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ABSTRACT 

Most of the contractile muscle protein genes have heen extensively exam

ined to understand the mechanisms controlling tissue-specific gene expression 

in skeletal muscle. However, very little is known at the molecular level about 

another major contractile muscle protein, troponin C. Furthermore, very little 

is known about the regulation of gene expression in cardiac muscle. In this 

study, slow troponin C has been examined to understand its differentiation and 

regulation in chicken cardiac myocytes. 

Dot blot hybridisation and restriction endonuclease analysis indicated that 

the chicken slow troponin C gene was present as a single copy. Although, tro

ponio C is a very conserved protein, the conservation at the DNA level is not 

known. When DNA from various species was compared by Southern blot 

hybridisation with a quail troponin C cDNA probe, I found that quail troponin 

C DNA was non-homologous to DNA from other classes . 

The regulation of troponin C protein synthesis in cardiac myocyte cell cul

tures was examined in this study. Cultured myocyte cells were pulse-labelled 

with 35S-methionine, at different days after plating, and the protein synthesis 

levels were compared by tWirdimensional gel electrophoresis. At the same 

time, total cellular RNA was extracted and troponin C mRNA levels were 

examined by Northern blot analysis, using a quail troponin C cDNA probe. 

The results showed that mRNA accumulation closely paralleled the synthesis 
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of troponin C, suggesting its principal mode of regulation to be transcriptional. 

However, the decrease in the level of troponin C polypeptide synthesis was 

somewhat greater than the observed decrease in the mRNA level, suggesting a 

possible translational control of gene expression. Furthermore, when troponin 

C protein synthesis levels, at different days of plating, were compared with 

those of actin and tropomyosin, the results indicated that unlike skeletal con

tractile muscle proteins, these cardiac contractile muscle proteins were not co

regulated. 

The possible association of the transcriptionally active troponin C gene of 

cardiac myocytes with a nuclear sub-structure called nuclear matrix was also 

examined. Results indicated that the transcriptionally active troponin C gene 

was not preferrentially enriched in the nuclear matrix fraction. 
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CHAPTER 1 

INTRODUCTION 

The fundamental problem in the study of development a.nd differentiation 

is the way in which a. multitude of specialised cells and tissues are formed from 

the fertilised egg cell. At the molecular level, this becomes a question of the 

way in which different genes are expressed in different cells. Muscle cells have 

been examined in a variety of ways to understand the mechanisms controlling 

the tissue-specific gene expression. Developmentally distinct stages are readily 

recognised by monitoring morphological and biochemical properties of muscle 

cells and the conversion of one stage to another stage can be mimicked under 

the controlled conditions of tissue culture (Yaffe, H)68). 

Determined, but non-differentiated, muscle cells are known as myoblasts 

and during differentiation, myoblasts fuse to form elongated, multinucleated 

myotubes. Other morphological changes following differentiation include the 

appearance of electrically excitable membranes containing nicotinic acetylch~ 

line receptors (Kidokoro, 1073), and the appearance of myofibrils and special

ised membrane systems (Klier, Schubert & Heinemann, 1077). During 

differentiation, the rate of synthesis of most of the contractile muscle proteins 

increases (Garrels, 1070). Also the key metabolic enzymes such as creatine 

phosphokinase and myokinase are induced (Shainberg, Yagil & Yaffe, 1071). 

On the other hand, some proteins, ego the Cl series of collagen-like pro-



teins, are made in myoblasts and not in myotubes (Garrels, 1979), suggesting 

the existence of complex patterns or gene expression. 

This study was carried out to gain rurther insight into the mechanisms of 

tissue-specific expression of genes. Specifically, the regulation of synthesis the 

of the muscle protein troponin C in cardiac muscle cells is studied here. 

1.1. Structure and function of cardiac troponin C 

Vertebrate cardiac muscle fibres contain striated filaments similar in 

appearance to those of skeletal muscle fibres. The major contractile proteins 

in striated muscle. are localised in regular arrays of thick and thin filaments. 

The thick filaments are composed of myosin molecules and the thin filaments 

contain actin, tropomyosin and the troponin complex. The sliding or thick 

and thin filaments relative to each other generates force. The energy for this 

force is generated by the hydrolysis of ATP by actomyosin ATPase. Calcium 

ions regulate this process through the troponin complex in tbe following way. 

When a muscle is stimulated, calcium ions released from the sarcoplasmic reti~ 

culum bind to troponin inducing a conformational change which causes the 

heads of the myosin in the thick filaments to attach and detach cyclically from 

the actin~containing thin filaments. This cyclic attachment and detachment 

causes the filaments to move relative to each other resulting in contraction of 

of the muscle fibre (Mannherz & Goody, 1976). Troponin is composed of three 

subunits. Troponin C is the Ca2+ -binding subunit, troponin T is the 



tropomyosin binding subunit and troponin I inhibits actomyosin ATPase, 

The amino acid sequence of troponin C from the fast skeletal muscle of 

mammals, birds, and reptiles is known and as is that from bovine cardiac mus

cle (Wilkinson, 1080). It is a highly acidic protein (isoelectric point 3.7, 

Murakami III Uchida, 10S4) with a molecular weight of lS,OOO. The three

dimensional structure for fast skeletal troponin C contains four Ca2+ binding 

loops, each loop being bound by two a-helices, and the whole structure is sta

bilised by interactions between specific hydrophohic side chains in the helices 

(Romero-Herrera, Castillo III Lehmann, 1076). Sites 1 and 2 are the low 

affinity Ca2+ binding sites while sites 3 and 4 are the high affinity Ca2+ and 

M~+ binding sites. However, the cardiac troponin C contains only three 

Ca2+-binding sites - two high affinity Ca2+ and M~+ sites and only one low 

affinity Ca2+ specific site, The site 1 in this protein has lost the ability to 

bind Ca2+, The two high affinity Ca2+ / M~+ binding sites are in the C

terminal region of cardiac muscle troponin C (Leavis III Kraft, 1078). 

It is believed that the C-terminal part of cardiac troponin C is responsible 

for the interaction with troponin I. Binding of Ca2+ to troponin C breaks the 

links between troponin I and tropomyosin, and tropomyosin moves to the 

active position with the troponin complex remaining attached to tropomyosin 

via tbe troponin T subunit (Barskaya & Gusev, 10Sl). 



1.2. Muscle protein isoforma and their genes 

The contractile proteins of muscle are members of large families of related 

isoproteins. In some cases the different members of an isoprotein family are so 

closely related that amino acid sequences differ in only small regions. For 

example, within the actin family found in birds and mammals (of which there 

are six members) there are only 27 amino acid differences, from the total of 

375, between the most widely diverged members, and the difference between 

muscle isoforms of actins can be due to as few as three amino acid changes 

(Obinata, Reinach, Bader, Masaki, Kitani &. Fischman, 1984). Despite this 

similarity in primary structure, each member of a contractile protein family is 

synthesized in a tissue-specific and developmental stage-specific manner. Pro

teins synthesized in embryonic skeletal and cardiac muscles are qualitatively 

different from the adult forms (Dhoot &. Perry, 1980; Toyota &. Shimada, 

1981). During skeletal muscle differentiation, both the light and heavy chains 

of myosin undergo complex, stage-specific programmes of isoform switching 

(Lowey, Benfield, LeBlanc &. Waller, 1983). 

Similarly, the components of troponin complex exist in multiple molecular 

forms. Troponin I has three isoforms, which are expressed in fast, slow and 

cardiac muscle fibres (Dhoot, Cell &. Perry, 1979). Troponin T also has iso

forms that are specific in most animals for for slow, fast and cardiac muscle, 

and chicken fast skeletal muscle itself has three isoforms, whereas troponin C 

has only two isoforms, one of which is expressed in fast muscle and the other 



in slow and cardiac muscle (Hastings & Emerson, 1';)82a, Wilkinson, Moir & 

Waterfield, (984). 

In rat muscle there are three different mRNAs which code (or different Q 

isoforrns of tropomyosin. The synthesis of these three different mRNAs is 

regulated in a tissue and developmental stage-speeific manner. The Q 1- and 

Q z-tropomyosin mRNAs are produced only in striated muscle, whereas a third 

a -form seems to be expressed predominantly in smooth muscle (Ruiz-Opazo, 

Weinberger, & Nadal-Ginard, I08S). The a rtropomyosin mRNA is induced 

early in muscle development and accumulates to high levels in the adult, 

whereas the n 2-tropomyosin mRNA is present only in adult muscle. All three 

a-isoforms have been shown to be the product of a single gene. 

Some cardiac-specific contractile isoproteins are also expressed as embryo-

specific isororms in skeletal muscle, ego mouse actin (Minty, Alonso, Caravatti, 

& Buckingham, 1982), rat myosin heavy chain (Whalen, Sell, Eriksson & Thor-

nell, 1982), chicken myosin heavy chain (Sweeney, Clark, Umeda, Zak Nt 

Manasek, 1084), chicken troponin T and troponin C (Toyota Nt Shimada, 

H~81). For each example above, immunological criteria and peptide mapping 

criteria show that the isoprotein present in adult heart is indistinguishable .... 
from that present transiently in embryonic skeletal muscle. Also, Cooper and 

Ordhal (H~84), using Northern blot analysis to quantitate mRNA, have demon-

strated that the gene encoding one of the chicken troponin T isoforms is also 

expressed transiently during the early stages of in vivo muscle development. 



Chicken embryonic and adult cardiac muscle both synthesize the slow troponin 

T isoform, whereas the embryonic skeletal muscle synthesizes both slow and 

fast troponin T. During development the slow troponin T synthesis is 

repressed and only the fast troponin T is produced in the adult skeletal muscle 

(Cooper & Ordhal, UI84). Thus, in the development or cardiac and skeletal 

muscles, a single gene appears to be governed by two different regulatory pro

grammes. 

Isoforms of many contractile proteins are encoded by mUltigene families 

and the diversity of these proteins is further augmented by alternative RNA 

splicing or individual gene transcripts. This bas been documented for myosin 

heavy chain (Rozek & Davidson, 1083), myosin light chains 1 and 3 

(Nabeshima, Fuji-Kuriyama, Muramatsu & Ogata, 1084; Robert, Daubas, 

Akimenko, Cohen, Garner, Guenet & Buckingham, 1984), a-tropomyosin 

(Ruiz-Opazo et al. 1085), and troponin T (Breitbart, Nguyen, Medford, Des

tree, Madhavi & Nadal-Ginard, 1085; Cooper and Ordhal, 1085). 

The Dro8ophila genome contains a single copy of the myosin heavy chain 

gene, which however produces three different transcripts whose levels vary 

during development. These RNAs differ primarily in their patterns of splicing 

at the 3' end (Rozek & Davidson, 1083). Similarly, in chicken and mouse, 

skeletal muscle myosin light chains (MLC), MLCtr and MLC3F are encoded 

by a single gene. This gene has two transcription initiation sites from which 

two precursor RNAs are transcribed. These RNAs are processed by different 



modes of splicing to (orm mRNAs encoding distinct light chain proteins. In 

rat a single gene which codes for three different O'-tropomyosin mRNAs has an 

unusual organization with common and exchangeable exons that can be spliced 

in several different combinations (Ruiz-Opazo et al. lOSS). Similarly, the rat 

fast skeletal muscle troponin T gene encodes 10 different isoforms by 

differential splicing of its mRNA (Breitbart et ai. lOSS). Also, in chicken a sin

gle cardiac troponin T gene produces adult and embryonic isoforms by alterna

tive splicing (Cooper and Ordbal, lOSS). 

1.3. Regulation or muscle gene expression 

Regulation of gene expression during muscle cell differentiation has been 

extensively examined in skeletal muscle cells. Myoblasts isolated from develop

ing skeletal muscles initially proliferate in culture. Later, they stop dividing 

and enter a phase of cell fusion which culminates in the formation of multinu

cleated myotubes. Early studies reported that fusion of myoblasts and the 

expression of muscle proteins can take place when mRNA synthesis was inhi

bited with actinomycin D prior to fusion (Yaffe lit Dym, 1072). This observa

tion was further supported by the presence of large amounts of myosin heavy 

chain and actin mRNAs in muscle cells in the form of untranslated mRNA

protein complexes. The RNA isolated from these complexes was translatable 

in cell-free translation systems (Heywood, Kennedy lit Bester, 107S; Bag lit Sar

kar, 1975; Bag lit Sarkar, 1076). This was interpreted to suggest that the 



regulation of myosin synthesis during myoblast differentiation is controUed at 

the level of translation of mRNAs. However, by measuring the accumulation 

of eight major contractile mRNAs using cloned cDNAs from quail skeletal 

muscle myoblasts, Devlin and Emerson (1070) demonstrated that all of these 

mRNAs accumulate in a closely coordinated manner during quail skeletal 

myoblast differentiation. In addition, changes in the levels of these translat· 

able contractile protein mRNAs occur at the same time as the changes in the 

relative rate of synthesis of the proteins occur in vivo. Thus the major control 

of contractile protein synthesis during quail skeletal muscle myoblast 

differentiation appears to be at the transcriptional level. Caravatti, Minty, 

Robert, Montaraas, Weydert, Cohen, Daubas and Buckingham (1082) studied 

expression of mRNA for contractile proteins during differentiation in a mouse 

skeletal muscle cell line using cDNA probes. Cloned cDNA probes for actins, 

myosin heavy chain, and myosin light chains were employed in Northern blot· 

ting experiments with total cellular poly{A)+ RNA extracted from cultures at 

different times after plating. At the same time, the myoblast cultures were 

pulse-labelled and newly synthesized proteins were analysed by two dimen· 

sional gel electrophoresis. Their results also show that mRNA accumulation 

closely parallels the synthesis of the corresponding muscle protein, and that 

there is no major accumulation of non· translatable muscle RNA prior to 

differentiation. It is now clear that differentiation of skeletal muscle cells is 

regulated at the level of transcription, that is, by selectively turning on the 



genes for contractile proteins during differentiation. It is not known however, 

whether translational control plays a role during isogene switching. 

