














Abstract

In spatial data analysis, linear, count or binary responses are collected from a large
sequence of (spatial) locations. This type of responses from the (spatial) locations
may be influenced by certain fixed covariates associated to the location itself as well as
certain invisible random effects from the members of the neighboring locations. Also
the responses may be subject to certain model errors. In familial/clustered setup,
responses are collected from the members of a large nuinber of independent famnilics,
where the pairwise responses within the family are correlated. In a spatial set up, the
pairwise responses within a family of locations are correlated similar to the familial
setup, but unlike in the familial setup, the responses from neighboring families will
also be correlated. In this thesis, unlike in the existing studies, we develop a moving
or band correlation structure that reflects the correlations for within and between
families. This is done first for linear (continuous) data and then for binary responses.

As far as the inference are concerned, we discuss method of moments (MM) and




maximun likelihood (ML) approach for the estimation of parameters in linear mixed

model setup. Because the exact likelihood estimation approach for the spatial binary
models is complicated, we demonstrate how to use the gen lized quasi-likelihood

(GQL) approach for such models.
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Chapter 1

Introduction

1.1 Motivation of the Problem |

Over the last two decades, analysis of spatial data has become an emerging area of re-
search in many different fields, such as ecology, environmental scieince, epidemiology,
geography, sociology or cconomics and forestry. The spatial data are realizations of
random variables collected from a sequence of related geographical locations, where
the responses collected from adjacent locations naturally become correlated. These
correlations are referred to as spatial correlations. Note that a response from a given
location is usually influenced by certain fixed covariates apart from some invisible,

say random effects associated to this and other adjacent loca ns. It is of interest to
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find the effects of the covariates after taking the spatial correlations of the responses
into account. For various modeling for correlations and analysis of spatial data, we,

for example, refer to Cressie (1993), and Gaetan and Guyon (2010).

Note that for a continuous spatial responses, the spatial corr tions have been mod-
cled so far either by using certain dynamic relationship among the errors in a linear
model, such as time series type ARMA error process (Basu and Reinsel 1994, eqs. (1)-
(2), p. 89), or by using a mixed model approach where responses are assumed to be
influenced by certain correlated random effects referred to as Spatial Random Process
as well as suitable independent errors ({ang, Cressie and Shi (2010), egs.(7)-(19), p.
274 - 275, and Jones and Vecchia (1993), eq. (11), p. 949). For more on mixed model
type spatial correlation processes, see also Cressie (1993, Chapter 3) and Gaetan and
Guyon (2010, Section 1.8). Note, however, that there is no unique way to model the
spatial correlations of the responses collected from neighboring locations. Because of
the fact that any two responses collected from locations which are far apart are likely
to be uncorrelated, using ARMA type spatial errors those considered by Basu and
Reinsel (1994), for example, does not appear to be appropriate, as ARMA process
based correlation may not die even when lags hetween the responses are moderately

large or large. Remark that an MA type spatial process could be appropriate to
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model such correlations where correlations may be completely absent for a large lag.

Let there be S locations for a spatial problem. For s = 1,2,---,5, let y, be
the response on a continuous scale collected from the s location. Also, let z, =
(21, ,Zs) be the p dimensional fixed covariate vector corresponding to y, and
B = (81, ,B,) be the effect of z; on y,. Further suppose that apart from x, ys be
also influenced by an unobservable random effect ~,. Jones and Vecchia (1993, eq.
(11), p. 949) have used a lincar mixed model to examine the effects of x, on y,. Their

model is given by

ys = T.0+v+es, for s=1,---,5, (1.1.1)
where, €, for s =1, , S are model errors and assumed to be independent. That is
e 4 (0,02). (1.1.2)

As far as the random effects are concerned, Jones and Vecchia (1993) assumed that

v, s are correlated with covariance matrix for v = (n, - ,7s)" as
cov(y) = 030, (1.1.3)
C being the S x S correlation matrix denoted as

C=(c): SxS, (1.1.4)
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with c¢g. = 1 for s = k. In matrix notation this model (1.1.1) can be written as
y = XB+y+e, (1.1.5)

where Cov(y) = 02C, Cov(e) = 02ls and the elements of y and ¢ are independent.

Next by writing

U?YV = a'fy (C+0ils), (1.1.6)

with o2 = Jones and Vecchia (1993) have estimated the parameters using the

2
=,
Ty
maximum likelihood approach. More specifically for known structure for V', they

maxinmize the log likelihood function, that is, minimize

1
~2log L = SIn(2r0?) +1n | V| +;(y - X3V Hy - X09), (1.1.7)

:
for the estimation of regression parameter 3 and the variance of the random effect 03.
When V is known, that is C' and o2 are known, the maximum likelihood estimates of

these parameters (3 and 03) are given by

g o= (XVIX)THXV )

Q>

= —(y-XB)V ' (y-XP). (1.1.8)

=2 N
n
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Note that, to model the covariance structure V, Jones and Vecchia (1993) have used
a class of stochastic lincar partial differential equations. More specifically, the pair-

th

wise covariances between two responses corresponding to, say, s and k" locations

separated by a distance r, hias been modeled as

Vg = g(af,ag, ¢*, 0%, 1) (1.1.9)

where, ¢ is a known function in terms of a modified Bessel function of the second
kind order 1 ( see eqn. (6) in Jones and Vecchia (1993) , p. 948) and two additional
paramcters ¢* and §* arising from the partial differential equation. This approach
appears to have several pitfalls. First it seems appropriate to use the covariance form
(1.1.9) to model the C matrix in (1.1.6) instead of the V matrix. Furthermore, this
form in (1.1.9) is'equivalent to time domain based ARMA(p, q) process which may or
may not yield uncorrelated random effects even if lag is large, whereas it is practical
to assume that the C matrix contains correlations those die out completely where two
responses are taken from a moderately large distant locations. Some authors such as
Cressie (1991, p. 85-86) have used exponential or say Gaussian covariance function
which is dependent on the distance (r) between two objects yielding zero correlation
when the distance is large. In Jones and Vecchia’s case, the correlation function may
die even slower than that of the exponential correlation function considered by Cressie

(1991). We however feel that the correlations obtained from two reasonably far apart
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distance responses should be zero, which require new modeling.

Basu and Reinsel (1994) consider regression nodels for spatial data that are observed
on a two dimensional regular grid along with other explanatory variables, and the
errors. Specifically they examined regression models with spatially correlated errors,
have the marginal spatial response at site s ( indexed by say. coordinates ¢ and j) is

modeled as:

y, = a'8+e€, for s=1,---,85. (1.1.10)

Note however that €,’s, for s = 1,--- , S are correlated and follow a spatial unilateral
first order ARMA model. By using a spatial cluster form with Y = (y1,--- ,ys)/,
€= (e, - ,es) and X = (x, -+ ,xg), the regression model (1.1.10) can be written

as

Y = X0+, (1.1.11)

where, the elements of vector € is assumed to satisfy the spatial unilateral first order

ARMA(3,3) model given by

€5 = (€1 + Qa€_g + (3€,_3

+é1193_1 + 62195_2 + (;3’(95_3 + ag, (1112)
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vector of random effects with zero mean vector and g X g covariance matrix. Note
that p, = 2.3 is usually referred to as a trend function and v, = wyy is a function
of unobservable random effects. Also in (1.1.13), & S (0.0¢) and €, Y (0,0?) are
referred to as the finite scale random component and measurement (or model ) error,
respectively. As opposed to the spatial temporal case, these £, and €, are not iden-

tifiable in the spatial-only model (Cressie and Johannesson (2008)). Thus, in spatial

setup, this (1.1.13) model is simplified as
y, = T.0+wy+e, for s=1,---,05, (1.1.14)

where, €} w (0,02). Remark that Kang et. al. (2010) have chosen the ¢ dimensional
random effect vector ~ for all locations s = 1,---, S which may be appropriate only
in some spacial cases such as when spatial locations are designed in a planned exper-
iment with equal distances among locations following a linear pattern say. Also it is
not clear how the value of ¢ is chosen. Furthermore, it is also not clear how the w
vector is chosen in practice. As opposed to these choices for ¢ members of random
effects at a location, it seems to be more practical to have a scheme where ¢, random
effects can be used for the s location which will allow a more general variable design
involving unequal member of random effects over the locations. Similarly, a suitable

scheme for the choice of wy is also needed.
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Note that in some situations spatial data are collected in the form of binary responses.
For example, we refer to Rathbun and Cressie (1994, Scction 5.2) for the modeling
of tree mortality data in spatial-temporal setup. Here survival of a tree is considered
as a binary response and the responses would exhibit two way correlations. However,
when responses are considered in a spatial setup, only the binary response for a tree
is likely to be correlated with other neighboring binary responses, but would not be
correlated with responses from far distant locations. These correlations are in general
caused by some common invisible random factors shared by pairwise trces. However
modeling such correlations is not so casy. For common covariates based correlation

modeling we refer to the model studied by Rathbun and Cressie (1994, eqns. (16) -

(17)).

1.2 Objective of the Thesis

In spatial setup, where responses, whether linear, count or binary, are collected from
different locations under a selected region, these responses are in general influenced by
covariates associated to the location as well as certain common randomn factors shared
by neighboring locations. Unlike in the temporal setup where responses are collected

repeatedly from a given location, the modeling of correlations for spatial responses is
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not so straightforward. This is because spatial responses from neighboring locations
are likely to be corrclated but when moved to a far distant, the pairwise correlations
are likely to be zero. It is naturally difficult to maintain this moving nature for
correlations. Most of the existing studies explained in the last section, however, use
temporal type relationships among spatial responses and correlations are modeled
accordingly. There also has been the use of random effects to study their influence
on the spatial responses (Kang et. al., (2010)) but modeling for spatial correlations

among necighboring responses is not adequately discussed.

1. In Chapter 2, we propose a linear mixed model where weighted average of
random effects from the member locations of a family is used to model the
ncighbor effects on a spatial response. When these random effects are indepen-
dent, the model reduces to the well known linear mixed model in generalized
linear model (GLM) setup. However, when random effects are correlated (usu-
ally equi-correlated) proposed model yields a familial correlation pattern for the
correlations between members of two adjacent families. For simplicity, a special

spatial linear pattern is considered to illustrate the spatial correlations.

2. Tn Chapter 3, we demonstrate how to apply the well-known method of moments

(MM) and maximum likelihood (ML) approach to obtain consistent and efficient
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where this response may be influenced by a multi dimensional fixed covariate vector
t, = (51,7 - sp) containing the epidemiological and envirommental information
from the st" location, as well as by some random effects belonging to a cluster of size
n,. We denote this cluster of random effects by a vector s = (Y1, + s Yoj = s T, ) -
For the purpose of construction of 7, we first define the st eluster, that is, the neigh-
borhood of s*" location as follows.

