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ABSTRACT 

Time-domain electromagnetic (TDEM) surveys rely on electromagnetic induction from a 

time varying magnetic field to produce recordable responses from conductive material in 

the subsurface. Interpretation of TDEM data is dependent on the location of a conductor 

in relation to the primary field of the transmitter and therefore can be very complicated. 

This is especially true for the InfiniTEM® figure 8 transmitter configuration where the 

same vertical conducting plate can produce a variety of signatures depending on its 

location relative to the transmitter loop. This study investigates the usefulness of the 

energy envelope processing technique to combine multiple components of InfiniTEM® 

survey data to remove the directional dependance on the primary field. The energy 

envelope involves adding the vertical and horizontal components responses with 

associated Hilbert transforms in quadrature to create a single profile peaking over the 

location of an anomaly. This approach provides a more intuitive contour map for 

interpretation. 
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CHAPTER! 

INTRODUCTION 

Like most geophysical methods, interpretation tools for electromagnetic (EM) data 

have greatly improved over the years. Processing techniques are being developed to 

isolate anomalies and characterize their response. This study will show the effectiveness 

of combining multiple components of time domain electromagnetic (TDEM) data to 

develop a consistent response that is easily interpretable 

The technique used here, called the ' energy envelope', was initially investigated to 

introduce an alternative approach to processing airborne EM data (Smith and Keating, 

1996). During an airborne EM survey, alternating flight paths on adjacent survey lines 

produce contrasting responses from the measured secondary field components of a 

conducting unit in the subsurface. The same is applies to measurements taken relative to 

the primary field in a surface TDEM survey. The energy envelope technique combines 

responses of the vertical and horizontal components with associated Hilbert transforms 

into one profile and removes the directional dependance on the primary field (see Figure 

1.1 ). The energy envelope gives a single obvious peak directly over a conducting body, in 

contrast to the various side-lobes and cross-overs in the three-component profiles. This is 

very similar to the analytical method used on potential field data, e.g. magnetics, which 

removes any geographical dependance it might have in relation to regional magnetic 

trends (Boumas and Haydar, 2001). 
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Figure l.l. The z, x, and y component profiles of a conductive plate in a TDEM survey. Blue line 
indicates original profile and the green line represents the Hilbert transformed quantity of the original 
signal, as shown in label in upper right comer. Scale on top three graphs corresponds to EM Response 
measured in JlV/A. Bottom right profile shows energy envelope profile using all components and scale 
corresponds to EE Response. Bottom scale indicates Easting position in metres. This example is 
described in full in Chapter 4. 
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An important aspect of TDEM surveys is the geometrical relationship of the 

primary field generated by the transmitter and the orientation of the desired target. The 

shape and location of the target define the optimum configuration of the transmitter loop 

and survey lines, which play an important role in the intensity and response from that 

target. A conductive body may produce a positive maximum, negative minimum or a 

cross-over in each of the x, y and z components depending on its location relative to the 

primary field. 

A rectangular transmitting loop is most commonly used for TDEM surveys. It is 

easily deployable and can be positioned to optimize EM coupling with the conductive 

target to produce the strongest response. For deeply buried and steeply dipping 

conductors, the rectangle loop is limited because it has to be placed far from the target to 

maximize EM coupling direction, resulting in a relatively weak intensity of the primary 

field which in tum produces a weaker response from the target. This study will 

concentrate on the InfiniTEM® Figure 8 transmitter loop developed by Abitibi 

Geophysics and SOQUEM (see Figure 1.2). The InfiniTEM® is a new configuration that 

generates a strong horizontal primary field that is specifically designed to maximize 

coupling with steeply dipping and deeply buried base-metal targets. It was initially 

modeled after the Figure 8 loop of Macnae (1978), with a roving receiver taking 

measurements along survey lines inside the transmitting loop. This configuration consists 

of two rectangle loops connected in series with a variable spacing between them. 
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a. 

Roving receiver 

Primary field orientation (White arrows) 

color shad~ 

b. 

Figure 1.2 (a). InfmiTEM® TDEM transmitter loop configuration. Black line indicates the transmitter loop 
and arrows show direction of the current path from the transmitter. Thin black lines show location of survey 
lines. (b). Cross section view of the primary magnetic field. Arrows indicate the direction of the primary 
magnetic field. Red/warm colors show positive polarity and blue/cool colors show negative polarity. The 
hue of the color indicates the strength ofthe field in that location (per. comm. Malo-Lalande). 
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A drawback of using dual loops with opposite polarities, as illustrated in Figure 

1.2b, is that anomalous signatures can vary significantly throughout the survey area due 

to the change in primary field orientation. A conductive body with the same size and 

shape can produce different responses depending on its location within the transmitting 

configuration. The energy envelope technique provides the potential for a consistent 

response, regardless of the conductors location, and removes the directional dependance 

on the primary field. This study will show the effectiveness of this technique on 

InfiniTEM® survey data in a of variety synthetic and field examples. 

Chapter 2 presents the time-domain electromagnetic method. Chapter 3 will 

introduce the InfiniTEM® system. In Chapter 4, a detailed description of the processing 

techniques used in the thesis is given and also includes a brief summary of the computer 

code that was written to implement the energy envelope technique for lnfiniTEM® data. 

An extensive range of synthetic examples is provided in Chapter 5, illustrating the 

effectiveness of this technique with the InfiniTEM® configuration. These examples cover 

a variety of plate sizes, locations and orientations to exhibit the dexterity and also the 

limitations of the algorithm. Chapter 6 provides 4 examples of field data acquired from 

actual InfiniTEM® surveys that will show the benefits of using this approach in a variety 

of geological environments. 
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CHAPTER2 

THE TIME-DOMAIN ELECTROMAGNETIC METHOD 

TDEM surveys are some of the most common and effective methods for base 

metal exploration. The TDEM technique relies on electromagnetic induction within a 

conductive medium to generate a recordable response from the subsurface (Nabighian & 

Macnae, 1987). The fundamental properties of this survey are best described through 

Maxwell 's electromagnetic equations, in particular Ampere's, Faraday's Law, and Ohm's 

Law. 

Ampere's Law VxH=J (1) 

Faraday's Law - ()B 
VxE=--

dt 
(2) 

Ohm's Law J = crE (3) 

Where H is the magnetic field intensity, J is the current density, E indicates the 

electric field, and B indicates the magnetic field. For this study the quasi-static 

assumption is assumed valid where all time-variations in the TDEM method are relatively 

slow compared to the time for light to travel across the survey area (Grant and West, 

1965). 
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In Time-domain surveys the current is cycled on and off at predetermined 

intervals. An example of the waveform used in the InfiniTEM® survey can be seen in 

Figure 2.1 , which is also known as step function excitation (Nabighian & Macnae, 1987). 

As the transmitter current waveform varies, Ampere's Law implies there is a time-varying 

magnetic field (Figure 2.2). 

Current (I) waveform in the Tx loop: 

t.t 

Electromotive force waveform generated in the ground 

u.. 
::2: 
UJ 

T ------------~ 

~Pulse 

20 gates 

Measuring t ime 

Figure 2.1. Top panel: diagram of the ramp frequency, tum on and off times used in typical TDEM systems 
including InfiniTEM®. Bottom panel: resulting EMF from the decay in the electric field (per. comm. Malo
Lalande). 
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Primary Field 

Figure 2.2. Cross section view of primary and secondary magnetic field direction of conventional square 
loop TDEM survey. Red and blues arrows indicate direction of primary and secondary magnetic field, 
respectively. 

In order to simplify modelling and interpretation, the transmitter current is held constant 

for an established amount of time. This allows the currents generated by the switch on to 

decay by the time the current is turned off. The latter switch off gives rise to another time-

varying magnetic field, which is what is normally measured and modelled. According to 

Faraday's Law, equation (2), the time varying magnetic field, -oB/01, will induce an 

electric field, E , that will interact with any conductive bodies in the subsurface. The 

induced electric field causes eddy currents to flow in a conductive body, as stated by 

Ohm's Law, equation (3), the magnitude of which are dependant on the conductivity, (J, of 

the body. The strength of the induced current also depends on the relative orientation of 

the inducing magnetic field and the conductive target, also known as ' coupling' . The 

8 



strength of the coupling and induced current is greatest when the inducing field is 

perpendicular to the conductive body. These eddy currents generate a magnetic field by 

Ampere's Law, equation (1), which can be measured at the surface. Grant and West 

(1965) state that these current will initially be confined to the surface of the conductor but 

will immediately start to dissipate throughout the conductor due to Ohmic losses. The 

decreasing currents will have a decreasing magnetic field, which will induce smaller 

currents further inside the body. This process is described by Nabighian & Macnae (1987) 

as the inward diffusion of the current pattern and it wil l continue until generated currents 

have vanished. The secondary magnetic field produced from this process provides 

information pertaining to the size and conductivity of the subsurface conductor. The 

higher the 'quality ' of the conductor the longer this diffusion process will take to 

dissipate. 

