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Abstract

Fuzzy Logic is relatively a recent development in the field of artificial intelligence. Since

1975. research and development in this field has had significant impact on industrial control

including applications in many consumer products. A survey of the literature suggests that

the majority of fuzzy control applications belong to the class of fuzzy PIO-like or simply fuzzy

PIO controllers. Also the literature re'veals that the existing design criteria require trial and

error methods involving many computer simulations and need time to achieve satisfactory

optimum control. This thesis presents a systematic study and analysis of fuzzy PIO-type

controllers \....1th particular attention to process control. The work aims to remove the ad-hoc

procedures and multi-dimensional complexity in the conventional fuzzy control designs and

to present an analytical framework for the systematic design of fuzzy logic controllers.

The work investigates different fuzzy PIO control structures including the conventional

:'-.Iamdani-type controller. By expressing the fuzzy rules in different forms, each PID structure

is distinctly identified. The rules are "'Titten in terms of the feed back error signals of a closed

loop control system. Therefore a general fuzzy PIO controller output may be produced

\vith three-, two- or one-input rule inference. A simple analytical procedure is developed to

deduce the closed form expressions for generating outputs for general fuzzy PIO controllers.

The analvsis starts with a linear-like fuzzv controller. Nonlinear fuzzv controllers are then• • •

systematically developed. The solution algorithm has the capability to generate the closed

form expressions to the general three-input fuzzy inference. The two- and one-input inferences

are obtained as special cases of the general solution. The linear-like fuzzy output is used to

identify the fuzzy PID actions in a dissociated form. The design of fuzzy controllers is then

treated as a two-level tuning problem. The first ievcl tunes the nonlinear PIO gains and the

second le\'el tunes the linear PID gains. By assigning a minimum number of rules to each Pill

structure, the linear and nonlinear gains are explicitly presented. The tuning characteristics

of each structure are evaluated with respect to their functional behaviours. The rule de

coupled and one-input rule structures proposed in this thesis provide greater flexibility and

better functional properties than the conventional fuzzy controllers.

Non-linearity analysis is used to assess and rank the different fuzzy systems for fuzzy

control. The normalized fuzzy output characteristics are identified for two-point control.

•
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Thus, a performance criterion is developed to identify the non-linearity tuning properties of

the fuzzy controllers. For each fuzzy PlO type, a basis for non-linearity-tuning is developed.

Using the new evaluation approach, different fuzzy systems are assessed. The min-max

gravity fuzzy reasoning has shown better nonlinear properties for fuzzy control applications.

An alternative nonlinear control using spline-based functions is proposed. The geometrically

based nonlinear controller has better nonlinear properties for PIO control.

Linear PlD controllers are analyzed in detail. The study is narrowed to process systems

whose dynamics can be roughly approximated to first-order plus dead-time plant systems.

The PID analysis covers the process systems having nomlalized time delay ranging from zero

to any higher value. The time-domain-based analysis produces new PlD tuning expressions

for each casc. The proposed tuning rules accommodate actuator saturation limits and avoid

integral wind-up during the control. Numerical studies are made for higher order processes

having monotonic open-loop characteristics. \Vith the new tuning rules better performance

is observed than with other commonly available tuning methods.

Fuzzy pm controllers are then evaluated for process control. A Dovel two-level tuning

scheme is proposed for designing and tuning fuzzy controllers. For comparisons, three tuning

methods are evaluated; (a) design based on a genetic algorithm (b) design based on a trial

and error method of tuning and (c) design based on two-level tuning rules. The off-line design

methods. such as genetic based tuning and trial and error based tuning, are unable to produce

any improved control compared to linear PlO controllers. The two-level tuning strategy uses

the a\'ailable linear control knowledge, and the resulting design always guarantees better

performance than the linear controllers. The numerical simulations prove the new tuning

method can be effectively used for any fuzzy PlO controller type. Finally the two-level

tuning is effectively implemented in a real time control problem. \Vith the systematic two

level tuning, the fuzzy controllers are able to produce superior and improved performance

to linear PIO controllers. The design and tuning is simple and therefore the method can be

extended to any process control problem.
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Chapter 1

Introduction

1.1 General Background

Fuzzy Logic. which later became the Fuzzy Logic Systems (FLS) theory. is a mathematical

concept that brings together the reasoning used by people with common sense and rules

of thumb for the purpose of computer-controlled applications. The theory of vagueness (or

fuzzy) extends from the early part of this century [11. In 1965 Lotfi Zadeh of the University of

California at Berkeley published the land mark paper "Fuzzy Sets" [2]. Although this work

has been criticized for not properly citing and referring to the very early work of multi-valued

logic by various logicians and scientists namely. l\[a.x Black. Charles Sanders Pierce. and Jan

Lukasiewicz, Zadeh is presently considered to be the father of fuzzy logic [11. The main reason

for this recognition is that his work was able to cause a breakthrough from the conventional

two-\'alucd logic principle. l\Iore importantly his approximation theory contributed much to

the development of knowledge based decision-making systems and made significant impact on

many branches of engineering applications. The field amalgamates the cognitive information

and set theory to encode linguistic fuzzy commands to represent the human decisions using

numeric terms. The recent work of Zadeh on "computing with words" [3] attempts to fuse

the fuzzy reasoning with probability theories for representing human decisions in a mathe

matical form. Control engineering is one of the major areas where fuzzy theory has been

successfully applied. The approximate reasoning or compositional rule of inference [4] com

bined with fuzzy logic has become the rule of fuzzy inference [.5] for decision making in Fuzzy
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Logic Control (FLC). The fuzzy mathematics has been studied extensively since Zadeh's

contributed work and the recent developments in universal approximation theory [1. 6, 7J are

clear demonstrations of the progress. In 1974. l\Iamdani [8] pioneered the investigation of the

feasibility of using compositional rule of inference that had been proposed by Zadeh [4], for

controlling a dynamic plant. A year later. l\Iamdani and Assilian [9J developed the very first

real-time implementation of FLC to control a laboratory steam engine plant. Inspired by

this original ,vork, FLC has been successfully implemented in many industrial applications

including many commercial products [1. 10. 11]. Fuzzy control subway systems, combustion

controL washing machines, cameras and camcorders. anti-skid breaking systems are few real

time applications for which FLC has shown its potential in dealing with ill-defined and non

linear control problems. Also. the encoding of human experience into fuzzy paradigms avoids

exhaustive search of exact system models and provides for an ex-perience based problem solver

[5. 12. 1:3].

In IllOSt FLC applications, the fuzzy controller replaces the existing linear Proportional

(P), Integral (I) and Derivative (D) or PID controllers. This is not a surprise since linear

PID controllers are used in the majority of industrial control loops [14J. The direct fuzzy

representation of a PID controller is referred to as fuzzy PID-like [15] or simply fuzzy PID

controllers. In a strict sense. the very first fuzzy controller applications [8, 9J were fuzzy

PI controllers. This is the most common configuration adopted in many FLC applications.

Therefore a significant number of in-depth theoretical and analytical investigations related

to the l\Iamdani-type fuzzy PI structure were reported [16]-[31]. These researchers have

contributed much to realize fuzzv control action in a more exact form and were able to-
provide greater transparency and also scope for analyzing fuzzy controller's controllability.

stabihty and tuning for real-time applications.

The linear PID controller has a degree of adaptive capabilities to cope with parameter

changes and model uncertainties [32J. OveralL the conventional PID controller has more

design and tuning techniques available than intelligent controllers. Also the controller can

be easily implemented (either in digital or analog form) compared to the complex fuzzy con

trollers or nonlinear control schemes [33J. Therefore the linear PID controller is still by far

the most popular controller element today, even for nonlinear plant models [34]. Despite the

complexity in designs, fuzzy controllers have generally shown improved performance com-
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pared to linear PID controllers [5, 351. However, in certain cases it has been reported that

fuzzy controllers were unable to perform better than the linear PID controller [29J. Also,

certain fuzzy controller designs have been highly criticized in the face of linear PID designs

[:36]. There are mainly two reasons for trus. First, if the knowledge base system is not care

fully selected for the given plant conditions, then any arbitrarily selected fuzzy system may

produce poorer performance. Even in the presence of well-defined expert rules, the improper

encoding or formulation of fuzzy variables can result in a bad controller. Second, when the

linear PID controller is not properly defined for the comparison, then the claim of superiority

of the fuzzy controller will become meaningless.

The fuzzy controller design is still a somewhat '"fu==y' process. This is due to the existence

of different fuzzy mapping systems and also due to its multi-dimensional nature. Compared

to the three-parameter linear PID controller design, the fuzzy PID variables can range from a

minimum of three to any higher number, depending on the complexity of the knowledge base

representation. Kosko [lJ referred to this as "the curse of dimensionality'. Rule exploration

and reduction of rule base size [37] or compression of rules [38] have recently been given

much attention to ease the curse of dimensionality. Although some still believe that there is

no systematic design method for fuzzy controllers [15], several methods have been proposed

during the recent years for systematic fuzzy controller designs [1].[39]-[43J.

The fuzzy knowledge base system provides nonlinear transfer elements for nonlinear con

trol [i5]. The problem of designing a fuzzy system is considered as an approximation problem

[4-1]. Generally the non-linearity that is required by a given process control system is un

known in the design process. The majority of FLC design techniques use off-line computer

simulations (numerical optimizations [39]-[-11J or training algorithms [1, 42]) to find the un

known nonlinear controller. While these methods have shown promising results for specific

controller applications, there is a difficulty in generalizing such fuzzy controllers for a wider

range of process specifications. Also, the solution is not guaranteed to offer a better per

formance controller upon implementation in real-time control. In contrast, the linear PID

design techniques are quite satisfactory and well suited for wide range of process specifica

tions. Fuzzy control is relatively new and unexplored. The challenge is to find out what it is

good for, and more importantly, what it is not good for [45]. Therefore the main objective

of this thesis is to perform a systematic analysis and design, particularly for devising simple
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and practically possible fuzzy controllers for process control.

1.2 Overview of Fuzzy PID Control and Problem Identifica

tion

There are several types of fuzzy control systems that use FLC as an essential system compo

nent. As mentioned in Section 1.1, the majority of applications during the past two decades

belong to fuzzy PIO (or PIO-like) controllers. Detailed lists of past applications are described

in Chapter 2. These fuzzy controllers again can be classified into three types: Direct Action

(DA) type, Gain Scheduling (GS) type and combination of DA and GS type. Figure 1,1

shows the arrangement of different fuzzy PID controllers. Again the majority of fuzzy PID

types belong to the DA class of controllers: here the fuzzy PID controller is placed within the

feedback control loop to compute the fuzzy PIO actions through fuzzy reasoning. In GS type

controllers, the fuzzy inference is used to compute the individual PID gains and the inference

is either an error-driven self-tuning process [461 or a performance-based supervisory tuning

[5]. The fuzzy reasoning in either DA or GS types attempts to provide a nonlinear hyper

plane (or surface or curve) for the controller output. Therefore. in a strict sense, the fuzzy

prD controller is a nonlinear PID controller with varying equivalent PID gains with respect to

the error state variables, as opposed to linear PIO control policy in the conventional schemes.

However, any designer will eventually be faced with determining a considerable number of

parameters before implementing any type of a fuzzy PID controller. The unknown design

parameters that are related to fuzzy control can be first divided into two groups as shown in

Table l.l.

The design task has two main components. The first problem is to determine the knowl

edge base parameters or a fuzzy system to generate the necessary crisp control action. The

second task is to tune the controller to obtain the desired performance of the process response.

Fundamentally, the first task is derived from the knO\vledge acquisition process [1, 5, 421 or

automatically synthesized from self-organizing control architecture [47]. In the conventional

two-input type fuzzy controller (or Mamdani-type controller), the error and change of error

in a given sampling instant are mapped to a two-dimensional crisp output surface in the

error state space. \Vhen the tuning process (second task) is ignored then this output rep-
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Figure 1.1: Fuzzy PID controller systems in closed-loop control

Table 1.1: Fuzzv control design variables
•

Knowledge base variables Tuning parameters

Input variables to the FLC Normalizing scale factors

FLC configuration De-normalizing scale factors

Output variables of the FLC Linear PID gain parameters

Fuzzy variables and ~Iembership functions Support sets and their positions

"If-Then" rules

Fuzzy Reasoning schemes

-;)



re:;ents the numerically coded. multi-level human experience or knowledge acquisition in the

process of control. Such experience is usually not available for inner loop control problems.

As an example. for high-speed control of robot manipulators the human experience is more

in supervisory' level control than in direct loop control [5j. Therefore in most direct fuzzy

control applications, the task of defining a suitable knowledge base is a trial and error process

or simply a preference that one makes from available fuzzy control systems. On the other

hand in a supervisory tuning (GS type) the manual tuning heuristics that are available with

a control expert are not precise enough for achieving a stable fuzzy controller. As a result

such self tuning systems face the problem of tuning-in-tuning. By considering the existing

design complexity and some misconceptions that exist in the current research. three major

problem areas have been identified. In a systematic analysis process, these problems are

interdependent. However, they are distinctly represented for clarity.

1.2.1 Problem I: The FLC structures and Input/Output Variables

The first problem type is related to the overall fuzzy controller configuration. Due to the

wide range of applications of the most common Mamdani-type (fuzzy PI or PO type) rule

based structure. this controller is now considered to be the conventional fuzzv PIO controller. ~

[48]. However. in the past some difficulties associated with the tuning of this controller have

been observed [48]. Therefore it can be argued that other types of fuzzy PID configurations

are possible in the context of different knowledge based representations. The lack of under

standing of the fuzzy PIO configurations sometimes leads to misinterpretations as well. For

example, the fuzzy PO controller in [24] has been used to control a non-self-integral t}-pe

process. From control fundamentals it can be argued that such processes require some form

of an integral action or an estimated finite controller signal to produce the steady state per-

formance. Therefore the issue is how a PO type controller was able to produce the steady

state performance with no integral or estimated control component. The second example

the author wishes to cite is the fuzzy PI controller with anti-windup capabilities [49]. This

controller has been used to control a self-integrating type process. Such processes can be

simply controlled by a PO type controller with no integral action. The requirement of an

integral control for a position control type problem that is shown in [49] is unnecessary since

the steady off-set is always zero for such processes. If a PI type controller is employed. then
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windup would definitely cause oscillation in the response. However the anti-windup PI con

troller in [49] has shown good response (with no overshoot) which is theoretically impossible

with a PI t.ype controller. Therefore the following issues are identified with respect to the

problems im'olving different fuzzy PID structures.

I. How different input and output feedback error variables are determined to produce the

individual or composed fuzzy PID actions.

2. How these input/output variables are correlated through fuzzy inferences to generate

different fuzzy PID configurations.

3. How these PID configurations are differentiated with respect to their functional prop

erties.

1.2.2 Problem II: Evaluation of Fuzzy Logic Systems

By observing the variables associated with fuzzy controllers in Table 1.1, there are enormous

numbers of possibilities that lead to different fuzzy mapping systems. Mendel [50] states

that this feature of having many possibilities does not require detailed understanding of a

fuzzy system and he argues that each is analogous to the representation problem that we

always face in engineering. This statement is partially true for two reasons. First. the

choice of an FLS is not arbitrary. Some degree of optimization and suitability is necessary

to enhance quality. As an example, a choice of PID-type versus sliding-mode type fuzzy

controllers or DA type versus GS type PID controller, belongs to a representation problem.

Thus. ~Icndel's statement is valid. Given a representation. there are many fuzzy systems

that can provide satisfactory performance to a selected problem. ~Iany fuzzy systems have

redundant variables (not absolutely, but for practical situations) and as a result different

fuzzy systems have similarities. Therefore even if t,vo fuzzy systems are different in the

representation, functionally both may be the same. However with respect to the required

functional properties, one mapping system may be superior for control or implementation

to the other. In that sense Menders argument is not valid. As an example, for producing

linear output functions, one FLS may require a larger number of if-then rules [22] whereas a

different FLS may only need a small number of rules [26, 39]. The argument can be extended

to any nonlinear function in general.
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In addition to the Zadeh-Mamdani fuzzy reasoning, many other types of fuzzy inference

systems and de-fuzzification strategies [15, 51] have been used and developed in the past.

Some attempts have been made at evaluating different fuzzy reasoning systems [20, 31, 52].

The present reasoning schemes or FLS theories can convert the words or linguistic labels to

mathematics or numeric form but be unable to perform the reverse operation. This means

the theory is insufficient to convert the numeric data (or inferred fuzzy set) to a linguistic

label. If a fuzzy reasoning is able to produce similar linguistic commands as a human expert,

then such a fuzzy mathematics could become absolutely standard as in crisp mathematics.

FLS theories have largely bypassed this issue by the de-fuzzification process. As a result the

present FLS theories accommodate any form of inference method as long as they serve the

purpose. Although certain fuzzy representations have gone far away from the natural logic

of vague theories, those systems have also been accepted as valid fuzzy reasoning schemes.

The Takagi-Kang-Sugeno or TSK type fuzzy representation [39] is a clear example of that

kind. However, if a fuzzy controller is considered as a nonlinear controller, then different

fuzzy systems can be compared and evaluated in terms of non-linearity for more efficient and

improved utilization. Therefore in this thesis the author wishes to explore other non-fuzzy

types, that are functionally equivalent to fuzzy control systems. The particular issues related

to this problem area are:

1. Identification of different fuzzy reasoning methods and their applicability to fuzzy con

trol.

2. Determination and formulation of performance measures to identify the non-linearity

characteristics and their effects on overall performance of FLC systems.

3. Evaluation of different fuzzy representations and reasoning schemes for better and effi

cient control.

1.2.3 Problem III: Fuzzy Controller 'lUning

.\Iost fuzzy products and systems that have been developed as commercial products are

based on expert rules [1, 5, 11]. The numbers of rules in most applications are quite small

for realizing an approximate fuzzy control system. HO\vever, fuzzy controller tuning is the

hardest task. Given a FLS. the tuning procedure can e.xtend to several hours or weeks of
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software trial and error simulations [1]. As mentioned earlier, even the self-tuning controllers

suffer the tuning-in-tuning. Also, most of the available tuning methods fall into the category

of systemized random-search-oriented systems or data-driven learning systems !1].

In general the tuning of any fuzzy control system involves t\VO levels of tuning [48]. The

first level determines the non-linearity characteristics of the controller. This is achieved by the

knowledge base parameters of the FLS. The second level determines the overall characteristics.

The scale factors including normalized/de-normalized gains and other linear gains pro\ride

the overall magnification of the nonlinear controller output and hence the second level of

tuning achieves the overall performance. In some fuzzy applications, the first level was

determined a priori and then the second level parameters were either adjusted or tuned

to achieve the desired response characteristics. The author believes this kind of a study

loses the real meaning and usefulness of fuzzy control unless an a priori fuzzy system has

been functionally proven elsewhere. This is the key reason why the majority of applications

follow the conventional type fuzzy pro system. There are two reasons why two-level control

identification is important for systematic designs. First, the high level tuning enables to

reduce the multi-dimensional complexity. Second, the effect of knowledge-based control is

isolated from the conventional (or linear) control characteristics and thereby the limitations

of fuzzy systems are well recognized. The present computer-aided tuning methods have the

disadvantage of separating these two le\'els of design. Those methods provide powerful tools

for handling larger number of variables for the optimization. As a result the designers have

over trusted those techniques and have set aside the traditional and well-developed linear (or

nonlinear) control theories that have been developed through years of research. At the other

extreme intelligent control systems are either criticized or ignored by the traditional control

experts [36]. They often believe these systems are just unnecessary complications and that

such systems are impractical for real-time control. Some researchers have attempted to fill

this gap by bridging the conventional and fuzzy theories for tuning fuzzy controllers [43].

The importance of using conventional design techniques and the dangers of using ad hoc

procedures for the design of fuzzy control is well explained in [45]. Therefore the issues

related to this problem area are:

1. The identification of tuning levels where the knowledge based system is more transpar-
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ent to control performance.

2. Tuning methods to cover a """ider spectrum of process control problems.

3. Accommodation of linear control theories for fuzzy control design.

4. Computationally economic and less complex tuning procedures which control engineers

can easily implement for real-time control problems.

5. Capabilities of the tuning process for implementation in adaptive and self-organizing

control environments.

1.3 Research Objectives

The main objective of this research is to establish a systematic design procedure and an

analytical framework for design of fuzzy logic controllers. The research attempts to address

three major problem areas that have been identified in the above section. Since the PID

controllers are more common particularly for process control problems. the research is focused

on the development of fuzzy PID controllers.

1.3.1 Controlling Process

This study is focused on the typical feedback control of single-input single-output (5150)

processes. In the final designs. the work is further narrowed to the class of problems that

ha"'e monotonic open-loop response except for the initial time period (or lag time) where

such processes can be crudely approximated by first-order plus dead time process models.

Such dynamics are common in many industrial process systems. However, the proposed FLC

design in this thesis can be easily extended for other classes of process models.

1.3.2 Systematic Design Procedure

In order to achieve the main research objective of this thesis and to address the main issues

related to the three specific problem areas. a systematic flO\v of analysis has been identified

as shown in the Figure 1.2. The figure indicates that the study has two parts. The first
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part contributes to static fuzzy PIn development and the second is for analyzing the self

organizing behaviour of fuzzy controllers. The steps are inter-related. Much of this thesis

work is concerned with static FLC designs. The term "static" means the fuzzy system would

not adapt or self-adjust to dynamic changes in the process or environment. On the other

hand, the fuzzy system has nonlinear control characteristics that would eventually produce

self-robustness in the controller [43]. This study will provide the basic features necessary

for dc\"ising a self-organizing fuzzy controller with auto adaptive capabilities. Therefore the

objectives of this research are to:

1. Propose a systematic procedure for establishing fuzzy PIn control architectures using

different knowledge based representations.

2. Investigate the functional behaviours of these controllers by establishing closed-form

solutions to different fuzzv PIn controllers.
•

3. Systematically reduce the dimensionality in the fuzzy systems for tuning.

4. Develop a new evaluating scheme for identifying and comparing different fuzzy systems.

5. Establish a simple and easy tuning scheme for fuzzy controllers in such a way that the

performance is always guaranteed to be better than the linear PID controller.

6. Incorporate the existing PID tuning rules and theories for fuzzy controllers so that the

proposed fuzzy controller designs can be readily used for other process specifications as

well.

7. Identify the necessary functional properties to establish a systematic design procedure

for self-organizing fuzzy controllers.

1.4 Organization of the Thesis

Chapter 1 addresses the importance of fuzzy system theory in fuzzy control. The main

problem areas in the fuzzy controller design are explained. This chapter ends by providing a

list of original contributions.

Chapter 2 provides a detailed literature review of fuzzy controllers including static and

adaptive fuzzy controllers. The literature review explains how the past researchers have
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attempted to solve the problems identified in the first chapter. The existing design techniques

are briefly explained to identify the limitations in those approaches.

Chapter 3 performs an analysis of direct action fuzzy PID controUers. The general classes

of fuzzy PID controllers are shown. In addition to the conventional fuzzy controller structure.• ••

other possible classes of fuzzy PID controllers are identified. For evaluating the functional

properties of different controller structures, the closed-form solutions of different fuzzy system

outputs are derived. The functional properties are identified for comparing different FLS

configurat ions.

In Chapter .:1 a nonlinear analysis is performed for ranking and identifying different fuzzy

systems for control and tuning. Performance measures are defined for evaluating the non

linearity properties in the fuzzy systems. Also at the end. an alternative nonlinear control

strategy. using B-spline curves is explained.

In Chapter 5 a time-domain analysis is made for linear PID controllers and a new tuning

scheme for linear PID controllers is described. At the end numerical simulations are performed

to confirm the performance.

In Chapter 6. a two-level tuning scheme for fuzzy PID controllers is developed. For

comparison of the new scheme, two other tuning methods are examined. The new fuzzy

tuning method uses the linear PID tuning rules de\'eloped in Chapter 5. Important tuning

heuristics related to fuzzy control are established. At the end, the method is implemented

in real time to control the temperature in a soil-cell. Due to the time limitations of this

thesis work, further investigations on self-organizing ability of the fuzzy controllers have not

been completely performed. However, important features of the two-level tuning described

in this chapter can be effectively incorporated to establish an adaptive fuzzy controUer with

self-organizing ability. Therefore at the end of chapter 6, a systematic design procedure for

self organizing fuzzy controllers is proposed.

Chapter 7 summarizes the research work and provides suggestions for future work within

this area of research.

1.5 Original Contributions

• New fuzzy PID configurations have been identified. The proposed Pill structures have
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better functional properties than the conventional fuzzy PID controllers.

• A new analytical procedure is presented for the general three-input fuzzy inference based

on min-ma.x gravity reasoning. The two and one-input fuzzy outputs are obtained as

special cases of the general three-input solution. The analysis is systematically extended

to obtain solution algorithms for non-linear like fuzzy controllers. ~Iore significantly,

the ne\\" solution algorithm avoids using excessive number of nonlinear expressions (e.g.

48 expressions for general three-input based solution). The simplicity is achieved by

introducing a new transformation technique to the solution algorithm.

• Functional properties are identified to compare different fuzzy PID configurations.

Fuzzy controller tuning levels are identified by defining apparent linear and apparent

nonlinear PID gains. For each fuzzy configuration the tuning parameters are explicitly

presented.

• A new evaluation scheme is presented to compare the applicability and efficiency of

different fuzzy reasoning schemes for fuzzy PID control. A new graphical representation

is developed to identify the non-linearity characteristics and thus the performance of

fuzzv controllers.-
• An alternative nonlinear PID controller using spline-based functions is developed.

• :\"ew tuning rules for linear PID controllers are proposed. The proposed tuning rules

are applicable for the normalized dead time ranging from zero to any higher value. In

addition the new tuning rules have the flexibility to design PID controllers to avoid

integral \vind-up. which is associated with the actuator saturation.

• A new t\vo-level tuning scheme for fuzzy PID controllers is proposed. The proposed

method uses the existing linear PID control theories and guarantees better overall

performance than the linear PID controller. The tuning method is general and can be

effectively used for any fuzzy PIn type controller.

• A new self-organizing fuzzy PID controller is proposed.
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Chapter 2

Review of Literature

2.1 Introduction

Over the past two decades there have been an increasing number of fuzzy controller ap

plications in many industrial applications and a considerable amount of research has been

performed for identifying the functionality of fuzzy controllers for better utilization and ease

of design. The very first fuzzy controllers developed by Mamdani and his co-workers in [8, 9]

were equivalent to fuzzy PI-like controllers. In [9] the pressure error and speed error sig

nals were used to generate the incremental fuzzy PI controller signals to control the throttle

opening change and heat input change for operating a laboratory steam engine plant. This

application has demonstrated the robustness of fuzzy controllers, particularly for nonlinear

process control. A. similar fuzzy PI controller was later reported [531 for temperature control

of a stirred tank. During the same period Kickert and Lemeke [54] implemented both PI

type and P type fuzzy controllers for control of flow rates in a warm water plant. Mamdani's

pioneering work also introduced the first and nm.... the most common fuzzy reasoning method,

called Zadeh-Mamdani min-max-gratrity reasoning for fuzzy control. This chapter intends to

evaluate the past developments since the ~Iamdani'swork in the area of fuzzy control.

2.2 Theoretical Evaluations

One of the main advantages of fuzzy logic systems (FLS) is that it has better transparency

amongst the available soft computing techniques. This means the input-output nonlinear
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mapping of fuzzy systems may be expressed either as closed-form expressions or as graph

ical forms. As a result. considerable in-depth analytical investigations \,,,'ere undertaken to

understand the functionality and thus enhance the design efficiency of fuzzy controllers.

2.2.1 Rule Base development

Braae and Rutherford [16] pioneered the theoretical investigation of fuzzy logic control (FLC)

systems. The characteristics of the rule base on plant performance was systematically ana

lyzed to show the selection and adjustment of fuzzy parameters. ~Iore importantly. linguistic

stability and steady state analysis '''''ere done for a systematic development of a fuzzy rule

base. Also the linguistic stability was analyzed by defining rules for obtaining linguistic ex

plicit and implicit steady state convergence in a linguistic phase plane. Although this analysis

is more qualitative compared to present status of fuzzy controller theories, the rules described

in the paper are helpful to design fuzzy rule bases within safe stability margins. In 1990, Lee

published a two-part significant paper [55] in FLC. The theories of FLC and design descrip

tions were well presented for many researchers to follow. Lee [55] identified the rule base by

referring it to a closed-loop trajectory in a phase plane. Later Li and Gatland [56] used a

similar state space trajectory approach to generate rule bases for fuzzy PIn control. Linear

control rules have been analytically investigated in [181. Later linear and product rules have

been im'estigated in a more general form [57]. Generation of rules by sub-division of the

state space is shown in [151. Some researchers [1, 15, 30. 55] suggest that having more rules

near zero error region, assuming that fine partitioning near zero error, would improve the

control resolution and therefore expect accurate control. However. more rules would reduce

the fu::.::.iness in the rule base [5] and make it more deterministic and rigid. If the control

rules are designed with a monotonic style (usually a required property for fuzzy control),

then fine partitioning usually creates a linear control policy near zero. This means the real

benefit of generating the unknown nonlinear mapping in fuzzy systems would be lost while

constraining the system to follow a linear control policy.

16



2.2.2 Inference Analysis

In early FLC applications, the controller outputs were computed off-line using fuzzy inferences

and the final control actions were prepared in the form of a look-up table for implementations.

The membership values of the fuzzy sets (or term sets) and the associated elements in the

universe of discourse were defined in a discretized form. Therefore the accuracy of this method

depends heavily on the level of discretization of controller variables" Also, any alteration of the

fuzzy system would require repeated tedious calculations of new look-up tables. Therefore.

closed-form analysis of fuzzy inference would resuit in both faster on-line implementation and

also convenient accommodation of any parameter variations in adaptive control schemes. In

addition, it produces a new environment for classical fuzzy controller analysis.

Ying and his co-researchers [18]-[23] have been able to deduce closed-form expressions for

the output of a fuzzy controller. Their initial work had two parts. In the first part [18], they

ha\"e analyzed the fuzzy controller under various fuzzy logic principles and deduced a perfect

linear controller using the mixed logic. In the second part [19], the nonlinear FLC action was

explicitly presented and closed-form expressions were deduced for equivalent nonlinear P and

I gain terms. A linear de-fuzzification process has been proposed in the latter for emulating

linear PI actions. Similar work has been later reported by Ying [20]-[22] regarding inference

analysis and this has shown that a fuzzy controller action represented in a linear-like form is

a global two-dimensional multilevel relay and a local nonlinear PD controller. Although Ying

and other co-researchers contributed works ha\"e some constraints for a general fuzzy system,

the analyzes have provided the scope for exploring the functionality of fuzzy controllers.

Similar approaches are found in [24, 25. 29] for obtaining the closed-form solutions to the

fuzzy controller output. A more general nature of analysis is shown in [57]: this uses both

linear and additive (or product) rules for the analysis in contrast to linear rules in Ying's

work. The analyzes shown in the above references were based on Zadeh-l'vlamdani min

ma..x-gravity (MMG) fuzzy reasoning, except in [20] where different reasoning schemes have

been analyzed for comparison. In the ~Il\IG reasoning the conjunction AND operator and

the disjunction OR operator are interpreted \vith min and rna..x operators respectively and

the final defuzzification is performed by taking the center-of-area of the inferred fuzzy set.

Due to the discontinuity of the min-ma..x functions, the closed-form expressions of the FLC
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output based on the Mj\IG reasoning have a multi-phase solution structure. To avoid this

discontinuity the AND and OR operators can be represented by product and sum functions

respectively. Therefore product-sum-gravity (PSG) reasoning has become popular during

recent years. for expressing the FLC action in a more compact form [26J. Such an inference

would allmv the knowledge base system analysis to be less complex. even with nonlinear

knowledge base [58J, than the linear representation of Ying's work. In 1985, Takagi and

Sugeno [391 introduced a new representation to fuzzy rules. The method is popularly known

as Takagi-Kang-Sugeno or TSK method and it has been v.idely employed in many fuzzy

products. particularly in Japan. In the TSK representation the outputs of niles are expressed

in a functional form. Therefore TSK method is easy to analyze compared to traditional

fuzzy rules. Although this representation has greatly reduced the linguistic and natural

representation of the conventional rule base systems, the method is numerically efficient for

process modelling and identification when it is used with optimization methods. In [39J. the

TSK fuzzy system has been used to model and optimize industrial process control systems.

Sugeno further extended the TSK based research for many engineering applications [59, 60.

12]. \Vhen both TSK and Zadeh's systems employ fuzzy singletons for the output fuzzy

variables, both systems become identical. Using least squares error criteria, Fileve and Yager

[61] derived an equivalent Zadeh's rule based PD controller from the TSK solution. The fuzzy

reasoning based solutions with standard fuzzy inferences are usually difficult to express in

algebraic form. In order to improve the computer aided designs for fuzzy systems, the FLS

inference are now popularly expressed in algebraic forms [1. 1041-
•

2.3 Classification of Fuzzy Control Systems

This literature search reveals that there are several types of control systems that use FLC

as an essential component. In [62] the FLCs were classified into seven different types. The

classification was based on the position and the level on which the FLC is placed in the overall

control loop. In fact there are as many types of fuzzy controllers as conventional controller

types. In most controller designs, linguistically based fuzzy controllers have replaced the

conventional controller. \Vhen the classification is broadened, the fuzzy controllers can be

grouped into few major categories as shown in Figure 2.1. This classification categorizes
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Figure 2.1: Classification of fuzzy controllers

two main classes: direct fuzzy control and indirect fuzzy control. The direct fuzzy control

computes the controller action through the fuzzy inference and the fuzzy outputs are directly

used to compute the controller signal. In the indirect type. the rule based fuzzy system

identifies an approximated model of the process. This identification can be performed either

by lcarning during the process of control or by training through observed input/output data.

For each class. the controlling can be either static or adaptive. The direct fuzzy controllers

are cit her fuzzy PID type or non-PID types. .Much of the emphasis is placed on the PID type

cant rollers.

2.3.1 Direct Fuzzy Controllers

This is the most common type of FLC used in past applications and research. As mentioned

in the pre,-ious chapter, the first fuzzy controllers of ~Iamdani [8. 9] fall into this category.

The FLC is directly placed within the closed-loop control system. Using the feedback signals,

the fuzzy controller infers the controller action necessary to drive the process.
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Static Fuzzy PID Controllers

The majority of direct fuzzy controllers are fuzzy PID types (Refer Figure 1.1 in Chapter

1). A few past applications are briefly shown in the Table 2.1. It is clear from the table

that the majority of fuzzy PID applications belong to conventional two-input type fuzzy

PI or PD tY1>e controllers. The hybrid actions of both incremental fuzzy PI and absolute

fuzzy PD controllers are then used in making the fuzzy PID configurations. Aspects of

different fuzzy PID configurations or structures are detailed in Chapter 3. In the majority

of applications in the 80's and before, the fuzzy inferences or fuzzy calculations \vere done

off-line. The control decision table or look-up tables were used for on-line implementations or

simulations. Also in the majority of those cases, the design or tuning was ad hoc in nature.

:-'Iore systematic designs have been reported in the recent years. Fuzzy controllers can be

trained when they are implemented through neural network [77]. Also, the genetic algorithm

allows FLC systems to be designed through systematized exhaustive search [78]. Although

there are some limitations and practical deficiencies in the latter methods. theoretically the

design techniques do not require any knowledge of the process to be controlled. However,

some approximated process model properties are always valuable for reducing the design time

and computational overhead to achieve fast convergence of the solution. Use of other classical

or linear control theories for FLC designs have recently become more popular. This is mainly

due to the recent recognition of the intelligent control techniques by many classical control

experts. The sliding-mode approaches [68, 73, 79], cell-ta-cell mapping technique [41J and

use of linear PID tuning heuristics [67. 71, 74] demonstrate the enhancement of the fuzzy

control. In almost all applications shown in the table, FLCs are mostly compared to linear

PID controllers. In many cases they have shown improved performance.

In certain cases multiple fuzzy PID controllers with switching have been used to get

improved performance [29, 65. 72]. In [65], an additional PI rule base was used for fine control

near set point. In [29], the two-input fuzzy PI controller showed poorer performance than the

linear controller. Therefore an additional PO controller was implemented for coarse control,

and near the command state the PI controller was used to get steady state performance.

In [72], which dealt with a pH control system, the nonlinear gain variation with respect to

the le\'el of pH control was divided into three approximately linear regions. Depending on

20



Table 2.1: Past applications of static fuzzy pro controllers

[54)"76

[53)"i7 PI 15 T=pCl.run: concrol of. sti:n:d Tuning is performed by changing the quanlization levels

[ 16]"79 P[ 49 For many known and ill delmed Oiffer.nllUning aspc:cI5 of FLCs wc:rc: demonstraled

[63]"88 (a) PI e.M 49 EI",rric Furnace Gain scheduling scheme is used for on-line adjus<rnenlS of
(b) PID e A, A:e 343 sc:aIe (.Clors,

[641"89 PI e.M 64 Continuous biological process F.ster sc:n1ing and less Overshool than dle linear PIO wu
~~---,---------lf--:[-:-65~J-:-·8~9~-+-:T=w-o_-s-t1-g-.+-e-.M---1f--:4-&:-:-6:--!-:P:-OS-,:-'ti:-o-n-c-o-n-tro-=-(o-f:-a-sc:rv--o-m-o-(o-r-t~Tworule bases for coarse and fine control.

