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ABSTRACT

Currently, snow analysis for weather prediction in Canada is conducted using snow depth

measurements alone. The current effort is intended to revisit this analysis using both snow

depth and density measurements from snow course sites previously unused during

weather prediction analysis. The purpose of this reanalysis is to produce a gridded daily

Snow Water Equivalent (SWE) hindcast within the transect from the Great Lakes through

Quebec and into Labrador.

The final SWE prediction was produced by combining output from existing deterministic

snow density models and developed statistical prediction models.

Statistical Models were developed based on Universal Kriging (UK) interpolation

technique on measured data and by considering the background fields. These fields

include a number of physiographic variables and the Canadian Meteorological Centre

(CMC) snow depth analysis product.

Finally, the new product was evaluated from the calculated Root Mean Square Error

(RMSE) of the predicted SWE at both validation and cross validation points, simulation

vs. observation comparison, and also from a visual consistency check.

The research produced a methodology for SWE prediction and daily gridded SWE

product, which is a valuable attempt to improve hydrological prediction from snow

melting. The average RMSE of SWE prediction was around 30-35 mm although, the

validation of results were challenged by limited quantity of snow course data.
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Chapter 1 Introduction

1.1 Background

Snow is an important factor in weather forecasting and the study of climate change. Snow

cover variability, snow depth and snow water equivalent are three important components

related to snow hydrology. In Canada, snow analysis for weather prediction is mainly

conducted by snow depth data because of its frequency and ease of measurement.

In Canada, snow density is mainly measured bi-weekly during the snow period. Standard

snow tube survey methods are used to measure both snow depth and density at snow

course sites. These methods are popular among water resource managers but have not

been used fully by Environment Canada (EC) for weather and hydrological forecasting.

The goal of this study is to develop an assimilation of snow-on-the-ground based on snow

course observations. The main objective is to develop a daily gridded· snow water

equivalent product. A SW-NE transect from the Great Lakes through Quebec and into

Labrador is proposed for initial use. The main use of this Snow Water Equivalent (SWE)

product will be in weather forecasting but it can also be used to initialize water resource

models and to evaluate land surface snow models.

There are currently operational snow analysis products that are produced through

analysis, remote sensing and hind casting. There are known deficiencies with these

products that can be enhanced by the incorporation of snow survey data into an

operational data framework. This project would also seek to demonstrate this.
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A dataset based on representative measurements would be useful for snow model

evaluation (such as Canadian Land Surface Scheme). This snow course data product

would combine a large pool of point data into a spatially consistent data set. A large area

stretching from the Great Lakes to Labrador would allow area-based assessment of land

surface snow models that would avoid problems associated with representativeness of

point comparisons and provide a more appropriate transect based comparison.

In Canada, hydro-power is one of the most important sources of renewable energy.

Development of hydroelectric projects can significantly reduce the greenhouse gas

emissions (GHG) and also could displace carbon dioxide emissions every year from

thermal, coal and fossil fuel power generation. This will reduce the effect of climate

change. For the operation and planning of hydroelectric projects, it is important to know

the availability of water. In Canada, a significant amount of runoff comes from snow

melting. Snow is a vital component in reservoir inflow. It is expected that reservoir

inflows can be determined more precisely from this developed SWE product, and

forecasting of reservoir inflows is an important part of the planning, operation and

maintenance of any hydroelectric development.

In different areas of the world, snowmelt is the main source of surface water supply and

ground water recharge. It is also one of the main causes of flooding where a significant

portion of precipitation falls as snow. The daily gridded SWE product developed from

this study can be used to improve present flood forecasting and also surface or ground

water assessment.



1.2 Study Area

For this study, a large transect stretching from Ontario to Labrador has been selected. The

study area uses data from within Quebec, the Great Lakes region, and Labrador,

primarily. The spatial extent of this study area is bounded by 55° W to 97° Wand 38° N

to 60° N. However, there are large regions within this domain that have little to no snow

course measurements included, particularly in the North-West and South-East of the

domain.

