

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Online Discrete Event Control of Hybrid Systems

by

@James P. Millan

B.Eng., Memorial University of Newfoundland, 1984

ST.JOHN'S

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Faculty of Engineering and Applied Science
MEMORIAL UNIVERSITY OF NEWFOUNDLAND

October 2006

NEWFOUNDLAND

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-30434-1
Our file Notre reference
ISBN: 978-0-494-30434-1

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par !'Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

To my parents,

Steven and Brenda,

and for Les.

Online Discrete Event Control of Hybrid Systems

by

James P. Millan

Abstract

The increasing proliferation of automatic control systems in embedded and distributed

applications has lead to increasingly complex systems. These systems manifest a

mixture of continuous and discrete dynamics due to the interaction of the computer

controlled or logical decision-making subsystems interacting with the real world, and

are thus referred to as hybrid systems. The inherent complexity of such hybrid systems

makes them difficult to model, analyze and design. As such, industrial application of

hybrid system theory has yet to gain widespread acceptance.

This thesis presents an approach to the modeling, synthesis and implementation of

automatic controllers for hybrid systems. This work centers on a flexible hybrid sys­

tem modeling framework that permits automated synthesis of controllers for hybrid

systems, based on safety and performance design specifications. This hybrid model­

ing framework is the switched continuous model (SCM), based on discrete switching

between continuous system models (CSM). Discrete abstractions of the CSM dynam­

ics enable the controller actions to be simple discrete decisions at appropriate points

in the state space of the controlled system. The SCM communicates with external

discrete event systems (DES) through sets of shared discrete events, thus allowing

ii

the techniques of DES supervisory control synthesis to be employed. The resulting

controllers are model-based, and safe by design, since they encapsulate the continuous

and discrete event models that together model the plant and specification dynamics.

Due to the inherently uncountable state space of the hybrid system model, the con­

troller computation is performed online, and is limited to a finite time horizon in

order to preserve the finite state properties of the discrete abstraction.

The details of the modeling framework, controller synthesis, and online imple­

mentation are developed, including a computational approach, architecture, and al­

gorithms. A software package that implements these control concepts was developed.

Two detailed modeling and control synthesis applications are presented: a simple

benchmark hybrid control example and a realistic industrial example.

lll

Acknowledgements

I would like to take this opportunity to thank my thesis supervisor, Dr. Siu

O'Young for his untiring enthusiasm, optimism and guidance. Siu was instrumental in

encouraging me to enter graduate studies and later to pursue my Ph.D.; a somewhat

non-trivial task, considering the length of time that had elapsed since I had left

university (over 15 years). Although it has been challenging, I have enjoyed the

learning and the discovery that comes with graduate work.

I would like to thank my employer, the National Research Council, Institute for

Ocean Technology, for giving me the opportunity to change my career direction from

an instrumentation and control systems engineer to that of a researcher. I thank Mr.

David Murdey and Dr. Bruce Colbourne in that respect. Thanks to my co-worker

Dr. Wayne Raman-Nair for many discussions and advice on a wide range of topics

that proved to be useful to my thesis work, including solutions to ODEs, numerical

modeling, teaching, and how to write a Ph.D. dissertation.

I would like to thank my thesis committee, in particular Dr. Theo Norvell, for

their careful reading, and helpful corrections and suggestions.

Finally, and most importantly, I would like to thank my family; my wife Roxanne,

daughter Kelsey, and son Jonathan, for their patience and understanding while I

spent many hours working, especially in the past few months, as I completed this

document.

IV

Contents

Abstract

Acknowledgements

Contents

List of Tables

List of Figures

List of Abbreviations

1 Introduction

1.1 Background

1.2 Problem Discussion

1.3 Contributions

1.4 Organization

2 Background and Related Work

2.1 Continuous System Modeling and Control

2.2 Discrete Event Systems .

2.3 Hybrid System Modeling

v

ii

iv

v

XI

xii

xvii

1

1

3

4

5

7

7

9

10

2.3.1 Timed Automata .

2.3.2 Hybrid Automata .

2.3.3 Quantized I/0 (Discrete Event Abstraction)

2.3.4 Switched Systems .

2.4 Hybrid System Simulation

2.5 Complexity

2.6 Assessment of Relevant Work

2.6.1 Model Formulation .

2.6.2 Discrete Abstraction

2.6.3 Controller Synthesis

2.6.4 Computation

2.7 Summary

3 Abstraction of Continuous System Dynamics

3.1 Introduction

4

3.2 State Quantization

3.3 Discrete Event Generation

3.4 Examples .

3.5 Conclusions

Switched Continuous Model

4.1

4.2

4.3

4.4

4.5

4.6

Introduction

Switched Continuous Model

Prediction - Case I Switching

Prediction - Case II Switching

Continuous Dynamics

Continuous State Reachability .

4.6.1 Case I Switching

4.6.2 Case II Switching

Vl

11

11

13

14

15

16

17

17

18

18

19

20

21

21

25

33

38

45

50

50

52

56

62

66

70

70

71

4.7 Discrete Event Dynamics . 73

4.7.1 Case I Switching 73

4.7.2 Case II Switching 74

4.8 Hybrid Transition Graph . 74

4.9 SCM Example . 82

4.10 Conclusions .. 84

5 Control of Hybrid Systems 88

5.1 Discrete Event Controller Synthesis 89

5.2 SCM and Control Synthesis 96

5.2.1 Example: Product of SCM and FSM 100

5.3 Blocking 102

5.4 Fail-safe Controller Operation 109

5.4.1 Emergency Shutdown . 110

5.5 Controller Propagation 114

5.5.1 Online Operation: Controller Update Cycle 118

5.5.2 Horizon Extension 121

5.5.3 Example: Controller Propagation 121

5.6 Summary 122

6 Computation: From Theory to Implementation 125

6.1 Style 126

6.1.1 Lazy Computing Model 126

6.1.2 Limited Lookahead . 136

6.1.3 Online Computation 137

6.2 Software 138

6.2.1 Architecture . 138

6.2.2 User Interface 145

6.3 Algorithms 147

Vll

6.3.1

6.3.2

6.3.3

SCM Functions

Product Synchronization Functions

Nonblocking Reachability ..

6.3.4 Fail-safe Controller Synthesis

6.4 Complexity

6.4.1 Constant Event Reach (Plant)

6.4.2

6.4.3

Constant Time Reach (Plant)

Complexity With Control

6.4.4 Empirical Complexity

6.5 Summary

7 Applications

7.1 Tank Level Control

7.1.1

7.1.2

Example: ESD Controller Operation

Controlling Two Tanks

7.1.3 Reducing Controller Size: Two Tanks .

7.2 Manoeuvring of a DP Vessel

7.2.1 Vessel Power System

7.2.2 Vessel Manoeuvring Model .

7.2.3 Closed Loop Control

7.2.4 Thruster Allocation .

7.2.5 Supervisory Controller Design

7.2.6 Results .

7.3 Remarks .

7.4 Summary

8 Conclusions and Future Work

8.1 Contributions

8.1.1 Model

Vlll

148

152

153

157

162

163

163

164

165

168

169

169

172

172

182

187

189

189

195

196

198

207

215

217

218

218

218

801.2

801.3

801.4

Control Synthesis

Computation

Application

802 Future Work 0

219

219

220

220

References 222

Appendices 234

Appendix A Continuous System Modeling 235

Ao0o1 Elementary Topology 0 236

Ao0o2 Lyapunov Stability 0 238

Appendix B State Partitioning 240

Appendix C Discrete Event System Modeling 244

Co1 Finite State Machines 0 0 0 0 0 0 0 0 0 0 244

Col.1 Combining Multiple Automata 246

Appendix D DES Control Synthesis 250

Do0o2 Supremal Controllable Sublanguage- Safety Guarantee 253

Do0o3 Infimal Controllable Sublanguage- Performance Guarantee 0 254

Do0.4 Nonblocking Controllability 255

Dol DES Controller Synthesis Software 255

Dol.1 Timed Discrete Event Models 259

Appendix E Hybrid System Modeling

Eo1 Hybrid Automata 0 0 0 0 0 0 0 0 0 0

262

262

Appendix F HySynth: Hybrid Control Synthesis Software Package 264

F 01 Introduction 0 0 264

Fo2 Brief Overview 264

IX

F.2.1 Objects ..

F.2.2 Commands

X

265

266

List of Tables

4.1 Valve control structure

4.2 Output events for tank example ..

5.1 Choice of control action

6.1 Example Runtime of Keen Algorithm

6.2 Example Runtime of Keen Algorithm, Removing Transitions

6.3 Example Runtime of Lazy Algorithm, adding Transitions . .

6.4 Example Runtime of Lazy Algorithm, Removing Transitions

7.1 Valve control structure

7.2 Output event definitions for two tanks.

7.3 The FPSO vessel particulars.

7.4 Nondimensional scaling factors.

7.5 Vessel thrust limits

7.6 Paritions for vessel simulation. .

7. 7 Vessel controls and input events ..

7.8 Random choice control summary.

7.9 HIL run summary.

Xl

83

84

114

130

130

133

133

178

179

194

195

198

202

202

208

212

List of Figures

1-1 Robot coordination with hybrid dynamics.

3-1 Discrete event interface.

3-2 Discrete abstraction of a continuous system.

3-3 A state transition.

3-4 Example of state space partitioning ..

3-5 Equal power functional example.

3-6 Hypersurfaces on the phase plane.

3-7 Total energy functional

3-8 Phase plane for a pendulum example.

3-9 Infinite event generation.

3-10 Infinite event generation.

4-1 Graphical representation of a switched continuous model.

4-2 CSM block diagram.

4-3 SCM execution. . . .

4-4 Case I SCM switching.

4-5 Case II SCM switching ..

4-6 A switched continuous trajectory.

4-7 SCM execution.

xii

2

22

23

35

38

40

41

44

46

47

48

51

53

57

58

64

68

75

4-8 Continuous dynamics.

4-9 Hybrid transition graph

4-10 An equivalent transition.

4-11 Hybrid transition execution.

4-12 Schematic for tank system model.

4-13 Tank example: Continuous trajectory set.

4-14 Tank example: Hybrid transition graph. .

5-1 Plant and specification language intersection ..

5-2 Closed loop control.

5-3 Control synthesis as product object ..

5-4 Hierarchical modeling example.

5-5 HPA set definitions

5-6 Product of SCM and FSM

5-7 Incomplete trajectory of example 5-7.

5-8 Illegal states in a hybrid transition graph.

5-9 Blocking in a HTG.

5-10 Nonblocking HTG.

5-11 Failsafe control choice.

5-12 Control propagation illustration ..

5-13 Closed loop online controller.

5-14 Controller propagation with time.

5-15 Controller graph propagation through six events ..

6-1 Finite state model MI.

6-2 Finite state model M2.

6-3 Product plant model.

6-4 Controller Graph ..

6-5 Hierarchical plan model.

xiii

76

77

78

81

82

85

86

90

91

91

96

98

101

104

106

107

108

113

115

116

120

123

127

127

128

129

132

6-6 Map navigation analogy for controller synthesis algorithms ..

6-7 Limited lookahead controller graph.

6-8 The discrete event process object class hierarchy.

6-9 State object class hierarchy.

6-10 Hierarchical product model.

6-11 Product class method dependencies ..

6-12 JFLAP main menu

6-13 JFLAP FSM capture window.

6-14 A controller in 3D. .

6-15 Hierarchical marking.

6-16 Empirical controller complexity.

6-17 Empirical controller size. .

7-1 Tank control specification.

7-2 Tank three event controller.

7-3 Tank example: control action.

7-4 Shutdown specification. . . .

7-5 Emergency shutdown trace.

7-6 Controller size during emergency shutdown.

7-7 Two tank system schematic

7-8 Specification for two tank example.

7-9 Object hierarchy for two tank example.

7-10 Tow tanks closed loop control simulation ..

7-11 Detail of figure 7-10.

7-12 MATLAB tank control simulation

7-13 Restrictive specification. . . .

7-14 Comparison of controller size.

7-15 Simulation with restrictive specification.

7-16 FPSO and Tanker offioading.

XlV

135

136

139

141

142

144

145

146

147

161

166

167

170

173

174

174

175

176

177

180

180

181

182

183

184

185

186

188

7-17 Vessel power distribution. 190

7-18 Vessel coordinate reference frames. 191

7-19 Block diagram of DP control system. 196

7-20 Vessel thruster arrangement. 197

7-21 Thrust limiting. 199

7-22 The FPSO and tanker offloading system. 201

7-23 Inadequate specification with no timing. 204

7-24 (a) An example of overspecification, (b) a better specification. 206

7-25 DP vessel shutdown. 209

7-26 An overhead view of the shutdown. 210

7-27 HIL control block diagram. . . 211

7-28 HIL vessel control simulation. 213

7-29 HIL maneouver. ..

A-1 Lyapunov stability

C-1 FSM representation of a simple machine.

C-2 Two simple FSM models with :E1 = {a, /3} and :E2 = {/3, '"'(}.

C-3 The synchronous product G1 IIG2 of automata in figure C-2.

C-4 Automata for shuffle product.

C-5 Shuffle product of automata from figure C-4.

D-1 Conceptual visualization of the control process.

D-2 Linguistic interpretation of legal language.

D-3 Interconnection of supervisor and plant.

D-4 Diagram illustrating controllability of K with respect to P.

D-5 Cat and mouse "toy" problem ..

D-6 Cat and Mouse automata.

D-7 Cat/mouse specification. .

D-8 Supervisor for the Cat/Mouse system.

XV

214

238

246

247

247

248

249

250

251

252

252

256

257

259

260

D-9 A TTM model of the cat automaton.

D-10 DES equivalent model of cat of timed automaton.

E-1 A hybrid automaton.

XVI

261

261

262

List of Abbreviations

CSM Continuous System Model

DES Discrete Event System

DP Dynamic Positioning

ESD Emergency Shut Down

FSM Finite State Machine

FSA Finite State Automaton

FPSO Floating Production Storage and Offioading Vessel

HIL Human In the Loop

HPA Hybrid Product Automaton

HTG Hybrid Transition Graph

IVP Initial Value Problem

JOM Joint Operations Manual

ODE Ordinary Differential Equation

PMS Power Management System

SCM Switched Continuous Model

SCT Switched Continuous Trajectory

xvn

I 1 Chapter

Introduction

1.1 Background

M athematical models are approximations of the physical world. These models

allow us to understand, analyze, predict, and control the physical processes

that surround us. The latter task, control, is the subject of this thesis. Tradition­

ally, mathematical models take the form of continuous linear or nonlinear differential

equations; this is because the physical processes they model tend to vary in a smooth,

continuous manner. Consequently, the vast majority of control theory has been de­

veloped for the control of continuous dynamical systems.

With the increasing proliferation of automatic control, and the corresponding in­

crease in the complexity of controlled systems, high-level control functions such as

supervision and coordination have become a necessity. As a result of this, an impor­

tant class of systems, known as hybrid systems, have grown increasingly important.

These are systems that cannot be described easily by continuous dynamical models

only, and require a model that also incorporates discrete changes of state. Hybrid

dynamics are often the manifestation of a discrete decision-making process (i.e. digi­

tal control) interacting with a continuous dynamical system. Hybrid behaviour may

also arise autonomously if a system switches discretely between multiple modes of

s,

c, D, C',

J<'igu~ 1-1. A typical complt--x ron! rot ~yw1em having hybrid dynamic,.., I..AA\··tc~J continuous
routrol t.»ks, GJ,C, lllld di~tal C'OIItrol DJ, are coordinated and •u~U-tod by a high-Jm·el
C'Oil1.t'OI..lcr, s •.

operation.

M&ny practical control probl<·u"' lie I!OIIle"'-here in thb hybrid "•prctrum• some­

wltrrr bct un oontinuou~ and diHCn•tc dynamics. Examples includr: robotics, process

conLrol , nutonomous vchi(•lt\i nnd •'<"'Onfigurable manufacturing. The COJill liOil thread

iu all of these applications iK tlmt t herr arc both continuouH nnd di!K:rct..e oontrol

tNdo! im.'Oivcd. For example-, a oonthlUOIL'''i dynamical task for & robotic ann may be

to ~Y follow a motioo profile that •pccifics both & '-clodty and pooitioo through

tiiiiP. A perallel d~o 0\'ftlt pi Ol8Y be thai the &rm-t tho motion profile

& •pccific number or tirnH, ll)'lld>ronize ... actions .. ith • nl'i~bbouring machine to

&\old collision (mut\131 cxcll<,ion), and &\'Old a deadlock condition "'ith the neigb­

holiring machine. This ,.ituRtion iM illustrated in the exa.mph• of Fig. 1-1~ in which

the oontinuous controllcno C1 nnd C2 oontrol the motion or two robot. arms. A dis­

rrt'te control system D1 mRy bt' I'C'Iti>OilBible for control or diNCT('le- vroros..:;cs such as

2

opening or closing valves. The supervisory controller 5 1 must coordinate and enforce

certain behaviours amongst the low-level systems. The mixture of discrete and con­

tinuous dynamics makes this a hybrid system. Now suppose the robots are handling

a hazardous material that cannot be dropped: this adds a safety-critical aspect to

the control task, focusing the need for formalized control design procedures that can

be proven to be safe, or error-free.

1.2 Problem Discussion

The modeling, analysis and control of hybrid systems is an open and active area of

research. The intent of this research is to develop theory and techniques that can be

applied by control system practitioners. As control system designers, the objective

is to design provably safe controllers for hybrid systems such as the one described

above. In the domain of discrete-event systems, it is possible to exhaustively search

very large system state spaces, removing trajectories that lead to unsafe states. And,

in the continuous systems domain, it is possible to ensure the stability of controlled

systems under a variety of disturbances and uncertainties. Finding a balance between

these two disparate, but mutually desirable approaches to hybrid system control is

the task at hand. Exhaustive reachability of hybrid state spaces is in general, not

possible, due to the uncountable state space. Likewise, input-to-state, and input-to­

output stabilization is problematic for even the most simple hybrid systems. The

current approaches to the hybrid design problem involve various combinations of

continuous and discrete-event modeling, simulation and analysis strategies. In either

case, the usual approach is to place more emphasis on one or the other of the types of

dynamics; e.g. approximated continuous dynamics combined with discrete switching,

or abstracted switching combined with higher-fidelity continuous models. At this

time, hybrid analytical and synthesis tools are at a primitive state in comparison to

the tools of typical industrial practice. A detailed survey of the theoretical results

3

for automatic control systems in general, and hybrid systems in particular, is given

in Chapter 2. Even if the serious theoretical hurdles of hybrid system control can be

reasonably dealt with, a major barrier to adoption of hybrid control system design

technique~ remain~: U.esign tools must be user-friendly and have sufficient utility that

designers will choose to use them. Simulation is currently the most widely utilized

technique for hybrid control system design. Controllers are simulated in many "ad­

hoc" test scenarios to identify and correct failure points in the design. This approach

relies on heuristics - the designer's skill, and knowledge of the system, to ensure

safety.

1.3 Contributions

To solve the problem described in the previous section, it was necessary to take an

approach that was balanced between theoretical and practical considerations. This

thesis documents the technique and supporting theory that enables the automated

synthesis of supervisory controllers for systems with hybrid dynamics. The contribu­

tions are as follows:

Modeling The modeling framework developed in this thesis accommodates embed­

ded continuous simulations, thus enabling control system designers to utilize

existing simulation tools. The model, which is based on discrete switching of

continuous dynamics, is simple to use and is very expressive for capturing hybrid

dynamics. These features are an important step towards gaining acceptance of

this technique in industry.

Control Synthesis The controller synthesis technique described in this thesis uses

a hybrid system plant model and a discrete event specification to produce a

discrete event supervisory controller that is safe by design. Because the con­

troller is implemented online, it can accommodate time-varying plants, and has

reduced computational complexity compared to offline controllers, since it is

4

computed on a limited horizon. This controller can be guaranteed to be safe

(i.e. failsafe) always, by inclusion of emergency shutdown states, allowing this

technique to be utilized in safety-critical applications.

Computation A software package called HYSYNTH was developed that implements

the control theory concepts of this thesis. The software can be used to model,

design, synthesize, and simulate online discrete event supervisory controllers,

and it helps to demonstrate the various contributions of this thesis including:

automated control synthesis for hybrid systems, online operation, failsafe con­

trol, embedded simulation, controller complexity reduction, and human in the

loop control.

Application The ship control application presented in this thesis marks the first

time that hybrid system control synthesis techniques have been described for

control of marine vessels. This controller is unique in that it is suited to the

incorporation of human in the loop control. This inclusion of the human op­

erator may make this control technique more attractive to implement from an

operational and liability standpoint.

1.4 Organization

This document is organized as follows: Chapter 2 contains a review of the litera­

ture that is relevant to the topics of discrete event and hybrid systems modeling,

simulation and control. Chapter 3 develops a general continuous system modeling

framework. Particular attention is paid to the partitioning framework that will be

used to produce the discrete abstractions of the continuous dynamics. Chapter 4

introduces the switched continuous model framework, and its discrete graph repre­

sentation, the hybrid transition graph. In Chapter 5 there is brief review of discrete

event controller synthesis. Developed next is the theory to support synthesis of a

fail-safe discrete-event controller for a hybrid system. This is based on the synchro-

5

nization of a switched continuous model of the plant with a discrete event model of a

specification. Chapter 6 is an overview of the computational framework that is used

to support the modeling, design and online controller synthesis. Chapter 7 examines

two applications of the theory; the first is a benchmark hybrid control problem. This

simple example serves to illustrate the modeling environment, and through simula­

tion, gives benchmark run time complexity results. The second example demonstrates

the control design process for a realistic, industrial control problem. It also illustrates

the capacity of the control framework to incorporate heuristics (i.e. human-in-the­

loop) control. Finally, Chapter 8 again summarizes the contributions that this thesis

makes to hybrid control systems research, and suggests directions for future work.

6

Background and Related Work

T his thesis is concerned with the control of complex dynamical systems in real

time. As such, the background material contained in this chapter is of a diverse

nature, encompassing elements of control system design and applications, continuous

control system theory, discrete event control theory, hybrid system theory, and the

modeling, analysis and simulation of these systems. This chapter is a brief overview

of the models, methods and theory developed to support control system design and

analysis in these areas, and which are relevant to the results of this thesis.

2.1 Continuous System Modeling and Control

Continuous system modeling has been the dominant paradigm for theoretical and

practical developments in control systems during the 20th century. Initially, con­

trollers themselves were mechanical, then electromechanical and finally electronic

(excluding the actuators) (Michel 1996). The "classical era" in control theory and

practice was developed around frequency domain stability techniques combined with

transient response performance analysis. Control system models were based on lin­

ear time invariant (LTI) models in a single input/single output (SISO) modeling

framework, and control design practitioners had many semi-automated procedures

7

for synthesizing controllers. Many of these techniques were developed by practicing

engineers and the theoretical explanations followed afterwards (Bernstein 2002).

With the advent of the 1960s came the state-space modeling approach of the

no-called "nwdern era" and the ability to rnodel, analyze and design controllers for

multivariable or multiple input multiple output (MIMO) systems. The fundamental

concepts of state controllability and observability were formally identified by Kalman

(Kalman 1960). The state space approach lends itself well to algorithmic (and hence

digital computer) implementation. Given an LTI plant model, a Linear Quadratic

Gaussian (LQG) controller can be synthesized for the system that is optimal in a

least squares sense. Furthermore, the controller is formulated for a stochastically

disturbed modeling and measurement environment, so it lends itself well to practical

application. In fact, the optimal estimator (the Kalman filter) is widely credited with

making possible the first lunar landing of 1969 (p.14 (Grewal and Andrews 1993)).

Initially, there were serious drawbacks with the state-space approach since there

was no way to specify stability; and modeling errors could lead to control instability.

With 'Hoo control design (Francis, Henton and Zames 1984), the frequency domain

approach of the classical control design techniques and notions of input to output

stability were developed for multivariable systems; see (Skogestad and Postelthwaite

1993) for an overview. Multivariable control design was further extended to include

controller robustness to parametric and structured modeling uncertainty with the

advent of JL-synthesis techniques (Williams 1990), (Balas and Packard 1996).

Up to this point we have been dealing with linear system models. vVith nonlinear

system models, the familiar control system tools no longer apply. Nonlinear models

exhibit certain phenomena that do not arise in linear systems, including finite escape

time, multiple equilibria, limit cycles, deterministic chaotic behaviour, and multiple

modes of operation (Khalil2002). Typically the approach is to linearize the nonlinear

system model about some operating point, if this is possible, in order to use the

familiar and powerful linear system tools. Unfortunately, there are many classes of

8

system for which the locally linearized approximate model cannot be used; e.g. this

situation might exist if a system by necessity has more than one operating point. For

systems like this, gain scheduling (Leith and Leithead 2000) and sliding mode control

technique~ have ~een exten~ive u~e in indu~try (Kaynak, Erbatur and Ertugrul 2001).

2. 2 Discrete Event Systems

Discrete event dynamical systems (DES) are characterized by having a state space

that is a discrete set and a state transition mechanism that is event driven. Usually

DES models take the form of automata or petri nets. Supervisory control theory for

DES was developed by Ramadge and Wonham, (Ramadge and Wonham 1987) and

(Wonham and Ramadge 1987). Aspects of control that are not possible to specify in

the traditional continuous control theory, such as the ordering of events, coordination

of multiple processes and enforcement of safety properties became possible with this

technique. Specification and plant are both DES and modeled as finite state automata

(FSA). Large models can be conveniently constructed by synchronous composition of

multiple FSA. Control optimality is achieved by designing a controller that minimizes

interference with the plant (minimizing plant event disablement), while enforcing the

specification.

Many extensions to the basic supervisory control theory have been developed in­

cluding limited observation (Lin and Wonham 1988), decentralized supervisory con­

trol (Rudie and Wonham 1992), and robustness (Bourdon, Lawford and Wonham

2005). While technically DES have no sense of time, since they are event driven, by

addition of integer clocks and special event called tick, specifications and plant models

can incorporate coarse timing (O'Young 1991) and (Brandin and Wonham 1992).

DES supervisory controllers are amenable to automated computation, and a num­

ber of educational and academic packages have been developed for supervisory con­

troller design, including TTCT (Meder 1997), OTCT (O'Young 1992), and UMDES

9

(UMDES Software Library 2006), which has recently added a graphical user interface.

More detail on DES supervisory control is given in Appendix D; and for a thorough

treatment of DES modeling and supervisory control theory, refer to (Cassandras and

Lafortune 1999) and (Kumar and Garg 1995).

2.3 Hybrid System Modeling

An early hybrid system model was proposed by Witsenhausen (Witsenhausen 1966),

baring a striking resemblance to the definition used today. A hybrid system was

described as:

11A class of continuous time systems with part continuous, part dis­

crete state is described by differential equations combined with multistable

elements."

With any hybrid model, the goal is to capture the mixture of continuous and

discrete dynamics that are the characteristic of what we know today as hybrid sys­

tems. Generally speaking, the various hybrid models differ primarily in their intended

purpose and in the expressiveness of the continuous dynamics that are admitted by

the model. Furthermore, hybrid modeling tools reflect the community from which

they arise; we divide these into the computer science community and the control

engineering community. In general, the computer science community's approach has

been centered around proving correctness of a system with respect to a given spec­

ification (verification), while the controls community seeks parallels to traditional

control system theory, such as stability, controllability and observability. The mod­

eling paradigms for computer science have traditionally centered around automaton

based methods, while those of the controls community have centered around switched

systems. This being said, there is considerable overlap between these communities;

each have made significant contributions to the understanding of hybrid systems and

the control of hybrid systems.

10

We now examine some hybrid system models.

2.3.1 Timed Automata

The abstraction level of the coarse-timed FSM lacks the desired timing expressiveness

that is necessary for real-time control. The abstraction of the discrete-time DES su­

pervisory control approach is deemed to be unsuitable when reasoning about systems

that act (or react) directly with physical processes. The (dense) timed automaton

of (Alur and Dill 1994) is a finite state automaton having a finite set of real-valued

clocks. These clocks may be reset to zero upon the state transitions of the automaton

in order to keep track of time between events. Timed automata theory allows for

algorithmic analysis and verification of real time systems (Alur, Courcoubetis and

Dill 1993). This approach proves useful when performing model checking on systems

that are naturally specified as elapsed times, or time delays. Dense time models are

still essentially an abstraction of the underlying physical processes (i.e. continuous

variables) that give rise to the discrete events.

Automatic verification tools have been developed for this class of system, no­

tably UPPAAL (Bengtsson, Larsen, Larsson, Pettersson and Yi 1995) and KRO­

NOS (Bozga, Daws, Maler, Olivero, Tripakis and Yovine 1998). These packages have

both been applied to the verification of communication protocols; problems that con­

tain "hard" timing constraints (Daws, Kwiatkowska and Norman 2004) (David and

Yi 2000). However, owing to the complexity of these protocols, these examples have

been carried out only on some portion of the protocol, and were formulated with

simplified models of the protocol software code.

2.3.2 Hybrid Automata

This is a finite state graph, in which each state has some continuous dynamics (not

necessarily constant rate) specified as differential equations. The switching between

states is instantaneous and is governed by guards (or invariants) based on the con-

11

tinuous variables (Henzinger and Ho 1995). The hybrid automaton is an intuitive

and expressive model since it uses the familiar finite state automaton paradigm. An

execution of a hybrid model then consists of the continuous states varying according

to the c:urrently Hpedfied dyuamic:s, followed by a discrete jump to a new state and

so on. A natural extension of the timed automaton is the so-called "linear" hybrid

automaton (Henzinger 2000), a special case of hybrid automaton that requires the

continuous dynamics to be constant rate. Essentially, the LHA is a special case of

a timed automaton in which the clocks may run at different rates with respect to

each other. This extension of the timed automaton takes the model one step closer

to the physical variables, since now the variable rate clocks may model a variety of

real-valued continuous variables instead of time.

In general however, the algorithmic verification of the hybrid automaton models

is undecidable, since model checking is based ultimately on computing the reachabil­

ity of an infinite state space. Algorithmic verification of system properties for LHAs

are only semi-decidable. When the model is based on a special sub-classes of the

linear hybrid automaton; i.e. the rectangular automaton, verification is known to

be decidable (Henzinger, Kopke, Puri and Varaiya 1998). A software package that

implements hybrid system verification for LHAs called HyTech (Henzinger, Ho and

Wong-Toi 1997), (Henzinger, Ho and Wong-Toi 1996) was developed and has found

considerable use primarily as a teaching tool and for academic research. HyTech has

been reportedly used to verify and parameterize properties in a variety of simpli­

fied applications including (to name a few), a steam boiler control (Henzinger and

Wong-Toi 1995b), a distributed sensor network (Coleri, Ergen and Koo 2002), ship

coordination and control system (Millan and O'Young 2000) and a pneumatic au­

tomotive suspension control system (T. Stauner, 0. Mueller and M. Fuchs 1997).

Unfortunately, the main shortcoming of these applications is that the nonlinear con­

tinuous dynamics must be approximated by constant rate dynamics (Henzinger and

Wong-Toi 1995a). If a system is meant to be safety critical, then incorrect approx-

12

imation of the nonlinear dynamics could lead to safety violations. Furthermore, for

the control examples, HyTech assumes that a controller exists already for the hybrid

system; it verifies the design or parameterizes it; in general designing the controller

for a cmnplex systeru is au irnportant part of the problem.

The hybrid I/0 automaton (HIOA) framework was intended to support descrip­

tion and analysis of hybrid systems, adding a complex input/output interface to the

basic HA (Lynch, Segala and Vaandrager 2003). Composition operations amongst

HIOA models accommodate more complex modeling of hybrid systems. Unfortu­

nately there is no computational tool to support this modeling framework, so the com­

position and verification is carried out by hand using mathematical proofs thus lim­

iting applications to simple laboratory-based demonstrations (Fehnker, Vaandrager

and Zhang 2003) and (Mitra, Wang, Lynch and Feron 2003).

2.3.3 Quantized 1/0 (Discrete Event Abstraction)

Another approach to hybrid systems modeling has centered around discrete abstrac­

tions of continuous systems. This approach is characterized by a control theoretical

approach, centered around leveraging the "correct-by-design" results of DES supervi­

sory control theory. In (Raisch and O'Young 1998), discrete abstractions based on the

truncated time history of discrete-time LTI continuous models were used to synthesize

DES supervisory controllers. In a behavioural sense, if the behaviour of the discrete

abstraction contains that of the continuous system, then the safety properties of a

DES controller based on the abstraction are ensured (Raisch 2000), (Moor, Raisch

and Davoren 2001). The controller is a discrete-event controller, while the plant ex­

ists in the continuous domain, so from an I/0 point of view, there are A/D and

D/A interfaces between the two (Lemmon, He and Markovsky 1999), (Koutsoukos,

Antsaklis, Stiver and Lemmon 2000). In (Su, Abdelwahed, Karsai and Biswas 2003),

(Abdelwahed, Su and Neema 2005), discrete abstractions of continuous dynamics

were adapted in a limited horizon to synthesize DES supervisors.

13

2.3.4 Switched Systems

Many approaches to hybrid modeling fall into the category of switched systems. The

switched system approach is characterized by the high fidelity modeling of the continu­

ous dynamics, with less attention paid to the logic; these are generally non-automaton

based representations of hybrid systems.

The emphasis of the switched system approach to hybrid systems is primarily on

control system stability and optimality. Typically there are a collection of continuous

system dynamics amongst which a controller may switch; conditions are sought under

which the switched (or hybrid) system is stable. Worth noting is the fact that even if

each individual system is stable, unconstrained switching may actually destabilize the

overall system. Conversely, switching may be used to stabilize the overall system even

if the individual subsystems are themselves unstable (Hespanha and Morse 2002). For

arbitrary switching by the supervisory controller, the hybrid system will be stable if a

common Lyapunov function can be found for each of the continuous dynamics. Under

state based switching conditions, stability may be guaranteed if multiple Lyapunov

functions can be found for each of the switched systems (Branicky 1998).

Many special subclasses of switched system models have been proposed that use

approximated continuous dynamics to achieve improved computational complexity

at the expense of verification and control conservatism. These models include mixed

logical dynamical (MLD), piecewise affine (PWA) and others; each has been shown

to be input-state-output equivalent under certain assumptions (Heemels, de Schutter

and Bemporad 2001). Closed loop model predictive control (MPC) has also been

shown to be equivalent to these other forms of linear switched systems under cer­

tain assumptions (Bemporad, Heemels and de Schutter 2002), meaning that switched

system results can also be applied to MPC by translating them into MLD or PWA

problems.

Software has been developed for analyzing, simulating and even synthesizing con­

trollers for systems modeled by PWA and MLD models (Torrisi and Bemporad 2004),

14

(Torrisi and Bemporad 2001) in discrete time. Based on the package HYSDEL (Hy­

brid Description Language) and implemented in the Matlab® /Simulink® environ­

ment, PWA models can be interfaced to finite state automata. The software is capa­

ble of generating linear and hybrid MPC (receding horizon) control laws in piecewise

affine form. Another software tool, CheckMate, has been developed in the Mat­

lab/Simulink environment for hybrid system verification (Chutinan and Krogh 2003).

Beginning with a polyhedral set of initial continuous states and continuous ranges of

parameter values, this package can verify that all trajectories of the model meet some

specification.

Typical applications that have been looked at are synthesizing an engine idle speed

controller (Balluchi, Natale, Sangiovanni-Vincentelli and van Schuppen 2004) using

PWA hybrid models, air traffic control routing problem optimized by using mixed

integer linear programming (MILP) (Bayen and Tomlin 2003) and a chemical batch

processing system using PWA and MLP (Potocnik, Bemporad, Torrisi, Music and

Zupancic 2004). A survey of automotive applications of the switched system control

approach are contained in (Balluchi, Benvenuti and Sangiovanni-Vincentelli 2005).

General references for switched systems control and stability can be found in

(Liberzon 2003), (Hespanha 2004), and for a short overview, see (Lin and Antsaklis

2005).

2.4 Hybrid System Simulation

When designing control systems for hybrid systems, simulation is without a doubt

the most heavily utilized tool by designers. Typically, controllers are tested under

a variety of conditions by simulation to evaluate the safety and correctness of a

particular design. However, due to the ad-hoc choice of these test conditions, this

technique may miss the particular combination of conditions that leads to design

failure. In spite of this, hybrid simulation is still an important tool.

15

The statechart modeling formalism was originally developed by (Harel1987) to en­

capsulate the notions of hierarchy, concurrency, and communication for discrete event

system models. Statecharts have been widely used and were subsequently extended to

include continuous dynamics; an example of a commercial simulation tool using stat­

echarts is the Matlab StateFlow® toolbox for Simulink . Various packages have also

been developed for academic use, including CHARON (Alur, Dang, Esposito, Hur,

Ivancic, Kumar, Lee, Mishra, Pappas and Sokolsky 2003) a language for describing

hybrid and timed systems. Ptolemy is a general-purpose modeling package with a

graphical user interface (Lee 2003). HyVisual, based on Ptolemy, is also a visual mod­

eling package, but is designed specifically to model hybrid systems (Brooks, Cataldo,

Lee, Liu, Liu, Neuendorffer and Zheng 2005). HYBRSIM is an object-oriented hybrid

simulation tool based on bond graph models of hybrid systems (Masterman 2002).

Another hierarchical hybrid simulation tool called YAHMST (Yet Another Hybrid

Modeling and Simulation Tool) has also been reported (Thevenon and Flaus 2000).

A comprehensive overview of these and other hybrid modeling, simulation and

verification tools is given in (Carloni, DiBenedetto, Pinto and Sangiovanni-Vincentelli

2004).

2.5 Complexity

A common thread in the control problems formulated with the models presented

here is that most are either undecidable or computationally intractable (Blondel and

Tsitsiklis 2000). Undecidable problems are ones for which a suitable algorithm cannot

be constructed to: a) terminate, and b) return a correct answer. Computationally

intractable problems are considered to be those for which a polynomial-time algorithm

cannot be found, and thus they are not amenable to computation; these are known

as NP-hard problems.

It has been shown for simple hybrid systems consisting of switched continuous

16

systems that verifying properties such as stability and controllability are either unde­

cidable or NP-hard (Blondel and Tsitsiklis 1999). Verification of properties for sys­

tems modeled by simple linear hybrid automata (and even for some timed automata),

have Leen ~>hown to Lc undecidable (Hcnzingcr ct al. 1998). In DES supervisory con­

trol, the modular supervisor control synthesis isNP-hard due to the familiar "state

explosion" problem (Gohari and Wonham 2000). Even in the area of robust control,

the calculation of the structured singular value p,, has been shown to be NP-hard

(Braatz, Young, Doyle and Morari 1994).

Clearly, the quest for verification and optimality in "real" hybrid or DES control

problems is unlikely to be successful. Hence, control solutions will likely have to be

sub-optimal or "fit for purpose", and thus new control theory has to be driven by the

applications.

2.6 Assessment of Relevant Work

The work presented in this thesis is inspired by the industrial control problems encoun­

tered with the safety critical control and coordination and manoeuvring of multiple

marine vessels. Practicing controls engineers need design techniques and tools that

are easy to use and understand.

2.6.1 Model Formulation

The switched continuous model (SCM) that is developed in Chapter 4 is a blend of

the switched system and discrete abstraction approaches to hybrid modeling. We

use a flexible state space partitioning based on continuously differentiable functionals

as in (Koutsoukos et al. 2000). However, instead of switching piecewise constant

inputs, we switch the entire continuous dynamic as is done in the switched system

approach. This admits a very expressive continuous modeling to be utilized. The

vast majority of switched system approaches emphasize global stability or optimality,

17

and therefore must use linear approximations of continuous dynamics in order to

make the computation more tractable. Because we use a finite time horizon, we can

relax the goal of stability, which is traditionally defined on infinite time. In addition,

because we deal with a discrete abstraction, optimality is relaxed to merely a safety

requirement in the sense of state avoidance. These tradeoffs permit us to admit a

larger class of nonlinear continuous dynamics ((Millan and 0 'Young 2006)).

