 

Sc 
v 

C r 
Co 
Ni 

Cu 

Zn 
Pb 
Au 

Ag 

Sn 
Sb 
w 
F 
s 
Tl 
As 

Cs 
Ba 

Rb 
S r 
Th 

u 
y 

Zr 

72.83 

13 .94 

n/a 

n/a 

0.53 

0.78 

3.14 

6. 10 

0.086 

0.010 

0.023 

1.23 
98.67 

0.93 

n/a 

0.56 

50. 16 

8.45 
0.70 
2.5 
10 

0.5 
10 
10 
15 
43 
190 

0.25 
8 

0.1 
2.2 
275 
0.28 
0.69 
32 
0.5 
995 
11 3 

180 
10.7 
17.7 
4.8 
9 1 

72.08 

13.96 

0.34 

0.87 
0.32 
0.77 

3.84 

4.90 

0.144 

0.014 

0.031 

0.7 1 
97.99 

1.31 

1.18 

1.66 

30. 15 
0.73 
7.97 

0.6 
7 
10 

0.5 
10 
5 

15 
29 

0.25 
0.5 
0.1 

0.25 
160 

0.02 
0.65 
2.5 
0.4 

1300 
Ill 

287 
3. 15 
1.25 
3.9 
162 

74.9 1 

13.77 

0.47 

0.18 
0. 14 
0 .15 

4 .24 

4 .83 

0.070 

0.006 

0.009 

0.60 
99.39 

0.68 

0.61 

0.03 

26.28 
0.58 
8.92 

1.0 
2.5 
10 

0.5 
10 
5 
15 
27 
28 

0.25 
0.5 
0.1 

0.25 
11 5 

0 .0 1 
0.5 
2.5 
0.2 
727 
82 
135 

5.2 1 
4. 16 
5.5 

49 

74.35 

13.53 

n/a 

n/a 

0.13 
0. 13 

3.40 

5.53 

0.091 

0.004 

0.03 1 

0.90 
98. 10 

0.7 1 

n/a 

0.04 

25.37 

8.8 1 
0.6 
2.5 
10 

0.5 
10 
90 
15 

62 
647 
0.25 
0.5 
0.5 

62.3 
303 
0.24 

0 .76 
2 1 
0.5 
934 
120 
108 

8.93 
10 

5 .5 

12 1 

74.44 

13.92 

0.66 

0.37 
0.18 
0.09 

3.07 

5.96 

0.099 

0.005 

0.023 

0.88 
99.70 

1.08 

0.97 

0.02 

22.60 
0.68 
8.93 
0.9 
2.5 
10 

0.5 
10 
10 
15 

37 
59 

0.25 
0.5 
1.7 
9.8 
375 
0.04 
0.97 

5 

1010 
146 

96 
9.65 
5.37 
6. 1 
106 

0 9 M M 114 0 9 M M 12 0 

Mzg ' Apsy 

500545 5 143 55 

5504 13 7 5532860 

71.53 

14.47 

0.52 

0.80 
0.32 
0.97 

3.66 

5.34 

0. 183 

0 .023 

0.051 

0.65 
98.5 1 

1.41 

1.27 

0.03 

28.45 

0.72 
8.02 
1.2 
7 
10 

0.5 
10 
5 

30 
36 
1 

0.25 
0.5 
0.8 
4.2 
25 1 
0.03 

0.96 
2.5 
0.4 

1790 
146 

361 
14 

1.55 
3.8 
151 

6 1.55 

15.55 

2.42 

3.03 
1.84 
2.53 

3.40 

4.2 1 

1. 168 

0.062 

0.394 

1.72 
97.88 

5.79 

5.21 

0. 17 

36.20 
0.62 
5.08 
13.0 
58 
10 

9 
10 
10 

100 

27 
I 

1.1 
2 

1.5 
8.5 
769 
0.02 
0.53 
2.5 
0.9 

1650 
94 

282 
4.7 1 
2.03 
45 .6 
6 19 
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Sam pic 091\11\1055 091\11\1099 091\1 M 10 9 09MM Ill 09MM II3 091\1 M 114 09 MMI2 0 

Ro c k Type Mzg 1 Mzg 2 Mzg' Mzg 2 Mzg 1 Mzg 2 

A ps y 
Easting 500651 500578 500553 500521 500598 500545 514 3 s 5 

No rthin g 5504651 5504453 5504528 5504452 5504 175 5504137 5532860 
Dri ll B o le 08-VK-04 

From 29.8 
To 30.4 

Nb I 2 1.8 1.4 2.3 2.3 22 
Hf 2.5 4 .2 1.5 3 .4 3 3.7 13 
Ta 0.02 0.08 0 .05 0.02 0 .03 0.03 1.3 
Ga 19 18 17 16 19 20 25 
Ge 1.3 I I 1.5 1.7 I 1.5 
La 15 12.2 5 .06 14.6 14.6 37.3 66.3 
Ce 28.4 24.6 9.61 26.2 23.7 56.8 137 
Pr 3.55 2. 11 1.09 3.24 2.76 6.59 17.8 
Nd 13.6 7.14 4.19 12. 1 9 .61 2 1.6 70.7 
Sm 2.72 1.08 0.99 2 .36 1.76 2.67 12.8 
Eu 0.742 0.605 0.464 0.625 0.6 18 0.95 1 3.45 
Gd 2.23 0.82 1.26 2.2 1 1.7 1.53 12.2 
Tb 0.25 0.1 1 0.21 0.28 0.25 0. 15 1.73 
Dy 1.1 4 0.63 1.26 1.39 1.32 0.67 9.03 
Ho 0.18 0. 12 0.24 0 .24 0.23 0 .12 1.66 
Er 0.41 0.36 0.64 0 .58 0.59 0.3 4.67 