1.3 Objectives

The main objectives ofthe study include the following:

1. To construct a snow course database within the transect;

2. To alter the Canadian Meteorological Center (CMC) snow depth data product

to reflect snow depth conditions from the dominant vegetation coverage of the region;

3. To develop statistical SWE prediction models by incorporating snow course

measurements with a number of background fields;

4. To produce the final SWE analysis product from the combination of

deterministic and statistical models output;

5. To graphically represent the final SWE product by producing spatial maps;

6. To develop an automated SWE prediction tool for Canada.

The first objective of this research project is to construct a snow course database within

the transect by collecting data from different sources. This database should be an

extension of Ross Brown's snow CD (MSC 2000) and have options for regular updates

and visual representations.
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In this study, the CMC snow depth analysis product was shown to be an excellent

predictor of SWE since it was well correlated with SWE. It was known that the CMC

snow depth product was biased since most measurements of snow depth were drawn from

open areas such as airports. In this study, the CMC snow depth data product needs to be

altered to reflect snow depth conditions from the dominant vegetation of the region. It is

expected that this bias will correct the CMC product while maintaining its spatial

variability.

The third objective is to develop statistical models by incorporating point SWE

measurements. In this study, Universal Kriging (UK) interpolation technique is applied

for the statistical model development. Different background fields with good co-relation

to SWE are used as predictors in these UK models.

There are some· existing deterministic snow density prediction models. These

deterministic models need to be evaluated. The next objective of the current research is to

evaluate the existing deterministic models in the study area, and combine the output from

deterministic and statistical models to produce the final daily gridded SWE.

Graphical representation of the predicted SWE is necessary. The fifth objective of the

study is to generate daily gridded SWE maps.

The final objective is to develop a SWE prediction tool, which can automatically

incorporate all the information, data, and models to produce the final SWE product for a

selected time period. The tool should also be able to produce the final SWE maps.

The main goal of this current study is to produce a daily gridded SWE product within the

transect. All the objectives mentioned above need to be fulfilled for reaching the final



goal. It is expected from the research that the final SWE product should contain less

errors and also be consistent in variation in both time and space. It is also expected that

the SWE product should not contradict with the basic nature of snow hydrology.

1.3 Organization of Thesis

The thesis has been organized into 8 chapters as follows. Chapter 2 describes a review of

the literature related to snow hydrology. Previous works related to this study are also

summarized shortly in this chapter. Chapter 3 describes about different types of data

collection and their usage. A description of the constructed data base is also provided.

Chapter 4 describes about the spatial analysis, interpolation and data assimilation

techniques. Different spatial interpolation techniques are discussed and evaluated in this

chapter. Chapter 5 describes the CMC snow depth analysis product and necessary

adjustment to reduce the associated bias. In chapter 6, the methodology of spatial and

temporal SWE prediction is described. Chapter 6 also describes about the existing

deterministic snow density models and developed statistical models. Chapter 7 describes

the generated SWE product and error associated with the prediction. In this chapter, a

discussion about the research approach and outcome is also presented. Chapter 8 draws

the conclusion and summarizes some recommended areas for future improvement.
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Chapter 2 Literature Review

2.1 Snow and Hydrology

Snow is a form of precipitation, the flakes of which come in a variety of sizes and shapes.

It is a granular porous medium which contains both ice and pore spaces. When the

temperature is below 0° C these pore spaces contain air but if the temperature is above 0°

C then the pore spaces can also contain liquid water, resulting" in a three phased system

(Dingman, 2002). Snow is typically stored on the land surface for hours to months, or

even years before melting.

Snow is an important component of the hydrosphere influencing global, regional and

local climates, hydrology, and water resources. More specifically, snow plays an

important role in the following:

Water supp Iy

Agricultural projects

Hydro-electric power generation

Soil moisture estimation

Ecological and environmental needs

Flood prediction and forecasting

Climate change

Numerical weather prediction

Basic terminology for the study of snow includes snow pack, snow depth, snow density

and snow water equivalent. Snowpack refers to the accumulated snow on the ground at



Pwater

the time of measurement. Snow depth is the depth of snowpack and snow density is

defined as mass per unit volume of snow. For hydrologists, the most important property

of a snowpack is the amount of water substance it contains (Dingman, 2002). This

amount of water is known as the snow water equivalent (SWE) and denotes as the depth

of water resulting from the complete melting of snow. If we denote snow water

equivalent as Swater , snow depth as Sdepth , snow density as psnow and density of water as

pwater then the relation is

s = Psnow Sdepth
water

The density of new-fallen snow mainly depends on air temperature (Mellor, 1964) and

wind speed (Dingman, 2002). Relative densities of fresh snow with respect to water can

range from 0.004 to 0.34 gmcm·3 (McKay, 1970) depending on the temperature and wind

condition (Dingman, 2002), though relative snow density usually ranges from 0.07 to

0.15 gmcm'3 (Garstka, 1964; Dingman, 2002). For the sake of simplicity, an average

relative snow density of 0.1 is often assumed (Dingman, 2002). After snow accumulates

on a land surface,a metamorphism process continues until it has completely melted.

