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Abstract 

As a means to solving the isomorphism problem many mathematicians have studied 

the unit group of a group ring. The group G is contained in the group of units. Thus 

it is beneficial to find out how the group G sits in the unit group. One question that 

can be asked is: When does G have a normal complement in the unit group of a group 

ring? In this thesis we will investigate that question by looking at the unit groups 

of group rings of the form F2G where G is a group of small order. We will also look 

at results from two papers by Robert Sandling ([San84b, San89]). In these papers 

Sandling shows that for modular group algebras of central-elementary-by-abelian p­

groups G has a normal complement in the unit group. 
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Introduction 

1.1. History 

A group ring RG is an R-algebra where every element can be expressed as a linear 

combination of elements in G with coefficients from R and G is linearly independent 

over R. Multiplication in RG is based on the multiplication in G and R, extended 

by using the distributive laws. The isomorphism problem is a famous group ring 

problem. It asks what conditions must be present for RH ~ RG to imply that 

H ~ G [M802, Des56]. The isomorphism problem does not always have a positive 

result, for example, C[C2 X C2] ~ c EB c EB c EB c ~ cc4, but c2 X c2 ~ C4[M802]. 

A list of positive results for the modular case can be found in [Chr04] and [H806]. 

W. E. Deskins [Des56], D. S. Passman [Pas65], Inder Bir S. Passi and Sudarshan K. 

Sehgal [P872], Robert Sandling [8an84a, 8an96], Wursthorn [Wur93], Mohamed 

A. M. Salim [8896], Blecher, Kimmerie, Roggenkamp [Chr04] have all been major 

contributors. The group G is contained in the unit group of the group ring, so 

information for the isomorphism problem can often be found by looking at the unit 

group U(RG). It is useful to know how G sits in the U(RG) or if G has a normal 

complement in U(RG). Now G has a normal complement in U(RG) if there exists 

W ~ U(RG) such that: 

(1) U(RG) = GW 

(2) G n w = {1} 

(3) W is a normal subgroup of U(RG). 
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In this setting we will write U(RG) = W ><1 G. Recall that a group is torsion free if 

all elements have infinite order. 

THEOREM 1.1.1. [Seh93, pp. 157-158]In the case of integral group rings of finite 

groups, if a torsion free normal complement exists the isomorphism problem has a 

positive solution. 

PROOF. Let (): Z G ---+ Z H be an isomorphism and note that G and H have the 

same order as bases of the same Z-module. Assume U(ZH) = N ><1 H. Units map 

to units and G C U(ZG) so for every g E G, ()(g) = nh for some n E N and some 

h E H. Then we can define /3: G ---+ U(ZH)/N ~ H by f3(g) = N()(g). First 

we want to show that this is a homomorphism. Choose g1, g2 E G, then f3(g1g2) = 

N()(g1g2) = N()(g1)(}(g2) = N()(g1)N()(g2) = f3(g1)/3(g2)· Thus /3 is a homomorphism. 

Then, ker(/3) = {g E G I N()(g) = 1} = {g E G I ()(g) E N} = {1}, since N is 

torsion free, () is an isomorphism and the elements of G have finite order. Thus /3 is 

an injective function and, since IGI = IHI, an isomorphism. D 

Some mathematicians who used this method to solve the isomorphism problem are: 

D. S. Passman and P. F. Smith [PS81], G. H. Cliff, S. K. Sehgal, A. R. Weiss 

[CSW81]. These results and other positive results on integral group rings can be 

found in [Mil82, Seh90]. In the modular case it has been shown that G has a normal 

complement in U(FG) if G is a finite abelian p-group [Joh78], if G is a cyclic group 

[Joh78], or if G is a central-elementary-by-abelian group [San89]. 

1.2. Preliminary Results 

In this section we will go over some definitions and preliminary results. Let G be a 

group. Then the commutator subgroup G' of the group is the subgroup generated by 

the set {(g1,92) I g1,g2 E G}, where (g1,g2) = g]"1g21g192· 
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DEFINITION 1.2.1. Let c: RG----* R be the homomorphism defined by c(L:gEG a9g) = 

L:gEG a9 . The kernel of this map is called the augmentation ideal of RG and is 

denoted by .6.. 

REMARK 1.2.2. To prove that c is a homomorphism, pick a = L:gEG a9g and "( = 

L_gEG "fa9 E RG. Then c(a + 'Y) = c(L_gEG a 9g + L_gEG "(99) = c(l:9 Ec(a9 + "!9 )g) = 

L:9Ec(a9 + "(9 ) = 'L-aEG a 9 + L:gEG "fa = c(L:gEG a9 g) + c("'£9 EG "(9 g). Also, c(a'Y) 

= c(L:gEG agg L:hEG "fhh) = c(L:g,hEG ag"(hgh) = L:g,hEG ag"(h = L:gEG ag L_hEG "fh = 
c(a)c('Y). So the map is operation preserving. Thus cis a ring homomorphism. 

EXAMPLE 1.2.3. Let C3 = {1, a, a2} and R = F2, the field of two elements. The 

kernel of c is the set {L:gECa a9 g E F2C3 I c(L:gECa a9 g) = 0 F2 } = { ao + a1 a + a2a2 I 
ao + a1 + a2 = 0}. Now ai = 1 or 0, so in order for ao + a1 + a2 = 0 either, 

Thus kerc = {0, 1 +a, 1 + a2, a+ a2} = .6.. 

EXAMPLE 1.2.4. Let C2xC2 = {1, a, b, ab} and R = F2. Then, kerc = {2:
9
Ec

2
xc

2 
a9 g E 

F2(C2 x C2) I c(l:9 Ec
2
xc

2 
a9 g) = 0} = {ao+a1a+a2b+a3ab I ao+a1 +a2+a3 = 0}. 

Thus, ai = 1 or 0, so a 0 + a 1 + a2 + a3 = 0 in precisely the following eight cases: 

( 1) ao = a1 = a2 = a3 = 0 

(2) a0 = a1 = a2 = a3 = 1 
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(3) ao = o:1 = 1, o:2 = o:3 = 0 

( 4) o:0 = o:2 = 1, o:1 = 0:3 = 0 

(5) ao = 0:3 = 1, o:1 = o:2 = 0 

(6) 0:1 = o:2 = 1, o:o = 0:3 = 0 

(7) o:1 = 0:3 = 1, ao = 0:2 = 0 

(8) o:2 = 0:3 = 1, o:o = o:1 = 0 

Thus ker E = { 0, 1 + a + b + ab, 1 + a, 1 + b, 1 + ab, a + b, a + ab, b + ab}. 

Page 4 

DEFINITION 1.2.5. Let N be a normal subgroup of a group G. Consider the homo­

morphism p,: RG -t R[G/N] defined by J-L('f:.
9

E0 a 9g) = 'f:.
9

E0 a 9Ng = 'f:.
9

E0 a 9g. 

The kernel of this map is called the augmentation ideal b.(G, N). 

REMARK 1.2.6. When N = G the above map becomes p,: RG -t R[G/GJ ~Rand 

is defined by J-L('f:.gEG a9g) = 'f:.gEG a9Gg = 'f:.gEG a9G. Then, ker f-l = {'f:.gEG a9g I 
'f:.

9
E0 a9G = 0} = {'f:.

9
E0 a 9g I 'f:. 9E0 a 9 = 0} = kerc =b.. Thus, b.= b.(G,G). 

ExAMPLE 1.2.7. WriteC2xC2 = {1,a,b,ab}. ThenH = {1,a} isanormalsubgroup. 

Consider the map p,: F2(C2 x C2) -t F2[(C2 x C2)/ H] defined by J-L('f:.9Ec
2
xc

2 
a9g) = 

'f:.9Ec2 xc2 a9Hg. Now ker(J-L) = {'f:.9Ec2 xc2 a9g E F2(C2 x C2) I 'f:.gE(C2 xc2 ) a9 Hg = 

0} = {a0 +a1a+a2b+a3ab I aoH +a1Ha+a2Hb+a3Hab = 0} = {ao+a1a+a2b+ 

a3ab I (o:0 + o:1)H + (o:2 + a3)Hb = 0}. The equation, (o:o + o:1)H + (o:2 + a3)Hb = 0 

can be satisfied in four ways: 

(1) o:o = o:1 = o:2 = a3 = 0 

(2) o:o = o:1 = 1 and o:2 = 0:3 = 0 

(3) ao = 0:1 = 0 and o:2 = a3 = 1 

(4) o:o = o:1 = o:2 = 0:3 = 1. 
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So ker ,u = {1 +a+ b + ab, 1 +a, b + ab, 0} = ~(C2 X c2, H). 

From group theory we know that we can express a group Gas a union of disjoint cosets 

of N, where N is a normal subgroup of G. Thus G = UxE~ Nx, where Nx n Ny = 0 

for all x, y E ~ ~ G. 

LEMMA 1.2.8. [GJM96, page 150] Let N be a normal subgroup of a group G. Then 

~(G, N) = 2:nEN(n- 1)RG. 

PROOF. Choose o: = 2:gEG o:9g E ~(G, N), where o:9 E R. Let G = UxE~~G Nx 

where Nx n Ny = 0 for all x,y E ~ ~ G. Each element g E G can be writ­

ten as g = nx, where x E ~ and n E N. Consequently, o: = 2:gEG o:9g = 

2:xE~ 2:nEN O:nxnx. Denote by g f---> g the natural map G -+ GIN and extend 

to a group homomorphism RG -+ R[GINJ. Then a = 2:xE~ 2:nEN O:nxNnx = 

2:xE~ "L.nEN O:nxNx = "L.xE~{L_gEG,Ng=Nx o:g}Nx = "L.xE~{2:gEG,g=xo:9}x = 0. Now 

x E GIN are linearly independent in R[ GIN], so for each x E S:S, 2:gEG,g=x o:9 = 

0. Thus 2:9EG,x=g O:gg = 2:9EG,x=g O:gg - 0 = 2:gEG,x=9 O:gg - 2:gEG,g=x O:gX = 

2:gEG,x=:go:9(gx- 1)x- 2:gEG,g=xo:9x = 2:gEG,x=go:9((gx- 1
)- 1)x. Consequently, 

o: = 2:xE~2:gEG,x=go:g(gx-l- 1)x = "L.xE~2:gEG,x=:g((gx-l)- 1)o:gx. Now x = ?1 

so gx-1 E Nand o: E 2:nEN(n- 1)RG. Thus ~(G, N) ~ 2:(n- 1)RG. The other 

inclusion is clear. 0 

EXAMPLE 1.2.9. Again let H = {1, a} be the (normal) subgroup of C2 x C2 

{1, a, b, ab}. By the above ~(C2 x C2, H) = 2:hEH F2(C2 x C2)(a + 1). Choose 

o: = o:o + o:1a + o:2b + o:3ab E F2(C2 x C2). Then, (1 + a)(o:o + o:1a + o:2b + o:3ab) = 

(o:o + o:1) + a(o:o + o:1) + b(o:2 + o:3) + ab(o:2 + o:3). In F2, o:o + o:1 = 1 or 0 and the 

same can be said for o:2 + a 3. Thus the following four cases arise: 
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( 1) ao + a1 = 1 and a2 + a3 = 1 

(2) a0 + a1 = 1 and a2 + 0:3 = 0 

(3) ao + a1 = 0 and a2 + a3 = 1 

( 4) ao + a1 = 0 and 0:2 + a3 = 0 
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Then there are four different possibilities for a, namely 1 +a+ b + ab,1 +a, b + ab, 

0. Thus ~(C2 x C2 , H)= {0, 1 +a, b + ab, 1 +a+ b + ab}, which corresponds to the 

~(C2 X c2, H) found in Example 1.2.7. 