On the other hand, Ouellette, Croall, Van Ness &. Ingwell (Hl82), detected 

evidence for post-transcriptional control of some muscle mRNAs in rat cardiac 

muscle. Based on the analysis of the products of cell-free translation directed 

by mRNAs isolated (rom the cardiac muscle of fetal, neonatal and adult mice, 

and by the kinetics or mRNA - cDNA hybridisation, they found that the diver

sity and complexity of total cellular poly(A)+ RNA is unchanged in develop

ment. However, polypeptides synthesized from (etal heart muscle mRNA were 

abundant in cell-free translation products even though the corresponding pro

teins were not synthesized in the intact heart muscle of similar age. Therefore, 

even though the control or gene expression during myogenesis of skeletal mus

cle is primarily transcriptional, post-transcriptional control may play a large 

role during the myogenesis or cardiac muscle. 

1.4. Tissue culture system (or cardiac muscle 

differentiation 

As mentioned above, the availabilty of immortal skeletal muscle cell lines 

of rat and mice (Yaffe &. Dym, 1072), and the primary cultures of chicken 

(Holtzer, Rubenstein, Fellini, Yeoh, Chi, Burnbaum & Okayama, 1075),and 

quail (Hastings & Emerson, 1082a) have facilitated the study of the regulation 

of gene expression during muscle differentiation. However, there are no 
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immortal cell lines available to study differentiation during cardiae myogenesis. 

Chick cardiac myoblasts differentiate very early in embryonic development and 

start beating spontaneously and rhythmically at about the lO-somite stage 

(Johnstone, 1925, sited in Chacko, 1973). The myocardium at that stage COD

sists of a pure population of muscle cells, which increases in size considerably 

thereafter by addition of new cardiac muscle cells, vascular smooth muscle 

cells, endothelial cells and interstitial fibroblasts (DeHaan, 1967; Manasek, 

1968). Hence, in contrast to skeletal muscle cells, embryonic cardiac cells syn

thesize DNA and undergo mitosis even after the formation of cross-striated 

myofibrils. Using single muscle cells isolated from 5-day chick embryonic 

heart, Chacko (1073) has shown that these cells incorporate labelled thymidine 

into their nuclei and divide frequently. This suggests the regulation of DNA 

and contractile muscle protein synthesis in cardiac muscle cells is different 

from that observed in skeletal myoblasts. Functional cardiac muscle cells 

withdraw from the mitotic cycle after a few divisions. It has been suggested 

that cardiac muscle cells might employ some regulatory mechanism controlling 

the number of divisions after the first appearance of contractile proteins 

(Chacko, 1973). 

It is rather difficult to study the mechanisms involved in the regulation of 

protein synthesis during cardiac myogenesis, since cardiac cells differentiate 

very early in embryonic development. Also, problems are often encountered in 

obtaining a pure population of myocytes using primary culture since they 
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comprise only about 40% by number and 65-70% by mass of the total cell 

population in chick embryonic hearts from 10-18 days of age (DeHaan, HI67). 

However, it is possible to obtain an enriched population of myocytes by selec

tively inhibiting fibroblast cell division using S-bromodeoxyuridine (Chacko & 

Joseph, 1974). 

Some work bas been done on the differentiation of precardiac mesodermal 

cells using 5-bromodeoxyuridine (Chacko and Joseph, H)74). AJthougb the 

myofibrils do not appear in the precardiac cells until stage g, the precardiac 

mesodermal cells of stage 7 embryos treated with bromodeoxyuridine are capa

ble of forming a beating heart. It is possible that this synthesis of myofibrilar 

proteins is taking place by translation of stored preformed mRNAs. This has 

been further supported by the observation that precardiac mesodermal cells 

from stage 7, 8 and 0 embryos treated with actinomycin D, to inhibit RNA 

synthesis, are capable or differentiating into beating hearts (Chacko & Joseph, 

1974). 

1.5. Chromatin 8tructure and gene expression 

The role of specific conformations or DNA sequences in the intact nucleus 

during gene expression has been extensively studied (Weintraub, 1085). Genes 

which are transcriptionally active, or which have the potential for rapid 

expression in response to the appropriate stimuli, have been shown to exhibit a 

preferential susceptibility to cleavage by nucleases. Micrococcal nuclease and 
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DN&se 1 preferentially attack newly replicated DNA and nucleosome linker 

DNA in transcriptionally active chromatin (Weintraub &. Graudine, 1076). 

Also, the 5' regions of active genes are hypersensitive to DNase 1 and 81 

nuclease (Mathis, Oudet &. Cbambon, 1080). 

Anotber difference between aetive and inactive genes is that active genes 

are often bypomethylated. Experiments with mouse retroviruses have pro

vided strong evidence that methylation can suppress transcription (Jaenisch &. 

Jabner, 1084). Methylation or bypomethyiation is probably a means of sta· 

bilising the structure of a gene in an inactive or active state respeetiveiy. 

Thus, the bypomethylated state might be a prerequisite for transcriptional 

competence. It has been suggested that prior to gene activation, trans· acting 

molecules may trigger a gene to switch from an inactive to a competent state. 

This switch may involve alterations of chromatin structure as well as demethy· 

lation. 

Another difference between active and inactive genes is the association of 

active genes with a. nuclear substructure known as the nuclear matrix. Linear 

DNA is orga.nized into 8. series of loops, or S()"200 kb, by attachment to a sub

nuclear structure called the nuclear-matrix, scaffold, or cage (Berezney & 

Coffey, 1974). The structure remaining after extraction of nuclei with salt to 

remove histones and other proteins is the nuclear matrix. Morphologically, 

this structure is composed or three elements· a peripheral nuclear lamina, an 

internal protein network, and a residual nucleolar structure. The peripheral 
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lamina is the best studied component aDd is composed of three major proteins 

of molecular weight 60,000 to 70,000 dalton! (Gerace, Blum &: Blobel, 1978). 

The nuclear matrix is believed to be the key site in the regulation of gene 

activity. The attachment sites of the supercoiled loops to the nuclear matrix 

are the sites at or near which DNA replication is believed to take place (Par· 

doll, Vogelstein &: Coffey, 1980). DNA polymerase has also been shown to be 

associated with the nuclear matrix (Smith &: Berezney, 1980). The functional 

repiisomes are associated with the matrix and the DNA is replicated as it 

passes through these matrix-associated complexes (Pardoll tl al. 1980). 

The nuclear matrix also selectively binds steroid receptor complexes. The 

high affinity steroid-binding sites are tightly associated with the nuclear matrix 

of hormone responsive tissues and these binding sites are diminished following 

hormonal depletion of the animal (Colvard &, Wilson, IgS4). Transcription 

complexes are also bound to the nuclear matrix, and nascent RNA is closely 

associated with the matrix (Jackson, McCready &, Cook, IgSI). The process

ing of precursor mRNAs has also been shown to be associated with the nuclear 

matrix. RNA splicing occurs within hnRNP particles and involves a series of 

low molecular weight RNAs (lmw RNAs). These lmw RNAs remain associated 

with the nuclear matrix (Maundrell, Maxwell, Puvion &, Scherrer, IgSl). sug

gesting that splicing might take place at or near the nuclear matrix. The ribo

somal RNA precursors are also associated with the nuclear matrix and this 

association progressively decreases as rRNA processing proceeds (Rennie, 
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Brucbovsky & Cheng, 1983). Actively transcribing genes a.re also selectively 

associated with the nuclear matrix (Robinson, Small, Idzerda, McKnight & 

Vogelstein, HI83). Ovalbumin and conalbumin genes are associated with the 

nuclear matrix of the oviduct, which is actively synthesizing egg white pro

teins, but not with the nuclear matrix of other organs where egg white proteins 

are not being synthesized (Ciejek, Tsai & O'Malley, HI83). Similarly, Cook, 

Lang, Hayday, Lania, Fried, Cbiswell 8£ Wyke (1982), have shown that 

polyoma and avian sarcoma viral genes in transformed cells are closely associ

ated with the nuclear matrix. Also, globin genes (rom chicken erythrocytes 

(Hentzen, Rho, & Bekhor, 1984), ribosomal rRNA genes of the rat liver cells 

(Pardoll & Vogelstein, 19SO), vitellogenin n genes of the chicken liver cells 

(lost & Seldran, lQS4), and the SV40 sequences in several SV40-transformed 

3T3 cell lines (Nelkin, Pardoll & Vogelstein, lQSO) have been shown to be 

nuclear-matrix associated. 

A detailed analysis of the chicken ovalbumin gene in oviduct tissue has 

shown that only the transcribed regions of a defined DNase 1 sensitive domain 

are associated with the matrix. However , the non-transcribed regions at both 

ends of the DNase 1 sensitive domain are not associated with the matrix 

(Ciejek et al. lQ83). Therefore, there is no general structural correlation 

between the DNase 1 sensitive chromosomal domain and the nuclear matrix, 

even though a good correlation between the transcribed region of the gene and 

the attachment to the nuclear matrix exists. 
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Recently, however, it has been suggested that the preferential association 

with tbe matrix in the cell types in which the gene is actively transcribed is an 

artifact of isolation (Mirkovitch, Mitsult /It Laemmli, 1084). It is suggested 

that the exposure of nuclei to high salt would induce precipitation oC proteins 

or transcriptional complexes onto the matrix as well as allow sliding of DNA 

attachment sites. Mirkovitch et ai. (1084) have developed a low-salt procedure 

of nuclear lysis to investigate nuclear matrix association of histone and beat 

shock genes in Drosophila. They do not find any preferential attachment of 

tbese genes in the matrix fraction obtained by this method. However, it could 

also be argued that the low ionic strength extraction destroys the attachment 

of transcriptionally active DNA to the nuclear matrix. Low ionic strength 

induces the depolymerisation of intermediate filaments of the vimentin type, 

and also, F-actin, a structural component of nuclear matrix, is unstable in 

hypotonic solutions (Razin, Yarovaya & Georgiev, 1085). Using isotonic condi

tions, Jackson and Cook (1085) also demonstrated the transcriptionally active 

gene to be associated with the nuclear substructure and this association was 

partly disrupted by hypotonic treatments. Recently, Keppel (HI86) showed 

that nuclear matrices prepared (rom HeLa nuclei in both high or low-salt 

buffers are enriched in actively transcribing ribosomal RNA genes. Therefore, 

the argument for the use of high-salt methods for the study of nuclear matrix 

is still strong. The high-salt method of nuclear matrix extraction is still very 

useful even if the enrichment of active genes in the matrix fraction is an 



16 

artifact, since it will be useful in examining the proteins of transcription com

plexes. 

1.6. Objectives 

The objective of this research project was to examine how the expression 

of genes (or contractile proteins is regulated in cardiac muscle. In the studies 

reported here, an enriched primary culture of chick cardiac muscle cells was 

used to examine the regulation of troponin C synthesis. The activation of the 

cardiac troponin C gene was examined (ollowing plating of myocyte cell cul

tures. The correlation between troponin C synthesis and its cytoplasmic 

mRNA levels was studied to examine whether cardiac troponin C synthesis is 

regulated only at the level of transcription. Furthermore, an attempt was 

made to examine the difference in conformation between the expressible tropo

nin C genes of cardiac musde and tbe repressed troponin C genes of bepato

cyte cells. In this context tbe nuclear matrix association of the transcription

ally active troponio C gene of cardiac myocytes was studied. 

Troponin C bas been studied very little at the molecular level. Although 

troponin C is a conserved protein, it is not known to what extent the conserva

tion extends to the gene level. By Southern blot hybridisation we have found 

that this conservation did not extend to the gene level, especially between 

avian and mammalian genomes. 
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One of the first steps in elucidation of tropooin C regulation was to com

pare the levels of the troponin C protein and its mRNA At diD'erent days 

after plating, the protein synthesis levels of cultured myocyte cells were com

pared by two-dimensional gel electrophoresis and troponin C mRNA levels 

were compared by Northern blot analysis. The results showed that mRNA 

accumulation closely paralleled the synthesis of troponin C, indicating the 

principal mode of regulation was transcriptional. The possible attachment of 

the transcriptionally active troponin C gene of cardiac myocytes to the nuclear 

matrix was also studied. The results showed that this gene was Dot preferen

tially enriched in the nuelear matrix. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1. Cell isolation and culture 

2.1.1. CardIae myocyte culture 

Primary cultures of cardiac myocytes were obtained by modification of a 

procedure for the isolation of rat heart cells (Claycomb, 1979). Hearts were 

removed from 14-day old chick embryos, cleaned of attached tissues, minced 

and washed in chilled Hank's balanced salt solution (GIBeO). The minced tis

sue pieces were dissociated by multiple 15 min enzyme treatments with 0.1% 

collagenase (Worthington class II) and 0.1% hyaluronidase (Sigma type N) in 

Hank's balanced salt solution at 37· C. The supernatants from the first two 

enzymatic treatments were discarded (they contained mainly epithelial cells). 

