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Online Discrete Event Control of Hybrid Systems 

by 

James P. Millan 

Abstract 

The increasing proliferation of automatic control systems in embedded and distributed 

applications has lead to increasingly complex systems. These systems manifest a 

mixture of continuous and discrete dynamics due to the interaction of the computer 

controlled or logical decision-making subsystems interacting with the real world, and 

are thus referred to as hybrid systems. The inherent complexity of such hybrid systems 

makes them difficult to model, analyze and design. As such, industrial application of 

hybrid system theory has yet to gain widespread acceptance. 

This thesis presents an approach to the modeling, synthesis and implementation of 

automatic controllers for hybrid systems. This work centers on a flexible hybrid sys­

tem modeling framework that permits automated synthesis of controllers for hybrid 

systems, based on safety and performance design specifications. This hybrid model­

ing framework is the switched continuous model (SCM), based on discrete switching 

between continuous system models ( CSM). Discrete abstractions of the CSM dynam­

ics enable the controller actions to be simple discrete decisions at appropriate points 

in the state space of the controlled system. The SCM communicates with external 

discrete event systems (DES) through sets of shared discrete events, thus allowing 
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the techniques of DES supervisory control synthesis to be employed. The resulting 

controllers are model-based, and safe by design, since they encapsulate the continuous 

and discrete event models that together model the plant and specification dynamics. 

Due to the inherently uncountable state space of the hybrid system model, the con­

troller computation is performed online, and is limited to a finite time horizon in 

order to preserve the finite state properties of the discrete abstraction. 

The details of the modeling framework, controller synthesis, and online imple­

mentation are developed, including a computational approach, architecture, and al­

gorithms. A software package that implements these control concepts was developed. 

Two detailed modeling and control synthesis applications are presented: a simple 

benchmark hybrid control example and a realistic industrial example. 
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I 1 Chapter 

Introduction 

1.1 Background 

M athematical models are approximations of the physical world. These models 

allow us to understand, analyze, predict, and control the physical processes 

that surround us. The latter task, control, is the subject of this thesis. Tradition­

ally, mathematical models take the form of continuous linear or nonlinear differential 

equations; this is because the physical processes they model tend to vary in a smooth, 

continuous manner. Consequently, the vast majority of control theory has been de­

veloped for the control of continuous dynamical systems. 

With the increasing proliferation of automatic control, and the corresponding in­

crease in the complexity of controlled systems, high-level control functions such as 

supervision and coordination have become a necessity. As a result of this, an impor­

tant class of systems, known as hybrid systems, have grown increasingly important. 

These are systems that cannot be described easily by continuous dynamical models 

only, and require a model that also incorporates discrete changes of state. Hybrid 

dynamics are often the manifestation of a discrete decision-making process (i.e. digi­

tal control) interacting with a continuous dynamical system. Hybrid behaviour may 

also arise autonomously if a system switches discretely between multiple modes of 



s, 

c, D, C', 

J<'igu~ 1-1. A typical complt--x ron! rot ~yw1em having hybrid dynamic,.., I..AA\··tc~J continuous 
routrol t.»ks, GJ,C, lllld di~tal C'OIItrol DJ, are coordinated and •u~U-tod by a high-Jm·el 
C'Oil1.t'OI..lcr, s •. 

operation. 

M&ny practical control probl<·u"' lie I!OIIle"'-here in thb hybrid "•prctrum• some­

wltrrr bct ..... un oontinuou~ and diHCn•tc dynamics. Examples includr: robotics, process 

conLrol , nutonomous vchi(•lt\i nnd •'<"'Onfigurable manufacturing. The COJill liOil thread 

iu all of these applications iK tlmt t herr arc both continuouH nnd di!K:rct..e oontrol 

tNdo! im.'Oivcd. For example-, a oonthlUOIL'''i dynamical task for & robotic ann may be 

to ~Y follow a motioo profile that •pccifics both & '-clodty and pooitioo through 

tiiiiP. A perallel d~o 0\'ftlt pi Ol8Y be thai the &rm ....-t tho motion profile 

& •pccific number or tirnH, ll)'lld>ronize ... actions .. ith • nl'i~bbouring machine to 

&\old collision (mut\131 cxcll<,ion), and &\'Old a deadlock condition "'ith the neigb­

holiring machine. This ,.ituRtion iM illustrated in the exa.mph• of Fig. 1-1~ in which 

the oontinuous controllcno C1 nnd C2 oontrol the motion or two robot. arms. A dis­

rrt'te control system D1 mRy bt' I'C'Iti>OilBible for control or diNCT('le- vroros..:;cs such as 
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opening or closing valves. The supervisory controller 5 1 must coordinate and enforce 

certain behaviours amongst the low-level systems. The mixture of discrete and con­

tinuous dynamics makes this a hybrid system. Now suppose the robots are handling 

a hazardous material that cannot be dropped: this adds a safety-critical aspect to 

the control task, focusing the need for formalized control design procedures that can 

be proven to be safe, or error-free. 

1.2 Problem Discussion 

The modeling, analysis and control of hybrid systems is an open and active area of 

research. The intent of this research is to develop theory and techniques that can be 

applied by control system practitioners. As control system designers, the objective 

is to design provably safe controllers for hybrid systems such as the one described 

above. In the domain of discrete-event systems, it is possible to exhaustively search 

very large system state spaces, removing trajectories that lead to unsafe states. And, 

in the continuous systems domain, it is possible to ensure the stability of controlled 

systems under a variety of disturbances and uncertainties. Finding a balance between 

these two disparate, but mutually desirable approaches to hybrid system control is 

the task at hand. Exhaustive reachability of hybrid state spaces is in general, not 

possible, due to the uncountable state space. Likewise, input-to-state, and input-to­

output stabilization is problematic for even the most simple hybrid systems. The 

current approaches to the hybrid design problem involve various combinations of 

continuous and discrete-event modeling, simulation and analysis strategies. In either 

case, the usual approach is to place more emphasis on one or the other of the types of 

dynamics; e.g. approximated continuous dynamics combined with discrete switching, 

or abstracted switching combined with higher-fidelity continuous models. At this 

time, hybrid analytical and synthesis tools are at a primitive state in comparison to 

the tools of typical industrial practice. A detailed survey of the theoretical results 
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for automatic control systems in general, and hybrid systems in particular, is given 

in Chapter 2. Even if the serious theoretical hurdles of hybrid system control can be 

reasonably dealt with, a major barrier to adoption of hybrid control system design 

technique~ remain~: U.esign tools must be user-friendly and have sufficient utility that 

designers will choose to use them. Simulation is currently the most widely utilized 

technique for hybrid control system design. Controllers are simulated in many "ad­

hoc" test scenarios to identify and correct failure points in the design. This approach 

relies on heuristics - the designer's skill, and knowledge of the system, to ensure 

safety. 

1.3 Contributions 

To solve the problem described in the previous section, it was necessary to take an 

approach that was balanced between theoretical and practical considerations. This 

thesis documents the technique and supporting theory that enables the automated 

synthesis of supervisory controllers for systems with hybrid dynamics. The contribu­

tions are as follows: 

Modeling The modeling framework developed in this thesis accommodates embed­

ded continuous simulations, thus enabling control system designers to utilize 

existing simulation tools. The model, which is based on discrete switching of 

continuous dynamics, is simple to use and is very expressive for capturing hybrid 

dynamics. These features are an important step towards gaining acceptance of 

this technique in industry. 

Control Synthesis The controller synthesis technique described in this thesis uses 

a hybrid system plant model and a discrete event specification to produce a 

discrete event supervisory controller that is safe by design. Because the con­

troller is implemented online, it can accommodate time-varying plants, and has 

reduced computational complexity compared to offline controllers, since it is 
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computed on a limited horizon. This controller can be guaranteed to be safe 

(i.e. failsafe) always, by inclusion of emergency shutdown states, allowing this 

technique to be utilized in safety-critical applications. 

Computation A software package called HYSYNTH was developed that implements 

the control theory concepts of this thesis. The software can be used to model, 

design, synthesize, and simulate online discrete event supervisory controllers, 

and it helps to demonstrate the various contributions of this thesis including: 

automated control synthesis for hybrid systems, online operation, failsafe con­

trol, embedded simulation, controller complexity reduction, and human in the 

loop control. 

Application The ship control application presented in this thesis marks the first 

time that hybrid system control synthesis techniques have been described for 

control of marine vessels. This controller is unique in that it is suited to the 

incorporation of human in the loop control. This inclusion of the human op­

erator may make this control technique more attractive to implement from an 

operational and liability standpoint. 

1.4 Organization 

This document is organized as follows: Chapter 2 contains a review of the litera­

ture that is relevant to the topics of discrete event and hybrid systems modeling, 

simulation and control. Chapter 3 develops a general continuous system modeling 

framework. Particular attention is paid to the partitioning framework that will be 

used to produce the discrete abstractions of the continuous dynamics. Chapter 4 

introduces the switched continuous model framework, and its discrete graph repre­

sentation, the hybrid transition graph. In Chapter 5 there is brief review of discrete 

event controller synthesis. Developed next is the theory to support synthesis of a 

fail-safe discrete-event controller for a hybrid system. This is based on the synchro-
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nization of a switched continuous model of the plant with a discrete event model of a 

specification. Chapter 6 is an overview of the computational framework that is used 

to support the modeling, design and online controller synthesis. Chapter 7 examines 

two applications of the theory; the first is a benchmark hybrid control problem. This 

simple example serves to illustrate the modeling environment, and through simula­

tion, gives benchmark run time complexity results. The second example demonstrates 

the control design process for a realistic, industrial control problem. It also illustrates 

the capacity of the control framework to incorporate heuristics (i.e. human-in-the­

loop) control. Finally, Chapter 8 again summarizes the contributions that this thesis 

makes to hybrid control systems research, and suggests directions for future work. 

6 



Background and Related Work 

T his thesis is concerned with the control of complex dynamical systems in real 

time. As such, the background material contained in this chapter is of a diverse 

nature, encompassing elements of control system design and applications, continuous 

control system theory, discrete event control theory, hybrid system theory, and the 

modeling, analysis and simulation of these systems. This chapter is a brief overview 

of the models, methods and theory developed to support control system design and 

analysis in these areas, and which are relevant to the results of this thesis. 

2.1 Continuous System Modeling and Control 

Continuous system modeling has been the dominant paradigm for theoretical and 

practical developments in control systems during the 20th century. Initially, con­

trollers themselves were mechanical, then electromechanical and finally electronic 

(excluding the actuators) (Michel 1996). The "classical era" in control theory and 

practice was developed around frequency domain stability techniques combined with 

transient response performance analysis. Control system models were based on lin­

ear time invariant (LTI) models in a single input/single output (SISO) modeling 

framework, and control design practitioners had many semi-automated procedures 
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for synthesizing controllers. Many of these techniques were developed by practicing 

engineers and the theoretical explanations followed afterwards (Bernstein 2002). 

With the advent of the 1960s came the state-space modeling approach of the 

no-called "nwdern era" and the ability to rnodel, analyze and design controllers for 

multivariable or multiple input multiple output (MIMO) systems. The fundamental 

concepts of state controllability and observability were formally identified by Kalman 

(Kalman 1960). The state space approach lends itself well to algorithmic (and hence 

digital computer) implementation. Given an LTI plant model, a Linear Quadratic 

Gaussian (LQG) controller can be synthesized for the system that is optimal in a 

least squares sense. Furthermore, the controller is formulated for a stochastically 

disturbed modeling and measurement environment, so it lends itself well to practical 

application. In fact, the optimal estimator (the Kalman filter) is widely credited with 

making possible the first lunar landing of 1969 (p.14 (Grewal and Andrews 1993) ). 

Initially, there were serious drawbacks with the state-space approach since there 

was no way to specify stability; and modeling errors could lead to control instability. 

With 'Hoo control design (Francis, Henton and Zames 1984), the frequency domain 

approach of the classical control design techniques and notions of input to output 

stability were developed for multivariable systems; see (Skogestad and Postelthwaite 

1993) for an overview. Multivariable control design was further extended to include 

controller robustness to parametric and structured modeling uncertainty with the 

advent of JL-synthesis techniques (Williams 1990), (Balas and Packard 1996). 

Up to this point we have been dealing with linear system models. vVith nonlinear 

system models, the familiar control system tools no longer apply. Nonlinear models 

exhibit certain phenomena that do not arise in linear systems, including finite escape 

time, multiple equilibria, limit cycles, deterministic chaotic behaviour, and multiple 

modes of operation (Khalil2002). Typically the approach is to linearize the nonlinear 

system model about some operating point, if this is possible, in order to use the 

familiar and powerful linear system tools. Unfortunately, there are many classes of 

8 



system for which the locally linearized approximate model cannot be used; e.g. this 

situation might exist if a system by necessity has more than one operating point. For 

systems like this, gain scheduling (Leith and Leithead 2000) and sliding mode control 

technique~ have ~een exten~ive u~e in indu~try (Kaynak, Erbatur and Ertugrul 2001). 

2. 2 Discrete Event Systems 

Discrete event dynamical systems (DES) are characterized by having a state space 

that is a discrete set and a state transition mechanism that is event driven. Usually 

DES models take the form of automata or petri nets. Supervisory control theory for 

DES was developed by Ramadge and Wonham, (Ramadge and Wonham 1987) and 

(Wonham and Ramadge 1987). Aspects of control that are not possible to specify in 

the traditional continuous control theory, such as the ordering of events, coordination 

of multiple processes and enforcement of safety properties became possible with this 

technique. Specification and plant are both DES and modeled as finite state automata 

(FSA). Large models can be conveniently constructed by synchronous composition of 

multiple FSA. Control optimality is achieved by designing a controller that minimizes 

interference with the plant (minimizing plant event disablement), while enforcing the 

specification. 

Many extensions to the basic supervisory control theory have been developed in­

cluding limited observation (Lin and Wonham 1988), decentralized supervisory con­

trol (Rudie and Wonham 1992), and robustness (Bourdon, Lawford and Wonham 

2005). While technically DES have no sense of time, since they are event driven, by 

addition of integer clocks and special event called tick, specifications and plant models 

can incorporate coarse timing (O'Young 1991) and (Brandin and Wonham 1992). 

DES supervisory controllers are amenable to automated computation, and a num­

ber of educational and academic packages have been developed for supervisory con­

troller design, including TTCT (Meder 1997), OTCT (O'Young 1992), and UMDES 
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( UMDES Software Library 2006), which has recently added a graphical user interface. 

More detail on DES supervisory control is given in Appendix D; and for a thorough 

treatment of DES modeling and supervisory control theory, refer to (Cassandras and 

Lafortune 1999) and (Kumar and Garg 1995). 

2.3 Hybrid System Modeling 

An early hybrid system model was proposed by Witsenhausen (Witsenhausen 1966), 

baring a striking resemblance to the definition used today. A hybrid system was 

described as: 

11A class of continuous time systems with part continuous, part dis­

crete state is described by differential equations combined with multistable 

elements." 

With any hybrid model, the goal is to capture the mixture of continuous and 

discrete dynamics that are the characteristic of what we know today as hybrid sys­

tems. Generally speaking, the various hybrid models differ primarily in their intended 

purpose and in the expressiveness of the continuous dynamics that are admitted by 

the model. Furthermore, hybrid modeling tools reflect the community from which 

they arise; we divide these into the computer science community and the control 

engineering community. In general, the computer science community's approach has 

been centered around proving correctness of a system with respect to a given spec­

ification (verification), while the controls community seeks parallels to traditional 

control system theory, such as stability, controllability and observability. The mod­

eling paradigms for computer science have traditionally centered around automaton 

based methods, while those of the controls community have centered around switched 

systems. This being said, there is considerable overlap between these communities; 

each have made significant contributions to the understanding of hybrid systems and 

the control of hybrid systems. 
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We now examine some hybrid system models. 

2.3.1 Timed Automata 

The abstraction level of the coarse-timed FSM lacks the desired timing expressiveness 

that is necessary for real-time control. The abstraction of the discrete-time DES su­

pervisory control approach is deemed to be unsuitable when reasoning about systems 

that act (or react) directly with physical processes. The (dense) timed automaton 

of (Alur and Dill 1994) is a finite state automaton having a finite set of real-valued 

clocks. These clocks may be reset to zero upon the state transitions of the automaton 

in order to keep track of time between events. Timed automata theory allows for 

algorithmic analysis and verification of real time systems (Alur, Courcoubetis and 

Dill 1993). This approach proves useful when performing model checking on systems 

that are naturally specified as elapsed times, or time delays. Dense time models are 

still essentially an abstraction of the underlying physical processes (i.e. continuous 

variables) that give rise to the discrete events. 

Automatic verification tools have been developed for this class of system, no­

tably UPPAAL (Bengtsson, Larsen, Larsson, Pettersson and Yi 1995) and KRO­

NOS (Bozga, Daws, Maler, Olivero, Tripakis and Yovine 1998). These packages have 

both been applied to the verification of communication protocols; problems that con­

tain "hard" timing constraints (Daws, Kwiatkowska and Norman 2004) (David and 

Yi 2000). However, owing to the complexity of these protocols, these examples have 

been carried out only on some portion of the protocol, and were formulated with 

simplified models of the protocol software code. 

2.3.2 Hybrid Automata 

This is a finite state graph, in which each state has some continuous dynamics (not 

necessarily constant rate) specified as differential equations. The switching between 

states is instantaneous and is governed by guards (or invariants) based on the con-
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tinuous variables (Henzinger and Ho 1995). The hybrid automaton is an intuitive 

and expressive model since it uses the familiar finite state automaton paradigm. An 

execution of a hybrid model then consists of the continuous states varying according 

to the c:urrently Hpedfied dyuamic:s, followed by a discrete jump to a new state and 

so on. A natural extension of the timed automaton is the so-called "linear" hybrid 

automaton (Henzinger 2000), a special case of hybrid automaton that requires the 

continuous dynamics to be constant rate. Essentially, the LHA is a special case of 

a timed automaton in which the clocks may run at different rates with respect to 

each other. This extension of the timed automaton takes the model one step closer 

to the physical variables, since now the variable rate clocks may model a variety of 

real-valued continuous variables instead of time. 

In general however, the algorithmic verification of the hybrid automaton models 

is undecidable, since model checking is based ultimately on computing the reachabil­

ity of an infinite state space. Algorithmic verification of system properties for LHAs 

are only semi-decidable. When the model is based on a special sub-classes of the 

linear hybrid automaton; i.e. the rectangular automaton, verification is known to 

be decidable (Henzinger, Kopke, Puri and Varaiya 1998). A software package that 

implements hybrid system verification for LHAs called HyTech (Henzinger, Ho and 

Wong-Toi 1997), (Henzinger, Ho and Wong-Toi 1996) was developed and has found 

considerable use primarily as a teaching tool and for academic research. HyTech has 

been reportedly used to verify and parameterize properties in a variety of simpli­

fied applications including (to name a few), a steam boiler control (Henzinger and 

Wong-Toi 1995b ), a distributed sensor network (Coleri, Ergen and Koo 2002), ship 

coordination and control system (Millan and O'Young 2000) and a pneumatic au­

tomotive suspension control system (T. Stauner, 0. Mueller and M. Fuchs 1997). 

Unfortunately, the main shortcoming of these applications is that the nonlinear con­

tinuous dynamics must be approximated by constant rate dynamics (Henzinger and 

Wong-Toi 1995a). If a system is meant to be safety critical, then incorrect approx-
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imation of the nonlinear dynamics could lead to safety violations. Furthermore, for 

the control examples, HyTech assumes that a controller exists already for the hybrid 

system; it verifies the design or parameterizes it; in general designing the controller 

for a cmnplex systeru is au irnportant part of the problem. 

The hybrid I/0 automaton (HIOA) framework was intended to support descrip­

tion and analysis of hybrid systems, adding a complex input/output interface to the 

basic HA (Lynch, Segala and Vaandrager 2003). Composition operations amongst 

HIOA models accommodate more complex modeling of hybrid systems. Unfortu­

nately there is no computational tool to support this modeling framework, so the com­

position and verification is carried out by hand using mathematical proofs thus lim­

iting applications to simple laboratory-based demonstrations (Fehnker, Vaandrager 

and Zhang 2003) and (Mitra, Wang, Lynch and Feron 2003). 

2.3.3 Quantized 1/0 (Discrete Event Abstraction) 

Another approach to hybrid systems modeling has centered around discrete abstrac­

tions of continuous systems. This approach is characterized by a control theoretical 

approach, centered around leveraging the "correct-by-design" results of DES supervi­

sory control theory. In (Raisch and O'Young 1998), discrete abstractions based on the 

truncated time history of discrete-time LTI continuous models were used to synthesize 

DES supervisory controllers. In a behavioural sense, if the behaviour of the discrete 

abstraction contains that of the continuous system, then the safety properties of a 

DES controller based on the abstraction are ensured (Raisch 2000), (Moor, Raisch 

and Davoren 2001). The controller is a discrete-event controller, while the plant ex­

ists in the continuous domain, so from an I/0 point of view, there are A/D and 

D/A interfaces between the two (Lemmon, He and Markovsky 1999), (Koutsoukos, 

Antsaklis, Stiver and Lemmon 2000). In (Su, Abdelwahed, Karsai and Biswas 2003), 

(Abdelwahed, Su and Neema 2005), discrete abstractions of continuous dynamics 

were adapted in a limited horizon to synthesize DES supervisors. 
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2.3.4 Switched Systems 

Many approaches to hybrid modeling fall into the category of switched systems. The 

switched system approach is characterized by the high fidelity modeling of the continu­

ous dynamics, with less attention paid to the logic; these are generally non-automaton 

based representations of hybrid systems. 

The emphasis of the switched system approach to hybrid systems is primarily on 

control system stability and optimality. Typically there are a collection of continuous 

system dynamics amongst which a controller may switch; conditions are sought under 

which the switched (or hybrid) system is stable. Worth noting is the fact that even if 

each individual system is stable, unconstrained switching may actually destabilize the 

overall system. Conversely, switching may be used to stabilize the overall system even 

if the individual subsystems are themselves unstable (Hespanha and Morse 2002). For 

arbitrary switching by the supervisory controller, the hybrid system will be stable if a 

common Lyapunov function can be found for each of the continuous dynamics. Under 

state based switching conditions, stability may be guaranteed if multiple Lyapunov 

functions can be found for each of the switched systems (Branicky 1998). 

Many special subclasses of switched system models have been proposed that use 

approximated continuous dynamics to achieve improved computational complexity 

at the expense of verification and control conservatism. These models include mixed 

logical dynamical (MLD), piecewise affine (PWA) and others; each has been shown 

to be input-state-output equivalent under certain assumptions (Heemels, de Schutter 

and Bemporad 2001). Closed loop model predictive control (MPC) has also been 

shown to be equivalent to these other forms of linear switched systems under cer­

tain assumptions (Bemporad, Heemels and de Schutter 2002), meaning that switched 

system results can also be applied to MPC by translating them into MLD or PWA 

problems. 

Software has been developed for analyzing, simulating and even synthesizing con­

trollers for systems modeled by PWA and MLD models (Torrisi and Bemporad 2004), 
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(Torrisi and Bemporad 2001) in discrete time. Based on the package HYSDEL (Hy­

brid Description Language) and implemented in the Matlab® /Simulink® environ­

ment, PWA models can be interfaced to finite state automata. The software is capa­

ble of generating linear and hybrid MPC (receding horizon) control laws in piecewise 

affine form. Another software tool, CheckMate, has been developed in the Mat­

lab/Simulink environment for hybrid system verification (Chutinan and Krogh 2003). 

Beginning with a polyhedral set of initial continuous states and continuous ranges of 

parameter values, this package can verify that all trajectories of the model meet some 

specification. 

Typical applications that have been looked at are synthesizing an engine idle speed 

controller (Balluchi, Natale, Sangiovanni-Vincentelli and van Schuppen 2004) using 

PWA hybrid models, air traffic control routing problem optimized by using mixed 

integer linear programming (MILP) (Bayen and Tomlin 2003) and a chemical batch 

processing system using PWA and MLP (Potocnik, Bemporad, Torrisi, Music and 

Zupancic 2004). A survey of automotive applications of the switched system control 

approach are contained in (Balluchi, Benvenuti and Sangiovanni-Vincentelli 2005). 

General references for switched systems control and stability can be found in 

(Liberzon 2003), (Hespanha 2004), and for a short overview, see (Lin and Antsaklis 

2005). 

2.4 Hybrid System Simulation 

When designing control systems for hybrid systems, simulation is without a doubt 

the most heavily utilized tool by designers. Typically, controllers are tested under 

a variety of conditions by simulation to evaluate the safety and correctness of a 

particular design. However, due to the ad-hoc choice of these test conditions, this 

technique may miss the particular combination of conditions that leads to design 

failure. In spite of this, hybrid simulation is still an important tool. 
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The statechart modeling formalism was originally developed by (Harel1987) to en­

capsulate the notions of hierarchy, concurrency, and communication for discrete event 

system models. Statecharts have been widely used and were subsequently extended to 

include continuous dynamics; an example of a commercial simulation tool using stat­

echarts is the Matlab StateFlow® toolbox for Simulink . Various packages have also 

been developed for academic use, including CHARON (Alur, Dang, Esposito, Hur, 

Ivancic, Kumar, Lee, Mishra, Pappas and Sokolsky 2003) a language for describing 

hybrid and timed systems. Ptolemy is a general-purpose modeling package with a 

graphical user interface (Lee 2003). HyVisual, based on Ptolemy, is also a visual mod­

eling package, but is designed specifically to model hybrid systems (Brooks, Cataldo, 

Lee, Liu, Liu, Neuendorffer and Zheng 2005). HYBRSIM is an object-oriented hybrid 

simulation tool based on bond graph models of hybrid systems (Masterman 2002). 

Another hierarchical hybrid simulation tool called YAHMST (Yet Another Hybrid 

Modeling and Simulation Tool) has also been reported (Thevenon and Flaus 2000). 

A comprehensive overview of these and other hybrid modeling, simulation and 

verification tools is given in (Carloni, DiBenedetto, Pinto and Sangiovanni-Vincentelli 

2004). 

2.5 Complexity 

A common thread in the control problems formulated with the models presented 

here is that most are either undecidable or computationally intractable (Blondel and 

Tsitsiklis 2000). Undecidable problems are ones for which a suitable algorithm cannot 

be constructed to: a) terminate, and b) return a correct answer. Computationally 

intractable problems are considered to be those for which a polynomial-time algorithm 

cannot be found, and thus they are not amenable to computation; these are known 

as NP-hard problems. 

It has been shown for simple hybrid systems consisting of switched continuous 
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systems that verifying properties such as stability and controllability are either unde­

cidable or NP-hard (Blondel and Tsitsiklis 1999). Verification of properties for sys­

tems modeled by simple linear hybrid automata (and even for some timed automata), 

have Leen ~>hown to Lc undecidable (Hcnzingcr ct al. 1998). In DES supervisory con­

trol, the modular supervisor control synthesis isNP-hard due to the familiar "state 

explosion" problem (Gohari and Wonham 2000). Even in the area of robust control, 

the calculation of the structured singular value p,, has been shown to be NP-hard 

(Braatz, Young, Doyle and Morari 1994). 

Clearly, the quest for verification and optimality in "real" hybrid or DES control 

problems is unlikely to be successful. Hence, control solutions will likely have to be 

sub-optimal or "fit for purpose", and thus new control theory has to be driven by the 

applications. 

2.6 Assessment of Relevant Work 

The work presented in this thesis is inspired by the industrial control problems encoun­

tered with the safety critical control and coordination and manoeuvring of multiple 

marine vessels. Practicing controls engineers need design techniques and tools that 

are easy to use and understand. 

2.6.1 Model Formulation 

The switched continuous model (SCM) that is developed in Chapter 4 is a blend of 

the switched system and discrete abstraction approaches to hybrid modeling. We 

use a flexible state space partitioning based on continuously differentiable functionals 

as in (Koutsoukos et al. 2000). However, instead of switching piecewise constant 

inputs, we switch the entire continuous dynamic as is done in the switched system 

approach. This admits a very expressive continuous modeling to be utilized. The 

vast majority of switched system approaches emphasize global stability or optimality, 
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and therefore must use linear approximations of continuous dynamics in order to 

make the computation more tractable. Because we use a finite time horizon, we can 

relax the goal of stability, which is traditionally defined on infinite time. In addition, 

because we deal with a discrete abstraction, optimality is relaxed to merely a safety 

requirement in the sense of state avoidance. These tradeoffs permit us to admit a 

larger class of nonlinear continuous dynamics ((Millan and 0 'Young 2006)). 

2.6.2 Discrete Abstraction 

Previous discrete abstraction work has focussed on obtaining a single offline discrete 

event model, with the added requirement that the model be deterministic. This desire 

leads to state space partitioning regimes that attempt to match the flow of the contin­

uous dynamics (Koutsoukos and Antsaklis 2001). In (Suet al. 2003), the partitioning 

is based on refinements of polyhedral partitions until the model's nondeterminism 

is reduced to some satisfactory measure. Since our technique involves abstracting 

the model repeatedly in an online fashion, no single discrete abstraction is required. 

And having full-state information, a deterministic model is not required, since we 

have cast our DES supervisor synthesis as a state avoidance problem. As a result, 

the main consideration of the partitioning is to generate discrete events (symbols) in 

order to synchronize with other processes that make up the plant or specification. 

Furthermore, (Raisch and O'Young 1998) showed that enforcing safety of the dis­

crete abstraction guarantees the safety of the corresponding continuous model if the 

discrete abstraction is a conservative approximation of the continuous model. 

2.6.3 Controller Synthesis 

Similar to our work is (Stursberg 2004), in which the nonlinear continuous dynamics 

are retained as embedded simulations. Working with a finite set of control actions, 

an acyclic graph branching in discrete time intervals, with hybrid nodes (states) is 

constructed. The search of this graph is steered by optimality constraints using a 
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combination of depth and breadth first reachability. Our technique differs in that we 

construct a finite state graph which is pruned in a maximally permissive sense with 

respect to a safety specification, in accordance with optimal DES supervisory control 

theory. Furthenuore, our approach ad1uits both state and ti1ne dependent switching 

of dynamics. 

2.6.4 Computation 

In the work of (Stursberg, Fehnker, Han and Krogh 2003), it was noted that a re­

duction in computational complexity may be realized by including the specification 

when calculating reachable sets for hybrid verification problems. Most hybrid reach 

set computations simply expand the reach set incrementally in all directions without 

regard to the specification. In our controller synthesis technique, the inclusion of the 

specification during synthesis allows for a reduction in computational complexity due 

to the fact that illegal traces may be eliminated as soon as an illegal state is reached; 

i.e. before it is added to the reach set. 

We utilize a limited lookahead scheme similar to that initially explored in (Chung, 

Lafortune and Lin 1992), in which DES supervisors are computed for a limited looka­

head event horizon. This technique was intended to reduce computational complexity 

for DES control synthesis and to allow time-varying plants to be handled, since it is an 

online technique. In limited lookahead control, safety and nonblocking properties can 

only be guaranteed by adopting a conservative approach with regard to the extension 

of traces beyond the lookahead horizon; that is, they assume that all traces continue 

to unsafe or blocking states. Our approach is also conservative, and we define the 

notion of emergency shutdown states, specially marked states to ensure system safety 

((Millan 2006)). 

In (Giorgetti, Pappas and Bemporad 2005), a finite-time discrete transition system 

is extracted from the linear continuous dynamics of a discrete-time hybrid automaton 

(DHA) model on a limited horizon. A technique known as bounded model checking 
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(BMC) is then used to verify the system against a specification, which is expressed 

as a temporal logic formula. Instead of verifying a controller design, as in this offline 

approach , we repeatedly construct controllers online by the synchronous product 

connection of the plant and specification. Our finite state graph (called a hybrid 

transition graph) represents the controller and is correct by design because it repre­

sents the (exhaustive) reachable state space, on a limited horizon, of the plant pruned 

by a safety specification. 

2.7 Summary 

In this chapter we have examined some common approaches to hybrid system mod­

eling that have been reported in the literature. The various techniques and tools for 

simulation, verification, and control synthesis have developed from two communities 

with backgrounds of control systems (electrical engineering) and computer science. 

Both of these research approaches have had some successes, but no hybrid system 

control techniques have yet seen any widespread acceptance by industry. Simulation 

still seems to be the dominant approach to hybrid system control design. The promise 

of the definitive verification, optimality and provably stable hybrid system controller 

appears to be an elusive goal; many of these have been shown to be either undecidable 

problems or computationally intractable. 

A comparison of the techniques developed in this thesis with those of the literature 

has been presented. In the following chapters, these modeling and computational and 

control synthesis techniques are developed in further detail. 
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Abstraction of Continuous System 

Dynamics 

3.1 Introduction 

T he goal of this chapter is to develop a discrete event abstraction of a continuous 

model that ultimately will be suitable for discrete event supervisory control. 

The approach taken is to select a natural and expressive continuous modeling frame­

work and then to overlay it with a discrete event, input/output (I/0) interface. For 

now, we consider the output aspects of the interface, or the conversion of the contin­

uous dynamics to that of discrete event dynamics. 

The continuous dynamics of a system may be described by a nonlinear ordinary 

differential equation (ODE), 

x(t) = J(x, t) (3.1) 

In general, the objective of the discrete abstraction is to achieve a single, preferably 

deterministic, automaton representation of the continuous dynamics. Based on this 

discrete abstraction, standard DES supervisory control techniques can be used to 

develop a DES controller. The discrete abstraction is intended to capture only the 

important dynamics (those that matter to the DES controller), thereby reducing the 
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Figure 3-1: An interface layer between the continuous dynamics and the discrete event 
dynamics is used to develop the discrete abstraction. 

model complexity. The choice of an appropriate state quantization technique must 

be considered carefully with this approach since it directly affects the complexity, the 

determinism, and the fidelity of the model. There is a trade-off between modeling 

complexity and the behavioural fidelity of the discrete abstraction. 

One can think of state quantization as observing the continuous system's state 

space through a sort of "compound lens", in the sense that it partitions the continuous 

state space into multiple disjoint discrete states, approximations of the continuous 

states. Continuous trajectories traversing across this quantized continuous state space 

generate discrete events (or symbols) as the trajectory crosses boundaries between the 

states. These output events drive or synchronize external discrete event systems. The 

continuous system along with its interface layer can be considered to be a discrete 

event generator, as pictured in Fig. 3.1. 