PI
(66)"89

[ 191"90

PO

PI

08 Control ofwelding Iorch Onc:-dimc:nsionallWo_variablc: FLC. Fuzzy filter is

"'m"'on"':-:__-:_-:_:_--_;-::'In 0 rat
Se,·er.l1 linear and non-linear Employs simple four lin"", rules.

Rules are dcri,-ed by trial and ."or

Position control ofa de molor

SP«d control ofa hydr:lulic

05&:9 C.II-l<H:eJl mapping lJ:Chnique bas bee" used 10 find the
r" ~~. ~

M 07 Pressure: control ofa Clinker The linear PID gains are relaled 10 determine the linear
'---_+-'09=-__+..::coo=l=:,..er .:.:'1.:..1_-:-:---:-_--:---:-_+_ =:ins=.=;of:.;FL:.=CS=, -i

e.tJ.e 49 Position control ofan inverted The design is based on fuzzy sliding-mode control
dulum

PI

PO

PI

(.) P
(b) PI

[411"91

[67]"92

[68]"92

[69]"93

09

49x3

PI

PID[46]"93

[70]"93 Control of r:lil ear air- Air conditioning capacity wu obtained by the fuzzy

'r" ....--------i-'
Several linear and non-linear Gain scheduling scheme. Rules derived from the Slep-

',.
f-:==~-+-=:_--+----+-:---t-rocesses, .L\0a.....----------------1

[71 ]"93 PID e.M 49 Sever.l1 linear and non-linear Gain scheduling scheme. The PID gains are parametc:rized

[72]"94 PI 25x3 Stirred tank n:ac:lor for pH
c

Thrc:c: rule: bases for the three ",giORS ollile process gain.

Second Order SYSle:m08

25

PO

PID

PI&: PO

[43 ]"9';

[741"94

[29]"95

Sliding mode approach is used for obtaining an FLC for

f-:=--:---+-=---t----+-:=-:-f-:~:_:_---:_:__-:----_;-'onlo c'~,------:::--:_--:-:-~---i
[73]"94 PO "./1e 25 &: 49 Position control ofa de The membership parameters an: adjuste:d 10 oblain the

o ~' __+_' ' •sw' , . .

Position control ofa de The linear gains of the FLC an: obtlined by ",lating 10
Ii- _

Several Iin"",~-an-d-n-o-n--lin-'-"",---+"""'PI &: PO swill;hc:s~W1~,idth;-;;n:s;;p'~.C;;I~Io;;jth;e;-(,f.ee;;jdt;b;;adcl~r...;lo;;,r~(,r.;o;;r-'

(75)"95 PI e 07 Stirred tank bio_reaclor Error driv.n gain scheduling for the self-lUlling of linear PI

Temperarun: control ofa

SP«d conrrol for a servomotor.08

4912

PID

PID

(77)"95

(76)"95 Gain Sebeduling scheme:. Two sets of rules an: derived
, ,

I v

Rules an: crc:ated for gain scbeduling. The FLC is
implementc:d via a radial basis function neural netWork for

I-----t- ---I----+---....,I------------_+_ e runi ,
[48]"96 PID <:.M 49 Second and third order linear The rules are~~dcrik;;,~v;.eddiifro;;;m;ddiif·fIir..;re;;;.~.I_;"'~g;Jj;;·O;;;RS;;;o(fdth;;;e:-;.;;:,,;;;o;;r--j

[78]"96 PI 09-25 Invcnc:d Pendulum The genetic algorithm is implemented 101m<! the optimum

[79]"96 PO 09 Stabilization ofan invenc:d Rules are deri"ed from panitioning the stale: space. The

[80]"96 PI+O

[25]"97

[gl)"97 PI -I9x2 Temperature: control in a solar Gain scheduling scheme. Fuzzy associated memory is lIsed.

[82]"98 PI 09 Level conrrol in continuous The fuzzy controller is active when the system is pcnurbed
-
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the level of pH controL three fuzzy PI controllers switched from one to another during the

transient.

The error driven gain scheduling type fuzzy prD controllers (GS type) are less popular.

This is due to the difficulty in generating error based self-tuning rules for the three gains. As

a result the GS types normally utilize the linear PID tuning rules to formulate the knowledge

base structure. As an example, in [71], the Ziegler-Nicholas tuning expressions have been

simplified to a single unknown parameter to deduce the control rules. In [76] the movement

of closed-loop poles in the control response is used for generating the control rules for the three

gains. In the performance-based gain scheduling schemes, the rules have been derived from

the basic behaviour of the PID gains on the plant response [5]. The performance-based GS

type fuzzy controllers have higher degree of self-organizing properties and adaptive qualities

than error driven GS type fuzzy controllers.

Static Fuzzy Non-PID Controllers

Other classes of direct fuzzy controllers can be treated as non-PID types. Although the

TSK based fuzzy modelling is non-PID in nature, the method can be implemented for many

types of control problems including pro types. The majority of other classes are more

specific problem oriented than general or conventional. A good example is the automatic

train operation system in [83j. The control system is guided by the optimization of many

performance indices (e.g. human comfort, safety, energy consumption etc.). This fuzzy

controller is implemented as a predictive controller for the train operation. The multi-input

multi-output (MIMO) fuzzy control of aircraft flight control [84] is direct non-PIO type

fuzzy control and uses rate of descent, glide slope and air speed for controlling the rpm and

elevator adjustments simultaneously by a single rule base inference. Several non-PIO type

fuzzy controlling systems in Japanese industry and home appliances are detailed in [11]. In

some cases a fuzzy sensor has been used to provide the feedback signal to the main fuzzy

controller. The fuzzy sensor processes the human experience that identifies the quality of

output data based on the observed inputs. In the combustion control problem [ll], the

evaporation rate, feeder on-off conditions and pressure loss of the incinerator are used to

infer the refuse quality in a quantitative form to feedback for the fuzzy controllers inference.

Based on the amount and type of dirtiness (muddy, oily etc), the fuzzy sensor assesses the
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washing time in automatic washing machines. Similarly the fuzzy sensor in the vacuum

cleaner [111 determines the suction power from the floor type and dust amount. The direct

use of oral instructions (fuzzy commands) for control is described in [12]. The oral commands

are first synthesized in a voice recognition system and the signals are then processed in a fuzzy

controller to park a model car. The rules have been developed from the human control that

is used in handling the steering wheel of a car.

Direct Adaptive Fuzzy Controllers

In an absolute sense, a simple PID regulator is an adaptive controller. But in control en

gineering the word adaptive is more explicitly defined for differentiating control algorithms.

According to Astrom and Wittenmark [32], an adaptive controller is "a controller with ad

justable parameters and a mechanism for adjusting parameters". Other vocabulary based on

this notion include "self-organi=ing control' (SOC) and "learning control systems". Although

some fuzzy controllers have been called self-organizing or self-adjusting regulators, they are

actually static controllers. Therefore direct adaptive controllers should be able to change the

gains or tuning parameters of the controlling unit under the change of plant dynamics orland

parameters. The first fuzzy adaptive controller was introduced in 1979 [47], and again Mam

dani has contributed to these developments. Adaptive controllers usually contain two extra

components, a "process monitor" and an "adaptive mechanism" [15]. In order to classify the

fuzzy adaptive controllers in a more specific sense, the direct fuzzy adaptive controllers are

classified into two categories.

Type I The rule base parameters of the fuzzy (or fuzzy PID) controller are updated via

fuzzy or non-fuzzy system.• • •

Type-II The linear gains of a traditional PID controller are updated via a fuzzy system.

The direct fuzzy adaptive controllers in the past research are shown in Table 2.2.

The Type I adaptation includes reformulating or altering the rules and adjustment of

m.;mbership parameters. The changing of knowledge base parameters (either rules or mem

berships) alters the nonlinear charcteristics of the fuzzy controller output. The changes in

gains cause overall changes in performance. Direct update of rules is cumbersome and hard
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Table 2.2: Past applications of direct fuzzy adaptive controllers

[Ref.) 19' Type Inputs Adaptation by Application Remarks
I I

[47]'79 PI e.~e Rules (I) Several linear models Perfonnancem~ aR computed to update
includin time la s. th v relational matrix.

[85]'88
,

Rules (I) Several higher order Performance index table is designed to updatePID e.~e. ~'e

models with added non- the fuzzy rules.
lineari •

· [86]'88 PI e.~e Rules (n Two-O robot manipulator. Perfonnance index table is designed to update
the rules.

[87]'88 PI e.~e Rules (I) Temperature control of a Perfonnance index table is designed by using
healer and speed control of fuzzy rules to update the control rules.

• a dc motor.
[88]'91 PI e./ie Rules (I) Muscle relaxant process Performance index table is designed by using

(second-order process with fuzzy rules to updale the control rules.
lime delav)

· [89]'93 PI e./ie Rules (I) Anli-skid braking system The inversce fuzzy model (performance Iable)
updates the rules by following a referalcc
m el.

· [90]'98 PI e./ie MF([) Level control ofa tank The performance index table updates the fuzzy
singleton values in the consequent during the
I min.

'[91]'82 PI e./ie MF([) Control ofthe material Six performance indices aR used to modify the
ICliel of a di castin ~ Dlant innut MFs to revide adanlation.

[92]'91 PI e./ie Consequent First-order process and an The adaptation is based on the predicted error
MFsm inverted nendu!um. (estimate\ 3Ild ob rved maximum error.

[93]'92 PO e./ie Fuzzy output (I) Position control ofa The fuzzy controller driven by inlegral error is
· servomotor. used 10 alter the POou uL
[94]'92 PIO e.~e Rules (I) Linear second order Additional fuzzy rule base is used for

· damping 3Ild oscillating modifying rules of the main fuzzy controller.
models.

[95]'95 PI e./ie Rules (I) Temperature and Elevation The look-up table entries update by changing
ontrois.

.
ts allocared for Sill nowei xc .

[96]'90 PI& (e,/ie) & Scale factors Octane control ora oil The ratio of the two consecutive errors is taken
non- ifq.co) (II) refinery lll1it (catalytic as the performance measure to update the scale
PID reform"r) factors.

[5]'95 PID e Linear PID Non-minimum phase Fuzzy supervisor for adjusting the linear PID
ains (If) svstem. ains GS ~\

[58]'95 PIO e..~e Scale factors Linear second order system According to the response overshoot the gains
nl\ of the FLf- arc u ated

[97]'89 PIO e Linear PID Tracking of a planer robot The rule de-<:oupled fuzzy inference makes the
ains([[) maninulator on-lin ain adjustments. G

· [98]'94 PI e Linear PI gains Speed control of a dc Fuzzy supervisor for adjusting the linear PI
(I[) otor. ains. . GS ~\

· [99]'95 PID e Linear PID Speed control ofa dc Fuzzy supervisor for adjusting the linear PID
.

ams 1111 motor. ams.
[100]'92 PID : Scale factors Sc:<:ond order delay system. Two additional funy controllers driven by thee./ie. /i e

· and rules (I & performance measures arc used to update seale
In factors and les 0 f the main controll.
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to represent in a mathematical sense. Therefore in most practical applications the rule al

teration is accomplished by changing the fuzzy output look-up table. Therefore the real rule

changes are implicit. In the first adaptive or self-organizing controller the fuzzy look-up table

\vas modified via a learning algorithm. Although the controllers described in [85]- [89] have

some differences with respect to the process of adaptations, the overall adaptive structure is

equivalent to the first adaptive fuzzy controller developed by Procyk and l\famdani [47]. Some

modifications or an improvement to this type was recently shown in [95]. The performance

monitor decision table for correcting the controller uses heuristic knowledge. In essence. the

performance monitor is an inverse fuzzy controller model [89J. The first issue in this con

troller is to determine which inputs in the past have contributed to present poor or good

performance. This requires the estimation of plant time lag or the delay in reward because

this determines when to apply the correction. In [47] an incremental model of the process

relating the changes in the process input (control output) and changes in the process output

is used to determine the amount of reinforcement required in the controller. In the SISO case

it is a linear mapping. The adjustments are made to the control action that is responsible for

the current poor performance. In other words the system looks at the entries in the control

table which have resulted in poorer performance and then reinforcement is used to update

the controller. Mathematically this is accomplished by updating the fuzzy relational matrix.

If performance measure rules indicate finite corrections. then at each sampling state the fuzzy

relational matrix is updated until the desired performance is established. The performance

table acts like a model reference. In [89] a reference model is provided for quantifying the

desired performance. The inverse fuzzy model is fired by the error signal of the reference

model \vith respect to the actual plant output and it is then used to modify the rules (or

look-up table) of the fuzzy controller. In [93] the alteration to the control action at any givr:m

time instant has been made proportional to the sum of error signal at one cycle time before

the current time instant. The error integral then makes an additional fuzzy inference to find

the future alteration required for the adaptation.

The membership functions or fuzzy set definitions are chosen to represent the linguistic

terms or term values taken by the controller variable. :1I.loreover, the membership function

is the primary transfer element in the fuzzy inference for converting the linguistic knowledge

(or fuzzy values) into mathematical or numeric terms. In most cases the sharpness of such
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definitions cannot be precise and the optimum performance can be sought only through

their variations. :\Iany off-line techniques can be found for searching for the best fuzzy sets

of a given set of linguistic variables [1]. Changing membership parameters and changing

rules have a similar effect in terms of nonlinear control. The work in [91] evaluates sL"'<:

different performance measures to update the membership parameters of the consequent fuzzy

variables. In [92] the control supervisor changes the consequent membership parameters. The

supervisor uses the correlation function to e\'aluate the reliability of the predicted output and

thus the quantified information is related to the membership function parameters.

The Type II adaptive controller is analogous to on-line tuning (auto tuning) of a linear

PID controller. The performance monitor evaluates the performance attributes based on the

response pattern and either a fuzzy or a non-fuzzy algorithm is implemented on-line to correct

the linear gains. In [96] the performance is measured by the ratio of two consecutive error

measurements and based on this scale factors (normalizing gains) of the two fuzzy controllers

are changed to increase or decrease the speed of the response. For the applications in [5, 58,

97. 98, 99], linear PID controllers are on-line tuned by fuzzy controllers placed at an outer level

of the closed-loop system (supervisory control). According to the classification mentioned in

Chapter L these controllers are performance based GS type fuzzy PID controllers. They have

the a.daptive capabilities to change the PID parameters under varying process conditions.

In [97]. the manual PID controller tuning heuristics are coded to produce rule bases for

on-line fuzzy tuning of a robot manipulator. Additional servo experts a.re placed at the

control joints to monitor the response behaviour in order to feed the data (performance

attributes) into fuzzy controllers. The fuzzy inference compute the necessar:y gain changes

during the adaptation. Since the performance attributes are based on the response patterns

(e.g. overshoot, speed of response, steady off-sets etc.) the adaptation operates with a lower

bandwidth than that of the main control loop. In [5] the same concept was used to tune

a linear PID controller for a servomotor. Similarly in [98, 99] linear PID controllers were

on-line tuned using supervisory fuzzy control algorithms.

\Vith two additional fuzzy controllers. the self-organizing structure in [100] simultaneously

changes both the rules and the gains. The fuzzy rules for adjusting scale factors are similar

to a performance based GS type PID controller. By comparing the response characteristics

to a predetermined response pattern. another set of fuzzy rules were developed to change the
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rules of the main fuzzy controller. Therefore this work is unique because it uses both linear

ancl nonlinear tuning to obtain the self organizing structure of a nonlinear PID controller.

2.3.2 Indirect Fuzzy Controllers

Process identifications by input-output data has been traditionally done by using statistical

methods. e.g. linear regression. stochastic approximation and correlation analysis. Combin

ing the qualitative and quantitative data allows the system dynamics to be modeled with less

effort than with statistical learning algorithm [1]. Fuzzy modelling is one of the main suc

cesses in FLS designs. Fuzzy relational descriptions have been studied for modelling control

problems [101]-[105]. Those fuzzy relational concepts have been then used to approximate

many industrial plant systems [102. 103]. Different fuzzy modelling and learning techniques

are well described in [10-1]. When a model identification algorithm is implemented on-line for

a control problem, the system can easily account for any changes happening to the process

or to its surroundings and therefore adaptive control can be automatically achieved. For this

reason. the modelling or identification through fuzzy-neural nets is termed as adaptive fuzzy

systems [1. 104]. The computational and lengthy optimizing search techniques have practical

limitations to use in true adaptive control applications. However. a practical model-based

adaptive algorithm can be implemented through on-line learning scheme (i.e. by continual

updating of the fuzzy model). Graham and Newell [105] implemented an adaptive control

scheme based on the fuzzy modelling concepts to successfully control the level height of a mass

storage tank. The on-line identification will modify the predefined model (theoretically an

empty model) to match the process. Therefore performance is enhanced through adaptation.

The model-based controller then computes the ncw control output using the prediction from

the fuzzy model. The system predicts nine values for the performance and the one having

the highest score of performance is selected to compute the control signal. Harris and other

co-\vorkers [35] have sho\\n several applications of fuzzy model-based controllers and they

hm'c labeled this method as indirect self-organizing fuzzy controllers. In their method the

controller output is predicted by the inverse causality mapping of the fuzzy relational map.

The same composition operator is used for the inverse mapping. "Vang [104] has analyzed

several direct and indirect adaptive controllers in his book. The model based fuzzy controller

predicts two nonlinear functions. In addition to the main controller that has been derived
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from the identified model, a supervisory controller is identified to operate when the error

is big. The supervisory controller produces no signal when the error is small. During the

adaptation, the parameters of the fuzzy basis functions are updated. Recent ,vork of using

model based fuzzy control is described in [106] and they haye successfully used it to control

temperature and flow rates of a heat exchanger.

2.4 Design Methods

Fuzzy control theory is relatively new. Therefore systematic development and tuning of

fuzzy controllers are not yet easily available in hard textbooks as compared to classical

control theory. However, some researchers have published informative books to provide useful

guidelines for design of fuzzy controllers [1. 5, 15.35, 104]. To some extent each research paper

can be considered to be a systematically analyzed design technique for a given application

domain. However. they do not sometimes provide enough evidence or reasons for selecting

many parameters related to the chosen FLS and also adopt ad hoc or trial and error methods

for final tuning. Therefore a "good fuzzy controller design" should:

1. allow the method to be used by another user for the same or a similar class of a problem,

and

2. remove the ad hoc design nature to tune with a systematically developed methodology

or heuristically driven search.•

2.4.1 Takagi-Sugeno Fuzzy modelling Approach

In 1985, Takagi and Sugeno [39] introduced a new fuzzy rule representation and a systematic

optimization method to design fuzzy controllers. The method allows a systematic develop

ment of an optimized fuzzy model for a given set of input/output data. The consequence

of each fuzzy rule is defined as a linear relation of the input variables. However, the TSK

method can also be extended to represent the consequences as nonlinear functions of the

input variables [50]. The fuzzy variables are initialized with the available knowledge about

the process and its operation. The controller is systematically built in three steps, namely,

consequence parameter identification, premise parameters identification and choice of premise
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variables. Each step is interrelated_ \Vith the available input data, the method optimizes the

performance index_ In [39J the root mean square of the error is chosen as the performance

measure. The TSK method is systematic. It can start with empty rules. The procedure

then allows systematic search of fuzzy parameters. Later Sugeno and Kang [591 have shown

the effectiveness of this method by applying this design for a multi-layer incinerator. In [601

Sugeno and Kang have further improved this fuzzy identification algorithm by incorporating

a better search mechanism to identify the premise parameters.

2.4.2 Learning Schemes

The implementation of fuzzy controllers in a neural network or a similar learning scheme

allows the fuzzy parameters to be tuned by a set of input-output data [1, 42. 104]. This

model can be either the process model relating input output behaviour or inverse models of

the process to determine the controller signal requirement in a control loop_

Neural nets with back-propagation are known to have universal approximating capabil

ity. The successes of neural networks, particularly in control [107], motivated researchers

to implement fuzzy systems through neural nets so that the fuzzy system also becomes a

uni\-ersal approximator [1, 104, 108]. Training of fuzzy systems using many techniques to

match input/output data are described in [104]. As an example the gradient decent training

uses three layers to produce the unknown process dynamic function as a fuzzy identifier. The

function which is generated by fuzzy inference is described in terms of three sets of unknown

membership parameters (input modal positions, parameters related to the width of the Gaus

sian functions and output fuzzy singleton positions). Using back-propagation the unknown

fuzzy parameters are trained. In essence the same nonlinear mapping of a given fuzzy system

is equh-alently represented by a neural network and the fuzzy system parameters are then

conveniently trained using input/output data. The ad\·antage of this representation is that

fuzzy systems have clear physical meaning and therefore the initial parameters can be chosen

from the available knowledge [104]. However, implementation of a given fuzzy system having

approximation capabilities through a learning scheme is not always feasible [1]. Therefore

some mathematical alterations are always necessary. Fuzzy systems or inferences have been

transformed to standard additive model in [1] and fuzzy basis functions in [104] for convenient

implementations in learning algorithms. The neuro-fuzzy systems have some limitations with
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regard to implementation of the conventional min-max gravity reasoning. This is mainly due

to the existence of a multi-phase solution structure and the non-existence of algebraic type

solution in the min-max functions. Therefore in most neuro-fuzzy systems the reasoning uses

product-sum inference and the weighted sum of the centers of the consequent fuzzy variables

in the de-fuzzification. The membership functions (premise variables) are either Gaussian

or B-splines types [-12] so that each fuzzy variable can be expressed by a single expression.

~Iany other similar training algorithms are well described in [1. 104]' namely orthogonal least

squares method. nearest neighborhood clustering etc. Kosko [1] has used standard additive

fuzzy systems to control many real time applications. The fuzzy system allows the designer

to incorporate the available initial knowledge into an approximated model and hence the

learning algorithm can be made to converge \vithin a short period of time [104]. This is the

key advantage of using fuzzy systems in neural or other learning schemes.

2.4.3 Use of Evolutionary Algorithms

Genetic algorithms (GAs) have recently become popular for overall tuning of multi-parameter

control systems. By mimicking the principles of natural selection in an evolutionary process,

GAs are able to e\'olve the solution to many optimization problems. Unlike gradient al

gorithms. GAs are not mathematically guided solvers. :\ GA performs the optimization

process with a population of individuals, each of which represents a search point in the space

of potential solutions to a given problem. Therefore for design one must know the correct

range for each variable in the fuzzy system. For each variable a random population is de

fined. The method evolves a population of candidate solutions for the problem by applying

a set of stochastic operators, such as crossover. mutation and reproduction. Each solution is

evaluated using a fitness or objective function. A general GA defines equal search space to

each parameter. In [109] the input membership parameters \vere obtained by using a simple

genetic algorithm for centering a cart on a one-dimensional track. A hierarchical distributed

genetic algorithm is described in [78]. The search in the latter is based on a multilevel reso

lution. \"'here higher level clusters im'estigate wider search spaces with lower resolution than

lower level clusters. A genetic algorithm takes considerable computing time before reaching a

final solution. Also the accuracy depends on the length or the resolution of the binary vector

assigned to each variable. Higher resolution often makes the search time longer and therefore
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in the implementation there is a trade off between design time and accuracy. Therefore de

signs are generally performed off-line. Howe\'er, a GA with a fast searching technique (called

microgenetic) that suits adaptive controller has been reported in [110]. The robustness of a

design heavily depends on the fitness function. This is in fact a problem for any numerical

search technique. In [111] many GA based designs are compared with respect to different

cost functions.

2.5 Summary

This literature survey chapter has shown the past development of fuzzy logic control applica

tions. The past theoretical investigations of fuzzy systems made fuzzy control more transpar

ent than other soft computing techniques. Over the years the original fuzzy inference process

has been subjected to many alterations. particularly for better design and implementation

purposes. Therefore fuzzy systems have an ongoing evolution of their theory. On the other

hand. fuzzy systems have been used extensively in many industrial and engineering products,

not necessarily as sales gimmicks, but as genuine improvements to the available controlling

systems [1].

The past FLC applications have been classified into different categories. The direct fuzzy

controller types have been used in many applications. The adaptive fuzzy controllers have

been developed along with static fuzzy controller designs. These adaptive controllers can

again be classified into different groups. depending on the adaptation procedure of the con

troller. The recent developments of learning techniques and fuzzy-neural systems allow the

processes to be modeled by using fuzzy rules and as a result, the indirect type fuzzy controllers

are now more popular in research. Numerically drh'en search techniques, such as neural net

work models. genetic algorithms etc., are quite powerful in handling multi-dimensional fuzzy

controller models. Therefore automatic rule generators with proper input output behaviour

and adaptive learning schemes are being extensively investigated in research.

In most designs (static or adaptive), the final tuning of controller requires considerable

guessing and trial and error simulations for achieving a stable controller. As an example, a

self-organizing controller may require tuning of its scaling factors and other gain variables

in order for the self-tuning mechanism to be functional. Although fuzzy systems have been
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labeled as model free, in real time controller applications the linguistic or expert knowledge

is insufficient for achieving an absolutely model free and stable controller. Under these

circumstances the only possibility of designing a system without the plant model would

be by trial and error technique. The off-line numerical search techniques using computer

simulations require the approximated plant modeL If a numerically driven search technique

can be implemented on-line, then such a design method would absolutely become a model

free design. Again for plants whose unstable dynamics are hazardous to the surroundings

or can causes damage to the system, those techniques would become impractical for on-line

implementations.
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Chapter 3

Systematic Development of zzy

PID Structures and Analysis of

zzy Inferences

3.1 Introduction

The last two chapters outlined the present status of fuzzy controllers and briefly described

t he current research in the area of fuzzy control. It has been observed that the majority of

fuzzy controller applications fall into the category of fuzzy PID (or PID like [15]) controllers.

The fuzzy PID controller by its definition \'erbalizes the linear difference equation of a PID

controller. Although ~Iamdani and his cG-\,,.orkers [8. 9, 47] never attempted to define such

a controller in the design principles. the fuzzy rules of those controllers are analogous to

\'erbalized fuzzy PI rules. As a linear controller has many forms for its representation, the

fuzzy PID controller also can be implemented in different forms. As an example, in [24], the

linear PID action is transformed to an incremental form using a bi-linear transformation and

it is then verbalized to produce an incremental fuzzy PD controller. In the conventional fuzzy

controller (Mamdani-type) the nonlinear mapping of error inputs produces an absolute fuzzy

PD signal. Tables 2.1 and 2.2 in Chapter 2 indicate that a fuzzy PID controller can differ

structurally based on (a) numbers and types of inputs and (b) fuzzy rule base representation.
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Figure 3.1: Cascade type feedback PID controlled system

In the majority of cases the Mamdani's configuration has been used to produce either fuzzy

PI or fuzzy PD controllers with the error inputs namely error (e(t)) and error change (~e(t)).

The combination of the latter was used to produce fuzzy PIO controllers [48. 74. 771. In a few

cases the third error variable, namely the change of error difference (~2e(t)) has been used

for deri\'ing three dimensional fuzzy PID rules [63, 85. 1001. This is understandable since

the three input rule structure requires a larger number of rules compared to the conventional

configuration. In a few cases. some attempts have been made in the past to identify the fuzzy

controllers in various forms with different knowledge base representations [112].

Therefore the first issue related to this chapter is the identification of different fuzzy PID

controllers including commonly available types. The next step in this systematic investigation

is the analysis of these controllers. Therefore in the second part the closed-form solutions to

the different fuzzy systems are obtained in general forms. The closed-form solutions enable

these controllers to implement in computer controlled systems and also to devise a tuning

criterion. Therefore this chapter intends to address the following issues.

1. Identify the different fuzzy PID controllers including commonly available types.

2. Obtain dosed-form solutions to the general fuzzy controller systems.

3. Identify the functional properties and differences of different controllers defined in (1).

Linear PID controllers can be classified into different categories with respect to the positioning

of the three terms in the closed-loop control system. In computer controlled single-input

single-output (5150) plant systems the PID controller in the cascade form is commonly

llsed (Figure 3.1). Sometimes the derivath'e controller is separately generated using the

feedback response signal to avoid the derivative kick associated with noisy signals. These

other types [251 can be obtained by extending the fundamental principle outlined in this
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chapter. Therefore, this study focuses on the SISO controller system shown in Figure 3.l.

The study is further narrowed to the development of direct action (OA) type controllers

only. The rest of this chapter is organized into three main parts. Section 3.2 defines and

identifies different fuzzy Pill controllers. In Section 3.3, an analytical calculation is performed

to derive closed-form solutions for different fuzzy controller systems. In Section 3.4. the

nonlinear and linear PIO gains are identified for each fuzzy PID controller structure. Finally

the functional properties are compared.

3.2 Construction of Fuzzy PID Controllers

3.2.1 Fuzzy PID Elements

As shown in Figure 3. L the error driven linear PID controller signal at any time instant

(n) with a sampling period Ts can be expressed in two forms: (3.1) shows the output in the

absolute form (uPID(n» while (3.2) shows it in the incremental form (~upm(n».

n

uPID(n) = Kpe(n) + KITs L e(q) + (KoITs ) ~e(n).
q=O

and uPID(n) = uPlD(n - 1) + Aupm(n).

(3.1)

(3.2)

The terms Kp. KI and Ko stand for proportional. integral and derivative gains respectively.

Using the feedback response signal (y(n» and the reference or desired signal (r(n» at the

n-th sampling instant, the error variables are defined as.

Change of error difference: ~2e(n) = Ae(n) - ~e(n - 1)

Sum - of - error: Ee(n) = 2:;-0 e(q)

Error:

Error difference:

e(n) = r(n) - yen)

~e(n) = e(n) - e(n - 1)
• (3.3)

For developing fuzzy PID controllers the error terms (or PIO actions) in equations (3.1) and

(3.2) are considered as fuzzy variables. The above error variables in (3.3) are the four basic

inputs to any fuzzy PID controller configuration. Since the linguistic expressions or terms

are qualitative, the contexts of these variables are defined in a general universe of discourse.
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Figure 3.2: Fuzzy PID structural elements

Therefore using the scale factors (5) the normalized variables for (3.3) are defined. For

convenience the time instant notation is sometimes dropped from some expressions.

(3.4)

\\'here e. ~e. ~2e and Le. are the normalized error variables corresponding to the error

terms e, ~e. ~2 e and Le respectively. The de-fuzzified output after the fuzzy reasoning is

represented by U.

With respect to each error element in (3.1) and (3.2). either absolute or incremental Pill

elements corresponding to the individual PID actions can be identified. These actions can

be of either associated or dissociated forms. Wilen the rule base is considered with one

input fuzzy rules, the control rules can be identified for individual elements in each PID

signal. Similarly when two or three terms (or actions) are taken together, then associated

PID actions can be inferred while using either two or three input fuzzy rules. Hence, different

fuzzy PID elements can be constructed with respect to total number of inputs as shown in

Figure 3.2. The rule base corresponding to each PID element is identified by coupled or

de-coupled fuzzy rules of the form "If (input 1 and input 2... ) then (output)". In the case

of two-input configurations, only PD and PI controller elements are considered. A subscript
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with the normalized output variableu is used for identifying the corresponding action in a

fuzzy PID controller. In deriving a practical fuzzy PID structure the following remarks are

made:

Remark 3.1 It is difficult to formulate control rules with the input variable sum-of-error

Ee, as its steady-state value is unknown for most control problems. As an example,

the load disturbances at the plant input, dead weights and friction in drive systems

are always UnknO\\ll. Therefore it is difficult to identify membership values and their

locations in the universe of discourse for defining control rules corresponding to steady

state conditions. It is possible to use this \'ariable only if a priori knowledge about the

steady state conditions is available [28].

Remark 3.2 For any fuzzy PID controller. the error (e) is considered the necessary input for

deriving any PID structure. The error input provides the nonlinear proportional actions

through the fuzzy inference. For any system to drive from a dead state. proportional

control is the basic action required from the three-term PID controller. For example,

in case of a steady off-set in the system response, or in case of a time-delay process,

the magnitude of all error derivatives becomes negligible. In those circumstances the

steady error is the only available information that can provide a finite control action to

di\'ert the output from a dead situation.

3.2.2 Fuzzy PID Controller Structures

By taking different combinations of the fuzzy PID structural elements defined in the previous

section, different fuzzy PID configurations are now formed. Based on Remarks 3.1 and 3.2,

some of the structural elements can be considered to be "bad' and can be eliminated in build

ing a fuzzy PID structure. Therefore in this systematic investigation, six types of controllers

arc described for comparison. In 1975. Zadeh published a three-part paper [113J describing

the fundamentals of fuzzy logic principles for using decision-making systems. Zadeh included

many definitions and concepts to generalize the broader perspectives of humanistic systems.

The FLC systems use some of those concepts for describing the knowledge base.

Define the linguistic variables that correspond to the input scaled variables e, Ae and A 2e
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as {Ei }. {!lEj } and {!l2 Ek} respectively. The indices i, j and k represent the linguistic values

or fuzzy states of the input fuzzy variables and their ranges are: i = O. L 2, .... N I - L j =
0,1. 2.... , N 2 - 1 and k = 0, L 2, ... , N3 - 1, where N I , N2 and N3 denote the total numbers

of fuzzy states assigned for each of the fuzzy variables. Let the de-normalizing scale factor

Su be given by the relation u = Suu 'vhere u is the final controller output. Assign linguistic

\'ariables for the controller output as {Um} for absolute output signal ii., or {~Um} for

incremental signal ~ii.. The index m = O. 1. 2..... ~\[ - 1. The value M denotes the total

number of fuzzy states defined for the output fuzzy variable. For each element used in the

following structures. the nonlinear function 1(.) is used to denote the nonlinear mapping

between inputs and output.

Type I: Three-input FLC structure with coupled rules

It is practically difficult to assign linguistic values or terms for the input ~e as explained in

Remark 1. Therefore with a three-input configuration the fuzzy PID controllers are unable

to produce an absolute signal. Hence the possible inputs are e, !le and !l2e, corresponding

to an incremental type fuzzy PID controller. Using the rule base notation of [5J, Type-I fuzzy

PID structure can be expressed by,

Eb~E [IF e IS E, AND!le IS ~Ej AND ~2e IS ~2Ek THEN ~ii.PID IS ~Um.PID]'

(3.5)

The final PID control output is produced after taking the cumulative sum of the FLC output

as shown in Figure 3.3. The total number of rules required for a complete description of the

normalized space is N I x N2 X N3. The final controller output can be expressed by,

n

uPID(n) = Su L ~ii.PID(q).
q=O

(3.6)
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Type II: Three-input FLC structure with de-coupled rules

The idea of knO\vledge based de-coupling has been used in [5, 97] to formulate a simple

::iet of rules for GS type fuzzy controllers where the performance based inference is used for

fuzzy tuning of conventional PID controllers. This idea is extended for DA type fuzzy PID

applications to select three one-input structural elements corresponding to de-coupled rules

of Type I for generating the fuzzy incremental control signals. Each incremental PID control

action is now represented by a separate set of rules. The knowledge base is expressed by

three rules sets.

ELSE [IF e IS Ei THE~ ~U[ IS ~Uml.I]
I

ELSE [IF ~e IS ~Ej THEN ~up IS ~Um2.p]
J

• (3.7)

The inference of each rule base is independent and the output constitutes three separate

nonlinear functions. The total number of rules required is 1'111 + ~V2 + N3. The fuzzy PIO

structure is shown in Figure 3.4. The final control action is given by.

n

upro(n) = Su L (~up(q) + ~U[(q) + ~iiD(q)).
q=O

(3.8)

Type III: Two-input FLC structure with coupled rules

By observing the two-input control elements shown in Figure 3.2, the elements having the

inputs (e, ~e) are selected as the useful PIO elements for fuzzy control. They correspond to

the incremental PI or absolute PO signals. The other two-input control elements shO\vn in

39



• KPD •e e UPIOS", FLC
• uplO"PO

L1e Ae j{e.L1el KPI Su
See

zol

Figure 3.5: T\vo-input fuzzy PID(T.ype Ill)

the Figure 3.2 are eliminated according to the Remarks 1 and 2. By combining both PI and

PO actions as shown in Figure 3.5. a two-input fuzzy PID controller can be formed. The rule

base structure is identical to Mamdani-ty-pe fuzzy PI controller. The basic rule base of this

conventional type is given by,

ELSE [IF e IS Ei AND ~e IS ~Ej THEN upo IS Urn,po].
I,J

(3.9)

The total number of rules required in this case is equal to N( x N 2 • \Vith additional gains

[(po and Kp[, the final PID control signal shown in Figure 3.5 is given by,

n

upm(n) = Su[[{P[ 2: ~UPI(q) + [(poupo(n)].
q=O

where ~iLPI(n) = iipo(n).

(3.10)

Type IV: Two-input FLC structure with de-coupled rules

The de-coupled structure corresponding to the two-input coupled structure is described next.