The enzymatic treatments were repeated 8-10 times (or 20 hearts and the 

supernatants were decanted into centrifuge tubes containing an equal volume 

of chilled Hank's balanced salt solution. The cells were collected by centrifu

gation for 5 min at 200 rpm, washed in cold nutrient medium, and r~spun. 

This low speed centrifugation helped to eliminate fibroblasts and red blood cell 

contamination (Coetzee, Van der Westhuyzen & Gevers, 1971; Claycomb, 

1979). Myocytes sediment more quickly and the supernatant contains ma.inly 
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fibroblasts and red blood. cells. The final pellet was resuspended in 0.5 ml or 

nutrient medium and dispensed into gelatin.coated petri dishes containing 

nutrient medium supplemented with 0.1 mM 5-bromo-2'·deoxyuridine. Cui· 

tures were incubated in a humidified incubator at 37 0 C in an atmosphere of 

95% air and 5% CO2_ After 24 h of culture, the culture medium was replaced 

with fresh medium without 5-bromo-2'-deoxyuridine. When the culture was to 

be maintained (or long periods, the medium was replaced every third day. 

2.1.2. Chicken hepatocyte culture 

Livers were removed (rom 14-day old chick embryos, cleaned of attached 

tissues, minced and washed in chilled Hank's balanced salt solution to wash 

out blood. Cells were dissociated from the minced tissue by mUltiple 10 min 

trypsinizations, at 37 · C in 0.05% trypsin (GffiCO) in calcium-and 

magnesium-free Hank's balanced salt solution. The cells were collected in cold 

minimum essential medium (MEM) containing 50% horse serum. The diluted 

suspension was centrifuged at 750 rpm for 10 min in a clinical centrifuge. 

The cells were resuspended in MEM containing 50 U ml~l penicillin (5,000 U 

ml- I), 50 pg ml-I streptomycin (5,000 pg ml~I), and 5% fetal bovine serum 

and plated into gelatin-coated petri dishes containing the same medium. The 

cultures were maintained at 37 · C in a humidified incubator under in an atmo

sphere of 05% air and 5% CO2• Initially the medium was changed 24 h after 

plating and thereafter every third day. 
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2.1.3. Nutrient medIum 

The culture medium employed to maintain the cardiac myocytes was 

CMRL 1066 liquid medium with glutamine (GIBeO) containing 10% horse 

serum (GIBeD), 3% fetal bovine serum (GIBeO), 50 U ml- i penicillin, 50 pg 

ml- i streptomycin, and 40 pg ml- i bovine pancreatic insulin (26.2 LV. per mg, 

Sigma) (Nath , Shay & Bollon, 1978). The bepatocytes were cultured in MEM 

containing 50 U ml- I penicillin , 50 pg ml- i streptomycin and 5% fetal bovine 

serum. 

2.1.4. Gelatin coating of petri dlshes 

The tissue culture petri dishes were coated with 100 pg ml- l of gelatin 

(Hauschka, H~72). 10 mg ml- I stock solution of gelatin was prepared by gentle 

heating in distilled water. The solution was filler-sterilised and stored at 4 °C 

until used. The petri dishes were flooded with a large volume of dilute gelatin 

and the protein was allowed to adsorb to the surface (or about 1.5 h at 37 " C. 

After aspirating the excess, plates were rinsed with sterile distilled water and 

used immediately. 

2.2. 2-Dimensional electrophoretic analysis or proteins 

2.2.1. Labelling and extraction or proteins in cell culture 

Cardiac myocytes were cultured in 25-mm petri dishes for the determina-
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tion of the relative rates of synthesis of proteins. Alter various intervals , cells 

were washed with Hank's balanced salt solution and incubated (or 1 b in MEM 

without methionine, supplemented with 2.5% dialysed horse serum. Cultures 

were then labelled for 4 h with 400 pCi of i 355J methionine (1000 Ci/mmol; 

Amersham) in 0.75 ml of methionine-Cree MEM containing 2.5% dialysed horse 

serum. After labelling, cultures were washed with Hank's balanced salt solu· 

tion and incubated for 30 min in non-radioactive medium. Cells were washed 

twice with Hank's balanced salt solution and twice with 10 mM Tris-HCl, pH 

7.5. Cell, in 150 pi of 9.5 M urea, 2% NonidetP-40 (NP-40, Sigma) (w/v), 5% 

2-mercaptoethano! and 2% pH 3 to 10 ampholines (v lv, Bio Rad) were 

scraped from the petri dishes and disrupted using a. Dounce homogeniser. The 

cellular homogenates were incubated with 10 ~g eacb or DNase I and RNase A 

ror 30 min and stored at -70 · C until used. 

2.2.2. Electrophoretic analysis or proteins 

Tw~dimensional gel analysis of labelled proteins was performed using the 

technique described by O'Farrell (1975), witb a rew modifications. Total cell 

bomogenates each containing the same amount of acid-precipitable counts 

(about 500,000) were run on 110 mm long and 1.5 mm thick isoelectric focus

ing gels containing 2% (vJv) arnpbolines pH 3 to 10. To make 5 ml of gel mix

ture (about 0.5 ml of gel mixture per gel tube), 2.75 g of urea was dissolved in 

0.75 ml of 30% acrylamide stock (28.38% acrylamide and 1.62 % bisacrylam-
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ide). 1 ml of 10% (wJv) NP~40 in water, 0.90 ml of water and 0.25 mt of 

ampbolines pH range 3 to 10 (stock concentration 40%). When the urea was 

completely dissolved, the solution was degassed under vacuum (or about 30 

min. Then 6 pi of 10% ammonium persuJphate and 3.5 pi of TEMED was 

added and the solution was loaded into the glass tubes using a syringe with a 

long narrow-gauge hypodermic needle. The gels were overlayed with n-hutanol 

and allowed to set overnight. They were then placed in a standard tube gel 

electrophoresis chamber, n-butanol removed from their surfaces, and rinsed 

twice with the sample overlay solution containing 9 M urea and 1% ampbo

lines pH 3 to 10. The surfaces were covered with 10 pi of sample overlay solu

tion and tbe tubes were filled with 0.02 M NaOH. The lower reservoir (anode) 

was filled with 0.01 M H3PO" and the upper reservoir (cathode) filled with 0.02 

M NaOH which was extensively degassed to remove CO2. The gels were pre

run according to the following schedule: (a) 200 volts for 15 min; (b) 300 volts 

for 30 min; (c) 400 volts for 30 min. The power was turned off and the sam

ples were loaded onto the gels using micro syringes (Hamilton Co.). After the 

samples were loaded the gels were run at 1000 volts for 5.5 h. Cold water was 

circulated in the outer jacket of the electrophoresis chamber to avoid overheat

ing. 

After isoelectrie focusing, the gels were extruded from the tubes and 

equilibrated in SDS sample buffer 110% (v/v) glycerol, 5% (v/v) 2-

mercaptoethanol, 2% SDS and 0.0625 M Tris-HCI, pH 6.81 a.t room 
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temperature (or 1 h, and stored at -70 · C. 

Electrophoresis in the seeond dimension was carried out on a 12.5% 

polyacrylamide (prepared from 33.8% stock solution containing 33.5% 

acrylamide and 0.3% bisacrylamide) slab gels (110 mm long and 1.5 mm thick) 

in the presence of 0.1% (w/v) 5DS as described by Dreyfuss, Adam & Choi 

(lQS4). The isoelectric focusing gels were thawed at room temperature and 

were placed on the slab gels. Agarose solution (50 mg agarose dissolved in 2.5 

ml of 0.5% Tris-Hel, pH 6.8, 0.4% 5DS and 7.5 ml of water and 0.01% bro

mophenol blue, held at about 50 G C) was used to keep the gels in place on the 

slab gel notches. The agarose was allowed to set for about 10 min and the gels 

were run according to Dreyfuss e.t al. (lgS4), at 120 volts until the dye front 

reached the bottom of the gel. The slab gels were treated for fluorography with 

PPO-DMSO (NEN, Laskey and Mills, 1975), dried and exposed to Kodak X

Omat films at ·70 · C. In order to obtain a relative quantitation of the 

radioactivity in proteins, specific spots were sliced out of the dried gel and the 

radioactivity was measured in Toluene-Omnifluor (NEN). 

For the identification of newly synthesized troponin C, a preparation of 

troponin C from bovine cardiac muscle (a gift from Dr. C. Kay, University of 

Alberta, Edmonton ) was added to the extract prior to electrophoresis. The 

gels were fixed in 10% TCA and stained for 15 min in 0.2% commassie blue 

dissolved in 10% acetic acid and 25% isopropanol. Destaining was ca.rried out 

in 10% acetic acid and 25% isopropanol for 1 h. 
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2.3. Preparation of RNA 

All glassware was baked at 180 · C (or 12-18 h to avoid RNase contamina

tion . Polyallomer centrifuge tubes, magnetic stirrers and rubber policeman 

were treated with 0.2% diethyl pyrocarbonate (Fedorcsak &. Ehrenberg, 1066, 

cited in Maniatis, Fritsch, & Sam brook, H~82) followed by autoclaving. All 

solutions were prepared using baked glassware and autoclaved distilled water, 

and were filtered through 0.22 I'm Millipore filter membrane (Type GS) and 

reautoclaved. Gloves were worn at all stages during the preparation of materi

als and solutions used for the isolation of RNA and during all manipulations 

involving RNA. 

Cells were washed twice with ice-cold phosphate-buffered saline (PBS, 1 x 

PBS = 145 mM NaCI, 80 mM N.,IIPO,.2H,O and 1.5 mM KH,PO" pH 7.4). 

Washed cells were lysed in a ISO mm petri dish for S min with 3 mllysis buffer 

containing 25 mM Tris-HCI, pH 7.5, 0.25 M NaCI, 5 mM MgCl" 0.5% (w/v) 

NP-40, 200 pg ml- I heparin, 50 pg ml-1 cyclohexamide, S mM dithiothreitol. 

The lysed cells were scraped from the petri dishes using a rubber policeman 

and homogenised in & loose-fitting homogeniser to recover the cytoplasmic 

remnants from the nuclei which were then quickly removed by centrifugation 

at 20,000 x g for IS min at 0-4 · C. The pellet containing intact nuclei and 

other cellular debris was discarded. SDS was added to the superna.tant to a 

concentration of 1% (w/v) and the samples were heated at 6S oC tor S min. 

This cytoplasmic extract was used either for total cytoplasmic RNA or 
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poJy{A}i- RNA extraction. 

2.3.1. lsolatloD of total eytoplaomle RNA 

Total RNA was isolated (rom the cytoplasmic extract using phenol and 

chloroform. An equal volume of phenol (equilibrated in 10 mM Tris-Hel, pH 

7.5) was added to the cytoplasmic extract, mixed and heated (or 5 min at 

65 ' C in a 50 ml polypropylene tube. This was followed by addition of an 

equal volume of chloroform. After mixing well, the organic and aqueous 

pbases were separated by centrifugation at 2,000 rpm at room temperature (or 

10 min. The upper aqueous phase was re-extracted with phenol and chloro

form, (oHowed by an extraction with an equal volume of chloroform. Sodium 

acetate, pH 5.0, was added to the aqueous phase to a final concentration of 0.2 

M, and the nucleic acid was precipitated with 2.5 volumes of pre-cbilled Aris

tar ethanol (BDH) and stored at -20 · C for at least 12 h. The precipitated 

RNA Was coUected by centrifugation in a Beckman SW 27 rotor at 20,000 rpm 

for 3 h at 4 · C. The precipitates were washed twice in 66% ethanol, dried 

under vacuum, and dissolved in water. The composition of the RNA solution 

was adjusted to 20 roM Tris-HCI, pH 7.8 and 10 mM MgC12, and the RNA 

treated with 10 pg ml-J of RNase-free DNase (Worthigton) for 30 min at 

37 · C. The RNA was phenol and chloroform extracted to remove the DNAse 

and precipitated with 2.5 volumes ot ethanol in the presence ot 0.2 M sodium 

acetate as above. The RNA precipitates were dissolved in water, and stored at 
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·70 ' C. 

2.3.2. holatlon of poly(A)+ RNA 

The poly(A)+ containing mRNA was isolated by affinity chromatography 

using oligcr(dT)-cellulose (Aviv &, Leder, 1972). The original procedure was 

modified to obtain Quick purification of mRNA (Bag &, Pramanik, unpublished 

observations). 

Briefly, 0.3 g of oligo--(dT)-cellulose, type III (Collaborative Research Inc.) 

was packed in a column (100 mm long and 7 mm internal diameter), washed 

with 10 volumes ot 0.5 M NaOH, then with water and finally with the binding 

buffer, containing 25 mM Tris-HCl, pH 7.5,0.5 M NaCl, and 0.5% SDS. The 

concentration of NaCl in the cytoplasmic extract was adjusted to 0.5 M which 

was then heated at 65 0 C (or 2 min to inactivate any residual nuclease 

activity and then chilled in ice. The cytoplasmic extract (lO-I5 ml/column) 

was warmed to dissolve the SDS and passed through the column three times. 

