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Abstract 

One aspect of monitoring the population of beluga whales, and other marine mammal 
species, is counting a sample of the population from aerial photographs (or negatives). 
Using image processing and pattern recognition techniques, a software system for detect­
ing and classifying beluga whales in digitized aerial photographs and negatives is devel­
oped. The image processing component includes algorithms to create a mask to cover 
"unreadable" areas (e.g. land and sun glare), segment whales, and generate feature data for 
segmented objects. The segmented objects are classified and presented to the user in an 
interactive GUI (graphical user interface) for final conformation and quality control. 

A fundamental step in developing a good pattern recognition system is to choose and op­
timize a classifier. To this end, the support vector machine (SVM) classifier is compared 
against a traditional quadratic discriminate classifier. To optimize the classifiers, a genetic 
algorithm (GA) for feature selection and classifier parameter calibration is used. An ob­
stacle in applying GAs to any problem is selecting values for the fundamental GA control 
parameters. This is addressed using design of experiments (DOE) to systematically analyze 
the GA and derive a statistical model from which the parameters can be calculated. It is 
demonstrated that GAs are a good method to optimize SVMs via feature subset selection 
and SVM parameter calibration. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

An important aspect of monitoring the population of many marine mammal species (i.e. do­

ing population assessments) is the ability to count a sample of the population using aerial 

photographs. Presently, counting is done by manually interpreting aerial photographs or 

negatives gathered from aerial surveys, recording the interpretations, and transferring data 

from paper documents to computer systems. This is a very time consuming, monotonous, 

error-prone, and expensive process. 

For example, the predominant organization in Canada that conduct population assess­

ments is the Department ofFisheries and Oceans (DF0)1• According to DFO [1], manually 

counting animals as part of the assessment is one of the most complex and time consuming 

tasks undertaken by the department. Firstly, conducting the aerial survey to acquire the 

photos is expensive. Secondly, after the survey is flown the eight to ten thousand photos are 

printed (unless analysis is done directly from the negatives). Developing nine inch film neg­

atives is very expensive. Thirdly, the photos must be manually analyzed by highly trained 

1 Interest in conducting private surveys has risen as companies become environmentally conscious and/or 
wish to legally protect themselves from alleged negative environmental impacts of their operations. 
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readers;2 a process that is extremely difficult and time consuming. Complete analysis of 

thousands of photos can take up to one year for several scientific staff who are exclusively 

dedicated to the task. Fourthly, current methods require readers to manually mark each 

animal identified on some sort of recording paper and compare the results with other read­

ers for quality control. Data collected is then manually entered into a computer system for 

further analysis. 

The complexity and excessive time requirements of counting have a number of conse-

quences: peer review and release of the assessments often do not occur until the following 

year; errors can be made at any step in this process; and personal health problems, such 

as back injuries and eye strain, have been reported. Automatic or semi-automatic analysis 

of aerial photographs will significantly reduce the time necessary for analyzing surveys, 

improve the efficiency of readers, and potentially increase the accuracy of the estimates. 

In eastern and northern Canada, one species that is monitored on a regular basis is the 

beluga whale. Belugas are a good study species for automatic counting because they are 

relatively large, white targets in high contrast with their background. Once a system is 

developed to detect and classify belugas, it can be modified to do the same for other marine 

mammals. 

1.2 Objective 

The object of this work is to develop a software system that will assist scientific staff in 

the analysis of aerial photographic images to detect marine mammals. To achieve this, 

investigation and development of image segmentation and pattern classification algorithms 

for the detection and classification of belugas will be completed. This will be integrated 

into a software application with a GUI (henceforth just called the GUI) for ease of use. 

2 A reader is an experienced scientific person who manually examines photographs or negatives for the 
purpose of counting the target species. 
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Additionally, the GUI will have features to aid in the data collection, storage, and analysis 

process. This software system will automate much of the manual practices currently used, 

thus allowing DFO scientific staff to assess marine mammal populations in a more timely 

and cost effective manner than current techniques. Finally, the software will be developed 

with the intention of adding modules for detecting other marine mammals-such as seals, 

narwhals, sea otters, and penguins-without changing the core application. 

1.3 Document Organization 

This document is organized as follows. Chapter 2 describes the relevant background mate­

rial. Included is a description of the problem, motivations for a solution, and a summary of 

previous works. Chapter 3 describes the approach used in this work to the solve problem, 

justification for the techniques chosen, along with an overview of theory when necessary. 

Chapters 4 to 7 describe the solution to the problem, including methodology and results. 

Chapter 4 describes the image segmentation techniques. Chapter 5 describes the applica­

tion of DOE to calibrate the GAs used in Chapter 5 for classifier optimization. Chapter 6 

describes the development of beluga whale classification techniques. Several algorithms 

are presented and results of each compared. The GAs calibrated in Chapter 5 are presented 

as a solution to classifier optimization and the results are discussed. Chapter 6 describes the 

developed software application that is crucial to a complete population assessment solution. 

In the final chapter, results are summarized, conclusions are drawn, and recommendations 

for future work are presented. 
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Chapter 2 

Background 

This chapter presents the relevant background to and motivations for this current work. First 

the background of the problem is described. This is followed by a summary of previous 

works to solve similar problems. 

2.1 Beluga Whales 

The scientific classification ofbeluga is as follows: order Cetacea (whales), suborder Odon­

toceti (toothed whales), family Monodontidae (the only other family member is thenar­

whal), genus Delphinapterus ("dolphin without a fin"), and species leucas. The beluga is 

commonly named the "white whale" [2, 3] because adults are varying shades of white and 

young are typically a light brownish gray [3, 4]. Adult belugas range in length from 3m to 

5m, and weight up to 1500Kg. 

Belugas inhabit cold arctic and subarctic oceans, including Baffin Bay and Hudson Bay, 

but occur as far south as the Gulf of St. Lawrence. They are also found in large rivers and 

estuaries, such as the St. Lawrence river [3]. Belugas can be found in deep waters and 

shallow coastal waters, depending on season, prey distribution, and ice flows. Some pop­

ulations migrate to deeper, cooler waters in winter and shallow warmer waters in summer, 
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especially while breeding [2, 3, 4]. Belugas are social animals, and as a result, they often 

occur in groups of 2 to 25 individuals, called pods [5]. 

The estimated world wide population of belugas is reported to be from 88,000 [6] to 

200,000 [3]. The population is effected by native subsistence hunting, pollution, ship traf­

fic, climate change, and other natural causes such as food supply and predation [7, 8]. 

Commercial hunting in the 19th and early 20th century have had dramatic impacts on todays 

population. Although not considered an endangered species world wide, several individual 

stocks are of concern, such as the belugas of Alaska's Cook Inlet, St. Lawrence estuary, 

and Ungava Bay [3, 4, 7]. Indeed, some worry the beluga could disappear in said areas if 

current harvesting levels continue. Such concerns have lead to a call for regular population 

assessment programs [2, 8]. A key component of such programs are aerial transect surveys 

and photograph analysis of the type that will be automated in this work. 

2.2 Marine Mammal Population Assessments 

Monitoring marine mammal populations is a necessity. In addition to dangerously low 

beluga whale populations in certain areas (Section 2.1 ), other marine mammals in Cana­

dian waters are at risk, such as the Eastern Bowhead and North Atlantic Blue and Right 

whales. Many marine mammals are hunted on a commercial and subsistence basis, includ­

ing several north Atlantic seal herds. To maintain healthy population levels, quotas must 

be issued based on accurate population estimates. To address this issue, calls have been 

made to perform regular surveys to supplement and reduce the need to rely on less accurate 

techniques [8]. 

There are several methodologies for gathering data for population assessments, each 

with advantages and disadvantages. The four most common methods [9] are land sightings, 

boat sightings, acoustic surveys, and aerial surveys. Monitoring from land sites involves 
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using binoculars to observe mammals from several designated land positions over a pre­

defined time period. This method has many limitations, including low coverage due to a 

small viewing range. Thus, this method is restricted to observing near shore mammals. 

Additionally, staff must be trained to identify mammals by shape of blow, head, or back. 

Monitoring from boats involves observing mammals from survey vessels. Generally, 

a line transect technique (LTT) and a strip census methodology (SCM) is applied. Both 

methods have limitations and problems, including observer fatigue, differential attraction 

or avoidance of mammals to the vessel, difficulty in counting large groups of animals, and 

observers missing animals in shadows or in depressions behind outcrops. 

The acoustic survey is a relatively new method and much work remains to be done to 

assess it utility. Put simply, this method involves identifying mammals by their unique 

underwater sounds. 

The final method is the aerial survey. This method involves the use of fixed-wing air­

crafts or helicopters. Two variations exist, although both are often combined to obtain the 

benefits of each. The first, called the visual survey, involves two or more observers in an 

aircraft counting mammals as they are seen. The second, called the photograph survey, 

uses one or more cameras attached to the bottom of an aircraft to take photographs at a 

controlled rate. 

There are many advantages in using aerial surveys: it can be very efficient for mammals 

along coastlines, allows access to remote areas not easily accessible by other means, such 

as large ice flows, and allows more coverage in less time. The photographic approach has 

the additional advantage of allowing personnel to scan for animals in the photographs in a 

laboratory setting after the survey is complete. It has been shown that this method correlates 

with seaborne surveys [10]. 

Given the benefits of the latter approach it has been accepted as the primary surveying 

method in recent years, and one can only conclude that it will be used more frequently in 
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the future. Systematic strip transect aerial photograph surveys of the St. Lawrence beluga 

has been the standard approach for estimating populations since 1988 [11]. It is also being 

used routinely for conducting estimates of seal herds in Atlantic Canada (e.g. [12, 13]). 

Indeed, photograph and visual surveys are considered the most appropriate methods of 

estimating seal pup production [14]. It has also been stated that systematic and regular use 

will alleviate past problems of incomparable and inconsistent results of applying different, 

non-standard techniques [11, 12, 13, 14]. However, conducting aerial surveys is very time 

consuming and expensive. Any means of automation will go a long way in reducing cost 

and time, and will ultimately lead to more accurate and consistent estimates. 

2.3 Aerial Surveys and Manual Photograph Analysis 

This section describes aerial photograph surveys in general, and beluga whale photograph 

analysis in particular. The discussion is drawn from seal and beluga surveys documented 

in [11, 12, 13, 14, 15], correspondence with practitioners, and personal experience with 

photograph analysis. 

Aerial photographs are obtained by flying a survey over an area of interest at key times of 

the year and taking high-altitude, high-resolution color (black and white for some species, 

such as seals) photographs of the area. A fixed-wing aircraft equipped with a large format 

(e.g. 9" x 9") mapping film camera is used to take photographs at regular intervals. Aircraft 

speed and altitude is typically constant. The altitude is chosen to maximize the area covered 

by the photograph while maintaining the resolution necessary to manually locate the species 

in the photograph with the aid of a hand held magnifying glass. The flight pattern is defined 

by systematic strip transect lines. These are a set of parallel, (typically) equally spaced 

lines of varying lengths. The design of the strip transect takes into consideration survey 

area, altitude, camera field of view, required coverage area, and whether or not photograph 
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overlap is desired. 

A survey is designed such that the maximum number of animals are observable while 

minimizing sources of error. Parameters almost always include the area of interest, time of 

year, time of day, weather conditions, and time required to complete the survey. However, 

the details are based largely on the target species habitat and behavior. For belugas it is 

important to minimize sun glare and wave crests. Hence, the sun angle and wind speed 

are important. Reconnaissance surveys are conducted to identify the best area to formally 

survey and provide complementary visual counts. This is particularly important for certain 

species, such as seals that travel with ice flows. To minimize double counting caused by 

movement of animals while conducting the survey, as much of the survey area as possible 

is covered in the shortest time possible. A survey is often flown over the same area as a 

previous survey so comparisons can be made between data sets while eliminating the need 

to identify a new survey area and define new transect lines. 

The analysis of photographs for the purpose of counting marine mammals is called 

reading the photograph. It is performed by readers; these are trained scientific personnel 

with extensive knowledge of the target species and prior experience reading said species. 

The reader is tasked with viewing each photograph and recording the number and types of 

animals found (adult and young for beluga surveys) and the percent of the image that is 

unreadable. Unreadable parts of an image consists of areas the target animal cannot occur 

in or cannot be identified in because of the masking effect of noise. Examples include land, 

sun glare, and areas of extensive waves crests. 

Each photograph is analyzed in a systematic manner to ensure a complete reading is 

performed. A transparent acetate with a n x n (typically n = 10) grid is placed over the 

photograph to guide the reader's search and act as a reference system when describing 

animal locations within the photograph. Annotations are made on the grid (or a sheet 

of paper with an identical grid) to mark the location of animals, other significant objects 
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(e.g. boats, land), and to insert comments. 

For beluga whale surveys, the 9"x 9" negatives are analyzed directly rather than analyz­

ing the developed photographs. Developing photographs from negatives is costly and does 

not improve the inspection process nor the analysis results. The negatives are analyzed with 

the aid of a specially designed light table and a low-magnification (e.g. 10 x) magnifying 

instrument, such as a dissecting microscope or hand held magnifying glass. A roll of nega­

tives is attached to one end of table and each negative is scrolled across the table, which is 

illuminated from beneath, and analyzed in sequence. 

Manual identification of belugas is not always conclusive, even for the most experienced 

reader. Problems include partial occlusion of one whale by another or by a wave crest, 

very deep whales which have a low contrast with the background, whales resembling wave 

crests, masking of whales by water disturbances created by the whales themselves or by 

natural phenomena, and whales located in areas of intense noise caused by wave crests, 

sun glare, sun speckles, or wave fronts. As a result, readings consist of labeling whales as 

certain (high confidence the target is a beluga) or uncertain (low confidence the target is a 

beluga). 

Once all the negatives (or photos) have been analyzed, measures are taken to ensure the 

most accurate final reading. Such measures usually involves a reader re-reading a subset 

of images they have already read, reading a sample of the images read by another reader, 

and comparing sample readings to readings performed by more experienced readers. From 

these results correction factors are calculated for each reader and applied to all readings for 

that reader. Additionally, all photos with uncertain observations are often checked by more 

experienced readers who may edit the initial analysis by confirming or rejecting detections 

as necessary and adjusting the counts accordingly. More likely, all readers discuss the 

questionable targets until agreed upon classifications are made. 

The entire reading procedure, including quality control, can take many months for sev-
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eral people. It is the intention of this work to automate or provide software support for the 

above described activities, thus reducing time and sources of error. 

2.4 Automated Mammal Detection: Previous Efforts 

As far as can be determined, no software system has been developed to encapsulate the 

process and activities described in Section 2.3. Additionally, no research has been con­

ducted on detecting and classifying said species from digital images. In this way, this work 

is completely original. 

Commercial and public domain image analysis software are available (e.g. Micro GOP 

Software [16], ImageTool [17], Gimp [18], and Adobe Photoshop [19]). However, these are 

specific to an unrelated problem, or are designed for general image manipulation and basic 

image processing. The former does not provide the features necessary to build the required 

system; the latter is too generic and requires a great deal of image analysis knowledge to 

be used effectively to solve complex problems [1]. Additionally, such tools do not provide 

the sophisticated features necessary to automate the process required to detect, classify, and 

count whales. Some software, such as image processing programming libraries (e.g. Matrox 

Imaging Library [20]), provide basic building blocks for software development and explo­

ration of possible solutions to image processing problems. They are not designed to be used 

out-of-the-box to solve specific, application domain problems. Additionally, none of these 

tools provide solutions to the problem of automating the data collection, data presentation, 

and manual processes associated with photograph analysis as detailed in Section 2.3. 

Limited published work has been completed in automating the counting of mammals 

using aerial photographs, mainly because automated counting and image processing tech­

niques are not widely used to aid population assessments [21]. Gilmer et al. [22] developed 

a method to aid in counting geese from aerial photographs. Randomly selected areas from 
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each of the digitized images were chosen to extract statistics to manually determine a single 

gray-level, image specific threshold and pixels-per-goose relationships. When the threshold 

was applied, each image was segmented into two classes of pixels, goose and non-goose. 

The number of goose pixels were counted, and the goose-per-pixel relationship was used to 

determined the total number of geese. The results showed accurate counts and a significant 

improvement in time to analyze each image compared to manual methods, even when con­

sidering the time required to derive the image-specific thresholds. However, the method is 

relatively manual and solved the simplest case only: white geese on a dark background. 

Building on Gilmer's work and the authors own previous work [23], Bajzak [24] de­

veloped a more refined computer aided technique for counting snow geese in aerial pho­

tographs. His technique used two computer programs. The first prints the density values 

from a selected subimage. These are used to manually determine tonal range of snow geese 

and the minimum and maximum number of pixels that represent birds. After conducting ex­

periments to fine tune these parameters, the second program uses the parameters as criteria 

to identify individual birds. His investigation found that identifying individual birds as clus­

ters of pixels provided more unbiased and more accurate counts than Gilmer's techniques. 

He also found using image tone alone is best suited for uniformly colored species. Com­

pared to traditional manual techniques, the time required to analyze an image was reduced 

even though a lot of time is necessary to manually determine image specific parameters 

required for segmentation and classification. 

Using a more interactive approach, Cunningham et al. [25] developed software to aid 

in counting geese. The software supports features to access and enhance images, mark 

animals that should be counted, and output collected data formatted in tables in text files. 

The basic approach is to manually or interactively mark the objects to be counted. In the 

manual method a paint brush tool is used to mark the objects. In the interactive method 

the user interactively selects thresholds to segment the image. The user then marks a sam-

11 



pie of the segmented objects to define selection parameters, such as size, and a counting 

routine counts objects with similar features. The technique showed good results, but is 

semi -automated. 

Laliberte and Ripple [21] investigated methods to automate counting of wildlife from 

aerial photographs and made comparisons with Gilmer and Cunningham's work. Laliberte 

and Ripple's goals were to developed general image processing techniques simple enough 

to require only basic image processing knowledge and use of public-domain software, and 

to test the feasibility of using IKONOS high-resolution satellite imagery. Using ERDAS 

IMA GJNE [26] and Image Tool [ 17] a sequence of steps was developed to allow a user to ef­

fectively apply the features of these tools to segment and count snow geese, Canada geese, 

and caribou in scanned aerial photos. The details differ, but in general a smoothing filter 

is applied, followed by a visual inspection of subimage histograms to pick a threshold to 

segment objects, whose areas are used to calculate the total number of animals. This inter­

active methods are less labor-intensive than manual techniques and showed good results that 

were highly correlated with manual counts. The experiments with 1m resolution IKONOS 

satellite imagery resulted in very small targets, leading to difficulties in segmentation and 

discrimination. 

In a completely different avenue of research, Trathan [27] developed techniques to count 

macaroni penguins from digitally scanned color aerial photographs. The results were com­

pared with manual photograph counts and was found to be highly correlated. Although 

his methods lead to good results, it is not a completely automated solution. Rather, image 

processing consists of a set of manual steps aided by MATLAB's [28] image processing 

routines. In essence, the steps are: (1) define a ROI around penguin colonies, (2) from 

a representative sample, calculate the foreground (penguins) and background descriptive 

statistics, (3) threshold the image at T calculated from the statistics, (4) apply a blob fil­

ter, and (5) count the segmented blobs. The main disadvantage of this approach is that 
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a lot of time is spent performing manual analysis, including defining ROis, inspection of 

histograms, determining a threshold, and saving results of intermediate processing steps. 

Gosine et al. [29] conducted a feasibility study in automatic counting of sea lions from 

aerial images, video, or still pictures. The developed method involved thresholding an en­

hanced edge image to produce a binary image of sea lions and not-sea lions. The user then 

manually discriminates between sea lion objects and not-sea lion objects for the first image 

frame in the video. Basic object features (e.g. size, shape, mean, standard deviation) and a 

specialized intensity gradient across the object are calculated and recorded. A database of 

such information is used to build a nearest-neighbour classifier [30] that is applied to sub­

sequent images in the video scene to discriminate sea lion objects from not-sea lions. The 

results indicate good agreement between manual counts and automated counts. Unlike pre­

vious works summarized above, the counting algorithm was almost completely automated. 

However, a software system was not developed to encapsulate the algorithms for ease of 

use, to aid the user in the required manual steps, and to present a report of the results. 

It is uncertain why more techniques and software tools have not been developed for 

automatic counting of mammals, in particular marine mammals. It could be argued that 

historically computer processing capabilities, image processing, and pattern recognition 

techniques were inadequate to deal with such complex problems; this is certainly no longer 

the case. Computer processing power has advanced dramatically over the last 20 years 

allowing high resolution images to be processed in a fraction of the time it once did. Ad­

ditionally, image processing and pattern recognition techniques are being applied to many 

similar challenging problems. In forestry, techniques have been developed to segment and 

classify tree crowns [31, 32, 33]. In the medical field, there are numerous examples, in­

cluding counting cells, classifying muscles fibers [34 ], and analysis of pores in soil aggre­

gates [35]. 
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Chapter 3 

General Approach and Justification 

This chapter describes the proposed approach. It gives an overview of the techniques ap­

plied in the solution and justification for using these techniques based on a literature review. 

Theory is kept to a minimum and presented only when necessary. 

3.1 The Approach 

The basic approach can be summarized as a classical pattern recognition system consisting 

of five steps: (1) sensing, (2) segmentation, (3) feature extraction, ( 4) classification, and 

(5) post-processing [30]. The first step provides input for the system, such as the digitized 

images from a camera. The segmentation step is concerned with extracting objects (targets) 

to be classified from the signals. The next step is feature extraction, where properties (the 

features) describing the segmented objects are calculated. For each object, a feature vector 

x of length d, where d is the number of features, is created. Next follows the classification 

step, where x is assigned to one of the a priori defined classes (groups) of objects. Fi­

nally, in the post-processing step the results of classification are analyzed and some action 

performed. In this work, all steps must be addressed. However, the bulk of the work is 

contained in segmentation (Chapter 4) and classification (Chapter 5 and Chapter 6). Hence, 
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the remainder of this chapter will focus on these steps. 

In this work pattern recognition is classification: assign x to one class, 1fii, from the set 

of predefined classes { 1&'1 , 1&'2 · · · 'i&'n}, where n is the number of classes. There are several 

approaches to pattern recognition [36], including syntactical or structured [37], knowledge­

based [38] and statistical [30, 39, 40]. However, since one of the most effective methods 

to build a classifier is to learn patterns from examples [30] (known as training the classi­

fier), this work takes the last approach. Because we know a priori the distinct classes, a 

supervised learning approach is taken. 

There are many statistical, supervised, classifiers available. Because there is no universal 

best classifier for all problems [30], selection of one over the other and configuration of 

these for a given problem is not trivial. To address this issue, two classifier types are chosen 

and different configurations of these are compared. The first is the classical, often used, 

Bayesian approach, known as the minimum error-rate quadratic discriminate (QD). The 

second is a relatively new classifier known as the support vector machine (SVM). 

A classifier normally requires optimization in order to achieve the best performance 

possible. One form of optimization consists of selecting the best classifier parameter values. 

Another more commonly used form, known as feature subset selection (FSS), consists of 

choosing a subset of the initial set of features used to describe the objects. In this work, a 

GA is used to perform both forms simultaneously for SVMs and FSS for QDs. The results 

of this optimization process is a set of values upon which the classifiers can be compared; 

for example, accuracy, false positive rate, and number of features. A caveat in using GAs 

is that values for the fundamental GA control parameters must be chosen, but there is no 

systematic way to select these values. In this work this problem is solved using design of 

experiments (DOE) to develop a model that is used to calculate the optimal values (within 

the limits of the design space) . This process is known as calibrating the GA. 

Finally, the developed image processing and pattern recognition algorithms are inte-
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grated into a software system that scientific personnel can use to aid in population assess-

ments. The software GUI presents an intuitive interface to the algorithms, allows the user 

to load and manipulate images, allows initiation of automated detection and classification, 

and allows interaction with the results. 

3.2 Bayesian Classification 

The foundation of statistical pattern recognition is Bayesian decision theory. It was first 

proposed by Thomas Bayes [41] over a century ago, then generalized by Laplace [42], and 

first used for classification by Chow [43]. What follows is an overview on how it is used 

for classification in this work. For details see Section E.l and [30, 39, 40, 44]. 

Bayesian classification is based on Bayes formula 

(3.1) 

where P(Cffi) is the prior (a priori) probability, P(Cffi.lx) is the posterior (a posteriori) prob­

ability, p(xJCffi.) 1 is the likelihood of~ with respect to x, and p(x) is the evidence. p(x) 

acts as a scale factor that ensures the posterior probabilities sum to one. For classification, 

this term is usually dropped. The basic approach is to minimize the probability of error by 

choosing the class that maximizes the posterior probability P(~lx). This leads to Bayes 

decision rule 

if P(~Jx) > P(1&jJx) Y(j =J i) classify as~ (3.2) 

It can be shown that Bayes decision rule provides the optimal classifier performance (min-

imum error rate) [30]. A Bayesian minimum error rate classifier can be formulated using 

1 Following the convention of [30], an uppercase P( ·) is used to denote a probability mass function and a 
lowercase p( ·) is used to denote a probability density function. 
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the discriminate function 

gi(x) = P(<(&iJx) = p(xJ<(&i)P(<t&i) (3.3) 

If f is a monotonically increasing function, gi ( x) can be replaced with f (gi ( x)) without 

changing the classification results. Hence, the discriminate can be written as 

gi(x) = lnp(xJ<&i) + ln P(<t&i) (3.4) 

To define the structure of the classifier for a given problem p(xJ<&i) and P(<t&i) must be 

determined. P(<t&i) is usually chosen manually based on prior knowledge of the problem. 

Determining the conditional density p(xJ<&i) is much more difficult, indeed it is the biggest 

drawback of the Bayesian method. There are two common methods: maximum-likelihood 

and Bayesian estimation. [30] makes several statements that favour the former method, even 

though the latter may be favored theoretically. First, the results of maximum-likelihood are 

frequently nearly identical to Bayesian methods. Second, it has good convergence prop­

erties as the number of samples increases. Third, the technique is easier to understand, 

implement, and is computationally less complex. Finally, the results are easier to interpret 

and understand. The maximum-likelihood method assumes the parameters are fixed and 

the best estimate of them is one that maximizes the probability of obtaining the training 

samples [30]. 