When the rules are de-coupled from the two input fuzzy PO element. the individual P and

o actions can be generated by two one-input elements described by the inputs e and ~e

respectively. The two rule bases corresponding to the two one-input control elements are

rriven bv.'" ..
ELSE [IF e IS Ei THEN Up IS Urnl.p]

I

• (3.11)

From the one-input elements it can be inferred that Up =~U[ and by taking the cumulative

sum of the fuzzy proportional action, the fuzzy PID structure is derived as shown in Figure

3.6. The total number of rules required in this case is equal to .'V( + .'V2. \Vith additional
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gains Kp, KI and Ko, the final PID controller action is given by,

n

upm(n) = Su[Kpup(n) + KITs L up(q} + Ko/Tsuo(n)j.
q=O

(3.12)

Type V: One-input FLC structure with single rule-base

The error signal is the essential and fundamental control component in PID control (Remark

1). Therefore by using the input \-ariable e. a one-input fuzzy PID control system is formed.

This is simply the nonlinear mapping of error into fuzzy proportional action. The rule base

of the one-input fuzzy proportional control element is given by,

ELSE [IF e IS E i THEN Up IS Urn].
!

(3.13)

Similar to the previous case up =~u[ and by assuming the analogy between the proportional

and derivative actions as, uo(n} == up(n} - iip(n - 1). the fuzzy PID structure is derived as

shown in Figure 3.7. This is the simplest fuzzy PID structure requiring only N 1 rules. With

additional gains Kp, K[ and Ko, the final control action is given by,

n

llpm(n} = Su Kpup(n) + KITs Lup(q) + KD/Ts (up(n) - up(n - 1»
q=o

• (3.14)
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Type VI: One-input FLC structure with three rule-bases

In this structure, three separate rule bases, using only error as the input variable. are used

for generating three separate fuzzy proportional actions. The knowledge base parameters can

be independently chosen or tuned to produce different non-linearity for the individual PIO

actions. \Vith respect to the input error variable, three rule bases are defined as.

EL.SE [IF e IS El. i THEN up IS UTn1.pr]
t

ELSE [IF e IS El.j THEN up IS Um '2.P2]
}

• (3.15)

An additional integer suffi..'C is used to separate the three proportional fuzzy rule bases. Using

the same basic principle as used in the Type V controller. the integral and derivative actions

are now generated using different nonlinear proportional sources as shown in Figure 3.8. The

total number of rules required in this case is N 1 + ~V2 + N 3 . Using three additional gains Kp,

KI and K D, the final control action is given by.

n

uPlD(n) = Su KpuPl(n) + KITs L UP2(Q) + KDITs (uP3(n) - uP3(n - l) .
q=o

(3.16)

\Yhen the three rule bases are identical to each other (identical knowledge base parameters),

the structure would be the same as the Type-V structure. Therefore, this is the most general

form of the one-input fuzzy PIn structure.
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Type VII-IX: Combined two and one-input fuzzy PID types

Three different structures are identified as shown in the Figure 3.9. The reader can now easily

identify the fuzzy rule bases. The knowledge base structure and the final control outputs are

not shown to reduce the text of this thesis.

3.2.3 Analogy between fuzzy PID and linear PID

The fuzzy PID controller is essentially a nonlinear PID controller. When the fuzzy PID

clements are set to produce linear functions, then the above controllers would either become

absolute or incremental type PID controllers. Due to the availability of tuning rules, the
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linear PIO controllers are easy to tune by changing the linear gains. In some cases manual

tuning heuristics are used to adjust the linear gains [5]. As an example, the integral rate is

increased for reaching a quick settling time or the derivative gain is increased for reducing

the oscillations of the response. The changing of linear gains in a fuzzy controller also

has similar effects. The increase of scale factors of an incremental fuzzy integral controller

pro\·ide similar effect as a linear integral ratc. At the same time the linear gains provides

ovcrall magnifications to the nonlinear control action. There are two main advantages of

fuzzy PIO controller that makes the FLC a better performance controller than its linear

counterpart. First, the rule base allows the nonlinear control to be imposed on local control

points. As an example, the membership parameter changes can bring local changes to the

control signal without affecting the other regions of the control. The second benefit is that

the normalization of concrol variables allow the controller to have hard control limits when

the inputs fall outside the normalized regions. This property makes the fuzzy controller a

sliding mode type controller for robust control. The scale factors adjust the width of the

boundary layer in the error state space.

The functional advantages of a fuzzy controller are the non-linearity tuning as opposed to

linear tuning in conventional controllers. Therefore the next sections are devoted to deduce

the closed-form solutions to the fuzzy inference:;; for better identification of non-linearity in

fuzzy svstems.
• •

3.3 Inference Analysis for Fuzzy PID elements

The purpose of this analysis is to provide an analytical base for evaluating and understand

ing the functional properties of different fuzzy pro controllers. Theoretically it is possible

to express the output of any fuzzy system using closed-form expressions. \Vhen the rule

bases become highly nonlinear and discontinuous then it requires identification of different

regions in the error state space to isolate different linear regions to represent the multi-phase

solution. In order to establish a systematic analytical procedure, the fuzzy controllers are

first analyzed in a linear fashion. For that purpose a Linear-Like Fuzzy Logic Controller

(LLFLC) is defined. The non-linearity is then systematically added to generate general ex

pressions for Nonlinear Like Fuzzy Logic Controllers (NLFLC). For each case the standard
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min-ma..,,<:-gravity (MMG) reasoning is used as the fuzzy inference. !\:IMG reasoning has been

widely used in the past for designing FLC systems and also it has been proven to be a valid

inference scheme for fuzzy control [20]. In addition MMG has better nonlinear properties for

control than other available reasoning methods. The next chapter evaluates and illustrates

the nonlinear properties of MMG inference for fuzzy control.

The main difficulty in fuzzy inference analysis is the visualization of the nonlinear output

space with respect to the three error variables. Compared to a conventional two-input infer

ence analysis shown in [19. 25]. the three-input inference using MMG reasoning requires a

minimum of 48 different equations to represent the controller output. To simplify this multi

phase complexity in the solution. a transformation technique is provided and the general

solutions are expressed with the least number of nonlinear terms. The two and one-input

solutions are obtained as special cases of the three-input solutions. Therefore this analytical

frame has the ability to represent the Olltput of any of the fuzzy PIO configurations shown

in the above section with higher computational efficiency.

3.3.1 Linear-Like Fuzzy Logic Controller (LLFLC) Analysis

Any variable can be linguistically partitioned into linear regions from "Negative Big" to

"Positi\'e Big" [22]. When the controller output is partitioned into linearly defined linguistic

regions. then such a controller is termed a linear-like fuzzy logic controller. In order to achieve

this. the input space is also uniformly partitioned from most negative to most positive. Then,

by using linearly defined control rules a linear-like fuzzy control surface is generated. This

kind of a linear surface is defined in [114]. The very first work on inference analysis [19] was

based on an LLFLC with two inputs.

Let the three error inputs in any order be defined as e = {elo e2. e3}T. After scaling

each of these inputs. let the normalized input error vector at any time instant be given

Again the sampling instant has been removed for convenience. For

each of these inputs use the same fuzzy sub-sets defined in the Section 3.2.2. and consider

symmetrical membership functions for all the fuzzy variables. Then the universe of discourse

of each input space is uniformly partitioned with 50% overlap of neighboring fuzzy terms.

The fuzzy membership functions are usually of uni-modal. This allows convenient place

ment of membership functions over the partitioned input/output space. However the mem-
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Figure 3.10: :\lembcrship distributions of the LLFLC system

bership type has minimum effect on the overall non-linearity of the output. ~'Iost important

parameters are the width (or a-cut width) of the support set and the modal position. The

multi-modal membership functions, such as trapezoidal membership functions have equal

truth value over a range of values and that usually results dead zones in the controller

output. Therefore without loss of generality. triangular membership functions are used as

specified below.

1. The universe of discourse of each input variable is defined to be within the continuous

range [-1.1] as shown in Figure 3.lOa. The total number of linguistic variables used for

el. e2 and e3 are Nt. N2 and N3 respectively and the corresponding distances between

two adjacent memberships are given by.

at = 2/(Nt - 1), a2 = 2/(N2 - I), a3 = 2/(.N3 - 1). (3.17)

The midpoints or the modal positions of membership functions provide the highest

degree of membership value IJ. = 1. Thus, the modal positions of the input membership

functions or fuzzy sub-sets can be described by.

- {-}Te3 = el.k . (3.18)

For the LLFLC.
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2. The output linguistic variables are defined within the universe of discourse of [-(1 +

d). (1 + d)1, where d is the distance between two adjacent output membership functions

as shown in Figure 3.lOb. The total number of membership functions defined for the

output variable u is equal to M = (N l + N z + N3 - 2). Assign d = d3 for three

input inference. Similarly assign d = dz and d = d l for t\Vo- and one-input inferences

respectively. It can be easily verified that

The modal positions of the output fuzzy memberships can be described by.

ti = {um}T and m = 0.1. .... 1\/.

For the LLFLC, ti(O) = -1 and ti(M - 1) = 1.

(3.19)

3. CSillg (N I X N z x N3) rules, the rule base is defined as,

Eb~E [IF el IS Eu AND ez IS £z.j AND e3 IS E3.k THEN u IS Ui+j+kj. (3.20)

Solution algorithm for the three-input LLFLC output

The general solution to the three-input LLFLC is pro\ided with the following seven steps.

The deri\"ation of the nonlinear term is detailed in Appendb:: A.

Step 1 Define error saturation limits to satisfy eu: E [-1,1].

ew = ma.x (-1. min( 1. Su:ew»

where w = 1,2,3 and {Sw} are the associated scale factors of the error inputs.

(3.21 )

Step 2 Define an input index vector and reference error inputs. Let the index vector be,

(3.22)

where ia, ia and ka are the nearest integers given by,

ia = round (1 + ed/ad, ia = round ((1 + ez)/a2) and k a = round «1 + e3)/a3) .

\Vith this the reference error inputs are,

eUa = -1 + iaal

ez.ja = -1 + jaal

e3.ka = -1 + kaal
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Step 3 Define normalized incremental input vectors.

Normalized incremental input vector and normalized absolute incremental input vector

are respectively given by,

--

The incremental values are,

Step 4 Perform input transformation.

(3.24)

(3.25)

(3.26)

1. Compute the transformed absolute incremental input vector {mw } T and identify

the corresponding incremental vector positions WI, w2 and W3.

--

--

ma.'C(6xa ) = 6xa (wr)

min(6xa ) = 6i<:a(W3) • (3.27)

2. Compute the transformed true incremental inputs.

3. Redefine the transformed index vector.

If nIl = m2 = m3 then WI = 1. W2 = 2. W3 = 3.

(3.28)

(3.29)

Step 5 Obtain the nonlinear term.

The nonlinear term is obtained from the Table 3.1. Depending on the sign of the

incremental values computed in Step 4, ml and in may be modified as shown in the

table. The nonlinear term ;33 is equal to either 01 or Q2, as given below.
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Table 3.1: Nonlinear term for the three-input LLFLC output

Sign ~[odify Nonlinear Term

• .3:3mi m2 m3 ml In

-, + + ml in al-r

- + ...L.. 1 - Imil in - 1 al,

•

+ - + ml in a2

,
1-lmd in - 1 a.,- - -r -

, ,
-1 + Imtl in + 1 -a2-r -r -

•,
ml in a2- -r -

,
-1 + Imll in + 1 -a1-r - -

•- - - ml In -al

Step 6 Reassign the modified index values to the input index vector.

Step 7 Compute the LLFLC output u.

where the reference modal position is

(3.31)

(3.32)

Csing Table 3.1 and equations (3.23) and (3.26), the general LLFLC output u can be

decomposed into two parts: a linear controller output (UL3) and a nonlinear controller output

- . -
U = UL3 +- UNL3

iiu = (edal + e2/a2 + e3/a3) d3

UNL3 = Uh - OXLia/al - OX2.ja/a2 - OX3.ka/a3) d3
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Figure 3.11: Input fuzzy \,ariable with a single fuzzy set

Simplification for the two-input LLFLC output solution

\Vhen only two inputs are considered. the third .....ariable can have only a single fuzzy set

"Any"' for any crisp input value. Therefore, the total number of fuzzy sets is equal to one

and one can assign this for the redundant input variable. Assume this variable is e3 and

:\'3 = 1. From (3.17), a3 = 2/(N3 - 1) = x. The triangular membership function defined

for the single linguistic variable will now have an infinitely long support set as shown in

Figure 3.11. The fuzzy membership function will be a horizontal line with a unit grade

of membership height. The modal position of the single fuzzy set becomes €3.ka = 0 with

ka = O. Also. any normalized incremental input value measured from this modal position

becomes lima3-o(!5x3.ka/a3) = O. Thus for any input conditions the min(6xa ) = 0 which

implies 1713 = o.
The two-input rule base for generating the LLFLC surface can no\v be described by

ELSE
t.}

(3.34)

The modal spacing of output membership functions (d = d2) is given by. 1/d2 = l/al + 1/a2'

Since now there are only two input variables. the eight cases in Table 3.1 reduce to four cases

and Q2 is eliminated. For a two-input fuzzy controller. Steps 1-7 are used while equating one

of the input variables to zero. Taking the special case for 01 when m3 = 0 the corresponding

nonlinear term C3:!) is shown in Table 3.2. \Vith the modified terms the nonlinear term is

equal to (), where,

51m2l + 31md - m~ - my
1 + Im21 + Imll - my
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Table 3.2: Nonlinear term for the two-input LLFLC output

Sign ~Iodifv Nonlinear Term
•

• i3zml m., ml In-
· (), + m1 In-r

- + 1 -Imtl in - 1 ()

+ - -1 + Imtl in + 1 -()

• -()- - m1 In

The LLFLC output is given by,

-u

where Uia+ja

--

--

(3.36)

Similar to the three-input case, the general output expression for the two-input LLFLC output

can be obtained as the sum of linear (UL2) and nonlinear (UNL2) controller outputs.

U = UL2 + UNL2

Simplification for the one-input LLFLC output solution

• (3.37)

Similar to the two-input case, the second and third variables can now be assigned single fuzzy

sets. Therefore both a3, a2 --+ x and the system simplifies to a one-dimensional problem.

The corresponding LLFLC rule base structure can be represented by N 1 rules as.

ELSE [IF E1 IS ELi THEN U IS Uil.
1

(3.38)

Allowing ka = ja = 0 and (bX3.ka/a3) = (bX2.ja/a2) = 0 for any (e2, e3) we can take the

special case for 01 when m3 = m2 = O. The corresponding nonlinear term .81 and its values

are shown in Table 3.3. The term ¢ is given by,
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Table 3.3: Nonlinear term for the one-input LLFLC output

Sian Nonlinear Term0

ml 3. i

+ 0

- -0

The one-input LLFLC output is given by,

(3.40)

where for a SISO LLFLC system d = d 1 = al and i"Lia = -1 + iad i . Similar to the two cases

above. the general solution for a one-input LLFLC output can be expressed as the sum of

linear (ULl) and nonlinear (u~Ld controller outputs given by,

• •
liLl = el

Some properties of the LLFLC output

• (3.41 )

The LLFLC output is always within the range [-1.1]. \Vhen the normalized variables are

quantized into half of the modal distance. the output has a linear function. This linear

relation is given by the linear output UL. This property has been described by the multi level

relay [21]. The nonlinear output is bounded where,

This bounded property can be obtained from the maximum/minimum nonlinear outputs and

occurs when all the normalized incremental inputs are equal to each other with ml = m2 =

m3 = ±O.1972. The positive and negative values correspond to maximum and minimum

heights of i"t!':L. Also, the nonlinear term is only a function of the incremental input values.

This indicates that the non-linearity is local and the LLFLC is globally linear. This satisfies

the purpose of a linear-like or fuzzy linear definition. Since the maximum and minimum

heights are directly proportional to the base width of the output membership functions.
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the nonlinear term UNL has a diminishing effect with the number of rules. Therefore with

sufficiently larger number of rules the LLFLC output will almost becomes a linear controller

[21].

3.3.2 Nonlinear-Like Fuzzy Logic Controller (NLFLC)

When any of the knowledge base parameters in the LLFLC is changed or altered from its

basic definition. then such a controller is called a nonlinear like fuzzy logic controller. An

:\LFLC can be generated with non-uniform partitioning of fuzzy "ariables or/and nonlinear

rules or/and non-symmetrical membership functions. In this section three particular NLFLC

systems are established for obtaining general solutions. The main purpose of the fuzzy control

is to prm'ide non-linearity to the control policy with respect to the error state variables. The

alteration of knowledge base parameters (including rules) intends to provide different non

linearity to this control plane. The following remarks are made in devising such a FLC

particularly for control objectives.

Remark 3.3 In general the alteration of rules by changing the whole context is hard and

also difficult to visualize. In other words the changing of the absolute meaning of a

rule is a difficult programming problem. In [47. 91]. the so called rule alterations are

performed by changing the entries in the output look-up table and the real meaning is

implicit. Then the alteration of other parameters such as membership parameters is

most convenient for obtaining different non-linearity than rules.

Remark 3.4 The output fuzzy variables should have term sets (or values) in such a way

that the context of the fuzzy variables should be proportional to the projected distance

me<:1Sured from the switching line (or surface) in the error state space [114J. The line

or surface is given by Lew = O. This implies that the rules should have monotonic

characteristics. The linear rules satisfy' this condition. Secondly, any non-linearity of

the controller output can be obtained by changing the partitioning point of the universe

of discourse.

Remark 3.5 The final issue is the preserving of properties of fuzzy rule bases for control

namely. rule completeness, rule consistency. rule continuity and rule interaction [15].

A clear description of these properties are described in [15, 35J. The full description
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Figure 3.12: lnput membership distributions of NLFLC-l and n systems

of rules with a rule matri-x of size (NI x N2 x ""3) and with overlapping neighboring

input membership functions automatically preserves the rule completeness. The linear

fuzzy rules remove the repetition of rules with the same antecedents and therefore rule

consistency is achieved. The monotonic nature of consequent membership distribu-

tion generally provides the rule continuity (Remark 3.4). Finally the min-rnax-gravity

reasoning avoids rule interactions [15].

NLFLC-I: Using non-uniform partitioning of input variables

The universes of discourse of all inputs are non-uniformly partitioned a:; shown in Figure

3.12. The algebraic sum of truth-values (membership values) for a given crisp input state is

maintained at 1 as shown in Figure 3.12. Therefore the adjacent memberships are 50% over

lapped to satisfy the latter condition. The output is uniformly distributed as in the LLFLC

(Figure 3.lOb). Consider the linear rule bases (equations (3.20). (3.34) and (3.:38)). Now

the modal positions of the input fuzzy variables given in (3.18) have non-uniform separations

between the adjacent values. Therefore define the membership separations as,

(3.42)

Solution algorithm for the lVLFLC-1 output

The algorithm follows that developed for LLFLC but with the modifications to Steps 2 and

3 gi\'en belmv. For obtaining the two or one input solutions to the general NLFLC-I, the

LLFLC simplification is applied with modified steps, as given below.
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Modified Step 2 Define input index vector and reference error inputs.

1. Compute the differential \'ectors.

~ela = {leu - ed}T, ~e2a = {IC2.j - c21}T, ~e3a = {IE3,k - c31}T. (3.43)

2. Find the element having the minimum value and the corresponding vector posi

tions.

~ela(ia) = min (Aela)' ~e2a(ja) = min (~e2a). ~e3a(ka) = min (Ae3a) .

(3.44)

3. Obtain reference modal positions.

Cl.ia = el(ia). e2.ja = e2(ja). E3.ka = e3(ka )· (3.45)

(3.46)

(3.47)

lVlodified Step 3 Define the normalized incremental input vectors.

:--rormalized incremental input vector and normalized absolute incremental input vector

are respectively given by.

t5fe = {6XLia/aUa. 6X2.ja/a2.ja, 8X3.ka/a3.ka}T

6xa = { 16x l.ia I I (L Ua, 16X2.ja I I a2.ja, 16x3.ka I I a3.ka} T .

The incremental values are given by the equations (3.26).

\Vhile using the 0.'LFLC-I steps the solution can be decomposed to the linear and nonlinear

parts given below.

ii = UL3 + iLNL3

ilL3 = (el/al.ia + E2/a2.ja + c3Ia3.ka) d3

Ur-;L3 = C3:l - 6xl.ialaUa - 6x2.jala2.ja - 6x3.kala3.ka) d3

• (3.48)

Some Properties of the NLFLC-[

For two and one-input solutions. force the appropriate terms to zero. Since the input

modal separations are non-uniform, the linear output in (3.'18) has a variable linearity, where

as in the LLFLC, the linear controller has global linear properties. Therefore the properties

of the LLFLC are locally applicable for the NLFLC-I and the linear controller is piece wise

linear about the error state space. The degree of global non-linearity is determined by the

non-linearity of the input partitioning.
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Figure 3.13: The distribution of output fuzzy singleton.s in the NLFLC-II system

NLFLC-II: Using non-uniform partitions to all fuzzy variables

In addition to the nonlinear partitioning of input space in NLFLC-I. the output space is

also non-uniformly partitioned. Therefore the same input membership distributions shown in

Figure 3.12 are assumed for this controller. The 50% overlap of membership partitions always

gua.rantees the rule completeness. However. the overlapping condition is not a requirement

for output membership functions for preserving any rule base properties. If the support sets

are defined in such a way that the membership modal positions (or the crisp values that have

the highest degree of confidence in the term sets) are monotonically placed along the output

uni\'erse of discourse. then the rule base continuity can be preserved (Remark 3.4). Under

these conditions, there is an enormous number of arrangements of support sets of the output

fuzzy \·aria.bles. Also the general solution requires a larger number of expressions to represent

many ranges of input variables. The next controller (NLFLC-III) demonstrates this difficulty

when using one-input inference with the least number of membership functions. To simplify

this complexity fuzzy singletons are assigned for the output variable as shO\vn in Figure 3.13.

Therefore the vector defining the output fuzzy singleton positions are defined with.

Us = {iLm}T where m = i+j+k.

Define the non-uniform membership spacing as.
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Table 3.4: Nonlinear term for the three-input NLFLC-II output

Sign Modify Nonlinear Term

- 3n3mi m2 ffi3 mi 1n

+
, , •

-r -r mi 1n anI

, ,
1 - Imil in - 1 anI- -r "T"

•

+
, mi 1n a n 2- "T"

- - + 1 -jmIi in - 1 a n 2

• • -1 + jmr! in + 1 -an 3"T" - -•

• •- - - mi 1n -an 3•

• -1+l m ll in + 1 -an 4- - -•

•- - - mi 1n -an.'

Simplification for three-input conditions

Although the rules are similar to LLFLC systems, the consequent of the rules can now be

expressed in a functional form as in TSK style, for representing the knowledge base. Hence

three-input based rules are redefined as follo\vs:

(3.51 )

The same procedure for NLFLC-I can be used with modified Steps 5 and i. Step 5 needs

modifications for the nonlinear term to accommodate the new fuzzy output conditions and

thus Step i is modified. Due to the non-symmetric positioning of the neighboring term sets.

the symmetrical condition of Table 3.1 no longer exists.

Modified Step 5 Obtain the nonlinear term.

The nonlinear terms in Table 3.1 are modified and shown in Table 3.4. The modified

expressions are given below.

~-;J(



•

Sign :\Iodify Nonlinear Term

• 3 .,m1 m2 m1 in n_

+
•

On1
,

Tn1 inT

, 1 -lm11 in - 1 On1- T

,
-1+l rn 11 in + 1 -0 .,T - n_

• -0 .,- - Tn1 in n_

Table 3.5: Nonlinear term for the two-input NLFLC-II output

Q = d"'g ImI!+{dmg +d"'a -'-I llm21+{d""g +d...g -I +d...g_21Im31
n1 1+!m21+l m 31

Q ., = d",,,lmtl-dmg_tim21+(dmg+dma~dlm31
n_ 1+lm 21+!m31

_ d mg _llmll-d""g -2Im21+(dmg -I +d"'g -211m31
Q n3 - 1+lm21+l m3[

a = d"'g _llmll+(d...g -I +d""a -211m21+(dma -I +dm" -2+d..." -3llm 31
not 1+lm21+lm 31

• (3.52)

where rna = i a + ja + ka .

Modified Step 7 Compute ~LFLC-II output.

(3.53)

Simplification for two-input conditions

Similar to two-input LLFLC simplification, force ka = O. m3 = 0 and the simplified rule base

is lTi \'en bv.o _ .

ELSE [IF e1 IS £1 . AND e., IS £., ·THEN it. =u" oJ.. . ..1 _ _.) 1TJ
I.)

(3.54)

The modified nonlinear term C3nz ) is shown in Table 3.5 and the nonlinear terms arc expressed

as.

o -(Q) _dmglmll+(dmg+dTng~lllm21
n1 - n1 m3=0 - 1+l m 21

o ., - () - dma-Ilmll+(dmg-l+dmg-2llm21
n_ - O'not m3=0 - 1+lm 21

• (3.55)

where rna = ia + ja + ka . The simplified NLFLC-II output is given by,

(3.56)

58



Table 3.6: Nonlinear term for the one-input NLFLC-II output

Si<rn Nonlinear Term0

ml .3nl

+ •

Onl

- -f!) '). n_

SimpLification for one-input conditions

The rule base is given by,

ELSE [IF el IS El,i THEN it. = ~l.
L

(3.57)

The modified nonlinear term (3n d is shown in Table 3.6 and the nonlinear terms are expressed

as.

• (3.58)

Some properties of the NLFLC-II system

Overall the :\LFLC-II controller has the capability to produce more non linearity in the gen

eral three-input controller output than the NLFLC-I controller. However, the fuzzy singleton

simplification reduces the local non-linearity properties of the surface. It can be clearly seen

that the nonlinear term corresponding to the one-input conditions (Onl and 9n2) becomes

linear and the local non-linearity diminishes. This makes the one-input NLFLC-II controller

a piece-wise linear controller,

NLFLC-III: Three-ruled one-input NLFLC system

Cnder the one-input conditions, the NLFLC-II has limitations to produce better nonlinear

control. This is mainly due to the limitations in defining output membership functions. This

can be overcome by having more general types of membership functions for the consequent. In

this case only three-rules are considered. ~[ore evaluations for this controller are explained

in the next chapter. However if more rules are employed, the NLFLC-III type controller

requires a very large number of expressions to represent the output behaviour, Assume the
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Figure 3.14: Input/Output membership distributions for NLFLC·III Systems

input \'ariable is et and consider three symmetrical rules as shown below.

If Ct is NB then u is NB

If E1 is NZ then u is NZ

If Ct is PB then ii. is PB

• (3.59)

The fuzzy variables are labelled with NB. XZ and PB to represent "Negative Big'. "Near

Zero" and "Positit·c Big" respecti\·ely. The modal positions of all fuzzy subsets are fixed

as el = t1 = {-I, 0, l}T for satisfying the boundary conditions of the control system. As

there are only three fuzzy variables, the input fuzzy sets are arranged with 50% overlap as

shown in Figure 3.14. For obtaining different non-linearity the widths of output triangular

membership functions are varied. Two different arrangements have been identified for output

fuzzy variables as shown in Figure 3.14. In both cases the two membership parameters (Sl and

82) related to the width of output fuzzy variables have been chosen to get a different level of

non-linearity in the output. The two arrangements are labelled as NLFLC-IIIA and NLFLC

IlIB as shown in the figure. In the first case (Figure 3.14a) the triangular memberships for the

output are defined over the universe of discourse [- (2 +S2), (2 + S2)]. This arrangement allows

the fuzzy output to be fully normalized within the range [-1,1]. In the second case (Figure
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3.14b) the universe of discourse is strictly applied over [-1,1]. In both cases a symmetrical

membership function for the '""Near Zero'- output fuzzy variable is assumed for achieving the

zero conditions (or steady state conditions) of the controller. The membership parameters

are constrained to vary within the following ranges:

81 E (0.1] for keeping the NZ fuzzy sub-set triangular about the zero and

82 E [-81,1) for obtaining unique expressions for the fuzzy output.

The derivation of the fuzzy outputs for NLFLC-III systems is given in the Appendix B. The

solution has two main cases: non-overlapping or overlapping output memberships. Again

due to the discontinuity of the min-max functions, the overlapping case has three different

expressions for satisfying three different ranges for the input. The following intermediate

variables are defined for easy representation of the solutions:

051 - 05.,
8d = ------. z., = 81 - 8., and z., = 1 - 82-

1 + 81 - 82 . - - -

Output solution for the NLFLC-IIIA

Case I (Non-overlapping): 81 ~ 82

(3.60)

(3.61-1)

Case II (Overlapping): 81 > 82 AND

IIa. [(81 - 82) ~ 1 AND 0 < let! < 8d] OR [(51 - 82) 2: 1 AND 0 :5 lell < 0.5].

-u=
(zi - o5YHey - 3!et! + 3) + 3(1 + 2z2 - z2Iet/)

205 1 + 2(1- 051 + z2)lell- (82 + Z2)CY
•

(3.61-IIa)

-_ el

u = 31el1
6Z2(21ell - ey) - ZISd (381 + zl - 8d(381 + 2Z2»

281(1 - er) + 2Z2(2Iet! - en - zl s d
•

(3.61-IIb)

(Z5 - 8YH1 - lem + 3(1 -let!) - 3Z2(er - 41et! + 1)
05 1(1 - en - z2(1 - 41el1 + eI) + 2(1 -let!)
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Output solution for the NLFLC-IIm

Case I (Non-overlapping): 81 ~ 82

3(1 + S2) - 3S21el[ - Z2€r
281 + 2Z21erl - (2S 1 + Z2)er .

(3.62-1)

Case II (Overlapping): Sl > S2 AND

IIa. [(Sl - 82) ~ 1 AND 0 ~ lell < 8d] OR [(Sl - 82) 2: 1 AND 0 ::; lell < 0.5]

-• el
u=-

3
3( 1 - sI) + sr(3lell - er)
281 + 2(1 - sr)!er! - SleI .

(3.62-IIa)

(ZlSd(38dSl + 2SdZ2 - 4s1 + S2) + lerlz2(3 + 382 - 31erl s2 - Z2er)
2s 1 - ZlSd + 2Z21er! - (2S 1 + z2)er

•

(3.62-IIb)

•
(3.62-IIc)

Equations (3.61) and (3.62) show the full description of the fuzzy output of the NLFLC

III system. It is now easy to visualize th€' complexity of the solution when this controller is

added with more input variables. However the NLFLC-III system can be readily used for the

rule de-coupled PID structures shown in Section 3.2.

Some properties of NLFLC-III

Due to the symmetric nature of the output partitioning about the zero, the NLFLC-III

outputs are negatively symmetrical. The symmetrical conditions for the NZ fuzzy variable is

a necessary condition for the steady state conditions. i.e. when el = 0 thenu = o. The wider

membership definition of the NLFLC-IIIA makes the output curve to be fully normalized

within [-1.1]. The non-symmetry of the NB and PB fuzzy variables in the NLFLC-IIIB

always makes the normalized output to be within [-(2 + s2)/3, (2 + s2)/3].
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3.4 Gain Analysis

This section identifies the PID gain terms related to fuzzy controller structures developed in

Section 3.2. In general. for a given fuzzy PID structure, the controller design can be considered

as a two-Ieuel tuning problem [48]. The first level of tuning deals with the knowledge base

parametcrs that have direct influence on the nonlinear control action of the normalized crisp

output. This is non-linearity tuning and is usually achieved by varying rules, membership

functions. input and output partitions. The second lC\'el deals with the linear gains that

pro"ide o\-erall magnifications to the control action in the error space. This is linear tuning

and is usually achie\'ed by changing linear gains in the Pill structure including normalizing

and de-normalizing scale factors. \Vhen both of these levels are combined, the fuzzy controller

tuning becomes a higher dimensional problem and usually takes considerable time to search

for the optimum set of tuning parameters. The two-level design identification allows the

multi-parameter complexity to be split into two parts. Also, this identification enables one

to identify the most effective tuning parameters for efficient design. This is one of the main

objectives of this thesis work. The analysis identifies two t)"IJes of gains. The Apparent

~onlinear Gains (ANG) are defined for the first level of tuning and the Apparent Linear

Gains (ALG) are defined for the second level of tuning. The true PID gains are functions

of both AXG and ALG gains. The explicit representations of the ANG terms are difficult for

coupled rule bases. This requires the dissociation of the error terms from the general output.

For simplicity first an LLFLC with the simplest form is considered for identifying the ANG

terms. Therefore first the outputs of a simplest LLFLC are expressed in terms of error terms

for identifying ANG terms for different structures.

3.4.1 LLFLC Based PID Outputs

First define the simplest t)"IJe of a fuzzy controller based on LLFLC in order to obtain

concise expressions relating the error variables. In this simplest LLFLC structure each input

is assigned two uniformly distributed membership functions as shown in the Figure 3.15.

Therefore at = a2 = a3 = 2. Since the membership index values i,j and k have only two

values. 0 and 1. first consider the positive incremental inputs measured from 0 index positions.

For any givcn input error vector {e, ~e. ~2e} the incremental values are:
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i=j=k=l
I

I
•
I
•

i=j=k=O
I

I
•
I
•
I

-1 : 4 ' +1
Oxl,O(orOxz,o e(or 6e or fj.2el

or o.~3.0)

Figure 3.15: Two uniformly distributed memberships for the simplest LLFLC

6xl,O = (1 + e)/2, bX2.0 = (1 + ~e)/2. bX3.0 = (1 + ~2e)/2.

Considering the rID structural elements in Figure 3.2. the LLFLC outputs are deduced.

For three-input elements

As it wa..,; shown in Section 3.3.2 and Table 3.1. the value of the non-linear term changes with

respect to the relative difference between the normalized input variables. In order to express

the outputs in terms of the actual input terms (without transformation) and also to aid the

PID gain analysis, a single case is considered. Assume (bxl,o/ad > (6x2.0/aZ) > (6x3.0/a3) ~

O. Using the general solution in (3.32) the corresponding output is given by,

A_I
~UPID = :3

4e - 2e2 + 2~e - (~e)2 + 6~Ze - (Ll2e)2

9 - e2 - 2~e + 2A2e • (3.63)

Equation (3.63) can be rewritten in the dissociated form as,

A • (2-~.n~e • (2-e)2e (6-~:!e)A:!e
.u.UPID = 3P T 3P + 3P .

where P = 9 - e2 - 26.e + 26.2e.

Assuming the dissociated form 6.uPID = Au~1D + AuilD + ~tibID define,

(3.64)

•

•

•

(2 - ~e)Ae

3P
(2 - e)2e

3P
(6 - A2e)~2e

3P

--

--

--

The superscript PID is used to show the inference source.
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For two-input elements

Considering the case, (<5xL.o/ad > (<5X2.0/a2) 2: 0 and using the two-input solution in (3.36),

it can be shown.
A • 1

uPo = ~UPI =
2

4e + e2 + 4Ae - (6e)2
7+2Ae - e2 • (3.65)

Equation (3.65) can be re\\Titten in the dissociated form as.

• .\. • e(4+e) , ~e(4-~e)
Upo = ~UPI = 2Q T 2Q .

where Q = 7 + 2Ae - e2.

Assuming the dissociated forms ~upo = u~o + ubo and Up[ = ~u~[ + ~uFr define.

u~O = AuFI = e(4 + e)/(2Q), and

ubo = Au~I = ~e(4 - ~e)/(2Q).

The superscript PI or PO is used to show tile inference source.

For one-input elements

(3.66)

Considering the one-input LLFLC solution in (3.40), the fuzzy outputs for one-input control

elements can be expressed by.

Up = ~UI = -!e/(5 - e2 )

uo = ~up = 4~e/(5 - (~e)2)

Auo = 4~2e/(5 - (~2ef)

3.4.2 Apparent Nonlinear PID Gains

• (3.67)

As explained in Section 3.-!.L the apparent non-linear gains are directly related to the nor

malized fuzzy output of a PIO controller. Therefore the non-linear PID gains are deduced

from the normalized output expressions of the fuzzy PID controllers described in Section 3.2.

For the dissociated or de-coupled fuzzy PIO actions, the ANG terms are defined as follows.

•

Kpa(n) - up(n)/e(n),-
n

•

iL(n)/ L e(q) andKra(n) - (3.68)-
q=O

•
Koa(n) - uo(n)/~e(n).-
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Table 3.7: ANG terms of different fuzzy PID structures

Type

I

II

III

IV

v

VI

•
A.1'IlG-Proportional K P:a (n)

1 t ' (2 - &?(q»~(q)
e(n) q=O' 3P(q)

i PD _ (4+e(n»
Pa - 2Q(n)

, . .
i P1 = 1 t (4-.1e(q»~(q)

P. e(n) q=O 2Q(q) ,

4

4

5
• ,

- e(n)-

UPo (e(nJ,s,)

e(n)

•
ANG-Integral K~ (n)

1 i'2(2-e(q»e(q)

i e(q) q~O' 3P(q) ,

q=O

1 t/(4+e(q»e(q)

te(q) q=O' 2Q(q)

q=O

, . '
,,1 t 4~(q) 2

Le(q) q=o,S-e(q) ,

q=O

r • '
n 1 i 4~(q) 2

Le(q) q=o,S-e(q) ,

q=O

1 n
n LUPn(e(q),sl)

Le(q) q=O
q=O

•
ANG - Derivative KDa(n)

1 t /(6_~2e(q»~2e(q)
&?(n) q=O, 3P(q) ,

(4-&?(n»

2Q(n)

4. ,
S-(&'(n»-

. ,
4(S+e(nn. ,

S-e(n)-

duPo (e(n), S3)

de(n)

•• •

where. KPa, KIa and KOa are the apparent nonlinear proportional. integral and derivative

gains respectively. The ANG terms obtained for structure types I-VI are listed in Table 3.7

and the steps followed are described below.