The column was then washed with binding buffer until the optical density of 

the effluent at 260 nm became zero. The poly(A)+ RNA was then eluted with 

3 ml of water. The eluted RNA was adjusted to the composition of binding 

buffer, heated at 65 0 C, chilled on ice, warmed to dissolve SDS and again 

passed through the o1ig~(dT}-cellulose column. The bound RNA was then 

eluted with water, adjusted to 0.5% SDS, 0.2 M sodium acetate and precipi

tated with 2.5 volumes of pre-chilled ethanol, and stored at _20 0 C for at least 
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12 h. The precipitated RNA was collected by centrifugation in a Beckman 

ultra-centrifuge (Beckman SW 27 Rotor, 20,000 rpm, 3 h, 0-4 · e), washed 

twice in 66% ethanol, dried under vacuum, and stored at _70 0 C. This high 

speed centrifugation was necessary to obtain 00-100% recovery of the small 

amount of RNA precipitate. 

This procedure (or the purification of poly(A)+ RNA was preferred to the 

more conventional phenol extraction procedure (Feramisco, Smart, Burridge, 

Helfman & Thomas, 1082) since total recovery of poJy(A)+ mRNA was 

achieved. Bag and Pramanik (unpublished results) have shown that the 

above method gives absolute recovery of the poly(A)+-containing RNA. They 

further extracted the unbound fraction from the oligo-(dT)-ceJlulose column 

with a mixture of phenol and chloroform (1:1). The RNA was precipitated and 

the poly(A)+ mRNA was selected again by olig~(dT}-cellulose cbromatogra

phy, but no further binding of mRNA to olig~( dT}-cellulose was observed. 

This indicates that the non-phenolic affinity chromatography in the presence of 

SDS is sufficient for isolating potyA - containing translatable RNAs from tissue 

culture cells. 

2.4. Preparation or nuclear matrix 

Nuclear matrices were prepared by the method described by Cook tl al. 

(IQS2) with a few modifications. To monitor the extent of digestion of nuclear 

DNA with restriction enzymes, the cells were labelled for 24 - 48 h with 3 pCi 
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ml-' of [ 'H- methyl] thymidine. The labelled cells were washed twice with 

phosphate-buffered saline (PBS). The cells in PBS were scraped from the 

petri-dishes, spun down and resuspended in PBS (about 3 x LOs cells ml-1) and 

were lysed on ice (or 15 min in 3 volumes of 1.33 x lysis buffer (1 x lysis buffer 

= 1.95 M NaCI, 10 roM Tris-HCI, pH 8.0, 100 mM EDTA, and 0.5% Triton 

X-tOO). The lysed cells (about 1 x 108 cells mI- I ) were spun (Beckman SW 27 

Rotor , 4,500 rpm, 1 h, 0-4 - C) through 4 ml of 7.5% sucrose in lysis buffer 

onto a 3 ml shelf of 30% sucrose in the lysis buffer. The white aggregates of 

nucleoids were removed from the interCace between the 7.5 and 30% sucrose, 

diluted with 20 volumes of Eeo RI (BRL) restriction enzyme buffer without 

NaCI (100 roM Tris-HCI, pH 7.5, and 10 roM MgCI,) to adjust tbe NaCI con

centration to 100 mM and incubated with 5 U ml- 1 o( Eco RI at 37 · C (or 

various times to obtain partial digestion. The nuclear matrices so prepared 

were centrifuged at 8,000 rpm (or 40 min , and the pellets dissolved in 100 mM 

Tris.HCI, pH 8.0, 10 mM EDTA, 1% Sarkosyl and 100 pg ml- I proteinase K 

(Sigma) and incubated at 56 · C for about 2 h. Samples of dissolved pellet and 

supernatants were counted to determine the percentage of total DNA remain· 

ing associated with the nuclear matrix. The pellet DNA was purified by 

phenoJ.chloroform (1:1) extraction (Maniatis et al. IgS2), l00mM NaCI added 

and precipitated with pre-chilled ethanol. The phenol·chloroform step was 

omitted for the supern:rtant DNA purification due to the large volumes of 

supernatant , the NaCI concentration was adjusted to 100 mM and was ethanol 
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precipitated. directly. The precipitates were centrifuged and dissolved in TE, 

pH 7.5 (TE = 10 roM Tris-Hel, pH 7.5 and 1 roM EDTA). The DNA 

preparations were treated with 100 pg ml- I of RNase A at 37 G C (or 30 min, 

followed by 100 pg ml-1 of proteinase K at 37 0 C (or 30 min before further 

extraction with phenol-chloroform (1:1) and ethanol precipitated. The depro

teinised DNAs were dissolved in TE buffer, pH 7.5 and were digested to com

pletion with Eca RI restri ction enzyme (or Southern analysis .. 

2.5. Isolation of genomic DNA 

Quail, herring gull, duck, pigeon and yeast DNAs were generously pro

vided by Dr. W. Davidson. Human and hamster DNAs were provided by Dr. 

H.B. Younghusband, and the mycoplasma DNA was provided by Dr. P. Barns

ley . 

Chicken and rat genomic DNAs were prepared from embryonic heart, 

liver or skeletal muscle tissue. Tissue was washed in cold PBS and bomogen

ised using a Teflon-coated homogeniser. The homogenate was suspended in 

four volumes of PBS, and pronase and SDS to the final concentrations of 1 mg 

ml- 1 and 1% (w/v) were added respectively. This was incubated at SS - C till 

it became clear (about 2-3 h). It was subjected to several rounds ot 

phenol:chloroform (1:1) extraction until no precipitated material was found at 

the interface. The aqueous layer was either dialysed overnight with 3 changes 

of TE, pH 7.S, or was ethanol precipitated. The precipitate was spun down 
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and dissolved in TE, pH 7.5. The DNA was treated with 100 pg ml- i of 

RNase A at 37· C tor 30 min followed by incubation with 0.5% 80S and 250 

pg ml-1 of pronase (or a further 30 min. It was once again phenol-chloroform 

extracted and was either dialysed or ethanol precipitated as above. 

2.6. Electrophoresis, blotting and hybridisation 

2.6.1. Gel electrophoresis or DNA and Southern transfer 

The restriction endonuclease digested DNA samples were subjected to 

horizontal gel electrophoresis in 0.8% agarose in Tris-borate buffer (0.089 M 

Tris, 0.089 M boric acid and 0.002 M EDTA) containing 0.5 pg ml- I of ethi

dium bromide to stain DNA fragments. Samples were loaded into sample 

wells, benea.th 8. covering layer of electrode buffer and electrophoresed to the 

desired extent as indicated by migration of tracking dye. The gels were then 

removed and the DNA was visualised and photogra.phed using a Polaroid MP-3 

land camera over a UV-transi1luminator (Chroma1.<rvue transilluminator, mode 

C-6\). 

The DNA fragments were transferred to a nylon membrane Zetabind 

(AMF·CUNO Co.) by tbe transfer technique described by Southern (\Q75), 

with a few modifications. The DNA was partially hydrolysed by acid depurina

tion (by soaking the gel twice in 0.25 M HCI for 15 min a.t room temperature). 

The gel was rinsed with water to remove excess acid and the DNA was dena-
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tured by soaking the gel in a solution of 1.5 M NaGI and 0.5 M NaOH twice 

(or 15 min each time, with constant shaking. It was then neutralised by soak· 

iog in a solution of 1.0 M Tris-HCl, pH 7.5, and 1.5 M NaCI twice (or 15 min 

each time, with constant shaking. 

The Zelabind membrane was pre-wet by first boiling it twice in distilled 

water, then soaking it (or 30 min in 20 x sse (1 x sse = 0.15 M sodium 

chloride, and 0.015 M sodium citrate, pH 1.0). The DNA was transferred onto 

the membrane using 20 x sse as the transfer buffer (Southern, 1975; 

Maniatis,et al. 19S2). For transfer, the gel was placed on a sponge platform 

covered with 2 sheets of Wbatmao 3MM paper, in a reservoir containing 20 x 

sse. The Zetabind membrane was carefully positioned on the gel. Two addi

tional sheets of Whatman paper were then placed in an uninterrupted contact 

over the top of Zttabind membrane and a thick layer of paper towels support

ing a light weight was added to complete the apparatus. The transfer was car

ried out overnight at 4 0 C. At this point restaining the gel with ethidium 

bromide in Tris-borate buffer followed by examination under IN light 

confirmed the complete transrer of DNA from the gel. 

After transferring the DNA, the membrane was washed twice, for 15 min 

each, with 2 x SSC at room temperature to remove any agarose. It was then 

sandwiched between 3MM sheets and baked in a vacuum oven at 70 · C for 2 

h. The membrane was then washed in 0.1 x SSC and 0.5% SDS at 60 · C for 1 

h to minimize the background on subsequent hybridisations. 
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2.15.2. Gel electrophoresis ot RNA and Northern transrer 

BeCore electrophoresis, RNA was denatured by beating at 65' C for 5 min 

in 10 roM sodium phosphate, pH 7.4 containing 50% formamide, 2.2 M formal

dehyde and 0.5 mNt: EDTA. Nter denaturation the RNA sample was cooled 

to room temperature and 1/5 volume of 5 x sample buffer (5 x sample buffer 

= 0.5% SDS, 0.025% bromophenol blue, 25% glycerol, 25 mM EDT A) was 

added. RNA was fractionated by electrophoresis in 1.5% agarose gels contain

ing 10 mM sodium phosphate, pH 7.4 and 1.1 M formaldehyde at 30V (Mein

koth & Wahl, 19S4). 

Following electrophoresis the gels were stained with 33 pg ml- i acridine 

orange in 10 mM sodium phosphate, pH 6.7, for 10 min. These were then des

tained (or 60 min in sodium phosphate, pH 6.7 with 3 changes of buffer, and 

photographed over the UV-transilluminator. 

The RNA was transferred onto nitrocellulose filters (0.45pm, Schleicher & 

Schuell). Prior to transfer, the gels were soaked for 5 min in several changes 

of water, and the nitrocellulose filters were pre-wet by soaking them first in 

distilled water and then in 20 x sse. The RNA was tra.nsferred directly onto 

the nitrocellulose filters without further manipulations using the procedure 

similar to that described a.bove for Southern transfers. Following transfer, the 

filters were washed in 2 x sse for 5 min to remove residual agarose, and baked 

at 80· C under vacuum for 2 h in a vacuum oven. 
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2.6.3. Spot blotting or DNA and RNA 

Spot blotting of nucleic acids was carried out essentially by the method of 

Wahl (1983), using an Schleicher & Schuell Minifold II. Briefly, for DNA slot 

blotting and dot blotting, DNA was denatured with 0.2 M NaOH (or 15 min at 

room temperature. The denatured DNA was neutralised by the addition of 0.4 

M Tris-Hel, pH 7.5, and 5 x sse. Loading the DNA onto nitrocellulose was 

essentially the same as described Wahl (1983). To slot blot the RNA, it was 

denatured by the addition of 3 volumes of 6.15 M formaldehyde and 10 x sse 

at 65 · C for 15 min, and applied directly to the nitrocellulose filter through the 

minifold. The filter was placed between sheets of 3MM paper and baked in a 

vacuum oven for 2 h. 

2.0.4. Densitometer seanning or gel negatives and autoradiographs 

In some nuclear matrix preparations, the concentration of DNA was too 

low to be measured by optical density. This was overcome by densitometer 

scanning the nega.tives of the photographs from agarose gel electrophoresis. 

Briefly, a small volume of DNA solution and 3 serially-diluted samples of a 

DNA solution of known concentration were electrophoresed in an agarose gel. 

After the electrophoresis the gels were photographed and the DNA lanes in the 

negatives were scanned and traced onto Bond paper, using a Corning 750 

Scanning Densitometer. The area under each scan was cut out and weighed. 

Using the standard DNAs a graph of weight vs DNA concentration was plot-
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ted, and the concentration of DNAs in question was read Crom the graph. The 

lanes in some autoradiographs were also scanned to compare band intensities, 

and the area. under each peak was calculated. 

2.8.6. Nick-translation, prebybrldisation and hybridlsation 

The plasm ids cellI and cellS were generously provided by Dr. Charles 

P. Emerson (University of Virginia). Both plasmids were isolated from a 

eDNA library of quail myofiber mRNA sequences and the cDNAs were inserted 

at the Pst! site of the vector pBR322. The cellI plasmid contains a 420-bp 

insert complementary to the mRNA for the slow form of troponin C and the 

cellS contains a 590-bp insert complementary to the skeletal muscle a·actin 

mRNA (Hastings & Emerson, Ig78). 

I 32Pj.labelling of plasmid DNA was performed using a nick-translation kit 

and 3000 pCi/mol [0- 32p[dCTP (Amersham) according to the procedure of 

Rigby, Dieckmann, Rhodes and Berg (H~77). The reaction mixture contained 5 

pi nucleotide buffer, (containing 1.5 pM each of dATP, dGTP and dTI'P in 

buffer solution); 5 pi of enzyme solution (containing 2.5 units of DNA polym

erase 1 and 50 pg DNase 1 in a buffer solution); 100 pCi or [ 32PJdCTPj and 

0.5 pg of plasmid DNA, in a total volume of 50 pI. The reaction was carried 

out at 15 · C tor 70 min and then stopped by addition of EDTA to a concen

tration of 10 mM and SDS to the final concentration of 1.5%. The products or 

the reaction mixture were diluted to 100 pi with STE (STE = 10mM Tris-
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HCI, pH 8.0, I mM EDTA and 0.1 M NaCI) and applied to • 1 ml .pun down 

column or Sepbadex G-50 (medium) (Sigma) previously equilibrated with the 

same buffer (Maniatis d al. 1982). The effluent from the spun down column 

was collected and the specific activity of the probe was calculated, based on 

the Cerenkov counting of 1 pI a.liquots of probe. The probe was denatured by 

beating at 100 · C (or 10 min and cooling it quickly. 

