

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-33436-2
Our file Notre reference
ISBN: 978-0-494-33436-2

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par !'Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

ST. JOHN'S

Computational Magnetic Thin Film Dynamics

by

©Jason I. Mercer
BScCS (University of New Brunswick)

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of
Masters of Computational Science.

Department of Computational Sciences
Memorial University of Newfoundland

October 3, 2007

NEWFOUNDLAND

Contents

Abstract

Acknowledgements

List of Tables

List of Figures

1 Introduction

1.1 Outline

2 Physics

2.1 Magnetic Model .

2.2 Effective Field . .

2.3 Boundary Conditions

2.4 Static Spin Configuration Energies

2.5 Dynamics

2.5.1 LLG Equation

11

vii

viii

ix

xii

1

2

3

3

4

5

7

8

9

2.6 Langevin Field

2.7 Summary

3 Algorithm

3.1 Calculating Effective Fields .

3.1.1 Calculation of the Dipolar Fields .

3.1.2 Summation in Reciprocal Space

3.2 Computing the Interaction Matrix ...

3.2.1 Explicit Interaction Matrix Summation

3.2.2 Interaction Matrix via Ewald Summation

3.3 Langevin Field

3.4 Calculating Spin Evolution

3.5 Integration Through Time.

3.6 Conclusion

4 Parallelism

4.1 Parallel Design Patterns .

4.1.1 Functional Decomposition

4.1.2 Domain Decomposition

4.2 Applying Parallel Concepts .

4.3 Fourier Transform Revisited

4.4 Evaluating Groups of FFTs in Parallel

4.4.1 Fine Grained Parallelism . .

4.4.2 Coarse Grained Parallelism .

iii

11

12

16

17

17

19

20

20

21

22

24

31

34

37

37

38

38

39

43

47

48

49

4.4.3 Hybrid Parallelism 49

4.4.4 Remarks 54

4.5 Speedup .. 54

4.6 Conclusion 57

5 Implementing a Parallel Solution 61

5.1 Requirements of a Parallel Library 61

5.1.1 Low Latency 0 0 • 0 62

5.1.2 Topologically Aware 62

5.2 Parallel Options . 63

5.2.1 MPI ... 64

5.2.2 OpenMP 64

5.2.3 shm_utils 65

5.3 Process Synchronization 66

5.3.1 Synchronization Concepts 67

5.3.2 Semaphore Based Barriers 69

5.3.3 Shared Memory Barrier I . 72

5.3.4 Shared Memory Barrier II 74

5.3.5 Comparison of Barriers . . 76

5.4 Interacting with Real-time Simulations . 77

5.5 Conclusion 0 ••• 0 0 0 0 ••••••• 78

6 Data Management, Analysis and Visualization Tools 80

6.1 Data Management . 81
IV

602 System Energy

6.3 Visualization Methods

6.301 SDL/OpenGL o

60302 POV-Ray

6.4 Conclusion 0 0 0

7 Simulation Examples

701 Relaxation in 2D systems 0

85

87

87

88

89

92

92

7 01.1 Relaxation through annihilation of Type ± 1 Singularities 0 0 100

702 Bulk Structures

70201 Simulation Parameters

70202 Results 0 0

702.3 Discussion

7.3 Non-Square Lattices

7.301 Simulation Parameters

70302 Results 0 0

7.3.3 Discussion

7.4 Conclusion

8 Summary

A Static Energy Calculations

A.1 Dipole-Dipole Energy 0

A.1o1 Isotropic Self Interaction

A.1o2 Anisotropic S~lf Interaction

v

0 104

0 104

0 106

0 106

0 108

0 109

0 109

0 111

0 111

112

115

0 116

0 117

0 120

A.l.3 Isotropic General Interaction . . . 123

A.l.4 Anisotropic General Interaction . 124

A.2 Exchange Energy . . 125

A.3 Aniotropy Energy . . 126

B shm_utils 127

B.l SHM_Comm . 127

B.2 Initialization . . 129

B.3 WorkGroups . 129

B.4 Shared Memory . 130

B.5 Explicit Interprocess Communication 132

B.6 Synchronization . . 133

B.7 Cleanup 133

B.7.1 External Cleanup . 133

B.8 Sample Application 134

vi

Abstract

A numerical solution to the Landau-Lifshitz-Glibert (LLG) equation describing the dynam

ics of a set of interacting classical spins on multilayered geometries has been developed.

This implementation has been parallelized using a set of custom developed shared memory

utilities. Algebraic and computational optimizations have been devised and implemented

which allow both high precision batch mode simulations and lower precision real-time in

teraction across networks.

vii

Acknowledgements

I'm happy to be able to thank the people who have made this thesis possible.

Firstly, I thank my Supervisor, Dr. John Whitehead. His gentle assurance that physics

was OK, there's a bug in the code and his seemingly limitless patience allowed me to

explore wide avenues of physics, mathematics and computer science along the path to this

work.

Dr. Keith De'Bell deserves recognition for introducing me to this field and providing a

similar research environment and I thank him for that.

My fellow graduate students and friends provided a constant source of welcomed dis

tractions and constructive conversations. It would have been a dry graduate program with

out them.

Finally, my family has an awful lot to do with we me being here today. Many thanks to

my Mom and Dad, Alberta and Paul Mercer and my sister, Danielle Goguen.

Vlll

List of Tables

2.1 Energies of static configurations

2.2 Energies of static configurations (continued) .

14

15

4.1 Average execution time in milliseconds (10-3s) per iteration 40

4.2 Average execution time in microseconds (10-6s) per iteration per lattice site 40

4.3 Ratios (percent) of task times 41

4.4 Parallel Execution times for 256x256 FFTs on the SGI Altix 350 48

5.1 Comparison of various barrier implementations 76

6.1 Sample datafile

6.2 Header identifiers and corresponding elements .

IX

82

84

List of Figures

2.1 Replicated Spin Systems 6

3.1 OOMMF Spin update section (grid.cc, lines 1917-1924) 25

3.2 This illustrates how the conventional update fails for a spin precessing in a

field. The final position no longer traces the expected circular path. . 26

3.3 Energy results from OOMMF for two values of damping 28

3.4 This illustrates how a quatemion based update results in a spin correctly

precessing in a field. The final position continues to trace the expected

circular path.

3.5 Adaptive Timestep Schematic

3.6 Quatemion Based Rotations (magsim.c, lines 793-811)

4.1 Schematic of an FFT of 8 data points . .

4.2 Schematic of an FFT of 8x8 data points

4.3 Fine Grain Parallel FFT Execution . .

4.4 Coarse Grain Parallel FFT Execution .

4.5 Hybrid Parallel FFT Execution .

X

31

35

36

46

47

49

49

50

4.6 Heterogeneous topology visible in parallel FFT execution times from data

in Table 4.4 . . .

4. 7 Parallel Pipelines

4.8 Pipeline Detail .

4.9 Simulation Speedup, Fine Grain FFT method

4.10 Simulation Speedup, Hybrid FFT method

4.11 Speedup by Section, 64x64 . .

4.12 Speedup by Section, 128x128.

4.13 Speedup by Section, 256x256 .

4.14 Speedup by Section, 512x512.

51

52

54

55

57

58

58

59

59

6.1 Four samples of display options using sdlglspin for a single frame of data 91

7.1 These figures show the two classifications of disorder 93

7.2 Classification of Topological Singularities

7.3 Singularity energy averaged over unit cell. J=3.0, g=2.0.

7.4 Checkerboard arrangement of singularities

7.5 Singularity pair configurations with a fixed low energy Type + 1 .

7.6 Singularity pair configurations with a fixed high energy Type + 1

7.7 Local energy well of a singularity in a unit cell .

7.8 Poincare Indices of example spin configurations .

7.9 Time-Average Energy above Groundstate plot of two singularities annihi-

94

95

96

97

97

98

. 100

lating . 101

7.10 Space-Time Plot of singularity creation, evolution and annihilation. . . 102

xi

7.11 LatticeX-Time Plot. . . 103

7.12 LatticeY-Time Plot. . . 104

7.13 LatticeX-LatticeY Plot. . 105

7.14 Sample renderings of multilayer data using POV-Ray and sdlglspin . . 107

7.15 Honeycomb Simulation Snapshots (g= 0.5) 110

xii

Chapter 1

Introduction

In this thesis we describe the development of methods to simulate the dynamics of lattice

based thin film magnetic systems using the Landau-Lifshitz-Gilbert (LLG) formulation

which can take advantage of multiprocessor shared memory architectures. The simulated

system consists of magnetic moments interacting via both exchange and dipolar fields and

subject to surface anisotropy, external applied fields and perturbations derived from finite

temperature effects.

While the LLG method has been extensively studied and widely implemented, this the-

sis presents a number of mathematical and computational improvements which will allow

us to simulate larger systems over longer times than was previously feasible. This is im

portant as it allows us to look at systems with mesoscopic magnetic structures such as the

striped systems studied by Booth et. al.[2]. To study such systems we require very large

lattices to minimize the influence of commensurate effects imposed by the boundary con-

ditions on finite lattices and to study the behaviour of the system close to phase boundaries.

1

CHAPTER 1. INTRODUCTION 2

1.1 Outline

In Chapter 2, the physical model which we simulate is described. This model includes

the structure of the lattice, boundary conditions, energies and interactions of the spins.

The differential equation used to describe the evolution of the magnetic moments is also

analyzed.

In Chapter 3, the details of the numerical integration technique is presented and dis

cussed. The two main topics are the evaluation of the long range dipolar interaction and

selecting a numerical integration method which best suits the dynamics.

Chapters 4 and 5 investigate problems and present solutions to implementing the nu

merical simulation in a parallel environment. Methods to parallelize the calculation of the

dipolar interaction, optimally execute a group of parallel tasks and a discussion regarding

the synchronization routines are included in these chapters.

Techniques for managing and analyzing the data produced by our simulation are pre

sented in Chapter 6. Included in that chapter are methods for reading various datafiles in a

convenient manner and visualizing the data.

Chapter 7 presents several demonstrations of the suite of simulation, analysis and visu

alization tools.

Chapter 2

Physics

2.1 Magnetic Model

In this thesis we model two dimensional magnetic systems as an array of classical spins

on a lattice. The spins are represented by vectors of fixed length which, without loss of

generality, we assume is unity. We restrict our considerations to square lattices, however

these methods have been generalized to other lattice structures. The dynamics of the spins

are determined by four interactions: exchange, dipolar, surface anisotropy and external

applied fields. The energy of the spin systems is therefore written as

(2.1)

where E1 , Ed, Ek, Ez represent the energies of the exchange interaction, dipolar interaction,

surface anisotropy and applied field respectively.

Denoting a spin configuration of a lattice of N spins as {cri}. where cri is the vector

describing the direction of the i1h spin <lcrl = I), we may write each of these terms as

3

CHAPTER 2. PHYSICS

follows

Ez =- [.ai ·Hf,
i

4

(2.2)

(2.3)

(2.4)

(2.5)

where the angled brackets denote nearest neighbours, the prime on the summation excludes

i = j, fii defines the easy axis at site i and rij is the vector describing the displacement

between sites i and j. Hf is the applied field or Zeeman field at lattice site i. The origin of

each of these terms is discussed in a number of standard texts on the subject [19][20][24].

2.2 Effective Field

The effective field, iitff, is the negative functional derivative of the sum of the above en

ergies. Simply stated, the effective field at site i is the sum of all fields from interacting

spins and the external field. Each energy listed above has an associated field such that

iif = -a£11 ;aaj. Explicitly these are

_,] ~--Hi =J LJaj (2.6)
(i,j)

(2.7)

(2.8)

CHAPTER 2. PHYSICS 5

which are the exchange interaction, dipolar interaction and surface anisotropy at lattice site

i. The energy terms may then be rewritten as

(2.9)

(2.10)

(2.11)

~-- --£Z = i..J(Ji ·Hf. (2.12)
i

The total system energy may therefore be written as

(2.13)

with

fr~ff = if! + ii~ + fi!'- + ii~
I I I I I" (2.14)

These effective fields play a role in the evaluation of the spin dynamics and allow us to

define a "local" magnetic energy density

(2.15)

This quantity will prove useful in the analysis of non-equilibrium, particularly metastable,

spin configurations.

2.3 Boundary Conditions

Ideally we would like to consider infinite lattices, however in simulations we are restricted

to configurations of finite size. In order to minimize the effects of boundaries we consider

CHAPTER 2. PHYSICS 6

finite lattices but impose periodic boundary conditions. While the introduction of periodic

boundary conditions is relatively straightforward for the exchange and surface anisotropy,

the long range nature of the dipolar interaction requires more care. This care is required

since the dipolar interaction is a sum over all spins which, under these boundary conditions,

is now defined as a sum over all displaced replicas of spins.

To properly account for the dipolar interaction we consider an infinite lattice made up

of T equivalent L x L tiles as shown in Figure 2.1. This figure depicts a finite sized spin

~""""~· 4 ~ A A ' ~~~, \o A .4 4 .f <t
., ~~··4-l.,f.,f.,f .,.,.,.,.., ,~",..,....,., .,....,..,....,..,... , ,....,.,., .,....,.,..,...,,... ,.....,....,....,...,
.,..,..,....,....,....,....,,...,.....,.,_.
..,.,.,..,...,.,.,.,.,.,4 ••• 4

~"" ,.(~ ... ,~~
.,f-l444 .. ~ .,.,.,.,.., ~ .,.....,.,.,,...,..,.,.,..,,...,..,..,...,..,...,.., ..,..,..,.,.,.,.,

Figure 2.1: Replicated Spin Systems

system in black with tiled replicas on all sides, these replicas conceptually extend infinitely.

Thus we consider the subset of spin configurations on an infinite lattice that satisfies the

following periodicity

cr(x,y) = cr(x+mL,y+nL), (2.16)

CHAPTER 2. PHYSICS 7

where m and n are integers. This allows us to write the effective field due to the dipolar

interaction defined by Equation 2. 7 as the sum over a cell of LxL spins as

Hf = E~Jo-j, (2.17)
j

with

(2.18)

r= (x+iL,y+ jL). (2.19)

Where the Greek variables a and 13 are meant to represent combinations of Cartesian co-

ordinates. These sums may be calculated exactly using Ewald Summation Techniques[15]

or by direct summation. While the Ewald Summation method allows us to extract im

portant features of the interaction analytically, direct summation is sufficiently precise for

numerical calculations as long as the periodicity is in no more than two dimensions.

2.4 Static Spin Configuration Energies

In Tables 2.1 and 2.2, list at the end of this chapter, we present the energies for various

spin configurations calculated using the methods outlined above. These analytical calcu

lations agree with similar results presented in [8] and will serve as an important check for

work presented later in this thesis. In this table, the subscripts x, y and z are the Cartesian

coordinates of the spin with z being perpendicular to the plane. Lattice indexes i and j

count in the .X andy directions. The results obtained in Tables 2.1 and 2.2 illustrate a num-

ber of interesting features regarding the nature of the interaction and of the particular spin

configurations.

CHAPTER 2. PHYSICS 8

1. The anisotropic nature of the dipolar interaction gives rise to a difference in energy

between the planar and uniaxial spin configurations for both the antiferromagnetic

and ferromagnetic cases. In the case of the ferromagnetic configuration, it favours

the in plane orientation while the out of plane (uniaxial) orientation is preferred in

the antiferromagnetic configuration.

2. The planar ferromagnetic configuration and the planar antiferromagnetic configura

tion are degenerate under both exchange and dipolar interactions. Indeed, calcula

tions show that these spin configurations belong to a continuously degenerate mani

fold of states.

Both of these properties have an important bearing on the equilibrium and non-equilibrium

properties of these systems.

2.5 Dynamics

The main thrust of this thesis is how we can evaluate the evolution of a lattice of interacting

spins. The principle approach to the study of spin dynamics employs the so called Landau

Lifshitz-Gilbert (LLG) equation. The effects of temperature are usually included through a

stochastic applied field. In order to understand the origins of the LLG equation we consider

first the case of a single spin in an applied, possibly time dependent, field and include the

effects of damping through a linear dissipative term. This may be readily generalized to

include a lattice of interacting spins by replacing the applied field with the effective field

defined in equation 2.14. The effects of temperature are realized with the inclusion of a

Langevin forcing function.

CHAPTER 2. PHYSICS 9

2.5.1 LLG Equation

The system dynamics may be described by considering a single magnetic moment, cr in an

external magnetic field ii. The angular momentum of the magnetic moment is given by

... o-
L=-

'Y
(2.20)

where y < 0 is the gyromagnetic ratio. The torque on the spin due to the magnetic field is

given as

(2.21)

The rate of change in angular momentum is therefore given by

da
dt = -ycr X H, (2.22)

which is the undamped Landau-Lifshitz equation.

In the case of constant field di = 0) this equation describes the precession of a spin

around an axis parallel to the direction of the applied field. It is straightforward to show

that in a constant field the energy of the spin is also constant.

A more realistic model of a spin interaction is obtained by adding damping. Landau

and Lifshitz achieved this by adding a torque perpendicular to the direction of precession

which was scaled by the phenomenological constant A. > 0 which results in

dcr 'I...)
dt = -ycr X H -~~,a X (a X H . (2.23)

Gilbert proposed a different approach[13] which modeled the damping after a viscous force

of the form

... dcr
a.ax

dt'
(2.24)

CHAPTER 2. PHYSICS 10

were a is the Gilbert damping constant. Replacing Landau and Lifshitz's damping term

with Gilbert's dissipative expression yields

dcr _ - _ dcr
- = -"{0 X H + acr X -d .
dt t

(2.25)

Solving for ~~, we arrive at the explicit form

dcr r _ - ra _ (- -) - = ---axH- ax axH
dt l+a2 (l+a2)

(2.26)

which is the Landau-Lifshitz-Gilbert equation. The addition of the dissipative term to the

Landau-Lifshitz equation both slows the precession and gradually aligns the spin with the

field.

There are several important features to note in Equation 2.26. The first is that the dot

product of a and the equation is zero[33].

expanding the left hand side we get

or

~dlcrl2 =o
2 dt '

(2.27)

(2.28)

(2.29)

which shows that the length of the spin does not change over time. The dynamics described

by the LLG Equation preserve spin length. This is a key consequence which we will revisit

in a later section.

Secondly, we can show that d(cr ·H)/ dt is zero when a is zero

d(a .fi)

dt
0:=0

_ dti - da
=0"·-+H·-

dt dt'
(2.30)

CHAPTER 2. PHYSICS 11

since we have defined energy as cr · fi and we are considering a constant field(~~ = 0) we

write

dE

dt
a=O

.... dcr
=H·-.

dt

Using the definition of~~ from Equation 2.26 with zero damping

dE

dt
.... ("""') = "(H. (J X H = 0

(2.31)

(2.32)

which states that, with damping set to zero, the energy will not change over time. As with

the previous result, we will explore this in a later section.

2.6 Langevin Field

We have alluded to the presence of a thermal field but have yet to define its source or

properties. This field is derived from environmental microscopic degrees of freedom such

as phonons, conducting electrons or nuclear spin[l2] and drives each magnetic moment

along a Brownian-type rotation. The inclusion of the thermal field allows the system to

escape from local energy minima and can aide in the relaxation process. Neel[30] first

proposed this process in 1949 and latter Brown[4] further developed the concept by looking

at it as a stochastic process.

We will implement the stochastic system as described by the Brown-Kubo-Hashitsume

model. This model augments the effective field, fieff, with a thermal field, flth. We

re-express the Landau-Lifshitz-Gilbert equation as the stochastic Landau-Lifshitz-Gilbert

equation

dcr r """'th ra ("""' (.... """'th))
dt = (l+a.Z)crx (H+H)+ (l+a.Z)crx crx H+H . (2.33)

CHAPTER 2. PHYSICS

The shape of the random thermal field is described by[12]

12

(2.34)

(2.35)

for lattice sites i and j at times t and t + M. This definition states that there is no correlation

in the field across sites or in time and that the time averaged fluctuations at a particular site

is zero. The amplitude of the fluctuating field for use in the LLG equation follows from the

fluctuation-dissipation theorem [32]

D __ a_kBT
LLG - 1 + a2 "(.

for temperature T, since the Neel time is

and

'CN = _!_jcrj2ykBT,
a

1 n-.2 2 - = 21/y (1 +a).
'CN

Therefore, we define the Langevin field as

(2.36)

(2.37)

(2.38)

(2.39)

with TJ representing the normal distribution with mean zero and standard deviation 1 and

M as the discrete time step.