Snow density increases as a function oftime to reach the maximum limit.

Snow cover distribution as outlined in Arsenault (2010), can be described in three major

spatial scales: macroscale, mesoscale, and microscale. The depth of seasonal snow cover

depends mostly upon topography, specifically elevation, slope, aspect, barrier height,

vegetation mass, temperature, wind, and predominant weather systems. Snow distribution

depends upon the vegetation type, density, and open areas, which are exposed to more



accumulated snowfall (Arsenault, 2010). Wind blows snow from one place to another,

and thus plays an important part in the transportation of snow. Redistribution of snow

water equivalent and loss of water by sublimation occurs during this transportation

process (Arsenault, 2010). Additionally while, temperature contributes to the snow

melting process, rainfall can contribute more significantly.

Measurements of snow and snowmelt are important for many snow related studies.

Taking accurate snow measurements can be quite difficult due to differing scenarios and

instrumental limitations. Measurements of snow can be done by in-situ ground

measurements or measurements from remote sensing. In the case of in-situ

measurements, it is difficult to obtain the spatial variation in snow distribution. There are

also problems associated with remote sensing, the primary problem being the coarse

resolution. Cloud obstacles are also a challenge with regard to satellite measurements.

The amount of snow on the ground is measured using a number of methods (Dingman,

2002 ; Arsenault, 2010). Snow depth can be measured directly at the time of snowfall,

and snow depth and SWE can also be measured from the snowpack. In the case of

snowfall measurements, station networks are used to measure snowfall over a certain time

interval. Manual and automatic gauges are used to measure both snow depth and water

equivalent. A manual gauge can record snow fall in 6-hourly time intervals and an

automatic gauge can record snowfall rate in hourly intervals (Arsenault, 2010). Snow

rulers, snow boards, and snow pillows are also used for measurement Pictures of various

snow gauges are shown in figure 2.1.



Figure 2.1 Various Gauges for SnowFall Measurements (Arsenault, 2010)

The United States has developed snow telemetry, known as SNOTEL, to record and

transmit snow depth, water equivalent, precipitation, temperature and soil moisture from

more than 100 sites in the western US. It is an example of a gauge network. Figure 2.2

presents a SNOTEL site at Smiley Mountain in Big Lost River basin. It contains a variety

sensors for measuring different parameters, as well as snow pillows for SWE

measurements.
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Figure 2.2 SNOTEL Site at Smiley Mountain (Natural Resources Conservation Services, US)

There are a number of ways to conduct snowpack measurements. A snow survey is the a

common method. They are conducted periodically at fixed locations, known as snow

course sites. Manual measurements of snow depth and SWE are conducted by trained

professionals and typically using a standard snow tube method. Figure 2.3 illustrates this

method. Snow pillows and acoustic gauges invented by Chow (1992), can also be used to

perform snowpack measurements (Dingman, 2002).
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Figure 2.3 Snow Tube Used at a Snow Course Site

According to Dingman (2002), snow can also be measured using remote sensing

technologies. For instance, microwave radiation can be used to measure areal extent,

SWE and other snowpack properties. Snowpack emitted microwave radiation depends on

its temperature, grain size and soil condition, which can be used to estimate SWE (Foster

et aI., 1987). Presently, there is an Advanced Microwave Scanning Radiometer -Earth

Observing System ( AMSR--E) with snow depth and SWE products available at a 25 km

resolution.

Satellite imagery using visible and infrared light can also provide information about snow

cover extent. It should be kept in mind that careful interpretation is required to distinguish
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snow from clouds, and to identify snow in forested areas and highly reflective land

surfaces (Dingman, 2002).

Table 2.1, from Dingman (2002), summarizes snow measurements for different

parameters. Here (G) means ground based measurement, (A) means aircraft based

measurements, and (S) means satellite based measurements.