COROLLARY 1.2.10. Let G be a group and R be a ring. Then ~ = L_gEG R(g - 1). 

PROOF. From Lemma 1.2.8 we know that ~ = ~(G, G) = L_gEG RG(g- 1). 

So any element in 6 is of the form L_gEG L_hEG ahh(g- 1) E 'L.gEG R(g- 1). Thus 

6 = L:gEG R(g- 1). 0 

Consider the group ring F2C3. According to Corollary 1.2.10, 6 = L_
9
Ec

3 
F2(g + 1). 

Hence 6 is spanned over F2 by the set {g + 1 I g E C3 } = {O,a + 1,a2 + 1}. Then 

6 = {0, a+ 1, a2 + 1, a+a2} which corresponds with the 6 that was found in Example 

1.2.3. 

Consider again the group ring F2(C2 x C2). According to Corollary 1.2.10, 6 = 

L_
9
Ec

2
xc

2 
F2(g + 1). Hence ~ is spanned over F2 by the set: {1 +a, 1 + b, 1 + ab, 0}. 

Thus~= {0, 1 +a, 1 +b, 1 + ab, a+ b, a+ ab, b+ab, 1 +a+ b+ ab} which corresponds 

to the 6 that we found previously, in Example 1.2.4. 

THEOREM 1.2.11. [MS02, page 135] Let N be a normal subgroup of a group G. Let 

S = {x1, ... , xd}, be a set of generators of N. Then 6(G, N) = L:x;ES RG(x;- 1). 

PROOF. By Lemma 1.2.8, ~(G, N) = L_gEN(n- 1)RG. Thus {n- 1 I n E N} 

spans ~( G, N). As a result it is adequate to show that any element of the form n- 1, 
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with n E N, is in the set 'L-xiES RG(xi- 1). Choose n E N. Then n = xi1 x~2 • • • x~r, 

where Xi E S are not necessarily distinct and ti = ±1. The proof will proceed by 

induction on r using the identities 

(1.1) 

and 

(1.2) xy- 1 = x(y- 1) + (x- 1). 

When r = 1, n- 1 = x~1 
- 1. If t1 = 1, this has the right form. If t 1 = -1, then 

by identity (1.1) x11 
- 1 = x11(xl - 1) is also in 'L-xiES RG(xi- 1). Assume that 

the induction hypothesis is true for 1 ::; k ::; r and let n - 1 = xi1 x~2 • • • x~ x;_:{ - 1. 

Using (1.2), 

Now xi1 x~2 00 
• x~r E RG, so by the base case xi1 x~2 oo • x~r(x~':{- 1 -1) E 'L-x;ES RG(xi-

1). Also by induction hypothesis (xi1 x~2 • • • x~)-1 E 'L-xiES RG(xi-1). Consequently 

(x11 x~2 • • • x~rx~'t{) -1 E ~xiES RG(xi -1). By the principle of mathematical induc­

tion !:::.(G, H)= 'L-xiES RG(xi- 1). 0 

DEFINITION 1.2.12. An element x of a ring R is nilpotent if there exists an integer 

n ~ 1 such that xn = 0. A ring is nil if all its elements are nilpotent and nilpotent 

if, for some integer n ~ 1, the product of any n elements is 0. 

THEOREM 1.2.13. Let G be a finite p-group and R be a ring of characteristic p. Then 

!:::. = !:::.(G) is nilpotent. 



CHAPTER 1. INTRODUCTION Page 8 

PROOF. Let IGI = p. Then G =(a), and~ is generated by 1-a. Choose ai E ~. 

Then ai = 'Yi(1- a), where 'Yi E RG. So a 1a 2 · · · ap = 'Yl'Y2 · · · ')'p(1- a)P = 0. Assume 

the result is true for all groups with order less than IGI = n. Choose 1 i= z E Z(G) 

the centre of G (we can do this since p-groups have a non-trivial centre). Without loss 

of generality let lzl = p. Then IG/(z)l < IGI, so by the induction hypothesis there 

exists an integer t such that ~(G/ (z) i = 0. So ~Pt ~ ~(G, (z)) = (1- z)RG. Then 

~Pt+
1 

~ (1 - z)P RG = 0. So the result is true and by the principle of mathematical 

induction .6. is nilpotent for any finite p-group G. D 

EXAMPLE 1.2.14. Again let G = c2 X c2 and look at the group ring F2G. Here the 

field is of characteristic 2 and G is a 2-group. Recall that .6. is spanned over F2G by 

1 +a and 1 +b. Moreover, (1 + a)2 = (1 + b)2 = 0. It follows readily that ~3 = 0, in 

agreement with Theorem 1.2.13. 

On the other hand consider the group-ring F2C3 . Here the field is of characteristic 2 

and C3 is a 3-group, so the previous theorem does not necessarily apply. Recall that 

~={0,1+a,1+a2 ,a+a2 }. Here 

• (1 + a) 4 = 1 +a 

• (1 + a2
)

4 = 1 + a2 

• (a+a2
)
2 =a+a2

• 

None of the elements is nilpotent so, of course, ~ is not nilpotent. 

LEMMA 1.2.15. Let a ERG, where G is a group and R is any ring of coefficients. If 

a is a nilpotent element then 1 + a is a unit. 

PROOF. Now a is nilpotent so there exists n such that an = 0. So (1 + a)(1 -

a+ 0:2 _ ... + ( -l)n-lan-1) = 1- a:+ a2 _ ... + ( -l)n-2an-2 + ( -l)n-la:n-1 +a:_ 
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a2 + ... + (-1)n-lan-1 + (-1)nan = 1 = (1- a+ a2- ... + (-l)n-lan-1)(1 +a). 

Hence 1- a+ a 2 - · · · + ( -1)n-lan-l is the inverse of 1 +a in RG. 0 

COROLLARY 1.2.16. Let G be a finite p-group and F be a field of characteristic p. If 

a E b. then 1 + a is a unit. 

PROOF. This follows directly from Theorem 1.2.13 and Lemma 1.2.15. 0 





CHAPTER 2 

Normal Complements 

In this chapter we will look at results from two of Robert Sandling's papers, ([San84b, 

San89]). In these papers he proves that in the modular case there is a normal comple­

ment for certain p-groups G in their unit groups. In fact he actually gives an explicit 

form for such normal complements. Here we will prove some of Sandling's results in 

the case where p = 2. We will be using the following notation and definitions: 

• G denotes a finite 2-group, 

• F2 denotes the field with 2 elements and F2G denotes the modular group 

algebra, 

• V = V(F2G) is the group of units. 

We use throughout that V = 1 + Ll. To see why, choose v E V. There exists 

u E V(F2G) such that uv = 1. Now c(uv) = c(1) = 1 since homomorphisms map 

identities to identities. Thus c( u )c( v) = 1 and since we are in characteristic 2 this 

implies that c(v) = c(u) = 1. So v = 1 + (1 + v) E 1 + Ll. So V ~ 1 + Ll and the 

other inclusion was Corollary 1.2.16. Note too that in F2G one half the elements have 

augmentation 1 and the other half have augmentation 0. So IV(F2G)I = ~IF2GI. 

EXAMPLE 2.0.1. Let G = c2 X c2 =(a, b)= {a,b,ab, 1}. Then IGI = 4 = 22,IF2GI = 

24 and IV ( F2G) I = 23
• As we found before Ll = L;gEG F2 (g + 1), hence Ll is spanned 

over F2 by the set {1 +a, 1 + b, 1 + ab, 0}. Thus Ll = {0, 1 +a, 1 + b, 1 + ab, a+ b, a+ 
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ab, b + ab, 1 +a+ b + ab }. Then as noted earlier V = 1 + ~, so V = {1, a, b, ab, 1 + 

a + b, 1 + a + ab, 1 + b + ab, a + b + ab}. 

LEMMA 2.0.2. Let I be a left ideal of~. Then 1 +I is a subgroup of (V, ·). 

PROOF. Pick 1 +a, 1 + {3 E 1 +I, a, {3 E I. Then a+ {3 + af3 E I, so 

(1 + a)(1 + {3) = 1 +a+ f3 + af3 E 1 +I. Also f3 E I ~ ~, so by Lemma 1.2.13, there 

exists an integer t such that f3t = 0. Thus as shown in the proof of Lemma 1.2.16, 

(1 + {3)-1 = 1 + {3 + .. · + {Jt-1 E 1 +I. 0 

LEMMA 2.0.3. Let a and f3 be elements of~. Let I be a left ideal of~. Then a and 

f3 are in the same coset of (I,+) if and only if 1 +a and 1 + {3 are in the same left 

coset of the subgroup (1 +I,·) of V. 

PROOF. We have a, f3 in the same coset of (I, +) 

if and only if a = f3 mod I 

if and only if a - f3 E I 

if and only if there exists 'Y E I such that a = f3 + 'Y 

and this occurs if and only if 1 +a = 1 + {3 + 'Y· Since {3 is in ~. Lemma 2.0.2 says 

(1 + {3)-1 exists. Consequently, 1 +a= 1 + f3 + 'Y = (1 + {3)(1 + (1 + f3t 1"f). Now 

1 + (1 + {3)-1'Y E 1 +I, so 1 +a::::: 1 + {3 in (1 +I,·). 

Conversely, 1 + a and 1 + f3 are in the same left coset of ( 1 + I, ·) if and only if 

1 + a = 1 + f3 mod 1 + I, which happens if and only if there exists 'Y E I such 

that 1 +a = (1 + {3)(1 + 'Y) = (1 + {3) + (1 + {3)'Y, and this occurs if and only if 

(1 +a) - (1 + {3) = (1 + {3)'Y, that is, a- f3 = (1 + f3)'Y. Since I is a left ideal of~, 

(1 + f3h E I, giving the result. 0 
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2.1. A basis for V(F2G) when G is abelian 

In this section we adapt the results from [San84b] to find a basis of V(F2G) when 

G = (x1) x · · · x (xd) is an abelian 2-group. Since V(F2G) is an abelian 2-group, 

by the fundamental theorem of abelian groups it is isomorphic to a product of cyclic 

groups in one and only one way. A set L = {g1 , g2 , ... , gt} is a basis for (V(F2G), ·) 

over F2 if V(F2G) ~ (g1) x (g2) x .. · x (gt). 

Let 6 = (61, ... , 6d) be a d-tuple of non-negative integers, cyot all zero. Let P(6) = 

TI(xj + 1)8
i where 0:::; 6j < lxjl, the order of Xj. Let 

By 1 + P(D) we mean {1 + P(6) 16 E D(G)}. 

EXAMPLE 2.1.1. Let G = c2 X c2 =(a) X (b)= {1,a,b,ab}. The elements of D(G) 

and 1 + P(D) are shown in the table. 