Tm 0.055 0.06 0.089 0.08 0.079 0.045 0.665 
Yb 0.34 0.45 0.55 0 .51 0.51 0.33 4. 12 
Lu 0.05 1 0.08 0.08 0.079 0.073 0.059 0.629 

(LaNb)cl\ 31.6 19.4 6.6 20.5 20.5 81. 1 I 1.5 

(La/Sm)cN 3.56 7.29 3.30 3.99 5.36 9.02 3.34 
(Gd/Yb)cl\ 5.43 1.51 1.90 3.58 2.76 3.84 2.45 
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Sa m pie 09MM I2 1 09MMI22 09MM I2 5 09MM 12 6 1-1 509 - 10 7 1-1509-108 

R oc k Type A Jl S y A ps y DRG ' DRG ' G LIS' G U S ' 
Ea s t ing 5 133 56 5 117 97 505431 50574 1 500586 500567 

No rthin g 5530438 5526194 
Drill 1-lo le 

5514440 5513849 54 9550 1 54 948 34 

From 

To 

Si02 58.47 72.95 71.77 7 1.27 64.74 60.96 
AJ203 14.65 13.02 14.35 14.43 16.05 15 .73 
Fc203 3.43 1.24 0.64 0.70 1.36 3.06 
FcO 4.38 1.33 0.82 0.90 2.81 3.52 
MgO 1.89 0.65 0.59 0.85 0.86 1.28 
CaO 4.48 1.03 I .62 0.89 2.00 2.92 
Na20 3.74 3.09 4 .00 4 .14 4.59 4.03 
K20 3.28 5.65 4 .23 4.43 4.88 4.00 
Ti02 1.7 I 2 0.333 0.260 0.290 0.768 1.1 32 
MnO 0.138 0.024 0.035 0 .036 0. I 15 0. 173 
P20s 0.634 0.077 0. 104 0.099 0. 180 0.302 
LO I 1.42 1.32 0 .52 1.04 0.58 0.76 

Total 98.23 100.71 98.94 99.08 98 .94 97.88 
Fe20 3t 8.30 2.7 1 1.55 1.70 4.49 6.97 
FcO* 7.47 2.44 1.40 1.53 4.04 6.27 
C02 0.09 0.67 0.005 0 .12 0.03 n/a 
Mg# 28.84 29.96 40.46 47.19 25.46 24 .64 
Fe# 0.70 0.67 0.58 0.5 1 0.77 0.73 

MAU 2.54 7.7 1 6.62 7.68 7.47 5.11 
Sc 16.0 4.3 3 .4 3.4 12.0 n/a 
v 69 8 20 21 23 39 
Cr 10 10 10 10 10 10 
Co 13 2 3 3 4 5 
Ni 10 10 10 10 10 10 
Cu 5 5 5 5 5 5 
Zn 160 15 30 15 90 100 
Pb 21 15 45 29 32 13 
Au I I I I I n/a 
Ag 1.5 0.5 0.25 0.25 1.5 2.7 
Sn 2 0.5 0.5 2 2 
S b 0.1 0.5 1.2 0.4 0. 1 0. I 
w 3. 1 7.8 1.2 2.6 0 .25 
F 11 55 351 578 3 I I 462 360 
s 0.07 0.0 1 0.005 0.005 0.005 n/a 
Tl 0.49 0.79 1.04 0.94 0.5 0.5 I 
As 2.5 2.5 2.5 2.5 2.5 2.5 
Cs I 0.4 7.2 5.7 2.2 I .9 
Ba 18 10 902 533 444 1960 1290 
Rb 78 145 202 182 106 78 
Sr 464 166 304 246 168 183 
Th 7.03 9.7 22.7 19.5 8.24 6.8 
u 3.23 2.75 7.56 5.64 1.9 2.0 1 
y 56 33.7 8 7.4 45.9 4 1.8 
Zr 826 330 157 133 764 726 
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Sa m pie 09MM I21 091\11\1 122 091\11\1 125 091\1 i\1 12 6 H S09-107 I-IS09-108 

Rock Type A p s y ;-\ ps ~· DRG ' DRG ' GLIS' GLIS' 

Eas li ng 5 1335 6 5 11 797 50543 1 505741 500586 500567 
No rthin g 5530438 5526 194 55 144 40 5513849 5495501 5494834 
Drill Hole 

From 
To 

Nb 32.2 15 .3 17.1 11.6 23.2 19.3 
Hf 18.2 8.2 4 .3 3.4 14.3 13 .5 
Ta 1.84 0.85 1.83 1.23 1.43 1.25 
Ga 24 20 22 20 2 1 2 1 
Gc 1.7 14 1.4 1.3 1.7 1.9 
La 87.7 79.8 37.6 25.2 42.3 45 
Cc 18 1 158 68. 1 48 88.6 93.9 
Pr 24.5 19.2 7.29 5.32 11.7 I 1.6 
Nd 95.7 68. 1 22.8 17.7 45.9 45.8 
Sm 17.6 11.5 3.24 2 .66 9.03 9.04 
Eu 4. 18 1.58 0.652 0.624 3.27 3.6 
Gd 16.7 9.78 2.4 2. 15 9.79 9.77 
Tb 2.33 1.4 0.3 1 0.28 148 1.36 
Dy 12 7.32 1.5 1.44 8.56 7.97 
Ho 2. 18 1.3 0.27 0.26 1.71 1.55 
Er 6 346 0.77 0.72 4.87 4.63 