2.7 Summary

This chapter describes the physical model that we wish to analyze. The energies and

their associated effective fields have been given, we have proposed a method to minimize

CHAPTER 2. PHYSICS 13

edge effects by imposing periodic boundary conditions and we have derived the differen

tial equation which describes the time dependant dynamics of the system. A comparison

with energies that have been analytically calculated for some important spin configurations

provides both a reference and a check for computations in later sections.

In the next chapter we will discuss implementation considerations and present methods

to manage the complications which arise from the interactions and the differential equation.

CHAPTER 2. PHYSICS 14

System Configuration EJ Ed EK

O"x = 1

Planar Ferromagnet O"y =0 -2.01 -4.5168g OK

O"z = 0

-v1 O"x- 2

Planar Ferromagnet -v1 O"y- 2 -2.01 -4.5168g OK

O"z = 0

-v1 O"x- 2

Canted Ferromagnet O"y = 0 -2.01 2.2584g -0.5K

-v1 O"z- 2

O"x =0

Uniaxial Ferromagnet O"y =0 -2.01 9.0336g -lK

O"z = 1

O"x = -1i+j

Planar Antiferromagnet O"y = 0 2.01 1.3229g OK

(AA) phase O"z = 0

Table 2.1: Energies of static configurations

CHAPTER 2. PHYSICS 15

System Configuration EJ Ed EK

O"x=-1j

Planar Antiferromagnet O"y = 0 OJ -5.0989g OK

(AF) collinear phase O"z = 0

If . O"x= (-1)1

Planar Antiferromagnet [!· O"y = (-1)' OJ -5.0989g OK

Microvortex phase O"z = 0

O"x = 0

Uniaxial Antiferromagnet O"y =0 2.0J -2.6459g -lK

(AA) phase O"z = -1i+j

O"x = 0

Uniaxial Antiferromagnet O"y =0 OJ -0.9355g -lK

(AF) phase O"z = -1j

Table 2.2: Energies of static configurations (continued)

Chapter 3

Algorithm

The LLG Equation, given in Equation 2.26, is very difficult to solve numerically. There are

essentially three distinct aspects to the problem.:

• How do we accurately and efficiently compute the effective fields from a given spin

configuration?

• How do we compute the evolution of a spin given the effective field at a particular

site?

• How do we combine the above processes into an algorithm that is accurate, efficient

and stable to determine the evolution of the entire lattice from a given set of initial

conditions?

We will discuss each of these aspects of the numerical solution separately.

16

CHAPTER 3. ALGORITHM 17

3.1 Calculating Effective Fields

As described in Chapter 2, the effective field fieff is comprised of the sum of six sep-

arate terms. Three of these arise as a consequence of the interactions contained in the

Hamiltonian for the model: the exchange interaction, the dipolar interaction and the sur

face anisotropy. The other three terms consist of the applied external field, the damping

field and, in the finite temperature case, the Langevin Field.

The expressions for five of these fields are given by equations 2.6, 2. 7, 2.8, 2.39 and the

Zeeman field. The sixth, the damping field, is defined by the LLG Equation and expressed

in terms of the effective field. The applied field, the field due to the surface anisotropy and

the exchange can all be readily calculated at each site for an arbitrary spin configuration.

The computation of the dipolar and Langevin fields require somewhat more thought.

The key to calculating the dipolar part of the effective field is to recall that we are

dealing with a finite lattice with periodic boundary conditions. There are three methods

available to us to calculate the dipolar field: explicit summation over replicated lattices,

precomputed summations and precomputed summations in reciprocal space. The precom-

puted summations can be performed using one of two different methods.

3.1.1 Calculation of the Dipolar Fields

The dipolar field is given by Equation 2. 7 as

(3.1)

This equation states that the dipolar field, fid at site i has contributions from every other

site in the system. Imposing periodic boundary conditions greatly simplifies the evaluation

CHAPTER 3. ALGORITHM 18

of ii.f. Since we are dealing with replicated lattices, the spin at site { i, j} is the same as the

spin at site { i + aL, j + bL} and so we can factor this spin out of the summation. We can

define the dipolar field at site i as the contribution from every other spin on the lattice and

each of their replicas plus the contribution from the replicas of spin i itself. The dipolar

field at site i due to site j is

(3.2)

where R are the original and replicated lattices, Rij is the distance between site i on the

original lattice and site jon the replicated lattice Rand the prime on the summation imposes

the condition that R i= 0 if i = j. Factoring out cr j makes this expression independent of the

spin configuration

(3.3)

with Greek letters denoting Cartesian components. Using Einstein notation and replacing

the inner summation and it's expression with rfJ such that

(3.4)

we can write the effective dipolar field at site i due to the spin at site j and its replicas as

(3.5)

The dipolar field at site i from all other sites is therefore given by

(Hf)'x = g Ef":Jcr~ · (3.6)
j

CHAPTER 3. ALGORITHM 19

3.1.2 Summation in Reciprocal Space

While the interaction matrix lij defined by Equation 3.4 may be computed and stored as

a look-up table, the evaluation of the dipolar field by Equation 3.6 is of O(N2) and as

such becomes computationally expensive when scaled to larger systems. A more sensible

approach is to define the Discrete Fourier Transform (DFT) for both the spin variables,

effective field and interaction matrix as follows

and the inverses as

N-1 N-1
cr(qx,qy) = E E cr(rx,ry)e-i21t(qxrx+qyry);{,

rx=Ory=O

N-1 N-I
H(qx,qy) = L L H(rx,ry)e-i21t(qxrx+qyry)~

rx=Ory=O

N-IN-I
['a~(qx,qy) = L L rct~(rx,ry)e-i2n(qxrx+qyry);{,

rx=Ory=O

1 N-1 N-I
cr(rx,ry) = N2 E E cr(qx,qy)ei2n(qxrx+qyry)k

qx=Oqy=O

1 N-1 N-I
H(r r) - _ ~ ~ H(q q)ei2n(qxrx+qyry)~

Xl y - N2 LJ LJ Xl y
qx=Oqy=O

1 N-1 N-1
rct~(rx,ry) = N2 L L rct~(qx,qy)ei2n:(qxrx+qyry)~

qx=Oqy=O

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

It is straightforward to show that the O(N2) operation in real space is now an order O(N)

convolution in reciprocal space

(3.13)

Realizing that the evaluation of cr(ij) from cr('r) and the evaluation of H ("r) from H (q) using

the DFT method both scale as O(Nlog(N)) suggests that it would be easier to calculate the

CHAPTER 3. ALGORITHM 20

dipolar fields by DFrs. The actual savings over the previous method depends on system

size and DFT method but using standard FFT packages results calculations completing in

1/50th the time for a 32x32 system. Moving to larger systems results in a greater savings

since this method scales more efficiently than the order O(N2) method. While in principle

smaller systems minimize these savings, in practise we find that it is only for a 2x2 that the

real space calculation is faster than the reciprocal space method.

3.2 Computing the Interaction Matrix

The precomputed interaction matrices are system size dependent. A 32 x 32 rxx matrix can

not be used in a 1024 x 1024 system but since each matrix is configuration independent,

a single matrix can be reused for all calculations at a defined system dimension. Since a

matrix is reusable, it has a one time cost of construction and so an optimal computation

method is not essential. We will first look at the method which parallels the Explicit Sum

mation of Dipolar Fields and then explore a faster method using the Ewald Summation

Technique.

3.2.1 Explicit Interaction Matrix Summation

The easiest way to compute Equation 3.4 is a direct summation. We may truncate the

summation to a radial distance of 10-'1 sites1• Furthermore, some of the matrices will be

zero when we consider single layer problems, these matrices are the pz and pz matrices.

1This truncation is permissible as we are dealing with 64 bit floating point values, which have approx
imately 16 decimal digits in the mantissa, and the longest range component of the dipolar field rolls off as
1

;:!

CHAPTER 3. ALGORITHM 21

Counting FLOPs required to compute the cases when a. = 13 yields 11 operations and 7

operations when a. -=f-13. Summing out to a radial distance of 10¥ results in 1.7 x 109 total

FLOPs per matrix element for a 32 x 32 matrix at a. = 13 and 1.1 x 109 FLOPs per matrix

element when a. -=1- 13. Calculating the full interaction matrices for p:x' rxy' p>Y and rzz totals

6.3 x 1012 FLOPs. Using computing resources running at 10 GFLOPS, this operation will

take on the order of 10 minutes.

3.2.2 Interaction Matrix via Ewald Summation

The key to an improvement in runtime lies again in reciprocal space. Using the Ewald

Summation method, we can deal with each term in 3.4 separately and divide each into

two summations, one in real space, the other in reciprocal space. Appendix A describes

this method in detail. For more information, Lo and Yu [25] present the summation in a

concise manner.

Again, a precise estimate of the FLOPs required to evaluate the Ewald summation is

dependent on the FFT method. As for the extent of the summation, Macisaac [26] states

that a summation over 5 replicated systems seems to give adequate convergence. If we

double this to 10 replicated systems we still have a four order of magnitude savings over

the explicit summation. More work has to be done at each summation step, but a runtime

totalling 1/ 50th that of the above is a very conservative estimate. Generating the interaction

matrices using Ewald Summation can be accomplished in seconds.

While this method is clearly faster than the previous, it is more complex both conceptu

ally and in its implementation. There is a definite saving in time, but since this is a one time

cost for all simulations at a given system size, this saving is negligible. Also, this method

CHAPTER 3. ALGORITHM 22

is mathematically challenging and presents obstacles when attempting to simulate lattice

structures with unit cells which are not square. Triangular lattices, for example, can be sim

ulated using explicit precomputed interaction matrices with only a trivial modification to

the method. For ease of use and flexibility, we have decided to use the Explicit Summation

method in our calculation of the interaction matrices.

3.3 Langevin Field

The calculation of the Langevin Field involves one of the more important aspects of mod

ern computer science, namely, pseudo-random number generation. Poor quality pseudo

random number generators (PRNG) can lead to systematic errors in simulations[ll]. These

errors can manifest themselves as inappropriate specific heat for a given noise value or dy

namics with discernible cycles induced by the random values.

The field of cryptology has provided a host of new tools to use as sources of pseudo

random number generators. These tools supply sequences of random numbers of a quality

much higher than is traditionally needed for physical simulations. The well known RAN

LUX PRNG provides various luxury levels as tradeoffs between throughput and quality.

While RANLUX is a standard in physical simulations, we opted to expore alternatives.

The ISAAC PRNG by Jenkins[21] has been optimized for 64 bit architectures and allows

us to select two 32 bit double words for each generated 64 bit quad word. The ISAAC

generator was designed to be a cryptographically secure pseudo-random number generator

(CSPRNG). CSPRNGs generate streams of bits with the feature that given the first k bits

of the stream, there is no polynomial-time method which can guess the k + 1 th bit in the

CHAPTER 3. ALGORITHM 23

stream with greater than 50% accuracy. This feature is not a requirement of a physical sim-

ulation but since ISAAC outperforms RANLUX, in terms of speed, randomness and cycle

length[23], we decided to use the ISAAC PRNG.

We generated the Langevin field by picking a random point on a sphere for a direction

as defined by the second method presented by Marsaglia in [28]. This requires 3 inde-

pendent standard normal variates which are each used as Cartesian coordinates to select

direction and base magnitude for the Langevin field at each site. As ISAAC and most other

standard RNGs generate uniform random values, an efficient method to transform the data

into Gaussian random values needed to be implemented. We decided to follow the algo

rithm presented by Box and Muller in [3] as defined in Algorithm 1 which requires two

random uniform values which ISAAC provides.

Algorithm 1 Box-Muller Random Normal Deviates
Require: rand() generates a uniform random variable on the range [-1, 1]

1: repeat

2: XI {:::: rand()

3: x2 {:::: rand()

4: w{:::xi+4

5: until w less than 1

6: t {:::: J -2ln(w)/w

7: ni {::::XI H

8: n2 {:::: x2 * t

Line 5 of the algorithm imposes the restriction that the point { Xt, x2 } must lie inside

the unit circle, if this is not the case a new pair of uniform random values are selected

CHAPTER 3. ALGORITHM 24

and retested. This condition does not ensure a constant mapping of input to output since

approximately 44n of the input data is discarded. This is a feature we wish to avoid. Our

solution is to, rather than selecting a new pair of random values, transform the existing

values. We apply Marsaglia's Xorshift RNG[29] to any pair that fall outside the unit circle

and retest. This RNG is a simple generator involving only bit shifts and xors and so is very

fast. The quality of this is not an issue as we are shuffling bits in a manner that has a period

of the entire space with a high quality random seed provided by ISAAC. This shuffle is

listed in Algorithm 2.

Algorithm 2 Marsaglia Xorshift RNG
Require: y is a bitstring of length 64

1: y ~ (y left shift a) xor (y right shift b) xor (y right shift c)

The methods presented in this section allow us to generate and transform a set of ran-

dom values of a uniform distribution into a set from a Gaussian distribution of a predictable

size. Furthermore, we do not waste the calculations of a significant fraction of the uniform

random data which would traditionally be discarded. The resulting values are used to cal-

culate the Langevin field given by Equation 2.39. With the calculation of the thermal field,

we now have the last component required to build jjeff.

3.4 Calculating Spin Evolution

Having described how we calculate jjeff for a given spin configuration we examine how

we can incorporate it into an efficient integration scheme that will allow us to compute

solutions to the LLG equation. We begin by describing how we may accurately calculate

CHAPTER 3. ALGORITHM

tcoef = StepSize*(1-0.5*relstep);

tlcoef= StepSize*0.5*relstep;

for(i=O;i<Nx;i++) for(k=O;k<Nz;k++) {

}

vtemp.FastAdd(tcoef,torque[i][k],tlcoef,torquel[i][k]);

ml[i][k].FastAdd(vtemp, 1.-vtemp.MagSq()/2.,m[i][k]);

II Includes correction due to restriction that lml [i][k]i \in S A2

ml[i][k].Scale(1);

Figure 3.1: OOMMF Spin update section (grid.cc, lines 1917-1924)

25

the rotation of the spins for a given set of fields of a finite but small time interval & . We

then discuss various integration schemes and describe the adaptive Euler method that seems

well suited to the integration of the LLG equation.

A technique that is widely used to calculate the rotation in the LLG equation is to

express the spin vectors in terms of their Cartesian components and to calculate ~crx, ~cry

and ~crz separately. This does not however preserve the length of the spin vector and

requires that at each step we renormalize the spin vector to it's original length.

The software package Object Oriented MicroMagnetic Framework (OOMMF) [18]

uses this method in their grid. ccas shown in figure 3.1. In this code, the variable mlis a

2 dimensional array oftype ThreeVectonvhich describes the spin's orientation in Carte

sian coordinates, torque and torquel are 2 dimensional arrays of type Three Vector

which describes the calculated torque as defined by the LLG equation.

CHAPTER 3. ALGORITHM 26

Even with the renormalization of the spin vector after the rotation, this method of cal-

culating an infinitesimal rotation can introduce systematic errors. To illustrate this we

consider the trivial case of the vector of a single spin aligned out of plane subject to a con

stant applied field aligned perpendicular to the plane. In the case of zero damping the spin

should trace a circle as it precesses about the field.

Figure 3.2 shows the result of using this method under the conditions described. In these

····

(a) Initial Spin Position (b) Vector from LLG

(c) New Spin Position (d) Scaled Spin Position

Figure 3.2: This illustrates how the conventional update fails for a spin precessing in a

field. The final position no longer traces the expected circular path.

figures the small vertical arrow represents the direction of the applied field, the circular

arrow is the expected precessional path and the canted arrow is the magnetic spin. The

length of the vector computed via LLG is exaggerated to better illustrate the problem. It is

clear to see that the new spin position after rescaling no longer traces the precessional path

CHAPTER 3. ALGORITHM 27

but has rotated toward the plane. Using this method in any simulation with zero damping

will result in spins orienting themselves orthogonally to the applied field. Rotating toward

or away from an applied field violates the conservation of energy demonstrated in Equation

2.32 for a spin precessing in a constant applied field.

OOMMF does not allow zero damping simulations but we can examine systems with

very low damping and demonstrate the flaw inherent in this method. For small damping

(a= w-5) energy is drained from the system as it relaxes which is clearly presented in

Figure 3.3a. If we decrease them damping even further (a= w- 13), we see that the energy

of the system, plotted in Figure 3.3b, increases with increasing time, despite the fact that

the simulation is run at zero temperature and at finite, small damping.

The approach that we have therefore chosen to calculate at+At from at for a given

effective field fi1eff is based on the result that, provided & is sufficiently small, we treat

iitff as constant, then the vector at will simply precess about an axis ft with a constant

angular frequency ro, where ft and ro are given by

(3.14)

and

l eff I ro = H1 x crr . (3.15)

We can therefore write

(3.16)

CHAPTER 3. ALGORITHM

101938.15 ,__ _ __.__ _ _._ __ ,___...._ _ _._ __ L..---'---'-----''-----'

0 0.005 0.01 0,015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Simulated Time (ns)

(a) Damping= w-5

f
w

3.17 E·B '----'----'----'---'---'----'---...._---L __ _,

0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005 0.00055

Simulated Time (ns)

(b) Damping= w- 13

Figure 3.3: Energy results from OOMMF for two values of damping

28

CHAPTER 3. ALGORITHM 29

where the rotation matrix R.(fi, e) is given by

(I-cos(9))nxnx+cos(9) (I-cos(9))nxny-sin(9)nz (I-cos(9))nxnz+sin(9)ny

(I-cos(9))nxny+sin(9)nz (I-cos(9))nyny+cos(9) (I-cos(9))nynz-sin(9)nx

(I-cos(9))nxnz-sin(9)ny (I-cos(9))nynz+sin(9)nx (I-cos(9))nznz+cos(9)
(3.17)

Spin rotations using the method described by Equation 3.16 are easy to conceptualize

but a more efficient scheme may be implemented via Quatemions. Quatemions are 4 di-

mensional complex numbers which are capable of describing rotations in 3 dimensional

space. A quatemion Q can be described by the tuple

Q = {w,s}, (3.18)

where sis the 3 component vector { i, j, k}. The operations we require to implement the 3

space rotation are the multiply and conjugate. Under quatemion algebra, multiplication is

non-co mutative and is defined as

QrQ2 = {wrw2- sr ·h wrs2 +w2s1 +sr x s2}, (3.19)

or, more explicitly

wrh+hw2+kri2-i1k2, wrk2+k1w2+iih-hi2}. (3.20)

The conjugate of a quatemion is defined as

Q* = {w,-S}. (3.21)

CHAPTER 3. ALGORITHM 30

These operations allow us to write the rotation of a vector v about a unit vector z by e
radians as

{ w, v'} = {cos (~) , sin (~) z} { 0, v} {cos (~) , sin (~) z} * (3.22)

which is clearer when written in the form where vectors are implicitly cast to quaternions

v' = z:vz*. (3.23)

These forms of the rotation show that not all of the computed right hand side of Equation

3.22 is required for the rotated v. Namely, the w component of the rotated vector is not used.

Making use of this information allows us to truncate the final quaternion multiplication on

the right hand side and save four floating point multiplies and three subtractions.

We can now rewrite Equation 3.16 in terms of quaternions as

Z { (
rotfitM) . (rotfitM) A }

t = cos --
2
- , sm --

2
- nt (3.24)

- Z- Z* O"t+Af = t O"t t . (3.25)

Using quaternion rotations as a substitute for matrix based rotations saves 2 floating

point multiplications per rotation and leads to more readable code as shown at the end of

this chapter in Figure 3.6.

A depiction of the proper undamped precession using rotations, matrix or quaternion

based, about an axis is shown in Figure 3.4. Unlike before, our resulting vector continues

to trace along the expected precessional path.

CHAPTER 3. ALGORITHM 31

~s:
\.,, ·"""-/.~

(a) Initial Spin Position (b) Determine Axis of Rotation

(c) Calculate Rotation (d) Apply Rotation

Figure 3.4: This illustrates how a quatemion based update results in a spin correctly pre-

cessing in a field. The final position continues to trace the expected circular path.