Prehybridisation and hybridisa.tion conditions {or the Zetabind and nitro

cellulose membranes were different and each of them are described below: 

Zelabind membrane: 

Membranes were sealed in polythene bags and prehybridised overnight (8 

to 24 b) at 42 · C in a prehybridisatioD mix (20 mI) containing 5 x sse, s x 

Denhardt's reagent (1 x Denhardt's = 0.02% each of ficoU, M.Wt. 400,000, 

polyvinylpyrollidine and BSA), 5% dextran sulphate, 0.01 M sodium phos

phate, pH 6.7, 100 pg ml- 1 sonicated denatured salmon testes DNA, and 50% 

deionised Cormamide (deionised by shaking with a mixed bed resin- Bio Rad 

AG 501-XS - until the pH was neutral). The hybridisations were usually car

ried out Cor 2 to 3 days at 42 · e in a hybridisation mix: (7 - 10 ml) containing 

5 x sse, 0.05 x Denhardt's reagent, 10% dextran sulphate, 0.01 M sodium 

phosphate, pH 6.7, 100 pg ml- 1 oC denatured , sonicated salmon testes DNA, 

50% Cormamide and 2 x 108 cpm/ml or I 32pJ-labelIed nick-translated, dena

tured probe DNA. 
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Alter hybridisation, the hybridised blots were removed and the filters 

werewasbed under the following conditions: (a) 'fwice for 20 min each in 2 x 

sse It room temperature; (b) twice (or 20 min ea.ch in 2 x sse at 42 " C; and 

(c) bice (or 20 min each in 0.1 x sse and 0.1% 5DS at 50 "C. Slightly moist 

filters were wrapped in Saran Wrap and exposed to Kodak X-Omat RP films 

for ,'uious times. 

'1'0 reuse the blots, the probe was removed bY washing the membrane in 

0.4 M NaOH (or 30 min at 42 " C with constant shaking. The membrane was 

then washed 4 times, 15 min each with 0.1 x sse. 0.5% 8DS, 0.2 M Tris-Hel, 

pH 7.5 at 42 " C with constant shaking. 

Nitrocellulose filters: 

These filters were prehybridised overnight at 42 " C in a prebybridisatioD 

mix (20 ml) containing 5 x SSPE (1 x SSPE = 0.18 M sodium chloride, 10 mM 

sodium phosphate, pH 7.7 and 1 mM EDTA), 5 x Denhardt's reagent, 0.1% 

SDS, 200 pg ml-1 of denatured, sonicated salmon testes DNA and 50% deion

ised Iormamide. 

Hybridisation was carried out at 42 · C in 1 - 10 ml of 5 x SSPE, 1 x 

Denordt's reagent, 10% dextran sulphate, 0.1% SDS, 100 pg ml- I of dena

turd salmon testes DNA, 2 x 106 cpm/ml of denatured [ 32pJdCTP-labelled 

nicUranslated probe DNA and 50% formamide (or 2-3 days. 
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After hybridisation, the filters were washed according to the following 

conditions: (a) 3 times, 15 min each with 2 x sse and 0.1% SDS at room tem

perature and (b) 2 times, 15 min each with 0.1 x sse and 0.1% SDS at 50 · C. 

AIter washing, the slightly moist filters were wrapped in Saran Wrap and 

exposed to Kodak- X-Omat RP films for various times. 

The probe was removed by washing in 0.005 M Tris--HCI, pH 8.0, 0.002 M 

EDT A, and 0.05% sodium pyropbospate at 65 · C for 2 h. 



38 

CHAPTER 3 

RESULTS 

3.1. Behaviour or cardiac muscle celIs in culture 

It was important to isolate cardiac myocytes free from fibroblasts and in 

high yield, and to maintain them (or long periods (or the nuclear matrix and in 

vivo protein synthesis experiments. During initial trials, hearts from chick 

embryos of various ages - 10, 12, 14 and 17 days were used to isolate and cul

ture the myocyte cells. Hearts from 10 and 12 day old embryos were quicker 

to process due to less connective tissue and the cultures were least contam

inated with fibroblasts, but the yield of myocyte cells was very low when 

plated. Hearts (rom 17 day old embryos gave a very high yield of cells, but 

the majority of them were of fibroblast origin. Hearts from 14 day old 

embryos gave the best yield of myocyte cells with the minimum fibroblast con

tamination. 

Within 10 hours of plating, spontaneous contraction could be observed in 

some of the myocyte (:ells, and after 24 hours of plating, most of the myocyte 

cells were beating spontaneously. Chicken cardiac myocyte cells adopted 

heterogeneous shapes once they became attached to the petri dishes. During 

the first 3 days in culture, most of the cells became flattened, often with 

branches. These branches joined to the neighbouring branches and formed 
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clumps (Fig. 3.1). Cells in a clump contracted synchronously. No significant 

difference was noticed in the frequency of contraction amongst cells of different 

morphology. During observation most oC the cardiac muscle cells cease COD

traction temporarily. Cells quiescent at one examination may later beat spon

taneously and rythmicaJly. 

The chicken cardiac muscle cells synthesize DNA as deduced by their abil

ity to incorporate [3H]-thymidine into their DNA. This property was impor

tant later (or the nuclear matrix experiments (or measuring the percentage of 

DNA associated with nuclear matrix. However, it was not clear whether these 

cells underwent mitosis. Counting of cells before plating would have given 

erroneous results due to the presence of fibroblast cells and counting after plat· 

ing was made difficult due to the myocytes forming clumps. However, indirect 

evidence from the nuclear matrix experiments, where the yield of nuclear 

matrix DNA was very low from cells 2 days post·culture compared to cells 4 or 

7 days post·culture, suggests that at least some of these cells undergo cell divi· 

sions before withdrawing from the mitotic cycle. 

3.2 Gene copy number and restriction endonuclease 

analysis of chicken troponin C gene 

To examine the difference between transcriptionally active and inactive 

genes, it is important to know whether the gene is present in a single or multi· 

pie copies. There is no information available regarding the copy number of the 



Fla. 3.1. Phase-contrast microaraphs or contractile auresatea or 
cella. 

The photographs illustrate the appearance of beating cells when attached to 
substratum, 3 days after plating. The cells adopt heterogenous shapes and 
branch. Branches adjoin the neighbouring branches and form clumps. Bar 
indicates 15 pm. 
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slow troponio C gene. The Dumber of slow troponin C genes in chicken DNA 

was assayed by dot blot hybridisatioD and restriction endonuclease analysis. 

The dot blot analyses were chosen to obtain at least an approximate estimate 

of gene Dumber. However, when complemented with the restriction analysis 

data, it was possible to estimate the gene copy number more accurately. 

Denatured chicken genomic DNA was serially diluted and applied to a 

nitroceHulose filter. Denatured, unlabelled cellI plasmid (containing quail tro

ponin C eDNA insert) was also serially diluted and applied to the nitrocellulose 

filter in separate lanes. The filters were hybridised with I "PI-labelled cCIlI 

probe and exposed to X.ray film. The results of the experiment are shown in 

figure 3.2. Dots were excised from the filter and the amount of radioactivity 

hybridised to each dot was measured by scintillation counting in toluene

omniflour (Table 3.1). The troponin C gene copy number was calculated by 

assuming there is 2.5 pg 01 DNA/chicken genome (Fasman, IQ78) and I pg 01 

DNA is equivalent to g.1 x 108 bp. The calcula.tions are shown in the legend 

to figure 3.2. Results suggest that there are 2.6 copies 01 slow troponin C gene 

per haploid genome. 

The dot blot analyses results were complemented with restriction endonu

clease analysis data. Chicken genomic DNA was digested with a number of 

restriction enzymes and electrophoresed on agarose gels. Following transfer of 

DNA Iragments (Southern, IQ75) to a Z.ta6ind membrane (AMF-CUNO), it 

was hybridised with {"PI-labelled ccm probe. The hybridisation patterns in 



Fig. 3.2. Quantltatlon or chIcken troponln C sene copy number by 
dot blot hybrldlBation. 

1, 2, 5, LO, 15 and 30 pg of chicken genomic DNA (A) and 1, 2, 5, LO, 15 and 
30 pg of cCllI plasmid DNA (8} were dot blotted directly onto nitrocellulose. 
DNA was hybridised to 1 x10 cpm 01 I "PI·l.belled cellI probe (specific 
activity 2 x L08 cpm/ JIg) as described in 'Materials and Methods '. Filters were 
exposed to X·ra.y film for 20 h. Spots were excised and their radioa.ctivity was 
measured (see table 3.1). 

The radioactivity of 5, LO and 15 JIg of genomic DNA was equivalent to that 
of 5, LO and 15 pg plasmid DNA. 1 JIg of chicken DNA corresponds to 4 x 105 

diploid genomes equivalents (Davidson & McIndoe, 1949, cited in Fasman, 
1978) and from spot counts they are equivalent to 1 pg (9.1 x108 bp) of cDNA 
insert. Therefore, there is 2244 bp of DNA/genome homologous to the tropo
nin C cDNA insert. Since the cDNA insert is 420 bp, there are 5.2 copies of 
troponin C gene per diploid genome. 
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T .. ble 3.1 

Dot blot hybrldl ... tlon .... ay to determine 
troponln C sene cop)" number 

Genomic DNA cCIII DNA 
Amount Counts Amount Counts 

p< Annealed p< Annealed 
I 387.0 1 441.6 
2 402.6 2 444.4 

5 510.2 5 488.5 
10 799.6 10 734.2 

15 1142.6 15 1041.6 

30 1579.6 30 2142.2 

Blank 407.0 

Blank represents background count (it is an average of (our values). 
The above 'Counts Annealed' are the actual counts, ·these have not 
been substracted from the blank. 
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each case were quite simple (Fig. 3.3). Eca RI and Bgi U restriction endonu

clease digests produced two cellI hybridisable bands (molecular weight 4.8 and 

2.3, and 6.2 and 1.8 kbp respectively, Fig. 3.a.II, lanes Band El, whereas, Pst I 

and Hind m generated only one band each (2.8 kbp and 8.0 kbp respectively, 

lanes lanes C and D). However, quail troponin C eDNA restriction analysis 

reveals that it has two Pst I sites (Hastings and Emerson, 19S2). It is possible 

that the low molecular weight bands were lost in my restriction analysis or the 

two Pst I sites present in quail troponin C eDNA are absent in the chicken trcr 

ponin C gene. Hae ill, a. restriction enzyme with only four nucleotide 

specificity , generated one relatively low molecular weight band of 300 bp (lane 

F). Kpn I produced three bands (6.5, 4.6 and 2.2 kbp), whereas Xho I and Bgi 

I, both partial digests, produced two bands each (Q.5 and 8.6 kbp and 7.6 and 

6.8 kbp respectively, lanes G, H and I). Sal I (lane J), also a partial digest, 

produced one band of 8.6 kbp. (All molecular weights were calculated by com

paring the migration of bands with migration of linear plasmid bands and plot

ting the molecular weights on a log scale against the migration distance.) 

Both the restriction analysis and the dot blot analyses suggest that the 

troponin C gene is present in low copy number. Furthermore, the restriction 

analysis data showing a simple pattern of restriction fragments, hybridisable to 

the ccrn probe, suggests that it is likely there is a single copy of the slow tro

ponin C gene per haploid genome. 



Fig. 3.3. Analysis or genome eomplexity ror the troponin C gene. 

15 Jlg oC chicken genomic DNA was digested with restriction endonuclease (B) 
Eco RI, (C) Pst 1, (D) Hind III, (E) Bgl II, (F) Hae III , (G) Kpn I, (H) Xho I, (I) 
Bgl I, and (J) Sst I, and resolved on a 0.8% agarase gel. The DNA was 
transCerred to a Zelabind membrane and hybridised to 5 x lOs cpm oC [32P[_ 
labelled ccrn probe (specific activity 2 x 108 cpm/ Jlg) as described under 
'Materials and Methods'. In lane A, 100 pg oC ccrn plasmid was run as a con
trol. (H),(I) and (J) are partial digestions. I. Photograph 01 the ethidium 
bromide stained agarose gel. ll. The corresponding autoradiograpb Collowing 
18 days' exposure. 
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3.3. Evolutionary conservation of genomic troponin C 

sequences 

Chicken embryoDic hearts were used as a source of cardiac myocytes (or 

studying troponin C gene expression. Chick embryos were easy to obtain and 

a good yield of myocyte cells was achieved (section 3.1). It was, therefore, 

important to test whether the non-homologous, quail troponin C eDNA could 

be used efficiently to detect chicken troponin C gene transcripts. I also com

pared hybridisation of DNA (rom different species with the cern clone to carry 

out a preliminary study of the evolutionary conservation of genomic troponin 

C sequences. Avian, mammalian, piscine, yeast and mycoplasma DNA were 

digested with Eca RI restriction enzyme, electrophoresed on an agarose gel and 

transferred to a Zelabind membrane. The membrane was bybridised with 

[32pHabelled cCllI probe and the resulting autoradiograph is shown in figure 

3.4(D). The quail troponin C eDNA probe hybridised to all tbe bird DNAs 

examined, although the hybridisation signals with pigoon and herring gull 

DNAs were very weak. In each case, two bands were observed. However, 

there were no hybridisation signals from the mammalian, piscine, yeast or 

mycoplasma DNAs. The faint band of 4.6 kbp seen in lane J with yeast DNA 

is an artifact produced by hybridisation of [32pJ-Iabelied pBR322 DNA with 

yeast DNA This was verified by removing the probe from the blot and re

hybrid ising with I"PI-Iabelled pBR322 DNA. This gave the same band pat

tern on the yeast DNA as produced by cCIIl. Hence, although troponin C has 



FIg:. 1.4. Evolutionary conservation ot senomlc troponln C 
sequences. 