A variety of receivers can be used in TDEM. The most common is a coil which 

records the time rate of change of the secondary field, i.e. dB/dt, at preset time intervals, 

called channels or gates, after the primary field is sharply terminated. By recording in the 

transmitter current off cycle and without the presence of the primary field , as for 

InfiniTEM®, it is much easier to decipher the considerably smaller secondary field. Since 

the receiver is not influenced by the field from the transmitter while taking a reading, its 

gain can be much higher and therefore the signal from greater depths can be detected. The 

transmitter pulse and measurements are repeated multiple times which then can be 

stacked to enhance the signal-to-noise ratio. The measurement of the rate of decay in the 
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magnetic field produced by the eddy currents provides information pertaining to the 

conductivity of the bodies. A good conductor is characterized by an anomalous response 

throughout the later channels of the decay, where as the response of a poor quality 

conductor may be only visible over early time channels (Nabighian & Macnae, 1987). 

Their location and orientation are determined by the amplitude measured along some 

profile. 

Figure 2.1 shows the pnmary magnetic field waveform generated by the 

transmitter (top panel) and the primary electric field (electromotive force) produced as the 

magnetic field changes with time (bottom panel). The top panel illustrates the time 

intervals during which the transmitter produces current, and how the current is reduced 

over a specific period of time (ramp time/time oft). As the current is ramped down it 

produces a time varying magnetic field that gives rise to a primary electric field (induced 

electromotive force, EMF), as shown in the bottom panel. As previously stated, the 

electric field will produce eddy currents in the subsurface that decay over time. The 

magnitude and rate of decay of the secondary field of the eddy currents, which are 

dependant on the location, size, orientation and conductivity of the body, and are 

measured by the receiver. 
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Generally, as is the case for lnfiniTEM®, large loop transmitter surveys are 

conducted by taking measurements at evenly spaced stations on picketed survey lines 

normal to the geological strike (see Figure 2.3) 

l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
y • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

1 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

X 

Figure 2.3. Illustration of typical TDEM survey design. Individual stations are indicated by black diamonds 
on each line. x andy directions shown by arrows on bottom and left hand side of Figure, respectively. 

At each station, the decays of the three components of the secondary dB/dt are 

typically recorded, (see Figure 2.4 & 2.5), in relation to a local Cartesian coordinate 

system, with the x direction along the survey line, y perpendicular to the survey line, and z 

being vertical upward direction. 
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Figure 2.4. Example of x component decay of synthetic data at a single station measured in .u VIA as 
indicated by scale in left hand side of Figure. Bottom scale shows decay in relation to time channel in which 
it was recorded. 
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Figure 2.5. Example of x component decay of Field example 4 at a single station measured in n V/Am2 as 
indicated by scale in left hand side of Figure. Bottom scale shows decay in relation to time channel in which 
it was recorded. 

The measurements from each station are then combined to develop line profiles for 

each component. Qualitative interpretation of the subsurface is then based on comparison 

of the x, y and z component profiles of individual lines. These line profiles (see example 

in Figure 2.6) can then be combined to construct contour maps (see Figure 2.7) of the 

entire area. A table of the channel delay times is provided in APPENDIX 1. 
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Figure 2.6. The x component profile of a vertical plate positioned at 500E. Blue line indicates original 
profile as shown in label in upper left comer. Scale corresponds to EM Response measured in f.!V/A. 
Bottom scale indicates Easting position in metres. 
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Figure 2.7. Color contour map of x components of InfmiTEM® survey. Scale on right side indicates EM 
Response measured in f.!V/A. North is oriented towards the top of the page and all relative locations are 
indicated by edge ticks. 
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CHAPTER3 

THE INFINITEM® SYSTEM 

The shape and location of the transmitter loop and the configuration of survey 

lines are critical to the intensity of the response obtained from a subsurface conductive 

target (per. comm. Malo-Lalande). There are several varieties of transmitter loops that 

have been developed to better illuminate different shapes and sizes of conducting targets 

(Nabighian & Macnae 1987). Figure 3.1 provides several examples of different 

transmitter and receiver arrangements. For the purpose of this study we will concentrate 

on the configuration illustrated in panels (e) and (f): Large loop-single wire for 

transmitter & Large fixed transmitter loop with roving receiver. 
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SINGLE LOOP 
or ONE LOOP 

(a) COINCIDENT 'mANSMITTER- (b) DIPOLE RECEIVER 
RECEIVER LOOP (I N LOOP METHOO) 

~del ~d~ 
~r .. d,~1 ~1 ~~ 

(c) 
SEPARATED LOOPS 

(SLINGRAM ARRAY) 
LARGE LOOP RECEIVER 

(d) DIPOLE RECE IVER 

Tx 

Rx 

DUAL LOOP-5EPARATE WIRES 
FOR TRANSMITTER 6o 
RECEIVER. --q------- _ . ~ _ __l'Rxl_i!io~t~ 

Tx + t or Vertical) -- ------
-- ------

(f) LARGE FIXED TRANSMITTER LOOP 
WITH ROVING RECEIVER . 

Figure 3.1. Examples ofTDEM configurations. Th is study wi ll focus on (e) and (f); Large loop-single wire 
for transmitter & Large fixed transmitter loop wilh roving receiver (Nabigh ian & Macnae 1987). 

The most common configuration used in base metal exploration is a single square fixed 

transmitter loop using a roving receiver, such as (b), (d) and (f) . This set-up is very 

popular because it can be mobilized relatively quickly due to its simple shape. The 

location and direction of the primary field for this configuration can be seen in Figure 3.2. 
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a. b. 

Figure 3.2. Cross section view of primary magnetic field direction (a) and intensity (b) for conventional 
square loop TDEM survey. Arrows indicate direction of magnetic field, red/warm colors show positive 
polarity and blue/cool colors show negative polarity. The hue of the color indicates the strength of the field 
in that location. Panel (a) provides examples of optimal and minimal coupling situations (per. comm. Malo
Lalande). 

The most critical aspect about designing the transmitter loop configuration is how 

the primary field interacts with any conducting bodies that may be in the subsurface. The 

angle at which the primary field crosses the body influences the strength of the induced 

currents in the body and thus the strength of the secondary field. In an ideal situation, the 

primary field will intersect the body orthogonally to its largest aspect and produce optimal 

coupling with the target (Figure 3.2 a). This will produce the strongest response for a 

given distance between transmitter and body. Conversely, if the primary field is parallel to 

the target it will produce minimal coupling and a very small and low amplitude response. 

So, if the target is believed to be horizontal the square transmitter loop can be placed 

directly over the estimated location of the body to produce optimal coupling. This is the 

ideal situation for a conventional square loop because the primary field will be vertical at 

the conductor, and the intensity of the primary field at the conductor will be strong. If the 
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target is believed to be steeply dipping, the transmitter loop has to be placed off to one 

side of the target to ensure the primary field is horizontal at the target depth to maximize 

coupling. The drawback of using this type of configuration for a vertical target is that 

since the loop needs to be far away from the target the primary field intensity is 

dramatically reduced. It is difficult to determine the orientation of a target beforehand, but 

all available information must be taken into account to ensure the best configuration is 

used. 

A great deal of established deposits are steeply dipping and sheet or cone like in 

structure, which makes them difficult to illuminate with a conventional square loop. The 

lnfiniTEM® configuration developed by Abitibi Geophysics and SOQUEM consists of a 

distorted fixed Figure 8 loop (Figure 3.3 a) and uses a roving receiver. By using this 

configuration the orientation of the primary field is very different from that of the 

conventional square loop, and much stronger than that of just a single loop. This is an 

ideal configuration for investigating steeply dipping targets because the primary field is 

horizontal under the region between the two loops and will be normal to any steeply 

dipping targets in this region. This will optimize the coupling of the primary field with the 

target and increase the intensity of the response. InfiniTEM® measurements are taken 

using a roving receiver along survey lines across the entire configuration where the 

intensity of the primary field is the greatest. 
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Figure 3.3 (a). InfiniTEM® TDEM transmitter loop configuration. Black line indicates the transmitter loop 
and arrows show direction of the current path from the transmitter. Thin black lines show location of survey 
lines. (b). Cross section view of the primary magnetic field . Arrows indicate the direction of the primary 
magnetic field. Red/warm colors show positive polarity and blue/cool colors show negative polarity. The 
hue ofthe color indicates the strength of the field in that location (per. comm. Malo-Lalande). 

Generally, exploration for targets under conductive overburden is difficult because 

m conventional square loop geometries the primary field dissipates quickly in the 

overburden. As previously discussed for the conventional square loop configuration the 

primary field is vertical below the loop and therefore couples with the overburden. This 

causes the primary field to dissipate in the overburden and prevents the detection of 

currents from deeper conductive bodies. This is a common problem for surveys conducted 
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in some areas of the Canadian Shield, specifically the Abitibi Greenstone Belt. For the 

InfiniTEM® configuration the primary field is vertical at the surface but horizontal a 

short distance below the surface (i.e. parallel to the overburden) which makes coupling 

with the overburden poor in the area between the loops. This poor coupling at the near 

surface preserves the primary field intensity for deeper targets and makes it possible to 

explore for deeper targets. Through extensive field testing Abitibi Geophysics and 

SOQUEM determined the distance between the two loops should not be greater than 

twice the width of either loop (per. comm. Malo-Lalande). This ensures sufficient 

distance for the superposition of the primary fields of both lobes to give a suitable 

horizontal primary field while providing adequate field intensity. This allows for the 

target to be centred between the two lobes where the primary field is the strongest and 

thus produce a much higher amplitude response. 