Tm 0.849 0.475 0.1 12 0.105 0.7 13 0.676 
Yb 5.3 2.88 0.73 0.69 446 4.27 
Lu 0.807 0.439 0.116 0. 107 0.673 0.65 

(La/Yb)c~ 11.9 19.9 36.9 26.2 6.8 7.6 

(La/Sm)cN 3.22 448 749 6. 12 3.02 3.21 

(Gd!Yb)cN 2.61 2.8 1 2.72 2.58 1.82 1.89 
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Table B.2: Mass gain and loss calculation after Grant ( 1986) for the most altered sample 
09MM058 (C0

) and the least altered sample 09MM042 (C3
) . 

co ca flC;/C;0 co ca flC;/C;0 

Majo rs Si02/20 3 .06 3.19 0.04 REE's La/100 0 .93 0.92 -0 .01 
(%) Al203/3 2 .78 4.63 0.40 (ppm ) Ce/100 2.12 1.89 -0.12 

Fe203 2 .22 1.33 -0.67 Pr 30.20 24.88 -0.21 
FeO 2 .71 2.42 -0 .12 Nd/100 1.14 0.91 -0.25 
MgO 1.64 0 .92 -0 .78 Sm 19.00 15.70 -0 .21 
CaO 3.14 3.47 0.09 Eu 3.24 2.57 -0.26 

Na20 4.31 3.01 -0.43 Gd 15 .70 13.26 -0 .18 
K20 4 .75 4.40 -0.08 Tb 2 .28 1.82 -0 .25 
Ti02 0.99 0.84 -0 .18 Dy 12 .40 10.57 -0 .17 
MnO 0.09 0.07 -0 .23 Ho 2.41 1.96 -0.23 
P205 0.34 0.24 -0.39 Er 7.06 5 .73 -0 .23 

LO I 1.08 4.56 0.76 Tm 1.03 0 .81 -0 .27 
Fe203t 5 .23 4 .03 -0.30 Yb 6.33 4 .87 -0 .30 

FeO* 4.71 3.62 -0.30 Lu 0.93 0 .77 -0 .2 0 
C02 0.19 0.70 0.73 

Traces Sc 7 .20 8 .18 0.12 

(ppm) v 60.00 51.00 -0 .18 

Au (ppb) Cr 10.00 10.00 0 .00 

Co 9 .00 6.00 -0.50 

Cu 20.00 47.50 0.58 

Zn/100 1.10 2 .68 0.59 

Pb/100 0 .29 1.64 0 .82 

Au/1000 0.01 3.13 1.00 

Ag 1.50 2 .75 0.45 

Sn 5 .00 4.50 -0.11 

Sb 0.40 1.15 0 .65 

Tl 1.02 0 .9 1 -0 .1 2 

As 2.50 68.25 0 .96 

w 2 .90 15.85 0 .82 

Cs 0 .90 1.05 0.14 

Ba/1000 2 .50 1.33 -0.89 

Rb/150 0 .97 0 .78 -0 .24 

Sr/100 5 .73 3 .0 3 -0 .89 

Th 11.10 11.46 0 .0 3 

u 3 .3 8 2 .45 -0.38 
y 70 .20 5 3.18 -0 .3 2 

Zr/100 6 .74 4.72 -0 .4 3 

Nb/5 5 .04 3 .48 -0.45 

Hf 13 .90 10.23 -0 .36 

Ta 1.85 1.33 -0 .39 

Ga /5 5 .00 4 .80 -0 .04 

Ge 1.50 2.18 0 .3 1 
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APPENDIXC 

ARGON THERMOCHRONOLOGICAL DATA 

Table C. I (Below): 
40 

Ar-39 Ar analytical data. Asterisks denote steps excluded from plateau 
and inverse-correlation age calculations. )-values were determined through interpolation. 3

: 

As measured by laser in% of full nominal power (lOW), b: Fraction 39Ar as percent of total 
run, c - Errors are analytical only and do not reflect error in irradiation parameter J, d -
Nominal )-value, referenced to PP-20 (Hb3gr) = I 072 Ma (Roddick, 1983), * - Step not 
included in plateau or inverse isotope correlation age determination. All uncertainties 
quoted at 2cr level. 
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Power" 36ArP9 Ar 40 ArP9 Ar 