Genomic DNAs from various sources were digested with Eco RI and resolved 
on an 0.8% agarose gel. The DNA was transferred to a Zeiabind membrane 
and hybridised to 2 x 107 cpm of 132P]-labelled probe (specific activity, 2 x 108 

cpm/ pg) as described under 'Materials and Methods '. Lanes A - K : digested 
DNAs [rom (A) Quail, (B) chicken, (e) piseon, (D) duck, (E) herrins sull, (F) 
herrins sperm, (G) rat cell line L6, (H) bamster, (I) human, (J) yeast, (K) 
mycoplasma. In lanes A - I 15 pg of DNA, in lane J, 1 pg, and in lane K, 0.4 
pg of DNAs were run. I. Photograph of ethidium bromide stained agarose gel. 
11 The corresponding autoradiograph following 2 days' exposure. 
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considerable amino acid sequence homology amongst different classes, espe

cially between birds and mammals, it seems that this homology does not 

extend considerably to the gene level. 

3.4. Comparison of mRNA accumulation and myocyte pra

tein synthesis during cell culture 

There is very little information available on the regulation of cardiac tro

ponin C synthesis in myocyte cells in tissue culture. The regulation of slow 

(cardiac) troponin C synthesis in cardiac myocytes in culture was examined in 

this study. These studies were important for two reasons. The first was to 

find out whether the level of troponin C mRNA paralleled the level or troponin 

C polypeptide synthesis. This information would highlight any possible role of 

post-transcriptional control in the regulation of troponin C gene expression. 

Secondly, in order to examine whether the troponin C gene of cardiac myo

cytes is preferentially associated with the nuclear matrix, it is importa.nt to 

know the time of maximal tra.nscription. 

3.4.1. Myocyte proteID aYllthea. 

Initial experiments were carried out to determine the synthesis of slow 

troponin C by cardiac myocytes in a tissue culture environment. For this 

analysis, cardiac myocyte cell cultures were labelled for 4 hours with [SSSl

methionine at different times after plating. Total cellular extracts were 
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analysed by electrophoresis on two-dimensional gels (Fig. 3.5). Identification 

of troponin C was based on its isoelectric point l molecular weight and co

migration with bovine cardiac troponin C. Other pep tides, ego actin and tro

pomyosin were recognizable from previous reports (eg. Caravatti et ai, 1982). 

Long exposures of autoradiographs of a series of two-dimensional gels are 

shown in figure 3.6. The troponin C protein synthesis was highest at 36 hour 

after plating (Fig. a.6A) and it decreased to a very low level at 4 days after 

plating (Fig. 3.6B). At 7 and 14 days after plating weak spots (or troponin C 

were observed. In another set of experiments, tropanin C synthesis was exam

ined 20 and 48 hours post-culture. The synthesis level was high in 20 hour 

cultured cells but the maximum synthesis was observed in 48 hours post

culture (results not shown). The gels used to measure troponin C synthesis 

were reexposed for shorter time periods so that actin and tropomyosin syn

thesis could also be monitored (Fig. 3.7). It is evident that actin and tropo

myosin synthesis levels were at a minimum at 36 hour after plating. However, 

unlike troponin C, the actin and tropomyosin synthesis levels increased by 7 

days after plating. 

To examine the regulation of actin, tropomyosin and troponin C in myo

cyte cultures at various times after plating, the radioactivity present in those 

spots corresponding to these proteins on the two dimensional gels was deter

mined. Simple quantitation of the their synthesis, based on directly comparing 

the ra.dioa.ctivity of spots excised from the gel would have produced erroneous 



Fil. 3.0. Fluorolraphs or 2-dlmenslonallels or total cellular extract. 
from labelled chicken myocyte cell culture.(a). 

[35SI-methionine labelling, preparation of total cellular extracts and 2-
dimensional gel electrophoresis were performed as described in 'Materials and 
Methods'. 5 x 105 acid-precipitable counts were loaded on the isoelectric
focussing gels. I and II are the autoradiographs from the same gel with 24 h 
and 4 days' exposure, respectively. Ac, actin; D, desmin; Tm, tropomyosin; Tn 
C, troponin C; Number 1-9 indicate the spots used as internal markers for 
quantitation of results. 
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Ruorographs of 2-dimensional gels of total cellLtar 
extracts from labelk?d chicken myocyte cell cultures. 



Fig, 3,8, Fluorographs or 2·dlmenslonal gels or total cellular extracts 
rrom labelled chicken myocyte cell cultures,(b), 

[3bSJ.methionine labelling, preparation or total cellular extracts and 2· 
dimensional gel electrophoresis were performed as described in 'Materials and 
Methods'. For each analysis, 5 x 105 acid·precipitable counts were applied on 
isoelectric·rocussing gels. Extracts rrom (A) 36 hour, (B) 4 day, (C) 7 day and 
(0) 14 day old myocyte cultures were analysed. An arrow indicates tbe posi
tion of troponin C. A, Band C were exposed ror 4 days and D was exposed 
for 7 days. Only the rigbt band portions of the two dimensional gels are 
shown here. 
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Fluorographs of 2-dimensioral gels of total cellular 

extracts from labelled chicken myocyte cell a1tures. 



Fig. 3.7 . Fluorographs o( 2-dlmenslonal gels or total cellular extracts 
from labelled chicken myocyte cell cultures.(c). 

Same as the legend to fi gure 5 except shorter exposure. A, B and C were 
exposed for 24 hours and D was exposed for 2 days. Ac, actin ; Tm, tropomyo
sin and Tn C j troponin C. 
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results because even though equal number of acid-precipitable counts were 

applied to each gel, not all counts entered the gel. Therefore, it was decided 

to calculate the synthesis of contractile muscle proteins relative to other pro

teins whose levels did not significantly vary in myocyte culture during the 

course of the experiment. Nine random protein spots which could be easily 

excised without contamination from neighbouring spots, were chosen as inter

nal markers (Fig. 3.5), and the radioactivity of those spots was measured in 

each gel (Table 3.2). It was expected that most, if Dot all of these g proteins 

would represent housekeeping proteins. Ratios of radioactivity incorpora.ted 

into actin, troponin C and tropomyosin to that incorporated into each of the 

control spots was calculated (Table 3.3 a, band c respectively). The normal

ized ratios of troponin C relative to spots 1-9 at various days of plating is 

shown in figure 3.8. The relative levels of troponin C to all nine spots followed 

similar courses; the highest troponin C synthesis measured was at 36 hour 

after plating, the lowest at 4 days and this was followed by an increase by 7 

days. However, in 14 day old cultures, a complex pattern of the relative level 

of troponin C synthesis was observed. 

The change in troponin C synthesis during myocyte culture was strikingly 

different from that observed for the other two contractile proteins actin and 

tropomyosin. The results present in Tables 3.3b and 3.3c show that in con

trast to troponin C, both actin and tropomyosin syntheses increase for at least 

up to 7 days in culture. A representative of the normalized ratios of actin and 
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Table 3.2 

Radioactivity incorporated into 2-dimensional gel polypeptide 
spots following dUl'erent days in culture 

Soot Counts CDm 

Spot 
Days in culture 

1.5 4 7 14 
811:6 150.4 114.4 5Q.5 

117.0 38.7 121.4 24.4 
43.0 60.7 68.4 48.1 
46.4 44.7 38.5 68.6 

154.7 78.8 102.0 35.Q 

27.7 30.5 63.2 . 
445.2 280.5 253.3 315.1 

57Q.3 225.3 135.5 346.1 

258.3 IQ5.2 374.4 178.7 

Actin 2178.5 3130.5 12122.0 7834.2 

Troponin C 230.1 20.6 148.6 62.3 
Tropomyosin 177.3 46Q.Q 18QI.5 634.7 

Blank 4Q.3 45.0 52.7 50.4 

Actin, tropomyosin, troponin C and the nine control spots 
(Fig. 3.5) from 2-D gels of labelled cellular extracts of 
chicken myocyte cells of different ages were excised from 
gels and the radioactivity incorporated was measured in 
omniOuor-toluene scintillant. Blank represents back
ground counts in each gel (it is an average of three 
values). In all the' values shown (except blank), the back
ground counts have already been substracted. * - not 
determined since the spot was not clear in the autoradio-
graph. 
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Table 3.3a 

Relative levels or troponin C protein synthesis 

Relative Levels 

Reference spot 
Days in Culture 

1.5 4 7 14 
I 2.57 0.14 1.29 1.05 
2 1.95 0.53 1.22 2.55 
3 5.31 0.34 2.17 1.29 
4 4.96 0.46 3.86 0.90 
5 1.49 0.26 1.46 1.73 
6 8.30 0.68 2.35 . 
7 0.52 0.07 0.59 0.20 
8 0.40 0.09 1.09 0.18 
9 0.89 0.11 0.40 0.35 

The ratios of radioactivity in the troponin C protein spot 
relative to spots 1 - g ((rom table 3.2) are shown. 



Fig. 3.8. The relative level or troponln C eyntheals In myoeyte eell 
cultures or dlft'erent ages. 

The troponin C spots from 2-D gels were excised and the amount of radioac
tivity incorporated was measured. To correct for va.riations in the rate of prcr 
tein synthesis among different cultures, the radioactivity of specific internal 
control spots from the same gel (Fig. 3.5.) was determined and the ratio of trcr 
ponin C radioactivity to that of other spots was calculated. The data were 
normalized, with the lowest value in each set was considered as a one .• -., 0-0 
,A -A, 6-6, .-., 0-0. .... , 0-0, and [J-[J , ; ratios of troponin C synthesis to 
those of spots 1 - g. 
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Table 3.3b 

Relative levels of aetin protein synthesis 

Relative Levels 

Reference spot 
Days in Culture 

1.5 4 7 14 
I 24.31 20.80 105.96 132.30 
2 18.62 80.89 99.85 321.07 
3 50.30 51.57 177.22 162.87 
4 46.95 70.03 314.86 114.20 
5 140.80 39.73 118.84 218.20 
6 78.60 102.60 191.80 . 
7 4.89 11.16 47.86 24.86 
8 3.76 13.90 89.46 22.60 
9 8.43 16.04 32.38 43.84 

The ratios or radioactivity in the actin protein spot rela· 
tive to spots 1 - 9 (from table 3.2) are shown. 
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Table 3.3< 

Relatlve levels or tropomyosin protein synthesis 

Relative Levels 

Reference spot 
Days in Culture 

!.S 4 7 14 

1 1.98 3.12 16.53 9.13 
2 1.52 12.14 15.58 26.01 
3 4.09 7.74 27.65 13.20 
4 3.82 10.51 49.13 9.25 
5 1.15 5.96 18.54 16.68 
6 6.40 15.41 29.93 . 
7 0.40 1.68 7.47 2.01 
8 . 0.31 2.09 13.96 1.83 
9 0.69 2.41 5.05 3.55 

The ratios of radioactivity in the tropomyosin protein spot 
relative to spots 1· g (Crom table 3.2) are shown. 
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tropomyosin syntheses relative to spots 1-9 at various days of plating is shown 

in figures 3,9 and 3.10. Compared to troponin C synthesis, regulation of actin 

and tropomyosin syntheses was quite different. The minimum synthesis 

observed (or these proteins was at 36 hours after plating and the synthesis 

increased steadily (3.5-25 fold ror actin and 7-45 fold for tropomyosin) up to 7 

day after plating. 

To further elucidate the regulation of contractile muscle proteins, the rate 

of synthesis of actin and tropomyosin relative to troponin C synthesis was cal

culated. The ratio of actin to tropomyosin synthesis was also compared (Fig. 

3.11). The actin to tropomyosin synthesis ratio produced an almost linear plot 

over the entire 14 day time period. This suggests that actin and tropomyosin 

are co-regulated. The actin to troponin C ratio was at a minimum in 36 hour 

old cultures, increased about 16 fold in 4 day old cultures and decreased 

slightly in 7 day old cells. The plot of tropomyosin synthesis relative to tropo

nin C synthesis with various days of plating followed a similar pattern, again 

suggesting that actin and tropomyosin are co-regulated while troponin C is 

regulated differently. 

3.4.2. Myocyte mRNA II)'Bth .. 1o 

In order to determine if troponin C synthesis is regulated at the level of 

mRNA translation, the cytoplasmic troponin C mRNA levels in cardiac myo

cytes were measured at different days after plating. Initially, the troponin C 



Fig. 3.0. The relative level of actin synthesis in myocyte cell cultures 
of different ages. 