Typical loop dimensions for the InfiniTEM® survey (size varies depending on 

location) are: 400m (loop width), 400m (loop separation) and 400m (second loop width), 

with the length of both loops at 800m (up to 1200m). There are generally at least 7 survey 

lines lOOm apart, or 4 at 200m apart. Measured values are typically given in nV/Am2, that 

is, values for the time derivative of the secondary magnetic field (dB/dt) normalized by 

transmitter loop current and receiver coil effective area. 
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CHAPTER4 

PROCESSING TECHNIQUES 

When processing TDEM survey data there can be a number of peaks and troughs 

on each component profile that make the response of a conductor complicated to 

interpret. The z and x components have larger amplitude because of their orientation to 

the primary field and are the principle indicators of the location of an anomaly. The y 

component has a much lower amplitude but is used to determine lateral changes in 

anomalous structures orthogonal to the strike of the survey lines 

The following chapter will illustrate how the same plate can produce different 

signatures depending on its location relative to the primary field from the transmitter, and 

how the energy envelope processing technique of Smith and Keating can simplify 

interpretation by combining all three components into one response. The motivation of 

applying this technique to InfiniTEM® data originated from airborne EM surveys, where 

a similar problem of different anomalous signatures was apparent. The algorithm 

developed for this project is modelled after this technique and uses a similar approach for 

combining the component's responses with their associated Hilbert transforms. 
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4.1 RESPONSES OF DISCRETE CONDUCTORS 

Figures 4.1a) to 4.1d) shows synthetic data for the InfiniTEM® configuration over 

a vertical plate in a homogenous non-conductive half-space at different locations relative 

to the transmitter loop. All profiles correspond to a synthetic plate with dimensions 400m 

by 200m by 50m. The data was modeled using EMIT Maxwell EM imaging software 

with InfiniTEM® transmitter loop with dimensions: 400m (loop width), 400m (loop 

separation) and 400m (second loop width). A 25m station separation was used on 2375m 

lines. The top panels on each page show the location of the plate (the large red rectangle 

in lower portion of each panel) with respect to the survey grid (parallel multi coloured 

lines cutting across panel). The Figure 8 transmitter loop is indicated by the red lines 

under the survey grid. The red arrows in the vertical plane show the direction of the 

magnetic field produced by the transmitter. The blue and green axes indicate distance in 

metres. The bottom panels show profiles of the z, x and y components for the 

corresponding plate locations. The magnetic field and component profiles are shown for 

the survey line 200N. 

As is shown in Figure 4.1, a peak on one component will align with a zero 

crossover on another component directly above the conductive body. Also, depending on 

its location relative to the transmitter loop, the same plate-like conductor can generate 

very different responses. In Figure 4.1(a) the plate lies outside the whole configuration 

and and in this case a negative to positive crossover on the z component profile correlates 

with a negative peak on the x component. 
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Figure 4.1. (a) The z, x , and y component profiles of a vertical plate positioned at 1600E. Blue line 
indicates original profile as shown in label in upper left comer. Scale on three graphs corresponds to EM 
Response measured in !!VIA. Bottom scale indicates Easting position in metres. 
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As the plate moves to the centre of the right loop, Figure 4.1 (b), the correlation changes 

to a negative peak on the z with a positive to negative crossover on the x . 

~ 0.000 

2 -0.005 

Figure 4.1 . (b) The z, x, and y component profiles of a vertical plate positioned at 11 OOE. Blue line 
indicates original profile as shown in label in upper left comer. Scale on three graphs corresponds to EM 
Response measured in ll VI A. Bottom scale indicates Easting position in metres. 
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Figure 4.1(c), with the plate in between the two loops, shows a positive to negative 

crossover on the z correlated with a positive peak on the x. 
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Figure 4.1. (c) The z, x, and y component profiles of a vertical plate positioned at 500E. Blue line 
indicates original profile as shown in label in upper right comer. Scale on three graphs corresponds to 
EM Response measured in 11V/A. Bottom scale indicates Easting position in metres. 
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In Figure 4.1 (d), the plate lies in the the centre of the left loop and again shows a similar 

response to the other examples but with a much different shape. The z component shows a 

positive peak and corresponds to a negative to positive crossover in the x component. 
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Figure 4.1. (d) The z, x , and y component profiles of a vertical plate positioned at -95E. Blue line 
indicates original profile as shown in label in upper right comer. Scale on three graphs corresponds to 
EM Response measured in JlV/A. Bottom scale indicates Easting position in metres. 
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As discussed in Chapter 3 the response of a conductive body is dependant on its 

interaction with the primary field. So, when processing InfiniTEM® data it is critical to 

keep the direction of the primary field in perspective because it is the key to correctly 

assigning the shape and position of the conductor. Although the individual components 

have different anomalous signatures depending on the relative locations of the transmitter 

loop and conductor, the summation of all three components will have a much more 

similar signature. 

Color contour maps can be developed by combining the profiles of survey lines, 

see for example Figure 4.2. However, because interpretation relies on comparison of 

peaks and zero crossover points they are not as intuitive as maps of, for example, 

potential field data, where an anomaly will show a single positive response on one map. 

As for individual line profiles these maps are created from separate x, y, and z 

components which are analyzed and compared to determine the location of any 

conductors. Similar problems arise when targets become apparent in various areas on the 

survey grid. The anomalies from different locations produce very different responses 

because of the variable coupling situation, so it is imperative to relate them to the 

direction of the primary magnetic field to ensure correct interpretation. By using the 

energy envelope to combine profiles, a conductive plate will produce a single positive 

anomaly regardless of its location relative to the primary field. 
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Figure 4.2. An example of the z component of an InfmiTEM® anomaly located in the centre lobe (Figure 
4.1 c) on a color contour map. The anomaly is indicated by negative (blue) to positive (pink) crossover. 
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4.2 HILBERT TRANSFORM 

The Hilbert transform (HT) is used in complex signal processing as a means of 

transforming a signal into its analytical representation (Diniz, Silva, Netto, 2002). It uses 

the Fourier transform (FT) to transform the signal into the frequency domain so the 

amplitude and phase components can be accessed separately. A consequence of the HT is 

that when applied it produces a 90° phase shift of the data, where the direction of the 

phase shirt is dependent on the sign of the signal (-90° for positive values and +90° for 

negative), and is the primary role of the HT in this study. By operating on the amplitude 

and phase information separately the amplitude is unaffected by this phase shift. An 

inverse FT is then used to bring the transformed quantity back to the real domain. 

Evidence of this phase shift can be seen when the HT is applied to a sine function. 

The HT of the sine function is cosine, with no change in amplitude, Figure 4.3 (the HT in 

this Figure was calculated using a subroutine within Python and will be discussed in more 

detail in Section 5.11 ). The original real function and its Hilbert transformed counterpart 

are called HT pairs, and can be combined these to create what is known as the analytical 

signal, which will be discussed in the next section. 
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Hilbert Transform 
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Figure 4.3. Profile of sine function, blue line, and Hilbert transfonn of that sin function, green line. This 
profile was generated using Python. 

Using a FT to perform the HT on an unmodified, finite signal supenmposes 

oscillations on the signal. The FT transform produces these oscillations from its inability 

to reproduce the truncated edges of the signal with a infinite sinusoid. These oscillations 

are then carried back to the spatial domain after the phase shift with the inverse FT. To 

avoid these oscillations we can extrapolate the data before the HT is performed. This will 

be discussed later when dealing with the edge effects resulting from performing the HT. 
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4.3 ANALYTIC SIGNAL 

The analytic representation of a signal makes it possible to manipulate that signal as 

a complex number and facilitates a variety of processing techniques that are particularly 

useful in geophysics. The analytical signal, fA(x ), of a real one-dimensional signal is 

defined as (Gabor, 1946): 

fA (x) == f(x) + ifH (x) (4) 

Where /H (x) is the Hilbert transform of the original signal, f(x ). From the analytical 

representation the 'envelope' ofthe signal can be calculated. 

(5) 

The envelope can be used to estimate the total amplitude at a particular point in the signal 

and is a common tool when processing oscillating arrays. 

The analytic signal is also used in processing static magnetic data (Bournas and 

Hay dar, 2001) and is very similar to the energy envelope used in this study. The initial 

response of a magnetic anomaly is dependent on its location relative to the Earth's 

magnetic field. Two bodies with the same size, shape and mineral concentration will 

produce different signatures if located in different regions on the globe. 
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Nabighian (1972) shows that the absolute value of the analytic signal of a 2-D source 

provides a consistent response independent of the angles of inclination and declination of 

the magnetic field, M. 

The 2-D analytical signal for magnetic anomalies can also be computed in the 

frequency domain, its real part being the horizontal derivative of the field and its 

imaginary part being the vertical derivative, both being Hilbert transforms of each other 

(Debeglia and Corpel, 1996). N abighian (1972) uses this relationship to extend the 

analytic signal, IA(x,y)l , from two dimensions to three, which makes it more applicable to 

other potential field data. 