(1,0) 

(0, 1) 

(1, 1) 

1 + P(J) 

1 +(a+ 1) =a 

1+(1+b)=b 

1 + ( 1 + a) ( 1 + b) = a + b + ab 

EXAMPLE 2.1.2. Let G = C4 = {1, a, a2 , a3 }. Then D(G) = {(1), (3)}, so P(D) = 

{(1 + a) 1
, (1 + a) 3

} and 1 + P(D) ={a, a+ a2 + a3
}. 

EXAMPLE 2.1.3. Let G = c2 X c4 =(a) X (b)= {1,a,b,b2 ,b3 ,ab,ab2 ,ab3 }. The 

elements of D(G) and 1 + P(D) are shown in the table. 



CHAPTER 2. NORMAL COMPLEMENTS Page 14 

I J E D(G) II 1 + P(J) 

(1,0) a 

(0, 1) b 

(0,3) b + b2 + b3 

(1, 1) a+ b + ab 

(1, 2) a+ b2 + ab2 

(1, 3) b + b2 + b3 + a(1 + b + b2 + b3
) 

THEOREM 2.1.4. [San89] Let mi denote the number of cyclic factors in V(F2G) that 

have order 2i. Then mi = IG2i-ll- 2IG2; I+ IG2
i+

1
1, the dimension of V is IGI-IG21 

and the order of 1 + P(D) is IGI-IG2I. 

EXAMPLE 2.1.5. Let G = c2 X c2 =(a) X (b)= {a,b,ab, 1}. Notice G2
i = 1 for all 

i 2: 1. Then m1 = IGI-2IG2I+IG4
1 = 4-2+1 = 3 and mi = IG2

i-
1
I-2IG2ii+IG2

i+
1

1 = 

1 - 2 + 1 = 0 for all i 2: 2. Thus V has precisely 3 cyclic factors of order 2; i.e., 

v ~ c2 x c2 x c2. 

EXAMPLE 2.1.6. Let G = c2 X c4 = {1,a,a2,a3 ,b,ab,a2b,a3b} with lal = 4, lbl = 2. 

Now G2 = {1, a2} and G2
; = 1 for all i 2: 2. Then m1 = IGI-2IG2I+IG4 I = 8-4+1 = 

5, m2 = IG2I- 2IG4 I + IG8 I = 2- 2 + 1 = 1 and mi = IG2i-ll- 2IG2il + IG2
i+

1
1 = 

1- 2 + 1 = 0 for all i 2: 3. Thus V has 5 cyclic factors of order 2 and 1 cyclic factor 

of order 4; i.e., V ~ C2 X C2 X C2 X C2 X C2 X C4. 

THEOREM 2.1.7. Let G be an abelian 2-group and F2 the field of order 2. Then for 

n 2:0, 1 + Lln+l is a subgroup ofV = (1 + Ll, ·). 

This follows immediately from Lemma 2.0.2. 
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THEOREM 2.1.8. Let G = (x1) x (x2) x · · · x (xd) be an abelian finite 2-group and let 

F2 be the field of order 2. For n 2: 1, let En be a subset of~ n whose cosets generate 

~n;~n+l. Let B be the union of the En. Then V(F2G) is generated by 1 +B. 

PROOF. Consider f: (~n;~n+l,+)---> (1 + ~n/1 + ~n+l,·) defined by f(a + 

~n+l) = ( 1 + a) ( 1 + ~ n+l) with a E ~ n. First we show that f is well defined, that 

is, if a+ ~n+l = (3 + ~n+l, then (1 + a)(1 + ~n+l) = (1 + (3)(1 + ~n+l). Thus we 

want to show that a- (3 E ~n+l implies (1 + a)-1(1 + (3) E 1 + ~n+1 ; that is, if a, (3 

are in the same coset of ~n+l, which is a left ideal of~' then 1 +a and 1 + (3 are in 

the same coset of the subgroup 1 + ~n+l of (V, ·). This is Lemma 2.0.3. 

To show that f is one-to-one, we show that if (1 + a)(1 + ~n+1 ) = (1 + (3)(1 + ~n+1 ), 

then a+ ~n+l = (3 + ~n+l; that is, that (1 + a)-1(1 + (3) E 1 + ~n+1 implies 

that a - (3 E ~ n+l. This is equivalent to showing that if 1 + a and 1 + (3 are in 

the same coset of the subgroup 1 + ~ n+l of (V, ·), then a and (3 are in the same 

coset of the left ideal ~ n+l of ~. This is Lemma 2.0.3. Clearly f is onto because 

(1+(3)(1 +~n+1 ) E 1+~n /1+~n+l with (3 E ~nand f(f3+~n+1 ) = (1+(3)(1+~n+1 ). 

Now we want to show that f is operation preserving. Taking, a + ~ n+l, (3 + ~ n+l E 

~n/~n+l, we have 

J((a + ~n+l) + ((3 + ~n+l)) = J((a + (3) + ~n+1) = (1 +(a+ (3))(1 + ~n+l). 

We claim that (1 +(a+ (3))(1 + ~n+1 ) = (1 +(a+ (3 + a(3))(1 + ~n+l). To see 

why, notice that a+ (3 E ~n C ~' since a, (3 E ~n. By Theorem 1.2.13 every 

element in ~ is nilpotent. So there exists an integer t such that (a+ (J)t = 0. Then 

(1+(a+r3))(1+(a+,B)+(a+,B)2 + .. ·+(a+,B)t-1) = 1. So (1+a+r3)-1 = 
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(1 +(a+ ,6) +(a+ ,6) 2 +···+(a+ ,B)t-1) = 1 +a+ /1 +X, where X E ~n+1 . Then 

= 1 + (1 +a+ /1 + X)a/1 

= 1 + a,B + a 2,6 + fia/1 + Xa,B 

As a result, 

J((a + ~n+l) + (/1 + ~n+l)) = (1 +(a+ /1))(1 + ~n+l) 

= (1 +(a+ ,6 + a/1))(1 + ~n+l) 

= ((1 + a)(1 + /1))(1 + ~n+l) 

= (1 + a)(1 + ~n+1)(1 + ,6)(1 + ~n+l) 

= j(a + ~n+l)J(,B + ~n+l) 

as desired. All this shows that f is an isomorphism, so, indeed, (1 + Bn)(1 + ~n+l) 
generates 1 + ~n/1 + ~n+l. Now we know from Theorem 1.2.13 that~ is nilpotent, 

so there exists a positive integer n such that ~n = 0. 

As shown above (1 + Bn-l) (1 + ~ n) generates 1 + ~ n-1 /1 + ~ n, so 1 + Bn_1 generates 

1 + ~n- 1 /1 + ~n = 1 + ~n- 1 . Choosey = x(1 + ~n-l) E 1 + ~n-2/1 + ~n-l. 

Now y-1x E 1 + ~n-l can be expressed as (1 + bl)t1 (1 + b2)t2 • • • (1 + bd)td, the b/s 

E B not necessarily distinct and tiE {0, 1}. As shown above (1 + Bn_2)(1 + ~n-l) 
generates 1 + ~n-2/1 + ~n-I, so, y = ((1 + x1)t1 (1 + x2)t2 • • • (1 + x 8 )t•)(1 + ~n-l) 

is the product of elements in (1 + Bn_2)(1 + ~n-1 ), the xi's E Bn_2 not necessarily 
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distinct. Therefore, 

X = y(1 + bd1 (1 + bd2 
• • • (1 + bd)td 

= ((1 + xd1 (1 + xd2 
• • • (1 + Xs)t•)(1 + ~n-1 )(1 + bd1 (1 + b2)t2 

• • • (1 + bd)td 

is in (1 +B) because 1 + ~n-l is generated by 1 +B. This process can be continued 

to show that 1 + B generates 1 + ~. 0 

Recall that D(G) is the set of those 8 = (81, 82, ... , 8d) where for all j, 0 :=:; 8j < lxjl 

and 2 does not divide 8j for some j. 

COROLLARY 2.1.9. V is generated by 1 + P(D). 

PROOF. Let G = (x1 ) x (x2 ) x ... x (xd) and S = {x1, ... ,xd}· We know from 

Theorem 1.2.11 that ~ = {2:: a9 (xi + 1) I xi E S, a9 E F2G}. So the elements in~ 

are linear combinations of elements of the form h(xi- 1) where h E G. Now 

h(xi + 1) = h(xi + 1) +(xi+ 1) +(xi+ 1) 

= ( h + 1) (Xi + 1) + (Xi + 1) 

so (~/ ~2 , +) is generated over F2 by B1 = {(xi+ 1) I Xi E S}. Next, the elements 

in ~2 are linear combinations of elements of the form hi(xi + 1)hj(Xj + 1), where 

hi, h1 E G, xi, Xj E Sand the coefficients are in F2 . Then, 

hi(Xi + 1)hj(Xj + 1) = hihj(Xi + 1)(xj + 1) 

= h(xi + 1)(xj + 1) 

= (h + 1)(xi + 1)(xj + 1) +(xi+ 1)(xj + 1) 

=(xi+ 1)(xj + 1) (mod ~3), 

since G is abelian 

with hE G 
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so (.6.2/.6.3 ,+) is generated over F2 by B2 = {(xi+1)(xj+1) I Xi,Xj E S}. In general, 

elements in .6,k are linear combinations of elements of the form h1(x1 + 1)h2 (x2 + 
1) · · · hk(xk + 1), hiE G and xi E S, with coefficients in F 2 • Hence, (.6.kj.6,k+1,+) is 

generated over F2 by Bk = {(x1 + 1)(x2 + 1) · · · (xk + 1) I Xi E S, 1::; i::; k}. 

Let B be the union of all Bk's. This is actually the set of all P(8)'s, where P(8) is 

a product TI1=1(x1 - 1)83. By Proposition 2.1.8, 1 + B = {1 + P(b')} generates V. 

Now we want to show that we may assume 0::; bj < lxjl· Choose a positive integer 

d ~ lxjl, then d = nlxjl + b where 0::; b < lxjl· Then, 

(xj- 1)d = (xj + 1)nlx3l+b = (xj + l)nlx3i(xj + 1)b = (x7ix31 + 1nix3i)(Xj + 1)b = 0. 

Thus, for all d ~ lxjl, (xj + 1)d = 0. So {1 + P(J)} generates V with 0::; Jj < lxjl· 

Finally we want to show that we may assume that 2 t Ji for some i. So assume there 

is an element in the set 1 + P(b'), 0 ::; 8i < lxil where t I b'i for all i and t is a power 

of 2. Therefore it is of the form 1 + P(t8) where 8 E D. Now, 

Thus 1 + P(D) generates V(F2G). D 

EXAMPLE 2.1.10. Let G = C4 = {1, a, a2
, a3

}. Then V = 1+.6. and V = {1, a, a2
, a3

, 1+ 

a+ a2 , 1 +a+ a3 , 1 + a2 + a3 , a+ a2 + a3} £?::( (a) X (1 +a+ a2) £?::( c4 X c2. Since 

1 + P(D) = {a, a+ a2 + a3
}, it is clear that 1 + P(D) is a basis for V. 

THEOREM 2.1.11. Let G = (x1) x (x2) x · · · x (xd) be an abelian 2-group and F2 the 

field of order 2. Then 1 + P(D) is a basis for V(F2G). 