For another view of the relationship between a continuous model and its discrete 

event abstraction, refer to Fig. 3-2. In the upper left is the phase portrait of a 
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continuous system, essentially a graphical representation of the continuous dynamics 

of a modeled system (Eq. 3.1). Superimposed on the phase portrait is a trajectory 

x(t), the continuous behaviour, and the phase plane has been partitioned into two 

region::>. In the lower left, the state variables of x(t) are plotted against time. The 

upper right of the diagram is the graphical representation of the DES model of the 

same continuous system, a finite state machine graph. In the lower right, the dis­

crete event behaviour of the FSM for the same continuous trajectory. Comparisons 

may be drawn between the continuous state space approach and its counterpart, the 

automaton representation. Likewise, there is a parallel between the continuous in­

put/output model and languages of automata (Boel, Cao, Cohen, Giua, Wonham and 

van Schuppen 2002). 

A discrete abstraction of a continuous model is defined by the state quantization 

and the event generation processes. This chapter examines the discrete abstraction of 

a generalized continuous model on a finite time horizon. The discrete abstraction of 

the continuous system can be viewed as an autonomous generator of discrete events. 

In this context, we examine one particular state abstraction technique that utilizes 

continuous functionals to partition the state space of a given system model. This 

technique was developed extensively in (Stiver, Koutsoukos and Antsaklis 2000) and 

(Koutsoukos et al. 2000). In these works, functionals F : JR;.n --> JR;. are used to partition 

the state space of a continuous system. For purposes of supervisory control, the null 

space of these functionals are designed to be invariant manifolds with respect to the 

vector field of the continuous dynamics. The resulting partitions have common entry 

and exit boundaries, thus permitting deterministic DES models to be extracted. 

In this chapter, we expand on the work of (Koutsoukos et al. 2000) by develop­

ing bounds on the cardinality of the state label set and event label set of a discrete 

abstraction due to a general family of partitioning functionals. We relax the require­

ment that the resulting partitions be invariant with respect to the continuous flow 

field, since without loss of generality, we do not require a deterministic DES model. 
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The emphasis is to develop a practical and flexible mechanism for obtaining discrete 

abstractions of continuous dynamical systems, from which an algorithmic implemen­

tation can be developed. Finally, this chapter outlines the conditions that will be 

re4uired for a generalized dit>crete abstraction in the following chapters. 

3.2 State Quantization 

This section outlines the quantization of the state space of a continuous model. 

Smooth functionals of the continuous state variables are a powerful way of producing 

state partitions, since they can be designed around the discrete event information 

that we wish to extract from a continuous model. A functional-based quantization 

allows for quantizations based on the entire continuous state vector. 

Definition 3.2.1 (Functional) A functional F: ~n ___.. ~' is a real-valued function 

on a vector space. For the purposes of this work, F is smooth, i.e. continuously 

differentiable. 

Definition 3.2.2 (Gradient Operator) The gradient operator \7 r-eturns a gmdi-

ent vector-

(
f)F 8F 8F)T 

\7 F(x) = -;:)"", -;:)"", ... -;::;-
uxl UX2 UXn 

Definition 3.2.3 (Hypersurface) Let N(F) be the null space of a smooth func­

tional F, 

N(F) = {x E ~n: F(x) = 0} 

such that 

\7 F(~) =/= 0, V~ E N(F) 

thenN(F) is a smooth hyper-surface of codimension one, that is, dim(F)-dim(N(F)) = 

1 
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Definition 3.2.4 (Set Partition) A hypersurface N(F), forms a partition of a set 

Q ~ lRn, into exactly two subsets, Q' = {x : F(x) ~ 0}, Q" = {x : F(x) < 0}, 

provided that N(F) n Q =/= 0. If a partition is created, then there exists Q', Q" C JRn 

s·uch that Q' U Q" = Q 

Note that if a partition is created, Q', Q" are pairwise disjoint sets. Thus, the 

intersection of a single smooth functional with a set produces a partition of the set 

into two subsets. We examine two operations that will be used to further develop the 

partitioning mechanism. 

Definition 3.2.5 (Set Partition Operation (I)) LetN(F) be a hypersurfaceformed 

by a functional F, and let Q ~ JRn, then the set partition operation Ps is defined as 

Ps(Q,N(F)) = { {Q}, 
{Q', Q"}, 

where Q', Q" are as per Def. 3.2.4. 

if N(F) n Q = 0. 

if N(F) n Q =/= 0. 

We will now define a partitioning operator that operates on families of sets, so 

that it can be used in recursive definitions. 

Definition 3.2.6 (Set Family Partition Operation) Let H = {Qj ~ JRnll ~ 

j ~ M} be a family of sets Qj that are pairwise disjoint. Let N(F) be a hypersurface 

arising from a functional F, then the set family partition operation, Pf(H,N(F)), 

returns a family, H' of sets which is the result of the set partition operation applied 

to each element of H such that 

M 

H' = Pf(H,N(F)) = U Ps(Qj,N(F)) (3.2) 
j=l 

The union of the elements of the post-operation family, H', is equal to the union of 
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the elements of the pre-operation family, 

A simple example of the set family partitioning operation follows, 

Example 3.2.1 Let H = { Q1, Q2, 0 0 0, QM} if for all j, Qj n N(F) =I= 0 then 

H' = Pt(H,N(F)) = Ps(Q1,N(F)) U Ps(Q2,N(F)) U 

... U Ps(QM,N(F)) 

H' { Q~, Q~} u { Q;, Q~} u ... u { Q~, Q'fvr} 

{Q I Q" Q' Q" Q' Q" } 1> 1> 2> 2>"'' M> M 

Now U(Qj U Qj) = U(Qj)· 
j j 

Now for repetitive partitioning operations, it is necessary to prove some properties 

of the set family partitioning operation. 

Lemma 3.2.1 Let H = {Qj <;:;; IRnl1 :::; j :::; M} and N(F) n Qj = 0, VQ1 E H and 
M n Qj = 0, then the number of sets in the resulting family, IH'I = IPt(H,N(F))I = M 

j=1 

and moreover, H = H'. 

Proof. Since N(F) n Q1 = 0 for all Q1 E H, then it follows from the definition 

of the set family partition operation Pf (Def. 3.2.6), that 

M 

IH'I U Ps(Qj,N(F)) 
j=l 

1+1+ ... +1 
M 

M 
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• 
Now for case that each partitioning operation results in a non-empty hypersurface 

intersection, 

Lemma 3.2.2 Let H = { Qj ~ JRnll ::; j ::; M} and N(F) n Qj =f 0, VQj E H and 
M 

if n Qj = 0 then the number of sets in the resulting family, IH'I = IPJ(H,N(F))I = 
j=l 

2M. 

Proof. Since N(F) n Qj =f. 0 for all Qj E H, then it follows directly from the 

definition of the set family partition operation P1 (Def. 3.2.6) that 

M 

IH'I U Ps(Qj,N(F)) 
j=l 

2+2+ ... +2 
M 

2M . 

• 
A further example will illustrate the successive partitioning operations, given 

Lemma 3.2.1 and Lemma 3.2.2. 

Example 3.2.2 Let H = { Q1 , Q2 } be a family of sets and let F be a functional such 

thatN(F)nQI =f. 0 andN(F)nQ2 =f. 0. ThenH' = S1(H,N(Fa)) = {Q~, Q~, Q~, Qn 

and IH'I = 2IHI = 2 · 2 = 4. Likewise, if there are no set intersections with the 

hypersurface, then the operation returns the original family of sets 'unaltered H' = 

Up to this point, only a single functional has been used to partition a single set 

or family of sets. We will now look at the effect a family of partitioning functionals 

has upon a set, by applying the set family partitioning operator recursively 
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Definition 3.2. 7 (Set Partition Operation (II)) Let Q <;;;; lRn and let \lt be a 

family of smooth functionals, { Fi : lRn --> JR, 1 :S: i :S: N}. The set family parti­

tion operator recursively partitions Q into a family of sets 

H' = Pt(· .. Pt(Pt( { Q},N(F1)),N(F2)), ... ,N(FN )) 
'-v-" 

N liinws 

(3.3) 

The entire state space of a system, Q = lRn, can be separated into a family of 

subsets using the operator described in Def. 3.2. 7. Given a family \lt, of N functionals, 

{Fi: JRn--> JR, 1:::;; i:::;; N} the corresponding hypersurfaces, N(Fi) separate the state 

space of a system into a family of sets. 

How does the family of sets Q E H' relate to the discrete states of the DES model? 

It can be shown that the family of partitioning functionals establishes an equivalence 

relation on the system state space. 

Definition 3.2.8 (Equivalence relation) Let \lt = { Fi : lRn --> JR, 1 :::; i :::; · N} be 

a family of functionals defined on the state space of the system described by x(t) = 

f(x, t), x(t) E lRn, then an equivalence relation is defined on lRn by the partitioning 

functionals 

x1 "'p x2 -¢:::=} (sign(Fi(xl)) x sign(Fi(x2)) = 1, for all i, 1:::; i:::; N) (3.4) 

Definition 3.2.9 (Equivalence Class) Each set Qj C lRn is an equivalence class 

created by the equivalence relation "'pof Eq. 3.4. 

Definition 3.2.10 (Quotient Set) The set of all equivalence classes X, given the 

equivalence relation "'p, is known as the quotient set X = JRn j rvp· 

The members of the quotient set are the subsets Qj resulting from a state space 

partitioning operation. These subsets (or equivalence classes) will be associated with 

discrete system states through a state labeling function that assigns a unique state 
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label to each of the discrete states corresponding to the subsets Qj E X. 

Definition 3.2.11 (Unit Step Function) We define a unit step function as: 

Definition 3.2.12 (State Labeling Function) Let '11 be a family of N functionals 

partitioning a state space, then let V : IR.n -----+ {0, 1 }N, be a function that identifies the 

system state x E IR.n with a labeling vector as follows: 

Thus each member of the quotient set Qj E X is associated with a unique label 

vector generated by the state labeling function. 

We will establish bounds on the cardinality of the resulting family of sets due to 

this state partitioning operation. Let HI be the ith family of sets returned by the 

ith nested set family partition operation, Pj.(Hi,N(Fi)), then for the next recursive 

operation, P;+1
, Hi+l = H~. If each functional Fi intersects with only one set Qj E Hi, 

for each Pj(Hi, N(Fi)) operation in Eq. 3.3 then this will be termed as minimal 

intersection. Conversely, if each of the functionals, Fi intersects with all Qj E Hi for 

each Pj.(Hi, N(Fi)) operation this is termed maximal intersection. 

Maximal intersection determines the upper bound of cardinality resulting from 

the state space partitioning operation. 

Lemma 3.2.3 (State Space Partition Upper Bound) Let Q = IR.n be the state 

space of a system, and let '11 = { Fi : IR.n -----+ JR., 1 ::::; i ::::; N} be a family of functionals. 

The set partition operation {II) of Def. 3.2. 1, will produce a family of sets, H', such 

that the upper bound on the number of sets is IH'I = 2N. 
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Proof. Proof of the upper bound is made by assuming maximal intersection and 

by induction. For the (base) case of one functional N = 1, the set family partition 

operation P}( { Q}, N(F1)) reduces to the set partition operation Ps( Q, N(F)) because 

there it> ouly one t>cL iu the fam.ily II1 = { Q} and only one functional. Since Q = ~n, 

thus Q n N(F1) f 0. It follows from Def. 3.2.5 that the cardinality of the returned 

family is (by Lemma 3.2.2) IH~ I = 2N = 21 = 2. The inductive hypothesis is that 

IH~I = 2N. It remains to show IH~+ll = 2N+l. Suppose there exists FN+l that has 

maximal intersection for all Qj E H~ and since by definition 

Therefore, 

H' N 
M 

Pf'+1(HN+l,N(FN+I)) = U Ps(Qj,N(FN+I)) 
j=l 

M 

U Ps(Qj,N(F)) 
j=l 

2+2 ... +2 
"--v-"' 

M 

2M 

where IH~I = M = 2N. It follows then that IH~+ll =2M= 2 x 2N = 2N+I, thus 

proving the inductive hypothesis to be correct. • 

The lower bound of the state space partitioning operation is determined by the 

minimal intersection of the partitioning functionals. 

Lemma 3.2.4 (State Space Partition Lower Bound) Let Q = JR.n be the state 

space of a system, and let \fJ = { Fi : JR.n --+ JR., 1 ::::; i ::::; N} be a family of functionals, 

such that there is minimal intersection. The set partition operation (II) of Def. 3.2. 7 

will produce a family of sets H', such that the lower bound on the number of sets is 
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IH'I = N + 1. 

Proof. Prove the lower bound by induction. The base case is N = 1, or one 

functional F 1, so 

and clearly QnN(F1) "I 0, therefore I Hi I = 2 by definition. The inductive hypothesis 

is that I H~ I = N + 1. It remains to show that for N + 1 functionals I H~ + 1 1 = 

(N + 1) + 1 = N + 2. Suppose there exists FN-H and only one set Q1 E H~ (minimal 

intersection), such that Q1 n N(FN+d "I 0 and recall that H~ = HN+l· Then, by 

definition 
M 

H~+1 = Pf+1(HN+l,N(FN+l)) = U Ps(Qj,N(FN+l)) 
j=l 

where IH~I = IHN+ll = M = N + 1. Expanding the cardinality expression 

• 

M 

U Ps(Qj,N(FN+1)) 
j=1 

IPs(Q1,N(FN+l))l + 1Ps(Q2,N(FN+I))I + · · · + IPs(QM,N(FN+l))l 

2+1+ ... +1 ...._,__.., 
M-1 

2+M -1 

N +2 . 

M-1 terms 

Having established upper and lower cardinality bounds on the state space parti­

tioning operation, it is possible to develop a general theorem on the range of cardi­

nality for the general result of this operation. 

Theorem 3.2.1 (State Space Partition Boundedness) Let Q = IRn be the state 

space of system and let \II = { Fi : IR.n ---+ JR., 1 :::; i :::; N} be a family of functionals, 

with N finite. Then the state space shall be partitioned into a family of sets H', such 
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that I H'l is finite and furthermore that 

Proof. Let 1'111 = N. It follows from Lemma 3.2.4 that the cardinality of a 

resulting state space partition is bounded below and is IH'I 2: N + 1. Lemma 3.2.3 

ensures that there is an upper bound on the cardinality of the resulting state space 

partition, H ::; 2N+l. Hence the result follows that any finite family of functionals 

induces a finite partition of sets on ~n. • 

See Appendix B for further results on set partitioning using functionals. 

3.3 Discrete Event Generation 

A state quantization scheme has been established using families of functionals that 

produces a finite set of discrete states and corresponding state labels. There is an 

equivalence between these discrete states and subsets of the continuous state space. 

We now define the event generation mechanism for our discrete abstraction. To do 

this, we examine in more detail the continuous trajectories crossing the state space 

of the continuous model, and how these trajectories are manifested in the discrete 

abstraction. 

Definition 3.3.1 (Continuous Trajectory) A continuous trajectory of a system 

is defined as a solution x( t), to an IVP for x = f ( x, t), and an initial condition 

x 0 = x ( t 0), over some finite time interval [ t0 , t 1l 

A transition occurs upon the traversal of a continuous trajectory between a pair 

of regions or sets. For further definitions and discussion of continuous solutions to 

ordinary differential equations, refer to Appendix A. In general, solutions of ODEs 

require an assumption that the function f be Lipschitz continuous in order for the 

solution to exist and be unique. 
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Definition 3.3.2 (Transition) Let Q 1 ,Qz C JR.n be a pair of sets such that QlnQz = 

0. Let x(t) E JR.n, a solution to an IVP on time interval [t0 , ttl such that x(t) E Q1 UQ2 

for all t E [t0 , ttl· If the continuous trajectory crosses a hypersurface, and then enters 

the state, then the system 'is said to have undergone a transition. 

The transition of a continuous trajectory from Q1 to Q2 will be indicated by the 

following notation 

Formally, the transition occurs at the moment when the trajectory x ( t) first enters 

the region Q2. 

Definition 3.3.3 (Discrete Event) An atomic discrete system event a is generated 

when a transition occurs. 

For the purpose of event timing, it is important to have a consistent definition of 

exactly when the discrete event occurs. 

Definition 3.3.4 (Discrete Event Time) Let Q1,Q2 C JR.n. Let x(t) E JR.n be a 

solution to an IVP for x = f(x, t), and an initial condition x 0 = x(to), over some 

finite time interval [t0, ttl such that x(t) E Q1 U Q2 for all t E [to, t1l There is a 

corresponding transition, as in De f. 3. 3. 2. Let x' ( t) E Q1 be the solution on the time 

interval [t0 , te) and let x"(t) E Qz be the solution on the time interval [te, ttl· The 

atomic discrete event corresponding to the state transition is said to occur at time te, 

the atomic moment at which the trajectory x(t) enters Q2 (Fig. 3-3). 

In this definition, the partitioning hypersurface may be included in the trajectory's 

originating region Q 1 or in the terminal region, Q2 . So according to our definition, 

a transition may occur when a trajectory leaves, or when it lies on the partitioning 

hypersurface. 
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N(F(x)) 

x(to) x(t) 
·-------

x(t1 ) _.. . 

-----
x(tJ 

Figure 3-3: A continuous trajectory (dashed line) crossing a hypersurface N (f ( x)) generates 
discrete event at time te. 

With the state space of a system partitioned into possibly many subsets or regions, 

it is necessary to have a way of uniquely identifying each of the continuous system's 

transitions with the discrete abstraction's state transitions. 

Definition 3.3.5 (Output Event Set) The output event set ~out, is a set of dis­

crete event labels that identify the discrete abstraction's state transitions uniquely. 

The event labels are associated with the continuous system's transitions. 

There are two event labels for each pair of adjacent states, since the direction in 

which the state transition occurs must be distinguished. Thus a distinct event label 

is reserved for each pair of regions to preserve the transition direction information: 

Q 1 """"' Q2 generates event 0" 1,2 

Q2 """"' Q1 generates event 0"2,1 

Definition 3.3.6 (Output Event Function) The output event function, A : X x 

X-> ~out is a map from an adjacent pair of states (equivalence classes) to an output 

event. 
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When a continuous trajectory crosses a hypersurface, the output event correspond­

ing to the state transition is given by the output event function. For example, the 

output event function returns the pair of complementary output events a+, a-, for 

adjacent ::;tate::; ::;eparated by the hypersurface N(F(x)), 

a+ A [ V (P(~~~o- X) , V (P(~~~o+ X)] E ~out 
A [ V (P(~\~o+ X) , V (P(~\~o- X)] E ~out 

The following example illustrates the state partitioning, labeling and the output 

event functions. 

Example 3.3.1 Let W = { F1, F2 } be the partitioning functionals. Functional F1 

partitions the state space into H = { Q~, Qn, where Q~ = { x E IR.n IF1 ( x) ~ 0} and 

Q~ = { x E IR.n IF1 ( x) < 0}. Since there is one pair of states, the event set has two 

events, ~out = { a12, a21}. Now, to continue the example, if we partition H with the 

second functional F2 , (refer to Fig. 3-4) then 

where 

H' Pt(H,F2) = PJ({Q~,QD,F2) 

{(Q~)~, (Q~)~, (Q~)~, (Q~)~} 

Ql (Q~)~ = {x E IR.n: F1(x) ~ 0 A F2(x) ~ 0}, 

Q2 (Q~)~ = {x E IR.n: F1(x) < 0 A F2(x) < 0}, 

Q3 (Q~)~ = {x E IR.n: F1(x) ~ 0 A F2(x) < 0}, 

Q4 (Q~)~ = {x E IR.n: F1(x) > 0 A F2(x) ~ 0}. 
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The discrete state labels are: 

Vx E Q1 V(x) = [1 1r 

Vx E Q2, V(x) = [o or 
Vx E Q3, V(x) = [1 or 

Vx E Q4, V(x) = [o 1r 

Each of the states is adjacent to one another, so there are 6 pairs of sets in the state 

space partition: 

therefore the cardinality of the output event set 

M! 4! 24 
IL;outl = (M- 2)! = (4- 2)! = 2 = 12 

and assigning labels to each transition gives the output event set is 

We will now develop the cardinality of the output event set given a family of 

subsets. 

Theorem 3.3.1 Let H = {Qj ~ IRnl1 :S j :S M} be a family of subsets. The 

corresponding output event set L;out has finite cardinality and an upper bound of 

IL;outl = (M~!2)! · 

Proof. The upper bound occurs if every Qj is adjacent to every other Qj. This is 

a permutation, since the order in which the open sets are paired matters. A pairwise 

permutation forM objects is given by the formula for a so called r-permutation where 
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.(Q. '')": {x· ;,(x) <. O~E(x)'~.O}· I 2 . · • I · · . • .. ·< · .. , . 

Figure 3-4: Example of state space partitioning. 

r is the number objects to be arranged in each permutation 

P(M, r) M(M- l)(M- 2) ... (M- r + 1) 
M! 

(M- r)! 

and since a pair of sets gives rise to an event, r = 2 and 

M! 
P(M, 2) = (M _ 2)! 

• 

3.4 Examples 

The discrete abstraction framework based on functionals allows the extraction of dis-

crete event information based on a function of any combination of the state variables, 

providing that the function is continuous. The following examples will illustrate the 

functional-based discrete state abstraction technique. 

38 



Example 3.4.1 Consider an example of a simple system having continuous dynamics 

described by an ODE with two state variables 

.T = [::] 

For simplicity, no particular dynamics will be assigned, but suppose that the state 

variables represent the voltage and current respectively of an electric motor armature. 

If we wish to be notified (by discrete event) that the instantaneous power of the system 

has passed through some threshold, then we can capture this information in the discrete 

abstraction by appropriate selection of the partitioning functionals. For a 100 Watt 

positive power threshold (i.e. forward and reverse motoring) 

and for a 100 Watt negative power threshold (forward and reverse motor regeneration) 

These functionals are depicted in Fig. 3-5, where they appear as two saddle-like 

surfaces (shaded grey). Where the surfaces intersect the x 1x2 plane (the phase plane) 

are the hypersurfaces N(FI)) and N(F2)) which are marked in the figure as heavy 

grey lines. In Fig. 3-6 the view has been changed so that we are looking directly down 

at the phase plane. For illustrative purposes, some arbitrary dynamics have been 

included for the phase portrait, and a trajectory x(t) originating at initial condition 

xo is included as a dotted line. The functionals partition the state space into three 
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states, 

QI {x: F1(x) < 01\ F2(x) < 0} 

Qz {x: F1(x) > 01\ Fz(x) < 0} 

Q3 {x: F1(x) < 01\ F2(x) > 0} 

Clearly, the set {x: F1(x) > OI\F2(x) > 0} = 0. This continuous trajectory generates 

four discrete events from the following state transitions 

The discrete event labels may be evaluated using the event labeling function 

0"1,2 A(QI,Q2) 

0"2,1 = A(Q2, QI) 

0"1,3 A(QI,Q3) 

0"3,1 A(Q3,Q1) 

Example 3.4.2 A further example will illustrate the natural expressiveness of the 

functional partitioning technique, using a simple nonlinear ODE model of pendulum 

with damping. The dynamics are described by 

d2e de 
ml dt2 + bl dt + mg sine = 0 

where m is the mass of the pendulum bob and l its length, b is a friction term, g is 
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the acceleration due to gravity, and, e is the pendulum angle . The state vector shall 

be defined as 

and then the state equations are 

The total energy for this system is defined as the sum of the kinetic energy K and 

potential energy P, which we will define in the rotational coordinate frame. 

E=K+P 

where kinetic energy is 

and the potential energy is 

P = -mgl(cosx1) 

The total energy expression E represents an equal energy surface when plotted as a 

function of the state variables. If we wish to partition the state space such that the 

states Tepresent energy levels, we use the following functional 

1 
F(x) = 2m(lx2 )

2 + mgl(1- cos xi) - 9.81 

this gives a hypeTsurface that partitions the state space into two discrete states; system 

energy greater than 9.81 J and system energy less than 9.81 J. The potential energy 

term in the expression has been modified to change datum (zero energy when the bob 

is at the bottom). This functional is depicted in Fig. 3-1 as a shaded grey surface. A 
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trajectory x ( t) originating with initial condition x 0 is depicted as a dashed line in the 

phase plane. As expected, this functional partitions the state space into two states 

Q E X as follows 

Ql {x:F(x)>O} 

Q2 {x: F(x) < 0} 

In Fig. 3-8, the view has been changed to examine the phase plane and the functional 

surface has been removed. The shaded area in the figure indicates Q2 , a state repre­

senting energy less than 9.81 J. A trajectory of the pendulum system has been plotted 

in a dotted line. The hypersurface N ( F ( x)), indicated by the ellipse-like line repre­

sents an equal-energy contour on the phase plane of 9.81 J. This particular trajectory 

will generate a single event due to the state transition Q1 ""'* Q2 

3.5 Conclusions 

The discrete abstraction technique presented in this chapter, based on a family of 

partitioning functionals, is flexible and presents a natural way to extract discrete 

event information from a continuous model. However, this is only one possible means 

of inducing a partition on a system state space. For example, the familiar grid-like 

quantization that an A/D convertor produces is actually a specific case of a functional­

based partition. It is important to discuss the detailed mechanics of how a partition 

is induced on the state space and how discrete events are generated within this frame­

work. However, the details of partitioning should not influence the generality of the 

control theory that is developed in the following chapters. 

It is preferable to be more general than this before proceeding; ultimately, the 

most general requirement is that if a system is viewed as a sort of "black box" - an 

event generator (as in Figure 3.1), we wish this generator to produce a finite number 

of events, for a finite time window. Alternatively, the requirement can be restated so 
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0.1 F(J;) = xsin(l/x) 
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Figure 3-9: A continuous functional that produces a finite partition F(x) = xsin(l/x), and 
a trajectory x on a finite interval, may generate a infinite number of transitions. 

that the system transitions a finite number of times amongst its discrete states in a 

finite time window. A variety of "pathological" conditions may cause this condition to 

be violated, including: a) infinite "ripples" in the partitioning functionals, b) infinite 

ripples in the continuous trajectories and c) zeno switching behaviour. For now, we 

will confine the discussion to (a) and (b), since switching behavior will be considered 

in a later chapter. To demonstrate how these conditions can lead to infinite behaviour, 

we will examine two examples that use the functional partitioning framework of §3.2-

§3.3. 

We have shown that a finite set of functionals induces a finite set of partitioned 

regions and therefore corresponding finite sets of discrete state and event labels for 

the discrete abstraction. However, there is no guarantee that a given continuous 

trajectory traversing this partition will produce a finite string of events, as we will 

show in the following example. 
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Figure 3-10: The trajectory x(t) 
number of transitions. 

-0.1 -0.08 -0.06 -0.04 -0.02 0 
t 

t2sin(l/t) on a finite interval, produces an infinite 

Example 3.5.1 Consider a continuous dynamical system modeled by x = f(x, t) 

with system state space x E lR and let F be a smooth continuous functional 

{ 

x sin(l) x "=f. 0 
F(x) = x 

0 x=O 

Then suppose there exists a continuous trajectory x which is a solution of f, for a 

finite time interval [to, t f] such that x( t) = 0, for all t E [to, t f] and the initial condition 

xo = x(to) = -0.15 (Fig. 3-9). Although this partition induces a pair of regions, or 

discrete states, on a finite time interval this trajectory can clearly generate an infinite 

number of events. 

Likewise, a similar example can be contrived to show that certain continuous 

trajectories may also lead to infinite events. 

Example 3.5.2 Suppose the dynamics of a system are modeled by the Lipschitz-
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continuous ODE, with initial condition xo = 0 

. { 2t sin( t) - cos( f) 
x = f(x, t) = 

0 

The generalized solution of such a system is 

{ 

t 2 sin( f) 
x(t) = 

0 

t=fO 

t=O 

t =f 0, \ix 

t = 0, \ix 

which is plotted in Fig. 3-10 for a time interval t = [to, tf) = [-0.1, 0). Now, if we 

define a functional F as follows 

F(x) = 0, for all x 

the trajectory will generate an infinite number of events as t ----+ t f = 0. 

Example 3.5.1 illustrates the situation in which the functional is responsible for 

generating infinite events in an finite time interval. This is a somewhat contrived 

example, and can generally be avoided since the specification of the functional is 

under the control of the designer. However, the case where the solution itself gives 

rise to the infinite behaviour, as in example 3.5.2, is more difficult to avoid. On the 

other hand, if the solution is the result of an ordinary differential equation solver, 

since the limitations of numerical precision of the computer will prevent an infinite 

solution from occurring in the first place. For results in future chapters, the primary 

assumption is that the partitioning of the state space does not lead to any of the 

pathological conditions just outlined. 

49 



Switched Continuous Model 

4.1 Introduction 

I n the previous chapter, the techniques of state quantization and discrete event 

generation were developed for the discrete abstraction of a single continuous dy­

namical model. This continuous system model has an output interface, behaving as 

an event generator to the external discrete-event world. In this chapter, we will de­

velop a hybrid model based on a collection of embedded continuous system models. 

The complete model is a form of hybrid model, called a switched continuous model 

(SCM). In (Koutsoukos et al. 2000), input events were linked to corresponding actu­

ator actions in the continuous model. The SCM broadens this scope by linking the 

discrete input events to a complete change (or switch) in continuous dynamics. An 

approach similar to this was taken in (Abdelwahed et al. 2005). 

Graphically, the switched continuous model is depicted in Fig. 4-1. The switched 

continuous model has a collection of continuous system models, each with a DE 

output abstraction layer. The input connection controls the switching between these 

embedded continuous dynamical models. 

The objective is to provide a discrete event modeling environment that can ul­

timately be used to construct a supervisory controller. As a result, the switching 
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Figure 4-1: Graphical representation of a switched continuous model. 
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behaviour due to the input is determined by the need to exercise control and to 

maintain finite discrete event behaviour. Two types of switching will be considered, 

Case I, in which the switching between continuous dynamics is permitted at some 

time interval t:::.t only; and Case I I, in which the continuous dynamics are permitted 

to switch either at a time interval, or upon a state transition. In general, the focus of 

the thesis will be on the Case II model, but Case I is developed since it is instructive 

to consider. 

4.2 Switched Continuous Model 

We define a switched continuous model and two possible switching methodologies. 

We begin by formalizing the definition of a continuous system model, as described in 

Chapter 3, in which we include the partitioning functionals. 

Definition 4.2.1 (Continuous System Model) Let a continuous system model, 

s, be defined as a five-tuple: 

s = (f, Ill, A, V,x 0 ) 

where: 

f is a Lipschitz-continuous ordinary differential equation, x = f(x, t), 

W is a family of partitioning functionals, 

A is the output event function, 

V is a state labeling function, 

x 0 is the initial condition, x(t0). 

The continuous system model ( CSM) is wrapped in a discrete abstraction layer 

(Fig. 4-2), allowing the embedded continuous model to exhibit the behaviour of a 

discrete event system model. 
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Figure 4-2: Block diagram for the continuous system model of Chapter 3. 

The switched continuous model is an automaton-like model composed of a family 

(set) of CSMs. It is desirable for this model to have the ability to exhibit hybrid 

behaviour and to allow for control synthesis. Additionally, the model framework is 

deliberately simple in order to expedite the proof of the theoretical properties. Later 

in Chapter 6, the implementation-specific details of the model will be given. 

Definition 4.2.2 (Family of continuous system models) Let :F = { s0 , s1 , . .. si . .. } = 

{ si} be a family of continuous system models of possibly infinite cardinality. Each el­

ement s E :F is a continuous system model with discrete abstraction layer as in Def. 

4.2.1. 

Definition 4.2.3 (Enabled System Function) Let A = {a C :F : 1 :::; JaJ < oo} 

be the set of non-empty finite subsets of :F, then an enabled system function r is 

defined as a function 

Definition 4.2.4 (Switched Continuous Model) Let a switched continuous model 

G be defined as an automaton-like triple 

G = (:F, r, so) 
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where: 

F is a family of continuous system models (Def. 4.2.2) 

I' is the enabled system function (Def. 4.2.3) 

so is the initial continuous system model 

The switched continuous model has behaviour similar to a multiplexor (Fig. 4-1). 

The switch function permits only one continuous system model to be selected at any 

instant in time. 

Definition 4.2.5 (Execution) An execution of a switched continuous model is de­

fined as a sequence v, of selected continuous system models 

v = {so,sl, .. . sa ... } 

An execution of a system modeled by a SCM starts with the selection of the initial 

continuous system model s0 . At some point in time, the system will switch to, or 

select, another continuous system model. 

Definition 4.2.6 (Choice Point) Let G = (F, r, s0) be a SCM, and let s' be the 

currently selected CSM. The point in time at which the SCM switches execution to 

another continuous system model s" is known as a choice point. The switches occur 

either due to a time event (tick, or t) or due to a state transition within the currently 

selected CSM, s'. 

A choice point can be thought of as the moment a controller exercises control. In 

Case I switching, choice points occur at some time interval, not necessarily with a 

constant time spacing. Case I switching is analogous to that of a PLC in industrial 

practice, in which the controller polls it's inputs and updates control outputs on some 

time schedule. 
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The enabled system function r, of Def. 4.2.3, is an implementation-dependent 

map. It returns a finite set of continuous system models and is invoked at the choice 

points. The function is a convenient method of defining the future execution of the 

SCM recursively, and is an abstraction of the actual control algorithm. Since the 

switched continuous model is an abstraction of a real system, there must always be 

a system eligible for execution, hence the requirement that the set of enabled system 

models be non-empty lf(s)l :2: 1. 

Definition 4.2. 7 (Successor Continuous System Model) Let s E F be a con­

tin'Uous system model, then any element of the family, s' E f(s) at some choice point 

is a successor CSM of s. 

Definition 4.2.8 (Control) Let the currently selected model be s E F. The selec­

tion of a single successor continuous system model s' from the set of eligible successor 

CSMs f(s), referred to as control of the modeled system. 

In Fig. 4-1 the SCM is illustrated as a multiplexor with a switching (or control) 

input. We will associate the selection of continuous system models by a controller with 

discrete (input) events. At each choice point, the controller may select a continuous 

system model to execute. To ensure the finiteness of the switching behaviour in the 

SCM, the control choice must always be finite. Recall from Def. 4.2.3, r : F ---+ A, 

where A = { o: C F : 1 :::; Ia: I < oo} represents the finite set of enabled continuous 

system model for a particular choice point. The SCM input control interface associates 

each element s E o:, with a unique input event label. 