(6) 

The response will show a positive, bell shaped symmetric peak with its maximum 

correlated to magnetized contrasts. The use of the absolute value of the analytical signal is 

that its shape over magnetic structures is independent of the earth's ambient magnetic 

field and of the direction of the magnetization of the source material, while it's amplitude 

remains unchanged. This is useful in establishing source characteristics without having to 

make assumptions on the direction of a body 's magnetization, especially in areas where 

information on remanent magnetization of the observed anomalies in not known (Roest 
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et al., 1992). The peak amplitude of the analytical signal along with the width of the 

amplitude curve can be related to the depth of the target. The derivatives of the signal also 

show these properties and can be used to locate contacts and to estimate their locations 

(Nabighian, 1974). 

The analytic signal is similar to the energy envelope as it removes a directional 

dependancy of the field. The two have a similar goal but have different mathematical 

approaches because of the particular data being processed. 
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4.4 THE ENERGY ENVELOPE PROCESSING TECHNIQUE 

The energy envelope (EE) technique was initially described by Smith & Keating 

( 1996) to aid with the interpretation of airborne EM data. Certain airborne EM surveys 

are conducted by flying a plane with a transmitter loop wrapped around the plane and a 

receiving coil suspended beneath and behind the plane. Measurements are taken flying 

over adjacent survey lines in opposite directions (see Figure 4.4). 
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Figure 4.4. Illustration of a flight pattern from an airborne EM survey (Smith and Keating, 1996). 
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As the survey is conducted, the orientation of the transmitter-receiver pair relative 

to any conductor switches directions for each line therefor producing opposite responses 

on alternating lines. This complicates processing, but Smith & Keating (1996) use the 

energy envelope approach to create a simplified signature of the data. The EE applies a 

Hilbert transform to the three components of the data and combines them into a single 

quantity: 

(7) 

where V is the voltage recorded after the transmitter is turned off, V denotes the Hilbert 

transform of the quantity, and the subscripts denote the component. The energy envelope 

is effectively a measure of the total amount of response in all three components. These 

quantities are functions of position along a profile. For airborne EM data the EE produces 

a response that is less dependent on flight direction. 

Figure 4.5 illustrates how each component and its Hilbert transform affects the 

shape of the energy envelope. Solely using the x , y, and z components, top right panel, 

produces a symmetric bell curve with a large base width and low amplitude. This is not 

ideal because the profile would illuminate a large portion of the grid and not isolate the 

anomalous area in the centre. The middle and bottom panels show how the y component 

influences the overall shape of the profile. Both examples produce very similar profiles 
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smce the y component and Hilbert Transform quantity have such low amplitudes 

compared to the x and y. It is important to include the y component because it contains 

information pertaining to lateral changes in anomalous structures orthogonal to the strike 

ofthe survey lines (per. comm. Malo-Lalande). 

Eastlng (metres) 

Easting (metres) 

Eastlng (metres) 

Figure 4.5. Examples of developing energy envelope equation and associated equations used. Blue line 
indicates profile of calculated data. All data correspond to synthetic plate positioned at 500E (see Figure 
4.lc). 

36 



In this study the energy envelope is investigated to develop a more intuitive 

response for InfiniTEM® data that is not dependent on the location of the target in 

relation to the transmitter loop. To test the effectiveness of these techniques on TDEM 

data a synthetic model will initially be used. 

The response of a single plate in a homogenous half space, see Figure 4.1, will 

g1ve a better understanding of how well these methods correlate to the original 

component profiles. Noise will also be added to the synthetic data to evaluate how these 

techniques react in a non-ideal situation. The single profile will be easier to interpret than 

comparing all three components at one time and will better represent any anomalies in the 

subsurface. This profile can also be used to asses the effect of the individual components 

on the response. By analyzing how the response changes when one component is 

removed we can develop a better understanding of how changes in different components 

affect the shape of the profile. This new response will also make contour maps more 

intuitive and easier to analyze. Instead of having to compare crossover points and peaks 

of different components on separate maps to determine the location of anomalies, one can 

concentrate on a single map which indicates the actual size and location of the target. This 

will be especially useful for anyone who has limited knowledge of TDEM theory because 

the anomaly will resemble more of a bullseye instead of zero crossover. For more 

experienced interpreters it will make initial analyses much quicker and provide an extra 

piece of information when comparing individual components. 
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4.5 THE ENERGY ENVELOPE FOR INFINITEM® DATA 

The code in this study was created by the author using the Python programming 

language. The algorithm was modeled after the energy envelope processing technique 

described by Smith and Keating (1996) for airborne electromagnetic surveys. 

Python was chosen because of its extensive library of mathematical subroutines, 

ability to manipulate arrays, ease of syntax error resolution, and built in plotting 

capabilities. 

The subroutine packages used in the algorithm consist of NumPy, SciPy, and 

matplotlib. NumPy is the principle/core computing package in Python. It is required for 

basic mathematical functions, array control, random number generation, and plays a key 

role in other scientific libraries. SciPy controls a variety of more advanced applications 

and relies on specific tools located in the NurnPy library. The Hilbert transform used in 

the EE algorithm is located in SciPy. The code itself is included on the following 5 pages. 

Before importing, the data from the x, y, and z components are arranged in 3 

respective .txt files. Each line within the files contains succeeding stations on individual 

survey lines. As each .txt file is imported into the EE program it is extrapolated with forty 

cells containing zeros, twenty at the beginning and at the end (see Section 5.9). The 

Hilbert transform quantity of each extrapolated component is then calculated using the 

scipy.signal.signaltools.hilbert module located in SciPy. The extrapolated components 

files are then converted into arrays to correspond to the format of the Hilbert transformed 

results. 
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The six arrays are now combined using the energy envelope equation to produce 

the consistent response of the three components. Finally, the extrapolated cells are 

removed from the EE and the final result is ready for interpretation, with profiles 

generated using the Matplotlib library. 
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import numpy 
from numpy import • 
import scipy 
from scipy import • 
import matplotlib 
from matplotlib import • 
import pylab 
from pylab import • 
from scipy.signal.signaltools import hilbert 

infile =open ('z.txt') 

array_1 = ["] 
i=O 
line= infile.readline() 
array_1 = array_1 + [O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O] 
while len(line) != 0: 

line= line[:-1] 
parts = line.split(' ') 
array_1.append(double(parts[O])) 
i = i + 1 
line= infile.readline() 

array_1 = array_1 [1 :] 
array_1 = array_1 + [O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O] 
double( array_ 1) 
print array _1 

result_1 = scipy.signal.signaltools.hilbert(array_1) 
print result_1.imag 

infile =open ('x.txt') 
array _2 = ["] 
i = 0 
line = infile.readline() 
array_2 = array_2 + [O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O] 
while len(line) != 0: 

line = line[:-1] 
parts = line.split(' ') 
array_2.append(double(parts[O])) 
i = i + 1 
line = infile.readline() 

array_2 = array_2[1 :] 
array_2 = array_2 + [O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O] 
double( array _2} 
print array_2 

result_2 = scipy.signal.signaltools.hilbert(array_2} 
print result_2.imag 
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infile =open ('y.txt') 

array _3 = ["] 
i = 0 
line = infile.readline() 
array_3 = array_3 + [0,0,0,0,0,0,0 ,0,0 ,0,0,0,0,0,0,0,0 ,0,0,0] 
while len(line) != 0: 

line = line[:-1] 
parts= line. split(' ') 
array_3.append(double(parts[O])) 
i= i + 1 
line= infile.readline() 

array_3 = array_3[1 :] 
array_3 = array_3 + [0,0,0,0,0,0,0,0,0 ,0,0 ,0,0,0,0,0,0,0,0 ,0] 
double(array_3) 
print array_3 

result_3 = scipy.signal.signaltools.hilbert(array_3) 
print result_3 .imag 

array _1 =array( array _ 1) 
array _2=array(array _2) 
array_3=array(array_3) 

EE = ( ( ((array_ 1 )' (array_ 1) )+( (result_1 . imag)' (result_1 . imag) )+((array _2)'(array _2) )+( (result_2.imag) • 
(result_2.imag))+((array_3)'(array_3))+((result_3.imag)' (result_3.imag)))" (0.5)) 
print(EE) 

EE=Iist(EE) 

del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
del EE[O] 
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L = len(EE) 

del EE[L-1] 
del EE[L-2] 
del EE[L-3] 
del EE[L-4] 
del EE[L-5] 
del EE[L-6] 
del EE[L-7] 
del EE[L-8] 
del EE[L-9] 
del EE[L-10] 
del EE[L-11] 
del EE[L-12] 
del EE[L-13] 
del EE[L-14] 
del EE[L-15] 
del EE[L-16] 
del EE[L-17] 
del EE[L-18] 
del EE[L-19] 
del EE[L-20] 
print(EE) 

ee=str(EE) 

outfile = open('EE.txt','w') 
for row in ee: 

outfile. write('%5.6s'%row) 
outfile. write('\n') 

outfile.close() 
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#array_1 
fig = plt.figure() 
ax= plt.subplot(111) 
t=linspace( -700, 1650,95) 
ax.plot(t,array_1, labei='Z Original Data') 
ax.plot(t,result_1.imag, labei='Z Hilbert Transform') 
title(' Plate @ 11 OOE [Line 200N]') 
xlabei(('Easting (metres)')) 
ylabei('EM Response (uV/A)') 
ax.legend(loc='upper left', bbox_to_anchor=(O, 1.0)) 
grid(True) 
show() 