2.6.2 Discrete Abstraction

Previous discrete abstraction work has focussed on obtaining a single offline discrete

event model, with the added requirement that the model be deterministic. This desire

leads to state space partitioning regimes that attempt to match the flow of the contin­

uous dynamics (Koutsoukos and Antsaklis 2001). In (Suet al. 2003), the partitioning

is based on refinements of polyhedral partitions until the model's nondeterminism

is reduced to some satisfactory measure. Since our technique involves abstracting

the model repeatedly in an online fashion, no single discrete abstraction is required.

And having full-state information, a deterministic model is not required, since we

have cast our DES supervisor synthesis as a state avoidance problem. As a result,

the main consideration of the partitioning is to generate discrete events (symbols) in

order to synchronize with other processes that make up the plant or specification.

Furthermore, (Raisch and O'Young 1998) showed that enforcing safety of the dis­

crete abstraction guarantees the safety of the corresponding continuous model if the

discrete abstraction is a conservative approximation of the continuous model.

2.6.3 Controller Synthesis

Similar to our work is (Stursberg 2004), in which the nonlinear continuous dynamics

are retained as embedded simulations. Working with a finite set of control actions,

an acyclic graph branching in discrete time intervals, with hybrid nodes (states) is

constructed. The search of this graph is steered by optimality constraints using a

18

combination of depth and breadth first reachability. Our technique differs in that we

construct a finite state graph which is pruned in a maximally permissive sense with

respect to a safety specification, in accordance with optimal DES supervisory control

theory. Furthenuore, our approach ad1uits both state and ti1ne dependent switching

of dynamics.

2.6.4 Computation

In the work of (Stursberg, Fehnker, Han and Krogh 2003), it was noted that a re­

duction in computational complexity may be realized by including the specification

when calculating reachable sets for hybrid verification problems. Most hybrid reach

set computations simply expand the reach set incrementally in all directions without

regard to the specification. In our controller synthesis technique, the inclusion of the

specification during synthesis allows for a reduction in computational complexity due

to the fact that illegal traces may be eliminated as soon as an illegal state is reached;

i.e. before it is added to the reach set.

We utilize a limited lookahead scheme similar to that initially explored in (Chung,

Lafortune and Lin 1992), in which DES supervisors are computed for a limited looka­

head event horizon. This technique was intended to reduce computational complexity

for DES control synthesis and to allow time-varying plants to be handled, since it is an

online technique. In limited lookahead control, safety and nonblocking properties can

only be guaranteed by adopting a conservative approach with regard to the extension

of traces beyond the lookahead horizon; that is, they assume that all traces continue

to unsafe or blocking states. Our approach is also conservative, and we define the

notion of emergency shutdown states, specially marked states to ensure system safety

((Millan 2006)).

In (Giorgetti, Pappas and Bemporad 2005), a finite-time discrete transition system

is extracted from the linear continuous dynamics of a discrete-time hybrid automaton

(DHA) model on a limited horizon. A technique known as bounded model checking

19

(BMC) is then used to verify the system against a specification, which is expressed

as a temporal logic formula. Instead of verifying a controller design, as in this offline

approach , we repeatedly construct controllers online by the synchronous product

connection of the plant and specification. Our finite state graph (called a hybrid

transition graph) represents the controller and is correct by design because it repre­

sents the (exhaustive) reachable state space, on a limited horizon, of the plant pruned

by a safety specification.

2.7 Summary

In this chapter we have examined some common approaches to hybrid system mod­

eling that have been reported in the literature. The various techniques and tools for

simulation, verification, and control synthesis have developed from two communities

with backgrounds of control systems (electrical engineering) and computer science.

Both of these research approaches have had some successes, but no hybrid system

control techniques have yet seen any widespread acceptance by industry. Simulation

still seems to be the dominant approach to hybrid system control design. The promise

of the definitive verification, optimality and provably stable hybrid system controller

appears to be an elusive goal; many of these have been shown to be either undecidable

problems or computationally intractable.

A comparison of the techniques developed in this thesis with those of the literature

has been presented. In the following chapters, these modeling and computational and

control synthesis techniques are developed in further detail.

20

Abstraction of Continuous System

Dynamics

3.1 Introduction

T he goal of this chapter is to develop a discrete event abstraction of a continuous

model that ultimately will be suitable for discrete event supervisory control.

The approach taken is to select a natural and expressive continuous modeling frame­

work and then to overlay it with a discrete event, input/output (I/0) interface. For

now, we consider the output aspects of the interface, or the conversion of the contin­

uous dynamics to that of discrete event dynamics.

The continuous dynamics of a system may be described by a nonlinear ordinary

differential equation (ODE),

x(t) = J(x, t) (3.1)

In general, the objective of the discrete abstraction is to achieve a single, preferably

deterministic, automaton representation of the continuous dynamics. Based on this

discrete abstraction, standard DES supervisory control techniques can be used to

develop a DES controller. The discrete abstraction is intended to capture only the

important dynamics (those that matter to the DES controller), thereby reducing the

21

Interface Layer
x = f(x,t) Abstraction: .. State Quantization

x(t)
Discrete Event

SE L* Generation

Continuous Dynamics Discrete Event Dynamics

Figure 3-1: An interface layer between the continuous dynamics and the discrete event
dynamics is used to develop the discrete abstraction.

model complexity. The choice of an appropriate state quantization technique must

be considered carefully with this approach since it directly affects the complexity, the

determinism, and the fidelity of the model. There is a trade-off between modeling

complexity and the behavioural fidelity of the discrete abstraction.

One can think of state quantization as observing the continuous system's state

space through a sort of "compound lens", in the sense that it partitions the continuous

state space into multiple disjoint discrete states, approximations of the continuous

states. Continuous trajectories traversing across this quantized continuous state space

generate discrete events (or symbols) as the trajectory crosses boundaries between the

states. These output events drive or synchronize external discrete event systems. The

continuous system along with its interface layer can be considered to be a discrete

event generator, as pictured in Fig. 3.1.

For another view of the relationship between a continuous model and its discrete

event abstraction, refer to Fig. 3-2. In the upper left is the phase portrait of a

22

"

..

x= f(x.r>
I

• ~ I ,
/ -~ ... ,_...,.,--.;..,,

~ .. ~ .. ~ ,· \' " _,........ .. "~~- } \ •' ., ,,,_:, ' . ·'' r,·, ... r ' .'1.\'\

X '
' " t ~ •\ \; ' r' ,. •)· - ·-' •
\\•·\~,)''

\ • • ' I L \,'\., __ •• ,, .. , • , .. ~1
-1 ,, ... ~. - • ..: • .,. "\ ~,.

\ ' _- • I ~

·~r' _ ... ~-----.-
• . I . ~,
4 •J • u • u ·~

X

"
x(r} = Jt<x.t}dt

t

0 = (X ,l:,6, r.x0)

•

Jf ·or ~ -~c ~"
. 1 ..] " '

• • •
t

F1&ure $-2 A oompari...., of oootinuoos mod•lln~ (l<'ft) and cllo<r<1~ onodding (ri8J>t).

23

continuous system, essentially a graphical representation of the continuous dynamics

of a modeled system (Eq. 3.1). Superimposed on the phase portrait is a trajectory

x(t), the continuous behaviour, and the phase plane has been partitioned into two

region::>. In the lower left, the state variables of x(t) are plotted against time. The

upper right of the diagram is the graphical representation of the DES model of the

same continuous system, a finite state machine graph. In the lower right, the dis­

crete event behaviour of the FSM for the same continuous trajectory. Comparisons

may be drawn between the continuous state space approach and its counterpart, the

automaton representation. Likewise, there is a parallel between the continuous in­

put/output model and languages of automata (Boel, Cao, Cohen, Giua, Wonham and

van Schuppen 2002).

A discrete abstraction of a continuous model is defined by the state quantization

and the event generation processes. This chapter examines the discrete abstraction of

a generalized continuous model on a finite time horizon. The discrete abstraction of

the continuous system can be viewed as an autonomous generator of discrete events.

In this context, we examine one particular state abstraction technique that utilizes

continuous functionals to partition the state space of a given system model. This

technique was developed extensively in (Stiver, Koutsoukos and Antsaklis 2000) and

(Koutsoukos et al. 2000). In these works, functionals F : JR;.n --> JR;. are used to partition

the state space of a continuous system. For purposes of supervisory control, the null

space of these functionals are designed to be invariant manifolds with respect to the

vector field of the continuous dynamics. The resulting partitions have common entry

and exit boundaries, thus permitting deterministic DES models to be extracted.

In this chapter, we expand on the work of (Koutsoukos et al. 2000) by develop­

ing bounds on the cardinality of the state label set and event label set of a discrete

abstraction due to a general family of partitioning functionals. We relax the require­

ment that the resulting partitions be invariant with respect to the continuous flow

field, since without loss of generality, we do not require a deterministic DES model.

24

The emphasis is to develop a practical and flexible mechanism for obtaining discrete

abstractions of continuous dynamical systems, from which an algorithmic implemen­

tation can be developed. Finally, this chapter outlines the conditions that will be

re4uired for a generalized dit>crete abstraction in the following chapters.

3.2 State Quantization

This section outlines the quantization of the state space of a continuous model.

Smooth functionals of the continuous state variables are a powerful way of producing

state partitions, since they can be designed around the discrete event information

that we wish to extract from a continuous model. A functional-based quantization

allows for quantizations based on the entire continuous state vector.

Definition 3.2.1 (Functional) A functional F: ~n ___.. ~' is a real-valued function

on a vector space. For the purposes of this work, F is smooth, i.e. continuously

differentiable.

Definition 3.2.2 (Gradient Operator) The gradient operator \7 r-eturns a gmdi-

ent vector-

(
f)F 8F 8F)T

\7 F(x) = -;:)"", -;:)"", ... -;::;-
uxl UX2 UXn

Definition 3.2.3 (Hypersurface) Let N(F) be the null space of a smooth func­

tional F,

N(F) = {x E ~n: F(x) = 0}

such that

\7 F(~) =/= 0, V~ E N(F)

thenN(F) is a smooth hyper-surface of codimension one, that is, dim(F)-dim(N(F)) =

1

25

Definition 3.2.4 (Set Partition) A hypersurface N(F), forms a partition of a set

Q ~ lRn, into exactly two subsets, Q' = {x : F(x) ~ 0}, Q" = {x : F(x) < 0},

provided that N(F) n Q =/= 0. If a partition is created, then there exists Q', Q" C JRn

s·uch that Q' U Q" = Q

Note that if a partition is created, Q', Q" are pairwise disjoint sets. Thus, the

intersection of a single smooth functional with a set produces a partition of the set

into two subsets. We examine two operations that will be used to further develop the

partitioning mechanism.

Definition 3.2.5 (Set Partition Operation (I)) LetN(F) be a hypersurfaceformed

by a functional F, and let Q ~ JRn, then the set partition operation Ps is defined as

Ps(Q,N(F)) = { {Q},
{Q', Q"},

where Q', Q" are as per Def. 3.2.4.

if N(F) n Q = 0.

if N(F) n Q =/= 0.

We will now define a partitioning operator that operates on families of sets, so

that it can be used in recursive definitions.

Definition 3.2.6 (Set Family Partition Operation) Let H = {Qj ~ JRnll ~

j ~ M} be a family of sets Qj that are pairwise disjoint. Let N(F) be a hypersurface

arising from a functional F, then the set family partition operation, Pf(H,N(F)),

returns a family, H' of sets which is the result of the set partition operation applied

to each element of H such that

M

H' = Pf(H,N(F)) = U Ps(Qj,N(F)) (3.2)
j=l

The union of the elements of the post-operation family, H', is equal to the union of

26

the elements of the pre-operation family,

A simple example of the set family partitioning operation follows,

Example 3.2.1 Let H = { Q1, Q2, 0 0 0, QM} if for all j, Qj n N(F) =I= 0 then

H' = Pt(H,N(F)) = Ps(Q1,N(F)) U Ps(Q2,N(F)) U

... U Ps(QM,N(F))

H' { Q~, Q~} u { Q;, Q~} u ... u { Q~, Q'fvr}

{Q I Q" Q' Q" Q' Q" } 1> 1> 2> 2>"'' M> M

Now U(Qj U Qj) = U(Qj)·
j j

Now for repetitive partitioning operations, it is necessary to prove some properties

of the set family partitioning operation.

Lemma 3.2.1 Let H = {Qj <;:;; IRnl1 :::; j :::; M} and N(F) n Qj = 0, VQ1 E H and
M n Qj = 0, then the number of sets in the resulting family, IH'I = IPt(H,N(F))I = M

j=1

and moreover, H = H'.

Proof. Since N(F) n Q1 = 0 for all Q1 E H, then it follows from the definition

of the set family partition operation Pf (Def. 3.2.6), that

M

IH'I U Ps(Qj,N(F))
j=l

1+1+ ... +1
M

M

27

•
Now for case that each partitioning operation results in a non-empty hypersurface

intersection,

Lemma 3.2.2 Let H = { Qj ~ JRnll ::; j ::; M} and N(F) n Qj =f 0, VQj E H and
M

if n Qj = 0 then the number of sets in the resulting family, IH'I = IPJ(H,N(F))I =
j=l

2M.

Proof. Since N(F) n Qj =f. 0 for all Qj E H, then it follows directly from the

definition of the set family partition operation P1 (Def. 3.2.6) that

M

IH'I U Ps(Qj,N(F))
j=l

2+2+ ... +2
M

2M .

•
A further example will illustrate the successive partitioning operations, given

Lemma 3.2.1 and Lemma 3.2.2.

Example 3.2.2 Let H = { Q1 , Q2 } be a family of sets and let F be a functional such

thatN(F)nQI =f. 0 andN(F)nQ2 =f. 0. ThenH' = S1(H,N(Fa)) = {Q~, Q~, Q~, Qn

and IH'I = 2IHI = 2 · 2 = 4. Likewise, if there are no set intersections with the

hypersurface, then the operation returns the original family of sets 'unaltered H' =

Up to this point, only a single functional has been used to partition a single set

or family of sets. We will now look at the effect a family of partitioning functionals

has upon a set, by applying the set family partitioning operator recursively

28

Definition 3.2. 7 (Set Partition Operation (II)) Let Q <;;;; lRn and let \lt be a

family of smooth functionals, { Fi : lRn --> JR, 1 :S: i :S: N}. The set family parti­

tion operator recursively partitions Q into a family of sets

H' = Pt(· .. Pt(Pt({ Q},N(F1)),N(F2)), ... ,N(FN))
'-v-"

N liinws

(3.3)

The entire state space of a system, Q = lRn, can be separated into a family of

subsets using the operator described in Def. 3.2. 7. Given a family \lt, of N functionals,

{Fi: JRn--> JR, 1:::;; i:::;; N} the corresponding hypersurfaces, N(Fi) separate the state

space of a system into a family of sets.

How does the family of sets Q E H' relate to the discrete states of the DES model?

It can be shown that the family of partitioning functionals establishes an equivalence

relation on the system state space.

Definition 3.2.8 (Equivalence relation) Let \lt = { Fi : lRn --> JR, 1 :::; i :::; · N} be

a family of functionals defined on the state space of the system described by x(t) =

f(x, t), x(t) E lRn, then an equivalence relation is defined on lRn by the partitioning

functionals

x1 "'p x2 -¢:::=} (sign(Fi(xl)) x sign(Fi(x2)) = 1, for all i, 1:::; i:::; N) (3.4)

Definition 3.2.9 (Equivalence Class) Each set Qj C lRn is an equivalence class

created by the equivalence relation "'pof Eq. 3.4.

Definition 3.2.10 (Quotient Set) The set of all equivalence classes X, given the

equivalence relation "'p, is known as the quotient set X = JRn j rvp·

The members of the quotient set are the subsets Qj resulting from a state space

partitioning operation. These subsets (or equivalence classes) will be associated with

discrete system states through a state labeling function that assigns a unique state

29

label to each of the discrete states corresponding to the subsets Qj E X.

Definition 3.2.11 (Unit Step Function) We define a unit step function as:

Definition 3.2.12 (State Labeling Function) Let '11 be a family of N functionals

partitioning a state space, then let V : IR.n -----+ {0, 1 }N, be a function that identifies the

system state x E IR.n with a labeling vector as follows:

Thus each member of the quotient set Qj E X is associated with a unique label

vector generated by the state labeling function.

We will establish bounds on the cardinality of the resulting family of sets due to

this state partitioning operation. Let HI be the ith family of sets returned by the

ith nested set family partition operation, Pj.(Hi,N(Fi)), then for the next recursive

operation, P;+1
, Hi+l = H~. If each functional Fi intersects with only one set Qj E Hi,

for each Pj(Hi, N(Fi)) operation in Eq. 3.3 then this will be termed as minimal

intersection. Conversely, if each of the functionals, Fi intersects with all Qj E Hi for

each Pj.(Hi, N(Fi)) operation this is termed maximal intersection.

Maximal intersection determines the upper bound of cardinality resulting from

the state space partitioning operation.

Lemma 3.2.3 (State Space Partition Upper Bound) Let Q = IR.n be the state

space of a system, and let '11 = { Fi : IR.n -----+ JR., 1 ::::; i ::::; N} be a family of functionals.

The set partition operation {II) of Def. 3.2. 1, will produce a family of sets, H', such

that the upper bound on the number of sets is IH'I = 2N.

30

Proof. Proof of the upper bound is made by assuming maximal intersection and

by induction. For the (base) case of one functional N = 1, the set family partition

operation P}({ Q}, N(F1)) reduces to the set partition operation Ps(Q, N(F)) because

there it> ouly one t>cL iu the fam.ily II1 = { Q} and only one functional. Since Q = ~n,

thus Q n N(F1) f 0. It follows from Def. 3.2.5 that the cardinality of the returned

family is (by Lemma 3.2.2) IH~ I = 2N = 21 = 2. The inductive hypothesis is that

IH~I = 2N. It remains to show IH~+ll = 2N+l. Suppose there exists FN+l that has

maximal intersection for all Qj E H~ and since by definition

Therefore,

H' N
M

Pf'+1(HN+l,N(FN+I)) = U Ps(Qj,N(FN+I))
j=l

M

U Ps(Qj,N(F))
j=l

2+2 ... +2
"--v-"'

M

2M

where IH~I = M = 2N. It follows then that IH~+ll =2M= 2 x 2N = 2N+I, thus

proving the inductive hypothesis to be correct. •

The lower bound of the state space partitioning operation is determined by the

minimal intersection of the partitioning functionals.

Lemma 3.2.4 (State Space Partition Lower Bound) Let Q = JR.n be the state

space of a system, and let \fJ = { Fi : JR.n --+ JR., 1 ::::; i ::::; N} be a family of functionals,

such that there is minimal intersection. The set partition operation (II) of Def. 3.2. 7

will produce a family of sets H', such that the lower bound on the number of sets is

31

IH'I = N + 1.

Proof. Prove the lower bound by induction. The base case is N = 1, or one

functional F 1, so

and clearly QnN(F1) "I 0, therefore I Hi I = 2 by definition. The inductive hypothesis

is that I H~ I = N + 1. It remains to show that for N + 1 functionals I H~ + 1 1 =

(N + 1) + 1 = N + 2. Suppose there exists FN-H and only one set Q1 E H~ (minimal

intersection), such that Q1 n N(FN+d "I 0 and recall that H~ = HN+l· Then, by

definition
M

H~+1 = Pf+1(HN+l,N(FN+l)) = U Ps(Qj,N(FN+l))
j=l

where IH~I = IHN+ll = M = N + 1. Expanding the cardinality expression

•

M

U Ps(Qj,N(FN+1))
j=1

IPs(Q1,N(FN+l))l + 1Ps(Q2,N(FN+I))I + · · · + IPs(QM,N(FN+l))l

2+1+ ... +1_,__..,
M-1

2+M -1

N +2 .

M-1 terms

Having established upper and lower cardinality bounds on the state space parti­

tioning operation, it is possible to develop a general theorem on the range of cardi­

nality for the general result of this operation.

Theorem 3.2.1 (State Space Partition Boundedness) Let Q = IRn be the state

space of system and let \II = { Fi : IR.n ---+ JR., 1 :::; i :::; N} be a family of functionals,

with N finite. Then the state space shall be partitioned into a family of sets H', such

32

that I H'l is finite and furthermore that

Proof. Let 1'111 = N. It follows from Lemma 3.2.4 that the cardinality of a

resulting state space partition is bounded below and is IH'I 2: N + 1. Lemma 3.2.3

ensures that there is an upper bound on the cardinality of the resulting state space

partition, H ::; 2N+l. Hence the result follows that any finite family of functionals

induces a finite partition of sets on ~n. •

See Appendix B for further results on set partitioning using functionals.

3.3 Discrete Event Generation

A state quantization scheme has been established using families of functionals that

produces a finite set of discrete states and corresponding state labels. There is an

equivalence between these discrete states and subsets of the continuous state space.

We now define the event generation mechanism for our discrete abstraction. To do

this, we examine in more detail the continuous trajectories crossing the state space

of the continuous model, and how these trajectories are manifested in the discrete

abstraction.

Definition 3.3.1 (Continuous Trajectory) A continuous trajectory of a system

is defined as a solution x(t), to an IVP for x = f (x, t), and an initial condition

x 0 = x (t 0), over some finite time interval [t0 , t 1l

A transition occurs upon the traversal of a continuous trajectory between a pair

of regions or sets. For further definitions and discussion of continuous solutions to

ordinary differential equations, refer to Appendix A. In general, solutions of ODEs

require an assumption that the function f be Lipschitz continuous in order for the

solution to exist and be unique.

33

Definition 3.3.2 (Transition) Let Q 1 ,Qz C JR.n be a pair of sets such that QlnQz =

0. Let x(t) E JR.n, a solution to an IVP on time interval [t0 , ttl such that x(t) E Q1 UQ2

for all t E [t0 , ttl· If the continuous trajectory crosses a hypersurface, and then enters

the state, then the system 'is said to have undergone a transition.

The transition of a continuous trajectory from Q1 to Q2 will be indicated by the

following notation

Formally, the transition occurs at the moment when the trajectory x (t) first enters

the region Q2.

Definition 3.3.3 (Discrete Event) An atomic discrete system event a is generated

when a transition occurs.

For the purpose of event timing, it is important to have a consistent definition of

exactly when the discrete event occurs.

Definition 3.3.4 (Discrete Event Time) Let Q1,Q2 C JR.n. Let x(t) E JR.n be a

solution to an IVP for x = f(x, t), and an initial condition x 0 = x(to), over some

finite time interval [t0, ttl such that x(t) E Q1 U Q2 for all t E [to, t1l There is a

corresponding transition, as in De f. 3. 3. 2. Let x' (t) E Q1 be the solution on the time

interval [t0 , te) and let x"(t) E Qz be the solution on the time interval [te, ttl· The

atomic discrete event corresponding to the state transition is said to occur at time te,

the atomic moment at which the trajectory x(t) enters Q2 (Fig. 3-3).

In this definition, the partitioning hypersurface may be included in the trajectory's

originating region Q 1 or in the terminal region, Q2 . So according to our definition,

a transition may occur when a trajectory leaves, or when it lies on the partitioning

hypersurface.

34

N(F(x))

x(to) x(t)
·-------

x(t1) _.. .

x(tJ

Figure 3-3: A continuous trajectory (dashed line) crossing a hypersurface N (f (x)) generates
discrete event at time te.

With the state space of a system partitioned into possibly many subsets or regions,

it is necessary to have a way of uniquely identifying each of the continuous system's

transitions with the discrete abstraction's state transitions.

Definition 3.3.5 (Output Event Set) The output event set ~out, is a set of dis­

crete event labels that identify the discrete abstraction's state transitions uniquely.

The event labels are associated with the continuous system's transitions.

There are two event labels for each pair of adjacent states, since the direction in

which the state transition occurs must be distinguished. Thus a distinct event label

is reserved for each pair of regions to preserve the transition direction information:

Q 1 """"' Q2 generates event 0" 1,2

Q2 """"' Q1 generates event 0"2,1

Definition 3.3.6 (Output Event Function) The output event function, A : X x

X-> ~out is a map from an adjacent pair of states (equivalence classes) to an output

event.

35

When a continuous trajectory crosses a hypersurface, the output event correspond­

ing to the state transition is given by the output event function. For example, the

output event function returns the pair of complementary output events a+, a-, for

adjacent ::;tate::; ::;eparated by the hypersurface N(F(x)),

a+ A [V (P(~~~o- X) , V (P(~~~o+ X)] E ~out
A [V (P(~\~o+ X) , V (P(~\~o- X)] E ~out

The following example illustrates the state partitioning, labeling and the output

event functions.

Example 3.3.1 Let W = { F1, F2 } be the partitioning functionals. Functional F1

partitions the state space into H = { Q~, Qn, where Q~ = { x E IR.n IF1 (x) ~ 0} and

Q~ = { x E IR.n IF1 (x) < 0}. Since there is one pair of states, the event set has two

events, ~out = { a12, a21}. Now, to continue the example, if we partition H with the

second functional F2 , (refer to Fig. 3-4) then

where

H' Pt(H,F2) = PJ({Q~,QD,F2)

{(Q~)~, (Q~)~, (Q~)~, (Q~)~}

Ql (Q~)~ = {x E IR.n: F1(x) ~ 0 A F2(x) ~ 0},

Q2 (Q~)~ = {x E IR.n: F1(x) < 0 A F2(x) < 0},

Q3 (Q~)~ = {x E IR.n: F1(x) ~ 0 A F2(x) < 0},

Q4 (Q~)~ = {x E IR.n: F1(x) > 0 A F2(x) ~ 0}.

36

The discrete state labels are:

Vx E Q1 V(x) = [1 1r

Vx E Q2, V(x) = [o or
Vx E Q3, V(x) = [1 or

Vx E Q4, V(x) = [o 1r

Each of the states is adjacent to one another, so there are 6 pairs of sets in the state

space partition:

therefore the cardinality of the output event set

M! 4! 24
IL;outl = (M- 2)! = (4- 2)! = 2 = 12

and assigning labels to each transition gives the output event set is

We will now develop the cardinality of the output event set given a family of

subsets.

Theorem 3.3.1 Let H = {Qj ~ IRnl1 :S j :S M} be a family of subsets. The

corresponding output event set L;out has finite cardinality and an upper bound of

IL;outl = (M~!2)! ·

Proof. The upper bound occurs if every Qj is adjacent to every other Qj. This is

a permutation, since the order in which the open sets are paired matters. A pairwise

permutation forM objects is given by the formula for a so called r-permutation where

37

.(Q. '')": {x· ;,(x) <. O~E(x)'~.O}· I 2 . · • I · · . • .. ·< · .. , .

Figure 3-4: Example of state space partitioning.

r is the number objects to be arranged in each permutation

P(M, r) M(M- l)(M- 2) ... (M- r + 1)
M!

(M- r)!

and since a pair of sets gives rise to an event, r = 2 and

M!
P(M, 2) = (M _ 2)!

•

3.4 Examples

The discrete abstraction framework based on functionals allows the extraction of dis-

crete event information based on a function of any combination of the state variables,

providing that the function is continuous. The following examples will illustrate the

functional-based discrete state abstraction technique.

38

Example 3.4.1 Consider an example of a simple system having continuous dynamics

described by an ODE with two state variables

.T = [::]

For simplicity, no particular dynamics will be assigned, but suppose that the state

variables represent the voltage and current respectively of an electric motor armature.

If we wish to be notified (by discrete event) that the instantaneous power of the system

has passed through some threshold, then we can capture this information in the discrete

abstraction by appropriate selection of the partitioning functionals. For a 100 Watt

positive power threshold (i.e. forward and reverse motoring)

and for a 100 Watt negative power threshold (forward and reverse motor regeneration)

These functionals are depicted in Fig. 3-5, where they appear as two saddle-like

surfaces (shaded grey). Where the surfaces intersect the x 1x2 plane (the phase plane)

are the hypersurfaces N(FI)) and N(F2)) which are marked in the figure as heavy

grey lines. In Fig. 3-6 the view has been changed so that we are looking directly down

at the phase plane. For illustrative purposes, some arbitrary dynamics have been

included for the phase portrait, and a trajectory x(t) originating at initial condition

xo is included as a dotted line. The functionals partition the state space into three

39

300

200

100

0

·200

-300

-400

·600

••

40

30
Jlf,hll .t(f 11)1

20

10 _...---.....
... 0• ~)(

l
• ..

·10.

-20

·'•f.(rl) HI Itt!

-30
~

-20 -10 0 10 20
x,

Foprr ~6 l'on.,./lh< p/lo.•t p/<mt, onlh A,...,•ifon-• ,\'(F,)),i\'(F,)), o...t"" .Uwtrot.u

·-·""' z(t).

41

states,

QI {x: F1(x) < 01\ F2(x) < 0}

Qz {x: F1(x) > 01\ Fz(x) < 0}

Q3 {x: F1(x) < 01\ F2(x) > 0}

Clearly, the set {x: F1(x) > OI\F2(x) > 0} = 0. This continuous trajectory generates

four discrete events from the following state transitions

The discrete event labels may be evaluated using the event labeling function

0"1,2 A(QI,Q2)

0"2,1 = A(Q2, QI)

0"1,3 A(QI,Q3)

0"3,1 A(Q3,Q1)

Example 3.4.2 A further example will illustrate the natural expressiveness of the

functional partitioning technique, using a simple nonlinear ODE model of pendulum

with damping. The dynamics are described by

d2e de
ml dt2 + bl dt + mg sine = 0

where m is the mass of the pendulum bob and l its length, b is a friction term, g is

42

the acceleration due to gravity, and, e is the pendulum angle . The state vector shall

be defined as

and then the state equations are

The total energy for this system is defined as the sum of the kinetic energy K and

potential energy P, which we will define in the rotational coordinate frame.

E=K+P

where kinetic energy is

and the potential energy is

P = -mgl(cosx1)

The total energy expression E represents an equal energy surface when plotted as a

function of the state variables. If we wish to partition the state space such that the

states Tepresent energy levels, we use the following functional

1
F(x) = 2m(lx2)

2 + mgl(1- cos xi) - 9.81

this gives a hypeTsurface that partitions the state space into two discrete states; system

energy greater than 9.81 J and system energy less than 9.81 J. The potential energy

term in the expression has been modified to change datum (zero energy when the bob

is at the bottom). This functional is depicted in Fig. 3-1 as a shaded grey surface. A

43

I lx • H~')•--:;.el()·u•.g/(1 we:r1l-qJJ .

:l
-K -... 10

0

-10
10

5
10

0

..s
,a -10 -10 XI

trajectory x (t) originating with initial condition x 0 is depicted as a dashed line in the

phase plane. As expected, this functional partitions the state space into two states

Q E X as follows

Ql {x:F(x)>O}

Q2 {x: F(x) < 0}

In Fig. 3-8, the view has been changed to examine the phase plane and the functional

surface has been removed. The shaded area in the figure indicates Q2 , a state repre­

senting energy less than 9.81 J. A trajectory of the pendulum system has been plotted

in a dotted line. The hypersurface N (F (x)), indicated by the ellipse-like line repre­

sents an equal-energy contour on the phase plane of 9.81 J. This particular trajectory

will generate a single event due to the state transition Q1 ""'* Q2

3.5 Conclusions

The discrete abstraction technique presented in this chapter, based on a family of

partitioning functionals, is flexible and presents a natural way to extract discrete

event information from a continuous model. However, this is only one possible means

of inducing a partition on a system state space. For example, the familiar grid-like

quantization that an A/D convertor produces is actually a specific case of a functional­

based partition. It is important to discuss the detailed mechanics of how a partition

is induced on the state space and how discrete events are generated within this frame­

work. However, the details of partitioning should not influence the generality of the

control theory that is developed in the following chapters.

It is preferable to be more general than this before proceeding; ultimately, the

most general requirement is that if a system is viewed as a sort of "black box" - an

event generator (as in Figure 3.1), we wish this generator to produce a finite number

of events, for a finite time window. Alternatively, the requirement can be restated so

45

8

6

4

2

~ 0

-2

-4

-6

-8
-8 -6

' ,/"_, •• -·--·::-~\.\?;>.,

(J = [x • F(x) > 0} / \\
'/ \\,

/ ~---,-Q2 = {x F(x) < 0}

f.
:

\

x(t)

-4 -2 0
x1

2

.N(F(x))

4 6 8

FiguTe 3-8: Pendulum phase plane with hypeTSUT,{ace N(F(x)) TepTesenting an equal eneTgy
contouT. A single event will be genemted by the example tmjectoTy x(t) (dotted line).

46

0.15 ,....---,---,---,---,----,----.,---.,---..,

0.1 F(J;) = xsin(l/x)

0.05

0

-0.05

-0.1

-0.15

-0.2 '----'----'----'----'----'----.L-__ ,L_ _ __j

-0.2 -0.15 -0.1 -0.05 0
X

0.05 0.1 0.15 0.2

Figure 3-9: A continuous functional that produces a finite partition F(x) = xsin(l/x), and
a trajectory x on a finite interval, may generate a infinite number of transitions.

that the system transitions a finite number of times amongst its discrete states in a

finite time window. A variety of "pathological" conditions may cause this condition to

be violated, including: a) infinite "ripples" in the partitioning functionals, b) infinite

ripples in the continuous trajectories and c) zeno switching behaviour. For now, we

will confine the discussion to (a) and (b), since switching behavior will be considered

in a later chapter. To demonstrate how these conditions can lead to infinite behaviour,

we will examine two examples that use the functional partitioning framework of §3.2-

§3.3.

We have shown that a finite set of functionals induces a finite set of partitioned

regions and therefore corresponding finite sets of discrete state and event labels for

the discrete abstraction. However, there is no guarantee that a given continuous

trajectory traversing this partition will produce a finite string of events, as we will

show in the following example.

47

0.005

~ * -0.005

-0.01

-0.015

-0.02 L_ _ ___JL___--.L __ __,_ __ ---L. __ ~--~--~-~

-0.16 -0.14 -0.12

Figure 3-10: The trajectory x(t)
number of transitions.

-0.1 -0.08 -0.06 -0.04 -0.02 0
t

t2sin(l/t) on a finite interval, produces an infinite

Example 3.5.1 Consider a continuous dynamical system modeled by x = f(x, t)

with system state space x E lR and let F be a smooth continuous functional

{

x sin(l) x "=f. 0
F(x) = x

0 x=O

Then suppose there exists a continuous trajectory x which is a solution of f, for a

finite time interval [to, t f] such that x(t) = 0, for all t E [to, t f] and the initial condition

xo = x(to) = -0.15 (Fig. 3-9). Although this partition induces a pair of regions, or

discrete states, on a finite time interval this trajectory can clearly generate an infinite

number of events.

Likewise, a similar example can be contrived to show that certain continuous

trajectories may also lead to infinite events.

Example 3.5.2 Suppose the dynamics of a system are modeled by the Lipschitz-

48

continuous ODE, with initial condition xo = 0

. { 2t sin(t) - cos(f)
x = f(x, t) =

0

The generalized solution of such a system is

{

t 2 sin(f)
x(t) =

0

t=fO

t=O

t =f 0, \ix

t = 0, \ix

which is plotted in Fig. 3-10 for a time interval t = [to, tf) = [-0.1, 0). Now, if we

define a functional F as follows

F(x) = 0, for all x

the trajectory will generate an infinite number of events as t ----+ t f = 0.

Example 3.5.1 illustrates the situation in which the functional is responsible for

generating infinite events in an finite time interval. This is a somewhat contrived

example, and can generally be avoided since the specification of the functional is

under the control of the designer. However, the case where the solution itself gives

rise to the infinite behaviour, as in example 3.5.2, is more difficult to avoid. On the

other hand, if the solution is the result of an ordinary differential equation solver,

since the limitations of numerical precision of the computer will prevent an infinite

solution from occurring in the first place. For results in future chapters, the primary

assumption is that the partitioning of the state space does not lead to any of the

pathological conditions just outlined.

49

Switched Continuous Model

4.1 Introduction

I n the previous chapter, the techniques of state quantization and discrete event

generation were developed for the discrete abstraction of a single continuous dy­

namical model. This continuous system model has an output interface, behaving as

an event generator to the external discrete-event world. In this chapter, we will de­

velop a hybrid model based on a collection of embedded continuous system models.

The complete model is a form of hybrid model, called a switched continuous model

(SCM). In (Koutsoukos et al. 2000), input events were linked to corresponding actu­

ator actions in the continuous model. The SCM broadens this scope by linking the

discrete input events to a complete change (or switch) in continuous dynamics. An

approach similar to this was taken in (Abdelwahed et al. 2005).

Graphically, the switched continuous model is depicted in Fig. 4-1. The switched

continuous model has a collection of continuous system models, each with a DE

output abstraction layer. The input connection controls the switching between these

embedded continuous dynamical models.

The objective is to provide a discrete event modeling environment that can ul­

timately be used to construct a supervisory controller. As a result, the switching

50

input

:F r

so

sl ..
J out

/
put

• • • ~

• • •
• • •

S;

• • •
• • •
• • •

Figure 4-1: Graphical representation of a switched continuous model.

51

behaviour due to the input is determined by the need to exercise control and to

maintain finite discrete event behaviour. Two types of switching will be considered,

Case I, in which the switching between continuous dynamics is permitted at some

time interval t:::.t only; and Case I I, in which the continuous dynamics are permitted

to switch either at a time interval, or upon a state transition. In general, the focus of

the thesis will be on the Case II model, but Case I is developed since it is instructive

to consider.

4.2 Switched Continuous Model

We define a switched continuous model and two possible switching methodologies.

We begin by formalizing the definition of a continuous system model, as described in

Chapter 3, in which we include the partitioning functionals.

Definition 4.2.1 (Continuous System Model) Let a continuous system model,

s, be defined as a five-tuple:

s = (f, Ill, A, V,x 0)

where:

f is a Lipschitz-continuous ordinary differential equation, x = f(x, t),

W is a family of partitioning functionals,

A is the output event function,

V is a state labeling function,

x 0 is the initial condition, x(t0).

The continuous system model (CSM) is wrapped in a discrete abstraction layer

(Fig. 4-2), allowing the embedded continuous model to exhibit the behaviour of a

discrete event system model.

52

Discrete Event Dynamics

Discrete Event Interface

Continuous Dynamics

.X= f(x,t),

Xo = x(to)

:Euuf' \}'

A :XxX ~:Eout
V:JR" ~{O,l}N

Figure 4-2: Block diagram for the continuous system model of Chapter 3.

The switched continuous model is an automaton-like model composed of a family

(set) of CSMs. It is desirable for this model to have the ability to exhibit hybrid

behaviour and to allow for control synthesis. Additionally, the model framework is

deliberately simple in order to expedite the proof of the theoretical properties. Later

in Chapter 6, the implementation-specific details of the model will be given.

Definition 4.2.2 (Family of continuous system models) Let :F = { s0 , s1 , . .. si . .. } =

{ si} be a family of continuous system models of possibly infinite cardinality. Each el­

ement s E :F is a continuous system model with discrete abstraction layer as in Def.

4.2.1.