Definition 4.2.9 (Input Event Set) Let G = (F, r, s0 ) be an SCM. Then let 'Ein 

be a set of input event labels such that there exists a unique input event label CJ; E 'Ein 

for every enabled contin'UO'Us system model at each choice point V si E r( s). 

The historical (past) execution of a CSM is clearly a simple sequence. However, 

due to the fact that If( s) I at a choice point may be greater than one, then there are 
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a number of possible future executions of the SCM, and a branch in the future (or 

predicted) execution occurs. 

Example 4.2.1 In Fig. 4-3, a future execution tree (prediction) is illustrated. Note 

that the CSM subscripts for the diagram do not necessarily indicate any sort of sequen­

tial order, they are simply distinguishing labels. Beginning with the initial CSM so, 

a choice point occurs, indicated on the time axis as a tick (of the universal time base, 

t). Evaluation of the enabled system function at the conclusion of the so, 

then, projecting forward in time, each of the systems represents a branch in the future 

exewtion of the SCM. Again, following the top branch, s 1 , at the next system choice 

point we get, 

To summarize, r reduces the infinite possible continuous system models F, to 

a finite subset of continuous models which are eligible for execution at each choice 

point. Therefore, a prediction of the future CSM selection, is a branching tree. When 

the SCM is executed, only a single CSM s' E f(s) C A is selected at any choice point, 

and the execution of the model is a sequence of continuous system models. 

4.3 Prediction - Case I Switching 

We will now examine the future execution of the SCM. It is desirable to establish a 

bound on the number of systems in the future execution; that is, the total reachable 

systems under the time switching regime (Case I). To facilitate this, we begin by 

defining an n-ary version of the enabled system function. 
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Figure 4-3: Diagram ·ill-ustrates the branching of an SCM future execution. 

Definition 4.3.1 (Enabled System Operator) Let G be an SCM with enabled 

system function r, and let S = { si} be a family of continuous system models, then 

the enabled system operator r f : is defined as follows 

r J(S) = U r(si), ( 4.1) 
Vs;ES 

Clearly, for any system, Si E s, then r(si) ~ rJ(S). The distinction between 

r and r f is that at each choice point, r returns the family of enabled continuous 

system models, while for each time interval, r f returns the family of continuous 

system models for all the choice points at a particular time step. An execution of 

the switched continuous system can be described recursively in terms of the enabled 

system operator, forming a tree-like graph with choice (branch) points occurring at 

some time interval, b..t (Fig. 4-4). 

Any branch in this figure is a possible future execution of the system, taking the 

system from the currently selected system model to one on the time horizon, t0 + kb..t. 

57 



{so} 

10 +D.t 10 +2D.t 10 +kb.t 

Figure 4-4: An execution of a switched continuous model with choice points at time interval 
L::..t. 
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Definition 4.3.2 (Families of Continuous System Models) Let G = (F, r, so) 

be a switched contin'Uous model and let p be the number of time intervals, b..t, over 

which the model will be executed. Let Sk be the kth family of continuous system 

mudel:i, at 'integer k 2: 1 t'imc :5[cpa j1·om the selection of the initial system, s 0 . This 

family can be expressed in terms of recursive enabled system operations: 

sk = rf(. .. rt({so}) ... ) 
'---.,..--" 

k t·irncs 

(4.2) 

Time is implicit in this equation and in Fig. 4-4, with each nested r f operator being 

evaluated at a choice point. Each choice point occurs due to the passage of an interval 

of time, b..t. 

We now show that the number of eligible continuous system models for future 

execution may grow exponentially with time. The following proof establishes the size 

of r f at any time step. 

Lemma 4.3.1 For a switched contin·uous model, the cardinality of the family of en­

abled continuous system models at the kth time step for integer k ~ 1, as per Eq. 4.2, 

has upper bound of ISkl = rk, provided that at each choice point there are at most r 

possible continuous system models to switch amongst. 

Proof. The lemma can be proven by assuming maximal switching, and using 

induction on k. For the base case, k = 1, the cardinality of the first family of enabled 

continuous system models, IS1I :::; lr( { s0 }) I = r, which is consistent with rk since 

r 1 = r. The inductive hypothesis is that ISkl :::; rk. The family of continuous system 

models enabled at k switches from the initial system, s0 is Sk and the cardinality is 
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ISk I :::; rk. By Eq. 4.2 then: 

ISk+ll If t(Sk)l 

U r(si) 

< r+r+ ... +r 

rk times 

rk X r 

ISk+ll < rk+l 

thus proving the inductive hypothesis to be correct. • 

Definition 4.3.3 (Reachable CSM) Let (:F, f, s0 ) be a SCM. A continuous system 

model s' E :F is said to be reachable from s0 if there is a future execution v such that 

s' E v 

v = {so, ... , s', ... } 

Now we wish to get an expression for the size of the set of reachable continuous 

system models SR for some arbitrary number of time steps. 

Definition 4.3.4 (Reachable Set of Continuous System Models) Let G = (:F, f, s0 ) 

be a switched continuous model, then the family of continuous system models that is 

reachable from so (including so itself} in p time steps, SR, is defined recursively as 

the union fork= 1, 2, ... ,p, of each of the families in Eq. 4.2, as follows: 

(4.3) 

Lemma 4.3.2 Let G = (:F, f, s0 ) be a switched continuous model executed on a finite 

number of time intervals, p 2:: 1. Let the cardinality of the family of enabled continuous 

system models at any choice point be If( si) I :::; r for all si E :F, then the family of 
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continuous system models, SR, reachable from the initial continuous system model, 

s0 , as defined in Eq. 4.3, has the following cardinality: 

rP+l- 1 
ISnl ~ 

1 r-
(4.4) 

Proof. By Lemma 4.3.1, the cardinality of the kth family of enabled continuous 

system models is given by lSkl = rk. And the reachable set of continuous system 

models is, by Eq. 4.3, 

ISRI (so) u [Q, !'J(; rJ((so)) )] 

1 + ISll + IS21 + ... + lSpl 

the sum of this geometric series is 

• 

rP+l_l 
r-l 

p+1 r=1 

Thus we have proven a general closed form expression for the upper bound for the 

cardinality of the reachable continuous system models. Since the number of possible 

enabled systems at any choice point is unpredictable, it is possible only to establish an 

expression for the upper bound on the cardinality of the set of reachable continuous 

system models. 

Definition 4.3.5 Let maximal switching be defined as: for all choice points, there 

are exactly If( si) I = r continuous system models to switch between. 

Definition 4.3.6 Let minimal switching be defined as for all choice points, there 

is one choice of continuous system model to switch to, if(si)l = 1, for all si E SR. 
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Theorem 4.3.1 (Continuous System Reachability) Let Gc = (F, r, so) be a 

switched continuous model. For a switching time interval of f:lt, a finite number 

of time intervals, p > 0, and the maximum enabled systems at any choice point fi-

n'ite 1 :::; [r( si) I :::; T, joT all si E :F, then the fam'ily of contin'uous system models, 

SR, reachable from the initial continuous system model, so, as defined in Eq. 4.2, is 

finite, and furthermore, 

Proof. The reachable family of continuous system models is bounded above by 

maximal switching, [f(si)[ = r, for all si E SR. By Lemma 4.3.2, if both p and rare 

finite, the cardinality of summation of Eq. 4.4, [SR[, must also be finite. The lower 

bound is for the condition of minimal switching, 

• 

1+1+ ... +1 
'--v-' 

p 

p+1 

4.4 Prediction - Case II Switching 

In §4.2, the switched continuous model was constrained to switch between models on 

some time interval, f:lt. It will now be extended to permit switching of continuous 

dynamics when a continuous trajectory transitions a partition boundary. This implies 

that additional choice points (branching points) may occur between time intervals. 

The goal is to show that the finite properties of this model are maintained under 

partition switching conditions, and to establish an upper bound on the cardinality of 

the reachable state space. 

For purposes of controlling the model, it was stated earlier that time switching 
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(Case I) was analogous to the update cycle of an industrial PLC, occurring at some 

regular (or possibly multirate) scan time. Partition switching can be viewed as giv­

ing the controller the opportunity to react to an unscheduled alarm, similar to an 

interrupt-driven control action of a real-time control task. Thus the Case II SQM 

switching framework models the control of hybrid plants when a controller is permit­

ted to perform both synchronous and asynchronous control actions on the plant. 

Definition 4.4.1 (Partition Switching) A choice point occurs due to a state tran­

sition occurring within the currently selected continuous system model. 

As was stated earlier, any complete branch from left to right in Fig. 4-5, 1s a 

possible future execution v of the SC system model. 

Definition 4.4.2 (Execution Cardinality) The cardinality of a finite execution v 

is the number of elements (continuous system models) in the sequence, and is indicated 

with the notation of set cardinality lvl. 

First we will determine the cardinality of the reachable set of continuous models 

for a single time interval D..t, then extend it to multiple time intervals. 

Lemma 4.4.1 Let G = (F, r, s0 ) be a switched continuous model with partition 

switching, and an upper bound on branching at each choice point, !r(si)l ~ r. Let 

Sf:l.t be the reachable continuous system models in one time interval D..t. Let vm be an 

execution with the most partition switches in time interval, D..t, such that lvml = q. 

If every execution v has finite cardinality 0 ~ lvl ~ q, then the family of reachable 

continuous system models from s0 in one D..t is of finite cardinality: 

(4.5) 

Proof. The proof is identical to that of Lemma 4.3.2. The family of enabled 

continuous system models at k switches from s0 is denoted as Sb and its cardinality 
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Figure 4-5: Case II switching structure, showing that event may occur at some time l5t ~ !:::.t 
that is within the controller switching interval due to state dependent switching. 
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ISk I = rk as before: 

IS~,I {so) U [~I' f~ .:.: .. ~ t( { so(t)}) ) ] 

< 1 + r 1 + r 2 + ... + rq 
q 

Lrk 

Which is the upper bound of the family of reachable continuous system models. The 

lower bound of 1 comes from I {so} I = 1. • 

Now we show that the set of reachable continuous system models for an arbitrary 

number of time steps is also finite. 

Theorem 4.4.1 (Reachable Continuous System Models(II)) Let G = (F, r, s0 ) 

be a switched continuous model with a switching time interval of D.t, having a finite 

integer multiple of time intervals, p > 0, and an upper bound on branching at each 

choice point, lf(s;)l :::; r. If the maximum number of partition switches in any clock 

interval D.t has a maximum such that all executions lv; I :::; q, where q 2:: 0 is an 

integer, then the family of continuous system models reachable from s0 in p time 

intervals,D.t, is finite: 

(4.6) 

Proof. Let Vm ~ S be a an execution on interval [to, to+ pb.t). Let v1 C Vm be 

an execution on time interval [to, t0 + D.t), v2 C Vm be an execution for time interval 

[to+ D.t, to+ 2D.t) and so on. If for all v;, lv;l = q, then 

q+q+ ... +q 

p timeH 

pq 

65 



The largest reachable set occurs if every switched continuous trajectory produces pq 

switches with maximal switching, lf(-)1 = r, at each of the corresponding choice 

points. The proof follows directly from Lemma 4.3.2: 

ISRI {so}U [Qrt(~ft({so}) )] 

< 1 + r 1 + r 2 + ... + rpq 

pq 

Lrk 
k=O 
rPq+l - 1 

for r > 0 
r- 1 ' 

and the lower bound is for minimal switching, r = I r (·)I = 1, and no partition switches 

within each time interval, q = 0 for all choice points. The lower bound reduces to 

that of Case I as in theorem 4.3.1: 

> 1+1+1+ ... +1 
p tinwt-~ 

p+1 

• 
So, for a maximum finite number of partition switches within one time interval q, 

a maximum finite number of eligible CSMs at each switch r, and a finite number of 

time intervals p, the reachable set of continuous system models is also finite. 

4.5 Continuous Dynamics 

Up to this point, we have deliberately ignored the discrete and continuous dynamics 

of the SCM, as we have dealt with the qualities of execution and reachability of the 

continuous system models within the two switching frameworks. The details of the 
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underlying CSMs (time, continuous dynamics and discrete event dynamics) and their 

contribution to the switching was hinted at in the definition of choice points. We now 

examine the reachability properties of the continuous state space of the SCM, in the 

context of the ::;witching frarneworks. 

Definition 4.5.1 (Solution of Continuous System Model) Let Si = (J, 'll, x 0 ) 

be a continuous system model for the time interval [t0 , tf) then the solution to the 

IVP thus posed is 
tf 

xi(t) = xo + ./ f(x, T)dT, fortE [to, tf) 

to 

exists and is unique. 

So for the period of time while a continuous state model is selected, there is a 

continuous state vector that is uniquely determined by the CSM's initial condition and 

dynamics. Since an execution v of the SCM consists of a sequence of selected CSMs, 

then the continuous state of the SCM is easily defined in terms of the corresponding 

sequence of solutions (or continuous trajectories). 

Notation 4.5.1 Care should be taken to distinguish a point in a solution from a 

solution on an interval. In general, a point of a solution will be denoted as a solution 

evaluated at a point in time 

x(ta) E !Rn is the point of a solution evaluated at time ta 

For a solution, X a ( t) the reference to time will be omitted to reduce notational com­

plexity 

Xa is a solution as a function of time, a is an index 

An exception to these notation conventions is the initial condition of a continuous 

system model, x 0 E !Rn which is a point. If the're is likely to be confusion, the solution 

will be referred to as a function of time, while a point is a solution explicitly evaluated 
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Figure 4-6: Switched continuous model execution v = { s1, s2, s3 ... , sk, ... } and its corre-
sponding switched continuous trajectory ~ = { x1, x2, x3, ... , xk, ... }. 

at some point in time. 

Definition 4.5.2 (Switched Continuous Trajectory) Let v = {s0, s1 , ... sk .. . } 

be an execution of an SCM, then the switched continuous trajectory ~, is the 

seq'uence of matching solutions to the IVPs posed by each continuous system model 

on the respective time intervals 

Given this definition, Fig. 4-6 illustrates a hypothetical SCM execution and its 

corresponding switched continuous trajectory (Def. 4.5.2). This is a typical hybrid 

system trajectory, having continuous runs interspersed with discrete changes in state 

and/or dynamics. 

For Case I switching, the choice points are due to a time-related event, a tick. As 

pictured in Fig. 4-5, the choice points are not equally spaced. For Case II switching, 

the choice points are due either to state transitions (discrete output events) or to time 

related tick events. Either way, the choice points originate from within the continuous 

system model. 
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Similarly to the definition for a successor CSM, we may define a successor contin­

uous trajectory. 

Definition 4.5.3 (Successor Trajectory) Let sb be a successor continuous system 

model of sa. Let Xa be the solution to the IVP posed by sa on the time interval [to, tl). 

Then Xb is the solution to the IVP posed by Sb E r(sa) on the time interval [tl, tz)., 

where t0 < t 1 < t 2 , and xb is a successor continuous trajectory (or, alternately, the 

successor solution) of Xa. Notationally, we can say 

Definition 4.5.4 (Predecessor Trajectory) If xb is a successor continuous tra­

jectory of Xa, then Xa is the predecessor contin'uous trajectory of Xb. 

The successor function can be used to form an alternative definition of the switched 

continuous trajectory using recursion. 

Definition 4.5.5 (Switched Continuous Trajectory) A switched continuous tra­

jectory ~, is a set of continuous trajectories: 

~={xi: xi+l = succ(xi)}, i = 1, 2, ... 

The definition of a successor trajectory (Def. 4.5.3) ensures that any switched 

continuous trajectory ~ has no "gaps" in time, nor does it have any "overlaps" in 

time. 
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4.6 Continuous State Reachability 

In §4.3 and §4.4, we examined the reachable continuous system models, and in the 

previous section (§4.5), the relationship between a continuous system model and its 

corresponding continuous state space was detailed. The reachable continuous state 

space of the SCM can be defined in terms of switched continuous trajectories. 

4.6.1 Case I Switching 

Given a finite prediction horizon in time, it is desirable to find an expression for 

the reachable continuous state space. Let G = (:F, r, so) be a SCM and let the state 

prediction be defined for the time interval T = [to, t f) , where t0 is the initial execution 

(or simulation) time and tf be the time horizon relative to to. 

Definition 4.6.1 (Complete Switched Continuous Trajectory) A switched con­

tinuous trajectory, ~ = { x1 , x2 , ... , X a} is said to be complete on some time interval 

( t0 , t f) if x1 is a solution to an IVP over a time interval starting at time t > t 0 , and 

X a is a solution to an IVP over a time interval ending at t f. 

A single complete SCT, ~' on some interval of time is a depth-first reach, and 

represents the reachable continuous state space corresponding to an execution v of 

the SCM, G. 

Definition 4.6.2 (Reachable Continuous Solutions) Let G be a switched con­

tinuous model, then the state space reachable fmm x0 (the initial condition specified 

by CSM so) on some time interval, T = [to, tf) is defined as: 

R = U ~i' ~i are complete with respect to T 
Vt;; 

This definition indicates that the union of all complete switched continuous tra­

jectories for some time interval is the reachable state space. Computationally, the 

70 



reachable state space can be assembled by the union of all depth-first reaches. 

Alternatively, the reachable state space can be defined in terms of the reachable 

continuous system models. 

Definition 4.6.3 (Reachable State Space) Let Sk be the family of continuous 

system models reachable from s0 ink time steps, as in Eq. 4.2. Let the time horizon 

be a finite number, p, of time steps, 6.t. The reachable state space of a switched con­

tinuous model is defined as the set of all solutions to the IVP's posed by the reachable 

sets of continuous system models 

R = {X I :lk : 1 ~ k ~ p, :ls E sk, X is a solution to s} 

Lemma 4.6.1 (Finite Reachable State Space (I)) The cardinality of the con­

tinuous solutions in the reachable state space R is finite: 

1 - rP+l 
p + 1 ~ IRI ~ 1 - r (4.7) 

Proof. Due to Def. 4.5.1, there exists a direct correspondence between elements 

the reach set R, and the reachable state space such that for all s E S R there exists 

a unique solution x E R, by the earlier assumption of Lipschitz continuity of contin­

uous dynamics. Therefore, the cardinality result of Theorem 4.3.1 also holds for the 

reachable state space R. • 

4.6.2 Case II Switching 

We will establish the cardinality bounds for the reachable state space for Case II 

switching. An important issue with a partition-switched model is the potential for 

zeno execution. Models that have instantaneous switching of dynamics have the po­

tential for zeno execution. Zeno execution is technically an artifact of modeling, since 

no real system can be zeno (Zhang, Johansson, Lygeros and Sastry 2000). However, it 
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is an undesirable condition in a model or simulation since it leads to infinite switching 

in a finite period of time. In the case of the switched continuous model, only Case II 

is prone to exhibit zeno executions. 

Definition 4.6.4 (Non-Zeno Switched Continuous Trajectory) A switched con­

tinuous trajectory, ~ on some finite time interval, !:lt = [to, t f), is nonzeno if 1~1 ::; oo. 

Assumption of nonzeno characteristics is problematic, since it may be difficult 

to predict in advance that a model will exhibit zeno executions (Heymann, Lin, 

Meyer and Resmerita 2002). The assumption is that for Case II switching, all exe­

cutions are nonzeno. We base this assumption on the premise that zeno execution 

can be avoided through the use of modified models, or implementation-specific mod­

eling techniques, including temporal or spatial regularization (Johansson, Egerstedt, 

Lygeros and Sastry 1999) or other zeno solution extension techniques. Indeed, in 

Theorem 4.4.1, which claimed finiteness of the reachable set of continuous system 

models, there was an implicit assumption of nonzeno execution1 . 

Lemma 4.6.2 (Finite Reachable State Space (II)) The cardinality of the con­

tinuous solutions in the reachable state space R is finite and bounded above: 

rpq+l- 1 
IRI ::; r _ 1 , r > 1 (4.8) 

Proof. For every continuous system model, si E S R there is a corresponding 

solution to the IVP, Xi E R, the cardinality of the reachable state space is identical 

to Eq. 4.6, the cardinality of the reachable continuous system models for Case II 

switching. • 

1 Later, nonzenoness will be a necessary condition for existence of a controller (since the controller 
is model-based). 
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4. 7 Discrete Event Dynamics 

The previous sections have examined the reachable continuous properties of the SCM. 

This section will examine the discrete event properties of the SCM. Recall from §3.5 

that a CSM under certain special conditions may generate infinitely many transitions 

on its partitioned state space within a finite time interval. For the results of this 

section, we must assume that the contrary condition is true, that is, no continuous 

trajectory on a finite time interval will generate infinite transitions. This assumption 

is justified by the fact that no real system can behave in this way either by design, or 

due to practical limitations such as finite precision of calculations and finite machine 

cycle times. 

4.7.1 Case I Switching 

Proposition 4. 7.1 (Finite Events (I)) Let G = (.F, r, s 0) be a switched continu­

ous model, with switching time interval of 6.t, a finite number of system switches, 

p > 0, and an upper bound on switching at each choice point exists, lf(si)l :::; r, for 

all si E F. If for all xi E R, the number of transitions generated ni for each solution 

is finite, then the reachable state space R will generate a finite number of events due 

to discrete state transitions. 

Proof. Lemma 4.6.1 established that the cardinality of R is finite, with upper 

bound 
rP+l - 1 

r -1 

Let ni denote the number of transitions generated by trajectory Xi E n. The total 

number of transitions, Ne, generated by G in p time steps is 
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Since the limit of this sum is finite and all ni are finite, then Neis finite. • 

4. 7.2 Case II Switching 

Proposition 4. 7.2 (Finite Events (II)) Let G = (F, r, so) be a switched contin­

uous model, with a switching time interval of b.t (clock), a finite number of time 

switches, p > 0. If an upper bound on switching at each choice point exists, lf(si)l ::::; 

r, for all si E F, if all switched continuous trajectories, ~i' are nonzeno, and the max­

imum number of partition switches in any clock intervalb.t has a maximum, l~il ::::; q, 

the reachable state space, R, will generate a finite number of events due to discrete 

state transitions (i.e. crossing partition boundaries). 

Proof. By Lemma 4.6.2, the cardinality of the reachable state space is finite, 

with upper and lower bounds as indicated by Eq. 4.8. Since an event occurs at every 

partition crossing, or choice point, the number of events generated must also be finite . 

• 

4.8 Hybrid Transition Graph 

Thus far, the properties of the SCM have been developed without the explicit in­

tervention of a controller. In this section, we develop one possible discrete event 

representation of the SCM that introduces control input. This model, called a hybrid 

transition automaton or hybrid transition graph, will be used in the development of 

the discrete event supervisory controller synthesis technique that is the subject of the 

following chapter. 

From here on, without loss of generality, Case II switching is assumed for all 

results involving SC models. Once again, in Fig. 4-7, the predicted execution of a 

SCM is illustrated. Since this is Case II switching, the alignment of the states with 

each other does not represent the time of occurrence of the choice point, but merely 

the ordering. As in the earlier figures representing the SCM execution, the choice 
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Figure 4-7: A predicted execution set of continuous system models. 
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• 
• 
• 

Figure 4-8: Prediction of continuous dynamics due to SCM execution. 

points are indicated as circles, and the enabled systems sj E F are indicated as 

boxes. In this case, the system superscript k, indicates the predecessor system, and 

the subscript j, indicates the kth element of r(s0). The subscript 1 :::; j :::; r0 , where 

r 0 = Jr(s0)J. For purposes of exposition, we will not explicitly specify the type of 

lookahead horizon; it can be either time or events. Provided that the number of 

choice points is finite, and the number of branches at each choice point is finite, then 

the set of reachable continuous systems will also be finite. 

In Fig. 4-8, the continuous system models have been replaced by their equivalent 

solutions, xi, where superscript j, and the subscript k, are each derived from the 

matching system model, solved on the matching time interval. Thus, the set of all 

reachable continuous system solutions is R. The output events a~ut E ~out occur 

as the result of each of the continuous solutions crossing some partition boundary, 

signaling that a change of discrete state has occurred, and thus initiating a new 

choice point. The input events a~n E ~in of Fig. 4-8 (Def. 4.2.9) are representative of 

the connection of a discrete event supervisory controller to the system. At any choice 
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Figure 4-9: Hybrid 1Tansition graph based on Fig. 4-7 and Fig. 4-8. 

point there is a (finite) set of input event labels that may be used to select the desired 

continuous system dynamics that will be executed. After the appropriate continuous 

system dynamics have been evaluated, then an output event and a new choice point 

occur. 

An alternative representation of the predicted behaviour of an SCM is a hybrid 

transition graph (HTG) (Fig. 4-9). The HTG brings together the discrete event input 

and output interface of the SCM in a directed graph that has continuous states for 

the nodes and discrete event transitions as edges. The HTG is the basis for the graph 

exploration algorithms (Chapter 5) upon which discrete event supervisory controller 

synthesis is based. We begin by defining the nodes of the graph. 

Definition 4.8.1 (Timed Stamped Continuous State) Let Xa E !Rn be a solu­

tion on a time interval [to, t 1) to the IVP posed by a CSM sa E :F, sa = (!, W, x0 ). 

The timed-stamped continuous state evaluated at time t' E [to, tl) is defined as 

C = (t', Xa(t')) E JR. X JR.n 
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Figure 4-10: A pair of continuous trajectories give rise to an equivalent transition. 

a point in the Cartesian product of time and the continuous solution domain. For 

future notation convenience, 

C C JR X JRn 

In the HTG, nodes (timed stamped continuous states) are associated with the 

choice points of a SCM execution. Connecting the timed continuous states together 

are transitions. The continuous solutions can be discarded, since this information 

is unnecessary to discrete event processes. The solutions are replaced by a labeled 

transition with only the essential discrete event information remaining. 

Definition 4.8.2 (Discrete Event Equivalent Transition) Let G = (F, r, s0 ) be 

a SCM and let~= {x1, x2}, a switched continuous trajectory. Let x1 E !Rn be a solu­

tion to an IVP on time interval t E [t0 , t 1) and let x2 E !Rn be the successor solution 

on time interval t E [t1, t2), that is, x2 = succ(xl) (Fig. 4-10). Then the discrete 

event equivalent transition for the solution pair is defined as 

T = (c, CJ, CJ
1

, c') 

where c = ( t1, x1 ( tl)), c' = ( t2, x2 ( t2)) E IR X !Rn are timed stamped continuous states, 
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the endpoints of the solutions X1 and x2 respectively, and G E I:in and G
1 E L:out are 

discrete events. 

The input event G E I:in is the control or input event for the transition. The 

output event G
1 E L:out occurs as a result of the transition of the continuous solution 

into another region (crossing a hypersurface), or as a result of reaching the end of the 

designated simulation time interval, b..t, in which case the output event is tick. Thus, 

the input event can be seen as initiating the occurrence of the output event. 

Definition 4.8.3 (Transition Set) Let G = (:F, r, so) be a SCM with R the set of 

all reachable continuous solutions for some finite lookahead horizon. The transition 

set is the set of all equivalent transitions T E TR {Def. 4.8.2, above) corresponding to 

all successor pairs of x E R 

TR = { T : T is an equivalent transition for ~ = { x, x'}, x, x' E R and x' = succ( x)} 

and furthermore, TR C C X I:in X ~out X C such that 

The transition function and enabled events function may be defined in terms of 

the transition set. 

Definition 4.8.4 (Transition Function) The transition function 6h : C x I:in ----+ C 

is defined in terms of the transition set TR forcE C and G E L:in: 

{ 

c' 
Oh(c, G) = 

undefined 

if 3T = (c, G, *, c') E TR 

otherwise 

where the symbol* indicates a wildcard or "don't care" event in ~out· The domain of 

79 



c5 h may be extended to C X :Ein as follows 

c 

Output events from the hybrid transition graph are the result of the output func-

tion. 

Definition 4.8.5 (Output Function) The output function w : C x 2:in ___, 2:aut ~s 

defined as follows for c E C and a E 2:in 

{ 

a' 
w(c, a) = 

undefined 

if 3T = ( c, a, a', *) E TR 

otherwise 

where the symbol* indicates a wildcard or "don't care'' time stamped continuous state 

in C. 

Definition 4.8.6 (Enabled Events Function) The enabled events function rh 

C ___, 2~out and is defined as 

rh(c) ={a' E 2:aut: ::la E 2:in, a'= w(c, a) is defined} 

In Fig. 4-11, the execution of Fig. 4-6 has been replaced by its equivalent hy­

brid transition structure. The transition structure forms a tree-like directed graph 

representing the predicted discrete event behaviour of a SCM. 

Definition 4.8. 7 (Hybrid Transition Graph) Let G = (F, r, s0 ) be a SCM with 

SR the set of all reachable continuous system models and R the reachable continuous 

solutions. A hybrid transition graph is a tuple 
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c, = (l",x,(l")) c, = (t,.x,(f,)) c, = (1 2 ,x,(l2 )) 

Figure 4-11: Hybrid transition equivalent to the execution v = {81, 82,83 ... , 8k, .. . } and 
its corresponding switched continuous trajectory ~ = { x1, x2, x3, ... , Xk, ... } of Figure 4-6. 

where: 

C is a set of time stamped states, or graph nodes, C C lR x JRn, 

L: is a set of input and output event labels, L: = L:in U L:aut, 

r h is the enabled events function, 

6 h is the state transition function, 

w is the output function, 

c0 is the initial time-stamped state of the graph. 

So for a SCM G, there exists a hybrid transition graph H, that is based upon the 

predicted behaviour of the SCM on a particular lookahead horizon (either in time or 

events). 

The input/output event pairs of the HTG are similar to a Mealy implementation 

of a finite state automaton. Note the similarity between rh of the HTG automaton 

and r of the SCM. In the former, the output events are explicitly a function of system 

state and time c E C C lR x lRn. In the latter, the enabled systems function f, the 

enabled systems are a function of the currently executing system s E :F, evaluated at 

the choice point. Clearly, c is derived from s by evaluating the continuous solution at 

the choice point. 

An algorithmic implementation of oh and rh will be presented later in Chapter 6. 
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Figure 4-12: Schematic for tank system model. 

4.9 SCM Example 

An example will be presented to illustrate the properties of the SCM and its appli­

cation to a modeling problem. 

For this example, the modeled system is a tank of fluid (Fig. 4-12). It is desired 

to control the level of this tank tllrough the opening and closing of valves. While 

tllis is a trivial example, it is a useful system to study since it has discrete dynamics 

(valves opening and closing) and nonlinear continuous dynamics. 

The controls available for the tank are valves V1, the fill valve; V2 , tlle drain 

valve; and P, the purge valve. The purge valve is a "use once" emergency shutdown 

control that is invoked by the system in the event of emergency. Table 4.1 lists the 

combinations of valve positions and associates these actuator combinations with the 

input event set L:in = {i1, iz, i3, i4, sd}. For example, the input event i2 is associated 

with the actuator control vector Uc = [0, 1, O]T which corresponds to valve positions 
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Table 4.1: Valve control structure 
Control, Uc 

O"in v1 v2 p 

'1,1 oa 0 0 
i2 0 1 0 
1,3 1 0 0 
24 1 1 0 
sd 0 0 1 

avalve open = 1, closed = 0 

[V1 , V2 , P] = [closed, open, closed]. The shutdown operation is initiated by the input 

event sd, which opens only the purge valve to drain the tank. The completion of this 

operation is indicated by the esd output event. 

The continuous dynamics for the tank can be described by a nonlinear differential 

equation. Assume that opening V1 causes a constant mass flow into the tank qmi, 

while opening of V2 or P causes turbulent flow from the tank. then the general 

expression for the tank dynamics (Palm III 2000) is 

R-;2 1 Vfi9Fi] U 
pA c (4.9) 

where h is the liquid level, p is the density of the liquid, and A is the cross sectional 

area of the tank. Turbulent resistances for valves V2 and P are Rt1 and Rt2 respec­

tively. The five different actuator control vectors uc, with Eq. 4.9 yield five distinct 

dynamical models for the tank. Each of these actuator settings along with a set 

of state partitioning functionals, forms a separate CSM which will be embedded in 

the switched continuous model. For this example, the CSMs corresponding to input 

events i 1 to i 4 share the same set of functionals 'll 1 = { F 1 , F2, F 3 , F 4 } and the CSM for 

emergency shutdown operation (purge valve P open) has 'l! 2 = { F5 }. The functionals 

are defined in Table 4.2 along with the associated output events. 

If the SCM is executed or predicted (Case II switching) on a 90 second time in­

terval, the set of predicted continuous trajectories SR reachable from initial condition 
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Table 4.2: Output events, with associated functionals and hypersurface crossing directions. 
(J out Functional Zero-crossing Alarm 

ovf F 1(h) = h- 33 r over fill 
hi F2 (h) = h- 31 r high 
med F3(h) = h- 18 l medium 
unf F4 (h) = h- 15 l under fill 
esd F5(h) = h- 0.5 1 emergency shutdown 

x0 = 26 are pictured in Fig. 4-13. The figure shows the branching of the trajectories 

on detection of events. Note that since the sd input event and corresponding dynam­

ics do not share the same partitioning functionals as the other dynamics, there is no 

event detected (and consequently no branching). 

The hybrid transition graph matching the predicted SCM behaviour is pictured 

in Fig. 4-14. Based on the graph, the plant language generated for the lookahead 

horizon of 90 seconds is 

L = { med unf tick, med tick, hi tick, tick} 

Note the apparent nondeterminism of this HTG model when only the output events 

are considered. However, the model is deterministic, since each transition at any node 

is guarded by a unique input event (control action). This is an unconstrained plant 

model, so at each choice point there is a choice of I r ( s) I = 5 control actions. We will 

see in the next chapter that when this plant model is combined with a specification 

to form a controller, the branching will be constrained due to the requirement of the 

models to synchronize on output events. 