ANG for Type I

Using the dissociated form given in (3.64). the normalized control action corresponding to

(3.6) can be described by,

n n n

uPID(n) = 2: ~u~ID(q) + 2: ~urID(q) + 2: ~ubID(q).
q=O q=O q=O

The equivalent form with ANG terms is;

n

uPID(n) = kPa(n)e(n) + k1a(n) 2: e(q) + [(OaAe(n).
q=O
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Substituting terms given in (3.64) into (3.69), the ANG terms that correspond to the ar

rangement in (3.70) are thus obtained.

ANG for Type II

The normalized control action corresponding to (3.8) can be described by,

n n n

uPID(n) = 2: up(q) + 2: U[(q) + 2: uo(q).
q=O q=O q=O

(3.71)

The AXG expressions for (3.71) and (3.70) are identical. Substituting one-input element

outputs in (3.67) to (3.71). the ANG terms that correspond to the arrangement in (3.70) are

thus obtained.

ANG for Type III

Using the dissociated form given in (3.66). the normalized output corresponding to equation

(3.10) in the dissociated form can be described by,

n n

+Kp[ 2: Au~l(q) + 2: AuF1(q)
q=O q=O

The equivalent form with ANG terms is:

•

(3.72)

UPID(n) -

n

+Kpl K~~(n)e(n) + Kla(n) 2: e(q)
q=O

•

(3.73)

Csing the dissociated outputs for two-input element in equation (3.66) and substituting into

equation (3.72). the ANG terms that correspond to the arrangement in (3.73) are thus ob-

tained.

ANG for Type IV

In this de-coupled rule structure, the normalized output corresponding to (3.12) can be

expressed by,
n

iipm(n) = Kpup(n) + KITs 2: lip(q) + Ko/Ts·uo(n).
q=O
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The equivalent form with ANG terms is,

•

uPID(n) = KpKpa(n)e(n)
n

+KITsKIa(n) L e(q) + (Ko/Ts )Koa(n)t1e(n).
q=O

(3.75)

Substituting the one-input element outputs in (3.67) into (3.74), the ANG terms that corre

spond to the arrangement in (3.75) are thus obtained.

ANG for Type V

In this one-input structure. the normalized output corresponding to equation (3.14) can be

expressed by,

n

upm(n) = Kpup(n) + KITs L up(q) + Ko/Ts (up(n) -up(n - 1».
q=O

(3.76)

The A:\G expressions for (3.76) and (3.75) are identical. Substituting one-input element

output for up given in (3.67) into (3.76), the ANG terms that correspond to the arrange

ment in (3.75) are thus obtained. For small sampling time intervals the equivalent nonlinear
•

derivative gain can be further simplified using the relation KOa = dup(n)/de(n).

ANG for Type VI

In this one-input structure, the normalized output corresponding to equation (3.16) can be

expressed by.

n

upm(n) = Kpup(n) + KITs L up(q) + Ko/Ts (up(n) - up(n - 1».
q=o

(3.77)

Since the Type V structure is a special case of type VI, with the simplest LLFLC rule bases,

both types are identical. A practical high performance fuzzy controller requires the knowledge

base to have a nonlinear-like structure. However, for the normalized proportional controller

output to be monotonic with respect to error, the rules must be arranged in the linear form.

In order to illustrate this. the solution of the NLFLC-III svstem is assumed. Let the nonlinear. -
proportional action obtained by the one-input fuzzy mapping be given by,

up(n) = ii'Pn (e(n), x) .
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where {x} denotes the nonlinear tuning parameters of the one-input fuzzy knowledge base

where x = {Sl.82}. By using different non-linearity tuning vectors. three different propor

tional actions can be identified as.

(3.79)

The ANG expressions for (3.77) and (3.75) are identical. Substituting (3.79) into (3.77), the

A:\'G terms that correspond to the arrangement in (3.75) are thus obtained. Similar to Type

V. a small sampling time can be assumed for obtaining the derivative ANG term.

3.4.3 Apparent Linear PID Gains

The second level tuning generally achieves the overall performance of a fuzzy controller.

Given a fuzzy system this tuning behaviour is analogous to linear PID tlming. "Vhen the

fuzzy inferences in the PID structures are allowed to produce linear functions, then the fuzzy

PID controllers become perfect linear PID (either incremental or absolute) controllers. "Vhen

the error terms of such a controller is arranged in the linear PID form given in (3.1) or (3.2),

the gains become equivalent to linear PID gains. The linear controller part of the decomposed

LLFLC controller (ilL) has a global linear structure where as in the NLFLC controllers it is

local. The 1\LFLC controllers described in this chapter have been derived from the LLFLC

basic structure. Therefore the decomposed linear controller of the LLFLC can be used as the

basic equivalent linear form for all the NLFLC systems. Hence without loss of generality the

following description is followed for obtaining an Equivalent Linear Controller (ELC) for the

fuzzy PID svstems.
• •

1. Assume the scale factors for error variables given in (3..t).

2. For the general description given in Section 3.2.2. N l , N2 and N3 are the numbers of

the fuzzy membership functions assigned for input error variables.

3. Consider the linear rules used in Section 3.3 (necessary condition).

4. Assume the input membership functions are arranged according to the LLFLC structure

(the actual arrangement may be non-uniform).
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5. \Vithout loss of generality consider the fully normalized conditions for the fuzzy output

and include the transformation iJ. =: iJ.jumax.

6. Consider the linear controller output Cud described in LLFLC outputs.

7. The scale factor for error can be made fi.xed by using Se = ljemax where the maximum

error value (emax ) changes as the set point varies.

The above description defines an Equivalent Linear Controller for the entire error space for

defining the linear PID gains. The superscript l is used in each case to denote the equivalent

linear conditions. Expressions (3.17) are assumed for determining the parameters aI, a2 and

ELC for the three-input element

Consider the linear controller output in (3.33). After substituting the scale factors the ELC

output is obtained as

(3.80)

ELC for the two-input element

Considering the linear output in (3.37) the ELC output is given by

(3.81 )

ELC for the one-input element

Considering the linear output in (3.41) the ELC output is given by

u~(n) = Aui(n) = See(n)

u6(n) = ~u~(n) = SceAe(n)

Au6(n) = SrceA2e(n)

• (3.82)

The Apparent Linear Gains are the equivalent pro gains when the fuzzy controller is defined

as an ELC. Therefore for each PIO structure the ELC is identified in the form given by.

n

u~ID(n) = KPae(n) + KIa E e(q)Ts + KoaAe(n)jTs .

q=O
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Table 3.8: ALG terms of different fuzzy pro structures

Type Kpa KIa KDa
Tuning
variables

I SuSc"d] Su S"d3 Su Src"d3 T. Su, See' Src"
ace a" T. arc"

II SuSc"
SUS" SuSrc"Ts Su' Sc,,' Src"

r.... .
Sc"Kp1

+
Su S"d2 K p1 Su Sc"d2 K pd T. Su, Sc,,' KpDace

III d 2 S"
S"Kpo a" r. ace (Kp1 = 1)

c- a" -

IV S"S"Kp SuSe K( SuSeeKo
S",See. K ,
(Kp = Ko = I)

SuS"Kp SuSe K ( SuSeKD
Kp,K(,KO

V (Su = 1)

VI SuS"Kp SuSeKI SuSeKO
Kp,K"Ko
(S" = 1)

where KPa. KIa and KDa are the apparent linear PID gains. Substituting the ELCs in

(:3.80-3.82) into the output expressions given in (3.6), (3.8), (3.10). (3.12), (3.14) and (3.16)

the ALG terms for the PIn structure Types I-VI are obtained in the form given in (3.83).

The derived ALG terms are tabulated in Table 3.8. Using the same approach the ALG

terms of Types VII-IX can be obtained. Similar to the three PIO gains the total unknown

linear parameters of the fuzzy PIO system also can be simplified to three unknown tuning

parameters by forcing some redundant terms to unity. The simplified three unknown tuning

parameters are ShO\\l1 in the last column of Table 3.8.

3.5 Functional Properties of Fuzzy PID Controllers

In the previous section. fuzzy pro controller design has been identified as a two-level tuning

problem. The PIO gains related to both of the tuning levels have been defined. The overall

performance of a fuzzy PIn controller depends on how accurately and effectively these gains

have been chosen or adjusted during the design process. As there are many forms of fuzzy

pro structures, the superiority of one structure lies in how easily the controller can be
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implemented or adjusted for obtaining better performance over the linear PID controller.

In most controller designs the exact plant model and changing process dynamics during the

process of control are usually not unknown. In those circumstances the non-linearity that is

required by the controller also becomes unknown before the implementation. However, past

control experience usually helps to identify the unknown gain values. In performance based

GS type fuzzy tuners the tuning rules are implemented in de-coupled form [5]. When the

conventional PID tuning knowledge is extended for non-linearity tuning of fuzzy controllers,

the identification of individual PIO actions are possible in a de-coupled form. It is hard to

find such control expert rules for coupled PID actions. In that respect the different fuzzy

PIO controller structures are compared for performance.

The superiority of fuzzy control is mainly due to the non-linearity tuning. A better fuzzy

controller should allow ma.ximum versatility and flexibility in tuning the nonlinear gains

for achie\-ing the best performance over linear control. Therefore the functional benefits or

behaviours of the PID structures can be compared by the functional properties described

belmv.

3.5.1 Action Association

The basic difficulty in coupled rule bases is the identification of those nonlinear tuning pa

rameters relating the nonlinear PIO gains_ In all coupled rule structures the output actions

are in the a.ssociated form. The action association refers to the availability of the three PIO•

actions by a single output expression. The basic dissociation that has been performed for

the simplest LLFLC structure is an attempt to identify the individual PID actions in a dis

socia.ted form. A similar approach has been employed in [20] to identify the AKG terms of

the simplest PI controller using different inference methods. This process is artificial since

the algebraic decomposition of nonlinear terms may not show the true representation of the

individual PIO outputs. Furthermore, if NLFLC systems are considered, the identification

of the PID actions in a dissociated form will become a complex mathematical problem and

as a result the nonlinear PIO gains become non-transparent for independent tuning. The

action association is one of major reasons why no satisfactory in-depth analysis has been

done in identifying the nonlinear tuning parameters in an explicit form for the most common

conventional controllers (Type-I and III).



3.5.2 Input Coupling

From the ANG temlS it can be observed that the coupled rules produce coupled nonlinear

gains. In the Type I controller the common denominator (P) in the three Al.'IG terms shows

the coupled nature of the inputs on indi"idual PID actions. In other words the variation

of one error variable affects all the ANG terms in the PID control. This behaviour may

be an advantage for generalized damping [115], where the effect of error derivatives on the

nonlinear gain terms can provide more damping. The disadvantage is that the proportional

and integral actions are unnecessarily complicated by the effect of damping causing a more

sluggish kind of response. For example, when the process is responding slowly, the coupled

action of error rates tends to produce low equivalent gain for the proportional ANG value.

This can be numerically verified by comparing the ma.ximum proportional action when all

the error derivatives are forced to zero. This is one of the reasons why in [29] the conventional

fuzzy PI controller (Type III) was unable to perform better than an optimally designed linear

PI controller. The input coupling sometimes has a negative effect on the overall (or linear)

tuning. Although the ALG terms are similar to three PID gains, they are functions of the

normalizing or scale factors. The change of an ALG value affects the overall magnification

of each of the three ANG terms. For example. increasing the proportional ALG term in the

Type I controller causes overall magnification or reduction of each of the three ANG terms.

3.5.3 Gain Dependency

Gain dependency occurs when one fuzzy action is generated by using another action as in

Types II1-V controllers. For example, in the Type III controller fuzzy PI is generated from

fuzzy PO while in the Type V controller fuzzy (I) and fuzzy (D) actions are produced from

fuzzy (P) action. This can be mathematically described as follows.

1. Dependency between the two-input coupled PI and PD controllers (Type III)

The dependency between the PI and PO controllers is given by, uPI(n) = 2:;=0 UPD(q).

Replacing the normalized terms with ANG terms, the gain dependency can be expressed

by.

n n

k~~(n)e(n) + Kla(n) L e(q) = L (k~~(q)e(q) + kDa(q)~e(q)) .
q=O q=O
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2. Dependency between P and I controllers (Type IV and V)

The dependency that exists in the Types IV and V controller outputs is given by,

u[(n) = L~=oUp(q). Replacing the normalized terms with Al'\TG terms the gain depen

dency can be described by,
n n

kIa(n) L c(q) = L KPae(q).
q=O q=O

By assuming the continuous form for small sampling intervals, the above expression can

be further simplified. The gain dependency can be described by the following nonlinear

differential equation: -
t·- ,1 dK1a - t·- 0
I~Ia T? d- e - l\.pa = ._ e (3.86)

3. Dependency between P and D controllers (Type V)

The dependency that exists in the Type V controller output is given by,uo(n) =

up(n) - up(n - 1). \Vith ANG terms this gain dependency in the Type V controller

can be expressed by,

- - .
KOe(n)~c(n) = Kpa(n)e(n) - KPa(n - 1)e(n - 1). (3.87)

Considering small sampling intervals, the above can be described in a continuous form

by the following nonlinear differential equation.
-

t- dKPa_ t, 0
l~ Pa + de e - l~ Oa = . (3.88)

The gain dependency makes obtaining optimum nonlinear tuning of individual ANG terms

impossible. For example. in the Type V controller. both integral and derivative gains follow

the nonlinear proportional action in terms of nonlinear tuning. In case of optimum nonlinear

tuning, this requires a compromise for achie\·ing best performance. The conventional Type

III controller shows a highly complex gain dependency. The independent nonlinear gain

control in Type II and Type VI controllers allows the design to achieve the best independent

nonlinear tuning in terms of ANG values.

3.6 Summary

The systematic analysis presented in this chapter facilitated the identification of different

fuzzy PID structures, particularly de-coupled and one-input type controllers, which have not
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been commonly used in previous applications. Closed-form expressions for fuzzy controllers

ha\'e been systematically deduced to represent the output solutions to fuzzy controllers. The

transformation procedure reduces the complexity of the min-rna-x solutions and therefore the

fuzzy controller analysis produces general solutions to PID structures. The limitations of

the closed-form analysis to the fuzzy systems have been clearly identified. The gain analysis

enables one to simplify the fuzzy PID design as a two-level tuning task. The apparent gains

have been deduced for both the tuning le\·els. Important functional properties have been

identified for comparing and evaluating different fuzzy PIn controllers. The comparison

generally proves the de-coupled rule structures have the advantages of obtaining dissociated

PIn terms \vith de-coupled nonlinear gains. Also independent fuzzy rule bases avoids the

gain dependency for better designs. Rule de-coupling results in the isolation of nonlinear PID

actions from the coupled actions. This may sometimes causes loss of certain non-linearity

features that are available in coupled rules. As an example the isolation of error change

from the proportional action causes the system to be less robust. However the unkno,"rIl non

linearity in the coupled actions usually causes designers to deal with complex fuzzy controller

tuning procedures. The available tuning PIO knowledge can be \',:ell exploited only if the rules

are de-coupled and dissociated from the coupled actions. Chapter 4 ex-plains how de-coupled

rules are effectively employed to obtain non-linearity tuning for ANG terms.
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Chapter 4

Analysis and Evaluation of

Non-linearity

4.1 Introduction

•In zzy Systems

The main objective of this chapter is to analyze the non-linearity aspects of the fuzzy control

actions in order to realize a suitable non-linearity tuning scheme. The analysis of the non

linearity enables de\'elopment and selection of efficient fuzzy systems. reasoning schemes for

better control. The fuzzy control design is primarily a formulation of an unknown nonlinear

mapping system for a partially known process system[108]. Although the fuzzy controller's

output has been analyzed for its non-linearity [20, 116]. the real effect of this non-linearity on

plant performance has not been adequately addressed. The non-linearity should be related

to the non-linearity tuning parameters or knowledge base parameters. If this has a higher

dimension. it is difficult to understand the variation of such non-linearity within a higher

parameter space. This chapter presents a suitable evaluation scheme for the non-linearity of

fuzzy systems developed in Chapter 3.

As explained previously, overall performance is based on the two levels of tuning or

equivalently. the tuning of apparent linear and nonlinear PID gains. Given a fuzzy system

with a fixed non-linearity (or \vith fi.xed knowledge base structure) it is theoretically possible

to obtain overall performance (or convergence) by adjusting the apparent linear gains, In

such circumstances it is difficult to isolate the exact effect of non-linearity from the overall
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plant response. Therefore the first issue in this chapter is to frame an evaluation method for

identifying different non-linearity in the fuzzy output. This identification would lead to an

estimate of the necessary number of fuzzy variables required for the general fuzzy systems

described in the previous chapter.

The second most important issue in this work is to search for a suitable fuzzy reasoning

scheme for fuzzy PID control. As mentioned in Chapter 1, there are no rigid mathematical

set operations that are unique for fuzzy reasoning. This is not the case with binary logic.

However. ~I1IG is the oldest and most popular reasoning scheme for fuzzy control. The

fuzzy calculation is based on basic set operations. The triangular t-norms and s-norms in

clude several types of set operations [35]. Therefore one can find several combinations of t

and s- norms to generate different reasoning schemes for fuzzy control. In addition to the

:\I~IG inference" the product-sum-gmt>ity (PSG) reasoning scheme has become quite popular

in generating fuzzy control actions. Unlike min-max functions, the product-sum functions

are continuous. Also the sum allows the general output of the FLC systems to be expressed

in an algebraic (or additive) form [L 104, 116]. Hence the use of PSG is relatively convenient,

particularly for neura-fuzzy implementations. Mizumoto [52] has pioneered the evaluation

and comparison of different fuzzy reasoning schemes for feedback control. He has used com

puter simulations to validate and prove the superiority of the PSG reasoning. For the work

he has used a specific kno\\,-ledge base configuration and a first-order plus dead time process

model. This research was important because it has provided the initial comparison and also

indicated the unsuitability of some reasoning systems for fuzzy control. The fuzzy reason

ing method has direct effect on the ANG terms or first-level of tuning. In addition to the

nonlinear properties of the fuzzy system, the overall performance is greatly affected by the

scale factors. Therefore i\Iizumoto's approach is impractical to use for assessing and ranking

different fuzzy systems. Ying [20] later performed an analytical calculation to produce the

AXG terms corresponding to different reasoning methods. The comparison was based on

the com"entional twa-input PI configuration with a simple fuzzy linear controller. Unlike the

~Iizumoto'sapproach, this work has isolated the effects of fuzzy reasoning from the linear pa

rameters for establishing nonlinear gains. He concluded that the bounded product inference

is invalid and inappropriate for fuzzy control. The paper further admits that the analysis

cannot conclude the efficiency of the fuzzy inferences for control performance. It is important
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that strong non-linearity is an asset for control. but how much of non-linearity or what kind

of non-linearity the fuzzy system can generate is vital for control. A similar approach has

been recently adopted in [31] to compare different t-norm sum-gravity inferences. In [31]

the FLC \vas considered with shrinking span membership functions (or simply nonlinear like

controller) as opposed to linear like controller in [201. The analysis was able to quantify the

maximum non-linearity of the fuzzy system under given reasoning conditions. However the

approach is unsuitable for evaluating the non-linearity variation that an inference method

could produce under given tuning conditions. In all the past evaluations [20, 31, 52]' the

~[~IG and PSG were identified as .-alid reasoning methods. The other most popular fuzzy

system in the area of fuzzy control is the Takagi-Sugeno's [39] (TSK) functional fuzzy rep

resentation. The TSK method is popularly used for fuzzy modelling applications. However,

only in very fe\ver applications (e.g. [117]) that the TSK system has been used for fuzzy PIn

control. This research has provided enough motivations to compare the general TSK repre

sentation as a different fuzzy reasoning scheme for fuzzy PIO control. In order to address this

issue sufficiently different fuzzy systems are analyzed in terms of their nonlinear properties.

The basic features and properties of non-linearity in an LLFLC is fixed. It is possible to

change the magnification of the non-linearity of the output of an LLFLC by increasing or de

creasing the number of fuzzy variables in a given direction of control. It has been found that

the available non-linearity variations in an LLFLC is not significant enough to provide consid

erable improvements to fuzz:y PIO control. Therefore the nonlinear properties of the NLFLC

systems are first evaluated. A new performance evaluation scheme is generated for quanti

fying the non-linearity and its degree of freedom for ANG terms. Using this new evaluation

scheme, the non-linearity of different fuzzy systems. including different reasoning methods,

is compared for ranking. At the end, an alternative nonlinear control using parametric based

Bezier curves are described.

4.2 Formulation of Non-linearity for Fuzzy Control

The linear control is perhaps the most conservative control policy for feedback control. That

is one of the reasons why linear PIO controller is satisfactorily functioning in variety of

industrial control loops. The fuzzy PIO controllers with the nonlinear control techniques
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provide better performance than the linear counterpart. In that case it is important to

evaluate the drawbacks of linear control and the potential benefits of nonlinear control before

designing a fuzzy controller. Consider a set point controlled process system. The objectives

arc to attain .
•

(a) fast rise time.

(b) low settling time.

(c) least peak o\'ershooL

(d) steady state conditions \\ithin a narrow error margin. and

(e) quick recovery and adaptability under load or external disturbances.

The error integral criterion [118] is a mathematical representation of the above requirements.

There is no perfect controller, that can individually optimize all of the above objectives. As

an example the linear PID designs based on error integral optimizations in [1181 provide two

separate expressions for the PIO gains. one is for achieving set point control properties and

the other is for achieving load disturbance properties, This is mainly due to conflict in the

controller policies at two different points in the control. As an example, the increase in integral

gain for obtaining load disturbance properties causes the set point overshoot to be excessive

and also can cause integral-windup. The linear control policy is uniformly applied over the

entire control plane and hence cannot allow exceptions. Fuzzy control has the advantage of

pro\'iding local control. In other words the apparent nonlinear PIO gains allow equivalent or

the o\'erall PIO gains to be different in different control regions.

4.2.1 Non-linearity for Local Control

Consider two control points in the control plane which are expected to provide improved

control for set point control problems. The first point corresponds to the normalized error

\'ariables at the extremes or when lewl = 1. The local control at this point can provide a

higher driving force for faster rise or milder control for smooth transitions etc. The second

point corresponds to the target point or when lewl = O. The local control at this point

can influence for example, the load disturbance properties, steady state properties etc. The

nonlinear tuning of the fuzzy controllers provides independent adjustment to the ANG terms
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at the chosen two points. By considering more than two points it is possible to improve the

control performance. at the cost of higher parameter complexity. The author believes this is

an important area of further research.

4.2.2 Preferred Properties for Fuzzy Outputs

The next step in this analysis is to find the fuzzy parameters and a suitable rule base system

that can provide the above local control properties. Without loss of generality the following

constraints are imposed for reaching the objectives of this design. Although some of the

properties have been acquired during the construction of the LLFLC and NLFLC systems,

they are repeated for clarity. Again consider any three error inputs and for convenience assign

e = C1, ~e = e2. and ~2e = e3. The preferred properties PI through P5 are outlined below.

PI All the controller variables are normalized to the compact region [-L11. The normalizing

and de-normalizing factors will preserve the generalities.

P2 For achieving a unique tuning criterion set the fully normalized conditions by imposing

the boundary condition: when eu: = ±L then u = ±L

P3 For steady state properties: when Eu: = O. then ii. = O.

P4 For one-one correspondence and rule continuity the output is required to be monotonic

and continuous and therefore set ouj8eu: > O.

P5 For symmetrical control at the set point consider the anti-symmetric property.

ri( +e1. +e2, +e3) = -ii.( -e1, -e2, -e3)

4.2.3 Non-linearity Tuning Variables

Once the fuzzy system is designed to provide the above properties, the next step is to deter

mine the tuning parameters and the two-levels of tuning. Since ANG terms are related to

the slopes of the control plane in the respective error directions, the angles or slopes of the

tangents drawn at the chosen control points are selected as the main tuning variables for ob

taining non-linearity tuning for local control. In order to isolate the tuning parameters from

the associated ANG terms in coupled outputs of coupled rule bases. the slopes are measured

in the planes of the individual error axes. Figure 4.1£1 shows a control curve that has been
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Figure 4.1: Non-linearity tuning parameters for local control

projected into a chosen error variable. The gradients of the tangents drawn at the zero and

ma.ximum points are selected as the tuning variables for achieving the non-linearity tuning.

The measurement of these gradient angles (00 and 0d with respect to a two-dimensional

:\LFLC-I control surface is shown in Figure -l.lb. Therefore for a given fuzzy system the

state of its non-linearity is described by these angles. In general. for the three-input coupled

rule base, these angles can be described by.

. (Odw =
e.... =O eu..=l

• (4.1)

where the fuzzy output ii. f in (4.1) is the projected control curve onto ew - it plane and is

Uf =iJ.(ep = 0). p = 1,2.3 and P =1= lL'.

This can be an incremental or absolute signal depending on the type of the PID structure.

The fuzzy system designed for the prD control should allow independent variations of 00 and

£h within the range [0.90 0
] for obtaining local control at the chosen control points. Some

researchers believe that more rules or fuzzy variables near the set point or zero error can bring

accurate control [1, 30, 65]. Therefore the membership functions are sometimes placed in such

a way that the support sets become narrower (called shrinking span memberships) near zero

[30,31]. It has been seen from the LLFLC and NLFLC analysis that this arrangement would

produce a more rigid linear surface near zero and the slope of the normalized surface would
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converge to 45° as a linear PIn controller. Therefore the design will lose the real benefits of

fuzzy control. In a properly designed fuzzy controller the non-linearity tuning should produce

this linear function as a special case of the fuzzy control.

4.3 Development of Fuzzy Systems for Two-point Control

In this part the FLC systems generalized in Chapter 3 are considered for obtaining the

specific two-point control characteristics. \Vith respect to non-linearity tuning, the LLFLC

systems have limitations in providing sufficient and significant nonlinear control as compared

to XLFLC systems. In fact the LLFLC is a special case of the NLFLC system. Therefore

the nun-linearity analysis is not performed for LLFLC systems. The nonlinear tuning of

the NLFLC systems are obtained by altering the fuzzy partitioning points in the input and

output spaces. As there are two independent non- linearity indicators corresponding to the

two control points, the NLFLC systems require at least two independent parameters for

representing the tuning of each ANG term in the fuzzy PIn system.

4.3.1 NLFLC-I System

By observation it can be concluded that the number of membership functions needed in

0iLFLC-I system for obtaining this local control can be accomplished by assigning two in

dependent partitioning points for each input variable. under these conditions the input

membership parameters can be fi.xed for a general three-input NLFLC-I rule base system as:

\
- \. \r 1. 11 = 1, '2 = .L~3 = ,.

The number of output fuzzy variables is AI = N 1 + N2 + N 3 - 2 = 19. For two- and one-input

fuzzy rule bases i.\I = 13 and ill = 7 respectively. Therefore for any given input variable the

modal positions can be defined by,

(4.2)

The partitioning is arranged in such a way that the membership positions are s}"IIlmetrically

placed about the zero modal position to facilitate the property P5. This special arrangement

of the membership functions for all the antecedent variables is shown in Figure 4.2. The
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Figure -1.2: The simplified membership distributions of the antecedents of ~LFLC-I and II

systems
•

non-linearity tuning is determined by the input partitioning points that are specified by the

distances (sdu: and (S2)u:. By varying these positions it is possible to change the angles or

the slopes of the projected curves at the two specified control points. The ranges for the

tuning parameters can be specified by:

(4.3)

\Yhen the control surface is projected to one of the a.xis then the shape of the curve in Figure

-1. 1 would be equi\'alent to a one-input inference with reduced magnifications to the height.

Therefore the angles obtained for each error a.xis of the NLFLC-I output are described below.

For three-input rule base

with w = 1. 2.3.

For two-input rule base

with IV = 1. 2.

For one-input rule base

with w = 1.

(Oo)w = arctan (6(s~)J

(O~)w = arctan (6(1_(152 )",»)

(OO)w = arctan (-I(S~)J

(Odw = arctan (-I(1-/S-;:)..,))

(OO)w = arctan (2(s~)J

(Odw = arctan (2(1-ls2)W))
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4.3.2 NLFLC-II System

In addition to the above membership distribution given in (4.2), the NLFLC-II system has

variable fuzzy output singletons. \\'hile having t\,.'O more additional output positions corre

sponding to a single variable, more depth or more variations to the two slopes can be ob

tained. However with coupled rules the number of fuzzy singleton positions available within

the normalized space is high, To reduce the parameter complexity, again the total number of

unknown parameters related to output fuzzy singleton positions defined in the equation (3.49)

are reduced to two. The projected slopes are obtained by using the NLFLC output solutions

derived in Section 3.3. As in the NLFLC-I system. the two input membership parameters

allowed to vary within the same limits as described in (4.3). The membership distribution of

the antecedents are similar to NLFLC-I in Figure 4.2.

For three-input controllers

The output singleton positions are simplified to,

{Urn} =
-1. -(2/3 +U2). -(2/3 + ud, -1/3, -(1/3 + 112). -(1/3 +ud, 1/3, -th,

-Ill, a.UI, 112,1/3. (1/3 + u. - 1), (1/3 + 112).2/3. (2/3 + ud, (2/3 + U2), 1
(4.7)

•

The allowable ranges for the fuzzy singleton parameters are,

and the slope angles are obtained as

«()o)w = arctan Cs~L)

«() ) ( (1/3-u-.) )
1 w = arctan (I-(S2):)

with w = 1. 2. 3.

For two-input controllers

The output singleton positions are simplified to.

•• (4.8)

{Urn} =
-1. -(1/2 + U2). -(1/2 + lid. -1/2. -U2, -UI.

a,li l ,U2,1/2,(1/2 + u - 1),(1/2 + u2),1
• (4.9)

The allowable ranges for the fuzzy singleton parameters are
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and the slope angles are obtained as

(OO)w = arctan Cs~L.)

«() ) ( 0/2- .... ) )
1w=arctan (L-(s:zJ:l '

with w = 1. 2.

For one-input controllers

The output singleton positions are simplified to,

The allowable ranges for the fuzzy singleton parameters are.

and the slope angles are obtained as

(4.10)

(4.11)

(OO)w = arctan Cs~~.J

«() ) ( (1-.... ) )
1. w = arctan (I-(s:zlw)

with lL' = 1.

• (4.12)

Since the output membership positions are related to all input variables in a coupled fuzzy

rule base. the variation of the output singleton positions affects the non-linearity and the

projected slopes in all directions. Therefore an independent non-linearity tuning with the

output membership positions are impracticable with coupled rules. Thus the non-linearity

tuning parameters can be grouped into two parts. The terms (sdw and (S2)w can be grouped

as primary non-linearity tuning parameters where as UI and U2 can be grouped as secondary

non-linearity tuning parameters.

4.3.3 NLFLC-III System Using MMG Reasoning

This controller was specially designed for the de-coupled rule bases and the fuzzy outputs

have been already identified with respect to the non-linearity tuning parameters. Therefore

the slope angles of the two controllers defined for this category are shown for defining the

tuning. The l\L\IG based solutions to this system are shown in Section 3.3.2. Therefore

by directly substituting the output solutions given in (3.61) and (3.62) into (4.1) the slope
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angles related to a SISO fuzzy system are shmvn below. For convenience assign 81 = (slh,

For NLFLC-IIIA system

arctan [(2 - 81 - s2)(2 + s1 - 82)/2811 for 81 > 82·

arctan [281/(1 - 82)] for S1 S 52·

arctan [(S1 + s2)(2 + Sl - 82)/(2 - 282)] for 51 > 52·

00 =

01 =

arctan[2(1-sr)/sr] for Sl S 82·

(4.13)

For NLFLC-IIIB system

00 =

{l} =

arctan [3(1 - 5§)/(2s1(2 + 82))] for 81 S 52.

arctan [3(1 - 5r)/(2sd2 + S2))] for 51 > 52.

arctan [45d(1 - 52)]
(4.14)

4.3.4 NLFLC-III Using PSG Reasoning

Both the NLFLC-IIIA and B systems can be again analyzed using the PSG reasoning. The

detailed derivation is shown in Appendi.x B_ From the derivation it can be seen that the

relationships bet\',,-een the angles are the same for both the A and B systems_ The product

sum functions are continuous and as a result the output solution of the NLFLC-III system

can be expressed \vith a single equation. Also the two membership parameters can be allowed

to varv \\,-ithin." .

51 E (0,1] and S2 E [-L 1).

For comparison, the angles for the PSG reasoning based NLFLC-IIIB system are shown

below.

00 = arctan [(1 - s2)/25t! _

(h = arctan [2sd(1 - S2)].

4.3.5 NLFLC-III Using TSK Representation

(4.15)

In this case for the same fuzzy input variables the fuzzy output variables are functionally

expressed in terms of the input crisp variables. In the traditional TSK representation, the
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outputs of the fuzzy rules are expressed in a linear form. Those functions are defined with

the intention of representing any unknown control surface by linearly defined fuzzy regions

or simply as a linearized function for a given range of inputs [391. However when those linear

models are used for a SISO fuzzv rule base. the non-linearity variation ",ill become somewhat•• •

limited. In order to achieve better local control properties. the output functions are expressed

as a polynomial function of the input variable. In fact by dropping one parameter, the

polynomial can be made to the traditional linear form. Therefore this is somewhat a modified

TSK representation to suit the fuzzy PIn control. Hence. the three rules corresponding to

the :.'-iLFLC-III input fuzzy variables in Figure 3.14 are defined as

If €1 is :\"Z then it = 0 • (4.16)

The detail derivation for the fuzzy output is shown in Appendi..x B. The slope angles corre-

sponding to the TSK based NLFLC-III output are given by;

eo = arctan(1 - 51 - 52)
• (4.17)

In order for the TSK output to be monotonic for any crisp error input, the two parameters

Sl and 82 should be constrained to vary within the ranges Rl or R2.

Rl : 51 E [-6.-164,0.-164] and S2 E [52a.52b] where

- (l-stl L J9 18 . 3 282a - '2 - 6 - S 1 - 51

(L-stl , 1 J9 18 3 'J52b = 2 T 6 - 51 - • 5i

R2 : 82 E [0.4] and 81 E [Sla. SIb] where

4.4 Non-linearity Variations and Evaluation

• (4.18)

The two-point control analysis has simplified the general fuzzy systems into several unknown

membership parameters (or partitioning points). Except for the NLFLC-II. all other systems
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have been reduced to two unknmvn parameters per variable for non-linearity tuning. As the

slopes at the control points are the key parameter for obtaining different non linearity, the

strength or the capacity of a fuzzy system can be measured by observing the variation of these

slope angles with respect to the non-linearity tuning parameters. As the angles are defined

only in respective error directions (projected angles) of the error variables, only the SISO

fuzzy systems are considered for this evaluation. Therefore five fuzzy systems are compared

as described below.

Cl : NLFLC-I controller having one-input inference (~gIG reasoning)

C2 : N"LFLC-IIIA controller with ~nIG reasoning

C3 : NLFLC-IIIB controller with M},IG reasoning

C4 : NLFLC-III controller with PSG reasoning

C5 : NLFLC-III controller with TSK reasoning

4.4.1 Performance Measures and Comparison of FLC Systems

Non-linearity Variation Index (NF1)

The nOll-linearity variation is defined to assess the magnitude of non-linearity and the de

gree of variation it can produce by changing the knowledge base parameters of a given fuzzy

system. From a mathematical point of view this is a complex task. However, a general ex

pression is defined to assess the non-linearity and it is then simplified for the one-dimensional

case to e"aluate and compare different FLC systems.

where.

,'\'VI( ) _ Admissible space in ne space
~~ nv·nt·ne - . '

Complete space m ne space
(4.20)

n v = Total number of input variables in the rule base

nt = Total number of non-linearity tuning parameters

n e = Total number of non-linearity examination parameters

The definition reflects that NVI is dimensionless and its maximum 'value is always 1. There

fore a fuzzy system giving a high NFl can be treated as a better nonlinear and more versatile
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controller with greater flexibility to change its non-Linearity for wider range of control require

ments. The output of each fuzzy system is evaluated on the same basis so that the NVI

representation is unique. The NLFLC-II controller is eliminated as its output for one-input

variable is a piece-wise linear curve. Also this curve does not have the C 1 continuity proper

ties. For set point control consider the two-point control strategy. One-input fuzzy knowledge

base implies nv = 1. Each controller is tuned by changing the two nonlinear tuning parame

ters SI and 52 assigned for a single variable and therefore nt = 2. The two slope angles imply

ne = 2. It is clear that by increasing nt and ne it is possible to acquire tight control at many

locally chosen points in the closed-loop control. Hence the evaluation is done on the basis

of :VVI( 1.2.2). For each SISO type controller described above, the variation of the slope

angles with the two non-linearity-tuning parameters are depicted in Figure 4.3-4.7. As an

example. the Figure 4.3 is constructed by using the two expressions given in equation (4.6).