Definition 4.2.3 (Enabled System Function) Let A = {a C :F : 1 :::; JaJ < oo}

be the set of non-empty finite subsets of :F, then an enabled system function r is

defined as a function

Definition 4.2.4 (Switched Continuous Model) Let a switched continuous model

G be defined as an automaton-like triple

G = (:F, r, so)

53

where:

F is a family of continuous system models (Def. 4.2.2)

I' is the enabled system function (Def. 4.2.3)

so is the initial continuous system model

The switched continuous model has behaviour similar to a multiplexor (Fig. 4-1).

The switch function permits only one continuous system model to be selected at any

instant in time.

Definition 4.2.5 (Execution) An execution of a switched continuous model is de­

fined as a sequence v, of selected continuous system models

v = {so,sl, .. . sa ... }

An execution of a system modeled by a SCM starts with the selection of the initial

continuous system model s0 . At some point in time, the system will switch to, or

select, another continuous system model.

Definition 4.2.6 (Choice Point) Let G = (F, r, s0) be a SCM, and let s' be the

currently selected CSM. The point in time at which the SCM switches execution to

another continuous system model s" is known as a choice point. The switches occur

either due to a time event (tick, or t) or due to a state transition within the currently

selected CSM, s'.

A choice point can be thought of as the moment a controller exercises control. In

Case I switching, choice points occur at some time interval, not necessarily with a

constant time spacing. Case I switching is analogous to that of a PLC in industrial

practice, in which the controller polls it's inputs and updates control outputs on some

time schedule.

54

The enabled system function r, of Def. 4.2.3, is an implementation-dependent

map. It returns a finite set of continuous system models and is invoked at the choice

points. The function is a convenient method of defining the future execution of the

SCM recursively, and is an abstraction of the actual control algorithm. Since the

switched continuous model is an abstraction of a real system, there must always be

a system eligible for execution, hence the requirement that the set of enabled system

models be non-empty lf(s)l :2: 1.

Definition 4.2. 7 (Successor Continuous System Model) Let s E F be a con­

tin'Uous system model, then any element of the family, s' E f(s) at some choice point

is a successor CSM of s.

Definition 4.2.8 (Control) Let the currently selected model be s E F. The selec­

tion of a single successor continuous system model s' from the set of eligible successor

CSMs f(s), referred to as control of the modeled system.

In Fig. 4-1 the SCM is illustrated as a multiplexor with a switching (or control)

input. We will associate the selection of continuous system models by a controller with

discrete (input) events. At each choice point, the controller may select a continuous

system model to execute. To ensure the finiteness of the switching behaviour in the

SCM, the control choice must always be finite. Recall from Def. 4.2.3, r : F ---+ A,

where A = { o: C F : 1 :::; Ia: I < oo} represents the finite set of enabled continuous

system model for a particular choice point. The SCM input control interface associates

each element s E o:, with a unique input event label.

Definition 4.2.9 (Input Event Set) Let G = (F, r, s0) be an SCM. Then let 'Ein

be a set of input event labels such that there exists a unique input event label CJ; E 'Ein

for every enabled contin'UO'Us system model at each choice point V si E r(s).

The historical (past) execution of a CSM is clearly a simple sequence. However,

due to the fact that If(s) I at a choice point may be greater than one, then there are

o5

a number of possible future executions of the SCM, and a branch in the future (or

predicted) execution occurs.

Example 4.2.1 In Fig. 4-3, a future execution tree (prediction) is illustrated. Note

that the CSM subscripts for the diagram do not necessarily indicate any sort of sequen­

tial order, they are simply distinguishing labels. Beginning with the initial CSM so,

a choice point occurs, indicated on the time axis as a tick (of the universal time base,

t). Evaluation of the enabled system function at the conclusion of the so,

then, projecting forward in time, each of the systems represents a branch in the future

exewtion of the SCM. Again, following the top branch, s 1 , at the next system choice

point we get,

To summarize, r reduces the infinite possible continuous system models F, to

a finite subset of continuous models which are eligible for execution at each choice

point. Therefore, a prediction of the future CSM selection, is a branching tree. When

the SCM is executed, only a single CSM s' E f(s) C A is selected at any choice point,

and the execution of the model is a sequence of continuous system models.

4.3 Prediction - Case I Switching

We will now examine the future execution of the SCM. It is desirable to establish a

bound on the number of systems in the future execution; that is, the total reachable

systems under the time switching regime (Case I). To facilitate this, we begin by

defining an n-ary version of the enabled system function.

56

.................................

..................

_._l_'"_k -------41~'-'ck-----------~1~''-ck-----~--

Figure 4-3: Diagram ·ill-ustrates the branching of an SCM future execution.

Definition 4.3.1 (Enabled System Operator) Let G be an SCM with enabled

system function r, and let S = { si} be a family of continuous system models, then

the enabled system operator r f : is defined as follows

r J(S) = U r(si), (4.1)
Vs;ES

Clearly, for any system, Si E s, then r(si) ~ rJ(S). The distinction between

r and r f is that at each choice point, r returns the family of enabled continuous

system models, while for each time interval, r f returns the family of continuous

system models for all the choice points at a particular time step. An execution of

the switched continuous system can be described recursively in terms of the enabled

system operator, forming a tree-like graph with choice (branch) points occurring at

some time interval, b..t (Fig. 4-4).

Any branch in this figure is a possible future execution of the system, taking the

system from the currently selected system model to one on the time horizon, t0 + kb..t.

57

{so}

10 +D.t 10 +2D.t 10 +kb.t

Figure 4-4: An execution of a switched continuous model with choice points at time interval
L::..t.

58

Definition 4.3.2 (Families of Continuous System Models) Let G = (F, r, so)

be a switched contin'Uous model and let p be the number of time intervals, b..t, over

which the model will be executed. Let Sk be the kth family of continuous system

mudel:i, at 'integer k 2: 1 t'imc :5[cpa j1·om the selection of the initial system, s 0 . This

family can be expressed in terms of recursive enabled system operations:

sk = rf(. .. rt({so}) ...)
'---.,..--"

k t·irncs

(4.2)

Time is implicit in this equation and in Fig. 4-4, with each nested r f operator being

evaluated at a choice point. Each choice point occurs due to the passage of an interval

of time, b..t.

We now show that the number of eligible continuous system models for future

execution may grow exponentially with time. The following proof establishes the size

of r f at any time step.

Lemma 4.3.1 For a switched contin·uous model, the cardinality of the family of en­

abled continuous system models at the kth time step for integer k ~ 1, as per Eq. 4.2,

has upper bound of ISkl = rk, provided that at each choice point there are at most r

possible continuous system models to switch amongst.

Proof. The lemma can be proven by assuming maximal switching, and using

induction on k. For the base case, k = 1, the cardinality of the first family of enabled

continuous system models, IS1I :::; lr({ s0 }) I = r, which is consistent with rk since

r 1 = r. The inductive hypothesis is that ISkl :::; rk. The family of continuous system

models enabled at k switches from the initial system, s0 is Sk and the cardinality is

59

ISk I :::; rk. By Eq. 4.2 then:

ISk+ll If t(Sk)l

U r(si)

< r+r+ ... +r

rk times

rk X r

ISk+ll < rk+l

thus proving the inductive hypothesis to be correct. •

Definition 4.3.3 (Reachable CSM) Let (:F, f, s0) be a SCM. A continuous system

model s' E :F is said to be reachable from s0 if there is a future execution v such that

s' E v

v = {so, ... , s', ... }

Now we wish to get an expression for the size of the set of reachable continuous

system models SR for some arbitrary number of time steps.

Definition 4.3.4 (Reachable Set of Continuous System Models) Let G = (:F, f, s0)

be a switched continuous model, then the family of continuous system models that is

reachable from so (including so itself} in p time steps, SR, is defined recursively as

the union fork= 1, 2, ... ,p, of each of the families in Eq. 4.2, as follows:

(4.3)

Lemma 4.3.2 Let G = (:F, f, s0) be a switched continuous model executed on a finite

number of time intervals, p 2:: 1. Let the cardinality of the family of enabled continuous

system models at any choice point be If(si) I :::; r for all si E :F, then the family of

60

continuous system models, SR, reachable from the initial continuous system model,

s0 , as defined in Eq. 4.3, has the following cardinality:

rP+l- 1
ISnl ~

1 r-
(4.4)

Proof. By Lemma 4.3.1, the cardinality of the kth family of enabled continuous

system models is given by lSkl = rk. And the reachable set of continuous system

models is, by Eq. 4.3,

ISRI (so) u [Q, !'J(; rJ((so)))]

1 + ISll + IS21 + ... + lSpl

the sum of this geometric series is

•

rP+l_l
r-l

p+1 r=1

Thus we have proven a general closed form expression for the upper bound for the

cardinality of the reachable continuous system models. Since the number of possible

enabled systems at any choice point is unpredictable, it is possible only to establish an

expression for the upper bound on the cardinality of the set of reachable continuous

system models.

Definition 4.3.5 Let maximal switching be defined as: for all choice points, there

are exactly If(si) I = r continuous system models to switch between.

Definition 4.3.6 Let minimal switching be defined as for all choice points, there

is one choice of continuous system model to switch to, if(si)l = 1, for all si E SR.

61

Theorem 4.3.1 (Continuous System Reachability) Let Gc = (F, r, so) be a

switched continuous model. For a switching time interval of f:lt, a finite number

of time intervals, p > 0, and the maximum enabled systems at any choice point fi-

n'ite 1 :::; [r(si) I :::; T, joT all si E :F, then the fam'ily of contin'uous system models,

SR, reachable from the initial continuous system model, so, as defined in Eq. 4.2, is

finite, and furthermore,

Proof. The reachable family of continuous system models is bounded above by

maximal switching, [f(si)[= r, for all si E SR. By Lemma 4.3.2, if both p and rare

finite, the cardinality of summation of Eq. 4.4, [SR[, must also be finite. The lower

bound is for the condition of minimal switching,

•

1+1+ ... +1
'--v-'

p

p+1

4.4 Prediction - Case II Switching

In §4.2, the switched continuous model was constrained to switch between models on

some time interval, f:lt. It will now be extended to permit switching of continuous

dynamics when a continuous trajectory transitions a partition boundary. This implies

that additional choice points (branching points) may occur between time intervals.

The goal is to show that the finite properties of this model are maintained under

partition switching conditions, and to establish an upper bound on the cardinality of

the reachable state space.

For purposes of controlling the model, it was stated earlier that time switching

62

(Case I) was analogous to the update cycle of an industrial PLC, occurring at some

regular (or possibly multirate) scan time. Partition switching can be viewed as giv­

ing the controller the opportunity to react to an unscheduled alarm, similar to an

interrupt-driven control action of a real-time control task. Thus the Case II SQM

switching framework models the control of hybrid plants when a controller is permit­

ted to perform both synchronous and asynchronous control actions on the plant.

Definition 4.4.1 (Partition Switching) A choice point occurs due to a state tran­

sition occurring within the currently selected continuous system model.

As was stated earlier, any complete branch from left to right in Fig. 4-5, 1s a

possible future execution v of the SC system model.

Definition 4.4.2 (Execution Cardinality) The cardinality of a finite execution v

is the number of elements (continuous system models) in the sequence, and is indicated

with the notation of set cardinality lvl.

First we will determine the cardinality of the reachable set of continuous models

for a single time interval D..t, then extend it to multiple time intervals.

Lemma 4.4.1 Let G = (F, r, s0) be a switched continuous model with partition

switching, and an upper bound on branching at each choice point, !r(si)l ~ r. Let

Sf:l.t be the reachable continuous system models in one time interval D..t. Let vm be an

execution with the most partition switches in time interval, D..t, such that lvml = q.

If every execution v has finite cardinality 0 ~ lvl ~ q, then the family of reachable

continuous system models from s0 in one D..t is of finite cardinality:

(4.5)

Proof. The proof is identical to that of Lemma 4.3.2. The family of enabled

continuous system models at k switches from s0 is denoted as Sb and its cardinality

63

So s2
~---Jr-----------

s,

f-(------1(
_) _)

t0 + tlt

Figure 4-5: Case II switching structure, showing that event may occur at some time l5t ~ !:::.t
that is within the controller switching interval due to state dependent switching.

64

ISk I = rk as before:

IS~,I {so) U [~I' f~ .:.: .. ~ t({ so(t)}))]

< 1 + r 1 + r 2 + ... + rq
q

Lrk

Which is the upper bound of the family of reachable continuous system models. The

lower bound of 1 comes from I {so} I = 1. •

Now we show that the set of reachable continuous system models for an arbitrary

number of time steps is also finite.

Theorem 4.4.1 (Reachable Continuous System Models(II)) Let G = (F, r, s0)

be a switched continuous model with a switching time interval of D.t, having a finite

integer multiple of time intervals, p > 0, and an upper bound on branching at each

choice point, lf(s;)l :::; r. If the maximum number of partition switches in any clock

interval D.t has a maximum such that all executions lv; I :::; q, where q 2:: 0 is an

integer, then the family of continuous system models reachable from s0 in p time

intervals,D.t, is finite:

(4.6)

Proof. Let Vm ~ S be a an execution on interval [to, to+ pb.t). Let v1 C Vm be

an execution on time interval [to, t0 + D.t), v2 C Vm be an execution for time interval

[to+ D.t, to+ 2D.t) and so on. If for all v;, lv;l = q, then

q+q+ ... +q

p timeH

pq

65

The largest reachable set occurs if every switched continuous trajectory produces pq

switches with maximal switching, lf(-)1 = r, at each of the corresponding choice

points. The proof follows directly from Lemma 4.3.2:

ISRI {so}U [Qrt(~ft({so}))]

< 1 + r 1 + r 2 + ... + rpq

pq

Lrk
k=O
rPq+l - 1

for r > 0
r- 1 '

and the lower bound is for minimal switching, r = I r (·)I = 1, and no partition switches

within each time interval, q = 0 for all choice points. The lower bound reduces to

that of Case I as in theorem 4.3.1:

> 1+1+1+ ... +1
p tinwt-~

p+1

•
So, for a maximum finite number of partition switches within one time interval q,

a maximum finite number of eligible CSMs at each switch r, and a finite number of

time intervals p, the reachable set of continuous system models is also finite.

4.5 Continuous Dynamics

Up to this point, we have deliberately ignored the discrete and continuous dynamics

of the SCM, as we have dealt with the qualities of execution and reachability of the

continuous system models within the two switching frameworks. The details of the

66

underlying CSMs (time, continuous dynamics and discrete event dynamics) and their

contribution to the switching was hinted at in the definition of choice points. We now

examine the reachability properties of the continuous state space of the SCM, in the

context of the ::;witching frarneworks.

Definition 4.5.1 (Solution of Continuous System Model) Let Si = (J, 'll, x 0)

be a continuous system model for the time interval [t0 , tf) then the solution to the

IVP thus posed is
tf

xi(t) = xo + ./ f(x, T)dT, fortE [to, tf)

to

exists and is unique.

So for the period of time while a continuous state model is selected, there is a

continuous state vector that is uniquely determined by the CSM's initial condition and

dynamics. Since an execution v of the SCM consists of a sequence of selected CSMs,

then the continuous state of the SCM is easily defined in terms of the corresponding

sequence of solutions (or continuous trajectories).

Notation 4.5.1 Care should be taken to distinguish a point in a solution from a

solution on an interval. In general, a point of a solution will be denoted as a solution

evaluated at a point in time

x(ta) E !Rn is the point of a solution evaluated at time ta

For a solution, X a (t) the reference to time will be omitted to reduce notational com­

plexity

Xa is a solution as a function of time, a is an index

An exception to these notation conventions is the initial condition of a continuous

system model, x 0 E !Rn which is a point. If the're is likely to be confusion, the solution

will be referred to as a function of time, while a point is a solution explicitly evaluated

67

~
I
I
I
I
I
I
~
I I

I I I
I I I
I • • • I I • • •
1 I sk I
I I I

~--------~----------------~:~(~(~: ____________ ~:-----.~
t))

3

Figure 4-6: Switched continuous model execution v = { s1, s2, s3 ... , sk, ... } and its corre-
sponding switched continuous trajectory ~ = { x1, x2, x3, ... , xk, ... }.

at some point in time.

Definition 4.5.2 (Switched Continuous Trajectory) Let v = {s0, s1 , ... sk .. . }

be an execution of an SCM, then the switched continuous trajectory ~, is the

seq'uence of matching solutions to the IVPs posed by each continuous system model

on the respective time intervals

Given this definition, Fig. 4-6 illustrates a hypothetical SCM execution and its

corresponding switched continuous trajectory (Def. 4.5.2). This is a typical hybrid

system trajectory, having continuous runs interspersed with discrete changes in state

and/or dynamics.

For Case I switching, the choice points are due to a time-related event, a tick. As

pictured in Fig. 4-5, the choice points are not equally spaced. For Case II switching,

the choice points are due either to state transitions (discrete output events) or to time

related tick events. Either way, the choice points originate from within the continuous

system model.

68

Similarly to the definition for a successor CSM, we may define a successor contin­

uous trajectory.

Definition 4.5.3 (Successor Trajectory) Let sb be a successor continuous system

model of sa. Let Xa be the solution to the IVP posed by sa on the time interval [to, tl).

Then Xb is the solution to the IVP posed by Sb E r(sa) on the time interval [tl, tz).,

where t0 < t 1 < t 2 , and xb is a successor continuous trajectory (or, alternately, the

successor solution) of Xa. Notationally, we can say

Definition 4.5.4 (Predecessor Trajectory) If xb is a successor continuous tra­

jectory of Xa, then Xa is the predecessor contin'uous trajectory of Xb.

The successor function can be used to form an alternative definition of the switched

continuous trajectory using recursion.

Definition 4.5.5 (Switched Continuous Trajectory) A switched continuous tra­

jectory ~, is a set of continuous trajectories:

~={xi: xi+l = succ(xi)}, i = 1, 2, ...

The definition of a successor trajectory (Def. 4.5.3) ensures that any switched

continuous trajectory ~ has no "gaps" in time, nor does it have any "overlaps" in

time.

69

4.6 Continuous State Reachability

In §4.3 and §4.4, we examined the reachable continuous system models, and in the

previous section (§4.5), the relationship between a continuous system model and its

corresponding continuous state space was detailed. The reachable continuous state

space of the SCM can be defined in terms of switched continuous trajectories.

4.6.1 Case I Switching

Given a finite prediction horizon in time, it is desirable to find an expression for

the reachable continuous state space. Let G = (:F, r, so) be a SCM and let the state

prediction be defined for the time interval T = [to, t f) , where t0 is the initial execution

(or simulation) time and tf be the time horizon relative to to.

Definition 4.6.1 (Complete Switched Continuous Trajectory) A switched con­

tinuous trajectory, ~ = { x1 , x2 , ... , X a} is said to be complete on some time interval

(t0 , t f) if x1 is a solution to an IVP over a time interval starting at time t > t 0 , and

X a is a solution to an IVP over a time interval ending at t f.

A single complete SCT, ~' on some interval of time is a depth-first reach, and

represents the reachable continuous state space corresponding to an execution v of

the SCM, G.

Definition 4.6.2 (Reachable Continuous Solutions) Let G be a switched con­

tinuous model, then the state space reachable fmm x0 (the initial condition specified

by CSM so) on some time interval, T = [to, tf) is defined as:

R = U ~i' ~i are complete with respect to T
Vt;;

This definition indicates that the union of all complete switched continuous tra­

jectories for some time interval is the reachable state space. Computationally, the

70

reachable state space can be assembled by the union of all depth-first reaches.

Alternatively, the reachable state space can be defined in terms of the reachable

continuous system models.

Definition 4.6.3 (Reachable State Space) Let Sk be the family of continuous

system models reachable from s0 ink time steps, as in Eq. 4.2. Let the time horizon

be a finite number, p, of time steps, 6.t. The reachable state space of a switched con­

tinuous model is defined as the set of all solutions to the IVP's posed by the reachable

sets of continuous system models

R = {X I :lk : 1 ~ k ~ p, :ls E sk, X is a solution to s}

Lemma 4.6.1 (Finite Reachable State Space (I)) The cardinality of the con­

tinuous solutions in the reachable state space R is finite:

1 - rP+l
p + 1 ~ IRI ~ 1 - r (4.7)

Proof. Due to Def. 4.5.1, there exists a direct correspondence between elements

the reach set R, and the reachable state space such that for all s E S R there exists

a unique solution x E R, by the earlier assumption of Lipschitz continuity of contin­

uous dynamics. Therefore, the cardinality result of Theorem 4.3.1 also holds for the

reachable state space R. •

4.6.2 Case II Switching

We will establish the cardinality bounds for the reachable state space for Case II

switching. An important issue with a partition-switched model is the potential for

zeno execution. Models that have instantaneous switching of dynamics have the po­

tential for zeno execution. Zeno execution is technically an artifact of modeling, since

no real system can be zeno (Zhang, Johansson, Lygeros and Sastry 2000). However, it

71

is an undesirable condition in a model or simulation since it leads to infinite switching

in a finite period of time. In the case of the switched continuous model, only Case II

is prone to exhibit zeno executions.

Definition 4.6.4 (Non-Zeno Switched Continuous Trajectory) A switched con­

tinuous trajectory, ~ on some finite time interval, !:lt = [to, t f), is nonzeno if 1~1 ::; oo.

Assumption of nonzeno characteristics is problematic, since it may be difficult

to predict in advance that a model will exhibit zeno executions (Heymann, Lin,

Meyer and Resmerita 2002). The assumption is that for Case II switching, all exe­

cutions are nonzeno. We base this assumption on the premise that zeno execution

can be avoided through the use of modified models, or implementation-specific mod­

eling techniques, including temporal or spatial regularization (Johansson, Egerstedt,

Lygeros and Sastry 1999) or other zeno solution extension techniques. Indeed, in

Theorem 4.4.1, which claimed finiteness of the reachable set of continuous system

models, there was an implicit assumption of nonzeno execution1 .

Lemma 4.6.2 (Finite Reachable State Space (II)) The cardinality of the con­

tinuous solutions in the reachable state space R is finite and bounded above:

rpq+l- 1
IRI ::; r _ 1 , r > 1 (4.8)

Proof. For every continuous system model, si E S R there is a corresponding

solution to the IVP, Xi E R, the cardinality of the reachable state space is identical

to Eq. 4.6, the cardinality of the reachable continuous system models for Case II

switching. •

1 Later, nonzenoness will be a necessary condition for existence of a controller (since the controller
is model-based).

72

4. 7 Discrete Event Dynamics

The previous sections have examined the reachable continuous properties of the SCM.

This section will examine the discrete event properties of the SCM. Recall from §3.5

that a CSM under certain special conditions may generate infinitely many transitions

on its partitioned state space within a finite time interval. For the results of this

section, we must assume that the contrary condition is true, that is, no continuous

trajectory on a finite time interval will generate infinite transitions. This assumption

is justified by the fact that no real system can behave in this way either by design, or

due to practical limitations such as finite precision of calculations and finite machine

cycle times.

4.7.1 Case I Switching

Proposition 4. 7.1 (Finite Events (I)) Let G = (.F, r, s 0) be a switched continu­

ous model, with switching time interval of 6.t, a finite number of system switches,

p > 0, and an upper bound on switching at each choice point exists, lf(si)l :::; r, for

all si E F. If for all xi E R, the number of transitions generated ni for each solution

is finite, then the reachable state space R will generate a finite number of events due

to discrete state transitions.

Proof. Lemma 4.6.1 established that the cardinality of R is finite, with upper

bound
rP+l - 1

r -1

Let ni denote the number of transitions generated by trajectory Xi E n. The total

number of transitions, Ne, generated by G in p time steps is

73

Since the limit of this sum is finite and all ni are finite, then Neis finite. •

4. 7.2 Case II Switching

Proposition 4. 7.2 (Finite Events (II)) Let G = (F, r, so) be a switched contin­

uous model, with a switching time interval of b.t (clock), a finite number of time

switches, p > 0. If an upper bound on switching at each choice point exists, lf(si)l ::::;

r, for all si E F, if all switched continuous trajectories, ~i' are nonzeno, and the max­

imum number of partition switches in any clock intervalb.t has a maximum, l~il ::::; q,

the reachable state space, R, will generate a finite number of events due to discrete

state transitions (i.e. crossing partition boundaries).

Proof. By Lemma 4.6.2, the cardinality of the reachable state space is finite,

with upper and lower bounds as indicated by Eq. 4.8. Since an event occurs at every

partition crossing, or choice point, the number of events generated must also be finite .

•

4.8 Hybrid Transition Graph

Thus far, the properties of the SCM have been developed without the explicit in­

tervention of a controller. In this section, we develop one possible discrete event

representation of the SCM that introduces control input. This model, called a hybrid

transition automaton or hybrid transition graph, will be used in the development of

the discrete event supervisory controller synthesis technique that is the subject of the

following chapter.

From here on, without loss of generality, Case II switching is assumed for all

results involving SC models. Once again, in Fig. 4-7, the predicted execution of a

SCM is illustrated. Since this is Case II switching, the alignment of the states with

each other does not represent the time of occurrence of the choice point, but merely

the ordering. As in the earlier figures representing the SCM execution, the choice

74

•
•
•

. . .

• • •

•
•

•
•

Figure 4-7: A predicted execution set of continuous system models.

75

•
•
•

Figure 4-8: Prediction of continuous dynamics due to SCM execution.

points are indicated as circles, and the enabled systems sj E F are indicated as

boxes. In this case, the system superscript k, indicates the predecessor system, and

the subscript j, indicates the kth element of r(s0). The subscript 1 :::; j :::; r0 , where

r 0 = Jr(s0)J. For purposes of exposition, we will not explicitly specify the type of

lookahead horizon; it can be either time or events. Provided that the number of

choice points is finite, and the number of branches at each choice point is finite, then

the set of reachable continuous systems will also be finite.

In Fig. 4-8, the continuous system models have been replaced by their equivalent

solutions, xi, where superscript j, and the subscript k, are each derived from the

matching system model, solved on the matching time interval. Thus, the set of all

reachable continuous system solutions is R. The output events a~ut E ~out occur

as the result of each of the continuous solutions crossing some partition boundary,

signaling that a change of discrete state has occurred, and thus initiating a new

choice point. The input events a~n E ~in of Fig. 4-8 (Def. 4.2.9) are representative of

the connection of a discrete event supervisory controller to the system. At any choice

76

cr I Ia I

1'"

(J' {' ,;co

cd~' ,;o"

c 2

Figure 4-9: Hybrid 1Tansition graph based on Fig. 4-7 and Fig. 4-8.

point there is a (finite) set of input event labels that may be used to select the desired

continuous system dynamics that will be executed. After the appropriate continuous

system dynamics have been evaluated, then an output event and a new choice point

occur.

An alternative representation of the predicted behaviour of an SCM is a hybrid

transition graph (HTG) (Fig. 4-9). The HTG brings together the discrete event input

and output interface of the SCM in a directed graph that has continuous states for

the nodes and discrete event transitions as edges. The HTG is the basis for the graph

exploration algorithms (Chapter 5) upon which discrete event supervisory controller

synthesis is based. We begin by defining the nodes of the graph.

Definition 4.8.1 (Timed Stamped Continuous State) Let Xa E !Rn be a solu­

tion on a time interval [to, t 1) to the IVP posed by a CSM sa E :F, sa = (!, W, x0).

The timed-stamped continuous state evaluated at time t' E [to, tl) is defined as

C = (t', Xa(t')) E JR. X JR.n

77

'
XE JRn

c c
Xz

~ ... ,9
I (JI
I I
I I
I I

t, 12

Figure 4-10: A pair of continuous trajectories give rise to an equivalent transition.

a point in the Cartesian product of time and the continuous solution domain. For

future notation convenience,

C C JR X JRn

In the HTG, nodes (timed stamped continuous states) are associated with the

choice points of a SCM execution. Connecting the timed continuous states together

are transitions. The continuous solutions can be discarded, since this information

is unnecessary to discrete event processes. The solutions are replaced by a labeled

transition with only the essential discrete event information remaining.

Definition 4.8.2 (Discrete Event Equivalent Transition) Let G = (F, r, s0) be

a SCM and let~= {x1, x2}, a switched continuous trajectory. Let x1 E !Rn be a solu­

tion to an IVP on time interval t E [t0 , t 1) and let x2 E !Rn be the successor solution

on time interval t E [t1, t2), that is, x2 = succ(xl) (Fig. 4-10). Then the discrete

event equivalent transition for the solution pair is defined as

T = (c, CJ, CJ
1

, c')

where c = (t1, x1 (tl)), c' = (t2, x2 (t2)) E IR X !Rn are timed stamped continuous states,

78

the endpoints of the solutions X1 and x2 respectively, and G E I:in and G
1 E L:out are

discrete events.

The input event G E I:in is the control or input event for the transition. The

output event G
1 E L:out occurs as a result of the transition of the continuous solution

into another region (crossing a hypersurface), or as a result of reaching the end of the

designated simulation time interval, b..t, in which case the output event is tick. Thus,

the input event can be seen as initiating the occurrence of the output event.

Definition 4.8.3 (Transition Set) Let G = (:F, r, so) be a SCM with R the set of

all reachable continuous solutions for some finite lookahead horizon. The transition

set is the set of all equivalent transitions T E TR {Def. 4.8.2, above) corresponding to

all successor pairs of x E R

TR = { T : T is an equivalent transition for ~ = { x, x'}, x, x' E R and x' = succ(x)}

and furthermore, TR C C X I:in X ~out X C such that

The transition function and enabled events function may be defined in terms of

the transition set.

Definition 4.8.4 (Transition Function) The transition function 6h : C x I:in ----+ C

is defined in terms of the transition set TR forcE C and G E L:in:

{

c'
Oh(c, G) =

undefined

if 3T = (c, G, *, c') E TR

otherwise

where the symbol* indicates a wildcard or "don't care" event in ~out· The domain of

79

c5 h may be extended to C X :Ein as follows

c

Output events from the hybrid transition graph are the result of the output func-

tion.

Definition 4.8.5 (Output Function) The output function w : C x 2:in ___, 2:aut ~s

defined as follows for c E C and a E 2:in

{

a'
w(c, a) =

undefined

if 3T = (c, a, a', *) E TR

otherwise

where the symbol* indicates a wildcard or "don't care'' time stamped continuous state

in C.

Definition 4.8.6 (Enabled Events Function) The enabled events function rh

C ___, 2~out and is defined as

rh(c) ={a' E 2:aut: ::la E 2:in, a'= w(c, a) is defined}

In Fig. 4-11, the execution of Fig. 4-6 has been replaced by its equivalent hy­

brid transition structure. The transition structure forms a tree-like directed graph

representing the predicted discrete event behaviour of a SCM.

Definition 4.8. 7 (Hybrid Transition Graph) Let G = (F, r, s0) be a SCM with

SR the set of all reachable continuous system models and R the reachable continuous

solutions. A hybrid transition graph is a tuple

80

c, = (l",x,(l")) c, = (t,.x,(f,)) c, = (1 2 ,x,(l2))

Figure 4-11: Hybrid transition equivalent to the execution v = {81, 82,83 ... , 8k, .. . } and
its corresponding switched continuous trajectory ~ = { x1, x2, x3, ... , Xk, ... } of Figure 4-6.

where:

C is a set of time stamped states, or graph nodes, C C lR x JRn,

L: is a set of input and output event labels, L: = L:in U L:aut,

r h is the enabled events function,

6 h is the state transition function,

w is the output function,

c0 is the initial time-stamped state of the graph.

So for a SCM G, there exists a hybrid transition graph H, that is based upon the

predicted behaviour of the SCM on a particular lookahead horizon (either in time or

events).

The input/output event pairs of the HTG are similar to a Mealy implementation

of a finite state automaton. Note the similarity between rh of the HTG automaton

and r of the SCM. In the former, the output events are explicitly a function of system

state and time c E C C lR x lRn. In the latter, the enabled systems function f, the

enabled systems are a function of the currently executing system s E :F, evaluated at

the choice point. Clearly, c is derived from s by evaluating the continuous solution at

the choice point.

An algorithmic implementation of oh and rh will be presented later in Chapter 6.

81

------------------------- O'l'f

------------------------- lligll

------------------------- med

h
------------------------- esd

p

Figure 4-12: Schematic for tank system model.

4.9 SCM Example

An example will be presented to illustrate the properties of the SCM and its appli­

cation to a modeling problem.

For this example, the modeled system is a tank of fluid (Fig. 4-12). It is desired

to control the level of this tank tllrough the opening and closing of valves. While

tllis is a trivial example, it is a useful system to study since it has discrete dynamics

(valves opening and closing) and nonlinear continuous dynamics.

The controls available for the tank are valves V1, the fill valve; V2 , tlle drain

valve; and P, the purge valve. The purge valve is a "use once" emergency shutdown

control that is invoked by the system in the event of emergency. Table 4.1 lists the

combinations of valve positions and associates these actuator combinations with the

input event set L:in = {i1, iz, i3, i4, sd}. For example, the input event i2 is associated

with the actuator control vector Uc = [0, 1, O]T which corresponds to valve positions

82

Table 4.1: Valve control structure
Control, Uc

O"in v1 v2 p

'1,1 oa 0 0
i2 0 1 0
1,3 1 0 0
24 1 1 0
sd 0 0 1

avalve open = 1, closed = 0

[V1 , V2 , P] = [closed, open, closed]. The shutdown operation is initiated by the input

event sd, which opens only the purge valve to drain the tank. The completion of this

operation is indicated by the esd output event.

The continuous dynamics for the tank can be described by a nonlinear differential

equation. Assume that opening V1 causes a constant mass flow into the tank qmi,

while opening of V2 or P causes turbulent flow from the tank. then the general

expression for the tank dynamics (Palm III 2000) is

R-;2 1 Vfi9Fi] U
pA c (4.9)

where h is the liquid level, p is the density of the liquid, and A is the cross sectional

area of the tank. Turbulent resistances for valves V2 and P are Rt1 and Rt2 respec­

tively. The five different actuator control vectors uc, with Eq. 4.9 yield five distinct

dynamical models for the tank. Each of these actuator settings along with a set

of state partitioning functionals, forms a separate CSM which will be embedded in

the switched continuous model. For this example, the CSMs corresponding to input

events i 1 to i 4 share the same set of functionals 'll 1 = { F 1 , F2, F 3 , F 4 } and the CSM for

emergency shutdown operation (purge valve P open) has 'l! 2 = { F5 }. The functionals

are defined in Table 4.2 along with the associated output events.

If the SCM is executed or predicted (Case II switching) on a 90 second time in­

terval, the set of predicted continuous trajectories SR reachable from initial condition

83

Table 4.2: Output events, with associated functionals and hypersurface crossing directions.
(J out Functional Zero-crossing Alarm

ovf F 1(h) = h- 33 r over fill
hi F2 (h) = h- 31 r high
med F3(h) = h- 18 l medium
unf F4 (h) = h- 15 l under fill
esd F5(h) = h- 0.5 1 emergency shutdown

x0 = 26 are pictured in Fig. 4-13. The figure shows the branching of the trajectories

on detection of events. Note that since the sd input event and corresponding dynam­

ics do not share the same partitioning functionals as the other dynamics, there is no

event detected (and consequently no branching).

The hybrid transition graph matching the predicted SCM behaviour is pictured

in Fig. 4-14. Based on the graph, the plant language generated for the lookahead

horizon of 90 seconds is

L = { med unf tick, med tick, hi tick, tick}

Note the apparent nondeterminism of this HTG model when only the output events

are considered. However, the model is deterministic, since each transition at any node

is guarded by a unique input event (control action). This is an unconstrained plant

model, so at each choice point there is a choice of I r (s) I = 5 control actions. We will

see in the next chapter that when this plant model is combined with a specification

to form a controller, the branching will be constrained due to the requirement of the

models to synchronize on output events.

4.10 Conclusions

The SCM is a flexible hybrid model based on discrete switching between various

embedded continuous system models. Switching of dynamics and hence input/output

discrete event synchronization, are designed to occur at state boundaries and/ or on

84

JSr-------------------------~------,
ovf ----------
hi

JO

lS

20

---- ...
uor

IS ------- ------

10

'
oL-------------------------~------~ 0 120

•c(t)

fil;uf'f' 4-13 1"hc predkc.OO. state uajec'torie5 or thto t-.nk fvr mtiAI concbtton ro • 26 and
prt'flictton li1114:' t - ro. 90). with c-.t u swildlin&-

85

co/med

Figure 4-14: Hybrid transition graph equivalent for continuous reachable state space of Fig.
4-13

86

a synchronous or time-based schedule. Synchronization occurs in both coarse (tick)

and dense time. This is analogous to the operation of industrial control systems in

which a synchronous control cycle is augmented by interrupt-driven control. The

point at which the system switches dynamics is known as a choice point. A finite set

of enabled systems is available for the system to go forward in time, and one system

is selected to execute. Predicting the future execution of an SCM G = (:F, r, s0)

consists of considering all such enabled systems, extending simulations (solutions) for

each, creating new choice points, and again extending the simulations. Reachability

of the SCM can be expressed in the set of reachable continuous state space solutions

R. The hybrid transition graph captures the discrete-event behaviour of the SCM on

this reachable set. Providing that the SCM has nonzeno behaviour, then the set, and

the HTG will be finite, and therefore computable.

In the next section, we will examine the process of synthesizing DES supervisory

controllers based on the HTG, which is in essence a discrete event model of the SCM.

87

Control of Hybrid Systems

T he switched continuous model is a class of hybrid system model. The hybrid

dynamics embodied by this model are characterized by instantaneous switching

between the various embedded continuous dynamical models within the SCM. In order

to control such a process, the controller must act either in the discrete event or the

continuous domain. A DES supervisor has been selected as the most appropriate

tool, since the control objective is to coordinate and sequence the actions of low­

level continuous and discrete event systems that themselves may be controlled or

uncontrolled.

The switching framework of the SCM model has been designed so that it mimics

the intervention of a discrete event supervisory controller, while the output frame­

work is designed to communicate, and thus synchronize, with external discrete event

processes. For purposes of modeling, analysis, and synthesis, it is desirable that the

plant modeled as a SCM may be treated as any other discrete event process.

More complex models may be constructed by forming synchronous products of

switched continuous and finite state models (FSM). The resulting synchronous prod­

uct behaviour of the product model is similar to the product connection of finite

state models (FSM). The main difference is that the state space of the SCM is infi­

nite on an infinite horizon, so that the product connection of FSMs with a SCM has

88

an infinite state space. If the product behaviour is developed on a limited lookahead

horizon, then the infinite state space becomes finite, due to the truncation of all future

trajectories of the SCM.

This chapter develops the foundations of DES controller synthesis for plants mod­

eled by the SCM.

5.1 Discrete Event Controller Synthesis

In the DES supervisory control theory developed by Ramadge and Wonham (Ramadge

and Wonham 1987),(Ramadge and Wonham 1989), a DES supervisory controller is

synthesized by forming the product of finite state models of plant P and specification

S. The optimal supervisory controller C is the closed-loop controller that permits

the largest set of joint behaviour. in the concurrent connection of P and S, denoted

P II S. This controller is known as a maximally permissive controller. In languages

of automata, the legal language K (Fig. 5-1) is the joint behaviour of the plant and

the specification automata

K = L(P) n L(S)

The notation L(P) is used for the language of automaton P and it may also be denoted

as Lp. The controller, once connected to the plant, enforces the largest subset of the

legal language, also known as the suprema[controllable sublanguage (Wonham and

Ramadge 1987). Based on the assumption that not all plant behaviour is controllable,

control is exercised by disabling only the controllable events in the plant. The optimal

DES supervisor is the controller that enforces legal behaviour with the least amount

of plant intervention; i.e. minimal disablement. In this linguistic paradigm, the

controller can be defined as a function from the plant language to the power set of ~

(the plant event set):

C: L(P)---> 2~

89

L(P) L(S)

K = L(P)nL(S)

Figure 5-l: Intersection of plant and specification languages.