4.10 Conclusions 

The SCM is a flexible hybrid model based on discrete switching between various 

embedded continuous system models. Switching of dynamics and hence input/output 

discrete event synchronization, are designed to occur at state boundaries and/ or on 
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Figure 4-14: Hybrid transition graph equivalent for continuous reachable state space of Fig. 
4-13 
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a synchronous or time-based schedule. Synchronization occurs in both coarse (tick) 

and dense time. This is analogous to the operation of industrial control systems in 

which a synchronous control cycle is augmented by interrupt-driven control. The 

point at which the system switches dynamics is known as a choice point. A finite set 

of enabled systems is available for the system to go forward in time, and one system 

is selected to execute. Predicting the future execution of an SCM G = (:F, r, s0 ) 

consists of considering all such enabled systems, extending simulations (solutions) for 

each, creating new choice points, and again extending the simulations. Reachability 

of the SCM can be expressed in the set of reachable continuous state space solutions 

R. The hybrid transition graph captures the discrete-event behaviour of the SCM on 

this reachable set. Providing that the SCM has nonzeno behaviour, then the set, and 

the HTG will be finite, and therefore computable. 

In the next section, we will examine the process of synthesizing DES supervisory 

controllers based on the HTG, which is in essence a discrete event model of the SCM. 
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Control of Hybrid Systems 

T he switched continuous model is a class of hybrid system model. The hybrid 

dynamics embodied by this model are characterized by instantaneous switching 

between the various embedded continuous dynamical models within the SCM. In order 

to control such a process, the controller must act either in the discrete event or the 

continuous domain. A DES supervisor has been selected as the most appropriate 

tool, since the control objective is to coordinate and sequence the actions of low­

level continuous and discrete event systems that themselves may be controlled or 

uncontrolled. 

The switching framework of the SCM model has been designed so that it mimics 

the intervention of a discrete event supervisory controller, while the output frame­

work is designed to communicate, and thus synchronize, with external discrete event 

processes. For purposes of modeling, analysis, and synthesis, it is desirable that the 

plant modeled as a SCM may be treated as any other discrete event process. 

More complex models may be constructed by forming synchronous products of 

switched continuous and finite state models (FSM). The resulting synchronous prod­

uct behaviour of the product model is similar to the product connection of finite 

state models (FSM). The main difference is that the state space of the SCM is infi­

nite on an infinite horizon, so that the product connection of FSMs with a SCM has 
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an infinite state space. If the product behaviour is developed on a limited lookahead 

horizon, then the infinite state space becomes finite, due to the truncation of all future 

trajectories of the SCM. 

This chapter develops the foundations of DES controller synthesis for plants mod­

eled by the SCM. 

5.1 Discrete Event Controller Synthesis 

In the DES supervisory control theory developed by Ramadge and Wonham (Ramadge 

and Wonham 1987),(Ramadge and Wonham 1989), a DES supervisory controller is 

synthesized by forming the product of finite state models of plant P and specification 

S. The optimal supervisory controller C is the closed-loop controller that permits 

the largest set of joint behaviour. in the concurrent connection of P and S, denoted 

P II S. This controller is known as a maximally permissive controller. In languages 

of automata, the legal language K (Fig. 5-1) is the joint behaviour of the plant and 

the specification automata 

K = L(P) n L(S) 

The notation L(P) is used for the language of automaton P and it may also be denoted 

as Lp. The controller, once connected to the plant, enforces the largest subset of the 

legal language, also known as the suprema[ controllable sublanguage (Wonham and 

Ramadge 1987). Based on the assumption that not all plant behaviour is controllable, 

control is exercised by disabling only the controllable events in the plant. The optimal 

DES supervisor is the controller that enforces legal behaviour with the least amount 

of plant intervention; i.e. minimal disablement. In this linguistic paradigm, the 

controller can be defined as a function from the plant language to the power set of ~ 

(the plant event set): 

C: L(P)---> 2~ 
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L(P) L(S) 

K = L(P)nL(S) 

Figure 5-l: Intersection of plant and specification languages. 

Fig. 5-2 illustrates this closed-loop control connection of the plant and controller. 

For a more detailed treatment of DES control synthesis, the reader is referred to 

Appendix D. 

Controller synthesis may also be approached from a state exploration and avoid­

ance point of view. For example, let P be a finite state automaton model of a plant 

in which one or more states may be deemed to be illegal. Removal of all the il­

legal states from the automaton (or its graph representation) then constitutes the 

admissible (with respect to some specification) transition structure of the plant. A 

supervisory controller is then based on this trimmed transition structure. This ap­

proach is well-suited to algorithmic implementation, since typically, the constituent 

models that are used for controller synthesis are represented explicitly as automata. 

As a result, the treatment of control synthesis in this chapter will focus on graph-based 

search techniques. Therefore, a typical task is to construct products of synchronously 

communicating automata; known also as the synchronous product or parallel compo­

sition operation, it is denoted by the II symbol. 

Ignoring the issue of event controllability for now, the controller for a plant can 
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Figure 5-3: Controller synthesis as the concurrent (parallel) connection of two processes. 
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be constructed from the synchronous product of an automaton model P and the 

automaton model of the specification S, C = P II S, illustrated in Fig. 5-3. Before 

defining the product of automaton models, the formal definition of a deterministic 

finite ::>tate autmnatuu i::> a::> follows: 

Definition 5.1.1 (Deterministic Finite State Automaton) A deterministic fi­

nite state automaton is a tuple: 

G = (Q, 2:, .6., qo) (5.1) 

where: 

Q is a finite set of states, 

2: is a finite set of events, 

.6. is a finite set of transitions (Def. 5.1.2 below), 

qo is the initial state. 

Definition 5.1.2 ('fransition Set) The tr-ansition set is a finite set of tr-ansitions 

.6. ~ Q x 2: x Q such that 

Vq E Q, Vo- E 2:, l{q'l(q, a-, q') E .6.}1 :::; 1 

The transition function will be used extensively for graph exploration, and so will 

be defined in more detail. 

Definition 5.1.3 ('fransition Function) A transition function 6 Q x L; -----+ Q 

may be a partial function on its domain. For q E Q and a- E L;, 

{ 

q' 
o(q, a-) = 

undefined 

if 3(q' E Q) and :3 a transition (q, a-, q') E .6. 

otherwise 
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The domain of 6 may also be extended to Q x ~*. For example, 

6(q, E) 

o(q, o-w) 

q 

o(o(q, a-), w) 

For clarity, the function 6 has domain Q x ~and range Q while Eq. 5.2 defines the 

element to element map. Forthwith, the same convention will be utilized in function 

definitions. 

A second function, known as the enabled events function, is also useful for graph 

exploration. 

Definition 5.1.4 (Enabled Events FUnction) The enabled events function r 
Q ---+ 22.: is defined as follows 

f(q) := { O" E ~ : 6(q, O") is defined} 

While inclusion of both 6 and r in the definition of a FSM is redundant, in the 

sense that they are already defined in terms of the transition set 6., they are useful 

when defining synchronization of multiple automata. In future notation, and for ease 

of exposition, finite state automata will be defined in an expanded form as follows: 

G = ( Q, ~, 6, r, qo) 

Henceforth, the transition set 6., will not be explicitly included in the definition of 

the FSA, since it can be derived from 6. 

We define the reach operation, which returns the subautomaton that represents 

the portion of an automaton that is reachable from its initial state q0 . 

Definition 5.1.5 (Reach Operation) Let G = (Q, ~' 6, r, qo) be a finite state au-
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tomaton, then the reach operation is defined as follows 

= (Qr, 2::, 5r, r, qo) where 

{q E Q: 3s E 2:*, J(qo,s) = q} 

5 on a restricted domain such that Qr x I: ___. Qr 

Conceptually, the controller of 5-3, C, is a model-based controller, with models 

of the plant and the specification embedded within it. Thus, C is the synchronous 

product of finite state automata (Def. 5.1.1). Throughout this document, the term 

"product" will be synonymous with "synchronous product". Formally, the definition 

of the synchronous product of two finite state automata, is as follows: 

Definition 5.1.6 (Product Automaton) Let G 1 = (Q 1 , 2::1 ,51 , f 1 , q01 ) and G2 = 

(Q2, 2::2,52, f 2, q02 ) be finite state automata (see Appendix C for some examples). The 

(synchronous) product automaton G1 II G2 is defined as 

(5.3) 

where Q1112 = Q1 x Q2 is the Cartesian product of the state sets, I:111 2 = 2:: 1 U 2::2 is the 

union of the event sets, and the product transition function is defined in the following 

definition. 

The reach operation in Eq. 5.3 is useful since some parts of the product automaton 

may not be reachable from the initial product state (q01 , qo2 ), and these portions are 

not of interest. 

Definition 5.1.7 (Product Transition Function) Let G1 and G2 be finite state 

automata (Def. 5.1.6), then their product transition function 
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(81(q1, CJ), o2(q2, CJ)) if (J E f1(q1) n r2(q2) 

( o 1 ( q1, (J), q2) if (J E r 1 ( q1) \ L:2 

(q1, cl2(q2, CJ)) 

undefined 

Note that 81112 like 81 and 82, is a partial function. 

otheTwise 

Definition 5.1.8 The product enabled events function 

The first term of Eq. 5.4 requires that events common to both enabled events 

functions f 1 and f 2 (and hence common to the event sets of both automata) must be 

synchronized. The latter two terms are the sets of enabled events that are private to 

each of the automata; there is no requirement for these to be synchronized, so they will 

always be included. The synchronous product operation of automata is associative 

(Cassandras and Lafortune 1999). The associative property permits the product 

automaton operation of Def. 5.1.6 to be extended easily to an n-ary product, in which 

n automata are synchronized. Associativity also permits the hierarchical nesting of 

synchronous product operations. This modularity lends itself naturally, as we shall 

see later, to an object oriented programming implementation. Hierarchical modeling 

also allows for a flexible modeling scheme in which automata may be grouped by their 

functional relevance to each other; e.g. the sub-automata that form a specification 

and the sub-automata that form a plant. Fig. 5-4 is an example of a hierarchical 

model of the discrete event behaviour of a ship's power and propulsion systems. In this 

example, each of the various subsystem models are grouped as functionally related 

components. For example, the power system behaviour is modeled as a product of 

the two product automata, Generator #1 and Generator #2. A "fiat" equivalent to 
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Figure 5-4: Hypothetical hierarchical automaton model for a ship's propulsion and power 
generation subsystems .. 

this hierarchical model may be constructed by taking the lowermost (non-product) 

components of the tree and placing them in a single-level product automaton. 

Synthesis of a DES controller in the SCM environment requires the construction 

of synchronous product structures of SCMs and finite state models. The discrete 

event interface that was developed for the SCM in the previous chapter allows these 

product structures to be constructed. This is the basis of DES supervisory controller 

synthesis for hybrid systems. 

5.2 SCM and Control Synthesis 

Suppose that we have a SCM P, that models the dynamics of a plant and a timed 

FSM, S that models a specification. In our framework, controller synthesis consists 

of the synchronous product of the plant and specification models. In §4.8, the hybrid 

transition graph was introduced as a representation of the discrete event dynamics 

for a SCM. In addition, on a finite event or time horizon, the HTG is of finite size. 

Now we define a new transition structure which encapsulates the synchronous 

product of an HTG and a FSM where the state of this structure is the product state 
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of the respective states of the HTG and the FSM. The product of a hybrid transition 

graph and a finite state automaton is defined as follows. 

Definition 5.2.1 (Hybrid Product Automaton) LetH = (C,Z:h,oh,rh,w,co) be 

a hybrid transition graph and G = (Q, 2:9 , o9 , f 9 , qo) be a finite state automaton, the 

product automaton is defined as 

with 6hllg and rhllg as defined below. 

Note that the transition set TR can be omitted from the HTG definition, since oh 

and rh can provide the same information set. States of a hybrid product automaton 

(HPA) are truly hybrid by the usual definitions of a hybrid system, since the state has 

both a continuous and discrete state component. Note also that the product states 

of the HPA H II G inherit the time stamps of the HTG. The inclusion of time within 

the state of the product automaton also ensures that the resulting product graph will 

be acyclic. 

The objective of the modeling framework is to achieve a finite state representation. 

By making the assumption that the event set of G, 2:9 ~ Z:aut, then the set of events 

f 9 (q)\Z:aut = 0. This means that events are generated by the SCM only, and the 

finite state machine G acts as an acceptor. For control synthesis, H is the plant 

model and G is either a model of the specification, or part of the plant model, so this 

is a reasonable assumption. Since H generates the output events via the output event 

function, only the shaded set(s) illustrated in Fig. 5-5 are necessary to consider for 

the transition function. 

Definition 5.2.2 ( HPA Transition Function) Let Z:h = l:in U Z:aut, then 
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Figure 5-5: Set definitions for the HPA transition function. 

is the product transition function, a partial function. Let a E l:in, ( c, q) E ( C x Q) 

and 1} = w ( c, a) E l:aut, 2:9 ~ l:aut, then 0 hllg is defined as 

( 

(oh(c,a),!S(q,r])) ij17 E f 9 (q) (a) 

6hii 9 ((c, q), a) = (6h(c, a), q) if 17 rf. 2:9 (b) 

undefined otherwise (c) 

The domain of the transition function ohllg may be extended to c X l:in as follows 

6hllg((c, q), E) 

ohllg((c, q), aw) 

(c,q) 

Now the definition of the enabled events function, 

Definition 5.2.3 (HPA Enabled Events Function) Let the enabled events june-

tion 

98 



If c E C and q E Q, then 

From these definitions, it is apparent that the HTG automaton synchronizes only 

its output events with the events of the finite state automaton. The intent here is 

to mimic the standard synchronization technique that is used in DES supervisory 

synthesis. The focus is placed on the plant's discrete event behaviour which is com­

municated by the output events. Specifications are normally written in terms of the 

desired (output) dynamics, thus the synchronization of output events is a practical 

modeling decision. 

Input events are not synchronized; these represent the actions that are available 

to the controller. Later, we will see that a control choice mechanism selects one 

cr E :Ein as the control action. The result of the selection of a particular input event 

leads to the generation of an output event, when the underlying continuous system 

dynamics transition to a new discrete state. So in effect, synchronization of output 

events causes certain input events to be ineligible implicitly. An improvement to the 

SCM framework would be to include explicit input synchronization. For example, 

SC models could have a finite state "front-end", permitting the set of enabled input 

events (viable control actions) to be a function of the state of the front-end automaton. 

Finally, we will look at the synchronization of SCMs with each other. It may 

be desirable to approach the modeling of the continuous dynamics of a system in 

a modular fashion. If the continuous dynamics are separated into multiple SCMs, 

they may be synchronized at the discrete event level. Since dense time information is 

available from each of the HTG processes, it is possible to detect the "earliest" event 

that occurs amongst them; this becomes a new state in the product by evaluating the 

solutions of each of the other systems at this event time. 

An alternative approach to synchronization of SCMs at the discrete event level, 

is to lump all continuous state variables into a single set of continuous models, and 
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embed these into a single SCM. The choice is left up to the designer; if the continu­

ous dynamics have significant coupling, then communicating state variables are best 

lumped together. If the continuous dynamics are coupled through indirect discrete 

event communication, then they may be modeled more effectively as separate SCMs. 

An algorithm that implements multiple SCM object synchronization will be presented 

in chapter 6. 

5.2.1 Example: Product of SCM and FSM 

To illustrate the synchronous product operation, we will revisit the SCM tank mod­

eling example of §4.9. The HTG that results from this example models the discrete 

event behaviour of the uncontrolled tank for a 90 second lookahead horizon (recall 

Fig.4-14, p. 86). Let the finite state model of the specification 

S (Q,~s,O,f,qo) 

~s {hi, tick, unf}. 

The plant graph is presented again in Fig.5-6, along with the specification The plant 

model "inherits" its output event set from the switched continuous model. In Table 

4.2 (p. 84), recall that the SCM output events are 

~out = { ovf, hi, med, unf, esd} U {tick} 

and the input event set is 

~in = { oo, oc, co, cc, sd} 

The resulting product P II S , illustrates how the original plant graph is modified by 

the product connection of the specification (Fig. 5-6, bottom). Starting with the ini­

tial state of the plant, co= [0, 26] E (JR. x JR.), fp(c0) ={tick, hi, med}, all transitions 
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Specification Model (S) 

~ 
~ 

Plant Model (P) 

Product of Plant and Specification (PI IS) 

Figure 5-6: Product of plant modeled by a SCM and specification modeled as a FSM. 
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with tick output events are removed from the graph because (tick¢:. rs(qo)). The tran­

sition having output event hi remains because it synchronizes with the specification. 

The transition with output event med remains in the product because (medf:. ~8 ). 

The process of t.rinnning continues until each remaining (and reachable) state in the 

product graph has been visited. 

Starting from the initial state of the product automaton (the root of the tree), 

there exist 6 unique branches. Of these six branches, one ends in a product state 

c = [[51.36, 18], q0] E ((JR. x JR.) x Q). The time of the continuous product state is 

t = 51.36, which is less than the lookahead horizon. Since this branch does not take 

the system to the simulation horizon, it is not a viable choice for a controller to 

make, since the system cannot safely continue on this trajectory to the horizon. This 

concept will be elaborated upon in the next section. The viable controller actions for 

this plant, at this time, are the set of input strings 

L( C) = { oc oc, oc cc, oc oo, oc sd, oc co} 

5.3 Blocking 

In standard DES supervisory control theory, the concept of controller blocking is 

defined in the context that certain states have a special status; i.e. marked states. In 

the DES framework, if an automaton reaches a state that is not marked, and r = 0, 

it is said to be deadlocked or blocked. Supervisory controllers are designed to be both 

safe and nonblocking. 

In a system model based on a SCM, the concept of blocking is defined differently 

from the typical DES definition. In the SCM framework there is a richer set of 

information, particularly the fact that dense-time state (and event) information is 

available. Having the knowledge of the time at which the system has entered a 

state (the time stamp of the HTG states) allows us to define blocking in terms of the 

terminal state time. The system has the extra dimension of time to define the progress 
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(or lack thereof) of the system, in addition to state information. Alternatively, the 

number of events in a trajectory, and whether that trajectory reaches the lookahead 

horizon may also be a determination of the blocking. 

A plant modeled by a SCM, on a finite horizon, synchronized with a specification 

modeled as an FSM, forms the basis for a simulation. This simulation captures the 

control interaction of a discrete event supervisor with a real system. Transitions 

that will violate the safety of the system and carry the plant to an illegal state are 

prevented from occurring, via event disablement. Recall the definitions of R (Def. 

4.6.2 and 4.6.3), the set of reachable continuous trajectories of a SCM. For some 

lookahead horizon, the set R collectively represents a simulations (or prediction) of 

the uncontrolled future plant behaviour of the system up to some future time or event 

horizon. Refining the definition of the reachable state space: 

Definition 5.3.1 (Continuous Reachable State Space (Events)) Let G = (F, r, s0) 

be a switched continuous model. The state space reachable from x 0 E s0 in exactly p 

events is denoted as RP. 

Definition 5.3.2 (Continuous Reachable State Space (Time)) Let G = (.F, r, s0 ) 

be a switched continuous model. The state space reachable from x 0 E s0 in the time 

interval T = (t0 , tJ] is denoted as nr. 

When a controller or other agent disables events in the discrete event behaviour 

of an SCM, it results in truncated, or incomplete, switched continuous trajectories 

~ E R, that do not reach the lookahead horizon. This is the continuous behaviour 

of the SCM as described by the synchronous product of the HTG and a FSM. We 

define the switched continuous trajectory (SCT) as follows 

Definition 5.3.3 (Incomplete SCT (Events)) Let G = (.F, r, s0 ) be a switched 

continuous model, and let RP denote the continuous state space reachable in p events. 

An SC trajectory~ E RP is incomplete if I~ I < p. 

103 



x(t) : vJ:' 
I I 

~ 

I 

I-·--, r "-#~~ ~ 
I "'(, 

I 
I 
I 

Figure 5-7: Incomplete trajectory of example 5-7. 

t 

Definition 5.3.4 (Incomplete SCT (Time)) Let G = (:F, r, so) be a switched 

continuous model and let RT be the continuous state space reachable in the time 

interval T = [t0, t1} An SC trajectory~= {x1, x2, ... xa} E RT is incomplete if Xa 

is a continuous solution of for a time interval [ta-l, ta), such that ta < t f. 

Example 5.3.1 (Incomplete SCT (Time)) Let GP = (:F, r, s0 ) be an SC model 

of a plant and let the switched continuous trajectory 

Suppose that the continuous trajectory x5 terminates in an illegal state, then the 

controller must prevent x 5 from occurring, and the modified trajectory becomes ~ = 

{x1,x2,x3,x4} (Fig. 5-7). In this case, the trajectory is incomplete because x 4 2s a 

solution on the time interval [t3 , t4 ) and t4 < t f. 

Returning to the discrete event behaviour now, this truncation of switched con­

tinuous trajectories leads to a HTG representation with some "stub" (truncated) 

branches in the graph. These branches in the HTG are considered to be blocking, 
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since it is not possible to find a path (trajectory) from the initial state to the lookahead 

horizon. In the following definitions, for clarity, we consider the only the legal behav­

iour of HTGs, assuming that synchronization with an external process has already 

enforced legal behaviour (a tipecificatiou for example). 

Definition 5.3.5 (Blocking & Nonblocking States (Time Horizon)) Let H be 

a hybrid transition graph based on a time T = [to, t f) reach of the SCM G. Let H 

have initial state c0 = ( t 0 , x( t 0)) E lR x IRn and let c! = ( t', x( t')) E lR x IRn be a time 

stamped continuous state in the graph H such that rh(c') = 0. If there exists a string 

u E L:in such that 8h(co,u) = c', and ift' < tf, then state c' is blocking. Conversely, 

if t' = t f, then state c! is nonblocking. 

Definition 5.3.6 (Blocking & Nonblocking States (Event Horizon)) Let H be 

a hybrid transition graph based on a reach of p events of the SCM G. Let H have 

initial time stamped state c0 = ( t0 , x( t0 )) E lR X IRn and let c' = ( t', x( t')) E lR x IRn be a 

state such that rh(c') = 0. If there exists a string u E L:in such that 8h(co, u) = c' and 

lui < p, then c' is a blocking state. Conversely, if lui = p, then state c' is nonblocking. 

To illustrate blocking, we start with the HTG H of Fig. 5-8, a plant model of 

a system. For purposes of exposition, the graph is the unrestricted (uncontrolled) 

SCM behaviour. We will assume that there exists a FSA S, as an acceptor, that 

models the specification. It supplies the state marking by labeling the continuous 

states as illegal if the discrete-event language of the plant H, falls outside of the legal 

behaviour specified by S. Therefore, all continuous trajectories of this system are 

complete, either in time or events; that is, states c1 through c8 are at the lookahead 

horizon. In the continuous state of the SCM, any path traversing the graph from 

the initial state c0 to one of these end states corresponds to a complete switched 

continuous trajectory. Illegal states are indicated as grey-coloured nodes, c3, c4, c5, 

and c9 (marked by the specification acceptor automaton). To enforce safety, these 

nodes must be removed from the graph, with the result indicated in Fig. 5-9. 
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Figure 5-8: Hybrid transition stucture with illegal states identified in grey. 
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Figure 5-9: Hybrid transition stucture of Fig. 5-8 with illegal states and related transitions 
deleted. 
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Figure 5-10: Non-blocking and legal HTG for example of Fig. 5-8. 
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In the case of states c1 and c2 , they cannot be reached without traversing an 

illegal state, c9 first. Removing c9 and the transition that enters it, makes c1 and 

c2 unreachable, and therefore they are not viable. States c3 and c4, although on the 

luukahead huriLmn, are illegal. Removing these states leaves a stub branch in the HTG 

at state c10 , which is a blocking state. The blocking trajectory that ends with c10 

must be removed from the graph. By examination, all states and transitions of this 

branch will have to be pruned back to the initial state in order to avoid blocking. The 

result is illustrated in Fig. 5-10, which retains three possible legal and nonblocking 

trajectories, taking the system from c0 to c6 , c7 and c8 . 

5.4 Fail-safe Controller Operation 

As we have seen in the previous sections, a product of a HTG and one or more 

finite state models is the basis for the DES controller. Appropriate trimming of 

states and transitions from the HTG yields a controller graph that represents the 

safe and nonblocking controller actions, given the limited horizon of knowledge that 

is available. In previous limited lookahead work (Chung et al. 1992) the set of safe 

actions or trajectories, are known as pending traces. This set of legal control actions 

is further refined by taking either an optimistic or conservative policy with respect to 

the expected behaviour of the system beyond the current lookahead horizon. With an 

optimistic policy (or outlook), all pending traces are assumed to have continuations 

beyond the lookahead horizon that are both legal and marked. In the case of the 

conservative policy however, all trajectories are assumed to continue uncontrollably 

into illegal or blocking conditions. These attitudes condition how the set of pending 

traces is further refined. The farther the lookahead horizon is extended, the less 

ambiguity there is about the pending traces. 

An online controller algorithm must have a means of selecting the next control 

action. The ultimate objective of this controller is to drive the system from the initial 
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state to the lookahead horizon without violating the safety. 

Definition 5.4.1 (Nonblocking Controller) Let H be the HTG of a system mod­

eled by SCM G having only legal states, and an initial time stamped state co = 

(to, x(t0)) E lR x ffi.n. The system has a nonblocking safe controller if there exists at 

least one nonblocking state c' and there exists a control string u E Ein, such that 

c' = 6h(co,u). 

Again, we have examined H in isolation. The assumption is that SCM G is 

synchronized with an external process, ensuring only legal states exist. 

But what happens if the system arrives at a state from which only blocking tra­

jectories exist? In the absence of a legal control choice, the system must continue 

(since time cannot be stopped), and since only illegal choices remain, the controller 

will be forced to proceed with a control action that ultimately violates the system 

safety. Hence, nonblocking is equivalent to safety. Unfortunately, there can never be 

a guarantee that just beyond the lookahead horizon, the controller might block, and 

a safety violation will be forced. We would like to design a controller for this online 

discrete event environment which can be guaranteed to be free of this sort of forced 

safety violations. 

5.4.1 Emergency Shutdown 

A standard design practice in safety critical industrial control is to incorporate an 

emergency shutdown (ESD) mechanism into the control system. It is generally con­

sidered good design practice to include some sort of fail-safe subsystem in controlled 

systems at design time. Examples of industries that utilize such fail-safe mechanisms 

as part of the control infrastructure include: 

• Oil and Gas Processing 

• Nuclear Power Generation 
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• Chemical Manufacturing 

• Transportation (Rail Transit) 

• Motion Control 

Terms for fail-safe control procedures vary by industry, but examples are emer­

gency shut down (ESD), from Oil and Gas processing applications, emergency stop 

(E-Stop), from motion control applications and the SCRAM procedure for nuclear 

reactors. In order to model the emergency shutdown behaviour, it is necessary to 

define what is meant in a discrete-event sense as an ESD. 

Definition 5.4.2 (Emergency Shutdown State Set) Let H = (C, L:, 6h, fh, w, co) 

be a HTG of SCM G = (F, r, s 0 ). The emergency shutdown state set E ~ C such 

that 

E = {c: f(c) ={tick} and 6(c,o-) E E,Vo- E L:in} 

An element c E E is an emergency shutdown state. 

Obviously, an ESD state should be considered by a DES controller as a safe state; 

the ESD states can be identified (or marked) by synchronization of additional FSM 

plant model when designing the controller. In the context of the continuous behaviour 

of the switched continuous model, an ESD state might be abstractly interpreted as a 

Lyapunov-stable equilibrium (see Appendix A) within one or more of the CSMs. If a 

continuous trajectory of the system can enter such a Lyapunov stable region, it will be 

"captured", remaining within a defined region. If the region has been partitioned ap­

propriately, any trajectory entering the region will fail to generate events (other than 

tick), since no partition boundaries are crossed. Thus, an emergency shutdown region 

is defined in terms of (stable) dynamics and an appropriate partitioning boundary. 

While it is undesirable to enter an ESD state from the point of view that it 

performs no useful work, it is preferable to a potentially catastrophic safety violation. 

111 



Therefore, the ESD state is a way of gracefully handling a potentially disastrous 

controller block. 

Definition 5.4.3 A failsafe controller is one that can be guaranteed to always operate 

safely (without violating specifications) and is nonblocking. 

Proposition 5.4.1 (Failsafe Controller Existence) Let H be the HTG of a sys­

tem modeled by SCM G, and with initial time stamped state co= (to, x(to)) E lR X IRn. 

A fail-safe controller exists for this system if there exists at least one ESD state 

c' = (t', x(t')) in HTG H and if there exists a control string u E ~:n, such that 

c' = rSh(co, u). 

Proof (Event Lookahead). Controller existence hinges on there being a 

control string y E ~in such that y causes the system to reach a nonblocking state. By 

definition, r( c') = {tick}, which implies that the control string u can be extended by 

an event (5
1 E ~in 

and by definition, c" is also an emergency shutdown state. Similarly, an arbitrarily 

long sequence of input events may always be chained together starting at the initial 

ESD state c', to form input control string w because all successive states of c' are also 

ESD states by definition. In the case of a finite p event lookahead horizon, w can be 

finitely extended so that lui + lwl = p. Thus the state 

Cnb = rS(c', w) = rS(co, uw) 

is nonblocking because it is at the event horizon, and is reachable from the initial 

state co by a control string y = uw. • 

Proof (Time Lookahead). This proof is for the case that graph H is due 

to a finite time lookahead T = [t0 , t f), where the time stamp of the ESD state is 

to < t' :S: t f. As in the previous proof, an arbitrarily long control string w may be 
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Figure 5--11: Control ehoioe with emergency 8hutdovon ~taLes. 

extended from d 

c.,. • (f',x(t")) =6(c',w) = 6(c,,uw) 

For c.w to be oonblocking, t!' ~ t1. Let f' = t! + kll.t ,where Ill > 0 is t he oomrol 

sample time as;odated wit h tick, and k ~ l is an integer. Since for each FSD state 

r (c') = {tick}, then the length of the control string must be lwl 2: k. Assmning 

nonz~\0 execut ion, w can always be finitely extended so t hat there are k tick event:; 

in w, and ensuring that c,. is nonblocking. AI; before, c.,. = 6(eo, uw) c~ reachable 

from the initial state Q)· • 

T he requirement that the controller must include ESD states is similar to t he 

conservative looknhead policy of (Chung et al. 1992), in the sen"" that the outlook 

assumes that just beyond the lookahead horizon, the syst-em will block (or be unsafe), 

and thus the system mm;t be prepared to <bhut down. Having an ESD S[atc within 

reach (i.e. within the looka.head horizon), guarantees that the system can at least 

tih\lt down wit hout vio)a.ting safety. T he faiJ..safe controller existence hinges on ESD 

""chability. 

Let Fig. $.11 represent t he gr•ph oflegal control actions, wit h t he present (initial) 

controller ~:~tate denoted by a. hexagonal-shaped node. ESD states are indicated by 
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Table 5.1: Choice of control action 

Subgraph Status 
ESD Reachable Nonblocking Transition 

F F exclude 
F 
T 
T 

T 
F 
T 

exclude 
admitb 
admit a 

a First priority, bsecond priority. 

the blue coloured nodes, and nonblocking nodes (those on the lookahead horizon) are 

coloured green. By Def. 5.4.2, we know that any emergency shutdown states ( q07 

and qll) may be extended arbitrarily to the horizon; these extensions are omitted for 

clarity. Table 5.1 summarizes the control actions based on the subgraph reachability of 

each immediate control choice. Clearly, subgraphs that are not emergency shutdown 

reachable will be excluded form the controller, so branches labeled (0, 0) and (0, 1) 

are removed from consideration. In any case, branch (0, 0) would have been deleted, 

since state q18 is blocking. Of the remaining two branches ( ( 1, 0) and ( 1, 1)), the 

branch that is ESD reachable and nonblocking receives priority for control selection 

over branches that lead only to ESD; this matter will be dealt with in the following 

section since it pertains to selection of a control action. 

5.5 Controller Propagation 

A hybrid transition graph is a representation of the timed discrete event behaviour of a 

switched continuous model at a particular time and state. Furthermore, it models this 

behaviour for a particular prediction horizon. No attempt has been made to produce 

a closed-form FSM that represents the discrete event behaviour of the modeled system 

for all time. Thus, the controller HTG should be considered to be a temporary data 

structure that will be used to choose the control action at a particular point in time 

and space. After the information contained in a particular controller HTG is no longer 

useful, a new one must be created from the basic SCM information - the "source" 
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Figure 5-12: Propagation of controller graph through time and space. 

model. The new model is now relevant for the current state and time of the system. 

This process continues, extending the controller forward in time. If at each control 

update step, there is a suitable control choice, then the control system effectively 

guides the system along, constructing the safe trajectory one event (control decision) 

at a time, based on a tree of predicted future behaviour. This concept is illustrated 

in Fig. 5-12, in which each controller graph is represented as a "pie-shaped" wedge. 

The controller as described so far, does not implement control in itself; it ac­

tually models the future safe discrete event behaviour of the plant, including only 

the unambiguously safe, nonblocking and ESD reachable control trajectories. This 

implies that there is still a choice to be made, since there may be more than one 

safe and nonblocking trajectory available. To complete the full closed-loop control 

implementation (Fig. 5-13), some sort of choice mechanism must be added to the 

controller. 

Let C be a controller connected to a hybrid plant P. At each time-stamped hybrid 

state h = (c, q) E (C x Q), a controller graph is produced, a prediction of the controlled 

plant behaviour on a limited lookahead horizon. The graph is computed according to 

the requirements of nonblocking (legal) behaviour and ESD reachability. The changes 
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(c,q) ()a 

p -

Figure 5-13: Closed loop connection of controller C and choice mechanism M with the 
hybrid plant P. 

in the plant state are signalled by discrete events occurring in the plant and by the 

universal tick event; these are the choice points that have been encapsulated in the 

SC modeling framework. At any product state of the graph, there is a set of legal 

control choices that may be made, the actuator event set: 

Definition 5.5.1 (Actuator Event Set) Let C be a controller, a product of an 

HTG and a FSA, with hybrid state (c, q) E (C x Q), then the actuator event set is 

defined as 

Definition 5.5.2 (Choice Mechanism) The choice mechanism "chooses" a single 

actuator event CJ a from set A. The choice mechanism is modeled as the function M 

M:A-+A 

What possible mechanisms could be used to select actuator event CJ a from the set 

116 



of legal actuator events A? Choice mechanisms M, can be classified as either manual 

or automatic techniques. In the case of manual choice technique, a human operator 

picks an actuator event rJ a E A using some heuristic to select "the best" action. This 

i~ known a~ "humau-iu-the-loop" (I-IIL) control. Provided that A f 0, the operator's 

actions are guaranteed always to be safe, since the controller presents only actuator 

events that lead to nonblocking and ESD-reachable states. 