# array_2 
fig = plt.figu re() 
ax= plt.subplot(111) 
t=linspace(-700, 1650,95) 
ax.plot(t,array_2, labei='X Original Data') 
ax.plot(t,result_2.imag, labei='X Hilbert Transform') 
title(' Plate @ 11 OOE [Line 200N]') 
xlabei(('Easting (metres)')) 
ylabei('EM Response (uV/A)') 
ax.legend(loc='upper left', bbox_to_anchor=(O, 1.0)) 
grid(True) 
show() 

# array_3 
fig= plt.figure() 
ax= plt.subplot(111) 
t=linspace( -700, 1650,95) 
ax.plot(t,array_3, labei='Y Original Data') 
ax.plot(t,result_3.imag, labei='Y Hilbert Transform') 
title('Piate @ 1100E [Line 200N]') 
xlabei(('Easting (metres)')) 
ylabei('EM Response (uV/A)') 
ax.legend(loc='upper left', bbox_to_anchor=(O, 1.0)) 
grid(True) 
pit. show() 

# EE = Energy Envelope 
fig = plt.figure() 
ax = pit. subplot( 111) 
t=linspace( -700, 1650,95) 
ax.plot(t,EE_1, label=' Energy Envelope') 
title(' Plate @ 11 OOE [Line 200N]') 
xlabei(('Easting (metres)')) 
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ylabei('EE Response') 
ax.legend(loc='upper left', bbox_to_anchor=(O, 1.0)) 
grid(True) 
show() 
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-------- ---------------------------------- ------

CHAPTER S 

SYNTHETIC EXAMPLES 

Multiple examples involving a conductive plate in a variety of positions, depths, 

orientations and sizes are provided and show the dexterity of the energy envelope 

technique. All profiles correspond to a synthetic vertical plate in a homogeneous half 

space of zero conductivity with dimensions 400m by 200m by 50m, unless stated 

otherwise. All profiles were modeled using EMIT Maxwell EM imaging software with an 

InfiniTEM® transmitter loop with dimensions: 400m (loop width), 400m (loop 

separation) and 400m (second loop width). A 25m station separation was used on 2375m 

long lines. All profiles shown correspond to Line 200N on the survey grid. 
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5.1 VERTICAL PLATE LOCATED IN CENTRE LOBE 

As previously discussed, conductors of the same s1ze and shape at different 

locations on the InfrniTEM® survey grid can produce different x, y and z component 

profiles. This deviation makes properly identifying any anomalies difficult and requires 

an experienced processor. The following examples will illustrate how the energy envelope 

technique simplifies the response of any conductor into a consistent profile. 

Figure 5.1 displays a plate at 500E and its associated x, y and z profiles with 

Hilbert transform quantities. This location provides the strongest coupling with a vertical 

plate of any area on the survey grid and produces the most conventional response with 

positive to negative crossover on the z and a positive peak on the x. The EE profile 

clearly exhibits a positive bell shape curve directly over the location of the conductor. 
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Figure 5.1. The z, x , andy component profiles of a vertical plate positioned at 500E. Blue line indicates 
original profile and the green line represents the Hilbert transformed quantity of the original signal, as 
shown in label in upper right comer. Scale on first three graphs corresponds to EM Response measured in 
J..LV/A. Bottom right profile shows energy envelope profile using all components and scale corresponds to 
EE Response. Bottom scale indicates Easting position in metres. 
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5.2 VERTICAL PLATE LOCATED IN LEFT LOBE 

The next example, Figure 5.2, examines the same plate but located at -95E. 

Although the component profiles changed to a positive peak on the z and a negative to 

positive crossover on the x, the EE response remained a positive peak directly over the 

target. The primary field from the transmitter intersects parallel to the target producing a 

minimum coupling scenario and results in a weaker response from the conductor (see 

Figure 3.2). Although the EE response has a reduced amplitude, it still produces a 

predominant profile that is easily distinguishable. 
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Figure 5.2. The z, x, andy component profiles of a vertical plate positioned at -95E. Blue line indicates 
original profile and the green line represents the Hilbert transformed quantity of the original signal, as 
shown in label in upper right comer. Scale on first three graphs corresponds to EM Response measured in 
11 V /m. Bottom right profile shows energy envelope profile of all components and scale corresponds to EE 
Response. Bottom scale indicates Easting position in metres. 
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5.3 VERTICAL PLATE LOCATED IN RIGHT LOBE 

The same conductor when located at 11 OOE produces yet another set of unique 

component profiles, Figure 5.3, a negative peak on the z and a positive to negative 

crossover on the x. The plate is once again subjected to a minimal coupling situation 

which results in a weaker secondary field. As in the previous examples the EE produces a 

positive peak directly over the target and proves its effectiveness regardless of the shape 

of the component profiles. 
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Figure 5.3. The z, x, andy component profiles of a vertical plate positioned at IIOOE. Blue line indicates 
original profile and the green line represents the Hilbert transformed quantity of the original signal, as 
shown in label in upper left comer. Scale on frrst three graphs corresponds to EM Response measured in 
J..l V /m. Bottom right profile shows energy envelope profile of all components and scale corresponds to EE 
Response. Bottom scale indicates Easting position in metres. 
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5.4 25 DIFFERENT POSITIONS OF THE VERTICAL PLATE 

Figure 5.4 shows the responses for 25 different positions of a vertical plate on a 

survey grid with the same dimensions and depth. Each plate was modeled individually but 

all plots are shown here to compare amplitudes. The colored profiles indicate the amount 

of energy envelope response each individual plate generates. The total response from the 

plates is dependent on the strength of the primary field in that area and the coupling that 

the field has with the plate. The centre of the InfiniTEM® transmitter loop is designed to 

have a strong, horizontal primary field at depth that optimizes coupling with steeply 

dipping targets. The four highest amplitudes for plates at -400m, 205m, 800m and 5m, are 

generated from plates located directed below wires from the transmitter loop. This is a 

common occurrence in TDEM and is known as the wire effect and was expected in the 

EE profiles (per. comm. Malo-Lalande). Areas located directed below the wires of the 

transmitting loop are exposed to the strongest primary field because of their locality to the 

transmitting current. The EE algorithm proved very effective in all plates modeled within 

1OOm of the InfiniTEM® transmitter loop. Plates lying 1OOm outside the transmitting 

loop are exposed to a weaker primary field and produce lower amplitude responses. Due 

to the nature of the Hilbert transform used in the EE, low amplitude signals are more 

subject to edge effects and require further processing (discussed in Section 5.9). Although 

further processing was needed, these plates still showed the same shape response and 

could be identified. 
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Figure 5.4. Energy envelope profiles for 25 vertical plates, 200m below the surface. Legend shows location 
of plates, indicated by different colors, relative to Easting position on survey grid. Scale on left side 
corresponds to total amount of energy envelope response. Only profiles from Line 200N are shown. Bottom 
scale indicates Easting position in metres. 
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5.5 SINGLE VERTICAL PLATE, CENTRAL LOCATION, DIFFERENT DEPTHS 

In this section the effect of increasing the plate depth on the EE response is 

illustrated. The dimensions and conductivity of the plate are the same as in previous 

sections. Figure 5.5 shows profiles of 10 vertical plates of varying depths positioned at 

the 500 m Easting position. The most shallow plate modeled lies 50m under the surface 

with successive plates at 50m intervals directly below until reaching 500m depth. 

Responses show the same symmetrical bell shape directly over the target at all depths. 

Similar to conventional TDEM surveys, the plates modeled closer to the surface produced 

the larger amplitudes. Responses producing amplitudes lower then 1 EE response, i.e. 

depths 350m - 500m, show signs of edge effects which were removed with further 

processing. Another characteristic that the EE profiles show that is similar to conventional 

TDEM is the relationship that amplitude and half width have with the depth of the plate. 