Fig. 5-2 illustrates this closed-loop control connection of the plant and controller.

For a more detailed treatment of DES control synthesis, the reader is referred to

Appendix D.

Controller synthesis may also be approached from a state exploration and avoid­

ance point of view. For example, let P be a finite state automaton model of a plant

in which one or more states may be deemed to be illegal. Removal of all the il­

legal states from the automaton (or its graph representation) then constitutes the

admissible (with respect to some specification) transition structure of the plant. A

supervisory controller is then based on this trimmed transition structure. This ap­

proach is well-suited to algorithmic implementation, since typically, the constituent

models that are used for controller synthesis are represented explicitly as automata.

As a result, the treatment of control synthesis in this chapter will focus on graph-based

search techniques. Therefore, a typical task is to construct products of synchronously

communicating automata; known also as the synchronous product or parallel compo­

sition operation, it is denoted by the II symbol.

Ignoring the issue of event controllability for now, the controller for a plant can

90

c

s E L(P)

p -

Figure 5-2: Closed loop connection of DES supervisor C to a plant P.

c
II

p s

Figure 5-3: Controller synthesis as the concurrent (parallel) connection of two processes.

91

be constructed from the synchronous product of an automaton model P and the

automaton model of the specification S, C = P II S, illustrated in Fig. 5-3. Before

defining the product of automaton models, the formal definition of a deterministic

finite ::>tate autmnatuu i::> a::> follows:

Definition 5.1.1 (Deterministic Finite State Automaton) A deterministic fi­

nite state automaton is a tuple:

G = (Q, 2:, .6., qo) (5.1)

where:

Q is a finite set of states,

2: is a finite set of events,

.6. is a finite set of transitions (Def. 5.1.2 below),

qo is the initial state.

Definition 5.1.2 ('fransition Set) The tr-ansition set is a finite set of tr-ansitions

.6. ~ Q x 2: x Q such that

Vq E Q, Vo- E 2:, l{q'l(q, a-, q') E .6.}1 :::; 1

The transition function will be used extensively for graph exploration, and so will

be defined in more detail.

Definition 5.1.3 ('fransition Function) A transition function 6 Q x L; -----+ Q

may be a partial function on its domain. For q E Q and a- E L;,

{

q'
o(q, a-) =

undefined

if 3(q' E Q) and :3 a transition (q, a-, q') E .6.

otherwise

92

(5.2)

The domain of 6 may also be extended to Q x ~*. For example,

6(q, E)

o(q, o-w)

q

o(o(q, a-), w)

For clarity, the function 6 has domain Q x ~and range Q while Eq. 5.2 defines the

element to element map. Forthwith, the same convention will be utilized in function

definitions.

A second function, known as the enabled events function, is also useful for graph

exploration.

Definition 5.1.4 (Enabled Events FUnction) The enabled events function r
Q ---+ 22.: is defined as follows

f(q) := { O" E ~ : 6(q, O") is defined}

While inclusion of both 6 and r in the definition of a FSM is redundant, in the

sense that they are already defined in terms of the transition set 6., they are useful

when defining synchronization of multiple automata. In future notation, and for ease

of exposition, finite state automata will be defined in an expanded form as follows:

G = (Q, ~, 6, r, qo)

Henceforth, the transition set 6., will not be explicitly included in the definition of

the FSA, since it can be derived from 6.

We define the reach operation, which returns the subautomaton that represents

the portion of an automaton that is reachable from its initial state q0 .

Definition 5.1.5 (Reach Operation) Let G = (Q, ~' 6, r, qo) be a finite state au-

93

tomaton, then the reach operation is defined as follows

= (Qr, 2::, 5r, r, qo) where

{q E Q: 3s E 2:*, J(qo,s) = q}

5 on a restricted domain such that Qr x I: ___. Qr

Conceptually, the controller of 5-3, C, is a model-based controller, with models

of the plant and the specification embedded within it. Thus, C is the synchronous

product of finite state automata (Def. 5.1.1). Throughout this document, the term

"product" will be synonymous with "synchronous product". Formally, the definition

of the synchronous product of two finite state automata, is as follows:

Definition 5.1.6 (Product Automaton) Let G 1 = (Q 1 , 2::1 ,51 , f 1 , q01) and G2 =

(Q2, 2::2,52, f 2, q02) be finite state automata (see Appendix C for some examples). The

(synchronous) product automaton G1 II G2 is defined as

(5.3)

where Q1112 = Q1 x Q2 is the Cartesian product of the state sets, I:111 2 = 2:: 1 U 2::2 is the

union of the event sets, and the product transition function is defined in the following

definition.

The reach operation in Eq. 5.3 is useful since some parts of the product automaton

may not be reachable from the initial product state (q01 , qo2), and these portions are

not of interest.

Definition 5.1.7 (Product Transition Function) Let G1 and G2 be finite state

automata (Def. 5.1.6), then their product transition function

94

(81(q1, CJ), o2(q2, CJ)) if (J E f1(q1) n r2(q2)

(o 1 (q1, (J), q2) if (J E r 1 (q1) \ L:2

(q1, cl2(q2, CJ))

undefined

Note that 81112 like 81 and 82, is a partial function.

otheTwise

Definition 5.1.8 The product enabled events function

The first term of Eq. 5.4 requires that events common to both enabled events

functions f 1 and f 2 (and hence common to the event sets of both automata) must be

synchronized. The latter two terms are the sets of enabled events that are private to

each of the automata; there is no requirement for these to be synchronized, so they will

always be included. The synchronous product operation of automata is associative

(Cassandras and Lafortune 1999). The associative property permits the product

automaton operation of Def. 5.1.6 to be extended easily to an n-ary product, in which

n automata are synchronized. Associativity also permits the hierarchical nesting of

synchronous product operations. This modularity lends itself naturally, as we shall

see later, to an object oriented programming implementation. Hierarchical modeling

also allows for a flexible modeling scheme in which automata may be grouped by their

functional relevance to each other; e.g. the sub-automata that form a specification

and the sub-automata that form a plant. Fig. 5-4 is an example of a hierarchical

model of the discrete event behaviour of a ship's power and propulsion systems. In this

example, each of the various subsystem models are grouped as functionally related

components. For example, the power system behaviour is modeled as a product of

the two product automata, Generator #1 and Generator #2. A "fiat" equivalent to

95

Figure 5-4: Hypothetical hierarchical automaton model for a ship's propulsion and power
generation subsystems ..

this hierarchical model may be constructed by taking the lowermost (non-product)

components of the tree and placing them in a single-level product automaton.

Synthesis of a DES controller in the SCM environment requires the construction

of synchronous product structures of SCMs and finite state models. The discrete

event interface that was developed for the SCM in the previous chapter allows these

product structures to be constructed. This is the basis of DES supervisory controller

synthesis for hybrid systems.

5.2 SCM and Control Synthesis

Suppose that we have a SCM P, that models the dynamics of a plant and a timed

FSM, S that models a specification. In our framework, controller synthesis consists

of the synchronous product of the plant and specification models. In §4.8, the hybrid

transition graph was introduced as a representation of the discrete event dynamics

for a SCM. In addition, on a finite event or time horizon, the HTG is of finite size.

Now we define a new transition structure which encapsulates the synchronous

product of an HTG and a FSM where the state of this structure is the product state

96

of the respective states of the HTG and the FSM. The product of a hybrid transition

graph and a finite state automaton is defined as follows.

Definition 5.2.1 (Hybrid Product Automaton) LetH = (C,Z:h,oh,rh,w,co) be

a hybrid transition graph and G = (Q, 2:9 , o9 , f 9 , qo) be a finite state automaton, the

product automaton is defined as

with 6hllg and rhllg as defined below.

Note that the transition set TR can be omitted from the HTG definition, since oh

and rh can provide the same information set. States of a hybrid product automaton

(HPA) are truly hybrid by the usual definitions of a hybrid system, since the state has

both a continuous and discrete state component. Note also that the product states

of the HPA H II G inherit the time stamps of the HTG. The inclusion of time within

the state of the product automaton also ensures that the resulting product graph will

be acyclic.

The objective of the modeling framework is to achieve a finite state representation.

By making the assumption that the event set of G, 2:9 ~ Z:aut, then the set of events

f 9 (q)\Z:aut = 0. This means that events are generated by the SCM only, and the

finite state machine G acts as an acceptor. For control synthesis, H is the plant

model and G is either a model of the specification, or part of the plant model, so this

is a reasonable assumption. Since H generates the output events via the output event

function, only the shaded set(s) illustrated in Fig. 5-5 are necessary to consider for

the transition function.

Definition 5.2.2 (HPA Transition Function) Let Z:h = l:in U Z:aut, then

97

Figure 5-5: Set definitions for the HPA transition function.

is the product transition function, a partial function. Let a E l:in, (c, q) E (C x Q)

and 1} = w (c, a) E l:aut, 2:9 ~ l:aut, then 0 hllg is defined as

(

(oh(c,a),!S(q,r])) ij17 E f 9 (q) (a)

6hii 9 ((c, q), a) = (6h(c, a), q) if 17 rf. 2:9 (b)

undefined otherwise (c)

The domain of the transition function ohllg may be extended to c X l:in as follows

6hllg((c, q), E)

ohllg((c, q), aw)

(c,q)

Now the definition of the enabled events function,

Definition 5.2.3 (HPA Enabled Events Function) Let the enabled events june-

tion

98

If c E C and q E Q, then

From these definitions, it is apparent that the HTG automaton synchronizes only

its output events with the events of the finite state automaton. The intent here is

to mimic the standard synchronization technique that is used in DES supervisory

synthesis. The focus is placed on the plant's discrete event behaviour which is com­

municated by the output events. Specifications are normally written in terms of the

desired (output) dynamics, thus the synchronization of output events is a practical

modeling decision.

Input events are not synchronized; these represent the actions that are available

to the controller. Later, we will see that a control choice mechanism selects one

cr E :Ein as the control action. The result of the selection of a particular input event

leads to the generation of an output event, when the underlying continuous system

dynamics transition to a new discrete state. So in effect, synchronization of output

events causes certain input events to be ineligible implicitly. An improvement to the

SCM framework would be to include explicit input synchronization. For example,

SC models could have a finite state "front-end", permitting the set of enabled input

events (viable control actions) to be a function of the state of the front-end automaton.

Finally, we will look at the synchronization of SCMs with each other. It may

be desirable to approach the modeling of the continuous dynamics of a system in

a modular fashion. If the continuous dynamics are separated into multiple SCMs,

they may be synchronized at the discrete event level. Since dense time information is

available from each of the HTG processes, it is possible to detect the "earliest" event

that occurs amongst them; this becomes a new state in the product by evaluating the

solutions of each of the other systems at this event time.

An alternative approach to synchronization of SCMs at the discrete event level,

is to lump all continuous state variables into a single set of continuous models, and

99

embed these into a single SCM. The choice is left up to the designer; if the continu­

ous dynamics have significant coupling, then communicating state variables are best

lumped together. If the continuous dynamics are coupled through indirect discrete

event communication, then they may be modeled more effectively as separate SCMs.

An algorithm that implements multiple SCM object synchronization will be presented

in chapter 6.

5.2.1 Example: Product of SCM and FSM

To illustrate the synchronous product operation, we will revisit the SCM tank mod­

eling example of §4.9. The HTG that results from this example models the discrete

event behaviour of the uncontrolled tank for a 90 second lookahead horizon (recall

Fig.4-14, p. 86). Let the finite state model of the specification

S (Q,~s,O,f,qo)

~s {hi, tick, unf}.

The plant graph is presented again in Fig.5-6, along with the specification The plant

model "inherits" its output event set from the switched continuous model. In Table

4.2 (p. 84), recall that the SCM output events are

~out = { ovf, hi, med, unf, esd} U {tick}

and the input event set is

~in = { oo, oc, co, cc, sd}

The resulting product P II S , illustrates how the original plant graph is modified by

the product connection of the specification (Fig. 5-6, bottom). Starting with the ini­

tial state of the plant, co= [0, 26] E (JR. x JR.), fp(c0) ={tick, hi, med}, all transitions

100

Specification Model (S)

~
~

Plant Model (P)

Product of Plant and Specification (PI IS)

Figure 5-6: Product of plant modeled by a SCM and specification modeled as a FSM.

101

with tick output events are removed from the graph because (tick¢:. rs(qo)). The tran­

sition having output event hi remains because it synchronizes with the specification.

The transition with output event med remains in the product because (medf:. ~8).

The process of t.rinnning continues until each remaining (and reachable) state in the

product graph has been visited.

Starting from the initial state of the product automaton (the root of the tree),

there exist 6 unique branches. Of these six branches, one ends in a product state

c = [[51.36, 18], q0] E ((JR. x JR.) x Q). The time of the continuous product state is

t = 51.36, which is less than the lookahead horizon. Since this branch does not take

the system to the simulation horizon, it is not a viable choice for a controller to

make, since the system cannot safely continue on this trajectory to the horizon. This

concept will be elaborated upon in the next section. The viable controller actions for

this plant, at this time, are the set of input strings

L(C) = { oc oc, oc cc, oc oo, oc sd, oc co}

5.3 Blocking

In standard DES supervisory control theory, the concept of controller blocking is

defined in the context that certain states have a special status; i.e. marked states. In

the DES framework, if an automaton reaches a state that is not marked, and r = 0,

it is said to be deadlocked or blocked. Supervisory controllers are designed to be both

safe and nonblocking.

In a system model based on a SCM, the concept of blocking is defined differently

from the typical DES definition. In the SCM framework there is a richer set of

information, particularly the fact that dense-time state (and event) information is

available. Having the knowledge of the time at which the system has entered a

state (the time stamp of the HTG states) allows us to define blocking in terms of the

terminal state time. The system has the extra dimension of time to define the progress

102

(or lack thereof) of the system, in addition to state information. Alternatively, the

number of events in a trajectory, and whether that trajectory reaches the lookahead

horizon may also be a determination of the blocking.

A plant modeled by a SCM, on a finite horizon, synchronized with a specification

modeled as an FSM, forms the basis for a simulation. This simulation captures the

control interaction of a discrete event supervisor with a real system. Transitions

that will violate the safety of the system and carry the plant to an illegal state are

prevented from occurring, via event disablement. Recall the definitions of R (Def.

4.6.2 and 4.6.3), the set of reachable continuous trajectories of a SCM. For some

lookahead horizon, the set R collectively represents a simulations (or prediction) of

the uncontrolled future plant behaviour of the system up to some future time or event

horizon. Refining the definition of the reachable state space:

Definition 5.3.1 (Continuous Reachable State Space (Events)) Let G = (F, r, s0)

be a switched continuous model. The state space reachable from x 0 E s0 in exactly p

events is denoted as RP.

Definition 5.3.2 (Continuous Reachable State Space (Time)) Let G = (.F, r, s0)

be a switched continuous model. The state space reachable from x 0 E s0 in the time

interval T = (t0 , tJ] is denoted as nr.

When a controller or other agent disables events in the discrete event behaviour

of an SCM, it results in truncated, or incomplete, switched continuous trajectories

~ E R, that do not reach the lookahead horizon. This is the continuous behaviour

of the SCM as described by the synchronous product of the HTG and a FSM. We

define the switched continuous trajectory (SCT) as follows

Definition 5.3.3 (Incomplete SCT (Events)) Let G = (.F, r, s0) be a switched

continuous model, and let RP denote the continuous state space reachable in p events.

An SC trajectory~ E RP is incomplete if I~ I < p.

103

x(t) : vJ:'
I I

~

I

I-·--, r "-#~~ ~
I "'(,

I
I
I

Figure 5-7: Incomplete trajectory of example 5-7.

t

Definition 5.3.4 (Incomplete SCT (Time)) Let G = (:F, r, so) be a switched

continuous model and let RT be the continuous state space reachable in the time

interval T = [t0, t1} An SC trajectory~= {x1, x2, ... xa} E RT is incomplete if Xa

is a continuous solution of for a time interval [ta-l, ta), such that ta < t f.

Example 5.3.1 (Incomplete SCT (Time)) Let GP = (:F, r, s0) be an SC model

of a plant and let the switched continuous trajectory

Suppose that the continuous trajectory x5 terminates in an illegal state, then the

controller must prevent x 5 from occurring, and the modified trajectory becomes ~ =

{x1,x2,x3,x4} (Fig. 5-7). In this case, the trajectory is incomplete because x 4 2s a

solution on the time interval [t3 , t4) and t4 < t f.

Returning to the discrete event behaviour now, this truncation of switched con­

tinuous trajectories leads to a HTG representation with some "stub" (truncated)

branches in the graph. These branches in the HTG are considered to be blocking,

104

since it is not possible to find a path (trajectory) from the initial state to the lookahead

horizon. In the following definitions, for clarity, we consider the only the legal behav­

iour of HTGs, assuming that synchronization with an external process has already

enforced legal behaviour (a tipecificatiou for example).

Definition 5.3.5 (Blocking & Nonblocking States (Time Horizon)) Let H be

a hybrid transition graph based on a time T = [to, t f) reach of the SCM G. Let H

have initial state c0 = (t 0 , x(t 0)) E lR x IRn and let c! = (t', x(t')) E lR x IRn be a time

stamped continuous state in the graph H such that rh(c') = 0. If there exists a string

u E L:in such that 8h(co,u) = c', and ift' < tf, then state c' is blocking. Conversely,

if t' = t f, then state c! is nonblocking.

Definition 5.3.6 (Blocking & Nonblocking States (Event Horizon)) Let H be

a hybrid transition graph based on a reach of p events of the SCM G. Let H have

initial time stamped state c0 = (t0 , x(t0)) E lR X IRn and let c' = (t', x(t')) E lR x IRn be a

state such that rh(c') = 0. If there exists a string u E L:in such that 8h(co, u) = c' and

lui < p, then c' is a blocking state. Conversely, if lui = p, then state c' is nonblocking.

To illustrate blocking, we start with the HTG H of Fig. 5-8, a plant model of

a system. For purposes of exposition, the graph is the unrestricted (uncontrolled)

SCM behaviour. We will assume that there exists a FSA S, as an acceptor, that

models the specification. It supplies the state marking by labeling the continuous

states as illegal if the discrete-event language of the plant H, falls outside of the legal

behaviour specified by S. Therefore, all continuous trajectories of this system are

complete, either in time or events; that is, states c1 through c8 are at the lookahead

horizon. In the continuous state of the SCM, any path traversing the graph from

the initial state c0 to one of these end states corresponds to a complete switched

continuous trajectory. Illegal states are indicated as grey-coloured nodes, c3, c4, c5,

and c9 (marked by the specification acceptor automaton). To enforce safety, these

nodes must be removed from the graph, with the result indicated in Fig. 5-9.

105

8
_____-8

··~·~

Figure 5-8: Hybrid transition stucture with illegal states identified in grey.

106

8
~8

Figure 5-9: Hybrid transition stucture of Fig. 5-8 with illegal states and related transitions
deleted.

107

8
~G)

Figure 5-10: Non-blocking and legal HTG for example of Fig. 5-8.

108

In the case of states c1 and c2 , they cannot be reached without traversing an

illegal state, c9 first. Removing c9 and the transition that enters it, makes c1 and

c2 unreachable, and therefore they are not viable. States c3 and c4, although on the

luukahead huriLmn, are illegal. Removing these states leaves a stub branch in the HTG

at state c10 , which is a blocking state. The blocking trajectory that ends with c10

must be removed from the graph. By examination, all states and transitions of this

branch will have to be pruned back to the initial state in order to avoid blocking. The

result is illustrated in Fig. 5-10, which retains three possible legal and nonblocking

trajectories, taking the system from c0 to c6 , c7 and c8 .

5.4 Fail-safe Controller Operation

As we have seen in the previous sections, a product of a HTG and one or more

finite state models is the basis for the DES controller. Appropriate trimming of

states and transitions from the HTG yields a controller graph that represents the

safe and nonblocking controller actions, given the limited horizon of knowledge that

is available. In previous limited lookahead work (Chung et al. 1992) the set of safe

actions or trajectories, are known as pending traces. This set of legal control actions

is further refined by taking either an optimistic or conservative policy with respect to

the expected behaviour of the system beyond the current lookahead horizon. With an

optimistic policy (or outlook), all pending traces are assumed to have continuations

beyond the lookahead horizon that are both legal and marked. In the case of the

conservative policy however, all trajectories are assumed to continue uncontrollably

into illegal or blocking conditions. These attitudes condition how the set of pending

traces is further refined. The farther the lookahead horizon is extended, the less

ambiguity there is about the pending traces.

An online controller algorithm must have a means of selecting the next control

action. The ultimate objective of this controller is to drive the system from the initial

109

state to the lookahead horizon without violating the safety.

Definition 5.4.1 (Nonblocking Controller) Let H be the HTG of a system mod­

eled by SCM G having only legal states, and an initial time stamped state co =

(to, x(t0)) E lR x ffi.n. The system has a nonblocking safe controller if there exists at

least one nonblocking state c' and there exists a control string u E Ein, such that

c' = 6h(co,u).

Again, we have examined H in isolation. The assumption is that SCM G is

synchronized with an external process, ensuring only legal states exist.

But what happens if the system arrives at a state from which only blocking tra­

jectories exist? In the absence of a legal control choice, the system must continue

(since time cannot be stopped), and since only illegal choices remain, the controller

will be forced to proceed with a control action that ultimately violates the system

safety. Hence, nonblocking is equivalent to safety. Unfortunately, there can never be

a guarantee that just beyond the lookahead horizon, the controller might block, and

a safety violation will be forced. We would like to design a controller for this online

discrete event environment which can be guaranteed to be free of this sort of forced

safety violations.

5.4.1 Emergency Shutdown

A standard design practice in safety critical industrial control is to incorporate an

emergency shutdown (ESD) mechanism into the control system. It is generally con­

sidered good design practice to include some sort of fail-safe subsystem in controlled

systems at design time. Examples of industries that utilize such fail-safe mechanisms

as part of the control infrastructure include:

• Oil and Gas Processing

• Nuclear Power Generation

110

• Chemical Manufacturing

• Transportation (Rail Transit)

• Motion Control

Terms for fail-safe control procedures vary by industry, but examples are emer­

gency shut down (ESD), from Oil and Gas processing applications, emergency stop

(E-Stop), from motion control applications and the SCRAM procedure for nuclear

reactors. In order to model the emergency shutdown behaviour, it is necessary to

define what is meant in a discrete-event sense as an ESD.

Definition 5.4.2 (Emergency Shutdown State Set) Let H = (C, L:, 6h, fh, w, co)

be a HTG of SCM G = (F, r, s 0). The emergency shutdown state set E ~ C such

that

E = {c: f(c) ={tick} and 6(c,o-) E E,Vo- E L:in}

An element c E E is an emergency shutdown state.

Obviously, an ESD state should be considered by a DES controller as a safe state;

the ESD states can be identified (or marked) by synchronization of additional FSM

plant model when designing the controller. In the context of the continuous behaviour

of the switched continuous model, an ESD state might be abstractly interpreted as a

Lyapunov-stable equilibrium (see Appendix A) within one or more of the CSMs. If a

continuous trajectory of the system can enter such a Lyapunov stable region, it will be

"captured", remaining within a defined region. If the region has been partitioned ap­

propriately, any trajectory entering the region will fail to generate events (other than

tick), since no partition boundaries are crossed. Thus, an emergency shutdown region

is defined in terms of (stable) dynamics and an appropriate partitioning boundary.

While it is undesirable to enter an ESD state from the point of view that it

performs no useful work, it is preferable to a potentially catastrophic safety violation.

111

Therefore, the ESD state is a way of gracefully handling a potentially disastrous

controller block.

Definition 5.4.3 A failsafe controller is one that can be guaranteed to always operate

safely (without violating specifications) and is nonblocking.

Proposition 5.4.1 (Failsafe Controller Existence) Let H be the HTG of a sys­

tem modeled by SCM G, and with initial time stamped state co= (to, x(to)) E lR X IRn.

A fail-safe controller exists for this system if there exists at least one ESD state

c' = (t', x(t')) in HTG H and if there exists a control string u E ~:n, such that

c' = rSh(co, u).

Proof (Event Lookahead). Controller existence hinges on there being a

control string y E ~in such that y causes the system to reach a nonblocking state. By

definition, r(c') = {tick}, which implies that the control string u can be extended by

an event (5
1 E ~in

and by definition, c" is also an emergency shutdown state. Similarly, an arbitrarily

long sequence of input events may always be chained together starting at the initial

ESD state c', to form input control string w because all successive states of c' are also

ESD states by definition. In the case of a finite p event lookahead horizon, w can be

finitely extended so that lui + lwl = p. Thus the state

Cnb = rS(c', w) = rS(co, uw)

is nonblocking because it is at the event horizon, and is reachable from the initial

state co by a control string y = uw. •

Proof (Time Lookahead). This proof is for the case that graph H is due

to a finite time lookahead T = [t0 , t f), where the time stamp of the ESD state is

to < t' :S: t f. As in the previous proof, an arbitrarily long control string w may be

112

}--- '"

Figure 5--11: Control ehoioe with emergency 8hutdovon ~taLes.

extended from d

c.,. • (f',x(t")) =6(c',w) = 6(c,,uw)

For c.w to be oonblocking, t!' ~ t1. Let f' = t! + kll.t ,where Ill > 0 is t he oomrol

sample time as;odated wit h tick, and k ~ l is an integer. Since for each FSD state

r (c') = {tick}, then the length of the control string must be lwl 2: k. Assmning

nonz~\0 execut ion, w can always be finitely extended so t hat there are k tick event:;

in w, and ensuring that c,. is nonblocking. AI; before, c.,. = 6(eo, uw) c~ reachable

from the initial state Q)· •

T he requirement that the controller must include ESD states is similar to t he

conservative looknhead policy of (Chung et al. 1992), in the sen"" that the outlook

assumes that just beyond the lookahead horizon, the syst-em will block (or be unsafe),

and thus the system mm;t be prepared to <bhut down. Having an ESD S[atc within

reach (i.e. within the looka.head horizon), guarantees that the system can at least

tih\lt down wit hout vio)a.ting safety. T he faiJ..safe controller existence hinges on ESD

""chability.

Let Fig. $.11 represent t he gr•ph oflegal control actions, wit h t he present (initial)

controller ~:~tate denoted by a. hexagonal-shaped node. ESD states are indicated by

113

Table 5.1: Choice of control action

Subgraph Status
ESD Reachable Nonblocking Transition

F F exclude
F
T
T

T
F
T

exclude
admitb
admit a

a First priority, bsecond priority.

the blue coloured nodes, and nonblocking nodes (those on the lookahead horizon) are

coloured green. By Def. 5.4.2, we know that any emergency shutdown states (q07

and qll) may be extended arbitrarily to the horizon; these extensions are omitted for

clarity. Table 5.1 summarizes the control actions based on the subgraph reachability of

each immediate control choice. Clearly, subgraphs that are not emergency shutdown

reachable will be excluded form the controller, so branches labeled (0, 0) and (0, 1)

are removed from consideration. In any case, branch (0, 0) would have been deleted,

since state q18 is blocking. Of the remaining two branches ((1, 0) and (1, 1)), the

branch that is ESD reachable and nonblocking receives priority for control selection

over branches that lead only to ESD; this matter will be dealt with in the following

section since it pertains to selection of a control action.

5.5 Controller Propagation

A hybrid transition graph is a representation of the timed discrete event behaviour of a

switched continuous model at a particular time and state. Furthermore, it models this

behaviour for a particular prediction horizon. No attempt has been made to produce

a closed-form FSM that represents the discrete event behaviour of the modeled system

for all time. Thus, the controller HTG should be considered to be a temporary data

structure that will be used to choose the control action at a particular point in time

and space. After the information contained in a particular controller HTG is no longer

useful, a new one must be created from the basic SCM information - the "source"

114

I I I Ill

Figure 5-12: Propagation of controller graph through time and space.

model. The new model is now relevant for the current state and time of the system.

This process continues, extending the controller forward in time. If at each control

update step, there is a suitable control choice, then the control system effectively

guides the system along, constructing the safe trajectory one event (control decision)

at a time, based on a tree of predicted future behaviour. This concept is illustrated

in Fig. 5-12, in which each controller graph is represented as a "pie-shaped" wedge.

The controller as described so far, does not implement control in itself; it ac­

tually models the future safe discrete event behaviour of the plant, including only

the unambiguously safe, nonblocking and ESD reachable control trajectories. This

implies that there is still a choice to be made, since there may be more than one

safe and nonblocking trajectory available. To complete the full closed-loop control

implementation (Fig. 5-13), some sort of choice mechanism must be added to the

controller.

Let C be a controller connected to a hybrid plant P. At each time-stamped hybrid

state h = (c, q) E (C x Q), a controller graph is produced, a prediction of the controlled

plant behaviour on a limited lookahead horizon. The graph is computed according to

the requirements of nonblocking (legal) behaviour and ESD reachability. The changes

115

A = { cr; E Lin : co (c, cr;) E [' hllg ((c, q))} .. c M 1----....

(c,q) ()a

p -

Figure 5-13: Closed loop connection of controller C and choice mechanism M with the
hybrid plant P.

in the plant state are signalled by discrete events occurring in the plant and by the

universal tick event; these are the choice points that have been encapsulated in the

SC modeling framework. At any product state of the graph, there is a set of legal

control choices that may be made, the actuator event set:

Definition 5.5.1 (Actuator Event Set) Let C be a controller, a product of an

HTG and a FSA, with hybrid state (c, q) E (C x Q), then the actuator event set is

defined as

Definition 5.5.2 (Choice Mechanism) The choice mechanism "chooses" a single

actuator event CJ a from set A. The choice mechanism is modeled as the function M

M:A-+A

What possible mechanisms could be used to select actuator event CJ a from the set

116

of legal actuator events A? Choice mechanisms M, can be classified as either manual

or automatic techniques. In the case of manual choice technique, a human operator

picks an actuator event rJ a E A using some heuristic to select "the best" action. This

i~ known a~ "humau-iu-the-loop" (I-IIL) control. Provided that A f 0, the operator's

actions are guaranteed always to be safe, since the controller presents only actuator

events that lead to nonblocking and ESD-reachable states.

Although nonblocking and ESD states are essentially indistinguishable from each

other, the choice mechanism must discriminate between ESD reachable and "pure"

nonblocking choices, as in Table 5.1. Actuator events fall into two sets

where Aen is the set of control events that lead to ESD reachable and nonblocking

trajectories, and the set Ae of events that lead only to an emergency shutdown. It

is preferable to choose actions that have some chance of continuing without invoking

an emergency shutdown.

Automatic control choice mechanisms, lacking human system knowledge on which

to base a choice of rJ a may operate in variety of ways including (but are not limited

to):

1. Minimum switching: minimize the number of times the actuator settings are

changed.

2. Optimal: Attempt to minimize some sort of cost/performance functional not

already captured in the specification. Such a scheme might involve assigning

weighting factors to states in the plant model and assigning cost factors to

input (control) events for example. The control action considered to be optimal

by these rules would then be selected by M, which is essentially a dynamic

programming problem.

117

3. Stochastic: a choice mechanism based on probabilities of outcomes, a Markov

decision problem.

4. Other: Choose control action based on the number of states of the controller

subgraphs. A greater number of states may improve the likelihood of a non­

blocking continuation beyond the lookahead horizon.

As just indicated, there are many possible techniques to implement M, but they

will not be covered in any further detail. The behaviour of M does not affect our

analysis, since all previous sections have been based on the assumption that some

event will be selected and the state of the plant will be advanced. Exactly how the

event is selected is not central to further discussion.

5.5.1 Online Operation: Controller Update Cycle

In any real-time control process, there are a set of scheduled actions that must be

repeatedly executed, usually at some regular time interval 6.t called the scan time.

For a control system, this set of actions will be called the control kernel, with the term

kernel used in the context of software engineering and not its mathematical meaning.

For the real-time process to proceed without failure, each of the scheduled actions

within the kernel must complete within a predictable and finite time. Additionally,

the sum of these times must not exceed a finite time interval 6.t. A digital control

system is such a real-time process, with one example being that of an industrial

programmable logic controller (PLC).

Example 5.5.1 (Digital Control (motor speed)) An example of a digital con­

troller is a DC motor speed control system. The actions to be executed in the control

kernel is as follows:

1. Measurement: sample motor speed

2. Compute control solution: Proportional, integral differential control solution

118

3. Output control action: send control solution to amplifier

Example 5.5.2 (Digital Control with State Estimation) An example of con­

trol and the comparison to optimal control with state estimation.

1. Output control action: send control solution to actuator

2. Measurement: sample feedback signal

3. State estimate: predict future value of system state

4. Compute control solution: using state estimate and controller gain matrix

With an online control scheme, the control kernel is executed repeatedly as the

system moves forward in (real) time. An outline of the scheduled actions within the

control kernel is, after initialization,

1. choose the control action (O" a),

2. synchronize the controller (state/event synchronization)

3. recompute controller

The controller is computed for the first time, starting at the initial product state

of the plant and specification models. If the controller exists for the initial condition

(initialization is successful), then the controller can be "enabled" or allowed to execute

physically in connection with the plant. Referring to Fig. 5-13, the choice mechanism

selects the event to apply to the plant from the subset of events that are enabled by

the controller A. At this point, the plant dynamics of the selected continuous system

model will begin the progression of the plant state towards the next choice point.

Immediately, the synthesis of a controller must be initiated, starting from the next

state which has been selected by the operator (the human in the loop) or by some

other process. This process continues as long as the controller is online and enabled.

119

l _________ y~------~1------y~----~
I tick n-1 ticks I tick

Figure 5-14: Controller propagation with time.

It is interesting to note the similarities of the online control kernel to the digital

controller with state estimation in example 5.5.2. In particular, step 2 (controller

synchronization) of the controller is equivalent to the measurement, and step 3 (con­

troller computation) is equivalent to the state estimation or prediction step. Step 1

(actuator event choice) is roughly equivalent to steps 1 and 4 of the digital controller.

120

5. 5. 2 Horizon Extension

The fundamental action of the control kernel is the controller map propagation step.

To ensure that the controller map continues to coincide as an approximate map of

the plant's local dynamics, the lookahead must be extended or advanced with each

time step. In Fig. 5-14, the diagram illustrates a controller graph starting at the

initial state on the left, with time flowing from left to right. Suppose the graph is

due to a p event lookahead and the controller graph consists of sections I, I I and I I I

(detail has been omitted from sections other than section I for clarity). The system

will eventually execute one trajectory within this graph u E I;7n, lui = p in the next

p events. The exact trajectory that is executed depends upon the sequence of input

control events that will be selected. Controller sections IV and V together represent

the breadth-first extension of the lookahead horizon by one tick. Indeed, to maintain

an n-tick time lookahead horizon, as at initialization, it is necessary to extend the

horizon of the controller map by one event after each input control event is executed.

Example 5.5.3 In the simple example of Fig. 5-14, initially there are only two

choices for controller action, il1 and il2 . Assuming il2 is taken by the choice mecha­

nism, only successor trajectories of il2 are valid, thus controller map sections I I and

IV can be discarded immediately. Conversely, if il1 were taken, sections I I I and V

would be discarded.

5.5.3 Example: Controller Propagation

As a concrete example of the preceding discussion, we will revisit the tank level control

example of §4.9, looking at the propagation of the controller at one event intervals.

Fig. 5-15 illustrates six consecutive control maps represented by the graphs in sub­

figures (a) - (f). These graphs have been specially formatted to reveal the controller

structure: the states are scaled down to dots and the event and state labels have

been removed. The red dot in each graph indicates the initial state, c0 . The past

121

controller history is indicated by the light blue trace in each graph. The graph layout

cngine1 that was used to make these plots uses a spring model layout technique, which

tends to create a fan-shaped graph surrounding the initial condition. The growth of

the ends of the fans by one event is evident from graph to graph, as the lookahead

horizon is extended by one event each in each instance. Note also that there are a

constant number of events from the initial condition to the branch ends on the horizon

(11 events). Finally, note the large sections of the graph that are discarded as the

controller state advances past certain control points. This graph was generated with

a specification that eliminated most of the control (input) events, so that most nodes

have only one possible control action. Typically, controller graphs are more complex

than this example.

5.6 Summary

A hybrid modeling framework has been described based on a synchronous product of

switched continuous model and finite state models. The product connection of a SCM

and a FSM at the discrete event level, results in a hybrid system model. The expansion

of the discrete event behaviour of these models on a limited horizon, produces a

finite graph. If the product model consists of plant and specification models, then

the limited horizon graph embodies the legal discrete event behaviour of the plant.

Synthesizing an online DES supervisor based on this graph requires that incomplete

(blocking) trajectories (those that do not carry the system from the initial state to

the horizon), be removed from the control graph. Since this controller is intended to

be implemented online, and no legal traces are available (controller is blocking), there

will be a resulting safety violation. Thus it is not sufficient to ensure legal behaviour

within the lookahead horizon. Potentially blocking (unavoidable safety violations)

may always exist beyond the lookahead horizon.

1The neato layout engine is a module of the Graphviz suite of programs from AT&T (Gansner,
Koustofios and North 2002)

122

(<) (d)

(el !II

Figure .';-1.): Controller graph prop&.gMion throta&ll tr.lx cwn\.8.

123

By establishing a special state called an emergency shutdown state, it is possible

to always guarantee the safety of our system. The so-called fail-safe controller always

requires that valid trajectories be ESD state reachable. This conservative control pol­

icy Ct::i::iUlllC::i tlmt beyond the hori,on, there will be a ::;afety violation. Therefore, even

safe nonblocking trajectories will be eliminated because they cannot be guaranteed

to be safe beyond the horizon, the cost of the safety guarantee. Within the described

modeling framework, conditions for the existence of the fail-safe controller have been

established.

The controller is, by necessity an online controller, because of the need to reduce

complexity and to respond to time varying modeling conditions. Complexity reduc­

tion forces a limited lookahead horizon model; this model represents a "snapshot"

of the system state space. The controller designed for this snapshot must be moved

along in time and state as the controlled system (plant) progresses.

The next chapter will take the concepts of this and the previous chapters and

develop the implementation-specific details for the fail-safe online controller.

124

Computation: From Theory to

Implementation

I n the previous chapter, a framework was designed that enables an SCM model

to be synchronized with multiple FSM models in a discrete event fashion. The

resulting synchronized (product) model is a form of hybrid model since it has hybrid

states. This framework also makes it possible to synthesize supervisory discrete event

controllers for the modeled hybrid system. Control is exercised as a sequence of

discrete event control actions, applied by the controller at specified system states

in dense-time. These control actions are planned by predicting the behaviour of

the modeled system on a limited lookahead horizon. Through the incorporation

of a specially marked state known as an emergency shutdown state, the controlled

system can be guaranteed to be safe (once the controller successfully initializes). The

controller model assumes that illegal states are just beyond the lookahead horizon.

This pessimistic outlook leads to controller conservatism: the controller requires that

at least one emergency shutdown trajectory must always be present in the control

structure.

This chapter details the general computational approach, the algorithmic imple­

mentation of the modeling concepts, and the specific implementation of a controller

125

synthesis and modeling software package.

6.1 Style

In the previous chapter, the theoretical considerations of the DES controller for a

hybrid system were outlined. This section will examine the basic computational

approach that has been adopted. There are three fundamental concepts that are nec­

essary to the control implementation, these are: lazy computing, limited lookahead,

and online implementation. These techniques will be leveraged to develop an efficient

computational framework for modeling, controller synthesis, and control. Reduction

of computational complexity is of utmost importance to our controller implementa­

tion, since it is to be implemented as an online controller. First, we will examine the

concept of lazy computing,and its applicability to computing DES supervisors.