3.5 Integration Through Time

In the previous section we described a method that calculates the rotation of a spin for a

given effective field over some small but finite time interval. The method preserves the

norm of the spin vector, to within machine precision, and is exact in the case of a constant

field. In reality, of course, the effective field at each site is changing with time. The

question then arises as to how we compute the change in the spin vector over a finite

interval given that the fields change with time and are calculated self consistently for the

spin configuration.

We have considered a number of integration procedures: the Euler Method, second

CHAPTER 3. ALGORITHM 32

order Runge Kutta and the Burlisch-Stoer method. The straightforward Euler method has

the advantage that it is readily generalized to finite temperature but the stepsize required

to ensure the stability of the approach is typically very small[6]. The higher order Runge

Kutta schemes (first order Runge Kutta is the Euler Method) are more robust and allow for

larger time steps but are problematic at finite temperature. While Honeycutt has presented

a method to implement a stochastic Runge Kutta scheme for certain types of noise[17],

generalizing this method to our case was not obvious. The Burlisch-Stoer method is an

adaptive order numerical integration method which was recommended to us by Olle. G.

Heinonen of Seagate [16]. This method adaptively alters the order of the integrator to

fulfil a user defined tolerance which, while ingenious for non-stochastic processes, merely

compounds the difficulties presented by Honeycutt.

While the difficulties in generalizing to higher order schemes limited their usefulness,

experience in applying these different integration techniques demonstrated there were clear

advantages to using an adaptive step method. We therefore implemented a first order Euler

method with an adaptive step. While this method contains many of the strengths of the

Burlisch-Stoer method, it avoids the complications of higher order stochastic integration

schemes.

Our adaptive step Euler method begins with the spin configuration {cr(r,t,i)} which

represents all spins at lattice locations ron the lattice L Cr E L), at timet and simulation

iteration i. From this set we have calculated the effective fields { fieff (r, t, i)} and selected

CHAPTER 3. ALGORITHM 33

a time step &i. Next we calculate cr("r, t + ilti, i) and cr(r, t + &j2, i) as

(3.26)
r,t,i

(3.27)
r,t,i

From {cr(r, t + ~, i)} we calculate the corresponding effective fields { fieff (r, t + ~, i)}.

We then compute

-=.!(- A. ') z (A ilt) -Z* (A Llt) u r,t+ilti,l = n,ro 2 cr n,ro2 (3.28)

r,t+~,i

which is a better approximation to the true value of cr(r, t + &i, i) than the value given in

Equation 3.26. These two values are compared for equality to a tolerance tol and declared

equal if

tol < M_!tX (lcr'a(r,t,i) -cra(r,t,i)l) (3.29)
r

for each Cartesian component a.. If it is found that cr and cr' are equal by Equation 3.29

then we define the following simulation time, step size and spin configuration for the next

iteration as

a(r,ti+I, i + 1) = a(r,ti + &i, i), (3.30)

otherwise we do not advance the simulation through time and retry the step at a finer reso-

CHAPTER 3. ALGORITHM 34

lotion

acr,ti+I, i + 1) = cr(r,tj, i). (3.31)

Schematically, this method is depicted in Figure 3.5 at the end of this chapter.

3.6 Conclusion

This chapter described a computationally efficient solution to the LLG equation that de-

scribes a magnetic thin film. Treating the dipolar interaction in an intelligent manner dra-

matically improves the time taken to compute the dipolar field. Our spin update method

preserves spin length and energy in undamped, zero temperature systems. Finally, the

adaptive step integration scheme appears to be well suited to our system dynamics.

In addition to the efficiencies described in this chapter, parallel computing gives us

a way to further reduce runtime by spanning our problem across multiple computational

nodes. In the next chapter we will review current techniques for parallelism, how they can

be applied to our problem and determine what level of savings we can achieve in simulation

runtimes.

CHAPTER 3. ALGORITHM

dt

0
2dt

0 I 2

cr,. (J,'+dt (Jt'+2dt

c B A

IA-DI <to!?

0

cr,
A

0

(J,

lA

3

(Jt'+2dt

D

3

cr,.+2dt

D

~
1 2 3

cr,+dt/2 crt+dt

B c D

1 2 3

cr,+dt/2 (Jt+dt cr,+dt

B c D

IC-DI <to!?

~
0 1 2

0", (Jt+dt/4

A D c
dt/2

0 I 2

cr, (Jt+dt/4 (Jt+dt/2

A D c
IC-BI <to!?

Figure 3.5: Adaptive Timestep Schematic

35

3

(Jt+dt/2

B

3

cr,+dt/2

B

CHAPTER 3. ALGORITHM

qVec.w = 0;

qVec.x = r_sx[i]; //rotate this vector

qVec.y = r_sy[i];

qVec.z = r_sz[i];

cost = cos(0.5 • rotateAmount[i] • s->dt);

sint = sin(0.5 • rotateAmount[i] * s->dt);

qRot.w = cost;

qRot.x = sint * damped_h[i*3+0]; //rotate about damped h

qRot.y = sint * damped_h[i*3+1];

qRot.z = sint * damped_h[i*3+2];

//this is the rotation: qRes = qRot qVec qRot*

qRes = qmultXYZ(qmult(qRot, qVec), qconjugate(qRot));

s->r_sxr[i] = qRes.x;

s->r_syr[i] = qRes.y;

s->r_szr[i] = qRes.z;

Figure 3.6: Quatemion Based Rotations (magsim.c, lines 793-811)

36

10

Chapter4

Parallelism

In this chapter we discuss how the methods described in the previous chapter can be adapted

to take advantage of shared memory multi-processor architectures through parallelism.

This involves dividing the work required to evaluate the algorithm over multiple computa

tional units. Several factors must be considered when writing parallel code including how

to divide the problem among the processors based on the available hardware.

4.1 Parallel Design Patterns

There are several methods for partitioning a problem over multiple processors. We will

discuss two common methods, functional and domain decomposition, and review the diffi-

culties and benefits of using each to implement parallel code for the algorithm we used to

solve the spin dynamics. We then go on to describe a hybrid parallelization scheme which

dynamically combines elements of these two approaches.

37

CHAPTER 4. PARALLELISM 38

4.1.1 Functional Decomposition

The first design pattern we consider is functional decomposition. As the name implies,

parallelism under this scheme is based on partitioning or decomposing the problem based

on function or task. This is a very natural method and is analogous to a group of students

working on an assignment, in which each student completes one question and then the

solutions are pooled just before the deadline. When considering this under the context of

parallel programming, we use a CPU or group of CPUs each operating on an individual

task while other groups are operating on separate tasks.

4.1.2 Domain Decomposition

The second design pattern is Domain Decomposition in which tasks are performed in se

quence using a single group of processors. Rather than performing all tasks in parallel, as

is the case of Functional Decomposition, we parallelize the evaluation of each operation.

Using this scheme, each processor is performing the same set of instructions on separate

portions of the data. The partitioning of the data depends on the initial format. For ex

ample, a matrix of data could be divided by rows, columns, blocks or a random pattern.

The partition method is selected by minimizing the access, evaluation and write times. If a
matrix is stored by rows then, for sufficiently large datasets, accessing by columns will re

sult in numerous cache misses and eventually page faults which would generate unneeded

overhead. Dividing the data into blocks, while more expensive in terms of cache misses,

minimizes the perimeter around each subset of data which, depending on the situation, may

result in lower total runtime than accessing by rows.

CHAPTER 4. PARALLELISM 39

4.2 Applying Parallel Concepts

The choice of design pattern and how it is implemented requires careful consideration of

the tasks, and in particular, the sequence in which tasks are to be performed as well as their

interdependence.

Our algorithm conveniently divides into 6 tasks, the calculation of the 5 contributions

to the effective field field defined by Equations 2.6 to 2.8 and 2.39, namely the exchange

interaction, dipolar interaction, surface anisotropy, applied external field and thermal per

turbations. The sixth task is applying the rotation based on the effective field defined by

Equation 2.33.

Obviously the various contributions to the effective field may be evaluated indepen

dently. However, we need to complete the calculation of all the fields before we can de

termine the total effective field and evaluate the rotation of the spins. Thus a simple paral

lelization strategy would be to evaluate the effective field using functional decomposition,

provided we can ensure that we do not begin evaluating the rotation until all the individual

tasks are completed and the total effective field is calculated.

In order to assess how effective this parallelization strategy might be we need to deter

mine the time taken for a single processor to complete each of these tasks. Table 4.1 shows

the distribution of task timings per iteration for system sizes between 64x64 and 512x512

on a single CPU execution of the simulation, in this case one of the SGI Altix 350 proces

sors. Table 4.2 breaks the execution time down by lattice site and Table 4.3 presents the

ratio of each task as a percentage.

CHAPTER 4. PARALLELISM 40

Task 32x32 64x64 128x128 256x256

Dipolar Interaction 3.455 20.002 105.965 507.506

Exchange Interaction 1.150 4.782 19.449 80.660

Surface Anisotropy 0.217 1.325 5.539 29.750

External Field 0.102 0.428 1.779 14.034

Apply Rotation 2.502 11.131 47.827 214.052

Total 7.426 37.668 180.558 846.004

Table 4.1: Average execution time in milliseconds (10-3s) per iteration

Task 32x32 64x64 128x128 256x256

Dipolar Interaction 3.3740 4.8833 6.4676 7.7439

Exchange Interaction 1.1230 1.1675 1.1871 1.2308

Surface Anisotropy 0.2119 0.3235 0.3381 0.4539

External Field 0.0996 0.1045 0.1086 0.2141

Apply Rotation 2.4434 2.7175 2.9191 3.2662

Total 7.2520 9.1963 11.0204 12.9090

Table 4.2: Average execution time in microseconds (10-6s) per iteration per lattice site

Task 32x32 64x64 128x128 256x256

Dipolar Interaction 46.53 53.10 58.69 59.99

CHAPTER 4. PARALLELISM 41

Task 32x32 64x64 128x128 256x256

Exchange Interaction 15.49 12.70 10.77 9.53

Surface Anisotropy 2.92 3.52 3.07 3.52

External Field 0.06 0.08 0.10 0.22

Apply Rotation 33.69 29.55 26.49 25.30

Table 4.3: Ratios (percent) of task times

We can immediately see from the data that the ratio of time spent on each task is not

a constant but depends on the size of the system. In the case of the dipolar interaction

this increase is perhaps not too surprising since the FFT algorithm is known to scale as

O(Nlog(N)), we would expect the execution time per site to scale as 0(log(N)). How

ever, since the evaluation time of the contribution to the effective field from the other 4 in

teractions should scale as O(N), we would expect the execution time per site to be roughly

constant (ie independent of N). The fact that the data in Table 4.2 manifest a more complex

dependence on N is due to cache misses and page faults. The number of potential floating

point operations per second remain the same, but we spend more and more time delivering

data to the processor when we cannot hold it all in cache. This demonstrates that significant

portion of the runtime is dependent on the detailed nature of the hardware used.

The data included in Tables 4.1-4.3 also show that the evaluation of the contribution to

the effective field due to the dipolar interaction takes significantly longer than the evalua

tion of all the other contributions combined. This implies that the best we could do with a

purely functional decomposition of the calculation would be to improve the runtime by a

factor of 15% to 20%. In addition, while this could be accomplished by assigning one pro

cessor to evaluate the dipolar contribution to the effective field and another to evaluating the

CHAPTER 4. PARALLELISM 42

remaining contributions, tasks finishing asynchronously would degrade the performance as

it would result in processors sitting idle while there is work to be done. Therefore while

functional decomposition of the calculation of the effective field does offer potential gains,

we would need to divide the problem differently depending on number of processors, cache

and memory access times and lattice sizes. Also considering that this division of processors

is discrete, we would certainly have processors sitting idle for a significant time.

This line of reasoning, based on the data presented in Table 4.2 suggests that an ap

propriate parallelization strategy would be based on domain decomposition. While this ap

proach requires more synchronization, each synchronization event is far less expensive than

synchronizations in a functional decomposition scheme. The reason for this cost savings is

that we can achieve a much more balanced division of labour. For example, considering the

surface anisotropy, we now divide the total number of lattice sites by the number of pro

cessors. Even with small systems such as 32x32, the maximum work difference between

any two processors in a 7 CPU group is less than 1%. Computing an effective division is

also trivial for most situations, simply dividing the task by the number of CPUs will max

imize efficiency. While we can implement efficient parallel code almost trivially for many

aspects of computing the contributions to the effective field, the dipolar interaction poses a

problem due to the nature of the FFT calculation as described in Section 3.1.2. In order to

implement a parallel solution that can efficiently evaluate the dipolar effective field requires

a more careful analysis. In the next sections we examine how the FFT algorithm may be

efficiently parallelized.

CHAPTER 4. PARALLELISM 43

4.3 Fourier Transform Revisited

With the exception of the dipolar interaction the various contributions to the effective

field (exchange, anisotropy, etc.) are trivial to parallelize using the domain decomposition

paradigm which requires the evaluation of N independent quantities. It is far less obvious,

however, to parallelize the evaluation of the dipolar contribution. For this reason and the

fact, as shown in Table 4.3, that the evaluation of the dipolar contribution to the effective

field represents the most computationally intensive part of the calculation of the effective

field, considerable effort and thought has gone into evaluating the dipolar field and how it

can be efficiently parallelized.

In this section we therefore revisit the FFT algorithm to identify how we may best

exploit the advantages of parallelism. We begin by stating the Discrete Fourier Transform

as

with

N-I

Fk = E wjkh,
j=O

(4.1)

(4.2)

This states that each element in frequency space Fk is a linear combination of all elements

in real space h· This formulation of the Fourier Transform is clearly O(N2), the key to

reducing the order to O(N log(N)) lies in rewriting Equation 4.1 as Danielson and Lanczos

presented in [7]

(4.3)

CHAPTER 4. PARALLELISM 44

which they elegantly prove with

N-I
Fk = L e2nijk/N /j

)=0

N/2-I N/2-1
= L e2ni(2J)k/(N/2) hJ + L e2ni(2J+I)k/(N/2) hHI

j=O j=O

N/2-I N/2-I
= L e2ni(2j)k/(N/2) hJ + L e2ni(2J)k/(N/2)e2ni(1)k/(N/2) hH1

)=0)=0

N/2-1 N/2-1
= E e21ti(2j)k/(N/2) hJ + wk E e21ti(2j)k/(N/2) hj+I

j=O j=O

=F{+WkFf. (4.4)

This states that the kfh element of the Fourier Transform can be computed as a linear com

bination of the k!h components of the Fourier Transform of the even elements ofF and the

Fourier Transform of the odd elements. While pe and F 0 are half the length ofF, they

represent a periodic data set and so k, which indexes over the full length ofF, can still

be used to index into pe and F 0
• Equation 4.3 is used recursively to create a decimation

in time algorithm breaking the problem into a pair of smaller and smaller problems. The

recursion stops when the data to be operated on is of length one, in which case the Fourier

Transform is simply the identity operator. The calculation of each Fk in isolation is an order

N operation, but when we consider the entire set of F, we can reuse much of the compu

tations, for instance, the 5th element of pe is the same as the N /2 +5th. This is the key to

reducing the time complexity to O(N log(N)).

CHAPTER 4. PARALLELISM 45

Let us consider an FFT of 8 datapoints, we can explicitly write the decimation as

Fk=F{+W~Fk
2

= Fr + W~F{0 + W~ (Fke + W~Fk0)
4 2 4

= F{ee + W~ Fro+ W~ (F:0e + W~ peoo) + W~ (Fre + W~ Fkeo + W~ (Fre + W~ pooo))
-g- 4 -g- 2 -g- 4 -g-

(4.5)

where

(4.6)

Which shows that we can build the final FFT starting from FFfs of individual elements.

Schematically, this operation is depicted in Figure 4.3 where we can see the pddd data is

constructed using identity operators on the Bit Reversal Permutation of the input data. A

linear combination of this data is used to calculate the pdd data which is in tum linearly

combined to form the pd and finally the complete Fourier Transformed data Fk.

Data must be processed as depicted in Figure 4.3 such that all elements of the second

column are computed before they can be combined to evaluate the elements of the third

column. However, there is no restriction on what order we calculate each datapoint in a

given column. This implies that the task of evaluating each column may be easily divided

up between several processors. This realization is central to constructing a parallel imple-

mentation of the FFf.

Our parallel implementation of the algorithm uses a domain decomposition of each

column in Figure 4.3. However, since the sequence in which the successive columns is

evaluated is important, it is essential that some synchronization must occur. This synchro-

nization is realized by use of a parallel barrier which is a programing construct that will

CHAPTER 4. PARALLELISM 46

Figure 4.1: Schematic of an FFf of 8 data points

not allow a process of a group to proceed until the entire group has reached the barrier.

In this case, the barrier will not allow any of the processes that evaluate the elements in

column 3 to begin until all processes used to evaluate column 2 have completed. In the

next chapter we will discuss how a barrier may be implemented in detail, but for now it

is sufficient to know that it ensures the correct sequence of operations when working in a

parallel environment.

We can generalize this implementation of the FFf as a tool to perform the two dimen-

sional FFf. A 2D FFT is the transformation of the rows followed by the transformation of

the resulting columns. Figure 4.3 demonstrates this operation. There are some subtleties

in how we select the optimal procedure when we parallelize the 2D FFf that depend on

how we decompose the matrix. It can be shown 1 that the optimal procedure is to perform a

1The coarse grained approach for each 2D FFf employs a total of 3 barriers to properly synchronize

CHAPTER 4. PARALLELISM 47

Figure 4.2: Schematic of an FFT of 8x8 data points

domain decomposition on the set of rows and then on the set of columns.

4.4 Evaluating Groups of FFTs in Parallel

Up to this point we have considered how we may parallelize the FFf of a two dimensional

matrix. However, the problem we seek to solve requires that we calculate 3L FFTs, cor

responding to the three Cartesian components for each of the L layers. How to distribute

the evaluation of the 3L FFTs over a fixed number of processors is a complex problem and

requires that we consider the nature of the hardware we are using to perform the simulation.

There are two obvious strategies that we may use to evaluate the FFTs. The first is

referred to as fine grained parallelism and evaluates each of the 3L FFTs in sequence, using

all of the processors for each transform. The second strategy is referred to as coarse grained

parallelism and simply distributes the evaluation of the 3L FFfs between 3L processors,

with each processor performing an FFf. In this section, we examine the performance of

the process. A properly synchronized fine grained approach must use 3n(log(n) + 1) barriers. Balance in
workload and access times are the same in each case but the extra time used for synchronization in the fine
grain implementation will result in consistently lower performance than the coarse grain.

CHAPTER 4. PARALLELISM

Number of CPUs Execution Time (milliseconds)

1 7.930

2

3

4

5

6

7

8

4.269

4.651

3.704

3.726

3.356

3.092

2.971

Table 4.4: Parallel Execution times for 256x256 FFTs on the SGI Altix 350

48

each of these strategies and demonstrate that there exists an hybrid parallelization scheme

that is superior to both.

4.4.1 Fine Grained Parallelism

In order to examine fine grain parallelism we consider the particular case of a single layer

and we assume that we have 7 CPUs to work with. The parallel execution time for each

FFf is given in Table 4.4. This data was generated on the SGI Altix 350 for a system size

of 256x256 using up to 8 CPUs, for this specific case we will only consider the data up

to 7 CPUs. Evaluating the 3 FFfs sequentially, using 7 CPUs per evaluation, as depicted

schematically in Figure 4.3 results in runtimes of9.276 ms, which is the execution time for

the 7 CPU case times 3. This is clearly a savings over the single processor method which

would have taken 23.79ms (3 x 7.930ms) to evaluate the same set ofFFfs.

CHAPTER 4. PARALLELISM 49

Figure 4.3: Fine Grain Parallel FFf Execution

- - FFT t-- 4 FFT - 4 FFT t--

Figure 4.4: Coarse Grain Parallel FFT Execution

4.4.2 Coarse Grained Parallelism

In the case of coarse grained parallelism, we distribute each of the 3 FFTs to a separate

CPU as depicted in Figure 4.4. Using the execution times as shown in Table 4.4, the total

execution time from the 3 FFTs using this method is 7.93 ms. Thus we see that in this

case, coarse grained implementation is 15% faster than the fine grained implementation.

However, it is clear that this method is not optimal as over half of the processors are idle

during the calculation.