As the depth of the target increases the ratio between the amplitude and half width 

decreases. This ratio can be used to determine a general depth for the target and can be 

seen in Figure 5.6. 
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Figure 5.5. Energy envelope profiles for 10 vertical plates of various depths. Legend shows depths of plates, 
indicated by different colors, directly below the 500m Easting position. Scale on left side corresponds to 
total amount of EE Response. Only profiles from Line 200N are shown. Bottom scale indicates Easting 
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Figure 5.6. Right panels: energy envelope profiles of three plates at different depths; 50m, 250m and 
500m respectively. Energy Envelope profile of all components and scale corresponds to EE Response. 
Bottom scale indicates Easting position in metres. Left panels shows amplitude vs depth profile on top 
and half width vs depth on bottom. 
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5.6 SINGLE PLATE, DIFFERENT DIPS 

As a conductor's vertical orientation changes from 90° its coupling with the 

primary field also changes. This interaction can produce positive or negative effects 

depending on the specific scenario. Figure 5.7 a & b show the same plate, with its top 

position remaining at 200m depth, in a variety of Easting positions but with a different 

vertical orientation, dipping 30° and 60° to the West respectively. 200E and 1400E in 

Figure 5.7a have higher amplitudes, showing nearly twice the amplitude as the other 

positions, and is directly related to their coupling with the primary field. Figure 5.7b 

shows a dramatic increase in amplitude in plates at -1 OOE, 200E, 11 OOE and 1400E, as 

compared to the vertical plates in Figure 5.4, produced by a more optimal coupling with 

the primary field in those particular positions. It is critical to keep this relationship in 

perspective when correctly assigning the quality of an anomaly. 
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Figure 5.7 a&b. Energy Envelope profiles for 9 plates dipping at 30° and 60° respectively, 200m below the 
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Figure 5.8a&b provides an example of a plate in 8 different vertical orientations, 

ranging from 10° to 80° dipping to the west, shown in Figure 5.8a. With the plate's top 

Easting position remaining at 500E, there is not a significant amount of migration in the 

EE profile. This shows that even with a change in amplitude produced by different 

coupling scenarios the EE profiles still peaked directly over the most shallow portion of 

the conductor. As the dip is decreased the EE profile produces a more shallow flank 

towards the direction of the dip of the plate. This increase of amplitude and asymmetry 

shows that the EE produces a higher response when the body is close to the surface and 

can be used to indicate dip direction. 
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5.7 SINGLE VERTICAL PLATE WITH DIFFERENT THICKNESS 

To investigate the effect of the thickness of a conductor on the EE, 7 plates were 

modeled with successively increasing widths, ranging from 50m to 350m, Figure 5.9. As 

the plate's width becomes greater than 200m the EE response begins to peak at the 

outside edges of the conductor leaving a trough in the centre of the profile. This becomes 

more evident as the width is increased and is also apparent in the components profiles 

which have distorted away from their conventional shape. This is due to the orientation of 

the secondary field produced by the plate where the edge of the plate produces a higher 

response than the centre, and is a common response for long horizontal plates. 
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Figure 5.9. The x and z component profiles of a vertical plate positioned at 500E with different thickness. 
Blue line indicates original profile and the green line represents the Hilbert transformed quantity of the 
original signal, as shown in label in upper right corner. Scale on top six graphs corresponds to EM 
Response measured in Jl V /m. Bottom profile shows energy envelope profile of all components and scale 
corresponds to EE Response. Bottom scale indicates Easting position in metres. 
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5.8 SINGLE VERTICAL PLATE WITH GAUSSIAN DISTRIBUTED NOISE 

Random noise was added to a synthetic dB/dt example to investigate the EE 

algorithm's effectiveness in realistic situations. A set of random numbers was created 

using the random number generator in SciPy with a mean of 0 and a standard deviation of 

0.1 , left panels of Figure 5.10, and was added to all three components. Due to the low 

amplitude of the y component, the random noise distorted its original shape and the HT 

quantity. The z and x components retained their basic shape. The EE does show effects of 

the added noise with a number of low amplitude spikes evident on the profile. However 

the overall shape is consistent with previous examples with a positive peak directly over 

the conducting plate. 
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Figure 5.1 0. Top right three panels show the z, x, and y component profiles of a vertical plate positioned 
at the 500E with random noise added. Blue line indicates original profile and the green line represents the 
Hilbert transformed quantity of the original signal, as shown in label in upper left comer. Scale on the 
three graphs on the right corresponds to EM Response measured in Jl VI A. Bottom profile shows energy 
envelope profile of all components and scale corresponds to EE Response. Bottom scale indicates 
Easting position in metres. Top left three panels show the amount of noise added the each individual 
component. 
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5.9 EDGE EFFECTS AND SOLUTIONS 

Edge effects are a common problem when using the Hilbert transform for data 

analysis and frequently cause processing issues for the end points of a signal. Endpoints 

are troublesome because the FT used by the HT treats them as if they were part of a 

periodically repeating array. If the signal abruptly terminates or does not extend to zero 

the FT produces oscillations, Figure 5.11. Also, as the plate moves away from the 

transmitting loop it is exposed to a weaker primary field, thus producing a lower 

amplitude response, which is more susceptible to edge effects. Previous examples given 

were exposed to a sufficiently strong primary field that these effects were not pronounced. 

Figure 5. 11 . Example of results, green profile, from a Hilbert transformed sine function , blue profile. 
Edge effects are visible in the insert panel. 
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As seen in Figure 5.12 the EE from a plate at -700E, shows a positive artifact on 

the right side that is an edge effect produced by the HT. This is a serious problem when 

using the technique for exploration purposes because the appearance of a positive peak 

may lead a processor to believe that there is an anomaly in that area. The severity of these 

effects becomes greater as the amplitude of the signal is reduced. 
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Figure 5 .12. The z, x, andy component and EE response profiles of a vertical plate positioned at -700E. 
Blue line indicates original profile and the green line represents the Hilbert transformed quantity of the 
original signal, as shown in label in upper right comer. Scale on first three graphs corresponds to EM 
Response measured in f..l V /m. Bottom right profile shows energy envelope profile of all components and 
scale corresponds to EE Response. Bottom scale indicates Easting position in metres. 
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Extrapolating the data beyond the end points is a practical solution for edge 

effects. Common techniques used to achieve this include extrapolating with trigonometric 

functions, linear predictions and repetition of the original signal. The effectiveness of 

trigonometric functions and linear predictions to reduce the severity of edge effects are 

explored in this section. 

As discussed, the FT is less accurate towards the end points of an array. Extending 

the data to zero creates a larger sampling window and draws the end point away from the 

edge and reduces the severity of the oscillations produced by the FT. 20 data points were 

added to extrapolate the data. 

Variations of a sinusoidal curve were used to model a trigonometric function to 

extrapolate the data and extend its end points to a zero value extremum. This was 

achieved using 1/4 and 112 of one complete period of a standard sine curve. The end point 

of the extrapolated data, adjacent to the signal, was scaled to be equivalent to the value of 

the last available point of the signal. 

Figure 5.13 shows the extrapolation using a 1/4 sin curve. The function provides a 

simple curve that allows the data to decay to zero gradually. This approach produced a 

reduction in the amplitude of the edge effects, left hand side of figure, which made the 

target's response much more predominant. Although this generated favorable results, it 

did not completely remove the artifacts on the most easterly side of the figure. Without a 

conductive body there should be a zero response on the energy envelope profile in that 

area. This shows that the extrapolating function is effective but not ideal. 
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Figure 5.13. The z, x , and y component and EE response profiles of a vertical plate positioned at 
-700E. Top profile shows extrapolating function used. Blue line indicates original profile and the 
green line represents the Hilbert transformed quantity of the original signal, as shown in label in 
upper right comer. Scale on z, x, and y graphs corresponds to EM Response measured in JlV/m. 
Bottom right profile shows energy envelope of all components and scale corresponds to EE 
Response. Bottom scale indicates Easting position in metres. 
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The next extrapolating function tested was a 112 sine curve, Figure 5.14. This 

provided a more gradual decay before reaching zero. As seen in the lower right panel the 

edge effect amplitude has been reduced more than the previous example, but still remains 

evident. 
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Figure 5.14. The z, x , and y component and EE response profiles of a vertical plate positioned at 
-700E. Top profile shows extrapolating function used. Blue line indicates original profile and the 
green line represents the Hilbert transformed quantity of the original signal, as shown in label in 
upper right comer. Scale on z, x, and y graphs corresponds to EM Response measured in J.!V/m. 
Bottom right profile shows energy envelope of all components and scale corresponds to EE 
Response. Bottom scale indicates Easting position in metres. 
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The fmal example simply uses a set of repeating zeros to extend the signal, Figure 

5.15. This approach can be preformed very quickly without having to match the endpoint 

of the signal to the extrapolation function. By directly adding a set of zeros to the signal 

the response from the target is centered and the FT is capable of producing an accurate 

correlation for the HT. Using this method proved successful and removed the apparent 

edge effects from the response. Considering the ease with which the process was 

implemented and the positive results that were produced, using zeros to extend the sample 

window will carried out in the energy envelope algorithm for all field examples. 
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Figure 5.15. The z, x , and y component and EE response profiles of a vertical plate positioned at 
-700E. Top profile shows extrapolating function used. Blue line indicates original profile and the 
green line represents the Hilbert transformed quantity of the original signal, as shown in label in 
upper right comer. Scale on z, x, and y graphs corresponds to EM Response measured in !J.VIm. 
Bottom right profile shows energy envelope of all components and scale corresponds to EE 
Response. Bottom scale indicates Easting position in metres. 
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5.10 CONTOUR MAPS 

Color contour maps for TDEM are developed by combining the profiles of 

multiple survey lines. Interpretation is consistent with analyzing individual lines where 

anomalies are indicated by a zero crossover point on one component and a positive or 

negative peak on another. Figure 5.16 shows an example of a full contour map generated 

from the same synthetic data used in previous examples, Figure 5.1 , where the plate is 

centred at 500E in an InfiniTEM® transmitter loop. Seven 2.375 km lines with a spacing 

of 1OOm were used in creating the survey grid. 