Following the maximum-likelihood approach, p(xJ<&i) is modeled as a Gaussian distri­

bution, and for good reason. First, as [30] points out, the Central Limit Theorem states that 

the aggregate effect of the sum of a large number of small independent random disturbances 

will lead to a Gaussian distribution. This describes most patterns: a class is the prototype 

pattern, and objects classified into that class are randomly corrupted versions of the proto­

type. A second, and perhaps a more pragmatic reason for choosing the Gaussian, is that it 
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is analytically tractable [30]. Using the Gaussian, for~' 

(3.5) 

where x is the d dimensional feature vector of an object, J..Li is the d dimensional mean 

vector of~' and ~i is the d x d covariance matrix of~. Because the normal distribution 

of~ is completely specified by J..Li and ~i. we say p(x) ~ N(J..Li, ~i)· The final Bayesian 

minimum error rate quadratic discriminate function for ~ can be derived by substituting 

Equation 3.5 into Equation 3.4, resulting in the following 

In the above equation, ( x - J..L )T~ -l ( x - J..L) = r 2 is known as the squared Mahalanobis 

distance from x to J..L. This equation describes the distribution of samples about the mean 

J..L. Positions of constant distance from J..L define hyperellipsoids of constant density and the 

volume ofthese hyperellipsoids measures the sample scatter [30]. The use of~ makes the 

Mahalanobis distance metric invariant to scaling between features and corrects for corre-

lation between different features. These important properties makes this metric superior 

to other distance measures such as the Euclidean and Manhattan distance. It also provides 

hyperquadratic (curves ofvarious shapes and linear) decision boundaries. 

3.3 Support Vector Machines 

Support vector machines (SVM) are a new, elegant, and powerful class of supervised learn­

ing algorithms particularly well suited for classification, regression, and novelty detection. 

SVMs are based on statistical learning theory and some simple ideas about what learning 

from examples is fundamentally about [ 45]. From a theoretical point of view, they are 
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simple enough to be analyzed mathematically using computational learning theory for both 

simplistic theoretical problems and complex real world problems [45]. This stands in con­

trast to some other methods, such as neural networks, that when used on complex problems 

are very difficult to analyze. SVMs can achieve this because one can reason about them as a 

simple linear classifier in high dimensional feature space, even though nonlinear problems 

are being solved. The key in simplifying the SVM is that the complex model computations 

are not done in this high dimensional space, but rather in the input space through the use 

of kernels [45]. In this regard, SVMs are a linear machine that can function on non-linear 

data. Given a data set consisting of two classes, the SVM constructs a hyperplane decision 

surface between the two classes such that the margins between the plane and the two classes 

are maximized. 

SVMs were first introduced as a binary, nonlinear classification technique in 1992 by 

Boser, Guyon and Vapnik [46]. This was based on earlier work by Vapnik and his col­

leagues where they developed theories to explain learning from a statistical point of view 

(e.g. [ 4 7, 48]). However, the driving force for the development of SVMs was the problem of 

finding the appropriate balance between accuracy attained on a training set and the capacity 

of the machine in order to achieve the best generalization performance [49]. This is often 

discussed in the context of over fitting, capacity control, and bias variance trade off [ 49]. In 

1995 Cortes and Vapnik [50, 51] extended SVMs for non-separable classification problems, 

at which point SVMs started to gain momentum. Because of its beginnings with Vapnik's 

works and his many publications on the subject, Vapnik may be considered the father of 

SVMs. Since then a plethora of research has been conducted and published. Some signif­

icant developments include extensions for novelty detection and multi-class classification. 

Work continues to address various SVMs weaknesses, some of which are mentioned later 

in this section. 

Over the last 10 years SVMs have been successfully applied to varying problems, pre-
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dominantly in pattern recognition. The literature invariable reports SVM classification re-

suits that are equal to or better than the results of other classifiers. Describing or even 

enumerating the voluminous work done to date is beyond the scope of this thesis. For a 

complete survey of applications ofSVMs to pattern recognition see [52]. 

3.3.1 The General SVM 

Let 1I' = {xi, Yi}, i = 1 ... n, be a set of training data, where xi E JRd is an input sample 

vector belonging to a class Yi E { + 1, -1}, dis the dimensionality of the sample space (the 

length of the vectors), and n is the number of samples in the data set. The discriminate 

function for linear, separable patterns is 

g(x) =sign (t yiaix ·Xi+ b) 
~=1 

(3.7) 

The Lagrange multipliers ai are obtained by solving the following dual quadratic program­

ming (QP) optimization problem 

max 
a 

n 

subject to L aiyi = 0 
i=l 

0 :::; ai :::; C, i = 1 ... n 

c~o 

(3.8) 

The coefficients ai define a maximum separating hyperplane in a high-dimensional fea­

ture space [53]. These are constrained by the upper bound C, called the regularization 

parameter, which governs the number of errors the classifier will tolerate during training­

the higher the value of C, the higher the cost associated with training error and the more 
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Table 3.1: Common SVM kernels. In all cases, the kernel specific variables ("y, d, b, c) are 
chosen a priori by the user. For the neural network kernel, only certain values of b and c satisfy 
Mercer's theorem. Note for the RBF "Y = 1/20'2 . 

Name 
Linear 
Polynomial 
Radial basis function (RBF) 
Neural network (sigmoidal) 

Kernel K(x, xi) 
X· Xi 

('yx ·Xi+ l)d 
e-1'llx-x;JJ2 

tanh(b(x ·xi) -c) 

complex the classifier. This parameter must be chosen a priori by the user. 

Non-linear, non-separable patterns are made linearly separable in high-dimensional fea­

ture space Fusing a non-linear mapping function <I> : JRd ---+ F. In F, the training algorithm 

only depends on the data through the dot product <I>(xi) · <I>(xj)· Mercer's theorem (1908) 

states that for certain mappings <I> and any two points xi and Xj the inner product of the 

mapped points can be evaluated using a kernel function K without explicitly knowing the 

mapping [54]. Let K(xi, xi) b. <I>(xi) · <I>(xj), then in Equations 3.7 and 3.8 x ·xi and 

xi · Xj are replaced with K giving the following discriminate function for non-linear, non­

separable patterns: 

(3.9) 

Using Mercer's theorem it can be shown that a given K is suitable for a SVM, but K 

and a suitable mapping <I> cannot be derived. Hence it falls to the SVM developer to derive 

an experimental K and use Mercer's theorem to evaluate whether or not it can be used 

in a SVM. This is not an easy task as revealed by the relatively small number of kernels 

developed. The most common kernels cited in SVM literature are shown in Table 3.1. 

3.3.2 Multi-class SVMs 

Theoretically, SVMs are two class classification machines. For many pattern recognition 

problems this is not sufficient. As a result, methods have been developed to extend two 
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class SVMs to handle multi-class pattern recognition problems. 

All accepted methods for extending binary SVMs fall into one of two groups. The first, 

referred to as binary-based methods, perform k-class classification by combining the results 

of two or more binary classifiers. Here the problem is broken into several binary subprob­

lems and outputs are combined to make a multi-class decision. The most common methods 

in this group are one-against-all [55]), one-against-one [56, 57] and directed acyclic graph 

(DAG) SVM [58] The second group, referred to as the all-at-once approach, do k-class 

classification all at once. In this approach the SVM optimization problem is reformulated 

to account for all classes. Examples in this group include method originally proposed by 

Vapnik and later investigated by Weston and Watkins [59, 60, 61], and the Crammer and 

Singer (CS) method [62]. 

The binary-based methods are the most commonly used in the literature surveyed, in 

particular one-against-one and one-against-all. This is not surprising given that these are 

easy to understand and implement. In terms of implementation, they have the advantage of 

reusing the existing binary SVM implementations to the maximum extent, where as all-at­

once methods require a reformulation of the SVM. For problems with large data sets, this 

reformulation generally leads to an explosion in the number of variables in the quadratic 

programming problem, making them very complex and computationally expensive to solve. 

There are some decomposition techniques that can be used to minimize this problem, and 

some have proposed SVMs that take advantage of this (e.g. [63, 64]), but such SVMs are 

not widely used. 

Two independent studies have suggested that the binary based methods, in particular the 

one-against-one method, is the best overall, especially when accuracies are important. The 

first was conducted by [60, 61], who compared one-against-one, one-against-all, and two 

k-class all-at-once methods on six benchmarks and concluded that in terms of accuracies 

there is no significant difference between any of them. On the other hand, the all-at-once 
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methods used the fewest support vectors, leading to a slightly faster classification time. 

Arguably a more thorough comparative study was conducted by [63], who compared 

five methods on ten benchmarks. Compared to the aforementioned studies, larger data sets 

were used and a decomposition method was established to reduce the number of quadratic 

programming variables in the all-at-once methods. In terms of accuracy, they are all statisti­

cally very similar, but one-against-one slightly outperformed the others. In terms of training 

time, the one-against-one approach outperforms the other methods in nearly all tests; only 

the DAG method had similar results. The above results were obtained using the RBF ker­

nel. When using the linear kernel, the one-against-one method equaled or outperformed all 

other methods in all but one out of six experiments. 

3.3.3 Configuring SVMs 

A big question in developing SVMs is how to chose the kernel, a value for the regular­

ization parameter C, and values for the kernel parameters. Choosing a kernel is a manual 

choice made by the developer. Typically, a kernel that best models the problem is chosen, 

but this can be difficult if the form of the problem is unknown. The RBF kernel maybe the 

best choice for a number of reasons [65]. First, it is a non-linear mapping, with the added 

benefit that the linear kernel is a special case of the RBF kernel [ 66]. Second, the sigmoid 

kernel may lead to a kernel matrix that is not positive definite, and theoretical and experi­

mental studies have shown that the sigmoid rarely outperforms the RBF [67]. Finally, the 

polynomial kernel has more hyperparameters to choose and has more numerical difficulties 

(if a high degree is used) than the RBF [68]. 

When using the RBF kernel, the kernel parameter 1 (kernel width) must be chosen by 

the user. 1 determines the area of influence a support vector at the center of the RBF has 

over the data space-as the value of 1 increases, the area of influence weakens. Hence, 

choosing a value too low results in underfitting, and choosing a value to high results in 
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overfitting. Like C, 'Y can dramatically effect the complexity of the machine and its classi­

fication performance. 

The choice of values for C and the kernel parameters (collectively known as the SVM 

parameters) are critical to SVM performance, but is often naively neglected [69] and set 

to default values such as C = 1 and 'Y = 1/ d, where d is the number of features. In the 

absence of a priori knowledge of the form of the problem, an often cited approach for SVM 

parameter (C and the kernel parameters) selection is to conduct experiments: train, test, and 

compare SVM with different parameter values. One heuristic search technique used when 

the SVM is configured with the RBF kernel is the SVM parameter grid search [65, 67]. 

Recently, studies have suggested GAs for SVM parameter selection, but limited work has 

actually been conducted. A summary of previous efforts using this approach is given in 

Section 3.7. 

3.4 Classifier Optimization 

In the context of this work, classifier optimization refers to maximizing the accuracy of 

a given classifier. This can be accomplished in several ways, including choosing the best 

classifier parameters, training on a good sample set, selecting and extracting features that 

describe each class as best as possible, and selecting the best combination of those features. 

There are constraints placed on the developer as too which of these optimization possibili­

ties can be used. For example, it is often difficult or impossible to improve the sample set 

due to the difficulty or cost associated with gathering and analyzing data. As a result, opti­

mization usually means feature subset selection (FSS) and, for some classifiers, parameter 

selection (Section 3. 7). 

FSS refers to the finding a subset of m features from an original set of d features ( m ::; d) 

that gives the smallest classification error (or best accuracy). This is a difficult problem be-
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cause the developer does not know how combinations of features interact to create decision 

boundaries, and if the dimensionality (d) is large, trying every possible combination is dif­

ficult or impossible. Nevertheless, FSS is important for a number of reasons: 

• Feature vector size and the presence of irrelevant features can increase computation 

time and memory requirements. 

• Typically there exists some subset of m features that increases the generalized per­

formance of the classifier over the initial set of d features. This is often the case when 

there are irrelevant features, redundant (highly correlated), or biased features in the 

set. 

• It reduces the curse of dimensionality [70, 71, 72]. For classes that are trained on 

unbalanced data, FSS is even more important because the negative effects of this 

curse are amplified for unbalanced classes [73]. 

FSS algorithms typically have three components [7 4]: (1) a search algorithm that searches 

the feature subset space of size 2d, (2) an evaluation function that takes a feature subset as 

input and outputs a value indicating the "goodness" of the feature subset, and (3) a per­

formance function that takes the best feature subset and uses it in a classifier to classify 

instances of the dataset. 

There are two paradigms to solve this problem: the filter method and the wrapper 

method [75]. The filter method analyzes the feature vectors independently of the classi­

fication algorithm and removes features with undesired properties, such as redundancy and 

irrelevance. The classifier accuracy is not considered in this method; rather, the features 

are selected based on some heuristic goodness. In the wrapper method, the classification 

algorithm that will be used in the final system is or is a part of the evaluation function. Here, 

the estimated accuracy of the classifier when trained on a feature subset is used to evaluate 

the suitability of the subset. 
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It has been shown [75, 74] that the wrapper method can provide better classifier accuracy 

than the filter method. This is most likely a result of the wrapper taking into account the 

interaction between the classifier and the feature vectors it is trained on [76]. On the other 

hand, because at least one classifier--evaluation methods such as cross validation and hold 

out require many classifiers-is trained and tested for each feature subset they are generally 

computationally more expensive and thus slower to execute [75, 77, 74, 76]. They can also 

suffer from over fitting if a small training set is used [75]. 

There are several search strategies documented in the literature: exponential, random­

ized, and sequential [78, 74]. Exponential algorithms essentially search through the en­

tire feature set space. These have the potential to achieve the best accuracies; however, 

they have a complexity of 0(2d), so can only be used when the dimensionality is small. 

Examples include branch-and-bound and exhaustive algorithms. Randomized algorithms, 

whose complexity depends on the randomization algorithm and stopping criteria, randomly 

searches through the feature space. These have been reported to achieve very high accu­

racies [78, 79, 80, 81], but may not select the fewest number of features [74]. Examples 

include genetic and simulated annealing algorithms. Sequential algorithms sequentially 

add or remove features depending on the results of the evaluation function. These have a 

complexity of 0 ( d2). Although they can compete with randomized methods, on some large 

features sets with complex interactions among features, their performance is considered 

brittle: sometimes good sometimes very poor [81]. Examples include sequential floating 

forward (SFFS) and backward sequential selection (BSS). 

Research on feature selection has been ongoing for many years resulting in a multitude 

of literature on the subject. For tutorials see [82, 83]. For a taxonomy of feature selec­

tion techniques, see [84, 85]. For comparative studies see [86, 84, 82, 87]. In recent years 

the GA has been studied as a randomized feature space search algorithm, most generally 

using the wrapper method. Several works have shown that GAs are comparable, perhaps 
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even superior, to the best sequential methods. [88] is one of the earlier works showing 

the superiority of GAs compared to traditional methods. [89, 90, 91, 92] followed with 

further evidence. However, [86, 84, 93] all argue that GAs are comparable to sequential 

methods, but contradict each other on which is superior and under what conditions (such 

as size of d). More recently [87] conducted a thorough comparative study into the subject. 

Experiments were conducted using three sequential methods, a simple GA, and four varia­

tions of a hybrid-GA. The conclusion is that SFFS is the best of the sequential algorithms 

(collaborating with previous work cited above), the simple GA is always better than the 

SFFS algorithm regardless of problem size, and the hybrid-GA may perform better than the 

simple GA for large problems. 

3.5 Classifier Evaluation 

One of the most common methods of evaluating a classifier is estimating its error rate 

based on resampling. There are several common methods, including resubstitution, hold­

out, k-fold cross validation, leave-one-out (a special case of k-fold cross validation), and 

bootstrapping. These have been studied for decades in the literature with no consensus as 

to which is superior in estimating the true error rate of a classifier [94]. Nevertheless, a few 

general remarks are merited. The resubstitution and hold-out methods can only be used 

with very large sample sets [94]. For smaller data sets, leave-one-out is arguably superior 

in most cases, but has a very high computational complexity that often precludes its use. k­

fold cross validation and bootstrapping, which have much smaller complexities, have been 

documented as sensible alternatives [30, 40, 94], although one is not recommend above the 

other. 

The literature on SVM evaluation seem to favor k-fold cross validation or hold-out. This 

is probably because SVMs having slow training times, especially for large C and large data 
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set sizes, hence only fast evaluation methods are suitable. Using k-fold cross validation 

with k chosen appropriately (most of the literature set k = 10), a good estimate of accuracy 

can be made in a reasonable amount of time. The estimated accuracy is good partly because 

all samples participate at least once in training and testing. As a result, training and testing 

covers the complete data set, but testing always occurs on unseen data, thus avoiding bias 

toward training samples that occur when testing on the same training data. 

3.6 Genetic Algorithms 

Genetic algorithms (GAs) are a class of search and optimization algorithms based on the 

principles of natural adaptive systems, most importantly the theory of natural selection and 

evolution. The GA attempts to achieve the robustness, adaption, and efficiency properties 

of an evolving biological species. The basic principles include a randomization of an ini­

tial population of individuals (encoded solutions, also called chromosomes), evolving new 

generations of individuals from older generations, survival of the fittest in each generation, 

creation of new individuals from selection of bits and pieces of the previous generations 

most fit individuals via crossover of chromosome pairs, and random mutation. GAs have 

been proven theoretically and empirically to provide robust search in complex spaces [95] 

and tend to converge to near globally optimal solutions [96]. 

Genetic algorithms arose from work in cellular automata by John Holland in 1975 [97]. 

Holland and his colleagues had two objectives [95]: (1) to abstract and explain evolution­

ary processes in natural system, and (2) to design artificial systems that mimic the natural 

system. Following this, most of the work up to the early 1980s focused on the theoretical 

aspects of GAs with few real world application [98]. During this time GA research car­

ried out by DeJong [99] and Hollstein [100] stand out. Hollstein focused on the effect of 

different mating and selection strategies [98], and De Jong studied the properties and con-
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figurations that constitute a robust search procedure [98]. Built on his own work and that 

conducted by these pioneers, David E. Golberg published a seminal book in 1989 entitled 

Genetic Algorithms in Search, Optimization and Machine Learning [95]. This is perhaps 

the most often cited book on GAs. 

Since that time much research has been conducted on GAs, with many real world ap­

plications as a result. GAs have been used in such diverse fields as engineering, medicine, 

political science, social sciences, physical sciences, biological sciences, and business. GAs 

have been developed to primarily address optimization problems, such as FSS, but have 

been applied in scheduling, trend spotting, data fitting and clustering, and path finding [98]. 

What follows is a high level overview of the GA being applied in this work with justification 

for design choices. For more details see [95, 98, J01, 102, 103, 104, 96, 105]. 

The five basic components of a GA are [96]: (1) a chromosomal representation of the 

possible solutions to the problem, (2) a method to generate the initial generation (popu­

lation) of np chromosomes, where np is the population size, (3) an evaluation function to 

calculate the fitness of individuals, ( 4) genetic operators that create children from parents 

for the next generation of np chromosomes, and (5) parameter values to configure the GA. 

A chromosome uses a finite alphabet A to encode a possible solution to the problem 

in a string c such that c E An. Most commonly, A = { 0, 1} and the chromosome is 

called a bit-string. There are advantages to using this alphabet [96]. First, bit-strings can 

encode a wide variety of information and have been effectively used in many different 

problem domains. Secondly, such chromosomes have been studied throughly, resulting in 

a good understanding of how operators behave on said chromosomes and the required GA 

parameter values. 

The most common initialization method is uniform random generation of chromosomes. 

For general search, research purposes, or when there is a limited understanding of the de­

sired solution, this is the best approach. The main reason is features of the final solution 
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will have been produced by the GA algorithm (strict methods of evolution) and not by a 

biased initialization procedure [96]. 

The evaluation (fitness) function takes a chromosome cas input and produces a fitness 

value f as output. The evaluation function is critical to the success of the GA. According 

to [96], f(c) should not stress improvements too much or alternative genetic information 

in the population will not be considered, resulting in rapid dominance of a single strain. 

This results in the GA only searching the solution space around the previously most fit 

individuals and thus converging too quickly on a local suboptimal solution. On the other 

hand, if f(c) does not stress good improvements enough, good chromosomes might be 

permanently lost after a few generations resulting in slow convergence on a poor solution. 

f (c) can be defined to place constraints on possible solutions, for example, by placing 

penalties on individuals that violate the constraints. However, [96] warns that care must 

be taken when issuing penalties since time can be wasted evaluating illegal individuals, 

and the GA may converge prematurely on individuals that have no penalty attached, and 

genetic information stored in other chromosomes may not be considered because the path to 

those chromosomes is blocked by the required production of intermediate, highly penalized, 

chromosomes. 

The bulk of computation in a GA resides in the fitness function. When a GA is used for 

classifier optimization, the fitness function is normally the classifier itself (at least in the 

wrapper approach). In this case the classifier may have to be trained and tested many times 

to produce a single fitness value, such as when k-fold cross validation is used to evaluate the 

classifier. Hence, the complexity off (c) must be thoroughly considered when designing the 

GA. Operators such as selection, crossover, and mutation generally have linear complexity 

and are insignificant compared to f(c) [106]. 

Genetic operators manipulate chromosomes to produce new individuals. There are three 

main GA operations in every GA: selection, crossover, and mutation, usually applied in that 
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order for every generation. For bit-string chromosomes, these have been thoroughly studied 

and are well understood [96]. Many variations of these have been studied over the last 30 

years, but the basic ones explained next are still commonly used in general purpose GAs. 

The purpose of selection is to choose which individual's genes will make it to the next 

generation. Following the genetic principle of survival of the fittest, the selection operator 

must be implemented such that individuals with higher fitness are more likely to participate 

in mating, thus passing their genes on to the next generation. One method of achieving 

genetic like selection is to implement the selection operator using the biased roulette wheel 

method [95] (Section F.2). This selects individuals based on probabilities proportional to 

normalized fitness values. The result is that the best chromosomes get more copies in the 

mating pool, average individuals remain about the same, and the worst fit individuals die 

off, as required by principle of survival of the fittest. 

Once a mating pool is created, the crossover operator is applied. Here, pairs of individ­

uals are chosen randomly and uniformly to mate producing two new individuals. This is 

repeated until all individuals have a chance to mate. The new offspring is created by cross­

ing the genes of the parents, hence swapping genetic material of both. A common method 

described by [95] and others is one-point crossover (Section F.3). 

Whether crossover of individuals ci and Cj occurs or not is governed by the crossover 

probability Pc· If crossover does not occur, (ci, cj) move to the next generation unchanged 

(unless they are modified by mutation; this is described next). Otherwise, the offspring 

( c~, cj) move to the next generation. Crossover is the primary method of diversification 

and exploration in a GA. It is through this rearrangement of genetic material that the best 

adapted traits of both parents are spread throughout the population and passed on to the 

next generation. 

The mutation operator (Section F.4) attempts to mimic gene mutation in biological 

species. In a GA, each chromosome in the current generation is exposed to the muta-
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tion operator where each single bit gene has the probability Pm of being mutated. Mutation 

has the effect of maintaining diversity of genetic information (possible solutions). In some 

cases this can lead to the development of new desirable traits that gives a chromosome an 

advantage over other individuals in the current population and may help the GA get past a 

local optimum [98]. However, using mutation as the single means of diversity results in a 

random walk through solution space [95]. Therefore, mutation is the secondary, or back­

ground, operator to the primary means of diversity: crossover. As a result, Pm is usually 

very low compared to Pc 

A GA will execute until a stopping criteria is reached. Often, the criteria is an a priori 

fixed number of generations, n9 , to execute the GA. Choosing n9 in this manner is difficult. 

If it is to small, the GA will not explore the problem space and thus will not converge on 

a solution. If it is to large, once the GA reaches the optimum, the remaining processing 

time is wasted with no further significant improvements. To overcome this problem, n9 

is sometimes selected at runtime when the GA has determined sufficient convergence has 

occurred. 

Choosing values for the fundamental GA parameters (n9 , np, Pm, and Pc described 

above) is a difficult problem. It has been studied throughly for bit-string chromosomes, 

including the original work by DeJong [99]. The "standard parameter values" derived by 

De Jong are: Pm = 0.001, Pc = 0.6, and np = 50; De Jong did not derive a standard 

value for n9 . De Jong's standard parameter values are most often used in the literature. 

Some recommend using the standard parameter values as a starting point and via experi­

mentation tune these parameters appropriately [98]. Interestingly, some have implemented 

meta-GAs to optimize the GA parameters of the GA for the problem on hand [96, 105]. 

On the other hand some-such as [103] who attempted to find the ideal values for most 

situations-conclude that the GA is robust enough to perform well within a fairly wide 

range of parameter values [ 101]. 
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3. 7 SVM Optimization using Genetic Algorithms 

Support vector machine optimization consists of two parts: choosing the optimal SVM pa­

rameters and FSS. SVM optimization of this nature is a new subject with most significant 

work being published after 2000, probably because it was originally thought (e.g. [59]) that 

FSS is not needed for SVMs; this has since been shown by several researchers not to be the 

case (e.g. [ 64 ]). Most previous works focus on the FSS and the problem of optimizing SVM 

parameters is not addressed. When parameters are chosen, some undocumented heuristic 

approach is used. Worse, "default" parameters are chosen without exploration of alterna­

tives. In this work GAs are used to select both the feature subset and SVM parameters. 

From this point forward, when a GA is used to optimize a SVM, the collective unit is called 

a GA-SVM. What follows is a summary of the readily available works on GA-SVMs. A 

common conclusion is that SVMs optimized using FSS with a GA enhances performance. 

One of the earliest and most thorough works was done by Frohlick [107, 108]. His 

work focused on using a GA for FSS, although the SVM regularization parameter was 

also selected by the GA. Several experiments were conducted with the aim of comparing 

his method with the more traditional filter and wrapper approaches. Classifier fitness was 

set proportional to accuracy and each classifier was evaluated using cross validation and 

leave-one-out. He concluded that optimizing SVM parameters (as indicated by his use of 

optimizing Conly) is a useful means to improve performance. Also, if their is no constraint 

placed on the number of features to select (other than m ::::; d), GAs with cross validation 

tend to select the fewest number of features. Further, depending on the data set, this GA 

optimized SVM can show comparable or better classification results compared to those 

where no FSS has occurred. Even though he only conducted experiments on optimizing C, 

he suggested that the GA offers the opportunity to optimize all SVM parameters in parallel 

to feature selection. The author notes that such optimization may be important because the 
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choice of kernel parameters and C is influenced by the feature subset, and vice versa. 

As far as can be determined, this is the only work that investigates optimizing SVMs 

using a GA for both FSS and SVM parameter selection. As such, it most closely resembles 

the work conducted in this thesis. However, unlike Frohlick's work, in this thesis, GAs 

are used to optimization the feature subset and all SVM kernel parameters, not just C. In 

addition, the results of optimization are compared against the traditional approach of using 

a grid search and cross validation to select SVM parameter values. Of all the similar readily 

available works, all focus on GA feature selection as the sole means of optimization. Unless 

otherwise stated, in the following cited works the SVM parameter value selection process 

is not specified and the GA is the basic GA described in Section 3.6. 

In [109], a SVM based system was developed to predict mortality in patients with un­

stable angina. Three SVMs, one for each RBF, polynomial, and linear kernel, were con­

structed and compared. The hold-out method was used for evaluation. The results showed 

the RBF-SVM performed better on all performance measures. The GA-SVM selected far 

fewer features than the other techniques investigated, such as principle component analy­

sis; and when the RBF kernel was used, the GA-SVM also had the best performance on all 

measures. 