4.4.3 Hybrid Parallelism

We have looked at fine grained parallelism which calculates results faster than a single pro

cessor solution and a coarse grained parallel approach which gives us additional savings

in time but there seems to be better method. This method is an hybrid approach. In this

section we will describe a way to optimally execute a set of FFTs. Each FFT may be indi-

CHAPTER 4. PARALLELISM 50

- ~ FFT } { FFT } 4: FFT tr~

Figure 4.5: Hybrid Parallel FFT Execution

vidually calculated in a parallel fashion and likewise, the set of all FFTs has the opportunity

to be executed in parallel environment. We will implement parallelism at both the fine and

coarse scale of the problem. We will first present an optimal hybrid solution to the example

we have been using in this section and then discuss how we generalize this method to an

arbitrary number of FFTs, CPUs and execution times.

The optimal hybrid solution to the execution of 3 FFTs using 7 CPUs with execution

times defined in Table 4.4 is represented in Figure 4.5. This solution uses two processors

per FFT and one idle processor which forms 4 computational groups. The total execution

time for this method is 4.269ms2, nearly half the time of the coarse grained method and

approximately a fifth of the single processor time. It should be noted that this is also the

exact execution time for a 6 CPU solution.

The idle processor is the result of the hardware topology of the system, this becomes

more clear when Table 4.4 is plotted as Figure 4.6. We can see that there is an increase in

execution time when moving from 2 to 3 CPUs. This is due to the hardware of the SGI Altix

350, which is divided into computational nodes, each of which have two processors. The

jump from 4 to 5 CPUs also shows the underlying architecture as there is again an increase

24.269ms = max(4.269ms,4.269ms,4.269ms,Oms). 4.269ms is the execution time for a single 256x256
FFf using 2 CPUs.

CHAPTER 4. PARALLELISM 51

--~
------------------------------_______________ _.

0.0025'----'------'------L---'-----'------'-----'

2 3 4 5 6 7 8

CPUs

Figure 4.6: Heterogeneous topology visible in parallel FFT execution times from data in

Table 4.4

in runtime. Communication time between CPUs on a single node has been experimentally

determined to be at least three times faster than communication between CPUs on separate

nodes.

The hybrid scheme is an attempt to solve the problem of how to optimize the distri

bution of 3L FFTs across N processors. This is a difficult undertaking for N > 3L as the

solution depends on the size of each layer, the number of processors available, their topol-

ogy and the current computational load on the machine. Any of these variables are dynamic

and a given optimization at one particular moment may not be optimal at a later time. We

approach the problem in the following way.

1. Before starting the calculation, we determine the time taken for 1 ton CPUs to per-

form a single FFT in parallel. This we refer to each FFT as a "task" and we denote

it's time as t(n). This is equivalent to generating the data given in Table 4.4.

CHAPTER 4. PARALLELISM 52

Figure 4.7: Parallel Pipelines

2. We consider dividing the available N processors into P pipes (as in Figure 4.7) where

n; denotes the number of processors assigned to evaluate the set of tasks in the ;th

pipe, i E {1 ... P}.

3. For each distribution {n;}, we consider the different ways we can allocate the 3L

tasks across the P pipes. Denoting T; the number of tasks assigned to the ;th pipe,

each pipe can be described as S; = { n;, T;} and the set of pipes S = { S;}.

4. We then define the time taken to complete pipe i as

(4.7)

and

t(S) = max(t(S;)), (4.8)

which represents the total time for all the pipes to complete all the tasks assigned to

them using the allocated processors, with tasks in each pipe being performed sequen

tially while the pipes are executed in parallel.

5. The optimal number of pipes and distribution of tasks and processors is then deter-

CHAPTER 4. PARALLELISM

mined by the set {S;} that minimizes t(S) subject to the constraint

p

Eni~N
i=l

p

E7i =3L.
i=l

53

(4.9)

The fine grain and coarse grained schemes, discussed earlier, are obviously included in

the set of possible solutions. The fine grained scheme cores ponds to the set

S = {{n}, {T}} = {{N,3L}},

while the coarse grained scheme coresponds to the solution

s ={{1,1}{1,1}, ... ,{1,1}}

ISI=3L.

(4.10)

(4.11)

In this way, the hybrid scheme dynamically distributes the 3L tasks across theN processors

at the start of each simulation to minimize the time taken to evaluate the dipolar contribution

to the effective field for a given number of sites, layers and computational environment.

The example considered earlier with a 256x256 system with L = 1 and seven available

processors, using the data given in Table 4.4 yields the solution

P=3

1j =2

(4.12)

which both minimizes the total time as defined by Equation 4.8 and satisfies the restrictions

imposed by Equation 4.9.

CHAPTER 4. PARALLELISM 54

Figure 4.8: Pipeline Detail

4.4.4 Remarks

In this section we have shown progressively better methods for evaluating the set of FFTs

in a parallel environment ending with an optimal solution. This should provide a glimpse of

the complications present when implementing parallel code. We have been able to reduce

our FFT execution time to nearly 1151h when using 6 CPUs. This statement immediately

begs the question, why not 1161h the runtime? The answer is that there is overhead when

working in a parallel environment. We have stated that finite communication time exists

between CPUs which is a source of overhead but there is another element that we have

simply called the barrier function. In the next chapter we will return to the barrier and

examine it in more detail.

4.5 Speedup

We now examine the success of the hybrid parallelization scheme from a practical perspec

tive. Specifically, how does the method perform in the type of computing environments

that we have access to. In our discussion the basic metric is speedup, which is the ratio

between the time taken for a job to run on a single CPU against the time taken to run on

CHAPTER 4. PARALLELISM 55

multiple CPUs. Thus if, for example, a job takes 1 hour to run on a single CPU and only

1/2 an hour on a 3 CPU system, then we would have a speedup of 2. We refer to a linear

speedup when the speedup is equal to the number of processors, and superlinear when it

exceeds the number of processors.

Simulation Speedup
8

8x8 --+---
7 16x16~

32x32 ~
64x64 -B-

6 128x128---
256x256 -e-
512x512 -e-

5 1024x1024 -A-

a. Linear--
:::1

~ 4
Q)
a. en

3

2

0~~~~~~~~~
1 2 3 4 5 6 7 8

CPUs

Figure 4.9: Simulation Speedup, Fine Grain FFT method

Figure 4.5 shows the speedup we achieve on the 16 processor SGI Altix 350 using the

fine grain parallelism of the set of FFTs. The 64x64 simulation generates marginal speedup

with 2 CPUs and after that the parallel overhead dominates and makes each additional

processor more and more inefficient. At system sizes of 128x128 and above we begin

CHAPTER 4. PARALLELISM 56

to see reasonable speedup. In the case of the 1024x1024 systems we achieve superlinear

speedup between 2 and 5 CPUs. Again the limitations of the computational environment

can be seen in this graph. For medium to large systems (128x128 to 256x256), we get

performance boosts when moving from 1 to 2 CPUs and again from 3 to 4 but the slope

decreases when moving from 2 to 3 and 4 to 5. This is due to added communication time

between nodes on the Altix.

The gains from the hybrid method of group FFT execution is clear when we look at

Figure 4.5, especially when considering the smaller sized systems. The 64x64 simulation,

for example, has a speedup of approximately 0.5 when running on 8 processors under the

fine grained parallel FFT execution and slightly more than 3 when considering a hybrid

approach.

Our code and libraries are designed to migrate our simulation onto processors with

the highest possibly locality, given the state of the computer. A method to improve this

situation would be to have queueing and scheduling software be aware of the topology of

the computer but a rewrite of those subsystems is well outside the scope of this thesis.

In order to identify the bottlenecks that limit the speedup, Figures 4.11 to 4.14 depict

speedup by task for systems ranging from 64x64 to 512x512. These speedup graphs pro

vide unique insight into the inner workings of our simulation. These data clearly show

that the principle factor limiting the speedup is the dipolar interaction. The dipolar interac

tions, in these cases, were calculated using the hybrid FFT execution which yield best-case

parallelism.

Another item to note is the superlinear speedup of some of our O(N) tasks, this is

because of the domain decomposition which reduces cache misses per process. Larger

CHAPTER 4. PARALLELISM 57

Simulation Speedup

8

7
32x32 -;.IE-

64x64 -8-

6 128x128 -a-
256x256 -e-
512x512 _._

5 Linear--
c.
::J
'0
Q) 4
Q)
c.

C/)

3

2

2 3 4 5 6 7 8

CPUs

Figure 4.10: Simulation Speedup, Hybrid FFT method

systems cannot be completely fit into cache and so a single CPU execution of that suffers

misses and page faults. When divided into smaller segments, fewer pauses are required as

the simulation waits for memory to move to the CPU.

4.6 Conclusion

This chapter described the techniques we have devised to first achieve parallelism and

then maximize that parallel performance. Our primary focus was the group execution of

CIIAP1'Ut 4. P..\RALLELIS\t 58

...... -.------~ ---• -
•

I
•

'
,

' • •
~

Fisutt 4.11: S-"'p 1>y ScctiM. 64\6-1

..,.... _, __

----~ • ---• -
•

J •
• ·-
'

' ' • • • -
Fisur< 4.12: ~ l>y ScctiM. 121•12>

CttAf'TtR.. PARAllELISM S9 ___ ..,.....
' -~
-~ -----• ---

•
i •

•

'

' • • •
Figwe4.13: Speedup by Scct>on. 256<2~

.._. tiiM'If

--~ • ----• -
•

J •

....

CHAPTER 4. PARALLELISM 60

the Fourier Transforms for the dipolar interaction using our hybrid approach but we also

parallelized the remaining interactions using domain decomposition and examined their

speedup. While we have implemented and analyzed these solutions, we have thus far only

described them at the conceptual level. The next chapter will examine the low level design

choices required to build a high performance parallel library.

Chapter 5

Implementing a Parallel Solution

We have discussed the algorithmic level choices for creating a parallel simulation and the

results obtained from them, but we have not defined the code and libraries used to imple-

ment these algorithms. Before coding with a given library, we needed to select the one

which best suits our needs. Traditionally this involved either selecting MPI for a cluster

environment or OpenMP for an SMP environment but we decided to engage in a more

rigorous selection method. We begin this section by examining what we require from a

parallel library and then use these requirements to determine which would best suit our

needs. Following this, we wil1 examine the inner workings of our choice.

5.1 Requirements of a Parallel Library

A parallel library consists of a set of routines that are responsible for performing all of the

low level initialization and communication between individual processors. In this section

we consider the features we have identified as essential for the parallelization methods

61

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 62

discussed in the previous section.

5.1.1 Low Latency

Communication time between processors and memory, and general overhead incurred from

the parallel programming paradigm must be kept to a minimum. The time associated with

a communication action is derived from the path that the information takes through both

hardware and software and the amount of information being transferred. We can control

the amount of the data transferred but the path that it takes between processes is the respon

sibility of the parallel library. Our algorithm, especially in the dipolar section, requires all

processors to interact with large, overlapping sections of the data. A parallel library which

incurs lengthy communication times would be unsuitable for our purposes.

5.1.2 Topologically Aware

Modern computers are increasingly becoming hybrid architectures. Many high-end desk

top machines are of a multi-core, multi-cpu design, while high performance Symmetric

Multi-Processor (SMP) machines can be multi-core, multi-cpu, multi-node configurations.

Traditionally these machines have been treated as homogeneous devices and differences in

communication times between CPUs has been ignored. For a wide class of problems the

amount of interprocess communication is such that it can be ignored but for some classes of

problems, such as the one we consider, the variation in communication times between dif

ferent elements of a hybrid architecture gives rise to a rich computational topology which

must be confronted and dealt with.

In a multi-core, multi-cpu, multi-node SMP computer, a hierarchy of communication

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 63

times is established. Communication between two cores on the same chip is the fastest.

After this, communication times between CPUs on the same node or board is the next

fastest followed by inter-node communication. Inside each of these hierarchical levels there

may be subdivisions, as an example, under SGI's Hypercube configuration nodes exhibit

locality. One node has 4 neighbouring nodes, 6 next nearest neighbours, 4 neighbours

at a distance of 3 and a single node that is 4 edges away. Other configurations may be

simpler with a flat bus connecting all the nodes. Each layout presents both challenges and

opportunities that a parallel library should properly and efficiently exploit.

5.2 Parallel Options

There exist two widely used parallel libraries which are implemented on all major plat

forms, MPI and OpenMP. While these libraries provide a high degree of functionality, they

unfortunately do not satisfy the criteria stated in the previous section. In order to imple

ment the hybrid parallelization scheme described in the previous chapter we therefore had

to develop a number of utilities of our own. These utilities are optimized to take advantage

of the shared memory architectures available to us and are collected to construct a library

which we refer to as shm_utils which can be linked to the simulation code.

In this section we discuss the shortcoming of the MPI and OpenMP utilities in the

context of the hybrid parallelization scheme that we have implemented. We then briefly

discuss the shm_utillibrary developed as part of this project.

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 64

5.2.1 MPI

The Message Passing Interface (MPI) has become an industry standard in parallel com

puting. It was initially proposed in November of 1992 [1] and has since been revised and

remodelled to it's current 2.0 specification. MPI's main use and strength lies in distributed

memory systems such as clusters. Evaluating it's effectiveness against our requirements

is complicated by the fact that there are a myriad of implementations of the specifications.

We will choose to examine the MPICH 1.2.8 implementation optimized for shared memory

environments.

MPI's first problem area arises when we consider low latency. Since its inception,

many improvements have been made to implementations but at it's core MPI is still a

parallel library meant for cluster environments. As such, basic communication costs carry

unnecessary overhead, even in shared memory systems. With applications such as ours

which have large amounts of communications between CPUs, fast transfer of data and

synchronization is key.

The MPI versions available to us as we developed our simulation assumes a homoge

neous computing environment in terms of latency between compute nodes. This ignores

the topology and is another source of inefficiency.

While a good parallel tool in many respects, MPI does not adequately suit our needs.

5.2.2 OpenMP

OpenMP is a newer parallel library designed to be used in shared memory environments. It

first appeared in 1997 [31] as a FORTRAN package and has since been extended to CIC++.

Rather than using explicit functions, as MPI, OpenMP is coded by inserting compiler di-

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 65

rectives and comments which give hints to the compiler as to what parallelization strategies

to employ. This implementation of a parallel library requires the compiler to understand

a larger set of instructions than the original language specification requires which initially

lead to a slower adaption to the method as is seen with the GNU set of compilers which

only now plan to include OpenMP directives in version 4.2.

Since OpenMP was designed to be used in shared memory systems, unlike MPI, it does

not have any unneeded legacy latency overhead. Unfortunately, OpenMP, like MPI, does

not consider the varied hardware topology we are seeing in present and next generation

high performance computers. Thus, while better suited to our particular problem than MPI,

OpenMP's inability to take account of hardware topology severely limits its usefulness to

us.

5.2.3 shm_utils

Given the shortcomings of the two industry standard parallel libraries, new parallel rou

tines were developed as part of this research to create a parallel library designed to take

advantage of the shared memory architectures and that is sufficiently aware of the topology

that it distributes tasks to ensure high locality to minimize communication times.

The resulting library, shm_utils, is a small set of utilities which has function calls rem

iniscent of MPI but is designed to run on a shared memory architecture and has the ability

to understand the topology of the underlying hardware. Appendix B details the library but

we will present a few of the features here.

Communication between processes can occur in two ways. First we have a primitive

socket based method with send, receive and broadcast commands. These are slow and

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 66

intended to be used as helper or debugging functions for the programmer. The second

method is based on shared memory. Similar to the malloc routine in standard C, we can

allocate shared memory which is accessible to all processes. This is an interesting ability

which allows us to have a single array that all processes in a group can read and write to.

An unplanned, but immensely beneficial, side effect of this is that we can export informa

tion from our simulation to allow external programs access to shared simulation memory.

Section 5.4 will discuss the advantages of this feature.

While low latency is important, without exploiting the topology of the system, our

simulation may not be running at peak performance. This was overcome in the initialization

section of our parallel library which polls the current state of the SMP machine which it

is running on and determines the best group of processors to run on based on availability

and locality. This speeds up inherent hardare based communication overhead by a factor of

three when we intelligently divide the domains.

A main feature of the library is it's process synchronization. Since this is a fundamental

aspect to parallel programming, we needed to make it as light weight as possible. The

following sections are devoted to that discussion.

5.3 Process Synchronization

Earlier, we made reference to a barrier function as a standard mechanism in parallel com

puting to enforce synchronization. It is clear from our previous discussion that synchro

nization routines are an essential component of any parallel implementation of the FFT

algorithm since the row transforms must be completed before we begin the column trans-

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 67

forms. Without synchronization one process may complete it's assigned set of rows and

begin the column transforms on incoherent data.

In this section we will take a close look at how a barrier function is implemented at

the lowest level. Since this function is a significant source of overhead, we must have it

execute as fast as possible so that our simulation can better scale effectively.

5.3.1 Synchronization Concepts

Process synchronization can be implemented using numerous methods: blocking commu

nication, semaphores and spinlocks are some examples. These methods ensure two or more

processes do not enter deadlock situations, operate on incoherent data or attempt to simul

taneously access shared resources. The basic synchronization tools include semaphores

and their derivatives which we will now briefly explain.

Semaphores

Modem operating systems provide a synchronization mechanism called a semaphore. Di

jkstra [9] originally defined a semaphore as a variable shared between processes which can

be manipulated by only two operators, P and V, and can take on only nonnegative integer

values. The P operator checks the the semaphores and if it is greater than zero, the oper

ator decrements the semaphore. If the value is zero, then the operator waits until the state

has changed. The V operator increments the value of s. These two operators are atomic,

that is, they are guaranteed to start and complete their task before any other operaton is

performed. Implementation of this atomicity is both hardware and software dependent.

Using this primitive tool we can construct more advanced tools which will lead us toward

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 68

a semaphore based barrier.

Mutex

The most common use of a semaphore in parallel programming is to create a block of code

whose execution is mutually exclusive. This structure is called a mutex and the block of

code is referred to as the critical section. Mutexes are constructed with semaphores by first

executing the P operator on a semaphore whose initial value was set to 1, performing the

tasks in the critical section and then executing a V on the semaphore. Any process which

arrives at the mutex when another is inside will find the semaphore's value set to zero and

so the arriving process must wait until the value has increased before it can apply the P

operation and enter the critical section.

Common reasons to use a mutex is when a shared resource must be accessed, be it

memory or hardware.

Turnstyle

A mutex may also enclose an empty critical section, in this case we refer to the structure

as a turnstyle. The construction is the exact same as a mutex except the V operation occurs

immediately after the P and generally the semaphore is initialized to the zero or locked

state. Turnstyles are useful constructs when a primitive, low level, one time barrier is

needed. All processes arrive at the turnstyle and must wait until it is unlocked and then

they can pass through it one at a time.

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 69

Barriers

While the turnstyle offers us a way of stopping all processes, it cannot function as a reusable

barrier on it's own. A reusable barrier must reset it's state so that it will halt processes as

effectively the second time it has been reached as it did the first time. This ability is essential

to parallel programming to ensure synchronicity. In the next sections we will use the tools

we have described above to implement a set of barriers, show that each functions properly

and then perform benchmarks on them against the MPI barrier.

5.3.2 Semaphore Based Barriers

The first reusable barrier we will consider is the 2 stage semaphore barrier as described by

Allen B. Downey[lO]. This is implemented using mutexes, turnstyles and shared memory.

We will present the routine and then discuss the details.

#define Mutexl comm->semid[O]

#define Mutex2 comm->semid[1]

#define Tumstylel comm->semid[3]

#define Tumstyle2 comm->semid[4]

#define UNLOCK &comm->unlock

#define LOCK &comm->lock

void SHM_Barrier(struct SHM_Comm* comm)

{

if(comm->np == 1)

return;

int id = comm->id;

int np = comm->np;

10

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION

volatile int *volatile b = (volatile int*)comm->barrier->memory;

semop(Mutexl, LOCK, 1);

__ mf();

b[O]++;

if(b[O] == np) //last one through

{

}

else

__ mf();

semop(Turnstyle2, LOCK, 1);

semop(Turnstylel, UNLOCK, 1);

__ mf();

semop(Mutexl, UNLOCK, 1);

semop(Turnstylel, LOCK, 1); //all wait until unlock

semop(Turnstylel, UNLOCK, 1);

semop(Mutex2, LOCK, 1);

__ mf();

b[O]--;

if(b[O] == 0) !!last one through

{

}

else

__ mf();

semop(Turnstylel, LOCK, 1);

semop(Turnstyle2, UNLOCK, 1);

70

20

30

40

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION

}

__ mf();

semop(Mutex2, UNLOCK, 1);

semop(Turnstyle2, LOCK, 1); //all wait until unlock

semop(Turnstyle2, UNLOCK, 1);

Semaphore Based Barrier

71

Though initially daunting, this routine is not overly complex. The set of defines are

used to relabel the code for readability and rename a set of semaphore identifiers in the

SHM_Comm structure (see Appendix B for details) as the two mutexes and two turnstyles.