The variation of two angles in each diagram with respect to the two tuning parameters are

shown by contour lines. As an example the parameters 51 and S2 are varied within the limits

given in (4.3) to observe the variation of two angles in Figure 4.3. Similarly Figures 4.4, 4.5,

..L6 and 4.7 are obtained by using expressions respectively given by (4.13), (4.14), (4.15) and

(..LI7). The tuning parameters are constrained to vary within the limits specified for each

controller type.

The percentage area of the admissible space determines the non-linearity freedom of the

fuzzy system for producing a variety of non linear curves. The contour lines for tuning

parameters have been drawn for each case to obtain the non-linearity tuning. Therefore the

non-linearity variation diagram can be referred to as the non-linearity tuning diagram for the

first-level of tuning. The tuning while using this diagram is explained in Chapter 6.

Linearity Approximation Index (LA!)

If the fuzzy outputs are perfectly linear then the fuzzy PID controllers would become identical

to a digital linear PID controller in either absolute or incremental form. \"'hen a fuzzy

system together with a suitable fuzzy reasoning mechanism has the capability to produce this

function. the fuzzy controller can perform no worse than a linear controller. The ideal linear

representation would be when the slope of the curve is uniform and equal to 45°. Therefore

the most linear point related to each tuning diagram is when 00 = 01 = 45° throughout.
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Figure 4.7: Non-linearity variation diagram for controller e5

Except for the NLFLC system denoted by C2, all other systems have the capability to obtain

this closed position. The point 0 in all tuning diagrams indicates the corresponding closest

positions. The point closest to the ideal point is chosen for the C2 controller. Therefore the

capability of generating the ideal linear controller is considered as a preferred feature for a

fuzzy system and therefore a performance measure is identified by the linear approximation

index (LA/):

LA! = 1- ma.xlii(e!.sI0,S20)1- u(e)
rna.xlii(el' Slo' s20)1

where. Slo' S20 are the tuning parameters that correspond to the most linear point 0 shown

in all tuning diagrams. The linear function u is constrained to pass through the (0,0) and

(1.1). Since the fuzzy output is fully normalized within [-l.l], the linear function in this case

is when II = e.

Availability

The greater availability of non-linearity types is important for a general controller. \Vith

respect to the four different quadrants in the tuning diagrams, four basic nonlinear curve

types have been identified and are shown in Figure 4.8. \Vhen a given fuzzy system has
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the capability to produce all four types then such a controller will have greater availability

to suite wider range of controller dynamics. This feature is important for adaptive or self-

organizing controllers. The change of plant dynamics may require varying the non-linearity

of the controL. Thus the maximum score for Availability is 4.

Comparison

The three quantitative indexes computed for the fuzzy systems (C1-C5) are shown in Table

4.1. In controller Cl the approximated linear controller corresponds to 81 = 82 = 0.5. The

modal positions of the 2nd and 3rd input membership variables and the modal positions of

the 5th and 6 th input modal positions of the NLFLC-I coincide. According to the range

of definitions for the tuning variables, this equal condition does not exist. Therefore the

corresponding LLFLC system with 51 = 1/3 and 82 = 2/3 is considered as the best linear

representation for deriving the LA.! value. The best linear condition or the position 0 for the

controller C2 is when 81 = 1 and 82 = O. This corresponds to the three-rule LLFLC system.
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• • ..

Controller NVI LA..1 Availability

C1 0.3281 0.9862 3

C2 0.. 1-14 0.959 3

C3 0.7545 0.9739 4

C4 0 1 ?-
C5 0.286 1 3

Table 4 1· Performance of different FLC systems

The approximate linear conditions of the controller C3 is when 81 = 0.566 and 82 = -0.2.

The TSK and PSG methods have the ability to generate perfect linear conditions. However,

the linear approximations of the other systems are practically linear enough to implement as

a linear PID controller.. The evaluation scheme suggests that the controller C3 possess the

best merits to implement for fuzzy PID applications. The (C3-C5) controllers are identical

except the reasoning mechanism. This proves that M~IG reasonjng has the most capabilities

to provide better nonlinear control than other reasoning schemes. The PSG reasoning has

the poorest ranking in this evaluation. Also the tuning diagram implies the two tuning

variables are insufficient for providing a greater non-linearity variation. This means that the

PSG requires more tuning variables or higher dimen:oionality for providing the equivalent

non-linearity properties. As an example. the non-linearity effect of the PSG system can

be equivalently obtained by the ~nIG system ""ith a single tuning parameter. The TSK

representation (controller C5) is the simplest and has shown sufficient merits to use for fuzzy

control. This is mainly due to the polynomial representation of the output function. \Vith

the linear representation the performance of the TSK will become similar to PSG. Hmvever,

alteration of the output functions in the TSK system allows better manipulation of the

non-linearity effect in the resulting output function for fuzzy control. Although the output

expression of the TSK system is simpler, further analysis is required to define the valid ranges

for the tuning variables for obtaining the desired properties of the controller output. On the

other hand the natural representation of membership functions in MMG and PSG systems

preserves the most generalities for PID control. The low NV1 of the controller Cl and
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highest score for controller C3 proves that the variation of input membership functions is less

effective than varying the output membership parameters. However the tuning diagram for

the C1 system can be used for non-linearity tuning of rule coupled fuzzy PID systems.

4.5 Alternative Nonlinear Controller Using Bezier Functions

The above non-linearity analysis motivated a search for alternative input-output mapping

systems to generate the desired nonlinear control surfaces or curves for fuzzy control. A

simple polynomial is a quick guess for such alternatives. By observing the properties of the

nonlinear proportional action. a nonlinear curve using spline-based functions is explained in

[33]. This section will explain how such a system is effectively used to produce nonlinear

functions. which can provide greater non-linearity with respect to the three performance

measures defined in the previous section.

4.5.1 Bezier Curves: Definition

The computer aided geometric designs includes many ways of generating curves or surfaces

to approximate input/output data points. These functions, if carefully selected, can be

implemented as an alternative to fuzzy controller output by suitably selecting the necessary

tuning parameters. The spline curves are piece-wise functions consisting polynomial pieces of

n degree. The construction of such cunoes can be made by the parameterization. The Bizier

CUT,.'es are special piece-\vise polynomials designed to produce smoother curves and surfaces

for geometric modelling. ~Iany of the text books written in the area of computer aided

geometric designs provide this standard mathematical procedure of obtaining such curves

and surfaces. For this work the two textbooks [119, 120] have been selected as the references

to explain the generation of Bezier curves. Most of the notation in [119] are used to present

the variables in this section.

The Bernstein polynomials are the basic functions used for Bezier curves. The Bernstein

polynomials arc derived from the binomial formula. The polynomials of degree n is given by,

(4.22)

where c;: = I( n~ )1'T. n r.
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Figure 4.9: The Bernstein polynomials of degree 3

Consider the parameter interval. s E [0.1]. Then the above function carries the following

properties.

B~(O) = B~(l) = 0,

Bo(O) = B;:(O) = L B8(1) = B;:(O) = 0
(4.23)

B~(s) 2: o.s E [0.1]' maxB~(s) = B~(r/n)

B~(s) = B;:_r(l - s), L~-O B~(s) = l.

Figure 4.9 shows the graphs of the Bernstein polynomials B~(s) for s E [0,1].

Using the Bernstein polynomials as basis functions, a Bezier curve or Bhier polynomial

of degree Tl can be represented in the parametric form.

n

X(s) = L brB;:(s).
r=O

(4.24)

where br points in two (R2 ) or three (R3) dimensional space are referred to as Bezier points.

The polygon formed by connecting the Bezier points is called the Bezier polygon. It has been

proved that Bezier curves are always tangent to the Bezier polygons at the end points (i.e.

r = 0 and r = 1). This implies that a Bezier curve starts at bo and ends at bn and the

lines bobt and bn-1bn of the Bezier polygon are tangent to the Bezier curve. This particular

feature can be exploited to develop non-linearity tuning for the two control points in the PID

control. To evaluate the polynomial in (4.24) at a given point s = s·, the recursive method

called de Casteljau algorithm can be conveniently used.

96



~ b l
: I b~-

Recursion 3

Recursion 2

Recursion 1

bo bl

Figure 4.10: The recursion pattern of the de Casteljau algorithm

4.5.2 Nonlinear Curve Design as an Alternative to One-input Fuzzy PID

Elements

Using the above Bezier definition. it is possible now to generate a 5150 control output as an

alternative to the solutions described for NLFLC-III systems. The control objectives again

are to realize the local non-linearity tuning at the t\VO control points defined in this chapter.

First con~ider four Bezier points in the ~2 space for defining the Bezier curve as:

where r = O. 1. 2.3. The \'ectors x and yare the horizontal and \'ertical co-ordinates of the

Bezier points. Using the de Casteljau algorithm the Bezier curve can be represented in the

following recursive form. The recursion pattern is shown in Figure 4.10.

Recursion 1 :

bA(s) = (1 - s)bo + sb1

bt(s) = (1 - S)bl + s~

b~(s) = (1 - s)~ + sb3

Recursion 2 :

b~(s) = (1 - s)bA + sbt

br(s) = (1 - s)bt + sb~
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Recursion 3 :

The degree-3 Bezier cun'e is therefore;

(4.25)

The objective is to simplify the above Bezier cun'e in (4.25) to generate the control curve

for the range Cl E [O.lJ while satisfying the necessary properties shown above. The range

Cl E [-1. 0] can be easily obtained by imposing the negative symmetrical property.

The end points are fixed to satisfy the properties P2 and P3 in section 4.2.2 and therefore
.

asslgn.

(4.26)

Let.

(4.27)

The co-ordinate values {Sl.I' Sl.y. S2.x, S2.y} are the non-linearity tuning parameters for the

control. Assign,

Xes) = {Cl. zi} (4.28)

Substituting the co-ordinates in (4.26) and (4.2i) to the three recursions in (4.25), the error

mapping can be obtained as:

(4.29-a)

(4.29-b)

where s E [0, 1J for the output to be within the rangeu E [0, 1J. Figure 4.11 shows the

functional procedure of obtaining the error mapping "Cl to u·'. For a given set of tuning

parameters. the controller output is calculated from the mapping "el to s" followed by "s

to Ii". During the control, the input error value is known for each sampling instance. This

requires the solving of the cubical polynomial of Cl = f(s) in (4.29-a). From the Bezier

curve properties it can be easily inferred that for any normalized error input value, there

is one unique solution for s that is always guaranteed to be within the range [O,1J. Also
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Figure 4.11: Parameterized calculation of the normalized control action

the monotonic property of this control function can be found in [33]. Therefore it can be

concluded that the control action generation using Bezier polynomials can preserve all the

desired properties required for nonlinear PIO control. Alternatively it can be said that the

Bezier curve can be designed to obtain the same properties of a fuzzy control output. The

interpolating characteristic is common for both fuzzy [104] and spline based functions and

therefore both the systems can share the same universal approximation property.

4.5.3 Performance Evaluation

The performance measures defined above in section 4.3 can be used to evaluate the non

linearity of the alternati\·e control action. Although the mapping is a little complex due to

parameterization. the control curve is highly continuous (up to C 2 ). The two slope angles

are given by:

(Jo = (4.30)

It is very clear no\',,· the slopes can be individually varied by moving the control points b1

and b2 and therefore the whole admissible space can be realized. From (4.30) it can be

seen that for a given 00 and 01 either x or y value is redundant, and therefore effectively

the tuning can be performed only by two tuning parameters. The tuning diagram drawn

for these conditions are shown in Figure 4.12. The point 0 prO\·ides the perfect linear

conditions. Therefore under these circumstances the alternative nonlinear control shows the

100% performance having NVI = L LA.! = 1 and A.vailability = 4.
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Figure 4.12: Non-linearity variation diagram of the control curve based on Bezier function

4.5.4 Realization of More Local Control Points

So far including the fuzzy analysis, the non-linearity has been examined only for the two points

(near zero and near maximum error conditions). The non-linearity tuning was confined to

only two slope values. If a third point is selected. the local control properties can be again

obtained by changing the slope values as shown in Figure 4.13. In the figure the third point is

arbitrarily denoted by the Bezier point b3 • Only the positi\'e region is shown for convenience.

The control curve is nmv defined by SLX Bezier points and denoted by br with r = 0, L ... ,6.

Consider t\VO subdivisions shown by the regions denoted by the envelops of boby b3bz and

b3bYlb6b:Z:1 as shown in Figure -1.13. The boundary conditions to the control curve \'I.'ill set

bo= {O.O} and b6 = {L 1}. The third Bezier point is predetermined and therefore assign

b3= {(e.)[. (it)I}. For realizing the Cl continuity at the intermediate Bezier point, set

(4.31 )

In other words the two Bezier points. ~ and b4 , are symmetrically aligned with b3 . The

tuning of each region is similar to two-point control. By varying the positions of the points

bl, bz, b4 and bs the local control tuning at the three points are obtained. Due the continuity
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Figure 4.13: Realization of local control at three control points

constraint given in (4.31), the number of angles of interest is three. The permissible regions

of the Bezier points can be described as:

where.

Ib3bmll = min (lb3byl, Ib3 by1 1)
Ib3 bm3 1 = min (lb3 br l, Ib3 bzl l)

by bm2 = b3bm3.

The permissible region for the point b4 can be similarly obtain by imposing the continuity

constrain in (4.31). These regions are indicated in Figure 4.13. The control curve can be

generated recursively as shown in Figure 4.14. However the computation can be simplified

by generating the two curves separately by using the two intermediate functions bg(s) and

bg(s) (Figure 4.1-1). The subdivision will change the range for the parameter s. Therefore

consider a local pammeter q [120] for the interval Cl ::; s $ C2:

q = (s - cd/ (C2 - cd (4.32)
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The interval values are calculated from (4,29-a) using the third control point. Then the Bezier

cUI\'es corresponding to respective subdivisions are calculated using the nonlinear mappings.

"e 1 to q" followed by "q to u".

4.6 Summary

In this chapter the FLC systems de\'eloped in Chapter 3 are analyzed further for evaluating

the non-linearity features for fuzzy control. The non-linearity has been identified at two

locally selected control points in the control action, This identification helps to reduce the

parameters required for the fuzzy system to generate the desired types of nonlinear control

actions. Also, it avoids the unnecessary guessing of membership functions for fuzzy control

\'ariables, The slopes of the control surface at the chosen control points are selected to vary

the A:--iC terms, Thus the non-linearity features required by a given fuzzy system have been

developed, ~Ia.inly three performance measures have been identified for assessing and ranking

different fuzzy systems and reasoning schemes. These measures were identified with respect to

the two-point control. The new ranking system can compare not only the reasoning schemes,

but also the different knowledge base arrangements, As an example the controllers labelled

by C1-C3 use different rule base and membership arrangements within the same class of

fuzzy reasoning, The overlapping membership functions for the input variable is a necessary
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condition for preserving the rule base properties. Therefore the input membership variables

are more constrained than the output membership variables and as a result the non-linearity

tuning by using output membership functions parameters are more effective than using input

membership parameters. However in coupled rule bases, the independent tuning can be

accomplished only by varying the parameters of input fuzzy variables. Therefore NLFLC-I

system has limitations to obtain higher variation to the non-linearity as compared to NLFLC-

lIlA svstem. The NLFLC-IIIB svstem with fullv normalized conditions has not been able to
• ••

produce better non-linearity than the NLFLC-IIIA system. This evidence demonstrates that

different membership arrangements can produce a significant difference to the performance

in fuzzv control.•

The reasoning schemes have a major impact in the fuzzy control. l\Iost of the inference

types can be eliminated at the first instance by observing the desired properties of the control

action. As an example, some reasoning schemes are unable to produce continuous and mono-

tonic control actions with respect to the error state variables. Those unsuitable reasoning

systems have been eliminated in the previous studies [20, 52J. In this evaluation. the PSG

reasoning was identified as the most in-efficient fuzzy inference for fuzzy control. It is possible

to improve the performance of PSG based fuzzy systems by including more tuning variables

and parameters. Although TSK based system has lower NV I value, the TSK representation

allows greater flexibility in choosing the desired non-linearity. Also it is possible to change

the output functions in the TSK based systems for reaching greater performance.

The research has enabled the identification of an alternative nonlinear control system

using Bczier polynomials. Those functions are designed primarily to interpolate data points

for generating smooth geometric surfaces and curves. The same interpolating characteristics

in the fuzzy systems enable to use of fewer rules to obtain higher degree of non linearity

for control than the traditional e),.-pert systems. However the Bczier polynomials have better

geometrical features than fuzzy systems and as a result the geometrically based performance

evaluation scheme showed the highest ranking in this evaluation.
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Chapter 5

Development of New Linear PID

ning Rules

5.1 Introduction

The pre\'ious two chapters identified different fuzzy systems and the tuning basis for fuzzy

controllers. The tuning basis has enabled simplification of the multi-dimensional fuzzy con

troller design to two-level tuning problem. The t\\'o tuning levels are inter-related to each

other. For example, it is possible to £Lx the knowledge base parameters of the first level

tuning and to perform the second level of tuning to identify the linear apparent gains. This

is the most common criteria used in many applications [9, 97, 80] where the fuzzy controller

parameters are arbitrarily fixed using predetermined fuzzy sub-sets and then using either

an exhaustive numerical search or trial and error computer simulations the linear gains are

chosen. However, the tuning of apparent linear gain (ALG) terms are similar to linear PIO

gains of a conventional controller. In this chapter the author performes time-domain based

analytical procedure to develop new PID tuning rules for conventional controllers. There are

three primary motivations for this research. First, the study of linear PIO tuning provides

.a better foundation and sufficient knowledge to extend the analysis for fuzzy PID controller

tuning. Secondly, the properly defined linear pro controller can be used as a benchmark for

obtaining improved performance of the fuzzy controllers. Thirdly, the available linear PID

tuning rules have some drawbacks as explained in the following section.
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In this chapter a time-domain analysis and thus the design of PID controllers for first

order proccss models are described. The PIn analysis includes three t~rpes of first-order plant

models:

(a) zero or negligible normalized time delay

(b) low to medium normalized time delay and

(c) large to very large normalized time delay.

The mathematical analysis proves that the optimum PID controller for plants having zero

or negligible time delay is a PI controller with zero derivative action. For zero time delay

plants the PI terms based on the actuator's capacity and set-point overshoot are explicitly

deri\·ed. The analysis is then extended to processes having low to medium time delay. In this

case a new PID tuning scheme is proposed. It will be proven analytically that when the time

delay becomes large the derivative action of the PID controller has negligible effect on the

transient response. using a separate time response analysis. a new PI tuning scheme for large

normalized time delay is then derived. This PI design is based on user defined two points

on the response curv'e and allows higher flexibility of the design. The proposed tuning rules

are capable of accommodating the actuator saturation limits. This distinguishing feature

pro\'ides a PID controller design that prevents the integral wind-up of the process associated

with the actuator saturation. Numerical studies for higher order processes having monotonic

open-loop characteristics are shown. The performance is compared with other commonly

available tuning rules. \Vith the new tuning rules improved performance is observed and the

rules hm'c the capability to cover time delays ranging from zero to any higher value.

5.2 Overview

Development of the PIn controllers is based on many years of engineering innovation [121].

As a result of extensive investigations to devise ways of choosing optimum controller settings

for the PID controllers. Ziegler and Nichols showed that optimum controller settings could be

estimatecl using open and closed-loop tests on the plant [122, 123J. The method is referred

to as ZN rules. The ZN settings usually experience excessive overshoot of the plant response

and also difficult to tune plants that have a relatively longer time delay. \Vith the ease of
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computations, the numerical optimization and curve fitting techniques have later become

significant in devising formulae for PI and PIO parameters. The error integral criteria are

the most common for such optimizations [118, 124, 125. 126]. ~Iost of these tuning schemes

are valid only for a limited range of normalized time delay problems. More recently Khan

and Lehman [127] have used extensive simulations and data fittings to obtain PI tuning

formulae. The significant attraction of the latter method is that a single set of expressions

for PI terms has been derived to satisfy the normalized time delay ranging from 0.2 to

20. In all these optimization approaches, the PIO parameters are arbitrarily expressed as

functions of process terms, t:ypically in terms of normalized time delay (ratio of process time

delay to time constant) and first-order time constant. A significant development of ZN based

tuning was shown by Hang et al. [128]. They have critically examined the ZN settings and by

introducing an additional variable (set-point weighting) the excessive overshoot in the original

ZN settings have been reduced while preserving the same load disturbance characteristics. In

development of the former refined ZN (RZN) rules the ZN PI settings have been completely

revised to cope with relatively long time delay problems. Introducing adaptive or variable

set-point \veighting, RZN based response has been recently further enhanced [132]. The RZN

method shows excellent load disturbance characteristics. but it cannot be used for very long

time delay processes.

Frequency domain analysis and development of PID tuning are reported in [129. 130. 131,

132]. These methods have the advantage of obtaining different PIO parameters by selecting

desired points in the ~yquist curve [129. 132] or by using user specified phase and gain

margins [130]. The latter is called as Gain-Phase-Margin (GPM) tuning. Therefore these

methods possess some form of flexibility to obtain different PIO settings for a given process

specification. Pemberton [133] used time-domain analysis to yield PID tuning for first order

and over-damped second order plants with time delay. Oue to the two term approximations

of the time series expansion. the method \"'as unsuccessful for plants having a normalized

time delay greater than 0.5. The internal mode! control (IMC) approach to design PID

parameters is shown in [134]. The controller having the pole zero cancellation was derived by

taking a low-pass filter together with the inverse function of the estimated model excluding

the process-lag components and right-hand process zeros. The IMC design simplifies the

PIO settings to a single parameter, which is directly related to the proportional gain and
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therefore the response speed. Therefore IMC design has the advantage of obtaining PID

parameters to accommodate the actuator saturation [135]. Also the PID formula for zero

time delay simplifies to the pole zero cancellation PI controller with zero derivative gain.

Oue to the first-order Pade approximation of the exponent term. the applicability of the PID

formula is limited to relatively short time delay problems. Hang et aL [136] have presented a

comparative study of the E\IC and GPM approaches. The study concluded the IMC design

has a lower flexibility in terms of robustness.

Based on this literature review, this chapter attempts to address three main issues related

to PID tuning. The first is related to PID control of processes modeled with zero or negligible

time delays. The numerical optimization in [137] and the IMC-PIO tuning parameters [134]

suggest that for zero time delay processes the best selection is a PI controller. While the

majority of tuning rules such as ZN, RZN, GPM and error integral optimized rules are

not applicable, the I~IC design simplifies the PID settings to a pole zero cancellation PI

controller for zero time delay plants. However, a time domain based closed form mathematical

analysis of PIO controlled response for zero time delay has not so far been reported in the

literature. In the first part of this chapter the first-order plants ,\ith zero time delay is

analyzed and the necessary PIO controller settings are analytically obtained. The second

issue is related to PID parameter selection to accommodate the ma...'Cimum capacity or gain

of the actuator while avoiding the hazard of integral wind-up. The applicability of tight PID

control based on normalized time delay and the normalized process gain was discussed in

[138]. The importance of the PID design to limit the overshoot of controller signal has been

argued at length [135, 139]. The analysis is then extended to deduce new PID tuning scheme

applicable for short and medium-long time delay. The PID controller gains are selected

based on the actuator's saturation. The practical limits for PI and PID control are also

deduced. The third and final issue is related to plants having large normalized time delay.

To accommodate them, a new PI tuning scheme is analytically derived and the tuning is

based on user defined two points in the transient response curve. Therefore this chapter

intends to provide a complete analysis of PID tuning for first-order plant models covering the

complete range of normalized time delay.
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5.2.1 Controller/Process Specifications

Let the first order plant model with time delay td, time constant T and steady state gain k

be given by the transfer function,

G(s) = kexp (-tdS) .
Ts+ 1

(5.1)

The experimental identification of the three terms using many techniques is well described in

[1-10]. In this analysis the linear controller is defined in the continuous form for time-domain

analysis and therefore some of the PIO controller specifications defined in Chapter 3 are

redefined for convenience. Using the conventional notations, the PIO controller signal (refer

to Figure 3.1) at the time t can be described in the following form:

de(t) 1 (t
u(t) = k e e(t) + Td dt + r: 1

0
e(t)dt . (5.2)

Where the controller gain is ke , derivative time constant is Td and the integral rate is Ti. The

feed back error signal e( t) = reference signal r( t) - response signal y( t). In the practical PIO

controller with a derivative filter, the controller output is given by,

u(t) = ke (e(t) - Td dYa?l + i. J~ e(t)dt) ,

11 dYa?l = yet) - Yf(t)·

(5.3)

The N is an arbitrary number associated with the derivative filter. For IV > 10 the same

PID parameter \'alues obtained from (5.2) can be implemented with the derivative filter

without any significant difference [118]. The other practical forms generally implemented

in commercial controllers can be obtained from (5.3) as described in [140]. Using the gain

notations used in Chapter 3 (5.2) is rewritten in the form,

()
T. .. () T." de (t) T. .. t ( ) d

u t = .t\pe t + .t\o dt + .t\.I 0 e t t. (5.4)

where the linear proportional, integral and derivative gains are respectively given by Kp = ke ,

[{I = kelT; and [{o = keTd·

5.3 Analysis I: For Zero Time Delay

The Laplace form of (5.4) can be expressed with t.he initial error signal e(O) by,

U(S) = KpE(s) + Ko (sE(s) - e(O)) + KIE(s)ls.
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The Laplacian form of the plant response of a unity feed back cascade Pill controller system

with no external disturbance is given by,

yes) = '(r ..,,; 'K) G( ) [(KDs2 + Kps + Kr) G(s)R(s) - KDe(O)sG(s)] .
s i \DS- -r pS.,... r S

(5.6)

For unit step response R(s) = l/s. Substituting (5.1) with td = 0 to (5.6), the output can

be simplified to,
1

Yes) = (K T)') (R" ) K3 ~- s- + 1 -+- 1 s + 2
(5.7)

where the normalized PID gain terms are expressed as, K 1 = kKp. K2 = kKr and K3 = kKD·

The main objective in this exercise is to relate the PID parameters to the closed-loop response

behaviour. Therefore expressions are deduced for the rise time and overshoot (or undershoot)

of (5.7). The derivation is based on the nature and positions of the closed-loop poles in the

s-plane. Details of this derivation are given in Appendi.."C C.

5.3.1 Rise Time and Peak Overshoot in the Transient Response

Case I: The closed-loop poles are real and distinct

By examining the real closed-loop poles, a general relationship between the normalized

gains was established and is given by,

K.) = K[
- (K3 + T)

• (5.8)

where. 3 is a positive real number and its range has been constrained to be within

o :s ,3 < 1 for the closed-loop poles to be real and distinct. Also within this range

the peak overshoot, when K 1 > 1, is always positive. Case II covers j3 = 1, which

corresponds to equal roots. Also, it can be easily proved that when ,3 = 0 the peak

o\'ershoot of the response is zero.

Case I-a : K [ > 0 and 0 < ;3 < 1

The rise time (Tr ) based on 0-100% response and peak overshoot (OS) are given

bv.- ,

(K3 + T) In 1 + VI - i3
(Kl -1)J1-B 1-v1-J

(5.9)

OS = (1 + VI - ,J)
(-y - VI - m

(I - VI - ,8)(1 - vI - J1)
(r + J"1 - j3)(1 + VI - /1)
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respectively where') = (K1 + 1)/(1<1 - 1).

Case I-b : ;3 = 0

In this case the overshoot OS = 0 and T r based on 10-90% response is given by,

(K3 + ':")
Tr = (Kl + 1) In 9. (5.11)

Case II: Closed-loop poles are real and equal

This case refers to the gain relationship (5.8) with ,3 = 1.

Case II-a : Kl > 1

The T,. based on 0-100% response and OS are given by.

2(K3 + T)
T r = (K

1
- 1) ,

(K1 - 1) -2K1

OS = (K
1

+ 1) exp K
1

- 1 •

(5.12)

(5.13)

From (5.13) it is clear that when Kl < 1 the system shows stable over-damped

response.

Case II-b : Kl = 1 The critically damped response has zero overshoot and the rise

time based on 10-90% is gh'en by,

T r = (1<3 +T) In(9). (5.14)

Case III: Closed-loop poles are complex with negative real parts

This case is realized when the relative damping factor ( of the closed-loop system is

chosen within 0 < ( < 1, \vhile satisfying the normalized gain relationship given by,

The peak overshoot of the under damped response can be shovm as,

(5.15)

-«(7P + 19)
J1-(2

, (5.16)

where L = l_~2 ~~:~~l, 7P = arctan _,,\._(2, and f} = arctan(1/L) for K 1 ~ 1

or iJ = ii - arctan(1/ILI) for K 1 < 1. It can also be shown that OS is always positive

when ( is within 0 and 1. Therefore the rise time based on 0-100% can be shown as,

T
r

= ((K3 + T)w .j""

(K1 + 1)J1 - (-

no

(5.17)



5.3.2 Optimal Tuning Law for Processes Having Zero Time Delay

By observing the rise time given for all the cases above, we can clearly see that the addition

of the derivative term, which corresponds to K3 in (5.9). (5.11), (5.12), (5.14), and (5.17)

slows down the transient response. Also the overshoot in all cases can be controlled by the

normalized proportional gain while choosing the integral gain satisfying the gain relations

((4.8) or (4.15)) correspond to each case. Therefore it can be concluded that for the optimum

design of PID controller for any first-order process model with zero lag-time, the derivative

gain should be zero. The theoretical model with the PI controller has an infinite gain margin

and the system can be operated ~ith any value of a controller gain. The upper saturation

level of the actuator gain can determine the ma.ximum gain of the controller. Therefore the

ma:ximum controller signal Uma.~ per unit step response has been derived and is given as

follows.

Case A : Closed-roap poles are real or are complex \\-ith K 1(2( - 1) ~ 1

U max = u(O) = Kp.

Case B : Closed-loop poles are complex with [(1(2( - 1) < 1

The peak controller signal corresponding to the time,

1 2(T
t p = 77::--~~ --r.===~ arct an

(l(l + 1) )1 - (!
(l(1 + 1)2 - (2K1()2

41([(1 - (2) - ([(1 - 1)2
(5.18)

and Uma",. = Kpe(tp ) + K1 J~p e(t)dt. This can be simplified as,

1
U max = k

[(1 + 1 2Kl(
-

2( K 1 + 1
exp

(1(1 + 1)
- 2(T tp

1--k' (5.19)

The above cases hold if K1 > 1. With 5% or less overshoot, Case B occurs when the

normalized proportional gain is closer to 1. Also the value given in (5.19) is not significantly

greater than Kp. Therefore in most cases the proportional gain Kp can have any value as

high as the actuator's upper limit of saturation. This condition is implicitly stated in the

[\IC design [134J. The remaining integral gain can be selected by choosing a desired level of

overshoot of response. Let OSd denote the desired peak overshoot level. The optimal tuning

law can be stated as follows.
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1. With zero time delay, PI controller is optimum where [(3 = 0 and therefore Ko = o.

2. Select the proportional gain based on the actuator saturation. If the actuator's upper

limit of saturation is Uu , then select (KP)ma.x by assigninguma.'c = Uu . This allo'IUs the

fastest rise time.

3. If the K1 :5 1, select the necessary relative damping for the given OSd from (5.16) and

thus compute K2using (5.15).

4. If Kl > 1 first assume the closed-loop poles are real and equal and compute the peak

overshoot using (5.13). If the computed value is greater than OSd then select (3 fOT the

given OSd from (5.10) and then compute K2 using (5.8). Otherwise choose relative

damping and compute as in (3).

Example El

Assume the plant parameters of (5.1) as k = 2, T = 1 and the time delay td = O. Consider

two cases \\-ith actuator limits Uu = L5 and Uu = 10 units. Assume the design of a PID

controller to satisfy 5% overshoot of unit set-point response (OSd = 0.05). From the above

results the PI is optimal and therefore 1....3 = O. The proportional gain is limited by the

actuator limits and therefore consider two cases corresponding to U max ::5 1.5 andumax ::5 10

. Assume equal conditions to illustrate the tuning.

Case I : U max = 1.5

First assume Kp = (Kp )ma.x = L5 and therefore K 1 = 3. The overshoot OS is first

evaluated when the closed-loop poles are equal. Using (5.13), OS is 0.025. Since

as < OSd the specified OSd can be achieved only when the closed-loop poles are

complex. Using (5.16) \\-ith OS = 0.05, the corresponding relative damping «) is

0.9014. Kl(2( - 1) = 2.41 and therefore the ma.ximum controller signal falls to the

Case A and the initial assumption is correct. From (5.15), [(2 = 4.923. The PI gains

are therefore, Kp = 1.5 and K[ = 2.461.

Case II : U max = 10

Again assume Kp = 10 and K 1 = 20. Similarly by using (5.13) OS is 0.112. Since

OS > OSd the specified overshoot occurs only when the closed-loop poles are real and
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Figure 5.1: Unit step response of Example E1.

distinct. Therefore U max = Kp. Using (5.10) with OS = 0.05. the value for ,3 = 0.371 is

obtained. From (5.3) K2 = 53.52. The PI gains are therefore, K p = 10 and Kr = 26.76.

Figure 5.1 shows the response curves of this example.

5.4 Analysis II: For Processes with Measurable Time Delay

The exact time-domain analysis of G(s) with the time exponent is a complex mathematical

task. owing to the non-linear exponential term in the transfer function. The Pade approxima

tion [134] or truncated time series approximation [133] of the exponent term results in losing

significant poles that exist at distances from the imaginary a.xis of the s-plane. This section

presents a systematic approach to obtain PID tuning rules using time-domain analysis.

5.4.1 Ultimate Gain and Ultimate Frequency

The definition of ultimate gain and ultimate period refers to the continuous oscillation of the

closed-loop response with constant amplitude when the process is controlled only through

proportional controL In this section we simplify the expressions relating ultimate gain and

ultimate period to obtain concise expressions that would be helpful in determining the process

terms. \Vith zero derivative and integral actions, the closed-loop characteristic equation with
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the ptant model of (5.1) is given by,

Ts + 1 -+- K c exp( -std) = O. (5.20)

The normalized gain, K c = kck where kc is the proportional controller gain when both

integral and derivative terms are zero. The root locus of (5.20) has infinite number of root

locus branches: the primary branch which lies between - jii and jii is the most important

[141] for the response behaviour. By using the fundamentals of root-locus construction, it

can be shown that the break point gain (Kb ) of the inner locus is given by,

(5.21)

Also, the ultimate normalized gain (Ku ) at which the inner locus cuts the imaginary a.xis and

the corresponding frequency (wu ) are given by.

u..'u - td - arcsin(l/Ku ) = ii/2.

(5.22)

(5.23)

By simplifying (5.22) and (5.23) the expressions for the two terms can be described by:

ii 1, .
~ -:- arCSIn
L. kku.

• (5.24)

where ku and t u are the ultimate gain and ultimate period of the process system respectively.

Using a feedback relay experiment. an estimate of ku. and tu can be obtained as explained

in [140]. By estimating the process gain (k) using an open-toop test and by using (5.24)

estimates for T and td can be made.

The ultimate gain proddes the margin of safety, where as the actual operating gain

(proportional) of a PID controller is very much smaller than k u • On the other hand the

break point gain in (5.21) is too small and the response would take a longer time to reach the

set-point. Therefore the operating proportional gain should be in between these two limits.

5.4.2 PI and PIO Tuning Analysis

The excessive o\'ershoot of ZN tuning and its inapplicability to long normalized time delay are

mainly due to the overestimate of gains and the \vind-up associated with the integral action.

This in fact is not a serious problem \vhen the time delay is negligible or zero. The limiting
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,;alues of the gain terms very much depend on the actuator's upper level of saturation. Also,

the allowable overshoot of the controller signal is limited in most of industrial problems [139J.

Therefore the main criterion of the performance is considered to be the Q\-ershoot.

The evaluation of roots of the general characteristic equation with the three-term PID

controller is a difficult mathematical task. In order to simplify the analysis some of the results

given in section 5.2 are assumed. It was shown in the Section 5.2 that when the closed-loop

poles are complex the set-point response always experiences overshoot. Since this task is

based on minimum overshoot, assume the gain relationship given in (5.8) which corresponds

to the case where the closed-loop poles are real and distinct. Further it has been observed that

when the overshoot control parameter :3 is set to zero, the response of the plant with no time

delay has zero overshoot. Therefore in this exercise ,3 is set to zero. The gain relationship of

(5.8) now simplifies to,

(5.25)

PI tuning

For the PI controller set K 3 = O. Equation (5.25) simplifies to K2 = KIlT. The closed-loop

characteristic equation with the PI controller then simplifies to,

(5.26)-0- .(Ts -+- 1)
KI

S -+- T exp( -std)

The roots of the inner root locus are at -liT and -lltd' The first root corresponds to

cancellation of the dominant process pole by the PI controller. \Vith these PI settings it can

be seen that the theoretical response during the second delay period would be a straight line.