PROOF. By Corollary 2.1.9, 1 + P(D) generates V(F2G). By the fundamental 

theorem of abelian groups V(F2G) can be expressed as a product of cyclic groups in 

one and only one way. Therefore, 1 + P(D) is a basis for V(F2G) if it has the same 
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number of elements of each order as the invariants of V(F2G). The proof will proceed 

by induction on the exponent of G. Recall that the exponent of G is the smallest 

positive integer m such that gm = 1 for all g E G. 

Assume exp(G) = 21
. Now /GI = 2d. Notice the set 1 + P(D) has d elements of 

the form 1 + x j, (~) elements of the form ( 1 + x j) ( 1 + xi),(~) elements of the form 

(1 + Xi)(1 + Xj)(1 + xk)· · ·, (~) elements of the form (1 + x2)(1 + x3) · · · (1 + xd)· 

Thus /1 + P(D)/ = 2d- 1 = IGI - 1. Now 1 + P(o) =/:: 1 for all 6, and the order of 

1 + P(o) is 2. In fact, (1 + P(c5)) 2 = 1 + IIj=1 (x] + 1)8
i = 1. Thus 1 + P(D) has 

JGI - 1 elements of order 2 and no elements of order 2i, for all i > 1. On the other 

hand by Remark 2.1.4 m1(V) = /G21
-

1
/- 2/G21

/ + /G2
1+

1
/ = JGI- 2 + 1 = IGI- 1. 

Thus, 1 + P(D) has the same number of elements of each order as the invariants of 

V(F2G). 

Let G have exponent 2k and assume that for any H with exponent equal to 2£ where 

1 :=:; € < k exactly mi(V(H)) of the elements of 1 + P(D(H)) are of order 2i for all i. 

We want to show that exactly mi(V(G)) of the elements of 1 + P(D(G)) are of order 

2i, for all i. Now for allc5 E D(G), (1 + P(c5)) 2 = 1 + IIj=1(x] + 1)8i. As a result, 

1 + IT1= 1(x] + 1)8
J =/:: 1 if and only if IT1=1(x] + 1)8

J =/:: 0 

if and only if ( x] + 1) 8J =/:: 0 for all j, 1 :=:; j :=:; d 

if and only if 26j < /xj I if and only if Oj < 'i 1. 

If (1+P(c5)) 2 = 1 then J1+P(J)J :=:; 2. The only element of order 1 is the identity. The 

elements of order 2 along with the identity form a subgroup of exponent 2. Then by 

the base case, 1 + P(D) has the same number of elements of order 2 as the invariants 

of V(F2G). If the order of an element is > 2 then (1 + P(c5)) 2 =/:: 1. Thus it is an 
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element of 1 + P(D(G2)) where expG2 < expG. Then by the induction hypothesis 

for all i 2: 2 exactly mi(V(G2)) of the elements of 1 + P(D(G2)) are of order 2i. The 

number of elements of order 2i in 1 + P(D) is equal to the number of elements of 

order 2i-1 E 1 + P(D(G2)) which equals mi_1(V(G2)) = !(G2)2i-r-rl- 2l(G2)2i-rl + 

!(G2)2i+r-rl = IG2i-rl- 2IG2il + IG2Hrl = mi(V(G)). 0 

EXAMPLE 2.1.12. Let G = c2 X c2 = (a, b) = {a, b, ab, 1}. As shown previously 

V = 1+~, SO V = {1, a, b, ab, 1+a+b, 1+a+ab, 1+b+ab, a+b+ab} ~ C2 X C2 X C2, 

with basis 1 + P(D) = {a, b, a+ b + ab }, as shown in Table 1. 

TABLE 1. The unit group of F2[C2 x C2] is (a) x (b) x (a+ b + ab) 

I Elements of V(F2G) II In terms of 1 + P(D) I 
1 =a0b0 (a + b + ab)0 

a = a1 =a 

b = b1 = b 

ab = a1b1(a + b + ab)0 

1+a+b = a1b1(a + b + ab) 1 

1+a+ab = b1 (a + b + ab) 1 

1+b+ab = a 1 (a + b + ab) 1 

a+ b + ab =(a+ b + ab) 1 

EXAMPLE 2.1.13. Let c2 X c4 = {1,a,b,b2 ,ab,ab2 ,ab3 }. Then V(F2(C2 X C4)) ~ 

C2 X C2 X C2 X C2 X C2 X C4, with generators, respectively, a, b, b + b2 + b3
, a + b + 

ab, a+ b2 + ab2
, b + b2 + b3 + a(1 + b + b2 + b3

), the elements of 1 + P(D). 

REMARK 2.1.14. From Theorem 2.1.11, 1 + P(D(G)) is a basis for V(F2G). Notice 

that when L:oi = 1, 1 + P(o) = 1 + IJ(xi + 1)6
j = 1 +(xi+ 1) =xi E G. It 
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follows that G is actually a direct factor of V (G), as noted in the examples we have 

presented. As we shall see in Section 3.3, this happens for many abelian groups. 

2.2. Normal Complements with G' of order 2 

In this section, we adapt some results of Sandling [San89] to show that G has a normal 

complement in the unit group of F2G for a certain class of groups G. Specifically, 

we assume that G has a unique nonidentity commutator, always denoted s. Note 

that since s-1 is also a commutator, s-1 = s, so s2 = 1 and IG'I = 2. Originally, 

the hope was to extend the results here to the case of a (not necessarily associative) 

loop, that is, a system (L, ·) where (a, b) ~---> a· b is a binary operation on L, both 

cancelation laws hold, and there exists an identity element. For years after Paige 

showed that a commutative power-associative loop algebra must be associative (in 

most characteristics) [Pai55], the possibility of the existence of nonassociative loop 

algebras satisfying "interesting" identities was considered unlikely. In the 1980s, 

however, Goodaire found some nonassociative loops, now called RA loops, whose loop 

rings in any characteristic are alternative, that is, they satisfy the laws x(xy) = x 2y 

and (yx)x = yx2 [Goo83]. RA loops have many properties. Of relevance here is that 

they contain a group G of index 2 for which G' = {1, s} has order 2. In characteristic 

2, even more loops have alternative loop rings. While these RA2 loops have yet to 

be characterized, those with a unique nonidentity commutator/associator are known 

to be RA2 [CG90]. Eventually, Goodaire and Robinson showed that any Bolloop L 

with L' = {1, s} has a loop ring which, in characteristic 2, satisfies the right alternative 

law, but not the left [GR95]. These remarks explain our focus on characteristic 2 in 

this thesis and on groups G with a unique nonidentity commutator. 
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Properties of s. 

• (1 + s)(1 + s) = 0 because (1 + s)(1 + s) = 1 + s + s + s2 = 1 + s + s + 1 = 0 

• as = sa for all a E F2G. 

To see why, note that it is enough to prove this when a = g E G. In this 

case we have gs = sg or gs = s(sg). If gs = s(sg) = s2g = g, then s = 1 

which is a contradiction. Thus gs = sg. 

• For a, (3 E F2G, a/3 + f]a = (1 + s)t for some"( E F2G. 

To see this, note that 

a/3 + f]a = L a 9(3hgh + L f3ha9 hg = L a 9(3h(gh + hg). 
g,hEG g,hEG g,hEG 

If gh = hg then gh + hg = 0. So 

L a 9(3h(gh + hg) = L a 9(3h(gh + hg) 
g,hEG ghf=hg 

= L a 9 (3h(gh + sgh) 
ghf=hg 

= L a 9 (3h(1 + s)gh 
ghf=hg 

= (1 + s) L a 9(3hgh = (1 + s)t, with"( E F2G. 
ghf=hg 

Let J = J(G) denote the ideal (1 + s)Ll. 

LEMMA 2.2.1. The ideal Ll2/J is central in F2GjJ, so 1 + Ll2/(1 + J) is central in 

V/(1 + J). 
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PROOF. Choose 61 , 62 E ~ and a E F2G. As shown above, there exists ')'1 , ')'2 E 

F2G such that 61a + a61 = (1 + s)!'1 and 62a + a62 = (1 + s)!'2. Thus, 

6162a = 61(a62 + (1 + s)!'2) 

= 61a62 + (1 + s)611'2 

= (a61 + (1 + s)!'1)62 + (1 + s)6n2 

The second half of the statement follows from the first and Lemma 2.0.3. 0 

Let W = W(G) be the subgroup of V(G) generated by 1 + J and by the preimages 

of all1 + P(6), 6 E D(G/G') and 2:: 6i > 1. 

EXAMPLE 2.2.2. Let G = D4 = (a, b I a4 = 1, b2 = 1, ba = a- 1b). Then G' = 

{1, a2 = s} and G = G/G' = (a, b), where lal = lbl = 2. Now ~ is spanned over 

F2G by the set {a+ 1,b + 1}, so 1 + J = 1 + (1 + s)6 is generated by the set 

{1 + (1 + s)(a + 1) =a+ s +sa, 1 + (1 + s)(b + 1) = b + s + sb}. Now if 6 E D(G) 

then 6 = ( 61, 62) is a pair with 0 ~ 6i < 2 for each i and not both 61 = 0 and 62 = 0. 

The only 1 + P(6) with 6 E D(G) where 2:: 5i > 1 is 1 +(a+ 1)(b + 1) =a+ b + ab. 

So W (G) is generated by the set {a + s + sa, b + s + sb, a + b + ab}. 

COROLLARY 2.2.3. W is a normal subgroup of V. 

PROOF. Let w E W, v E V. Since W ~ 1 + 6 2 and 1 + 6 2/1 + J is central in 

V/1 + J by Lemma 2.2.1, we have w-1v-1wv = 1 mod 1 + J ==? w-1v-1wv E 

1 + J ~ W. Now wE Wand W is a subgroup, so (w)(w- 1v-1wv) = v-1wv E W, as 

desired. 0 

COROLLARY 2.2.4. If a and /3 are in~ and n ~ 1 is a positive integer (af3)n = an/3n 

modulo J. 
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PROOF. The proof will proceed by induction on n. If n = 1 then, (a,B) 1 = a,B = 

a 1,81. Assume n ~ 1 and an,Bn = (a,B)n (mod J). Then, 

by the induction hypothesis 

by Lemma 2.2.1 

so, by the principle of mathematical induction, an+l,en+l = (a,B)n+l mod J for all 

n > 0. D 

LEMMA 2.2.5. Let G = (x1) x (x2) x ··· x (xd)· Let J = (J1, ... ,Jd) bead-tuple of 

non-negative integers, not all zero. Suppose that, for all j, Jj < lxJ I· If JJ # 0, let 

Sj be the highest power of 2 less than or equal to JJ. Then the order of the element 

1 + P(J) = 1 + IJ(xJ + 1)8i is the minimum of the numbers lxJI, taken over those j 
Sj 

for which JJ # 0. 

PROOF. The proof will proceed by induction on the exponent of G, where exp G = 
2n. If n = 1, then exp G = 2. So all nonidentity elements of G are of order 2 and G 

is elementary abelian. Then (1 + P(J))2 = (1 + IJ(xJ + 1)8i) 2 = 1 + IJ(x] + 1)0
i = 1 

(in characteristic 2). Thus 11 + P(J)I = 2. On the other hand, Jj < 2 for all j. 