09MM024 Biotite; Jd = 0.016889 ± 0.000034 

* 1.8 0.001453 ± 0.001191 0.063083 ± 0.003169 

* 2.0 0.000789 ± 0.000295 0.083174 ± 0.00152 

* 2.2 0.000114 ± 0.000032 0.062978 ± 0.000468 

2.3 0.00004 ± 0.000035 0.063514 ± 0.000583 

2.4 0.000044 ± 0.000024 0.063788 ± 0.000391 

2.5 0.000026 ± 0.000021 0.06425 ± 0.000381 

2.6 0.000011 ± 0.000026 0.064294 ± 0.000433 

2.7 0.000015 ± 0.00004 0.064085 ± 0.000554 

2.9 0.000044 ± 0.000026 0.064051 ± 0.000442 

3. 1 0.000015 ± 0.000027 0.063963 ± 0.000555 

3.3 0.000003 ± 0.000022 0.064443 ± 0.000422 

3.5 0.000011 ± 0.000017 0.064554 ± 0.000488 

3.7 0.00001 ± 0.000018 0.064148 ± 0.000427 

3.9 0.000004 ± 0.000019 0.06445 ± 0.000473 

* 4.2 0.000023 ± 0.000074 0.06282 ± 0.000724 

* 4.8 0.00005 ± 0.000427 0.058005 ± 0.001718 

* 6.0 0.00051 ± 0.000996 0.049528 ± 0.002 14 

09MM1 13 Sericite; Jd = 0.016896 ± 0.000034 

* 1.8 0.000324 ± 0.00013 0.025772 ± 0.000707 

* 2.0 0.000039 ± .000036 0.074391 ± 0.000704 

* 2.2 0.0000 11 ± 0.000026 0.074199 ± 0.000549 

* 2.3 0.000009 ± 0.000031 0.072614 ± 0.000572 

2.5 0.000024 ± 0.000029 0.070769 ± 0.000559 

2.7 0.000036 ± 0.000072 0.071 382 ± 0.000647 

2.9 0.000026 ± 0.00002 0.070763 ± 0.0004 13 

3.0 0.000018 ± 0.000017 0.070702 ± 0.000394 

3. 1 0.00001 3 ± 0.000022 0.070304 ± 0.000444 

* 3.2 0.000033 ± 0.000032 0.068929 ± 0.00065 

* 3.3 0.000037 ± 0.000029 0.068981 ± 0.000595 

* 3.6 0.000056 ± 0.000068 0.066985 ± 0.000902 

* 6.0 0.000036 ± 0.000034 0.068 11 ± 0.000525 

% 40Ar 

A TM *40 
ArP9 Ar CalK f39 b (%) 