[110] used a GA-SVM for classification in a face verification system. Because the 

number of features was large (up to 4096 features), FSS reduced the memory requirements 

for the system. The results of using a GA-SVM is compared to using a SVM alone, with 

the former showing superior performance (reduced dimensionality, increased accuracy) in 

all experiments. The SVM was constructed using a polynomial kernel of fourth order. The 

fitness value of the chromosome was considered proportional to the classification accuracy 

ofthe SVM. 

Yu and Cho [111] published a well documented study of GA-SVMs used to discrimi­

nate between an owner entering a password on the computer and an imposture. The SVM 
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was configured with a Gaussian kernel with SVM parameters chosen using an undescribed 

heuristic search. The basic GA was used, but with a fitness function that takes into consider­

ation accuracy, dimensionality, and learning time. Evaluation was performed using k-fold 

cross validation (k unspecified). The results showed a great reduction in dimensionality 

with a significant increase in accuracy over unoptimized SVMs. 

Sun et al. [79] argued that FSS is one the most important techniques to enhance de­

tection of objects in images and shows that GAs are a simple and effective method to do 

FSS. The problems of detecting faces and vehicles are used to test the developed GA-SVM 

framework. The SVM was configured with a RBF kernel because it was shown to have 

superior performance on various experiments when compared to other kernels. Three-fold 

cross validation was used for classifier evaluation. The results are compared to manually 

choosing what was considered the four best feature subsets of varying sizes and a sequential 

method. The GA-SVM selected the fewest features and had the highest accuracy. 

Schroder et al. [112] also used a GA-SVM for FSS. In this research the goal was to 

select suitable features (channels) from electroencephalography signals to enhance brain­

computer interface communication and serve as a basis to discriminate brain states in hu­

man subjects. The SVM configuration is not specified. In all cases the fitness function was 

accuracy, and ten-fold cross validation was used for evaluation. The results were compared 

to (1) SVMs with all features selected, (2) SV~s with physiologically motivated selected 

features, and (3) SVMs with exhaustively selected features. The GA-SVM is statistically 

comparable to (3) in number of features selected and accuracy attained. 

3.8 Design of Experiments for GA Calibration 

A significant problem in applying GAs to any problem is selecting the "control" parame­

ters, not limited to but including, mutation rate, crossover rate, and population size. The 
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significance of choosing these parameters is well documented (e.g. [99, 103, 113,95, 105]). 

However, there still lacks a systematic, reliable way to select these values,-that is, cali­

brate the GA [114]. In the literature most researchers either blindly use DeJong's standard 

parameters, use the standard parameters as a starting point and tweak them, or "derive" 

the "optimal" values via intuition, prior knowledge, and random experimentation. Some 

(e.g. [98]) have suggested using hand optimization: start with De Jong parameters and 

change each parameter one at a time. This is the well known, but frowned upon, OFAT 

(one factor at time) experiment methodology. The major problem with the this approach is 

that it does not consider factor (parameter) interactions. In this work it is proposed to use 

DOE to construct a model for calibration; call this process DOE-GA. 

DOE is a theoretically sound, systematic statistical approach to efficiently and effec­

tively investigate the effects of multiple factors (parameters) on a phenomenon. The tech­

nique is a combination of experiment design, analysis of variance (ANOVA), and regression 

analysis. DOE theory and practical usage is described thoroughly in [115, 116, 117, 118]. 

DOE allows a mathematical response surface model to be constructed. The model can 

be used to analyze a response, make predications, and optimize a response by selecting the 

best factor levels to achieve some response goal. It is important to stress that unlike other 

methods (e.g. OFAT), DOE accounts for multi-factor interaction. This occurs when the 

effect of one factor is influenced by the level of another. 

DOE is used extensively in chemical, manufacturing, and to a lesser extent, civil engi­

neering [119]. However, it is rarely used in the computing and intelligent systems fields. 

As pointed by [120], this is a missed opportunity. As such, using DOE to calibrate a GA is 

a relatively unexplored research area. The papers published are all recent and exclusively 

focus on DOE for calibrating GAs for scheduling problems. As far as can be determined 

similar techniques have never been investigated where GAs perform classifier optimization. 

One of the earliest and most thorough works-and not specific to scheduling-was con-
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ducted by [ 114]. The purpose of this work was to derive a general parameterization pro­

cedure based on DOE. The multi-factored constrained optimization problem with a known 

solution is used to investigate this approach. The factors studied are mutation rate, crossover 

rate, and population size. A 33 full factorial design with five replications was used. In each 

replication the GA started with a new seed to randomly generate the initial population (ini­

tialization). The results suggest that individual factors alone are not important, but the 

interaction between them is very important. This highlights the importance of considering 

the GA parameters together, not individually; hence the conclusion that "these parameters 

cannot be optimized by studying them one at a time, in an isolated manner". Although a 

comparative study is not presented, the authors state that tests indicate the DOE approach 

is as effective as other methods currently in use. Moreover, they conclude that DOE-GA 

should be more effective than the current set of guidelines and rules of thumb. 

[121] used DOE to select the best settings for a hi-criteria genetic algorithm developed 

specifically to minimize scheduling costs for a complex job-shop scheduling problem. The 

GA factors chosen for study were the ratio of population size and generation size, crossover 

rate, mutation rate, crossover operator, and mutation operator. The authors chose a sequen­

tial DOE strategy to reduce experiment execution time. First, an efficient L4 fractional 

factorial in a eight level Latin-square with two replications, each started with a new random 

seed, screening design was executed. Based on these results, a 2~v 1 fractional factorial with 

two replicates was conducted to investigate significant factors from the screening experi­

ment. The final model was built using the crossover operator, mutation operator, mutation 

rate and the interaction of crossover operator and population/generation ratio. The results 

were not conclusive. Additionally, crossover rate and mutation rate were found to be in­

significant, which conflicted with other researchers work. As a result, they conclude that 

significant GA factors and their interaction are application specific. 

[122] also performed a sequential study on job-shop scheduling, albeit with different 

37 



factors, namely crossover rate, mutation rate, population size, generation size, problem 

complexity, and length of the block swapped in crossover. For screening, a 2~v2 design 

was used. The results suggested that population size is not important, which disagrees with 

current thought. In the subsequent 2~v2 design, narrower experiment ranges for population 

size and generation size was used to confirm the results of the sequential experiments. 

The results did not agree. The authors explain this contradiction is because the surface 

is nonlinear over the entire design space. As a result, they conclude there is no general 

guideline in setting the GA parameters to achieve the best solution for all problems. Rather, 

setting parameters is problem specific. 

A more recent paper [120] investigated the use of DOE to (1) optimize GA parameters, 

(2) demonstrate that this technique can be more widely used in modeling and optimization 

of other computer programs, and (3) show that applying DOE in a sequential strategy is the 

best for computer programs. As in the above works, the GA being investigated is designed 

to optimize a scheduling problem. Several designs where considered, all using popula­

tion/generation combination, mutation rate, and crossover rate as factors. A 33 full factorial 

design with five replicates, £ 8+1 fractional factorial, a 23 central composite design (CCD), 

and a Box-Behnken design (BBD) were used. In the end, the authors conclude a sparse 

design (minimum runs) such as the 23 design will often achieve results comparable to more 

complex designs. If analysis of the results suggests so, further experiments can be easily 

added, for example, forming a CCD or BBD. Later trials are easily added without penalty 

because, when applying DOE to computer programs, there is no change in response over 

time if the same GA parameter settings and initialization are used. The sequential strat­

egy can also lead to significant savings in time and resources if complex, computationally 

intensive programs, such as GAs, are being investigated. 

Some other related work involving the use of GAs and DOE (but not using DOE to 

calibrate the GA) are summarized by [122]. These included [123, 124, 125, 126]. 
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Chapter 4 

Image Segmentation 

This chapter describes the development of image processing methods used to segment ob­

jects that resemble whales from the raw images. This is step two in the general approach 

described in Section 3 .1. The chapter starts with a description of the data set, including 

common features seen in most images. This is followed by sections describing the main 

algorithms developed, followed by a discussion of the results. 

4.1 Data Set 

The raw data set consists of 6 rolls of 9" x 9" color aerial photograph negatives. These were 

taken during surveys conducted by DFO in August of 1995 and 1997 over the St. Lawrence 

River estuary. The survey was flown using a strip transect line technique described in Sec­

tion 2.3 at an altitude of 4000 feet. The fixed winged aircraft's altitude and position was 

controlled by a certified pressure altimeter and a satellite-linked global positioning system 

(GPS). A large format (9"x9") mapping camera was attached to the aircraft and fitted with 

6" lenses, 420 nm 2 x filters, and a motion compensation system. The initial, ideal con­

ditions were a sun angle 2:: 30°, winds < 10 knots, a ceiling of 4000 feet, and no fog 

[127]. 
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The film negatives were read by DFO scientist and technicians using methods described 

in Section 2.3. The results were recorded on paper with grid lines matching the acetate 

covering the negatives. Using this method, whales (adults and young), wave crests, land, 

sun glare, boats, and other objects were marked. These were provided with the data set and 

acted as the ground truth data for algorithm development and testing. 

Each negative frame was examined with the goal of picking a representative set for 

scanning. All frames in the selected set contained whales or other features typical in aerial 

photographs. A total of 103 frames were selected for scanning. Aerial photographic film re­

quires specialized scanning equipment that is capable of scanning large format negatives at 

high resolution. Hence, the images were scanned by a third party company that specializes 

in such tasks. 

The higher the scan resolution the better the quality of the final image, and the more 

pixel data is available for analysis. However, higher scan resolutions results in larger im­

ages, thus increased data storage and computer processing power to analyze the image. 

Additionally, the price of scanning each image increases with scan resolution used. On 

the other hand, low resolutions make it difficult to sensibly segment whales and extract 

discriminating features. Taking into consideration the above factors, the selected frames 

were scanned in color (24-bit, 3-band RGB, TIFF) at a resolution of 907dpi (resulting in 

8430 x 8429 pixel images) to produce as much detail as possible while maintain a reason­

able image size(~ 213MB). Triathlon Incorporated (Richmond, BC, Canada) scanned the 

images at about $47 per frame and stored the digital image library on 35 CD-ROMs. 

4.2 Features in Aerial Photographs 

This section describes the most common features seen in the aerial images. As expected, 

nearly all of these features appear in the source negatives as well. The intent is to give an 
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overview of the features that a reader would encounter in manual inspection of a typical 

image (or negative), how the reader would handle such features, and to develop a better 

understanding of the challenges involved in developing an automation technique. Examples 

of typical image features are shown in Figure 4.1 and examples of common whale forms 

are shown in Figure 4.2. 

4.2.1 Non Whale Features 

A typical image consists of dark navy blue to light blue-green water with some sun glare 

and an associated halo of wave crests concentrated in one part of the image. Sun glare 

(Figure 4.la) occurs in almost every image. It is typically localized to one area of the 

image, usually the side or comer, and generally covers between 10 and 30% of the image. 

It is generally shades of white, and rarely shades of red. Areas of intense sun glare are 

considered unreadable because they completely mask the water. 

Wave crests (Figures 4.1 b) are typically manifested as sun reflecting of waves. These are 

generally seen in highest density as a halo around the most intense sun glare and diminishes 

in intensity outward from the sun glare center. Smaller, more oval shapes, are called sun 

speckles (Figure 4.1 c). When a collection of high density wave crests are observed, that 

area is marked as unreadable because whales are completely masked. However, if the 

density of waves crests is sufficiently low whales can sometimes be identified; although 

with great difficulty because wave crests often resemble whales. In most cases, whales 

distinguished in such areas are labeled uncertain. When whales are identified, it is because 

the waves are not elongated or are of a different size than typical whales. Sometimes whales 

are distinguished because they are swimming in a direction approximately perpendicular to 

the predominant wave crests (Figure 4.2h). When wave crests are isolated, it can be very 

difficult to classify it as a whale or a crest. 

A related feature to wave crests and sun glare are wave fronts (Figure 4.1 d). These 
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are predominantly elongated, snake like patterns that cross the image. They vary in color 

from shades of white to light blue. The texture can resemble fog or clouds with a wispy 

appearance, or they can appear as a dense collection of very small wave crests. Parts of 

these fronts can appear as whales deep under the water surface. Whether they are marked 

as unreadable or not depends on their ability to mask clear water, which is large influenced 

by the pattern, color, and size of the front. 

A smaller percentage of images(~ 10% ofthe data set) have land in them (Figures 4.1e 

and 4.1±). Readers identify land, estimate its percentage of total image, and mark the area 

as unreadable. Varying percentages of land cover can be present, from 0 to 100%. 

All images have a near black to black border that covers all four sides of the image. 

This is an artifact of scanning negatives and photographs. About 7% of the image is lost to 

borders. 

Other objects more rarely seen are boats, buoys, clouds, and foam layers on top of water 

(Figures 4.1 g, 4.1h, and 4.li). 

4.2.2 Whales 

A typical image has 0 to 10 whales. In digital images at the resolution used here, the 

maximum whale size is about 25 x 7 pixels. Because they are located in a 8430 x 8439 

pixel image, they are nearly indistinguishable unless viewed under height magnification. 

Adult whales located at or very near the surface of the water appear as elongated white 

objects surrounded by darker blue-green water (Figure 4.2a). These whales are the easiest 

to detect and mark correctly. The main challenge is when they appear in odd shapes or are 

curved because they are turning, diving, or splashing (Figure 4.2e ). 

Whales can be located deep in the water (Figure 4.2b ). These are not easily identified 

since their characteristic white, elongated body is masked by water. These whales often 

appear as oval to round light blue-green shapes distinguished from the surrounding water 
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mostly because of the slight increase in average intensity. Slight variations in water texture 

and color, caused most often by partial wave fronts, sun glare, and wave crests, can have a 

similar appearance. Hence readers often mark these whales as uncertain. 

Young whales (Figures 4.2f and 4.2g) are especially problematic, and thus many are 

labeled as uncertain. These whales are often less then half the size of adults. The smallest 

of juveniles lose the characteristic elongated shape and appear very much like small wave 

crests, small wave fronts, sun speckles, or very deep adults. When young are deep, they 

are nearly indistinguishable from surrounding texture and color variations in the water. 

Juveniles are most often identified by their close proximity to adults, often being partially 

occluded by an adult. 

Belugas are often seen as pods ranging from 2 to 12 whales (Figure 4.2c). Isolated 

whales in pods are clearly distinguishable. Often, however, whales are very close to, touch­

ing, or partially occluding others. This makes it very hard to distinguish one whale from 

the other (Figures 4.2c and 4.2i). Young whales in pods are particularly difficult to identify 

because they can appear as a partially occluded whale or a splash from another whale. 

4.3 Challenges 

Following are the main image processing challenges. 

• Segmenting natural objects in natural scenes, which implies varying feature values, 

such as size, shape, and color. 

• Identifying whales from resembling wave crests. 

• Detecting deep whales. 

• Separating touching and occluded whales. 
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(o) Glare (b) Waves (c) Sped<le 

(d) Frocu (o) Beach (f) Land 

(g) Boat {h) Cloods (I) Foam 

Figure 4.1: Submogeo ollearures typically found 111 lmogM. 
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(a) (b) (c) 

(g) (h) (I) 

Figure 4.2: Subimages of common whale forms. (a) A single adult whale in sun speckles. (b) 
Two -P whales. (c) A pod of flvo isolated whales. {d) A pod of four touching and occluding 
whales. (e) A single whale splashing water. {f) Two adutts and two young. (g) A single young 
wha)e. (h) Three whates ln an atea of WW!t/e crests. (i) A pod of tour whales., Wrth one occluding 
another. 
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• Identifying non-whale objects: wave crests, sun glare, land, boats, wave fronts, and 

clouds. 

• Targets are small relative to the image; a whale is a maximum of 25 x 7 pixels in a 

8430 x 8429 pixel (203 .46 MB) image. 

4.4 The High Level Segmentation Algorithm 

The high level image segmentation algorithm consists of three steps: (1) create an "un­

readable" mask and apply it to the source image, (2) segment the source image using an 

adaptive thresholding algorithm, and (3) perform secondary segmentation and blob analy­

sis. Sections 4.5, 4.6, and 4. 7 describe the development of each step in this algorithm, and 

the chapter ends with a discussion of the results. 

4.5 The Unreadable Mask 

Areas in an image that a reader (the person doing the counting) would consider "unread­

able" typically consists of land, sun glare, extensive waves crests, or image borders; that is, 

places where it is difficult or impossible to observe whales. The unreadable mask algorithm 

creates a mask so subsequent image processing algorithms can ignore these areas. 

The first step in the mask algorithm is to reduce the image size by 90% using a nearest 

neighbor interpolation resizing algorithm. This algorithm is fast but produces low quality 

images, which is acceptable for creating the unreadable mask since small details are not 

important. This resizing step is key in reducing the computation time for the mask algo­

rithm, indeed the overall image segmentation algorithm. Even though it takes time to resize 

the image, this time is small compared to the time required for the subsequent filtering op­

erations. Without this step, the time spent creating a mask would prevent practical use of 
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the software. Without resizing, the mask algorithm takes more than 4 7500s ~ 13.2h to pro­

cess a typical24-bit, 8430 x 8429 (203.36 megabytes) image (benchmarked on a 900MHz 

computer with 500 megabytes of RAM). With resizing, it takes 160s. 

The next step consists of a filtering (pixel classification) operation. Here, a 5 x 5 pixel 

window is centered on each pixel in the image and the origin (center) of the window is 

classified as readable or unreadable. The end result is a binary image. If any of the following 

criteria are true, the origin is labeled unreadable: 

1. The origin is nearly1 black. This typically indicates the pixel is on the image border 

or in a very dark shadow caused by objects of high relief. Objects of high relief are 

either on land (e.g. buildings) or are unreadable objects on the water, such as a boat. 

2. The mean of the window is high. This occurs in areas of intense sun glare, wave 

crests, or beach rock. 

3. The texture of the window is not smooth. Clear water has a smooth texture, non­

water regions and wave crests often do not (Figure 4.3). The standard deviation of 

the gray values of pixels-calculated by taking the average of the red, green, and blue 

bands-covered by the window is used as a simple measure of texture [128]. 

4. Any pixel covered by the window has a red component larger than the corresponding 

blue component. This rule reflects the fact that only non-water pixels have red ~ 

blue components. This is because higher light wavelengths, such as red, are absorbed 

more by water than the lower wavelengths, such as blue and green, so the red compo­

nent is always lower than the blue and/or green. However, it is not sufficient to rely 

on the "fact" that water is "blue" and land is not because variations in atmospheric 

conditions often result in land regions having a blue component greater than red or 

1 Unless otherwise specified, values for parameters in all algorithms in this chapter are empirically derived. 
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green (Figure 4.3). In addition, depending on water depth, water temperature, sun 

direction, and bottom color, water often has shades of green similar to land. 

The above filtering operation does not label every pixel in the image correctly. In par­

ticular, it forms binary regions (blobs) of varying sizes and odd shapes with many holes. 

To create a uniform, smooth mask, a post processing algorithm is applied to the binary 

image created (Figure 4.4). First, small blobs are deleted from the mask. This ensures 

blobs representing pods are not included in the mask (individual whales are automatically 

removed because of the rigorous image size reduction). Then, small holes in the remaining 

blobs are filled and regions that are nearly touching are joined using an aggressive dilation 

operation [128] (30 iterations with a 3 x 3, 8-connected symmetrical structuring element). 

The dilation operation also increases mask area in an attempt to cover transitional areas 

between unreadable and water areas (e.g. wide beaches, less intense wave crest). Filling 

holes and dilation can be safely applied (i.e. without worrying about masking whales) since 

small patches of water are not generally surrounded by regions of non-water (e.g. land and 

wave crests), or small spaces between regions are likely unreadable regions misclassified 

as water. Even if such regions are truly readable water, they are generally too small to 

search in for whales. Finally, all remaining blobs are either closely packed pods of whales 

or unreadable areas. Taking into account the previous dilation and scaling factor, blobs that 

are small enough to represent pods or individual whales are removed. The last step in the 

algorithm is to rescale the mask back to the original image size. 

4.6 First Phase Image Segmentation 

A variant of the adaptive thresholding technique [128] is used to segment potential whales. 

This allows localized processing of the large (8430 x 8429 pixel) source image, thus allow­

ing different thresholds to be calculated for different parts of the image. This is necessary 
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(a) (b) 

(c) (d) 

Figure 4.4: Subimages sho'Ning k&y steps in the unreadab'e mask algorithm. (a) Colored 
source itnaQ&. {b) Binary image after segmentation. (c) Binary image after blob filter applied, 
(d) Binary image after holes filled and blobs dilated. 
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because (1) there are large intensity variations across the entire image, and (2) the total area 

covered by whales is statistically insignificant in relation to the size of the image. 

First the image is divided into a grid of 250 x 250 pixel, non-overlapping subimages. 

The subimage size is chosen such that intensity variations are minimized and there are 

significant statistics to obtain a well shaped normal distribution of the background intensity. 

The grid is created as follows. First, from top to bottom, as many 250 pixel wide rows as 

possible are created. If there is image area remaining at the bottom, and the area is greater 

than 0. 75 x 250 pixels wide, the entire area is divided into two equal wide rows, otherwise 

the area is append onto the existing last row. The same technique is used to create columns 

from left to right. 

The following algorithm steps analyze each subimage and combines the results back 

into a single image. It should be noted that regions covered by the mask created in Sec­

tion 4.5 are not processed in any of the following steps. The first step is to create gray scale 

sub images for thresholding. These images are created from the red band of the source im­

age, versus taking the average of all bands, since the biggest contrast between whales and 

the background is in the red band (Figure 4.5). This is to be expected given that whales re­

flect all light wavelengths well, as they are white in color, but the surrounding water absorbs 

wavelengths represented by red more than other colors. 

The second step calculates the first order statistics mean p, and standard deviation s 

of each gray scale subimage. This is used to threshold the subimage at T1 = p, + 3s, 

which is about 99.85% cumulative distribution. This threshold works because the whales 

have a higher intensity than the background, are significantly smaller than the background 

(i.e. have fewer pixels), and the background intensities generally forms a normal distri­

bution. In general, if whales exist they represent a very small proportion of the highest 

intensity levels. Of course, other high intensity objects are also found. 

The results of thresholding are binary blob sub images representing potential whale tar-
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gets. In this step, a simple filter is applied to remove objects that are obviously not whales. 

The filter consists of removing all blobs with an area greater than an empirically derived 

maximum size for a pod of whales, and all blobs not touching the subimage edge that 

are less than an empirically derived minimum size for a single whale. Small blobs along 

subimage edges are not removed because they could represent whale(s) that span adjacent 

subimages; these are dealt with implicitly in the secondary segmentation algorithm in the 

next section. 

The final step of the algorithm is to recreate the full sized binary image from the binary 

subimages. This is done using a binary OR operation [128] between each subimage and the 

full sized image, which has all pixel values set to 0. The subimage grid is used to correctly 

position each subimage in the full sized black image. 

4. 7 Secondary Segmentation and Blob Analysis 

The previous algorithm creates a full sized binary image, where each blob is potentially a 

whale or pod of whales. The following algorithm "zooms in" and analyzes each blob to 

improve segmentation. This includes separating close whales that are respresented by a 

single blob and fine tuning segmentation of both separated whales and blobs that represent 

single whales. The algorithm is illustrated in Figure 4.6. 

The first step (Figure 4.6a and 4.6b) creates a small binary and gray scale subimage 

centered on the blob of interest. The subimage size is equal to the blob's bounding box 

inflated 2 by six pixels to ensure parts of the object that may have been missed by initial 

segmentation in Section 4.6 are included. The inflation value of six pixels is a conservative 

estimate based on experience with the segmentation algorithm. 

Next, a watershed algorithm (Chapter D) is used to create a mask to separate adjacent 

2 A rectangle inflated by n pixels is defined as the original rectangle with top, bottom, left, and right 
boundaries extended by n pixels. 
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(a) (b) (c) (d) 

(e) (f) (g) 

Figure 4.6: Example of the main steps in the secondary segmentation algorithm. (a) Gray 
scale subimage of an adult and adjacent young whale. {b) Subimage of original target blob as 
thresholded in Section 4.6. (c) Watershed lines derived from gray scale image in (a). {d) Object 
boundary. (e) Dilated gray scale blob (ROI). (f) Watershed line image in (c) applied to (e). (g) 
Results of thresholding (e) at T2 and applying blob filter. 

whales (Figure 4.6c). If two or more whales are adjacent to each other, but not occluding 

each other, a hill-valley type intensity profile exists (Figure 4.7); the whales represent hills 

(high intensity) and water represent valleys (low intensity). The watershed algorithm draws 

lines in valleys between catchment basins (lowest points in a valley), thus separating touch-

ing whales. Catchment basins are determined from pixel intensity minima; when a minima 

has a difference in intensity 2:: Vmin (the watershed minimum variation) from the closest 

maxima it is considered a catchment basin. If Vmin is too low, watershed lines are formed 

incorrectly, often cutting across whales (Figure 4.8). On the other hand, if it is too high, 

watershed lines are not formed in the valleys. Through experimentation, a suitable value 

for Vmin is 20 (on a scale 0-255). 

Separating adjacent whales using simple thresholding does not work. First, determining 

a dynamic threshold is difficult. Second, when applying the threshold, the valley between 

the adjacent whales is often incompletely segmented. The watershed technique above does 
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Figure 4.7: Example of the hill-valley intensity profile across adjacent whales exploited by the 
watershed algorithm to separate adjacent whales. (a) Cross section line drawn from left to right 
across four adjacent whales. (b) Intensity profile from left to right along the cross section line. 
The four peaks represent four whales. The valleys in between are where the watershed lines 
are drawn. 

... .. ... 
(a) (b) (c) 

Figure 4.8: Example of whale bifurcation when using a low vmin· (a) Gray scale subimage of 
a single whale. (b) Watershed line cutting whale when a Vmin = 3 is used. (c) Correctly formed 
watershed lines (not cutting a whale) when a Vmin = 6 is used. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.9: Examples of object resegmentation using foreground and background intensities. 
(a) and (d) are original gray scale subimages of single whales. (b) and (e) are results of initial 
segmentation using T1 (Section 4.6). (c) and (f) are results of resegmentation using T2 . Note 
the much finer detail in the resegmented subimages. 

not suffer from these problems because watershed lines are always continuous and thresh-

olds are not used for segmentation. 

Before applying the watershed mask, a resegmentation threshold T2 is calculated. As 

opposed to T1 calculated in Section 4.6, which resulted in rough segmentation, T2 is based 

on the object foreground and adjacent background intensity, thus it is finely tuned to an 

individual region of interest (ROI) around the object. T2 is calculated as the average of the 

average background (m1) and average foreground (m2) intensity: T2 = (m1 + m2)/2. m1 

is calculated from the gray values of pixels along the boundary of the blob (Figure 4.6d). 