Suppose that d*, denote the Euclidian distance between the centor.s; of the s spatial
location and A" (any other) location. Also suppose that d* denotes a distance such
that it is not necessary to seek for spatial correlations between the random effects of

two locations apart from each other by a distance more than d*. We now define an

indicator variable d; such that

1 if df <d* for k=1---,8
g = (2.1.1)
0 otherwise,

and the neighborhood of the s'

location, that is, the s'* cluster is formed with all
locations satisfying (2.1.1). Let f, be this cluster or family of locationus. For the st

cluster with size ny, (say), it follows from (2.1.1) that

S
> b= ms. (2.1.2)
k=1
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Suppose that the individual random effects of all S locations are denoted by 47, - -+, 7§

Now for s = 1,---, S5 we assume that
vi ~(0,03) (2.1.3a)
and

corr(yr, vs) = Opstys. (2.1.3b)

Also suppose that v denotes the random effect of the Eth location that belongs to

5P cluster or family satisfying (2.1.1). That is, for any k& (= 1,---,5)
Yok =5, for k€ fs. (2.1.4)

Note that when k = s, v, = 7 denotes the random effect of the s location around
s

which the s family is constructed. Next because 255’“’ = n, by (2.1.1), there are
k=1

only n, locations with random effects satisfying (2.1.4). We relabel or rearrange the

n, random effects vy of the s family with k € f for

Ys = (;?sl-,"' a:\y,sjs"' 7:7'6‘”3)’3 (215)

where, without any loss of generality, we use ¥, in (2.1.5) to represent 7, from

(2.1.4), that is,

:)731 = Yss = '7:, (216)
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is the random effect of the center location. The remaining n, — 1 random effects in
(2.1.5) will be identified from (2.1.4) in a convenient way depending on the problem

of interest.

Recall that in addition to z, the response y, at s** location/cluster is also influ-
enced by the invisible random effects of s** and other n, — 1 neighboring locations.
These random effects are the components of 7, as defined in (2.1.5). Note that these
random cffects ¥, for js = 1,--- ,n, may be independent or correlated depending on
the correlation structure of 47 and the st family structure containing ~; for k € f,.
Furthermore, whether the random effects are independent or correlated, they will
change the variance of the response y,. They also will cause correlation between
and yy for s # k, s,k = 1,---, S, when the s'" and k" locations are influenced by
some common random effects. If the responses are continuous, one may then use a
suitable linear mixed model for the response ¥, at the s*® location. We propose this

mixed model as

1 ~
Yy, = o f+—=1, Y +e€, for s=1,---,8 (2.1.7)

NG

where, €, denotes the model error at the s** location. We assume that € ud (0,02). In
(2.1.7), B is the effect of fixed covariates z, on y,, and 1, = (1,---,1) is the ny x 1

unit vector. Note that the proposed model (2.1.7) is similar to (1.1.14) considered by
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correlated when their distance d5 ; for j, € f. but j; ¢ f. and js € fs but j, € f.
For convenicnce of construction of the correlation structure between y, and y,, we

now define

th

e n,. = the nunber of members conmon to both the families (clusters) at 7 and

s'™ locations,
e 71, = number of members only from the 7" family such that
TNy = Ny + Ty
It also holds for the s' family, that is,

Ng = Nyps + Tlg

e 77,, =number of uncommon pairs of locations under f, and f,, but within the
specified distance causing correlations between random effects of these uncom-

mon locations.

2.2.1 Computation of n,, and n,;: An illustration

For clear visual understanding we display above common and uncommon pairs in the

following figures.
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=
=
S

Figurc 2.1: Spatial familics with n,s common locations and 7, uncommon pairs

Figure 2.2: Spatial families with single common location
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Figure 2.3: Spatial families with no common locations

2.2.2 General spatial correlation design
2.2.2.1 Spatial linear mixed model: A special case in a linear sequence

Suppose that any two random effects corresponding to the locations within distance
d* are correlated. Consider two families f, and f; as mentioned earlier. Now to
compute the family size, and common members and uncommon but correlated pairs

we first give a computational scheme as follows.

2.2.2.2 Pairwise spatial families: A unified computational formula for

linear spatial sequence

Let 7(4,7) and s(i,j") be two distinct location of events on the linear scale with

coordinates (i,7) and (i,5'). Suppose that for a given ¢, j/ > j. For this case, for
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convenience we will use the notation s > r. Also let for a given [ such that 2141 = n,,
and for u = —I,...,0, -+ ,l; s + u indicates all locations in the s family f,. Then
the distance limit d* within which random effects of two locations are correlated can
be understood as (s + 1) — (s — 1) = d*. Now for two spatial locations r # s with

n, = n,, we define

Ay = (s+v)—(r+u)

= (s—7r)+(v—u)

where 7, = 1,2,---,8 and u,v = —{,---,0,---,l. Then the number of members

th

common to both the families (clusters) at 7" and s*™ locations is given by

0 if Ay, >0

Tps = (2.2.1)

#(s—r)+(v—u)=0} if A, <0

\

Note if 0 < A,, < d* then the number of uncommon pairs 7, is given by
s = #{0<(s=—1)+(v—u)<d}

— #{0<(s—1)+(v—up) <dIU{0< (s—71)+ (vo—u) <d}

U{0 < (s —7) + (vo — up) < d*})

Ifl

#{O < Aun S d*} - #[E’U()U U E’LL‘U() U E‘ll.o'll()] (222)
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where for chosen ug for w and v for v satisfying (s — r) + (v — u) < 0, and the event

Ey, in (2.2.2) is defined as

E’u,’u - {0 < (S —_ ’I‘) + (‘U — ’(L) S d*}

2.2.2.3 Examples: Based on d* =4

Example 2.2.1 Linear sequence of two families with three common locations.

®
L J

Figure 2.4

In this example, we consider s — r = 2 units. For the two families f, and fg, it is
clear that n, = n, = 5. Further, for this simple spatial design, it is easy to count the
number of common members and uncommon nuinber of pairs of locations. These are

given as

Nes = 3
Ty = Ny — Mg 5—3 = 2
My = Ng—Typy = d—3 =2
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We now verify that (2.2.1) and (2.2.2) may be applied to obtain the above sizes. To

be more specific,

Ay = (S - 71) + ('U - ‘U,)
= 24+ (v—u) (2.2.3)
where, u,v = —[,---,0,--- [, with [ satisfying 2l +1 =n, = nyg = 5. For [ = 2,

A,’s in (2.2.3) are

Eugr  Euvy  Eugoy

A = 2 4+ (=242 2 x
= 2 4+ (=241 = 1 x
= 2 4+ (-2-0) = 0
= 2 + (-2-1) = -1
= 2 4 (-2-2) = -2
= 2 + (=142 = 3
= 2 4+ (=141 = 2
= 2 4+ (=1-0) = 1 * X +
= 2 4+ (=1-1) = 0
= 2 + (-1-2) = -1
= 2 4+ (0+2) = 4 X
= 2 + (041 = 3 x
= 2 + (0-0) = 2 * x +
= 2 + (0-1) = 1 * N +
= 2 + (0-2 = 0
= 2 4+ (142 = 5
= 2 4+ (1+1) = 4
= 2 4+ (1-0 = 3 *
= 2 + (1-1) = 2 *
= 2 + (1-2 = 1 *
= 2 + (242 = 6
= 2 4+ (241) = 5
= 2 + (2-0 = 4
= 2 + (2-1 = 3 *
= 2 4+ (2-2) = 2
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Note that there are 6 cases and among these cases there are 3 cases with A,, = 0.
That is,

#{A,, =0} = 3.

Hence by (2.2.1) n,, = 3.

Next we select up and vy satisfying Ay, = 2+ (vo — up) < 0. The selected val-

ues are

uy=0,1,2 and vy = —2,—1,0.

For d* = 4, and for all possible values of v and v we have

#{0 < A, < d'} = 16.

When u = ug = (0,1,2) and v is general, that is, v = (-2, -1.0,1,2), we count the
number of A, satisfying 0 < A,, < d* and obtain #FE,,, = 9. Similarly #FE,,, = 9

and #E, ., = 3

Hence n,,, = 16 — 15 =1
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Example 2.2.2 Linear sequence of two families with one common location

Consider s — 7 = 4 units. Similar to example 1, in this case we have

Trg

T

ﬁ'rs

Figure 2.5

1
Ny — Npg =
Ng — Nypg =
6

h—1=14
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Example 2.2.3 Linear sequence of two families with no common locations but 7., >

0.

Figure 2.6

Here s — r = 6 units. We then have

n, = n,—Npy,=0—0=5

Mg = Neg—MNys=0—0=20
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Example 2.2.4 Linear sequence of two families with no correlation (s = 0)

>
[
®
®
3

Figure 2.7

Consider s — 7 = 9 units. We then have the following sizes

Nps = 0
e = Np—Nps=0—0=2>H
Ty = Ng—TNys=0—0=295

s = 0

2.3 Marginal and Correlation Properties of the Pro-

posed Spatial Model

Recall from (2.1.7), that the s™ response follows the model

1 _
y, = 2.0+—1, Y +e, for s=1,-- 5 (2.3.1)

Vs
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where 3 is the regression effects of z, on y, foralls = 1,- -+, Sand s = (Fs1, -+ , Ysna)’
with js(= 1,-++ ,ns), Fsj. = Vsk for any k € f,. Recall from (2.1.4) that s is the
k' random effect in the s family, that is, v = 7; for k € f;. Because by (2.1.3a),
Yo ~ (0,03) for any k =1,2,---,S. It then follows that for j, = 1.-.- ,n, and for

any k(=1,---,5) € fs
S = 1ok ~ (0,07) (2.32)

Now for k # [ consider
Yo =vi and yq =7 for k1€ f,. (2.3.3)

Because by (2.1.3b), corr(v},7;) = dudyy, for k = js € fo and [ = j; € f, it then

follows that
COTE(Fos Fugy) = €CONT(r 1) = COM (1] 77) = Suadis 2.3.4)
Because dyy = 1 as k, [ € [, by using ¢}, = ¢n(s), we write
cort(Vsj,» Vsgl) = bri(s), (2.3.5)

where these parameters o2 in (2.3.2) and ¢u(s) in (2.3.5) are determined by the
properties of the random effects 75, - -+, v% associated to all s locations, and following

the specification (2.3.3), namely vo = i for k € f;. Also for the model error in
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(2.3.1), it has been assumed that

€& (0, 0). (2.3.6)

Furthermore €, and 7. (or v;) are assumed to be independent

2.3.1 Marginal Properties

By using the model (2.3.1)-(2.3.6), we now write the mean and variance of y; as in

the following lemma.

Lemma 2.3.1 The mean, E(Y,) and the variance, var(Y,) are given by

E(Y,) = p, = x,3, (2.3.7)

1 Ma B
var(Yy) = —var <Z%J> + var(es)

Js=1

1 Mg ~ Mg _ _ .
= — Z var (Vs;.) + 2 Z cov (’ysjs, ’ysj;) + af

Js=1 js<j.,q

ns
= = |nol+2) ] $iuls)al| +o!