The second root corresponds to the break point gain (K1b), and is given by.

K 1b = (Tltd) exp( -1) = 0.368(Tltd).

The break point gain exhibits the critical damping condition of the closed-loop system. The

analysis so far shows that the normalized proportional gain is always a function of the scaled

time constant (Tltd)' Therefore it is now reasonable to write a general expression for K 1 as,

where the scaled time constant is defined as the reciprocal of the normalized time delay,
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Figure 5.2: Effect of proportional weighting (p) on step response

The coefficient p is termed as proportional weighting. A value for p is usually selected to

generate the required performance characteristics. In ZN step-response method, this term is

fixed and assigned 0.9 for PI controller and 1.2 for the PID controller. \Vith the above PI

settings the plant response for unit step input has been further analyzed. For simplifying the

response expressions define the scaled time as,

t
T --- .

td

Assume the total time delay period occurs between the controller output and the plant input.

For three initial scaled time periods the time response expressions are shown below. In order

to avoid the overshoot during each period, the limiting values for p are also shown.

(a) 0::; T ::; 1 yeT) = o. (5.28a)

(b) 1::; T ::; 2 yeT) = peT - 1) For y(2) ::; 1, p ::; 1. (5.28b)

(c) 2 ::; T ::; 3 yeT) = peT - 1) - tp2(T - 2)2 For y(3) < 1, P < 0.586.- (5.28c)

Figure 5.2 shows the response variations for three PI settings that correspond to the three

proportional weighting limits and it can be observed how response is \'aried for each limit of

proportional weighting. From this analysis it is clear now that if the closed-loop gain is less

than the break point gain or p ::; 0.368, the PI controller would be sufficient. The addition
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of derivative controller within this range makes the response more sluggish and will take a

longer duration to reach the set-point value. Practical control problem can allow a small

overshoot to ensure faster rise time and also a faster settling time \V;thin an allowable error

tolerance. The simulation results showed that when p ::; 0.51, the overshoot OS < 5%. This

corresponds to about 50% of the set-point response within the second period of time delay.

In summary, the pole zero cancellation PI controller is,

PID tuning

• (5.29)

The tight Pill controller can be allowed only when the actuator gain allows the proportional

weighting to exceed 0.51 (refer next section). It can be seen in the PI design that having

p > 0.51 causes an excessi\'e overshoot. Therefore the derh-ative action is imposed to minimize

the undesirable overshoot while achieving a faster rise, which is limited in the above PI design,

During the first unit of scaled time period, the error is constant and therefore the derivatives

of error are also zero. As a result, when the time is within this period, a :s; T ::; 1, only

proportional and integral control actions are active and the deriv-ative action is idle. \-Vith the

PI settings in (5.29) and when p = 1. the response reaches its target \-alue during this period

and overshoot is inevitable (Figure 5.2), Hence the ma.ximum limit for the proportional

weighting can be set as Pmax = 1. The next exercise is to find the necessary amount of

derivative action required to bring this overshoot to a minimum. Assume the normalized

derivative gain can be represented by. f{3 = aT. The a is termed as derivative weighting.

Using the same gain relationship as in (5.25), the first order differential equation showing the

time response within the scaled time n :s; T ::; n + 1 can be expressed as,

dY(T) de(T - n) P
'd d +Y(') = P'de(T-n)+aTd d + ( )

T , a+1

- n-1 j+1
(' e(T - n)dT + L. e(T - j)dT

in . 0 JJ=

(5.30)

and therefore the time response Y(') = !(Td, P, a).

\Vhen the proportional weighting P is fi.xed, the overshoot of the response can now be

controlled by a alone. The over weighting of damping through a lowers the gain margin and

at the maximum limit of a the system may become unstable. As an example, when a = 1, the
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gain margin drops below IdB. Therefore a safety range for a is set as 0 ~ a < 1. From (5.30)

it can be inferred that for the optimum control based on a given cost function, a is always a

function of p only. The response behaviour of different values of a have been investigated and

it has been observed that when a: is increased from zero the response overshoot also increases.

This is due to increase of p and if a: is closer to one, the system becomes too oscillatory. This

latter behaviour is mainly due to the association of the term a: in the integral term. Also it

can be argued that the required derivative weighting is low when the allowable proportional

weighting is low. At an extreme the control can be accomplished only by PI control. By

numerical simulations the acceptable values for the derivative weighting have been observed.

\Vhen p = 1 then a: is set at OA. Similarly for the other limit, when p = 0.5, a: is set at 0.1.

The PID settings derived in [125], which corresponds to optimum integral of the absolute

value of the error (IAE) have been carefully analyzed. The equivalent a: and p computed for

the PID values in [125] have shown an approximately linear relation to each other. Therefore

within the range of 0.5 ~ p ::; 1 the relationship between two weightings is assumed to be

linear and fLxed as.

Q = O.6p - 0.2 . (5.31)

The optimum PIn setting is now performed using the overshoot as the performance criterion.

The analysis up to now has simplified the PID settings to a single unknO\'vll variable (p). This

term can be adjusted until a desirable overshoot is achie\'ed. For this exercise, the overshoot

specification is chosen as 5%. Since with the simplified PID settings the response is only

a function of Id and p, a single relationship for proportional weighting can be obtained in

terms of the scaled time constant Id. A simulation experiment was performed for different td

\'alucs and the proportional weighting was adjusted in each simulation to retain 5% or less

Q\'ershoot. The plot of p versus Id is shown in Figure 5.3. Since the derivative weighting

has been now set proportional to the proportional weighting (equation (5.31)), a low value

of p means that the amount of damping needed by PIn is also low. From this variation we

can conclude that when the normalized time delay is very small (or td » 1), PI control is

sufficient. This is in agreement \\ith the previous results on zero dead time tuning. Also,

when the normalized dead time is sufficiently large (or td « 1), the amount of damping

requirement reduces. This is mainly due to existence of many closed-loop poles near the
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Figure 5.3: Proportional weighting in PID control for 5% or less overshoot

imaginary axis. where the effect of zero addition by the deri\'ative term is not significant

enough to change the response characteristics. In order to derive a PID tuning formula, a

least square curves have been fitted to the curve shown in Figure 5.3 and the expressions for

the proportional weighting to pro\;de 5% or less overshoot are obtained.

For relatively short time delay problems Td ~ 1

O--0 . 0 '')4- ( ) -0.854PPID= .1/ ..._.~ Td 0
(5.32a)

For relatively long time delay problems Td < 1

PPID = 0.603 + 0.275 (Td)2.4 • (5.32b)

Therefore the new PID tuning laws can be summarized and for convenience they are rewritten

in terms of absolute process terms. The recommended range for the proportional weighting

is 0.51 ~ P ~ 1.

(5.33)•

Kp = ~ GS)
K - oT - (0.6e- 0 .:.!) T

D - k - k

K (1)_ e _ P _
K( - kKo+T - k(0.6e+0.8 ) tel

A suitable \-alue for p is obtained from (5.32). For fine-tuning, manipulate p to adjust the

overshoot. The phase and gain margins drawn for this PIn tuning law are sho\'\'Il in Figure
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5.4 and observed phase and gain margins are respectively abO\'e 60° and 2 respectively. This

is in agreement with most of the existing tuning techniques [131).

Optimum controller selection for relatively short time delay problems

In set-point control of any first order process, the integral action causes the control signal to

rise monotonically during the initial time delay period. The wind-up problem can be avoided

only if the actuator has a higher capacity than the ma.ximum PID controller signal required

for the desired settings. \Vith the above PI or PID settings. the maximum controller signal

during the transient response of this particular process shows less than 10% overshoot and

has an extremely 100v bandwidth. In such circumstances an actuator with little extra capacity

can drive a system \"ith no danger of integral wind-up. Therefore processes with short time

delay are first considered for the optimum controller selection. The above analysis has sho\\o'TI

that the tight PID control can be allowed only when the proportional weighting is chosen at

a higher level than the value permissible for PI control. Therefore by knowing the ma.ximum

permissible value of the proportional weighting it is possible to determine whether tight PID

control can be allowed or not.
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\Vith the PI settings shown in (5.29), the ma.ximum controller signal can be determined

using the expressions given in (5.28). The ma.ximum PI controller signal per unit step response

is therefore given by,

(5.34)

where Tp is the time at which the PI controller signal reaches its ma...amum. There are two

cases to be considered.

Case A When {ffd ~ 1 - - 1'p - .

Case B When {ffd < 1 Tp = 1 + (1- fYidlp.

The ma.\:imurn allowable limit for the proportional weighting (Pa) is therefore determined by

the allowable value of the ma.ximum controller signal. To find the Pa value, set the upper

margin of the actuators gain to the ma.ximum controller signal in (5.34) (i.e. U max = Uu ).

Substituting the response expressions of (5.28) into (5.34) the limiting values are obtained

as:

(5.35)•

Pa = kUu l(1 + Td) when fJTd ~ 1

Pa = ()1 + TJ(2Uu - 1) - 1) ITJ when fJTd < 1
Set P < Pa for the PI controller settings in (5.29) to work ...ith no integral ...ind-up. If

the optimum proportional weighting based on a given performance level is PPI, then select

p = min(Pa, ppd. Based on 5% or less overshoot criterion, PPI = 0.51.

\Vith the new PID settings it can be shown that the ma...amum controller signal always

occurs at the end of the first dead time period i.e. T = 1. As the error derivative (rate of

change of response) during this pl:'riod is zero or negligible. the derivative control action has

no influence. If there is no saturation limit. the controller signal reaches the ma.ximum value

when t = td or T = 1 and then falls due to the addition of derivative action. Using the new

PID tuning rules, a condition for the ma.ximum PID signal per unit step response can be

expressed by:

Using the new PID rules in (5.32),

rYr' Pr.d -r
k(0.6p + 0.8)

(5.36)
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In order to find the allowable limit for the proportional weighting of PID control (Pb), consider

the equal condition of the above equation and solve the quadratic expression given by,

O.6TdP~ + (O.8Td - O.6kUu + l)Pb - O.8kU - u = O. (5.3i)

To avoid the integral wind-up during PIO control. select p = min(Pb, ppm)

The analysis above shows that the requirement for a PID controller arises only when the

system can allow a higher gain which is gO\'erned by the saturation limits. Based on the

abO\'e analysis the following rule is stated for optimum controller selection.

If Pa < PPI then the optimum selection is a PI controller. Otherwise the tight control can

be allowed by a PID controller.

For very small normalized time delay problems, the limiting proportional weighting for PI

control (Pa) becomes too small (5.3.5) and PI controller would be the optimum. This agrees

with the results of section 5.2. The above selection rule can be safely used until the time

delay is less than 1.5 times the time constant (i.e. Td > 1/1.5).

5.5 Analysis III: Two-Point Design of a PI Controller for Long

Time Delay Processes

In the previous analysis it was observed that when the normalized time delay becomes larger,

the required proportional weighting to retain 57c or less overshoot is reduced to the minimum

and the derivative action becomes ineffecti\·e. The process response with PI and PIO con

troller becomes almost identical. This phenomenon has been also observed in the IMC PIO

design [134j. The process dynamic differs mainly due to the existence of closed-loop poles

closer to the imaginary a.xis of the s-plane. Therefore it can be concluded that for larger nor-
.

malized time delay processes the best prD controlled response can be obtained with a zero

derivative and the PI controller is optimum. The pole zero cancellation PI controller shows

an extremely low bandwidth and the response is more sluggish. Therefore in this section a

separate PI tuning formula is developed for such processes where T « td or Td « l.

The main problem associated with larger time delay is the integral wind-up over a longer

period. Secondly the proportional weighting can allowed to be have a higher value for quick
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response. As a result the equal weighting in the PI rules described in section 5.2 overestimates

the integral action and gives a lower estimate of proportional weighting. Larger dead time

processes require a slower rate of integration to avoid any integral-windup and also excessive

overshoot. Therefore the normalized integral gain can be assumed to be inversely proportional

to the dead time. The normalized PI gains are now redefined as,

• (5.38)

where PI is the redefined proportional weighting and Ii is the integral weighting for the PI

control. In the pole zero cancellation PI controller defined in (5.29) the two weightings were

equal to each other and the maximum value permitted for the proportional weighting was one.

Since the time delay is sufficiently greater than the process time constant the two weightings

can be set at Ii < PI and PI can be allowed to take a value greater than one.

The first-order differential equation sho\\ing the time response \\ithin the scaled time

n ::; T < n + 1 can now be simplified as,

n

dyer)
Td dr + y(r) = PITde(T - n) + 11

T n-1 j+1

e(T - n)dT + 2:. e(T - j)dr .
j=O )

(5.39)

The step response solution of (5.39) for the first three delay periods has been obtained and the

final expressions are given below. The equal conditions of the response equations correspond

to boundary conditions of the past and future responses.

(a) 0 ::; T $ 1

where

(b) 1::; T $ 2

(c) 2 < T ::; 3

yeT) = 1.

•

(5040a)

(5040b)

(5AOc)
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(r - 2)
1 - 2(pi - Ii )rd - ii ?- (r - 2).

In this case the scaled time constant is considered to be very much less than one and the

exponent terms in (5.40) can be assumed to be negligible compared to the terms ",ith no

exponent. Hence the two expressions (5.40a) and (5040b) can be approximately expressed as,

For 1 < T < 2- -

For 2 S T < 3

(5.41a)

(5.41b)

It can be observed from above expressions that the response during the second period of

scaled time given by (5.41a) is a monotonically increasing function during the valid period of

time. This implies that it is impossible for the PI controlled response to reach its steady state

before the time T = 2. This is the clear limitation of PI controller performance when it is

used for long dead time process models [142]. With this limitation the system can be allowed

to accelerate as much as possible during the second delay period and control the overshoot

in the third period. Therefore two target points are first defined corresponding to the two

response periods. Assume the response level to be reached at the end of second time duration

y(2) = Va. Then set Ya < 1 to avoid any excessive overshoot of response. By substituting

this condition into (41a) we obtain,

(5.42)

In order to achieve fast settling, the response during the third delay period can be allowed

to reach the peak of the overall response. Let the expected maximum response height of the

unit step response be Ym(> 1). By substituting the time given by dY2(T)/dt = 0 into (5.41b)

Yrn is obtained as:

(5.43)

Solving (5.42) and (5.43) the integral weighting is obtained as,

(5.44)

The two equations given in (5.42) and (5.44) provide the necessary PI weightings to estimate

the normalized gains in terms of the process parameters and the expected two target points.

For \·ery large normalized time delay problems, the approximation error is negligible and the
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user can decide two suitable target points and can easily determine the PI gains. The error

of the approximation becomes dominant when the normalized lag time is mediwn long in

which case Ya ....ill be an overestimate and Yrn ....ill be an underestimate. For larger time delay

problems, the above estimations can very accurately be used. The numerical simulations

provide the following safe limits for the target points assuming the allowable overshoot is

about 5% .

Valid range for the time delay: td > T.

1 < ¥ < 2

2 ~ ¥ <4

4<!st<6-T

6 ~ ¥

Ya = 0.6. Yrn = 1.02:

Ya = 0.7. Yrn = 1.02:

Ya = 0.8, Yrn = 1.02:

Accuracy is sufficient to predict the two points

The proposed PI setting is easy to understand. Irrespective of the magnitude of time delay, the

user can select two points from the desired set-point response. Since the response is slow for

long time delays, the integral wind-up ....ith the above settings would not be a serious problem.

\Vith about 10% extra capacity of an actuator, the response with 5% or less overshoot can

be easily accommodated ....ith no integral \\ind-up. The gain and phase margins computed

for these settings while seeking Ya = 0.8 and Ym = 1.02 is shown in Figure 5.5. If a higher

gain or phase margin is sought. the two target points can be changed appropriately.

5.6 Simulation Examples

The following computer simulations show the effectiveness of the tuning procedure developed

so far. For all simulations the PID controller ....ith the derivative filter shown in (5.3) is

employed, and without loss of generality :\"=10 is used throughout. The approximated process

parameters are evaluated either by using a relay experiment or from a plant open-loop step

test. \Vith proportional control, the theoretical closed-loop system of a first order plant

with zero dead time has infinite gain margin. Also, when the time delay is very long the

system has a very low critical gain. The critical gain evaluation by the relay e.xperiment for

negligible time delay or very long time delay gives rather an erroneous estimate. Therefore

plants having a negligible time delay or a very long time delay are estimated by using the

open-loop step response method that is described in [143]. For all cases, the process gains are
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Figure 5.5: Gain and phase margins of the two-point PID settings corresponding to Ya = 0.8

d - 1·Jan Ym - ._.

estimated by the open-loop step response test. During each simulation a constant 50% load

disturbance is added. Except example 2, all the others have been chosen from the literature.

Example E2 : A third-order system with negligible time delay.

It is hard to find an example in literature ~-jth an estimate of zero dead time. Therefore

\ve have chosen a third order transfer function model given by,

f)

G(s} = (. '1HO - -, 1)(0·J '1)'os .,.. .os .,.. ._s .,..

The open-loop step response test yields k = 2 and T = 5.72s and the time delay

component is negligible. For unit step response, the steady state controller gain required

is 0.5. Let the actuator saturation limits be given by [0 4). Using the results of section

5.3, the optimum PID controller is PI. Using the tuning la~' in section 5.3.2, U max < 4,

select Kp = 3 or K 1 = 6. By assuming the ma.ximum expected overshoot to be 2%

(OSd = 0.02) obtain K[ = 0.6086. The response curve for this PI setting is shown

in Figure 5.6. The response achieves its fastest rise without e.xceeding the saturation

limits, but shows somewhat poor load disturbance characteristics. By increasing the

integral gain, it is possible to obtain better load disturbance, but at the expense of poor
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transient response. Since this design is based on controller signal overshoot, minimum

set-point overshoot is the prime concern in the PI settings.

Example E3 : A second-order system with relatively a short time delay.

This example is taken from reference [U8]. The transfer function is given by,

G(s) = exp( -0.5s) .
(s + 1)2

The closed-loop relay experiment yields the ultimate gain ku = 4.476 and the ultimate

period t u = 2.3s. Using (5.24) the process estimates are T = 1.5971s and td = 0.6585s.

The process gain k = 1. The design is related to a short normalized time delay problem.

According to the design criteria. the optimum selection is either a PI or PID controller,

which depends on the actuator saturation. Using (5.32a), the proportional weighting for

5S{ or less overshoot is 0.88. The estimated PID parameters using (5.33) are Kp = 2.13,

Kr = 1.01, and KD = 0.524. :\'"ext, actuator saturation limits are imposed as [02J and

Uu = 2. This corresponds to twice the controller gain at steady state. \Vith this limit,

the above proportional weighting value violates (5.36) where there is a possibility of

integral wind-up. Using (5.35) the limiting proportional weighting for PI design is 0.729.

Since this ....alue is higher than the limiting value corresponding to a PI controller, it

is possible to allow tight control through a PID controller. The limiting proportional
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weighting calculated from (5.36) implies P :5 0.608. Using the PID formula given in

(5.33) and assigning p = 0.6 the PIn terms are given by, Kp = 1.455, K( = 0.7855, and

K 0 = 0.255. For comparison, the RZ:\" PIn [128! settings and Zhung and Atherton's

ITSE optimized PIn (ZA-PID) settings [118] are also tested. With the estimated

process terms above the RZ~-PIn terms: Kp = 2.686, K( = 2.335, and Ko = 0.772

and the set-point weighting is 0.54 and ZA-PIn terms: Kp = 2.307, K( = 1.28, and

K 0 = 0.636 have been obtained.

The simulation results are shown in Figure 5.7. The proposed method shows bet

ter step response performance. Also with no actuator saturation limits, the response

corresponding to the proposed method shows acceptable load disturbance properties.

However when the actuator saturation is imposed, the proposed method requires lower

ing of the gains (weightings) to accommodate limiting requirements and therefore shows

poor load disturbance characteristics compared to other two methods. It can be seen

from Figure 5.7-c, that the proposed method has satisfied the limiting conditions of the

actuator gain with no integral wind-up and therefore the response has not been affected

by the integral ....ind-up. The controller signals based on the other two designs have

reached the upper saturation limit and the response has been affected by the wind-up.

This example illustrates the flexibility of the PIn design for accommodating the actua

tor saturation. The I~IC-PID design also has the flexibility to choose PID parameters

based on actuator saturation. However the performance of the latter method on this

example has shown similar response compared to the proposed design and therefore it

has been excluded from the diagram.

Example E4 : A second-order plant having a normalized time delay closer to one.

This example was chosen from reference [130] and the transfer function is given by,

exp( -s)
(s + 1)(0.5s + 1)'

The closed-loop relay e.xperiment yields ku = 2.137 and t u = 4.1s. The estimates are

k = 1. T = 1.232s and td = 1.343s. The normalized time delay is therefore 1.09. Using

the .5% or less overshoot criteria for the PID control (equation (5.32a)), p = 0.827.

Using (5.33) the PIn gain terms are: Kp = 0.759, [(I = 0.475 and Ko = 0.365.

For comparison, the Zhung and Atherton's (ZA)ITSE optimized PID settings [118J
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valid for the longer normalized delay and the PID settings based on gain and phase

margin specifications (GP~I-PID settings) in [130] are also used. The ZA-PID [118]

settings are; Kp = 1.087, [(I = 0.6371 and Ko = 0.5526. The GP~I-PID [130J settings

corresponding to a gain margin of 3 and a phase margin of 600 are K p = 0.780, K[ =

0.520 and [(0 = 0.260. The latter values are obtained after transforming the PID terms

given in [130] to the present form by using the expressions given in [140J. The response

curves are shown in Figure 5.8. The proposed PID settings show minimum set-point

m·ershoot and a satisfactory load disturbance characteristics compared to both ZA-

PID and GPM-PID methods. The RZN PID (128] setting is inadequate to cover the

particular example and with the closed-loop estimated values, the response has shown

quite an oscillatory response.

Example E5 : Higher-order plant with long normalized time delay.

This example was chosen from reference [142]. The transfer function of the model is

gi\'en by,

G(s) = exp( -tdS) .
(5 + 1)(0.55 + 1)(0.55 + 1)(0.1255 + 1)

For simulations two values for the time delay td are considered.

Case-I: td = 4s.

The closed-loop relay experiment yields. k u = 1.302 and tu = 11.465. The estimates

are k = 1. T = 1.521s and td = 4.462s. The normalized time delay is therefore 2.934.

Using the proposed PID rules in (5.32), p = 0.6238 and the corresponding gain terms

using (5.33) are: Kp = 0.2126, K[ = 0.1191 and [(0 = 0.2651. The t\vo-point PI design

(TP-PI) is next considered for the comparison. Using the recommended values given

in section 5.5, the two points are decided as Ya = 0.7. Yrn = 1.02. Using the expressions

(5.44) and (5.42) the PI weightings are Pi = 0.9058 and Ii = 0.133. Using (5.38) the

PI terms are Kp = 0.3088 and K[ = 0.133. For comparison, the n-IC-PI [134J and

PI settings developed for large normalized time delay processes by Khan and Lehman

(KH-PI) [127] are also simulated. The I:\IC-PI terms corresponding to €/td = 1.7

are [(p = 0.4946 and [(r = 0.1318. The KH-PI parameters are Kp = 0.3193 and

K[ = 0.1249. The unit step response curves and the \·ariation of the manipulator signal

are shmvn in Figure 5.9.
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Case II: td = lOs.

For better approximation. the parameters are estimated by the open-loop step response.

The estimates are k = L T = 1.5s and td = 1O.5s. Based on the new two-point PI

design. two designs are evaluated. By assigning the two points as Ya = 0.75, Ym = 1

the PI gains are Kp = 0.2281 and Kr = 0.0580. Also the second design is considered by

using Ya = 0.8, Ym = 1.02 and the computed PI gains are Kp = 0.2516 and K[ = 0.0609.

Again the KH-PI settings [127] are calculated for the comparison and the corresponding

PI gains are Kp = 0.2655 and Kr = 0.0579. The corresponding unit step response curves

are shmvn in Figure 5.10. It can be seen from the example E5 that the proportional

weighting allowed for PID settings is low. As a result the performance based on the

proposed two-point PI setting is superior to the proposed PID controller. This proves

that the PI controller is sufficient for controlling larger normalized time delay processes.

Figure 5.9-b shows that when the normalized time delay is large the signal overshoot

is minimal and therefore a proper PID design giving no excessive overshoot of response

automatically satisfies the actuator limitations. The D.-IC-PI design employed the Pade

approximation, which resulted in poor PI settings and therefore exhibited the poorest

response characteristics. Although KH-PI settings have ShO\'.l1 satisfactory performance

with zero o\'ershoot, the proposed method has more flexibility to select PI parameters

for user specified response behaviour. The two designs in example E5-II show how

one can adjust the overshoot by simply lowering the anticipated two points in the

response curve. The results show better performance of TP-PI settings in both step

response and disturbance rejection. The two point PI design analysis in section 3.3

clearly provides the best that a PID controller can achieve for long time delay control.

Further improvement to the transient response requires employment of different control

algorithms [142]. Any increase in the rise time by raising the first expected point Ya

would produce rather an excessive overshoot of the response. The other tuning methods,

such as RZN-PI, ZA-PI and GP~I-PI are unable to provide solutions to very long time

delay problems.
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5.7 Summary

This chapter presented a new time response based design methodology for PID controllers.

The present PID tuning is applicable only for the classes of problems that have monotonic

open-loop response except for the initial time period where the system can be roughly ap

proximated to a first-order process with a time delay. Based on the magnitude of normalized

time delay, three types of tuning rules have been developed to cover the time delay ranging

from zero to any higher value. The PID tuning rules for zero dead time processes have been

analytically obtained. It has been shown that the derivative action is detrimental to those- -
plants hm'ing negligible or large normalized time delay. Tight PID control can be applied

for plants having low to medium normalized time delay. The new design technique has the

flexibility to accommodate actuator saturation and avoid integral wind-up in the transient

response. Based on the actuator's upper limit of saturation, a selection of PI or PID con

trollers for such plants have been described. For large normalized time delay plants. a new PI

tuning scheme based on user defined two-points of the time response curve has been derived.

The analysis has also shown the existing limitations of PI control 'with respect to transient

response performance.

Overall the simulation results from the proposed method have shown better performance

compared with other a\-ailable tuning rules. The approximation of higher order systems to

first order plus dead time model always presents an error in the estimates. As an example.

the estimated lag time always presents a significant error. In example £4 the estimated lag

time is 35o/c inaccurate compared to the true value. However the design is able to provide

satisfactory performance despite the imprecise estimate of process parameters. In order to

understand the applicability of this tuning strategy, the proposed tuning rules has been used

to design a PID controller for controlling the chemical concentration of a nonlinear reactor

model [144].
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Chapter 6

Two-Level ning of zzy PID

Controllers

6.1 Introduction

The work so far has enabled the identification of suitable fuzzy systems and provided insight

knowledge of tuning linear PID parameters. In Chapter 4 the two level tuning parameters

related to different fuzzy systems described in Chapter 3 were identified. The identification

was based on two-point non-linearity tuning of fuzzy controllers. The non-linearity variation

diagrams were developed for obtaining the first level tuning. In Chapter 5 linear tuning was

separately analyzed and new linear PID tuning rules were developed. This chapter develops

a design scheme for fuzzy controllers by incorporating both the linear and nonlinear tuning

levels.

The tuning of fuzzy controllers is one of the main areas of fuzzy control research. The

curse of dimensionality during the rule explosion (1) is the main draw-back and fuzzy control

designers are still unable to find an effective tuning algorithm. However, the recent increase

in computing power enabled most designers to adopt numerical optimization techniques for

generating optimum or near optimum solutions to fuzzy systems. The numerical optimization

methods have been successfully used for designing linear PID controllers [118) and those

designs have been used for ",-ider range of process applications. Recently genetic algorithms

and neural network implementations ha\-e become more common for solving a larger number
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of unknown parameters in fuzzy systems. However, those applications are somewhat specific

and unable to generalize for ,,-ider process specifications. On the other hand, control experts,

who have considerable experience in traditional control. were quite skeptical of using fuzzy

logic and as a result the accumulated control experience has not been fully explored for fuzzy

controller designs [45]. However the challenge of using fuzzy control has been accepted by

many leading researchers and today many scientists and engineers are attempting to link the

traditional control theories to the design of fuzzy controllers [93, 43, 116. 145, 146].

Researchers have attempted to generalize design techniques for conventional fuzzy PID

controller [16. 43.117,56,58]. In a few cases the tuning aspects have been discussed [56, 58!.

:\. PI tuning scheme for the apparent linear gain (ALG) terms of a com'entional fuzzy PI

controller is described in [147]. The tuning of ALG terms of the simplest conventional fuzzy

PI controller are described in [145, 146]. The latter work uses the conventional gain-phase

margin (GP~'I) approach [145] and the extended circle criterion [146] to derive the tuning

formulas for the ALG terms. The tuning schemes in (147, 145, 146] have shown better results

than the Linear PI controllers. In [148] the non-linearity tuning is identified by classifying

the rules into two groups: responsi\'eness and stability aspects of the control. Also the

effect of scaling and membership adjustments have been described for the conventional type

fuzzy controllers. In (56] the design of conventional fuzzy PID is identified as a two-level

tuning problem and described a way of obtaining ALG terms for conventional fuzzy PID

type controllers. Howe\'cr, the non-linearity tuning was not sufficiently or explicitly described

for implementing a two-level tuning task. The past tuning schemes are applicable only

for conventional type fuzzy PI controllers and ha\"e not been extended to PID type fuzzy

controllers. This is due to the poor functional properties that exist with the ~Jarndani type

fuzzy PID controller as described in Chapter 3. Generally it is a hard analytical task to

identify the non-linearity tuning for general fuzzy PID structure. Therefore in most cases

the fuzzy systems are simplified to a greater extent in order to obtain simplified fuzzy output

expressions for the analysis [145. 146].

In this chapter the two-level tuning methodology is employed to devise a convenient pro

cedure for tuning fuzzy controllers and to aid in implementing for real-time process control.

In this chapter, three different tuning and designing methods are described. The first ap

proach uses the genetic search technique, the second uses a trial and error solution, while the
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third uses the two-level tuning principle. Finally, both the linear and fuzzy controllers are

tuned for controlling the temperature of a soil cell.

6.1.1 Problem Definition

For fuzzy controller design consider the class of problems that have a monotonic open-loop

response except for the initial time period where such processes can be crudely approximated

by first-order plus dead time process model as described in Chapter 5.

6.1.2 Fuzzy Controller Systems

For demonstration of the tuning strategies. three fuzzy controller systems that have been

described in Chapters 3 and 4 are redefined. The design parameters related to the two

tuning le\'els are also identified.

FCS-I

The system is defined as follows:-

Fuzzy PID system: Type VI structure.

Fuzzy logic system: :'\LFLC-IIIB system.

This structure uses the nonlinear error mapping to produce three fuzzy proportional actions

(Chapter 3). The ~LFLC-InB system uses two non-linearity tuning parameters to obtain

the two-point control as described in the Section 4.3.3. Therefore for the three PID actions

the first-level tuning parameters are defined as follows.

PID action Error variable First-level tuning parameters

absolute P e Sl,Pl, s2,Pl

absolute I e Sl,P:.!, s2,P2

absolute D e Sl,P3, S2,P3

The ALG terms for this fuzzy PID controller as described in Table 3.8 are re\\Titten here for

clarity.
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FCS-II

The system is defined as follows:

Fuzzy PIO system: Type I structure.

Fuzzy logic system: .:\'LFLC-I system.

In section 4.3.1 the l\'LFLC-I has been simplified to obtain two-point control by changing the

input membership parameters. The non-linearity tuning parameters that related to each axis

in the error space determines the corresponding nonlinear Pill actions in the dissociated form.

Therefore the non-linearity tuning parameters that related to simplified :\LFLC-I system for

two point control can be redefined as follo"'-s.

PID action Error variable First-level tuning parameters

incremental P ~e (slh, (s2h

incremental I e (slh, (s2h

incremental D ~2e (slh, (s2h

The ALG terms for this fuzzy PIO is described in Table 3.8. The three terms are rewritten

here for claritv.-

[{Oa = (SuSrced3Ts)/a3

From the two-point control design ShO\1;l1 (section 4.3.1), al = a2 = a3 = 1/3 and d3 = 1/9.

For unit-step control set Se = 1.

FCS-III

The svstem is defined as follows:-
Fuzzy PIO system: Type III structure.

Fuzzy logic system: Z'\LFLC-I system.

The FCS-III uses the conventional Mamdani-type fuzzy PID structure. Due to the two error

term definitions, the PIO actions are defined either in absolute PD or PI form. The two-

input ?'\LFLC-I that has been simplified for the two-point control in Chapter 4 is again used

for defining the first-level tuning parameters. Therefore the first-level tuning parameters are

redefined as follows.
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PID action Error variable First-level tuning parameters

absolute P or incremental I e (51 h, (s2h

incremental P or absolute D ~e (Slh, (s2h

The apparent linear gains for this fuzzy PID as described in Table 3.8 are re\\-Titten here for

claritv.-
KPa = d2Su (SceKpI/a2 + SeKPD/ud

KIa = (SuSed2Kpd /(ulTs)

From the two-point control design sho't\l1 (section 4.3.1) , al = U2 = 1/3 and d3 = 1/6. For

unit-step control set Se = 1. For realizing a three linear term tuning, force Su = 1.

6.2 GA Based Designs

The genetic algorithm (GA) is a numerically driven search algorithm and the searching mech

anism uses mechanics of natural selection and natural genetics to evolve a better (or optimum)

solution [149]. The method is easy to implement in computers and requires no local deriva

ti \·es to guide the search process. The method evolves the candidate solutions for the problem

by iteratively applying a set of stochastic operators, namely reproduction. crossover and mu

tation. In this work the ~btlab program developed in [150] is used for optimizing the tuning

parameters of fuzzy controllers. The program uses the simple genetic algorithm described in

[149j. The implementation of this numerical search uses the following se\·en steps.

1. Parameter coding: The input variables to the search engine are first translated into

binary bit strings. String lengths can be determined by the maximum and minimum

allowable values of each input variable. Longer string length increases the resolution.

2. Generation: The process begins by randomly generating an initial population of strings,

each having the bit length specified in 1. The population size is a compromising fac

tor. Larger value increases the possibility of including the optimum solution in the first

few generations, but with the expense of computation time. This possibility can be

increased by having shorter bit-string length, but with reduced accuracy. This particu-
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lar contradiction (resolution versus running time) does not allow the GAs to reach the

global optima.

3. Fitness etraluation: The input parameters that have been generated in the generation

process is then sent to the performance test. In this case, the parameters are used to

control the given process model and the quality of the response performance is evaluated

against a given fitness or objective function.

4. Reproduction: Reproduction is a process by which the strings (or inputs) \vith larger

fitness values are selected with higher probabilities. The most common method is the

weighted roulette selection [149]. First the previous generation is ranked according

to the percentage of total fitness. The roulette wheel is weighted according to the

percentage of fitness. Spinning the wheel reproduces a new population. The strings

ha\ing higher weight in the roulette wheel are reproduced with a higher probability.

This procedure automatically purges out the bad solution candidates and the new

population eventually produces higher total fitness in the next trial than the previous

population.

5. Crossover: After reproduction. crossover is performed in two steps. First the members

of the newly reproduced strings in the mating pool are mated at random. Each pair

of strings that has been selected for mating undergoes crossover by swapping the bit

characters. In order to do that an integer position along the string is selected uniformly

at random.

6. Mutation: ~Iutation is the occasional random alteration of the value of a string position.

This process \\ill reinforce the chance of reaching the optimal point. The mutation plays

a secondary role in the GA and therefore the frequency of mutation is usually kept with

a small probability.

7. Iteration: The GA iterates by repeating the processes 3-7 until it arrives at predeter

mined ending conditions. The iteration is usually set to stop after reaching minimum

error conditions in the successive iterations or after a predetermined number of cycles.
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6.2.1 Formulation of the FLC for GA

The first part of this exercise is to formulate the fuzzy or linear PID control problem for

running the GA. The GA based design is tested only for the FCS-L It was shown in Chapter

3 that the type VI structure has better functional properties than the conventional and other

coupled fuzzy PID structures. For convenience the equation (3.16) is repeated while including

the sampling time Ts .

u(n) = Su (6.1)

\Vhen the fuzzy proportional outputs in (6.1) are set to exact linear form and set equal to

the normalized error, e. then the implementation is a linear PID controller. In Chapter

4 it was shown that this particular fuzzy system has better nonlinear properties for the

nonlinear tuning. In order to accommodate the output to be fully normalized within [-1,1]

(refer preferred features in the Section 4.2.2), the output expressions that are sho'wn in the

equations (3.62) have been further divided by the ma.ximum output value. The three fuzzy

proportional actions are expressed as functions of the nonlinear tuning parameters, where

UPl(n) =! (e(n),81.Pl,82,pd. up1Cn) E [-L 1]

uP2(n) = ! (e(n), 81.P2. 82,P2) .uP2(n) E [-L 1]

uP3(n) =!(e(n),81,P3,82.P3). uP3(n) E [-1,1]

The general upper and lower bounds of the non-linearity tuning parameters required for the

GA are defined as.

o < 81 ::; L - 1 < 82 < 1.