Although nonblocking and ESD states are essentially indistinguishable from each 

other, the choice mechanism must discriminate between ESD reachable and "pure" 

nonblocking choices, as in Table 5.1. Actuator events fall into two sets 

where Aen is the set of control events that lead to ESD reachable and nonblocking 

trajectories, and the set Ae of events that lead only to an emergency shutdown. It 

is preferable to choose actions that have some chance of continuing without invoking 

an emergency shutdown. 

Automatic control choice mechanisms, lacking human system knowledge on which 

to base a choice of rJ a may operate in variety of ways including (but are not limited 

to): 

1. Minimum switching: minimize the number of times the actuator settings are 

changed. 

2. Optimal: Attempt to minimize some sort of cost/performance functional not 

already captured in the specification. Such a scheme might involve assigning 

weighting factors to states in the plant model and assigning cost factors to 

input (control) events for example. The control action considered to be optimal 

by these rules would then be selected by M, which is essentially a dynamic 

programming problem. 
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3. Stochastic: a choice mechanism based on probabilities of outcomes, a Markov 

decision problem. 

4. Other: Choose control action based on the number of states of the controller 

subgraphs. A greater number of states may improve the likelihood of a non­

blocking continuation beyond the lookahead horizon. 

As just indicated, there are many possible techniques to implement M, but they 

will not be covered in any further detail. The behaviour of M does not affect our 

analysis, since all previous sections have been based on the assumption that some 

event will be selected and the state of the plant will be advanced. Exactly how the 

event is selected is not central to further discussion. 

5.5.1 Online Operation: Controller Update Cycle 

In any real-time control process, there are a set of scheduled actions that must be 

repeatedly executed, usually at some regular time interval 6.t called the scan time. 

For a control system, this set of actions will be called the control kernel, with the term 

kernel used in the context of software engineering and not its mathematical meaning. 

For the real-time process to proceed without failure, each of the scheduled actions 

within the kernel must complete within a predictable and finite time. Additionally, 

the sum of these times must not exceed a finite time interval 6.t. A digital control 

system is such a real-time process, with one example being that of an industrial 

programmable logic controller (PLC). 

Example 5.5.1 (Digital Control (motor speed)) An example of a digital con­

troller is a DC motor speed control system. The actions to be executed in the control 

kernel is as follows: 

1. Measurement: sample motor speed 

2. Compute control solution: Proportional, integral differential control solution 
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3. Output control action: send control solution to amplifier 

Example 5.5.2 (Digital Control with State Estimation) An example of con­

trol and the comparison to optimal control with state estimation. 

1. Output control action: send control solution to actuator 

2. Measurement: sample feedback signal 

3. State estimate: predict future value of system state 

4. Compute control solution: using state estimate and controller gain matrix 

With an online control scheme, the control kernel is executed repeatedly as the 

system moves forward in (real) time. An outline of the scheduled actions within the 

control kernel is, after initialization, 

1. choose the control action ( O" a), 

2. synchronize the controller (state/event synchronization) 

3. recompute controller 

The controller is computed for the first time, starting at the initial product state 

of the plant and specification models. If the controller exists for the initial condition 

(initialization is successful), then the controller can be "enabled" or allowed to execute 

physically in connection with the plant. Referring to Fig. 5-13, the choice mechanism 

selects the event to apply to the plant from the subset of events that are enabled by 

the controller A. At this point, the plant dynamics of the selected continuous system 

model will begin the progression of the plant state towards the next choice point. 

Immediately, the synthesis of a controller must be initiated, starting from the next 

state which has been selected by the operator (the human in the loop) or by some 

other process. This process continues as long as the controller is online and enabled. 
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I tick n-1 ticks I tick 

Figure 5-14: Controller propagation with time. 

It is interesting to note the similarities of the online control kernel to the digital 

controller with state estimation in example 5.5.2. In particular, step 2 (controller 

synchronization) of the controller is equivalent to the measurement, and step 3 (con­

troller computation) is equivalent to the state estimation or prediction step. Step 1 

(actuator event choice) is roughly equivalent to steps 1 and 4 of the digital controller. 
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5. 5. 2 Horizon Extension 

The fundamental action of the control kernel is the controller map propagation step. 

To ensure that the controller map continues to coincide as an approximate map of 

the plant's local dynamics, the lookahead must be extended or advanced with each 

time step. In Fig. 5-14, the diagram illustrates a controller graph starting at the 

initial state on the left, with time flowing from left to right. Suppose the graph is 

due to a p event lookahead and the controller graph consists of sections I, I I and I I I 

(detail has been omitted from sections other than section I for clarity). The system 

will eventually execute one trajectory within this graph u E I;7n, lui = p in the next 

p events. The exact trajectory that is executed depends upon the sequence of input 

control events that will be selected. Controller sections IV and V together represent 

the breadth-first extension of the lookahead horizon by one tick. Indeed, to maintain 

an n-tick time lookahead horizon, as at initialization, it is necessary to extend the 

horizon of the controller map by one event after each input control event is executed. 

Example 5.5.3 In the simple example of Fig. 5-14, initially there are only two 

choices for controller action, il1 and il2 . Assuming il2 is taken by the choice mecha­

nism, only successor trajectories of il2 are valid, thus controller map sections I I and 

IV can be discarded immediately. Conversely, if il1 were taken, sections I I I and V 

would be discarded. 

5.5.3 Example: Controller Propagation 

As a concrete example of the preceding discussion, we will revisit the tank level control 

example of §4.9, looking at the propagation of the controller at one event intervals. 

Fig. 5-15 illustrates six consecutive control maps represented by the graphs in sub­

figures (a) - (f). These graphs have been specially formatted to reveal the controller 

structure: the states are scaled down to dots and the event and state labels have 

been removed. The red dot in each graph indicates the initial state, c0 . The past 
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controller history is indicated by the light blue trace in each graph. The graph layout 

cngine1 that was used to make these plots uses a spring model layout technique, which 

tends to create a fan-shaped graph surrounding the initial condition. The growth of 

the ends of the fans by one event is evident from graph to graph, as the lookahead 

horizon is extended by one event each in each instance. Note also that there are a 

constant number of events from the initial condition to the branch ends on the horizon 

( 11 events). Finally, note the large sections of the graph that are discarded as the 

controller state advances past certain control points. This graph was generated with 

a specification that eliminated most of the control (input) events, so that most nodes 

have only one possible control action. Typically, controller graphs are more complex 

than this example. 

5.6 Summary 

A hybrid modeling framework has been described based on a synchronous product of 

switched continuous model and finite state models. The product connection of a SCM 

and a FSM at the discrete event level, results in a hybrid system model. The expansion 

of the discrete event behaviour of these models on a limited horizon, produces a 

finite graph. If the product model consists of plant and specification models, then 

the limited horizon graph embodies the legal discrete event behaviour of the plant. 

Synthesizing an online DES supervisor based on this graph requires that incomplete 

(blocking) trajectories (those that do not carry the system from the initial state to 

the horizon), be removed from the control graph. Since this controller is intended to 

be implemented online, and no legal traces are available (controller is blocking), there 

will be a resulting safety violation. Thus it is not sufficient to ensure legal behaviour 

within the lookahead horizon. Potentially blocking (unavoidable safety violations) 

may always exist beyond the lookahead horizon. 

1The neato layout engine is a module of the Graphviz suite of programs from AT&T (Gansner, 
Koustofios and North 2002) 
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By establishing a special state called an emergency shutdown state, it is possible 

to always guarantee the safety of our system. The so-called fail-safe controller always 

requires that valid trajectories be ESD state reachable. This conservative control pol­

icy Ct::i::iUlllC::i tlmt beyond the hori,on, there will be a ::;afety violation. Therefore, even 

safe nonblocking trajectories will be eliminated because they cannot be guaranteed 

to be safe beyond the horizon, the cost of the safety guarantee. Within the described 

modeling framework, conditions for the existence of the fail-safe controller have been 

established. 

The controller is, by necessity an online controller, because of the need to reduce 

complexity and to respond to time varying modeling conditions. Complexity reduc­

tion forces a limited lookahead horizon model; this model represents a "snapshot" 

of the system state space. The controller designed for this snapshot must be moved 

along in time and state as the controlled system (plant) progresses. 

The next chapter will take the concepts of this and the previous chapters and 

develop the implementation-specific details for the fail-safe online controller. 
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Computation: From Theory to 

Implementation 

I n the previous chapter, a framework was designed that enables an SCM model 

to be synchronized with multiple FSM models in a discrete event fashion. The 

resulting synchronized (product) model is a form of hybrid model since it has hybrid 

states. This framework also makes it possible to synthesize supervisory discrete event 

controllers for the modeled hybrid system. Control is exercised as a sequence of 

discrete event control actions, applied by the controller at specified system states 

in dense-time. These control actions are planned by predicting the behaviour of 

the modeled system on a limited lookahead horizon. Through the incorporation 

of a specially marked state known as an emergency shutdown state, the controlled 

system can be guaranteed to be safe (once the controller successfully initializes). The 

controller model assumes that illegal states are just beyond the lookahead horizon. 

This pessimistic outlook leads to controller conservatism: the controller requires that 

at least one emergency shutdown trajectory must always be present in the control 

structure. 

This chapter details the general computational approach, the algorithmic imple­

mentation of the modeling concepts, and the specific implementation of a controller 
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synthesis and modeling software package. 

6.1 Style 

In the previous chapter, the theoretical considerations of the DES controller for a 

hybrid system were outlined. This section will examine the basic computational 

approach that has been adopted. There are three fundamental concepts that are nec­

essary to the control implementation, these are: lazy computing, limited lookahead, 

and online implementation. These techniques will be leveraged to develop an efficient 

computational framework for modeling, controller synthesis, and control. Reduction 

of computational complexity is of utmost importance to our controller implementa­

tion, since it is to be implemented as an online controller. First, we will examine the 

concept of lazy computing,and its applicability to computing DES supervisors. 

6.1.1 Lazy Computing Model 

The term 'lazy" is used here in the sense of expending the least effort necessary to 

accomplish a job. It is a technique that helps to reduce computational complexity 

in space and time. Essentially, we are contrasting a hierarchical product model with 

that of its flattened equivalent model. This hierarchical approach to finite state mod­

eling has been exploited before to avoid the state explosion problem that occurs with 

multiple product machines. In (Brave and Heymann 1991) a hierarchical statechart 

approach is taken for modeling while (Gaudin and Marchand 2005) uses the hier­

archical approach to synthesize supervisors in systems without shared events. This 

hierarchical technique lends itself well to the state-based techniques that are used 

to construct the controller. In this section, a simple example in discrete event su­

pervisory control synthesis using the lazy technique will serve to illustrate the lazy 

computing advantages over a "keen" computing approach. While the example is 

somewhat simplistic, it is a useful exercise to motivate the succeeding sections. The 
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Figure 6-1: Finte state machine model Ml of the plant. 

Figure 6-2: Finte state machine model M2 of the plant. 

example also serves to introduce some of the terms used to describe the controller 

synthesis algorithms. 

6.1.1.1 Example: Product DES Model 

Suppose we have a pair of simple machines that share a common work area. For this 

example, the plant is modeled by a pair of finite state machines, M1 = ( Q1 , L: 1 , o1f 1 , q1,0 ) 

and M2 = (Q2 , L:2 , 52 , f 2 , q2,0 ), illustrated in Fig. 6-1 and Fig. 6-2. Each machine has 

three states and four events as follows: 

QI = {qi, qz, q3} 

L:c = {ai} 

L:u = { az, a3, a4} 

ql,O = ql 

Q2 = {qi, q2, q3} 

L:c = {,Bd 

L:u = {,82, ,83, ,84} 

The controllable transitions are indicated by the graph edge with a small line segment, 

and the initial states of the models are indicated by the hexagonal-shaped graph 
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Figure 6-3: Product finite state model of the plant, Ml II M2. 

nodes. In this example, the state labels have been chosen to indicate the locations 

of the machines. If both M 1 and M2 are in state q2 (indicated by the product state 

[q2 , q2]), then they have violated the requirement that they not enter the same work 

area simultaneously. 

The completed plant model is the synchronous product automaton of the two 

machines, M1 II M2, shown in Fig. 6-3. 

The two separate FSM graphs have been "flattened" into a single graph structure 

representing the product behaviour of the two machines. Since there are no common 

events I:1 n I:2 = 0, this plant is the shuffle of M 1 and M2 • Predictably, there are 9 

states, since the shuffle produces a Cartesian product of the state labels Q1 x Q2 • 

6.1.1.2 Example: Keen Control Synthesis 

To examine how a controller is synthesized from the "flattened" plant model, we will 

use a specification that prevents the two machines from occupying their respective 

q3 states at the time, that is, state [q3 , q3]. An outline of an algorithm that uses the 

flattened plant model for controller synthesis is: 
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Figure 6-4: Controller graph for plant model of Figure 6-3. 

1. Initially, ~ ~ 0, 

2. Form "flattened" product model M1 II M2 by exhaustive state space search, 

once complete, the transition set ~ holds all of the graph transitions for the 

plant, 

3. Do a depth-first reach on the flattened plant model, starting from the initial 

state [q1 , q1], until an illegal state is identified (e.g. blocking due to spec and 

marking criterion), 

4. Step backwards through the graph, deleting transitions from ~' until a control­

lable transition is encountered, deleting it from ~' 

5. Continue the reach (steps 2-3) until all remaining transitions in~ are reachable 

and controllably safe. 

To illustrate the keen algorithm, we will examine a single depth-first trace (Table 

6.1. Assuming that step 1 of the algorithm has been completed already, the transition 

set ~ of the flattened product plant model contains all of the transitions pictured in 

the model of Fig. 6-3. Starting the reach with the initial product state of qps = [ q1 , q1] 
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Table 6.1: Example Runtime of Keen Algorithm 
Event I M1112 state I Transition Set, ~ I 1~1 

[qi, qi] noop 24 
(31 [q1, q2] noop 24 
a1 [q2, q2] noop 24 
(32 [q2, q3] noop 24 
a2 [q3, q3] (illegal) noop 24 

Table 6.2: Example Runtime of Keen Algorithm, Removing Transitions 

Event I M1112 state I Transition Set, ~ I 1~1 
[q3, q3] noop 24 

a2 [q2, q3] ~ f- ~ \ ([q3, q3], a2, [q2, q3]) 23 
(32 [q2, q2] ~ f- ~ \ ([q2, q3], (32, [q2, q2]) 22 
a1 [qi, q2] ~ f- ~ \ ([q2, q2], a2, [q1, q2]) 21 

and stepping forward through the graph: 

Reaching the illegal state [q3 , q3], we now start to remove transitions from~' moving 

backwards through the graph (retracing the previous steps) 

The process of removing transitions continues until the legal and reachable por­

tions of the graph remain; i.e. the controller graph. The result of this controller 

synthesis is the controller structure of Fig. 6-4, with the number of transition in the 

transition set being pruned from I~ I = 24 down to I~ I = 8 transitions. In the figure, 

the controller is laid on top of the plant to show which transitions have been trimmed 

from the transition set of the full plant model. 

A serious problem with the keen computation is that the number of states and 

transitions in the product model grows exponentially in the number of machines (sub 

models) that form the plant. For example, a simple factory model having 20 machines, 

each with a 3 state model, will have a product model of 320 , or more than 3 billion 

states. An algorithm that utilizes the keen method for a realistically complex plant 

model, will likely run out of memory at step 1 of the above algorithm. This is the 

well-known state explosion problem of full state verification problems. 
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6.1.1.3 Lazy Computation: Product Object 

There is an alternative to forming the "flattened" product graph. The product repre­

senting the plant model can be formed from a collection of its constituent models (Fig. 

6-5). This hierarchical product object M111 2, is essentially a pointer to its constituent 

models, and instantiates all of the functions of the finite state product operation. 

Continuing the example of the two machines, let the product state Xps = [x1 , x2], 

then the transition function for the product object 81 11 2, is evaluated as follows 

In Fig. 6-5, the product transition function can be seen as the parallel operation of 

the two sub-models, M1 and M2 (refer to Fig. 6-1 and Fig. 6-2). In this particular 

model, no synchronization between models M1 and M2 is necessary since there are 

no common events. Let qps = [q1, q1] and a= (31, then 

o1(x1, a) 

o2(x2, a) 

01112(Xps 1 a) 

01 ( q1' (31) = q1 

o2(q1, /31) = q2 

o1112([q1, q1], f31) = [q1, q2] 

The product transition function is equivalent to the parallel combination of the tran­

sition functions of each of the constituent models. 

How does the object-oriented plant model reduce synthesis complexity? Primarily, 

there is a savings in the use of space. An outline of the algorithm to synthesize a 

controller is as follows: 

1. Initially, the transition set .0. <--- 0, 

2. Create a product object from M1 and M2, 

3. Do a depth-first reach starting from the initial product state [q1, q1], adding 
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Figure 6-5: Plant model as a product object, illustrating overloaded transition function c5. 

transitions to set .6., until an illegal state is identified (e.g. blocking due to spec 

and marking criterion), 

4. Step backwards through the graph, deleting transitions from set .6., until a 

controllable transition is encountered, deleting it, 

5. Continue the reach (steps 2-3) until all remaining transitions in 6 are reachable 

and controllably safe. 

To illustrate the lazy algorithm, we will examine one depth-first trace. Starting 

from the initial states of each of the constituent models, M1 and M2 and stepping 

forward, adding transitions: Now, stepping backward, and deleting uncontrollable 

transitions: Notes: (1) The transition ([q2 , q3 ], a 2 , [q3 , q3]) is not added because it is 

illegal, (2) transition ([q2 , q2], ;32 , [q2 , q3]) is deleted because it is uncontrollable, and 

(3) transition ([q1 , q2], a 1 , [q2 , q2]) is deleted to prevent the subsequent uncontrollable 

transitions of ;32 and a 2 (i.e. inhibiting a 1 enforces controllability). 

Each depth-first reach into the model grows the transition set, followed by a 

reduction as the controllability condition is enforced. Continuing this process for the 
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Table 6.3: Example Runtime of Lazy Algorithm, adding Transitions 
Event I M1 state I M2 state I Transition Set, .6. I 1.6.1 

[q1] [q1] 0 

/31 [q1] [q2] .6. ~ .6. u ([q1, q1], /31, [q1, q2]) 1 
a1 [q2] [q2] .6. ~ 6 U ([q1, q2], a1, [q2, q2]) 2 

/32 [q2] [q2] .6. ~ .6. u ([q2, q2], /32, [q2, 2]) 3 
a2 [q3] [q3] 3 

Table 6.4: Example Runtime of Lazy Algorithm, Removing Transitions 
event I M1 state I M2 state I Transition Set, .6. 11.6.1 
a2 [q2] [q3] 3 
/32 [q2] [q2] .6. ~ .6. \ ([q2, q2], /32, [q2, q3]) 2 
a1 [q1] [q2] .6. ~ .6. \ ([q1, q2], a1, [q2, q2]) 1 

entire reachable model, the transition set of the completed controller will become 

1.6.1 = 8 transitions in size. 

In this technique, 

• the "flattened 11 plant product structure is never constructed, 

• the product states (and product transitions) are only constructed as needed 

from the constituent models 

• the specification is part of the product operation, thereby eliminating illegal 

transitions from the transition set during construction, of the controller. 

During the computation, the transition set 6 will grow only slightly larger than 

the transition set of the final controller (due to controllability). The notion of con­

structing the product states "just in time" or only as needed is a powerful one, saving 

dramatically on memory requirements, and points to the strength of this approach 

for an implementation. 
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6.1.1.4 Example: Keen, Lazy Techniques 

To contrast the two techniques, the keen method is a pruning process, while the lazy 

method is an additive process. In the lazy technique, the plant and specification are 

represented by a product object model, that allows the product to be computed in a 

"just in time" fashion. The product requires event synchronization between the mod­

els making up the product object. Providing there are some common events between 

specification and the plant models, the product will always have fewer transitions 

than the flattened plant model alone. This leads to a reduction in space complexity 

over the keen technique. 

Example 6.1.1 This example uses the analogy of navigating across a portion of a 

city (Fig. 6-6, (1)). The task of constructing a route that leads from the starting point 

(the green triangle) to a desired destination (the red octagon) is akin to computing 

a discrete event controller, with events corresponding to actions of left turn, right 

turn, or go straight; the states (or control points) correspond to the intersections of 

roads. Suppose the specification (a rule) is that directions that take us further from 

the destination (for example, in a euclidean sense) ar-e illegal.ReferTing to Fig. 6-

6, the keen algorithm begins at (1) with no knowledge of the map, but exhaustively 

builds a complete map (2), by traversing all of the routes that r-each the destination, 

building an exhaustive set of possible routes. Next, it checks each of these depth-first 

mutes against the specification (the dotted contour- lines indicate equal distance from 

the destination), removing transitions that are illegal, until only legal routes remain, 

as in ( 3). With the lazy technique, we start with an empty transition set (map) at ( 1). 

Routes ar-e gradually added to the map by testing each mute against the specification, 

until the entire legal and reachable map has been constr-ucted in (3). The result is that 

the lazy algorithm achieves an identical result to the keen technique, with a single step 

and with reduced space complexity. This is possible because the specification is used 

at design time, allowing illegal traces in many cases, to be eliminated before they are 
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fully oon<l,.cted. 

6.1.2 Limited Lookahead 

Giw~.n a sufficiently large plant and specification) the controller synthesis process may 

be problematically large to compute. Limited lookahead is a technique that makes 

tbe complexity of controller synthesis more manageable. Limited lookaiJCad refers 

to the fact that the reach depth of the controller reachability calculation is limited 

(trw>cated) during synthesis. This technique has been extensively examined in the 

context of discrete event supervisory oontrol(Chung et al. !992),(Chung, Laforttme 

and Lin 1994),(Hadj-Aiouane, Lafortune and Lin 1994),(Kumar, Chung and MarCIL~ 

1998). 

A lazy computation. combined with limited looka.hea.d, h; implemented as follows: 

!. Initially, transition set A +- 0, 

2. Instantiate a (nou-flattened) product object from M, a.nd M,, 

3. Do a depth-firet reach starting from the initial state lq,,qd, adding transitions 
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to set .6., until either: (a) an illegal state is identified (e.g. blocking due to spec 

and marking criterion), or (b) the limited lookahead reach depth is reached, 

4. Step backwards through the graph, deleting transitions from set .6., until a 

controllable transition is encountered, deleting it, 

5. Continue the reach (steps 2 - 3) until all remaining transitions in .6. are reach­

able, less than the reach depth and controllably safe. 

While limited lookahead is effective as a technique for complexity reduction, it is 

not possible to guarantee safety and non-blocking behaviour since the controller is 

designed for a partial model. Fig. 6-7 is the limited lookahead controller for the plant 

of Fig. 6-3 with a 2-event lookahead. This technique can be applied to either the keen 

or lazy techniques to provide a further reduction in space complexity. An additional 

benefit of the limited lookahead computation is that the space complexity is bounded. 

Since the size of the computation is known ahead of time, the computational resources 

can be planned making it more amenable to an online (real time) computation. 

6.1.3 Online Computation 

The terms online and offiine refer to the synthesis of the controller: offline means the 

controller is completely synthesized before the execution of the control, while online 

control implies that the controller is synthesized during controller execution. Why 

include the controller synthesis as part of the runtime system? Online controller syn­

thesis is a necessity to a limited lookahead control scheme. The controller map must 

be extended to match the moving system state by advancing the lookahead horizon. 

Moreover, the controller propagation process described in §5.5, allows us to deal with 

a time-varying model or specification. Online controller synthesis potentially allows 

the controller to react to modeled, but unexpected disturbances, that a controller 

constructed offline cannot. A requirement of online controller synthesis is that the 
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controller must be synthesized repeatedly in a real-time environment. Thus, the com­

plexity of the controller synthesis computation must be of a predictable size, which, 

in turn, is why a limited lookahead scheme is amenable to online implementation. 

6.2 Software 

A software package has been designed that implements the modeling and controller 

synthesis framework described in the preceding sections. The package is called HYSYNTH, 

for Hybrid Synthesis and is designed for the Matlab® environment. The software can 

be used to develop system models with a mixture of switched continuous and fi­

nite state models that represent the plant and specification of the target system. 

These models may be synchronized in a hierarchical product structure and then algo­

rithmically manipulated to synthesize discrete event supervisors. Functions are also 

available to propagate the controllers and to simulate the controlled system. Addi­

tional functions are supplied to produce finite state graph outputs of the models in a 

variety of formats, including Postscript, Portable Document Format (PDF) and Vir­

tual Reality Modeling Language (VRML). These outputs give the designer a means 

of visualizing the individual constituent models and the larger product graphs for 

troubleshooting purposes. 

6.2.1 Architecture 

HYSYNTH exploits object-oriented programming (OOP) strategies. Models are stored 

as instantiations of appropriate classes: 

fsm Class for deterministic finite state models, G = (Q, ~' 6, r, q0 ) 

scm Class for switched continuous models, G = (F, r, s0 ) 

product Class for products of discrete event process objects, P 
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Figure 6-8: The discrete event process object class hierarchy. 
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Each of these classes is derived from an abstract base class, the discrete event 

process object class, or depobj class (Fig. 6-8). The product class acts as a hetero­

geneous container that stores a vector of depobj objects; i.e. types fsm, scm and 

abo product. This recurl:live containment ability (a product may contain another 

product) permits hierarchical models to be constructed. The three classes present a 

common interface, implementing a variety of polymorphic methods. These methods 

permit the hierarchical models to be manipulated for analysis, simulation and control 

synthesis. 

An example of a polymorphic function is the nextEvents (state) method that 

returns the set of next events for an object, given an argument of state. For a deter­

ministic finite state machine G = (Q, 'E, o, r, q0 ), the state argument is a finite state, 

and the function evaluates the enabled events function r, returning a set of discrete 

events. For a switched continuous model G = (F, r, s0 ), the function conducts a sim­

ulation for each s E F, with the state argument, a time-stamped continuous state. 

Simulation trajectories that cross the state boundaries (as defined by the respective 

set of partitioning functionals) generate events that become elements of the set of 

next events. This function equates to the enabled events function rh of the HTG. 

This discussion points out the need for a variety of types of states, since the 

domain of each function varies: 

f ini teState Class for finite state models, q E Q 

ctsState Class for continuous state variables, x E IR.n 

pState Class for product states, ps. 

The domain of the product state has been deliberately omitted, to allow for a 

containment. These classes are derived from an abstract base class, the stateDbject 

class (Fig. 6-9). As with the product class, the pState class is a heterogenous con­

tainer, that stores a vector of state Db j ect objects. And like the product class, it can 
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Figure 6-9: State object class hierarchy. 
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recursively store other pstate objects, allowing for states to match the hierarchical 

structure of the models. 

The state space of a product object is not generated until run time, since the 

hierarchical object structure is maintained. By generating the state space only as 

needed using the lazy computation model, the costly computation of the "flattened" 

product state space is avoided. Fig. 6-10 illustrates a model constructed using the 

product class. 

All of the algorithms that implement HYSYNTH functions have been written to 

exploit this hierarchical storage of models. The core classes of HYSYNTH in Fig. 

6-8 and Fig. 6-9 have been implemented in Matlab scripting language, using the 

OOP programming features of Matlab (MATLAB Programming 2006). The resulting 

modeling framework essentially extends Matlab's interpretive command set to allow 

for modeling, analysis, controller synthesis and visualization. 
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pl 

product(s 1 ,p2) 

/ ~ 
sl p2 

scm('sl.xml') product(ml ,m2) 

/ ~ 
ml m2 

fsm('m l.xml') fsm('m2.xml') 

Figure 6-10: A model constructed as a set of hierarchical product objects. 

The powerful continuous modeling and simulation capabilities of Matlab can also 

be embedded within our modeling framework through the scm class. While HYSYNTH 

is currently implemented in Matlab, it could also be translated to any programming 

language that supports object oriented programming techniques1 . 

6.2.1.1 Modeling Example 

This example shows how the model of Fig. 6-10 can be constructed using a few 

commands. 

m1 = f sm ( 'm 1 . xml ' ) ; 

m2 = f sm ( 'm2 . xml ' ) ; 

p2 product(m1,m2); 

s1 scm ( 's 1 . xml' ) ; 

p1 product(s1,p2); 

% read fsm models from source file 

% product of m1 and m2 

% get scm model 

% final model 

1 HYNSYNTH is patterned on the architecture of the DES software OTCT, which was implemented 
in C++(O'Young 1992). 
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The fsmO, scm() and product() methods are the class constructors, allowing 

empty "placeholder" objects to be created or, as in this case, the models have been 

created from XML (extensible markup language) source files. 

It ::;hould be emphasi:.;;cd that instantiating a product model object docs not com­

pute anything; it is merely a data structure with the models stored in a hierarchical 

fashion. If the product model p2 is a specification and the SCM model s1 is a plant, 

then a controller can be computed by finding the nonblocking reachability of pl. 

We begin by forming an initial state of the system that mirrors the hierarchy of the 

system model: 

xO [20 .1 32. 7] % continuous state variable 

tO 0.0 % initial time stamp 

cO = pstate(tO,xO); % initial time stamped cts state 

qO = pstate(initial(m1),initial(m2)); % initial state of specification 

psO = pstate(cO,qO); % initial product state 

Now the controller is formed by finding the nonblocking reachability of the model 

for some lookahead horizon, which in this case is 10 events: 

[controller,exists] = reachEvents(p1,ps0,10); % 

The reachEvents function computes the controller transition structure (returned 

as controller) if it exists; indicated by the boolean value of return variable exists. 

6.2.1.2 Product Class Method Dependency 

From the previous example, it is clear that the product class is central to the modeling 

and synthesis framework. In Fig. 6-11, the method dependency diagram for the 

product class is presented. In this figure, a variety of high-level functions are listed, 

such as printAsPDFwi thEvents (), a function that prints the flattened product to be 

stored to a PDF file for some lookahead horizon specified in events. In the dependency 
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printAsPDF printAsPDFWithEvents 

Figure 6-11: Method dependency for the product class. The product module is the con­
structor for this class. 
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Figure 0..12: Main menu of JFLAP &utomata lUld foml.3lla.ngua.ges package. 

d iagram, recursive functions are indicated as ellipses. The recursion is neoessary for 

t he hierarchical storage of t he product class. 

6.2.2 User Interface 

T he user interface £or HVSYNTH was developed for prototyping purposes, but is 

rCASona.bly easy to usc. A simple graphical user interface is provided by a third-party 

software pod<ngc, caJl .JFLAP(Rodger and Finley 2006). This pod<age is intended 

to be used as a. tool £or teaching students a utomata and formal languages, but for 

HYSY~TH~ it serves as a front-end for finite state machine capture. From t he main 

menu (Fig. &.12), t he user selects the Finite Aotol118tOn optiOn1 which brings up an 

empty finite a utomaton capture window. In Fig. 6-13, t he ca.pt\lre window has an 

automaton entered already. Once the designer hos completed the design, t he FSA 

moy be stored to disk in an X.li-IL format file with default extension of .jff. 11•e finite 

state model object in HYSYNTH has a method that enables it to pa.rl:le thio file from 

disk, creating an fsm object. 

The graph visualization capabiHty of HvSvNTII is ba.'Jed on t he AT&T Craphviz 

graph I'I)'OUt engine (Gan•ner et ,U. 2002). Smaller graphs ( < 100 SIQt<>S) 31'0 lL«lfullO 
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Figure 6-14: A three-dimensional view of a DES oontroller. 

look at for debugging purposes. Even larger graphs ( <5000 states) can be reasonably 

examined via a PDF file. Individual stat<>S can be found in PDF graphs with the 

standard search engine in the Adobe Acrobat reader. Colour and shape of nodes can 

be \ lscd to encode useful state information. Ot.her options, l:ittch as 3 dimell.b.ional 

VRML visualizations nmy prove helpful for examining controller designs statically 

and also how they evolve through time and space using animations. Fig. ~14 depicts 

a small controller in 30, with initial state indicated by the hex&gonal polygnn, other 

controller t ime Stl\lnped states are spheres. The blu ... ooloured nodes indicate ESD 

states of the controUer. 

6.3 Algorithms 

This section will provide some det3il on th~ algorithms that have been designed to 

implement the SGM/FSM modeling, synehroniza.tH:m and controller synthesis. 
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6.3.1 SCM Functions 

In order to implement the controller synthesis, the HTG state transition function 5 h 

and enabled events function rh are required. At the heart of both algorithms is the 

evaluation of the solution of a continuous system model. Up to this point, an ordinary 

differential equation has been the "placeholder" for a broader class of simulations. In 

these examples, we assume (as before) Case II operation. so the solver must possess 

some sort of event detection. Event detection and location in ODE solvers is a 

well-studied problem and robust algorithms that add little computational overhead 

are available (Shampine and Gladwell1991), (Shampine and Thompson 2000). Event 

detection is recognized as being an integral part of hybrid system simulation modeling 

and analysis (Alur et al. 2003), (Esposito, Kumar and Pappas 2003). 

6.3.1.1 SCM Event Lookahead 

Algorithm 6.1: An event-based reachability for the SCM G = (:F, r, s0 , t) 
input : R ;--- 0, so E :F, rd ~ 1, t ;---to 
output: The set of continuous trajectories x En reachable in rd events 

1 Function reachEvents (R, s, rd, t); 
2 foreach si E f(s) do 
3 [xi, ti] ;--- simulate (si, t;); 
4 n ;--- nuxi; 
5 if rd > 1 then 
6 I n ;--- n u reachEvents (R, Si, rd- 1, t); 
7 end 

s end 
9 return n 

We shall revisit how the HTG is generated algorithmically from a SCM, based on 

the reachable continuous state space. One strategy for generating a HTG from an 

SCM is to predict its behaviour a fixed number of events into the future. We will use 

the abstract model of the SCM to demonstrate this with a depth-first reachability 

sweep in Algorithm 6.1. In line 3, the simulate() function is a generic continuous 
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dynamical simulation function that takes as its arguments the continuous system 

model s and an initial simulation time t. Starting from t, it returns the continuous 

solution (trajectory) Xi, to the first detected event, either the controller sample time 

6.t (a::;::;odated with the t·ick event), or a partition cro::;::;ing, whichever occurs first. 