The boundary pixels are determined by dilating the original binary blob and subtracting 

the original blob from it. The gray values of pixels corresponding to the remaining binary 

pixels represent the background. m 2 is calculated from the gray values of the original blob 

pixels. Results ofT2 thresholding are demonstrated in Figure 4.9. 

The final step extracts a gray scale ROI and applies the watershed mask and T2 cal­

culated above. The ROI is created by dilating the original binary blob and copying the 

56 



corresponding pixels in the gray scale image to a new image (Figure 4.6e). The watershed 

mask and the ROI image are combined using the logical AND operation [128], thus sepa­

rating any adjacent whales (Figure 4.6±). The result is then threshold using T2, forming a 

new binary subimage with whales accurately resegmented and adjacent whales, if present, 

separated. Any spurious small or very elongated blobs are removed (Figure 4.6g). The final 

segmented subimage is then merged back into the full sized image using the logical OR 

operation. 

4.8 Results 

The unreadable mask algorithm creates an adequate mask for all images tested; all land, 

sun glare, wave crests, and borders are covered. However, the dilation step results in the 

mask covering portions of clearly readable water if the boundary between clear water and 

unreadable areas is sharp, such as along,image borders and sharp coastlines and wave crests. 

In such cases, whales close to the boundary could be covered by the mask. For borders 

this is a significant problem because borders are present in every image. If whales can be 

covered by the image border mask, the user is forced to manually examine four sides of 

every image. It is not as severe a problem along shorelines since whales are generally not 

found close to land and land is not present, or present in small amounts, in most images. In 

the case of wave crests, the user must manually search in such areas covered by the mask 

anyway since the existing algorithm can't process such areas. In addition, such areas are 

small and well localized in most images. Another problem area is that shallow water is not 

masked. As a result, variations in the sea bottom or surface-protruding objects (e.g. rocks) 

are sometimes detected as whales. 

The adaptive thresholding algorithm (Section 4.6) works well. Only the most obscure 

of whales are missed, such as those with very low contrast (Figure 4.1 Oa). Less than 1% 
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(a) (b) 

Figure 4.10: Examples of whales that cause image processing problems. (a) low oontrast 
whale. (b) Four occluded and touching whales. 

of whales are missed this way, and most of these are labeled uncertain by readers. In llll 

attempt to keep this percentage as low as possible, the algorithms over segment tbe image 

so that many objects fowtd are not·whales. Segmented not·whalc objects mostly include 

localized changes in intensity caused by wave fronts and wave crests. However, the blob 

analysis algorithm in Section 4.7 and the pattem recognition algorithm described in later 

chapters eliminates many of these false positives. 

The blob llllalysis algorithm (Section 4. 7) improves initia.l segmentation and separates 

many adjacent whales. The biggest problem is that the conservative (high) minimum varia­

tion level for the watershed algorithm results in many adjacent whales not being separated. 

However. if tlte variation level is lowered, many individual whales are bifurcated as shown 

in Figure 4.8. Another problem is that occluded whales are not separated because tbe in­

tensity valley between them is small or non-existent (figure 4.10b). Whales not separated 

or cut by watershed lines are at risk of being filtered out in the blob analysis algorithm or 

misclassified as not-whales by the pattern classifier described in later chapters. 
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Chapter 5 

Calibrating GAs Using DOE 

This chapter focuses on the task of selecting parameter values for the GAs that are used 

for classifier optimization in the next chapter. The details of the GAs and classifiers used 

are described in that chapter where it is more relevant; such details are not necessary to 

understand the contents this chapter. For this chapter it is sufficient to have read Chapter 3, 

in particular the sections on classifier optimization (Section 3.4 and Section 3.7), genetic 

algorithms (Section 3.6), and DOE (Section 3.8). 

Choosing GA parameter values is a difficult problem (Section 3.6 and Section 3.8), com­

pounded by the fact that the values often depend on the GA application. In this work it is 

proposed to use DOE as an aid in selecting the parameters. Traditionally, values are de­

termined using intuition, choosing several different combinations and running trials, using 

the so called "standard" settings proposed by DeJong [99], or some combination thereof. 

Using the systematic DOE approach, classifier specific GA parameter models are created 

and the optimal (within the given design space) set of parameters and values are selected 

from the theoretically sound, statistically derived models. Some (e.g. [114]) have described 

this approach as calibrating the GA. Henceforth, call GAs that have been calibrated using 

DOE DOE-GAs. 
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The general procedure for applying DOE to calibrate a GA follows. 

1. Choose responses, factors, and factor levels (Section 5 .1.1 ). 

2. Choose a suitable experiment design (Section 5.1.2). 

3. Execute the experiments dictated by the design (Section 5.1.3). 

4. Analyze the experiment results (Section 5.2). This consists of selecting a candidate 

model, model reduction (i.e. selecting terms to include in the model based on sig­

nificance level), hypothesis testing about the model parameters (these last two steps 

involves heavy use of ANOVA), and analysis of residuals for model adequacy and 

assumptions (Appendix C). 

5. Form the model equation and plot graphs to interpret the model (Section 5.3). 

6. Use the model to calibrate the GA (Section 5.4). 

5.1 Experiment Design 

5.1.1 Response and Factors 

The chosen response (y1) is the balanced accuracy of the classifier, which is the output of 

the GA's fitness function (Equation 6.1 ). In this chapter the response is a real number in the 

range 0 to 1, multiplied by 100 so it is expressed as a percent. 

The factors (using standard DOE notation are represented by capital letters A, B, C1
• • ·) 

chosen for all designs are the GA parameters that govern the fundamental behaviour of the 

GA. The factors are: 

• A- The probability of mutation, Pm, expressed as a percentage CPm x 100). 

1 Factor C should not be confused with the regularization parameter, C, in SVMs. In this chapter, C 
always represents a factor unless otherwise stated. 
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• B -The probability of crossover, Pc, expressed as a percentage (pc x 100). 

• C- The population size, np. 

• D- Number of generations, n9 • 

Others factors were considered but were rejected because they are not of interest in this 

work and can be easily set to constant values, as described in the experiment design setup 

below. An example are the SVM classifier parameters C and "(. 

5.1.2 Experiment Design Choice and Setup 

The chosen design for each experiment is a 24 full factorial, face-centered central composite 

design (CCD) [117] (see also Appendix B), with six center points and two replications. 

Because this design has more than 2 levels, it is suitable for fitting second order and lower 

models. Additionally, the replications at the center point and the complete experiment 

replication allows an estimate of pure error. 

The CCD allows approximation of three regression models: 

k 

linear : y = j30 + L f3iAi + c (5.1) 
i=l 

k k k 

2FI (factor interaction) : y = j30 + L j3iAi + L L f3ijAiAj + c (5.2) 
i=l i=l j>i 

k k k k 

quadratic : y = j30 + L f3iAi + L L f3ijAiAj + L f3iiA; + c (5.3) 
i=l i=l j>i i=l 

where f3i is the regression coefficient, j30 is the overall average, c is the error estimate, 

Ai is factor i (also called the regressor variable), and k is the number of factors. The 

method ofleast squares is used to estimate the parameters in the approximating polynomials 

[117, 118, 129, 130]. 
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Table 5.1: Experiment parameter settings. 

I Factor I -1 0 + 1 I Description 

A 0.1 2 3.9 Pm as a percent 
B 30 60 90 Pc as a percent 
c 25 50 75 np 
D 10 20 30 ng 

The chosen levels (low= -1, center= 0, and high= +1) are shown in Table 5.1. The 

values were chosen based on the authors experience using the GA for this problem with 

consideration for De Jong's [99] standard settings of Pm = 0.001, Pc = 0.6, and np = 50. 

ForB and C, the design is centered on DeJong's standard parameters (where B is expressed 

as a percent). For A, De Jong's setting is used as the low level (expressed as a percent) and 

the design is centered on Pm calculated by taking into consideration the chromosome length, 

lc = 25: 

(t) 
Pm=--

2 
(5.4) 

This equation ensures significant mutations in a generation, thus plenty of diversity to es-

cape local minima, while at the same time ensuring that not every chromosome is mutated. 

Statistically, there is a 50% chance that an individual chromosome will have one bit mu-

tated. In the authors experience, this mutation setting typically produces better results than 

DeJong's setting. 

DeJong did not specify the number of generations ( n9 ) to use, and researchers use many 

different values. The most important point is to ensure there are enough generations for the 

GA to coverage. With this in mind, the levels for D were chosen such that the GA would 

run for a maximum of 30 generations. This maximum is based on previous experiments 

with the GA and given classifiers, and it ensures the GA finishes in a reasonable time. 

For each replication, the GA uses a new uniform random distribution (new seed) to 

"facilitate determination of real predictors" [120]. Within a replication the same seed was 
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used for each run. This improves statistical precision by variance reduction [114, 131]. 

The above 24 CCD was executed once for the base classifier in each of the four classifier 

types described in Chapter 6, Section 6.5: 2-class Bayesian minimum error rate quadratic 

discriminate (2QD, Section 6.5.1 ), 3-class Bayesian minimum error rate quadratic discrim­

inate (3QD, Section 6.5.2), 2-class SVM (2SVM, Section 6.5.3.1), and a 3-class SVM 

(3SVM, Section 6.5.3.1 ). As stated in the chapter introduction, it is not necessary to under­

stand the details of these classifiers at this point. It is sufficient to know we have four base 

classifiers and configurations of these will be optimized using aGAin Chapter 6, but to do 

so we need to calibrate the GA that will use these classifiers. The latter is the focus of this 

chapter. 

5.1.3 Experiment Execution 

The CCD in the previous section was executed once for each ofthe four base classifiers. For 

each CCD, a GA was configured with one of the four base classifiers. This GA-classifier 

combination was then run twice for every point on the perimeter of the design space ( + 1, 

0, and -1 levels) and six times at the center (all factors at level 0). A total of m(2k + 

2k) +me = 2(24 + 2(4)) + 6 = 54 experiments are necessary for each CCD, where m 

is the number of replications, me is the number of replications at the center point, and k 

is the number of factors. In accordance with the basic principles of DOE [117], the order 

of the 54 experiments was randomized and executed in one block. The response (y1) was 

recorded for each run and analyzed using standard DOE statistical techniques. The results 

are detailed in the following sections. 
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Table 5.2: Fit summary for 2QD CCD, Yl· 

Sequential Model Sum of Squares 
Source ss DF MS Fo P-value 
Mean 4.164 X 105 1 4.164 X 105 

Linear 13.35 4 3.34 6.78 0.0002 
2FI 6.07 6 1.01 2.41 0.0427 
Quadratic 3.99 4 1.00 2.76 0.0409 
Residual 9.96 31 0.32 
Total 4.164 X 105 54 7711.02 

Lack of Fit Tests 
Source ss DF MS Fo P-value 
Linear 14.56 20 0.73 2.20 0.0255 
2FI 8.48 14 0.61 1.84 0.0815 
Quadratic 4.50 10 0.45 1.36 0.2463 
Pure Error 9.57 29 0.33 

Model Summary Statistics 
Source s R'J R'J 

Adi 
R'J 

Pred PRESS 
Linear 0.70 0.3561 0.3036 0.2029 29.87 
2FI 0.65 0.5182 0.4061 0.2052 29.79 
Quadratic 0.60 0.6246 0.4898 0.2624 27.65 

5.2 Analysis of Experiment Results 

5.2.1 2QD 

Table 5.2 is a summary of fitness for models that can be fitted from the CCD. To choose a 

model to explore, we pick the highest order model that is significant (Sequential Model Sum 

of Squares), has an insignificant lack of fit (Lack ofFit Tests), and has the highest and most 

consistent R 2
, R~dj, and R~red summary statistics (Model Summary Statistics) [ 117]. The 

quadratic model is the best choice: it is significant, it has insignificant lack of fit (a= 0.1), 

and R2
, R~dj• and R~red are larger and more consistent than the other models. 

Backward elimination [118] with a = 0.10 was used to find the "best" subset of re­

gressors to include in the final model. The reduced model statistical test for significance 
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Table 5.3: Reduced ANOVA and summary statistics for 2QD CCD, YI· 

AN OVA 
Source ss DF MS Fo P-value 
Model 22.54 8 2.82 8.49 < 0.0001 

A 0.96 1 0.96 2.88 0.0967 
B 0.45 1 0.45 1.35 0.2522 
c 7.36 1 7.36 22.16 < 0.0001 
D 4.59 1 4.59 13.83 0.0006 
D2 3.70 1 3.70 11.14 0.0017 
AB 1.50 1 1.50 4.51 0.0392 
AC 3.02 1 3.02 9.08 0.0042 
BC 0.98 1 0.98 2.96 0.0920 

Residual 14.94 45 0.33 
Lack of Fit 5.36 16 0.34 1.02 0.4695 
Pure Error 9.57 29 0.33 

Total 37.48 53 

Summary Statistics 
s 0.58 R2 0.6015 
y 87.81 R~d· 0.5306 
cv 0.66 

2 'J 
0.4088 RPred 

PRESS 22.16 Precision 12.277 

(hypothesis testing) is summarized in Table 5.3. As can be seen the model is highly sig­

nificant; there is only a 0.01% chance that a model F-value this large could occur due to 

noise. Model terms C, D, D 2
, AB, and AC are highly significant (P-value < a = 0.05) 

and A and BC are significant (P-value < a = 0.10). B is not significant but must be 

in the model to maintain hierarchy [118]. The lack of fit is not significant relative to pure 

error; non-significant lack of fit is desirable. R 2
, R~dj• and R~red are consistent but not 

high, although the precision (signal to noise ratio) is good (greater than 4). This suggests 

we have a usable, but not an excellent, model. 

As stated by [118], "it is always necessary to (1) examine the fitted model to ensure 

that it provides an adequate approximation of the true system, and (2) verify that none 

ofthe least squares regression (ANOVA) assumptions are violated". Appropriate analysis 
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Table 5.4: Fit summary for 3QD CCD, Yl· 

Sequential Model Sum of Squares 
Source ss DF MS Fo P-value 
Mean 3.128 X 105 1 3.128 X 105 

Linear 12.06 4 3.02 5.90 0.0006 
2FI 6.86 6 1.14 2.72 0.0254 
Quadratic 2.89 4 0.72 1.86 0.1381 
Residual 13.60 30 0.45 
Total 3.128 X 105 53 5901.89 

Lack of Fit Tests 
Source ss DF MS Fo P-value 
Linear 11.27 20 0.56 1.19 0.3299 
2FI 4.41 14 0.31 0.66 0.7873 
Quadratic 1.52 10 0.15 0.32 0.9686 
Pure Error 13.26 28 0.47 

Model Summary Statistics 
Source s R'2 R'2 

Adi 
R'2 

Pred PRESS 
Linear 0.71 0.3297 0.2738 0.1597 30.74 
2FI 0.65 0.5172 0.4022 0.1784 30.05 
Quadratic 0.62 0.5961 0.4473 0.1643 30.57 

covering both points have been completed, but to keep this chapter as brief as possible, 

much of the former and all of the latter has been relegated to Appendix C. 

5.2.2 3QD 

Table 5.4 is a summary of fitness for models that can be fitted from the CCD. Considering 

the sum of squares, lack of fit, and summary statistics the 2FI is arguably the best model. 

However, the quadratic model can be considered because it has similar summary statistics 

but higher lack of fit. 

Starting with a quadratic model with all terms, backward elimination with o: = 0.10 

resulted in the reduced model's ANOVA summarized in Table 5.5. The 2FI model was 

analyzed as well, but the quadratic model has slightly higher summary statistics. As can be 
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Table 5.5: Reduced ANOVA and summary statistics for 3QD CCD y1. 

AN OVA 
Source ss DF MS Fo P-value 
Model 20.86 8 2.61 7.29 < 0.0001 

A 0.093 1 0.093 0.26 0.6120 
B 2.87 1 2.87 8.03 0.0069 
c 0.053 1 0.053 0.15 0.7018 
D 8.66 1 8.66 24.22 < 0.0001 
A2 2.65 1 2.65 7.41 0.0093 
C2 1.42 1 1.42 3.97 0.0526 
AB 1.92 1 1.92 5.38 0.0251 
AC 3.97 1 3.97 11.10 0.0018 

Residual 15.73 44 0.36 
Lack of Fit 2.47 16 0.15 0.33 0.9890 
Pure Error 13.26 28 0.47 

Total 36.58 52 

Summary Statistics 
s 0.60 R2 0.5701 
y 76.82 R~d· 0.4919 
cv 0.78 

2 li] 
0.3455 RPred 

PRESS 23.94 Precision 11.642 

seen the model is highly significant; there is only a 0.01% chance that a model F -value this 

large could occur due to noise. Model terms B, D, A2 , AB, and AC are highly significant 

(P-value < a = 0.05) and C 2 is significant (P-value < a = 0.10). A and C are not 

significant but must be in the model to maintain hierarchy. The lack of fit is not significant 

relative to pure error; non-significant lack of fit is desirable. R 2, R~dj• and R~red are 

consistent but not high, although the precision is good (greater than 4). This suggests we 

have a usable, but not an excellent, model. 

5.2.3 2SVM 

Table 5.6 is a summary of fitness for models that can be fitted from the CCD. The quadratic 

model and linear model are good choices to explore: both are significant, both have in-
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Table 5.6: Fit summary for 2SVM CCD, YI· 

Sequential Model Sum of Squares 
Source ss DF MS Fo P-value 
Linear 4.48 4 1.12 14.81 < 0.0001 
2FI 0.52 6 0.086 1.16 0.3441 
Quadratic 0.68 4 0.17 2.67 0.0470 
Residual 2.10 29 0.073 
Total 3.588 X 105 52 6900.67 

Lack of Fit Tests 
Source ss DF MS Fo P-value 
Linear 1.60 20 0.080 1.10 0.3997 
2FI 1.08 14 0.077 1.07 0.4266 
Quadratic 0.40 10 0.040 0.55 0.8371 
Pure Error 1.96 27 0.072 

Model Summary Statistics 
Source s R2 R~di R~red PRESS 

Linear 0.27 0.5576 0.5200 0.4572 4.36 
2FI 0.27 0.6220 0.5298 0.3641 5.11 
Quadratic 0.25 0.7068 0.5958 0.4187 4.67 

significant lack of fit (although the quadratic has a higher P-value), and both have similar 

R~dd and R~red (although the quadratic has a higher R2 and R~dj). 

The linear and quadratic models were analyzed, but the quadratic had slightly higher 

summary statistics. Starting with a quadratic model with all terms, backward elimination 

with a = 0.10 resulted in the model's ANOVA summarized in Table 5.7. The reduced 

model is highly significant; there is only a 0.01% chance that a model F-value this large 

could occur due to noise. Model terms A, C, D, B 2
, and BC are highly significant (P-

value< a = 0.05). B is not significant but is added to the model to maintain hierarchy. 

The lack of fit is not significant relative to pure error. R2
, R~dj• and R~red are consistent 

and relatively high and the precision is good (greater than 4). This suggests we have a good, 

though not excellent, model which can be used to navigate the design space. 
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Table 5. 7: Reduced AN OVA and summary statistics for 2SVM CCD, y1 . 

AN OVA 
Source ss DF MS Fo P-value 
Model 5.48 6 0.91 16.06 < 0.0001 

A 0.67 1 0.67 11.76 0.0013 
B 1.175 X 10-3 1 1.175 X 10-3 0.021 0.8863 
c 1.29 1 1.29 22.65 < 0.0001 
D 2.55 1 2.55 44.89 < 0.0001 
B2 0.55 1 0.55 9.61 0.0033 
BC 0.41 1 0.41 7.14 0.0104 

Residual 2.56 45 0.057 
Lack of Fit 0.60 18 0.033 0.46 0.9540 
Pure Error 1.96 27 0.072 

Total 8.03 51 

Summary Statistics 
8 0.24 R2 0.6817 

fi 83.07 R~d· 0.6392 
cv 0.29 

2 'J 
0.5762 RPred 

PRESS 3.40 Precision 16.672 
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Table 5.8: Fit summary for 3SVM CCD, Yl· 

Sequential Model Sum of Squares 
Source ss DF MS Fo P-value 
Mean 1.770 X 105 1 1.770 X 105 

Linear 0.88 4 0.22 12.85 < 0.0001 
2FI 0.20 6 0.033 2.23 0.0594 
Quadratic 0.27 4 0.069 7.61 0.0001 
Residual 0.27 29 9.199 x w-3 

Total 1.770 X 105 52 3403.96 

Lack of Fit Tests 
Source ss DF MS Fo P-value 
Linear 0.54 20 0.027 2.77 0.0072 
2FI 0.34 14 0.025 2.51 0.0195 
Quadratic 0.069 10 6.944 x w-3 0.71 0.7081 
Pure Error 0.26 27 9.789 x w-3 

Model Summary Statistics 
Source s R'2 R'2 

Adi 
R'2 

Pred PRESS 
Linear 0.13 0.5223 0.4816 0.4038 1.01 
2FI 0.12 0.6398 0.5519 0.3723 1.06 
Quadratic 0.095 0.8023 0.7275 0.5806 0.71 

5.2.4 3SVM 

Table 5.8 is a summary of fitness for models that can be fitted from the CCD. The quadratic 

model is the best choice for further exploration. It is highly significant, it has a very in­

significant lack of fit, and it has the highest R2
, R~dj and R~red' and lowest PRESS. 

Starting with a quadratic model with all terms, backward elimination with a = 0.10 

resulted in the reduced model's ANOVA summarized in Table 5.9. The model is highly 

significant; there is only a 0. 01% chance that a model F-value this large could occur due 

to noise. Model terms A, B, C, D, A2
, AC, and AD are highly significant (P-value 

< a= 0.05) and AB is significant (P-value < a= 0.10). The lack offit is not significant 

relative to pure error. R 2
, R~dj' and R~red are consistent and high. The precision is good 

(greater than 4). Together, these results indicate we have a good model which can be used 
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Table 5.9: Reduced ANOVA and summary statistics for 3SVM CCD, y1 . 

AN OVA 
Source ss DF MS Fo P-value 
Model 1.33 8 0.17 19.72 < 0.0001 

A 0.23 1 0.23 27.83 < 0.0001 
B 0.11 1 0.11 12.76 0.0009 
c 0.20 1 0.20 23.68 < 0.0001 
D 0.32 1 0.32 37.88 < 0.0001 
A2 0.26 1 0.26 30.57 < 0.0001 
AB 0.030 1 0.030 3.59 0.0648 
AC 0.053 1 0.053 6.25 0.0163 
AD 0.099 1 0.099 11.76 0.0013 

Residual 0.36 43 8.409 X 10-3 

Lack of Fit 0.097 16 6.081 X 10-3 0.62 0.8392 
Pure Error 0.26 27 9.789 X 10-3 

Total 1.69 51 

Summary Statistics 
s 0.092 R2 0.7858 

fJ 58.34 R~d· 0.7460 
cv 0.16 

2 '!} 
0.6681 RPred 

PRESS 0.56 Precision 16.530 

to navigate the design space. 

5.3 Models and Discussion 

5.3.1 2QD 

The results of the 2QD experiments for the accuracy response is a significant model. Equa­

tions 5.5 and 5.6 are the model equations in terms of coded and actual factors, respectively. 
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The factor effects are summarized graphically in Figures 5.1 to 5.4. 

ih = 88.18 + O.l6A + O.llB + 0.45C + 0.36D- 0.56D2
- 0.22AB 

- 0.3lAC- 0.18BC (5.5) 

YI = 82.14 + 64pm + 2.3pc + 0.045np + 0.26n9 - 0.00555n; 

(5.6) 

One Factor Plot 

D: Generation 

Figure 5.1: One factor plot forD for 2QD y1 (A= 0.1, B = 90, C = 75). 

5.3.2 3QD 

The results of the 3QD experiments for accuracy is a significant model. Equations 5.7 and 

5.8 are the model equations in terms of coded and actual factors, respectively. The factor 
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B: Crossover 
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Figure 5.2: (a) 2QD y 1 interaction graph for AB (C = 75, D = 23). (b) The corresponding 3D 
surface graph. 

Interaction Graph 
C: Population 

i 
< 

A: Mutation 

(a) (b) 

Figure 5.3: (a) Interaction graph for AC for 2QD y 1 (B = 90, D = 23). (b) The corresponding 
3D surface graph. 
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Interaction Graph 
C: Population 

-···· 

8: Crossover 

(a) (b) 

Figure 5.4: (a) Interaction graph for BC for 2QD y1 (A = 0.1, D = 23). (b) The corresponding 
3D surface graph. 

effects are summarized graphically in Figures 5.5 to 5.7. 

Yl = 76.93 + 0.052A + 0.29B + 0.039C + 0.50D- 0.63A2 + 0.46C2 

- 0.25AB - 0.36AC (5.7) 

Yl = 75.09 + 137pm + 1.8pc- 0.057np + 0.050n9 - 1700p~ 

(5.8) 

5.3.3 2SVM 

The results of the 2SVM experiments for accuracy is a significant model. Equations 5.9 

and 5.10 are the model equations in terms of coded and actual factors, respectively. The 
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One Factor Plot 

D: Generation 

Figure 5.5: One factor plot forD for 3QD y1 (A= 2.0, B = 60, C = 50). 

Interaction Graph 
B: Crossover 

J 

A: Mutation 

(a) (b) 

Figure 5.6: (a) 3QD y1 interaction graph for AB (C = 50, D = 20). {b) The corresponding 3D 
surface graph. 
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Interaction Graph 
C: Population 

I 
0.10 

A: Mutation 

(a) (b) 

Figure 5.7: (a) 3QD y1 interaction graph for AC (B = 60, D = 20). (b) The corresponding 3D 
surface graph. 

factor effects are summarized graphically in Figures 5.8 to 5.9. 

iJI = 83.2 + o.l4A + 5.932 x w-3 B + o.2c + o.27 D- o.22B2 + o.12BC (5.9) 

Yl = 81.71 + 7.4pm + 2.1pc- 1.54 X w-3np + 0.027ng- 2.4p~ + 1.57pcnp (5.10) 

5.3.4 3SVM 

The results of the 3SVM experiments for the accuracy response is a significant model. 

Equations 5.11 and 5.12 are the model equations in terms of coded and actual factors, 
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Figure 5.8: (a) One factor plot for A for 2SVM y1 (8 = 60, C =50, D = 20). (b) One factor plot 
forD for 2SVM Yl (A= 2, 8 = 60, C = 50). 

Interaction Graph 
C: Population 

B: Crossover 

(a) (b) 

Figure 5.9: (a) 2SVM y1 interaction graph for BC (A= 2, D = 20). (b) The corresponding 3D 
surface graph. 
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respectively. The factor effects are summarized graphically in Figures 5.10 to 5 .12. 