It also relabels the locking P and unlocking V operaions. All semaphores are initialized to

the unlocked or one state except for turnstyle number 1 which begins in the locked or zero

state, the shared integer b is initialized to zero.

The logic of the barrier is straightforward, the opportunity is first provided for a single

process work group to immediately exit as no synchronization needs to be done. Next, as

each process passes through the first mutex they each increment the value of b and then

wait at the first turnstyle. The last process to pass through the first mutex will increment b

so that it's value is equal to the process count and that process will lock the second turnstyle

and open the first. This allows all processes to move on to the second stage of the barrier.

As each process passes through the second mutex the value of b is decremented. The last

process though the mutex will lock the first turnstyle, which is essential in making this a

reusable barrier, and then unlocks the second turnstyle. At this point all processes are free

to exit the second stage and the barrier. The states of the semaphore and shared memory is

the exact same as it was before the barrier was encountered.

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 72

One item of note in the above code is the _ _mf() command. This is an Intel Compiler

intrinsic function which executes a memory fence. This ensures that the increment of the

shared variable b is known to all processes. Without an explicit memory fence, it is possible

for a process to modify a variable but not flush that modification from it's on-chip write

back cache to the shared system memory even if it is defined as volatile memory.

5.3.3 Shared Memory Barrier I

While the two stage semaphore based barrier functions perfectly, we wanted to explore

other methods of implementing reusable barriers. The following is code we designed to

implement a barrier without explicit semaphores.

void SHM_Barrier(struct SHM_Comm* comm)

{

if(comm->np == 1)

return;

int id = comm->id;

int np = comm->np;

volatile int *volatile b = (volatile int*)comm->barrier->memory;

if(id == 0)

b[1]=0; //close gate on bl

_Interlockedlncrement((void*)&b[O]);

__ fwb();

while(b[O] != np); //wait on bO

10

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION

}

if(id == 0)

b[2]=0; //close gate on b2

_lnterlockedlncrement((void*)&b[1]);

__ fwb();

while(b[1] != np); //wait on bl

if(id == 0)

b[O]=O; //close bO

_lnterlockedlncrement((void*)&b[2]);

__ fwb();

while(b[2] != np); //wait on b2

Shared Memory Based Barrier I

73

This three stage shared memory barrier uses three shared integers. The first is initial

ized to zero which effectively closes the first gate, which is the empty while loop on line

14. As each process approaches the first while loop it increments b[O] with the intrinsic

atomic increment operator supplied by the Intel Compiler. Following this another intrinsic

is called to flush the write back cache from each CPU. When the primary process, pro

cess number 0, approaches the first while loop it closes the second gate by setting b[l] = 0

before incrementing b[O].

At each of the three stages processes must wait for all of the others to reach the gate,

or while loop. Before the gate is opened, the next gate is locked. These three stages are

required to properly implement a reusable barrier. If only two of these stages were used, it

20

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 74

is possible that back to back execution of the barrier could lead to an inconsistent state.

5.3.4 Shared Memory Barrier II

The previous barrier did not have any explicit semaphores or mutexes, but inside the con

struction of the intrinsic atomic increment operator is a hidden critical section. A slightly

different approach would need to be implemented to create a truly semaphore-less reusable

barrier. The following is what we designed.

void SHM_Barrier(struct SHM_Comm* comm)

{

BARO:

if(comm->np == 1)

return;

int id = comm->id;

int np = comm->np;

int np2 = np*2;

int np3 = np*3;

int i=O;

volatile int *volatile b = (volatile int*)comm->barrier->memory;

b[id+np] = 0; //close bl

b[id] = 1;

if(!b[i])

goto BARO;

goto BARO;

10

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 75

b[id+np2]= 0; //close b2

b[id+np] = 1 ;

BARl:

if(!b[i])

goto BARl;

i++;

if(i Anp2)

goto BARl;

b[id]= 0; //close bO

b[id+np2] = 1;

BAR2:

if(!b[i])

goto BAR2;

i++;

if(i Anp3)

goto BAR2;

return;

}

Shared Memory Based Barrier II

In this code, rather than atomically incrementing shared memory, each process effec

tively sets a bit in a bitstring and then checks to see if all the bits are set. As above, this

is split into three stages. This method has the advantage of not needing each process to

perform different tasks. In the previous, the primary process was responsible for locking

20

30

40

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 76

gates, here each process locks it's share of the next gate before unlocking it's portion of the

present gate.

5.3.5 Comparison of Barriers

Benchmarks of each of the four methods, the MPI barrier, the semaphore based barrier

and the two shared memory based barriers are presented in Table 5.1. This is an average

from 100000 samples with sets of 1000 samples drawn from each method sequentially

to minimize the effect of a varied computational environment on the results. From these

Average Time per Barrier (.us)

Process Count 1 2 3 4

MPI 0.7356 50.30 107.6 133.8

Semaphore 0.7302 10.72 30.09 32.71

SharedMem I 0.7276 10.31 21.48 31.52

Shared Mem II 0.7310 11.13 21.05 32.07

Process Count 5 6 7 8

MPI 192.2 233.2 254.4 357.6

Semaphore 66.58 74.31 100.3 134.1

SharedMem I 56.30 73.15 98.84 120.7

Shared Mem II 59.62 75.93 102.4 130.5

Table 5.1: Comparison of various barrier implementations

results it is clear that the MPI barrier also uses the short-circuit return when there is only

one process in the current work group. It is also obvious that MPI is not being used in the

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 77

proper environment, it is designed for systems with high latency between nodes such as

clusters. It does not make efficient use of shared memory or semaphores which is why it

is consistently 3 times slower than the other methods listed. This example of performance

loss with MPI's barrier call is typical in a shared memory environment and affects all of it's

data sharing and synchronization functions. If we had chosen to use an industry standard

parallel library it is clear that this would not have been the optimal solution.

The execution times of the semaphore and shared memory barriers are extremely close

but there is a consistent order when ranking the runtimes. We have decided to use the

Shared Memory Barrier I in our simulation while running on the SGI Altix hardware. We

have left the other barriers in the code and they can be activated with compile time flags,

this allows a user of the library to choose the best barrier for their combination of operating

system and hardware.

A note on implementation, it is possible to create a two stage shared memory barrier if

you can guarantee that you have 2 separate barriers and you alternate between them. The

easiest way to do this is to create a shared array of 4 integers and have a pointer which

swaps between the first and third element on each execution of the barrier. This pointer is

then used as the b variable in the methods above. This was implemented but resulted in no

savings over our best method.

5.4 Interacting with Real-time Simulations

Our shared memory library also affords us interesting methods of interacting with the sim

ulation in "real-time". Generally, interaction with a simulation requires periodic event

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 78

polling in the main loop. This both increases the complexity of the code and has an adverse

impact on the performance of the application.

A positive side effect of our memory system is that when we claim memory, a shared

memory identifier is returned. We can export this identifier from our simulation and other

programs can then use the information to get either read-only or read-write access to the

shared memory of the simulation.

The main simulation code has the capability to export information which allows other

processes to directly access the memory which contains spin configuration, interaction

strengths, damping, noise amplitude and adaptive step tolerance. Using this, we constructed

several small server programs which make this data available to remote clients via network

connections. This allows the remote clients to both visualize the simulation as it procedes

on the high performance computer and alter the parameters of the simulation.

This provides researchers with dynamic, real-time control over the simulation and the

ability to visualize and analyze the evolution of the simulation to rapidly explore configu

ration space for interesting areas. This is a significant enhancement over previous methods

which would require many tens or hundreds of batch jobs to examine a range of parameters.

5.5 Conclusion

In this chapter we described how the numerical solution to the LLG equation could be

parallelized to optimize the run time. The tools required to implement the optimal par

allelization scheme for the solution required the development of a set of shared memory

utilities, which were incorporated into a library. This library addresses many of the short-

CHAPTER 5. IMPLEMENTING A PARALLEL SOLUTION 79

comings inherent in the main existing parallel libraries, MPI and OpenMP which made

them unsuitable for the parallelization strategies we wished to implement. Specifically,

MPI falls short when considering latency as it is based on a cluster architecture. OpenMP

fares much better in this regard as it was designed as a parallel solution for SMP machines.

Neither strategy optimally selects a computational topology nor allows zero-copy access to

the simulation memory.

Chapter 6

Data Management, Analysis and

Visualization Tools

A challenge with all complex simulations is how to manage, analyze and visualize the

potentially vast amounts of data that is produced in the course of a large scale simulation.

The development of methods to accomplish these tasks in an efficient manner that can be

readily adapted to study a wide variety of problems is critical in acquiring insight into the

underlying physics. In this chapter we discuss how we have approached data management,

that is, how we transfer the data produced by the simulation to other programs, the analysis

of the data, examining in detail the evolution of the system energy and the visualization

tools that we have developed.

80

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 81

6.1 Data Management

During a simulation, system states are written to a datastream which is an abstraction re

alized either by writing to a file or forwarded across a network to remote clients. In our

terminology, we refer to each recorded state as a frame. Each frame is a container that

holds information about the system at a particular time such as spin configuration, local

fields, system parameters and energies. Both the layout and format of these data are vari

able which allows considerable flexibility both in the way data can be written to and read

from the datastream.

Each datastream begins with a header that defines the layout and format of the data,

initial conditions, system parameters and the particular algorithms used to compute the

data as well as system sizes and frame counts. Following the header, the frames appear

sequentially in the datastream.

The header for a sample datafile is presented in Table 6.1. This datafile begins with a

description of the data in the frames. In this case, the identifier is # 3 dxy z which indicates

that we will be dealing with a potentially multilayered system with spin data represented

in Cartesian coordinates. The next 17 lines, each also starting with a hash mark (#), give

information about the initial spin configurations, parameters and algorithms used. Here we

see the strengths of the exchange, dipolar, anisotropy and thermal fields. Next, information

of the damping parameter and applied fields is presented. The "Total Time" value defines

how much simulated time is requested, "Report At" defines the frequency that frames are

written to the datafile and "Tolerance" controls the adaptive timestep. "Initial Position"

defines one of 40 hard coded configurations that the simulation can start with, "Random

Seed" is the seed used in the random number generators.

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 82

#3dxyz # Initial Position: 6

#System Dimensions: 64x 64x 1 # Random Seed: 223130

J: 8.900000 # Exclude Z: False

g: 1.000000 # Old Style Full: False

Kappa: 0.000000 # Truncated: False

Epsilon: 0.500000 64

Alpha: 0.750000 64

Applied X: 0.000000 1

Applied Y: 0.000000 20

Applied z: 0.000000 1.0 0.0 0.0

Total Time: 10 -1.0 0.0 0.0

Report At: 0.5 1.0 0.0 0.0

Tolerance: 1.000E-05 -1.0 0.0 0.0

Table 6.1: Sample datafile

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 83

The remaining three comments describe some of the internal workings of the simula-

tion. "Exclude Z" is true if the spins are restricted to in-plane motion, in this example case

they are not. "Old Style Full" is true when we want to use the O(N2) method for dipolar

interaction and "Truncated" is true if we wish to restrict the dipolar field to the nearest

neighbours.

The next three lines, 64, 64 and 1 define the system dimensions and final line of the

header information, 20, states the number of frames of data that will be present in this file.

As the simulation proceeds, the frames are converted and inserted into the datastream

in one of several formats. The frame formats that are currently supported are listed in Table

6.2 together with the data that is recorded in each frame. For example, the header shown in

Table 6.1 states that the frame will be in the frame format referred to as #3dxyz. In this

particular format each frame includes the spin configuration in which each spin is recorded

as a 3 component Cartesian vector. Other frame formats will include the spin configuration

in other coordinate representations as well as information of fields, energies and interaction

strengths.

Identifier Elements

#3dcomplete THREE-DIM, COMPONENT-THETA-PHI-RAD

#3dxyz THREE-DIM, COMPONENT-XYZ

#socket THREE-DIM, COMPONENT-XYZ, TEMPERATURE, TIM E

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 84

Identifier Elements

EXCHANGE, DIPOLE, ANISOTROPY, EXTERNAL-H

#3dfieldcomplete THREE-DIM, COMPONENT-THETA-PHI-RAD, FIELC

#3dbintemptimefieldcomp1Et~REE-DIM, COMPONENT-THETA-PHI-RAD,

FIELD, TEMPERATURE, TIME, BINARY

#3dtemptimefieldcomplete THREE-DIM, COMPONENT-THETA-PHI-RAD,

FIELD, TEMPERATURE, TIME

#3dEnergyComplete THREE-DIM, COMPONENT-THETA-PHI-RAD, ENERGY

#3dfull THREE-DIM, COMPONENT-THETA-PHI

#vacancies_t TWO-DIM, COMPONENT-THETA, VACANCIES

#vacancies 3d TWO-DIM, COMPONENT-THETA-PHI, VACANCIES

#ising_2d TWO-DIM, COMPONENT-ISING

Table 6.2: Header identifiers and corresponding elements

Each identifier is the result of the bitwise OR between each element. The elements

themselves indicates the presence or format of data in each frame. For instance, COM-

PONENT _THETA_FHLRAD indicate that the vectors defining the spins are in spherical

coordinates where as COMPONENT _ISING states that the spins will be -1 or 1. If the

element ENERGY is included in the identifier then data regarding the energy is provided in

each frame. The same follows for VACANCIES, TEMPERATURE and EXTERNALJI.

Most other elements define the structure of the data.

These identifiers, made up of elements, gives us a method to flexibly store data related

to our spin systems. This flexibility allows us to record only the aspects of the simulation

that are interesting for a given study. It also allows us to improve or add information to

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 85

what is recorded from the simulation and to read both new and old data files.

The frame definitions are part of a unified library for interacting with simulation data.

We have developed a C++ library, libSpin, specifically to aid us in developing all other ap

plications which operate on simulation output. It is responsible for opening files in various

formats and, depending on the identifier, read each part of the frame.

The information for each of these frames are stored in instances of classes which pro

vide convenient routines such as energy calculations, topological singularity detection and

access to vectors defining site data in Cartesian and spherical coordinates. The library also

manages each of these instances, holding as many in local memory as needed and freeing

instances of frames which have not been used recently so that very large datasets can be

accessed without consuming all the memory of the computer.

The following will demonstrate the ease of use and capabilities of libSpin.

6.2 System Energy

Our libSpin library allows us to interact with simulation data without needing to recode

tedious low level formatting and caching for each task. Understanding the dynamics of the

energies in the simulation is a key element to understanding the overall system. Calculating

energies is such a fundamental part of studying magnetic systems that we decided to move

these routines as defined by Equation 2.15 into our libSpin library. This renders the imple

mentation of a program to output energy quite trivial. The following figure demonstrates

how we would code a simple case using C++.

#include <iostream>

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 86

#include <libspin.h>

void main()

{

}

fileReader FR; //create a (libSpin) file reader for simulation data

FR.open(" spinData. tx):; 'Y/open a datafile and determine the proper parsing method

SpinSystem* sys = FR.getSystem(O); //read the first frame and assign its address to sys

std::cout << sys->getAverageTotalEnergy() << std::endl; //print the average energy

Calculating Frame 0 average energy with libSpin

In this code we use a file reader, which is a custom class provided by libSpin, to open

and interact with a data source. This can operate on any combination of text, binary, com

pressed or socket based sources and frame formats. If the energy is provided in the file, it

will sum that data and return it when needed. If spin orientation and field data are present

then it will return the average dot product. If no field or energy data is found in the frame

then it will calculate the field using either the O(N2) method, or by FFTs if a library is

available. The method "getSystem" instructs the file reader to return the frame informa

tion, in this case frame number zero, in whatever manner is most appropriate for the file

format. Frame information such as spin orientations, energies and local fields are encap

sulated in the SpinSystem class which provides a host of methods to operate its the data.

One of these is the "getAverageTotalEnergy" function which hides all the details required

to calculate the average system energy. This short program preforms a complicated task

that would require hundreds of lines of code if we did not have libSpin.

Our main tool for calculating system energy has more features, flexibility and error

checking but it follows the same basic structure: open a data source (our tools accept

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 87

command line input to specify data sources and parameters), select a frame and output an

energy. Generally we wish to see the energy as it changes over frames so we place our

select frame and output steps in a loop.

6.3 Visualization Methods

The code we have developed is mainly used to study system dynamics so we are particularly

interested in visualizing the evolution of the systems. To do this we have developed two

visualization tools, sdlglspin and povspin, both of which make extensive use ofthe routines

available through libspin described in the previous sections. While both programs can

visualize the data in a variety of different ways, the approaches used in the two applications

are quite different.

6.3.1 SDL/OpenGL

The first application, sdlglspin, uses the routines in spinlib to convert the datastream gener

ated by the simulation into a sequence of 3D images in realtime. This is done with the aide

of both OpenGL, which provides the 3D pipeline between virtual 3D structures and a raster

image, and Simple DirectMedia Layer (SDL), which offers a cross platform environment

for window management and user interaction.

OpenGL was selected because it allows accelerated graphics which are essential to

maintain the high frame rate required for real time interaction. A software based 3D

pipeline would not have been sufficient to display our images since it is completely ex

ecuted on a local CPU, from scene description to raster projection, and then sent to the

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 88

video card as a texture. OpenGL provides us with an industry standard API which allows

us to send scene descriptions to the Graphics Processing Unit (GPU) for rendering. This

both frees the CPU for other computations and avoids the bandwidth bottleneck inherent in

streaming large textures from system memory to graphics memory.

SDL provides a richer and more modern API to manage windows and user input than

the traditional GL Utility Toolkit (GLUT) while maintaining a cross platform code base.

GLUT manages user events via callbacks, pointers to functions, which cannot be methods

of classes. To achieve a mixing of GLUT and Object Oriented Programming, wrapper

functions must be created to stitch the two paradigms together. SDL handles events in an

event loop which allows the explicit handling of desired events via either functions, object

methods or hard coded statements inside the event loop itself. SDL also supports True Type

fonts which allows us to overlay textual information on the graphics.

Using a blend of the above technologies, we are able to present spin orientation as 3D

colour coded or static coloured arrows, local fields and mark the locations of topological

singularities (see Section 7.1) as well as a continuous mesh which can represent spin orien

tations, site energies or changes in rotation. Figure 6.1 demonstrates these capabilities by

rendering a datastream generated by a simulation with exchange interaction strength set to

2.0, a dipolar strength of 0.2, no surface anisotropy, external fields or thermal perturbations.

6.3.2 POV-Ray

While sdlglspin is designed to generate 3D graphics at a sufficiently high frame rate that the

images smoothly blend together simulate motion, POV-Ray reads the datastream from the

simulation using libSpin to generate a sequence of POV-Ray files. These files are human

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 89

readable descriptions of a 3D scene representing the data generated by the simulation at a

particular point in time. These files are then rendered by the POV-Ray ray tracing program

which creates a sequence of raster images. Since the POV-Ray files consist of a mathemat

ical description of the volumes and surfaces in the scene, the 3D ray traced image can be

rendered at any arbitrary resolution.

Individual magnetic moments in povspin can be rendered in one of two styles, colour

coded 3D arrows with a ring around the head and dot on the tail to help differentiate the

orientation and a black cone with a white dot on the base. These two styles are used in

different settings. The coloured 3D arrow are best used in presentations while the black

cones offer a more professional style for papers or articles.

The advantage of this method over the OpenGL method is image quality. Shadows are

properly calculated, both in terms of face normals and objects casting shadows on others in

the scene, and edges are antialiased. These high quality images can then be used to encode

a high quality video. Generally though, this will take more time to render than the original

simulation which created the data.

6.4 Conclusion

In this chapter we presented a set of steps which translate from a datastream realized as

a file or socket to final, useful products such as energy calculations or 3D renderings. We

have strategies to structure the information in our datastreams which give us great flexibility

in terms of what is described within and in what fashion that information itself is formatted.