The same as figure 3.8., except the radioactivity in the actin spots was meas
ured. Only plots of spots 2 fe-e), 8 (11-.) and 9 (A-A) are sbown. 
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Fig. 3.10. The relative level or tropomyosin synthesis in myocyte cell 
cultures or difl'erent ages. 

The same as figure 3.9 r except radioactivity in the tropomyosin spots was 
measured. 
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FI,. 3.11. Aetln and tropomyosin protein synthesis relative to trop~ 
nin C 8)'nthesis and adin synthesis relative to tropomyosin synthHis 
in myoeyte euiturH or dUl'erent aSH. 

The radioactivity in the actin, troponin C and tropomyosin spots was meas
ured and the ratios were calculated. Ratios of actin and tropomyosin to tropo
nin C (e -e and . -.respectively) and actin to tropomyosin (. -.) are plotted. 
All ratios were normalized.. 
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mRNA levels were determined using the cGIlI probe (Plasmid containing 

eDNA insert (rom quail slow troponin C gene). For thi3 purpose equal 

amounts or poly(A)+ mRNA, extracted (rom cells 36 h, 4, 7 and 14 days in 

culture, was slot-blotted onto nitrocellulose filters and hybridised witb [ 32pJ. 

labelled cern probe. The results are shown in figure 3.12. 

The concentration of poly(A)+ mRNA used was within the linear 

response of the assay system used in these studies (results not shown). The 

maximum poty(A)+ troponin C mRNA level was present in the 36 h old cul

ture (Column A, Fig. 3.12). The level then dropped at days 4 and 7 and an 

approximate two fold increase (relative to days 4 and 7) was observed at day 

14. Hepatocyte cells also sbowed the presence or a very low level or troPODin 

C mRNA whereas equal amount of purified globin mRNA from rabbit reticulo

cytes (Amersham Chemicals) failed to produce any signal. Therefore, the level 

of non·specific hybridisation was below the level of detection under these con· 

ditions of hybridisation and washing. 

3.4.3. Comparlaon or myocyte mRNA and protein synthesla levels 

There was a. significant amount of troponin C mRNA in cells from 4, 7 

a.nd 14 da.y old cultures. The level of troponin C mRNA in 36 hour old culture 

was 4.0, 5.2 and 2.0 fold higher than that present in 4, 7 and 14 day old cuI· 

tUres respectively. These results show tha.t there was a. large drop in the level 

of troponin C mRNA synthesis between 36 hour and 4 da.y old cultures. How· 



Fis. a.12. Slot blot hTbrld .... tIOD or poIT(A)+ RNA with ccm. 

Extraction or poly(A)+ RN~ alot blotting and hybridisation were performed 
as described in 'Materials and Methods'. 2 x 107 cpm or I !2p]-labeUed eCm 
probe (specific activty, 2 x 10' cpm/pg) was used (or hybridisatioD. 0.25,0.S 
and 1.0 pg 01 poly(A)+ RNA lrom (A) 36 hour. (8) 4 day. (e) 7 day and (D) 
14 day old myocyte cultures and (E) 4 day old hepatocyte cell cultures was 
analysed. Rabbit ~blobin mRNA was used as 8. negative control (lane F). 
Autoradiograpb rollowing 1 day's exposure. 
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F". 1.11. Slot blot h,brldlaatloll 01 polT(A)- RNA with cCIU. 

Extraction of poly{At RNA, slot blottmg &Dd hybridisatioD were performed 
as described in 'Materials and Methoda·. 1 x 10' cpm of I "PJ.labeUed cCUI 
(specific activity, 2 x 10' cpm/pg) was used for hybridisation. In lanes A - E, 
10, 20 and 40 pg (I, 2, and 3 respectively) of poly(AJ- RNA from (A) 36 h, (B) 
4 day, (C) 7 day and (D) 14 day old myocyte cultures and in lane (E) 4 day old 
hepatocyte cultures and in lane (F) 25, 50 and 100 pg of cCUI plasmid was 
spotted as a positive control. Autoradiograph following 1 day's exposure. 
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ever, there was a dr&matic decrease in troponin C polypeptide synthesis 

between 36 hour and " days in culture compared to the decrease in mRNA 

level. Furthermore, even when the level ot mRNA between day 4 and day 7 

remained unchanged, the level of polypeptide synthesis altered during this 

period. These results indicate the possibility of repression of troponin C 

mRNA at the level of translation. In order to examine if there was a 

significant level of troponin C poly(A)- mRNA, I also examined the cyter 

plasmic poly(At fraction by a similar method. The results are shown in 

figure 3.13. These results indicate that the contribution of a poly(At popula

tion to the total levels of troponin C mRNA was negligible. 

To test further whether the troponin C rnRNA observed in 4 day and 7 

day old cultures was processed in a manner different from that present in 1 or 

2 day old cultures, the size and quantity of troponin C mRNA was analysed 

using denaturing agarose gel electrophoresis. The results of Northern blot 

analysis on the total cytoplasmic RNA are shown in figure 3.14. No detectable 

difference in the size of troponin C mRNA from cells of various ages was 

observed. The estimated size of troponin C mRNA was found to be approxi

mately 1 kb in each case. [n eaeh of these lanes a high molecular weight band 

(approximately 4 kb) was also observed. It is not certain whether this band is 

an artifact of hybridisation of plasmid DNA to 28 S rRNA By scanning the 

autora<iiograph (Fig. 3.14) the relative levels of troponin C mRNA were calcu

lated and plotted against time in culture (Fig. 3.15). The level of troponin C 



Fig. 3.14. Northern blot analyst. or troponin C coding RNA in 
chicken myocyte cell cultures. 

Samples of total cytoplasmic RNA (25 I'g/lane) was fractionated on a 1.5% 
formaldehyde-agarose gel. The RNA was transferred to nitrocellulose paper 
and hybridised with 1 x 107 cpm of [32pJ-Iabelled ccm probe (specific activity 
1.2 x 108 cpm/pg) as described under 'Materials and Methods'. In la.nes A - E, 
RNA from (A) 1 day, (8) 2 day, (e) 4 day , (D) 7 day and (E) 14 day old cul
tures were analysed. l. Photograph of acridine orange stained gel, Il . Autora
diograph following 1 days' exposure. 
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mRNA in the 2 da.y old culture was approximately .. Cold higher than that 

present in the" and 7 day old cultures and 2 times higher than that present in 

the 14 day old culture. These ratios are similar to those observed using the 

,lot blot hybridisation of poly (A)+ RNA with cClll probe (Fig. 3.12). Again 

these results showed that the decrease in the level ot troponin C polypeptide 

synthesis exceeded the drop in the level of troponin C mRNA (Table 3.3&), 

suggesting some (orm of repression of troponin C mRNA translation. 

In addition to the troponin C mRNA, the changes in the level of a-actin 

mRNA was examined in cardiae myocytes at various times after plating. The 

results or the hybridisation of 3Zp-labelled DNA of cell8 (plasmid containing 

quail skeletal a-actin eDNA insert) with total cytoplasmic RNA are shown in 

figure 3.16. The level of a-actin mRNA behaved in a manner similar to the 

troponin C mRNA. The highest a-actin mRNA level measured was at day 2 

which decreased dramatically .rterwards. The lowest actin polypeptide syn

thesis measured was, however, at day 1 and the synthesis continued to increase 

until at least day 7 (Table 3.2). This difference may be due to a switch to the 

synthesis of a different actin isoform. Since the actin probe used was only 600 

nucleotides long (Hasting and Emerson, 19S2), it is possible that it failed to 

bind to other cardiac specific actin mRNAs. From the Northern blot results it 

is clear that only the o-actin signal was detected. 



Fig. 3.16. The relative levels or hybrldlsatlon or troponln C probe to 
the RNA from myocyte. cells or difl'erent age •. 

The relative levels or hybridisation or troponin C probe to the polyA + 
(e·.'and total cytoplasmic RNA ( •.• ) were obtained by scanning the autora· 
diographs (in figures 3.12 and 3.14) and calculating the area under the peaks. 
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Fig. 3.18. Northern blot analysis or ,,-actin coding RNAa in chicken 
myocyte cell cultures. 

Total cytoplasmic RNA was fractionated and transferred to nitrocellulose 
membrane as described in the legend to figure 10. The hybridisation was car
ried out using 1 x 107 cpm of [32pJ-labelied cellS probe (specific activity 1.9 x 
JO' cpmjpg). Lanes A - E : RNA from 1 day (A), 2 day (8), 4 day (e), 7 day 
(D), and 14 day (E) old cultures. I. Photograph of acridine orange stained gel, 
II. Autoradiograph following 24 bours' exposure. 
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3.0. A.uociation or troponin C gene with the nuclear 

matrix 

The mechanism of tissue speciftc gene expression is still unclear. To gain 

more insight into how geoes (or muscle specific proteins (like troponin C) are 

expressed in muscle cells, troponin C gene expression in cardiac muscle cells 

was studied. In recent years studies from a number of laboratories (See section 

1.6) have shown a close relationship between gene expression and the associa

tion with the nuclear matrix structure. To examine whether the transcription

ally active troponin C gene ol cardiac myocytes is preferentially associated 

with the nuclear matrix structure, nuclear matrix DNA from cardiac myocyte 

cultures of different ages was prepared. Hepatocyte cultures were used as a 

negative control. Nuclear matrix DNA was prepared by solubilising the DNA 

which was not anchored to the nuclear matrix by digesting with Eco RI res

triction enzyme. The pelleted DNA and solublised DNAs were further digested 

to completion with the same enzyme to measure the level of the troponin C 

gene in these fractions by Southern blot hybridisation using nick·translated 

cern DNA. The results are shown in figure 3.17. As previously described, two 

large fragments of 4.8 and 2.3 kbp hybridised to the cern probe in all cases, 

although the 2.3 kbp band was very faint. The nuclear matrix DNA from the 

transcriptionally active 2 day old myocyte cultures did not show a preferential 

enrichment of the troponin C gene (Fig. 3.17.0 lane D). Similar results were 

obtained when .. and 7 days old cultures were analysed. Lane D shows 2, very 



Fig. 3.17. Hybrldiaation of cern probe to the nuclear matrix and 
control DNAs. 

A, 8 and C - Eco HI digested total DNA from chick myocytes , 15, 10 and 5 pg 
respectively. 
D - 2 pg of pellet DNA from a 2 day old cardiac myocyte culture. 
E - 10 pg of 30% pellet DNA from a 4 day old cardiac myocyte culture. 
F - 10 Jlg of 34% pellet DNA from a 7 day old cardiac myocyte culture. 
G - 10 pg of supernatant DNA from a 7 day old culture. 
H - 10 pg of 15% pellet DNA from a chicken hepatocyte culture. 
1- 10 pg of supernatant DNA from hepatocytes. 
Pellet DNA refers to the DNA which remained insoluble after &0 RI restric
tion enzyme digestion of the DNA in the nuclear cages (nuclei devoid of 
bistones). 5, 15, 30 and 34% pellet indicates the percentage of total nuclear 
DNA remaining insoluble (in the pellet rraction) following restriction enzyme 
digestion. The DNA from both pellet and supernatant were deproteinised and 
digested with Eco RI to completion before gel electrophoresis. Agarose gel 
electrophoresis, transfer of DNA to Zelabind membrane and hybridisation with 
I x 10' cpm of ["P[.labeiled cem DNA probe (specific activity 2 x 10' 
cpmj I'g) was as described under 'Materials and Methods'. I. Photograph of 
ethidium bromide stained gel, II. Autoradiograph after 20 days' exposure. 
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laint band, 01 troponin C gene Irom 2 pg DNA (the band, did not reproduce 

in the photograph .hown). Since this 2 pg DNA was derived lrom nearly 40 

pg 01 total DNA (95% 01 the nuclear DNA was in aoluble Iraction), it was 

expected that the intensity 01 signal in both bands would be much stronger 

than that present in 5, 10 or 15 pg 01 total DNA (lane A, B and C) il the gene 

was attached to the nuclear matrix. However, only faint bands were noticed. 

Similarly, 10 pg 01 30 and 34% pellet DNA lrom 4 and 7 day old cultures was 

equivalent to nearly 30 pg 01 total DNA. The intensity 01 tbe bands (lanes E 

and F) was lower tban those witb 5 pg 01 total DNA (lane C). Furtbermore, 

equal amounts of supernatant DNAs from a 7 day culture produced 2 bands of 

low intensities (lane G). These results indicate that there is no preferential 

enrichment of the troponin C gene in the insoluble (or pellet) nuclear matrix 

associated fraction. This was more evident when nuclear matrix DNA from 

myocytes was compared with that from the hepatocyte cultures. Since 

extremely Jow troponin C transcript was found in the RNA preparation from 

liver (Fig. 3.12 ), the troponin C gene was considered to be inactive in liver 

cells. The pelleted nuclear matrix DNA rrom these cells showed similar inten

sity or both bands as nuclear matrix DNA rrom cardiac myoeytes. 
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CHAPTER 4 

DISCUSSION 

4.1. Isolation of chicken myocyte cells 

The chick myocyte cell cultures were comprised almost exclusively of 

myocyte cells, with less than 5% of the cells being of fibroblast origin. One 

cannot be certain about the absolute purity of myocyte cells since it is possible 

that myocyte cell aggregates may obscure the presence of fibroblasts. The 

physiological effect of 5-bromo 2'deoxyuridine on myocyte cells was uncertain, 

although it must be emphasized that to reduce undesirable effects the pro

longed use of 5-bromo 2'deoxyuridine was avoided. After 24 hours of culture, 

the medium was replaced with the medium without 5-bromo 2'deoxyuridine. 