The time at which the event occurred is also returned ask Typically, but without loss 

of generality, s E F are ordinary differential equations, and simulate() is an ODE 

solver that produces a solution xi to the IVP posed by each continuous system model 

s. Each of these solutions is added to the reachable set of continuous trajectories 

R. In line 5, the reach depth rd is tested to determine if the lookahead horizon has 

been reached. If not, the function calls reachEvents () recursively. The algorithm 

terminates with the continuous trajectories reachable in rd events returned in set R. 

6.3.1.2 SCM Time Lookahead 

Algorithm 6.2: A time-based reachability for the SCM G = (F, r, s0 ) 

input : R .- 0, so E F, t .- to, T .- to + pb.t, p E TI 
output: The set of continuous trajectories x E R reachable in T time 

1 Function reach Time CR, s, t, T); 
2 foreach Si E f( s) do 
3 [xi,ti].- simulate(si,t); 
4 R .- RU xi; 

5 if (T - ti) > 0) then 
6 I R .- R U reachTime CR, si, ti, T); 
7 end 
send 
9 return R 

The time lookahead strategy of Algorithm 6.2 predicts the SCM behaviour out to 

some fixed time horizon, T, relative to the initial simulation time t0 . The assumption 

is that t0 +T will be some integer multiple of the tick event time D.t, which guarantees 

that the simulation of line 3 will terminate with a tick event. In line 5, the simulation 

time is tested to see if it has reached the time horizon T; if not, the function calls 
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reach Time() recursively, with the new advanced simulation time k 

The sets generated by these algorithms represent the uncontrolled continuous 

behaviour of a system modeled as a SCM. For both time and event lookahead schemes, 

a HTG that corresponds to the continuous reachable trajectories can be constructed, 

since for each Xi E R there exists a corresponding discrete event transition T. 

The HTG can be generated easily using modified versions of Algorithms 6.1 and 

6.2, by modifying the simulate() function to return the detected output event CY E 

~out· The set of transitions T for the HTG can then be assembled. 

6.3.1.3 Functions for HTG Traversal 

Both 6h and rh algorithms assume that a solver with event detection exists. We first 

consider the rh , or enabledEvents function in Algorithm 6.3 The algorithm assumes 

Algorithm 6.3: nextEvents method of the SCM class 

input : G +---- (F,f,so),co +---- (to,xo) E (~ x ~n), tick time D..t 
output: The set of enabled output events. 

1 Function nextEvents (G, c0 , Clt) 
2 nextEventSet +---- 0 ; 
3 foreach Si E f do 
4 solution of ODE posed by si on time interval T = t0 + D..t; 
5 T +---- t 0 + D..t; 
6 CY +---- solveODE(h, xo, T); 
7 nextEventSet +---- nextEventSet U CY; 

s end 
9 return (nextEventSet) 

that all candidate continuous system models are eligible for execution. A solution for 

each CSM is executed on the D..t control cycle interval. The solver returns the output 

event, which will either be the detected event, or tick if no events are detected before 

the simulation terminates. 

The transition function oh, is not implemented exactly as defined (Def. 4.8.4). 
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Rather, the set of next states that matches the output event (} E I:out is computed 

Roughly, this equates to finding the set of all simulations that generate the discrete 

output event (}. Algorithm 6.4 implements (lscm· Note the similarity between each 

of the algorithms. Indeed, these functions actually solve the same ODEs, because 

the discrete transition information is derived form the continuous system models. 

For better computational efficiency, a transition table is usually computed, and the 

6h(c5scrn) and rh are evaluated by performing a table lookup. The reachability code 

is designed to update the transition table only once at each choice point; i.e. the 

continuous simulations are executed once for each eligible CSM. Any subsequent calls 

to 8h and rh are then simply table lookups. 

Algorithm 6.4: nextStates method of the SCM class 

input : G.___ (F, r, so), Co.___ (to, xo) E (~X ~n), (} E I:out, tick time D.t 
output: The set of next states. 

1 Function nextStates (G, c0 , b.t) 
2 nextStateSet <--- 0 ; 
3 foreach Si E r do 
4 solution of ODE posed by si on time interval T = t 0 + D.t; 
5 T <--- t 0 + b.t; 
6 [tf, xf, (}e] <--- solveDDE(/i, xo, T); 
7 if ((Je == (}) then 

8 I c.___ (tf, X f); 
g nextStateS et <--- nextStateS et U c; 

10 end 
11 end 
12 return (nextStateSet) 
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6.3.2 Product Synchronization Functions 

In the previous section, algorithms for traversing hybrid transition graphs were given. 

In this sections, algorithms for the product or synchronized versions of these functions 

is given. 

6.3.2.1 Product Next States Function 

Algorithm 6.5: Algorithm nextStates method of the product class 

input :Product structure P, a product state ps E (C x Q)N, where N is 
the number of models in the product object P, a E ~-

output: The set of next states Qn for the product P. 

1 Function nextStates(P,ps,a) 
2 stateSet[N] +--- 0; 
a foreach G E P, state E ps do 
4 I stateSet[i] +--- nextStates(state,a); 
5 end 
6 nextStateSet +--- crossProduct (stateSet); 
7 return (nextStateSet) 

The implementation of the product transition function 611 for an N-ary product 

object P, is illustrated in Algorithm 6.5, the product: : nextStates () function. Since 

bscm (Algorithm 6.4), scm: :nextStates() returns a set of next states Qn instead of 

a single state, the algorithm for 611 must also return a set of product states if there 

is a SCM as one of the objects in the product. From the modeling class diagram of 

Fig. 6-8, the product, scm and fsm classes all implement nextStates (). Therefore, 

a product object may contain other product objects (hierarchically nested product 

objects), in which case the nextStates () function call in line 4 is a recursive function 

call. 

Essentially, the algorithm evaluates o() for each object in the product (lines 3- 5), 

then compiles the next state set in line 6, by forming a cross product of each state 

set. In the case where each object in product P is a FSM, the function returns a set 
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with a single element. 

6.3.2.2 Product Next Events Function 

Algorithm 6.6: Algorithm nextEvents method of the product class 

input :Product structure P, a product state ps E (C x Q)N, where N is 
the number of models in the product object P. 

output: The set of enabled events :En for the product P. 

1 Function nextEvents(P,ps) ; 
2 enabledEventSet ~c- 0; 
3 foreach G E P, state E ps do 
4 I enabledEventSet ~c- enabledEventSet U nextEvents ( G,state) 
5 end 
6 foreach G E P, state E ps do 
7 if (a t:J_ f 9 (state)) A (a E 2:9 ) then 
s I enabledEventSet ~c- enabledEventSet \a; 
o end 

10 end 
11 return ( enabledEventSet) 

The enabled events function f11() for an N-ary product object P, is illustrated in 

Algorithm 6.6, the product: : nextEvents () function. 

6.3.3 Nonblocking Reachability 

Synthesis of a nonblocking safe controller is based on the discrete event reachability. 

Each of the algorithms that construct this reachability tree are, without loss of gener­

ality, based on a depth-first recursive reach. Thus, the reachability tree in each case 

is formed a trajectory at a time, with each branch being computed temporarily and 

pruned backwards as necessary before being added to the transition set. Essentially, 

for each lookahead type, the corresponding algorithm seeks to remove incomplete 

trajectories, i.e. those that do not reach the horizon. 
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Algorithm 6. 7: A recursive reachability algorithm that returns the non­
blocking HTG transition set of an SCM/FSM product structure for an inte­
ger event lookahead horizon. 

input : Product structure P, T +- 0, initial product state 
ps E C x Q, rd ~ 1 

output: The set of transitions reachable in rd events for the product P 

1 Function reachEvents (P,ps, rd); 
2 if rd :S 0 then 
3 I return (true) 
4 end 
5 nonBlocking ,__ false; 
6 enabledEventSet +- nextEvents(P,ps) 
7 foreach a E enabledEventSet do 
s nextStatesSet +- nextStates(P,ps,a) 
9 foreach ns E nextstateSet do 

10 flag+- reachEvents (P,ns,rd-1); 
11 if flag then 
12 I tranSet +- tranSet U [ps, a, ns]; 
13 end 
14 nonBlocking +- nonBlocking V flag; 
15 end 
16 end 
17 return (nonBlocking) 
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6.3.3.1 Event Reachability 

The controller is constructed from the product of plant and specification models 

using a modified reachability sweep (Algorithm 6.7). This recursive function takes 

arguments of a product model object, a product state object, and the lookahead 

horizon. This algorithm demonstrates a limited lookahead depth-first reachability. In 

this case, the lookahead horizon is specified by the number of events, the rd parameter 

in the function call. The function terminates when every branch of the reachability 

has been explored, either reaching the event lookahead or not. Providing that there 

exists at least one complete trajectory, the function will terminate, returning a status 

of boolean true, indicating that the reachability is non-empty. The function constructs 

a transition set TR for the graph of the reachable controlled state space. Transitions 

are only placed in the transition set as they are verified to be non-blocking. This 

requires that the algorithm traverse all the way to the lookahead horizon to verify 

that a trajectory is complete. Thus, the transition set is built from the lookahead 

horizon backwards in this technique. 

6.3.3.2 Time Reachability 

As an alternative, the lookahead horizon of the reachability can be specified as a 

time horizon in terms of simulation time intervals, t::..t, represented by the event label 

tick. In Algorithm 6.8, the reachDepth parameter of the productReach function now 

specifies the number of tick events for the lookahead horizon. The recursive function 

call decrements rd only if the enabled event is a tick. If the event is not a tick, 

the recursive call is made with rd unchanged. This function will only terminate if 

all trajectories are nonzeno, since if time is not able to advance, then the function 

will call itself ad infinitum. Assuming that the function does terminate, the resulting 

transition set will consist of only those trajectories having rd tick events in each 

generated string. 

The time horizon can also be specified in dense timeT 2': t. The algorithm will not 
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Algorithm 6.8: A recursive reachability algorithm that returns the non­
blocking HTG transition set of an SCM/FSM product structure for an inte­
ger tick time lookahead horizon. 

input : Product structure P, transition set T f- 0, initial product state 
ps E C x Q, time horizon integer td :2 1 ticks. 

output: The set of transitions T reachable in td tick events for the 
nonblocking product P. 

1 Function reachTime (P,ps,td); 
2 if td :::; 0 then 
3 I return true; 
4 end 
5 nonBlocking f- false; 
6 enabledEventSet f- nextEvents (P,ps); 
7 foreach a E enabledEventSet do 
8 nextStateSet f- nextStates(P,ps,a); 
9 foreach ns E nextStateSet do 

10 if a = tick then 
11 I flag f- reachTime(P,ns,td-1); 
12 else 
13 I flag f- reachTime(P,ns,td); 
14 end 
15 if flag then 
16 

I 
T f- [ps, a, ns]; 

17 transitionSet f- transitionSet 

18 end 
u 

19 nonBlocking f- nonBlocking V flag; 

20 end 
21 end 
22 return nonBlocking; 
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be presented here due to the similarity with Algorithm 6.8. Recall that the discrete 

plant state is a continuous product state object consisting of the [te, xe] continuous 

state Xe and the simulation time te at the occurrence of the event. Essentially, the 

dem;e time can be extracted from the plant product ~;tate. This time te can be tested 

against the lookahead time T to determine if the horizon has been reached. 

6.3.3.3 Combination Reachability 

A combination of time and event lookahead horizons can also be utilized. Such a 

combined strategy has the benefit of assuring an upper bound that balances the 

objectives of both types of lookahead schemes. It reduces complexity in the following 

situations: 

1. Event Lookahead: Continuous system model dynamics that are slow changing 

and thus generate few events (except for tick events) will terminate on a time 

horizon instead of continuing until the event limit. 

2. Time lookahead: continuous system model dynamics and a partitioning struc­

ture that leads to dense switching behaviour (limit-cycle behaviour) will termi­

nate on the event limit instead of continuing until the time limit. 

The algorithm is simply a blend of the event and time horizon reachability algo­

rithms. Essentially, the horizons are specified as integers td :=;; rd. Whichever horizon 

is encountered first sets the returned nonblocking flag true, indicating the complete 

trajectory for this depth first reach to be nonblocking. 

6.3.4 Fail-safe Controller Synthesis 

For fail-safe control, an ESD state must be reachable (Proposition 5.4.1) from the 

current system state. Algorithm 6.10 builds a transition set that is pruned according 

to nonblocking and ESD state reachability rules. It also returns the nonblocking and 
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Algorithm 6.9: A recursive reachability algorithm that returns the non­
blocking HTG transition set of an SCM/FSM product structure for a com­
bination lookahead horizon based on either an integer number of events or 
an integer number of ticks. 

input : Product structure P, T +--- 0, initial product state ps E C x Q, 
1 :::; td:::; rd 

output: The set of transitions reachable in rd events or td ticks for the 
product P 

1 Function reachCombo (P,ps, rd, td); 
2 if rd :::; 0 then 
3 I return (true) 
4 end 
5 if td :::; 0 then 
6 I return (true) 
7 end 
8 nonBlocking +--- false; 
9 enabledEventSet +--- nextEvents(P,ps) 

10 foreach CJ E enabledEventSet do 
11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

nextStateSet +--- nextStates(P,ps,CJ); 
foreach ns E next StateS et do 

if CJ = tick then 
I flag +--- reachCombo (P, ns, rd, td-1); 

else 
I flag+--- reachCombo(P,ns,rd-l,td); 

end 
if flag then 

I 
T +--- [ps, CJ, ns]; 
transitionSet +--- transitionSet U T; 

end 
nonE locking+--- nonBlocking V flag; 

end 
24 end 
25 return nonBlocking; 
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Algorithm 6.10: A recursive reachability algorithm that computes the non­
blocking and ESD reachable HTG transition set of an SCM/FSM product 
structure for an integer event lookahead horizon. 

input : Product structure P, T ~ 0, initial product state 
ps E C x Q, rd :2:: 1 

output: The set of transitions in rd event lookahead for the nonblocking 
and ESD reachable product P 

1 Function reachEvents (P,ps,rd); 
2 if (isMarked(p) V isMarked(ps)) then 
3 I return ([true, false]) 
4 end 
5 if rd :::; 0 then 
6 I return ([false, true]) 
7 end 
s nbFlag ~false; 
9 esdFlag ~ false; 

10 enabledEventSet ~ nextEvents (P,ps) 
11 foreach a E enabledEventSet do 
12 nextStatesSet ~ nextStates (P,ps,a) 
13 statusSet ~ 0; 
14 foreach ns E nextstateSet do 
15 [esd, nonblocking] ~ reachEvents (P,ns,rd-1); 
16 if ( esd 1\ nonblocking) then 
17 T ~ [ps, a, ns]; 
18 transitionSet .._ transitionSet U T; 
19 esdFlag .._ esdFlag V esd; 
20 nbFlag .._ nbFlag V nonBlocking; 

21 else 
22 I nextStateSet .._ nextStateset \ ns; 
23 end 
24 if esd then 
25 I statusSet ~ statusSet U [esd, nonblocking]; 
26 end 
21 end 
28 end 
29 return ([esdFlag, nbFlag], nextStateSet, statusSet) 
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ESD reachable status, and a matching set of next states (or transitions). This set 

of transitions, along with the nonblocking and ESD flags, are used to choose the 

next controller action (Table 5.1).The algorithm presented here is based on event 

horiz;ou reach, but ca,11 be lllouifieu to be based on integer tick ti1ue, ue11::;e tin1e, or 

combination lookahead. 

6.3.4.1 ESD and State Marking 

ESD states must be indicated specially; in this implementation, they are called marked 

states. The method isMarked() is implemented by subclasses of stateObject and 

depObj. Thus, marking may be jointly specified for individual states as well as for 

models. If a model (a depObj) is marked, then all of its states are considered to 

be marked. ESD marking has to retain the hierarchical structure of the product 

and pstate classes; a hierarchical truth object is returned for product or pstate 

classes that instantiate the isMarked() method. For example, let us look at the 

hierarchical system model of Fig. 6-10. The following commands generate the logical 

data structures that represent the model and state marking illustrated in Fig. 6-15: 

modelMarking 

stateMarking 

isMarked(p1); 

isMarked(ps1); 

%p1 is the system model 

%ps1 is the current product state 

In line 2 of Algorithm 6.10, the logical OR (v) symbol is an overloaded opera­

tion. Without presenting the algorithm, the resulting marking is a element-wise OR 

between the "branch ends" of the model and the state structures; but with the re­

quirement that the individual product object and product state object truth results 

must all be true for a product model or product state to be true (AND). This special 

test for marking is conducted to determine the ESD marking, and as is evident in 

Fig. 6-15, for this example the result is true. 

For the scm class, no states are marked internally, but discrete states of an SCM 

can be designated as marked by synchronizing a FSM with the SCM to provide the 
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Model Marking State Marking 

isMarked(p I) isMarked(ps I) 

[true,[ true,false ]] false,[false,true ]] 

/ ~ / ~ 
isMarked(sl) isMarked(p2) isMarked(ss I) isMarked(ps2) 

true [true,false] false [false,true] 

/ ~ / ~ 
isMarked(m 1) isMarked(m2) isMarked(ms 1) isMarked(ms2) 

true false false true 

Resulting Marking 

Figure 6-15: Hierarchical marking structures for object and state marking and the resulting 
marking decision. 
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appropriate marking. Alternatively, as in this example, all states may be marked in 

the SCM by using the object marking to always override the state marking. 

6.4 Complexity 

The complexity of the controller synthesis computation is of utmost importance to the 

practical implementation of an online controller. In previous sections, considerable 

care was taken to outline the various approaches to reducing complexity, including 

lazy computation, and limited lookahead. This section will outline the expected space 

and time complexity of implementing the hybrid controller synthesis. 

Essentially, the process of online synthesis consists of generating a locally safe con­

troller repeatedly at different instances in space, and more importantly, time. The 

controller is assembled in a just-in-time fashion, so it is essential that the computation 

can be computed reliably, in a finite amount of time. The controller is represented 

by a directed acyclic graph that is the result of the product of a switched continuous 

models and one or more finite state models. The plant, represented by the switched 

continuous model, can be "flattened", that is, its reachable state space can be cal­

culated on a reduced time horizon combined with the limited switching framework 

(choice points) to produce a finite state model. In §4.6, the cardinality of the reach­

able state spaceR of a SCM was derived for Case I and Case II switching (Eq. 4.7 

and Eq. 4.4). Since there exists a transition in the HTG for every Xi E R, the number 

of transitions is as follows: 

where q is the length of the longest SC trajectory (the maximum reach depth) 

and r is the number of possible continuous system models (control actions) available 

at any choice point. Since both q and r are a function of the specification model, 

the plant model and the particular product state at the moment the controller is to 
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be computed, it is not possible to find the exact controller size, but it is possible to 

classify the order of the calculation in space and time. the following sections examine 

the complexity for a system modeled by a single SCM. 

6.4.1 Constant Event Reach (Plant) 

The constant event reach has a fixed number of states which is determined by integer q, 

the reach depth, and integer T, the branching factor (the number of enabled continuous 

system models). Thus, the number of transitions in the graph that implements the 

finite state model is 

providing that there are exactly T choices at each choice point. 

Lemma 6.4.1 (Space Complexity Reach (Events)) Let G = (F, r, s0 ) be a switched 

continuous model. The space complexity of the Teachability calculation with constant 

event hoTizon (Teach depth) is polynomial in r. 

Proof. With the number of events in any complete switched continuous trajectory 

(string) I~ I = q fixed, the number of transitions in the HTG is a function ofT 

Tq+l- 1 
ITRI = j(T) = ' T > 1 

T -1 

with T large, this converges to Tq. Therefore for q > 1, the space complexity is 

O(rq) which is polynomial in r. • 

6.4.2 Constant Time Reach (Plant) 

With constant time reach, the maximum reach depth in events pq, is not consistent 

for each SC trajectory ~ E R, and is unpredictable depending upon the dynamics 

and partitioning structure of the SC model G = (:F, r, s0 ). Recall that the reachable 
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state space R of an SC model of a fixed-time horizon of p 6.t , with finite number of 

partition switches per time interval of q = Jel has an upper bound of 

rpq+l - 1 
IRI :::=: , r > 1 

r-1 

which corresponds directly to the number transitionsJTRI in the HTG of G. 

Lemma 6.4.2 (Space Complexity Reach (Breadth)) Let G = (F, r, s0) be a 

switched continuous model. The space complexity of the reachability calculation with 

a fixed number of model choices (reach breadth) is exponential in pq. 

Proof. Let pq = q'. Clearly with r constant, the number of states in the reacha­

bility graph, N, is a function of q' 

rq'+l - 1 
ITRI = f(q') = r _ 

1 
, r > 1 

Therefore, the worst-case space complexity is O(rq'), that is exponential in pq. • 

6.4.3 Complexity With Control 

This section examines the computational cost of computing a controller. The number 

of possible branches that can be made at any choice point is dictated by the number 

of available dynamics r = JrJ, and by the number of these choices that are disabled 

by the specification. This disablement is unpredictable and is determined by how 

"tight" the specification is. Any other synchronous model connected to the plant may 

also constrain the plant branching behaviour, even though it may not necessarily be 

considered as part of the specification. 

• State complexity of the controller has an upper bound which is polynomial in r, 

and exponential in q. In practice, however, due to the discrete-event interaction 

of the SCM with other plant and specification models, the complexity will always 

be less. 
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• Time complexity for reachability of a directed graph is O(N), in the number of 

nodes or states of the controller, N. Therefore, time complexity for forming the 

controller, in terms of q and r, is essentially the same complexity as the state 

complexity. Therefore time complexity is at worst, exponential, but will always 

be better depending on the interaction of the SCM with other models. 

• A 'tight' specification helps to reduce complexity. The implication of a "tight 11 

specification however, is that a larger set of plant behaviours will be disabled. 

This effectively reduces the available control choices, increasing the likelihood 

of blocking, and an unwarranted emergency shutdown. 

6.4.4 Empirical Complexity 

It is not possible to analytically predict the exact complexity of controller synthesis 

for a particular system model, but it is possible to evaluate it empirically. 

To demonstrate complexity reduction, we will use the tank control example of 

§4.9 again. The plot of Fig. 6-16 shows the controller size for this example (at the 

same initial state) for a range of event lookahead horizons. Plotted on a logarithmic 

scale, the number of transitions in the uncontrolled plant increases by approximately 

one order of magnitude for an increase in lookahead horizon by 2 events. For this 

example, there is a considerable decrease in controller size due to the inclusion of the 

specification; an approximate curve fit has been applied (in blue) to the controller 

data. 

The size of the controller also varies depending on the initial condition; a simula­

tion of the tank control example repeated for 50 controller updates, shows a consid­

erable variation of the controller size as the controller is propagated (Fig. 6-17). 
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Figure 6-17: Controller size measured in number of states, number of transitions, and 
number of emergency shutdown states. 
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6.5 Summary 

This chapter has taken the theoretical concepts of the preceding chapters and de­

scribed one possible implementation. The controllers that we wish to synthesize are 

implemented online (i.e. a real time environment); thus the entire computational 

framework has been designed to efficiently achieve this goal. The primary challenge 

is to manage the computational complexity of the controller synthesis, since the con­

troller is to be implemented online. We achieve a significant reduction in computa­

tional complexity by combining the specification with the controller at design time. 

The hierarchical modeling framework allows for a "lazy" or just in time assembly of 

the controller from its constituent models. The reduction in complexity comes from 

the fact that illegal traces can be eliminated without expanding the entire flattened 

state space of the model. In fact, since we are dealing with a hybrid model that 

theoretically has an infinite state space, the entire model is impossible to compute. 

Therefore, a limited lookahead horizon technique is used to compute the reachable 

state space. The lookahead horizon may be specified in events, integer (tick) time, 

dense time, or a combination of these. 

A software package called HYSYNTH has been developed to help evaluate the ef­

fectiveness and the practicality of the theoretical approach. The HYSYNTH computa­

tional engine exploits object oriented programming techniques to implement the lazy 

computational strategy. Written for the Matlab environment, the modeling frame­

work can leverage the wide range of general and special purpose numerical simulation 

toolboxes available for Matlab. 

In the next chapter, we will examme specific application examples, in which 

H YSYNTH is used to formulate hybrid system models, compute discrete event su­

pervisory controllers, and to simulate the closed-loop system behaviour. 
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Applications 

T his chapter presents two application examples that demonstrate in more detail, 

the system modeling process and controller synthesis for hybrid systems using 

the switched continuous model. The HYSYNTH software package has been used to 

model, synthesize and simulate the controlled systems that are presented here. The 

first example, the control of liquid in two tanks, is a common benchmark hybrid con­

trol design problem. The second example is a detailed industrial example based on 

the control of a vessel and its associated systems. This example in particular demon­

strates the utility of the control techniques developed in this document, and represents 

the first time a hybrid control design has been attempted for this application. 

7.1 Tank Level Control 

Recall the example of §4.9 (p.82) in which a SCM was developed for a system consist­

ing of a tank of some fluid. In this example, we will develop a specification, synthesize 

an online controller and simulate its operation. This example points out the basics 

of control synthesis and illustrates the use of the HYSYNTH software package. 

With the plant modeled as a SCM, the desired closed loop behavior can be specified 

in the form of finite state machines. The desired behavior is modeled by the finite state 
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Specification 

Figure 7-1: Specifications for the legal behavior, and the emergency shutdown. 

models of Fig. 7-1, and is composed of two parts; the performance specification and 

the emergency shutdown behavior. The specification programs the controller to fill 

the tank to the high level then drain it to the medium level and repeat the cycle. The 

timing for this operation is specified coarsely, indicating that the cycle must complete 

in a minimum of two tick events, and a maximum of four tick events. The event set 

for the specification is ~spec = { ovf, hi, med, unf, tick}. The inclusion of the ovf and 

unf events in the specification event set forces these events to be illegal because of 

the event synchronization rule between the plant and the specification. Here is an 

example where safety is represented by blocking (of entering unsafe states). 

The ESD model specifies the ESD state marking, thus the dynamics of the ESD 

procedure are handled in the SCM, but the designation of the state as a safe shutdown 

state is handled in the finite state model (provided that all other models are also 

explicitly marked, or neutral with respect to marking). 

Using the HYSYNTH software as described in §6.2.2, a model is constructed by 

loading individual model objects form source files (stored in XML format) that have 

been designed using the graphical user interface. For this example, the following 

command sequence produces the basic model: 
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tank= scm('tank.xml'); 

esd = fsm('esd.xml'); 

spec= fsm('spec.xml'); 

% create scm from each source file 

p = product(tank,spec,esd);% create product object 

The product object p is the basis for the controller synthesis. To synthesize a 

controller, the current state and time of the system are initialized by creating the 

initial continuous product state for the SCM 

xO = ctsState(26); %the initial cts variable 

tO = ctsState(O) % initial simulation time 

cO pstate(xO,tO); % 

Now, the initial product state for p, taking the default initial conditions (as defined 

by the FSM) is: 

ps = pstate(cO,initial(spec),initial(esd)); 

The hybrid transition graph of a controller for an eight event lookahead is gener­

ated by running a reachability command on the product system object: 

[struct] = reachEvents(p,ps,8); 

The reachEvents () command executes an eight-event reachability on the product 

system, starting from the argument initial product state. The controller update time 

(corresponding to the tick event) has been set to 90 seconds for this example. If 

successful (a controller exists with respect to the specification), a data structure 

struct is returned containing the set of legal next events and the ESD reachability 

and nonblocking status of each subgraph. The size of this graph is too large to 

present here, but a representative example constructed using a three event lookahead 

is given in Fig. 7-2. This graph has been laid out using the neato engine, part of 

the AT&T Graphviz graph layout suite (Gansner et al. 2002). The result is that 

the initial state of the tree is in the center of the graph, with the immediate legal 

control actions surrounding it like spokes from a hub. By examination, there are 

three possible control choices. the transition to the upper right and the transition 
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to the lower left (both generate tick output events) are priority 1 subgraphs because 

they each have at least one nonblocking (complete) trajectory, in addition to being 

able to reach an emergency shutdown state (in blue). There is a priority 2 trajectory 

available, directly to the Hhutdown state (the esd output event). 

7.1.1 Example: ESD Controller Operation 

To illustrate how a controller will enforce a safe shutdown, we modify the single 

tank model to include a deliberate shutdown program. This programmed failure is 

modeled by the FSM of Fig. 7-4, which after three hi events blocks the system from 

proceeding. 

In the simulation (Fig. 7-5), the programmed failure forces the controller to issue 

a shutdown command sd, which opens the purge valve, bringing the system to an 

ESD state (tank drained, h ::; 0.5). The size of the controller during this simulation 

is the subject of Fig. 7-6. Once the controller has forced a shutdown, the controller 

size shrinks as fewer available trajectories are available, and the system closes in on 

the ESD state. 

7 .1. 2 Controlling Two Tanks 

More complex dynamics are generated by this system if a second tank is added to 

the plant (Fig. 7-7). The two tank system is widely used as a benchmark for con­

trol techniques due to the richness of dynamics that it presents. A survey of the 

literature shows a wide range of control approaches that have been taken, including: 

robust control (p, synthesis) (Smith and Doyle 1988), Lyapunov-stable switched sys­

tems approach (Ecker and Malmborg 1999), timed and hybrid automata (Stursberg, 

Kowalewski, Hoffmann and Preusig 1997) and a discrete abstraction and supervisory 

controller in (Suet al. 2003). 

Some modifications to the SCM are required, since an additional control valve has 

been added. A second purge valve, also labeled P has been added as well, to permit 
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omitted. 
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Figure 7-7: Two tank system schematic. 

177 



Table 7.1: Valve control structure 
Controls 

CJin v1 v2 V3 p 

21 oa 0 0 0 
22 0 0 1 0 

23 0 1 0 0 

24 0 1 1 0 

25 1 0 0 0 

26 1 0 1 0 

27 1 1 0 0 

2s 1 1 1 0 
sd 0 0 0 1 

avalve open = 1, closed = 0 

the emergency shutdown of the two tanks by draining them (Table 7.1). We will 

assume the operation of these valves is slaved to the sd input event. The actuator 

control vector is adjusted accordingly, to allow for the added control valve, V3 . 

V1,V2,V3,P E {0,1} 

Uc [V1, V2, V3, P]T 

The continuous dynamics of the tanks are modeled by the following differential 

equation: 

[ 

dhl l [ VPiFi h = dt = qmi - pARtz 

dhz 0 VPifi 
dt pARtz 

0 - VPiFi l pARtp U 

- VPiFi - VPiFi c 
pARt3 pARtp 

(7.1) 

where Rt2, Rt3, RtP are the turbulent resistances of valves V2, V3 and P respectively. 

Additional continuous dynamics require additional functionals and output events; 

these are summarized in Table 7 .1. 

There are nine sets of possible continuous dynamics once the possible control 

vectors Uc specified by Table 7.1 and the dynamics of Eq. 7.1 have been combined. 

As before, each actuator setting, along with a set of state partitioning functionals, 

forms a separate CSM which will be embedded in the switched continuous model. 
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Table 7.2: Output events, with associated functionals and hypersurface crossing directions 
for the two tank control synthesis problem. 

cr out Functional 

ovf1 F1(h) = h1 - 33 
h'il F2(h) = h1 - 31 
med1 F3(h) = h1 - 18 
unf1 F4(h) = h1 - 15 
ovf2 F5(h) = h2- 33 
hi2 F6(h) = h2- 31 
med2 F1(h) = h2- 27 
unf2 Fs(h) = h2- 20 

Zero-crossing 

i 
T 
1 
1 
i 
i 
1 
1 

Alarm 

over filled (tank 1) 
high 

medium 
under filled 
over filled (tank 2) 
high 
medium 

esd F9 (h) = (h1 - 0.5) /\ (h2- 0.5) 1 
under filled 
emergency shutdown 

The CSMs corresponding to input events i 1 to i 8 share the same set of functionals 

W1 = {F1, F2, F3, F4, F5, F5, F7 , F8 } and the CSM for emergency shutdown operation 

(both purge valves P open) has w 2 = { F9}. The functionals are defined in Table 

7.2 along with their associated output events. In this case, the esd output event is 

signaled when both tanks are drained (h1 , h2 :::; 0.5). 

The specification for this system will be similar to the single-tank system; we wish 

both tanks to cycle between an upper (hi event) and lower limit ( med event). The 

fill/drain cycle timing is specified in coarse (tick) time 2b..t :::; t:::; 4b..t, where b..t = 90 

seconds. 

In Fig. 7-8 the finite state models are given for this specification. The HYSYNTH 

commands to build the model are as follows: 

s1 = fsm('spec1.xml'); %load the tank 1 specification 

s2 = fsm('spec2.xml'); %load the tank 2 specification 

spec = product(s1,s2); %create the spec product object 

plant = scmodel('tank.xml'); %two tanks SC model 

esd = fsm('esd.xml'); % esd specification 

p1 = product(plant,spec,esd);% Create the controller model 

The result of these commands is the product model structure of Fig. 7-9. A 
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the fact that the controller choice mechanism is random. 

7.2 Manoeuvring of a DP Vessel 

In this section, we will introduce a control application that requires more complex 

embedded continuous dynamics than the previous examples. This application also 

is used to demonstrate a controller with a human choice mechanism: an example of 

human-in-the-loop control. 

Dynamic positioning (DP) is defined in the marine engineering community as the 

automatic control of a vessel's position and heading using it's thrusters. The DP con­

trol system may also be used in combination with the vessel's rudders, and passive 

restraints such as a mooring system. Typically, DP systems are installed on vessels 

that need to automatically maintain station for long periods of time in a variety of 

weather conditions. For a general, non-mathematical treatment of the subject, the 

reader is referred to (Morgan 1978) and (Hancox 2001). For a mathematically rigor­

ous version, the reader is referred to (Fossen 1994). Almost all theoretical study of 

DP control has been devoted to various types of continuous control strategies, par­

ticularly optimal control. These techniques have been refined and in practical use for 

many years. As in many other industrial applications, the challenge for the "next gen­

eration" of ship control systems is the integration of DP control with other shipboard 

control functions, such as power management, which require logic and appropriate 

sequencing (Weingarth 2002), (Millan, Smith and O'Young 2002). Currently, such 

functions are served by highly skilled operators. 