From this point we can convert the data into a unified structure defined in libSpin which

CHAPTER 6. DATA MANAGEMENT, ANALYSIS AND VISUALIZATION TOOLS 90

has a host of analysis functions which can operate upon it. When using libSpin all of this is

transparent, it is supplied with a resource name which is either a file in text, binary, gzipped

or bzipped format or a remote resource which consists of a host name and port number and

the library determines how to properly extract the information from that source.

With the use of libSpin, tasks which would generally take hundreds of lines of code to

complete can be accomplished in a handful of lines of code as seen in the energy example

in Section 6.2. More complex tasks, such as OpenGL applications or translating scenes

into POV-Ray files, are now readably achievable as a framework exists to take care of all

tedious low level formatting, memory management and coordinate conversions.

A possible next step in data management would be to migrate from our custom repre

sentation and format of the data to the Hierarchical Data Format[14]. This would allow

external programs such as ffiM's OpenDX or Wolfram's Mathematica to readily import

our simulated data. We have not yet undertaken this migration because of time constraints,

increased code complexity and an unwillingness to lose access to gigabytes of legacy data.

In the next chapter we will present several studies which make use of the simulation we

have defined and implemented as well as libSpin to extract information from the generated

data.

--.......

!d "-~" mciJY diltnO.tion •·illll ~t'ld iOOali (d) I• J"Linc.' mtalltlft d!f'C'Idlllll ..S ~ •lth

i(fliCWMdl ~ ~ f)"'flt .S poll- CI'Wrl.)'L'd '0 ~ at'C.'WI'I ICf•CICIICi'W <:pill ...

Chapter 7

Simulation Examples

This chapter focuses on presenting simulation examples of various systems. We will ex

amine a single layer, square lattice, multilayer systems and non-square lattices. Our goal is

to demonstrate the strength and flexibility of the code described in this thesis.

7.1 Relaxation in 2D systems

In magnetic systems there are two distinct types of disorder that can arise in ordered sys-

terns. The first type of disorder is simply the disorder created by the thermal fluctuations

of the spins about an ordered state. The nature of these fluctuations are such that, below

the transition temperature, the magnetic system can maintain long range magnetic order.

The second type of disorder is topological disorder in which the entropic contributions of

certain topological singularities can be sufficient to overcome the energy required to create

the singularities. While the topological disorder can destroy long range magnetic order,

at low temperatures, the system can exhibit short range order. The disappearance of short