6.1.1 Lazy Computing Model

The term 'lazy" is used here in the sense of expending the least effort necessary to

accomplish a job. It is a technique that helps to reduce computational complexity

in space and time. Essentially, we are contrasting a hierarchical product model with

that of its flattened equivalent model. This hierarchical approach to finite state mod­

eling has been exploited before to avoid the state explosion problem that occurs with

multiple product machines. In (Brave and Heymann 1991) a hierarchical statechart

approach is taken for modeling while (Gaudin and Marchand 2005) uses the hier­

archical approach to synthesize supervisors in systems without shared events. This

hierarchical technique lends itself well to the state-based techniques that are used

to construct the controller. In this section, a simple example in discrete event su­

pervisory control synthesis using the lazy technique will serve to illustrate the lazy

computing advantages over a "keen" computing approach. While the example is

somewhat simplistic, it is a useful exercise to motivate the succeeding sections. The

126

Figure 6-1: Finte state machine model Ml of the plant.

Figure 6-2: Finte state machine model M2 of the plant.

example also serves to introduce some of the terms used to describe the controller

synthesis algorithms.

6.1.1.1 Example: Product DES Model

Suppose we have a pair of simple machines that share a common work area. For this

example, the plant is modeled by a pair of finite state machines, M1 = (Q1 , L: 1 , o1f 1 , q1,0)

and M2 = (Q2 , L:2 , 52 , f 2 , q2,0), illustrated in Fig. 6-1 and Fig. 6-2. Each machine has

three states and four events as follows:

QI = {qi, qz, q3}

L:c = {ai}

L:u = { az, a3, a4}

ql,O = ql

Q2 = {qi, q2, q3}

L:c = {,Bd

L:u = {,82, ,83, ,84}

The controllable transitions are indicated by the graph edge with a small line segment,

and the initial states of the models are indicated by the hexagonal-shaped graph

127

Figure 6-3: Product finite state model of the plant, Ml II M2.

nodes. In this example, the state labels have been chosen to indicate the locations

of the machines. If both M 1 and M2 are in state q2 (indicated by the product state

[q2 , q2]), then they have violated the requirement that they not enter the same work

area simultaneously.

The completed plant model is the synchronous product automaton of the two

machines, M1 II M2, shown in Fig. 6-3.

The two separate FSM graphs have been "flattened" into a single graph structure

representing the product behaviour of the two machines. Since there are no common

events I:1 n I:2 = 0, this plant is the shuffle of M 1 and M2 • Predictably, there are 9

states, since the shuffle produces a Cartesian product of the state labels Q1 x Q2 •

6.1.1.2 Example: Keen Control Synthesis

To examine how a controller is synthesized from the "flattened" plant model, we will

use a specification that prevents the two machines from occupying their respective

q3 states at the time, that is, state [q3 , q3]. An outline of an algorithm that uses the

flattened plant model for controller synthesis is:

128

~i
na 8 (]z

"8 f33 a2
a2

a4 ~ ~i
f32 a3

~
f33

a4

a1

a

a

Figure 6-4: Controller graph for plant model of Figure 6-3.

1. Initially, ~ ~ 0,

2. Form "flattened" product model M1 II M2 by exhaustive state space search,

once complete, the transition set ~ holds all of the graph transitions for the

plant,

3. Do a depth-first reach on the flattened plant model, starting from the initial

state [q1 , q1], until an illegal state is identified (e.g. blocking due to spec and

marking criterion),

4. Step backwards through the graph, deleting transitions from ~' until a control­

lable transition is encountered, deleting it from ~'

5. Continue the reach (steps 2-3) until all remaining transitions in~ are reachable

and controllably safe.

To illustrate the keen algorithm, we will examine a single depth-first trace (Table

6.1. Assuming that step 1 of the algorithm has been completed already, the transition

set ~ of the flattened product plant model contains all of the transitions pictured in

the model of Fig. 6-3. Starting the reach with the initial product state of qps = [q1 , q1]

129

Table 6.1: Example Runtime of Keen Algorithm
Event I M1112 state I Transition Set, ~ I 1~1

[qi, qi] noop 24
(31 [q1, q2] noop 24
a1 [q2, q2] noop 24
(32 [q2, q3] noop 24
a2 [q3, q3] (illegal) noop 24

Table 6.2: Example Runtime of Keen Algorithm, Removing Transitions

Event I M1112 state I Transition Set, ~ I 1~1
[q3, q3] noop 24

a2 [q2, q3] ~ f- ~ \ ([q3, q3], a2, [q2, q3]) 23
(32 [q2, q2] ~ f- ~ \ ([q2, q3], (32, [q2, q2]) 22
a1 [qi, q2] ~ f- ~ \ ([q2, q2], a2, [q1, q2]) 21

and stepping forward through the graph:

Reaching the illegal state [q3 , q3], we now start to remove transitions from~' moving

backwards through the graph (retracing the previous steps)

The process of removing transitions continues until the legal and reachable por­

tions of the graph remain; i.e. the controller graph. The result of this controller

synthesis is the controller structure of Fig. 6-4, with the number of transition in the

transition set being pruned from I~ I = 24 down to I~ I = 8 transitions. In the figure,

the controller is laid on top of the plant to show which transitions have been trimmed

from the transition set of the full plant model.

A serious problem with the keen computation is that the number of states and

transitions in the product model grows exponentially in the number of machines (sub

models) that form the plant. For example, a simple factory model having 20 machines,

each with a 3 state model, will have a product model of 320 , or more than 3 billion

states. An algorithm that utilizes the keen method for a realistically complex plant

model, will likely run out of memory at step 1 of the above algorithm. This is the

well-known state explosion problem of full state verification problems.

130

6.1.1.3 Lazy Computation: Product Object

There is an alternative to forming the "flattened" product graph. The product repre­

senting the plant model can be formed from a collection of its constituent models (Fig.

6-5). This hierarchical product object M111 2, is essentially a pointer to its constituent

models, and instantiates all of the functions of the finite state product operation.

Continuing the example of the two machines, let the product state Xps = [x1 , x2],

then the transition function for the product object 81 11 2, is evaluated as follows

In Fig. 6-5, the product transition function can be seen as the parallel operation of

the two sub-models, M1 and M2 (refer to Fig. 6-1 and Fig. 6-2). In this particular

model, no synchronization between models M1 and M2 is necessary since there are

no common events. Let qps = [q1, q1] and a= (31, then

o1(x1, a)

o2(x2, a)

01112(Xps 1 a)

01 (q1' (31) = q1

o2(q1, /31) = q2

o1112([q1, q1], f31) = [q1, q2]

The product transition function is equivalent to the parallel combination of the tran­

sition functions of each of the constituent models.

How does the object-oriented plant model reduce synthesis complexity? Primarily,

there is a savings in the use of space. An outline of the algorithm to synthesize a

controller is as follows:

1. Initially, the transition set .0. <--- 0,

2. Create a product object from M1 and M2,

3. Do a depth-first reach starting from the initial product state [q1, q1], adding

131

Product
Object

Constituent
Finite State

Models

Figure 6-5: Plant model as a product object, illustrating overloaded transition function c5.

transitions to set .6., until an illegal state is identified (e.g. blocking due to spec

and marking criterion),

4. Step backwards through the graph, deleting transitions from set .6., until a

controllable transition is encountered, deleting it,

5. Continue the reach (steps 2-3) until all remaining transitions in 6 are reachable

and controllably safe.

To illustrate the lazy algorithm, we will examine one depth-first trace. Starting

from the initial states of each of the constituent models, M1 and M2 and stepping

forward, adding transitions: Now, stepping backward, and deleting uncontrollable

transitions: Notes: (1) The transition ([q2 , q3], a 2 , [q3 , q3]) is not added because it is

illegal, (2) transition ([q2 , q2], ;32 , [q2 , q3]) is deleted because it is uncontrollable, and

(3) transition ([q1 , q2], a 1 , [q2 , q2]) is deleted to prevent the subsequent uncontrollable

transitions of ;32 and a 2 (i.e. inhibiting a 1 enforces controllability).

Each depth-first reach into the model grows the transition set, followed by a

reduction as the controllability condition is enforced. Continuing this process for the

132

Table 6.3: Example Runtime of Lazy Algorithm, adding Transitions
Event I M1 state I M2 state I Transition Set, .6. I 1.6.1

[q1] [q1] 0

/31 [q1] [q2] .6. ~ .6. u ([q1, q1], /31, [q1, q2]) 1
a1 [q2] [q2] .6. ~ 6 U ([q1, q2], a1, [q2, q2]) 2

/32 [q2] [q2] .6. ~ .6. u ([q2, q2], /32, [q2, 2]) 3
a2 [q3] [q3] 3

Table 6.4: Example Runtime of Lazy Algorithm, Removing Transitions
event I M1 state I M2 state I Transition Set, .6. 11.6.1
a2 [q2] [q3] 3
/32 [q2] [q2] .6. ~ .6. \ ([q2, q2], /32, [q2, q3]) 2
a1 [q1] [q2] .6. ~ .6. \ ([q1, q2], a1, [q2, q2]) 1

entire reachable model, the transition set of the completed controller will become

1.6.1 = 8 transitions in size.

In this technique,

• the "flattened 11 plant product structure is never constructed,

• the product states (and product transitions) are only constructed as needed

from the constituent models

• the specification is part of the product operation, thereby eliminating illegal

transitions from the transition set during construction, of the controller.

During the computation, the transition set 6 will grow only slightly larger than

the transition set of the final controller (due to controllability). The notion of con­

structing the product states "just in time" or only as needed is a powerful one, saving

dramatically on memory requirements, and points to the strength of this approach

for an implementation.

133

6.1.1.4 Example: Keen, Lazy Techniques

To contrast the two techniques, the keen method is a pruning process, while the lazy

method is an additive process. In the lazy technique, the plant and specification are

represented by a product object model, that allows the product to be computed in a

"just in time" fashion. The product requires event synchronization between the mod­

els making up the product object. Providing there are some common events between

specification and the plant models, the product will always have fewer transitions

than the flattened plant model alone. This leads to a reduction in space complexity

over the keen technique.

Example 6.1.1 This example uses the analogy of navigating across a portion of a

city (Fig. 6-6, (1)). The task of constructing a route that leads from the starting point

(the green triangle) to a desired destination (the red octagon) is akin to computing

a discrete event controller, with events corresponding to actions of left turn, right

turn, or go straight; the states (or control points) correspond to the intersections of

roads. Suppose the specification (a rule) is that directions that take us further from

the destination (for example, in a euclidean sense) ar-e illegal.ReferTing to Fig. 6-

6, the keen algorithm begins at (1) with no knowledge of the map, but exhaustively

builds a complete map (2), by traversing all of the routes that r-each the destination,

building an exhaustive set of possible routes. Next, it checks each of these depth-first

mutes against the specification (the dotted contour- lines indicate equal distance from

the destination), removing transitions that are illegal, until only legal routes remain,

as in (3). With the lazy technique, we start with an empty transition set (map) at (1).

Routes ar-e gradually added to the map by testing each mute against the specification,

until the entire legal and reachable map has been constr-ucted in (3). The result is that

the lazy algorithm achieves an identical result to the keen technique, with a single step

and with reduced space complexity. This is possible because the specification is used

at design time, allowing illegal traces in many cases, to be eliminated before they are

134

-

0~ N 1\
•

~

~~ · I

Q .l I
(3)

135

8,
p,

03

"'
@flh .. lh

"' .,.,

"' ~
~~

o, lh o,
"•

{J., o,

"
"'

Figure 6-7: Limjt.cd lookahcad 2 event oont.rolJer graph for plant model of Figure 6-3.

fully oon<l,.cted.

6.1.2 Limited Lookahead

Giw~.n a sufficiently large plant and specification) the controller synthesis process may

be problematically large to compute. Limited lookahead is a technique that makes

tbe complexity of controller synthesis more manageable. Limited lookaiJCad refers

to the fact that the reach depth of the controller reachability calculation is limited

(trw>cated) during synthesis. This technique has been extensively examined in the

context of discrete event supervisory oontrol(Chung et al. !992),(Chung, Laforttme

and Lin 1994),(Hadj-Aiouane, Lafortune and Lin 1994),(Kumar, Chung and MarCIL~

1998).

A lazy computation. combined with limited looka.hea.d, h; implemented as follows:

!. Initially, transition set A +- 0,

2. Instantiate a (nou-flattened) product object from M, a.nd M,,

3. Do a depth-firet reach starting from the initial state lq,,qd, adding transitions

136

to set .6., until either: (a) an illegal state is identified (e.g. blocking due to spec

and marking criterion), or (b) the limited lookahead reach depth is reached,

4. Step backwards through the graph, deleting transitions from set .6., until a

controllable transition is encountered, deleting it,

5. Continue the reach (steps 2 - 3) until all remaining transitions in .6. are reach­

able, less than the reach depth and controllably safe.

While limited lookahead is effective as a technique for complexity reduction, it is

not possible to guarantee safety and non-blocking behaviour since the controller is

designed for a partial model. Fig. 6-7 is the limited lookahead controller for the plant

of Fig. 6-3 with a 2-event lookahead. This technique can be applied to either the keen

or lazy techniques to provide a further reduction in space complexity. An additional

benefit of the limited lookahead computation is that the space complexity is bounded.

Since the size of the computation is known ahead of time, the computational resources

can be planned making it more amenable to an online (real time) computation.

6.1.3 Online Computation

The terms online and offiine refer to the synthesis of the controller: offline means the

controller is completely synthesized before the execution of the control, while online

control implies that the controller is synthesized during controller execution. Why

include the controller synthesis as part of the runtime system? Online controller syn­

thesis is a necessity to a limited lookahead control scheme. The controller map must

be extended to match the moving system state by advancing the lookahead horizon.

Moreover, the controller propagation process described in §5.5, allows us to deal with

a time-varying model or specification. Online controller synthesis potentially allows

the controller to react to modeled, but unexpected disturbances, that a controller

constructed offline cannot. A requirement of online controller synthesis is that the

137

controller must be synthesized repeatedly in a real-time environment. Thus, the com­

plexity of the controller synthesis computation must be of a predictable size, which,

in turn, is why a limited lookahead scheme is amenable to online implementation.

6.2 Software

A software package has been designed that implements the modeling and controller

synthesis framework described in the preceding sections. The package is called HYSYNTH,

for Hybrid Synthesis and is designed for the Matlab® environment. The software can

be used to develop system models with a mixture of switched continuous and fi­

nite state models that represent the plant and specification of the target system.

These models may be synchronized in a hierarchical product structure and then algo­

rithmically manipulated to synthesize discrete event supervisors. Functions are also

available to propagate the controllers and to simulate the controlled system. Addi­

tional functions are supplied to produce finite state graph outputs of the models in a

variety of formats, including Postscript, Portable Document Format (PDF) and Vir­

tual Reality Modeling Language (VRML). These outputs give the designer a means

of visualizing the individual constituent models and the larger product graphs for

troubleshooting purposes.

6.2.1 Architecture

HYSYNTH exploits object-oriented programming (OOP) strategies. Models are stored

as instantiations of appropriate classes:

fsm Class for deterministic finite state models, G = (Q, ~' 6, r, q0)

scm Class for switched continuous models, G = (F, r, s0)

product Class for products of discrete event process objects, P

138

depObj

+display()
+isA()
+initial()
+isMarked()
+nextEvents()
+nextStates()
+reach Events()
+reach Time()
~ I A

I
r- --------------- __ I
I
I
I

FSM

-state Set
-eventSet
-transitionSet
-currentState
-initiaiState

+display()
+isA()
+initial()
+nextEvents()
+nextStates()
+prevStates()
+reach Time()
+reach Events()

SCM

-initiaiCSM
-CSMSet
-inputEventSet

+display()
+isA()
+isMarked()
+nextEvents()
+nextState()
+reach Events()
+reach Time()
+simulate()

Product

-presentState
-prodVector

+anEventOf()
+display()
+enabled()
+isA()
+initial()
+isMarked()
+next Events()
+nextStates()
+reach()
+reach Events()
+reach Time()
+subasgn()
+subs ref()

Figure 6-8: The discrete event process object class hierarchy.

139

Each of these classes is derived from an abstract base class, the discrete event

process object class, or depobj class (Fig. 6-8). The product class acts as a hetero­

geneous container that stores a vector of depobj objects; i.e. types fsm, scm and

abo product. This recurl:live containment ability (a product may contain another

product) permits hierarchical models to be constructed. The three classes present a

common interface, implementing a variety of polymorphic methods. These methods

permit the hierarchical models to be manipulated for analysis, simulation and control

synthesis.

An example of a polymorphic function is the nextEvents (state) method that

returns the set of next events for an object, given an argument of state. For a deter­

ministic finite state machine G = (Q, 'E, o, r, q0), the state argument is a finite state,

and the function evaluates the enabled events function r, returning a set of discrete

events. For a switched continuous model G = (F, r, s0), the function conducts a sim­

ulation for each s E F, with the state argument, a time-stamped continuous state.

Simulation trajectories that cross the state boundaries (as defined by the respective

set of partitioning functionals) generate events that become elements of the set of

next events. This function equates to the enabled events function rh of the HTG.

This discussion points out the need for a variety of types of states, since the

domain of each function varies:

f ini teState Class for finite state models, q E Q

ctsState Class for continuous state variables, x E IR.n

pState Class for product states, ps.

The domain of the product state has been deliberately omitted, to allow for a

containment. These classes are derived from an abstract base class, the stateDbject

class (Fig. 6-9). As with the product class, the pState class is a heterogenous con­

tainer, that stores a vector of state Db j ect objects. And like the product class, it can

140

I

finiteState

-state
-marking

+display()
+eq()
+finite State()
+isA()
+isMarked()
+state Label()

stateO bject

+display()
+isA()
+isMarked()

/I' /~'

l------------------

ctsState

-timeStamp
-state Vector

+ctsState()
+display()
+isA()
+isMarked()
+stateLabel()

Figure 6-9: State object class hierarchy.

1
I
I

pState

-pStateVector

+display()
+isA()
+isEqual()
+isM arked()
+pstate()
+stateLabel()
+subasgn()
+subs ref()

recursively store other pstate objects, allowing for states to match the hierarchical

structure of the models.

The state space of a product object is not generated until run time, since the

hierarchical object structure is maintained. By generating the state space only as

needed using the lazy computation model, the costly computation of the "flattened"

product state space is avoided. Fig. 6-10 illustrates a model constructed using the

product class.

All of the algorithms that implement HYSYNTH functions have been written to

exploit this hierarchical storage of models. The core classes of HYSYNTH in Fig.

6-8 and Fig. 6-9 have been implemented in Matlab scripting language, using the

OOP programming features of Matlab (MATLAB Programming 2006). The resulting

modeling framework essentially extends Matlab's interpretive command set to allow

for modeling, analysis, controller synthesis and visualization.

141

pl

product(s 1 ,p2)

/ ~
sl p2

scm('sl.xml') product(ml ,m2)

/ ~
ml m2

fsm('m l.xml') fsm('m2.xml')

Figure 6-10: A model constructed as a set of hierarchical product objects.

The powerful continuous modeling and simulation capabilities of Matlab can also

be embedded within our modeling framework through the scm class. While HYSYNTH

is currently implemented in Matlab, it could also be translated to any programming

language that supports object oriented programming techniques1 .

6.2.1.1 Modeling Example

This example shows how the model of Fig. 6-10 can be constructed using a few

commands.

m1 = f sm ('m 1 . xml ') ;

m2 = f sm ('m2 . xml ') ;

p2 product(m1,m2);

s1 scm ('s 1 . xml') ;

p1 product(s1,p2);

% read fsm models from source file

% product of m1 and m2

% get scm model

% final model

1 HYNSYNTH is patterned on the architecture of the DES software OTCT, which was implemented
in C++(O'Young 1992).

142

The fsmO, scm() and product() methods are the class constructors, allowing

empty "placeholder" objects to be created or, as in this case, the models have been

created from XML (extensible markup language) source files.

It ::;hould be emphasi:.;;cd that instantiating a product model object docs not com­

pute anything; it is merely a data structure with the models stored in a hierarchical

fashion. If the product model p2 is a specification and the SCM model s1 is a plant,

then a controller can be computed by finding the nonblocking reachability of pl.

We begin by forming an initial state of the system that mirrors the hierarchy of the

system model:

xO [20 .1 32. 7] % continuous state variable

tO 0.0 % initial time stamp

cO = pstate(tO,xO); % initial time stamped cts state

qO = pstate(initial(m1),initial(m2)); % initial state of specification

psO = pstate(cO,qO); % initial product state

Now the controller is formed by finding the nonblocking reachability of the model

for some lookahead horizon, which in this case is 10 events:

[controller,exists] = reachEvents(p1,ps0,10); %

The reachEvents function computes the controller transition structure (returned

as controller) if it exists; indicated by the boolean value of return variable exists.

6.2.1.2 Product Class Method Dependency

From the previous example, it is clear that the product class is central to the modeling

and synthesis framework. In Fig. 6-11, the method dependency diagram for the

product class is presented. In this figure, a variety of high-level functions are listed,

such as printAsPDFwi thEvents (), a function that prints the flattened product to be

stored to a PDF file for some lookahead horizon specified in events. In the dependency

143

printAsPDF printAsPDFWithEvents

Figure 6-11: Method dependency for the product class. The product module is the con­
structor for this class.

144

"•·wOo.- '""''"! .. liiEl
File,

Finite AWornaton

Pushdown Automaton
•

r .. 1ng Mac-
Multi-Tape Turing Machine -

Gnmrnar

l -S!IStem

Regular Expression

Figure 0..12: Main menu of JFLAP &utomata lUld foml.3lla.ngua.ges package.

d iagram, recursive functions are indicated as ellipses. The recursion is neoessary for

t he hierarchical storage of t he product class.

6.2.2 User Interface

T he user interface £or HVSYNTH was developed for prototyping purposes, but is

rCASona.bly easy to usc. A simple graphical user interface is provided by a third-party

software pod<ngc, caJl .JFLAP(Rodger and Finley 2006). This pod<age is intended

to be used as a. tool £or teaching students a utomata and formal languages, but for

HYSY~TH~ it serves as a front-end for finite state machine capture. From t he main

menu (Fig. &.12), t he user selects the Finite Aotol118tOn optiOn1 which brings up an

empty finite a utomaton capture window. In Fig. 6-13, t he ca.pt\lre window has an

automaton entered already. Once the designer hos completed the design, t he FSA

moy be stored to disk in an X.li-IL format file with default extension of .jff. 11•e finite

state model object in HYSYNTH has a method that enables it to pa.rl:le thio file from

disk, creating an fsm object.

The graph visualization capabiHty of HvSvNTII is ba.'Jed on t he AT&T Craphviz

graph I'I)'OUt engine (Gan•ner et ,U. 2002). Smaller graphs (< 100 SIQt<>S) 31'0 lL«lfullO

145

oil AI' 1•1" I 1U .. ('i] EJ

•

• •
Figuno 0-13: Finilc aLate mac;hin~ copture window.

146

~
-C

(

Figure 6-14: A three-dimensional view of a DES oontroller.

look at for debugging purposes. Even larger graphs (<5000 states) can be reasonably

examined via a PDF file. Individual stat<>S can be found in PDF graphs with the

standard search engine in the Adobe Acrobat reader. Colour and shape of nodes can

be \ lscd to encode useful state information. Ot.her options, l:ittch as 3 dimell.b.ional

VRML visualizations nmy prove helpful for examining controller designs statically

and also how they evolve through time and space using animations. Fig. ~14 depicts

a small controller in 30, with initial state indicated by the hex&gonal polygnn, other

controller t ime Stl\lnped states are spheres. The blu ... ooloured nodes indicate ESD

states of the controUer.

6.3 Algorithms

This section will provide some det3il on th~ algorithms that have been designed to

implement the SGM/FSM modeling, synehroniza.tH:m and controller synthesis.

147

6.3.1 SCM Functions

In order to implement the controller synthesis, the HTG state transition function 5 h

and enabled events function rh are required. At the heart of both algorithms is the

evaluation of the solution of a continuous system model. Up to this point, an ordinary

differential equation has been the "placeholder" for a broader class of simulations. In

these examples, we assume (as before) Case II operation. so the solver must possess

some sort of event detection. Event detection and location in ODE solvers is a

well-studied problem and robust algorithms that add little computational overhead

are available (Shampine and Gladwell1991), (Shampine and Thompson 2000). Event

detection is recognized as being an integral part of hybrid system simulation modeling

and analysis (Alur et al. 2003), (Esposito, Kumar and Pappas 2003).

6.3.1.1 SCM Event Lookahead

Algorithm 6.1: An event-based reachability for the SCM G = (:F, r, s0 , t)
input : R ;--- 0, so E :F, rd ~ 1, t ;---to
output: The set of continuous trajectories x En reachable in rd events

1 Function reachEvents (R, s, rd, t);
2 foreach si E f(s) do
3 [xi, ti] ;--- simulate (si, t;);
4 n ;--- nuxi;
5 if rd > 1 then
6 I n ;--- n u reachEvents (R, Si, rd- 1, t);
7 end

s end
9 return n

We shall revisit how the HTG is generated algorithmically from a SCM, based on

the reachable continuous state space. One strategy for generating a HTG from an

SCM is to predict its behaviour a fixed number of events into the future. We will use

the abstract model of the SCM to demonstrate this with a depth-first reachability

sweep in Algorithm 6.1. In line 3, the simulate() function is a generic continuous

148

dynamical simulation function that takes as its arguments the continuous system

model s and an initial simulation time t. Starting from t, it returns the continuous

solution (trajectory) Xi, to the first detected event, either the controller sample time

6.t (a::;::;odated with the t·ick event), or a partition cro::;::;ing, whichever occurs first.

The time at which the event occurred is also returned ask Typically, but without loss

of generality, s E F are ordinary differential equations, and simulate() is an ODE

solver that produces a solution xi to the IVP posed by each continuous system model

s. Each of these solutions is added to the reachable set of continuous trajectories

R. In line 5, the reach depth rd is tested to determine if the lookahead horizon has

been reached. If not, the function calls reachEvents () recursively. The algorithm

terminates with the continuous trajectories reachable in rd events returned in set R.

6.3.1.2 SCM Time Lookahead

Algorithm 6.2: A time-based reachability for the SCM G = (F, r, s0)

input : R .- 0, so E F, t .- to, T .- to + pb.t, p E TI
output: The set of continuous trajectories x E R reachable in T time

1 Function reach Time CR, s, t, T);
2 foreach Si E f(s) do
3 [xi,ti].- simulate(si,t);
4 R .- RU xi;

5 if (T - ti) > 0) then
6 I R .- R U reachTime CR, si, ti, T);
7 end
send
9 return R

The time lookahead strategy of Algorithm 6.2 predicts the SCM behaviour out to

some fixed time horizon, T, relative to the initial simulation time t0 . The assumption

is that t0 +T will be some integer multiple of the tick event time D.t, which guarantees

that the simulation of line 3 will terminate with a tick event. In line 5, the simulation

time is tested to see if it has reached the time horizon T; if not, the function calls

149

reach Time() recursively, with the new advanced simulation time k

The sets generated by these algorithms represent the uncontrolled continuous

behaviour of a system modeled as a SCM. For both time and event lookahead schemes,

a HTG that corresponds to the continuous reachable trajectories can be constructed,

since for each Xi E R there exists a corresponding discrete event transition T.

The HTG can be generated easily using modified versions of Algorithms 6.1 and

6.2, by modifying the simulate() function to return the detected output event CY E

~out· The set of transitions T for the HTG can then be assembled.

6.3.1.3 Functions for HTG Traversal

Both 6h and rh algorithms assume that a solver with event detection exists. We first

consider the rh , or enabledEvents function in Algorithm 6.3 The algorithm assumes

Algorithm 6.3: nextEvents method of the SCM class

input : G +---- (F,f,so),co +---- (to,xo) E (~ x ~n), tick time D..t
output: The set of enabled output events.

1 Function nextEvents (G, c0 , Clt)
2 nextEventSet +---- 0 ;
3 foreach Si E f do
4 solution of ODE posed by si on time interval T = t0 + D..t;
5 T +---- t 0 + D..t;
6 CY +---- solveODE(h, xo, T);
7 nextEventSet +---- nextEventSet U CY;

s end
9 return (nextEventSet)

that all candidate continuous system models are eligible for execution. A solution for

each CSM is executed on the D..t control cycle interval. The solver returns the output

event, which will either be the detected event, or tick if no events are detected before

the simulation terminates.

The transition function oh, is not implemented exactly as defined (Def. 4.8.4).

150

Rather, the set of next states that matches the output event (} E I:out is computed

Roughly, this equates to finding the set of all simulations that generate the discrete

output event (}. Algorithm 6.4 implements (lscm· Note the similarity between each

of the algorithms. Indeed, these functions actually solve the same ODEs, because

the discrete transition information is derived form the continuous system models.

For better computational efficiency, a transition table is usually computed, and the

6h(c5scrn) and rh are evaluated by performing a table lookup. The reachability code

is designed to update the transition table only once at each choice point; i.e. the

continuous simulations are executed once for each eligible CSM. Any subsequent calls

to 8h and rh are then simply table lookups.

Algorithm 6.4: nextStates method of the SCM class

input : G.___ (F, r, so), Co.___ (to, xo) E (~X ~n), (} E I:out, tick time D.t
output: The set of next states.

1 Function nextStates (G, c0 , b.t)
2 nextStateSet <--- 0 ;
3 foreach Si E r do
4 solution of ODE posed by si on time interval T = t 0 + D.t;
5 T <--- t 0 + b.t;
6 [tf, xf, (}e] <--- solveDDE(/i, xo, T);
7 if ((Je == (}) then

8 I c.___ (tf, X f);
g nextStateS et <--- nextStateS et U c;

10 end
11 end
12 return (nextStateSet)

151

6.3.2 Product Synchronization Functions

In the previous section, algorithms for traversing hybrid transition graphs were given.

In this sections, algorithms for the product or synchronized versions of these functions

is given.

6.3.2.1 Product Next States Function

Algorithm 6.5: Algorithm nextStates method of the product class

input :Product structure P, a product state ps E (C x Q)N, where N is
the number of models in the product object P, a E ~-

output: The set of next states Qn for the product P.

1 Function nextStates(P,ps,a)
2 stateSet[N] +--- 0;
a foreach G E P, state E ps do
4 I stateSet[i] +--- nextStates(state,a);
5 end
6 nextStateSet +--- crossProduct (stateSet);
7 return (nextStateSet)

The implementation of the product transition function 611 for an N-ary product

object P, is illustrated in Algorithm 6.5, the product: : nextStates () function. Since

bscm (Algorithm 6.4), scm: :nextStates() returns a set of next states Qn instead of

a single state, the algorithm for 611 must also return a set of product states if there

is a SCM as one of the objects in the product. From the modeling class diagram of

Fig. 6-8, the product, scm and fsm classes all implement nextStates (). Therefore,

a product object may contain other product objects (hierarchically nested product

objects), in which case the nextStates () function call in line 4 is a recursive function

call.

Essentially, the algorithm evaluates o() for each object in the product (lines 3- 5),

then compiles the next state set in line 6, by forming a cross product of each state

set. In the case where each object in product P is a FSM, the function returns a set

152

with a single element.

6.3.2.2 Product Next Events Function

Algorithm 6.6: Algorithm nextEvents method of the product class

input :Product structure P, a product state ps E (C x Q)N, where N is
the number of models in the product object P.

output: The set of enabled events :En for the product P.

1 Function nextEvents(P,ps) ;
2 enabledEventSet ~c- 0;
3 foreach G E P, state E ps do
4 I enabledEventSet ~c- enabledEventSet U nextEvents (G,state)
5 end
6 foreach G E P, state E ps do
7 if (a t:J_ f 9 (state)) A (a E 2:9) then
s I enabledEventSet ~c- enabledEventSet \a;
o end

10 end
11 return (enabledEventSet)

The enabled events function f11() for an N-ary product object P, is illustrated in

Algorithm 6.6, the product: : nextEvents () function.

6.3.3 Nonblocking Reachability

Synthesis of a nonblocking safe controller is based on the discrete event reachability.

Each of the algorithms that construct this reachability tree are, without loss of gener­

ality, based on a depth-first recursive reach. Thus, the reachability tree in each case

is formed a trajectory at a time, with each branch being computed temporarily and

pruned backwards as necessary before being added to the transition set. Essentially,

for each lookahead type, the corresponding algorithm seeks to remove incomplete

trajectories, i.e. those that do not reach the horizon.

153

Algorithm 6. 7: A recursive reachability algorithm that returns the non­
blocking HTG transition set of an SCM/FSM product structure for an inte­
ger event lookahead horizon.

input : Product structure P, T +- 0, initial product state
ps E C x Q, rd ~ 1

output: The set of transitions reachable in rd events for the product P

1 Function reachEvents (P,ps, rd);
2 if rd :S 0 then
3 I return (true)
4 end
5 nonBlocking ,__ false;
6 enabledEventSet +- nextEvents(P,ps)
7 foreach a E enabledEventSet do
s nextStatesSet +- nextStates(P,ps,a)
9 foreach ns E nextstateSet do

10 flag+- reachEvents (P,ns,rd-1);
11 if flag then
12 I tranSet +- tranSet U [ps, a, ns];
13 end
14 nonBlocking +- nonBlocking V flag;
15 end
16 end
17 return (nonBlocking)

154

6.3.3.1 Event Reachability

The controller is constructed from the product of plant and specification models

using a modified reachability sweep (Algorithm 6.7). This recursive function takes

arguments of a product model object, a product state object, and the lookahead

horizon. This algorithm demonstrates a limited lookahead depth-first reachability. In

this case, the lookahead horizon is specified by the number of events, the rd parameter

in the function call. The function terminates when every branch of the reachability

has been explored, either reaching the event lookahead or not. Providing that there

exists at least one complete trajectory, the function will terminate, returning a status

of boolean true, indicating that the reachability is non-empty. The function constructs

a transition set TR for the graph of the reachable controlled state space. Transitions

are only placed in the transition set as they are verified to be non-blocking. This

requires that the algorithm traverse all the way to the lookahead horizon to verify

that a trajectory is complete. Thus, the transition set is built from the lookahead

horizon backwards in this technique.

6.3.3.2 Time Reachability

As an alternative, the lookahead horizon of the reachability can be specified as a

time horizon in terms of simulation time intervals, t::..t, represented by the event label

tick. In Algorithm 6.8, the reachDepth parameter of the productReach function now

specifies the number of tick events for the lookahead horizon. The recursive function

call decrements rd only if the enabled event is a tick. If the event is not a tick,

the recursive call is made with rd unchanged. This function will only terminate if

all trajectories are nonzeno, since if time is not able to advance, then the function

will call itself ad infinitum. Assuming that the function does terminate, the resulting

transition set will consist of only those trajectories having rd tick events in each

generated string.

The time horizon can also be specified in dense timeT 2': t. The algorithm will not

155

Algorithm 6.8: A recursive reachability algorithm that returns the non­
blocking HTG transition set of an SCM/FSM product structure for an inte­
ger tick time lookahead horizon.

input : Product structure P, transition set T f- 0, initial product state
ps E C x Q, time horizon integer td :2 1 ticks.

output: The set of transitions T reachable in td tick events for the
nonblocking product P.

1 Function reachTime (P,ps,td);
2 if td :::; 0 then
3 I return true;
4 end
5 nonBlocking f- false;
6 enabledEventSet f- nextEvents (P,ps);
7 foreach a E enabledEventSet do
8 nextStateSet f- nextStates(P,ps,a);
9 foreach ns E nextStateSet do

10 if a = tick then
11 I flag f- reachTime(P,ns,td-1);
12 else
13 I flag f- reachTime(P,ns,td);
14 end
15 if flag then
16

I
T f- [ps, a, ns];

17 transitionSet f- transitionSet

18 end
u

19 nonBlocking f- nonBlocking V flag;

20 end
21 end
22 return nonBlocking;

156

T"
'

be presented here due to the similarity with Algorithm 6.8. Recall that the discrete

plant state is a continuous product state object consisting of the [te, xe] continuous

state Xe and the simulation time te at the occurrence of the event. Essentially, the

dem;e time can be extracted from the plant product ~;tate. This time te can be tested

against the lookahead time T to determine if the horizon has been reached.

6.3.3.3 Combination Reachability

A combination of time and event lookahead horizons can also be utilized. Such a

combined strategy has the benefit of assuring an upper bound that balances the

objectives of both types of lookahead schemes. It reduces complexity in the following

situations:

1. Event Lookahead: Continuous system model dynamics that are slow changing

and thus generate few events (except for tick events) will terminate on a time

horizon instead of continuing until the event limit.

2. Time lookahead: continuous system model dynamics and a partitioning struc­

ture that leads to dense switching behaviour (limit-cycle behaviour) will termi­

nate on the event limit instead of continuing until the time limit.

The algorithm is simply a blend of the event and time horizon reachability algo­

rithms. Essentially, the horizons are specified as integers td :=;; rd. Whichever horizon

is encountered first sets the returned nonblocking flag true, indicating the complete

trajectory for this depth first reach to be nonblocking.

6.3.4 Fail-safe Controller Synthesis

For fail-safe control, an ESD state must be reachable (Proposition 5.4.1) from the

current system state. Algorithm 6.10 builds a transition set that is pruned according

to nonblocking and ESD state reachability rules. It also returns the nonblocking and

157

Algorithm 6.9: A recursive reachability algorithm that returns the non­
blocking HTG transition set of an SCM/FSM product structure for a com­
bination lookahead horizon based on either an integer number of events or
an integer number of ticks.

input : Product structure P, T +--- 0, initial product state ps E C x Q,
1 :::; td:::; rd

output: The set of transitions reachable in rd events or td ticks for the
product P

1 Function reachCombo (P,ps, rd, td);
2 if rd :::; 0 then
3 I return (true)
4 end
5 if td :::; 0 then
6 I return (true)
7 end
8 nonBlocking +--- false;
9 enabledEventSet +--- nextEvents(P,ps)

10 foreach CJ E enabledEventSet do
11

12

13

14

15

16

17

18

19

20

21

22

23

nextStateSet +--- nextStates(P,ps,CJ);
foreach ns E next StateS et do

if CJ = tick then
I flag +--- reachCombo (P, ns, rd, td-1);

else
I flag+--- reachCombo(P,ns,rd-l,td);

end
if flag then

I
T +--- [ps, CJ, ns];
transitionSet +--- transitionSet U T;

end
nonE locking+--- nonBlocking V flag;

end
24 end
25 return nonBlocking;

158

Algorithm 6.10: A recursive reachability algorithm that computes the non­
blocking and ESD reachable HTG transition set of an SCM/FSM product
structure for an integer event lookahead horizon.

input : Product structure P, T ~ 0, initial product state
ps E C x Q, rd :2:: 1

output: The set of transitions in rd event lookahead for the nonblocking
and ESD reachable product P

1 Function reachEvents (P,ps,rd);
2 if (isMarked(p) V isMarked(ps)) then
3 I return ([true, false])
4 end
5 if rd :::; 0 then
6 I return ([false, true])
7 end
s nbFlag ~false;
9 esdFlag ~ false;

10 enabledEventSet ~ nextEvents (P,ps)
11 foreach a E enabledEventSet do
12 nextStatesSet ~ nextStates (P,ps,a)
13 statusSet ~ 0;
14 foreach ns E nextstateSet do
15 [esd, nonblocking] ~ reachEvents (P,ns,rd-1);
16 if (esd 1\ nonblocking) then
17 T ~ [ps, a, ns];
18 transitionSet .._ transitionSet U T;
19 esdFlag .._ esdFlag V esd;
20 nbFlag .._ nbFlag V nonBlocking;

21 else
22 I nextStateSet .._ nextStateset \ ns;
23 end
24 if esd then
25 I statusSet ~ statusSet U [esd, nonblocking];
26 end
21 end
28 end
29 return ([esdFlag, nbFlag], nextStateSet, statusSet)

159

ESD reachable status, and a matching set of next states (or transitions). This set

of transitions, along with the nonblocking and ESD flags, are used to choose the

next controller action (Table 5.1).The algorithm presented here is based on event

horiz;ou reach, but ca,11 be lllouifieu to be based on integer tick ti1ue, ue11::;e tin1e, or

combination lookahead.