Thus sj = 2° and lxJI!sJ = 2/1 = 2 is the minimum of the numbers lxJifsJ. So the 

hypothesis is true when n = 1. Assume n > 1 and exp G = 2n and the results are 

true for groups of smaller exponent. Now for all j, lxJI is a power of 2 since both lxJI 
Sj 

and Sj are powers of 2. Then the lowest possible value of lxj I is 2, since JJ < lxj I and 
Sj 
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sJ is the highest possible power of 2 less than or equal to 5J. Then, 

(1 + P(5)) 2 = 1 if and only if 1 + IT1= 1(xJ + 1)8
i = 1 

if and only if IT1=l ( XJ + 1 )8J = Q 

if and only if (x; + 1)8
J = 0 for some j, 1 :::; j :::; d 
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and this occurs if and only if 5J ~ lxil for some j, 1 :::; j :::; d. Thus Iii :::; 5J < lxJI 

for some j. As a result SJ is equal to lxJI. Therefore, ixJI = 2 when 1 + P(5))2 = 1. 
2 Sj 

If 5J < Iii for all j then (1 + P(5)) 2 = 1 + ITff= 1(x] + 1)8
J =/:- 1 and it is an element 

of 1 + P(D(G2
)). Now expG2 < expG, so by induction hypothesis 1(1 + P(J)) 21 = 

min{lx]llsJ} = ~min{lxJIIsJ} and 11 + P(5)1 = min{lxJI!sJ}· Therefore by the 

principle of mathematical induction for all n ~ 1 and G with exponent equal to 2n 

the order of the element 1 + P ( 5) = 1 + IT ( x J + 1) 8J is the minimum of numbers I x J I , 
Sj 

taken over those j for which OJ =/:- 0. 0 

Let G = G/G' = (x1) x (x2) x · · · x (xd). Recall that 1+P(D(G)) is the set of elements 

of the form 1 + P(o) = 1 + IJ~=1 (xJ + 1)8
J with 5 = (61, ... ,5d) and J E D(G) i.e. 

0 :::; OJ < lxJ I and 2 does not divide OJ for some j. 

THEOREM 2.2.6. V(F2G) = W(G) X G. 

PROOF. From Theorem 2.1.11, 1 + P(D(G)) is a basis for V(F2G). Notice that 

when I:: 5J = 1, 1 + P(5) = 1 + IJ(xJ + 1)8
J = 1 + (xJ + 1) = xi E G, hence the 

result. 0 

THEOREM 2.2.7. W(G) n (1 + (1 + s)F2G) = 1 + J. 
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PROOF. Choose J-l E W(G) n (1 + (1 + s)F2G). Since J-l E W(G) and 1 + J is 

a normal subgroup in V(F2G) we can write J-l = 0'(1 + j), where j E J and 0' is a 

product of preimages of terms of the form 1 + P( <5) where <5 E D( G) and 2::: <5i > 1. 

Each P(<5) is in ~2 , so using Lemma 2.2.1 we can assume that 0' is the product of 

preimages of (1 + P(<51))01
, (1 + P(<52))02

, •.. , (1 + P(<5s)) 0
• for different P(<5i). Since 

1 + J C 1 + (1 + s)F2G and J-l E 1 + (1 + s)F2G it follows that 0' = ~t(1 + j)-1 is in 

1 + (1 + s)F2G. Since (1 + s)F2G is in the kernel of the natural epimorphism from 

F2G to F2 ( g,) it follows from Theorem 2.1.11 that each ai can be assumed to be a 

multiple of 11 + P(<5i) I in V(F2(g, )). We will complete the proof by showing that the 

preimage of each (1 + P(<5i))a; is in 1 + J. 

First let us assume that a 1 + P( <5i) term in the above product is of the form 

1 + (1 + xl for some () (i.e. involves only one x). In that case () is necessarily odd 

and greater than 1. Lemma 2.2.5 tells us that ()j1 + P(<5)1 > jxj. The corresponding 

term that is actually in the product of 0' is (1 + (1 +x)0 +r)a; where r E (1 +s)F2G. 

Since (1 + x)fxl belongs to (1 + s)F2G, this term is clearly in 1 + J. 

If a 1 + P( <5i) term involves more than one x but all x's involved commute, a 

similar argument to the one just given still works (note that (1 + xi)IXTI(1 + xj) E J 

ifi:f:j). 

Finally observe that if f is the preimage of a 1 + P( <5i) term involving x's which 

do not commute and g is obtained from f by allowing the x's to commute then f- g 

is in (1 + s)F2G, so f and g are preimages of the same 1 + P(<5i) term. Hence the 

difference f- g can be considered as part of the "r" term in the earlier case. In other 

words, we may assume the x's commute. 

We have completed the proof that CJ E 1 + J. Hence ,'t = CY(1 + j) also belongs 

to 1 + J and we're done. 0 
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LEMMA 2.2.8. G n (1 + J) = 1. 

PROOF. Let g = 1 + (s+ 1)a with a E ~. Then (1 + s)g = (1 +s)(1 + (1 +s)a) = 

1 + s. Hence sg + g + s + 1 = 0 and g = s or g = sg, or g = 1. If g = sg then s = 1 

which is a contradiction. If g = s, then s = 1 + (1 + s)a. Thus (s + 1)(1 +a) = 0. 

Now a is in~. So 1 +a is a unit by Theorem 1.2.16. Thus there exists 'Y E F2G such 

that (1 +a)"'= 1 = "!(1 +a). Then (s + 1)(1 +a) = 0 and (s + 1)(1 +a)"'= 0. As a 

result s + 1 = 0 and s = 1 which is a contradiction. So g = 1, and G n ( 1 + J) = 1. 0 

In the next lemma we follow an argument of de Barros and Policino Milies [dBM95]. 

LEMMA 2.2.9. 1 + (1 + s)F2G = G'(1 + J). 

PROOF. Since J = (1 + s)6 ~ (1 + s)F2G and s = 1 + (1 + s) E 1 + (1 + s)F2G, 

we have one containment. For the other, let a E 1 + (1 + s)F2G. Then a = 1 + 

I:gEG a9 g(1 + s) where a9 E F2. Now a9 = 1 or 0. So we will let the sum of all 

non-zero coefficients of I:gEG a9 equal f. If f = 2h + 1 is odd, 

a= 1 + L a9g(1 + s) 
gEG 

= s(s + L a9 g(1 + s)) 
gEG 

= s(s + L a9g(1 + s) + (1 + s) + (1 + s) .. · (1 + s) +1 + 1) 
gEG 2h times 

= s(1 + L a9 g(1 + s) + (1 + s) + (1 + s) · · · (1 + s)) 
gEG 2h+ 1 times 

= s(1 + L:a9g(1 + s) + I:a9 (1 + s)) 
gEG gEG 
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= s(1 + LgEG a9 (g + 1)(1 + s)) E G'(1 + ~(1 + s)). 

If f is even, then 

a= 1 + L a9 g(1 + s) + (1 + s) + (1 + s) + · · · + (1 + s) 
gEG f times 

gEG gEG 

= 1 + La9 (g + 1)(1 + s) E G'(1 + ~(1 + s)). 
gEG 

In both cases a E G'(1 + ~(1 + s)) = G'(1 + J). D 

THEOREM 2.2.10. V = G · W(G). 

PROOF. Extend the mapping w G ---> G/G' to the modular group algebra by 

ft: L:a9g---> L:a9g. Thenker~t = ~(G,G') = F2G(1+s). By restriction, we obtain 

a mapping fto: V(F2G) ---> V(F2G). If x E ker fto, then fto(x) = 1, so x + 1 E ker ft· 

Thusker~to = 1+(1+s)F2G. ByTheorem2.2.6, V(F2G) = GxW. Letv E V. There 

exist g E G, wE W such that v = gw. Thus v-1gw E ker fto, so v-1gw = 1 + (1 +s)a 

for some a E F2G. Hence, v = gw(1 + (1 + s)a)-1 = gw(1 + (1 + s)a) E GW(1 + 

(1 + s)F2G). Therefore V ~ GW(1 + (1 + s)F2G) = GWG'(1 + J) by Lemma 2.2.9. 

The result follows because G' ~ G and 1 + J ~ W. D 

THEOREM 2.2.11. The subgroup W(G) is a normal complement toG in V(F2G). 

PROOF. It remains only to prove that G n W(G) = 1. Now G n W = {1} so 

G n W ~ G' n W ~ W n G'(1 + J) = W n (1 + (1 + s)F2G) by Lemma 2.2.9. Using 

Theorem 2.2.7, G n W ~ G n (1 + J) = {1} by Lemma 2.2.8. D 



CHAPTER 3 

The Structure of Some Unit Groups of Small Order 

The purpose of this chapter is to exhibit the unit group of various group rings F2G, for 

certain groups G of order IGI ::; 31. We will do this by first finding the decomposition 

of the group ring. Our results rely heavily on the Wedderburn Artin Theorem, which 

states that every semisimple artinian ring is the direct sum of matrix rings over 

division rings. We also use the Wedderburn Principal Theorem which says that if R 

is a finite dimensional algebra over a perfect field (for example, a finite field) then R 

can be written as R = S + N where N is the Jacobson radical of R and S ~ Rj N 

[Row88]. 

3.1. FzCn when n is odd 

In this section we will look at the unit group of group rings of the form F2Cn where 

n is odd. Now ICnl is invertible in F2 since gcd {ICnl, char F2} = 1, so by Maschke's 

Theorem F2Cn is semisimple [MS02]. Then by the Wedderburn-Artin theorem F2Cn 

is a direct sum of matrix rings over division rings. Since F2Cn is abelian F2Cn is 

actually the direct sum of fields. In particular, F2Cn ~ (~2(~L EB (~(~jl EB · · · EB (:.2(~L, 
where the decomposition of xn + 1 into irreducible polynomials over F2[x] is xn + 1 = 

q1 (x)q2 (x) · · ·q8 (x)[MS02]. In their book "The Theory of Error-Correcting Codes", 

MacWilliams and Sloane list the irreducible factors of xn + 1 in F2 [x] for odd n::; 63 

[MS78]. Some of these we reproduce in Table 1. From these factorizations, we obtain 

decompositions of the group algebras. Consider, for example, the case n = 9. The 
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TABLE 1. Factorizations of 1 + xn in F2 [x] 

n 1 +xn 

3 (1+x)(1+x+x2
) 

5 ( 1 + x) ( 1 + x + x2 + x3 + x4
) 

7 ( 1 + x) ( 1 + x2 + x 3
) ( 1 + x + x3

) 

9 (1 + x)(1 + x + x2)(1 + x3 + x 6
) 

11 (1 + x)(1 + x + x2 + · · · + x10
) 

13 (1 + x)(1 + x + x2 + · · · + x12
) 

15 ( 1 + x) ( 1 + x + x2
) ( 1 + x3 + x4

) ( 1 + x + x4
) ( 1 + x + x2 + x 3 + x4

) 

17 (1 + x)(1 + x 3 + x 4 + x5 + x8)(1 + x + x2 + x4 + x 6 + x7 + x8
) 

19 (1 + x)(1 + x + x2 + · ·. + x18
) 

21 (1 + x)(1 + x + x2)(1 + x2 + x3)(1 + x + x3)(1 + x + x4 + x 5 + x6
) 

21 (1 + x + x4 + x5 + x6
) 

23 (1 + x)(1 + x2 + x 4 + x6 + x 10 + x11 )(1 + x + x 5 + x6 + x7 + x9 + x11
) 