92

CHAPTER 7. SIMULATION EXAMPLES

AA~,~~~~~~~~4~~·~~~··~~~~·~~~4AA
~~,4~~~A···~~14,A~,·~·~~AA4~4AAA
44,4~A.AA~~AA4.,AA44~~··~~···~~,
~~~1~~44111~11~~1~~1·~~~1~4~~~~~ 
A~4AAAA44AA~~·~··,~·~,4·4~4A~~4A 
~4~A,,~.,~~~1~,.,,.~A441,A4,AA, 
~~···,.~,,4AAA~~~ ... ,·~·4AA4A1AA4• 
, .............. , ...... , ..................... ~ ................... .A ......................... ..... 
4~~·~~~~~~44~1~4·~··~4~~·~A~41.~ 
.~ .................. , .. , ................... , ..... , ............... ... 
.............. ~A1,""1111fAA""''IIf1A""''IIfA1·~444 ... 41,A4AA1A 
~14A1 ... ""1111f44""1111f4A44AA4444A.1A ... 144, .... A.A 
A,A444A~AAA1A1.4AA.A ... 441A444 ... 11,A •• ,,,1 ............ ~, ....................... .A ............................ ~ ......... . ....... , .... , ................................................ ~ ......................... ~ ... ... 
............................................ 1~ ......... ~ ................ ~ ............... . 
··~ ........... ~ ..................... ~~ .................................. ~ ...... ... 
~,~~·4~·~4441~·~~44~·~~~·~~~·~4 
1AAAA~A4111A.,, ............................................. . 
.................................................... ~ ................................. ~ ........ . 
..... ~ .... ~ .................. ,.~ ................... ~ ................ ~~, 
~A~A,~AAA~A~AAA,,,~~4,4.,,~,AA·~ 
·~~~~~~.4~.~~.4 ••• ,~A~4~~~~.~~4 
AA~~·A,A~A~,~·~~,~,~·~·~,4A~A·4 

,.~~~··1~1~,11···,~~··~,~1~,··· 
,4A14.444A,,A411A··1~··,~~,AA1•A 
AAA~,~··AAA,A1~·1·1~111~AAA~,A4~ 
11~AA1,,14~1AA~~~~·~·,,~·~A11A4 
·~···~·,,~·4··~·4····1·,~·.,, • • ,,,~, •• ,,,,.,.~1.,,4,~.,,.,.,~ 
·~,,,.,.,.,,,,, .. ~, ... , ... ,,.,,, ... ,, .. ,,~ ...... ,,,,.,.,, .... ,., 

(a) Microscopic Disorder (b) Macroscopic Disorder 

Figure 7.1: These figures show the two classifications of disorder 

93 

range order at the transition temperature is associated with the unbinding of the pairs of 

topological singularities and is referred to as a Kosterlitz-Thouless transition[22]. Such 

behaviour is common in two dimensional magnetic systems. 

Examples of these two types of disorder are illustrated in Figure 7.1 for a square lat

tice. Figure 7.1(a) shows the effect of thermal fluctuations in a ferromagnetic system. This 

system clearly exhibits long range ferromagnetic order. Figure 7.1 (b) on the other hand 

shows the effect of topological disorder. Here the orientation of the spins are highly cor-

related over short distances but, because of the topological singularities, the system does 

not exhibit long range magnetic order. These topological singularities can be classified as 

belonging to one of two groups which we label Type + 1 and Type-1. The first, Type+ 1 

singularities, are shown in Figure 7.2(a), and are analogous to centres, vortexes, sinks and 

sources in fluid systems. In the figure we show a range of both Type + 1 and Type -1 spin 



CHAPTER 7. SIMULATION EXAMPLES 94 

/"~ ~t ~t/ t~ t/' ~t '/" t~ 
't/ t~ /"' ~t ~/" t~ t/~ ~t 

(a) Type+ 1 Singularities 

/"' ~t ~/" t~ t/~ ~t 't/ t~ 
~t/ t~ t/' ~t '/" t~ /"~ ~t 

(b) Type -1 Singularities 

Figure 7.2: Classification of Topological Singularities 

configurations, each one can be generated by rotating each spin in the previous by 1t/4. 

The second set, Type -1 singularities, are displayed in Figure 7.2(b). These are reminiscent 

of saddle or stagnation points in fluid systems. Again, we show a range of configurations, 

each a rotation of the last. It is important to note that we cannot map from a Type + 1 ( -1) 

singularity to a Type -1 ( + 1) by a continuous rotation of all four spins. As such, they are 

topologically distinct. This classification of singularities is similar to the classification used 

by Chien et. al.[5]. In their work they referred to the winding number of a structure which 

could take on a value of+ 1 or -1 and equates to our Types. 

These singularities alone are of considerable importance in the study of two dimen

sional magnetic systems. In the case of a square lattice with only an isotropic exchange 

interaction, the energy of both Type + 1 and -1 singularities are continuously degenerate 

under the rotation that maps between the singularities shown in Figures 7.2(a) and 7.2(b). 

This degeneracy, however, is removed by the addition of the dipolar interaction and cer-

tain topological structures are preferred, reflecting the fourfold symmetry of the underlying 

lattice. 

The dynamics of topological singularities play an important role in determining the 

magnetic response of two dimensional systems, particularly in the relaxation process from 



CIIAMt It 7. Sl~.n:tATIO~ Ex"-.\tPLES 

,, r----r--~----~--~----r----r--~r---. 

" .. . . .. . . . . 
uL----''----'---'---'---'--:'------'--....l 

• t t • 
s •. ., ........ 

9S 

1 hi~h (nrrgy dt~ State 10 a low ('netg)' ordered '-lillt". Our •amulaltOO '>hC:11~:,. that the 

Mft,ftUinnhes generally locate near the centre of a untt ~.:ell and mtJNII( by m.tlang brief hops 

bl:lwc~n liiitC!I where they t<emain while the !l)'llltm rtlll llC.II IU'Ot.and I he new configuration. 

·nu" i-. s1milar 10 1he dynumic!> of an atom adsorbt..-d on 1 sohd 'iUffaec. 

In Fiaun: 7.3 "'e plo11he local energy of the Type + I aOO 'J}pc I singulanlies1 as 

1 func11on of ''"gularily rotation. The data •~ t"llU.:tcd fr\llll calculatlort\ of the energy 

of 1 prnod•c arra) o£ ~ingularitic:s setup tn a cho;k~rtxw.nl manrltr wtth 12 1atttce: stres 

'<~r1ltftl them larmlly. The ~ and high eneray rol.i&Uc-.n rontiauntt~ under dipolar 

~ 

1V...:dd~MW ~ ""Pbft~J~•Ik .... ~ of~ luglld.J...t.....,.. -~ 
f«lk-4~~ 



CHAPTER 7. SIMULATION EXAMPLES 96 

(a) Low energy configuration (b) High energy configuration 

Figure 7.4: Checkerboard arrangement of singularities 

interaction, are depicted in Figure 7.4. From Figure 7.3, we can state that: 

1. The energy of the Type + 1 and Type -1 singularities have a different dependence on 

orientation 

2. There are certain maximum and minimum energy configurations that correspond to cer

tain high symmetry spin configurations 

Specifically, at low energy rotations (0, 1t), Type + 1 singularities have lower local energy 

than Type -1 while at higher energy rotations (n/2) the reverse is true. This leads to pre

ferred configurations both in terms of local singularity orientation and relative locations on 

the lattice. 

At lower energy rotations, singularities will tend to line up laterally rather than diago

nally. Figure 7.5 depicts 3 pairings with a fixed, low energy Type + 1 singularity. In these 

configurations, the Type -1 singularity will be in a low energy state when it is aligned either 



CHAPTER 7. SIMULATION EXAMPLES 97 

/ ' r ' ?' '\\ '\\ ?' ?' '\\ ?' '\\ 
1'\, ,.( ,.( 1'\, 1'\, ,.( 1'\, ,.( 

,.( '\\ 1'\, ,.( 

1'\, ?' ?' '\\ 
\... \... ./ ' ./ 

(a) Low energy pair (b) High energy pair (c) Low energy pair 

Figure 7.5: Singularity pair configurations with a fixed low energy Type + 1 

r ' I' ' I' 
'\\ ,.( ,.( '\\ '\\ ,.( '\\ I?' 
?' 1'\, 1'\, ?' ?' 1'\, ?' 1'\, 

1'\, ,.( ?' 1'\, 

?' '\\ '\\ I?' 
'- \. ../ 

(a) High energy pair (b) Low energy pair (c) High energy pair 

Figure 7.6: Singularity pair configurations with a fixed high energy Type + 1 

horizontally or vertically with the Type + 1 singularity. Figure 7.6 demonstrates the config

uration when a Type -1 singularity is paired with a fixed, high energy, Type + 1 singularity. 

In these cases we can see that aligning vertically or horizontally results in a high energy 

Type -1 singularity while diagonal alignment allows a lower energy Type -1 singularity. 

By varying the location of a singularity within a unit cell we are able to map out the local 

energy well of these structures. Figure 7. 7 shows that a singularity is at the lowest energy 

when it is centred in the unit cell. This unitless figure is representative of both Type + 1 

and Type -1 singularities but the slope of the well is related to the energy at the centre 



98 

hgurr 7.7: l..ocaJ etlef!.Y V.tll of I !i.tnJ!Ulanl) 1ft I UOII CCII 

of the ~ll liJghet enetg)- ~mgubnlle\ ha\'e WJJo.. 'Acll' •htk kM'ef CfiCIJ)' "rngttlan· 

t~ hne dtcp:r 'VIo·elb. This impaas 1he tnnslatton.~.l dyNmk5 of lhe o;ma:ulanhc~; bt.-u 

tllCfl)' \lnguloanhes will make hops from cell a:nt~ to cell cmtR: v.ht~ h1ghcr energy 

.. mguiJnliC5 ¥~ill mo'·e more easily. 

The~ oll.,crvatmn.\ of isolated and pau-ed copolog1cal MO!lul • .ntie. .. allo...,. us to predicc 

and undcN~md the kinematic~ of cwo dimen.;;ional magnetic 'Y'~It l'l'l \ with both exchange 

and c.hl)()l:.r inlcn1ction. If we assume system kinemaltCIII are dnvc1l by <:1leq;.y dissipation 

thr:n we may Mate the following phenomenological <k~ocnptiOn'l boaMXI the simulations we 

ha\·e \IUdlcd. 

O~Uon i StnKularlt} &~'f)' Di.s.~ipatitlft 

(i) H1slt t'IW''l.l Silf(IIJori~ pairs •·ffl Ml(ro.l' to II dwtolfOih offu-t rrlaJA~ ahflnmDJI 



CHAPTER 7. SIMULATION EXAMPLES 99 

(iii) High energy singularities will rotate to lower energy singularities of the same type 

(iv) High energy singularities will migrate more easily than low energy singularities 

However, studying the kinematics of these topological singularities is not straightforward. 

While they may be easily detected by the eye, locating and tracking them is not straightfor

ward. The technique we use to solve this problem is borrowed from the field of fingerprint 

analysis. Maltoni[27] characterizes a fingerprint by a set of loops, whorls and deltas. These 

structures do not translate perfectly to our lattice of spins but the method used to locate 

them does. Loops and deltas do not have corresponding configurations but the whorl is 

analogous to structures 1 and 5 of our Type + 1 singularities. 

Maltoni utilizes the Poincare Index as a method to locate these structures. This is done 

by summing the offsets between consecutive angles around a closed loop on a vector field. 

For our lattices, we consider loops to be the 4 spin sites which define a unit cell. With this 

definition, our Poincare index will always be either 21t, 0, or -21t. Figure 7.8 illustrates 

this concept clearly. Figure 7.8(a) is the first structure in Figure 7.2(a) and as we sum 

angle offsets in a clockwise manner, we arrive at 21t which indicates that this is a Type + 1 

Topological Singularity. Summing around Figure 7.8(b) results in 0 signalling that there 

is no singularity present and the Poincare Index of Figure 7.8(c) is -21t which correctly 

indicates that this a Type -1 Topological Singularity. 

This detection method is computationally efficient as it can determine if a singularity is 

present inside a unit cell using only 4 subtracts and 4 adds. To pinpoint the position inside 

the cell we drop streamlines into the search region and trace either along the interpolated 

fluid flow for Type + 1 singularities or perpendicularly for Type -1. Global rotations of the 

vectors may be required to quickly detect some of the structures. 



CHAPTER 7. SIMULATION EXAMPLES 

~ 
TC 
2 

-TC 
4 

.......__;r 
TC 
4 

(a) 27t: Type 1 Singularity (b) 0: No Singularity 

-TC 
2 

(c) - 27t: Type -1 Singularity 

Figure 7.8: Poincare Indices of example spin configurations 

7 .1.1 Relaxation through annihilation of Type ± 1 Singularities 

100 

In order to illustrate how our LLG code and singularity detection algorithm can be used 

to study the dynamics of singularities we consider the evolution of a pair of Type ± 1 

singularities. We prepare an initial state consisting of two idealized singularities on a 64 x 

64 lattice with an in plane spin configuration described by 

(7.1) 

where Y± = (x±,Y±) denotes the position of the Type ±1 singularities andRe denotes a 

global rotation of the spins. 

In this example, we set 

X+= 32.5 X-= 32.5 

Y+= 21.5 Y- = 43.5 
(7.2) 

Re= 0 a.= 0.5 

g= 1.0 1= 3.0 



CIIAJ•TtR 7. SIMt'I .ATIO" EXAMPLI \ 101 

03 r----r----r----r--~~--,----,----,----, 

0.25 

),1 
• 

t 02 

~ ~ • 
-i 0 15 

r 0 1 ® 
i @ < 005 -........ 

oL---~---L--~--~----~--~---L~~ 

o 2 • e a to 12 ' " 16 

Time 

1uld a11 other field~ and p:trumeten equal to t..cro. The above: choices cor~!iipond~ to a high 

enrfJY l)·pe +I .. in~:ulamy at r. and a low energy Type -I <t.mgulanty at r 

IUianttc~ toward tiM::h other leading tO In C\·tntual anmhllahOR, indeed lhl\ I:\ ln\!Oh'ed In 

the rrocess but Fisu~ 7.9 "hO\Io'S that tho t>roces<; is obvtou,ty more conlplicatcd. 

CorK:tderablt 1n"prt mto the pnle4. .... ~ can be gained hy U'lllcking 1he Qn~l..inha using 

the: rncthod descnhcd C'Mitet. The tntlt.J.II"llllptd rd:u:ahon (rqaon (8 on thl: hJUre) con:-



CIIAI''I'I~k 7. SIMUI.ATIOI\ EXAMPLI'S 102 

•• 
•• 
12 

! 
tO 

• 
• 
• 
2 

0 
20 

2$ 

30 

......... 

l•1gure 7.10: Space~ Time Plot of singulanty cre.uion. C'o'olutJOn and ann1hllat1un. 

spond11 to tht (;puts ream.n,lnJthc:m.'loehu around thr lnJtialtdea.hzed fll•r of Wngularitiei 

d<fin<d b)· Equatioo> 7.1. Once th" <qumtnnon pnx:"" "compl<k. lhc ')>l<m further 

rtlaxe!l by Lhe Type+ I 'i1ngul.mty. initially located at; moVIng honzontJIIy 1nd thu~ in~ 

c:ren~ina the d11"tance from the Type -I singularity'" I . This mocion i'l con~istem wich 

11lrortm I. t.tatement I. Th•" 1nohon is coupled w1th Malion of I he 'mgulmty from high 

e:net'J)' k) kJw enetgy whach I\ Upeaed from \Ldemcnc ,;; The: local t!'nrf1'.)' Jll'd (rom lbe 

roUhon -.nd b'af\'ilallon 1-. ab.ofbcd by the S)~lem h)' the= 'pOnLlOeOU\ Cft'•llon o( a singu 

lanty rnur wh1ch is marked Ill \Ji in the figures nnd c1n be seen in the ~p.~c..: lime plots of 

t'igurt:ll7 10 LO 7. 13. 



CfiAPnlt 7 . SIMl'l.ATIO' f~AMP'LI:S 103 

16 r-
~ ~ ~ 

~ It: 
14 

12 

10 
~ 

F 8 

~ 

f- I 
6 f-

f- ~J f-
11:-
0 

2 

0 
20 25 30 35 40 45 

Lattica X 

Fip< 7.11 : Ylb«X-Time PIOI. 

10\\' enough to allow them 10 mo\le 1oscthcr and annihilate ac (('".1. The "l)pc ... 1 o(lhc 1n1tial 

p.:ur, aflet rotating inlo n low COOl'$.)! !lmgularily mo\•es toward lhe inilinl l)tpe -I smgularity 

u.nd also annihilates nl ))\ 

From these piOb. v.~ c-•n ~.« 1h.u chc-:re tS a d.isunct d1ffc1Tn« 1n the motion of the 

uuhal Ynplaitits as (hey mll\"C ft0111 Uftll ceO to umt ttll. Af~ rulo~hom_ the T)-pe -I 

''~ularily is II a haJher ena'l) ~ciiNn eM Type +I. Th•~ ~ 10 a rowtion of 

0 Ot n in Figure 7..3. The dtfftrtncc.' 1n cllC'rgy alta'" the drpc.h~ of the c-nc:ray \lotlb \lo1l1ch 

lead!'. to more puncluated Of ftu id motion. 



CHAP'lt:K 7 St'-UJLAnos ExAMPU..S 104 

16 ® 
1. © 
12 

10 

! 8 

6 

4 

2 

0 
15 20 25 30 45 

Uilll<:eY 

7.2 Bulk Structures 

In du~o cxumJ>Ie we simulate a 161ayer mag,neuc system in which the ~opin~ interac• through 

u.n i .. otroptC cxchunge mter~ttiol'l . Thisdeq:riheo. an nnporhull model or b\alk (em>ITUignetic 

"'Y''cm~. 

7.2.1 Simulation Parameters 

Th•' .. unulauon ,..'"carried our: with e:u'.tw~JC 1rUrae:tK'Ifl ~a' J • 1.0. d.unptng of2.0. 

pModK hounciar)' condui<Jm: m the X. Y and Z dtn:d»OM and random tRI(taJ "PtA directlom 



CHAPTER 7. SIMlJlAl' IO\ EXA\tPI FS 105 

45 
I I I 

t-·- -- r- I 

35 ·-~1-- """ r--
I > 

~ 30 1- .... -.- r-

20 1- - §~ ~ 
-·CI ' r-

• 
15 -

20 25 30 35 40 

La,_ X 

figure 7.13~ LlttK;eX·LatbceY Plot. 

with spins or umc length. No chcnnaJ noi!'le, d1polar mtcmc:tion. ar1i.socropy orc:;~~.lc:mal fields 

were p~nt. S1mul.allon ~t<~Ccs we~ Yllllllloc.l C\oCI)' 10 lime umb up tO ~()()() 11me units 

-.,than adapu~ tc~ of0.005 . 

. /m~gsim - J l -g 0 -s 981932 - N 16 - n 16 

- T 5000 d 10 ·o 0 .005 ·p 0 - pbjz 

which spec1he11 the !!\change ( - J 1 ) and d1polar ( -9 0 ) strength~>, pro\· Ide' <t ~ for 



CHAPTER 7. SIMULATION EXAMPLES 106 

the random number generators ( -S 981932), a layer dimension of 16x16 ( -N 16) with 

16 layers ( -n 16 ), maximum runtime of 5000 ( -T 50 0 0) sampling every 10 ( -d 10) 

with an adaptive tolerance of 0.005 ( -o 0 . 0 0 5), random initial spin orientation ( -p 0 ) 

and periodic boundary conditions in the z direction for the exchange interaction ( -pb j z ). 

7 .2.2 Results 

This simulation took marginally less than 10 seconds to complete with an additional 5 

seconds to write to the datafile. The multilayered nature of the system introduces new 

problems to overcome in terms of visualization and analysis. We have adapted both our 

SGL/OpenGL and POV-Ray rendering tools to display multiple layers as depicted in Figure 

7 .14. The media accompanying this thesis contains both videos rendered using these two 

programs and the datafile which the simulation generated. 

7 .2.3 Discussion 

The problem with visualizing layered data is that the outer data obstructs the view of the 

inner data which is clear in the sample images. Both tools have the ability to turn off the 

rendering of certain layers but we have not yet developed a way to identify and isolate 

regions of significance in the relaxation process. 

Another problem with visualizing is the time it can take to render the data. This sim

ulation runs in approximately 10 seconds but the POV-Ray rendering of the 500 frames of 

data took 9 hours. Similar rendering using sdlglspin, when only rendering to screen, takes 

less than a minute to present all the data but capturing screenshots to encode and write to 

files increases the rendering time to 10 minutes. 



CHAnta 7. SIML'LATIO:-. EXAMPLES 107 

hsure 7.14: Sample rendenn&' of multilayer d;ala u. ... ng POV-Ray and 5dlgtspin 



CHAPTER 7. SIMULATION EXAMPLES 108 

The differences in visualization times depends on the quality of the output. POV-Ray 

can generate very high quality images with proper light calculations and antialiasing via 

it's ray-tracing engine. However, this higher quality is computationally expensive and the 

rendering program does not make use of accelerated hardware on the video card. The other 

method, using sdlglspin, is of lower quality but has much faster render times. It does not 

make use of antialiasing and face illumination is based solely on dot product between the 

surface normal and light direction, that is, intervening objects do not cast shadows. 

This inability to easily view the interior of a volume of data is a shortcoming of our 

visualization tools but we will leave improvements as an area of future research and devel

opment. 

7.3 Non-Square Lattices 

A further extension of the simulation is to consider non-square lattices. Adapting the sim

ulation code to work with variable shaped lattices has proved to be trivial. As an example, 

the difference between square lattice simulation code and triangular or hexagonal lattices is 

less than 10 lines of code in our 10000 line project. This modification allows us, and other 

researchers, to examine a much wider range of systems. For this demonstration, we will 

look at a honeycomb mesh, which is a triangular lattice with specifically placed vacancies, 

and probe the phase space. 



CHAPTER 7. SIMULATION EXAMPLES 109 

7 .3.1 Simulation Parameters 

This simulation was carried out in the simulation's realtime mode. This sets up special pa

rameters to make realtime interaction easier such as imposing a maximum on the adaptive 

timestep, disabling reporting to file and setting the maximum simulated time to a very large 

value. These parameters make sure that the simulation neither completes in a small amount 

of time nor writes a very large data file. The command line used to start the simulation was: 

./magsim -tri -p 52 -E 0.1 -P_ftat -N 24 -fftw -rt 

which specifies a triangular lattice ( -t r i ), with honeycombed vacancies as the initial 

position ( -p 52 ), starting with a small amount of thermal fluctuations (-E 0 . 1 ), using 

precomputed dipolar interaction matrices for triangular lattices from the proper directory 

(-P trilat ), grid dimension of 24 x 24 (-N 24 ), making use of the fftw library for 

FFf calculations (- f f t w) since our grid dimension is not a power of 2 and running with 

custom realtime parameters (- rt ) for convenience. 

In conjunction with the simulation code, the shared memory programs were also used 

to export simulation states and modify simulation parameters from a remote workstation. 

This fast, realtime interaction with the simulation allowed us to explore the phase space for 

this lattice type. 

7 .3.2 Results 

Throughout this simulation, the dipolar interaction strength was fixed at 0.5, no external 

fields were present and thermal perturbations were kept very low to facilitate dynamics. 

The only parameters varied were the strength of the exchange interaction and surface 

anisotropy. Figures 7.15 depicts distinct configurations for a honeycomb system. 



CltAf"TtR 7. St'I.IULATIO' EXAMPLES 

ltr•t"ttfOTr•t .... , ........ ~,·· 
• :~ • r r t r • r r r ~ • r r , , ........ , ,, ,, . ,,,,,,, ...... . ', ............ . 
' t tt t9 rr to ro •t I ,,,,,,,'!" •• ,,,, 
•r•rrrrrt?:~ ''' ...... , .. ,. ,,,,. 
·······~········ .·~:·.:· .. ·~.·· •. ·· •. ·~.'\i 
:• ,, •• 11 ., , ••• ,, , 

·,:\/',:',,''.:·.:·,!··.:i 
··········~···· If 19 tt rl If tt I tr l ............ ,,,, 
:•,,r~r•'',,•·•,,• ,,'',,'' , '.; 
'tt r: rt tl II rJ • 

1 rt •• ·~ Yr ,,, r.o _z, 

I C) f'l ~ J 2.0 1C l6 

•• •• .. • • .. •••• .. . .. .. .. • • .. .. .. .. • • .. .. .. • • .. 
•• •• •• •• • • • • • 
• • ••• •• • ••• t t t t t I •• •• •• 

t It I . .. .. . .. .. • • • • 
•• •• 

' •• •• 
•• .. .. .. 

• •• • • • .. • • •• .. .. .. .. .. .. 
• • • 

•• 
. .. •• •• .. . .. 

•• •• •• • 
.. .. .. •• 

.. . .. 
• • • • .. • • 

I") AI• l'h.l...:. J 0 0 IC • 0.0 

• • • • • • • • . . . .. . . . . 
• • • • • • • • . . . . ,. .. . . 
• • • • • • • 

• • t • • • • • 
• • t • • • t 

• • • • • • • • • • • • • • • • • • • • • • 
• • t • • • • • . .. . .. . . . . 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • t • • • • • • • 

• • • • • • • • • • • • • • . . . . .. . . . 
• • • • • • • • • • • • • • 
t • • • • • • 

Cdt Out t•f Pl411r, J 0 0 'i • I .2.~ 

I •t •t tl •• tt tt It • 

•• •• •• •• •• •• •• •• I tt tt tt tt tt •• •t t ....•..... '' .... 
I tt tt II •• tl It •• t 

•••••••••••••••• 

• •••••••••••••• •• •• •• •• •• •• •• •• . .. .. .. .. .. .. ' •••••••••••••• ' .. .. .. .. .. .. . 

hpre 7.1.5: Honcyromb SmwJ~.K'In SI'Wlf"holt. (J• 0.5) 

110 



CHAPTER 7. SIMULATION EXAMPLES 111 

7 .3.3 Discussion 

Figure 7.15 shows the rich phase space in a honeycomb lattice. By varying surface anisotropy 

and the exchange strength we can identify 4 phases (AA, AF, FF and out of plane). The out 

of plane phase can be further subdivided into striped and non-striped and the stripes vary 

in characteristic width for positive J. 

As stated, the code modifications to achieve non-square lattices were very minor, merely 

10 lines for the simulation. This was also true for the modifications required in the visu

alization programs however we made no changes to our underlying libSpin. We have not 

adapted it to triangular or honeycomb lattices. If the datastream contains per-site fields then 

we can calculate energies otherwise the code will attempt to determine site energies assum

ing a square lattice. This is also true for topological singularities as we have not evaluated 

the Poincare Index code for a triangular unit cell. Future work could involve abstracting 

the Poincare calculations and implementing it for arbitrary lattice types. 

7.4 Conclusion 

We have presented several very different uses of our software package from understand

ing the dynamics in a single simulation to probing the phase space for given configuration 

and parameters. In presenting these demonstrations we have relied both on visualization 

of the system itself and extracting more abstract information such as the location of topo

logical singularities. We believe that these examples clearly establish both the strength and 

flexibility of the code that was created for this thesis. 



Chapter 8 

Summary 

This thesis describes a numerical integration scheme for the LLG equation that can be 

adapted to multiprocessor, shared memory architectures. A set of sophisticated visualiza

tion tools and parallelization methods have also been developed as part of this project and 

are described in the thesis. These parallelization methods, utilizing shared memory, al-

low remote visualization of running simulations at no computational cost to the simulation. 

These parallelization methods also allow zero cost interaction with the simulation which, 

when combined with the visualizations and efficient integration techniques, creates a com

plete suite which can be used to explore the dynamics of multilayered magnetic systems. 

The principle components that were developed as part of this project included 

1. The formulation of the LLG equation in terms of spin rotations (as opposed to the 

more conventional Cartesian approach) using quatemion algebra and an adaptive 

timestep numerical integrator. 

2. The development of a set of shared memory routines (shm_utils) that are used to 

112 



CHAPTER 8. SUMMARY 113 

calculate fields, update spin positions and allow interaction between the running pro

gram and remote computers. These utilities are more efficient, scalable and versatile 

than the standard parallelization packages (MPI, OpenMP) in the context of the par

ticular class of problems considered in this thesis. 

3. The shm_utils were also used to develop routines that calculate the most effective way 

to distribute a given set of problems across multiple processors in order to minimize 

the total execution time. This dynamic optimization technique implicitly considered 

computational topology and availability of resources. 

4. The visualization techniques built on libSpin, SDL, OpenGL and POV-Ray provided 

methods of viewing both running and recorded simulations immediately at high fram

erates using accelerated graphics or afterward with raytraced images and videos. 

5. The shm_utils contain a feature that allow remote modification of local memory. 

This allows simulation parameters to be modified at runtime without communication 

overhead. 

We have demonstrated the capabilities of the code by applying it to study three problems 

of interest, namely relaxation processes in single layer films, magnetic ordering in bulk 

systems and magnetic phases in two dimensional honeycomb lattices. The results obtained 

are interesting and suggest possible avenues of research in conjunction with this code. 

Research projects which are being actively investigated using this code include spin

waves in magnetic multilayers and striped phases in multilayer geometries. These two 

topics also demonstrate the versatility of the code. When investigating spinwaves at zero 

temperature, we must run the simulation through millions of timesteps at zero damping 



CHAPTER 8. SUMMARY 114 

without introducing or loosing energy through numerical drift. The quaternion based ro

tations and adaptive timesteps have allowed us to achieve this goal. Striped multilayer 

geometries were discovered by relaxing the tolerance and interactively exploring large sec