42.83 9.05 ± 5.62 0.000 0.11 

23.24 9.22 ± 1.06 0.0 12 0.67 

3.37 15.34±0. 19 0.007 4.32 

1.18 15.56 ± 0.22 0.000 4.01 

1.29 15.47 ± 0.15 0.010 6.37 

0.76 15.45 ± 0.13 0.015 5.89 

0.33 15.5 ± 0.16 0.000 5.53 

0.45 15.53 ± 0.23 0.000 3.55 

1.3 1 15.41 ± 0.16 0.015 4.53 

0.44 15.57 ± 0.18 0.032 6.83 

0.08 15.5 1 ± 0.14 0.015 12.44 

0.34 15.44 ± 0.14 0.016 18. 13 

0.30 15.54 ± 0.13 0.014 15.96 

0. 13 15.5 ± 0.14 0.017 9.42 

0.68 15.81 ± 0.39 0.091 1.90 

1.46 16.99 ± 2.25 0.3 11 0.25 

15.05 17. 15 ± 6.02 0.000 0.10 

9.5 1 35. 11 ± 1.79 0.0490 0.64 

1.1 5 13.29 ± 0.19 0.0050 5.2 

0.32 13.43 ± 0.14 0.01 30 6.9 

0.27 13.73 ± 0.17 0.0000 5.8 

0.72 14.03 ± 0.16 0.0250 6.79 

1.06 13.86 ± 0.33 0.0230 5.57 

0.77 14.02 ± 0.1 2 0.0090 14.37 

0.54 14.07 ± 0.11 0.0180 25.73 

0.38 14. 17 ± 0.13 0.0170 9.25 

0.97 14.37 ± 0.19 0.0060 5.67 

1.09 14.34 ± 0.18 0.0200 5.52 

1.64 14.68 ± 0.36 0. 1140 2.84 

1.06 14.53 ± 0.19 0.0 100 5.72 

Apptrent Age 

Mac 

256.6 ± 148.6 

261. 1 ± 28.1 

415.7 ± 4.5 

420.9 ± 5.2 

418.9 ± 3.6 

418.2 ± 3.2 

4 19.5 ± 3.8 

420.3 ± 5.5 

417.3 ± 3.9 

421. 1± 4.4 

4 19.6 ± 3.5 

418 ± 3.4 

420.5 ± 3.2 

4 19.4 ± 3.5 

427 ± 9.5 

455.1 ± 53.2 

458.8 ± 142.1 

840.2 ± 34.3 

365.4 ± 4.7 

369 ± 3.6 

376.5 ± 4.2 

383.7 ± 4. 1 

379.6 ± 8 

383.6 ± 2.9 

384.7 ± 2.6 

387.2 ± 3.2 

392. 1 ± 4.8 

39 1.4 ± 4.3 

399.8 ± 8.8 

396 ± 4.6 

122 



Power" 36 Ar /39 Ar 40 Ar /39 Ar 

09MM099 Serici te; Jd = 0.0 16829 ± 0.000034 

* 1.8 0.000317 ± 0.000092 0.022979 ± 0.000517 

* 2.0 0.000047 ± 0.000042 0.071070 ± 0.000672 

* 2.2 0.000022 ± 0.000026 0.073014 ± 0.000590 

* 2.3 0.000022 ± 0.000039 0.072458 ± 0.000597 

* 2.5 0.000039 ± 0.000031 0.071194 ± 0.000614 

* 2.7 0.000038 ± 0.000025 0.070340 ± 0.000411 

* 2.8 0.000027 ± 0.000020 0.068624 ± 0.000460 

* 2.9 0.000035 ± 0.00002 1 0.067323 ± 0.000490 

* 3.0 0.000025 ± 0.000020 0.068043 ± 0.000482 

* 3. 1 0.000034 ± 0.000029 0.067488 ± 0.000535 

3.2 0.000054 ± 0.000024 0.065466 ± 0.000465 

3.3 0.000104 ± 0.000080 0.064199 ± 0.000762 

3.6 0.000078 ± 0.000082 0.065899 ± 0.000832 

6.0 0.000058 ± 0.000044 0.064951 ± 0.000627 

09MM098 Sericite; Jd = 0.01 6894 ± 0.000034 

* 1.6 0.000798 ± 0.000509 0.015801 ± 0.000%6 

* 1.9 0.000244 ± 0.0001 14 0.02 1300 ± 0.000582 

* 2. 1 0.000052 ± 0.000020 0.067359 ± 0.000489 

* 2.3 0.000026 ± 0.000017 0.073414 ± 0.000424 

2.5 0.000015 ± 0.000020 0.072440 ± 0.000624 

2.7 0.000015 ± 0.000020 0.0723 17 ± 0.000502 

2.8 0.0000 11 ± 0.000024 0.072598 ± 0.000497 

2.9 0.000018 ± 0.000020 0.072562 ± 0.000464 

3.0 0.000010 ± 0.000016 0.072288 ± 0.000478 

3.1 0.0000 16 ± 0.000015 0.072103 ± 0.000481 

* 3.2 0.000014 ± 0.00001 7 0.07 1447 ± 0.000503 

* 3.3 0.000009 ± 0.000014 0.071406 ± 0.000454 

* 3.4 0.000020 ± 0.000018 0.071 183 ± 0.000425 

* 3.5 0.000008 ± 0.00001 7 0.070833 ± 0.000512 

* 3.7 0.00001 3 ± 0.00001 9 0.070691 ± 0.000485 

* 3.9 0.0000 16 ± 0.000019 0.0704 13 ± 0.000485 

* 4.2 0.000011 ± 0.000034 0.070265 ± 0.000529 

* 6.0 0.000017 ± 0.000018 0.070057 ± 0.000434 

o;o 40 Ar 

ATM 

9.32 

1.40 

0.65 

0.65 

1.16 

1.1 3 

0.79 

1.04 

0.75 

1.00 

1.57 

3.05 

2.29 

1.72 

23.48 

7.1 1 

1.52 

0.76 

0.44 

0.44 

0.34 

0.54 

0.30 

0.48 

0.40 

0.26 

0.57 

0.24 

0.37 

0.47 

0.3 1 

0.50 

39.46 ± 1.49 0.179 0.84 

13.87 ± 0.22 0.030 5.28 

13.61 ± 0.15 0.020 8.1 1 

13.71 ± 0.20 0.037 5.32 

13.88 ± 0.18 0.050 6.82 

14.06 ± 0.13 0.044 7.57 

14.46 ± 0. 13 0.039 16.19 

14.70 ± 0.14 0.039 13.45 

14.59 ± 0.14 0.032 11.83 

14.67 ± 0. 17 0.041 7.34 

15.03 ± 0.15 0.067 7.95 

15. 10 ± 0.41 0.102 2.30 

14.83 ± 0.41 0.0% 2.22 

15.13 ± 0.25 0.060 4.78 

~8.42 ± 10.11 0.118 0.04 

43.61 ± 2.00 0. 169 0.18 

14.62 ± 0.14 0.503 4.56 

13.52 ± 0. 11 0.64 1 7. 14 

13.74 ± 0. 15 0. 162 7.50 

13.77 ± 0.13 0.063 7.07 

13.73 ± 0. 14 0.042 4.99 

13.71 ± 0.12 0.056 4.58 

13.79 ± 0.11 0.040 6.66 

13.80 ± 0.11 0.046 6.76 

13.94 ± 0.1 2 0.026 9.37 

13.97± 0.11 0.033 8.48 

13.97 ± 0. 11 0.027 7.03 

14.08 ± 0.13 0.060 7.45 

14.09 ± 0. 13 0.099 6.64 

14. 14 ± 0. 13 0.103 3.81 

14.19 ± 0. 18 0.086 2.45 

14.20 ± 0.12 0.065 5.30 

Apparent Age 

Mar 

921.5 ± 27.2 

379.8 ± 5.4 

373.2 ± 3.8 

375.8 ± 4.9 

380.1 ± 4.4 

384.3 ± 3.3 

394.2 ± 3.2 

400. 1 ± 3.5 

397.4 ± 3.3 

399.4 ± 4.2 

408.3 ± 3.7 

409.9 ± 10.0 

403.2 ± 10. 1 

410.6 ± 6.0 

1078.3 ± 169.6 

995.8 ± 35. 1 

398.2 ± 3.4 

371.1 ± 2.6 

376.7 ± 3.6 

377.3 ± 3. 1 

376.3 ± 3.4 

375.8 ± 3.0 

377.9 ± 2.8 

378. 1 ± 2.7 

381.5 ± 3.0 

382.2 ± 2.6 

382.2 ± 2.8 

385. 1 ± 3. 1 

385.3 ± 3. 1 

386.3 ± 3. 1 

387.6 ± 4.4 

388.0 ± 2.9 
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APPENDIX D 

MICROTHERMOMETRIC DATA 

Table D.1: Microthennometric data for the Viking deposit gold occurrences. Key: Thor 
vein mineralized (09MM043), Thor vein barren (09MM 1 05), Viking trend stockwork 
(09MM081 ), North Thor mineralized (09MM 1 08), and Valhalla mineralized (09MM 167). 
ThTOT, Thc02, Tmclath, and Tmc02 are given in degrees Celsius. Pressure of fonnation given 
in Kbars and depths in kilometers. Homogenization to a particular phase is given in the 
phase column (v=vapor, l=liquid, and d=decrepitated). 