25 (1 + x)(1 + x + x2 + x 3 + x4)(1 + x5 + x 10 + x15 + x20
) 

27 (1 + x)(1 + x + x2)(1 + x 3 + x6)(1 + x 9 + x18
) 

29 (1 + x)(1 + x + x2 + · .. + x28
) 

31 ( 1 + x) ( 1 + x3 + x5
) ( 1 + x2 + x 5

) ( 1 + x2 + x3 + x4 + x5
) 

31 ( 1 + x + x3 + x4 + x 5
) ( 1 + x + x2 + x4 + x 5

) ( 1 + x + x2 + x3 + x 5
) 

factorization (1+x)9 = (1+x)(1+x+x2)(1+x3 +x6
) into the product of irreducible 

polynomials gives F2C9 ~ F2 EB F2 [x]/(1 + x + x2 ) EB F2 [x]/(1 + x 3 + x6 ). Now the set 

{1,x} is a basis for F2 [x]/(1 + x + x2), so this algebra is the unique field GF(22 ) of 

dimension 2 over F2 and order 22 = 4. Similarly, the set {1, x, x2
, x3 , x\ x5 } is a basis 

for F2 [x]/(1 + x 3 + x6 ) which is therefore the unique field GF(26 ) of dimension 6 over 

F2 and order 26 = 64. Similarly, we obtain the following decompositions. 
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FzC3 ~ Fz EB Fz[x]/(1 + x + x2
) 

F2C5 ~ F2 EB F2[x]/(1 + x + x2 + x3 + x4
) 

F2C7 ~ Fz EB Fz[x]/(1 + x 2 + x3) EB Fz[x]/(1 + x + x3) 

FzCg ~ Fz EB Fz[x]/(1 + x + x2
) EB F2[x]/(1 + x3 + x6

) 

FzCn ~ Fz EB Fz[x]/(1 + x + x2 + · · · + x10
) 

FzC13 ~ Fz EB Fz[x]/(1 + x + x 2 + · · · + x12) 

F2C15 ~ F2 EB F2[x]/(1 + x + x2) EB F2[x]/(1 + x3 + x4
) 

EB F2[x]/(1 + x + x4
) EB F2[x]/(1 + x + x2 + x3 + x4

) 

F2C17 ~ Fz EB F2[x]j(1 + x3 + x 4 + x5 + x8)EB 

Fz[x]/(1 + x + x2 + x4 + x6 + x7 + x8
) 

F2C19 ~ F2 EB Fz[x]/(1 + x + x2 + · ·. + x18) 

FzC21 ~ F2 EB Fz[x]/(1 + x + x2) EB F2[x]/(1 + x2 + x3) 

EB F2[x]j(1 + x + x3) EB F2[x]/(1 + x + x4 + x5 + x6
) 

EB F2[x]/(1 + x + x4 + x5 + x6
) 

F2C23 ~ Fz EB Fz[x]/(1 + x2 + x4 + x6 + x 10 + x11
) 

EB F2[x]j(1 + x + x5 + x6 + x7 + x9 + x11
) 

FzC25 ~ Fz EB Fz[x]/(1 + x + x2 + x3 + x4
) 

EB F2[x]/(1 + x5 + xiO + x15 + xzo) 

F2C27 ~ Fz EB F2[x]/(1 + x + x2) EB F2[x]/(1 + x3 + x6
) 

EB F2[x]j(1 + x9 + x18) 

FzCzg ~ Fz EB Fz[x]/(1 + x + x2 + · · · + x28
) 

FzC31 ~ Fz EB Fz[x]/(1 + x3 + x5
) EB F2[x]/(1 + x2 + x5

) 

Page 31 

EB Fz[x]/(1 + x2 + x3 + x4 + x5
) EB Fz[x]/(1 + x + x3 + x4 + x5) 

EB Fz[x]/(1 + x + x2 + x4 + x5) EB F2[x](1 + x + x2 + x3 + x5
) 
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From these decompositions, we obtain the structure of the unit groups. See Table 2. 

TABLE 2. The structure of V(F2Cn), n:::; 31 odd 

n V(F2Cn) 

3 c3 

5 C1s ~ c3 x c5 

7 c7 x c1 

9 c3 x c63 ~ c3 x c1 x Cg 

11 c210-1 ~ Cn X c93 

13 c212_1 ~ C13 x C315 

15 c3 x C15 x C1s x C15 

17 C255 x C255 ~ c11 x C15 x c11 x C1s 

19 c21s_1 ~ C19 x C13797 

21 c3 x c1 x c1 x c63 x c63 ~ c3 x c1 x c1 x C21 x c3 x c21 x c3 

23 C2n-1 X C2n-1 ~ c23 X Csg X c23 X Csg 

25 C15 x c220_1 ~ C15 x C25 x c41943 

27 c3 x c63 x c21s_1 ~ c3 x c63 x c21 x c9709 

29 c228_1 ~ C29 x c9256395 

31 C31 x C31 x C31 x C31 x C31 x C31 

For example, from the decomposition of F2C9 as the direct sum of fields and using 

the fact that the multiplicative group of a finite field is cyclic, it is easy to discover 

that 

V(HCg) 

~ V(F2) x v(GF(22)) x V(GF(26)) ~ 1 x c3 x c63 ~ 1 x c3 x c1 x Cg. 
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3.2. F2Cn when n = 2q, q odd 

When Cn = (a) with n = 2q, q odd, the element 1 + aq generates a nilpotent ideal. 

The next theorem gives us the structure of F2Cn in a special case. 

THEOREM 3.2.1. Let F2Cn be a group ring, where n = 2q, q odd. Then F2Cn rY 

F2Cq + N where N is a nilpotent ideal generated by 1 + aq. 

PROOF. In F2Cn, (1 + aq) 2 = 0, so the ideal N generated by 1 + aq is nilpotent. 

It is clear that N is spanned by the set { ai ( 1 + aq) I 0 ::; j ::; q - 1}. In fact, N has 

basis { ai (1 + aq) I 0 ::; j ::; q- 1} since aq+i (1 + aq) = aq+i + ai = ai (1 + aq) for all j, 

0 ::; j < q and {1, a, ... , an-l} is linearly independent in F2Cn. Also a 2 = 0 for each 

a E N since this is true for basis elements and we are in characteristic 2. 

Now N has dimension q. Let H be the subgroup generated by a 2
, then IHI = q and 

F2H has dimension q. We want to show that F2Cn ~ F2H + N. Since F2Cn has 

dimension 2q it is sufficient to show that N n F2H = { 0}. Choose a = a0 + a 1 a2 + 
a 2a4 + · · · + aq_1a2(q-l) E N n F2H. Since a E N, a(1 + aq) = 0. But, a(1 + aq) = 

ao + a1a2 + a2a4 + · · · + O:q-la2(q-l) + aoaq + a1a2+q + a2a4+q + · · · + aq-la2(q-l)+q. 

The exponents q, 2 + q, 4 + q, ... , 2(q- 1) + q are all odd (and remain so modulo n) 

so they must be distinct from 0, 2, · · · , 2(q- 1). Hence, ai = 0 for all i and a = 0. 

Thus, F2Cn ~ F2H + N ~ F2Cq + N. D 

In the presence of a nonzero nilpotent radical, knowing the structure of F2G again 

gives us knowledge of the unit group. 

LEMMA 3.2.2. Let G be a group with F2G ~ S + N with N nilpotent. Then V(F2G) ~ 

V(S)(1 + N). 
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PROOF. Let v E V(F2G), and write v = s+n. Then there exists s1 +n1 E S+N 

such that (s + n)(s1 + nl) = 1. Now 

(s + n)(sl + n1) = ss1 + sn1 + ns1 + nn1 
EN 

Thus ss1 = 1 and as a result s, s1 are both units. Hence, s + n = s(1 + s-1n) E 

V(S)(1+N). Conversely, choose v(1+n) E V(S)(1+N). From Lemma 1.2.15, 1+n 

is a unit, so v(1 + n) E V(F2G). 0 

Now let Cn = (a), n = 2q, q odd and let N be the nilpotent ideal generated by 1 +aq. 

Using Lemma 3.2.2 together with Theorem 3.2.1, V(F2Cn) ~ V(F2Cq)(1 + N). We 

claim that the product is even direct. For this, let v E V(F2Cq) n (1 + N). Then 

v = 1 + n for some n EN. So 1 + v =nand as a result (1 + v)2 = n2 = 0. Therefore, 

1 + v E F2Cq is a nilpotent element in a direct sum of fields. So 1 + v = 1, v = 0 and 

we have our desired result. 

Since 1 + N has exponent 2, 1 + N ~ c2 X c2 X ... X c2 by the fundamental theorem 
q-times 

of abelian groups. Lemma 3.2.2, together with Table 2, leads us to Table 3, which 

shows the structure of the unit groups under consideration. 

3.3. Abelian Group Rings 

In this section we will show that any abelian group G of order less than 31 is isomor­

phic to a direct factor of V ( F2G). In the previous two sections, we proved that Cn is 

isomorphic to a direct factor in V(F2Cn) if n is an integer less than 31 and either n 

is odd or n = 2q, where q is odd. In Theorem 2.1.11 and Remark 2.1.14 we showed 

the same thing for any abelian 2-group G when F = F2, so we only need to consider 

C12 ~ C4 x C3, C2o ~ C4 x C5, C24 ~ Cs x c3, C2s ~ C4 x c1, c3 x C3, c2 x c6, 
c3 X c6, c2 X Cw, c2 X c12, c2 X c2 X c6, c5 X C5, c3 X Cg, c3 X c3 X c3 and 
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TABLE 3. The structure of V(F2Cn), n = 2q ::; 30, q odd 

n V(FzCn) 

6 c3 X Cz X Cz X Cz 

10 c3 X c5 X Cz X ... X Cz 
'-v-' 

5 copies 

14 c7 X c7 X Cz X ... X Cz .____...... 
7 copies 

18 c3 x c1 x Cg x c2 x ... x c2 .._,____., 
9 copies 

22 Cn X c93 X Cz X ... X Cz 
~ 

11 copies 

26 C13 x C315 x Cz x · · · x C2 
~ 

13 copies 

30 C3 X C15 X C15 X C15 X Cz X · · · X C2 .____...... 
15 copies 

c14 X C2. To do this we will use the following properties of tensor products which 

can be found, for instance, in [GJM96]. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(K1 E9 Kz) 0F F ~ (K1 0F F) E9 (Kz 0F F) 

E @p F[x]/(f) ~ E[x]!(f) where f E F[x] 

F[G x H] = FG 0F F H 

Here we understand F ~ E to be a field extension, K 1, K 2 to be modules over F, 

and G and H to be groups. 
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EXAMPLE 3.3.1. Now suppose we want the structure of the unit group of F2G, G ~ 

c3 X c3. We have 

F2[C3 x C3] ~ F2C3 0p2 F2C3 

~ (Fz EB GF(22)) 0p2 (F2 EB GF(22)) 

~ (F2 0p2 F2) EB (F2 0p2 GF(22)) EB (GF(22) 0p2 Fz) 

EB (GF(22) 0p2 GF(22)) 

~ F2 EB GF(22) EB GF(22) 

EB (GF(22) 0p2 F2 [x]/(1 + x + x2)) 

~ F2 EB GF(22) EB GF(22) EB GF(22)[x]/(1 + x + x2) 

~ F2 EB GF(22) EB GF(22) EB GF(22
) EB GF(22) 

by (3.4) 

by (3.2) 

by (3.1) 

by (3.3) 

because 1 + x + x2 is the product of two linear polynomials over G F(22
). So 

Clearly, the original group G is isomorphic to a direct factor of V(F2G). 