L Js<dy

= 0, (say). (2.3.8)
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Note that for a special case when ¢; ;:(s) = ¢ for all j; # ji, (2.3.8) reduces to a

simpler form

7o = 02[1+ (g — 1)) + 07 (2.3.9)
which further simplifies to
Oss = 03+03 = o? (say) (2.3.10)

when random effects are independent, that is ¢;,;(s) = ¢ = 0.

2.3.2 Correlation Properties

Now for any two spatial locations r and s such that (r # s), let the responses y,
and y, be generated by (2.3.1). Recall that y, is influenced by the n, number of
neighboring locations but they belong to the family f.. Similarly y, is influenced by

the n, number of neighboring locations but they belonging to the family f;. Also

th th

recall that depending on the distance between the " and s™ locations, ¥y, and ys
may be affected by the random effects of some common locations and uncommon
pairs of locations. Thus the covariance, cov(Y,, Yy) between two responses at the pth

and st locations may be computed by using the following lemma.
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Lemma 2.3.2 The covariance between two responses y, and y, at a given two spatial

locations r and s (r # s) is given by

cov (Y., Yy) = N cov (Z Yrivs Z'yq]q)

Jr=1 Js=1

ne

R SR

j =1j4=1

- nnsz Z 63k¢””0

, k efrUfs
= o0, (say), (2.3.11)

with d;, = 1 and ¢}, = 1 for j = k. More specifically

]‘ * 2 * 2
O T Z @50y T Z e 0

v 3G ey
* 2 * 9
+ Y Gt Y 68,0 (2.3.12)
Js#J€Gs JrE€fajs€Ca

By identifying the four groups G in (2.3.12) as

jrvji-efrﬂfs = G’1
.j"'efrmfb‘) J;«efr n?b = GQ
76 € fr N fSa _7; € fs 07,. = G3

jT‘ € 737 js € ?r = G4

and denoting the correlation in the I' (I = 1,2,3,4) group as

¢4 for jke Gy, (2.3.13)
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we reexpress the covariance in (2.3.12) as
& (Z o 4 Z o2
Ops = 4 :
TS —— jk ik
rTts Jk€G) JKEG2
3 4
+ e+ Y 5jk¢§'k)) (2.3.14)
7.REGH 7.k€Gy

2.3.2.1 An equi-correlation case within a distance d*

Suppose that any two random effects within a distance d* share a common family

effect. In such a familial setup it is appropriate to assume that pairwise random

effects within the family will be equally correlated. Let ¢ denote this correlation, In

this case, it follows from Figure 2.1 in Section 2.2.1 that

1. j,k € G, provide variance and the covariance from n,, common members for

the r'* and s* families of locations.

2. For j # k, j.k € Gy the second term in (2.3.14) provides the total covariance

among 7, niembers belonging to f, N f, and n,, members belonging to f, N f,.

3. Similarly for j # k, 4,k € G5 we have covariances between 7, members belong-

ing to f, N fs and n,, members belonging to f, N f;.

4. Finally, for j, k € G4, one obtains covariances among the members in f, and f,

respectively.
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Combining (1) to (4) we now write the specific formula for o, in (2.3.14) as

1 2 ~ 2
Ops = (17502 + (Rrs(Mrs = 1) + sl + NpsTls + Tirs) G077
NGOROD K K
1 ~
= —— [ + (MM — 1) + NpsTy + Mg Ty + ) @) 03. (2.3.15)

NN

Now let ¥ be the covariance matrix of the model (2.3.1) so that X = (o), where o

are defined as.

1+ (n, = D02 + o7 T
e T (2.3.16)
1
TS 1 rs 1 V_T —'s ~'rs 2 th ise.
L T, {775 [L+ (n + o, + 71,) @] + N} 0 otherwise

In some cases it may happen that a family of locations may be independent from
another family of locations. In this type of special situation, it is only necessary
to compute the familial correlations of the responses under a given family. These

correlations can be computed as a special case of Lemma 2.3.2

th family. For ob-

Lemma 2.3.3 Consider two responses ys;, and y,;; within the s
taining their correlations from two families based on the general results of Lemma

2.3.2, one may suppress the family notation and denote these responses as y;, and
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yj.. Now the covariance between these two responses y;, and yj. is given by
Ny
COV(’U' -;):0’- o= O’2 1+—Z¢ ! " (2317)
Yjur Yii, s ¥ L5l - -9

”1<1'

where ¢ (s) is the correlation between two random effects in (2.3.5).
Proof: Because,

Y, = L},ﬁ ’VJq + €jes /< € f.s

1

—1

NI
/ 1 o
y, = a ,J’+ \/Tl,, vt e g5 € S

and because 1’,,“ Vi, = 1;’,,{, 7j,, one obtains the covariance between y;, and yj;; as in
the lemma by comparing «y;, with 7,;, and 5, with v,;, of Lemma 2.3.2 such that now
fr N f, reduces to f,. Thus we simply use the first term Z (bfj,), from (2.3.14)

(N
and write the cov (y;,,y;) as

O jsil

(2.3.18)
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Hence, for n;, = nj; = n,, (2.3.18) gives

2 [ Ny s
a,
oy = — (s) + 2 (s
Z D11, (5) Z 0
ul n i
O',7 2
el e mn 1
N ¥ Z L., (s)
L fa<ty J
2 &
= i |1+ =) ouls)|, (2.3.19)
S <l

which is the same as in the lemma.




Chapter 3

Inference in Spatial Linear Mixed

Model

In the last chapter, more specifically in equation (2.3.1) we have used a linear model
for the response y, as a function of location specified fixed effects as well as familial
random effects, where the s*" family contains n, neighboring locations each associated
with an unobservable random effect. Note that correlation between any two responses
y, and y, for r # s is also modeled through Lemma 2.3.1. Now for the inferences
about the effects 3 of fixed covariates as well as random effects, it is convenient to
write the combined model for all responses ¥y, -+ , 4 -+ , Ys, -, Ys i a matrix form,

which we provide as follows.
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3.1 Model in Matrix Notation and Estimation

For convenience, we re-write the spatial model (2.3.1) in matrix notation as follows:

Y = XB+UG+e, (3.1.1)
where Y = (y1,- - ,ys) is the S x 1 vector of response variables, X = (x1, -+ ,zg)’
is the S x p covariate matrix, 3 = (61, ,5,) is the corresponding p x 1 regression
parameter vector, and € = (e}, -+ ,€5) is S x 1 error vector with zero mean and

\/,n— ns
U5

is a block diagonal matrix with its s"(s = 1.---,5) diagonal block as the 1 X n,

s s
1
cov(e) = 0?lg. Furthermore, in (3.1.1), for N = Zns, U* = @ —1 : SxN,
s=1

s=1

vector with each elements as cand G = (3, -, 7.+ ,7g) is an N x 1 vector

VTts

of familial random variables, where, it is likely that 3. and 7., ,, for example, have
some overlapping random effects. We now express the mean vector and covariance

matrix of ¥ as
p(B) = EY) = (), - ns(d)), (3.1.2)
and
S =Cov(Y) = (0,5(02, 02, 05)),  with 4,k € [f, U [, (3.1.3)

where 11,(3) = E(Y,) and o, are given by (2.3.7) and (2.3.8) respectively, whereas

for v # s, 0.5 is given by (2.3.14). Note that u(8) = E(Y;) is a function of the
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that is,

E(fows) = E([x=7'x] ' [X'=7y])

= [x'=7'X] 7 [X'STE(Y)]

|
1
= [xTX] 7 X=X ‘
- 4 (3.2.3)

Furthermore it follows that

V(fars) = [x='X] 7 XTTV(Y)ETX (XX
= [Xex] T XETIEE X [XETX T
1

= [x='x] 7 [xeTX] [XsTX]T

= [x='x]7, (3.2.4)

which may be estimated directly by estimate the ¥ consistently, which we discuss in

the next section.
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Cas in (3.2.5).

Next, for 7 # s even though the random effects are independent, o, the covari-
ance between v, and y, will not be zero. This is because in (2.3.14), all groups except
G contain correlation of pairwise random effects. These pairwise correlations in all
groups except Gy, are zero when random effects are independent. However, under

(G, one writes

Yool = > e+ D el

1.keG, J=ke[frNfs] JFEREfr0 fs)
Ny
= D_#;+0
j=1
= Ny as ¢jj =1,
yiclding,
2
NpsO
Ors = S

N

Note that the covariance structure (3.2.5) produces the correlations between any two
spatial responses y, and y, as:

1 if r=s
corr (Y,,Ys) = (3.2.6)

Ny
N RN

Now by exploiting the covariance structure (3.2.5) we develop moment estimating

R, otherwise.

equations for the scale parameters o2 and R, as in the following section.
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3.2.2.2 Estimation of Scale Parameters

The moment estimates of the scale parameters are given in the following lemma.

Lemma 3.2.1 By using the sample variance and lag one correlation we obtain the

estimators for o2 and R, as:

S
N 1
6t = g (s ) (3.2.7)
s=1
and
~ T'I(S - 1)
ng = STI__’ (328)

s s+1

; VsTls+1

where, ry is the sample lag one correlation.
Proof: Because E(Y,) = u,, it is clear that
1< 1<
El - Ys — 52 = A El’lg—'l,g‘2
(330 -nr) = 42 Ewm

1S
= —S—Zvar(ys)
s=1

= ()'2

by (3.2.5). Consequently, we obtain the moment estimator of o* as in (3.2.7), where

5 1s assumed to be known.
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Next, for known 3, the sample lag one correlation of the model is given by

S—1
(s = ts) (Wor1 = fs41)/(S — 1)
no= = 3 . (3.2.9)
> (ys — ps)*/S
s5=1

By using the first order approximation, one may obtain
S—1
(Z Ys — fbs) (Ys+1 — frs41)/(S = 1))
E(r) = = -
E (Z(ys - /Ls)2/5>

s=1

S—

,_.

Mg s+1 o2

S 1 — T ngﬂ

= ] D4Ry
S by (3.2.5)

n

RU - ‘8,8
x Dowtl (3.2.10)

S—1 — MsTis gl

It

Consequently, the moment estimating equation for R, has the form

RU 8,8
_ " Msstl (3.2.11)

T = »
S—1 1 MisTs g1

yielding the moment estimator for R, as in (3.2.8).

Note that, when needed, the scale parameters 03 and ¢? may be estimated as follows
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by using their functional relationship with o? and R, :

108 =1 .
62 = 5_111(——)—&2, (3.2.12)
Z s s+1
=1 /1Tyt
and
62 =6t — 62 (3.2.13)

Thus, to obtain Fgrs and moment cstimators for the scale parameters we may use

the following steps:

Step 1: For a suitable initial values of 02 and o7, estimate 3 by using (3.2.2).