Sample Type FIA # F Tmc02 TmcJath Thc02 Thmr phase salinity x COz P (g/cc) Kbar Depth 

Vein High-grade 

09MM043 1 

09MM043 1 

09MM043 1 

09MM043 1 

09MM043 1 

09MM043 1 

09MM043 1 

09MM043 1 

09MM043 2 

09MM043 2 

09MM043 2 

09MM043 2 

09MM043 2 

09MM043 2 

09MM043 2 

09MM043 2 

09MM043 2 

Thor Vein Barren 

09MM105 2 

09MM105 2 

09MM105 2 

09MM105 2 

09MM105 2 

09MM105 2 

09MM105 2 

09MM105 2 

Viking Trend 

09MM081 2 

09MM081 2 

09MM081 2 

09MM081 2 

09MM081 2 

4a 1 0.5 -56.8 

4a 2 0.5 -56.8 

7a 1 0.6 -57.5 

7a 2 0.5 -57.5 

6 1 0.5 -57.7 

6 2 0.5 -57.7 

6 3 0.5 -57.7 

6 4 0.5 -57.7 

3 1 0.7 -56.8 

3 2 0.7 -56.8 

3 3 0.65 -56.8 

4 1 0.5 -56.8 

4 2 0.5 -56.8 

4 3 0.5 -56.8 

7 1 0.6 -57.5 

7 2 0.7 -57.5 

7 3 0.5 -57.5 

1 1 0.5 -56.3 

1 2 0.55 -56.3 

1 3 0.6 -56.3 

2b 1 0.65 -56.6 

2b 2 0.5 -56.6 

2c 1 0.65 -56.9 

2c 2 0.55 -56.9 

2c 3 0.5 -56.9 

11 1 0.75 -58.6 

11 2 0.75 -58.6 

11 3 0.65 -58.6 

11 4 0.6 -58.6 

13 1 0.5 -57 

6.6 

6.6 

6.8 

6.8 

6.2 

6.2 

6.2 

6.2 

6.6 
6.6 
6.6 

6.6 
6.6 
6.6 

6.8 

6.8 

6.8 

6.6 
6.6 

6.6 
6.6 

6.6 
6.6 
6.6 

6.6 

8.4 

8.4 

7.4 

7.4 

8.0 

25.3 315.0 

24.2 315.0 

22.4 318.0 

21.1 318.0 

28.6 319.0 

26.7 319.0 

25.0 315.0 

24.1 315.0 

29.4 312.5 

28.0 312.5 

29.0 312.5 

28.0 312.0 

28.0 312.0 

24.2 312.0 

19.5 282.2 

17.7 287.9 

19.0 280.0 

25.6 295.0 

23.5 305.2 

25.6 297.5 

14.0 265.0 

13.5 265.0 

26.2 290.0 

25.5 290.0 

24.4 290.0 

30.0 282.3 

29.5 282.3 

30.0 287.0 

30.0 276.4 

26.8 318.0 

v 

v 

v 

v 
v 

v 

v 

v 

v 

v 
v 
v 
v 
v 

d 

d 

d 

v 

v 
v 

d 

v 

v 

v 

v 

v 

d 

8.7 

8.7 

8.3 

8.3 

9.4 

9.4 

9.4 

9.4 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.3 

8.3 

8.3 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

5.5 

5.5 

7.3 

7.3 

6.2 

0.25 

0.26 

0.20 

0.26 

0.23 

0.24 

0.25 

0.26 

0.12 

0.13 

0.15 

0.24 

0.24 

0.26 

0.20 

0.15 

0.27 

0.25 

0.22 

0.19 

0.18 

0.28 

0.16 

0.22 

0.25 

0.10 

0.11 

0.14 

0.17 

0.25 

0.84 

0.85 

0.89 

0.87 

0.81 

0.83 

0.84 

0.85 

0.87 

0.88 

0.86 

0.82 

0.82 

0.85 

0.90 

0.93 

0.88 

2.04 

2.13 

2.58 

2.38 

1.71 

1.92 

2.07 

2.14 

2.26 

2.35 

2.03 

1.70 

1.75 

2.12 

2.71 

3.08 

2.45 

0.84 2.54 

0.87 2.30 

0.87 2.23 

0.93 3.32 

0.91 2.85 

0.88 2.30 

0.86 2.13 

0.85 2.07 

0.89 2.14 

0.90 2.24 

0.85 1.77 

0.83 1.67 

0.83 1.89 

7 

7 

9 

8 
6 

6 
7 

7 

8 

8 

7 

6 

6 

7 

9 

10 

8 

8 

8 

7 

11 

9 

8 

7 

7 

7 

7 

6 

6 

6 
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Table D.l Continued. 