We will now generalize this example. 

THEOREM 3.3.2. Let G and H be groups that are direct factors in the unit groups 

of their group rings over F2 and assume in each case that the decomposition of these 

group rings as a sum of fields includes at least one copy of F2 . Then G x H is a direct 

factor ofV(F2[G x H]). 
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PROOF. By assumption, HG ~ F2 EB 2:: E; with theE; fields and F2H ~ HEB 2:: K; 

with the K; fields. Then, 

So, 

F2[G x H] ~ F2G @p2 F2H 

~ (F2 EB L E;) 0p2 (F2 EB L K;) 

~ (F2 0F2 F2) EB (F2 ®F2 L K;) EB (L E; ®F2 F2) EB (L E; ®F2 L K;) 

~ F2 EB L K; EB L E; EB (L E; @p2 KJ) by (3.1). 

V(F2[G x H)]~ 1 x V(L E;) x V(L K;) x V((L E; @p2 Kj)) 

~ V(F2G) X V(F2H) X V((L E; ®F2 Kj)). 

By assumption both G and Hare direct factors in their respective unit groups. As a 

result G x His a direct factor in V(F2[G x H]). 0 

From Theorem 3.3.2, it follows that c5 X C5, c3 X Cg, c3 X c3 X c3 ~ c3 X (C3 X C3) 

are all direct factors in the respective unit groups. The next theorem allows us to 

extend this list. 

THEOREM 3.3.3. Let G be any group that is isomorphic to a direct factor of V(F2G) 

and let n be a power of 2. Then Cn x G is isomorphic to a direct factor of V(F2[Cn x 

G]). 

PROOF. We have F2Cn ~ F2 + N with N a nilpotent ideal. Note that an= 0 for 

all a E Nand also there exists an a E N with an-l =/- 0. So F2[Cn X G] ~ (F2Cn)G ~ 
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(F2 + N)G ~ F2G + NG. It follows that 1 + NG is an abelian group of exponent 

n, hence contains at least one copy of Cn in its representation as the direct product 

of cyclic groups. By assumption G is isomorphic to a direct factor in V(F2G). So 

Cn x G is isomorphic to a direct factor of V(F2 [Cn x G]). 0 

COROLLARY 3.3.4. The groups cl2 ~ c4 X C3, C2o ~ c4 X C5, c28 ~ c4 X c7, 

c2 x c6, c2 x c10, c2 x c12, c2 x c14, c2 x (C2 x c6), c6 x c3 ~ c2 x (C3 x c3) 

and c24 ~ Cg X c3 are all isomorphic to direct factors of their respective unit groups 

over F2. 

We have now shown that every abelian group G of order less than 31 is a direct factor 

in V(F2G). 

3.4. F2Dn where n is odd 

In this section, we examine group rings of the form F2Dn where n is odd. 

THEOREM 3.4.1. Let F2 be the field of two elements and Dn = (a, b I an = 1, b2 = 

1, ba = a-1b), the dihedral group of order 2n, n odd. Let e = 1 +a+···+ an-1
• Then 

PROOF. Let S = (a) be the subgroup generated by a. Since IDn/SI = 2, Sis 

normal in Dn. Since it is the sum of the elements in a normal subgroup, e is central. 

Notice that aie = e for all ai E S, so e2 = ne = e. Thus e is a central idempotent 

in F2Dn giving F2Dn = F2Dne EB F2Dn(1 + e). Since aie = e for all i, we have 

aibe = aieb = eb = be for all i making clear that the set { e, be} is a basis of F2Dne. 

For any a E F2Dne, we have a = a0e + a 1be = (a0 + a 1)e + a 1(1 + b)e. Thus 

F2Dne ~ F2e + F2 (1 + b)e giving the result. 0 
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Let N = F2(1+b)e. Since (1+b) 2 = 0, this ideal is nilpotent. We claim it is maximal 

and hence the radical of F2Dn. In showing this, we make use of the map a f-> a*, 

where for a = L: a 9g in a group ring, a* = L: a 9 g- 1
• It is easy to see that a f-> a* 

is an involution, that is an antiautomorphism of order 2. 

LEMMA 3.4.2. Let F2 be the field of two elements and Dn the dihedral group of order 

2n, n odd, presented as in Theorem 3.4.1. Then F2Dn/N is semisimple. 

PROOF. Let J be an ideal in F2Dn such that J2 s; N and let x E J. We can 

write x = a+(3b where a,(3 E F2 (a). It is easy to see that b(3 = (3*b and ba = a*b, so 

x2 = a 2+(3f3*+(f3a*+af3)b is an element of N = F2 (1+b)e. Thus a 2+(3(3* = k1 E F2e. 

Now J is an ideal, so ax= aa + a(3b E J and 

So a2a 2 + (3(3* = k2 E F2e. Hence, a 2 + a2a 2 = k1 + k2 = 0 or e. Now a 2 + a2a 2 = 
a 2 (1 + a2

) has even augmentation while e = 1 +a+ ···+an-I has augmentation n 

which is odd. Thus a 2 + a2a 2 = 0 = (a(1 + a)) 2 = 0 in F2Cn, which is a direct sum 

of fields. So a(1 +a) = 0 giving a = aa. Writing a = L:~=l aiai, ai E F2, we have 

aa = L:~=l aiaia = L:~=l aiai+1
, so ak = ak+l for every k, 1 ::::; k ::::; n. Therefore, 

a= k3e, where k3 E F2 . Now xb = (3 +abE J and an argument similar to the above 

shows (3 = k4e, with k4 E F2 • Thus x = k3e + k4eb. If k3 =!= k4 then either x = e or 

x = eb, a contradiction in either case because x E J, a nilpotent ideal. Thus k3 = k4 

and x = k3(1 + b)e E N. All this shows that F2Dn/N has no nontrivial nilpotent 

ideals, so N is the radical of F2Dn and F2Dn/ N is semisimple, as claimed. 0 

LEMMA 3.4.3. Let F2 , Dn and e be as above. Then {ai(1+e), aib(1+e) I 0::::; i::::; n-2} 

is a basis for F2Dn(1 +e). 
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PROOF. As shown in the proof of Lemma 3.4.1 F2Dne has dimension 2. Thus 

F2Dn(1 +e) has dimension 2n- 2. Clearly, {1 + e, a(1 +e), a2(1 +e), ... , an-1(1 + 

e), b(1 +e), ab(1 +e), ... , an-1b(1 +e)} spans F2Dn(1 +e). Notice that (1 +e) + 

a(1 +e)+···+ an- 1(1 +e) = (1 +a+···+ an-1 )(1 +e) = e(1 +e) = 0. Thus 

an-1(1+e) = (1+e)+a(1+e)+ · ·+an-2(1+e). By a similar argument, an-1b(1+e) = 

b(1 +e) +ab(1 +e)+··· +an-2b(1 +e), so the set {1- e, a(1 +e), a2(1 +e), ... , an-2(1 + 

e), b(1 + e), ab(1 +e), ... , an-2b(1 +e)} spans F2Dn(1 +e) and it has dimension 

2n- 2. 0 

Now we will describe the conjugacy classes in Dn, for odd n. Elements in Dn are 

either of the form ai or aib where 0 ::; i ::; n - 1. Since aJ aia-J = ai a-J ai = ai and 

(aJb)ai(aJb)- 1 = aJbaiba-J = aJa-ia-J = a-i, the conjugacy class of ai is { ai, a-i}. 

Since aJb(aJ)-1 = aJaJb = a2Jb and (aJb)b(aJb)-1 = aJbbba-J = aJba-J = a2Jb and n 

is odd, the conjugacy class of b is {b, ab, a2b, ... , an-1b}. 

Recall that any class sum, that is, the sum of all the elements in a conjugacy class, 

is central in F2G. The class sums actually form a basis for the centre of F2G. So, for 

example, 'Y+'Y* is central for any 'Y E F2 (a). We use Z(A) to denote the centre of an 

algebra A. 

PROOF. Choose a = a1 + a2b and (3 = /31 + f32b E F2Dn where a1, a 2, /31,/32 E 

F2(a). Then ba = a*b and b/3 = f3*b, so af3 = a1f31 + a1f32b + a2f3;b + a2f3~ and 

f3a = f31a1 + f31a2b + f32aib + f32a2. 

Thus, 

af3 + (3a = (a1/32 + a2f3~ + f31a2 + f32ar)b + (32a; + a2f3; 

= (a1(32 + a2f3~ + f31a2 + (32ar}b + (32a; + (f32a;)*. 
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(a{J + {3a)2 
= ((a1fJ2 + a2fJ; + fJ1a2 + fJ2anb + ()2 

= (
2 + ((a1fJ2 + a2{3~ + fJ1a2 + fJ2a~)b) 2 . 
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Thus, to show that this is in the centre, it suffices to show that for any "( E F2 (a), 

('Yb) 2 = Tt* is central. To show this it is sufficient to show that TY* commutes with 

both a and b. Clearly, TY* commutes with a. But also 'Y'Y* b = "(b"( = b"f*'Y = b"f'Y*. 

Thus, 'Y'Y* is central. D 

Now note that every 2 x 2 matrix with trace 0 squares to a multiple of the identity 

matrix and XY - Y X has trace zero for any square matrices X and Y. Thus, if 

X, Y are 2 x 2 matrices then (XY- Y X) 2 is a multiple of the identity and hence 

central. Conversely, if (XY- YX)2 is central in Mr(K) for all X, Y E Mr(K) (where 

char(K) = 2) then r ::; 2. To see why, it's sufficient to show (XY- Y X)2 is not 

necessarily central when r = 3. For this, take X = [ H ~] and y = [ n ~] 0 Then 
100 001 

(XY-YX)2 = [6~8] =f;ki. 
0 1 0 

COROLLARY 3.4.5. F2Dn/ N is the direct sum of fields and 2 x 2 matrix rings over 

fields. 

PROOF. By Corollary 3.4.2 F2Dn/N is semisimple. By the Wedderburn-Artin 

theorem, F2Dn/ N is the direct sum of matrices over division rings which are neces­

sarily fields because they are finite. By Lemma 3.4.4 (a{J + {3a) 2 is central in F2Dn 

for all a, {3 E F2Dn. By the above, this means F2Dn/N is the direct sum of r x r 

matrix rings, where r ::; 2. D 

Consider the group ring F2D5. From Theorem 3.4.1, we know F2D5 = F2D5e E9 

F 2D 5 (1 +e) = (F2e + F 2 (1 + b)e) E9 F 2D 5 (1 +e) where e = 1 +a+ a2 + a3 + a4 . From 
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Corollary 3.4.2 F2D5 (1 +e) is semisimple. The conjugacy classes of D 5 are 1, {a, a4
}, 

{ a2, a3 }, {b, ab, a2b, a3b, a4b }. So the class sums 1, a+ a4
, a2 + a3

, (1 +a+ a2 + a3 + 

a4 )b =be form a basis for the centre of F2D5 which has, therefore, dimension 4. Now 

Z(F2Ds) = Z(Fze+F2(1+b)e)E9Z(FzD5(1+e)) = (F2e+Fz(1+b)e)E9Z(F2D5(1+e)). 