tions of phase space which was possible again through the use of the adaptive timestep and 

the unique features of the parallel routines. 

Future research is planned to explore the memory model used in shm_utils to create 

a generic high performance shared memory library to be used in research settings and 

automatic creation of visualization on hardware ranging from commodity desktop PCs to 

immersive visualization labs with haptic feedback. 



Appendix A 

Static Energy Calculations 

In this appendix we will present the full derivation for the energy of a spin system with 

periodic boundary conditions. 

The calculation is started by first writing the Hamiltonian as 

Jf=g! E, [a(i?;~·cr(Rj) _ 3 (cr(R;)·Rij](cr(Rj)·R;j)] (A.l) 
2 R;,Rj 1RiJ13 1RiJ15 

- g (J -~ cr(R;) · cr(Rj) + ~ii · cr(R;) + }~):crZ (R;)2
) , (A.2) 

<R;,Rj> R; R; 

where R; and Rj are lattice positions, Rij is the displacement between these positions, cr(R;) 

is the magnetic moment at a lattice site Ri, ii is an external applied field, g, J and K are the 

strengths of the dipolar interaction, exchange interaction and surface anisotropy, the prime 

on the summation excludes the term when Ri is equal to R J and the angled brackets indicate 

sums over nearest neighbours. 

115 



APPENDIX A. STATIC ENERGY CALCULATIONS 116 

A.l Dipole-Dipole Energy 

Next we define a lattice of spins of dimensions A in the .X direction and B in they direction. 

Examining the average dipole-dipole energy from a spin in the lattice, we have 

E = _1 ~ ~ ~ ~ ~ ,cr(G+mi+n.Y) ·cr(ix+ jy) 
dd AB l..t l..t l..t l..t l..t ,... ... j3 

i=lj=lm=ln=l 6 R+G 

_
3 

[cr(G+mi+n.Y). (R+G)][cr(ix+ jy). (R+G)J 
IR+Gi5 , 

(A.3) 

where G represents all replicated lattices and is defined as 

(A.4) 

with integers g1 and g2. The prime reminds us to exclude the terms when G and R sum to 

zero, R = Rij - Rmn with Rxy = .xX + yjl. We break Equation A.3 into 4 parts as follows 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

which represents a magnetic moment interacting with it's replicas in the first two terms 

(isotropic and anisotropic parts) which we will refer to as the self interaction, and all other 

interactions are represented in the second two. Here the prime on the summations applies 

the restriction m =/= j if n = i. 



APPENDIX A. STATIC ENERGY CALCULATIONS 117 

A.l.l Isotropic Self Interaction 

We will deal with each term in turn, first we rewrite the summation in A.5 as 

A B 1 E E [cr(ix+ jy)Jz E '~ 
i=lj=l G IGI 

(A.9) 

since 

(A.lO) 

Using the identity based on the integral representation of the gamma function 

1 1 loco s-1 -x2td -=-- t e t, 
x2s r(s) 0 

(A.ll) 

we express Equation A.9 in the form 

(A.l2) 

A change in variable t = p2, dt = 2pdp and evaluation of the Gamma function yields 

(A.13) 

We now split the integral into two ranges, 0 to 11 and 11 to oo with 11 being an arbitrary value 

(A.14) 

Each term of this expression must be dealt with separately, we start with the second ex

pression. We will show its relation to the Incomplete Gamma Function, starting with the 

general definition 

(A.l5) 



APPENDIX A. STATIC ENERGY CALCULATIONS 118 

change the variable of integration t = X2p2, dt = 2pX2 dp 

(A.l6) 

and evaluate at a=~. z = T] 2X2 

(A.17) 

Since X is independent of p, we can take it outside of the integral and re-express the In

complete Gamma Function after integration by parts 

(~ -1)1(~ -1, T]2X2) + (TJ2X2)i-te-rtzxz = 2X3 ~"" p2e-xzpz dp. (A.l8) 

Evaluating the Incomplete Gamma Function at a = ! yields r(!, x) = J1t erfc ( JX) where 

erfc is the complementary error function and so it follows that 

__!___ (Ji erfc(TJX) + !T]Xe_Ttzxz) = 1"" p2e-xzpz dp 
X 3 4 2 11 ' 

which is the second term of Equation A.14 when X= IGI. 

(A.19) 

The first term of Equation A.l4 is treated in a different manner. The second, when 

summed over G i= 0, results in a rapidly converging series but the same method applied 

to the lower range of integration will not work. Here we must make use of the reciprocal 

lattice space to achieve rapid convergence. We start by drawing the summation over G i= 0 

into the sum of terms and write 

L loTI p2e-IGizPz dp. 

GoFO 0 

Which can be expanded to the full sum over G by subtracting the term with G = 0 

(A.20) 

(A.21) 



APPENDIX A. STATIC ENERGY CALCULATIONS 119 

Changing variables p = y'i, dp = 
2
0dt and evaluating the second integral we get 

r2 ~ 2 1 113 L Jo te-iGi t-dt- -. 
0 o 2y'i 3 

(A.22) 

Using the Poisson summation formula for 2D space, this is transformed into 

1t 1'112 1 Q2 ,3 
- -Ee-4tdt--
2AB o y'i ~ 3 ' 

Q 

(A.23) 

where Q = 21t(~x+ !§.y) with integers kt, k2. Next we change variables t = ~· dt = #dp 

and write 

1t hoo 1 Q2 2 113 -E -e-TP dp--. 
AB ~ l p2 3 

Q '1 

(A.24) 

We will now start from the definition of the Incomplete Gamma Function and work back-

wards to get Equation A.24, 

(A.25) 

( ~ )2 ~2 
Changing variables t = ~p , dt =~pdp gives 

( 

.... ) 2a-2 ~ 2 .... 2 

r(a,z) = Jfl ~p e-(~•) ~pdp, (A.26) 

and selecting a = -! and z = ( *) 2 
evaluates to 

( ] ( Q) 2) 4 hoo 1 _ (~p) 2 

r -- - = ~ -e dp. 
2' 211 Q ~ p2 

(A.27) 

Integrating the Incomplete Gamma Function by parts gives 

(A.28) 



APPENDIX A. STATIC ENERGY CALCULATIONS 120 

inserting A.27 into the first term on the right yields 

r(~ 2__ ) - 2__ e(~) = -~r( -~ g_ ). (-)2 (-)-1 ~ 2 (-)2 
2 ' 2rt 2rt 2 2 ' 2rt 

(A.29) 

Evaluating the Incomplete Gamma Functions result in 

(A.30) 

which is the integral in A.24. We can now use Equations A.30 and A.19 to rewrite Equation 

A.l4 and express the summation in A.5 as two rapidly converging series, one in reciprocal 

space and the other in real space 

(A.31) 

A.1.2 Anisotropic Self Interaction 

The next term to expand, found in A.6, follows a similar pattern to the last. We must 

first extract the a from the summation over G =f. 0. This is accomplished by first recalling 

Equation A.l 0 and then performing the following 

(A.32) 

The numerator on the right will disapear when a is set to zero, it's only purpose is to help 

match up components of G with a and so we can set it aside and write 

(A.33) 



APPENDIX A. STATIC ENERGY CALCULATIONS 121 

and only deal with the jGj-5 term. As before, we will start with the identity based on the 

integral representation of the gamma function (All) with a= ~ and perform the change 

in variables t = p2, dt = 2pdp to get 

A B 3 Jjt r= ~ ~ 
-3 E L,(cr(ix+ jy). Vaf( E -lo p4e-IGI2P2dp)( E ea.c)la=o· 

i=l j=l GoFO 2 0 GoFO 
(A.34) 

We will now start with the definition of the Incomplete Gamma Function (A.l5), change 

variables t = X2p2, dt = 2pX2dp and set a=~. z = 112X2 giving 

s r= 2 2 1(2, TJ2X2) = 2X5 }TJ p4e-x pdp, (A.36) 

which can be evaluated by integrating by parts twice and so setting X= IGI we can express 

the upper integral range as 

r= p4e-IGI2P2 dp = _;_ (~vn erfc(TJIGI) + (~TJIGI +TJ31813)e-TJ21al2). 
}TJ 2jGj5 4 2 

(A.37) 

We will now follow the procedure to evaluate the lower range of the integral in a similar 

manner as the method which starts at Equation A.20. We will include the summation over 

G i= 0 and transform it into a full summation by subtracting the zero term 

L loTI p4e-P21Giz dp -loTI p4dp. 

0 o o 
(A.38) 

Changing variables p = ..ji, dp = zJr and applying the Poisson Summation over 2 dimen-

sions transforms the above to 

(A.39) 



APPENDIX A. STATIC ENERGY CALCULATIONS 122 

where Q holds the same meaning as above. One more change in variables t = p-2, dt = 

-2p-3dp results in 

(A.40) 

which we will show to be related to the Incomplete Gamma Function. Starting with Equa

tion A.25, we will change variables t = !{22p2
, dt = ~Q2pdp and set a=-~, z = (~f 

to get 

(
-)2 4 3 Q 00 2 1 -! ~2 2 r( -- - ) = r --:::,-e 4Q pdp. 

2' 211 1 ~ Q3 p4 
(A.41) 

Integrating Equation A.25 by parts twice lets us evaluate the left term as 

(A.42) 

and so we can rewrite Equation A.38 as 

(A.43) 

This result combined with Equation A.37 allows us to express Equation A.6 as the sum of 

two rapidly converging series 



APPENDIX A. STATIC ENERGY CALCULATIONS 123 

A.1.3 Isotropic General Interaction 

The third term of our original equation, A.7, can be expressed immediately as 

A B A B 4 (loll - -2 2 r= - -2 2 ) EE E [,a(ix+fy)a(m.X+ny)-[, p2e-IG+RI Pdp+ In p2e-IG+RI Pdp 
i=l)=lm=ln=l y'n G 0 11 

(A.45) 

by following the same steps as we took for our first term. The only differences are that this 

starts as a full sum over G and we have an R term in the exponent. The second integral can 

also be immediately re-expressed as a rapidly converging series by using Equation A.19 

The first term, however, cannot be as quickly restated. The extra term in the exponent 

changes the evaluation of the Poisson Summation in 2 dimensions. For this term we will 

start at Equation A.22, suitably modified to include the extra term in the exponent and the 

full sum 

11
2 

- - 2 1 E r te.-IG+RI t-dt 

8 lo 2..}i 
(A.47) 

and then apply the Poisson Summation in 2 dimensions 

(A.48) 

to get 

(A.49) 

3 
which is Equation A.23 with an extra exponential and a missing ~. We can skip to the 

end of the derivation for this expansion and write the expression similar to Equation A.31, 



APPENDIX A. STATIC ENERGY CALCULATIONS 124 

noting the differences, which is equal to Equation A.7 

E E E E 'E cr(ni=:G~cr(mx) = 
i=lj=lm=ln=l G IR+GI3 

E E E E 'cr(nx)cr(mi)- -EetQ·R (11e t1 -- erfc(-) 
A B A B 4 [ 1t .~ ~ ( -(fn) 2 

Q Q ) 
i=lj=lm=ln=l J1t AB Q 2 211 

Y' 1 ( J1t .... .... 1 .... .... ziG+Riz) l + .L.t .... .... -
4 

erfc(lliG+RI) + -lliG+RI e-TJ 
G IG+RI3 2 

(A. 50) 

A.1.4 Anisotropic General Interaction 

The last term in the dipolar expression, Equation A.8, can be expanded into two rapidly 

converging series in the same manner as those above. We start by extracting the magnetic 

moments from the summation over G 

_ 3 E E E E 'E [cr(G+mi+n.Y). (R_:J-G~[cr(ix+ jy). (R+G)J = 
i=lj=lm=ln=l G IR+GI5 

A B A B .... .... e-iii·(R+G) 
+3 E E E E '(cr(ix+ jy) · Y'a)(cr(mi+ny) · Y'a) E .... .... I<X=o· 

i=lj=lm=ln=l 0 IR+GI5 
(A.51) 

Following steps similar to how we derive Equation A.33, we write 

9y~x A B A B r= ~ ~ 2 2 ~ ~ -EE E E '(cr(ix+jy)·Va)(cr(mi+ny)·Va)(LJo p4e-IR+GI P dp)Ee-iii·(R+G)Ia=o· 
2 i=l j=l m=l n=l G 0 G 

(A. 52) 

Splitting the integral into two ranges, we first convert the upper range into a rapidly con-

verging series following Equation A.36 

(A.53) 



APPENDIX A. STATIC ENERGY CALCULATIONS 125 

Following steps similar to those leading to A.43, we write 

(A. 54) 

and so the final term in the dipolar interaction can be written as 

(A. 55) 

A.2 Exchange Energy 

Calculating the exchange energy is much simpler to calculate since it is short range. We 

immediately express the average exchange energy as 

J ~ ~ ~ -(•A •A) -(R-) 
-A B f- !- ~ i..J cr zx + JY · cr , 

I= 1 J= 1 RENN(i,j) 

(A.56) 

where J is the strength of the exchange interaction and NN(i, j) is the set of nearest neigh-

bours around site ix+ jy. 



APPENDIX A. STATIC ENERGY CALCULATIONS 126 

A.3 Aniotropy Energy 

Finally, the average anisotropic energy is 

A B 
1( ~ ~ ("""'(•A •A) A )2 - AB i....J i....J cr zx+ JY · n;,j , 

i=lj=l 

(A. 57) 

with K being the strength of the interaction and fi;,j representing the local easy axis at site 

ix+ jy. 



AppendixB 

shm_utils 

In this appendix we present the custom parallel library, shm_utils, which was designed to 

implement the simulation code in an efficient, parallel manner. This library is intended 

for use on Symmetric Multi-Processor systems which allow the use of shared memory and 

multiple computational units. Naming conventions for routines follow a standard which is 

reminiscent of MPI for ease of use. 

Then entire library is less than 30k of source code divided between shmutils. c and 

shmutils. h Rather than linking against static or dynamic libraries, these files are in-

tended to be part of the set of source files which define the parallel application. 

B.l SHM_Comm 

Most function calls associated with this library make use of a SHM_Comm structure. This 

contains information about the active process's id or rank in the work group, the number of 

processes that comprise the workgroup and information about where the process is phys-

127 



APPENDIX B. SHM_UTILS 128 

ically being run on the SMP machine. Data for pipe based communication is held in this 

structure along with shared memory for barriers and a pointer to the parent workgroup, if 

one exits. 

The structure itself the following form 

struct SHM_Comm //communication struct 

{ 

}; 

//identity and environment 

int id, np, cpu, node; 

//explicit pipe based communication 

int *pipe_fd, *send_ pipe, *recv _pipe; 

//shared memory 

struct SHM_Segment* barrier; 

//counter to help with debuggung 

long barrierCount; 

//member array 

int* member; 

struct SHM_Comm* parent; 

//semaphore based barriers 

int* semid; 

struct sembuf lock;// = {0, -1, 0}; 

struct sembuf unlock;// = { 0, 1, 0}; 

SHM_Comm 

This is analogous to the MPLComm structure and plays much the same role. A default 

structure is provided similar to MPLCOMM_ WORLD which under shm_utils is referred to 

10 



APPENDIX B. SHM_UTILS 129 

as SHM_Default. 

B.2 Initialization 

Before any shared memory or parallel functions can be called, initialization must occur. 

This is carried out via the following function 

• int SHM_Init(int np, struct SHM_Comm* comm) 

where np is the number of processes you wish to use and comm is generally SHM_Default. 

This initialization routine forks to the required number of processors and populates all val

ues in SHM_Comm appropriately for each process. 

B.3 Work Groups 

Dividing the overall set of processes into smaller workgroups allows control over the gran

ularity of the parallel task. These three routines are provided to aid in the use of workgroups 

• struct SHM_Comm* SHM..New_Group(int num, int* mem, struct SHM_Comm* comm) 

• void SHM_Free_Group(struct SHM_Comm* WG) 

• int SHM_In_Group(struct SHM_Comm* WG) 

The first creates a subgroup from the set of processes associated with comm of size num 

consisting of the processes whose id is in comm are given in the array mem. The returning 

value of this routine is a newly created SHM_Comm structure with values populated to 

allow exclusive communication and synchronization among members of the group. The 

parent of the returned workgroup is set to comm. 



APPENDIX B. SHM_UTILS 130 

The second routine is used to deallocate all shared memory, semaphores, structures and 

pipes created for the workgroup. After this call, actions associated with WG are no longer 

valid. 

The last routine is used to check if the executing process is part of a workgroup. If it is 

part of the given workgroup 1 is returned, otherwise 0. 

B.4 Shared Memory 

Access to common, shared memory between processes is an integral part of this paral

lel library. Initialization, allocation, access and freeing of shared memory are non trivial 

processes and as such, a set of routines has been provided to encapsulate these tasks. 

Shared memory has more information than simply the pointer to the resource. A struc

ture has been defined which hold the information required to operate on the data. 

struct SHM_Segment //shared memory segment 

{ 

}; 

int local; 

int shmid; 

int size; 

void* memory; 

SHM_Segment 

The first member of SHM_Segment is the integer local which is interpreted as a boolean 

value and indicates that the shared memory is truly local, created with the malloc command, 

or is shared, created with the underlying system commands to access shared memory. The 



APPENDIX B. SHM_UTILS 131 

variable shmid is the system-wide identifier for the memory and size is the size, in bytes, 

of the shared memory. The last variable, a void pointer, points to a physical resource that 

acts as the shared memory. This pointer either points to local memory which has been 

memory mapped to external memory or directly points to the shared memory, depending 

on implementation. 

The functions which allocate and operate on the shared memory are listed below 

• struct SHM_Segment* SHM_Malloc(int owner, int size, struct SHM_Comm* comm) 

• struct SHM_Segment* SHM_Monitor(int shmid, int size) 

• void SHM_Free(struct SHM_Segment* ss) 

SHM__Malloc is the shared memory, parallel version of malloc. It allocates a segment 

of shared memory which it returns, encapsulated in the shared memory segment structure 

SHM_Segment, to the requesting processes. Each allocation of a shared memory segment 

must initially have a primary owner, owner, which is responsible for requesting the re

source from the underlying Operating System and then sharing information with the other 

processes which will enable them to access the memory. The other processes are those who 

are part of the group defined by comm. The size of the shared memory is exactly the same 

as the size given to the malloc command and is measured in bytes. 

SHM__Monitor connects to a shared memory segment defined by the system identifier 

shmid of size size bytes. This is primarily used to allow external processes or programs to 

access a shared memory segment. 

SHM_Free deallocates the shared memory, if the local flag in ss is nonzero then the 

system free command is used, otherwise the proper set of commands to detach from the 

shared memory and possibly deallocate the system resources are executed. 



APPENDIX B. SHM_UTILS 132 

B.S Explicit lnterprocess Communication 

While all communication can occur via shared memory and proper synchronization calls, 

it is sometimes useful to explicitly move data between processes. This ability is required 

at some stages of initialization and memory allocation since no shared memory pathways 

have been established. These calls are analogous to the MPI functions of similar names and 

should be avoided if performance is an issue since they use pipes as the communication 

mechanism and are much slower than shared memory. 

• int SHM..Send(int tolD, void* data, int size, struct SHM_Comm* comm) 

• int SHM..Broadcast(void* data, int size, struct SHM_Comm* comm) 

• int SHM_Recv(intfrom/D, void* data, int size, struct SHM_Comm* comm) 

SHM_Send is a one to one communication method between the sender and the process 

with id tolD of the set of processes defined by comm. Unlike the MPI routines for sending 

and receiving, this data is typeless and the data to be sent is at the location pointed to by the 

void pointer data of length size bytes. The reason these are typeless is because there are no 

endien mismatches across nodes in a single SMP machine. 

SHM..Broadcast is a one to many communication method. The data to be sent to all 

other members of comm is described in the same method as in SHM_Send. Internally, the 

data is sent to each process sequentially. 

SHM_Recv is the corresponding call made by the process which will receive data by 

either SHM_Send or SHM..Broadcast from the process identified by from/D. The received 

data will be placed at the location specified by data and will be size bytes long. 



APPENDIX B. SHM_UTILS 133 

B.6 Synchronization 

Process synchronization is accomplished via barrier calls. This halts the execution of code 

until all members of a specified work group have arrived at the barrier. The shm_utils 

library offers the following function 

• void SHM_Barrier(struct SHM_Comm* comm) 

The structure comm contains the shared memory segment or semaphore and semaphore 

operators required to execute the barrier, depending on barrier implementation. Care should 

be given to prevent workgroups which do not belong to the group defined by comm from 

attempting to execute the barrier. 

B.7 Cleanup 

When a parallel program is finished several tasks must be performed to deallocate any 

shared resources that may have been allocated during initialization. These tasks are carried 

out by the following routine 

• int SHM...Finalize(struct SHM_Comm* comm) 

where comm is generally SHMJ)efault. 

B. 7.1 External Cleanup 

Unlike programs which use local memory, it is not guaranteed that shared memory will be 

deallocated upon program termination. To help deal with this, the following function is 

provided. 



APPENDIX B. SHM_UTJLS 134 

• void SHM_GC(int start, int range) 

This function iterates over the set of shared memory id values from start to start+ 

range and deallocating every shared memory resource that is not currently attached to a 

process. This function is particularly useful when developing a shared memory application. 

B.8 Sample Application 

Here we present a simple demonstration of a program using shm_utils featuring workgroup 

creation and synchronization. 

#include <stdio.h> 

#include <unistd.h> 

#include "shm_utils. h" 

int main(int argc, char** argv) 

{ 

int gmb[3] = {0, 3, 4}; //work group members 

int gsz = 3; //work group size 

int np = 6; //total number of processes 

SHM_lnit(np, SHM_Default); 

struct SHM_Comm* WG = SHM_New_Group(gsz, gmb, SHM_Default); 

if(SHM_ln_Group(WG)) 

{ 

10 



APPENDIX B. SHM_UTILS 135 

printf("%i in subtask (called %i in work gro~p'H'IM'~Default->id, WG->id); 

sleep(2*WG->id+2); 

} 

printf("group member %i at group barrie:M(f:iJlL>id); 

SHM_Barrier(WG); 

} 

SHM_Free_Group(WG); 

printf("%i at final barrier~SPIM_Default->id); 

SHM_Barrier(SHM_Default); 

printf(" %i complete\p3HM_Default->id); 

SHM_Finalize(SHM_Default); 

return 0; 

Demonstration of a parallel program using shm_utils 

This program executes as 6 processes, 3 of which are part of an exclusive work group. 

Members of this work group pause for several seconds before destroying their work group 

and meeting the remaining members at the final barrier. The output from this demonstration 

is given below. 

0 in subtask (called 0 in work group) 

1 at final barrier 

3 in subtask (called 1 in work group) 

2 at final barrier 

5 at final barrier 

20 

30 



APPENDIX B. SHM_UTILS 

4 in subtask (called 2 in work group) 

group member 0 at group barrier 

group member 1 at group barrier 

group member 2 at group barrier 

3 at final barrier 

0 at final barrier 

4 at final barrier 

3 complete 

4 complete 

5 complete 

1 complete 

0 complete 

2 complete 

Output from Demonstation of shm_utils 

136 

10 



Bibliography 

[1] Document for a standard message-passing interface. Technical report, Knoxville, TN, 

USA, 1993. 

[2] I. Booth, A. B. Macisaac, J. P. Whitehead, and K. De'Bell. Domain structures in 

ultrathin magnetic films. Phys. Rev. Lett., 75(5):950953, Jul1995. 

[3] G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates. 

Ann. Math. Stat., 28:610-611, 1958. 

[4] W. F. Brown. Thermal fluctuations of a single-domain particle. Phys. Rev., 

130(5):1677, 1963. 

[5] C. L. Chien, Frank Q. Zhu, and Jian-Gang Zhu. Patterned nanomagnets. Phys. Today, 

60(40), June 2007. 

[6] R Courant, K Friedrichs, and H Lewy. On the partial difference equations of mathe

matical physics. IBM J, 11:215-234, 1967. 

137 



BIBLIOGRAPHY 138 

[7] G. C. Danielson and C. Lanczos. Some improvements in practical fourier analysis and 

their application to x-ray scattering from liquids. J. Franklin Inst., 233(4):356-380, 

April1942. 

[8] K. De'Bell, A. B. Macisaac, and J. P. Whitehead. Dipolar effects in magnetic thin 

films and quasi-two-dimensional systems. Rev. Mod. Phys., 72(1):225257, Jan 2000. 

[9] E.W. Dijkstra. Programming Languages, chapter Cooperating Sequential Processes, 

pages 43-112. Academic Press, New York, 1968. 

[10] Allen B. Downey. The Little Book of Semaphores. 2005. 

[11] Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong. Monte carlo simula

tions: Hidden errors from "good" random number generators. Phys. Rev. Lett., 

69(23):33823384, Dec 1992. 

[12] J. L. Garcia-Palacios and F. J. Lzaro. Langevin-dynamics study of the dynamical 

properties of small magnetic particles. Phys. Rev. B, 58:14937-14958, December 

1998. 

[ 13] T. L. Gilbert. A lagrangian formulation of the gyromagnetic equation of the magneti

zation field. Phys. Rev., 100:1243-1255, 1955. 

[14] The HDF Group. Hierarchical Data Format. Website. http://www.hdfgroup.org/. 

[15] A. Grzybowski, E. Gwzdz, and A. Brdka. Ewald summation of electrostatic inter

actions in molecular dynamics of a three-dimensional system with periodicity in two 

directions. Phys. Rev. B, 61(10):67066712, Mar 2000. 



BIBLIOGRAPHY 139 

[16] Olle. G. Heinonen, 2006. Private Communication. 

[17] Rebecca L. Honeycutt. Stochastic runge-kutta algorithms. i. white noise. Phys. Rev. 

A, 45(2):600603, Jan 1992. 

[18] ITLINIST. oommf. http://math.nist.gov/oommf/. 

[19] J.D. Jackson. Classical Electrodynamics. J. Wiley and Sons, 1999. 

[20] H J F Jansen, G S Schneider, and H Y Wang. Calculation of Magneto-crystalline 

Anisotropy, chapter 2, page 57. Electronic Structure and Magnetism of Complex 

Materials. Springer, April2003. 

[21] Robert J. Jenkins Jr. Isaac. In Dieter Gollmann, editor, Fast Software Encryption, 

volume 1039 of Lecture Notes in Computer Science, pages 41-49. Springer, 1996. 

[22] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions in 

two-dimensional systems . Journal of Physics C Solid State Physics, 6:1181-1203, 

April1973. 

[23] Pierre L'Ecuyer and Richard Simard. Testu01: A c library for empirical testing of 

random number generators. ACM Trans. Math. Softw., 33(4):22, 2007. 

[24] EM Lifshitz and L P Pitaevskii. Statistical Physics, Part 2, volume 9 of Landau and 

Lifshitz Course ofTheoretical Physics. Elsevier, January 1980. 

[25] C. K. Lo and K. W. Yu. Field-induced structure transformation in electrorheological 

solids. Phys. Rev. E, 64(3):031501, Aug 2001. 



BIBLIOGRAPHY 140 

[26] A. B. Macisaac. The Magnetic Properties of a Model Two-Demensional Dipolar Thin 

Film. PhD thesis, Memorial University of Newfoundland, St. Johns, NL AlC 5S7, 

P.O. Box 4200, Canada, 1997. 

[27] Davide Maltoni, Dario Maio, Anil K. Jain, and Salil Prabhakar. Handbook of Finger

print Recognition. Springer, 1 edition, March 2005. 

[28] George Marsaglia. Choosing a point from the surface of a sphere. Ann. Math. Stats., 

43(2):645-646, 1972. 

[29] George Marsaglia. Xorshift mgs. Journal of Statistical Software, 8(14):1-6, 2003. 

[30] L. Nel. Theorie du trainage magnetique des ferromagnetiques en grains fins avec 

applications aux terres cuites. Ann. Geophys., 5:99-136, 1949. 

[31] ['OpenMP']. OpenMP FortranApplicationProgramlnterface. OpenMP Architecture 

Review Board, version 1.0 edition, 1997. 

[32] T. Schreft, W. Scholz, D. Sss, and J. Fidler. Langevin micromagnetics of recording 

media using subgrain discretization. IEEE Trans. Magn., 36:3189-3191, 2000. 

[33] Thomas Schreft, Josef Fidler, Rok Dittrich, Dieter Suess, Werner Scholz, Vassilios 

Tsiantos, and Hermann Forster. Fast Switching of Mesoscopic Magnets, page 1. Spin 

Dynamics in Confined Magnetic Structures II. Springer, 2003. 