Yl = 58.44 + 0.084A + 0.057B + 0.077C + 0.097D- 0.15A2
- 0.032AB 

- 0.042AC + 0.058AD (5.11) 

Yl = 57.68 + 23pm + 0.302pc + 4.88 X 10-3np + 3.64 X 10-3n 9 - 410p~ 

(5.12) 

Interaction Graph 
B: Crossover 

j 

A: Mutation 

(a) (b) 

Figure 5.10: (a) 3SVM y1 interaction graph for AB (C =50, D = 20). (b) The corresponding 30 
surface graph. 

5.3.5 Summary Discussion 

For both classifier types, there is only a small difference in best and worst accuracy re-

sponse: 2SVM ~ 1.5%, 3SVM ~ 0.75%, 2QD ~ 4.4%, and 3QD ~ 4.5%. This might 

suggest that the GA is fairly robust; regardless of GA parameter settings, within the design 

space considered, the responses are somewhat similar. This is especially true when high 

generation and high population values are used. This is consistent with results reported by 
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Figure 5.11: (a) 3SVM y1 interaction graph for AC (B = 60, D = 20). {b) The corresponding 3D 
surface graph. 

Interaction Graph 
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Figure 5.12: (a) 3SVM y1 interaction graph for AD (B = 60, C =50). {b) The corresponding 3D 
surface graph. 
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[103]. It is hypothesized that the smaller differences in SVMs are a result ofthese classifiers 

performing well (high accuracy) even without FSS, which is what the GA is performing. 

As a consequence the GA cannot further optimize the SVM (provide a better accuracy) by 

selecting different features sets. This is consistent with the results of others (e.g. [59]) who 

have suggested FS S for SVMs is not necessary. The results might be much different if SVM 

parameters were also optimized by the GA. 

A general trend in all models is an increase in accuracy with increasing population size 

and generation size (e.g. Figure 5.4, Figure 5.9, Figure 5.11, Figure 5.12). This can be 

explained in evolutionary terms: high values for population means a bigger gene pool and 

therefore more gene diversity to sample from; more generations allows more time to filter 

out the bad genes and concentrate the good genes. It is suspected that this increase in 

accuracy will continue with increasing population and generation, but will rapidly reach a 

critical point where there will be no further significant increase in accuracy regardless of 

population and generation size. That point may have been reached in the chosen design 

space for 2QD because a peak is seen at about n9 = 23 (Figure 5.1). 

This increase and hypothesized leveling off makes sense when considering how a GA 

functions over time, where time is determined by population and generation size. The 

GA starts with random, generally poor solutions. It then evolves to progressively better 

solutions, first at a fast rate, then gradually slower until it converges on the best solution 

possible for the GA. At this point executing the GA longer will generally not change the 

solution. The graph of such a progress is similar to a log function. Figure 5.13 shows 

an example from an actual GA ran in this work. The general trend found in the models 

will likely follow a similar pattern. This suggests the response surface method (RSM) of 

steepest ascent [ 118, 117] can be applied to both investigate this phenomenon and to select 

the optimal GA parameters over a much larger space than considered in this work. 

Each accuracy model is noticeably different in the single factors and interactions that are 
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Accuracies for GA Optimized Classifiers 
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Figure 5.13: Plot of classifier accuracies for each GA iteration illustrating asymptotic behaviour 
overtime. 

significant and the coefficients attached to these. The only commonality is that all factors 

(A, B, C, and D) are included in the model either as a significant main effects or as part of a 

two factor interaction. The later suggests all factors (GA parameters) are important in some 

way to calibrating a GA. The former suggests a single DOE derived model for all GAs 

used in classifier optimization cannot be developed. Rather, the optimum GA parameter 

values are problem specific. Hence, a model should be developed for each new problem 

and the optimal parameter values selected. Factors that make one problem different from 

another might include classifier type, number of classes, classifier parameter settings, and 

possibly the data set. This is consistent with results obtained by others (e.g. [114, 121, 

122]) who conducting similar studies on GAs used for optimizing job-shop schedules in 

the manufacturing industry (see Section 3.8). 

If optimal results are expected from a GA, then blindly using De Jong's "standard" 

parameter settings is not recommended, especially when optimizing QD classifiers. In 

general, DeJong's parameters can be used as a starting point and DOE, or some similar 

technique, should be used to find the best parameter values for the given problem. Never­

theless, the results are consistent with De Jong's and more recently published recommen-
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dations (e.g. [95]) in that a high crossover and low mutation rate should be used-consider 

Figures 5.2, 5.3, 5.6, 5.10, 5.11, and 5.12. This can be explained in evolutionary terms. 

High crossover means more mating will occur, further diversifying the gene pool, but with 

good genes. A high mutation provides more chances to evolve away from a local minimum. 

However, a mutation level set too high results in too much randomness in the evolution. As 

a consequence it takes the GA much longer to find a good solution, or the GA terminates 

before the best solution is found. 

None of the accuracy models are excellent, as can be deduced from the summary statis­

tics. This might suggest that for the classifier, data, classifier configuration, and design 

space considered, the accuracy response is very irregular. As a result the linear, quadratic, 

or 2FI models cannot be adequately fitted. If a smaller design space was used, or the design 

was shifted perhaps the models would fit better. In general the SVM type classifier pro­

duced better models; the best model is the 3SVM, followed by the 2SVM, with the 2QD 

and 3QD models tied for last. This is most likely because the response surface for this clas­

sifier GA combination is smoother. We cannot generalize and say the same result would be 

produced with a new data set or classifier configuration. 

5.4 Calculating the Optimal GA Parameters 

The models (equations) derived in the proceeding sections can be used to find the optimal 

GA parameter values for each classifier type. There are several common methods for find­

ing the optimal [ 117, 118]: ( 1) visually examine the graphs in Section 5.3 and estimate the 

best values; (2) overlay contour plots of each response surface; (3) use the downhill simplex 

method in conjunction with a desirability function; and ( 4) write the second order model in 

matrix notation, take the derivate, set it to zero, and solve for all the factors. However, each 

of these methods have their own set of issues limiting their use. They are either not precise, 
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difficult to apply and achieve good results, or can have computation issues that may require 

advanced techniques to solve. 

A simple and effect alternative to the aforementioned methods is to repeatedly evaluate 

the accuracy functions in a grid search over the model design space and pick the parameter 

values that correspond to the function that gives the highest accuracy. This method can 

be employed for two reasons. Firstly, only one response is considered, so a desirability 

function approach-well suited when multiple responses are considered-is unnecessary. 

Secondly, the model space is relatively small and the model functions are computationally 

cheap to evaluate, so evaluating them many times is not an issue. 

In fact, a near exhaustive search can be performed. First, two of the four factors ( C and 

D) are discrete (integers) with a (small) finite range. Second, the remaining factors (A and 

B), which are real, can be easily discretized such that the change in accuracy between one 

discrete value and the adjacent value is not significantly different. Hence, from a practical 

point of view, an exhaustive search is performed resulting in equal or better results in a 

reasonable amount of time compared to other commonly used search methods, such as the 

downhill simplex method. 

Using this method, a grid search was performed by evaluating the model function for 

each point in the finite set of points A x lB x C x ]]]) and recording the accuracy response, 

where A is the set of Pm, lB is the set of Pc, C is the set of np, and lDl is the set of n9 : 

A= {0.0010, 0.0015, ... 0.0390} 

lB = {0.300, 0.305, ... 0.900} 
(5.13) 

c = {25, 26, ... 75} 

]jJ) = {10, 11, ... 30} 

A x lB x C x lDl systematically covers the entire model space in a 4-D grid, resulting in 
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Table 5.10: Summary of DOE derived optimal GA parameter values for each classifier type. 

Classifier Type Pm Pc np ng 
2QD 0.0010 0.900 75 23 
3QD 0.0115 0.900 75 30 
2SVM 0.0390 0.685 75 30 
3SVM 0.0245 0.900 75 30 

a near exhaustive search. The optimal set of GA parameter values correspond to the point 

(a, b, c, d) E A x 1E x C x lDl that results in the maximum accuracy. The optimal parameter 

values for each model are summarized in Table 5.10. 
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Chapter 6 

Beluga Whale Classification 

This chapter describes the development of several classifiers and their evaluation and opti­

mization using DOE calibrated GAs. The classifiers are used to classify the objects found 

by image processing algorithms described in Chapter 4. This is steps 3 and 4 in the basic 

approach described in Section 3.1. The chapter follows the broad steps in developing any 

classifier. First the feature selection process, feature extraction process, and identification 

of object classes are described. This is followed by a description of classifier designs, train­

ing and testing, and classifier optimization methods employed. The chapter ends with a 

discussion of the results. 

6.1 Feature Selection 

Selecting a set of features to distinguish objects is a critical step in developing a classifier 

[30]. First, an initial set of features must be chosen, and then that set analyzed to find the 

best subset combination that improves classification. Rather than doing extensive analy­

sis of many different features in the hopes of finding one or more that renders the feature 

subset selection and classification problem easier, the focus is onenabling classification in 

the presence of weakly discriminating features. This approach is reasonable given the chal-
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lenging conditionspresented (i.e. limited image resolution, low visual distinction between 

whales and wave crests, etc. ). One goal of this work is to use a genetic algorithm (GA) as 

the single means of feature subset selection; that is, optimize the classifier by automatically 

selecting the best feature subset with minimal upfront analysis of the initial set. Hence, 

minimal analysis of the original feature set was conducted. To do otherwise would make 

the GA approach less automatic then desired. 

Nevertheless, the initial set of features was not chosen completely arbitrarily. The fea­

tures that can be derived intuitively (without major research) are limited since the subject is 

natural objects (which have a great variation in size, shape, etc.) that are represented by a 

very few number of pixels. As a result the initial set was chosen from a common set of fea­

tures often used as the starting point for analysis (i.e. feature reduction). The criteria used 

to select features are: (1) the feature must be easy and efficient to calculate, (2) the feature 

must describe some aspect of a whale, and (3) the feature must be unbiased. Including such 

features in the classifier will make it biased to the training data, hence such features were 

avoided. The twenty-five features calculated for each object (blob, or target) are shown in 

Table 6.1 (see also Appendix A). The numbers in brackets are reference numbers used in 

the remainder of this chapter. Note that some of these features may be redundant or noisy, 

but if the GA can be used for feature reduction, then it should be able to filter out such 

features. 

6.2 Feature Vector Extraction 

Algorithms for extracting the 25 features from the segmented objects were developed and 

tested. Then, images with representative whale and non-whale objects (such as wave crests 

and sun glare) were manually selected and subsequently processed by the image processing 

algorithms described in Chapter 4 to produce labeled binary images of objects. The binary 
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Table 6.1: The 25 features used in classification. 

(1) Area 
(2) Length 
(3) Breadth 
(4) Elongation 
( 5) Minimum Ferret Diameter 
( 6) Maximum Ferret Diameter 
(7) Ferret Elongation 
(8) Mean Ferret Diameter 
(9) Number of Holes 
(10) Number of Chain Pixels 
(11) Perimeter 
(12) Convex Perimeter 
(13) Compactness 

(14) Roughness 
( 15) Mean Pixel 
(16) Pixel Standard Deviation 
(17) Minimum Pixel 
(18) Maximum Pixel 
(19) Moment Invariant 1 
(20) Moment Invariant 2 
(21) Moment Invariant 3 
(22) Moment Invariant 4 
(23) Moment Invariant 5 
(24) Moment Invariant 6 
(25) Moment Invariant 7 

images, together with their corresponding color and gray scale images, were then analyzed 

by the feature extraction algorithms to produce a feature vector for each object found. A 

total of 1304 whale and not-whale objects were captured. These are divided into classes as 

described in the Section 6.3. 

6.3 Object Classes 

The feature vectors for 1304 objects derived in Section 6.2 were summarized in a spreed 

sheet and analyzed using MATLAB [28] and Microsoft Excel [132] math and graphing 

functions. The main purpose was to derive logical object classes and to determine if the 

calculated features values were reasonable. From this reconnaissance analysis and some 

classifier experiments it was determined that two methods should be considered: (1) the 

data grouped into three classes and classified using a 3-class classifier; and (2) the data 

grouped into two classes and classified using a 2-class classifier. 

In the first case the following three classes where created: 

1. certain whales; hereafter indicated by the subscript c, as in 1&"c 
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Certain Whales Feature Distrubtion Uncertain Whales Feature Distrubtion 

15 

10 

9 10 
Feret Max Diameter 

(a) (b) 

Figure 6.1: Example of normal and non-normal feature value distribution. The left histogram 
shows a normal distribution of a feature that describes the certain whale class well. The right 
histogram shows the poor normal distribution for the same feature in the poorly defined uncer­
tain whale class. 

2. uncertain whales; hereafter indicated by the subscript u, as in <tfu 

3. not-whales; hereafter indicated by the subscript n, as in <t?n 

Certain whales are whales that have been labeled as certain in the ground truth data by 

scientific experts. They are good representatives of whales because they have all or most of 

the features common to clearly identifiable whales. In particular, they are located near the 

surface, white in color, medium to large size, and elongated. In almost all cases, these are 

adults. Uncertain whales are whales that have been labeled uncertain in the ground truth 

data, mainly because they lack characteristics of typical whales. These are typically small 

in size, located at great depth beneath the surface, light blue-green color, and not elongated. 

Most young whales are assigned to this class, although by no means does this class consists 

solely of young. The third, class not-whales, consists of all objects that do not fall into the 

aforementioned classes. 

It was hypothesized that these three classes would best encapsulate the natural group­

ing ofthe objects (based on clustered feature values), encapsulate what was observed from 
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Table 6.2: Summary of the data set partitioned into classes and groups. 

I Grouping I Class I No. of Samples I 
'i&'c 306 

3-class 'i&'u 57 
'i&'n 941 

2-class 'i&'w 363 
'i&'n 941 

total samples 1304 

manual examination of images, and conform to the readers manual classification. How-

ever, it turns out that the uncertain class is somewhat poorly defined: many (9 out of 25) 

of its features have poor normal distributions and the feature value distributions overlap 

significantly with other classes (e.g. Figure 6.1 ). This is likely because the sample size for 

this class is small (Table 6.2) and whales are naturally occurring objects, and as such have 

a huge variation of feature values as their patterns change between different animals and 

different environmental conditions (Section 4.2). 

As a result of the proceeding discussion, it was deemed necessary to consider a 2-class 

case consisting of the following classes: 

1. whales; hereafter indicated by the subscript w, as in ?&'w 

2. not-whales; hereafter indicated by the subscript n, as in ?&'n 

The whale class is formed by combining certain and uncertain classes described above. 

The not-whale class is the same as in the 3-class case. Table 6.2 shows how the 1304 data 

objects are grouped for each class arrangement. 
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6.4 Classifier Optimizing GA Implementation 

In this work, classifier optimization refers to feature subset selection and optimizing pa-

rameter values that increases overall accuracy. The GA designed for classifier optimization 

follows the basic GA given in [95]. This GA, with modifications as necessary, has been 

successfully applied to many similar problems. This section describes the basic design 

common to all classifiers considered. The general classifier optimization algorithm is listed 

in Algorithm 1, below. 

Algorithm 1: GA to optimize classifiers 
Result: List of chromosomes with corresponding classification accuracy 

1 begin 
2 create initial population, P0 , of np randomly generated chromosomes 
3 evaluate fitness of each chromosome in Po using f (c) 
4 for g = I to n9 do 
s set C to np/2 pairs of chromosomes selected from P9 _ 1 based on fitness 
6 create P9 by crossing over chromosome pairs in C using Pc 
7 mutate each chromosome in P9 using Pm 
s evaluate fitness of each chromosome in P9 using f (c) 
9 end 

10 end 

The first step in applying the GA is to select good parameter values for np, Pm and Pc· 

This is detailed in Chapter 5. In particular, see Table 5.10, where the specific parameter 

values for the four classifier types are listed. 

In this GA, a chromosome consisting of a string of Os and 1 s encode the selected features 

for a classifier instance generated in the GA. For certain SVM classifiers, the SVM param­

eter values are also encoded. This is detailed more throughly in Section 6.5. The features 

are enumerated as given in Table 6.1 and, from left to right, are labeled 1 if the feature is 

included in the classifier instance and 0 if not. For example, the following is a chromosome 

with features 7 and 9 omitted from the classifier: 1111110101111111111111111. 

Generation 9i, i = 1, · · · , n 9 , of np chromosomes is created from 9i-l by selecting 

np/2 pairs (ci, cj) of 9i-l parent chromosomes and mating these to produce two offspring 
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( c~, cj) -the initial generation, g0 , of np chromosomes is created using a uniform ran-

dom sequence of Os and 1 s. The parent chromosomes selected depends on fitness levels; 

the higher the chromosome fitness, the higher the probability it will be selected to mate. 

To achieve this the roulette wheel method of selection is used (Section F.2). The mating 

of (ci, cj) is accomplished using single point crossover (Section F.3), where the crossover 

point is uniform randomly selected. Whether (ci, cj) mates or simply migrates to the next 

generation unchanged is governed by the crossover rate, Pc· Generation 9i of chromosomes 

then enters a mutation stage. Here, each bit of each chromosome has the probability Pm of 

being mutated (inverted) (Section F.4). Finally, the chromosomes are evaluated. For each 

chromosome in gi, a classifier is built using the feature subset and classifier parameters en-

coded in the chromosome. The generated classifier is then trained and tested using 10-fold 

cross validation (Section 6.6). The testing results are evaluated using the fitness function 

f (c) that produces a fitness number f associated with the chromosome c. This process 

repeats for n9 generations. 

In this research the main concern is overall classifier accuracy. In most published works 

with a similar concern (e.g. [108, 110, 112]), f(c) is usually equal to the accuracy. However, 

using accuracy as a measure of classifier performance on unbalanced (biased sample) data 

is potentially misleading since a high accuracy can be achieved by classifying more objects 

to the class with the most samples. Since the data in this work is significantly unbalanced, 

the following method is used to calculate a "balanced accuracy" (or "sample normalized hit 

rate") and use it as the fitness function: 

(6.1) 

where n'€ is the number of classes and hi is the classification (hit) rate for c;&i. 
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6.5 Classifier Design 

It is important to find the best classifier possible for the problem at hand, but all possible 

classifiers and their configurations cannot be examined. In this work an attempt is made 

to find the best classifier configuration from 2 and 3 class Bayesian minimum error rate 

quadratic discriminates (Section 3.2) and 2 and 3 class support vector machines (SVMs) 

(Section 3.3). This section describes these classifiers and their configurations as they are 

implemented in this work-theory is not covered. 

Some classifier naming conventions need to be defined up front. Names consisting of 

all capital letters refer to the classifier type. Mixed lower case and upper case names refer 

to particular classifier configurations. A proceeding number on either indicates the num­

ber of classes being discriminated by the classifier. Note that classifier types are groups 

of similar classifiers, hence these cannot be optimized; only configured classifiers are op­

timized. Hence, for example, 2QD refers to the 2-class quadratic discriminate type classi­

fiers, 3SVM refers to the 3-class SVM type classifiers, and 3Svm refers to a 3-class SVM 

classifier configured using default values and optimized using a GA. Table 6.3 summarizes 

all the classifier configurations used. Details are explained in the following sections. 

6.5.1 2-Ciass Quadratic Discriminate (2QD) 

Recall (Section 3.2) that the definition for a Bayesian minimum error rate quadratic dis­

criminate function for <f&i is 

In the 2QD case, i E { w, n} (Section 6.3). Using the samples for <f&i the mean feature vector 

J-Li, the covariance matrix :Ei, and its determinate I:Eil, is calculated. The term (di/2) ln(27r) 

is a constant because the dimensionality of all classes are the same: d = 25. For discrim-
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Table 6.3: Summary of classifier configurations. * represent values to be optimized by the GA. 
Other values are precalculated as described in subsections of Section 6.5. 

I Classifier I Classifier Parameters 

12Qd 
I P('&'w) P('&'n) 

0.72 0.28 

13Qd 
I P('&'c) P('&'u) P('&'n) 

0.23 0.044 0.72 

c 'Y Ww Wn 
2Svm 1 1/d 1 1 
2SvmCg 2048 0.03125 1 1 
2SvmCgWi 8192 0.03125 2.6 1 
2SvmGaCg * * 1 1 
2SvmGaCgWi * * 2.6 1 
2SvmGaCgGa Wi * * * * 

c 'Y We Wu Wn 
3Svm 1 1/d 1 1 1 
3SvmCg 32768 0.007813 1 1 1 
3SvmCgWi 2 8 3.08 16.6 1 
3SvmGaCg * * 1 1 1 
3SvmGaCgWi * * 3.08 16.6 1 
3SvmGaCgGaWi * * * * * 
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ination between classes we are interested only in the relative size of gi(x), not the actual 

values; hence, the additive constant is superfluous. P(~) is the prior probability of class i. 

Since the true, real world prior probability of each class is unknown, it was estimated as 

P(Cf?w) = nw/n = 363/1304 = 0.28 

P(Cf?n) = nn/n = 941/1304 = 0.72 

(6.3) 

(6.4) 

where ni is the total samples in the data set belonging to ~ and n is the total number 

of samples in the data set. However, using this method to determine P(~) assumes that 

new unknown data sets will be obtained under similar conditions (e.g. location, weather 

conditions, altitude, and time of year). Hence the final discriminate functions are 

1 1 
gw(x) = -2 (x- 1Lwf:E~ 1 (x- JLw) - 2ln I:Ewl + ln P(0.28) (6.5) 

1 1 
gn(x) = -2 (x- JLnf:E;;1(x- JLn) - 2ln I :En I + ln P(O. 72) (6.6) 

Using the above equations, an object whose feature vector is xis classified as Cf?n if gn > gw, 

otherwise it's classified as Cf?w. A classifier configured using the above description is known 

as the 2Qd classifier. 

6.5.2 3-Ciass Quadratic Discriminate (3QD) 

The 3QD classifier type is similar to the 2QD classifier type in the previous section except 

there are three classes: Cf?c, Cf?u, and Cf?n. The prior probabilities are 

P(Cf?c) = nc/n = 363/1304 = 0.23 

P(Cf?u) = nu/n =57 /1304 = 0.04 

P(Cf?n) = nn/n = 941/1304 = 0.72 
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The discriminate functions are 

(6.10) 

(6.11) 

(6.12) 

Using these equations, an object whose feature vector is xis classified as 1&'n ifmax(gu, gc, 9n) = 

9n, 1ffu ifmax(gu, 9c, 9n) = 9u, and 1&'n ifmax(gu, 9c, 9n) = 9n· If 9i = gj in max(gi, gj), 

9i is taken as the maximum value. A classifier configured using the above description is 

known as the 3Qd classifier. 

6.5.3 2 Class SVM {2SVM) 

The formulation chosen for the SVM classifiers is the classical C -support vector classifica-

tion (C-SVC) [59], or more generally C-SVM. The decision function is (Section 3.3.1) 

g(x) ~ sign ( ~ y,a,K(x, x,) + b) (6.13) 

The kernel chosen, for reasons discussed in Section 3.3, is the RBF kernel: 

(6.14) 

As in the 2QD classifier, the two classes are whale and not-whale. These are labeled+ 1 

and -1 respectively, as is required for SVMs. Thus, for an object with feature vector x, it 

is classified as a whale if g(x) = + 1 and a not-whale if g(x) = -1. 

To optimize 2SVMs it is usually not sufficient to rely on FSS only. Using the RBF ker­

nel means the parameters C and 1 must be chosen a priori. This can be done by simply 
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setting them to default values, using the SVM parameter grid search technique, or, as pro­

posed in this work, using a GA. Additionally, the training data for the whale and not-whale 

classes are unbalanced, which can result in the classifier favouring the class with more train­

ing samples. To optimize the best classifier, several 2SVM configurations are considered 

(Table 6.3); these are detailed in the following subsections. 

Before training the proposed classifiers the training data was scaled. Scaling is necessary 

for two main reasons [65]. First, it prevents features with a large range of values dominating 

those with small ranges. Second, it avoids potential numerical difficulties in calculating the 

inner product of feature vectors. To achieve this, each feature value for feature i in the 

training data was linearly scaled to the range [ -1, 1]. Before testing, the scaling factor 

calculated for feature i in the training data is applied to each value for feature i in the 

testing data. 

6.5.3.1 2Svm 

First, and the most basic 2-class SVM, is the 2Svm classifier. This classifier uses default 

values for C and 1: C = 1,1 = 1/d, where d = 25. Also, no attempt to modify the 

classifier for unbalanced data is made. 

6.5.3.2 2SvmCg 

The second configuration, 2SvmCg, uses the SVM parameter grid search technique [65] 

to select C and 1 values (Section 3.3.3). In this method a X x Y grid is setup, where 

X = [-5, 15] C Z andY = [-11, 2] C Z. At each point (x, y) E X x Y a SVM 

is configured with C = 2x and 1 = 2Y. The SVM is trained and tested using 10-fold 

cross validation on the entire data set with all features included. C and 1 at the point with 

the highest accuracy is chosen for the final model. The results are shown graphically in 

Figure 6.2a and tabulated in Table 6.3. 
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6.5.3.3 2SvmCgWi 

The third configuration, 2SvmCgWi, takes into account the unbalanced training data by 

extending the classical C-SVC to include C_ and C+ for classes -1 and +1, respectively. 

C_ and C+ are implemented using the notion of weights. In this method weight multipliers, 

w_ and w+, are used to calculate C_ and C+, respectively C_ = Cw_ and C+ = Cw+. For 

the 2SVMs, the weights for the whale and not-whale classes (1fw, and 1fn) are designated 

as Ww and Wm respectively. 

No results are published on how to best chose weights for each class. In this work, 

when wi is precalculated for c;&i, it is set inversely proportional to the a priori probability of 

class occurrence, normalized so the largest class has a weight of 1. The probability of 1&i is 

estimated from the fraction of c;&i samples to the total samples. Hence, wi is calculated as 

(6.15) 

where n is the total number of samples in the data set, ni is the number of samples in c;&i, and 

nmax is the number of samples in the class with the largest number of samples. Thus, using 

the values from Table 6.2, the two classes whale and not-whale have weights Ww = 2.6 

and Wn = 1, respectively. C and 'Yare chosen using the grid search method described in 

Section 6.5.3.2, but C_ and C+ are used when the SVM is trained. The results are shown 

in Figure 6.2b and Table 6.3. 

6.5.3.4 2SvmGaCg 

The 2SvmGaCg configuration is similar to 2SvmCg, except the GA is used to optimize C, 

'"'(,and the feature set. To do so, the GA chromosome is divided into three genes: C-gene, 

'"'(-gene, and the feature-gene. C and 'Y are encoded into the chromosome as 5-bit genes and 

the feature-gene remains unchanged at 25-bits: 
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C-gene ')'-gene feature-gene 

lilillili11111111111111111111111111 

So a more fair comparison can be made with C and 1 calculated from the SVM pa­

rameter grid search, the range of C and 1 and the method of calculation in the GA is 

similar to the grid search. As recommended by [65, 67], C = 2c and 1 = 29, where 

c E C = [-5, 15] C Z and g E G = [-15, 3] C Z. However, the exponents c and g are 

encoded into the C -gene and "(-gene, respectively. A l-bit gene results in 21 discrete values. 