Thus Z(F2D5(1+e)) has dimension 2. The set {!0 = 1+e,JI = (a2+a3)(1 +e)} is a 

basis for the centre of F2 D 5 ( 1 + e) since the centre is spanned by 1 + e, (a+ a4 ) ( 1 + e), 

(a2 + a3 )(1 +e) and be(1 +e) = 0 and (a+ a4 )(1 +e) = (1 + a2 + a3)(1 +e). Let 

f = aofo + a1h· Then P = a6Jg + aifl = aofo + a1Uo + !1). Therefore f is an 

idempotent if and only if a0 = a0 + a 1. So the only central idempotents are 1 + e 

and 0, giving that F2D5 (1 +e) is simple. By Corollary 3.4.5 (and since F2Ds(1 +e) 

is not commutative) F2Ds(1 +e) ~ Mz(K), K a field. Since dim F2Ds(1 +e) = 8, 

K = GF(22). So we get F2D5 ~ (F2e + F2 (1 + b)e) E9 M2[GF(22)] and hence 

V(FzD5 ) ~ V(Fz + Fz(1 + b)e) x G£(2, 4) ~ Cz x G£(2,4). 

Note that jG£(2, 4)1 = (42-1)(42 -4) = 180, so jV(F2D5 )1 = 360. Similar calculations 

give the unit groups for F2Dn, n :S 15 odd, shown below. 

Dn V(F2Dn) 

D3 Cz X s3 

Ds C2 x G£(2, 4) 

D1 Cz x G£(2, 8) 

Dg C2 x G£(2, 2) x G£(2, 8) 

Du c2 x G£(2, 32) 

D13 c2 x G£(2, 64) 

D15 C2 x G£(2, 4) x G£(2, 128) 

We would still like to determine whether any of D5 , D7, Dg,Dn,DI3,Dl5 have a normal 

complement in their unit groups. 
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THEOREM 3.4.6. If F2Dn ~ (F2 EB H(1 + b)e) EB M2[K], where K = GF(q), q > 3, 

then Dn does not have a normal complement in V(F2Dn). 

PROOF. The given information says that IDnl = 2 + 4q and V(F2Dn) ~ c2 X 

G£(2, q). Assume that V(F2Dn) ~ N X1 Dno Let S = {1} x SL(2, q) where SL(2, q) 

denotes the (normal) subgroup of GL(2, q) consisting of matrices with determinant 

1. Since S n N :Sl SandS is simple for q > 3 [Row88, p. 167], S n N = {1} or S. 

If S n N = S, then S ~ N. Then 

C X GL(2 ) C2xGL(2,q) 

D CY. 2 ,q CY. s 
n- - N 

N s 
c X K* CY. 2 ---,N.,-----

8 

where K* = K"" {0}. Since C2 x K* is an abelian group, 02 f:l* ~ Dn is abelian, 
s 

a contradiction. Therefore S n N = {1} and so INS! = /;A~11 = INIISI > IN XI Dnl 

because lSI = q(q2 - 1) > 4q + 2 = IDnl for q > 3. This contradiction gives the 

result. D 

The theorem shows that none of G = D5 , D7,D11 , or D13 has a normal complement 

in its unit group. In fact, neither does D9 or D 15 . In the case of D9 , for example, we 

have F2D9 ~ (F2 + N) EB M2(F2) EB M2[GF(23)] so V(F2D9) ~ c2 X s3 X GL(2, 8). A 

proof similar to the one given for Theorem 3.4.6 can be used to give the result. 

3.5. F2Dn where n is even 

In this section we will look at the unit group of group rings of the form F2 Dn where n 

is even. Consider first the case that n = 2k with k odd. Recall from Section 3.4 that 

the conjugacy class of ak is { ak, a-k} = { ak}. Thus 1 +ak is a central element in F2Dn 

which generates a nilpotent ideal N spanned by (1 + ak), a(1 + ak), a 2 (1 + ak), ... , 

ak-1 (1 + ak), b(1 + ak), ab(1 + ak), a2b(1 + ak), ... , ak-1b(1 + ak). These elements are 

linearly independent so they constitute a basis for N. 
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THEOREM 3.5.1. Let Dn be the dihedral group of order 2n, where n = 2k and k is 

odd. Let N be the nilpotent ideal of F2Dn generated by 1 + ak. Then, 

(Note that the groups V(F2Dk) were determined in Section 3.4.) 

PROOF. Now N has dimension 2k =nand F2Dn has dimension 2n, so F2Dn/N 

has dimension 2n - n = n. Writing x = x + N, 

{I, a, ... , ak-l, b, ab, . .. ak-lb} ~ Dk 

spans F2Dn/N and contains 2k = n elements, so it's a basis for F2Dn/N. As a 

result F2Dn/N ~ F2Dk and F2Dn ~ F2Dk + N, so, by Lemma 3.2.2, V(F2Dn) ~ 

V(F2Dk)(1 + N). D 

In this chapter, we have been concerned with groups of order n ::::; 31 and, to this 

point, we have found the structure of V(F2Dn) with n odd and n = 2k, k odd. Since 

D4 and D16 have unique commutators, the structure of V(F2D4) and V(F2D15) was 

considered in Chapter 2. This leaves Ds and D 12 for investigation. 

EXAMPLE 3.5.2. In F2D 8 , the nilpotent ideal N generated by 1 + a2 is spanned 

by the set {1 + a2, a(1 + a2), •.• , a5(1 + a2), b(1 + a2), ab(1 + a2), ... , a5b(1 + a2)} 

and it is straightforward to show that this is linearly independent. The quotient 

F2Ds/N has basis {I,a,b,ab} ~ c2 X c2. Therefore, F2D8 ~ N + F2(C2 X Cz) and 

V(F2Ds) ~ (1 + N)(V(F2(Cz X Cz)) ~ (1 + N)(C2 X c2 X C2)· 

EXAMPLE 3.5.3. In F2D 12 , the nilpotent ideal N generated by 1 + a3 has basis 
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so F2D12/N has basis {I,a,a2 ,b,ab,a2b} ~ 83 . Hence, F2D12 ~ N + F283 and 

V(F2D12) ~ (1 + N)(C2 X 83)· 





CHAPTER 4 

Summary 

In this thesis we examined the unit group V(F2G) for many different groups G of 

order IGI ~ 31. The intention was to determine if G had a normal complement in 

the unit group V(F2G) or not. To do this, we found a semisimple algebra S and a 

nilpotent ideal N with F2G = S EEl N, as in the Wedderburn Principal Theorem. We 

show the structures with G cyclic or dihedral below. Here Ni is a nilpotent ideal of 

dimension i. 

F2C5 ~ F2 EEl F2[x]/(1 + x + x2 + x3 + x 4
) 

F2C6 ~ F2C3 + N3 

F2D3 ~ F2 EEl M2[F2] + N1 

F2C1 ~ F2 EEl F2[x]j(l + x2 + x3) EEl F2[x]/(1 + x + x3) 
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FzC10 ~ FzC5 + N5 

FzD5 ~ Fz EB Mz[GF(22
)] + N1 

FzCn ~ Fz EB Fz[x]/(1 + x + x2 + · · · + x10
) 

FzC1z ~ FzC3 + Ng 

FzD6 ~ Fz EEl Mz[Fz] + N7 

F2C13 ~ Fz EEl Fz[x]/(1 + x + x2 + · · · + x12) 

FzC14 ~ FzC1 + N7 

FzD1 ~ Fz EEl Mz[GF(23)] + N1 

FzC15 ~ Fz EEl Fz[x]/(1 + x + x2
) EEl Fz[x]/(1 + x3 + x4

) 

EEl Fz[x]/(1 + x + x4
) EEl Fz[x]/(1 + x + x2 + x3 + x4

) 

FzDs ~ Fz + N15, N15 = .6. 

FzC17 ~ Fz EB Fz[x]/(1 + x3 + x4 + x5 + x8)EB 

Fz[x]/(1 + x + x2 + x 4 + x6 + x7 + x8) 

FzC1s ~ FzCg + Ng 

FzDg ~ Fz EEl Mz[GF(23)] + N1 

F2C19 ~ Fz EEl Fz[x]/(1 + x + x2 + · · · + x18) 

FzCzo ~ FzC5 + N15 

FzD10 ~ Fz EEl Mz[GF(22)] + Nn 
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F2C21 ~ Fz EEl Fz[x]/(1 + x + x2) EEl F2[x]/(1 + x2 + x3) EB F2[x]/(1 + x + x3
) 

EB Fz[x]/(1 + x + x4 + x 5 + x6
) EB F2[x]/(1 + x + x4 + x5 + x6

) 

FzCzz ~ FzCn + Nn 

FzDn ~ Fz EEl Mz[GF(25)] + N1 
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FzC23 ~ Fz EB Fz[x]/(1 + x2 + x4 + x6 + x10 + x11
) 

EB Fz[x]/(1 + x + x5 + x6 + x7 + x 9 + x11
) 

II 

FzD12 ~ Fz EB M2[Fz] + N19 

F2C25 ~ Fz EB Fz[x]/(1 + x + x2 + x3 + x4) 

EB Fz[x]/(1 + x5 + x10 + x15 + x20) 

FzD13 ~ Fz EB Mz[Fz] EB Mz[GF(26
)] + N1 

F2C27 ~ Fz EB Fz[x]/(1 + x + x2) EB F2[x]/(1 + x3 + x6
) 

EB Fz[x]/(1 + x 9 + x18) 

FzD14 ~ F2 EB M2[GF(23)] + N15 

FzCzg ~ Fz EB Fz[x]/(1 + x + x2 + ... + x28 ) 

FzD15 ~ Fz EB Mz[GF(22)] EB Mz[GF(27)] + N1 

F2C31 ~ F2 EB Fz[x]/(1 + x3 + x5) EB F2[x]/(1 + x2 + x5
) 
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EB Fz[x]/(1 + x2 + x3 + x4 + x5
) EB F2[x]/(1 + x + x3 + x4 + x5

) 

EB Fz[x]/(1 + x + x2 + x4 + x5
) EB F2[x](1 + x + x2 + x3 + x5) 

We were able to prove that every abelian group G of order less than 31 is isomorphic 

to a direct factor of V(P2G). This is not the case over the field GP(3). For example, 
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consider the group ring KC4 , K = GF(3). The order of C4 is invertible in K so by 

Maschke's Theorem KC3 is semisimple and commutative [MS02] hence the direct 

sum of fields. In fact, KC4 ~ K/(1 + x4
) ~ K/2(1 + x) + K/(2 + x) + Kj(x2 + 1), 

so V(KC3) ~ c2 X c2 X Cs. Clearly c4 is not a direct factor. 

We showed that D3 = 83 has a normal complement in its unit group but that Dn 

does not in the cases n = 5, 7, 9, 11, 13. The two nonabelian groups of order 8, D4 and 

the quaternions, are both 2-groups with order two commutator subgroups, so they 

have normal complements as we showed in Section 2.2. All this implies that D5 is 

the smallest group that is not a direct factor of its unit group. 

We had hoped to extend our results to all groups of "small order" and even to certain 

classes of loops, but this is work for another day. 
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