Step 2: Using J estimate from Step 1, we compute &% and IA?,C,7 by (3.2.7) and

(3.2.8) respectively. They provide estimates of o2 and o? as in (3.2.12) and (3.2.13).

The moment estimates for the scale parameters from Step 2 are then used in Step
1 to obtain an improved estimate of 3. This constitutes a cycle of iterations which
continues until convergence. Note that because moment estimators considered have
converge to their respective expectations, the convergence of the iterations is assumed

by their mmoment property.
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3.2.2.3 When Random Effects follow a Familial Correlation Structure:

An Equi-correlation (EQC)/Exchangeable Model
Recall that in general under the whole spatial region
v~ (0, 03), s=1,---,95 (3.2.14a)
and
corr(yr,v2) =00k, T,s=1,---,85. (3.2.14b)

We now asswume that any two random effects v* and ~7 corresponding to the rh and

sth locations when r, s € S, have the same correlation as ¢* = ¢ when d,, = 1, where

1 if df, <d* for r,s=1,--+,5
O’I'S:

0 otherwise,

with d* is the pre specified distance chosen by the user.

It then follows that all random effects ., ,¥sj,. -+ » ¥sn, Delonging to the same

(st") family have the correlation structure as
U tor jo= .
corT (Ysj.s Ysis) = (3.2.14c)
(b for .75 # ]:7

1

where 7,,, is the 7" component of ¥, = (Js1, s Vsjur - Yen, )y as in (2.1.5), the

vector of random effects for locations under the st™" family/cluster.
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Let W = (Wi, W, W3) be the 3 - dimensional vector of these statistics and A =
(A1, A2, A3) = E(W). It thenu follows that the moment estimates of the paraneters,
that is, of £ = (02,02, @)', are obtained by solving the estimating equations

¥ €

W—A=0, (3.2.18)

where, the components A,’s for v =1,2,3 are

1 S
AN o= FE (E Z(ys - ,us)2>

2 S
= o2+o’+ f;h Z(ns — 1), from (2.3.9)

5
s=1
2
= 0§+03+¢—;1(N—S), (3.2.19a)

S—-1
E ( (ys — tts) (Y1 — pss1)/(S — 1))

E (Z@S - u,s)2/5>

s=1

1

Az

02 S—-1 1
— - Z 7 1 + Mg o l(n.\ ] — 1)
/\l s=1 <m[ S5+ ( 8,5+ s,6+

+ Ny g4 1T + Ny sp1Ts+1 + Tss+1)P]), from (2.3.15)

0_2

1
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with

1
Ay = E“_—_ Ny gro(Thg gun — 1
D iy Movsaltensa = 1

+ ns,s—}—Qﬁs + ns.s—}—‘Zn_'s—}—Q + ns,s—i—?] .

3.3 Maximum Likelihood Estimation of the Pa-

rameters

Recall that the spatial lincar mixed model in (3.1.1), in matrix and vector notations,

may be written as
Y = X3+U*G+e (3.3.1)

Note that, it is convenient to deal with the covariance matrix of U *G instead of G.
Here U* is a constant cocfficient matrix as defined in (3.1.1). Let X, denote the

covariance matrix of U*G. That is, U*G ~ N(0,%,) where &, = 02V : S x S with
1+ 2 ,i &5.5.(5) if s
— (s if r=
ne = ’
V= (vry)y, Ups= s (3.3.2)

1 . )
mz Z Ok Dk otherwise,

gk efrfs

where, §,, and ¢, are defined in (2.1.1) and (2.1.3b) respectively, and for j = k,

5= 1.
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Furthermore in (3.3.1), we write € ~ N(0,%,), where B, = oZlg

S xS, To

simplify tlie estimation of the model parameters rewrite the mixed model in (3.3.1)

as

Y=X34+€ or Y ~N(X3Y)

where, 3 is the regression parameter vector, and ¥ has the form

that is,

¥ =(0,5) and o, =

T o= %, + %

2 Ty
2 2 . p
ox |1+ — E a(s)| +of i =,
5 n Cb]hJS( ) ¢

$ je<il

1 .
— Z Z c)]-;cqﬁ;kag otherwise.

T
"k efrUS

(3.3.3)

(3.3.4)

Now let ¥ be a vector of all distinct scale and correlation parameters in the model.

Suppose that ¢ is of dimension g x 1.

Note that, it is easy to write the likelihood function following (3.3.3). That is,

f@B.y) = %9/12'—2”1750?(? {—%(y - XY Ny~ Xﬁ)}

(3.3.6)
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where S is the dimension of the response vector. Thus, the log likelihood function for

3 and 1 is given by

I

(B0 ) = —(em) ~ Lnlz] - Sy = XSy - X0,

1 1
= c— iznm -5 {ys7ly - 2/TIXB+ B X'TTIXF}, (33.7)

where ¢ is a coustant. By differentiating the log-likelihood with respect to the regres-

sion paraineter vector 5 we obtain

ol
— = XYY -X'¥X 3.8
33 X'yly - X 3, (3.3.8)

and the derivatives with respect to scale and correlation parameters 1; for i =

1,---,q, are given by

o 19in|E] 1 L0871 p
o = T2 aw a0 Ao X)
1. [olm|Z| 0% 1 ,057!
——t — | - =Y - X3)——(Y — X{
2" [ oy aw.l} (¥ = Xp) 5 (¥ = X5)
1 1 .
= —5tr ['2)] - SOV = X3 LY - X3), (3.3.9)
-1
where Yy = %, () = a;i/ = _2—12(02—1 and ; is the " component of ¥.
L2 i

Hence, the MLE for 3 and 1; for i = 1,- -+ , ¢ are obtained by solving

% = X'y - X'=7' X3 =0, (3.3.10)
#
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and

ol

1 - 1 N i
g, = "o [ETal -5 - X8) SOy — X8) =0.  (3.3.11)

Note that, for known ¥, the MLE of § has a simple form as
B = (X'TIX) T XSy (3.3.12)

However, it is clear from (3.3.11) that one does not have a closed form formula for
the MLE of v,;. That is, it requires solving the non linear equation for 1; by using

iterative technique, such as Fisher scoring algorithm. For the purpose, we compute

the second order derivative for ¢,5 =1,--+ ,q as
8l 1 , -
lpp =  —— = —= (tr [Z718; + B95 y— X3 (y — X3))(3.3.13
O ) (tr [27" 80 + i+ (y = XB)ED(y — XB))( )
0w
with ¥,y = —= and,
w0 = oz
8‘1,/)j
_ 9 -1 -1
Y (E7'2ns7)
ox! 82(-) ox!
= — | r T 4R BT
oy, Sor TR gy T L0y,

= —[SYVEHE T + 278 + 58, YY)
= —[-ZTEp TR T+ TS - BTSSR ]

= T [EHETISm + ZnET Sy — Sap) T
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Next we obtain
E(lyy;) = —%" [Z7' S + Z9T] - %E ((y — XBY=9(y — XB))
— —%t’r [Z7'20) + EVE] - %E (tr2t(y — XB)(y — X 3)")
= —%f,r (7184 + 20D] - %tT [(Z)%]
= —%t”' (=71 + V5] - %”‘ [ [EHT ' Sw + 0T Sy — Ty
= —%t"’ (7180 — BT R
+ TS S + ETIER DTS — B )
= —%l"‘ [E1S0T 8]
Thus, we obtain Fisher’s score matrix
B, = —E(1P(G,¢]y) = —E (lyx) (3.3.14)

th

and the (7,7)"" element of By, is t;; with

1
tij = 5tr (2SS 5] - (3.3.15)
Now for known [, the MLE’s (125) of ¢; for i =1,--- ,q, can be obtain by solving the
maximum likelihood estimating equation (3.3.11). Let b = ('J)l, e ,1/3(1)’ be the MLE

of 1. This solution may be reached by using the iterative equation method. Given

the value of 'gZA)ML(t) at the t*" iteration, J)ML(t + 1) is obtained by solving

Ut +1) = darc(t) + [BTI (ﬁ)] ; (3.3.16)
o0/l
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. . 5 ol .
where [.](y) denotes that the expression within brackets is evaluated at 1 (t), B is

Y
evaluated from (3.3.9) and B;] is the inverse of By defined in (3.3.14).

Thus, to obtain MLE ,’B’ML of regression parameter vector 3 and the MLE 1[)ML of
all distinct scale parameters in ¢ we may use the following steps:

Step 1: For suitable initial values of ¢;’s (i =1, -+, q) estimate 3 by using (3.3.12).
Step 2: Using 3 estimate from Step 1, we compute ¥ by (3.3.16).

Step 3: Estimate of ¢ from Step 2 is used in Step 1 to obtain an improved esti-

mate of 3 which is further used in Step 2 for improved estimate of 1.

These three Steps constitutes a cycle of iterations and the cycles continue until con-

vergence.

We remark that for the estimation of the variance components in 3, matrix, there
exists an approach where G are predicted first by using the so called BLUP (Best
Linear Unbiased Predictor) approach and these estimates arc used for the estimation

of the variance components see for example Searle, Casella, and McCulloch (1992,
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Section 3.4). This approach has, however convergence problems specially for binary
and count data setup. Sece for example, the discussion by Sutradhar (2011, Chapter
4, p. 66). For this reason, and also because we will deal with binary data in Chapter

4, we do not follow the BLUP based approach.

3.3.1 When Random Effects are Independent

In practice there may be some situations where it is reasonable to assume that
the random effects in the spatial region S are mutually independent. That is,
i = cov(vj, v;) = 0. We simplify the likelihood based iterative equation (3.3.16)

for this special case.

Note that, for the computation of iterative equation (3.3.16), we need to compute
ol
By, and o0 for this special case. However it is clear from (3.3.15) and (3.3.9) that B,
U
ol
and EW need the formula for ¥ and ¥;. For this purpose we first give the formulas

for 3 and X;, as follows. Here ¥ matrix contains two scale parameters, that is, ¢ = 2

and 6 = (1, 4) = (02,02’
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3.3.2 When Random Effects Follow a Familial Correlation

Structure: EQC/Exchangeble Model

As opposed to the independent setup discussed in 3.2.2, therc may be situations
where pairwise random effects can be either independent (depending on the distance
between two spatial locations) or equi-correlated (within a specified familial distance).
To be specified, when A" and " locations belong to f, (s family), it follows from

(2.3.4) and (2.3.5) that
Gigr = Cort(Vaj,, Vsj) = Ombyy = duls) = ¢

always, because they are within a specified familial distance. Further for » # s and

ke f.and [ € f; we write
Gjoje = cort(Yrj, s Ysgu) = OkiPras

yielding

¢21:¢ if dlzfd*a

Jrds T
0 otherwise.