Table 2.1 Summary of Methods for Snow Measurements (Dingman, 2002)

Parameter Depth SWE Areal Extent

Precipitation
Standard Storage Gage (G) Gage Network (G)
Universal Gage (G) Radar (G)

Observation networks

Ruler, board (G) Melt Snow on board (G) (G)

Snowfall Use estimated density (G) Radar (G)
Universal gage (G) Visible / Infrared (S)
Snow pillow (G)

Snow Stake (G,
A) Universal gage (G) Snow surveys (G)

Snow tube (G) Snow tube (G) Visible / Infrared (S)

Snowpack Acoustic gage Snow pillow (G) Microwave/radar (A,S)

(G) Artificial radio isotope gage
(G,A)
Microwave/radar (A,S)
~atural gamma radiation (G, A)

Snow pillow (G) Snow-pillow network(G)
Snowmelt Lysimeter (G)

Universal gage (G)

For the purpose of this research, it is necessary to know about snow melt as change of

SWE is closely related to melted snow leaving the snowpack. There are four phases of

snow melt (Dingman, 2002). The first phase, when an increase of water equivalent occurs
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within the snow pack, is the accumulation period. The next phase is the warming phase

where snowpack temperature increases fairly steadily until the snowpack is isothermal at

0° C. The melting phase, where melting water is retained in the snowpack, occurs next.

The final phase is the output phase where water drains out from the snowpack.

2.2 Snow Analysis in Canada

Snow is an important component of Canadian hydrology, and is represented as such in

published literature. Ross Brown is a prominent person in the Canadian snow field. He

has conducted a number of studies in snow cover variability (Brown, 2000; Brown and

Mote, 2009; and Brown, 2010). Many climate change and hydro logical patterns can be

obtained from the analysis of snow cover and other parameters related to snow. That

being said, snow depth and density, not snow cover, are the main focus in the current

study.

Canadian Snow Depth Analysis

Real time snow information of snow extent, snow depth, snowpack density, and snow

water equivalent are necessary for accurate numerical weather prediction. The Canadian

Meteorological Center (CMC) has developed a global daily gridded snow depth analysis

product. Brasnett (1999) describes details about this snow depth analysis where, two

types of information were used: snow depth observation obtained from the SYNOP

observing network and an estimated background field from the snowpack model.

Accord ing to Brasnett (1999), the measured data were screened in a three step process: 1)

false reports of snow 2) systematically understated snow depth and 3) stations that violate

temporal continuity. A background field was generated from a complete snow pack
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model by considering all types of precipitation, sublimation/condensation, snowmelt and

snowpack metamorphosis (Brasnett, 1999). The final snow depth· was produced by

combining background fields and observational data using a statistical interpolation

technique (Daley, 1991).

The produced snow depth was verified with independent data points, and has been shown

to provide better prediction of snow than simple climatology. From the analysis, it was

found that the global NWP model suffers from a precipitation deficit in some regions. For

instance, snow depth was underestimated by an average of 3.0 cm for the Northern

Hemisphere (Brasnett, 1999). According to the author, bias in the analysis could occur

due to two main reasons: the underestimation of precipitation by NWP models, and

because most measurement stations are located in urban areas or valleys. In other words,

it is a problem associated with the representativeness of the data.

The analysis scheme presented in Brasnett (1999) was also used to produce snow density

though no observed snow density data was used. For verification, density was estimated

based on the age of the snowpack, though, snow density estimation was likely affected by

the NWP model's underestimated precipitation.

The CMC snow depth product can be used for a number of purposes other than weather

prediction, such as detecting the effects of climate change and validating algorithms for

satellite data processing (Brasnett, 1999). The CMC product is of great value to this thesis

as it can be used as the main predictor of SWE. Figure 2.4 presents a sample CMC snow

depth analysis map.
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Figure 2.4 Sample CMC Snow Depth Analysis Map within the Study Area

Gridded Monthly Snow Depth and Snow Water Equivalent

Gridded estimation of snow water equivalent is necessary for the evaluation of snow

cover in General Circulation Models (GCMs). For this purpose, Brown et al. (2003)

developed a gridded monthly snow depth and SWE product for North America. The

developed snow depth analysis in CMC (Brasnett, 1999) was applied to generate the

monthly mean snow depth and corresponding snow water equivalent. The developed

gridded mean snow depth and SWE product can be used for snow cover analysis in GCM

models, as well as satellite data evaluation and validation.
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The effects of climate change can be detected by using snow cover analysis from GCM

simulated snow cover. It should be noted that evaluation of snow cover simulation by

GCM models are hampered over the Northern Hemisphere (NH) due to lack of SWE data

(Brown et aI., 2003). The aim of Brown et al. (2003) was to develop monthly snow depth

and SWE product for North America to evaluate GCM snow cover simulation during the

Atmospheric Model Intercomparision Project II by using the snow depth analysis scheme

developed by Brasnett (1999).