Sample FIA # F Tmco2 Tmclath Thc02 Thro1 phase salinity x C02 P (gfcc) Kbar Depth 

09MM081 2 13 2 0.6 -57 8.0 25.5 316.0 v 
09MM081 2 13 3 0.6 -57 8.0 26.4 320.0 v 

09MM081 2 

09MM081 2 

09MM081 2 

09MM081 2 

09MM081 2 

09MM081 2 

09MM081 2 

13 4 0.7 -57 

12 1 0.55 -58.8 

12 2 0. 7 -58.8 

12 3 0.65 -58.8 

12 4 0.6 -58.8 

12 5 0.5 -58.8 

12 6 0.55 -58.8 

North Thor Mineralized 

8.0 

6.8 

6.8 

6.8 

6.8 

6.8 

7 

23.5 319.0 

24.0 256.8 

30.6 262.9 

26.3 256.8 

28.0 256.8 

30.6 268.0 

28.0 264.2 

v 
v 

v 
v 

v 

09MM108 2 21 1 0.5 -58.4 6.6 26.4 271.0 v 
09MM108 2 21 2 0.55 -58.4 6.6 27.8 265.0 

09MM108 2 21 3 0.5 -58.4 6.6 27.8 267.8 v 

09MM108 2 22 1 0.55 -57.8 6.8 9.7 290.0 v 

09MM108 2 22 2 0.5 -57.8 7.5 12.7 290.0 v 
09MM108 2 22 3 0.5 -57.8 7.5 12.7 290.0 v 

09MM108 2 22 4 0.5 -57.8 7.5 12.7 290.0 v 
Valhalla Mineralization 

09MM167 2 

09MM167 2 

09MM167 2 

09MM167 2 

09MM167 2 

09MM167 2 

09MM167 1 

09MM167 1 

09MM167 1 

15 1 0.5 -55.9 

15 2 0.5 -55.9 

15 3 0.5 -55.9 

17 1 0.5 -56.9 

17 2 0.6 -56.9 

17 3 0.6 -56.9 

16 1 0.55 -56.9 

16 2 0.6 -56.9 

16 2 0.55 -56.9 

6.6 

7.0 

7.0 

7.7 

7.7 

7.7 

6.8 

6.8 

6.8 

19.7 237.0 

17.5 237.0 

16.1 237.0 

19.0 278.1 

19.2 270.0 

21.3 270.0 

22.8 317.6 

29.3 317.6 

28.6 317.6 

v 

v 
v 
v 

v 
v 

v 

v 
v 

6.2 0.19 0.87 2.29 8 

6.2 0.19 0.87 2.23 7 

6.2 

8.3 

8.3 

8.3 

8.3 

8.3 

8.0 

0.14 

0.22 

0.12 

0.16 

0.18 

0.21 

0.21 

0.91 2.86 

0.87 2.40 

0.85 1.92 

0.88 2.52 

0.85 2.18 

0.77 1.35 

0.84 1.94 

10 

8 

6 

8 

7 

4 

6 

8.7 0.25 0.83 1.93 6 

8.7 0.21 0.84 1.99 7 

8.7 0.24 0.82 1.81 6 

7.1 0.28 0.91 2.80 9 

7.1 0.28 0.91 2.80 9 

7.1 0.28 0.91 2.80 9 

7.1 0.28 0.91 2.80 9 

8.7 

8.0 

8.0 

6.8 

6.8 

6.8 

8.3 

8.3 

8.3 

0.27 

0.27 

0.28 

0.27 

0.20 

0.23 

0.23 

0.17 

0.20 

0.88 2.74 

0.89 2.81 

0.90 2.89 

0.89 2.40 

0.90 2.71 

0.88 2.42 

0.87 2.40 

0.84 1.86 

0.83 1.83 

9 

9 

10 

8 

9 

8 

8 

6 

6 
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APPENDIX E 

STABLE ISOTOPE DATA 

Table E. 1: In-situ SIMS sulfur isotope data for the different gold occurrences of the Viking 

deposit. Analysis of o34
S is given in per mil (%o) referenced against the Vienna Canyon 

Diablo Troilite (VCDT) with the corresponding 1 sigm a (a) error. 