6.3.4.1 ESD and State Marking

ESD states must be indicated specially; in this implementation, they are called marked

states. The method isMarked() is implemented by subclasses of stateObject and

depObj. Thus, marking may be jointly specified for individual states as well as for

models. If a model (a depObj) is marked, then all of its states are considered to

be marked. ESD marking has to retain the hierarchical structure of the product

and pstate classes; a hierarchical truth object is returned for product or pstate

classes that instantiate the isMarked() method. For example, let us look at the

hierarchical system model of Fig. 6-10. The following commands generate the logical

data structures that represent the model and state marking illustrated in Fig. 6-15:

modelMarking

stateMarking

isMarked(p1);

isMarked(ps1);

%p1 is the system model

%ps1 is the current product state

In line 2 of Algorithm 6.10, the logical OR (v) symbol is an overloaded opera­

tion. Without presenting the algorithm, the resulting marking is a element-wise OR

between the "branch ends" of the model and the state structures; but with the re­

quirement that the individual product object and product state object truth results

must all be true for a product model or product state to be true (AND). This special

test for marking is conducted to determine the ESD marking, and as is evident in

Fig. 6-15, for this example the result is true.

For the scm class, no states are marked internally, but discrete states of an SCM

can be designated as marked by synchronizing a FSM with the SCM to provide the

160

Model Marking State Marking

isMarked(p I) isMarked(ps I)

[true,[true,false]] false,[false,true]]

/ ~ / ~
isMarked(sl) isMarked(p2) isMarked(ss I) isMarked(ps2)

true [true,false] false [false,true]

/ ~ / ~
isMarked(m 1) isMarked(m2) isMarked(ms 1) isMarked(ms2)

true false false true

Resulting Marking

Figure 6-15: Hierarchical marking structures for object and state marking and the resulting
marking decision.

161

appropriate marking. Alternatively, as in this example, all states may be marked in

the SCM by using the object marking to always override the state marking.

6.4 Complexity

The complexity of the controller synthesis computation is of utmost importance to the

practical implementation of an online controller. In previous sections, considerable

care was taken to outline the various approaches to reducing complexity, including

lazy computation, and limited lookahead. This section will outline the expected space

and time complexity of implementing the hybrid controller synthesis.

Essentially, the process of online synthesis consists of generating a locally safe con­

troller repeatedly at different instances in space, and more importantly, time. The

controller is assembled in a just-in-time fashion, so it is essential that the computation

can be computed reliably, in a finite amount of time. The controller is represented

by a directed acyclic graph that is the result of the product of a switched continuous

models and one or more finite state models. The plant, represented by the switched

continuous model, can be "flattened", that is, its reachable state space can be cal­

culated on a reduced time horizon combined with the limited switching framework

(choice points) to produce a finite state model. In §4.6, the cardinality of the reach­

able state spaceR of a SCM was derived for Case I and Case II switching (Eq. 4.7

and Eq. 4.4). Since there exists a transition in the HTG for every Xi E R, the number

of transitions is as follows:

where q is the length of the longest SC trajectory (the maximum reach depth)

and r is the number of possible continuous system models (control actions) available

at any choice point. Since both q and r are a function of the specification model,

the plant model and the particular product state at the moment the controller is to

162

be computed, it is not possible to find the exact controller size, but it is possible to

classify the order of the calculation in space and time. the following sections examine

the complexity for a system modeled by a single SCM.

6.4.1 Constant Event Reach (Plant)

The constant event reach has a fixed number of states which is determined by integer q,

the reach depth, and integer T, the branching factor (the number of enabled continuous

system models). Thus, the number of transitions in the graph that implements the

finite state model is

providing that there are exactly T choices at each choice point.

Lemma 6.4.1 (Space Complexity Reach (Events)) Let G = (F, r, s0) be a switched

continuous model. The space complexity of the Teachability calculation with constant

event hoTizon (Teach depth) is polynomial in r.

Proof. With the number of events in any complete switched continuous trajectory

(string) I~ I = q fixed, the number of transitions in the HTG is a function ofT

Tq+l- 1
ITRI = j(T) = ' T > 1

T -1

with T large, this converges to Tq. Therefore for q > 1, the space complexity is

O(rq) which is polynomial in r. •

6.4.2 Constant Time Reach (Plant)

With constant time reach, the maximum reach depth in events pq, is not consistent

for each SC trajectory ~ E R, and is unpredictable depending upon the dynamics

and partitioning structure of the SC model G = (:F, r, s0). Recall that the reachable

163

state space R of an SC model of a fixed-time horizon of p 6.t , with finite number of

partition switches per time interval of q = Jel has an upper bound of

rpq+l - 1
IRI :::=: , r > 1

r-1

which corresponds directly to the number transitionsJTRI in the HTG of G.

Lemma 6.4.2 (Space Complexity Reach (Breadth)) Let G = (F, r, s0) be a

switched continuous model. The space complexity of the reachability calculation with

a fixed number of model choices (reach breadth) is exponential in pq.

Proof. Let pq = q'. Clearly with r constant, the number of states in the reacha­

bility graph, N, is a function of q'

rq'+l - 1
ITRI = f(q') = r _

1
, r > 1

Therefore, the worst-case space complexity is O(rq'), that is exponential in pq. •

6.4.3 Complexity With Control

This section examines the computational cost of computing a controller. The number

of possible branches that can be made at any choice point is dictated by the number

of available dynamics r = JrJ, and by the number of these choices that are disabled

by the specification. This disablement is unpredictable and is determined by how

"tight" the specification is. Any other synchronous model connected to the plant may

also constrain the plant branching behaviour, even though it may not necessarily be

considered as part of the specification.

• State complexity of the controller has an upper bound which is polynomial in r,

and exponential in q. In practice, however, due to the discrete-event interaction

of the SCM with other plant and specification models, the complexity will always

be less.

164

• Time complexity for reachability of a directed graph is O(N), in the number of

nodes or states of the controller, N. Therefore, time complexity for forming the

controller, in terms of q and r, is essentially the same complexity as the state

complexity. Therefore time complexity is at worst, exponential, but will always

be better depending on the interaction of the SCM with other models.

• A 'tight' specification helps to reduce complexity. The implication of a "tight 11

specification however, is that a larger set of plant behaviours will be disabled.

This effectively reduces the available control choices, increasing the likelihood

of blocking, and an unwarranted emergency shutdown.

6.4.4 Empirical Complexity

It is not possible to analytically predict the exact complexity of controller synthesis

for a particular system model, but it is possible to evaluate it empirically.

To demonstrate complexity reduction, we will use the tank control example of

§4.9 again. The plot of Fig. 6-16 shows the controller size for this example (at the

same initial state) for a range of event lookahead horizons. Plotted on a logarithmic

scale, the number of transitions in the uncontrolled plant increases by approximately

one order of magnitude for an increase in lookahead horizon by 2 events. For this

example, there is a considerable decrease in controller size due to the inclusion of the

specification; an approximate curve fit has been applied (in blue) to the controller

data.

The size of the controller also varies depending on the initial condition; a simula­

tion of the tank control example repeated for 50 controller updates, shows a consid­

erable variation of the controller size as the controller is propagated (Fig. 6-17).

165

10'

10'

10'

10' Plont

•

I 10'

10° ConlrOIIet

10'

10'

•
10' • 6 8 10 ll 14 16

Loobhrad Horiloo (f'eoQ)

Figure fH6: Enuprk.al controlk>r rumplexity rerult11 ror uwk fillins n.ample.

166

250

200

150

IOOL_--~~----~----~----~----~----~----~----~----~----~

0 5 10 15 20 25 30 35 40 45 50

40L-----~----~----~------L-----~----~----~----~------L---~

0 5 10 15 20 25 30 35 40 45 50
Controller Iteration

Figure 6-17: Controller size measured in number of states, number of transitions, and
number of emergency shutdown states.

167

6.5 Summary

This chapter has taken the theoretical concepts of the preceding chapters and de­

scribed one possible implementation. The controllers that we wish to synthesize are

implemented online (i.e. a real time environment); thus the entire computational

framework has been designed to efficiently achieve this goal. The primary challenge

is to manage the computational complexity of the controller synthesis, since the con­

troller is to be implemented online. We achieve a significant reduction in computa­

tional complexity by combining the specification with the controller at design time.

The hierarchical modeling framework allows for a "lazy" or just in time assembly of

the controller from its constituent models. The reduction in complexity comes from

the fact that illegal traces can be eliminated without expanding the entire flattened

state space of the model. In fact, since we are dealing with a hybrid model that

theoretically has an infinite state space, the entire model is impossible to compute.

Therefore, a limited lookahead horizon technique is used to compute the reachable

state space. The lookahead horizon may be specified in events, integer (tick) time,

dense time, or a combination of these.

A software package called HYSYNTH has been developed to help evaluate the ef­

fectiveness and the practicality of the theoretical approach. The HYSYNTH computa­

tional engine exploits object oriented programming techniques to implement the lazy

computational strategy. Written for the Matlab environment, the modeling frame­

work can leverage the wide range of general and special purpose numerical simulation

toolboxes available for Matlab.

In the next chapter, we will examme specific application examples, in which

H YSYNTH is used to formulate hybrid system models, compute discrete event su­

pervisory controllers, and to simulate the closed-loop system behaviour.

168

Applications

T his chapter presents two application examples that demonstrate in more detail,

the system modeling process and controller synthesis for hybrid systems using

the switched continuous model. The HYSYNTH software package has been used to

model, synthesize and simulate the controlled systems that are presented here. The

first example, the control of liquid in two tanks, is a common benchmark hybrid con­

trol design problem. The second example is a detailed industrial example based on

the control of a vessel and its associated systems. This example in particular demon­

strates the utility of the control techniques developed in this document, and represents

the first time a hybrid control design has been attempted for this application.

7.1 Tank Level Control

Recall the example of §4.9 (p.82) in which a SCM was developed for a system consist­

ing of a tank of some fluid. In this example, we will develop a specification, synthesize

an online controller and simulate its operation. This example points out the basics

of control synthesis and illustrates the use of the HYSYNTH software package.

With the plant modeled as a SCM, the desired closed loop behavior can be specified

in the form of finite state machines. The desired behavior is modeled by the finite state

169

Specification

Figure 7-1: Specifications for the legal behavior, and the emergency shutdown.

models of Fig. 7-1, and is composed of two parts; the performance specification and

the emergency shutdown behavior. The specification programs the controller to fill

the tank to the high level then drain it to the medium level and repeat the cycle. The

timing for this operation is specified coarsely, indicating that the cycle must complete

in a minimum of two tick events, and a maximum of four tick events. The event set

for the specification is ~spec = { ovf, hi, med, unf, tick}. The inclusion of the ovf and

unf events in the specification event set forces these events to be illegal because of

the event synchronization rule between the plant and the specification. Here is an

example where safety is represented by blocking (of entering unsafe states).

The ESD model specifies the ESD state marking, thus the dynamics of the ESD

procedure are handled in the SCM, but the designation of the state as a safe shutdown

state is handled in the finite state model (provided that all other models are also

explicitly marked, or neutral with respect to marking).

Using the HYSYNTH software as described in §6.2.2, a model is constructed by

loading individual model objects form source files (stored in XML format) that have

been designed using the graphical user interface. For this example, the following

command sequence produces the basic model:

170

tank= scm('tank.xml');

esd = fsm('esd.xml');

spec= fsm('spec.xml');

% create scm from each source file

p = product(tank,spec,esd);% create product object

The product object p is the basis for the controller synthesis. To synthesize a

controller, the current state and time of the system are initialized by creating the

initial continuous product state for the SCM

xO = ctsState(26); %the initial cts variable

tO = ctsState(O) % initial simulation time

cO pstate(xO,tO); %

Now, the initial product state for p, taking the default initial conditions (as defined

by the FSM) is:

ps = pstate(cO,initial(spec),initial(esd));

The hybrid transition graph of a controller for an eight event lookahead is gener­

ated by running a reachability command on the product system object:

[struct] = reachEvents(p,ps,8);

The reachEvents () command executes an eight-event reachability on the product

system, starting from the argument initial product state. The controller update time

(corresponding to the tick event) has been set to 90 seconds for this example. If

successful (a controller exists with respect to the specification), a data structure

struct is returned containing the set of legal next events and the ESD reachability

and nonblocking status of each subgraph. The size of this graph is too large to

present here, but a representative example constructed using a three event lookahead

is given in Fig. 7-2. This graph has been laid out using the neato engine, part of

the AT&T Graphviz graph layout suite (Gansner et al. 2002). The result is that

the initial state of the tree is in the center of the graph, with the immediate legal

control actions surrounding it like spokes from a hub. By examination, there are

three possible control choices. the transition to the upper right and the transition

171

to the lower left (both generate tick output events) are priority 1 subgraphs because

they each have at least one nonblocking (complete) trajectory, in addition to being

able to reach an emergency shutdown state (in blue). There is a priority 2 trajectory

available, directly to the Hhutdown state (the esd output event).

7.1.1 Example: ESD Controller Operation

To illustrate how a controller will enforce a safe shutdown, we modify the single

tank model to include a deliberate shutdown program. This programmed failure is

modeled by the FSM of Fig. 7-4, which after three hi events blocks the system from

proceeding.

In the simulation (Fig. 7-5), the programmed failure forces the controller to issue

a shutdown command sd, which opens the purge valve, bringing the system to an

ESD state (tank drained, h ::; 0.5). The size of the controller during this simulation

is the subject of Fig. 7-6. Once the controller has forced a shutdown, the controller

size shrinks as fewer available trajectories are available, and the system closes in on

the ESD state.

7 .1. 2 Controlling Two Tanks

More complex dynamics are generated by this system if a second tank is added to

the plant (Fig. 7-7). The two tank system is widely used as a benchmark for con­

trol techniques due to the richness of dynamics that it presents. A survey of the

literature shows a wide range of control approaches that have been taken, including:

robust control (p, synthesis) (Smith and Doyle 1988), Lyapunov-stable switched sys­

tems approach (Ecker and Malmborg 1999), timed and hybrid automata (Stursberg,

Kowalewski, Hoffmann and Preusig 1997) and a discrete abstraction and supervisory

controller in (Suet al. 2003).

Some modifications to the SCM are required, since an additional control valve has

been added. A second purge valve, also labeled P has been added as well, to permit

172

"'

tic

"'
tick

tic

Figure 7-2: A three-event controller sturcture for the tank, with input (control) events
omitted.

173

00 .. ___ ~ .. - _ -
~ • 0 lO ,.

11 I
0

"
f... 00

"' 20 < ..
- lx--- ~

00

• be

.. ""
\,., --- ~-- be...,.,....,

ll

10

s

0
l,)lO 1,1100 U!O 2.700 3.060

Time (I)

F'guro 7-3: Plot of flnid leYel vcrbus time, with control tLNklm~ f!Uperimposod.

174

"
JO

,,
20

•
" i

10 ~

l

' 1 ' ' ' ' ' ' ' ' ' ' ' ' 0 • .,. IJSO 1,200 2.l.SO 1,700),1)60
Timo(s)

Figure 7-5: A triiCc bbo..-tin~ tlll t'l ll tl'&('nC.)' shut.dov.-n, forced by o~yochronb~l\tion with the
•hutdown program of fi~tre 7~4.

175

lso,-~~~-,~~~~.-~~~~,-~~r===========~

--+T-- Trans it ions
---8- States

100

50

QL---------~-----------L----------~--------~~~------~

0 5 10 15 20 25

60,-~~~-,~~~---,---------,--r===============~

---e-- shutdown states

40

20

QL---------~-----------L----------~----------~~------~

0 5 10 15 20 25
Controller Iteration

Figure 7-6: The variation in controller size for the programmed failure simulation pictured
in Figure 7-5

176

ovfl
highl

------------------------- med 1 v2
unfl

------------------------- esdl

p

------~------------_,

ovf2
high2

med2 ~
unf2

____ ..______._--_--_--_-_--_--...,--_--_--_--_--_--_--_, esd2

p

Figure 7-7: Two tank system schematic.

177

Table 7.1: Valve control structure
Controls

CJin v1 v2 V3 p

21 oa 0 0 0
22 0 0 1 0

23 0 1 0 0

24 0 1 1 0

25 1 0 0 0

26 1 0 1 0

27 1 1 0 0

2s 1 1 1 0
sd 0 0 0 1

avalve open = 1, closed = 0

the emergency shutdown of the two tanks by draining them (Table 7.1). We will

assume the operation of these valves is slaved to the sd input event. The actuator

control vector is adjusted accordingly, to allow for the added control valve, V3 .

V1,V2,V3,P E {0,1}

Uc [V1, V2, V3, P]T

The continuous dynamics of the tanks are modeled by the following differential

equation:

[

dhl l [VPiFi h = dt = qmi - pARtz

dhz 0 VPifi
dt pARtz

0 - VPiFi l pARtp U

- VPiFi - VPiFi c
pARt3 pARtp

(7.1)

where Rt2, Rt3, RtP are the turbulent resistances of valves V2, V3 and P respectively.

Additional continuous dynamics require additional functionals and output events;

these are summarized in Table 7 .1.

There are nine sets of possible continuous dynamics once the possible control

vectors Uc specified by Table 7.1 and the dynamics of Eq. 7.1 have been combined.

As before, each actuator setting, along with a set of state partitioning functionals,

forms a separate CSM which will be embedded in the switched continuous model.

178

Table 7.2: Output events, with associated functionals and hypersurface crossing directions
for the two tank control synthesis problem.

cr out Functional

ovf1 F1(h) = h1 - 33
h'il F2(h) = h1 - 31
med1 F3(h) = h1 - 18
unf1 F4(h) = h1 - 15
ovf2 F5(h) = h2- 33
hi2 F6(h) = h2- 31
med2 F1(h) = h2- 27
unf2 Fs(h) = h2- 20

Zero-crossing

i
T
1
1
i
i
1
1

Alarm

over filled (tank 1)
high

medium
under filled
over filled (tank 2)
high
medium

esd F9 (h) = (h1 - 0.5) /\ (h2- 0.5) 1
under filled
emergency shutdown

The CSMs corresponding to input events i 1 to i 8 share the same set of functionals

W1 = {F1, F2, F3, F4, F5, F5, F7 , F8 } and the CSM for emergency shutdown operation

(both purge valves P open) has w 2 = { F9}. The functionals are defined in Table

7.2 along with their associated output events. In this case, the esd output event is

signaled when both tanks are drained (h1 , h2 :::; 0.5).

The specification for this system will be similar to the single-tank system; we wish

both tanks to cycle between an upper (hi event) and lower limit (med event). The

fill/drain cycle timing is specified in coarse (tick) time 2b..t :::; t:::; 4b..t, where b..t = 90

seconds.

In Fig. 7-8 the finite state models are given for this specification. The HYSYNTH

commands to build the model are as follows:

s1 = fsm('spec1.xml'); %load the tank 1 specification

s2 = fsm('spec2.xml'); %load the tank 2 specification

spec = product(s1,s2); %create the spec product object

plant = scmodel('tank.xml'); %two tanks SC model

esd = fsm('esd.xml'); % esd specification

p1 = product(plant,spec,esd);% Create the controller model

The result of these commands is the product model structure of Fig. 7-9. A

179

Fi&u«' 7-R: Tbt~ ~pedJieatlon models fur the t'tlo'O lllllk k>wl rontro11f>l'.

p i

peodwt(pbs' tpK.ad)

./ ~
...... - ad

l<ml"'* U>i') prociiXC(II,iJ:) Wud.JimO

/ ~ ,, s2

&m()pc< I >mF) f1m('sp«2 llmJ)

180

llr•--~--------~--~--~--------.----or---,J ---- -0'11:;:.-
JO

_2.S

""

sr

IS

0 1000 1$00 JOOO]$00

JSr---.----r--~--------.----r--~----r---,

30 l~!1R
Zj

20 --- -- --
IS

0 soo 1000 ISOO

ovf2

2000 2.SOO 3000 JSOO 4SOO
Trne (•)

FJgUre 7·10: Simulation olthfo onli1K" cootl'()).k!r 11ainJt • ~'eDt Joo.ll:aM.d buriloa and
re.ndom routrol c:boice.

controller l!o.)'ntbcsis ba.!:i0CI on an event horizon reach of 5 events WWI lUK·d for the

simulation. 1 he controll<'r advrulCOJ U5ing a random fl("lt~Ctlon of oont rol AfHons from

the 8\11ilahl•• 1qp11 suboet of input ewo"' (as det<nnull'<l by the oolinr «•ntroller) at

each or !00 rhotce point,. The ""ulting c:ontrol pffi'onnAnce is pictlll'«l in t"tg. 7-10,

in which the r4tAtc \'UriabiOJ, ltl u.nd h2 ha\'e been plottt'd "'CibliS time. Th('o top trace

is 111, thr level of tADk 1 and the lower tra<x' ;, /12, tbo Auid level in tank 2. The

choioc polo.,., where the rontroller has acted, orr Indicated by diall>ond tll3fkc"' on

the Lr1IC<8

In Fi~. 7-11, a section or th,. •imulation tw. bocn enlarged with tit<- two ''"""'

ovE!r1appcd t..o ~!!how the time hi~tory in more dNail, with h1 the blue tro.oo, ttnd h2

181

" -,. v _J
"
" . , .
... .. - --,.

.,. ...
TiMt (f)

Fia:ure 7-11: Detail of 8gul'(' 7•10, "howlug the .,equenc::e of actuawr (hlJ>ut.) f\'C'nt5 se)ccted
hy t h.., controller.

tb<- P""D tnoce. 'l1lt' oonuoll<'l' A<'lion. (input events) ""'" b«-n plou<d to obow the

valve l!ellmgs that ""'" 111'1'-"'tOO at ('tiCh choice point. By <l<!<ign. this 1.> a fail.sllfe

controller. therefore tht:re is alwf\,)'K an (·rucrgc-ncy shutdown blatC within five e'~nts of

t hr system state, or t hC' controller W'Quld not have existed. In addition) the controller

dC>CS not block bectuL..:.e [Jtc tdmtdown procedure is never init inuxl.

Tbe code tl.$00 LO gC'nerat<' thli control sequence is gi\'rn in Fig. 7·12.

7.1.3 Reducing ControUer Size: Two Tanks

tn §6.4. it "''"85 claimed tnat a rlJOI"t rtP~trieti\'(! specification llo"'uld reduce controller

~izr. thereby impradng tht" Mpccd v.itb whid1 the controller can tK' computed. Model

"i1..c may be detennined C'm$>il'lcuUy by oft-line simulation. In nn itt·rntive foshion. a

dr~Jigncr may adjust th<" ~;pc<:lficutlon to "hnlc"' the controllrr KI7A' 1md , of course, the

lt•goJ or controlled behaviour or lho sybt<'rn. To Hlustr&.te this id<'ll, Wt1 will compare the

182

1 ' ' ' Prog~am LO aynlh~atae • OF.S controller
l ' and allflulate it for 100 iterations

• '
' opoo1 • tam(•P4Cl,x.l')l

• • hm (ap.C..2 . al) ;
1 , • .041venu <apecl,(ovu
• ·-· • NrkAl ltspec1) 1

• • ~u<apec.2.(.....
10 - .. rk.A.llltpec2J:
11 ~ • p1"oduc:t(apecl,apec2);
u ,_, ... -');
U plu.t • ec:.odell tc:b xa1 I:
U p • prociYC:t(pla.at • .tpee.,e.sd);
U x0- eult.ue((%t:Ull
Jl tO • ttaltatetOJ
11 cO • ~tatettO.xOJ

: ' Wltl

• W'lrl

)II

Ill

U 1)1 • patatatcO. iPltial(specl, initialtaadt J
19 ' 4o 10 caltro-lar ..,nt.besislaiaulaticm..
20 for 1 • 1:100

cont 1r0 :lar

' tan-. 1 apec

' tank 2 apeoc

' auo-nt event set

' all atatea -.rked

' lAitial atate for sia

' tl .. ata.p tbe state
' ~1tla4ile controller

" 21
' ayntMah• t

lf1•9· "•·9aiuJ
lf -UC&O

• printAs0otWithlventa(p,pe,1,tilana~):
2) ..
" " " ..
" so

~iapl -, . r 13 <' J
return(fa hal

aha
' C'l ·• e '"1troller aetion her-e

pa - seleel~e•tStatecne);

av • lockUp!nputEventtplant,p•til,p•)

183

\ pic-~ tan.S.:. MJtt state
' ~t t~ eontr~l event

IOU

1012

101
•

I 10'

J 10'

10'

10'

10'
0 2 4 6 8 10 12 14

Lookahead Hotilon (ncntt)

Figure 7·14~ Comparath·e slte 1'18 n funtdon or Cvt"Ul.K for \ht" pll\nt, Cont:roUe.r 1 (see
tpeclfk.-tlou o(figure 7..S), &Dd of Controller 2 c~ fi(X'<'ific'l\1~0 or fijftln' 7·13).

l&'i

35 r---~--~---r--~--~--~----r---~

30

_25

20

0 500 1000 1500 2000 2SOO 3000 3500 4000 4500 5000

IS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Tmc (I)

Fi&w'e 7·15: Srmula110D or thto onliDe coo& rolla' I,D:lfl.A a 7~-ent klobht.d buriAJn, random
ronrrol ~. ucJ &be r.t.rkth-e ~~M)o of f'1&urf' 7-13.

1&3

the fact that the controller choice mechanism is random.

7.2 Manoeuvring of a DP Vessel

In this section, we will introduce a control application that requires more complex

embedded continuous dynamics than the previous examples. This application also

is used to demonstrate a controller with a human choice mechanism: an example of

human-in-the-loop control.

Dynamic positioning (DP) is defined in the marine engineering community as the

automatic control of a vessel's position and heading using it's thrusters. The DP con­

trol system may also be used in combination with the vessel's rudders, and passive

restraints such as a mooring system. Typically, DP systems are installed on vessels

that need to automatically maintain station for long periods of time in a variety of

weather conditions. For a general, non-mathematical treatment of the subject, the

reader is referred to (Morgan 1978) and (Hancox 2001). For a mathematically rigor­

ous version, the reader is referred to (Fossen 1994). Almost all theoretical study of

DP control has been devoted to various types of continuous control strategies, par­

ticularly optimal control. These techniques have been refined and in practical use for

many years. As in many other industrial applications, the challenge for the "next gen­

eration" of ship control systems is the integration of DP control with other shipboard

control functions, such as power management, which require logic and appropriate

sequencing (Weingarth 2002), (Millan, Smith and O'Young 2002). Currently, such

functions are served by highly skilled operators.

A challenging control problem is the FPSO and shuttle tanker offioading applica­

tion. In many areas of the world, the oil from subsea oil fields is pumped and stored

by a specialized vessel known as a floating production storage and offioading vessel

(FPSO). The FPSO is usually moored over a manifold on the sea floor from which

the oil is pumped. Risers (large flexible transfer hoses) carry the oil from the subsea

187

Fi~un"' 7-16 l't-rra ~0\-a t- PSO officwhng oil loa tlml tic• t.tUI.i·f, Th.- 1-'PSO iR also ftariug
nc,...pr~.{i>IJcltQ (Ullrtt'!"Y of Pt'tnK:'MBda}

nwaifoltl to tbt• FPSO. often entcri03 thn"1~h a .-..·iu·hn& lDIWlfold ~)'>11"111 on the

uncf,-Dkl•t ,.(ttu.- ,,.':'oo.,id. finally. Lbe oil b trand'.-moci nt .--:a fmm W FPSO to a

tihuu&t tOJlkfT, .. -hi<:b t3kt'l:t up station in U\J\t'L'ffi, ~\t thft Fr:so ~tc·m. lb.t' task or
oil tmaucft'f ut t~l"<\ L-, rumple.x and d~rous duf' to tlw du.•"'-' proximity of tbe two

\"f:':o.'('ls 'then.• 1!'1 n ri!:lk of collh;ioo if tht'y J(Ct too clt~t~t~ tH t"l\(_:b utlwr, or of Lrnnsfer

hot#' lu'i'llkl\gl' and an oil spill if they drift too for ~~pJu-t. The• -huulc tanker may W:IC

sonw 1'10.-t of J)l_l.'jtjivc rt'titnliut sy~tNn (a rope cnJicd n hi\W"i4'r lim·) as a backup. but

no 11·nsion L"' uppli<'CI to it. Thw;, the shut lie• cnnk(·r mu~t mtuutain 1:1t.ution behind

the- FPSO Ul'lin& only it:-. propulsion system which~~ controll1..:l hy th<' DP controller.

Fi~. 7 W ill a.n f•xample of a FPSO and ~.uu ko taniwr offluarln., operation.

On·MtruWI~·. tll4" FPSO may ha'-e to tun1 in c»rd•·r to n-a.li~ itself lf the pre\"ail­

ing t1a\·iruuU}(1ltal oooditloob chang.- din'C"tiun. Sint't' tbc FPSO roc.•t•~ about the

~--.·iwling uuu1ifukl on tbr butt the sbutt~· tanb'f nua...t .~ 21'A"i1~. but through 3

~rtt.tl-r nn: rltL'4 i!-i knqwu a. ... a v.catbcrva.ning niAOII.Je'll\,..., and n-..:-tnlrt'!'i t-oordination

ami ('llrt' by the operators of both ve:~:--el:;. Ttu• llliiNt iiiiiM)r\Wil ractor anfluenc-ing the

ah1lit.\' of tlu'tll' ,,.~·l:o~ to carry out their operations hi tht• JHJwt·r s~·Htcm.

\ \1· will uow examine in detail a coulm1 f•xnrnpl•• in whid1 "''-' model the :;l•utt.l••

188

tanker operation and synthesize a control system for a weathervaning manoeuvre.

7.2.1 Vessel Power System

On most modern vessels, the propulsion system is powered from an electrical gener­

ation system. As a result, the performance of the power system directly affects the

propulsion, and thus the ability of the DP system to maintain station. For this reason,

the DP control system is often integrated with the power generation system so that

these systems may be coordinated. For the sake of this example, we will assume a

power generation system having 2 main generators (MG1 and MG2) and a propulsion

system with 4 steerable propulsion units, T1- T4 (called azimuthing thrusters). The

azimuthing thruster units are designed so that they can be turned to direct thrust in

the appropriate direction relative to the vessel. In Fig. 7-17 the electrical schematic

for the power distribution and propulsion systems is depicted for a hypothetical DP

vessel. Normally, the two main generators with rated capacity of 15 Megawatt (MW)

supply the main propulsion bus via the transformers TR1 and TR2. Switchgear at 81

and 82 enable the generators to be taken off line. A backup generator, designed for

so-called "hotel" load (i.e. lighting, domestic loads) can be placed on the propulsion

bus in event of emergency via switch 83. The azimuthing thrusters, are supplied by

thyristor drives SCR 1 - 4, which control the propellor speed. Having azimuthing

capability, the thrusters can be rotated continuously through 360 degrees to direct

their thrust in the most appropriate direction.

For this example, we will assume that the main generators are running and that

switching of generators onto the bus is instantaneous. While it is possible to model

the power system dynamics, they will be neglected for this example.

7.2.2 Vessel Manoeuvring Model

For purposes of manoeuvring control, a vessel model can be limited to 3 degrees of

freedom (DOF), since we are only interested in controlling yaw angle, surge displace-

189

15 MW 15 MW

SCR1 SCR2 SCR3

T1 T2 T3

4 X7.5MW

5MW

83

T4

Other
Loads

Figure 7-17: The power distribution and propulsion load schematic for a hypothetical vessel.

190

Northing

Sway

+yh

+xh
Surge

Easting

Figure 7-18: Vessel cartesian coordinate systems. Body coordinates are denoted by subscript
b and earth coordinates by subscript e.

191

ment and sway displacement. Roll and pitch angles and heave (vertical) displacement

cannot be controlled and so are unnecessary to model. The rotation of the vessel

(about its centre of gravity) within the plane is North-referenced and is called head-

ing, <.lcnotc<.l '!f.;e. The rotational component in tho body reference frame '1/Jb, is the

same as heading, but to distinguish it from the absolute coordinate, it is called yaw.

In general, the subscript e is used to denote earth-referenced (inertial) coordinates

and the body referenced coordinate frame is denoted by subscript b. Let the vector

Xe represent the earth-referenced 3 DOF position vector of the vessel and Xb denotes

the position 3 DOF vector in the body frame:

X [Xb Yb '1/Jb]

Xe [Xe Ye '1/Je]

Since heading angle and yaw are equivalent, we will use 'ljJ as the default rotation

about the center of gravity (CG) of the vessel. The coordinate transformation J('ljJ)

takes the earth referenced measurements into the body frame of reference:

I Xb I I c~s('ljJ)
Yb = sm('I/J)

'1/J 0

sin('1/J)

-cos('1/J)

0

We define the velocity and acceleration vectors accordingly:

v !x = [u v ¢]
v !v=[uv¢]

192

The simplified (linear) dynamics of a freely-floating (i.e. unmoored) surface vessel

can then be characterized by the following vector differential equation:

Mv+Dv=r (7.2)

r is the force and moment vector acting upon the vessel that arises from the sum

of the control forces, Tc and the environmental forces (current, waves and wind), Te,

each defined in the inertial frame.

T=Tc+Te

M is a positive definite matrix (M = MT) containing the inertial and hydrodynamic

added mass terms for the vessel as follows:

0

m+Yv

mxc + Yr

where m is the vessel's mass, Izz is the yaw moment of inertia, Xu, Y,:,, are the

hydrodynamic added mass in the surge axis, sway axes respectively and Nr- is the

added moment of inertia in the yaw axis. The off-diagonal terms are symmetrical

(this follows, since the vessel is symmetrical about both the surge and sway axes),

and feature a hydrodynamic added mass term Yr due to the cross-coupling between

the sway and yaw axes. mxc is present when the vessel's control point (CP) 1 is not

the same as the center of mass (CG) of the vessel. The longitudinal distance between

CP and CG is x 0 is (Fig. 7-18).

1The control point is the point in the body coordinate frame which is positioned by the DP
controller.

193

Table 7.3: The FPSO vessel particulars.
Vessel Particular I Full Scale

Length Overall (LOA) 290m
Displacement, \7 193,000 m3

Mass 197,()32 tonnes
Yaw Radius of Gyration 57 m
Beam 45 m
Longitudinal CG 145 m

D is a matrix containing linear hydrodynamic damping terms:

I
Xu 0 0

D= 0 Yv Y;,

0 Nv Nr

the diagonal terms Xu, Yv and Nn are the surge sway and yaw damping. The

off-diagonal terms Y,. and Nv are respectively, the sway-yaw and yaw-sway damping

terms.

Assumptions that have been made to simplify this model are that centripetal and

Coriolis forces are negligible because yaw rates are relatively small, and hydrody­

namic added mass and damping are constant. Since most DP vessels are designed

for stationkeeping, and vessel velocities are low, this assumption is also reasonable.

The hydrodynamic added mass and damping can be determined by specialized soft­

ware, estimated from existing ships for which these parameters are already known,

or determined empirically by model testing or full-scale ship trials. The detailed ves­

sel particulars for the vessel that will be simulated are given in Table 7.3. For the

simulation, we will use non-dimensional quantities for convenience. The so called bis

system ((Fossen 1994), p. 94) is a convenient system for low-speed manoeuvring mod­

els, since it is not based on vessel forward speed as other systems are. The bis system

non-dimensional scaling factors for a surface vessel are given in Table 7.4. Typically,

the vessel LOA is used for the length factor L, g is the acceleration due to gravity, p

194

Table 7.4: Nondimensional scaling factors.
Quantity I Scale Factor

Mass
Length
Linear Velocity
Angular velocity
Force
Moment

Time

p\J
L
ygL

v1
pg\J
pg\JL

If
is the density of sea water (1025 kgjm3

). As an example, the non-dimensional mass

of the vessel at full displacement is m = 1.

7.2.3 Closed Loop Control

For this example, the discrete event controller will supervise a closed loop continuous

controller (i.e. the DP control system). Therefore, the switched continuous model will

be developed around CSMs that model the closed-loop dynamics of the vessel. Figure

7-19 is a block diagram of a typical DP control system. The system is commanded

with a 3 DOF setpoint command in earth referenced coordinates. The vessel's 3

DOF position Xe is measured with a variety of sensors and passed through a state

estimator2 . The error signal is converted to body coordinates, and control gains

are applied to determine a controller demand. Measurements of the wind speed

and direction are used to calculate a feedforward wind load, which is summed to

the controller demand. A thruster allocation block determines how this controller

T c demand will be divided amongst the available thrusters, taking the geometry of

their hull arrangement into account. Not pictured in the figure is the optimal state

estimation current and wave generated forces and moment; these are summed into

the controller demand.

2 Typically, a Kalman filter is used to remove sensor noise.

195

• I
Wmd Thr\lsccr I

F«dfOI'\Io-wd :-·./ AIJoacioo

Optimal
Gaio

........
'"~ tiM'IfiOIM

_"\ s.. ..
- - E$timat.or

I
I

~----- ------------------- ~

.... ""' -·-
r,.;, ... llfildi-w

Figure 7-19: Block diagram of DP control system.

7.2.4 Thruster Allocation

Azimuthing thrusters are ideal actuators since they can he turned to d irect <he nec­

es;ary force in any desired direction. In Fig. 7-20 the vessel <hruster arrangement

is pictured. The relation between Ute control dernand and the individual actuator

demands is as follows

where 7th is a vector of thruster demands in Cartesian coordinates, and Tu is the

thruster a llocation llUI<rix, defined as follows

196

I I I
-------~------00~-

1
CG T3

·- I I

Figure 7-20: Vessel thruster arrangement and coordinate reference frame.

and

[I~,
0 1 0 1 0 1

~~I Ta = 1 0 1 0 1 0 (7.3)

l1x l2y l2x l3y l3x l4y

In 7.3 matrix entries of 1 indicate that 100% is available from the thruster if it is

rotated to the appropriate direction. The bottom row are the lever arm distances

that generate moment about the CG. From Fig. 7-20, the lever arms are l 1y

l2yi hx = l2xi l3y = l4y = 0 , and filling in the values with non-dimensional units

[

1

Ta = 0 1

0.1 0.45

0

Solving for the unknown Tth requires finding the Moore Penrose generalized inverse

of Ta

where T1 is the generalized inverse of Ta. Thrust vector Tth can be converted from

Cartesian coordinates to an azimuth angle command and thrust demand pair [a T J T

197

Table 7.5: Example vessel thrust limits as a function of power system configuration.
Electrical Configuration I Total Thrust I Thruster Saturation

One Main Generator, 15 MW 3 MN 750 kN
Both Main Generators, 30 MW 6 MN 1.5 MN
Standby Generator 5 MW 1 MN 250 kN

for each thruster as follows

The thrusts are minimal in a least-squares sense, but may exceed the thrust limit

for the actuator. In a real thruster, the maximum thrust is dependent on many

factors, including the speed of the thruster through the water and the proximity and

wake direction of other thrusters. In this simulation, the thrusts T1_ 4 will simply be

clamped at a saturation limit which will be determined by the electrical bus power

available. For this simulation, the thrust/electrical power relation is summarized in

Table 7.5.