The conducting plate is shown on the z and x component contour maps by the 

positive to negative crossover on the z and the positive peak on the x. Although this may 

seem evident to the experienced EM geophysicist, without previous knowledge in TDEM 

theory it would be difficult to understand and interpret these particular maps. The EE 

clearly shows the location of the conductor and more closely resembles conventional 

contour maps where anomalies are indicated by positive peaks. 
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Figure 5.16. Color contour maps of z and x components and EE of InfmiTEM® survey. Scale on right 
side indicates EM Response measured in J.l.V/A. Bottom contour map shows energy envelope response of 
all components and scale corresponds to EE Response. North is oriented towards top of page and all 
relative locations are indicated by edge ticks. 
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CHAPTER6 

FIELD EXAMPLES 

Four field examples were chosen to show the versatility of the EE algorithm in a 

variety of geological settings. These examples were selected based on the different 

challenges they pose during processing. The examples consist of two zinc exploration 

targets in conductive carbonate hosts, a folded VMS deposit in a sedimentary 

environment, and a complicated graphitic fault system holding uranium. 

All data were recorded using a Geonics 3D-3 surface coil receiver. A Geonics 

TEM57MKll transmitter and TEM67 power module were used to control the different 

current levels for each particular survey. Tables of channel delay times for each survey are 

provided in APPENDIX 1. The field measurements were normalized to n VI Am2 

according to the intensity of the transmitting loop and effective surface area of the 

receiver coil. Maps were generated using Geosoft Oasis Montaj . Larger maps are 

provided in APPENDIX 2. 
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6.1 FIELD EXAMPLE 1 

This zmc exploration target consisted of a sphalerite unit m a conductive 

carbonate host. A large, conductive anomaly extending across the survey grid toward the 

lower extremities of the area displays the presence of a deeply buried semi-massive to 

massive sulphide mineralization zone in a conductive background. The exact location of 

the survey area can not be provided due to confidentiality restrictions. 

The contour maps from Figure 6.1 show a total of 9.35 km from an InfiniTEM® 

survey with loop dimensions of approximately 400m - 600m - 400m. A 25m station 

interval was used on 12 survey lines of lOOm spacings. A 14A current was used with a 

6.25Hz repetition rate. A low repetition rate was used in this example to allow the eddy 

currents from the conductive carbonate to migrate into the non-conductive sphalerite 

sulphide lens. 
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Figure 6.1. Color contour maps of z, x, andy components of InfmiTEM® survey. Scale on right side 
indicates EM Response measured in nV/Am2. Bottom right contour map shows energy envelope 
response of all components and scale corresponds to EE Response. All relative locations are indicated by 
edge ticks. 
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Using the conventional x and z components alone to locate opened ended 

anomalies is sometimes difficult because the process relies on correlating specific points 

on both profiles that are not always available. In any exploration survey it is ideal to have 

the survey grid positioned directly over the desired target. Logistical problems and other 

unforeseen events do not always make this possible so it is important to have a 

dependable processing tool that can easily locate the anomaly even when the grid location 

is not optimal. 
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Figure 6.2. The z, x, and y component and energy envelope profi les for Field example I . Blue, green and 
red line indicates channel 10, 15 and 20 respectively, as shown in label in upper right comer. Scale on 
top three graphs corresponds to EM Response measured in nV/Am2. Bottom right profile shows energy 
envelope using all components. 
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The z and x components in Figure 6.2 show a response for the anomaly at -800m 

with a positive peak on the z component and a negative to positive crossover on the x 

component. This anomalous response is clearly visible in the EE profile in the bottom 

right hand panel at the same location. 

The EE contour map clearly exhibits an open ended anomaly striking to the 

southwest with the most western portion lying outside the surveyed area, which is 

consistent with the components response, Figure 6.1. This is indicated by the black line in 

the centre of the bright pink area trending to the southern portion of the contour map. The 

anomaly's signature indicates that the source plunges to the south while its conductance 

and dimensions decreases northward. Presence of anomalous signature in the north 

indicates that the source has a great depth extent, but unfortunately prevents identifying 

the location of the conductor's northern boundary. 

The clear and pronounced signature m the EE contour map confirms the 

effectiveness of the algorithm in this example. 
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6.2 FIELD EXAMPLE 2 

This property is located in the Frotet-Evans Greenstone belt, in northwestern 

Quebec area. It is composed primarily of two volcanic units separated by a sedimentary 

unit of siltstone, mudstone and wacke. The two volcanic units are composed of thick 

basalt and andesite with minor layers of rhyolite, pyroclastic and volcaniclastic rocks. 

Extensive drilling for EM targets has occurred on the property yielding positive results for 

copper, gold, zinc and silver. 

13.7 kine km were surveyed in the field area to further define the geometry of 

potential conductors such as semi-massive to massive sulphide mineralization zones 

associated with base metals. Stations were recorded at 25m intervals on 9 survey lines of 

1OOm spacings. 25A was transmitted over a 30 Hz repetition rate. 

Mineral deposits form in a variety of shapes and sizes. Folds and antiforms are 

common in geological exploration and can be challenging to map without previous 

knowledge of the area. These types of formation are especially complicated for TDEM 

because they produce unique secondary fields that are specific to that particular shaped 

structure. Figure 6.3 provides an example of the complications that can arise during 

interpretation. Over 20 plates were needed to accurately model the formation. Without the 

use of forward modeling it would be extremely difficult to identify the conductors 

producing the response. The energy envelope will help produce a more intuitive 

representation of the component's response. 
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Figure 6.3. Forward model created with EMIT Maxwell software for Field example 2 oriented towards the 
East. Large multicolor boxes indicate location of modelled anomalies. Dotted blue and black lines show 
locations of exploration drill holes (per. comm. Malo-Lalande). 

From the contour maps, shown in Figure 6.4, an open-ended anomaly is apparent 

to the west with varying conductance, indicated by the change in the level of EM 

response. The structure also appears to be delineated by a fault towards the east with its 

quality changing along its conductive axis. It is extremely difficult to determine the exact 

shape of the unit from the component contour maps. The EE contour map on the other 

hand distinctly shows a folded conductive unit with its hinge line oriented to the east, 

indicated by black lines on the contour map. The total response for EE produced a much 

more intuitive map of this area that is easily interpretable. 
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Figure 6.4. Color contour maps of z, x, and y components of InfmiTEM® survey. Scale on right side 
indicates EM Response measured in nV/Am2. Bottom right contour map shows energy envelope 
response of all components and scale corresponds to EE Response. All relative locations are indicated 
by edge ticks. 
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The z and x components still display an anomalous response but it is difficult to 

determine the exact shape of the structure. Two positive to negative cross overs at Om and 

210m on the z component can be correlated to two positive peaks on the x (see Figure 

6.5). Although it is possible to identify these signatures on the components profiles, the 

EE provides a more pronounced response that can be easily identified without further 

interpretation. 
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Figure 6.5. The z, x, and y component and energy envelope profiles for Field example 2. Blue, green and 
red lines indicate channel I 0, 15 and 20 respectively, as shown in label in upper right comer. Scale on 
top three graphs corresponds to EM Response measured in nV/Am2. Bottom right profile shows energy 
envelope using all components. 
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6.3 FIELD EXAMPLE 3 

A total of 17.4 line km of InfiniTEM® survey were acquired in Northern Quebec, 

with a 25m station interval on 25 lines of 1OOm spacing. 20A was transmitted over a 30 

Hz repetition rate. The survey detected numerous anomalous features that correspond to a 

graphitic horizon indicated by a dominant lateral continuity, good source conductance and 

thin geometry which helped indicate a large fault system. These properties correlate and 

show good indication of the primary exploration target, uranium. The uranium 

mineralization discovered on the property is a metasedimentary deposit belonging to the 

Lake Harbour Group. The main mineralization is located along contacts between ductile 

highly deformed paragneisses, marbles and pegmatites. Other information and the exact 

location of the survey area can not be provided due to confidentiality restrictions. 

When surveymg a very large area it is sometimes necessary to move the 

transmitter loop several times to cover the entire grid. This avoids trying to use a larger 

loop area which results in a weaker primary field. The survey in Figure 6.6 required 

moving the InfiniTEM® loop 3 times to cover the 2.5 km area. Orientating the lines 

perpendicular to the strike allows the measured z and x components to produce a constant 

profile of the secondary field over the large area. This can be seen in the large linear 

response from the anomaly indicated by a zero cross over on the z component and the 

positive peak on the x component extending North to South on both contour maps (see 

Figure 6.6). 
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This anomaly provided a substantial test for the EE technique for it required 

producing a consistent profile over a large area while using data from multiple transmitter 

loop locations. The EE generated a distinct profile for the anomaly for the entire span of 

the grid and provided a unique perspective on areas that produced the strongest responses. 