According to Brown et al. (2003), two types of information were required: snow depth

observation and a guess background field. Snow depth data in Canada was collected from

Canadian synoptic stations, and snow depth data reported weekly or biweekly at

Canadian snow course sites was also used in the analysis. US data from National Climate

Data Center (NCDC) was also incorporated. Brown et aI. (2003) attempted to generate a

more accurate background field from the snowpack than that of Brasnett (1999) as their

simple snow aging scheme did not provide adequate results for the mean variation of

snow densities over North America (Brown et aI., 2000). In Brown et al. (2003), the

background snow depth field was generated by a snowpack model using European

Center for Medium-Range Weather Forecasts (ECMWF) precipitation and analyzed 2-m

air temperature as input (Brown et aI., 2003). Additional terms have also been included in

this model including mixed precipitation type, rain melt, detailed treatment of snow

aging, melt factor, and canopy sublimation loss. The observational data and background

field were combined by using the statistical interpolation system (Daley, 1991).
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SWE was estimated in this study from the analyzed snow depth and calculated snow

density from the snowpack model (Brown et aI., 2003). It should be noted that at no point

are SWE observations used and SWE had been completely estimated from the snowpack

model considering ECMWF model precipitation and temperature as the model input. The

estimated monthly SWE was validated with respect to snow course sites, though the

validation snow course dataset was not totally independent as it had been already used for

the estimation of monthly average snow depth. After evaluation, it was found that. the

density was overestimated in the boreal forest zone and underestimated in other places.

To improve the situation the author suggests using more detailed snowpack model.

Brown (2000) also compared his research with findings from some previous studies and

found that snow depth data provided a good indication of inter annual variability of SWE

using fixed seasonal snow density. A previous study (Brown, 2000) suggested that

detailed simulation of snow density might not be necessary to predict SWE from snow

depth. However, Brown et al. (2003) has mentioned that by using climatologically

average snow density in estimating SWE, one is not able to take into account events such

as winter thaws and rain. It was also observed that prediction of snow density was

improved in mountainous region, but it was also observed that the snowpack model did

not perform as well on the Labrador coast (Brown et aI., 2003). The information extracted

from Brown et al. (2003) can be used with the current SWE analysis, while the dataset

developed in Brown et al. (2003) can also be used for the validation of SWE product.
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2.3 Canadian Precipitation Analysis

Canadian Precipitation Analysis (CaPA) converts real time point measurements of

precipitation into a gridded data set. The methodology and preliminary results of CaPA

were discussed in Mahfouf et aI. (2007). Though the CaPA project was created primarily

for rainfall precipitation, the information extracted from this project can be useful in the

current study. In CaPA, a statistical interpolation technique was used to convert point

rainfall into gridded data set.

The goal of CaPA is to produce 6-h rainfall accumulations at a resolution of 15 km over

North America in real time (Mahfouf et aI., 2007), which is important for NWP models,

hydrological forecasting, flood forecasting, soil moisture analysis, and water

management. Preliminary steps about the project were described by considering the

Quebec region in August 2003. The goal of this project was to produce a framework

where real time precipitation analysis could be easily produced and evaluated (Mahfouf et

aI.,2007).

The spatial interpolation technique used in CaPA as well as information related to the

skewness of the data, are both relevant to this thesis.

The Statistical Interpolation (SI) technique has the option to use an initial guess

background field while techniques like kriging (Finkelstein, 1984) and the successive

correction method (Bussieres and Hogg, 1989) do not have this option. This guess field

can improve prediction capacity. The SI has been used in Brasnett (1999) and Brown et

aI. (2003) and has been widely used as a data assimilation technique to combine

observational data with model output. In CaPA, a short term forecast of 6-h accumulated
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precipitation from the regional GEM model is used as a background field to combine with

the observational data to produce the final product.

Dealing with zero values is a challenge in the current research, as it is in CaPA.