The various modeling details given in these sections provide for a reasonable ship

simulation model. In the next section a DES supervisor for the tanker will be devel­

oped.

7.2.5 Supervisory Controller Design

We will design a supervisory controller for an FPSO tanker offioading system. The

coordinate frame and general arrangement of the vessels and safe operating areas is

detailed in Fig. 7-22. Since the FPSO is attached to a mooring and rotates about

this point, it is convenient for the supervisory controller to command the tanker and

FPSO in a rotating coordinate frame We now redefine the earth-referenced Cartesian

coordinate frame to a polar coordinate frame centered at the FPSO mooring point

where r is the radial distance of a vessel (CG) from the origin, and II :::; f) :::; II

198

0 0 Tl
0 • T2
0 0 T3 1.S 0 T•
0 0 To1al 0

z 2

\o*~ :< -~
li
ti I.S
c

I
~ ' r

600
Time(s)

Figure 7-21: (ndjvidual thru.>~tll for a su•p ma.neou\-cr ln yaw. ~~~~l~ onf' 1enera.tor.

199

is the angle of rotation, while '1/J is the vessel heading, unchanged from the other

coordinate frames. All ranges r in this diagram are nondimensional. The scenario

we are designing a controller for is a weathervaning manoeuvre that only the tanker

carries out. When the flare is lit on the FPSO, the forward deck temperature of the

tanker can rise to dangerous levels. the written operating procedures (Allan 1999)

require that the operator of the FPSO contact the tanker and request that it move

in order to minimize the deck heating. Since the flare is on the starboard side of the

FPSO, movement of the tanker slightly to the port side of the FPSO's stern has the

desired effect. during this move, the appropriate separation between the vessels must

still be maintained to prevent collision or hose breakage. In Fig. 7-22 the green zone

is the normal safe area in absence of a flare. The red-coloured zone is a "keep-out"

area due to subsea risers that may be damaged by the tanker's thrusters. The blue

area to the port side of the FPSO is the safe area while the flare is operating. We

will design a controller to enforce safe operation during a flare event.

7.2.5.1 Partitions and Output Events

We begin the modeling process by defining the partitioning functionals for the system

SCM in Table 7.6. In this case, we use a partial state vector

Note that we are using the polar coordinate frame with origin at the mooring point

of the FPSO. Events tfp and tf s signal when the vessel longitudinal axis is out of

alignment with the coordinate frame; the goal is to keep the bow of the tanker aimed

towards the FPSO at all times3 • The esd emergency shutdown is assumed to be

achieved once the vessel has safely reached a radial distance rsd 2: 1.85.

3 Alternatively, the origin of the polar coordinate frame could be placed at the stern of the FPSO.

200

........
f. II\ I_ .. ,

·~·
ll

I

r..!o
I

' Ill
lfl I
II I I

II I I
I I I

I I I I
I I '

I I I I

I I '"" I '--rT' I I
I I 1._•

I I I "'••
I I I

I I I
I I

I I I
, I I I

',);_...I I
' , ., ~--' ' 1.. -.......... s.,. ...

I "' I --.... I .,. '..,. -
', I I ' --­

)-.., I I
I ..,,_1

I I r----
1 1 I

I 1 I
I 1 I

t,=-2.1 I I
8 • .. J(# I

' •:=-l.l

I
I
I
I
I
I
I
I

'
,...r_ • LlS

.................. ;,. • 1.45 - ..
,..... ... ~ .. --;;;
-- ---

I
I
I
I
I

9 =-lA

'"' =1.85 __ ...

Fl.gurt' 7-2'2: The 1-'PSO and lanker offloadin,g 'IYIIlt'lll

201

Table 7.6: Output events, with associated functionals and hypersurface crossing directions
for the DP vessel control synthesis problem.

a aut Functional Zero-crossing Alarm

tel F 1 (x) = r- 1.25 l too close to FPSO
tfb F2(x) = r- 1.45 I too far from FPSO
o3 F3(x) = B + 1.4 i riser area guard

o4 F4 (x) = B + 1.9 l enter flare safe area from green
o5 F4 (x) = B + 2.1 l cw exit flare safety area
o6 F4 (x) = B + 1.8 i ccw exit flare safety area
tfp F7 (x) = n- ('1/J- B) - 0.2 i misalignment to port
tfs F8 (x) = 1r - ('1/J- B) + 0.2 l misalignment to starboard
esd F9 (x) = r- 1.85 i emergency shutdown, fall back
tick F10 (x) = sin(2nt/ b.t) l controller update

Table 7.7: Control actions available to the DES supervisor. Controls are specified as setpoint
jog commands to the DP controller, and are in non-dimensional units and the FPSO polar
coordinate reference system.

Controls

a in rjog Bjog '1/Jjog g Description

0:1 + 0 0.1 0 1 0 0 jog cw with one generator
al- 0 -0.1 1 1 0 0 jog ccw with one generator
a2+ 0 0.15 0 1 1 0 jog cw with two generators
0:2- 0 -0.15 1 1 1 0 jog ccw with two generators
fwd 1 -0.1 0 1 0 0 move ahead with one generator
back 1 0.1 1 1 0 0 move astern with one generator
hold 0 0 0 1 0 0 hold station with one generator
sd 1.85t t t 1 0 1 shutdown on emergency power

j- m absolute coordmates; j: md1cates a don't care mput

7.2.5.2 Controller Actions

The control actions available to the controller for this model are listed in Table 7. 7

and are associated with the corresponding input event labels ain E L:in· The controls

are the commands that will be sent to the DP control system. The controls r1, e1

and '1/J 1 are "jog" commands which are summed with the current state of the system

202

to develop an absolute setpoint for the DP controller.

The control indicated by g = [S1 S2 S3 J E { 0, 1} is a vector corresponding to the

generator switchgear of Fig. 7-17. Within the controller simulation, the effect of this

switchgear control input is that it sets the saturation limit of the thrusters as per

Table 7.5.

7.2.5.3 Modeled Environmental Load

In heavy environmental loading, it is necessary to align a vessel with the prevailing

direction of this load in order to minimize the thruster effort required to stay on

station, and in the case of the moored vessel, it reduces the vessel motion. For

our scenario, we are assuming that the FPSO is aligned with this environmental

load. When the tanker moves around to avoid the flare, it encounters a load that

progressively increases in proportion to the misalignment of the vessel with the load

vector. As the tanker moves from out of the "shadow" of the FPSO and its beam is

exposed to the waves and wind, this will tend to drag the vessel off station. We will

assume that this load is a modeled effect. Thus, this force is predictable and it can

be embedded in the continuous system models.

7.2.5.4 Specifications

For the first example, we will direct the vessel to rotate from its initial position, with

a heading of '1/J = 1r /2 and positioned directly behind the FPSO in the green zone

(Fig. 7-22). The assumption is that the FPSO has communicated to the tanker

that it will commence flaring gas so the tanker must move to the flare safe area.

203

Figure 7-23: Inadequate specification with no timing.

Typically an offshore marine operation like this has a set of written procedures for

the vessel operators to follow; an example of this is the Terra Nova FPSO/Tanker

Joint Operations Manual (JOM) (Allan 1999). These procedures contain detailed

written descriptions of various activities that involve both vessels, and contained

within this manual is a specification of the maximum flare dwell time and the safe

area for the tanker. Essentially we wish to take the descriptive procedure and encode

it as a specification.

There are a variety of approaches to designing an effective specification, and thus a

corresponding online controller. With no knowledge of the system, the least restrictive

specification may be appropriate as a starting point; starting with a very restrictive

specification may lead to a non-existent controller. The least restrictive specification

for this system is to request an o4 event occur (Fig. 7-23). Adding the following

events to event set as follows,

~ = { o4} U {tel, tjb, o3, o5, o6, tf s, tfp}

effectively prohibits the included events from occurring. This specification enforces

safety, but there is no guarantee that the controller will find its way to the flare safe

area because there is no time explicitly mentioned (the tick event is not included).

204

Effectively this means that the system has been commanded to reach the safe area but

nothing has been said about the timing of this activity. This specification is unsuitable

since there is no upper bound on the time that the vessel can remain in the green

:z;one while the flare is operating. An additional problem with this specification is

that the controller synthesized with this approach will have to use a low time or

event lookahead to avoid the exponential growth in controller size.

A different approach is to choose specification that includes some specific timing

information. The designer must specify to a greater or lesser degree the time at which

the flare safe zone will be entered, since if the vessel remains too long in the vicinity

of the flare, it will violate the system safety. However, too "tight" a specification

can lead to blocking and an unnecessary emergency shutdown. Too "open" a spec­

ification, and controller complexity may become a problem. One possible approach

is to "calibrate" the trajectory by manually running simulations offline to test the

time required to reach safety from a variety of initial conditions. The specification

can then be tailored to admit the trajectories with the "calibrated" timing. Such

"over-specification" defeats the purpose of this type of online controller synthesis,

since the set of control solutions is decided offline. This approach is shown in Fig.

7-24(b). In this specification, an upper limit of 6 events has been specified for the

vessel to move to the flare safe area. Some flexibility has been built in by allowing

for it to take place sooner in 5 events. Without calibration, it is possible that this

specification may eliminate control trajectories that will take the vessel to the flare

safe area before this time.

The specification of Fig. 7-24(b) does not specify a lower time limit for the

manoeuvre, but effectively is the same as that of Fig. 7-24(a) in terms of complexity.

By not specifying the lower limit, we have made no presumption of the vessel initial

condition or dynamics. The upper bound on the specification time (6 events) is

derived not from the vessel dynamics, but is based on the maximum time the vessel

can linger in the green zone while the flare is lit, which is derived directly from the

205

(a)

(b)

Figure 7-24: (a) An example of overspecification, (b) a better specification.

206

operational procedures manual (the JOM). This will be the specification used for the

controller synthesis and simulation.

7.2.6 Results

The modeling information of the preceding sections was used to develop a switched

continuous model. Using HYSYNTH to simulate the closed-loop system, the following

test results were obtained for supervisory control of the weathervaning manoeuvre.

The tick time used for these simulations was D.t = 100 (unitless).

7.2.6.1 Control With Random Choice

Running a simulation of the weathervaning manoeuvre using the specifications of

Fig. 7-24, generally will result in a shutdown if the event or time lookahead horizon

is not large enough to include state q6 of the specification. The control synthesis

has to have large enough lookahead to perceive that state q6 is blocking if the vessel

cannot subsequently reach the flare safe area (state q18). With an event or time

lookahead that is too short, the control system is not able to distinguish between

an output string of 5 ticks that is moving to safety from a an output string that

is simply staying within the green zone. This is clearly illustrated in Table 7.8, in

which the controller has a 5 event lookahead combined with a random control choice

mechanism. The table is read from left to right: e.g. at step 1, there are a total of

IAI = IAe + Aenl = 6 control actions available for the operator to choose amongst.

The second and third columns are the legal input event subsets, that are eligible as

control actions: recall that Ae is the set of control actions that lead only to ESD and

Aen is the set of events that lead to ESD reachable and nonblocking states.

Starting at Step 1, the controller has 5 priority 1 choices (ESD reachable and non­

blocking), so using a random choice mechanism, it actually selects at which is driving

with both generators in the wrong direction. It continues to do this action in the next

step, when suddenly the specification has reached a block in the lookahead; i.e. o4

207

Table 7.8: A summary of the vessel controller simulation, see Figure 7-25.

Step I Ae I Aen I Sizet I a in I a out

1 {sdd} { o:1 , o:i, o:2 , o::j, hold} 4503 o::j tick
2 {sdd} { o:!, o:i, o:2, o:t, hold} 4378 CY+

2 tick
3 { sdd, o:;:-, o:i, o:2, o:t, hold} VJ 1319 o:+

2 tick
4 { sdd, o:;:-, o:i, o:2, hold} 0 193 CY2 tick
5 { sdd, o:1, o:i, o:2, o:t, hold} 0 59 CY+

2 tick
6 { sdd, o:1, o:i, o:2, hold} 0 9 CY2 tick
7 {sdd} 0 1 sdd esd

t in graph transitions

can no longer be synchronized. The available control actions all lead to shutdown,

Aen = 0. Fortunately, by constructing the controller as emergency shutdown reach­

able, at least the system will be able to shutdown gracefully. The remaining control

actions continue to select at random from set Ae and the system shuts down at Step

7. This simulation is pictured in Fig. 7-25, in which the top trace is a plot of the

earth-referenced position vector Xe versus time (all quantities are non-dimensional).

The controller actions and the resulting output events have also been placed on the

plot. The upper line of text are the output events, while the lower line is the string of

controller actions or input events. In Fig. 7-25 the lower trace is a plot of the vessel

velocity as a function of time. A plan view of the tanker's movements of Fig. 7-26

aids interpretation of the vessel actions.

7.2.6.2 Human In the Loop Control

The fundamental premise of human in the loop control is that the human, the opera­

tor, has some sort of system knowledge which enables him/her to make an "informed"

decision. The strength of our control approach is that the controller can assist an op­

erator by removing from the entire set of available control choices the ones that lead

unambiguously to unsafe states. Presumably the controller can also consider many

more system trajectories than the operator can in the same amount of time. Yet,

without a useful choice mechanism as we saw in the previous section, the controller

208

2
r
e

~ 1.8 -- e 0 ·_p e
" "' ~- ~ ' 0

1.6 --- ·- 'l'e ~ -_...-..:._- '- / '-, - --- _............__ ...
(I)

- ~~ - ff~---- - ~\ - tf~-00
ti esd "' (I)

1.4 > 2 2 2 2 s

0 100 200 300 400 500 600 700 800 900

5
<';' u

0 -- -y -.€ ·---
<!>

u
.Q 0
>
Q)

o/ "' 00
(I)

>
-5

0 100 200 300 400 500 600 700 800 900
Time

Figure 7-25: Simulation with inadequate event horizon. Using a random choice mechanism,
the system goes to ESD.

209

E' g -0.5
c
~

E
" u

"' -1 '@-
;;

" ;..

-2
x, displacement (m/m)

Figure 7-26: An overhead view of the shutdown.

is unable to drive the system to the desired objective unless it is very carefully speci­

fied, and/or the event or time lookahead is large enough to encompass enough of the

specification to decide unambiguously between blocking or safe outcomes. Fig. 7-27

presents a block diagram of the HIL supervisory control hierarchy that is implemented

in this section.

In this example, the specification of Fig. 7-24(b) was used again for control syn­

thesis, but this time with a human operator as the selection mechanism. With an

event lookahead of 4 events, this simulation demonstrates that some operator knowl­

edge combined with the DES controller easily outperforms the automated random

choice mechanism. The simulation was produced by constructing the ESD reachable

controller and giving the operator an opportunity to select the control action at each

controller update. The system is advanced through a simulation to the next time

step and then the process repeats itself by computing the controller for the new time

step, and so on.

210

,----------'---~ I
DP Control

&

Vessel

Figure 7-27: A block diagram of the HIL control arrangement for this example.

211

Table 7.9: A summary of the HIL controller simulation, see Figure 7-28.

Step I Ae I Aen I Sizet I !Yin I IYout

1 {sdd} {a1 , at, a 2 , a!, hold} 4539 al tick
2 {sdd} {a;:-, at, a2, at, hold} 4486 al tick
3 { sdd, at, a!} {a;:-, a2, hold} 1507 a;:- tick
4 { sdd, a;:-, at, at, hold} {a2} 304 az tick
5 { sdd, a;:-, at, at, hold} {a2} 66 az tick
6 { sdd, a;:-, hold} {a2} 42 az tick
7 {sdd} {a2} 130 az 04

8 {sdd} {a;-} 444 o:z tick
9 {sdd} {a!, at, a;-, ai, hold} 1448 hold tick

10
t graph size in transitions

The result of a HIL control simulation is summarized in Table 7.9. A knowledge­

able operator knows that the vessel must move to port to reach its destination (the

flare safe area), this rules out the actions that will carry the vessel away from the

target, at, at, and the action that does nothing, hold. The event a1 is selected by

the operator because it saves fuel by using only one generator. This same decision

approach continues to be exercised for the next two steps. At step 4 though, the op­

erator is suddenly presented with the fact that if the system is to continue, the second

generator must be switched onto the propulsion bus, and so o:2 must be selected. For

the next 5 steps, the o:;- event is the only choice that permits the vessel to continue to

operate. After the control action of Step 7, the vessel crosses into the flare safe area,

signified by the o4 event. Once within the area, the choice of control actions returns,

and the size of the controller grows as more legal moves are available again. For the

remainder of this run (15 controller updates), the operator continues to select control

actions that are in the Aen column and that are reasonable for stationkeeping, i.e.

moves requiring only one generator.

A picture of what happened during this simulation is given by the time series of

the position and velocity pictured in Fig. 7-28. A plan view of the two vessels during

the manoeuvre is given by Fig. 7-29.

212

.. -"'
~

0

C'
~
>
l
>

'r-----,,------~----~------r-----~---------.~~~
-·.I

··~
0

•

2

0

·2

..
0

__ ... -
•,

.. ------­-- --------- -----
"'' - '"' ...
"i •,- • • ' • ...__...___

•
400

...

oct tck .. oct ••• •,- Cf.f'Oi,
~~ •

... 800

'-:----:~
Te.

oct
or

'
'

-~

...
-~ ..

1.000

I

1.000

••• o,

'-

I I ,.

oct ••• oct

- "'!

'
1.200 1.400

--· -- -v
l -.

1.200
Fi~ttlro 7·28: T he IIH~ .xmtrOI s.iuHJiatlon rcsull.S showint; .. th1leseri('S plot of tlte ~1 pOflitiun vector (top 1rnce) and the vrwl
\'dufilies (l<Wo~ tl"ft('f').

0.5

0

s
~ -0.5

-1

-I. 5

-2

-1.5 -I -0.5 0
X displacement (m/m)

e

0.5

Figure 7-29: An overhead view of the tanker movement during the successful weathervaning
maneouver of the HIL controller.

214

7.3 Remarks

The continuous system model of Chapter 3 was proposed as the basis for modeling

the continuous dynamics of a hybrid system. Formally, the CSM accommodates

systems whose dynamics can be modeled by nonlinear ODEs. The only constraint

placed on these functions is that they be Lipschitz-continuous, in order to ensure

finite discrete abstractions, but this is a theoretical consideration. The numerical

solution of ODEs is well understood, but as any numerical solution is simply an

approximation of the theoretical system model, there has to be a "leap of faith"; i.e.

since there is theoretically a solution to an ODE, then the numerical solver must find

an approximation of the solution that is sufficient for our purposes. Some of the issues

of course are:

• Will the solver terminate?,

• What type of solver should be used?; i.e. one must choose appropriate stiffness,

solver tolerance, etc.

• Will the solver locate the events?

So clearly, even ODE solvers have limitations that make the fundamental jump

from theory to implementation uncertain.

Given that there will be implementation-specific issues with our control framework

implementation, this implies that the theory should be used as a guide only. While

nonlinear ODEs may be appropriate for modeling many types of continuous systems,

is it possible that our computing framework may accommodate a broader range of

continuous simulation tools?

In many industries, application-specific simulation tools already exist; if control

system designers are to be convinced to use a hybrid control design package, they

will not be willing to alter their simulation tools to match the problem. Within our

215

framework, it may be possible to encapsulate existing simulation tools, provided they

meet some qualitative, but not theoretically rigorous conditions.

Starting with the assumption that there exists a continuous simulation tool that,

given an initial condition and some parameters, produces a numerical solution for a

particular system model. Then, we wish to specify the conditions that this simulation

is comparable to a system of ODEs an numerical ODE solver. A simulation tool, when

given a set of parameters:

1. must always produce an output (solution existence),

2. must be repeatable for the same parameters (solution uniqueness)

3. the solution can be computed in less time than it takes the actual system to

execute (real-time implementation).

Whether the latter requirement (3) is met, hinges primarily on the complexity of

the simulation and the extent to which the specification limits the legal trajectories

of the plant. The computational hardware including the installed memory and CPU

power may also influence (3) to a lesser extent.

If a simulation tool meets each of the above requirements, then with suitable

wrapper functions (object methods), an SCM can be built around it, and an online

hybrid controller is feasible.

We have demonstrated in the vessel control example of §7.2, that a complex con­

tinuous simulation may be embedded seamlessly into the SCM framework and the

online controller synthesis works as expected. This vessel simulation appears to con­

form to practical requirements 1 and 2 above, and may even meet requirement 3 given

a choice of appropriate lookahead horizon, control choice mechanism and CPU power.

For this size of vessel, the actual controller update time D..t is

t>t ~ ~ * 100 ~ 5:l8 seconds

216

Given the current state of computing hardware, it is conceivable that such a controller

update time is more than adequate to implement this controller in real time. Clearly

this would be the subject of future work.

7.4 Summary

This chapter has demonstrated the utility of the switched continuous modeling frame­

work as a basis for simulation and control synthesis for hybrid systems. The theoreti­

cal results of the preceding chapters have been confirmed, particularly those regarding

controller complexity and guaranteed controller safety. Some of the issues that have

been dealt with in this chapter are: the process of developing a SCM, the encapsu­

lation of the continuous variable models, the selection of appropriate specifications,

and the effect of control choice mechanism on the system safety. The concept of the

controller being able to maintain safety in the limited lookahead environment has

been demonstrated through emergency shutdown examples.

The vessel control application involving human in the loop control points to the

efficacy of combining a very simple heuristic in the control choice mechanism with

the "brute force" of the exhaustive state-space search to yield better nonblocking

controller behaviour despite the limited lookahead horizon. Furthermore, the heuristic

might also be exploited to guide the search of the state space, thereby reducing the

computational burden.

217

Conclusions and Future Work

8.1 Contributions

T his thesis develops four main themes with respect to hybrid system control:

modeling, controller synthesis, computation and application. We will now high­

light the contributions in each of these areas.

8.1.1 Model

The SCM model (Chapter 4) is designed for the automated synthesis of discrete

event supervisory control systems. This model admits switching of continuous system

dynamics in both a time and state-dependent fashion and retains the full generality

of nonlinear continuous model dynamics. This is a significant advantage over most

other hybrid synthesis and verification techniques that require the hybrid system

models to use simplified continuous dynamics. The SCM also admits the inclusion

of generalized simulations, enabling system designers to leverage existing numerical

simulation tools, by embedding them in the SCM.

218

8.1.2 Control Synthesis

With the online controller, prior to each control decision, a hybrid transition graph

is constructed based on a prediction of the discretized continuous dynamics for each

eligible continuous system model in synchronism with other DES plant and specifica­

tion processes. This graph is safe by design, because the safety specification was used

to construct the graph. This graph is further pruned to eliminate blocking traces;

i.e. those that do not carry the system to the horizon. By inclusion of emergency

shutdown states, we guarantee safe operation by ensuring that these ESD states are

always reachable within the controller graph's limited horizon; this is the fail-safe

controller.

8.1.3 Computation

The computation model is central to the controller implementation. Due to the in­

finite state space of the hybrid model, limited lookahead horizon and finite control

set are built-in limitations of the model. In order to extend the model through time

(into an infinite time horizon) the controller is recomputed by incrementally extending

the lookahead horizon in a moving horizon scheme. Since this task must be imple­

mented online, an efficient means of model storage and computation are necessary.

We describe an object-oriented modeling scheme that allows for compact storage of

the plant and specification models; the hierarchical model storage avoids the state

explosion that normally results from "flattening" the system model. Furthermore,

the controller graph is easily constructed from the hierarchical model using a lazy

technique that helps to reduce the intermediate size of the graph reachable set. The

controller size complexity is bounded above by an expression that is exponential in

lookahead horizon, which implies that the synthesis algorithm is, for the worst-case,

exponential. However, the lower bound expression is linear in lookahead horizon,

implying that the computation may not always be intractably large. The controller

size is a function of the model state and time and the "tightness" of the specification.

219

A heavily specified system helps to reduce the controller size. The trade-off is that

overspecification can lead to controller blocking.

8.1.4 Application

Application examples (Chapter 7) demonstrate the flexibility of the modeling scheme

and provide empirical results for a reasonably complex industrial control problem.

The ship control example demonstrates failsafe embedded simulations, controller syn­

thesis, online control and HIL control, all novel concepts that have not been used in

this application before.

8.2 Future Work

Future work will focus on the areas of modeling , control synthesis, applications, and

improvements to the computational engine. Naturally, the impact of work in each of

these areas is interconnected, so they will be carried out in parallel.

In the area of modeling, the objective will be to add the ability of our SCM/CSM

modeling scheme to explicitly incorporate unmodeled continuous disturbance. Cur­

rently, the model accommodates modeled disturbance by simply including the distur­

bance model with each of the switched continuous system models. Various possible

approaches exist, including exploiting the results of robust control for performance

and stability guarantees or Monte Carlo simulation techniques.

It will be useful to develop other results around control choice mechanisms of var­

ious kinds. For example, HIL control appears to offer an improvement in controller

performance or optimality, something that is not addressed well by the DES supervi­

sory controller theory. HIL may not be suitable for every application, so automated

control choice mechanisms must also be studied.

From the applications standpoint, it is desirable to apply the control technique

to some of the more complex benchmark hybrid control problems, in order to pro-

220

vide further comparison of this technique to others. The ship control problem will

continue to be actively studied, by looking at power system and thruster configura­

tion robustness and multi-vessel coordination. A future model test may be planned

to prove the controller in a real-tirne control cnvirorunent. Future applications will

also involve supervision and coordination of unmanned aerial vehicles (UAV) and

autonomous underwater vehicles (AUV), as these are both funded research projects

currently being carried out by the National Research Council. In both cases, there is

access to physical modeling and numerical simulation capabilities, in addition to the

underwater vehicles and aircraft. Both of these applications focus on the coordination

of multiple agents. Studying these problems from an application perspective will help

to focus future improvements to the modeling and control techniques.

Going hand in hand with improvements to modeling and applications, is the need

for further development of the computational tool HYSYNTH. Essentially, the soft­

ware must be taken in two directions: 1) design time tool and 2) a run time tool. At

present HYSYNTH is a proof-of-concept code. It should be further expanded as the

design-time tool; existing hybrid and DES libraries may prove to be useful extensions

to HYSYNTH. The goal will be to create an easy-to-use design environment. The sec­

ond aspect of the software development effort should be focussed towards a run-time

implementation that is optimized for the real-time online control environment. This

involves such considerations as real-time operating system (OS) selection, hardware

platform and the software development environment.

221

References

Abdelwahed, S., Su, R. and Neema, S.: 2005, A feasible lookahead control for systems

with finite control set, Proceedings of the 2005 IEEE Conference on Control

Applications, IEEE, pp. 663-668.

Allan, H.: 1999, Joint operations manual- FPSO and shuttle tanker, Technical Report

TN-PE-OP04-X00-001, Terra Nova Petro--Canada.

Alur, R., Courcoubetis, C. and Dill, D. 1.: 1993, Model-checking in dense real-time,

Information and Computation 104(1), 2-34.

Alur, R., Dang, T., Esposito, J., Hur, Y., Ivancic, F., Kumar, V., Lee, I., Mishra,

P., Pappas, G. and Sokolsky, 0.: 2003, Hierarchical modeling and analysis of

embedded systems, Proceedings of the IEEE 91(1), 11-28.

Alur, R. and Dill, D. 1.: 1994, A theory of timed automata, Theoretical Computer

Science 126(2), 183-235.

Balas, G. J. and Packard, A. K.: 1996, The structured singular value 1-L-framework,

CRC Press, pp. 671-688.

Balluchi, A., Benvenuti, L. and Sangiovanni-Vincentelli, A.: 2005, Hybrid systems

in automotive electronics design, Proceedings of the 44th IEEE Conference on

Decision and Control, pp. 5618-5623.

222

Balluchi, A., Natale, F. D., Sangiovanni-Vincentelli, A. L. and van Schuppen, J. H.:

2004, Synthesis for idle speed control of an automotive engine, in R. Alur and

G. J. Pappas (eds), Proceedings of Hybrid Systems: Computation and Con­

tml(HSCC04), 7th International Wor-kshop, Vol. 2993 of Lect'uTe Notes 'in Com­

puter Science, Springer, pp. 80-94.

Bayen, A. and Tomlin, C.: 2003, Real time discrete control law synthesis for hybrid

systems using MILP: application to congested airspace, Proceedings of the 2003

American Control Conference, pp. 4620-4626.

Bemporad, A., Heemels, W. and de Schutter, B.: 2002, On hybrid systems and closed­

loop MPC systems, IEEE Transactions on Automatic Control47(5), 863-869.

Bengtsson, J., Larsen, K. G., Larsson, F., Pettersson, P. and Yi, W.: 1995, UPPAAL

- a tool suite for automatic verification of real-time systems, Hybrid Systems,

pp. 232-243.

Bernstein, D. S.: 2002, Feedback control: an invisible thread in the history of tech­

nology, IEEE Control Systems Magazine 22(2), 53-68.

Blondel, V. D. and Tsitsiklis, J. N.: 2000, A survey of computational complexity

results in systems and control, Automatica 36(9), 1249-1274.

Blondel, V. and Tsitsiklis, J.: 1999, Complexity of stability and controllability of

elementary hybrid systems, Automatica 35(3), 479-489.

Boel, R., Cao, X.-R., Cohen, G., Giua, A., Wonham, W. M. and van Schuppen, J. H.:

2002, Unity in diversity, diversity in unity: Retorspective and prospective views

on control of discrete event systems, Discrete Event Dynamic Systems: Theory

and Applications 12, 253-264.

223

Bourdon, S. E., Lawford, M. and Wonham, W. M.: 2005, Robust nonblocking su­

pervisory control of discrete-event systems, IEEE Transactions on Automatic

Control 50(12), 2015-2021.

Bozga, M., Daws, C., Maler, 0., Olivero, A., Tripakis, S. and Yovine, S.: 1998,

KRONOS: A model-checking tool for real-time systems, in A. J. Hu and M. Y.

Vardi (eds), Proc. 1Oth International Conference on Computer Aided Verifica­

tion, Vancouver, Canada, Vol. 1427, Springer-Verlag, pp. 546-550.

Braatz, R. D., Young, P.M., Doyle, J. C. and Morari, M.: 1994, Computational com­

plexity of fL calculation, IEEE Transactions on Automatic Control 39(5), 1000-

1002.

Brandin, B. A. and Wonham, W.: 1992, The supervisory control of timed discrete

event systems, Proceedings of the 31st IEEE Conference on Decision and Control,

pp. 3357-3362.

Branicky, M.: 1998, Multiple lyapunov functions and other analysis tools for switched

and hybrid systems, IEEE Transactions on Automatic Control43, 475-482.

Brave, Y. and Heymann, M.: 1991, Control of discrete event systems modeled as hi­

erarchical state machines, Proceedings of the 30th IEEE Conference on Decision

and Control, pp. 1499-1504.

Brooks, C., Cataldo, A., Lee, E. A., Liu, J., Liu, X., Neuendorffer, S. and Zheng,

H.: 2005, Hyvisual: A hybrid system visual modeler, Technical Memorandum

UCB/ERL MOS/ 24, University of California, Berkeley, CA 94720.

Carloni, L., DiBenedetto, M., Pinto, A. and Sangiovanni-Vincentelli, A.: 2004, Mod­

eling techniques, programming languages, and design toolsets for hybrid systems,

Technical Report IST-2001-38314, Columbus Project.

224

Cassandras, C. G. and Lafortune, S.: 1999, Introduction to Discrete Event Systems,

Kluwer Academic Publishers.

Chung, S., Lafortune, S. and Lin, F.: 1992, Limited lookahead policies in supervi­

sory control of discrete event systems, IEEE Transactions on Automatic Control

37(12), 1921-1935.

Chung, S., Lafortune, S. and Lin, F.: 1994, Supervisory control usmg variable

lookahead policies, Discrete Event Dynamic System: Theory and Applications

4(3), 237-268.

Chutinan, A. and Krogh, B. H.: 2003, Computational techniques for hybrid system

verification, IEEE Transactions on Automatic Control48(1), 64-75.

Coleri, S., Ergen, M. and Koo, T.: 2002, Lifetime analysis of a sensor network with

hybrid automata modeling.

David, A. and Yi, W.: 2000, Modelling and analysis of a commercial field bus protocol,

Proceedings of the 12th Euromicro Conference on Real Time Systems, IEEE

Computer Society, pp. 165-172.

Daws, C., Kwiatkowska, M. Z. and Norman, G.: 2004, Automatic verification of the

IEEE 1394 root contention protocol with KRONOS and PRISM, International

Journal on Software Tools for Technology Transfer {STTT), Vol. 5, pp. 221-236.

Ecker, J. and Malmborg, J.: 1999, Design and implementation of a hybrid control

strategy, IEEE Control Systems Magazine 19(4), 12-21.

Esposito, J., Kumar, V. and Pappas, G.: 2003, Multi-agent hybrid system simula­

tion, Proceedings of the 40th IEEE Conference on Decision and Control, IEEE,

pp. 780-785.

Fehnker, A., Vaandrager, F. and Zhang, M.: 2003, Modeling and verifying a Lego car

using hybrid I/0 automata.

225

Fossen, T.: 1994, Guidance and Control of Ocean Vehicles, John Wiley & Sons.

Francis, B., Henton, J. W. and Zames, G.: 1984, 1-i00-optimal feedback controllers

for linear multi variable systems, IEEE Transactions on Automatic Control AC-

29(10), 888-900.

Gansner, E., Koustofios, E. and North, S.: 2002, Drawing Graphs with Dot, AT&T.

Gaudin, B. and Marchand, H.: 2005, Safety control of hierarchical synchronous dis­

crete event systems: A state-based approach, Proceedings of the 13th Mediter­

ranean Conference on Control and Automation, pp. 889-895.

Giorgetti, N., Pappas, G. J. and Bemporad, A.: 2005, Bounded model checking of

hybrid dynamical systems, Proceedings of the 44th IEEE Conference on Decision

and Control, pp. 672-677.

Gohari, P. and Wonham, M.: 2000, On the complexity of supervisory control design

in the RW framework, IEEE Transactions on Systems, Man, and Cybernetics

30(5), 643-652.

Grewal, M. and Andrews, A.: 1993, Kalman Filtering Theory and Practice, Prentice

Hall.

Hadj-Alouane, N., Lafortune, S. and Lin, F.: 1994, Variable lookahead supervi­

sory control with state information, IEEE Transactions on Automatic Control

39(12), 2398-2410.

Hancox, M.: 2001, Towing, Positioning and Hook-Up for Offshore Production, Vol. 8,

Oilfield Publications Limited.

Harel, D.: 1987, Statecharts: A visual formalism for complex systems, Science of

Computer Programming 8(3), 231-274.

226

Heemels, W., de Schutter, B. and Bemporad, A.: 2001, On the equivalence of classes of

hybrid dynamical models, Proceedings of the 40th IEEE Conference on Decision

and Control!, 364~369.

Henzinger, T. A.: 2000, The theory of hybrid automata, Verification of Digital and

Hybrid Systems 170, 265~292.

Henzinger, T. A. and Ho, P.: 1995, Algorithmic analysis of nonlinear hybrid systems,

in P. Wolper (ed.), Proceedings of the 'lth International Conference On Computer

Aided Verification, Vol. 939, Springer Verlag, Liege, Belgium, pp. 225~238.

Henzinger, T. A., Ho, P. and Wong-Toi, H.: 1996, A User Guide to HYTECH.

Henzinger, T. A., Ho, P. and Wong-Toi, H.: 1997, HyTech: A model checker for

hybrid systems, Software Tools for Technology Transfer 1, 110~ 122.

Henzinger, T. A., Kopke, P. W., Puri, A. and Varaiya, P.: 1998, What's decidable

about hybrid automata?, Journal of Computer and System Sciences.

Henzinger, T. A. and Wong-Toi, H.: 1995a, Linear phase-portrait approximations for

nonlinear hybrid systems, Hybrid Systems, pp. 377~388.

Henzinger, T. A. and Wong-Toi, H.: 1995b, Using hytech to synthesize control para­

meters for a steam boiler, Formal Methods for Industrial Applications, pp. 265~

282.

Hespanha, J. and Morse, A.: 2002, Switching between stabilizing controllers, Auto­

matica 38(11), 1905~1917.

Hespanha, J. P.: 2004, Control Systems, Robotics, and Automation, Encyclopedia of

life support systems, Eolss Publishers Co. Ltd., Oxford, chapter Stabilization

through Hybrid Systems.

227

Heymann, M., Lin, F., Meyer, G. and Resmerita, S.: 2002, Analysis of zeno behav­

iours in hybrid systems, Proceedings of the 41st IEEE Conference on Decision

and Control, pp. 2379-2384.

Johansson, K. H., Egerstedt, M., Lygeros, J. and Sastry, S.: 1999, On the regular­

ization of zeno hybrid automata, Systems CJ Control Letters, Vol. 38, Elsevier,

pp. 141-150.

Kalman, R. E.: 1960, A new approach to linear filtering and prediction problems,

Transactions of the ASME-Journal of Basic Engineering 82(Series D), 35-45.

Kaynak, 0., Erbatur, K. and Ertugrul, M.: 2001, The fusion of computationally

intelligent methdologies and sliding mode control - a survey, IEEE Transactions

on Industrial Electronics 48(1), 4-17.

Khalil, H. K.: 2002, Nonlinear Systems, third edn, Prentice Hall.

Knopp, K.: 1956, Infinite Sequences and Series, Dover.

Koutsoukos, X. and Antsaklis, P.: 2001, Hierarchical control of piecewise linear hybrid

dynamical systems based on discrete abstractions, Technical Report ISIS-2001-

001, ISIS Group, University of Notre Dame.

Koutsoukos, X., Antsaklis, P., Stiver, J. and Lemmon, M.: 2000, Supervisory control

of hybrid systems, Proceedings of the IEEE, IEEE, pp. 1026-1048.

Kumar, R., Chung, H. M. and Marcus, S. 1.: 1998, Extension based limited lookahead

supervision of discrete event systems, Automatica 34(11), 1327--1344.

Kumar, R. and Garg, V. K.: 1995, Modeling and Control of Logical Discrete Event

Systems, Kluwer Academic Publishers.

Lee, E. A.: 2003, Overview of the Ptolemy project, Technical Memorandum

UCB/ERL M03/25, University of California, Berkeley, CA, 94720, USA.

228

Leith, D. and Leithead, W.: 2000, Survey of gain scheduling analysis & design,

International Journal of Control73(11), 1001-1025.

Lemmon, M. D., He, K. X. and Markovsky, I.: 1999, Supervisory hybrid systems,

IEEE Control Systems pp. 42-55.

Liberzon, D.: 2003, Switching in Systems and Control, Systems and Control: Foun­

dations and Applications, Birkhauser, Boston, MA.

Lin, F. and Wonham, M.: 1988, On observability of discrete-event systems, Informa­

tion Sciences 44, 173-198.

Lin, H. and Antsaklis, P.: 2005, Stability and stabilizability of switched linear systems:

A short survey of recent results, Proceedings of the 2005 IEEE International

Symposium on Intelligent Control, pp. 24-29.

Lynch, N., Segala, R. and Vaandrager, F.: 2003, Hybrid I/0 automata, Technical

Report MIT-LCS-TR-827d, MIT Laboratory for Computer Science, Cambridge,

MA 02139.

MAT LAB Programming: 2006, The Math Works, Inc., 3 Apple Hill Drive, Natick,

MA 01760-2098.

Meder, C.: 1997, TTCT User Manual V0.5.0, Systems Control Group, University of

Toronto.

Michel, A. N.: 1996, Stability: the common thread in the evolution of feedback

control, IEEE Control Systems Magazine 16(3), 50-60.

Millan, J. and O'Young, S.: 2000, Hybrid modeling of tandem dynamically positioned

vessels, Proceedings of the 39th IEEE Conference on Decision and Control.