Next in this equi-correlations setup, ¢ = 3 and ¢ = (11, ¥, ¥3)' = (02,07, ¢)'. Similar
to last the scction we now provide the formulas for & and X in terms of ¢y, ¢ and

1/)3 :
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3.3.2.1 Computation of ¥ matrix

When random effects are EQC with correlation parameter ¢, in a similar way as in

(3.3.17) we can obtain the clements of V' matrix from (3.3.2) as

1+ (ns—1)¢ if r=s,
o — (3.3.19)

1 ~ .
——— {ns [1+ (nps — 1+ 7, + T5) @] + Nps@} otherwise,

T

vielding the elements of the covariance matrix X in (3.3.5) given by

1+ (n, — 1)) o? + o? if r=s,

ore = (3.3.20)
e I (L (g = 147 4 M) @] + Tirsb} 02 otherwise.

3.3.2.2 Computation of ¥

From (3.3.20) it is straightforward that for 7 = 1,2,3 we can obtain

0% .
2(1) a—% (Urs(]_)) Wlth
1+ (n,— 1)¢ if r=s,
Trs(l) = 1 (3.3.21)

{nps [1+ (nps — 1 + 7 + 705) @] + s} Otherwise.
NN
o
O,

Next, we obtain ¥y = = (0ys(2)) With

1 if r=s

Ors(2) = (3.3.22)

0 otherwise,
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1) .
and Z:(3) = % = (Urs(:j)) with
3
(“S B 1)0-3 lf =8,
Trs(3) = 1 (3323
o) 47 Vo2 N
e, {nps (s — 1+ 7, +72y) + Ny }oy  otherwise.

3.4 A Simulation Study

Recall that s denotes a location of events belonging to a spatial region §. That is
s € 8. Also recall from (2.1.7) that, y, is the associated measurement from the s

spatial location given by

s
! ! 1 -~
Ys = U+ 2.0 + Vsj, T €s
NG
8 je=1
1
12 -~ r
= rfp+ E Ysjs T €s (3.4.1)
Vs 4
Js=1
where, us = (U, -+, Usp, ) is a pj-dimensional fixed covariate vector containing for

th

example, the epidemiological or demographic information from the s location, and

Zs = (251, - L 2g) 1s & po-dimensional deterministic (or location dependent) vector of

th }ocation. Here o and

covariate containing the environmmental information from the s
6 arc the fixed regression effects of uy and =z, on y,, respectively, that is J = («/,0') is
the effect of !, = (1, z}) on y,. Also in (3.4.1), 7,,, are random effects of n, locations
s family, f,. Furthermore, as mentioned b re e, are model crrors

belonging to the

iid :
and we assume that €, ~ (0,02).
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3.4.1 Selection of Fixed Covariates

In this simulation study, we choose S = 500 locations. With regard to the fixed
covariates, we chioose p; = 3 and the associated covariates w, = (Usy, U, Ugs) as

follows:
1. Iutercept covariate:

g =1, for s=1.2,---.5

2. Fixed epidemiological binary covariate (such as old or new spatial location)

1 if s isin old category,
Ug2 =
0 if s isin uew category,

and

3. Another epidemiological covariate (Geographical. say)

3

0 if 1<s<S/8, (locations are on high ground, for example),
w3 =4 1 if §/8+1 < s<35/4, (on plane ground),

0 if 35/4+1<s<S, (on high ground).

\

For envirommental type covariate z, such as to understand the wind effects due to
relative positions, we choose two sets of categorical variables eacli with three categories

which may be represented by two categorical variables. To be specific to accommodate
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for example, the winds from backward (or left) side of a location covering 1807 we
consider the first set of categorical variables represented by two dummy variables

(zs1, 252) defined as:

(1,0) if 135% < w < 2259,

(2s1,22) = { (0,1) if 90° < w < 135°,

L (0,0) if 225° < w < 270°,

where, w is the angle between s™ and its neighboring (backward) locations of events.

Similarly to accommodate for example, the winds from forward (or right) side of a
location covering 180° we consider the second set of categorical variables represented

by two other duminy variables (zg3, 254) defined as:

(1,0) if 315° <w < 360°, & 0 < ¢ < 45°

(23, 20) = (0,1) if 45° < w < 90°,

\ (0,0) if 270° < w < 315,
for which, w is the angle between s and its neighboring (forward) locations of events.
For the fixed regression effects, we chose o = (v, g, a3) and § = (6y, 61, 60,, 65, 04),

that is,

3=(a,0) = (0.3, 0.5,—0.5, 0.6, 0.4, 0.5, 0.2)’ (3.4.2)
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Note that, we have chosen these components of 3 from some practical point of view.

For example, oy = 0.5 indicates positive effects of older or aged plants on the yields.

3.4.2 Selection of Model Errors

The model error ¢ in (3.4.1)

is given as

iid

€, ~ N(0,0%)

2

As far as the error variance o is concerned, we consider

3.4.3 Selection of Independent Random Effects

Consider 7} as

o? = (0.5, 1.0, 2.0).

. iid

v: W N(0,02).

Under this assumption in (3.4.5), it follows that

Vsjs =

For values of 03, we select

« fid

Yie © (01 U'Qy) for ]s € fs

o2 =(0.75, 1.0, 1.5).

(3.4.3)

(3.4.4)

(3.4.6)

(3.4.7)
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.th

The number 7, for »*™ family using figure 3.1 is given by

(

3 for r=1,5,

n.=9 4 for r=25-1, (3.4.8)

5 for r=3,---,5—2,

and n,, the number of members common to both families at the " and s'* locations
are given as follows:
Forr=1and s=2,---,5
.
3 for |1 —s|=1,
3 for |1—s|=2,
nis =19 2 for [I1-s/=3 (3.4.9)
1 for |1—s|=4.
0 otherwise.
\
Forr=2s=3,---,5
.
4 for |2—s|=1,
3 for [2—s|=2,
nas =94 2 for |2—5]=3 (3.4.10)

1 for |2—s|=4,

0 otherwise.
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Forr=3,.--,5-2ands=4,---,5-1
p

4 for |r—s|=1,
3 for |r—s| =2,
Nps = 2 for l'r — 31 =3 (3411)

1 for |r—s| =4,

0 otherwise,
\

and for the remaining pairwise locations, the number of common members are

ns_as =1,
Ng—3.8 = 27
ns_2s = 3,
nsrs =3, (3.4.12)

Nps-1 =0, for r=1,2---,5 -6,

n.s = 0, for r=1,2---,595-5.

For the GLS estimation of 3, we use (3.2.2), where the ¥ matrix was constructed by

2
y?

using 02, 02, n. (r=1,---,S)and n,s r #s, (r,s=1,--- ,.S) as explained above,
where n, aund n,, are known based on the spatial distance design. The parameters
involved in the ¥ matrix, that is, 03 and o2 are estimated by the method of moments

following the moment equations (3.2.12) and (3.2.13).
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Table 3.1: The SMs and SSEs of the GLS estimates of the regression pa-
rameter and moment estimates for the variance components using sam-
ple lag 1 correlation with true regression parameter values chosen as
3 = (a1, 09, 03,0,,09,65,6,) = (0.3,0.5,-0.5,0.6,0.4,0.5,0.2)" and for selected
values of the variance components ¢? and oz

(a) Estimates of the regression parameters

Quantity Regression parameters
o? o}f, o? a o Qs 0 6, 05 0,
1.0 0.25 1.25 SM 0.287 0.499 -0.499 0.606 0.408 0.506 0.205
SSE 0.226 0.116 0.135 0.178 0.113 0.171 0.212
0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229
1.0 20 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.201
SSE 0.270 0.122 0.219 0.191 0.118 0.185 0.234
1.5 25 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.200
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242

(b) Estimates of the variance components

Quantity Variance parameters

a? 03 o? o? 0—3 o’

1.0 0.256 1.25 SM 0.983 0.241 1.224

SSE 0.087 0.084 0.081

0.75 1.75 SM 0.985 0.727 1.712

SSE 0.096 0.150 0.131

1.0 20 SM 0.986 0.971 1.956

SSE 0.100 0.183 0.157

1.5 2.5 SM 0.988 1.457 2.445

SSE 0.110 0.250 0.213
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Table 3.2: The SMs and SSEs of the GLS estimates of the regression pa-
rameter and moment estimates for the variance components using up to
sample lag 2 correlation with true regression parameter values chosen as
3 = (a1, 09,03.01,0:,65,60,) = (0.3,0.5,-0.5,0.6,0.4,0.5,0.2) and for selected
values of the variance components ¢? and o2.

(a) Estimates of the regression parameters

Quantity Regression parameters

: O',zy g (43} (X9 3 01 02 03 64
1.0 025 1.25 SM 0.287 0.499 -0.499 0.606 0.408 0.506 0.205
SSE 0.226 0.116 0.135 0.178 0.113 0.172 0.212
0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229
1.0 2.0 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.201
SSE 0.270 0.122 0.218 0.192 0.118 0.18 0.233
1.5 25 SN 0.287 0.500 -0.498 0.608 0.409 0.504 0.201
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242

(b) Estimates of the variance components

Quantity Variance parameters

o? o? 03 o’
1.0 0.25 1.25 SM 0.987 0.238 1.224
SSE 0.083 0.080 0.081

0.75 1.75 SM 0.985 0.727 1.712
SSE 0.096 0.150 0.131

1.0 2.0 SM 0.991 0.964 1.956
SSE 0.104 0.189 0.157

1.5 25 SM 0.995 1450 2.445

SSE 0.120 0.261 0.213
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Table 3.3: The SMs and SSEs of the GLS estimates of the regression pa-
rameter and moment estimates for the variance components using uo to
sample lag 3 correlation with true regression parameter values chosen as
3 = (ay,0n,3,01,0y, 63,64 = (0.3,0.5,—0.5,0.6,0.4,0.5,0.2) and for selected
values of the variance components ¢? and o2.

(a) Estimates of the regression parameters

Quantity Regression parameters

o o o ! y Qy 6, g, 03 0
1.0 025 1.25 SM 0.287 0.499 -0.499 0.606 0.408 0.506 0.205
SSE 0.226 0.116 0.135 0.178 0.113 0.I71 0.213

0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229

1.0 2.0 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.201
SSE 0.270 0.122 0.218 0.191 0.118 0.185 0.234

1. 2.5 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.200
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242

(b) Estimates of the variance components

Quantity Variance parameters
2 2 P) )
5

o o* of a, fo
0.25 1.25 SM 0.988 0.236 1.224
SSE 0.085 0.082 0.081
0.75 1.75 SM 0.994 0.717 1.712
SSE 0.106 0.160 0.131
1.0 2.0 SM 0.997 0.959 1.956
SSE 0.117 0.199 0.157
1.5 2.5 SM 0.988 1.457 2.445
SSE 0.110 0.250 0.213

)
Jal 3

—
=
-
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Table 3.4: The SMs and SSEs of the GLS estimates of the regression pa-
rameter and moment estimates for the variance components using up to
sample lag 4 correlation with true regression parameter values chosen as
3 = (a1, a9, a3,01,60,,05,60,) = (0.3,0.5,-0.5,0.6,0.4,0.5,0.2) and for selected

values of the variance components ¢? and o2.