A smaller anomaly is also apparent in the Eastern portion of the grid at Line 200N. This 

anomaly was not as pronounced in the components contour maps and is more 

distinguishable with the EE technique. 
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Figure 6.6. Color contour maps of z, x, and y components of InfmiTEM® survey. Scale on right side 
indicates EM Response measured in nV/Am2. Bottom right contour map shows energy envelope 
response of all components and scale corresponds to EE Response. A relative locations are indicated by 
edge ticks. 
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Figure 6.7. The z, x , andy component and energy envelope profiles for Field example 3. Blue, green and 
red line indicate channel 10, 15 and 20 respectively, as shown in label in upper right comer. Scale on top 
three graphs corresponds to EM Response measured in nV/Am2• Bottom right profile shows energy 
envelope using all components. 
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FIELD EXAMPLE 4 

Figure 6.8 shows results of a survey containing two distinct anomalies, one in the 

centre and the other in the lower southwest portion of the grid. A smaller response 

anomaly is also apparent located in the west portion of the grid. A total of 28.2 line km of 

InfiniTEM® survey was acquired with a grid consisting of N-S lines with spacings of 

lOOm or 200m apart and a 50 m station interval. The InfiniTEM® loops (approx. 400m-

600m - 400m) were used to transmit a current of 14A with a 6.25 Hz repetition rate, 

common for zinc exploration in conductive environments. Other information and the 

exact location of the survey area can not be provided due to confidentiality restrictions. 

As in previous examples TDEM surveys containing multiple anomalies tend to 

complicate processing as there are many secondary fields in the area which make them 

difficult to correctly identify. Although the z and x components yield anomalous 

signatures, the many high and low portions make the contour maps problematic to 

interpret. The combined component response of the EE eliminates this problem and 

produces an easily interpretable map and clearly identifies any anomalous responses m 

the area. 

89 



Figure 6.8. Color contour maps of z, x, and y components of lnfmiTEM® survey. Scale on right side 
indicates EM Response measured in nV/Am2. Bottom right contour map shows energy envelope 
response of all components and scale corresponds to EE Response. All relative locations are indicated by 
edge ticks. 
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The two large anomalies are characterized as good conductors, most likely 

associated with base metal mineralization. Both dip towards the west, which can be seen 

by the gradual slope on the west flank of the components profiles, as well as the energy 

envelope (see Figure 6.9). 
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Figure 6.9. The z, x , and y component and energy envelope profiles for Field example 4. Blue, green and 
red lines indicate channel l 0, 15 and 20 respectively, as shown in label in upper right comer. Scale on 
top three graphs corresponds to EM Response measured in nV/Am2. Bottom right profile shows energy 
envelope using all components. 
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Through forward modeling the three anomalous signatures can be correlated with 

the plate locations in Figure 6.1 0. The lower amplitude response in the western plate can 

be attributed to its smaller size and proximity to the larger anomalies which yield larger 

base widths in their signatures. The energy envelope contour map is consistent with the 

results of the model and provides a clear perspective of the anomalies in the area . 

... ... 

I 

-

Figure 6.1 0. Forward model created with EMIT Maxwell software for Field example 4. Top panel shows 
top view of survey grid, bottom left panel is plane view looking South, bottom right is plane view looking 
East. Multicolored lines show survey lines and station locations. Large red boxes indicate location of 
modelled anomalies. 
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CHAPTER 7 

CONCLUSION 

TDEM is a widely used tool in base metal exploration. An anomaly's response can 

be complicated to interpret because of its dependancy on the primary field from the 

transmitter. This is especially so for the InfiniTEM® configuration where the same 

conductive vertical plate can produce a variety of signatures depending on its location. 

The goal of using the energy envelope in this study was to isolate the response and 

produce a more viable consistent signature that can be identified easily. 

The Python code created to calculate the energy envelope is a fast and efficient 

algorithm that can produce reliable results in a variety of scenarios. It corrects for 

processing artifacts from limitations in the Hilbert transform and makes potential 

exploration targets located on the edge of survey areas more prominent. 

Through numerous synthetic examples of a conductive plate in a variety of 

positions, depths, orientations and s1zes, the energy envelope showed a consistent 

response regardless ofthe shape ofthe individual component profile. 

Although combining the components together with their Hilbert transform 

counterparts produces a different method for interpreting TDEM data, the EE still holds 

common attributes with the original data that can be useful for determining conductance 
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quality as well as certain orientation parameters. The half width and angle of the profile 

sides can provide information pertaining to the depth and dip of a conductive unit. 

Due to the properties of the Fourier transform when calculating the Hilbert 

transform the energy envelope can produce edge artifacts towards the edge points of the 

signal. These can be more severe with lower amplitude data. By extrapolating the data 

beyond the sampled window these effects can be reduced. Doing this will make 

anomalous signatures produced by conductive bodies outside the surveyed area more 

detectable, as well as weaker or lower amplitude responses. 

Producing colour contour maps for TDEM data is not as common as it is for other 

geophysical methods due to the interpretation practices of comparing peaks to zero 

crossover points in different components. However, the EE data provides a intuitive map 

that can be easily interpreted. This can be extremely beneficial when mapping geological 

formations across survey grids with a changing primary field. 

Testing the EE on professionally acquired field data provided the most critical 

assessment of the algorithms' efficiency. The EE proved effective in a variety of 

geological environments with its consistent response providing an accurate representation 

of the different formations. The ability of the EE to detect horizontal and lateral changes 

in an anomalies response over large areas is its most beneficial characteristic. 

The energy envelope is therefor a valuable processing tool for TDEM. Through an 

number of examples the algorithm showed consistent and accurate results. Its simple, 
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straight forward profile provides an intuitive representation of the electromagnetic 

response in a given area. 
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APPENDIX 1 

Channel decay times used for all synthetic data in Chapters 1-5 and field examples in 

Chapter 6. 
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Synthetic Data (30Hz) 

Channel Delay Time Time width 
(ms) (ms) 

1 0.0881 0.0163 

2 0.1069 0.0213 

,., 
.) 0.1313 0.0275 

4 0.1619 0.0338 

5 0.2006 0.0437 

6 0.2506 0.0562 

7 0.3144 0.0712 

8 0.3956 0.0913 

9 0.4994 0.1163 

10 0.6313 0.1475 

11 0.7994 0.1888 

12 1.0140 0.2400 

13 1.2870 0.3063 

14 1.6360 0.3913 

15 2.0810 0.4988 

16 2.6480 0.6363 

17 3.3730 0.8125 

18 4.2970 1.0360 

19 5.4750 1.3210 

20 6.9780 1.6850 

97 



Field example 1 (6.25Hz) 

Channel Delay Time Time width 
(Jts) (JtS) 

1 320.0 65.00 

2 385.0 85.00 

3 470.0 110.0 

4 580.0 135.0 

5 715.0 175.0 

6 890.0 225 .0 

7 1115 285.0 

8 1400 365.0 

9 1765 465.0 

10 2230 590.0 

11 2820 755.0 

12 3575 960.0 

13 4535 1225 

14 5760 1565 

15 7325 1995 

16 9320 2545 

17 11870 3250 

18 15120 4145 

19 19260 5285 

20 24550 6740 
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Field example 2 (30Hz) 

Channel Delay Time Time width 
(JLS) (JLS) 

1 80.00 16.25 

2 96.25 21.25 

3 117.5 27.50 

4 145.0 33.75 

5 178.8 43 .75 

6 222.5 56.25 

7 278.5 71.25 

8 350.0 91 .25 

9 441.3 116.3 

10 557.5 147.5 

11 705.0 188.8 

12 893.8 240.0 

13 11 34 306.3 

14 1440 391.3 

15 1831 498.8 

16 2330 636.3 

17 2966 81 2.5 

18 3779 1036 

19 4815 1321 

20 6136 1685 
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Field example 3 (30Hz) 

Channel Delay Time Time width 
(p.s) (p.s) 

1 80.00 16.25 

2 96.25 21.25 

3 117.5 27.50 

4 145.0 33.75 

5 178.8 43 .75 

6 222.5 56.25 

7 278.5 71.25 

8 350.0 91.25 

9 441.3 116.3 

10 557.5 147.5 

11 705.0 188.8 

12 893 .8 240.0 

13 1134 306.3 

14 1440 391.3 

15 1831 498.8 

16 2330 636.3 

17 2966 812.5 

18 3779 1036 

19 4815 1321 

20 6136 1685 
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Field example 4 (6.25Hz) 

Channel Delay Time Time width 
(JlS) (Jls) 

1 320.0 65.00 

2 385.0 85.00 

3 470.0 110.0 

4 580.0 135.0 

5 715.0 175.0 

6 890.0 225.0 

7 1115 285.0 

8 1400 365.0 

9 1765 465.0 

10 2230 590.0 

11 2820 755.0 

12 3575 960.0 

13 4535 1225 

14 5760 1565 

15 7325 1995 

16 9320 2545 

17 11870 3250 

18 15120 4145 

19 19260 5285 

20 24550 6740 
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APPENDIX2 

Enlarged contour maps of field data in Chapter 6. 
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Field Example 1 : z component 
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Field Example 1: x component 
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Field Example 1 : y component 
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