Millan, J. and O'Young, S.: 2006, Hybrid system control using an online discrete

event supervisory strategy, !FAG Conference on Analysis and Design of Hybrid

Systems, IFAC.

229

Millan, J. P.: 2006, On-line supervisory control of hybrid systems using embedded

simulations, Proceedings of the 8th International Workshop on Discrete Event

Systems WODES06.

Millan, J., Smith, L. and O'Young, S.: 2002, Coordination of FPSO and tanker

offioading operations, Proceedings of the MTS Dynamic Positioning Conference

2002.

Mitra, S., Wang, Y., Lynch, N. and Feron, E.: 2003, Application of hybrid I/0

automata in safety verification of pitch controller for model helicopter system,

Technical Report MIT- LCS- TR-880, MIT Lab for Computer Science, Cambridge,

MA 02139.

Moor, T., Raisch, J. and Davoren, J.: 2001, Computational advantages of a two­

level hybrid control architecture, Proceedings of the 40th IEEE Conference on

Decision and Control, pp. 358-363.

Morgan, M.: 1978, Dynamic Positioning of Offshore Vessels, PPC Books, Division of

Petroleum Publishing Company.

Masterman, P. J.: 2002, HYBRSIM - a modeling and simulation environment for

hybrid bond graphs, Journal of Systems and Control Engineering 216, 35-46.

Oden, J. T.: 1979, Applied Funcitonal Analysis, Prentice Hall.

O'Young, S.: 1991, On the synthesis of the supervisors for timed discrete event

processes, Technical Report 9107, Department of Electrical and Computer Engi­

neering, University of Toronto.

O'Young, S. D.: 1992, Systems control group report, Object TCT: Users guide, Tech­

nical report, Department of Electrical Engineering, University of Toronto.

Palm III, W. J.: 2000, Modeling, Analysis, and Control of Dynamic Systems, second

edn, John Wiley & Sons.

230

Potocnik, B., Bemporad, A., Torrisi, F., Music, G. and Zupancic, B.: 2004, Hybrid

modelling and optimal control of a multiproduct batch plant, Control Engineer­

ing Practice 12(9), 1127-1137.

Raisch, J.: 2000, Discrete abstractions- an Input/Output point of view, Mathematical

and Computer Modeling of Dynamical Systems 6(1), 6-29. Special Issue on

Discrete Event Models of Continuous Systems.

Raisch, J. and O'Young, S.: 1998, Discrete approximation and supervisory control of

continuous systems, IEEE Transactions on Automatic Control43(4), 569-573.

Ramadge, P. and Wonham, W.: 1987, Supervisory control of a class of discrete event

processes, SIAM Journal on Control Optimization 25(1), 206-230.

Ramadge, P. and Wonham, W.: 1989, The conrol of discrete event systems, Proceed­

ings of the IEEE 77(1), 81-98.

Rodger, S. H. and Finley, T. W.: 2006, JFLAP: An Interactive Formal Languages

and Automata Package, Jones & Bartlett Publishers.

Rudie, K. and Wonham, M.: 1992, Think globally, act locally: Decentralized super­

visory control, IEEE Transactions on Automatic Control37(11), 1692-1708.

Shampine, L. and Gladwell, I.: 1991, Reliable solution of special event location prob­

lems for odess, ACM Transactions on Mathematical Software 17(1), 11-25.

Shampine, L. and Thompson, S.: 2000, Event location for ordinary differential equa­

tions, Computers and Mathematics with Applications 39, 43-54.

Skogestad, S. and Postelthwaite, I.: 1993, Multivariable Feedback Control Analysis

and Design, Wiley.

Smith, R. and Doyle, J.: 1988, The two tank experiment: A benchmark control

problem, Proceedings of the IEEE American Control Conference 3, 403-415.

231

Stiver, J. A., Koutsoukos, X. D. and Antsaklis, P. J.: 2000, An invariant-based

approach to the design of hybrid control systems, Technical Report ISIS-2000-

001, ISIS Group, University of Notre Dame.

Stursberg, 0.: 2004, A graph search algorithm for optimal control of hybrid systems,

Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 1412-

1417.

Stursberg, 0., Fehnker, A., Han, Z. and Krogh, B. H.: 2003, Specification-guided

analysis of hybrid systems using a hierarchy of validation methods, IFAC Con­

ference on Analysis and Design of Hybrid Systems, IFAC.

Stursberg, 0., Kowalewski, S., Hoffmann, I. and Preusig, J.: 1997, Comparing timed

and hybrid automata as approximations of continuous systems, Hybrid Systems

IV, LNCS 1273, Springer-Verlag, pp. 361-377.

Su, R., Abdelwahed, S., Karsai, G. and Biswas, G.: 2003, Discrete abstraction and

supervisory control for switching systems, IEEE International Conference on

Systems, Man, and Cybernetics, Vol. 1, IEEE, pp. 415-421.

T. Stauner, 0. Mueller and M. Fuchs: 1997, Using HYTECH to verify an automo­

tive control system, in 0. Maler (ed.), Hybrid and Real- Time Systems, Springer

Verlag, LNCS 1201, Grenoble, France, pp. 139-153.

Thevenon, L. and Flaus, J.-M.: 2000, Modular representation of complex hybrid

systems: application to the simulation of batch processes, Simul. Pr. Theory

8(5), 283-306.

Torrisi, D. and Bemporad, A.: 2001, Discrete-time hybrid modeling and verification,

Proceedings of the 40th IEEE Conference on Decision and Control, pp. 2899-

2904.

232

Torrisi, F. and Bemporad, A.: 2004, HYSDEL- a tool for generating computational

hybrid models, IEEE Transactions on Control Systems Technology 12(2), 235-

249.

UMDES Software Library: 2006.

URL: http:/ jwww. eecs. umich. edujumdesjtoolboxes.html

Weingarth, L.: 2002, Avoiding catastrophes in dynamic positioning; integrating key

parameters using a systems approach, IADC SPE Drilling Conference.

Williams, S. J.: 1990, A review of f.t and its applications, IEE Colloquium on Successful

Industrial Applicaitons of Multivariable Analysis pp. 7/1-7/14.

Witsenhausen, H. S.: 1966, A class of hybrid-state continuous-time dynamic systems,

IEEE Transacitons on Automatic Control pp. 161-167.

Wonham, W. and Ramadge, P.: 1987, On the supremal controllable sublanguage of

a given language, SIAM Journal on Control Optimization 25(3), 637-659.

Zhang, J., Johansson, K. H., Lygeros, J. and Sastry, S.: 2000, Dynamical systems re­

visited: Hybrid systems with zeno executions, inN. A. Lynch and B. H. Krogh

(eds), Hybrid Systems: Computation and Control, Third International Work­

shop, HSCC 2000, Pittsburgh, PA, USA, March 23-25, 2000, Proceedings, Vol.

1790 of Lecture Notes in Computer Science, Springer, pp. 451-464.

233

Appendices

234

Continuous System Modeling

A continuous dynamical system can be described by the first-order vector differential

equation,
dx
dt = f(x, u, t) (Aol)

where xis the state vector, x E !Rn , and u is the system input vector, u E !Rmo

The state variables, x 1 , x2 , 0 0 0 Xn, and the system input variables, u1 , u2 , 0 0 0 Um are

functions of time, t E R Since this is a vector system, it is composed of n scalar

first-order nonlinear differential equations:

where each state variable Xi E IR, each input Uj E IR, and each fi : !Rn x !Rm x JR ---+ R

The class of systems that we wish to consider can be modeled by an unforced,

ordinary differential equation (ODE),

±(t) = f(x, t) (Ao2)

235

where x = ~~, and f : IR.n x JR.---+ IR.n. Suppose u is some function of time, u = g(t)

and u is also a function of the state x, (for example due to state feedback), then u

can be described as a function of both time, t and state, x = g(x, t). Substituting

u = g into Eq. A.l, allow~ the independent variable 'U to be elirniu1:1ted, providing the

dynamics associated with function g are absorbed into f. This means that, without

loss of generality, results developed for the unforced state equation (Eq. A.2) are

equally applicable to the forced system model (Eq. A.l).

A.O.l Elementary Topology

Definition A.O.l (Euclidian Metric) The Euclidean metric or 2-norm is defined

as
n

Vx, y E IR.n, d(x, y) = llx- Yll 2 = ~(xi- Yi)2

i=l

Definition A.0.2 (Metric Space) Let X ~ IR.n, then the set X with the euclidean

metric is called a metric space and is denoted (X, 11·11) .

Definition A.0.3 Let (X, 11·11) be a metric space, x0 EX and r > 0, then an open

ball is defined as

Ba(xo,r) = {x EX: llxo- xll < r}

likewise, the corresponding closed ball is defined as

Bc(xo,r) = {x EX: llxo- xll:::; r}

An open ball can be thought of as the interior of a ball, excluding its boundary,

while a closed ball includes the boundary.

Definition A.0.4 (Open Set) A subset Q of the metric space (X, 11·11) zs an open

set with respect to the metric 11·11 provided that Q is a union of open balls.

236

Definition A.0.5 (Closed Set) A subset Q of a metric space X, is a closed set

with respect to the metric 11·11, provided that its complement X\ Q is an open set with

respect to X. The overbar notation will be used to indicate the closure of a set (a

closed set).

Note that henceforth for convenience, the 2 subscript will be dropped from the

Euclidian metric and it will be implied by the notation II · II·

Definition A.0.6 (Initial Value Problem) Given an open subset DC lRn x JR, a

continuous function f : D ~ lRn, and a point (xo, to) E lRn x lR, we wish to find a

solution x(t) to the equations i; = f(x, t), x(to) = x 0 . This is known as an initial

value problem (IVP).

A solution to the IVP is given by the continuously differentiable function:

x(t) = x 0 + (f (x(T)) dT
.fo

which is a solution in the sense of Caratheodory.

Definition A.O. 7 (Local Lipschitz Continuity) A function f, is locally Lipschitz

continuous if for each x, y E D C lRn and t E [to, h] C JR,

llf(x, t)- f(y, t) II ::; L llx- Yll (A.3)

where L > 0 is the Lipschitz constant.

Remark A.O.l (Existence and Uniqeuness of Solutions) If a function f is lo­

cally Lipschitz continuous, then the solution, x(t) to the IVP x = f(x(t), t), x(t0) =

x 0 , exists and is unique over the interval [to, t 1].

Definition A.0.8 (Global Lipschitz Continuity) The function f is said to be

globally Lipschitz continuous if there exists a single Lipschitz constant, L > 0, such

that for all x, y E lRn and all t E lR Eq. A.3 is true.

237

f
{

Figure A-1: Lyapunov stability

Lipschitz continuity is a stronger requirement than strict continuity, but is weaker

than continuous differentiability (Khalil 2002).

A.0.2 Lyapunov Stability

Definition A.0.9 (Equilibrium Point) Given a continuous system model± = f(x, t),

x (t0) = x 0 , x E IRn, then x*, is an equilibrium point if

f(t, x*) = 0, Vt ~ 0

Definition A.O.lO (Lyapunov Stability) An equilibrium point x* = 0 is stable in

the sense of Lyapunov at t = t 0 if for all t > t 0 and for all c > 0, there exists 6 such

that

llx(to)ll < c ====? llx(t)ll < 6, for all t ~to (A.4)

Definition A.O.ll (Uniform Lyapunov Stability) An equilibrium point x* = 0

is uniformly stable in the sense of Lyapunov if there exists 6 (c), independent of t0 ,

238

such that Eq. A.4 holds true.

Without loss of generality, the equilibrium point has been located at the origin for

the preceding definitions. In fact, it is possible for an equilibrium point to be located

anywhere in the state space of a system. Results for non-zero equilibrium points are

identical since an equilibrium can be translated from anywhere in the state space to

the origin.

Definition A.0.12 (Unstable Equilibrium) An equilibrium point x* is unstable

if it is not stable.

239

State Partitioning

In the case where additional partitions may need to be established on an already ex­

isting partitioned state space, the results of Lemma 3.2.4, Lemma 3.2.3 and Theorem

3.2.1 of Chapter 3 are extended here. The assumption is that we are starting with a

family of subsets H such that IHI = M and His the result of a partitioning operation
M

that has already been applied to the state space such that U Q1 = JR.n.
j=l

Lemma B.O.l (Set Partition Upper Bound) Let H = {Q1 ~ JR.n: 1 :::; j :::; M}
M

be a family of pairwise disjoint sets such that U Qj = JR.n, and let \fJ = { Fi : JR.n --+
j=l

JR., 1 :S i :S N} be a family of functionals. The set partition operation (II) of Def.

3.2.1,willproduce afamily of sets, H', such that IH'I = M x 2N.

Proof. Show the upper bound by induction on the number of functionals, i, for

any IHI = M and assuming maximal intersection, which means that Qj n N(Fi) =/= 0

240

for all Qj E H and for all FiE W. The base case is for Jwl = 1 or N = 1 functionals:

M
JH~J P}(H,N(F)) = U Ps(Qj,N(F))

j=l

1Ps(Q1,N(F))I + 1Ps(Q2,N(F))I + ...

+ IPs(QM,N(F))J

2+2+ ... +2
M

2M

so the base case is consistent with the original hypothesis. The inductive hypothesis

is that I H~ I = M x 2N. It remains to show that I H~ + 1 1 = M x 2N + 1 . Due to maximal

intersection, Qj n N(FN+I) f 0, for all Qj E H~.

and therefore,

•

Mx2N

H'tV+1 = Pf+1 (H~,N(FN+I)) = U Ps(Qj,N(FN+I))
j=1

IH:VI
U Ps(Qj,N(FN+I))

j=1

1Ps(Q1,N(FN+I))I + 1Ps(Q2,N(F2))1 + ...

+ IPs(QIH:VI' N(FN+I)) I

2+2+ ... +2

IH:VI
2 x IH~I and by the inductive hypothesis,

2 X M X 2N

241

Lemma B.0.2 (Set Partition Lower Bound) Let H = { Q1 ~ ffi.n : 1 ::::; j ::::; M}
M

be a family of pairwise disjoint sets such that U Qj = ffi.n and let \11 = { Fi : ffi.n --->
j=l

IR, 1 ::::; i ::; N} be a family of functionals such that there is minimal intersection.

The set partition operat'ion (II} of Def. 3.2. 7,will produce a family of sets, H', such

that JH'J = M + N.

Proof. The lower bound is proven by induction on the number of functionals,

i, for any JHI = M. The base case is for JwJ = 1 (i.e. N = 1). With minimal

intersection for example QM E H such that QM n N(F) =/= 0, then

H~ Pj(H,N(F1))

M

JH~J U Ps(Qj,N(Fl)) + JPs(QM,N(FI)J
j=2
JPs(Ql,N(Fl)J + JPs(Qz,N(Fl)J + · · ·

+ lPs(QM-l,N(FI)I

+ JPs(QM,N(FI)J

1+1+ ... +1+2
M-1

M -1+2

M+1

Thus the base case is consistent with the hypothesis. Now the inductive hypothesis

is that JH~I = M + N. It remains to show IH~+ll = M + N + 1. Suppose there

exists QM+N E H~ and JH~J = JHN+ll then:

M+N
H~+l = Pt+ 1 (H~,N(FN+1)) = U Ps(Qj,N(FN+l))

j=l

242

therefore

IH;._,I-1
j~1 Ps(Qj,N(FN+1)) + 1Ps(Q~H~~,N(FN+1))1

IPs(Q1,N(FN+1))1 + 1Ps(Q2,N(FN+I))I + · · ·

+ 1Ps(Q~H~i-1'N(FN+1))1
+ IPs(Q~H~I ,N(FN+1)) I

1+1+ ... +1+2

IH~I-1

IH~I - 1 + 2, and by the inductive hypothesis,

M+N+1

•
Theorem B.O.l (Set Partitioning Operation Boundedness) Let H = {Q1 ~

M

~n : 1 :::; j :::; M} be a family of pairwise disjoint sets such that U QJ = ~n and let
j=1

W = { Fi : ~n --> ~' 1 :::; i :::; N} be a family of functionals. The set partition operation

(II) of Def. 3.2. 7 produces a family of sets H', such that M + N::; IH'I :::; M x 2N.

Proof. Let l'lll = N, and let IHI = M it follows from Lemma B.0.2 that the

cardinality of the set partitioning operation has a lower bound of IH'I = M + N.

Lemma B.0.1 establishes an upper bound on the returned family of sets of IH'I

M x 2N, hence the result is proven. •

243

Discrete Event System Modeling

C.l Finite State Machines

The finites state machine (FSM) model is one of many possible representations of a

discrete event system (DES), and has been used extensively since it lends itself readily

to the analysis of such systems.

Definition C.l.l A deterministic FSM model is a five-tuple:

G = (X, 2:, b., Xo, Xm)

where:

X is the set of states,

2: is the set of events that cause G to change states

b. is the transition set, the set of all labeled transitions

x 0 is the initial state, x 0 E X

Xm is the set of marked states, Xm <;;;X

244

Definition C.1.2 A transition function is defined in G denoted by 6(x, CT)! with x E

X, CT E ~*, if ?Jx E X and (x, CT, x) E ~.

Definition C.1.3 The language generated by G, L(G), is the set of all symbols and

concatenated symbols (strings) that would be generated by starting at xo and exercising

all possible transitions in sequence across the entire state space of the automaton.

Definition C.1.4 The language marked by G, Lm (G), is the set of all strings s, for

which 6(x0 , s)! in G and 6(x0 , s) E Xm. The marked states represent the completion

of some task and the strings s, are able to take the system from the initial condition

to the completion of the task, a marked state.

Definition C.1.5 Two automata, G1 and G2, are said to be equivalent if L(G1) =

L(G2) and Lm(Gl) = Lm(G2)·

Definition C.1.6 The language L(G2) is said to be a sublanguage of L(G1) if\::/s E

L(G2), s E L(G1) =? L(GI) s:;;: L(G2).

The event set of the generator G, is partitioned, ~ = ~uc U ~c where ~uc is the

set of uncontrollable events and ~c is the set of controllable events.

The graphical representation of a hypothetical machine modeled by a FSM is

pictured in Fig. C-1. In the figure, states are labeled and are represented by the

nodes of the graph. The arcs connecting the nodes are state transitions and are

labeled with events. A single-ended arc pointing into a node denotes the initial state.

Marked states are denoted by a double circle. The initial state of the system, x 0 is the

Idle state (labeled I), indicated by the arrow pointing in; it is also a marked state.

Other states in the system are Working (W, marked), Down (D), and Scrapped (S),

X = {I, W, D, S}. The marker states are Xm = {I, W}. The machine's event set is

~ = {a:, {3, r:c, A, p,, v }, with the event labels representing the following actions:

the machine starts, Idle to Working,

245

v

Figure C-1: FSM representation of a simple machine.

(3 completes its work and returns to the Idle state,

). breaks down, going to the Down state,

f-L gets repaired, returning to the Idle state,

v gets repaired, returning to the Working state,

K, is scrapped, moving to the Scrap state.

The stroke through the a and f-L arcs denotes that these transitions are controllable,

in the sense that they can be disabled through the action of some controller. Hence,

L:c = {a, JL }, L:u = {(3, 1-i:, A, v }, and L.:c n L:u = 0.

C.l.l Combining Multiple Automata

More complex system behaviors can be modeled by combining multiple machine mod­

els using synchronous composition. Two operations are discussed below.

C.l.l.l Product

The product operation is denoted by the operator x. Given two automata, G1 :=

(Xl, L.:l, L~q, Xo,l, Xm,d and G2 := (X2, L.:2, 62, Xo,2, xm,2), the product ' Gl X G2 :=

(X, L:, b., x 0 , Xm), they may execute a common event in L.: 1 n L.:2 concurrently. For

the product, it can be shown that L(G1 x G2) = L(GI) n L(G2) and Lm(G1 x G2) =

246

a

G1
f3

.-;)
G2

f3

r

Figure C-2: Two simple FSM models with E1 = {a, ,B} and Ez = {,B, ')'}.

y

G111G2
y

Figure C-3: The synchronous product G1\\G2 of automata in figure C-2.

Lm(GI) n Lm(G2). Referring to the two automata pictured in Fig. C-2, with I:1 =

{a, ,8} and I:2 = {,8, r} it is clear that the product will be L(G1 x G2) = { E} and the

marked language is Lm(G1 x G2) = { E }. If either of the initial states in G1 or G2 was

not marked, the marked language would reduce to Lm(G1 x Gz) = 0. The first event

in G1 , a, is prevented from occurring because G2 does not share that event; therefore

they are blocking each other from further execution.

C.1.1.2 Synchronous Product

For control system synthesis, the synchronous (parallel) product is useful for making

system interconnections. In the synchronous product, the automata must synchronize

on common events but events private to each automaton, (I:1 \ I:2) U (I:2 \ I: I), are

allowed to occur at any time within their respective automata. Referring again to Fig.

C-2, the synchronous product operation produces the resulting automaton in Fig. C-

3. In the simple product, both automata were blocked from executing because the

initial transition of G 1, a, was not a shared transition and so could not be executed.

The synchronous product allows G1 to execute a, which then allows both automata

247

r

w

G1 G2

Figure C-4: Automata for shuffle product.

to synchronously execute the f3 transition and so on. It should be noted that the

state names for product automata are derived from the state names of the respective

composing automata as follows : (x1, x2) where x1 is the current state in G1 and

x2 is the current state in G2. Controllable transitions in ~1 n ~2 will be disabled

together even if the transition is prevented from occurring in one of the composing

automata only due to the fact that they must be executed synchronously.

There are two special cases of the synchronous product. The first occurs when

~1 n ~2 = 0. In this case, all events are private to their respective automata and

the synchronous product, G1 II G2 is called the shuffle product, since it consists of

all possible shuffles of the respective alphabets, ~ 1 and ~2 .The second special case

is when ~1 = ~2 , with the synchronous product (II) reducing to the product (x),

since all transitions will be executed synchronously:L(G1 II G2) = L(G1) n L(G2) and

Lm(G1 II G2) = Lm(G1) n Lm(G2).Fig. C-4 illustrates how the shuffle product is

the result of the synchronous product operation, since ~ 1 = {a, /3} and ~2 = {r,). },

~1 n ~2 = 0; two machines that perhaps work on their respective tasks side by side.

The synchronous product of these two devices is graphically represented in Fig. C-5.

The synchronous product is a powerful tool, since it reduces the task of composing

complex systems to that of designing the individual component automata and then

synchronizing them together to produce the entire system behaviour. The same

technique can be extended to more than two automata easily since the properties

248

y

G1IIG2

(3

Figure C-5: Shuffle product of automata from figure C-4.

of commutativity and associativity hold for the synchronous product operation:

Gl II G2 = G2 II Gl

Gl II (G2 II G3) = (Gl II G2) II G3

Very complex DES models can be constructed by combining multiple FSMs in this

way.

249

DES Control Synthesis

Control systems engineers wish to have automated methods by which they can syn­

thesize a controller that modifies the behavior of their target (the plant) within the

limitations of the plant (controllability). Manual methods of synthesis can work for

small DES systems, but an algorithmic approach to synthesis is needed. The DES

control problem is analogous to the continuous control problem (See Fig. D-1), except

that the system communicate via symbols (discrete values) instead of with continuous

signals. The environment, an uncontrollable element, seeks to disturb the plant, thus

presenting another obstacle for the controller.The environment, usually unmodeled,

actively disturbs the plant and is given, which in this sense means we are aware of

how it affects the plant. The three systems are closely coupled in an embrace where

each affects the other. If each of these elements are viewed as agents in a DES, then

~ ~

v IL ~.X
Environment A_ Plant

¢=cJ
Controller

I
~

-Active -Reactive -Active
- Unmodeled -Modeled - Unmodeled

-Given -To be designed

Figure D-1: Conceptual visualization of the control process.

250

L(P) L(H~pec)

Figure D-2: Linguistic interpretation of legal language K = L(P) nL(Hspec) by synchronous
product of plant and specification automata.

their interaction can be modeled using FSM models connected through some form of

product connection.

A method of formally synthesizing a supervisory controller for discrete event sys­

tems (DES) was reported by Ramadge and Wonham (Ramadge and Wonham 1989),

(Ramadge and Wonham 1987), and will be referred to as the RW synthesis from here

on. In this framework, a finite state automaton model P := (Xp, ~p, ~p, xo,P, Xm,P),

generating language L(P), completely describes the behavior of the discrete event

plant that is to be controlled. A second automaton model, Hspec, generating lan­

guage L(Hspec), represents the specification or desired (controlled) behaviour. The

synchronous product of these two automata produces an automaton that generates

the legal language, K = L(P) n L(Hspec), of the closed-loop process (Fig. D-2).

The task of synthesizing a discrete event supervisor (controller) S, is to enforce

the legal language on the plant P. The supervisor is also a FSM:

S := (Xs, ~s, ~s, xo,s, Xm,s)

The supervisor accomplishes this by monitoring the plant, and disabling the control­

lable transitions in order to preempt actions by the plant that could uncontrollably

cause the system to violate the legal language. The closed-loop connection of a DES

supervisor and plant is shown in Fig. D-3. The supervisor is able to monitors E L(P),

the string (a trace) of all events executed so far by the plant. The closed-loop lan-

251

~ p r-------

S(s)

- s 1--

Figure D-3: Closed-loop interconnection of supervisor S controlling plant P by disablement.

8(x1u,,s),O(x~.1 ., s) 8(x0.1',sau1)

0',--~

Figure D-4: Diagram illustrating controllability of K with respect to P.

guage, L(SIP) <;;: K . L(SIP) is read as 11 S controlling P 11
• The string s has taken

P to a state o (xo,P, s) E X p and supervisor S to state o (xo,s, s) E X s (Fig. D-4). At

this state in S II G, (o (x 0 ,s, s), o (Xo,P, s)), an uncontrollable event CT 1 and a control­

lable event, a are executable. The supervisor must disable the controllable event a

that leads subsequently to the uncontrollable event CT 1 E L:p that causes the plant to

violate the legal language. This is accomplished by excluding the a event from the

supervisor and since the two systems are synchronized, the plant is prevented from ex­

ecuting. The supervisor cannot disable cr1 or cr2 , because by definition, uncontrollable

events cannot be disabled, in any case, cr2 does not violate the legal language.

This implies the controllability condition which states that a supervisor S exists

252

such that L(S/G) =Kif and only if:

K~uc n L(P) ~ K

where K is the prefix closure of K. This is also stated that the language K is

controllable with respect to plant P and ~uc·

D.0.2 Supremal Controllable Sublanguage - Safety Guaran-

tee

Now suppose that the K we have formed is not controllable with respect to P, i.e.

K~u n L(P) rt_ K, then what is the largest sublanguage of K that is controllable?

This is known as the supremal controllable sublanguage, denoted as Ki0 . Define the

class of all controllable sublanguages of K:

Cin(K) = {L ~ K: L~u n L(P) ~ L}

The union of all controllable sublanguages must be the largest, or suprema! control­

lable sublanguage:

KTC := u L
LECin(K)

The goal of RW synthesis is to find an automaton that enforces Ki0 for a particular

plant. This automaton is known as the suprema! controllable sublanguage generator

(SCSG). The SCSG is the optimal controller for a particular plant and specification

since it disables the fewest number of events (most permissive) in the plant to ensure

the legal language (safety) is not violated. It is analogous to the 1-{00 controller of

the previous section in this sense being designed to handle the worst case and hence

guaranteeing safety.

253

D.0.3 lnfirnal Controllable Sublanguage- Performance Guar-

an tee

Defining the class of prefix-closed, controllable superlanguages:

Caut(K) = {L ~ ~* : (K ~ L ~ L(P)) 1\ (L = L) 1\ (L~uc n L(P) ~ L)}

The intimal controllable superlanguage is the intersection of all controllable superlan-

guages:

K 10 := n L
LECout(K)

If K represents the minimal required language of a plant as opposed to the maximum

legal behaviour, then the automaton that enforces Kl0 is the smallest (optimal) con­

troller that can be guarantees that the closed-loop system will meet this specification.

Optimal with respect to performance.

To summarize the relationship between each of the languages:

where

KT0 is the supremal controllable sublanguage,

K is the maximum legal language, or minimum performance,

K is the prefix closure of K,

Kl0 is the intimal prefix-closed controllable superlanguage,

L(P) is the plant language.

254

D.0.4 Nonblocking Controllability

A desirable feature of a supervisory controller is nonblocking behaviour, also known

as liveness. So in addition to the controllability condition on the legal language,

KL.,uc n L(P) <;; K, the legal language must also be non-blocking:

K = K n Lm(P)

That is, the controller should not able to "stop" execution at an unmarked state in

P. So the following is true of a nonblocking supervisor:

D.l

Lm(S/P)

L(S/P)

(Lm(P) n Lm(Hspec))TC

(Lm(P) n Lm(Hspec))TC

DES Controller Synthesis Software

Several software packages are available that implement the RW synthesis, including

TCT, OTCT and UMDES (University of Michigan DES library). The first package

was TCT, developed at the University of Toronto. A similar and related software

package is OTCT, which has a script-based interface as opposed to a menu-based

GUI. OTCT lends itself better to automated operation, since jobs are submitted in

as a batch using the scripting language. Automata are specified using a text file

description. Once read into the OTCT workspace, the automata are represented

as objects and can be manipulated with various functions. The three that shall be

considered here are:

• sync(x,y): forms the synchronous product of two argument objects, x and y,

• supfcBySync(x,y): computes the maximally permissive controller given the

plant,x, and the generator of the specification, y,

255

Room la

Room I
(cat)

Room 2
(Feeding Area)

Room 3a

Room 3

(mouse)

Figure D-5: Cat and mouse "toy" supervision problem, adapted from (Ramadge and
Wonham 1989).

• condat(c): computes the controller state feedback map for the controller c.

To illustrate RW synthesis, consider the simple example illustrated by Fig. D-5,

in which a cat and mouse share a house. Each animal starts in a separate room that

is accessible only to itself, but they share a common feeding area. The entrances

to the feeding area can be disabled by the controller (which is to be designed). If

the two animals occupy the feeding room (area 2) together, the cat will eat the

mouse. The specification is that the cat eating the mouse must be prevented in

a least restrictive way, i.e. the doors to the feeding area are disabled only when

they have to be. The cat executes events I:c = { o:1 , o:2 , o:3 , o:4 } and the mouse

executes I:m = {;31 , ;32 , ;33 , ;34}. Motion detectors provide information regarding the

movements of the animals between their anterooms (areas lA and 3A), and their

'home' areas (areas 1 and 3). Events a: 1, o:4, and ;31 , ;3 4 signify these moves by the

animals. Controllable transitions are o:2 and ;32, which are the events of the two

respective animals entering the common feeding room. The assumption is that the

gate can be disabled instantly (or, at the very least, before each animal acts). For

the time being, this appears to be a reasonable assumption, since a controller is

256

Mouse {33

Figure D-6: Cat and Mouse automata.

likely to be much faster than the physical surroundings. Events a 3 and (33 are the

events signifying the animals leaving the common feeding area. The diagram has

been transferred into functional automata in Fig. D-6. An additional event has been

added, r5, which can only be executed should both animals reach state 2 (the joint

feeding area).

By inspection of the synchronous product automaton (Fig. D.l), it is clear that

we want to avoid entering the product state (2,2). Linguistically speaking, this means

that we which to avoid any strings in the product language Lp, that lead to this state

or that end in a 6. The controller needs to trim this state, which can be done by

disabling the controllable transitions that lead to it, o:2 and (32 The controller for this

plant can be generated by running the supfcBySync procedure ion the synchronous

product of the plant and the specification (the specification is given in Fig. D-7).

The resulting controller is presented in Fig. D-8, indicating that the (2,2) state

has been trimmed. Running the condat function on the supervisor, results in the

following trace:

Control Data:

PLANT: [2,q_{2}]

257

alpha3

alpha4

alpha I

alpha2

alpha4

alpha3

alpha3

Plant formed from the synchronous product of cat and mouse automata.

Figure D-7: The specification indicates that the 6 event must be excluded since it takes the
system away from a marked state.

SUPER: [[2' $q_ {2}$] '1]

DELAY: $\beta _{2}$

PLANT: [$q_ {2}$ '2]

SUPER: [[$q_ {2}$' 2] ' 1]

DELAY: $\alpha _{2}$

A program could be constructed to implement this controller, assuming that the

state of the plant can be observed at all times, based on the controller map:

begin control{

if plant_state = [2,q_{2}] then disable $\beta _{2}$;

if plant_state = [q_{2},2] then disable $\alpha _{2}$;

}end control

D .1.1 Timed Discrete Event Models

RW supervisory synthesis theory was extended by O'Young and Brandin and Won­

ham (Brandin and Wonham 1992) by applying the same techniques to timed finite

state automata or timed transition model (TTM). While the pure DES model has

the system dynamics completely abstracted, this extension allows for some of the

dynamics of the modeled system to be included, since time has been added. Fig. D-9

shows a TTM version of the cat automaton of the previous section (p. 256). The

notation a 2 [2, oo] means that the a 2 event is only admitted only after 2 time periods

('ticks') have transpired. So in this example, the cat must stay at state q2 at least

2 ticks before the a 2 transition can be taken to state 2. The FSM equivalent of this

259

Figure D-8: Supervisor for the Cat/Mouse system that enforces mutual exclusion m a
maximally permissive (optimal) sense.

260

Figure D-9: A TTM model of the cat automaton.

alphnl

Figure D-10: DES equivalent model of cat of timed automaton.

timed discrete model is shown in Fig. D-10. The equivalent is produced by adding

states to delay timed transitions by the appropriate number of ticks. State labeling

for these added states is derived from the transition name and the number of ticks

that have occurred. States that do not have timed transitions leading from them must

be self-looped with tick transitions to prevent blocking with the passage of time.

This extension to FSMs is a simple way of incorporating timing in a DES model.

DES system can be comprised of a combination of FSMs and TTMs easily by self­

looping states in FSMs with tick events. Due to the added states for the timed

transitions, such models tend to have many more states than simple FSM models.

Care must be taken to only use timed transitions when necessary, to reduce model

complexity.

261

Hybrid System Modeling

E.l Hybrid Automata

Hybrid system modeling is a formal method of modeling that attempts to capture

both the discrete and continuous properties of a system. The state of a hybrid system

having n real variables and m boolean variables at any moment in time corresponds

to a point in the state space of the system JR. x lffi. The ideal hybrid model allows the

dynamics of a model to change in a discrete fashion, so as to model the failure of a

component or a sudden switch in operating points of a system. The hybrid automaton

(Fig. E-1) was proposed as a model of such a hybrid system.

Definition E.l.l A hybrid automaton model is an eight-tuple:

H = (X, L, T, F, inv, jump, L.:, init)

loc1

I nit

event1
(oc2

jump1 --· invariant1 invanant2

event1
flow1 jump1 flow2

Figure E-1: A hybrid automaton.

262

where:

X is a finite set of n continuous variables in IR, X= {xi, x2, ... Xn}

Lis a finite set of j locations (states), L = {luc1, luc2, ... lucj}

T is a finite set of discrete jumps between locations

F is the set of flow conditions

inv is a labeling function that assigns an invariant at each location. An invariant is

a flow constraint used to force a transition to another state.

jump is a labeling function that is attached to each jump

~ is a finite set of synchronizing events

init is a labeling function assigning an initial condition at each location.

The flow conditions describe how the continuous variables evolve through time.

Ideally, these could take on the usual differential equation form of x = f (x, t), however

such a flow condition is not feasible for algorithmic verification, since it has been

shown to be undecidable. If the flow conditions are changed to constant rate; i.e.

x = a, then the verification is semidecidable. A hybrid automaton having such

constant-rate flow conditions is known as a linear hybrid automaton (LHA).

At least one software tool exists for conducting automated analysis and verification

of hybrid systems, called HyTech (Henzinger et al. 1997). Systems described by

LHA's can be verified for correctness against some specification that is a combination

of discrete and continuous conditions. Traces of the path to the correct (or incorrect)

system state can be generated by either reaching forward or backward. Additionally,

one powerful tool is the ability to parameterize invariant conditions, a useful design

tool.

263

HySynth: Hybrid Control Synthesis

Software Package

F.l Introduction

The HYSYNTH software package was developed to implement the concepts that have

been set forth in this thesis. HYSYNTH is an object-oriented package that allows for

hybrid system modeling and controller synthesis, hence the name HY (for Hybrid)

and SYNTH (for Controller Synthesis). The package allows for the modeling and syn­

thesis of controllers using a combination of SC models and FS models. HYSYNTH

was developed within the Mathworks' Matlab environment, thus allowing it to take

advantage of the numerous ODE solvers and the many other toolboxes that are avail­

able to Matlab users. This permits a designer the flexibility to embed existing Matlab

simulations within the switched continuous model framework.

F.2 Brief Overview

The HYSYNTH package has been developed using the object-oriented features of Mat­

lab. A number of objects are available for constructing hybrid models, and various

264

commands are available to manipulate models and to synthesize and simulate con­

trollers. The methods associated with each object extend the basic functionality of

Matlab script. Application examples of HYSYNTH are detailed in Chapter 7.

F.2.1 Objects

The modeling objects are:

fsm This is the basic DES building block, the finite state automaton model. An

fsm object can be constructed graphically by the JFLAP CUI and stored to an

XML file. The constructor method is then invoked to instantiate the object;

e.g. m1=fsm('m1. xml');. Once created, the object is referred to by its variable

name, m1. Alternatively, the finite state machine object can be created pro­

grammatically by defining the various sets: the state set, event set, transition

function, and so on.

scm The basic switched continuous system model. Currently no GUI has been de­

signed for the scm object, so it must be constructed using a Matlab script. The

user defines a set of continuous dynamics, as Matlab function handles, which

point to the desired continuous system models. The continuous systems are cap­

tured as Matlab functions in the form of a generalized nonlinear time-varying

differential equation; i.e. i; = f(x, t, params). A corresponding set of input

event labels should be defined, one label for each continuous system model.

Partitioning functionals are defined via an event function that implements the

event detection in conjunction with the Matlab ODE solvers. For each partition,

a set of output event labels must be defined.

product The synchronous product object, a hierarchical object made up of fsm, scm

or other product objects. For example, given a pair of existing FSM objects,

m1 and m2, the product constructor function is used as follows to create their

product: p1 = product (m1 ,m2).

265

The state objects are:

fini teState The finite state object, a finite state label, a Matlab string.

ctsState The continuou::> ::>tate object, storage of continuou::; (state) variable::; x E 1Ft",

a Matlab double vector.

pstate The product state object. A hierarchical object, made up of two or more

fini teState, ctsState, or other pstate objects.

F.2.2 Commands

Once a system model has been constructed, various methods are available to modify

it, analyze it, and to view its structure. This section contains a partial listing of

commands that a user needs to create a controller structure.

Commands that apply to fsm objects only:

addEvents adds the argument list of events to the event set

markAll mark all of the states as ESD states.

unMarkAll unmark all ESD states.

addEvents adds the argument list of events to the event set

Commands common to all modeling objects:

initial returns the initial state of a system model

printAsDot print the argument object as a Graphviz format file in .dot format to

the argument filename.

printAsPs print the argument object as an Adobe PostScript format file to the ar­

gument filename.

266

printAsPDF print the argument object as an Adobe PDF format file to the argument

filename.

printAs*WithEvents print limited event lookahead (reachability) of the argument

object to the argument filename. Prints to one of three file formats, replace

wildcard * with one of Dot, Ps or PDF.

printAs*WithTime print limited time lookahead (reachability) of the argument ob­

ject to the argument filename. Prints to one of three file formats, replace wild­

card * with one of Dot, Ps or PDF.

simulate given an argument input event, performs a prediction until the next choice

point.

267