(a) Estimates of the regression parameters

Quantity Regression parameters
0';2 O';zy ? (&3] ¥y (&%} 01 92 03 94
1.0 025 1.2o SM 0.287 0.499 -0.499 0.606 0.408 0.506 0.205

SSE 0.226 0.116 0.135 0.178 0.113 0.171 0.212

0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202
SSE 0.257 0.120 0.195 0.18 0.117 0.181 0.229

1.0 2.0 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.201
SSE 0.270 0.122 0.218 0.192 0.118 0.185 0.234

1.5 25 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.200
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242

(b) Estinnates of the variance comonents

\Ldu'(u-luhy vl laice parameers -
0,3 o2 o? U?Y g’

1.0 0.26 1.25 SM 0.983 0.241 1.224
SSE 0.087 0.084 0.081
0.75 1.75 SM 0.998 0.714 1.712
SSE 0.124 0.175 0.131
1.0 2.0 SM 1.003 0.953 1.956
SSE 0.142 0.219 0.157
1.5 2.5 SM 1.012 1432 2.445

SSE 0.181 0.305 0.213
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Table 3.5: The SMs and SSEs of the ML estimates of the regression and
variance components with true regression parameter values chosen as 3 =
(cvy. g, 03,61, 02,04,04) = (0.3,0.5,-0.5,0.6,0.4,0.5,0.2)" and for selected values

of the variance components o? and 2.

(a) ML Estimates of the regression parameters

Quantity Regression rarameters

ol (1;2, 167 vy o3 0, 0, 05 04
1.0 0.25 SM 0.290 0.500 -0.498 0.602 0.407 0.501 0.196
SSE 0.229 0.119 0.132 0.177 0.112 0.175 0.204
0.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229
1.0 SM 0.286 0.500 -0.496 0.602 0.408 0.502 0.195
SSE 0.271 0.124 0.214 0.190 0.116 0.188 0.226
1.5 SN 0.283 0.500 -0.495 0.601 0.407 0.503 0.195
SSE 0.295 0.127 0.253 0.195 0.119 0.233 0.242

(b) ML Estimates of the variance components

Quantity Variance parameters

o o2 ol o?
1.0 0.25 SM 0.983 0.242
SSE 0.082 0.079

0.75 SM 0.998 0.714
SSE 0.124 0.175

1.0 SM 0.981 0.979
SSE 0.095 0.173

1.5 SM 0.980 1.471
SSE 0.101 0.232







3.4 A SIMULATION STUDY 77

3.4.4 Selection of Random Effects: Exchangeable (EQC) Fa-
milial Correlation

Recall that in general
i~ (0,03) (3.4.13a)
and
corr(v;,vs) = OrsPrs- (3.4.13b)

Now to develop a equi-correlation structure for the random effects of the member

th family, that is, to develop

locations of the s
o 1 for js=7.

Gjo(s) = corr(Fyj,, Vsit) = (3.4.14)
¢ for j, # js.

one has to develop an appropriate correlation structure among all 77, -+, 75, , 75
whicl will provide the correlations as in (3.4.14) for the members of the s family.

3.4.4.1 Special Case with Linear Spatial Sequences

To illustrate this development, for simplicity suppose that all s locations are in a linear
sequence and they form a family of correlated random effects at a given location (say

r) where the distance between the r™ and any other locations (say s), that is, d;, < d*.
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This produces a correlation structure for v*(s = 1,--- ,.S) of the form
{
1 for d;,=0
corr(v;, 7)) =4 ¢ for df, <d* (3.4.15)
0 for dr, > d,

\

which generates a band correlation matrix with pairwise correlation ¢ within the
band, where the band width is determined by the spatial distance (lag) d*. We

present this situation in the form of following figures.

Figure 3.1: Equi-correlation based linear spatial sequences

3.4.4.2 Generation of 4* satisfying (3.4.15)

In this special case, we consider d* = 4 and for S = 500 generate ¥7,« -+ ,¥; "+, Y5

following the correlation structure (3.4.15). To be specific for d* = 4

corr(v5,7Y) = ¢ when r#s and d;, <4. (3.4.16)
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Table 3.6: Familial random effects corresponding to spatial random effects
under the linear sequence with d* = 4

Family Family Random Effects Corresponds to original random cffects
fi (Y11, Y12, T3] i (=71), % 73]
fo Va1, Y22, Yo, Vad (3 (= Fa1), 15 74> Vi)
I3 (Va1 Y325 V33, V34 V35) (v (= F31) 775 %55 V4 73)
fA;os (Ya08.1> V298,25 V198,3, V498,45 Vd98.,5] [Vios (= Yass.,1) Vige» Vi Vioor Yoo
f199 [7199,1&499,% ?499,377499,4] [’YZQQ(: Y499.1 ), Y3005 V07> ”Yffgg]

Is00 [:7500,1 ; 7500,2, 7500,3] [’Ygoo (= 3'500, 1 ), V199> ’YZgg]
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Forr=1and s=2,---,5

N =

Forr=2ands=3,---,5

ﬁ?s =

[S2]

for |s — 1] =3,
for |s— 1| =4,
for |s—1] =35,

for |s—1] =6, (3.4.18)
for |s—1] =7,
for |s—1| =38,
otherwise.
for |s—2| =2,
for |s—2| =3,
for |s —2| =4,
for |s—2| =35,
(3.4.19)
for |s—2| =6,
for |s—2|=7,
for |s—2| =38,
otherwise.
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Forr=3,---,5-3, ands=4,---,5—2

(
1 for |s—r|=2,

3 for |s—r|=23,
6 for |s—r|=4,
10 for |s—17| =35,
e = | (3.4.20)
6 for |s—r|=6,

3 for |s—r]=7,

1 for |s—7r|=38,

{ 0 otherwise.

Forr=1,.--,5-2 ands=95—-1

,

1 for |S—1—1r|=2,
3 for |S—1-7]=3,
6 for |S—1—1|=4,
10 for [S—=1—r[=05,
st = 4 (3.4.21)
6 for |S—1—r =6,
3 for |S=1-r|=7,

1 for |S—=1—-17|=8,

0 otherwise.
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and forr=1,---,S—1,ands= S

2 for |S—r|=3,
5 for |S—r|=4,
9 for |S—r|=05,
nes =4 6 for |S—r|=6, (3.4.22)
3 for |S—1r|=7,

1 for |S—r|=38,

0 otherwise.

th family may e easily computed by

Next the number of members only from the 7
using the formula 7, = n, — n., where the number of n, and n,, were given in
Section 3.4.3.1. However, for the sake of completeness, we provide the values for 7,

as follows.

Forr=1lands=2,.--,8

(
0 for |s—1] <2,

=19 |s=1/—2 for 2<|s—1] <4, (3.4.23)

3 otherwise.

\




3.4 A SIMULATION STUDY 85

Forr=2and s=3,---,S

’

0 for [s—2] 71,
na=19 |s—2/—1 for 1<]s—2 <4, (3.4.24)
4 otherwise.

\

Forr=3,---,5—-3,ands=4,---,5-2

|s —r} for llegls —r] < 4,
Ny = (3.4.25)

5 otherwise.

Forr=3,---,§—-2 ands=5—1

|S—1~7| for |S—1-1r| <4,
iy = (3.4.26)

2 otherwise,

and forr=3,---,S—1,and s =S

|S—r] for 1 <|S—r| <4,
iy = (3.4.27)

5 otherwise.

Also, the number of members only from the s family is computed as follows:

Forr=1,2,---,5-3, ands=2,---,5—-2

ls —r] for 1<|s—71| <4,
iy = (3.4.28)

5% otherwise.
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Forr=1,---,§—2 and s=5 -1

0 for |[S—1—7r|<1,
fiss1=1 |S—=1=r|—1 for 1<|S—1—7r|<4, (3.4.29)
4 otherwise,

\

and forr=1,---,§—1,and s =S5

0 for |S—r| <2,
g =49 |S—r—2 for 2<|5—r|<4, (3.4.30)
3 otherwise.

\

Data Generation:

7
S

We consider the same covariate design, that is, z;, = (u},2,)" and choose the same
true values for 3 as in Section 3.4.1. However, as our objective is to examine the
effect of familial correlation ¢ for random effects, we choose a moderately large value
for ¢ = 0.3 (given that a moving average order 1 correlation cannot exceed 0.5), and

examine the estimation perforinance for variance parameter 03 = (.75 and 1, and

0?2 =1.0.

Note that it is now important to generate the random effects v; (s =1,---,5) such

that they follow a moving familial or band structure with correlations either ¢ or 0.
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2

2 , . . . . . A . . . . .
2, 02 and ¢ by solving the likelihood estimating equations

correlation parameters o
(3.3.11). Note that these non-linear equations are solved by using the itcrative equa-
tion (3.3.16). These estimates are then used in (3.3.12) to obtain improved estimate
of 3. This constitutes a cycle which continues until convergence. This we repeat for
50 simulations. Note that, because we have to conduct a large spatial sequence with
S = 500, each simulation takes a considerable computing time requiring a relative

large amount of computing time for 50 simulations. However, given time is not a

problem, we would obtain better estimates if simulation nun er is increased.

The simulated estimnates along with the standard errors are presented in Table 3.7.
The results from the Table 3.7 indicate that the ML approach performs well in es-
timating all parameters including ¢ parameter. For example for this ¢ = 0.3 case
when ¢? = 1.0 and O',QY = (.75, the estimates for the compouents of 3 were found to be
5’ = (0.271,0.500, —0.559, 0.590, 0.399, 0.509, 0.201)" which are close to the true values
of the regression paramecters. The ¢ parameter value, (that is, ¢ = 0.3) was estimated
as 0.28 which is quite satisfactory. The O'?Y parameter was found to be slightly under

estimated as 0.69, whereas o2 was estimated much better as 0.98.

Note that we have also carried out a simulation study based on 500 simulations
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Table 3.8: The SMs and SSEs of the ML estimates of the regression and
scale parameters with true regression parameter values chosen as 8 =
(a1, g, 3,01, 04,05, 04) = (0.3,0.5, —0.5,0.6,0.4,0.5,0.2)" and for selected values
of the variance components o2 and o? when ¢ = 0.3.