Analysis Location Mineral o34S la Analysis Location Mineral o34S la 
043-2A-1 Thor Vein pyr 6.4 0.2 081-2-3 Viking Trend cpy 6.0 0.2 
043-2A-2 Thor Vein pyr 6.7 0.4 081-2-4 Viking Trend cpy 3.4 0.3 
043-2A-3 Thor Vein pyr 7.4 0.2 081-2-5 Viking Trend cpy 1.9 0.3 
043-2A-4 Thor Vein pyr 8.2 0.2 081-2-6 Viking Trend cpy 5.8 0.4 
043-2C-1 Thor Vein pyr 7.5 0.2 081-2-7 Viking Trend cpy 1.0 0.3 
043-2C-2 Thor Vein pyr 7.4 0.3 081-2-8 Viking Trend cpy 6.2 0.4 
043-2C-3 Thor Vein pyr 6.8 0.2 081-2-9 Viking Trend cpy 3.5 0.2 
043-2C-4 Thor Vein pyr 6.5 0.3 043-2c-1 Thor Vein gal 11.5 0.4 
043-2C-5 Thor Vein pyr 6.8 0.2 043-2c-2 Thor Vein gal 10.7 0.2 
043-2C-6 Thor Ve in pyr 5.0 0.2 056-1-1 Thor Vein gal 14.0 0.2 
043-2C-7 Thor Vein pyr 7.4 0.2 056-1-2 Thor Vein ga l 14.4 0.3 
043-2C-8 Thor Vein pyr 6.5 0.2 056-1-3 Thor Vein gal 12.3 0.3 
043-2C-9 Thor Vein pyr 7.1 0.2 056-1-4 Thor Vein gal 11.8 0.3 
043-2C-10 Thor Vein pyr 4.7 0.2 056-1-5 Thor Vein gal 15.6 0.2 
043-2C- II ThorVein pyr 6.3 0.2 108-1-1 North Thor gal 20.8 0.3 
108-1-1 North Thor pyr 3.0 0.2 I 08-1-2 North Thor gal 20.1 0.3 
108-1-2 North Thor pyr 2.1 0.3 I 08-1-3 North Thor ga l 20.9 0.3 
108-1-3 North Thor pyr 2.1 0.2 108-1-4 North Thor gal 15.6 0.2 
108-1 -4 North Thor pyr 3.7 0.4 056-1-1 Thor Vein pyr 8.3 0.3 
I 08- 1-5 North Thor pyr 2.0 0.2 056-1 -2 Thor Vein pyr 4.1 0.3 
I 08-1-6 North Thor pyr 4.2 0.3 056-1-3 Thor Vein pyr 8.5 0.3 
043-28-1 Thor Vein cpy 8.4 0.3 056-1-4 Thor Vein pyr 3.2 0.4 
043-28-2 Thor Vein cpy 5.4 0.2 056- 1-5 Thor Ve in pyr 8.0 0.3 
043-28 -3 Thor Vein cpy 8.8 0.2 056-1-6 Thor Vein pyr 4.5 0.3 
043-28-4 Thor Vein cpy 6.7 0.4 056-1-7 Thor Vein pyr 5.4 0.3 
043-28-5 Thor Vein cpy 8.9 0.3 056-1-8 Thor Vein pyr 7.4 0.4 
043-28-6 Thor Vein cpy 5.3 0.3 056-1-9 Thor Vein pyr 6.5 0.4 
043-28-7 Thor Vein cpy 8.2 0.2 056-1 - 10 Thor Vein pyr 10.4 0.3 
043-28-8 Thor Vein cpy 4.7 0.2 056-] -11 Thor Vein pyr 8.0 0.3 
081-2-1 Viking Trend cpy 6.7 0.3 056-1-1 2 Thor Vein pyr 9.5 0.3 
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APPENDIXF 

RADIOGENIC LEAD DATA 

Table F.1: Ph isotope data acquired from in-situ SIMS analysis of galena from the Viking 
deposit. Errors given as 2cr (ERR). Average sample Ph compositions are highlighted in 
grey. Key: Gold mineralized Thor vein = 09MM043, mineralized Thor vein offshoot = 
09MM057, and Viking Trend stockwork= 09MM081. 

206pbpo4Pb ERR 207pbpo4Pb ERR 2osPbpo4Pb ERR 
09MM043-1 18.056 0.094 15.563 0.107 37.638 0.121 
09MM043-2 18.110 0.077 15.630 0.095 37.864 0.130 
09MM043-3 18.099 0.084 15.631 0.101 37.815 0.124 
09MM043-4 18.048 0.091 15.596 0.105 37.764 0.132 
09MM043-5 18.109 0.081 15.636 0.108 37.842 0.156 
09MM043-6 18.104 0.039 15.626 0.088 37.846 0.119 
09MM043-7 18.084 0.053 15.569 0.066 37.564 0.077 
09MM043 Ave 18.087 0.074 15.607 0.096 37.762 0.122 
09MM057-1 18.012 0.101 15.522 0.132 37.448 0.166 
09MM057-2 18.033 0.146 15.563 0.166 37.514 0.194 
09MM057-3 18.010 0.106 15.517 0.123 37.436 0.173 
09MM057-4 18.048 0.073 15.571 0.109 37.601 0.131 
09MM057-5 18.043 0.098 15.562 0.122 37.482 0.208 
09MM057-6 18.048 0.146 15.508 0.188 37.418 0.239 
09MM057-7 18.049 0.134 15.551 0.177 37.481 0.252 
09MM057-1 18.061 0.106 15.633 0.131 37.827 0.151 
09MM057-12 18.017 0.086 15.550 0.095 37.580 0.125 
09MM057-13 18.031 0.094 15.558 0.120 37.583 0.170 
09MM057 Ave 18.035 0.109 15.553 0.136 37.537 0.181 
09MM081-1 17.930 0.104 15.502 0.125 37.467 0.154 
09MM081-2 17.904 0.058 15.520 0.075 37.553 0.082 
09MM081-3 17.931 0.068 15.594 0.101 37.820 0.121 
09MM081-4 17.949 0.060 15.591 0.081 37.861 0.120 
09MM081-5 17.932 0.065 15.525 0.078 37.527 0.079 
09MM081-6 17.892 0.149 15.513 0.165 37.544 0.183 
09MM081-7 17.900 0.085 15.526 0.102 37.499 0.139 
09MM081 Ave 17.920 0.084 15.539 0.104 37.610 0.125 
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