A challenging control problem is the FPSO and shuttle tanker offioading applica­

tion. In many areas of the world, the oil from subsea oil fields is pumped and stored 

by a specialized vessel known as a floating production storage and offioading vessel 

(FPSO). The FPSO is usually moored over a manifold on the sea floor from which 

the oil is pumped. Risers (large flexible transfer hoses) carry the oil from the subsea 
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tanker operation and synthesize a control system for a weathervaning manoeuvre. 

7.2.1 Vessel Power System 

On most modern vessels, the propulsion system is powered from an electrical gener­

ation system. As a result, the performance of the power system directly affects the 

propulsion, and thus the ability of the DP system to maintain station. For this reason, 

the DP control system is often integrated with the power generation system so that 

these systems may be coordinated. For the sake of this example, we will assume a 

power generation system having 2 main generators (MG1 and MG2) and a propulsion 

system with 4 steerable propulsion units, T1- T4 (called azimuthing thrusters). The 

azimuthing thruster units are designed so that they can be turned to direct thrust in 

the appropriate direction relative to the vessel. In Fig. 7-17 the electrical schematic 

for the power distribution and propulsion systems is depicted for a hypothetical DP 

vessel. Normally, the two main generators with rated capacity of 15 Megawatt (MW) 

supply the main propulsion bus via the transformers TR1 and TR2. Switchgear at 81 

and 82 enable the generators to be taken off line. A backup generator, designed for 

so-called "hotel" load (i.e. lighting, domestic loads) can be placed on the propulsion 

bus in event of emergency via switch 83. The azimuthing thrusters, are supplied by 

thyristor drives SCR 1 - 4, which control the propellor speed. Having azimuthing 

capability, the thrusters can be rotated continuously through 360 degrees to direct 

their thrust in the most appropriate direction. 

For this example, we will assume that the main generators are running and that 

switching of generators onto the bus is instantaneous. While it is possible to model 

the power system dynamics, they will be neglected for this example. 

7.2.2 Vessel Manoeuvring Model 

For purposes of manoeuvring control, a vessel model can be limited to 3 degrees of 

freedom (DOF), since we are only interested in controlling yaw angle, surge displace-
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Figure 7-17: The power distribution and propulsion load schematic for a hypothetical vessel. 
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Figure 7-18: Vessel cartesian coordinate systems. Body coordinates are denoted by subscript 
b and earth coordinates by subscript e. 
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ment and sway displacement. Roll and pitch angles and heave (vertical) displacement 

cannot be controlled and so are unnecessary to model. The rotation of the vessel 

(about its centre of gravity) within the plane is North-referenced and is called head-

ing, <.lcnotc<.l '!f.;e. The rotational component in tho body reference frame '1/Jb, is the 

same as heading, but to distinguish it from the absolute coordinate, it is called yaw. 

In general, the subscript e is used to denote earth-referenced (inertial) coordinates 

and the body referenced coordinate frame is denoted by subscript b. Let the vector 

Xe represent the earth-referenced 3 DOF position vector of the vessel and Xb denotes 

the position 3 DOF vector in the body frame: 

X [ Xb Yb '1/Jb ] 

Xe [ Xe Ye '1/Je ] 

Since heading angle and yaw are equivalent, we will use 'ljJ as the default rotation 

about the center of gravity (CG) of the vessel. The coordinate transformation J('ljJ) 

takes the earth referenced measurements into the body frame of reference: 

I Xb I I c~s( 'ljJ) 
Yb = sm('I/J) 

'1/J 0 

sin( '1/J) 

-cos( '1/J) 

0 

We define the velocity and acceleration vectors accordingly: 

v !x = [u v ¢] 
v !v=[uv¢] 
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The simplified (linear) dynamics of a freely-floating (i.e. unmoored) surface vessel 

can then be characterized by the following vector differential equation: 

Mv+Dv=r (7.2) 

r is the force and moment vector acting upon the vessel that arises from the sum 

of the control forces, Tc and the environmental forces (current, waves and wind), Te, 

each defined in the inertial frame. 

T=Tc+Te 

M is a positive definite matrix (M = MT) containing the inertial and hydrodynamic 

added mass terms for the vessel as follows: 

0 

m+Yv 

mxc + Yr 

where m is the vessel's mass, Izz is the yaw moment of inertia, Xu, Y,:,, are the 

hydrodynamic added mass in the surge axis, sway axes respectively and Nr- is the 

added moment of inertia in the yaw axis. The off-diagonal terms are symmetrical 

(this follows, since the vessel is symmetrical about both the surge and sway axes), 

and feature a hydrodynamic added mass term Yr due to the cross-coupling between 

the sway and yaw axes. mxc is present when the vessel's control point (CP) 1 is not 

the same as the center of mass (CG) of the vessel. The longitudinal distance between 

CP and CG is x 0 is (Fig. 7-18). 

1The control point is the point in the body coordinate frame which is positioned by the DP 
controller. 
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Table 7.3: The FPSO vessel particulars. 
Vessel Particular I Full Scale 

Length Overall (LOA) 290m 
Displacement, \7 193,000 m3 

Mass 197,()32 tonnes 
Yaw Radius of Gyration 57 m 
Beam 45 m 
Longitudinal CG 145 m 

D is a matrix containing linear hydrodynamic damping terms: 

I 
Xu 0 0 

D= 0 Yv Y;, 

0 Nv Nr 

the diagonal terms Xu, Yv and Nn are the surge sway and yaw damping. The 

off-diagonal terms Y,. and Nv are respectively, the sway-yaw and yaw-sway damping 

terms. 

Assumptions that have been made to simplify this model are that centripetal and 

Coriolis forces are negligible because yaw rates are relatively small, and hydrody­

namic added mass and damping are constant. Since most DP vessels are designed 

for stationkeeping, and vessel velocities are low, this assumption is also reasonable. 

The hydrodynamic added mass and damping can be determined by specialized soft­

ware, estimated from existing ships for which these parameters are already known, 

or determined empirically by model testing or full-scale ship trials. The detailed ves­

sel particulars for the vessel that will be simulated are given in Table 7.3. For the 

simulation, we will use non-dimensional quantities for convenience. The so called bis 

system ((Fossen 1994), p. 94) is a convenient system for low-speed manoeuvring mod­

els, since it is not based on vessel forward speed as other systems are. The bis system 

non-dimensional scaling factors for a surface vessel are given in Table 7.4. Typically, 

the vessel LOA is used for the length factor L, g is the acceleration due to gravity, p 
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Table 7.4: Nondimensional scaling factors. 
Quantity I Scale Factor 

Mass 
Length 
Linear Velocity 
Angular velocity 
Force 
Moment 

Time 

p\J 
L 
ygL 

v1 
pg\J 
pg\JL 

If 
is the density of sea water (1025 kgjm3

). As an example, the non-dimensional mass 

of the vessel at full displacement is m = 1. 

7.2.3 Closed Loop Control 

For this example, the discrete event controller will supervise a closed loop continuous 

controller (i.e. the DP control system). Therefore, the switched continuous model will 

be developed around CSMs that model the closed-loop dynamics of the vessel. Figure 

7-19 is a block diagram of a typical DP control system. The system is commanded 

with a 3 DOF setpoint command in earth referenced coordinates. The vessel's 3 

DOF position Xe is measured with a variety of sensors and passed through a state 

estimator2 . The error signal is converted to body coordinates, and control gains 

are applied to determine a controller demand. Measurements of the wind speed 

and direction are used to calculate a feedforward wind load, which is summed to 

the controller demand. A thruster allocation block determines how this controller 

T c demand will be divided amongst the available thrusters, taking the geometry of 

their hull arrangement into account. Not pictured in the figure is the optimal state 

estimation current and wave generated forces and moment; these are summed into 

the controller demand. 

2 Typically, a Kalman filter is used to remove sensor noise. 
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Figure 7-19: Block diagram of DP control system. 

7.2.4 Thruster Allocation 

Azimuthing thrusters are ideal actuators since they can he turned to d irect <he nec­

es;ary force in any desired direction. In Fig. 7-20 the vessel <hruster arrangement 

is pictured. The relation between Ute control dernand and the individual actuator 

demands is as follows 

where 7th is a vector of thruster demands in Cartesian coordinates, and Tu is the 

thruster a llocation llUI<rix, defined as follows 
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Figure 7-20: Vessel thruster arrangement and coordinate reference frame. 

and 

[I~, 
0 1 0 1 0 1 

~~I Ta = 1 0 1 0 1 0 (7.3) 

l1x l2y l2x l3y l3x l4y 

In 7.3 matrix entries of 1 indicate that 100% is available from the thruster if it is 

rotated to the appropriate direction. The bottom row are the lever arm distances 

that generate moment about the CG. From Fig. 7-20, the lever arms are l 1y 

l2yi hx = l2xi l3y = l4y = 0 , and filling in the values with non-dimensional units 

[ 

1 

Ta = 0 1 

0.1 0.45 

0 

Solving for the unknown Tth requires finding the Moore Penrose generalized inverse 

of Ta 

where T1 is the generalized inverse of Ta. Thrust vector Tth can be converted from 

Cartesian coordinates to an azimuth angle command and thrust demand pair [a T J T 
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Table 7.5: Example vessel thrust limits as a function of power system configuration. 
Electrical Configuration I Total Thrust I Thruster Saturation 

One Main Generator, 15 MW 3 MN 750 kN 
Both Main Generators, 30 MW 6 MN 1.5 MN 
Standby Generator 5 MW 1 MN 250 kN 

for each thruster as follows 

The thrusts are minimal in a least-squares sense, but may exceed the thrust limit 

for the actuator. In a real thruster, the maximum thrust is dependent on many 

factors, including the speed of the thruster through the water and the proximity and 

wake direction of other thrusters. In this simulation, the thrusts T1_ 4 will simply be 

clamped at a saturation limit which will be determined by the electrical bus power 

available. For this simulation, the thrust/electrical power relation is summarized in 

Table 7.5. 

The various modeling details given in these sections provide for a reasonable ship 

simulation model. In the next section a DES supervisor for the tanker will be devel­

oped. 

7.2.5 Supervisory Controller Design 

We will design a supervisory controller for an FPSO tanker offioading system. The 

coordinate frame and general arrangement of the vessels and safe operating areas is 

detailed in Fig. 7-22. Since the FPSO is attached to a mooring and rotates about 

this point, it is convenient for the supervisory controller to command the tanker and 

FPSO in a rotating coordinate frame We now redefine the earth-referenced Cartesian 

coordinate frame to a polar coordinate frame centered at the FPSO mooring point 

where r is the radial distance of a vessel ( CG) from the origin, and II :::; f) :::; II 

198 



0 0 Tl 
0 • T2 
0 0 T3 1.S 0 T• 
0 0 To1al 0 

z 2 

\o*~ :< -~ 
li 
ti I.S 
c 

I 
~ ' r 

600 
Time(s) 

Figure 7-21: (ndjvidual thru.>~tll for a su•p ma.neou\-cr ln yaw. ~~~~l~ onf' 1enera.tor. 

199 



is the angle of rotation, while '1/J is the vessel heading, unchanged from the other 

coordinate frames. All ranges r in this diagram are nondimensional. The scenario 

we are designing a controller for is a weathervaning manoeuvre that only the tanker 

carries out. When the flare is lit on the FPSO, the forward deck temperature of the 

tanker can rise to dangerous levels. the written operating procedures (Allan 1999) 

require that the operator of the FPSO contact the tanker and request that it move 

in order to minimize the deck heating. Since the flare is on the starboard side of the 

FPSO, movement of the tanker slightly to the port side of the FPSO's stern has the 

desired effect. during this move, the appropriate separation between the vessels must 

still be maintained to prevent collision or hose breakage. In Fig. 7-22 the green zone 

is the normal safe area in absence of a flare. The red-coloured zone is a "keep-out" 

area due to subsea risers that may be damaged by the tanker's thrusters. The blue 

area to the port side of the FPSO is the safe area while the flare is operating. We 

will design a controller to enforce safe operation during a flare event. 

7.2.5.1 Partitions and Output Events 

We begin the modeling process by defining the partitioning functionals for the system 

SCM in Table 7.6. In this case, we use a partial state vector 

Note that we are using the polar coordinate frame with origin at the mooring point 

of the FPSO. Events tfp and tf s signal when the vessel longitudinal axis is out of 

alignment with the coordinate frame; the goal is to keep the bow of the tanker aimed 

towards the FPSO at all times3 • The esd emergency shutdown is assumed to be 

achieved once the vessel has safely reached a radial distance rsd 2: 1.85. 

3 Alternatively, the origin of the polar coordinate frame could be placed at the stern of the FPSO. 
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Table 7.6: Output events, with associated functionals and hypersurface crossing directions 
for the DP vessel control synthesis problem. 

a aut Functional Zero-crossing Alarm 

tel F 1 (x) = r- 1.25 l too close to FPSO 
tfb F2(x) = r- 1.45 I too far from FPSO 
o3 F3(x) = B + 1.4 i riser area guard 

o4 F4 (x) = B + 1.9 l enter flare safe area from green 
o5 F4 (x) = B + 2.1 l cw exit flare safety area 
o6 F4 (x) = B + 1.8 i ccw exit flare safety area 
tfp F7 (x) = n- ( '1/J- B) - 0.2 i misalignment to port 
tfs F8 (x) = 1r - ( '1/J- B) + 0.2 l misalignment to starboard 
esd F9 (x) = r- 1.85 i emergency shutdown, fall back 
tick F10 (x) = sin(2nt/ b.t) l controller update 

Table 7.7: Control actions available to the DES supervisor. Controls are specified as setpoint 
jog commands to the DP controller, and are in non-dimensional units and the FPSO polar 
coordinate reference system. 

Controls 

a in rjog Bjog '1/Jjog g Description 

0:1 + 0 0.1 0 1 0 0 jog cw with one generator 
al- 0 -0.1 1 1 0 0 jog ccw with one generator 
a2+ 0 0.15 0 1 1 0 jog cw with two generators 
0:2- 0 -0.15 1 1 1 0 jog ccw with two generators 
fwd 1 -0.1 0 1 0 0 move ahead with one generator 
back 1 0.1 1 1 0 0 move astern with one generator 
hold 0 0 0 1 0 0 hold station with one generator 
sd 1.85t t t 1 0 1 shutdown on emergency power 

j- m absolute coordmates; j: md1cates a don't care mput 

7.2.5.2 Controller Actions 

The control actions available to the controller for this model are listed in Table 7. 7 

and are associated with the corresponding input event labels ain E L:in· The controls 

are the commands that will be sent to the DP control system. The controls r1, e1 

and '1/J 1 are "jog" commands which are summed with the current state of the system 
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to develop an absolute setpoint for the DP controller. 

The control indicated by g = [ S1 S2 S3 J E { 0, 1} is a vector corresponding to the 

generator switchgear of Fig. 7-17. Within the controller simulation, the effect of this 

switchgear control input is that it sets the saturation limit of the thrusters as per 

Table 7.5. 

7.2.5.3 Modeled Environmental Load 

In heavy environmental loading, it is necessary to align a vessel with the prevailing 

direction of this load in order to minimize the thruster effort required to stay on 

station, and in the case of the moored vessel, it reduces the vessel motion. For 

our scenario, we are assuming that the FPSO is aligned with this environmental 

load. When the tanker moves around to avoid the flare, it encounters a load that 

progressively increases in proportion to the misalignment of the vessel with the load 

vector. As the tanker moves from out of the "shadow" of the FPSO and its beam is 

exposed to the waves and wind, this will tend to drag the vessel off station. We will 

assume that this load is a modeled effect. Thus, this force is predictable and it can 

be embedded in the continuous system models. 

7.2.5.4 Specifications 

For the first example, we will direct the vessel to rotate from its initial position, with 

a heading of '1/J = 1r /2 and positioned directly behind the FPSO in the green zone 

(Fig. 7-22). The assumption is that the FPSO has communicated to the tanker 

that it will commence flaring gas so the tanker must move to the flare safe area. 
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Figure 7-23: Inadequate specification with no timing. 

Typically an offshore marine operation like this has a set of written procedures for 

the vessel operators to follow; an example of this is the Terra Nova FPSO/Tanker 

Joint Operations Manual (JOM) (Allan 1999). These procedures contain detailed 

written descriptions of various activities that involve both vessels, and contained 

within this manual is a specification of the maximum flare dwell time and the safe 

area for the tanker. Essentially we wish to take the descriptive procedure and encode 

it as a specification. 

There are a variety of approaches to designing an effective specification, and thus a 

corresponding online controller. With no knowledge of the system, the least restrictive 

specification may be appropriate as a starting point; starting with a very restrictive 

specification may lead to a non-existent controller. The least restrictive specification 

for this system is to request an o4 event occur (Fig. 7-23). Adding the following 

events to event set as follows, 

~ = { o4} U {tel, tjb, o3, o5, o6, tf s, tfp} 

effectively prohibits the included events from occurring. This specification enforces 

safety, but there is no guarantee that the controller will find its way to the flare safe 

area because there is no time explicitly mentioned (the tick event is not included). 
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Effectively this means that the system has been commanded to reach the safe area but 

nothing has been said about the timing of this activity. This specification is unsuitable 

since there is no upper bound on the time that the vessel can remain in the green 

:z;one while the flare is operating. An additional problem with this specification is 

that the controller synthesized with this approach will have to use a low time or 

event lookahead to avoid the exponential growth in controller size. 

A different approach is to choose specification that includes some specific timing 

information. The designer must specify to a greater or lesser degree the time at which 

the flare safe zone will be entered, since if the vessel remains too long in the vicinity 

of the flare, it will violate the system safety. However, too "tight" a specification 

can lead to blocking and an unnecessary emergency shutdown. Too "open" a spec­

ification, and controller complexity may become a problem. One possible approach 

is to "calibrate" the trajectory by manually running simulations offline to test the 

time required to reach safety from a variety of initial conditions. The specification 

can then be tailored to admit the trajectories with the "calibrated" timing. Such 

"over-specification" defeats the purpose of this type of online controller synthesis, 

since the set of control solutions is decided offline. This approach is shown in Fig. 

7-24(b). In this specification, an upper limit of 6 events has been specified for the 

vessel to move to the flare safe area. Some flexibility has been built in by allowing 

for it to take place sooner in 5 events. Without calibration, it is possible that this 

specification may eliminate control trajectories that will take the vessel to the flare 

safe area before this time. 

The specification of Fig. 7-24(b) does not specify a lower time limit for the 

manoeuvre, but effectively is the same as that of Fig. 7-24(a) in terms of complexity. 

By not specifying the lower limit, we have made no presumption of the vessel initial 

condition or dynamics. The upper bound on the specification time (6 events) is 

derived not from the vessel dynamics, but is based on the maximum time the vessel 

can linger in the green zone while the flare is lit, which is derived directly from the 
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Figure 7-24: (a) An example of overspecification, (b) a better specification. 
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operational procedures manual (the JOM). This will be the specification used for the 

controller synthesis and simulation. 

7.2.6 Results 

The modeling information of the preceding sections was used to develop a switched 

continuous model. Using HYSYNTH to simulate the closed-loop system, the following 

test results were obtained for supervisory control of the weathervaning manoeuvre. 

The tick time used for these simulations was D.t = 100 (unitless). 

7.2.6.1 Control With Random Choice 

Running a simulation of the weathervaning manoeuvre using the specifications of 

Fig. 7-24, generally will result in a shutdown if the event or time lookahead horizon 

is not large enough to include state q6 of the specification. The control synthesis 

has to have large enough lookahead to perceive that state q6 is blocking if the vessel 

cannot subsequently reach the flare safe area (state q18 ). With an event or time 

lookahead that is too short, the control system is not able to distinguish between 

an output string of 5 ticks that is moving to safety from a an output string that 

is simply staying within the green zone. This is clearly illustrated in Table 7.8, in 

which the controller has a 5 event lookahead combined with a random control choice 

mechanism. The table is read from left to right: e.g. at step 1, there are a total of 

IAI = IAe + Aenl = 6 control actions available for the operator to choose amongst. 

The second and third columns are the legal input event subsets, that are eligible as 

control actions: recall that Ae is the set of control actions that lead only to ESD and 

Aen is the set of events that lead to ESD reachable and nonblocking states. 

Starting at Step 1, the controller has 5 priority 1 choices (ESD reachable and non­

blocking), so using a random choice mechanism, it actually selects at which is driving 

with both generators in the wrong direction. It continues to do this action in the next 

step, when suddenly the specification has reached a block in the lookahead; i.e. o4 
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Table 7.8: A summary of the vessel controller simulation, see Figure 7-25. 

Step I Ae I Aen I Sizet I a in I a out 

1 {sdd} { o:1 , o:i, o:2 , o::j, hold} 4503 o::j tick 
2 {sdd} { o:!, o:i, o:2, o:t, hold} 4378 CY+ 

2 tick 
3 { sdd, o:;:-, o:i, o:2, o:t, hold} VJ 1319 o:+ 

2 tick 
4 { sdd, o:;:-, o:i, o:2, hold} 0 193 CY2 tick 
5 { sdd, o:1, o:i, o:2, o:t, hold} 0 59 CY+ 

2 tick 
6 { sdd, o:1, o:i, o:2, hold} 0 9 CY2 tick 
7 {sdd} 0 1 sdd esd 

t in graph transitions 

can no longer be synchronized. The available control actions all lead to shutdown, 

Aen = 0. Fortunately, by constructing the controller as emergency shutdown reach­

able, at least the system will be able to shutdown gracefully. The remaining control 

actions continue to select at random from set Ae and the system shuts down at Step 

7. This simulation is pictured in Fig. 7-25, in which the top trace is a plot of the 

earth-referenced position vector Xe versus time (all quantities are non-dimensional). 

The controller actions and the resulting output events have also been placed on the 

plot. The upper line of text are the output events, while the lower line is the string of 

controller actions or input events. In Fig. 7-25 the lower trace is a plot of the vessel 

velocity as a function of time. A plan view of the tanker's movements of Fig. 7-26 

aids interpretation of the vessel actions. 

7.2.6.2 Human In the Loop Control 

The fundamental premise of human in the loop control is that the human, the opera­

tor, has some sort of system knowledge which enables him/her to make an "informed" 

decision. The strength of our control approach is that the controller can assist an op­

erator by removing from the entire set of available control choices the ones that lead 

unambiguously to unsafe states. Presumably the controller can also consider many 

more system trajectories than the operator can in the same amount of time. Yet, 

without a useful choice mechanism as we saw in the previous section, the controller 
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Figure 7-25: Simulation with inadequate event horizon. Using a random choice mechanism, 
the system goes to ESD. 
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Figure 7-26: An overhead view of the shutdown. 

is unable to drive the system to the desired objective unless it is very carefully speci­

fied, and/or the event or time lookahead is large enough to encompass enough of the 

specification to decide unambiguously between blocking or safe outcomes. Fig. 7-27 

presents a block diagram of the HIL supervisory control hierarchy that is implemented 

in this section. 

In this example, the specification of Fig. 7-24(b) was used again for control syn­

thesis, but this time with a human operator as the selection mechanism. With an 

event lookahead of 4 events, this simulation demonstrates that some operator knowl­

edge combined with the DES controller easily outperforms the automated random 

choice mechanism. The simulation was produced by constructing the ESD reachable 

controller and giving the operator an opportunity to select the control action at each 

controller update. The system is advanced through a simulation to the next time 

step and then the process repeats itself by computing the controller for the new time 

step, and so on. 
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Figure 7-27: A block diagram of the HIL control arrangement for this example. 

211 



Table 7.9: A summary of the HIL controller simulation, see Figure 7-28. 

Step I Ae I Aen I Sizet I !Yin I IYout 

1 {sdd} {a1 , at, a 2 , a!, hold} 4539 al tick 
2 {sdd} {a;:-, at, a2, at, hold} 4486 al tick 
3 { sdd, at, a!} {a;:-, a2, hold} 1507 a;:- tick 
4 { sdd, a;:-, at, at, hold} {a2} 304 az tick 
5 { sdd, a;:-, at, at, hold} {a2} 66 az tick 
6 { sdd, a;:-, hold} {a2} 42 az tick 
7 {sdd} {a2} 130 az 04 

8 {sdd} {a;-} 444 o:z tick 
9 {sdd} {a!, at, a;-, ai, hold} 1448 hold tick 

10 
t graph size in transitions 

The result of a HIL control simulation is summarized in Table 7.9. A knowledge­

able operator knows that the vessel must move to port to reach its destination (the 

flare safe area), this rules out the actions that will carry the vessel away from the 

target, at, at, and the action that does nothing, hold. The event a1 is selected by 

the operator because it saves fuel by using only one generator. This same decision 

approach continues to be exercised for the next two steps. At step 4 though, the op­

erator is suddenly presented with the fact that if the system is to continue, the second 

generator must be switched onto the propulsion bus, and so o:2 must be selected. For 

the next 5 steps, the o:;- event is the only choice that permits the vessel to continue to 

operate. After the control action of Step 7, the vessel crosses into the flare safe area, 

signified by the o4 event. Once within the area, the choice of control actions returns, 

and the size of the controller grows as more legal moves are available again. For the 

remainder of this run (15 controller updates), the operator continues to select control 

actions that are in the Aen column and that are reasonable for stationkeeping, i.e. 

moves requiring only one generator. 

A picture of what happened during this simulation is given by the time series of 

the position and velocity pictured in Fig. 7-28. A plan view of the two vessels during 

the manoeuvre is given by Fig. 7-29. 
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7.3 Remarks 

The continuous system model of Chapter 3 was proposed as the basis for modeling 

the continuous dynamics of a hybrid system. Formally, the CSM accommodates 

systems whose dynamics can be modeled by nonlinear ODEs. The only constraint 

placed on these functions is that they be Lipschitz-continuous, in order to ensure 

finite discrete abstractions, but this is a theoretical consideration. The numerical 

solution of ODEs is well understood, but as any numerical solution is simply an 

approximation of the theoretical system model, there has to be a "leap of faith"; i.e. 

since there is theoretically a solution to an ODE, then the numerical solver must find 

an approximation of the solution that is sufficient for our purposes. Some of the issues 

of course are: 

• Will the solver terminate?, 

• What type of solver should be used?; i.e. one must choose appropriate stiffness, 

solver tolerance, etc. 

• Will the solver locate the events? 

So clearly, even ODE solvers have limitations that make the fundamental jump 

from theory to implementation uncertain. 

Given that there will be implementation-specific issues with our control framework 

implementation, this implies that the theory should be used as a guide only. While 

nonlinear ODEs may be appropriate for modeling many types of continuous systems, 

is it possible that our computing framework may accommodate a broader range of 

continuous simulation tools? 

In many industries, application-specific simulation tools already exist; if control 

system designers are to be convinced to use a hybrid control design package, they 

will not be willing to alter their simulation tools to match the problem. Within our 
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framework, it may be possible to encapsulate existing simulation tools, provided they 

meet some qualitative, but not theoretically rigorous conditions. 

Starting with the assumption that there exists a continuous simulation tool that, 

given an initial condition and some parameters, produces a numerical solution for a 

particular system model. Then, we wish to specify the conditions that this simulation 

is comparable to a system of ODEs an numerical ODE solver. A simulation tool, when 

given a set of parameters: 

1. must always produce an output (solution existence), 

2. must be repeatable for the same parameters (solution uniqueness) 

3. the solution can be computed in less time than it takes the actual system to 

execute (real-time implementation). 

Whether the latter requirement (3) is met, hinges primarily on the complexity of 

the simulation and the extent to which the specification limits the legal trajectories 

of the plant. The computational hardware including the installed memory and CPU 

power may also influence (3) to a lesser extent. 

If a simulation tool meets each of the above requirements, then with suitable 

wrapper functions (object methods), an SCM can be built around it, and an online 

hybrid controller is feasible. 

We have demonstrated in the vessel control example of §7.2, that a complex con­

tinuous simulation may be embedded seamlessly into the SCM framework and the 

online controller synthesis works as expected. This vessel simulation appears to con­

form to practical requirements 1 and 2 above, and may even meet requirement 3 given 

a choice of appropriate lookahead horizon, control choice mechanism and CPU power. 

For this size of vessel, the actual controller update time D..t is 

t>t ~ ~ * 100 ~ 5:l8 seconds 
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Given the current state of computing hardware, it is conceivable that such a controller 

update time is more than adequate to implement this controller in real time. Clearly 

this would be the subject of future work. 

7.4 Summary 

This chapter has demonstrated the utility of the switched continuous modeling frame­

work as a basis for simulation and control synthesis for hybrid systems. The theoreti­

cal results of the preceding chapters have been confirmed, particularly those regarding 

controller complexity and guaranteed controller safety. Some of the issues that have 

been dealt with in this chapter are: the process of developing a SCM, the encapsu­

lation of the continuous variable models, the selection of appropriate specifications, 

and the effect of control choice mechanism on the system safety. The concept of the 

controller being able to maintain safety in the limited lookahead environment has 

been demonstrated through emergency shutdown examples. 

The vessel control application involving human in the loop control points to the 

efficacy of combining a very simple heuristic in the control choice mechanism with 

the "brute force" of the exhaustive state-space search to yield better nonblocking 

controller behaviour despite the limited lookahead horizon. Furthermore, the heuristic 

might also be exploited to guide the search of the state space, thereby reducing the 

computational burden. 
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Conclusions and Future Work 

8.1 Contributions 

T his thesis develops four main themes with respect to hybrid system control: 

modeling, controller synthesis, computation and application. We will now high­

light the contributions in each of these areas. 

8.1.1 Model 

The SCM model (Chapter 4) is designed for the automated synthesis of discrete 

event supervisory control systems. This model admits switching of continuous system 

dynamics in both a time and state-dependent fashion and retains the full generality 

of nonlinear continuous model dynamics. This is a significant advantage over most 

other hybrid synthesis and verification techniques that require the hybrid system 

models to use simplified continuous dynamics. The SCM also admits the inclusion 

of generalized simulations, enabling system designers to leverage existing numerical 

simulation tools, by embedding them in the SCM. 
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8.1.2 Control Synthesis 

With the online controller, prior to each control decision, a hybrid transition graph 

is constructed based on a prediction of the discretized continuous dynamics for each 

eligible continuous system model in synchronism with other DES plant and specifica­

tion processes. This graph is safe by design, because the safety specification was used 

to construct the graph. This graph is further pruned to eliminate blocking traces; 

i.e. those that do not carry the system to the horizon. By inclusion of emergency 

shutdown states, we guarantee safe operation by ensuring that these ESD states are 

always reachable within the controller graph's limited horizon; this is the fail-safe 

controller. 

8.1.3 Computation 

The computation model is central to the controller implementation. Due to the in­

finite state space of the hybrid model, limited lookahead horizon and finite control 

set are built-in limitations of the model. In order to extend the model through time 

(into an infinite time horizon) the controller is recomputed by incrementally extending 

the lookahead horizon in a moving horizon scheme. Since this task must be imple­

mented online, an efficient means of model storage and computation are necessary. 

We describe an object-oriented modeling scheme that allows for compact storage of 

the plant and specification models; the hierarchical model storage avoids the state 

explosion that normally results from "flattening" the system model. Furthermore, 

the controller graph is easily constructed from the hierarchical model using a lazy 

technique that helps to reduce the intermediate size of the graph reachable set. The 

controller size complexity is bounded above by an expression that is exponential in 

lookahead horizon, which implies that the synthesis algorithm is, for the worst-case, 

exponential. However, the lower bound expression is linear in lookahead horizon, 

implying that the computation may not always be intractably large. The controller 

size is a function of the model state and time and the "tightness" of the specification. 
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A heavily specified system helps to reduce the controller size. The trade-off is that 

overspecification can lead to controller blocking. 

8.1.4 Application 

Application examples (Chapter 7) demonstrate the flexibility of the modeling scheme 

and provide empirical results for a reasonably complex industrial control problem. 

The ship control example demonstrates failsafe embedded simulations, controller syn­

thesis, online control and HIL control, all novel concepts that have not been used in 

this application before. 

8.2 Future Work 

Future work will focus on the areas of modeling , control synthesis, applications, and 

improvements to the computational engine. Naturally, the impact of work in each of 

these areas is interconnected, so they will be carried out in parallel. 

In the area of modeling, the objective will be to add the ability of our SCM/CSM 

modeling scheme to explicitly incorporate unmodeled continuous disturbance. Cur­

rently, the model accommodates modeled disturbance by simply including the distur­

bance model with each of the switched continuous system models. Various possible 

approaches exist, including exploiting the results of robust control for performance 

and stability guarantees or Monte Carlo simulation techniques. 

It will be useful to develop other results around control choice mechanisms of var­

ious kinds. For example, HIL control appears to offer an improvement in controller 

performance or optimality, something that is not addressed well by the DES supervi­

sory controller theory. HIL may not be suitable for every application, so automated 

control choice mechanisms must also be studied. 

From the applications standpoint, it is desirable to apply the control technique 

to some of the more complex benchmark hybrid control problems, in order to pro-
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vide further comparison of this technique to others. The ship control problem will 

continue to be actively studied, by looking at power system and thruster configura­

tion robustness and multi-vessel coordination. A future model test may be planned 

to prove the controller in a real-tirne control cnvirorunent. Future applications will 

also involve supervision and coordination of unmanned aerial vehicles (UAV) and 

autonomous underwater vehicles (AUV), as these are both funded research projects 

currently being carried out by the National Research Council. In both cases, there is 

access to physical modeling and numerical simulation capabilities, in addition to the 

underwater vehicles and aircraft. Both of these applications focus on the coordination 

of multiple agents. Studying these problems from an application perspective will help 

to focus future improvements to the modeling and control techniques. 