(a) ML cstimates of the regression parameters

Quantity Regression parameters
a a. (€3] (€D) 3 91 92 93 94
1.0 0.75 SM 0.286 0.495 -0.495 0.600 0.403 0.507 0.209
SSE 0.330 0.109 0.328 0.197 0.112 0.185 0.257
1.0 SM 0.286 0.494 -0.495 0.602 0.404 0.506 0.209
SSE 0.362 0.111 0.373 0.200 0.111 0.188 0.260

(b) ML estimates of the variance and corrclation parameters

Quantity Variance and correlation
0! ol o’ o’ ¢
1.0 0.75 SM 0.982 0.768 0.310
SSE 0.034 0.213 0.146
1.0 SM 0.988 1.005 0.309

SSE 0.097 0.245 0.126
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We have also estimated the regression and variance parameters by ignoring ¢, that
is, by using ¢ = 0 (samec as assuining random cffects arc independent). The results
based on 500 simulations are presented in Table 3.9. It is clear from the table that
the approach produces highly biased estimates specially for the variance componeuts

0.2

€

and U?r' This is however, not surprising because of the fact that ¢ = 0 does not
mean that the responses are pairiwse independent. Also, ¢ = 0 produces incorrect
variances for the responses. Consequently, the MLE for o2 and Uf are bound to be
adversely affected. This would also happen if one uses Weighted Generalized Leaset

Squares (WGLS) techmique, when ¢ = 0 would lead to wrong weights.

Table 3.9: The SMs and SSEs of the ML estimates of the regression and
scale parameters with true regression parameter values chosen as 3 =
(o, g, vy, 61,04, 05,04) = (0.3,0.5,—-0.5,0.6,0.4,0.5,0.2)" and for selected value
of the variance components o? = 1.0 and ¢” = 1.0 when ¢ = 0.3.

(a) ML estimates of the regression parameters

Quattiry Regression parameters
a? 03 v o oy &\ 6, 05 04
1.0 1.0 SM 0.294 0.494 -0.507 0.597 0.402 0.506 0.199
SSE 0.366 0.124 0.369 0.203 0.121 0.193 0.246

(b) ML estimates of the variance and corrclation paramcters

Quantity Variance and correlation

0,2 0,2 0.2 0.2
€ ol € o)
1.0 1.0 SM 0.841 1.930

SSE 0.057 0.256
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The results based on 500 simulations are presented in Table 3.10 by considering

randon effects are independent, providing satisfactory results.

Table 3.10: The SMs and SSEs of the ML estimates of the regression and
scale parameters with true regression parameter values chosen as (§ =
(e, e, vy, 61, 02,05,64) = (0.3,0.5,—-0.5,0.6,0.4,0.5,0.2)" and for selected value
of the variance components 02 = 1.0 and ¢? = 1.0 when ¢ = 0.0

(a) ML cstimates of the regression parameters

Quantity Regression parameters

0'3 O% ¥ [6%) vy 61 92 03 94
1.0 1.0 SM 0.289 0.501 -0.499 0.603 0.408 0.498 0.190
SSE 0.281 0.124 0.222 0.189 0.119 0.190 0.228

(b) ML estimates of the variance and correlation parameters

Quantity Variance and correlation

o? 0:2, o’ (73 ¢
1.0 1.0 SM 0.982 0.975 0.012

SSE 0.103 0.260 0.060
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binary model. For a given year, this model reduces to the spatial binary model. For
this case by suppressing the time 7 notation, Rathbun and Cressie’s (1994 equation
(16)) spatial binary probability model in our notation of previous chapters, may be

written as

exp [zv’rﬁ + W’]

Pr(M,; =1|xmx, [[85, —ssi]l <d*) = 4.0.1)
7 7 ¥

1 + exp [:r/ﬁﬂ + Wrs]

where W,, = 1,5(Zs, [|Sr), — Ssiull < d"7 # s, 15 = 1,-++,5; Jr = 1,0 ny Js =

sth th

1,---,ns), M, is the binary response of the ji" member of the r* family, Wrs is
a known function say, 7., of covariates () from other locations belonging to fs,
these locations in f, being correlated with the locations belonging to f, depending on
the distance criterion (< d*). Note that unlike these authors, we have denoted the
responses by y, (r = 1.---,5) and in our notation f, is the r** family consisting of
n, members. Thus y, = M,1, M, being the binary response Hr the first member of

the 7" family. However instead of W,, we will use a linear function of random effects

from the f. family to influence y, ( on top of z,) and write

1 -
€xXp |:Ijr/3 + 1;;7'1‘(3)}
P, =11 fr fi) = il } r s (10.2)

1 ~
1 +exp [‘Elrﬂ +— /n,-'Yr(S)

N

where some of the compouents of %(s) = (Fr1(s)r -+ » Yrnu (s)) fOT example, suppressing

the subscript (s), 7,;, may be correlated with some components of %(r) = (Fs1(r)y** » Vsna(r) )
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say ;. depending on the distance between the 4t member of the r* family (j, € f;)

th

it being the member of the s

and j; family (j, € f,) of locations whether d;,;, < d* or
d;,;, > d*. Note that using ¥.(s) in the formula for P(Y, = 1) is justified because we
are interested to compute all possible pairwise correlations, s being another location
and the common random effects between 7" and s*' locations will cause the corre-
lation between y, and y,. Following (4.0.2) we may write the model for the binary

th

response v, from the s™ location where a family f; formed at this s*" location. To be

specific

1 ~
exp |z.0 + 1, Fstr
s \/m ne 18(r)

1+ exp [:I;’Sﬁ +

PY,=1|fsfr) =

~

1, Fs(r)

1 , TFES (4.0.3)
i)

1 - 1 ., - . e
Let VV:(S) = ﬁ1;l7~7"'(5) and I/Vs*(r) = \/7—517L~73(7')' With regard to the distribution

of the random effects we use the same assumption as for spatial linear mixed model

(2.1.7). Thus by (2.1.8) - (2.1.10) we write
E(W/ ) =0, (4.0.4)
and

1 ~
var (I*V:(S)) = var (ﬁlih%(so

2

" e
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and
var (Y, | Wiy) = (W) [1 = 71 (W) (4.1.4)

Next condition on both W, and Wy, that is, conditional on the random effects

involved in f. and f,, the covariance between y, and y, for v # s is given by

cov [(K) YG) | I/1/7(s)a ‘/Vs(r)] = F (YrYs | I/I/'r(s)v I/{/vs(r)) - 7T:7T:
= E(Y, | W) E (Ys | W) — mims

— * % _ L
= T, — W7,

4.1.2 Unconditional First and Second Order Moments

The corresponding unconditional mean, variance and covariance arc given in the

following lemma:

Lemma 4.1.2 By (4.1.3) the unconditional mean and variance of the spatial binary
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W,y ~ N(0,1), is simple, we follow the simulation approach to compute the expec-
(s)

tation in (4.1.6).

Let W, (j) denote the j*" (5 = 1,.--,.J) simulated value for Wy, where J is

large enough such as J = 500 or more. We may then approximate the mean in (4.1.6)

as

je
=
I

> o (Wi ()

J=1

J_ exp [;U'Tﬁ -} O':T% W/r(s)(f)]

~le

~le

w1 .
=1 1+ exp [.’L"Tﬂ + orf Wr(s)(J)]
= 7. (4.1.8)

and hence the approximate variance in (4.1.7) reduces to
var(V,) = 7 (1—-7,.) = o, (4.1.9)

Lemma 4.1.3 The unconditional covariance between two spatial responses y, and
ys from locations r and s (r # s) is given by
Ors = COV(KW}/S) = E(K‘Ys)_ﬂ-‘rﬂ-s

= g — TpTs, (4.1.10)
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where

A = E(YVYS)
. W
/ exXp [:I;Lﬂ + 007 WT(S)] exp [‘J;;ﬁ + 05d W s(r):|

*l >o<i
14 exp [J/Sﬁ + opf WT(S)] 1+ exp [:L‘Qﬂ + Tss PVS(,‘)}
B(Wys), Watr) ) AW (5ydWory, (4.1.11)

EI;(W’T(S), W) being the bivariate normal density for W) and Wy, where
E(LVT(S)) = E("VS(,.)) =0,
var(W,(g)) = var (W) =1
and correlation between W, ) and Wy is given by

p:s = CcoIr (Vvv(b)avvs(r))

A
= comr | —& 0
FACI

1
= 1—_1_COV (W*(a)7 1V:(7)) y

T
k5 %
2 2
Ory Tss

by (4.1.1). It then follows by (4.0.6) and (4.0.7) that

*

g o= — (4.1.12)

o751

b=

which is same as the corr (lVr*(s), W:(r)). Note that similar to (4.1.8) A, in (4.1.11)

can be approximated as

S = 2 S0 (W (1) 72 (Wan (1)) (4.1.13)
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where
~ Ny , (4.1.14)
VV s(1) 0 [): s 1
yielding
cov(Y,,Yy) = Ay —Tolts = Ors (4.1.15)

4.1.2.1 Generation of two Correlated Standardized Normal Values

Let
- a b
prs 1 c d
we now find
1 I 2
Efm) = , (4.1.17)
lor a2

11
such that ¢ B0 = Y- Lett=a+d=2¢*=d=ad—be=(1—p:2)>0and

(rs

12 =742 =2+2/1—p2,. It then follows ( Somayya (1997)) that

l a+g 1+ +/1—pz2
11: =
t 21+ vT= 0]
1+\/1—p§

4.1.1
5 , (4.1.18)
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b s
Iy = - = Prs = Iy, (4.1.19)
E VT
and
; d+g 1+ /1 —p:2
22 _= =
! 201+ vT=7)]
1+ /1—p;?
- Prs ). (4.1.20)
Consequently
. Wo(sy W) 0
X im = ~ Ny ol (4.1.21)
II/s(l) W's('r) 0
implying that
WI'(.‘)) _ E% WT(*)
Wit W
by b | [ Wi
l12 [11 /M\_/:s(r)

where 111, {12 and [3 have

tively.