According to Mahfouf et aI. (2007), the analysis in CaPA was performed on a

transformed variable x= In (p+y), where x is the transformed 6-h accumulated

precipitation in mm, p is 6-hr accumulated precipitation in mm and y is a constant at

Imm. The value of the constant was chosen to be I mm, so that after transformation the

zero precipitation values became zero again in the log scale (Mahfouf et aI., 2007). The

main reason for the transformation was to make the data normal and to remove the

skewness, which is required for various statistical analysis techniques.

A 6-hr accumulated precipitation map produced by the CaPA objective analysis is shown

below as Figure 2.5.

Figure 2.5 Precipitation Map Generated from Regional CaPA Analysis ( Environment Canada)
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2.4 SNODAS

American researchers have developed the Snow Data Assimilation System named

SNODAS, which contains an assimilation of different variables related to snow.

SNODAS was developed by the National Operational Hydrologic Remote Sensing

Center (NOHRSC) to support hydrological modelling and weather forecasting, by

integrating snow data from satellites, airborne platforms, and ground stations with the

model estimates of snow cover (Carroll et aI., 2001). SNODAS includes procedures to

ingest and downscale outpu~ from NWP models, and procedures to assimilate satellite

derived, airborne and ground-based observations of snow covered extent and snow water

equivalent (Barrett, 2003). An assimilation of snow depth and snow water equivalent has

also been generated from the SNODAS project.

According to Barrett (2003), SNODAS has three components: a data ingest, quality

control, and a downscaling component for meteorological information from numerical

weather prediction models; a snow mass and energy balance model; and data assimilation

routines to update snow model estimates of snow pack variables with observed snow

cover, snow depth, and snow water equivalent data.

Differences between observed and estimated values were computed first, then the model

generated fields were updated by simple nudging or a relaxation data assimilation

technique (Barrett, 2003). Figure 2.6 presents a spatial SWE map generated by SNODAS

on 29 February,2004.
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Figure 2.6 Sample SWE map Generated from SODAS ( NSIDC)

From SNODAS, it is important to note that a framework of snow assimilation systems

with snow cover, snow depth, and snow water equivalent as variables can be useful for

hydrological analysis and weather prediction. In Canada, CMC has developed a snow

depth assil11ilation system, though a SWE assimilation system would be useful. This

thesis aims to fill this gap.

2.5 Snow Cover Classification System

A number of classification systems have been developed to classify snowflakes (Magono

and Lee, 1966) and snow on the ground (Somerfield, 1969 ; UNESCO, 1970). These

classification systems describe snowflakes at scales ranging from millimeters to

centimeters (Sturm and Holmgren, 1995). In Sturm and Holmgren (1995), a snow
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classification system for seasonal snow cover consisting of six classes (tundra, taiga,

alpine, maritime, prairie, and ephemeral) Was proposed. This classification system is

based on collected field observations and has local to global applications. A simple snow

density model has also been developed based on this snow cover classification system,

and is used in the current research. Simple snow density model used here due to

computational simplicity and it was also found from previous studies that complex

density models are data intensive (Brown et aI., 2003) and difficult to setup for large area.

According to Sturm and Holmgren (1995), each class' in the new classification system

was defined by a unique ensemble of textural and stratigraphic characteristics including

information about the snow layers, thickness, density, as well as morphological and grain

characteristics within each layer. The classes have been also derived using variables such

as winter wind, precipitation, and air temperature (Sturm and Holmgren, 1995).

Sturm and Holmgren's (1995) classification system was based on physical characteristics

and not vegetation type or geographical locations. Climate, vegetation, and snow were

interrelated but this three way relationship was quite complex. Due to this complexity,

snow class was first defined by its physical characteristics, and only subsequently related

with the climate, vegetation, and geographic location. Figure 2.7 presents a global snow

classification system map derived from Sturm and Holmgren (1995).
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Figure 2.7 Global Map of Snow Classification System (Storm and Holmgren, 1995)

The accuracy of this snow classification is strongly dependent on the atmospheric and

vegetation dataset used. Error in this classification system also occurs due to the lack of

station density at some points (Sturm and Holmgren, 1995).

The classification system developed by Sturm (1995) was verified with observed data

points. Despite some inconsistency, maps produced from the classification system were

accurate enough to use in climate applications. A comparison of the maps produced with

observed data indicated accurate classification in roughly 62 to 90% of the area studied

(Sturm and Holmgren, 1995).