To dde, there have been no reports on the use of 14 day old chick 

embryonic hearts for high yields of myocyte cells. Most o( the previous studies 

used :;"8 day old embryonic hearts (Chacko and Joseph, 1974; Clarke, 1976) 

because o( the ease in isolating cells (rom young tissue, but (or those studies 

there was no need to isolate a large number o( pure myocyte cells. In the 

present study I (ound that 14 da.y old embryonic hearts were most suited to 

yield large numbers o( viable myocyte cells. Under the culture conditions 

employed here, the myocyte cells remain viable (or over three weeks and they 

(orm colonies by enla.rgement and possibly proliCeration. 
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4.2. Troponin C gene copy number, restriction analysis 

and evolutionary conservation 

The dot blot analysis indicated that the chicken cardiac troponin C gene 

was present in a low copy number, and there were 2.6 copies of this gene per 

haploid genome. This analysis, however, may not be very accurate and the 

real Dumber could be from 1 to 5 genes per haploid genome. Since the restric

tion analysis also gave simple restriction patterns, oCten a single band, it is 

quite likely that the chicken slow troponin C gene is present as a single copy. 

The presence of a single copy gene (or cardiac troponin C would be an 

interesting observation for a muscle protein gene. Most of the contractile mus

cle proteins so Car investigated are either members of multigene families ego 

actin and myosin heavy chain (Buckingham & Minty, j983) or their multiple 

isoforms are produced by differential RNA splicing ego troponin T (Breit bart et 

al. 1985). 

Troponin C belongs to a family of calcium-binding proteins. The other 

members of this family are calmodulin, parvalbumins and myosin light chains 

(Kendrik-Jones & Jakes, 1976j Means & Dedman, 1980). These proteins share 

a considerable degree of homology of their amino-acid sequences. However, I 

have always found a simple pattern of restriction fragments hybridisable to the 

troponin C probe. This result implies that under the hybridisation conditions 

used in these studies, the ccrn probe did not cross-hybridise with the other 
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genes of this superfamily. 

We were interested to find out whether the conservation of troponin C at 

the protein level was reDected at the level of the structural genets). The 

results indicate that the conservation of protein observed among birds and 

mammals (Holroyde, RobertsoD, Johnson, Solaro 8z. Potter, 198O) did not exist 

at the gene level. On the contrary, the quail troponin C eDNA did Dot share 

demoDstratable homology with mammals, fishes, yeast or mycoplasma. Also, 

amongst birds, the extent of homology varied considerably. Compared to 

chicken and duck, pigeon and herring gull DNAs hybridised very poorly with 

quail eDNA. This agrees with the evolutionary relationships since quail and 

chicken are members of the same order (Order Galliformes) and the members 

of the order Anseriformes (which includes duck) and Galliformes have the 

same evolutionary lineage. On the other hand, Columbirormes (eg. pigeon) 

and CharadriiIormes (herring guU) are distantly related to Galliformes which 

may explain the relatively poor hybridisation or the troponin C probe (rom 

quail with pigeon and herring gull DNA Using quantitative micro

complement fixation analysis to study protein evolution in birds, Prager and 

Wilson (1976) also found that duck and quail are immunologically more closely 

related to chicken than to guU and pigeon. 

10 the absence o( complete sequence data or the slow and (ast rorm or tro

ponin C genes rrom different species, the above studies offer only preliminary 

knowledge on the homology o( slow troponin C in different species. For 
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further studies on the evolutioDary conservation of the troponin C gene, the 

bybridisation experiments would have to be performed under conditions of 

various stringencies. The use of a large genomic probe would also be required 

to obtain a clearer picture on the evolutionary conservation of the troponin C 

gene. 

4.3. Regulation of troponin C gene expression 

The observed behaviour of troponin C protein synthesis in the cardiac 

myocyte cultures is quite surprising. The increase in actin and tropomyosin 

protein synthesis was as expected and corresponded well with an observa.tion 

by Holland (1979) who used a relatively impure population of cardiac myocytes 

from chick embryos. Holland reported that in a cell culture of embryonic 

chick heart, the synthesis of a number of muscle specific proteins, eg., sarco

plasmic reticulum ATPase and myosin heavy chain were increased up to 120 

hours after plating. UnCortunately, there is no other data available on the 

level oC troponin C synthesis in chick myocyte cells. The present study is, 

thereCore, the first to show non-coordinate regulation oC contractile muscle pro

tein synthesis in cardiac myocyte cells. 

A number oC studies on differentiating skeletal muscle cells in culture have 

unequivocally shown that the synthesis oC all contractile muscle proteins is co

regulated (Devlin &; Emerson, 1978). However, when one examines the other 

differences between cardiac and skeletal muscle differentiation, one realizes 
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that this break down of ccrordinate regulation in cardiac muscle cells is quite 

likely. One of the major differences in these two types of muscle cells is the 

regulation of DNA synthesis. In skeletal muscle, biochemical differentiation, 

Le., the increased synthesis of contractile muscle proteins and cessation of 

DNA synthesis (or withdrawal Crom the cell cycle) is tightly coupled (Devlin, 

Merrifield & Konigsberg, 1982). On the other hand, Holland (1979) has shown 

that the cessation of DNA synthesis of embryonic chick heart cells in culture is 

not associated with the activation of the synthesis of muscl~specific proteins. 

It is, therefore, not very surprising to also find differences in the way individual 

muscle protein synthesis is controlled. However I it is not certain whether 

these results are an artifact of an in vivo culture environment. It is possible 

that the turn over rate of troponin C is highest 4 days post-culture, and is not 

related to the synthesis rate of troponin C. Further studies using heart muscle 

from developing chick embryos are necessary to resolve this issue. 

In 14 day old cultures, a complex pattern of the relative level of troponin 

C synthesis was observed (Fig. 3.8). While this anomalous behaviour in 14 day 

old cultures could be due to a number of factors, two obvious possibilities are: 

(i) Condition of culture - Even though the myocyte cells continue to beat 

after 14 days of plating, it is likely that cell aging would induce metabolic 

changes causing changes in the rate of synthesis of the g control proteins. 

(ii) Presence of fibroblasts - As mentioned in Section 1.1, myocyte cells form 
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clumps, and the presence of any remaining fibroblasts would be obscured 

by clumps. U the number of fibroblasts in & culture increases consider

ably, it would also produce irregular results. 

The analysis of troponin C mRNA levels in cardiac myocyte cultures 

showed that it followed the same pattern as that of the troponin C polypep

tide synthesis. The highest mRNA level was in the 2 day old cultures and the 

level declined dramatically in 4 day old cultures. However, the extent of 

change in mRNA level was less than that of the polypeptide synthesis. Com

pared to 2 day old cultures, there was 25% troponin C protein synthesis in 4 

day old cultures. Following this drop, the troponin C protein synthesis in 7 

day old culture was increased to a value of approximately 60% of the 2 day 

old culture. In contrast, the mRNA level was approximately 20, 20 and 50% 

of the 2 day maximum level in 4, 7 and 14 day old cultures respectively. 

These results suggest that there is some form of translational control of trop~ 

nin C synthesis, most probably a repression of troponin C mRNA in 4 day old 

cells. 

Events happening in 4 day old cultures are of particular interest. Trop~ 

nin C mRNA measurements showed similar levels of mRNA in 4 and 7 day old 

cultures. However, analysis of troponin C polypeptide synthesis showed that 

troponin C synthesis was higher in seven day old cultures than that in 4 day 

old cultures. This implies that the troponin C synthesis was specifically 

repressed in 4 day old cultures and this repression of troponin C mRNA was 
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In contrast to troponin C, actin polypeptide synthesis and its mRNA lev

els appeared to have followed a different pattern. In spite of the observed 

increase in actin synthesis in 4, 7 and 14 day old cultures compared to 2 day 

old cultures, the mRNA level decreased considerably, This implies that there 

was a change in the efficiency of actin mRNA translation. An alternate possi

bility is that a new cardiac specific isoform appeared in day 4 which did not 

hybridise with the skeletal muscle a-actin probe used in these studies (Hastings 

& Emerson, 19S2a). This seems a plausable explanation, since Minty et al. 

(lQ82) demonstrated weak hybridisation of a 1100 bp skeletal muscle actin 

eDNA with cardiac-specific actin mRNA. The clone used in my studies was 

only 600 bp long and of skeletal origin, and therefore, might not have hybri

dised with the cardiac actin mRNA. This probe also failed to hybridise with 

the rat skeletal muscle RNA and rat genomic DNA (unpublished observations). 

In the absence of any other data on the actin mRNA level in cardiac myocyte 

cultures, I believe that the second explanation for the observed decrease in 

actin mRNA is more likely. 

4.4 Nuclear matrix and the troponin C gene 

To understand the mechanism of tissue-specific expression of the troponin 

C gene, its association with the nuclear matrix was examined. In a number of 

reports, it has been claimed that actively transcribing genes are associated 

with the nuclear matrix structure (Berezney, 19S4 and the references therein). 
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Only a small number oC genes have been examined in these studies. In the 

present study, I examined whether the cardiac troponin C gene followed a 

similar mechanism of tissue-specific gene expression as globin, ovalbumin and 

heat shock genes. 

Nuclear matrices were prepared by treating whole cells with a non-ionic 

detergent and 2 M NaC!. Nuclear matrices prepared by this method (origi

nally developed by Cook et al.,lgS2) were more satisfactory than those 

prepared by a method described by Robinson, Nelkin and Vogelstein (1982). 

For instance, Cook's procedure required minimal handling and the histone-Cree 

DNA was protected from breakage by the nuclear cages, whereas, the method 

by Robinson et al. required treatment of isolated nuclei with a Don-ionic deter· 

gent and then with 2 M NaCI. Further, the nuclear matrices so prepared by 

Robinson's technique were always tightly clumped and the clumps could not 

be disrupted without destroying the matrices. 

The results presented here show that the cardiac troponin C gene was not 

associated with the nuclear matrix in either cardiac myocytes or hepatocytes. 

I found no enrichment in the nuclear matrix fraction. It could be argued that 

the association of troponin C gene with the nuclear matrix was not observed in 

our experimental system due to the foHowing reasons: 

(i) The troponin C gene is repressed in cardiac myocytes. This is unlikely, as 

I found that the mRNA level increases from 24 hour to 48 hour old cul-
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tUTes (Fig. 3.16). However, as there was a significant decrease in the trer 

ponin C mRNA level in 4 day old cultures, it is possible that the prepara· 

tion of nuclear matrix DNA (rom 48 bour old cultures actually 

represented the troponin C gene in a repressed state. Further studies on 

the transcription of the troponin C gene in cardiac myocytes would be 

necessary to resolve this issue. 

(ii) It is possible that the choice of the particular restriction enzyme (Eco RI) 

might have infiuenced the result. Eco RI produced 2 fragments of 4.8 and 

2.3 kbp, which are significantly larger than the 1 kb size of troponin C 

mRNA. Quail DNA also produced 2 bands of similar sizes. SiDce there is 

no Eco RI site in the 420 bp eDNA used here, this result indicates that 

there is possibly an intron(s) at the 3' end or the troponin C gene. It was 

previously reported ror the ovalbumin gene that the entire transcribed 

region shows prererential attachment to the nuclear matrix (Ciejek et al. 

1083). Therefore, it is unlikely that the absence or preferrential attach

ment or the troponin C gene to the nuclear matrix was due to limitations 

imposed by the restriction enzyme or the particular probe. However, 

recently, Cockerill and Garrard (1086) have mapped the matrix associated 

region within the kappa immunoglobulin gene. It is an approximately 600 

bp A-T rich region and is located about 200 bp upstream or the tissue

specific enhancer which is 5' to the gene. Also, Mirkovitch et al (1084) 

found the matrix associated site ror the hsp 70 heat shock genes to be 
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upstream of the 5' regulatory elements. Hence, Curther studies with a Cull 

size genomic probe are required to resolve the question of preferential 

attachment or the troponin C gene to the nuclear matrix. 
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SUMMARY 

This is the first comprehensive report on troponin C protein synthesis, its 

mRNA levels and its gene organisation. The main objective of this project 

was to examine how expression of the tropooin C gene is regulated in cardiac 

myocyte cells. The following conclusions can be drawn from the studies 

described in this thesis: 

1. In chicken, the slow troponin C gene is possibly present as a single copy. 

2. Although troponin C is a conserved protein, this conservation does not 

extend to the gene level, as observed by Southern blot hybridisations. 

3. The correlation between troponin C synthesis and its cytoplasmic mRNA 

level indicate that troponin C is regulated mainly at the transcription 

level. However, there are indications of translational control of troponin 

C synthesis in 4 day old myocyte cultures. 

4. In chicken cardiac myocyte cultures con tractile muscle proteins are not 

c~ordinately regulated since actin and tropomyosin protein synthesis fol

Iowa very different pattern from that of troponin C synthesis. 

5. The 3' end of the troponin C gene is not preferentially enriched in the 

nuclea.r matrix fractions of actively transcribing myocyte cells. 
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