_ lllwr(s) + ZIQWS(T) (4 1 22)

LiaWoie) + LnWasr)

the formulas as in (4.1.18), (4.1.19) and (4.1.20), respec-
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of the binary response model. To be specific, we have computed the unconditional
mean, that is, E(Y,) = 7, by (4.1.8) for all » = 1,---, 5 and the unconditional co-
variance namely cov(Y,, Ys) = X,.s — Ty = 0Op by (4.1.15), where these formulas
contain 9, (73 and ¢. Note that for independent familial binary models, the associated
parameters were consistently and efficiently estimated by usi  the generalized quasi-
likelihood (GQL) approach, sce for example, Sutradhar (2011, Scction 5.2.3). In the
present setup, the neighhoring families are correlated and far distant familes would
be uncorrelated (independent). However, because the correlation structures among
the members of the same fanily as well as between the menibers of the neighboring
families are constructed in the last section, we exploit them here and following Su-
tradhar (2011), develop the GQL approach for the estimmation of /3, 03 and ¢. More
specifically in the following three subsections, we demonstrate how to develop the
marginal GQL estimating equations for the parameters. These marginal equations,
for example, the marginal estimating cquation for 3 will be solved by assuming that
other paramecters U;Zr and ¢ arc known. Similarly the marginal estimating cquation

for a'fr will be solved by assuming that /7 and ¢ are known, and so on.
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4.2.1 Marginal GQL Estimation for

Because the regression parameter vector /3 is of our main interest and because Opp 1
a known function of 7,, it is sufficient to exploit the first order responses {y,, 7 =

1,--, 5} to estimate 3 involved in {7, = E(Y,), r=1,---,5}. Consider

y = Uy ys) o (a2
with
EY) = 7 = (T, Ty, Ts) (4.2.2)
Next because
Y = var(Y) = (5n), (4.2.3)

where &, is constructed in (4.1.15), following Sutradhar (20 Section 5.2.3) and for
known 03 and ¢, we solve the GQL estimating equation for 3 given by

8—755‘1(3/ - 7) =0 (4.2.4)
o

Remark that as mentioned above, Sutradhar (2011, Section 5.2.3, equ. (5.52)) has
constructed the GQL estimating equation for independent families where binary re-
sponses from the members of a given family were correlated. In the present spatial

setup, unlike Sutradhar (2011 Section 5.2.3) the binary responses from the neighbor-

ing families are likely to be correlated. Thus, in general, families are not treated as




4.2 ESTIMATION FOR CORRELATED RANDOM EFFECT BASED PARAMETRIC
SPATIAL MIXED MODEL 107

independent to each other. However the far distant families would be independent.
Because when the location r is far away from the location s, that is, s >> 7, the far
distant families namely f, and f, will have n.; = n,s = 0. Consequently, in many
practical situations, the Y= var(Y) will have a band patte . That is, for s >> r,
7., becomes zero, making a large number of off diagonal with zeros. This makes
the inverse of the & matrix (i_l) manageable, even though 3 is a large dimensional

(S x §) matrix.

Let BGQL be the solution to the marginal GQL estimating equation (4.2.4). This

solution may be obtained where [} denotes that the expression within the square

brackets is evaluated at 3 = /3GQL( ), the estimate obtained for the tth iteration. In

~y o~

T on,
the derivative matrix — can be computed by using the formula for — ~ from
p y g

of o3
(4.1.8) for all » =1,--- .5, that is,

o,

EX) F(We G = w1 (Weo ()] (4.2.5)

IIMK.

Note that the GQL estimator for /3 satisfying (4.2.4) is consistent because E(Y) = 7
which makes the estimating equation (4.2.4) unbiased. Furthermore, because S is the
true covariance matrix of Y, the 3 estimator will also be more efficient than any other

estimators that uses ¥ = I or a working version of 3.
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which is similar to (4.2.10) for 03, but these equations are different because the deriva-

tives with respect to ¢ and 03/ arc different.

Let éGQL be the solution to the marginal GQL estimating cquation (4.2.12). This
solution may be obtained by using the customary Newton Raphson method. Given

that value of gbeQL(t) at the t'" iteratiomn, (ZSGQL(L‘ + 1) is obtained as equation

g—;\;ﬂ‘l(u — X)} (4.2.13)

~ ~1 —1
N o1 ax}
(t)

96 09

Q;GQL(t +1) = QBGQL(t) + {
(t)

wlhere [-](,), denotes that the expression within brackets is evaluated at (J;GQ L(t).

4.2.4 Computation of Derivatives

8~/
4.2.4.1 Computation of —;
O0c?

5

N

The derivative vector involved in the GQL estimating equation (4.2.10) can be

7
. _ N, 0N Y
computed by using the derivatives —L and =22, However the derivative —— can be
dol do? da?
. o . om, ~ .
computed by obtaining the derivatives using 902 (r =1,---,S5) only, where 7, is
Y

N

given by (4.1.8). Similarly the derivative 6—3— can be computed by using the formula
o
5

OArs . :
for — from (4.1.23) for all r #£ s,7,s =1,---, 5.
do?
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UYs
Jo

2
5

Computation of

Notice that in (4.1.8), o2 is involved only in o7, by (4.0.6) which has the formula

5 Ty

or. = 02[1+ (n, — 1)¢]. Tt then follows that

Tr

o7, Wi ()
907 = —Zw (Woeoy N1 = 75 (Wi (J ))][1%—(11,—1)@/5];?(4214)
Computation of ()—(7,3:
For convenience, using (4.1.23) we rewrite X,.s as
J
~ 1
A —]Z (B 02, $)a;(3, 02, ¢), (4.2.15)
where
exp {l,})) + 0'11 {[11”’ ( ) -+ [121/?\(,)(‘])}]
q;(3.02.¢) = . ———,  (4.2.16)
1t exp [+ 008 {Woin () + Wi ()}
and

(3.0%.6) = exp [xl"ﬁJr”:é {]mw )+l ()H (4.2.17
427,03 0) = 1+(‘XD[ f+0’w {llz”r(b)( )+l11”3(’)<J)H. o

Note that ¢; in (4.2.16) and go; in (4.2.17) depend on af only through o}, =
03[1 + (n, — 1)¢]. This is because [;; and [y, involved in these functions depend on

pro ((4.1.18) - (4.1.20)) which is free from 03. For clarity we re-express 03 as follows
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which is a function of the ¢ parameter only.

*

a.
* o TS
prs 1
* * 2
[O-rro-ss]

s (14 (s — 1+ 7y + 1) + Tpe] 02/ /e

[02(1 + (n, = 1)$)o2(1 + (n, — 1)9)]?
Ny (14 (Nps — 14 A + 7) 0 + 1005@) / /1070

[+ (n — 1))(1 + (s — 1)@)]?

= pr(Npy Mgy Mg, Ty gy Ty D). (4.2.18)
It then follows that
oq1 ; 1+ (n, — 1o o~ ) ~ )
8_(71; = (]1,,‘[——(*1—)—] (1111’1’}(3)(.7) + 112”&@)(]))
3 202
1+ (n.— 1o —~ . =~ .
- (112][(—).‘£)] (lllIi/r(s) (]) + 112"1/5(1") (J))
2007
1+ (n,—1)¢ ~ , = .

= q (1 - (111)[—(*‘1—‘2—] (111”/,'(.\-)(]) +112Ws(r)(J)>a (4.2.19)

2
20y

and shmilarly

0qa; 1+ (n,— 1o —~ , = .
2; = @1 — QZj)ul—)] (hz"‘";-w)(])+111H’s(r)(J))~ (4.2.20)
0(77 2(7:,1"’
It then follows from (4.2.15) that
Ohrs I [ 9qu Oqa;
s _ 1N Y /eIy 4221
J0? 1; [aag =1 (4.221)

g1 4 Oqa;
where 112] and - 12,] are given in (4.2.19) and (4.2.20) respectively. This completes
da? do?

the computation for the dertvative required in the GQL estimating equation (4.2.10)

L9
for o
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NG
4.2.4.2 Computation of —
0¢
7
Next the derivative vector % involved in the GQL estimating equation (4.2.12) can

N N N
1

:
be computed by using the derivatives o Land 3 2 Further the derivative can
®

Ty
be computed by computing the derivatives usin — (r=1,---,8) only, where
g &35 P

—~
!

~ - . OA :
7. is given by (4.1.8). Similarly the derivative agZ)Q can be computed by using the

OArs
formula for ad)‘ from (4.1.23) for all 7 # s,r,s =1,---, 5.

on,
3<b

Notice that in (4.1.8), ¢ is involved only in o},, by (4.0.6) which has the formula

of. = 02[1+ (n, —1)¢]. It then follows that

rr

Wi (J)

2

Qil = _Zw (Wi UNIL = 75 (Wi O] [(n — 1)?] - (4222)

2077

rs
.

0p

Computation of

Note that ¢;; and ¢o; are involved in A, in (4.2.15) contains o7, 0%, i1, and [1o which
all are function of ¢. For convenience, we compute the derivatives of these functions

with respect to ¢. That is,

(4.2.23)
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08% = (n,—1)o2 (4.2.24)

Further

/)rs - (9@5
[Mrs — 1+ 70 + g + M) [ /Tt
(1 + (= D)L+ (n, — 1))
Nps [+ (Nrs — 1+ Ty 4 725) ) + 705 @) [(ns —Dy/1+(n — 1)¢}
B Veng(1+ (n, — D)@)(1 + (ns — 1)¢)
N [L+ (Nps — 1+ o 4 715) @ + Tys D) [(nr — 1/ 1+ (ns = 1)d>}

_ (4226
Vs (1+ (n, — 1)) (1 + (ns — 1)) ( )
and
GUTI Prs N pEaprs
00 a1 yTpE)  VIZpE[1+VT=5)
= 1}, (say), (4.2.27)

for which pj: may be replaced by using (4.2.26). It then follows that

2

91, (n,— 1o ~ . T s
__0% — (h.f(l — qu) [ ¥ (anT(S)(j)+112Ws(1-)(1)>

1
vl
20’r1"2

+ 03 (W) + o ()] (4.2.28)
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4.2.5.3 Construction of M

The computation of the elements of the S(S 4 1)/2 x S(S + 1)/2 matrix M requires
the computation of cov(Y,Y, 1, YsYsy) forall rs=1,---,5 — L.

Case 1: For r = s, we obtain

cov(Y, Y, 11, Y, Yo 0) E(Y?Y2,) — E(Y, Y, ) E(Y.Yo)

~— ~

- 2
- AT‘,I‘-}-I - Aq‘,r-}—l

/\'r;r+1(1 - /\r,'r+1) (4237)
Case 2: For r # s, we compute the fourth order moments given by

cov(Y, Vi1, YY) = BV, nYYen) — E(YVYr)E(YYn)

= gr,r-l—l,s,s+1 _Ar,r'+lxs,s+1 (SCW) (4238)

Under the normality assumption, similar to the approach of third moments, we fol-

low Prentice and Zhao (1991) [see also Sutradhar (2011, section 8.3.1)] and derive

Errt1,s,5+1 from

E(Yr - %1)(}/5 - %.s>(yvt - %t>()fu - %u) = E'r'sgt'u + 5rlgsu + 5ru551. (4239)
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Thus, by using (4.2.39), we then obtain the fourth order product moment under

normality as

~ _ VYoV
6r,r+l,s,s+l — E() 1'} 7'+1}/s}/s+l)
= Opr410s 541 + OrsOr41,5+1 + Ors+10r41,s
+ Or,r+1,s7rs+1 + Or,7'+],s+17rs + 67‘+1,s,s+17rr

- G7‘,r+17rs7rs+1 - O’S‘s+17r7.’ﬂ'r+1 — OpsTrg1Ts41 — Ur+1,s+17rr7rs

Oy s+1Tr4+1Ts = Org1,sT T s4 1 + 37r7'7rr+]7rs7rs+1 (4240)

This completes the construction of the S(S + 1)/2 x S(S + 1)/2 matrix M.
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