Going hand in hand with improvements to modeling and applications, is the need 

for further development of the computational tool HYSYNTH. Essentially, the soft­

ware must be taken in two directions: 1) design time tool and 2) a run time tool. At 

present HYSYNTH is a proof-of-concept code. It should be further expanded as the 

design-time tool; existing hybrid and DES libraries may prove to be useful extensions 

to HYSYNTH. The goal will be to create an easy-to-use design environment. The sec­

ond aspect of the software development effort should be focussed towards a run-time 

implementation that is optimized for the real-time online control environment. This 

involves such considerations as real-time operating system (OS) selection, hardware 

platform and the software development environment. 
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Continuous System Modeling 

A continuous dynamical system can be described by the first-order vector differential 

equation, 
dx 
dt = f(x, u, t) (Aol) 

where xis the state vector, x E !Rn , and u is the system input vector, u E !Rmo 

The state variables, x 1 , x2 , 0 0 0 Xn, and the system input variables, u1 , u2 , 0 0 0 Um are 

functions of time, t E R Since this is a vector system, it is composed of n scalar 

first-order nonlinear differential equations: 

where each state variable Xi E IR, each input Uj E IR, and each fi : !Rn x !Rm x JR ---+ R 

The class of systems that we wish to consider can be modeled by an unforced, 

ordinary differential equation (ODE), 

±(t) = f(x, t) (Ao2) 
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where x = ~~, and f : IR.n x JR.---+ IR.n. Suppose u is some function of time, u = g(t) 

and u is also a function of the state x, (for example due to state feedback), then u 

can be described as a function of both time, t and state, x = g(x, t). Substituting 

u = g into Eq. A.l, allow~ the independent variable 'U to be elirniu1:1ted, providing the 

dynamics associated with function g are absorbed into f. This means that, without 

loss of generality, results developed for the unforced state equation (Eq. A.2) are 

equally applicable to the forced system model (Eq. A.l). 

A.O.l Elementary Topology 

Definition A.O.l (Euclidian Metric) The Euclidean metric or 2-norm is defined 

as 
n 

Vx, y E IR.n, d(x, y) = llx- Yll 2 = ~(xi- Yi)2 

i=l 

Definition A.0.2 (Metric Space) Let X ~ IR.n, then the set X with the euclidean 

metric is called a metric space and is denoted (X, 11·11) . 

Definition A.0.3 Let (X, 11·11) be a metric space, x0 EX and r > 0, then an open 

ball is defined as 

Ba(xo,r) = {x EX: llxo- xll < r} 

likewise, the corresponding closed ball is defined as 

Bc(xo,r) = {x EX: llxo- xll:::; r} 

An open ball can be thought of as the interior of a ball, excluding its boundary, 

while a closed ball includes the boundary. 

Definition A.0.4 (Open Set) A subset Q of the metric space (X, 11·11) zs an open 

set with respect to the metric 11·11 provided that Q is a union of open balls. 
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Definition A.0.5 (Closed Set) A subset Q of a metric space X, is a closed set 

with respect to the metric 11·11, provided that its complement X\ Q is an open set with 

respect to X. The overbar notation will be used to indicate the closure of a set (a 

closed set). 

Note that henceforth for convenience, the 2 subscript will be dropped from the 

Euclidian metric and it will be implied by the notation II · II· 

Definition A.0.6 (Initial Value Problem) Given an open subset DC lRn x JR, a 

continuous function f : D ~ lRn, and a point ( xo, to) E lRn x lR, we wish to find a 

solution x(t) to the equations i; = f(x, t), x(to) = x 0 . This is known as an initial 

value problem (IVP). 

A solution to the IVP is given by the continuously differentiable function: 

x(t) = x 0 + ( f (x(T)) dT 
.fo 

which is a solution in the sense of Caratheodory. 

Definition A.O. 7 (Local Lipschitz Continuity) A function f, is locally Lipschitz 

continuous if for each x, y E D C lRn and t E [to, h] C JR, 

llf(x, t)- f(y, t) II ::; L llx- Yll (A.3) 

where L > 0 is the Lipschitz constant. 

Remark A.O.l (Existence and Uniqeuness of Solutions) If a function f is lo­

cally Lipschitz continuous, then the solution, x(t) to the IVP x = f(x(t), t), x(t0 ) = 

x 0 , exists and is unique over the interval [to, t 1]. 

Definition A.0.8 (Global Lipschitz Continuity) The function f is said to be 

globally Lipschitz continuous if there exists a single Lipschitz constant, L > 0, such 

that for all x, y E lRn and all t E lR Eq. A.3 is true. 
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f 
{ 

Figure A-1: Lyapunov stability 

Lipschitz continuity is a stronger requirement than strict continuity, but is weaker 

than continuous differentiability (Khalil 2002). 

A.0.2 Lyapunov Stability 

Definition A.0.9 (Equilibrium Point) Given a continuous system model± = f(x, t), 

x ( t0 ) = x 0 , x E IRn, then x*, is an equilibrium point if 

f(t, x*) = 0, Vt ~ 0 

Definition A.O.lO (Lyapunov Stability) An equilibrium point x* = 0 is stable in 

the sense of Lyapunov at t = t 0 if for all t > t 0 and for all c > 0, there exists 6 such 

that 

llx(to)ll < c ====? llx(t)ll < 6, for all t ~to (A.4) 

Definition A.O.ll (Uniform Lyapunov Stability) An equilibrium point x* = 0 

is uniformly stable in the sense of Lyapunov if there exists 6 (c), independent of t0 , 
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such that Eq. A.4 holds true. 

Without loss of generality, the equilibrium point has been located at the origin for 

the preceding definitions. In fact, it is possible for an equilibrium point to be located 

anywhere in the state space of a system. Results for non-zero equilibrium points are 

identical since an equilibrium can be translated from anywhere in the state space to 

the origin. 

Definition A.0.12 (Unstable Equilibrium) An equilibrium point x* is unstable 

if it is not stable. 
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State Partitioning 

In the case where additional partitions may need to be established on an already ex­

isting partitioned state space, the results of Lemma 3.2.4, Lemma 3.2.3 and Theorem 

3.2.1 of Chapter 3 are extended here. The assumption is that we are starting with a 

family of subsets H such that IHI = M and His the result of a partitioning operation 
M 

that has already been applied to the state space such that U Q1 = JR.n. 
j=l 

Lemma B.O.l (Set Partition Upper Bound) Let H = {Q1 ~ JR.n: 1 :::; j :::; M} 
M 

be a family of pairwise disjoint sets such that U Qj = JR.n, and let \fJ = { Fi : JR.n --+ 
j=l 

JR., 1 :S i :S N} be a family of functionals. The set partition operation (II) of Def. 

3.2.1,willproduce afamily of sets, H', such that IH'I = M x 2N. 

Proof. Show the upper bound by induction on the number of functionals, i, for 

any IHI = M and assuming maximal intersection, which means that Qj n N(Fi) =/= 0 
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for all Qj E H and for all FiE W. The base case is for Jwl = 1 or N = 1 functionals: 

M 
JH~J P}(H,N(F)) = U Ps(Qj,N(F)) 

j=l 

1Ps(Q1,N(F))I + 1Ps(Q2,N(F))I + ... 

+ IPs(QM,N(F))J 

2+2+ ... +2 
M 

2M 

so the base case is consistent with the original hypothesis. The inductive hypothesis 

is that I H~ I = M x 2N. It remains to show that I H~ + 1 1 = M x 2N + 1 . Due to maximal 

intersection, Qj n N(FN+I) f 0, for all Qj E H~. 

and therefore, 

• 

Mx2N 

H'tV+1 = Pf+1 (H~,N(FN+I)) = U Ps(Qj,N(FN+I)) 
j=1 

IH:VI 
U Ps(Qj,N(FN+I)) 

j=1 

1Ps(Q1,N(FN+I))I + 1Ps(Q2,N(F2))1 + ... 

+ IPs(QIH:VI' N(FN+I)) I 

2+2+ ... +2 

IH:VI 
2 x IH~I and by the inductive hypothesis, 

2 X M X 2N 

241 



Lemma B.0.2 (Set Partition Lower Bound) Let H = { Q1 ~ ffi.n : 1 ::::; j ::::; M} 
M 

be a family of pairwise disjoint sets such that U Qj = ffi.n and let \11 = { Fi : ffi.n ---> 
j=l 

IR, 1 ::::; i ::; N} be a family of functionals such that there is minimal intersection. 

The set partition operat'ion (II} of Def. 3.2. 7,will produce a family of sets, H', such 

that JH'J = M + N. 

Proof. The lower bound is proven by induction on the number of functionals, 

i, for any JHI = M. The base case is for JwJ = 1 (i.e. N = 1). With minimal 

intersection for example QM E H such that QM n N(F) =/= 0, then 

H~ Pj(H,N(F1)) 

M 

JH~J U Ps(Qj,N(Fl)) + JPs(QM,N(FI)J 
j=2 
JPs(Ql,N(Fl)J + JPs(Qz,N(Fl)J + · · · 

+ lPs(QM-l,N(FI)I 

+ JPs(QM,N(FI)J 

1+1+ ... +1+2 
M-1 

M -1+2 

M+1 

Thus the base case is consistent with the hypothesis. Now the inductive hypothesis 

is that JH~I = M + N. It remains to show IH~+ll = M + N + 1. Suppose there 

exists QM+N E H~ and JH~J = JHN+ll then: 

M+N 
H~+l = Pt+ 1 (H~,N(FN+1)) = U Ps(Qj,N(FN+l)) 

j=l 
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therefore 

IH;._,I-1 
j~1 Ps(Qj,N(FN+1)) + 1Ps(Q~H~~,N(FN+1))1 

IPs(Q1,N(FN+1))1 + 1Ps(Q2,N(FN+I))I + · · · 

+ 1Ps(Q~H~i-1'N(FN+1))1 
+ IPs(Q~H~I ,N(FN+1)) I 

1+1+ ... +1+2 

IH~I-1 

IH~I - 1 + 2, and by the inductive hypothesis, 

M+N+1 

• 
Theorem B.O.l (Set Partitioning Operation Boundedness) Let H = {Q1 ~ 

M 

~n : 1 :::; j :::; M} be a family of pairwise disjoint sets such that U QJ = ~n and let 
j=1 

W = { Fi : ~n --> ~' 1 :::; i :::; N} be a family of functionals. The set partition operation 

(II) of Def. 3.2. 7 produces a family of sets H', such that M + N::; IH'I :::; M x 2N. 

Proof. Let l'lll = N, and let IHI = M it follows from Lemma B.0.2 that the 

cardinality of the set partitioning operation has a lower bound of IH'I = M + N. 

Lemma B.0.1 establishes an upper bound on the returned family of sets of IH'I 

M x 2N, hence the result is proven. • 
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Discrete Event System Modeling 

C.l Finite State Machines 

The finites state machine (FSM) model is one of many possible representations of a 

discrete event system (DES), and has been used extensively since it lends itself readily 

to the analysis of such systems. 

Definition C.l.l A deterministic FSM model is a five-tuple: 

G = (X, 2:, b., Xo, Xm) 

where: 

X is the set of states, 

2: is the set of events that cause G to change states 

b. is the transition set, the set of all labeled transitions 

x 0 is the initial state, x 0 E X 

Xm is the set of marked states, Xm <;;;X 
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Definition C.1.2 A transition function is defined in G denoted by 6(x, CT)! with x E 

X, CT E ~*, if ?Jx E X and ( x, CT, x) E ~. 

Definition C.1.3 The language generated by G, L(G), is the set of all symbols and 

concatenated symbols (strings) that would be generated by starting at xo and exercising 

all possible transitions in sequence across the entire state space of the automaton. 

Definition C.1.4 The language marked by G, Lm (G), is the set of all strings s, for 

which 6(x0 , s)! in G and 6(x0 , s) E Xm. The marked states represent the completion 

of some task and the strings s, are able to take the system from the initial condition 

to the completion of the task, a marked state. 

Definition C.1.5 Two automata, G1 and G2, are said to be equivalent if L(G1) = 

L(G2) and Lm(Gl) = Lm(G2)· 

Definition C.1.6 The language L(G2) is said to be a sublanguage of L(G1 ) if\::/s E 

L(G2), s E L(G1) =? L(GI) s:;;: L(G2). 

The event set of the generator G, is partitioned, ~ = ~uc U ~c where ~uc is the 

set of uncontrollable events and ~c is the set of controllable events. 

The graphical representation of a hypothetical machine modeled by a FSM is 

pictured in Fig. C-1. In the figure, states are labeled and are represented by the 

nodes of the graph. The arcs connecting the nodes are state transitions and are 

labeled with events. A single-ended arc pointing into a node denotes the initial state. 

Marked states are denoted by a double circle. The initial state of the system, x 0 is the 

Idle state (labeled I), indicated by the arrow pointing in; it is also a marked state. 

Other states in the system are Working (W, marked), Down (D), and Scrapped (S), 

X = {I, W, D, S}. The marker states are Xm = {I, W}. The machine's event set is 

~ = {a:, {3, r:c, A, p,, v }, with the event labels representing the following actions: 

the machine starts, Idle to Working, 
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v 

Figure C-1: FSM representation of a simple machine. 

(3 completes its work and returns to the Idle state, 

). breaks down, going to the Down state, 

f-L gets repaired, returning to the Idle state, 

v gets repaired, returning to the Working state, 

K, is scrapped, moving to the Scrap state. 

The stroke through the a and f-L arcs denotes that these transitions are controllable, 

in the sense that they can be disabled through the action of some controller. Hence, 

L:c = {a, JL }, L:u = {(3, 1-i:, A, v }, and L.:c n L:u = 0. 

C.l.l Combining Multiple Automata 

More complex system behaviors can be modeled by combining multiple machine mod­

els using synchronous composition. Two operations are discussed below. 

C.l.l.l Product 

The product operation is denoted by the operator x. Given two automata, G1 := 

(Xl, L.:l, L~q, Xo,l, Xm,d and G2 := (X2, L.:2, 62, Xo,2, xm,2), the product ' Gl X G2 := 

(X, L:, b., x 0 , Xm), they may execute a common event in L.: 1 n L.:2 concurrently. For 

the product, it can be shown that L(G1 x G2) = L(GI) n L(G2) and Lm(G1 x G2) = 
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G1 
f3 

.-;) 
G2 

f3 

r 

Figure C-2: Two simple FSM models with E1 = {a, ,B} and Ez = {,B, ')'}. 

y 

G111G2 
y 

Figure C-3: The synchronous product G1\\G2 of automata in figure C-2. 

Lm(GI) n Lm(G2 ). Referring to the two automata pictured in Fig. C-2, with I:1 = 

{a, ,8} and I:2 = {,8, r} it is clear that the product will be L( G1 x G2 ) = { E} and the 

marked language is Lm( G1 x G2 ) = { E }. If either of the initial states in G1 or G2 was 

not marked, the marked language would reduce to Lm(G1 x Gz) = 0. The first event 

in G1 , a, is prevented from occurring because G2 does not share that event; therefore 

they are blocking each other from further execution. 

C.1.1.2 Synchronous Product 

For control system synthesis, the synchronous (parallel) product is useful for making 

system interconnections. In the synchronous product, the automata must synchronize 

on common events but events private to each automaton, (I:1 \ I:2) U (I:2 \ I: I), are 

allowed to occur at any time within their respective automata. Referring again to Fig. 

C-2, the synchronous product operation produces the resulting automaton in Fig. C-

3. In the simple product, both automata were blocked from executing because the 

initial transition of G 1, a, was not a shared transition and so could not be executed. 

The synchronous product allows G1 to execute a, which then allows both automata 
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G1 G2 

Figure C-4: Automata for shuffle product. 

to synchronously execute the f3 transition and so on. It should be noted that the 

state names for product automata are derived from the state names of the respective 

composing automata as follows : (x1, x2) where x1 is the current state in G1 and 

x2 is the current state in G2. Controllable transitions in ~1 n ~2 will be disabled 

together even if the transition is prevented from occurring in one of the composing 

automata only due to the fact that they must be executed synchronously. 

There are two special cases of the synchronous product. The first occurs when 

~1 n ~2 = 0. In this case, all events are private to their respective automata and 

the synchronous product, G1 II G2 is called the shuffle product, since it consists of 

all possible shuffles of the respective alphabets, ~ 1 and ~2 .The second special case 

is when ~1 = ~2 , with the synchronous product (II) reducing to the product ( x), 

since all transitions will be executed synchronously:L( G1 II G2) = L( G1) n L( G2) and 

Lm(G1 II G2) = Lm(G1) n Lm(G2).Fig. C-4 illustrates how the shuffle product is 

the result of the synchronous product operation, since ~ 1 = {a, /3} and ~2 = {r,). }, 

~1 n ~2 = 0; two machines that perhaps work on their respective tasks side by side. 

The synchronous product of these two devices is graphically represented in Fig. C-5. 

The synchronous product is a powerful tool, since it reduces the task of composing 

complex systems to that of designing the individual component automata and then 

synchronizing them together to produce the entire system behaviour. The same 

technique can be extended to more than two automata easily since the properties 
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(3 

Figure C-5: Shuffle product of automata from figure C-4. 

of commutativity and associativity hold for the synchronous product operation: 

Gl II G2 = G2 II Gl 

Gl II (G2 II G3) = (Gl II G2) II G3 

Very complex DES models can be constructed by combining multiple FSMs in this 

way. 
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DES Control Synthesis 

Control systems engineers wish to have automated methods by which they can syn­

thesize a controller that modifies the behavior of their target (the plant) within the 

limitations of the plant (controllability). Manual methods of synthesis can work for 

small DES systems, but an algorithmic approach to synthesis is needed. The DES 

control problem is analogous to the continuous control problem (See Fig. D-1), except 

that the system communicate via symbols (discrete values) instead of with continuous 

signals. The environment, an uncontrollable element, seeks to disturb the plant, thus 

presenting another obstacle for the controller.The environment, usually unmodeled, 

actively disturbs the plant and is given, which in this sense means we are aware of 

how it affects the plant. The three systems are closely coupled in an embrace where 

each affects the other. If each of these elements are viewed as agents in a DES, then 

~ ~ 

v IL ~.X 
Environment A_ Plant 

¢=cJ 
Controller 

I 
~ 

-Active -Reactive -Active 
- Unmodeled -Modeled - Unmodeled 

-Given -To be designed 

Figure D-1: Conceptual visualization of the control process. 
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L(P) L(H~pec) 

Figure D-2: Linguistic interpretation of legal language K = L(P) nL(Hspec) by synchronous 
product of plant and specification automata. 

their interaction can be modeled using FSM models connected through some form of 

product connection. 

A method of formally synthesizing a supervisory controller for discrete event sys­

tems (DES) was reported by Ramadge and Wonham (Ramadge and Wonham 1989), 

(Ramadge and Wonham 1987), and will be referred to as the RW synthesis from here 

on. In this framework, a finite state automaton model P := (Xp, ~p, ~p, xo,P, Xm,P ), 

generating language L(P), completely describes the behavior of the discrete event 

plant that is to be controlled. A second automaton model, Hspec, generating lan­

guage L(Hspec), represents the specification or desired (controlled) behaviour. The 

synchronous product of these two automata produces an automaton that generates 

the legal language, K = L(P) n L(Hspec), of the closed-loop process (Fig. D-2). 

The task of synthesizing a discrete event supervisor (controller) S, is to enforce 

the legal language on the plant P. The supervisor is also a FSM: 

S := (Xs, ~s, ~s, xo,s, Xm,s) 

The supervisor accomplishes this by monitoring the plant, and disabling the control­

lable transitions in order to preempt actions by the plant that could uncontrollably 

cause the system to violate the legal language. The closed-loop connection of a DES 

supervisor and plant is shown in Fig. D-3. The supervisor is able to monitors E L(P), 

the string (a trace) of all events executed so far by the plant. The closed-loop lan-
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~ p r-------

S(s) 

- s 1--

Figure D-3: Closed-loop interconnection of supervisor S controlling plant P by disablement. 

8(x1u,,s),O(x~.1 ., s) 8(x0.1',sau1) 

0',--~ 

Figure D-4: Diagram illustrating controllability of K with respect to P. 

guage, L( SIP) <;;: K . L( SIP) is read as 11 S controlling P 11
• The string s has taken 

P to a state o ( xo,P, s) E X p and supervisor S to state o ( xo,s, s) E X s (Fig. D-4). At 

this state in S II G, ( o ( x 0 ,s, s), o ( Xo,P, s)), an uncontrollable event CT 1 and a control­

lable event, a are executable. The supervisor must disable the controllable event a 

that leads subsequently to the uncontrollable event CT 1 E L:p that causes the plant to 

violate the legal language. This is accomplished by excluding the a event from the 

supervisor and since the two systems are synchronized, the plant is prevented from ex­

ecuting. The supervisor cannot disable cr1 or cr2 , because by definition, uncontrollable 

events cannot be disabled, in any case, cr2 does not violate the legal language. 

This implies the controllability condition which states that a supervisor S exists 
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such that L(S/G) =Kif and only if: 

K~uc n L(P) ~ K 

where K is the prefix closure of K. This is also stated that the language K is 

controllable with respect to plant P and ~uc· 

D.0.2 Supremal Controllable Sublanguage - Safety Guaran-

tee 

Now suppose that the K we have formed is not controllable with respect to P, i.e. 

K~u n L(P) rt_ K, then what is the largest sublanguage of K that is controllable? 

This is known as the supremal controllable sublanguage, denoted as Ki0 . Define the 

class of all controllable sublanguages of K: 

Cin(K) = {L ~ K: L~u n L(P) ~ L} 

The union of all controllable sublanguages must be the largest, or suprema! control­

lable sublanguage: 

KTC := u L 
LECin(K) 

The goal of RW synthesis is to find an automaton that enforces Ki0 for a particular 

plant. This automaton is known as the suprema! controllable sublanguage generator 

(SCSG). The SCSG is the optimal controller for a particular plant and specification 

since it disables the fewest number of events (most permissive) in the plant to ensure 

the legal language (safety) is not violated. It is analogous to the 1-{00 controller of 

the previous section in this sense being designed to handle the worst case and hence 

guaranteeing safety. 
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D.0.3 lnfirnal Controllable Sublanguage- Performance Guar-

an tee 

Defining the class of prefix-closed, controllable superlanguages: 

Caut(K) = {L ~ ~* : (K ~ L ~ L(P)) 1\ (L = L) 1\ (L~uc n L(P) ~ L)} 

The intimal controllable superlanguage is the intersection of all controllable superlan-

guages: 

K 10 := n L 
LECout(K) 

If K represents the minimal required language of a plant as opposed to the maximum 

legal behaviour, then the automaton that enforces Kl0 is the smallest (optimal) con­

troller that can be guarantees that the closed-loop system will meet this specification. 

Optimal with respect to performance. 

To summarize the relationship between each of the languages: 

where 

KT0 is the supremal controllable sublanguage, 

K is the maximum legal language, or minimum performance, 

K is the prefix closure of K, 

Kl0 is the intimal prefix-closed controllable superlanguage, 

L(P) is the plant language. 
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D.0.4 Nonblocking Controllability 

A desirable feature of a supervisory controller is nonblocking behaviour, also known 

as liveness. So in addition to the controllability condition on the legal language, 

KL.,uc n L(P) <;; K, the legal language must also be non-blocking: 

K = K n Lm(P) 

That is, the controller should not able to "stop" execution at an unmarked state in 

P. So the following is true of a nonblocking supervisor: 

D.l 

Lm(S/P) 

L(S/P) 

(Lm(P) n Lm(Hspec))TC 

(Lm(P) n Lm(Hspec))TC 

DES Controller Synthesis Software 

Several software packages are available that implement the RW synthesis, including 

TCT, OTCT and UMDES (University of Michigan DES library). The first package 

was TCT, developed at the University of Toronto. A similar and related software 

package is OTCT, which has a script-based interface as opposed to a menu-based 

GUI. OTCT lends itself better to automated operation, since jobs are submitted in 

as a batch using the scripting language. Automata are specified using a text file 

description. Once read into the OTCT workspace, the automata are represented 

as objects and can be manipulated with various functions. The three that shall be 

considered here are: 

• sync(x,y): forms the synchronous product of two argument objects, x and y, 

• supfcBySync(x,y): computes the maximally permissive controller given the 

plant,x, and the generator of the specification, y, 
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Room la 

Room I 
(cat) 

Room 2 
(Feeding Area) 

Room 3a 

Room 3 

(mouse) 

Figure D-5: Cat and mouse "toy" supervision problem, adapted from (Ramadge and 
Wonham 1989). 

• condat(c): computes the controller state feedback map for the controller c. 

To illustrate RW synthesis, consider the simple example illustrated by Fig. D-5, 

in which a cat and mouse share a house. Each animal starts in a separate room that 

is accessible only to itself, but they share a common feeding area. The entrances 

to the feeding area can be disabled by the controller (which is to be designed). If 

the two animals occupy the feeding room (area 2) together, the cat will eat the 

mouse. The specification is that the cat eating the mouse must be prevented in 

a least restrictive way, i.e. the doors to the feeding area are disabled only when 

they have to be. The cat executes events I:c = { o:1 , o:2 , o:3 , o:4 } and the mouse 

executes I:m = {;31 , ;32 , ;33 , ;34}. Motion detectors provide information regarding the 

movements of the animals between their anterooms (areas lA and 3A), and their 

'home' areas (areas 1 and 3). Events a: 1, o:4, and ;31 , ;3 4 signify these moves by the 

animals. Controllable transitions are o:2 and ;32, which are the events of the two 

respective animals entering the common feeding room. The assumption is that the 

gate can be disabled instantly (or, at the very least, before each animal acts). For 

the time being, this appears to be a reasonable assumption, since a controller is 
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Mouse {33 

Figure D-6: Cat and Mouse automata. 

likely to be much faster than the physical surroundings. Events a 3 and (33 are the 

events signifying the animals leaving the common feeding area. The diagram has 

been transferred into functional automata in Fig. D-6. An additional event has been 

added, r5, which can only be executed should both animals reach state 2 (the joint 

feeding area). 

By inspection of the synchronous product automaton (Fig. D.l), it is clear that 

we want to avoid entering the product state (2,2). Linguistically speaking, this means 

that we which to avoid any strings in the product language Lp, that lead to this state 

or that end in a 6. The controller needs to trim this state, which can be done by 

disabling the controllable transitions that lead to it, o:2 and (32 The controller for this 

plant can be generated by running the supfcBySync procedure ion the synchronous 

product of the plant and the specification (the specification is given in Fig. D-7). 

The resulting controller is presented in Fig. D-8, indicating that the (2,2) state 

has been trimmed. Running the condat function on the supervisor, results in the 

following trace: 

Control Data: 

PLANT: [2,$q_{2}$] 
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alpha3 

alpha4 

alpha I 

alpha2 

alpha4 

alpha3 

alpha3 

Plant formed from the synchronous product of cat and mouse automata. 



Figure D-7: The specification indicates that the 6 event must be excluded since it takes the 
system away from a marked state. 

SUPER: [ [2' $q_ {2}$] '1] 

DELAY: $\beta _{2}$ 

PLANT: [$q_ {2}$ '2] 

SUPER: [ [$q_ {2}$' 2] ' 1] 

DELAY: $\alpha _{2}$ 

A program could be constructed to implement this controller, assuming that the 

state of the plant can be observed at all times, based on the controller map: 

begin control{ 

if plant_state = [2,$q_{2}$] then disable $\beta _{2}$; 

if plant_state = [$q_{2}$,2] then disable $\alpha _{2}$; 

}end control 

D .1.1 Timed Discrete Event Models 

RW supervisory synthesis theory was extended by O'Young and Brandin and Won­

ham (Brandin and Wonham 1992) by applying the same techniques to timed finite 

state automata or timed transition model (TTM). While the pure DES model has 

the system dynamics completely abstracted, this extension allows for some of the 

dynamics of the modeled system to be included, since time has been added. Fig. D-9 

shows a TTM version of the cat automaton of the previous section (p. 256). The 

notation a 2 [2, oo] means that the a 2 event is only admitted only after 2 time periods 

('ticks') have transpired. So in this example, the cat must stay at state q2 at least 

2 ticks before the a 2 transition can be taken to state 2. The FSM equivalent of this 
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Figure D-8: Supervisor for the Cat/Mouse system that enforces mutual exclusion m a 
maximally permissive (optimal) sense. 
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Figure D-9: A TTM model of the cat automaton. 

alphnl 

Figure D-10: DES equivalent model of cat of timed automaton. 

timed discrete model is shown in Fig. D-10. The equivalent is produced by adding 

states to delay timed transitions by the appropriate number of ticks. State labeling 

for these added states is derived from the transition name and the number of ticks 

that have occurred. States that do not have timed transitions leading from them must 

be self-looped with tick transitions to prevent blocking with the passage of time. 

This extension to FSMs is a simple way of incorporating timing in a DES model. 

DES system can be comprised of a combination of FSMs and TTMs easily by self­

looping states in FSMs with tick events. Due to the added states for the timed 

transitions, such models tend to have many more states than simple FSM models. 

Care must be taken to only use timed transitions when necessary, to reduce model 

complexity. 
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Hybrid System Modeling 

E.l Hybrid Automata 

Hybrid system modeling is a formal method of modeling that attempts to capture 

both the discrete and continuous properties of a system. The state of a hybrid system 

having n real variables and m boolean variables at any moment in time corresponds 

to a point in the state space of the system JR. x lffi. The ideal hybrid model allows the 

dynamics of a model to change in a discrete fashion, so as to model the failure of a 

component or a sudden switch in operating points of a system. The hybrid automaton 

(Fig. E-1) was proposed as a model of such a hybrid system. 

Definition E.l.l A hybrid automaton model is an eight-tuple: 

H = (X, L, T, F, inv, jump, L.:, init) 

loc1 

I nit 

event1 
(oc2 

jump1 --· invariant1 invanant2 

event1 
flow1 jump1 flow2 

Figure E-1: A hybrid automaton. 
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where: 

X is a finite set of n continuous variables in IR, X= {xi, x2, ... Xn} 

Lis a finite set of j locations (states), L = {luc1, luc2, ... lucj} 

T is a finite set of discrete jumps between locations 

F is the set of flow conditions 

inv is a labeling function that assigns an invariant at each location. An invariant is 

a flow constraint used to force a transition to another state. 

jump is a labeling function that is attached to each jump 

~ is a finite set of synchronizing events 

init is a labeling function assigning an initial condition at each location. 

The flow conditions describe how the continuous variables evolve through time. 

Ideally, these could take on the usual differential equation form of x = f ( x, t), however 

such a flow condition is not feasible for algorithmic verification, since it has been 

shown to be undecidable. If the flow conditions are changed to constant rate; i.e. 

x = a, then the verification is semidecidable. A hybrid automaton having such 

constant-rate flow conditions is known as a linear hybrid automaton (LHA). 

At least one software tool exists for conducting automated analysis and verification 

of hybrid systems, called HyTech (Henzinger et al. 1997). Systems described by 

LHA's can be verified for correctness against some specification that is a combination 

of discrete and continuous conditions. Traces of the path to the correct (or incorrect) 

system state can be generated by either reaching forward or backward. Additionally, 

one powerful tool is the ability to parameterize invariant conditions, a useful design 

tool. 
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HySynth: Hybrid Control Synthesis 

Software Package 

F.l Introduction 

The HYSYNTH software package was developed to implement the concepts that have 

been set forth in this thesis. HYSYNTH is an object-oriented package that allows for 

hybrid system modeling and controller synthesis, hence the name HY (for Hybrid) 

and SYNTH (for Controller Synthesis). The package allows for the modeling and syn­

thesis of controllers using a combination of SC models and FS models. HYSYNTH 

was developed within the Mathworks' Matlab environment, thus allowing it to take 

advantage of the numerous ODE solvers and the many other toolboxes that are avail­

able to Matlab users. This permits a designer the flexibility to embed existing Matlab 

simulations within the switched continuous model framework. 

F.2 Brief Overview 

The HYSYNTH package has been developed using the object-oriented features of Mat­

lab. A number of objects are available for constructing hybrid models, and various 
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commands are available to manipulate models and to synthesize and simulate con­

trollers. The methods associated with each object extend the basic functionality of 

Matlab script. Application examples of HYSYNTH are detailed in Chapter 7. 

F.2.1 Objects 

The modeling objects are: 

fsm This is the basic DES building block, the finite state automaton model. An 

fsm object can be constructed graphically by the JFLAP CUI and stored to an 

XML file. The constructor method is then invoked to instantiate the object; 

e.g. m1=fsm( 'm1. xml');. Once created, the object is referred to by its variable 

name, m1. Alternatively, the finite state machine object can be created pro­

grammatically by defining the various sets: the state set, event set, transition 

function, and so on. 

scm The basic switched continuous system model. Currently no GUI has been de­

signed for the scm object, so it must be constructed using a Matlab script. The 

user defines a set of continuous dynamics, as Matlab function handles, which 

point to the desired continuous system models. The continuous systems are cap­

tured as Matlab functions in the form of a generalized nonlinear time-varying 

differential equation; i.e. i; = f(x, t, params). A corresponding set of input 

event labels should be defined, one label for each continuous system model. 

Partitioning functionals are defined via an event function that implements the 

event detection in conjunction with the Matlab ODE solvers. For each partition, 

a set of output event labels must be defined. 

product The synchronous product object, a hierarchical object made up of fsm, scm 

or other product objects. For example, given a pair of existing FSM objects, 

m1 and m2, the product constructor function is used as follows to create their 

product: p1 = product (m1 ,m2). 
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The state objects are: 

fini teState The finite state object, a finite state label, a Matlab string. 

ctsState The continuou::> ::>tate object, storage of continuou::; (state) variable::; x E 1Ft", 

a Matlab double vector. 

pstate The product state object. A hierarchical object, made up of two or more 

fini teState, ctsState, or other pstate objects. 

F.2.2 Commands 

Once a system model has been constructed, various methods are available to modify 

it, analyze it, and to view its structure. This section contains a partial listing of 

commands that a user needs to create a controller structure. 

Commands that apply to fsm objects only: 

addEvents adds the argument list of events to the event set 

markAll mark all of the states as ESD states. 

unMarkAll unmark all ESD states. 

addEvents adds the argument list of events to the event set 

Commands common to all modeling objects: 

initial returns the initial state of a system model 

printAsDot print the argument object as a Graphviz format file in .dot format to 

the argument filename. 

printAsPs print the argument object as an Adobe PostScript format file to the ar­

gument filename. 
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printAsPDF print the argument object as an Adobe PDF format file to the argument 

filename. 

printAs*WithEvents print limited event lookahead (reachability) of the argument 

object to the argument filename. Prints to one of three file formats, replace 

wildcard * with one of Dot, Ps or PDF. 

printAs*WithTime print limited time lookahead (reachability) of the argument ob­

ject to the argument filename. Prints to one of three file formats, replace wild­

card * with one of Dot, Ps or PDF. 

simulate given an argument input event, performs a prediction until the next choice 

point. 
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