These are taken to represent integers in the range [ 0, 21 - 1], using standard binary to integer 

conversion. The integer converted values from C and 1 genes, call them x andy, are then 

scaled to ranges of C and G as follows 

c = 21 ~ 1 
(max(C)- min(C)) + min(C) 

g = 21 ~ 1 
(max(G)- min(G)) + min(G) 

6.5.3.5 2SvmGaCgWi 

(6.16) 

(6.17) 

The 2SvmGaCgWi classifier is configured in the same manner as 2SvmGaCg (C and 1 

optimized by the GA), except the weights Ww and Wn are precalculated and used as detailed 

for 2SvmCgWi. 

6.5.3.6 2SvmGaCgGaWi 

For 2SvmGaCgGa Wi, the SVM parameters, the weights, and the feature set are optimized 

using the GA. The methods used are similar to that described for 2SvmGaCg, but in this 

case the chromosome is divided into five genes: C-gene, "(-gene, Ww-gene, Wn-gene, and 

the feature-gene. C, "(,and the feature-gene are encoded and decoded as done for 2Svm-

GaCg. Wu and Wn are encoded as 6-bit genes. The result is 

Ww-gene Wn-gene C-gene )'-gene feature-gene 

11l11111l1111ilillili11111111111111111111111111 
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The l-bit weight gene gives 21 discrete values. Using binary to integer conversion, these 

values fall in the range [0, 21 - 1]. For the wi-gene, i E { w, n }, the integer x derived from 

the gene is scaled to fall in the range W = [0.1, 5] c IR and used as the weight for wi. The 

equation is 

wi = ~(max(W)- min(W)) + min(W) 
2 -1 

6.5.4 3 Class SVM (3SVM) 

(6.18) 

To implement the 3-class SVM type classifiers, the above 2SVM methods are extended to 

three classes: certain whale (1fc), uncertain whale (1fu), and not-whale (1fn). To extend the 

C-SVM to 3 classes, the one-against-one approach is used (Section 3.3.2). Fork classes, 

k(k- 1)/2 binary SVMs (hyperplanes) are created such that there is one SVM trained 

(hyperplane constructed) on data from classes 1&i and 1fij for each possible combinatorial 

pairs (i,j), i =I= j, i,j < k. For each pair of classes, a binary SVM optimization problem 

is solved [63]. Once the classifiers are created, the max-wins strategy [56] is used for final 

assignment ofx to a class. The basic algorithm is: if gn(x), n = 1· · · k(k -1)/2, classifies 

x into l&i, the vote for 1&i is incremented by 1, otherwise 1fij is increased by 1. Finally, x 

is assigned to the class which has the most votes. In case of a tie, x is assigned to 1!f1 for 

1f1 , CG'2 , · · · 1!fk being classified; 1f1 = CG'u in this work. 

6.5.4.1 3Svm 

The 3Svm classifier is configured in the same manner as the 2Svm, but extended to 3 

classes, as described in Section 6.5.4. 

6.5.4.2 3SvmCg 

This classifier is similar to the 2SvmCg classifier: C and 'Y are selected using the SVM 

parameter grid search, but with each SVM configured for three classes. The results are 
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shown in Figure 6.2c and Table 6.3. 

6.5.4.3 3SvmCgWi 

As in with 2SVM classifiers, the 3SVM classifiers have unbalanced training data. To test 

the effect of this, a 3-class configuration, 3SvmCgWi, using C_ and C+ was also developed. 

This is an extension of 2SvmCgWi. In this method, a single C is chosen and three weights 

for each of the three classes is chosen and multiplied against C, forming Ci, i E { c, u, n }. 

The weights are calculated using Equation 6.15, resulting in the weights we= 3.08, Wu = 

16.6, and Wn = 1. Hence, as calculated in Section 6.5.3.3, Cc = Cwc, Cu = Cwu, and 

Cn = Cwn = C, where Cis chosen using the SVM parameter grid search (Figure 6.2d and 

Table 6.3). Using the one-against-one multiclass approach a total of three 2-class classifiers 

are trained with parameters (C_, C+) = (Cc, Cu), (Cc, Cn), (Cu, Cn)· 

6.5.4.4 3SvmGaCg 

3SvmGaCg is configured and implemented in the same manner as 2SvmGaCg, except it is 

extended to three classes. 

6.5.4.5 3SvmGaCgWi 

The 3SvmGaCgWi classifier is configured in the same manner as 3SvmGaCg, except the 

weights We, Wu, and Wn are precalculated and used as detailed for the 3SvmCgWi classifier. 

6.5.4.6 3SvmGaCgGaWi 

The 3SvmGaCgGaWi classifier is configured and implemented in the same manner as 

2SvmGaCgGa Wi, except it has been extended for three classes. There are now three weight 

genes: We-gene, Wu-gene, and Wn-gene, one for each of the three classes. These three genes 
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are encoded on the same manner as 2SvmGaCgGaW~ forminaa chromosome wnh the fol­

lowing structure: 

••• •• • • ....., ... ,_ •• ~ ........ ., 
• • •• ~ 
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• .. _ • -• • ~ 

• ·• • I • I< • 
• ' ·-• • ' .. " 

, • • " .. 
"'" .... 

(a) (b) . , .. 
• • _ .. _ 

•• --- .,_ 
• • •• .. 
• ~ • 

~ ·• 
• • 
• • 
• • 
• ···-· • 

.. _ 
l • • 

L • 
f • • 
~ • ' ~ -· ~ 

• • ' .. • • • • .. .. 
-~ . ' 

(c) (d) 

Flgu,. 6.2: C and> gnd -lor 2 and :klass SVMs The NIINIWCI optonll C and l are 
(I)C 2048ench = 0.0312$, (b)C • tillnonch = 0.0312$, (c)C • 327C><Iand 1 = OJXI7812$, 
and (d)C = 2 anch = 8 
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2SVM LOO k-fo1d 

c 'Y 1 eval. GA-SVM 1 eval. GA-SVM 

1 1/d = 1/25 302 28,296 0.232 5,148 
2048 0.03125 1858 174,240 1.42 32,040 

Table 6.4: Example of timing results using LOO and k-fold cross validation evaluation methods. 
The 2SVM column shows the 2-class SVM configurations. The LOO column shows evaluation 
times when using the leave-one-out method on a single classifier instance (1 eval.) and when 
using a GA to optimize the SVM (GA-SVM). The k-fold columns shows evaluation times when 
using k-fold cross validation with k = 10. All times are in seconds. The GA has n 9 = 30 and 
nP = 75, as is commonly used in this work. 

6.6 Training and Testing Methodology 

For classifiers that have a slow training (or testing) time, it is important to use an evaluation 

method that is relatively fast. It is equally important for the chosen method to accurately 

estimate the true performance of the classifier. This balance is important in the present 

work because the SVM classifiers have a relatively slow training time. The exact time 

required can vary greatly depending on the data set and the SVM parameter values chosen. 

Additionally, using GAs to optimize the classifiers means that many thousands of classifiers 

must be trained and tested. 

Arguably the most accurate evaluation method for classifiers built using small data sets 

is the leave-one-out method (Section 3.5). However, using this method on the data set in 

this work with a 2-class SVM optimized using a GA is impractical (Table 6.4). As a result 

it was decided to use k-fold cross validation (Section 3.5) with ,k = 10 as the method of 

evaluation. This method promises reasonably accurate estimates of classifier performance 

without a prohibitive computational performance hit. 

Using k-fold cross validation, each class of samples, 'life, 'lifu, and 'lirn, in the initial data 

set was randomly split into ten equal sized sets. For classes that could not be equally divided 

into ten equal sets, the remaining samples were added to the last (tenth) set. To ensure a 

fair comparison between 2-class and 3-class configurations, the data was split once into ten 
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sets and the same sets were used for all classifiers. For the 2-class classifiers, set i of 1&'w is 

a merger of set i of 1&'u and 1&'c. This ensures set i of 1&'w is not biased to certain or uncertain 

whales-which might occur if new sets where randomly split again-since it contains the 

same ratio of certain/uncertain whales as all the other nine sets. The not-whale sets remain 

unchanged for all2 and 3-class classifiers. 

Using the rules of 10-fold cross validation, a classifier is trained and tested ten times to 

evaluate it's performance. During the i 1
h iteration, i = 1, 2, · · · , 10, the i1

h set is used to 

test the classifier and the remaining nine sets are combined and used for training. During 

testing, each object in set i is classified (assigned) to one class. This result is recorded in a 

confusion matrix for set i. After running the ten training/testing episodes, the ten confusion 

matrices are added together and the final confusion matrix is used to evaluate the classifier's 

performance. 

6.7 Results 

The results of running GA optimizations on the 14 classifiers described in Section 6.5 are 

presented in this section. Table 6.5 summarizes the experiments conducted, including the 

results of SVM parameter optimization. Figures 6.3 to 6.16 shows trends of GA optimiza­

tion over time for each classifier. These trends are compared side-by-side in Figure 6.17. 

Table 6.6 shows the best chromosome patterns found by each GA. Figure 6.18 summarizes 

the classification results in a series of confusion matrices. Finally, Table 6. 7 summarizes 

the performance measures for each GA optimized classifier. It should be noted that when 

comparing GA optimized results, only the balanced accuracy (a and at) can be compared 

fairly because this is the value being optimized by the GA. Following are definitions of 

heading abbreviations and symbols used in Table 6.7 and the remaining of this chapter. 

a - Balanced accuracy. Calculated using Equation 6.1. 
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at - The balanced accuracy before running the GA to optimize the classifier; all 

features are included and SVM parameters are not selected by the GA. 

he - Certain whale classification (hit) rate expressed as a percentage. This is only 

calculated for the 3-class classifiers. 

hu - Uncertain whale classification rate expressed as a percentage. This is only 

calculated for the 3-class classifiers. 

hn - Not-whale classification rate expressed as a percentage. 

hw - Whale classification rate expressed as a percentage. For the 2-class classifier it 

is calculated as normal. For the 3-class classifier, a target is considered a whale 

if it classified as either certain or uncertain, and then the hit rate is calculated 

as a 2-class hit rate. In essence, we are analyzing the 3-class classifier as a 

2-class classifier. This measure is useful when accuracy is not as important as 

the ability to distinguish a whale target, regardless of class, from a not-whale 

target. 

fp - False positive rate expressed as a percentage. For the 2-class case, it is cal­

culated as normal. For the 3-class case a target is considered a whale if it 

classified as uncertain or certain, as done for hw. This measure complements 

hw. 

np - Number of selected features for the classifier. 

t - Time to perform the optimization in seconds. The GAs were executed on a 

computer with a Pentium 4, 3.0GHz CPU, and 1GB of RAM. 
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Table 6.5: Summary of GA optimized classifier experiments. Values marked with a· were opti­
mized by the GA. Other values were precalculated as described in Section 6.5 and summarized 
in Table 6.3. 

I Classifier 

2Qd 

3Qd 

2Svm 
2SvmCg 
2SvmCgWi 
2SvmGaCg 
2SvmGaCgWi 
2SvmGaCgGa Wi 

3Svm 
3SvmCg 
3SvmCgWi 
3SvmGaCg 
3SvmGaCgWi 
3SvmGaCgGa Wi 

85 

GA Parameters 

Pm Pc np ng 

0.001 0.9 75 23 

0.0115 0.9 75 30 

0.039 0.685 75 30 
0.039 0.685 75 30 
0.039 0.685 75 30 
0.039 0.685 75 30 
0.039 0.685 75 30 
0.039 0.685 75 30 

0.0245 0.9 75 30 
0.0245 0.9 75 30 
0.0245 0.9 75 30 
0.0245 0.9 75 30 
0.0245 0.9 75 30 
0.0245 0.9 75 30 

Average Fitness per Generation 

5 10 15 20 
Generation 

(a) 

Classifier Parameters 

P(ce'w) P(ce'n) 
0.28 0.72 

P(ce'c) P(ce'u) P(ce'n) 
0.23 0.044 0.72 

c "( Ww Wn 
1 1/d 1 1 
2048 0.03125 1 1 
8192 0.03125 2.6 1 
32768* 0.01911 * 1 1 
32768* 0.01911 * 2.6 1 
374.387* 0.06391 * 4.922* 4.144* 

c "( We Wu 
1 lid 1 1 
32768 0.007813 1 1 
2 8 3.08 16.6 
8566.65* 3.577* 1 1 
915.686* 0.1429* 3.08 16.6 
2239* 0.1429* 0.5667* 3.678* 

Maximum Fitness per Generation 
90,---,---~--,---~----, 

89 

~88 
§ 
~ 87 
8 
c: 

"' (ij 86 
<Xl 

85 

5 10 15 20 
Generation 

(b) 

Figure 6.3: 2Qd classifier GA optimization trends. 
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Figure 6.4: 2Svm classifier GA optimization trends. 
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Figure 6.5: 2SvmCg classifier GA optimization trends. 
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Figure 6.6: 2SvmCgWi classifier GA optimization trends. 
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Figure 6. 7: 2SvmGaCg classifier GA optimization trends. 
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Figure 6.8: 2SvmGaCgWi classifier GA optimization trends. 
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Figure 6.9: 2SvmGaCgGaWi classifier GA optimization trends. 
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Figure 6.10: 3Qd classifier GA optimization trends. 
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Figure 6.11: 3Svm classifier GA optimization trends. 
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Figure 6.12: 3SvmCg classifier GA optimization trends. 
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Figure 6.13: 3SvmCgWi classifier GA optimization trends. 
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Figure 6.14: 3SvmGaCg classifier GA optimization trends. 

Average Fitness per Generation Maximum Fitness per Generation 
76 81 

74 r~./ 80 

. ~v / ~72 

/~ 
:>. 

~ ~ 79 
:J :J 
g 70 g 
< ~ 78 '0 g 68 8 l;yJ I 

<: 

"' "' 7ii 7ii77 
m 66 m 

64 I 76 

620 5 10 15 20 25 30 750 5 10 15 20 25 30 
Generation Generation 

(a) (b) 

Figure 6.15: 3SvmGaCgWi classifier GA optimization trends. 
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Figure 6.16: 3SvmGaCgGaWi classifier GA optimization trends. 
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Figure 6.17: Summary of maximum (a) and average fitness (b) per GA generation for each 
classifier. 
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Table 6.6: Best chromosomes found by the GA for each classifier. Genes that encode classifier 
parameters are separated by 1; see Section 6.5 for details. 

I Classifier 

2Qd 
3Qd 
2Svm 
2SvmCg 
2SvmCgWi 
2SvmGaCg 
2SvmGaCgWi 
2SvmGaCgGa Wi 
3Svm 
3SvmCg 
3SvmCgWi 
3SvmGaCg 
3SvmGaCgWi 
3SvmGaCgGaWi 

Chromosome I 
0001000000000011111101000 
1010100000000100101100101 
0011100000001000100110010 
1100011011101001111101101 
1010000000111011111101010 

11111j10000j1001111011011011111111100 
11111j10000J1111011110101011111101010 

111110J110100J10101J10011Jooo111101110ooo1111101ooo 
0011101000001100101100010 
0011111001101111111111111 
0011011010111000001100000 

11100J11101J1000110111100011111100010 
10111J10101J001101101101110o1o1110oo1 

000110J101110J000001J11001J10101J0011111110011100101110001 

Table 6.7: Summary of GA optimization results. Heading definitions are described at the end 
of Section 6.7. 

I Classifier I at I a np t 
2Qd 50.00 88.65 NA NA 88.31 88.98 11.69 8 172 
3Qd 33.33 78.84 90.52 82.46 63.55 96.42 36.45 9 380 
2Svm 79.51 83.64 NA NA 93.73 93.73 6.27 8 3767 
2SvmCg 90.00 90.58 NA NA 95.22 85.95 4.78 16 12737 
2SvmCgWi 90.32 91.90 NA NA 92.35 91.46 7.65 13 78165 
2SvmGaCg 79.32 91.27 NA NA 95.22 87.33 4.78 18 140501 
2SvmGaCgWi 85.30 91.31 NA NA 91.71 90.91 8.29 18 81397 
2SvmGaCgGa Wi 79.51 91.28 NA NA 94.69 87.88 5.31 13 76619 
3Svm 55.62 58.51 81.70 0 93.84 69.70 6.16 10 3783 
3SvmCg 63.50 63.90 95.10 0 96.60 82.64 3.40 20 113021 
3SvmCgWi 67.05 76.93 88.89 70.18 71.73 96.14 28.27 10 4028 
3SvmGaCg 55.62 70.70 87.91 33.33 90.86 83.20 9.14 14 29335 
3SvmGaCgWi 71.40 80.30 93.46 73.68 73.75 96.97 26.25 14 49383 
3SvmGaCgGaWi 55.62 79.23 92.81 73.68 71.20 96.69 28.80 15 28762 
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6.8 Discussion 

In the following discussion performance refers to balanced accuracy (a, Section 6. 7), unless 

stated otherwise. This is because the GA was designed to optimize a without consideration 

for any other metric, such as t, fP, and hw. To be fair, classifiers can only be compared on 

the basis on which they were optimized. 

Overall, the SVM classifier outperforms the QD classifier, provided extensive SVM 

parameter calibration is performed. For the 2-class case, the SVM classifier has the best 

performance (a) when C and 'Y are calibrated; whether or not wi is set is not that significant. 

C and 'Y can be set using the grid search or the GA; both methods result in a a better than 

the corresponding QD classifier. For the 3-class case, the SVM has comparable or better 

performance only when all3 SVM parameters, C, "(,and wi, are calibrated. Otherwise, the 

3QD is better. 

The 3-class configuration seems to be a much more complex problem. This is seen 

by the fact that both classifier types have a dramatic decrease in a when the classification 

problem is 3-class verses 2-class (a difference of9.81 for the QD and a difference of 11.6 to 

33.69 for the SVM). This is most likely due to the poor training set (low number and poor 

representative samples) for the uncertain whale class coupled with the fact that its feature 

values overlap significantly with those ofthe certain whale class. 

Additionally, the 3 SVMs require much more tweaking of parameters, especially weights, 

when dealing with 3-class data. This is partly because the data set is more severely unbal­

anced and the problem is more complex, but might also be because the SVM is by design 

a 2-class classifier being coerced into a 3-class classifier. This is clearly demonstrated by 

the difference in a within 2SVMs and within 3SVMs. In the 2SVMs, calibrating C and 'Y 

resulted in a best a gain of 7.63, then calibrating weights resulted in another gain of 0.63; 

but in the 3-class case, calibrating C and 'Y resulted in a 12.19 gain while calibrated weights 
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results in an additional gain of9.6. Additionally, the method of calibrating C, {,and wi in 

the 3-class case has a much more pronounced effect than in the 2-class. In the latter case a 

is about the same at 91 ± 1 for all methods of choosing C, {, and wi. In the 3-class case 

there is up to a 16.4 difference between methods. 

These results demonstrate the importance of calibrating C, {,and (sometimes) wi, for 

SVM classifiers, whether using a GA or a SVM parameter grid search. Comparing a with 

and without calibrating these parameters we see a maximum increase of 8.26 for 2SVM 

and 21.79 for 3SVM. This is consistent with results reported in literature (e.g. [65, 67, 107, 

108]). 

The results also demonstrate the value of using a GA to optimize classifiers. First, 

compare a of each classifier configuration before and after using the GA to select a feature 

subset (Table 6. 7); the results show an increase in a with a dramatic reduction in the number 

of features. For QDs there is a minimum of38.7% to maximum of 45.5% increase in a with 

17 fewer features. For SVMs there is a minimum of0.4% to maximum of9.9% increase in 

a with 9 to 17 fewer features (These are results for GA-SVMs that did not optimize SVM 

parameters; only FSS was performed. With parameter optimization as well, there is up 

23.6% increase in a with 9 to 12 fewer features). The results ofFSS is much more dramatic 

for the QD type classifiers than SVMs. In fact, even without FSS, the SVMs perform 

reasonably well. This suggests that the SVM is not as sensitive to the initial feature set. 

However, in all cases there is an increase in a with FSS, regardless of C, "(, and wi, hence 

one cannot conclude that FSS is not necessary (as some have suggested). In addition to the 

obvious benefits of increased accuracy, the value of feature reduction has been discussed in 

Section 3.4. 

In addition to feature reduction, the results show that the GA can be easily extended 

to optimize a SVM by calibrating the key SVM parameters, C, {,and wi. When the GA 

is used to select C and 'Y the performance (as measured by a) is approximately the same 
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(for 2SVMs) or significantly better (for 3SVMs) than using the traditional method of grid 

search. Similarly, the GA can select weights that result an a that is as good as or better than 

selecting weights by hand. The benefit of the GA is that all parameters, including the fea­

ture subset, are selected automatically and simultaneously. This allows the GA to consider 

both individual and interaction effects of the three parameters and feature subsets in paral­

lel. Regardless of the method of calibration, the results clearly show that SVM parameter 

calibration must be performed to successfully apply SVMs. This is clearly demonstrated 

by a minimum of6.9% up to 21.8% increase in a when performing SVM calibration versus 

using default values. 

The main disadvantage of the GA is that optimization time maybe large. This is mainly 

a concern for SVM classifiers, as is dramatically illustrated in the 2SvmGaCg and 3SvmCg 

case. The QD classifiers are optimized 10 to 200 times faster than the SVMs. This is mainly 

because training the SVM, which amounts to using a computationally complex optimization 

algorithm to solve a quadratic programming problem with the number of variables equal to 

the number of training samples (e.g. [133, 134]), is much more computationally complex 

than training QD classifiers, which is done by calculating basic statistics, such as the mean 

and covariance. The optimization time depends largely on the size of the data and the 

SVM parameter values. In particular, larger values of C results in longer training time for 

SVMs because the SVM tries harder to find, usually a more complex, discriminate surface 

to achieve increased accuracy. 

When choosing the classifier to integrate into the final software solution the following 

was considered as the most important factors: (1) high a, (2) high hw, and (3) low JP' To 

this end, any one of the 2SVM classifiers with C, /,and wi calibrated is suitable. However, 

the 2SvmCgWi is chosen because it has the highest a, reasonably high hw and hn, and a 

reasonably low fp· All 3-class classifiers are ruled out because of the much lower a (10% 

or more) compared to the 2-class classifiers. This means the final software cannot classify 
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whales as uncertain: a target is a whale or it is not. If uncertain whale classification is 

required, it can be accommodated by estimating the confidence of classifying a target as a 

whale. If the confidence is below a predetermined level, the whale is labeled uncertain. A 

simple measure of confidence is the distance an object represented by xis from the decision 

boundary. This is left for future work. 

We now enter into a discussion of the details of GA optimization. First it can be seen that 

the GA does not result in the same feature subset for each classifier. This indicates there 

is no single subset of best features that apply to all configurations of 2-class and 3-class 

classifiers. This is mostly due to the interactions of other variables with feature subsets, 

highlighting the importance of not treating one variable (such as feature subset) in isolation 

of other variables (such as SVM parameters). As stated above, exploring combinations of 

variables simultaneously is a strength of the GA approach. It should also be noted that, 

although not obvious from the results, the best chromosome selected by the GA can be ef­

fected by the initial generation of chromosomes; that is, the starting point. In order to fairly 

compare results, all GAs used in this work were started with the same initial generation. 

Subsequent experiments with different starting points resulted in slightly different final 

chromosomes, and a different optimization path taken, but with no significant difference in 

the final fitness value (a, the optimization goal). This suggests that for a given classifier 

there can be more than one good, near optimal solution (feature subset and SVM parameter 

values). However, because the optimized result (a) is always nearly identical, it also sug­

gests that the GA adequately searches the solution space for the best solution. This stands 

in contrast to some non-randomized techniques, such as SFFS and BSS (Section 3.4), that 

typically start at the same point and end with the same solution. 

A general trend seen in all classifiers is the initial poor fitness, followed be a rapid 

increase in average fitness, followed by a slow increase in average fitness and, in most 

cases a leveling off (Figure 6.17). This is the expected, normal trend in GA optimization. 
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When the fitness tends to level off over several generations the GA is considered to have 

converged on its best solution. Running the GA longer will not significantly improve the 

results. In this work, all trends did level off to some degree (e.g. Figure 6.11 ), but arguably 

not all converged. In some cases (e.g. Figure 6.15) there remained an increasing trend when 

the GA terminated. This is a result of setting a hard limit on the number of generations. 

There are two ways to deal with this problem. First, if the DO E-GA technique detailed in 

Chapter 5 is used, then the method of steepest ascent in RSM should be applied to find the 

best operating conditions for the GA. In particular, it is recommend to follow the ascent 

in the direction of increasing number of generations. This would ensure there is enough 

generations for the GA to converge. A second method is to dynamically halt the GA using 

some algorithm that determines when the GA has converged. 
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Chapter 7 

The Final Software System 

This chapter briefly describes the software application, formally titled Marine Mammal 

Detector (MMD), that was hinted at in Section 1.2. The purpose of this software is to en­

capsulate the image processing and chosen classifier algorithms described in the proceeding 

chapters and present these in a user friendly, intuitive way. In addition, MMD provides sup­

port for most ofthe activities currently being done using pen and paper or through manually 

data entry (Section 2.3). The chapter starts with an overview of the software development 

methodology employed. Following that is a discussion of the software itself, including its 

basic design and main feature set. 

7.1 Software Development Methodology 

The development paradigm followed is a modification of the waterfall life cycle (model). 

Whereas the traditional, or "pure", waterfall [135] is very sequential with no provision 

for iteration, the modified approach augments the waterfall to allow for iteration between 

stages. It is illustrated in Figure 7 .1. This approach has the advantage of having discrete, 

well defined stages, but allows knowledge about the problem gained in subsequent stages 

to be fed back into previous stages. Note that the final stage in most life cycles is the 

118 



maintenance stage. This has not been included in Figure 7.1 because it is out of the scope 

of this present work. The following subsections gives an overview of the development 

stages conducted in this current work. The definitions for these stages are not included; for 

more information see, for example, [136]. 

Figure 7.1: Software development model used. 

7.1.1 Requirements Specification 

Before the software was developed, a software requirements specification (SRS) document 

was created. The purpose of this document was to capture in concise and precise descrip­

tions what the software is required to do; that is, the features of the software. An overriding 

concern here was to specify software functionality that captures the end-users current pro­

cesses and activities in an intuitive way. The requirements gathering and documentation 

processes followed recommendations by [137] and the IEEE standard 830-1998 [138]. 

7.1.2 Design 

The design follows state of the art object oriented techniques, including generic program­

ming methods, as implemented in an imperative programming language. This is the logi­

cal choice given that most common programming languages have support for this style of 
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programmmg. Also, object oriented technique lends itself to a natural design because it 

attempts to model in the program code objects that exist in the real world. 