For convenience the valid ranges for 81 and $2 that define the ~LFLC-III controller are

induded in the fitness function of the GA system.-
The four linear gains in (6.1) can be simplified to three terms by forcing one of the

\'ariables to unity. However, the GA implementation requires these values to be specified

within a predetermined range. Therefore without loss of generality the follO\ving ranges are

specified for the variables. Assume unit-step response of a closed-loop PID control system.

• From the apparent gain analysis (refer section 3.4.4) Se = Ijemax = 1.
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• Considering the actuator saturation the range of the de-normalizing factor is set to;

• The three apparent linear gains are normalized to:

0:S K p :S 1, 0 < Kr < 1, 0 :S Ko ~ 1.

O\'erall the fuzzy system is reduced to a total of ten tuning parameters to solve in the GA:

six non-linearity tuning parameters and four linear tuning parameters. Suppose JT is the

overall performance index of the system. then for the fuzzy PID controller above,

(6.2)

In optimum PID designs the eITor integral criteria is most common [llS, 124. 125. 126].

In this exercise the overall performance is defined using three indexes, namely integral of

the square of the error (ISE), peak overshoot (OS) and settling time(Tsd. With suitable

wcightings the overall performance can be written as,

ISE Tst
JT = WI----;---:- + lL'20S + W3 T

f
.

maxe(n)
(6.3)

•

\Vhere Tf is the total simulation time. The weighting values can be adjusted according to

t he performance specifications. As an example, if overshoot is more critical than other two

performance indices, a greater value for the weighting lL'2 can be allocated. The GA developed

in [1501 uses the maximization of the fitness function. Therefore the fitness function is defined, .

for the \'alid ranges of the non-linearity tuning parameters as:

Fitness =

6.2.2 Simulations Using GA

o

otherwise
• (6.4)

In this section numerical studies are performed to examine the applicability of GA for process

control. For simulations the approximated first-order process parameters of the examples in

Chapter 5 (examples E2, E3, E4 and E5) are tested. In each trial of GA the fitness function

in (6.4) is e\'aluated against the unit-step response of the approximated model and equal

weighting is imposed for each performance index (WI = W2 = W3 = 1). The following param

eters are kept constant for each test.
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Table 6.1: The GA based optimum fuzzy PID parameters

Example Process Parameters Optimized Parameters

£2

£3

£4

£5

1. 1.5971. 0.6589, 2

1. 1.232. 1.343. 2. . .

1. 1.521. 4.462. 1.5. . .

0.0412. 0.0812. 0.5089.· . .

-0.2635, 0.5089, -0.1069

0.9688. -0.7336. 0.7350.· . .

-0.1695.0.9922. 0.4886

0.4231. 0.6766. 0.8597.· .

-0.0598, 0.9065, 0.4102

0.7116. -0.3576. 0.3140.· . .

0.5669. 0.5869. -0.2949· .

0.9685. 0.3937.
• •

0.0472. 3.97

0.9528, 0.5276.
•

0.0157. 1.7166

0.4961. 0.2913.

0.1417. 1.8268

0.9370, 0.2283,

0.7480. 0.6732
•

Population Size = 100

:\'umber of generations = 100

Cross-over factor = 0.9

\Iutation factor =0.05

bit-length = 7

The step response cun'es corresponding to the theoretical process parameters are shown

in Figure 6.1. For comparison the response curves of the linear PID control are also shown.

Table 6.2 shows the performance indexes defined in the fitness function. For comparison the

performance indexes corresponding to the linear PID controller are also shown. The linear

PID parameters are based on the proposed tuning scheme. Overall the fuzzy controllers

perform better (greater fitness) than the linear PIO controller. However the GA does not

converge to the global optimum. This is due to the small population size and the low res

olution. Also the definition of a proper fitness function plays a significant role in the final

solution. As an example. although the overall fitness of the fuzzy response shO\vn for the

example £5 has a superior value, the overshoot is considerably higher than the linear PID

controller. This can be avoided by allocating greater weight to the overshoot.
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Figure 6.1: Unit step response curves of the approximated process models. The optimum

fuzzy controller PID parameters are based on genetic designs

Table 6.2: Performance comparison of GA based fuzzy PID and linear PID controllers

Example Fuzzv PID Linear PID-
ISE Tst 05% ISE Tst 05%

E2 0.2931 0.95 0.36 0...19 3.2 0.97

E3 1.011 1.90 1.56 1.058 2.6 0.87

E4 1.859 3.6 1.62 1.957 8.4 4.58

E5 5.673 21.1 9.85 6.567 19.2 4.22
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Figure 6.2: Unit step response curves of the actual process models, The optimum fuzzy

controller PID parameters are based on genetic designs

The G:\ based fuzzy controllers are then simulated to observe the actual process responses.

For each case a constant 50% load disturbance also has been added. The response curves

for the four examples are shown in Figure 6.2. From the curves it can be easily seen that

the G:\ based fuzzy controllers were unable to perform any better than the linear controllers

when they were implemented for the actual process system. The reasons and drawbacks are

summarized as follows .

• The fuzzy PID parameters have been optimized only for the approximated process

model and therefore the fitness function will become no longer valid for the unknown

plant dynamics that exist in the true system. The numerically optimized fuzzy con

trollers can only be used when the actual process model is completely known a priori.
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The alternative is to use the GA on-line. The GA works by randomly generating num

bers. Then each combination is tested against the fitness. Such a random trial can be

allowed only if the system can be allowed to run \\;th no hazard either to the system

itself or to its surroundings.

• The optimized linear PID parameters (using either GA or any other numerically driven

search [118]) usually work well "ith the true plant system. This is due to the conserva

thoe linear control policy. \Vith two-point local control in the above fuzzy controllers,

the PID actions can take severe control actions at the chosen control points. As an

example, the optimized non-linearity foruPi in example £2 has a ,'ery high gradient

near the zero error or equivalently the apparent linear proportional gain near zero has

become extremely large. This leads to a low relative stability of the system (lower gain

margin) and as a result the system response is more oscillatory under the unknown

perturbations. The same argument can be extended for other local control points.

• The optimization through GA and the expected performance is greatly affected by the

definition of the fitness function. As an example the performance of example £4 shows

that the fuzzy controller has very poor load disturbance properties compared to the

linear PID system. This is due to lower apparent nonlinear integral action near zero

error. This can be overcome by including the load disturbance rejection properties into

the fitness function. However, the PID control has contradictory policy between the

set-point cor..trol and load disturbance characteristics. In most cases two controlling

phenomena have been separately taken for designing PID parameters [118].

6.3 Two-level Design Based on Trial and Error Tuning

This section attempts to tune the fuzzy controllers using trial and error technique. Again the

same fuzzy PID system described by the FCS-I is tested \\;th simulations. In the GA based

designs, both the tuning levels are taken simultaneously for tuning. \Vhen the two tunings are

taken separately, there are t,,,·o possibilities. In the first alternative the non-linearity tuning

parameters (or first-level tuning) can be decided and then the ALG terms can be adjusted

until satisfactory performance has been achieved. The second alternative is to find the best
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first level tuning under given second level tuning (or apparent linear gains). In this section

the first alternative is performed. The second alternative is shmvn in the next section.

The non-linearity is selected using the non-linearity tuning diagrams that were described

in Chapter 4. For the :'\LFLC-IIIB system consider the tuning diagram that is shmvn in

Figure 404. The trial and error tuning is performed in two levels.

• Using the non-linearity tuning diagram (Figure 404), select the non-linearity tuning

parameters (S1 and 82) for each PID action.

• Then adjust the apparent linear PID gains until a desired (or satisfactory) performance

level is reached.

• Repeat the above two steps until the controller gives superior results compared with

those of the linear counterpart.

For this demonstration fuzzy PI controllers are tuned for the process system that was de

scribed in example E3. For the fuzzy controller described in the equation (6.1), the apparent

linear PID gains are adjusted by modifying the PID weightings that were described in Chapter

5. For clarity the apparent linear PI gains in (5.38) are redefined in terms of the approximated

process parameters as,

r.' T
L\.P = Pf~' (6.5)

\ Vhere Pf and ') f are new proportional and integral weightings respectively chosen for the

fuzzy PI controller. Force the derh·ative term K D = 0 for realizing a PI controller. For

comparison the pole zero cancellation linear PI controller (refer section 504.2) is chosen.

Using a trial and error procedure for the two levels of tuning, three acceptable fuzzy PI

controllers are chosen. The first two controllers (design 1 and design 2) are designed for

obtaining improved response for the set-point control while the third design (design 3) is

chosen to obtain both improved set-point control and improved load disturbance properties.

The tuned parameters of the three designs and the linear PI design are shown in Table 6.3.

\Vhen performing the trial and error fuzzy PI design the following should be noted.

• Theoretically it is possible to select any arbitrary non-linearity tuning parameters (first

level) for each PID action and then adjust the PID weighting until desired performance

is reached. However such a design cannot always be better than the linear controller.
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Table 6.3: The trial and error based. fuzzy PI parameters for the example £3

Design First-level tuning Linear PIO

Sl,Pl,52,Pl 5l,P2, S2,P2 Pf, -if

design 1 0.9. 0.6 0.5669. -0.2 0.86, 0.61
•

design 2 0.95.-0.9 0.5669. -0.2 0.58. 0.53
•

design 3 0.5. 0.5 0.45. -0.3 0.64, 0.46

linear - - 0.45. 0.45•

• In both the set-point control designs (design 1 and 2), the non-linearity for the pro

portional action is set \vith (}o < 45°, so that the control action which causes excessi\'e

overshoot near zero becomes milder to keep the off-set minimum. Also for the set-point

control, the integral actions are kept approximately linear (point 0 in Figure 4.4) .

• At steady state the integral action is more dominant. The milder proportional action

near zero causes the load disturbance response to have a higher overshoot. Therefore for

better load disturbance properties the integral action near zero is increased «(}o > 45°),

while the proportional action near zero is kept approximately linear «(}o :::::: 45°).

The response cun.-es corresponding to the above designs are sho\\'11 in Figure 6.3. For

each case the linear PI design is shown for comparison. Overall the three designs perform

better than the linear PI controller when they are simulated for the approximated first-order

process model. Design 3 sho'ws better load disturbance rejection properties while maintaining

better step response characteristics. However when the three designs are tested on the actual

process system in example £3, none of the fuzzy controllers was able to produce any better

performance than the linear PI controller. As shown in Figure 6.3(d), the three responses

corresponding to the three designs have shown poorer step response and load disturbance

propert.ies. Similar to the GA based designs, the trial and error optimization only accounts

for the approximated model. \Vhen the system is subjected to the unkno\\'11 plant dynamics,

the fuzzy controllers perform poorer than the linear controller.
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6.4 Two-level Design Based on Tuning Heuristics

After identifying the draw-backs in the previous fuzzy controller tuning methods, this section

aims at developing a tw~level tuning criteria for obtaining imprO\'ed performance when

they are implemented on actual process systems. From the above two methods it is very

clear that the off-line fuzzy controller designs can be effectively used only when the process

parameters are completely known. The non-linearity tuning has a significant effect on the true

dynamic system, On the other hand the off-line linear PIO designs are acceptable for real

time implementations. The designs using Ziegler-Xicholos (ZX) based tuning [122) have been

successfully implemented in many industrial control applications [140. 121]. The numerically

optimized designs (118) and trial and error optimized designs [127] have also recently sho\\TI

improved linear PIO controL This is mainly due to the conservative linear control policy

applied in the first-level tuning. The tuning rules that are developed in [145, 146] never

attempt to define non-linearity tuning. Instead an insignificant non-linearity (or slightly off

from the linear) for the PI control has been used through a simplified fuzzy PI algorithm.

\Vhile observing the simplified nature of the linear PIO controL the two-level tuning is

developed to address three main objectives. Firstly, the design should be simple and easy

to understand for direct implementation. Secondly the overall performance should be always

better than that \\;th the linear PIO controller. Thirdly, the method should be applicable

for wider range of process specifications.

In this proposed tuning strategy the tuning is performed in the reverse order. The second

level linear tuning is first performed followed by the first-level non-linearity tuning. The

tuning heuristics related to two tuning le\'els are described next.

6.4.1 First-level Tuning Heuristics

As the linearity tuning is initially fi.-xed, the effects of non-linearity tuning under given linear

gains are first studied. Set-point response and response due to a disturbance are carefully

analyzed for first-order processes. Keeping the linear gains at a constant level the two slope

angles 00 and 01 are varied to obtain different non-linearity. Using a knov."ll linear tuning

formula the linear PIO controllers can be initially tuned. Therefore the non-linearity is

adjusted after the given fuzzy system has been tuned to produce the linear or approximately
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Table 6.4: First-level tuning heuristics under constant linear gains. SR: speed of response,

•

PID action Effect of Bo Effect of Bl

Set-point Response under Set-point Response under

response load disturbance response load disturbance

Proportional Increase as Slower SR Slower SR :\-linimum effect

Integral Increase as Increase SR Slower SR :\-linimum effect

Derivative Add damping Add damping Increase as Minimum effect

as: over<;hoot

linear control functions. The effects of varying the two angles from the linear approximation

point 0 (refer Figure 4.3-4.7) on the set-point control and load disturbance characteristics

are then observed. These observations are tabulated and shown in Table 6.4 as first-level

tuning heuri:>tics.

6.4.2 Second-level Tuning Heuristics

From the pre\"ious two methods it has been observed that the linearity tuning for the de

sired performance depends on the first-level tuning. As an example the two trial and error

designs (design 1 and 2) in the previous section ha\·e shown that changing the non-linearity

in nonlinear proportional control gi\·es different sets of linear gains for the set-point control.

Since the linear design is given the priority in this tuning sequence, the apparent linear gains

are chosen while using the conventional linear control knowledge. Therefore the apparent

linear PID parameters for this particular class of problems are selected using the tuning rules

developed in Chapter 5.

6.4.3 Two-level Tuning Strategy

The t\\·o levels are performed in the following sequence.

• First the fuzzy controller is tuned to produce the approximated linear PID function

and the apparent linear gains are selected using available linear PIn tuning rules. The

linear PID or the approximated linear fuzzy PIn controller is implemented for the



actual process and its true response is observed.

• using the first-level tuning heuristics the non-linearity tuning is performed to obtain an

improved response without changing the linear gains. This is accomplished by moving

the point corresponding to the approximated linear control in the non-linearity tuning

diagram while follo\\;ng the tuning heuristics that are given in Table 6.4. If the original

response from the linear PID control is satisfactory, then no adjustments are necessary.

..\. linear controller may be used without resorting to any fuzzy system.

The above method has the foUo\\;ng three main features. First, the design utilizes the

well-deyeloped linear PID technology and therefore its applicability can be ,,·,ridened to many

industrial control problems where the linear PID controllers are currently used. Secondly, the

performance of the fuzzy control can be guaranteed to be better or equal to the linear PID

controller, as the linear controller is a special case of the nonlinear fuzzy controller. Finally,

the fuzzy controller application would be stable as long as the linear controller is stable

for the particular application. Generally the stability of fuzzy controllers are determined

by the linear gains of the closed-loop control system, as the non-linear gains haye bounded

beha\'iour in the normalized control output space. The tuning criteria suggests a closed-loop

stable linear controller design. The non-linearity tuning is performed mainly to improve

the relative stability of the corresponding linear system. As the relative stability has been

improved by the higher level tuning the fuzzy controller would eventually becomes a more

robust controller than its Linear counterpart. However, a precise affirmation is possible only

if a quantitati\'e analysis is performed on the stability aspects of fuzzy controllers.

6.4.4 Simulation Examples

This section demonstrates the above two-level tuning through numerical simulations. The

FCS-I system has been already used in the above two sections of this chapter for demon

strating the weaknesses in genetic based and trial and error based designs. The FCS-II and

FCS-III systems are further added to demonstrate the generalization of the methodology for

other fuzzy systems and also to show some drawbacks that exist in the rule-coupled fuzzy

systems. Further, each fuzzy system is again considered for the two-point control as described

in Chapter 4.
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Example E2

This example from Chapter 5 has a negligible time delay and according to the linear Pill

analysis PI is optimum. The PI \'ersion of the Type I structure is obtained by forcing the

second error derivative gain to zero and is equivalent to twcr-input Mamdani-type controller.

Therefore only FCS-I and FCS-III systems are tested for this example.

Tuning FCS-I

According to the new tuning procedure. first the FCS-I is set to work at its most linear

position (point 0 in the non-linearity tuning diagram in Figure 4.4) and the apparent

linear gains are set using the linear gain results of the same example shown in Chapter

5. This design had an ideal set-point overshoot of 2%. The maximum controller signal

had to be kept below the upper gain limit of 4. The actual response showed poor load

disturbance characteristics and its step-response overshoot was 17.5%. This beha\';or

is common when the normalized dead time (td/T) is relatively small or negligible. It is

possible to improve the load disturbance properties by increasing the linear PI gains,

but at the expense of higher overshoot in the transient response. Also the actuator

limitations would not allow these gains to be increased as desired. The first-level tuning

heuristics in Table 6.4 are now used to improve the performance.

1. For improving the slow response behavior in the load disturbance, the integral

action near zero or equivalently (Ooh is increased. The (Oo)p is unchanged.

2. To reduce the overshoot, the response speed is reduced by increasing both (Odp

and (Odr.

The first-le\'el tuning parameters and the corresponding points in the non-linearity

tuning diagram obtained after two iterations are.

[St,Pl, s2,pd = [0.45,0.5] ,

[St.P2, S2.P21 = [0.25,0.31,

[(Oo)p , (Od p] = [deg45, deg 74.5] .

[(Ooh, (Odd = [deg67.2, deg 55] .

The response curves are shown in Figure 6.4. The non-linearity tuning of the fuzzy

controller was able to produce excellent load disturbance characteristics ",ithout sac

rificing the transient response characteristics. The set-point overshoot is also reduced
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Figure 6.-1: Unit step response curves of the process in example E2_ The FCS-I parameters

are based on two-level tuning

to 15lJc and the controller is able to keep within the same upper and lower saturation

limits of the actuator as shot\TI in Figure 6.4(b).

'lUning FCS-III

The non-linearity diagram of the XLFLC-I system for this controller system is sho\\TI

in Figure 4.3. According to the definition of the non-linearity tuning ranges, the most

linear point 0 in the diagram is not feasible and the corresponding LLFLC is considered

for realizing the most linear approximation. Corresponding to the PI type controller

of the PID structure Type-III. force [(PD = O. Using the linear PI tuning data the

linear tuning parameters are: [(PI = 1.2172Ts , See = 4.92/Ts . For the LLFLC, set

all the input membership functions uniformly distributed over the normalized input

space. \Vith this setting the FCS-III system is simulated for the actual system and

the corresponding output is shown in Figure 6.5. The response has shown very poor

performance compared to the linear PI system of the FCS-I. This is due to the functional

drawbacks of rule coupled fuzzy controllers as described in the Chapter 3. Also, the

most linear approximation is functionally not equivalent to a conventional linear PIn

controller. However. using the first-level tuning heuristics the non-linearity tuning is

then performed following the tuning heuristics for the projected slope angles. The

non-linearity tuning is performed as follows.

155



Figure 6.5: Unit step response cun:es of the process in example E2. The FCS-IIT parameters

are based on two-level tuning

1. To get faster rising, both angles (Bdp and (Od! are decreased.

2. To improve the load disturbance properties. angle (Ooh is increased and (Oo)p is

decreased.

It can be seen that due to the lower representation of the admissible space in the non

linearity tuning diagram that is shown in Figure 4.3. the fle.xibility of changing the slope

angles is somewhat restricted. Howe\·er. using three iterations the tuning parameters

obtained for this FCS-III svstem are:
"

[esdi, (S2)rJ = [0.2,0.3], [(Bah, (Odd = [deg68.1,deg35.5]

[(SIb (s2h] = [004,0.5], [(Bo)p, (Od p] = [deg 51.3, deg 45]

The corresponding response cun'es are shown in Figure 6.5. \Vith the two-level tuning,

reasonable performance is obtained and the non-linearity tuning performs well for load

disturbances. Although the overshoot of the tuned controller is minimum, the transient

step response is more sluggish and slower compared with the FCS-I system. This is

mainly due to the incompatibility of the linear PI tuning terms for the rule based

coupled system. Also, the fuzzy controller output is an incremental type as compared

to the absolute signal in the FCS-I. To better illustrate this, the linear PI terms of the

corresponding LLFLC system are altered and the linear tuning is separately performed

for the approximated model. With altered linear terms given by K p1 = 1.2172Ts ,
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Figure 6.6: Unit step response curves of the process in example E2. The FCS-III is based on

the LLFLC structure with altered linear PID gains

See = 2.46/Ts, the LLFLC is then tested for the actual process system. The response

curves are shO\vn in Figure 6.6. The change of linear gains enabled the FCS-III to

reach improved performance while maintaining the overshoot of the response within

4% (Figure 6.6). However the speed of response is still low compared to the FCS-I

system. As the performance "\vith LLFLC is satisfactory, no more further adjustments

to the non-linearity tuning parameters are required.

Example E3

For this example the three fuzzy controllers (FCS) are tuned for obtaining the step response

of the second order process of this example. Also actuator saturation limits of [0 2] are

imposed for each case.

Tuning FCS-I

As in the previous example. the non-linearity of FCS-I is first set to operate at its most

linear position. The apparent gain values are obtained from the linear design shown

in Chapter 5. The corresponding linear design is shO\Vll in Figure 6.7. In this case

the transient response has shO\vn poor performance and the peak overshoot is about

20%. However the load disturbance characteristics have shown satisfactorY results. The•

aim of non-linearity tuning is to improve the transient response characteristics while

preserving similar load disturbance properties. The tuning is performed in three steps
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Figure 6.7: Unit step response curves of the process in e..xample E3. The FCS-I parameters

are based on two-level tuning

as follows.

1. The local control of proportional and integral actions at zero error are unchanged

to preserve the same load disturbance properties. Therefore (Ba)p and (Bah are

unchanged.

2. Both the angles (Odp and (OdI are increased to reduce the response speed during

the transient.

3. Near zero error. the local control of the derh'ative action is increased to add more

damping to reduce oscillations. Therefore (t1O)D is increased.

The final non-linearity tuning parameters and the corresponding points in the non-

linearity tuning diagram obtained after three iterations are sho'wn below.

[Sl.Pl,S2,Pt! = [0,45,0.5], [(Oa)p,(Odp] = [deg45,deg74.5]

[Sl,P2,S2,P2] = [0.45,0.5], [(Ooh,(Od I] = [deg45,deg74.5]

[Sl,P3, S2.P3] = [0.2, 0.2] , [(Oa)p . (Od p] = [deg 73, deg 45]

Both the response cun'es that correspond to linear and fuzzy controllers are shown

in Figure 6.7. It can be seen from the diagram that the transient response has been

considerably improved. The overshoot is reduced to 8%, faster settling time is achieved

with least oscillations and almost the same load disturbance properties are maintained.
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Tuning FCS-II

The FCS-II uses the three-input rule base structure (Type I). Therefore the system

is first set to operate ..vith the LLFLC fuzzy structure for realizing the most linear

controller signal. Using the apparent linear gains the normalizing scale factors for the

Type I PID controller arc; S .. = 2.3565Ts. See = 1.8.523/Ts and Srce = 0.3246/T;. The

performance of this most linear setting is sho\'.'Yl in Figure 6.8. It can be seen from the

diagram that the process response is fairly acceptable. However using the non-linearity

tuning heuristics the performance is further improved. The first-level tuning is obtained

by using the non-linearity tuning diagram that corresponds to the ~LFLC-I (Figure

4.3) .

1. In order to reduce the oscillatory behavior in the transient, the local control of the

derh'ative action near zero is increased by adding more damping. Therefore (Bo)o

is increased.

2. To improve the load disturbance properties. the local control of integral action

near zero i.e. (Bah is increased. Also for reducing the overshoot, the angle (B1h is

also increased.

3. The proportional control action is unchanged.

The final non-linearity tuning parameters and the corresponding points in the non

linearity tuning diagram after three iterations are sho\'.'Yl below.

[(stl1.(S2)rJ = [0.3.0.8].

[(sr)z. (szhl = [1/3.2/3].

[(Sl h. (s2hJ = [0.15.0.65] ,

[(Bah· (Bdd = [deg59.deg68.2]

[(Bo)p • (Btlp] = [deg 56.3, deg 56.3]

[CBo)o • (Otlol = [deg 73.3. deg 55]

The corresponding response curves are shown in Figure 6.8. The non-linearity tuning

was able to obtain better transient and load disturbance properties than the linearly

represented fuzzy PID controller. Also. the controller signal was able to keep well

within the saturation limits of the actuator. The non-linearity tuning performed for

the above system is relatively small and the fuzzy system was able to produce better

results with least effort. However. some difficulties associated with the coupled behavior
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Figure 6.8: Unit step response curves of the process in example E3. The FCS-II parameters

are based on two-level tuning

was obsen'ed during the simulations. As an example. the changing of local control of

proportional action gave bad performance.

'lUning FCS-III

Similar to the pre\ious case. the FCS-III is set to work with the LLFLC structure

corresponding to the two input case. Again the apparent linear gains are used to

compute the linear gains of the Type III PID structure. Due to the coupled nature

of the proportional action in both fuzzy PI and PO terms, the gain terms have two

solution sets. The proportional effect in one of the solutions is higher. The second

solution has shown a more sluggish kind of response behavior. This is one of the

draw backs of the conventional ~Iamdani-typefuzzy structure where the designer faces

a problem of selecting proper ALG terms before implementing the linear controller.

However for this illustration the better performance gain terms in the solutions are

selected as: KpI = 2.3565Ts • KplD = 3.9031 and See = 0.196/Ts • \Vithout loss of

generality set Su = 1. The response curve corresponding to this linear representation

is shown in Figure 6.9. Overall this shows higher oscillatory beha'vior. Using the non

linearity tuning diagram as in the pre\ious examples, the first-level tuning is performed

as follows.
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1. To reduce the oscillations, the effect of both proportional and integral actions near

zero is reduced. Therefore both (eo)p and (£10)1 are reduced.

2. In order to reduce the speed of the transient response, both (er)p and (e1h are

increased.

3. To provide more damping, (£10)0 is increased.

As discussed in Chapter 3. the Type III fuzzy PID structure has inferior functional

properties for the non-Linearity tuning. In addition to the coupLed nature of the tuning

associated \\·ith general coupLed fuzzy rule base systems, the gain dependency that exists

in the overall system further adds complexity to achieve the independent non-Linearity

tuning. In this configuration the same input variable (e) provides both nonlinear pro

portional and integral actions respecth·ely in the fuzzy PD and PI controller elements.

Therefore the desired non-Linearity tuning described in items 1 and 2 can be simul

taneously obtained by tuning the projected angles of the error variables. However, if

the desired tuning for proportional and integral actions are contradictory, this tuning

would become a complex problem. Similarly the desired tuning shown in item 3 is

obtained by changing the tuning parameters corresponding to the error \-ariabLe (de).

This in turn causes the proportional action in the fuzzy PI element to change. The

tuning is accomplished in three iterations. The non-linearity tuning parameters and

the corresponding angles in the non-linearity diagram are:

[(sr) I, (s2)rl = [0.6,0.9] ,

[(slb(S2)2] = [C.25,0.9],

[(eo)p, (Od p] = [(Ooh, (Od,] = [deg39.8,deg78.7]

[(£10)0' (OdD] = [(Oo)p ,(edp] = [deg 63.4, deg 78.7]

Both the linear and fuzzy controller based response curves are shown in Figure 6.9. The

non-Linearity tuning was able to improve the response considerably. The overshoot of

the transient response is reduced from 32o/c to 12.2%. However the action association

in the coupLed output causes deterioration of the load disturbance properties. From

the controller signals it can be observed that in both cases the controller experienced

integral wind-up. This is due to the choice of the faster controller from the two soLution

sets of the linear tuning. This example clearly demonstrates the weaknesses that are

inherent in the Mamdani-type fuzzy PID systems.
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Figure 6.9: Unit step response curves of the process in example E3. The FeS-III parameters

are based on two-Ie\'el tuning

Example E4

This example from chapter 5 illustrates a second order process with approximately unity

normalized time delay, For each FCS the linear gains are obtained using the PID solution

in Chapter 5. However, the FLS system was unable to get real values from the quadratic

expressions for the linear gains. This proves that Mamdani-type fuzzy PIn systems have some

limitations to use the conventional linear PIO design knowledge for solving the ALG terms,

Therefore the FCS-I and FCS-II are tuned for this example and the response curves are shown

in Figure 6.10. Due to poor functional properties the FCS-II was unable to produce better

performance. However the FCS-I has produced better performance during both transient and

load disturbances. The action association in the coupled fuzzy controller systems was unable

to perform the independent tuning.

6.5 Closed-loop Control of a Heating System

This section describes real time temperature control of a soil-cell. The hardware configuration

is shO\vn in Figure 6.11. The control circuit is designed to control temperature at three

different locations using three different heaters, The three separate channels for the heaters

allow independent supply of heat to the soil cell. For this experiment the program voltage

supplied to each heater is kept uniform and therefore the three heaters are set to supply equal
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quantities of heat simultaneously to the soil cell. The control algorithm is set to control the

set point temperature at location 1.

The computer control system is set up using the DAQjlOOA (Omega Engineering, Inc.)

data acquisitions system. The DBK2 voltage output card is programmed to produce the

manipulator signals to the soil-cell assembly. The voltage output card has 14-bit DjA reso

lution and is set for ±5V operation. The Thermofoil type heaters from :\-!inco Procuts, Inc.

are placed at the circumference of the soil cell. The ayailable resistance of each heater coil

is 7.H1 with 10VDC power supply. At each leyel. three foil heaters are connected in series

and the maximum power availability is therefore three times of a single heater coil. Three

different DC power sources are connected to each heater assembly. The voltage from DBK2

card ranges from 0 to lOV. This program voltage is used to change the duty cycle of the

~IOSFET circuit. The switching frequency is 795Hz. The program voltage from 0.05 to

9.99VDC has the ability to change the percentage OX time from 17.4% to 95.5% of the cycle

period. A separate relay is mounted to switch off the heaters completely when the program

voltage reads zero. Thus the power at each heater assembly can be varied from 0 to 39.34\V.

The calibrated heater power versus program voltage is approximated to two linear curves

for computing the heater power requirement in the control algorithm and the approximation

error is less than 1%.

THe DBK19 thermocouple card is configured directly to read temperatures. The card

has 12-bit AjD resolution. The temperature sensors (thremocouples) are from Omega En

gineering. Inc. (Type T) and has the temperature range from -200°C to 400°C. At each

point three sensors are placed and the average temperature is taken as the soil temperature

reading. The time constant at 22.48°C air is 0.177s. The standard deviation of measurements

taken in air at the latter average temperature is O.0943°C.

In the first part of this experiment a number of open-loop tests were carried out to deter

mine the average process parameters related to first-order approximation. The correspond

ing values are set per heater basis, but in the application all the heaters are simultaneously

supplied with an equal amount of power. The three parameters were identified using the

open-loop test described in [1431 and the computed average parameters are given by;

k = 8.6WjdegCjheater, T = 150min., td = 27min.
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The normalized time delay td/T was 0.18: so the process belongs to the category of short

time delay problems. As the heater capacities are limited by their saturation values, the

practical limits for the PI or PIO controllers can be set for this process by using the rules

that are described in Chapter 5 (section 5.4.2). In order to implement both PI and PIO

type controllers the set-point height is chosen as 25°C from the starting temperature of the

experiment. A fLxed sampling time of 1 min. is used for all experiments.

6.5.1 Linear PI and PID Control

For PI control the proportional weighting (p) is chosen as 0.45. Using the linear PI rules

(equation (5.29)) the two gain parameters are: [{p = 0.2907 and KI = 0.0019.

For PIO control the proportional weighting (p) is chosen as 0.7. This value is selected

in order to satisfy the maximum power limits of the heaters. Using the PID tuning law

(equation (5.33)) the PID parameters are; Kp = 0.4522. KI = 0.0025 and Ko = 3.8372. The

set-point response curves and the controUer signals are ShO\\l1 in Figure 6.12. In both the

cases an o"ershoot of about 14% is observed. The PIO controller has better rise time and

settling time than the linear PI controller. However. due to variations in the environment

temperature during the control time period, the two controllers show different steady state

controller signals.

6.5.2 Fuzzy PI and PID Control with FCS-I

Fuzzy PI

The purpose of fuzzy control now is to provide imprO\'ed control to the PI controlled temper

ature. In general the linear PI response has shown quite satisfactory results. However it can

be seen from Figure 6.12 that the steady state temperature tracking is less accurate. Oue to

the slo\" nature of this temperature control process, the slower \"ariation of the surrounding

temperature also affects the performance. As the normalized time delay is relatively low in

this case, the load disturbance characteristics of the conventional PI controller are generally

poor. Therefore the purpose of the fuzzy PI controller is to provide better load disturbance

properties for accurate tracking of the set point and also to preserve the same transient

characteristics with lower overshoot of the response.
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The controller FCS-I provides the fuzzy control. The previous work of this thesis has

prodded enough evidence to show the better functional properties of this system compared

to other conventional fuzzy controller types. The non-linearity tuning is performed using the

non-linearity variation diagram given in Figure 4.4. The tuning follo\',,:s two steps.

1. The local control of integral action at zero error is increased for improving the load

disturbance properties. The proportional action near zero is unchanged. Therefore

(90 )1 is increased and (90 )p is unchanged.

2. To keep low overshoot of the transient response the speed of response is reduced by

increasing both local proportional and integral actions near the ma.ximum error \-alues.

Therefore both (9I)p and (edl are increased.

Using the non-linearity tuning diagram in Figure 4.4. the first level tuning parameters for

the FCS-I are chosen to be.

[SI,Pl,S2.Pt! = [0.45,0.5j

[SI.P2, S2.P:!l = [0.3,0.35]

The response curves are shown in Figure 6.13. For comparison and clarity the linear PI

results are also redrawn.

It can be seen from the figure that the fuzzy PI controller was able to produce more

accurate tracking of the temperature than the linear PI controller. The controller signal also

shows a lower overshoot and milder control than the linear controller. However the overshoot

of the transient response remained almost the same compared to the linear case. This is

due to limitations that exist in the non-linearity tuning of fuzzy control. As an example,

with the increase of local integral control near zero error. the increase of the local control

near maximum error is limited due to the limited availability of the admissible area in the

quadrant II of the non-linearity diagram.

Fuzzy PID

The linear PID controller beha\'ior is similar to the linear PI response except that it provides

faster rise and settling as shown in Figure 6.12. However its set-point tracking is poorer.

Therefore the same non-linearity tuning for proportional and integral actions can be per

formed. In addition the linear PID response shows no oscillations during the transient. This
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implies that the linear PlO controller has enough damping. Therefore in the non-linearity

tuning the fuzzy derivative action is kept at the most linear control point in Figure 4.4. Hence

the non-linearity tuning parameters for fuzzy PID control can be summarized as follows.

[Sl.Pl,52.PrJ = [0.45,0.5]

[s l,P2, S2.P2] = [0.3, 0.35]

[Sl,P3,52.P3] = [0.5669, -0.20]

The response curves are shown in Figure 6.14. For comparison and clarity the linear PIO

results are also redrawn.

It can be seen from the figure that the fuzzy PIO controller is able to produce superior

performance than its linear counterpart. In addition to the accurate tracking of the tem

perature. the transient response characteristics have been considerably improved with lower

overshoot. In order to verify the repeatability, the linear and fuzzy PIn controller experiments

are repeated. An additional sensor was also placed outside the soil cell and the environment

temperature also recorded during the experiment. The results are shown in Figure 6.15. V,,'ith

fluctuation of the surrounding temperature. the improved load disturbance characteristics of

the fuzzy PIO controller allowed it to track with a higher precision than the linear controller.

The fuzzy controller clearly able to improve the overall performance and also the robustness

of the corresponding linear controller.

It is important to note that the results reported are from the first test trials. The example

well illustrates the validity and application capabilities of the proposed design. Also, in all the

cases the controller signal was able to keep within its upper and lower limits while a\'oiding

integral wind-up.

6.6 Adaptive Fuzzy Controller Designs

This section proposes a novel self-organizing fuzzy controller for adaptive control em.ironment.

As described in Chapter 1 adaptive controllers have a performance monitor and an adaptive

mechanism. In traditional controller designs adaptive control can be either direct or indirect

adaptive [32]. As mentioned in Chapter 2, the self-organizing fuzzy controller can also be

either direct or indirect.
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In the previous sections of this chapter it has been observed that off-line design of fuzzy

controllers can be made sllccessful only if the predicted model is sufficiently accurate compared

to the real dynamic behavior. However. the two-level design confirms that fuzzy control

is \-a.luable and more useful for controlling unknown plant dynamics than known dynamic

characteristics. This is the typical black box implementation of the FLC. As an example. if

a process can be modeled on-line either by using a fuzzy or neural network, then the system

can be made to follow the model as long as the dynamic structure is uniform throughout.