One of the main design objectives is to allow the software to be used to aid marine 

mammal population assessments of mammals other than beluga whales. Hence the software 

was designed to allow a clear separation between beluga whale concepts (e.g. detection, 

classification, species names) and the main application concepts (e.g. GUI components, 

data base, overlays, tools). 

In the process of building any relatively complex system (as is most software), modeling 

the system before building it is essential. Hence, the basic design of MMD was performed 

with the aid of the unified modeling language (UML), the standard modeling language for 

software engineering. 

7 .1.3 Construction 

The implementation was performed in ISO C++. C++ was chosen as the development 

language because of (1) its high performance relative other commonly used languages, (2) 

availability of tools and libraries, (3) its great support for object oriented programming 

techniques, and (4) support for templates that allow a generic form a programming. 

All development was done in the Microsoft Visual C++ 6.0 and 8.0 development en­

vironment on Windows 2000 and Windows XP operating systems (OS). Because the Mi­

crosoft Foundation Classes (MFC) library was used for implementing the GUI components, 

the software can only run on a Windows 2000 or later OS. This is not considered a limitation 

at this time since most desktop computers run some variant of the Windows OS. 
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7.1.4 Testing 

Testing performed by the author was limited to white box testing. After coding specific 

classes, or implementing specific functionality a series of informal tests was used to confirm 

the system functions as expected and as specified in the SRS. An alpha version of the 

software was submitted to the target end-users (DFO) for black box testing, trials, and to 

provide feedback for further development. After fixing bugs and addressing other issues 

raised during feedback, a beta version has been developed and as of this writing has been 

submitted to the end-user for further black box testing. Once this phase of testing is over, 

and the major bugs fixed, a final version will be released. 

7.2 Application Description 

The MMD application is a standard Windows desktop GUI application (Figure 7.3). Fig­

ure 7.2 shows the relationship of the software to its main external entities. The application 

can be viewed as containing four broad components: (1) image manipulation and annota­

tion, (2) analysis statistics and properties, (3) data storage, and (4) configuration. 

7.2.1 Image Manipulation and Annotation 

The first component is responsible for displaying aerial images and allows the user to ma­

nipulate these to perform analysis (2 and 4 in Figure 7.3). This component is superficially 

similar to standard imaging software, and offers many similar features, including the ability 

to scroll, zoom, and annotate the image. It differs in that it offers unique features that sci­

entific personnel may need to perform analysis, including image overlays and specialized 

annotation objects, as described in more detail in the subsequent paragraphs. 

All annotations are done on image overlays. Image overlays are abstractions repre­

senting the clear plastic overlays used during traditional manual analysis to cover the pho-
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Figure 7.2: MMD context diagram showing the interaction of the software with the main exter­
nal entities. 

tographs. Mimicking physically adding and removing overlays on a photograph, these can 

be toggled on and off. Their purpose is to allow annotations to be made to (what appears to 

be) the photograph without modifying the original. 

There are three types of overlays: analysis overlays, grid overlays, and unreadable mask 

overlays (Figure 7.4 ). Analysis overlays are used to mark on rather than directly marking on 

the original image. It is on this overlay classification results are visualized. Each identified 

target is circled in green for a certain whale and yellow for an uncertain whale. Whales are 

circled automatically after the automated detection and classification occurs. They can also 

be created, deleted, moved, and resized by the user. Each ellipse also contains properties 

that can be changed by the user identifying the species inside the region (e.g. adult whale, 

young). Other annotations include a sticky note that allows the user to record a comment 

directly on the image (really the overlay), and free-hand drawing tools that allow users to 

draw on the overlay. One use of these tools is to highlight a region of interest and make 

122 



n 

" 3 
n 

" 
.:.J 

Figure 7.3: Screen capture of MMD showing the major GUI components. The panel labeled 1 
is the data view (analysis and statistics). The panel labeled 2 is the Image view. The window 
oontaining panels 1 and 2 is the main window the user interacts with. The window labeled 3 
is the data base window. The tool bar and menu that provides most or the functionality to the 
user is labe1ed 4. 
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some comment about it. 

Grid overlays are used to cover the image with a n x n grid, where n can be set by the 

user or is calculated based on a user selected size of a grid cell. The grid serves several 

purposes. First it keeps track of the users location in the image (e.g. during scrolling) and 

can be used to reference parts of the image using a row and column pair. Second, the grid 

records the parts of the image the user has analyzed, either doing manual detection or doing 

quality control. As the user scans areas of the image they can click on a grid cell to record 

the fact that they have completed a thorough visual inspection of the area under the cell. 

Using the grid they can systematically scan the entire image without scanning the same area 

multiple times while ensuring the entire image is scanned at least once. 

The unreadable mask overlay covers areas of the image where whale detection has not 

been performed. This mask is created automatically as detailed in Chapter 4. However, 

the user can manually erase and add to the mask using the mask eraser and painter tools. 

This allows them to manually inspect regions that where not automatically analyzed and 

reflect that fact by erasing the mask over the area. Similarly, they can add mask to cover 

unreadable areas that the automated mask creation algorithm missed. 

7.2.2 Statistics and Properties 

The properties and statistics component (panel I in Figure 7.3) contains data about the im­

age being analyzed and other analysis related book keeping information. There are five 

types of data maintained and displayed to the user: (1) survey properties, (2) image prop­

erties, (3) image statistics, (4) targets, and (5) notes. Survey properties contain information 

pertaining to a set of images in a survey (e.g. survey year and location of survey). These 

are entered manually by the user and remain until changed, even between analysis sessions 

and application restart. Image properties record information specific to the current image 

being analyzed (e.g. reader name, image number, and analysis date). This information is 
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Figure 7.4: Screen captures of the MMD wfth example analysis overlays and annotations. (a) 
The application wfth aU overlays off. (b) The same as (a) but with all OV&t&ays on. The gtld Is the 
gc-een lin&S, the mask is the orang& region, the green and yelow circles are target indications. 
the red line is a free-hand marking, and the yellow square is a sticky note oper'MMI for editing. 
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entered manually by the user, once for each new image analyzed. Survey and image prop­

erty fields are completely configurable by the user; any number of fields can be configured. 

This allows the end-user to configure properties for a specific survey or mammal type. The 

fields are then presented to the user every time a new image is analyzed to allow them to 

enter information about the image. 

Image statistics is updated automatically as the image is analyzed using the automated 

subsystem and via user manipulation (such as marking grid cells, adding a detected whale, 

and erasing the mask). Information maintained includes the number of positive targets, the 

number of uncertain targets, the fraction of marked grid cells, percent of the image covered 

by the unreadable mask (hence the percent ofthe image not analyzed), and the total number 

of each type of species. 

The targets tab (Figure 7.3) shows a list of detected targets which is updated automat­

ically as targets are manually or automatically detected. The list shows the target status 

(certain, uncertain) and location in the image. The user can click on the target to automat­

ically scroll the image to center the target in the field of view. Targets can also be deleted 

directly from this list. 

The notes tab provides a location for the reader to make notes. It is essentially a simple 

text editor. 

7 .2.3 Data Storage 

The data storage component handles the persistent storage of analysis data. Besides the 

image, there are two types of files associated with each analysis session. The first is a binary 

application file that contains all information about an analysis session so sessions can be 

saved and reopened at any time. The data in this file can be exported to two formats. First, 

textual and numerical data can be exported to an extended comma separated value (CSV) 

formatted file for further analysis in other applications, such as spread sheets. Second, 
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snapshots of the current image or selectable subimages, with or without overlays, can be 

exported as JPEG, TIFF, or BMP images. An example usage of this is viewing the image on 

a computer that does not have the MMD application installed, or pasting results in a report. 

The second data store is a data base survey file that records a summary of the results 

of each analyzed image. This content of this data base table can be viewed and edited as 

shown in the window labeled 3 in Figure 7.3. In particular, after each image is analyzed the 

results can be saved to this file. Once a survey (set of images) is complete, the data can be 

exported to CSV for further data analysis in such tools as Microsoft Excel and MATLAB. 

7.2.4 Configuration 

The configuration component handles the application, image processing, and classification 

configuration. The main configurable parameters are: (1) survey property fields (e.g. loca­

tion, date, and elevation), together with default values; (2) image property fields together 

with their default values; (3) grid cell size or number of cells; ( 4) types of species being 

searched for; and (5) default species type, size of target region, and status of target for 

manually created targets. 

Since MMD can be extended to mammals other than beluga, there is a separate con­

figuration for each mammal detector module (e.g. beluga detector and seal detector). The 

configuration loaded depends on the type of detection the user requests. For example, if 

a seal detection module is requested, then the application uses the seal detector specific 

configuration parameters. 
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Chapter 8 

Conclusions and Recommendations 

8.1 Summary of Results and Conclusions 

Automating beluga whale detection and classification in scanned photograph negatives (im­

ages) is not a trivial task. Whales are naturally occurring objects that are located in natural 

scenes, thus objects have a wide range of features values. This is unlike artificial objects 

in a well controlled environment (e.g. "nuts and bolts" in a manufacturing environment), 

which have a narrow range of feature values. In addition, there is a wide variation of"noise" 

features, such as land and wave crests, that must be recognized and removed. Because of 

these natural variations, any algorithms developed must be robust and adaptable. 

The image segmentation algorithms are good for detecting all but the most unique 

whales. The process of applying a mask increases the speed of detection and reduces the 

number of non-whales objects segmented, thus also increasing the speed and accuracy of 

classification. This is achieved by reducing the search area to areas where whales naturally 

occur or are visually discernible. Importantly, this is achieved without losing large parts of 

the image where whales are recognizable. The primary adaptive thresholding method and 

secondary watershed algorithms work well, even though the objects are very small (few 
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number of pixels). The main problems are segmenting touching whales and whales deep 

below the surface. 

Although rarely used for GAs, and never for GAs in the pattern recognition research 

area, DOE can be used to calibrate a GA. The process is systematic, based on sound the­

oretical statistics, and allows a parameter selection model to be created with a minimum 

number of experiments. This model can then be used to calculate the best parameters for 

optimal results from the GA (within the design space of the DOE model). This is certainly 

much more effective than current methods that rely on a set of general guidelines and ad­

hoc experimentation. Moreover, it is not possible to optimize these parameters using the 

OFAT approach commonly employed because of the interaction between GA factors and 

the other factors in the experiment. A DOE or similar approach must be used. There does 

not appear to be a general DOE derived model for selecting GA parameters; hence, cali­

brating the GA is problem specific. This is clearly seen by the different models developed. 

If a general statement is to be made it's that high population, high generation, medium to 

high crossover, and low mutation settings produce the best results. 

The GA is a good tool for automatically selecting a good feature subset, thus optimizing 

a given classifier. This is demonstrated for the minimum error rate quadratic discriminate 

classifier and the support vector machine classifier. For all but the most trivial feature sets, 

the process of obtaining the best subset is nearly impossible since it is usually unknown 

which feature combinations will achieve the best results and trying all combinations is 

computationally intractable. With a GA, an answer can usually be obtained within an hour 

to a day. In addition, the GA is completely automatic, so the developer can carry out 

different work while the GA is performing the analysis. 

The GA has also been shown useful for optimizing (calibrating) the SVM parameters. 

The increase in accuracy obtaining when calibrating the SVM parameters, especially C 

and 1, clearly indicate the necessity of SVM calibration. Although the SVM parameter 
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grid search method achieved similar results, the GA has the advantage of taking into con­

sideration parameter values and feature subsets simultaneously, thus any interaction effects 

between feature subsets and parameter combinations are considered. Additionally, the GA 

presents a unified, automated method to achieve feature reduction and parameter calibra­

tion. 

The SVM classifiers can perform as good as or better than the traditional QD classifiers 

on both 2-class and 3-class problems. However, to achieve this enhanced performance, 

SVM parameter calibration is required. Although FSS does usually improve SVM perfor­

mance, SVMs can perform well without it. QD classifiers, on the other hand, can perform 

horribly ifFSS is not performed. 

Overall, the MMD software system is appropriate for general use. The software is im­

plemented to meet end user requirements as per the SRS. As a result, the features added to 

the software, even without image processing and classification algorithms, will aid scien­

tific staff in performing population assessments by migrating the user from a traditional pen 

and paper approach to a computer aided approach. The value added features of automated 

detection and classification of whales is an enhancement not found in any other existing 

software product of a similar nature. 

8.2 Contributions 

Following is a summary of the main contributions of this work. 

1. Development of novel marine mammal detection and classification algorithms based 

on state of the art image processing and pattern recognition methods. 

2. Development of a graphical user interface (GUI) for these algorithms. The GUI also 

includes advanced features that automate or aid the user in performing most of the 

manual activities that is currently standard practice in photo analysis for population 
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assessments. The complete system will dramatically increase the productivity of sci­

entist and technicians conducting population assessments. 

3. Investigation of the feasibility of using design of experiments (DOE) as an aid in 

calibrating genetic algorithms (GA) used for classifier optimization. 

4. Investigation of support vector machine (SVM) classifier optimization using GAs. 

Very little work has been conducted in this area and none compared results to the 

commonly used method of grid search with cross validation for parameter calibration. 

8.3 Recommendations 

Following are recommendations for future work. 

• Improve adjacent and occluded whale separation techniques. The watershed segmen­

tation can be improved to dynamically calculate a minimum variation specific to the 

ROI of the adjacent whales. In addition, the watershed can recognize the orientation 

of whales and remove lines that cut across whales. A different approach is to try 

fitting ellipses to the image to segment individual whales. 

• Experiment with other measures of texture for creating the unreadable mask. Be­

sides standard deviation, other statistical approaches [128, 139], may be appropriate, 

especially if combined. 

• It is suspected that better DO E-GA results can be obtained if the method of steepest 

ascent in the RSM is used. This would allow the experimenter to find the optimum 

GA operating point even if that optimum is outside of the initially chosen design 

space. 
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• It is expected that the uncertain/young whale class can be discriminated better, thus 

improving the error rate for this class and the overall whale detection rate, by in­

cluding more data in the training of uncertain whales. On a related note, if 2-class 

classification remains a better alternative (as it turned out to be in this work), each 

classified target could have an associated confidence level. If the confidence level is 

below some predetermined level, the whale is classified as uncertain. Alternatively, 

all classified targets could have a confidence level, say scaled between 0 and 1, and 

the user can chose what the uncertain-certain threshold level is. 

• Investigate other classifier types, such as neural networks. In addition, a compari­

son between some feature based approaches (such as those used in this thesis) with 

template based approaches would be useful. 

• A spatial feature should be added to the classifier feature list, or used in the image 

processing stage to aid in filtering objects. One feature not exploited by the image 

processing or pattern recognition system is the relative location of an object to other 

objects and to land. In general whales are isolated or located in small pods and are 

rarely found adjacent to shorelines. Also, the confidence that an object is a whale 

decreases as the noise (such as wave crests) surrounding the object increases. 

• Since a high overall whale detection rate is more important than accuracy, a fitness 

function that reflects this could be used in the GA. 

• Compare software aided detection and classification counting results to traditional 

manual counting results. When considering the software results, it might be useful to 

consider both fully automated results and results obtained after user quality control. 

The latter is a much more realistic use of the software since all detections must be 

confirmed by the user. Recall that the software is an aid for counting whales, not a 

user replacement. 
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• Presently the image processing and pattern recognition algorithms are developed us­

ing a set of images collected at a fixed image resolution and airplane altitude. The 

algorithms should be modified to allow detection and classification for a finite set of 

common altitudes and image resolutions. 

• Considering adding on-line learning of algorithms. This would allow end-users to 

adjust the algorithms, in particular the pattern recognition algorithms, to new data 

sets and/or improve the classifier over time. 

• Investigate methods to reduce execution time. A simple method is to refactor the 

code at bottle necks (e.g. preallocating and reusing image buffers). 
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Appendix A 

Features 

These are the twenty-five features used to represent segmented whale targets in feature 
vector x. The number in brackets correspond to the position of the feature-gene of a GA 
chromosome, reading left to right. 

Area (1) This is the number pixels in the blob. 

Length (2) This is the length of the blob calculated using area, a, and perimeter, p, under 
the assumption that p = 2(l +b) and a = l x b, where l =length, and b =breadth. 
It is used to approximate the maximum diameter of uniformly elongated blobs. 

Breadth (3) This is the breadth (or width) of the blob. It is calculated in the same manner 
as length. It is used to approximate the minimum diameter uniformly elongated blobs. 

Elongation (4) This is the ratio oflength, l, to breadth, b: ljb. 

Minimum Ferret Diameter (5) A Ferret diameter is calculated by measuring the diame­
ter of the blob at a certain angle measured from the horizontal. For minimum Ferret 
diameter, n Ferret diameters are measured at n/180° angles and the minimum diam­
eter is selected. It is similar to breadth, but works best for non-elongated, relatively 
compact blobs. 

Maximum Ferret Diameter (6) This feature is calculated in the same way as Ferret min­
imum diameter, but the maximum diameter is selected. It is similar to length. 

Ferret Elongation (7) This is the ratio of maximum Ferret diameter, F, to minimum Ferret 
diameter, f: F /f. 

Mean Ferret Diameter (8) This is the average Ferret diameter for all n angles. 

Number of Holes (9) This is the number of holes in a blob. A hole is defined as a con­
nected set of background pixels completely surrounded by the blob (foreground) pix­
els. 
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Number of Chain Pixels (10) This is the number of pixels counted by tracing clock-wise 
(or counter-clock-wise) along each boundary in the blob (outer boundary and bound­
aries along holes inside). Note that it is possible that some pixels are counted more 
than once, for example, along regions of the blob that are one pixel wide. 

Perimeter (11) This is the total length in pixels of edges in a blob, including edges of any 
holes. Staircase effects along diagonals and curves are accounted for by measuring 
the length of the inside comer of two adjacent but offset pixels as 1.414 rather than 
2.0. 

Convex Perimeter (12) This is the length of the perimeter of the convex hull of a blob. 

Compactness (13) This is a measure of how close pixels are packed together. It is defined 
as p2 

/ ( 47ra ), where pis the perimeter and a is the area. The minimum value is 1.0 for 
a perfect circle and increases as the shape becomes more convoluted (deviates from 
a circle). 

Roughness (14) This is a measure of the roughness of a blob's surface. It is defined as pjc, 
where p is the perimeter and c is the convex perimeter. Thus smooth convex blobs 
have a value of 1.0 (since p = c) and rough blobs have values greater then 1.0. 

Mean Pixel (15) This is the average pixel intensity ofthe blob: (L-pi)/a, where Pi= pixel 
intensity of the ith pixel and a = blob area. 

Pixel Standard Deviation (16) This is the standard deviation of pixel intensities in the 
blob: 

n 

where p =pixel intensity of the ith pixel and n =number ofblob pixels. 

Minimum Pixel (17) This is the minimum pixel intensity the blob. 

Maximum Pixel (18) This is the maximum pixel intensity in the blob. 

Moment Invariant 1 (19) This is defined as: 

(h = T/20 + T/02 

where npq is the normalized central moment (see Section A. I for more details). 

Moment Invariant 2 (20) This is defined as: 

Moment Invariant 3 (21) This is defined as: 
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Moment Invariant 4 (22) This is defined as: 

(A.5) 

Moment Invariant 5 (23) This is defined as: 

¢5 = (TJ3o- 3r]I2)(TJ3o + 'fJI2)((TJ3o + 'fJ12)2 - 3('fJ21 + 'fJo3?) (A.6) 

+ (3'fJ21 - 'fJo3) ( 'fJ21 + 'fJo3) (3( 'fJ3o + r]12) 2 - ( TJ21 + 'fJo3) 2) 

Moment Invariant 6 (24) This is defined as: 

Moment Invariant 7 (25) This is defined as: 

¢7 = (3'fJ21- 'fJo3)(TJ3o + 'fJI2)((TJ3o + 'fJ12)2 - 3('fJ21 + 'fJo3?) (A.8) 

+ (3'fJ12- 'fJ3o)(TJ21 + 'fJo3)(3(TJ3o + TJ12) 2 - (TJ21 + 'fJo3)2) 

A.1 Hu Moments 

The seven moment invariants, ¢i, i = 1· · · 7, above are often referred to as Hu moments 
[140]. These types of moments are invariant to translation, rotation, and scale of the object. 
The Hu moments are derived from the second and third normalized central moments [128]. 
A moment of order (p + q) is defined as 

(A.9) 
X y 

where p, q = 0, 1, 2, ... and f(x, y) is the gray scale value at location (x, y). A central 
moment of order (p + q) is defined as 

where 

X y 

_ m10 _ mo1 
x=- andy=-

moo moo 

Finally, a normalized central moment r]pq is defined as 

/-lpq 
'f}pq=p 

1-loo 
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Appendix B 

CCD: the Central Composite Design 

This appendix presents a brief overview of the central composite design (CDD). For a more 
detailed treatment see [ 117]. 

A factorial design runs experiments on all possible combinations of levels, which is in 
strong contrast to OFAT (one factor at a time), which modifies levels one factor at a time. A 
common and very efficient (minimum number of runs) factorial design is the 2k factorial, 
where k factors are varied over two levels, high ( + 1) and low ( -1 ). For k = 2, the design 
forms a square with experiments run at each comer; for k = 3, the design forms a cube 
with experiments run on each comer (Figure B.1). 

The actual level values are chosen by the designer, but should be far enough apart to 
allow some variation in response and decrease the change that noise will overwhelm the 
response, but not too far apart so a model cannot be adequately fit. Usually some standard 
operating conditions of the process being studied acts as the center level (level 0) and levels 
closer to the min and max range are the -1 and + 1 levels, respectively. 

The 2k design is most often used and forms the basis of more complex designs. In 
addition, the experimenter can run experiments using this design first, and augment it later 
if necessary to run more advanced designs. This allows the experiment to be run in stages, 
which is particularly important for executing a sequential strategy to minimize the number 
of runs to fit a model [117]. 

Adding one or more runs at the center point of the levels (center of the cube for k = 

3) allows identification of curvature in the response and estimates of error to be made. 
Furthermore, if curvature may be significant, runs at axial points (points on the coordinate 
axes) can also be added to form a center composite design (CCD; Figure B.2a). This allows 
fitting of second-order models. If the axial points are added at distance a =I= ±1 from the 
center, each factor must be varied over five levels. Alternatively, if the points are chosen at 
a= 1, then we have a face-centered CDD (Figure B.2b) that has most of the benefits of the 
CCD, but only three levels are required. This is particularly useful if it is not desirable or 
impossible to have levels at a > 1. In general, the (face-centered) CCD is a very efficient 
design, especially for fitting second-order models with k .2:: 3 factors. It is also one of the 
most important designs in the process of optimization. 
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+ A + 

Figure 8.1: Illustration of 22 and 23 DOE designs. Circles represent points at which the exper­
iment is run. Factors are labeled A, B, and C. - represents a low level and + represents a 
high level. So, at point ( -, -,+),the experiment is run with A and Bat low levels and Cat the 
high level. 

(a) 23 ceo (b) 23 Face­
centered ceo 

Figure 8.2: Illustration of 23 CCD and 23 face-centered CCD. The center point is level (0, 0, 0). 

151 



Appendix C 

DOE Analysis for Model 
Assumptions 

C.1 Introduction 

When building response models using DOE, [118] states that "it is always necessary to 
(1) examine the fitted model to ensure that it provides an adequate approximation of the 
true system, and (2) verify that none of the least squares regression (ANOVA) assumptions 
are violated". These assumptions are that the residuals, ei = Yi - y1, are normally and 
independently distributed with mean zero and that they have a constant variance. If these 
assumptions hold, the residuals will contain no obvious patterns. The easiest method to 
check these assumptions is through graphical analysis [117]. This is the approach taken in 
this work. What follows is the results of analysis of residuals for model assumptions (nor­
mality of residuals, constant variance, and independence) for each of the models developed 
in Chapter 5. 

C.1.1 2QD 

Figures C.la to C.5b shows the results of analysis of residuals for model assumptions 
(normality of residuals, constant variance, and independence). Figure C.la shows a good 
straight line fit. This indicates the model's residuals are normal. There is no systematic 
patterns in Figure C.l b, indicating a constant variance. There is also a random pattern in 
Figure C.2a, indicating that all systematic run/time related effects are accounted for in the 
model, and Figures C.2b to C.4a do not show any systematic pattern, suggesting there is 
no systematic contribution of an independent factor that is not accounted for by the model. 
This indicates the independence assumption is satisfied. No significant outliers are present 
in Figures C.4b, C.5a, and C.5b. 
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Normal Plot of Residuals Residuals vs. Predicted 
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Figure C.1: (a) Normal probability plot of 2QD y1 residuals. (b) Plot of 2QD y1 residuals versus 
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Figure C.2: (a) Plot of 2QD y1 residuals versus run. (b) Plot of 2QD y1 residuals versus factor 
A. 
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Residuals vs. Crossover Residuals vs Population 
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Figure C.3: (a) Plot of 2QD y1 residuals versus factor B. {b) Plot of 2QD y1 residuals versus 
factor C. 
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Figure C.4: (a) Plot of 2QD y1 residuals versus factor D. (b) Outlier T plot to check for 2QD Y1 

outliers. 
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Cook's Distance Predicted vs. Actual 
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Figure C.5: (a) Cook's distance plot for 2QD y1 . (b) Plot of actual 2QD Y1 versus f)I. 

C.1.2 3QD 

Figures C.6a to C.l Ob shows the results of analysis of residuals for model assumptions. 
Figure C.6a shows a reasonable straight line fit. This indicates the model's residuals are 
normal. There is no systematic pattern in Figure C.6b, indicating a constant variance. There 
is also a random pattern in Figure C. 7 a, indicating that all systematic run/time related effects 
are accounted for in the model. The lack of a pattern in Figures C. 7b to C.9a suggests there 
is no systematic contribution of an independent factor that is not accounted for by the model. 
No significant outliers are present in Figures C.9b, C.l Oa and C.l Ob. 

C.1.3 2SVM 

Figures C.ll a to C.15b shows the results of analysis of residuals for model assumptions. 
Figure C.lla shows a good straight line fit indicating the model's residuals are normally 
distributed. There is no systematic pattern in Figure C.ll b, indicating a constant variance. 
There is also a random pattern in Figure C.12a, indicating that all systematic run/time re­
lated effects are accounted for in the model. Figures C.l2b to C.14a do not show any 
systematic pattern, indicating there is no systematic contribution of an independent factor 
that is not accounted for by the model. Figures C.14b, C.15a and C.l5b shows there are no 
significant outliers. 
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Normal Plot of Residuals Residuals vs. Predicted 
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Figure C.6: (a) Normal probability plot of 3QD y1 residuals. (b) Plot of 3QD y1 residuals versus 
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Figure C.7: (a) Plot of 3QD y1 residuals versus run. (b) Plot of 3QD y 1 residuals versus factor 
A. 
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Residuals vs. Crossover Residuals vs. Population 
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Figure C.8: (a) Plot of 3QD Y1 residuals versus factor B. (b) Plot of 3QD y1 residuals versus 
factor C. 
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Cook's Distance Predicted vs. Actual 
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Figure C.1 0: (a) Cook's distance plot for 3QD y1. (b) Plot of actual 3QD y1 versus fh. 
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Figure C.11: (a) Normal probability plot of 2SVM y1 residuals. (b) Plot of 2SVM y1 residuals 
versus f)l. 
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Residuals vs. Run Residuals vs Mutation 
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Figure C.12: (a) Plot of 2SVM Y1 residuals versus run. {b) Plot of 2SVM Y1 residuals versus 
factor A. 
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Figure C.13: (a) Plot of 2SVM y1 residuals versus factor B. {b) Plot of 2SVM y1 residuals 
versus factor C. 
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Residuals vs. Generation 
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Figure C.14: (a) Plot of 2SVM y1 residuals versus factor D. (b) Outlier T plot to check for 
2SVM y1 outliers. 

I 

' 

Cook's Distance 

'I' 
" 

'I 
" 

Run Number 

{a) 

" 

Predicted vs. Actual 

" " " 
" . 

" " 
• • 

" m 
" 

" 
.. 

"" " , . .. 

" 

Actual 

(b) 

•• 

Figure C.15: (a) Cook's distance plot for 2SVM y1. {b) Plot of actuai2SVM Y1 versus fh. 
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C.1.4 3SVM 

Figures C.16a to C.20b shows the results of analysis of residuals for model assumptions. 
The model's residuals are normally distributed as indicated by the good straight line fit 
shown in Figure C.l6a. There is no systematic pattern in Figure C.16b, indicating a constant 
variance. There is also a random pattern in Figure C.17a, indicating that all systematic 
run/time related effects are accounted for in the model. Figures C.17b to C.19a do not show 
any systematic pattern suggesting there is no systematic contribution of an independent 
factor that is not accounted for by the model. Figures C.19b, C.20a and C.20b does not 
indicate any outliers. 

Normal Plot of Residuals Residuals vs. Predicted 

./. 

/ 
;if 

g// 
/ 

' /a 

.. 
" " 

1.50 " " 
m 

.. m 
'" .. " • '"'• ...... " 

D " . • • • . • Ill .. 
'" "" "" 'Ill 

" 
.. 

" " " .. • 
" • 

Studentized Residuals Predicted 

(a) (b) 

Figure C.16: (a) Normal probability plot of 3SVM y1 residuals. (b) Plot of 3SVM y1 residuals 
versus f)l. 
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Figure C.17: (a) Plot of 3SVM y1 residuals versus run. (b) Plot of 3SVM y1 residuals versus 
factor A. 
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Figure C.18: (a) Plot of 3SVM y1 residuals versus factor B. (b) Plot of 3SVM y1 residuals 
versus factor C. 
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Residuals vs. Generation 
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Figure C.19: (a) Plot of 3SVM y1 residuals versus factor D. (b) Outlier T plot to check for 
3SVM Y1 outliers. 
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Appendix D 

Watershed Segmentation 

Region based segmentation attempts to segment regions directly rather than relying on find­
ing edges or thresholds. One common region-based segmentation algorithm is known as 
watershed segmentation. Watershed segmentation is best explained [128] by envisioning a 
gray scale image as a 3-D topography (map) where the gray levels represent elevations. In 
such a view, areas of constant gray level represent plains, areas of low gray levels relative 
to the surrounding area represent catchment basins (regional minima), and regions of high 
gray levels relative to the surrounding levels are peaks (ridges, hills, or mountains). As in 
the real world, water dropped anywhere onto the surface of a catchment basin, even on its 
sides, will flow into that basin. All points where water will flow into the basin is know as 
the watershed for that basin. On the other hand, if the water is dropped on the crest of some 
peak or plain, the water is equally likely to flow into any of the adjacent catchment basins. 
Such areas are known as watershed lines because they separate the adjacent watersheds. 

Now suppose it uniformly rained over the entire topography. The water level in each of 
the basins will start to rise expanding the area covered by water. At some point, when the 
water level reaches the height of the surroundings peaks, the water in a basin will began 
to overflow into the adjacent basins. To prevent this a dam is constructed along the peak 
or in the middle of a plain between the effected watersheds such that it is impossible for 
the watersheds to merge. Eventually the water in all the watersheds will reach a level 
where only the dams remain above water, completely enclosing each watershed. Hence 
the entire topography is segmented into regions of water separated by dams. In image 
segmentation terms, the watersheds filled with water represent the segmented regions and 
the dams represent the lines separating the regions. 

The above description is illustrated in Figure D.1, which shows a cross section of the 
local image topography around two objects. The objects are represented by basins, which 
correspond to low gray levels. Water level lines are shown at four intervals during the flood­
ing stage: at water level 1, no dam is constructed; at water level 2, dam 2 is constructed; 
at water level 3, dam 1 is constructed; and at water level 4, dam 3 is constructed. Note 
that dam 3 is constructed in the center of a plain between two basins while the other dams 
are constructed on peaks. When the algorithm is complete (flooding is done), the dams 
represent watershed lines that separate the segmented regions as shown. 
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Figure 0.1: Illustration of the watershed algorithm. The graphic is a cross-section through the 
local topography around two objects represented by basins. The vertical axis is gray level. The 
horizontal axis is location in the image. 

The above description is very textual and general. For a formal mathematical treatment 
see [128]. Early descriptions of the watershed is provided by [141] and [142]. Efficient 
algorithms for watershed implementation for binary and gray scale images is presented by 
[143] and [144]. 

165 



Appendix E 

Pattern Classification 

E.1 Bayesian Minimum Error-Rate Quadratic Discrim­
inate 

The idea of a Bayesian classifier is based on Bayes formula (for continuous, multivariate 
features) 

(E. I) 

where P(~) is the prior (a priori) probability, P(~Jx) is the posterior (a posteriori) prob­
ability, and p( xJ ~) is the likelihood of~ with respect to x. p( x), defined as 

n 

p(x) = LP(xl~)P(~) (E.2) 
j=l 

is the evidence. It acts as a scale factor that ensures the posterior probabilities sum to one. 
For classification, this term is usually dropped. The basic approach is to minimize the 
probability of error by choosing a class that maximizes the posterior probability P(~Jx). 
This leads to Bayes decision rule 

if P(~Jx) > P('i&Jlx) for all j =I= i classify as~ (E.3) 

which by eliminating the scale factor becomes 

if p(xl~)P(~) > p(xl'i&J)P('i&j) for all j =I= i classify as~ (E.4) 

A classifier for c classes can be represented as a set of discriminate functions 9i ( x), 
i = 0, 1, · · · , c. The classifier operates by selecting the class with the largest discriminate, 
using the rule 

if gi(x) > gj(x) for all j =I= i classify as~ (E.5) 

where xis the feature vector for the object to be classified. Surfaces in feature space where 
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9i(x) = gj(x) are called the decision surface between~ and %j. 
Armed with the idea of a discriminate, we can write a Bayesian minimum error rate 

discriminate as 
9i(x) = P(~lx) = p(xi~)P(~) (E.6) 

If f is a monotonically increasing function, 9i ( x) can be replaced with f (gi ( x)) without 
changing the classification results. Hence, we can reformulate the last equation as 

9i(x) = lnp(xl~) + ln P(~) (E.7) 

P(~) is usually chosen manually based on prior knowledge of the problem, and p(xl~) is 
often modeled as Gaussian distribution, namely 

1 [ 1 T -l ] p(xl'6i) = (21f)d/21:Eil/2 exp -2(x- J.L) :E (x- J.L) (E.8) 

where x is the d-dimension feature vector (hence d is the number of features), J.L is the 
d-dimension mean vector, :E is the d x d covariance matrix, and I :E I is the determinate of 
:E and :E-1 is its inverse. Because the normal distribution is completely specified by J.L and 
:E, we say p(x) ~ N(J.L, :E). The final Bayesian minimum error rate quadratic discriminate 
function for '6i can be derived by substituting Equation E.8 into Equation E.7, resulting in 

(E.9) 

This function provides hyperquadric (hence curves of various shapes including linear) de­
cision boundaries. 

For a Guassian distribution, the unknowns J.L and :E must be estimated. One common 
method is maximum-likelihood. It can be proven [30] that the maximum-likelihood esti­
mation of the population mean is the arithmetic average of the training samples, called the 
sample mean 

1 n 

jL =- :Lxk 
n 

k=l 

(E.10) 

It can also be shown that the maximum-likelihood estimate of the covariance matrix is the 
arithmetic average ofthe n matrices (xk- jL)(xk- jt)T 

~ = _!_ I)xk- ft)(xk- jtf 
n 

k=l 

(E.ll) 

These are important results for pattern recognition because both are relatively straight for­
ward to calculate from the training data. Note that Equation E.ll is biased [30]. An ele-
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mentary unbiased estimate is called the sample covariance matrix 

C = n ~ 
1 
I) Xk - jL) ( Xk - jL f 
k=l 

(E.l2) 

The above formulations are described for continuous features, i.e. x E JRd. However, 
the same formulations apply to discrete features except the density p(xl~) is replaced by 
probabilities P(xl~) 

E.2 Support Vector Machines 

Following is a brief overview of theory behind SVMs from the point of view of pattern 
recognition. Unless otherwise noted, the theory is a combination and reformulation of ma­
terial extracted from the more rigorous discussions in [49, 145] and more tutorial-like de­
scriptions in [45, 54, 146]. For more information on statistical learning theory, SVMs, and 
kernel machines see [51, 59, 147]. For a detailed treatment ofSVMs for pattern recognition 
see [64, 148]. For a more introductory yet extensive review see [54]. 

E.2.1 SVMs for Linearly Separable Patterns: Hard Margin SVMs 

In this section, we focus on the simple problem of two-classes oflinearly separable patterns. 
The SVM theory presented is the basis for dealing with more complex problems later. 

Given a set of training data 1I' = {xi, Yi}, i = 1 ... n, where Yi E { + 1, -1} is the class 
label, xi E JRd is an input sample vector, d is the dimensionality of the sample space (the 
size of the vectors), and n is the number of samples in the data set. Assume that class 
Yi = + 1 is linearly separable from Yi = -1, then the hyperplane separating the two classes 
IS 

w·x+b=O (E.l3) 

where w E JRd is the adjustable weight vector normal to the hyperplane and b E lR is a 
bias. Both w and b are induced from the training set T such that the following conditions 
are satisfied 

w · Xi + b ~ 0 for Yi = + 1 

w · xi + b < 0 for Yi = -1 
(E.14) 

Define d+ and d_ to be the distance from the hyperplane to the closest sample point in 
classes + 1 and -1 respectively, then the margin of separation is p = d+ + d_. There is an 
infinite number ofhyperplanes that separate the two classes, as illustrated in Figure E. I, but 
there is only one that maximizes p, it is referred to as the optimal separating hyperplane, 
defined as 

Wo ·x+bo = 0 (E.l5) 

where w 0 and b0 are the optimal values ofw and bin Equation E.13. A hyperplane defines a 
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Figure E.1: Illustration of three out of the infinite number of hyperplanes separating two pat­
terns. 

multidimensional linear decision surface in input space. The optimal separating hyperplane 
is the hyperplane that has the maximal margin of separation between classes, has the lowest 
capacity, and minimizes the bounds on the actual risk [146, 48]. 

Using basic linear algebra it can be shown that the perpendicular distance from the 
optimal hyperplane to the origin is given by 

lbol 

llwoll 
(E.16) 

where llwll is the Euclidean norm ofw (Figure E.2). lfwe rescale w 0 and b0 such that 

w o · Xi + bo 2: 1 for Yi = + 1 

w o · Xi + bo :::; 1 for Yi = -1 

and combine into canonical form 

(E.17) 

(E.l8) 

then all points X 8 where lw0 ·xi+ bol = 1lie on the supporting hyperplanes H+ and H_ 
and are called support vectors. The support planes are 

H+: Wo ·Xi+ bo = 1 

H_: Wo ·xi+ bo = -1 
(E.19) 

The support hyperplanes are parallel to the optimal separating hyperplane (have the same 
normal) and no training samples fall in between them. 
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Figure E.2: An optimal separating hyperplane for two linearly separable, 2-dimensional, pat­
terns, represented by circles and squares. The points circled along the lines H_ and H+ are 
the support vectors. 

With reference to Figure E.2 and some simple algebra, it is easy to see that 

hence 

1 
d_ = d+ = llwoll 

1 1 2 
p = d_ + d+ = llwoll + llwoll = llwoll 

(E.20) 

(E.21) 

Then, to find the hyperplane which gives the maximum margin (optimal separating hy­
perplane), we minimize llwll under the constraints imposed by Equation E.18. Hence, to 
optimize p, it can be shown that we minimize the cost function 

(E.22) 

in the quadratic program (QP optimization problem), 

min 
w,b 

~llwll 2 
(E.23) 

subject to Yi ( w · Xi + b) ~ 1 

The QP can be solved using the method of Lagrange multipliers. To do so we reformu-

170 



late Equation E.23 to the equivalent Lagrangian function 

1 n 

L(w, b, a)= 2llwll 2
- L ai(Yi(w ·Xi+ b)- 1) (E.24) 

i=O 

where ai 2:: 0 are Lagrange multipliers. The solution is found by minimizing L(w, b, a) 
with respect to w and b, therefore we require 

8L =O 
aw 
8L =O 
8b 

Application of Equation E.25 to Equation E.24 yields 

i=l 
n 

w = Laiyixi 
i=l 

(E.25) 

(E.26) 

Substituting Equation E.26 into an expanded and rearranged version of Equation E.24 and 
simplifying yields the dual form of the Lagrangian 

n 
1 

n n 

D(a) = L ai- 2 L L aiajYiYjXi · Xj 

i=l i=l j=l 

(E.27) 

The corresponding dual QP is 

n 
1 

n n 

m;x L ai - 2 L L aiajYiYjXi · Xj 

i=l i=l j=l 

n 

subject to L aiy=O 
(E.28) 

i=l 

ai 2:: 0, i = 1 ... n 

The duality of the expressed Lagrangian equations and QP problems above has the prop­
erty that the maximum of D, subject to its constraints, occurs at the same w, b, and a as the 
minimum of L, subject to its constraints [49]. Thus we can find a solution by minimizing 
L or maximizing D. However, it is preferable to maximize D because it has the advantage 
of being expressed in terms of the training data only. Hence, we can compute the optimal 
separating hyperplane, which is the classifier decision surface, from this data alone. Fur­
thermore, it leads to a discriminate function (Equation E.31) that depends only on the dot 
product of the patterns, {xi· Xj I i, j = 1 ... n}, and allows generalization of the discriminate 
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function to the nonlinear case 
We can solve the dual QP problem relatively easily using QP optimization techniques 

and numerical methods from a well studied class of convex quadratic programming prob­
lems [54]. The solution yields the optimum Lagrangian multipliers a 0 = [a~, ag, ... , a~], 
one a for each training sample xi The samples xi for which ai > 0 are the support vectors. 
The support vectors lie on the supporting hyperplanes H _ and H + and are the sample points 
closest to the optimal hyperplane (the decision boundary). These are the critical training 
samples because they carry all the information required for classification; all other points 
can be removed or moved (as long as they don't fall between H _ and H +) without effecting 
the optimal hyperplane [49]. 

The optimal separating hyperplane is found by computing w 0 and b0 . From Equa­
tion E.26, we see that the former is calculated as 

Then the latter is calculated as 

n 

Wo = .2:a?yixi 
i=l 

(E.29) 

bo = 1 - Wo · X 8 (E.30) 

where X 8 is a support vector that lies on H+, which is defined as w 0 • xi+ b0 = 1 (see 
Equation E.l9). 

A simple discriminate function for linearly separable data can be written as 

g(x) = sign(wo · x + bo) = sign ( ~ w>? (X; · x) + bo) (E.31) 

A more detailed derivation of this function is shown in subsequent sections. 

E.2.2 SVMs for Linearly Inseparable Patterns: Soft Margin SVMs 

For inseparable patterns, the SVM described in the last section will not work because a 
hyperplane cannot be constructed without classification errors, which the above SVM does 
not permit. What is needed is a method to maximize the margin of separation, p, while 
minimizing the error [54]. To do this we need to relax the constraints on Equation E.l7 to 
allow some points to lie on the correct side of the optimal hyperplane, but between it and 
the supporting planes (H_ or H+), while minimizing the number that fall on the incorrect 
side of the optimal hyperplane, as illustrated in Figure E.3. This is done by introducing 
slack variables ~i 2: 0, i = 1, ... , n in the constraints of Equation E.l7 [49] as follows: 

wo ·xi+ bo ~ 1- ~i for Yi = +1 

wo · xi + bo S -1 + ~i for Yi = -1 
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tJ_ 
" " • 

" " " " " 

• • 
Support vectors 

Figure E.3: An optimal separating hyperplane for two linearly inseparable, 2-dimensional, pat­
terns, represented by circles and squares. The points circled are support vectors. Note that 
samples a and b are within the optimal hyperplane margin p, but on the correct side of the 
optimal plane, whereas c is an error. 

Combining into canonical form we get 

(E.33) 

which is the same as Equation E.18 except for the presence of the slack variable. 
The presence of the slack variables, by necessity, effects the definition of support vec­

tors; now the support vectors are all those that satisfy Equation E.33. When 0 ~ ~i ~ 1, xi 

lies on the correct side of the optimal hyperplane, but within p. When ~i > 1, xi lies on the 
incorrect side of the optimal hyperplane, and so is in error. 

To derive a SVM incorporating slack variables, we proceed as in the linear separable 
case detailed in Section E.2.1. First we formulate a new cost function which must be mini­
mized with respect tow. 

1 n 

<I>(w,e) = 211wll 2 + ci::~i 
i=l 

(E.34) 

Here I::~= I ~i is the upper bound on the number of training errors. C, chosen a priori by 
the user, is called the regularization parameter. The higher C, the higher the cost associated 
with attaining training errors and the more complex the classifier. 
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Following Section E.2.1, we extend Equation E.23 to form the new primal QP 

mm 
w,b,~ 

subject to 

The Lagrangian equivalent is 

1 n 

21/wll 2 + c2:~i 
i=l 

Yi(w ·Xi+ b) 2: 1- ~i, i = 1, ... ,n 

(E.35) 

1 
n n n 

L(w, b, a)= 21/wl/ 2 
+ c2: ~i- L ai(Yi(w. Xi+ b)- 1 + ~i)- L l'i~i (E.36) 

i=l i=O i=l 

where l'i are Lagrange multipliers introduced to enforce ~i 2: 0. Using methods similar to 
those used in the linearly separable case, the dual QP is (see [50, 59] for formal derivations) 

n 
1 

n n 

m:x L ai - 2 L L aiajYiYjXi · Xj 
i=l i=l j=l 

n 

subject to L aiYi = 0 
i=l 

0 :::; ai :::; C, i = 1 ... n 

c 2:0 

(E.37) 

Note that the only difference between the inseparable QP and the separable QP is 
the upper bound, C, placed on the allowed values for the Lagrange multipliers ai. As 
in the proceeding section, Equation E.3 7 is solved using convex quadratic programming 
problem solving techniques. The solution yields a vector of Lagrange multipliers a 0 = 

[a~, ag, ... , a~]. The optimal hyperplane is found by calculating w 0 and b0 • As done in the 
separable case, 

ns 

Wo = 2:a?YiXi 
i=l 

where ns is the number of support vectors. To find b0 , Equation E.33 is rewritten as 

(E.38) 

(E.39) 

and we solve for b0 . The only problem is we do not know ~i· However, if we chose a 
(xi, Yi) such that 0 < a? < C then ~i = 0. [49] suggests that it is better to calculate b0 as 
the average of all bi for all (xi, Yi) when 0 < a? < C. The resultant discriminate function 
is the same as Equation E.31. 
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Table E.1: Common SVM kernels. In all cases, the kernel specific variables (a, d, b, c) are 
chosen a priori by the user. For the neural network kernel, only certain values of b and c satisfy 
Mercer's theorem. Note, sometimes the RBF kernel is expressed using 'Y in place of 1/2a2 • 

Name 
Linear 
Polynomial 

Radial Basis Function (RBF) 
Neural Network 

Kernel K(x, xi) 
X· Xi 

('yx ·Xi+ l)d 
llx-x·ll 2 

e-~ 

tanh(b(x ·Xi) - c) 

E.2.3 SVMs for Non-Linear, Inseparable Patterns: General SVMs 

Using a methodology almost identical to that described in the previous sections, one can 
construct a SVM for inseparable, highly non-linear patterns. The method involves mapping 
the input vectors to a high dimensional feature space F (also called the dot-product space) 
via a nonlinear mapping 

<I> : IR d 1---t F (E.40) 

where the patterns become linearly separable. The methods in the previous sections can 
then be applied, unchanged, in F, i.e. the optimal separating hyperplane is constructed in 
F. This is illustrated in Figure E.4. 

Rewrite the optimization problem in its Lagrangian dual form as 

n 
1 

n n 

D(a) = L ai- 2 L L aiajyiyj<I>(xi) · <I>(xj) 
i=l i=l j=l 

(E.41) 

and it can be solved as before, but finding <I> explicitly may be difficult. Additionally, it can 
be very expensive to compute it or the resulting dot-product in F, which can have very high 
dimensions. However, for SVMs we can avoid both using the so called kernel trick [149]. 
Mercer's theorem [145] states that for certain mappings <I> and any two points Xi and Xj 

the inner product of the mapped points can be evaluated using a kernel function K without 
explicitly knowing the mapping [54]. Define K as 

(E.42) 

then using Mercer's theorem it can be shown that a given K is suitable for a SVM (i.e. inner 
product in :F) but a suitable K or mapping <I> cannot be derived. Four common kernels that 
satisfy Mercer's theorem are summarized in Table E.1. 

Using the notion of kernels Equation E.41 can be written as 

n 
1 

n n 

D(a) = L ai- 2 L L aiajyiyjK(xi, xj) 
i=l i=l j=l 

(E.43) 

This can be solved using the method of Lagrangian multipliers as described previously. 
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Figure E.4: Nonlinear map q> from 2-dimensional input space to feature space. The nonlinear, 
non-separable patterns represented by circles and squares are transformed via q> to linear 
space. 

A discriminate function for classification implementing the optimal separating hyperplane 
can be written as 

g(x) ~sign ( ~ y,a?K(x, x,) + bo) (E.44) 

In essence a non-linear classifier is created from a linear classifier by replacing the dot­
product with a kernel function. With the exception of this replacement, the SVM is the 
same as the linear SVM. 
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Appendix F 

GA Concepts 

F.1 The Basic GA 

The basic operation of a GA is simple. The GA starts with an initial population of n ran­
domly generated individuals, known as generation 0. The individuals, or chromosomes, 
represent a possible solution to the problem being solved and are specific to the problem 
domain. Each individual is evaluated using an evaluation mechanism designed for the prob­
lem. The results of evaluation determines the fitness of each individual. Following the 
principles of evolutionary theory, the fitness determines how well individuals "compete". 
In this sense, the greater the fitness of an individual the greater probability that genes of 
that individual will propagate to the next generation. In general, higher fit individuals stand 
a greater chance of mating with other individuals to form offspring that share character­
istics of each parent. When two highly fit individuals mate, there is a good chance the 
resulting offspring will be better than the parents. As a consequence of this and the need to 
maintain a stable population size, some individuals will not mate, or mate less often. The 
result is that characteristics of less fit individuals will likely not make it to future gener­
ations. Generation i is created from generation i - 1 individuals dominantly via mating. 
However, sometimes the genes of an individual will undergo a random mutation, making 
it slightly different from what normal mating would achieve. On average, with each sub­
sequent generation the fitness of the chromosomes in the population improves. Eventually 
the child chromosomes are not significantly different from their parents, and the average 
fitness changes little. At this point the GA is said to have converged on a set of solutions. 
The standard genetic algorithm is shown in Algorithm 2. 
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Algorithm 2: Standard generational GA 
Data: Evaluation data 
Result: FinallP' 

1 begin 
2 initialize lP' o 
3 evaluate IP'o 

4 if- 1 
s while not halt condition do 
6 select IP'i from IP'i-1 

7 crossover IP'i 

s mutate IP'i 

9 evaluate IP'i 

10 if- i + 1 
11 end 
12 end 

F.2 Roulette Wheel Selection 

A popular selection method that meets the desired selection properties of the best chromo­
somes mating more and the worst dying off is the roulette wheel selection. In this method, 
each individual in the current generation is assigned a slot on the wheel proportional to its 
fitness. The wheel is then spun once for each member of the population (n times), thus 
selecting the reproduction candidate based on the slot the wheel stops on. Copies of the n 
selected individuals enter a mating pool where subsequent genetic operators act on them. 

The size (weight) of slot i for individual i is equal to the probability of selecting indi­
vidual i: 

D. _ _L 
r~- n (F.l) 

'Lh 
j=l 

where fi is the fitness of i and n is the population size. Thus with each wheel spin, i has 
the probability Pi of been selected and added to the mating pool. The expected number of 
copies of i in the mating pool is: 

fi 
Ei = -n- = n X pi (F.2) 

L, fj 
j=l 

n 

Figure F.l shows an example of the roulette wheel for a trivial population of chromosomes. 
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ID Chromosome Fitness pi X 100% 

cl 01101 169 14.4 
c2 11000 576 49.2 
ca 01000 64 5.5 (b) 

c4 10011 361 30.9 

(a) 

Figure F.1: Illustration of the roulette wheel selection method [95, 98]. In this example, the 
chromosome encodes an integer x as binary and the fitness function if f ( x) = x2 • 

F.3 Single Point Crossover 

A common technique for achieving crossover is the single-point crossover method. Two 
chromosomes, (ci, cj), are randomly chosen for mating. A position k is chosen randomly 
and uniformly from the range [1, lc- 1], where lc is the length of the chromosome. Two 
offspring, (c~, cj), are created by swapping the tail portions of each. The tail portion is 
defined as all genes in the range [k + 1, lc]. This is illustrated in Figure F.2. 

F.4 Mutation 

Mutation is a random change in one or more of the bits in a chromosome. For bit-string 
chromosomes, if mutation occurs, its value is flipped. Figure F.3 illustrates this. 
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Parents 

Offspring 

Crossover Point 

1010001110 
~~~ 

~L~~ 
1010010010 

0011010010 

--------- -~ 
0011001110 

Figure F.2: Illustration of single point crossover in a GA. lc = 10, k = 4, and the tail is bits 5 to 
10 (modified from [101]). 

01000 ==? 

f = 64 
01100 

f = 144 

Figure F.3: Illustration of GA chromosome mutation (continued from Figure F.1 ). In this ex­
ample allele 2 (counting from 0, right to left) of the chromosome c3 was mutated increasing of 
fitness from 64 to 144. This would increase the chance of c3 being selected for mating. 
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