""hen the dynamics of the process changes due to external disturbances or to change in

process parameters, the controller or the model should ha\·e enough robustness properties to

converge the response to the desired state. In gain scheduled type self-organizing fuzzy PID

controller [97. 5], the linear PID controller parameters are updated by the fuzzy tuner. The

decision making process is at a higher level where the performance characteristics drives the

fuzzy controller to update the linear PID gains during the adaptation process. The main

problem in those GS type controllers is the irre\'ersibility of the tuning. As an example, once

the linear PID parameters are updated due to the presence of a sudden load disturbance,

the rule base system is incapable of returning to the original state when the disturbance

disappears or is removed. This is due mainly to incorporation of two levels of tuning into

single decision making process. The problem of tuning-in. tuning that is inherent in adaptive

fuzzy controllers can be avoided only if the t,,·o levels are isolated from the adaptation process.

The proposed hierarchical self-organizing fuzzy controller architecture is shown in Figure

6.16. The two levels are placed separately for performing linear and nonlinear tuning. \Vhen

the first level is removed. the adaptive controller is identical to a conventional direct adaptive

controller. Also. if the on-line estimated process parameters are accurate the conventional

control theories can pro\'ide accurate control to the system by the adaptation of the linear

gains. In other words. if the inner control system "'ere accurate the upper level would be idle.

The performance monitor is placed to observe the response characteristics. The observer can

compute the necessary performance attribute before executing the first-le\·el tuning. As an

example. these performance attributes are typically obsen'ed over several sampling periods

such as overshoot. oscillations, speed of response. steady offset etc. Therefore the first le,"el

tuning occurs at a lower frequency than the second level of tuning.
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6.7 Summary

This chapter has developed a new two-level tuning scheme for fuzzy controllers. It has also

shown that off-line fuzzy controller designs are applicable only if the predicted model of the

process accurately reflects the actual dynamic process. Due to the conservative linear control

policy, the conventional PID controllers can be satisfactorily designed off-line for real time

implementations. Therefore the fuzzy controller properties are embedded in linear control

to compensate the unknown or unmodeled plant dynamics. The applicability of the two

level tuning has been proved by the simulation examples and also by a real time control

application. The results prove the applicability and validity of the two-level tuning of fuzzy

controllers. Further, the incorporation of linear control theories enhances the performance

and removes unnecessary complex analysis of fuzzy controller tuning for linear gains.

The fuzzy controller enhances the robustness properties of the closed-loop PID control

system. As an example, the local change of PID gains at zero error improves the load

disturbance characteristics. This can be clearly seen from the temperature control system.

The linear PID controller unable to track the set-point temperature against the changing
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surrounding temperature. The first order plus dead time approximation always leads to

imprecise estimates of process parameters. This usually results poor transient or steady

state performance. Howe....er the fuzzy controller design able to simultaneously improve both

transient and steady state performance without causing any instability to the overall control

system. As an example. in the examples shown in this chapter, the controller signals were

able to maintain within their capacity limits.

Although in certain cases the con\'entional type fuzzy controllers \\;th coupled rules ha\Oe

shown better performance than rule de-coupled fuzzy PID systems. moerall those controllers

have limitations to perform the non-linearity tuning. The functional deficiencies of coupled

systems make them more special kind than general purpose. The proposed one-input fuzzy

PID controller \dth the Type-\11 structure has better flexibility and adaptability for \\;der

range of process models than comoentional fuzzy controllers.

A nmoel self-organizing fuzzy controller is proposed for adaptive control. The isolation of

two levels from fuzzy controller tuning enabled the non-linearity tuning to compensate the

unknown or unmodelled plant dynamics. Hence the fuzzy adaptive controller expected to

be more robust than the com'entional adapti\Oe control. The disadvantage of the method is

that it requires the linear PID controller to be implemented before implementing the fuzzy

control. Therefore the method looses some of the ad\-antages in off-line designs.

The proposed two-level tuning method has the following benefits.

1. The fuzzy PID tuning uses the existing linear PID controller theories to obtain apparent

linear PID gains. Therefore the method exploits the existing linear control theory and

the applicability can be extended for processes where linear PID technology is currently

being used.

2. The fuzzy controller can be safely implemented as long as the linear PID controller is

stable for the svstem of interest.•

3. The process uncertainties due to modeling error can be compensated by the fuzzy

control. Therefore the two levels of tuning can be easily implemented for an adaptive

controller.

4. Due to de-coupled identification and adjustment of fuzzy PID actions. simpler tun-
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ina heuristics related to the fuzzv control can be established and the method can beo _

extended to all fuzzy PID structure types.

5. The tuning method is simple and more generalized for industrial control applications.

6. The tuning heuristics reduce the search space to a minimum and therefore the design

time is considerably reduced.
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Chapter 7

Conclusions and ture Research

The thesis attempts to present a systematic design methodology for fuzzy controllers in the

context of feedback PID controllers. The study allowed us to identify the functionality of the- - -
fuzzy controller actions in exact forms and also to generalize the design for a 'wider spectrum

of control applications. This chapter highlights the new findings and gives recommendations

for future research.

7.1 Conclusions

7.1.1 Fuzzy PID Structures

In addition to the commonl\' a\·ailable fuzzy PID controller structures. new fuzzy PID con-
•• •

troller configurations are identified. The design of a fuzzy controller is treated as a two-level

tuning problem. The basic concept of this thesis work is to remove the existing curse of

dimensionality in fuzzy control design by a properly defined tuning criteria. Therefore the

tuning for each fuzzy controller is then identified by the apparent nonlinear and linear gain

terms (AXC and ALC). When the FLC system is completely known. the variations of ASG

terms with respect to the error state variables are also known. In optimal designs. this is usu-

ally achieved by \·arying the fuzzy knowledge base parameters: this has a direct influence on

the nonlinear characteristic..<; of the control surface or curve. Recently the nonlinear function

approximation properties of fuzzy systems have been exploited to train or approximate fuzzy

systems for highly nonlinear d}llamic systems. However. in most cases the nonlinear function
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that is required to control the unknmvn (or partially known) process dynamics is unknmvn.

The same is true for fuzzy PID control action. The tuning heuristics and rules available from

the conventional linear PID control designs are usually available in de-coupled form. There

fore the3e tuning rules can be used to approximate the unknmvn nonlinear functions in a single

dimension to produce de-coupled and independent tuning for the A~G terms of the fuzzy

controllers. In that perspective different fuzzy PID controller structures are assessed in terms

of their functional beha....iors. The action association. input coupling and gain dependency are

the main functional deficiencies that exist in the conventional fuzzy controllers. As a result.- .

the design of those controllers always requires hea\")' computations and numerical simulations

even for simple process systems. The proposed rule de-coupled and gain-independent fuzzy

control systems offer better functional properties for efficient design and implementations.

7.1.2 Non-linearity Analysis

The study of non-linearity and its effect on plant performance in a general form is a hard

mathematical task. The basic reason is the unknown non-linearity requirement of fuzzy

controller output. However. some basic non-linearity tuning properties are identified for de

coupled nonlinear control. Better performance of the fuzzy controller is sought by the local

nonlinear control features in the fuzzy outputs. Thus the nonlinearity tuning parameters are

identified for fuzzy' control actions for tuning the nonlinear PID gains in local control regions.

This particular feature of local control has been used for identifying the non-linearity tuning

of fuzzy controllers. For rule coupled systems this local control behavior is identified in

dissociated form. Therefore a two or three dimensional control action is projected to a single

dimension to perform the non-linearity tuning. Based on the non-linearity tuning, a new

non-linearity evaluation method is proposed. The analysis is one-dimen::.ional and therefore

convenient to e\'aluate any gi....en fuzzy system with least effort. The new evaluation method

has identified and ranked different fuzzy controller systems for better non-linearity designs.

:\Iore importantly the performance measures have identified the limitations and drawbacks in

different fuzzy controller systems and fuzzy reasoning methods. This enables one to identify

immediately the primary parameters necessary for non-linearity tuning. ~Iotivated by the

non-linearity designs. an alternative nonlinear control system is proposed. The geometrical

design features in the Bezier Functions ha....e been exploited to generate parametric based
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nonlinear proportional actions. As the control curve is based on geometrical features, the

geometrically based non-linearity evaluation method shows 100% performance, in terms of

nonlinear control. However, this system is not used or im;estigated further in order to limit

the content of the thesis solely to fuzzy control based systems.- - .

7.1.3 Linear PID Tuning

The study of the linear PID controller has provided insight into the beha\'ior of PID control

actions for a better understanding and design of fuzzy controllers. For particular classes of

problems. new tuning rules are formulated. The significance of this work is that the tuning

rules (a) are applicable for processes whose normalized time delay ranges are from zero to

any higher \'alue and (b) hm"e the capability to select the optimum PID controller based on

the actuator gain limits. Further, the new tuning rules have shown improved performance

compared to other commonly available tuning rules including error integral optimized tuning

rules. This linear PID tuning is used as the bench mark for obtaining improved control

through fuzzy control.

7.1.4 Two-level Fuzzy PID Tuning

Finally. a simple and nO\'el fuzzy controller tuning criterion is de\·eloped. The off-line de-

signs based on the genetic algorithm cannot perform any better than linear PID controllers

when they are implemented for true process s~'1:ems. This is due to poor modeling of the

process. Howe\'er, the genetic based tuning is quite powerful, particularly for handling a

larger number of tuning parameters. It can be concluded that the GA based fuzzy controllers

can be effecti\'ely used only when the process model is available in an accurate form. The

proposed two-level tuning principle allows the use of the available linear PID tuning heuris

tics. According to the proposed method. first the linear PID controller is designed for its

best performance. If the linear system is satisfactory then there is no need to implement a

fuzzy controller. The fuzzy controller is therefore tuned to compensate for modelling errors

and unknown plant dynamics. In other words, fuzzy control is effective for unknO\\"I1 process

dynamics rather than for known process models.

O\'erall the conventional two-input fuzzy PID controller has shown poor performance
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compared to other fuzzy controller systems. One reason is the coupled nature in both of the

tuning le\"els, Secondly. the coupled rules do not allow independent tuning for individual PID

actions and also the tuning variables have lower degree of freedom within the tuning space.

•
7.1.5 Real-Time Implementation

The \Oalidity of the linear and fuzzy controller designs was tested in a real-time temperature

control problem. All the experiments .yielded better results and those results have been

obtained in the first trial itself. The proportional weighting for both PI and PID controllers

was chosen taking into consideration of heater saturation. The non-linearity tuning has shown

impro\'ed temperature tracking \\'hen using both fuzzy PI and fuzzy PID controllers. The

applicability and robustness of the proposed fuzzy controller tuning are clearly demonstrated

in the experiment.

7.2 Summary of New Findings

1. :\'ew fuzzy PID controller configuration::. have been developedo The simplest one-input

type PID configuration has shown sufficient merits to use for \,...ider range of process

control applicationso

20 :\'ew algorithms have been de\'eloped to generate solutions to different fuzzy control

systems, The algorithm simplifies min-ma.x-gravity reasoning based fuzzy outputs to

represent using least number of nonlinear expressions.

3, Although some previous researchers have proposed a two-level tuning for fuzzy con

trollers they were unable to express the two level tuning parameters in an explicit form.

:\'ew definitions were de\Oeloped to describe fuzzy PID gains. The apparent linear and

nonlinear gains (ALG and A~G) were explicitly defined for two-le\Oel tuning,

4. A new graphical method was developed for representing the nonlinearity in fuzzy con

trol. The effects of ASG terms were identified by slopes drawn at local control points

in the fuzzy output (or projected output). The tuning of the AXG terms were thus

quantitatively obtainedo

179



5. A novel performance criteria was developed for assessing the performance and validity

of different fuzzy controller svstems.• •

6. An alternative non-linear control. using spline-based functions was developed.

7. Using time-domain analysis. a novel linear PID tuning scheme was developed, Overall

the new tuning scheme has shown better performance compared to other commonly

available tuning methods,

8..-\ new two-Ie\'el fuzzy controller tuning scheme was developed. The method includes

both linear and nonlinear tuning of fuzzy controllers. The tuning method is more

general and can be used for tuning of any type of a fuzzy PID controller.

9. A new self-organizing fuzzy PID controller was proposed.

7.3 Future Research

The benefits and conclusions derh·ed from this systematic study indicate that further research- -
would be beneficial and rewarding. The two-level tuning method has sho\\'n enough evidence

to suggest that a systematic study could be immensely helpful in designing high performance

fuzzy controllers for a wider range of process control problems. The identification of fuzzy

controller action in a more exact form and the decomposition of its terms for obtaining

desired control performance are useful for further understanding the functiunality of fuzzy

controllers.

7.3.1 Adaptive Fuzzy Controllers

The two-level tuning principle can be effectively used for adaptive fuzzy controllers (Chapter

G). Further analysis is required to quantify the non-linearity' tuning against the process re-

sponse patterns. However, this quantification requires normalization of non-linearity tuning

for a wider range of process dynamics problems. However, a better understanding of con

\·entional adaptive control techniques would definitely be an asset for establishing a fuzzy

adaptive controller.
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7.3.2 Stability

Although there have been many studies related to fuzzy controller stability, the relati\'e

and absolute stability aspects of fuzzy controllers are still under investigation. The fuzzy

sliding-mode design approach provides Lyapunov stability of the system. However. there is

no systematic study yet available for obtaining hard practical limits for the fuzzy controller

parameters. The separation of linear and nonlinear aspects of the fuzzy controllers allows

one to use com'entional linear or nonlinear stability theories to design fuzzy controllers with

better stability properties.

7.3.3 Hybrid-type Direct Fuzzy Control

The work of this thesis mainly focused on "one degree-of-freedom" PID controllers. However

it is possible to extend the application of two level design methodology for other hybrid

controller systems [24]. As an example a coupled PID controller can be used in conjunction

with one-input type PID controllers. The coupled system can pro\'ide more robustness in

terms of external disturbances while the de-coupled system may produce better transient

characteristics. Also the other higher order linear PID systems [151] can be represented by

fuzzy controllers by suitably selecting the correct fuzzy structural elements as proposed in

Chapter 3. The addition of local control to multi degree-of-freedom PID systems can be

performed either in coupled or de-coupled form.

7.3.4 Indirect Fuzzy Control

The other aspect in this area of research is indirect fuzzy controller designs. In the indirect

control the process is identified by a fuzzy or neural network model. If such a process model

is amilable (either on-line or off-line), the fuzzy controller can be effectively optimized to

produce superior performance against the conventional methods. Also it has been observed

in the GA based designs that the fuzzy controller can produce excellent performance when

the process model is accurate compared to the real process system. Therefore incorporation

of other intelligent schemes has better scope for controlling applications, particularly for

adapti\'e controllers.
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Appendix A

Derivation of Nonlinear Terms

the Three-Input Inferences

•
In

A.I Nonlinear Term of the LLFLC Output

For this derh·ation. assume the incremental input values from the reference modal positions

given in step 3 of the solution procedure shown in section 3.3.2 satisfy the following condition.

8X3 k hI·) J bx[ .. a < -. a < o.Q < 0 ---- .<J or- - -a3 a2 a[

fJI3 k bx O

) bx[ .
_.;:.o:.;.;-.=.Q < --JQ < 1 _ .'Q < 0.5.- - -a3 a2 a[

(A.1)

The shaded areas in Figure A.1 show these relative input conditions. This particular region is

selected to gi\'e a simple and concise expression for the nonlinear term 3J - An}' other region

in the incremental input space is then transformed to this space by the input transformation

shO\\'n in step 4 of the solution procedure in section 3.3.2. Consider the linear rule base given

for t he general three-input case by (3.20) in Chapter 3. For given crisp inputs {ei, e5, ejV the

final control decision (if is determined by applying the Zadeh-~Iamdanrsmin-rna:\: reasoning

(compositional rule of inference) as described in [5]. It is given by.

(A.2)

The fuzzy inference will fire a maximum of eight fuzzy rules to produce eight non-zero fuzzy

outputs (clipped outputs) against any arbitrary three fuzzy singleton input values. The
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(A.3)

0.5

•

Figure A.l: Relative positions of the incremental inputs

clipped fuzzy output produced by a single rule inference is a trapezoid. After the union of

all clipped outputs, the final fuzzy set, U' can have four different shapes with respect to

the reference crisp output position Uia+ja+ka. The reference output is when all crisp inputs

are at membership modal positions. The input conditions and the resultant fuzzy outputs

corresponding to each case is shown in Figure A.2. For convenience the subscript ia+ja+ka

is represented by rna in the figures and tables of this appendix. The membership functions

used for each rule fired and the heights (h) of the trapezoids produced for each rule are shown

in Table A.l through A.4. As an example, the rule Rl shown in Table A.2 reads as "If ( el is

E1,i and e2 is E2,j and e3 is E 3,k) then U is Ui+j+k". The rules having the same output fuzzy

labels are combined by the "max" operation. Thus the maximum height of the trapezoids

having the same support sets is described by (hmax).

Defuzzification: The eOA based defuzzified value can be expressed as [5],

A JUEU uf.-Lu(u)duu = ~"-"'---:-,--:-'---c--

JUEU f.-Lu(u)du

where the membership function U' with its support set is given by U = {u f.-Lu(u) > O}.

This refers to the center of the shaded areas shown in Figure A.2. From these diagrams the

membership heights shown in the hmax columns of tables can be expressed as follows.

_ _ 18xw,rl _ 1 18xw,r
f.-Lr +1 - f.-Lr - 1 - , f.-Lr - - .:....----'-.....:.

aw aw

where r = ia, ja, ka and w = 1,2,3.

(A.4)

Using the membership equations above and applying the eOA defuzzification method for

each case, the nonlinear term (33 is obtained as shown in the Table A.5. The values al and

a2 are given by equation (3.30) with,
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Table A.l: Rule implication and fuzzy out puts for Case I

Rule
A A A A h hmaxel e2 e3 u

Rl El . E2 . E 3k U ma f-ti J-ti,t ,J ,

R2 E1,i+l E2 . E3k Uma+l f-ti+l,J ,

R3 E 1 . E2,j+l E3k Uma+l f-tj+l J-ti+l,t ,

R4 El . E2 . E 3,k+l Uma+l f-tk+l,t ,J

R5 E1,i+l E 2,j+l E 3k U ma+2 f-tj+l,

R6 E1,i+l E2 . E 3,k+l U ma+2 f-tk+l f-tj+l,J

R7 E 1 . E2,j+l E 3,k+l U ma+2 f-tk+l,t

R8 E1,i+l E2,j+l E 3,k+l U ma+3 f-tk+l f-tk+l

Table 3.1 given in section 3.3.2 shows 8 cases with respect to the sign of the incremental

inputs. The extra four cases shown have been transformed to the region shown in Figure A.l

by modifying the modal position and thus changing the direction of the maximum incremen

tal input. This procedure would eliminate the use of an excessive number of formulae for

representing different input conditions.

A.2 Nonlinear Term of the NLFLC-I Output

From the results shown in Chapter 3, the nonlinear term of the NLFLC-I is given by the same

133 derived in the LLFLC output except the incremental input values are modified according

to the modified steps 2 and 3, as it was shown in section 3.3.3. The modified step 2 identifies

the corresponding antecedent membership functions of the input variables in order to fire the

rules during the inference. The inputs are then transformed to the same region as shown

in Figure A.I. As the output membership functions are uniformly distributed the nonlinear

term is unique with respect to the normalized incremental input terms.
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Uijk
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Case I: OXl,ia > O,OX2,ja >°and OX3,ka > 0.
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Uijk
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Uijk
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Figure A.2: The LLFLC fuzzy output shapes corresponding to different input conditions. The

incremental inputs are measured from the modal positions. The subscript rna _ ia + ja + ka.
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Table A.2: Rule implication and fuzzy outptus for Case II

Rule
~ ~ ~ ~

h hmaxel e2 e3 u

R1 E I . E2 . E 3k U ma J-Li /-Li,t ,] ,

R2 E I i-I E 2 . E 3k Uma-I J-Li-I, ,] ,

R3 E I . E 2,j-1 E 3k Uma-I J-Lj-I /-Li-I,t ,

R4 E I . E 2 . E 3k- 1 Uma-I J-Lk-I,t ,] ,

R5 E I i-I E 2,j-1 E 3k U ma-2 J-Lj-I, ,

R6 E I i-I E2 . E 3 k-I U ma-2 J-Lk-I J-Lj-I, ,] ,

R7 E I . E 2,j-1 E 3k- 1 U ma-2 J-Lk-I,t ,

R8 EI i-I E2,j-1 E3k-1 U ma-3 J-Lk-I J-Lk-I, ,

Table A.3: Rule implication and fuzzy outptus for Case III

Rule
~ ~ ~ ~

h hmaxel e2 e3 u

R1 E I . E2,j-1 E 3 k U ma - I J-Lj-I J-Lj-I,t ,

R2 E I . E 2 . E 3k U ma J-Li,t ,] ,

R3 EI,i+1 E 2,j-1 E 3k U ma J-Lj-I /-Li,

R4 E I . E 2,j-1 E 3,k+1 U ma J-Lk+1,t

R5 EI,i+1 E2,j-1 E3,k+1 U ma+ 1 J-Lk+1

R6 E I . E2 . E 3,k+1 Uma+ 1 J-Lk+1 /-Li+1,t ,]

R7 EI,i+1 E 2 . E 3k U ma+ 1 J-Li+1,] ,

R8 EI,i+1 E2 . E 3,k+1 U ma+2 J-Lk+1 J-Lk+1,]
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Table A.4: Rule implication and fuzzy outptus for Case IV

Rule
~ ~ ~ ~ h hmaxel e2 e3 u

R1 E l i-I E 2 . E 3k- l Uma-2 J-lk-l J-lk-l, ,J ,

R2 E l i-I E2 . E3k Uma - l J-li-l, ,J ,

R3 El i-I E2,Hl E 3 k-l Uma - l J-lk-l J-li-l, ,

R4 E l . E2 . E3 k-l Uma - l J-lk-l,~ ,J ,

R5 E l . E2 . E 3k Uma J-li,~ ,J ,

R6 E l i-I E2,j+l E 3k Uma J-lj+l J-li, ,

R7 E l . E2,Hl E 3k- l Uma J-lk-l,~ ,

R8 E l . E2,j+l E3k Uma+ l J-lHl J-lj+l,~ ,

Table A.5: The nonlinear output term

Case I II III IV

{33 al -al a2 -a2

•

•
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A.3 Nonlinear Term of the NLFLC-II Output

\\'ith the modified steps 2 and 3 assume the incremental inputs satisfy the modified condition

gi\'en in (A.l).

bX3.ka < 8X2.ja < 8xl.ia < 0.5 or (A.6)- - -
G3.ka a2.ja G I.la

bX3.ka < 6x2.ja < 1-
CXl.ia < 0.5.- - -

G3.ka G2.ja aLia

ese the same input transforrr.ation given in the step 4 of the LLFLC solution procedure

to transform any other input conditions to the transformed region shown in Figure A.1.

First. for any given crisp input \-alues the control decision is determined by the Z-~J min-max

reasoning as shown in equation (A.2). \Vith fuzzy singletons in the outputs the truth values

will become zero. i.e. PL" (Ii) = 0 V Ii =I- uTTl • Therefore the COA defuzzification only yields

the weighted sum of the singleton values given by,

..
U=

LuEU", itmILu(U)

LUEUm I-Lu(u)
(A.7)

where the membership function (J' \vith its support set is given by the singleton ..-alues

ern = {LLlltu(U) > O}. The mc.l..ximum truth \'alues produced by the inference are similar

to those shmvn in the Tables A.I-A..4. The resultant singleton outputs correspond to four

different cases are ShO\\l1 in Figure A.3.

For the four cases shown in the Figure A.3 the fuzzy outputs are gh'en by the follo\\-;ng

•expreSSIOns.

For Case I:

For Case II:

For Case III:

... ... ... ...
it = J-tiu ma + I t i-IUrna -l + ILj-1 Uma-2 + I Lk-luma -3

It; + f-ti-l + Itj-I + Itk-l

(A.8)

(A.9)

(A.10)

For Ca..<;e IV:

..
u=

... ... ... ..., , ,
ILk-1 UTTl " - '2 ..,- IL; - I Umu -I ..,- It; Urna T Itj+ l Uma + l

, , ,
ILk-1 "'-ILi-l ,It; T!-tj-rl

200

(A.11)



.... .. ..
U"'G U"...Tl U",.~2 U....~]

Idlll._) I d... -2 I d"",.1 1
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Figure :\.3: The ::\LFLC-II fuzzy output shapes corresponding to different input conditions.

The subscript rna == ia + ja ~ ka.
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Table A.6: The nonlinear output term

Case I II III IV

.3n3 anI -an 4 a n 2 -an 3

Substituting at = al.ia,a2 = a2.ja,a3 = a3.ka into equation (:\04) the abO\'e expressions are

transformed to the form gi\'en in (3.53). The nonlinear term resulting after the simplification

are given in Table :\..6.

Due to the non-sYTIlmetrical nature of the membership shapes the nonlinear term 3n3 is

gi\'en by four nonlinear terms as gi\'en in the table. The other four cases shO\vn in Table 3.4

are obtained by the input transformation.
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Appendix B

Derivation of the NLFLC-III

output terms

The :\LFLC-III is a three-rule SISO fuzzy system. The output expressions obtained for

different fuzz\" svstems are detailed here.- -

B.1 MMG Reasoning Based Fuzzy Outputs

For any crisp input value the inference always fires two rules simultaneously except when

CI = 0 or €I ± 1. The same error saturation limits given in step 1 of the LLFLC solution

procedure (equation(3021)) is imposed. For a given crisp input value ei. the control decision

[:' is determined by the compositional rule of inference applied for the three rules in the

:\LFLC-III svstem.-
/-lc,(tl) = max min filE oILL' (u)l..-I .J 'J ., , 0J_ ._ •.J

(B.l)

In order to obtain the fuzzy output expressions the COA de-fuzzification in (A.3) is

applied for U'.

B.l.l NLFLC-IIIA

According to the ranges defined for the membership parameters 51 and 52, the output has two

main cases: Q\oerlapping and non-overlapping conditions. Again, due to the discontinuity of
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(a) Case I (non-overlapping)

•

I
•

•

I
•

I
•

PB
•

I
•

NZNB
I -· ,~

I '· ~

PB

· .,
. . .----~-_..__ ._._..------. ---~-- -- .- ._.J._. __..._1---1---\· .,

I I
• •

NZNB
1

•

I
•

I
•

I
•

I
•

(b) Case IT (overlapping)

ueUel I el eE I-S2 -1 -sl -s2 0 S2 sl 1

II-b. sd:,>liJl<l-sd

NB NZ PB NB - NZ PB.~

1 I ,
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•

I
• •

I I
• •

I I
• •
I
• •
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I
•

I
•

I
•

I

-1

NZ PB NB
1

NZ PB

Figure B.1: The MMG reasoning based fuzzy outputs (shaded areas) of the LFLC-IIIA

system.

the min-max functions, the overlapping conditions can have three fundamental output shapes

for U', depending on the input error value. The four different shapes correspond to the two

cases are shown in Figure B.lo By taking the center of shaded areas for each case the output

expressions in (3.61) have been obtained. When 82 < 0 and 82 < 81 there are three different

fundamental shapes for the fuzzy output. However the final expressions for those conditions

are identical to the three sub-cases in the overlapping conditions. The combined conditions

are shown in the solution described in equation (3.61) .

•

•
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(a) Case I (non-overlapping)
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Figure B.2: The MMG reasoning based fuzzy outputs (shaded areas) of the NLFLC-IIIB

system

B.1.2 NLFLC-IIIB

This system has partially defined triangular membership functions for the fuzzy subsets

Band PB. The derivation principle similar that shown in the previous section. The four

different shapes correspond to non-overlapping and overlapping output membership functions

are shown in Figure B.2. By taking the center of shaded areas the expressions in (3.62) have

been obtained.
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(a) Case I (non-overlapping)
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Figure B.3: The PSG reasoning based fuzzy outputs (shaded areas) of the NLFLC-IIIA

system

B.2 PSG Reasoning Based Fuzzy Outputs

With the PSG reasoning the product and sum operations replaces the min and max operations

in the MMG described in the previous inferences. Therefore for a given crisp input value ei,

the control decision U' for the three rules are now given by;

J-LU{U) = L [J-LE;-/.lUi (u)] .
i=1,2,3

(B.2)

Using the COA de-fuzzification shown in (A.3) the final output is obtained. The PSG simpli

fication is less complex and the output value does not depend on the overlapping conditions.

The resulting fuzzy outputs for both LFLC-IIIA and NLFLC-IIIB are shown in the Figures

B.3 and B.4 respectively.

B.2.1 NLFLC-IIIA

For both the overlapping and non-overlapping cases, the fuzzy output simplifies to a single

expression and is given by;

The above expression is fully normalized within [-1,1]. By taking the first derivative of
,
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Figure B.4: The PSG reasoning based fuzzy outputs (shaded areas) of the LFLC-IIIB

system

•

(B.3), the two slopes angles 00 and fh can be obtained as;

d' 1tan 00 = d'!! - -52
el 81 (B.4)

B.2.2 NLFLC-IIIB

For both the overlapping and non-overlapping cases, the fuzzy output simplifies to a single

expression and is given by;

~ 1
u=-

3
. (1 - 82) (2 + 82)e1

281 (1 - e1) + (1 - 82)e1
(B.5)

The expression (B.5) is partially normalized and its maximum and minimum values lie

within a lower limits. In order to obtain the fuzzy normalized conditions the (B.5) is further

divided by umax = (2 +82)/3. For both the overlapping and non-overlapping cases, the fuzzy

output simplifies to a single expression and is given by;

(B.6)

By taking the first derivative of (B.6), the two slope angles given in (4.15) have been

obtained.
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B.3 TSK Reasoning Based Fuzzy Outputs

The TSK based fuzzy system uses the same input membership functions that are shown in

Figure 3.14. The output is expressed in terms of the input crisp variables by a linear (or

nonlinear) form. Considering second order output expressions the corresponding three rules

can be expressed in a general form as.

If el is ::'\B then Ul = ao -+- alel -+- a2eI

If el is ::'\Z then iL2 = bo -+- blel -+- b2cT
If el is PB then U3 = CO -+- C1Cl -+- C2Cr

(B.7)

The output of the TSK s}'stem is also obtained by using rnin-ma.'(-gravity principle. How

e\-er TSK system can be solved using the PSG reasoning as well. \Vith the SISO system the

:\L\IG and PSG based systems are identical. The final output for the SISO system is given

bv:-
•
u=

Li=1.2.3IlE. (Cl )u,
Li=U.3I-LE.

Using the three rules in (B.7). the output can be expressed as:

U = (ao -+- alel -+- a2er)cl -+- (bo To blel -+- b2CT)(1 - cd for Cl ~ 0

U = (co -+- Cl€l -+- C2Cr)el -+- (bo -+- blCl -+- b2cy)(1 - ed for Cl ::::: 0

(B.8)

(B.9)

The output is then constrained to follow the preferred properties of the fuzzy outputs

described in section 4.2.2. First consider the positiv~ range of the error. For obtaining the

steady state properties, i.e. for satisf:ying when Cl = 0, Ii. = 0, set bo = 0_ Similarly for

obtaining the normalized conditions. i.e. when el = L u = 1. set au -+- Cl -+- C2 = 1. For

further simplification consider two slope angles related to el = 0 and el = 1. In order

to reduce the non-linearity tuning to two parameters, and t;\-ithout loss of generality force

b[ = b2 = O. Assign 81 = Cl and 82 = C2. For realizing the anti-symmetric property. set

au = -Co. al = Cl and a2 = -C2. Substituting the abO\'e conditions into (B.9), the TSK

ba.sed output can be expressed in the following simplified form.

The first deri\'ative of (B.LO) for the posith'e range is given by.

(8.10)

diJ.

del (B.ll)
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Substituting €, = 0 and El = 1 the slope angles in (4.17) h<1.\· been obtained. In order to

find the valid ranges the monotonic property of the output is imposed. Le. for any gi\·en El

assume dii./d€, > O. Thus the \·alid ranges gi\·en in (4.18) and (4.19) have been obtained.
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Appendix C

Time response analysis with zero

delay time

The derivation of the peak o\'ershoot and the rise time related to the three cases described

in section 5.2.1 (Chapter 5) is detailed as follO\vs.

Case I : The closed-loop poles are real and distinct.

The response equation gi\'en in (.5.7) can be represented in the partial fraction form as,

Y (s) =. K l -"-- /\.-=-2:....- _
. (/"3 + T)(s -:- a)(s -:- b) , (/(3";- T)(s ..;- a)(s -'- b)

Using the gain relationship in (5.8) the negative poles are given by.

a = 2(/{:~1-:-T) ((/(1 -'-1) - (/\1 - 1)/1 - 3)

b = ')(f .. 1-,- T) ((I\l -:- 1) -:- (/(l - 1h/1 - 3) .
- \..3 '

The parameter ,3 adjusts the distance between the two poles.

When /(1 > 0 then 0 < a < b.

\\'hen 3 = 1 then a = b.

(C.1)

(C.2)

(C.3)

Taking the inverse Laplace of (C.1) and then defining the feed back error for unit step

response as yet) = 1 - e(t). the error response is gh'en by.

1
e(t) = (b _ a)

K1._ , - a exp( -bt) -
/\.3 ~ T
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The rise time corresponding to 0-100 'if is gh'en by. e(Tr ) = 0, Using (A2) and (A3)

h b ( ) h b b h deft) I 0t e rise time given y 5.9 as een 0 tained. At the peak Q\'ers oot. dt 1=1", = .

The first derivative of (CA) simplifies to.

de(t) = exp( -at) -b
dt (b - a)

1\1r 'T - a exp (- (b - a) t) + a
\3 ~

, (C.5)

The peak overshoot corresponds to two solutions of t = tm ,

exp( -atm) = 0 or (C,6)

(C.S)

(C.T)

for [(1 < 1

for 1\1 > 1( (b )
, a (I\1 - b(l\3""'" T))

exp - - a t Ol ) =. . .
b (1\ 1 - a(l\3 -+- T))

. « b) ) _ a (1\1 -a(l\3 +T))
exp - a - t m - b' r.' (-. t1\ 1 - b 1\3 ....... T))

The first solution in (C.6) corresponds to the steady state conditions of the response.

The second solution in (C.i) and (C.8) represents the transient peak, By substituting

into the error response in (CA). we can show,

1
e(tm) = -(;

1
e(tm) = -

a

[{1 _ b
1\3 +T

[{I
~--...;.~ - a
1\3 +T

exp( -btm)

for [(I > 1

for [(I < 1

(e.9)

(C.1O)

The Q\'ershoot OS = -e(tm ). Using the gain relations in (5.8) and (A2) the peak

o\"(~rshoot in (5.1O) has been obtained. For zero Q\'ershoot conditions e(tm) = 0, This

corresponds to:

(e.1L)
Kb = K3 1r for /\1 > 1

a = /,;'±T for 1\1 < 1

Using (e.2) and (e.3) we can show .3 = 0, By substituting these conditions into error

response we obtain.

e(t) = exp( -bt) for [(I > 1

e(t) = exp( -at) for [{l < 1

From (e.ll). the rise time corresponding to 10-90% in (5.11) has been obtained,

Case II : Closed-loop poles are real and equal.

With 3 = 1.

(C.12)
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From (5.8),

(C.I3)

The response equation now simplifies to:

K 1 K'1
yes) = (K3 + T)(s + a)2 +- (K3 +- T)(-s +- ar~s' (C.I4)

By taking the inverse Laplace the error response can be sho~'!l as.

Kit
e(t) = at - (K

3
+ T) +- 1 exp( -at). (C.I5)

From (C.15) the rise time corresponds to 0-100% in (5.12) has been obtained. By

equating the first derivative of (C.15) to zero we obtain the peak overshoot corresponds

•to time.

(C.I6)(/(1 ¥= 1).
4K1(K3 + T)

(K1 + l)(KI - 1)'

Substituting (C.lG) to (C.15) the peak Q\'ershoot in (5.13) has been obtained. When

K 1 = 1 the response has the critical damping conditions and tm = 00. From (C.I5) the

rise time corresponds to O-lOO«Jc in (5.14) has been obtained.

Case III : Closed-loop poles are complex with negative real parts.

The response equation in (5.7) can represent by.

? 'J

Y( ,) = K 1 ...'~ ~ ....~
~ I' ( .) , 'J( ,'1)' (') J '» •\.2 5- i _ u...'nS" u'':n S S- + :'(WnS + W n

(C.17)

where ...·n = / K2/(I{3 ;- Tj and ( is as defined in (5.15). Using the inverse Laplace

of (C.17) the error response is given by.

(C.18)e(t) = - J1 + L2 sin JI - (?"':nt - iJ exp( -(""nt).

\"here Land iJ are defined in (5.16). By equating the non-exponent term in (C.18) to

zero. the rise time corresponds to 0-100% in (5.17) has been obtained. By taking the

first derivative of (C.18) the time at the peak overshoot can be obtained as.

(C,19)

The angleu., is defined in (5.16). Substituting (C.19) to (C.IS) the peak overshoot in

(5.16) has been obtained.
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