Two deterministic models are used in the current thesis: a snow climate class model

(Sturm et aI., 2010) and a snow aging model. The snow climate class model is based on



24

the snow cover classification system, discussed above. Certain parameters in the snow

density model such as maximum snow density were also based on the snow cover

classification system (Sturm et aI., 2010). The values of maximum snow density within

each climate class can be used as threshold values to predict density in the SWE analysis.

2.6 SWE Prediction Using Climate Class

According to Sturm et al. (2010), snow water equivalent is the most significant term to

understanding global snow water trends. It is already known that measurements of SWE

are more difficult and complex than snow depth and snow cover. As satellite

measurements of SWE are not up to date, it would be useful if SWE could be predicted

from other variables such as snow depth (Sturm et aI., 2010). No comprehensive data is

available regarding snow depth and SWE measurements worldwide, but it is known that

snow depth is measured more frequently than the SWE.

Sturm et al. (2010), attempted to find a suitable way to convert snow depth to snow

water equivalent using snow climate classes (Sturm and Holmgren,1995). Using a large

training set, bulk density was predicted as a function of snow depth, snow climate class,

and day of year, and used to convert snow depth to SWE. Non-linear analysis of

covariance model (ANCOYA) was used to develop an equation to predict bulk density

based on the predictors mentioned above. Observational data were collected from

research surveys in Canada, Switzerland and Alaska with the anticipation that the

collected data covered the spatial variability related to snow density (Sturm et aI., 2010).

The accuracy of the model was evaluated against a large independent data set collected

from the MSC (2000).
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Sturm et aI. (2010) found that, it was more appropriate to model bulk density rather than

SWE and subsequently convert this bulk density to SWE using snow depth. Bulk density

is a complex function of snow depth, snowpack temperature, aging, and initial density of

snow layer. The bulk density was modeled using Bayesian statistical methods to develop

a nonlinear ANCOVA model (Sturm et aI., 2010). Bayesian methods work well in

modelling complex systems (Gelman et aI., 2004). Snow depth, snow climate class and

day of year were used as model inputs, while predictors of snow density, like temperature

and initial density, were captured using the snow climate class (Sturm et aI., 2010).

Various functional forms were used to choose the best model based on deviance

information criterion (DIC; Spiegelhalter et aI., 2002).

The model was validated based on probability distribution functions and error statistics.

The error in predicted SWE was found to be in the range of -70 mm to 90 mm of the

observed (Sturm et aI., 2010). The bulk density error was nearly constant, but the

probable error in SWE increased with depth while the relative error decreased with

increasing SWE. The model results were also compared to collected data from three

mid latitude basins in the US and were found to be satisfactory (Sturm et aI., 2010).

The strength of the Sturm et aI. (2010) model is in its simplicity and ease of use. As

mentioned earlier, the model can be applied over an area or region by inputting the

climate class of the area, snow depth and day of year, and as such will be used as a

deterministic model to predict SWE from the gridded CMC snow depth data in this thesis.
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2.7 Spatial Interpolation

One of the objective of the current study is to convert point SWE measurements into a

spatial dataset. Spatial interpolatiqn plays an important role in the conversion process, and

in this section the advantages and disadvantages of various spatial interpolation methods

will be discussed.

Spatial interpolation is a procedure which uses points with known values to estimate

values at unknown points. In other words, spatial interpolation is a method used to

estimate the value of properties at unsampled points using sample points within the area

covered by observations (Goodchild et aI., 1990). In most cases, spatial interpolation is

used to estimate grid values, convert point data to surface data, and prepare finer grid

estimation from the coarser grid. Spatial interpolation is important in the fields of

geosciences and Global Information Systems (GIS) , as well as water resources,

hydrology, and water management.

Spatial interpolation procedures can be classified according to whether they are useful on

a global and local scale. In global interpolation a single function is used to interpolate the

whole region (Goodchild et aI., 1990), and a single change in input can affect the whole

region. The advantage of using global interpolation is that it produces a sm<?oth surface.

Local interpolation applies to a small portion of the total set of points. Abrupt changes

can be found when one combines local interpolations for mapping the full area of interest

(Goodchild et aI., 1990). The main difference between global and local methods lie in use

of control points, defined as points with known values. In global interpolation all the

control points are used to derive a model, but in local interpolation only a sample of
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control points are used. Additionally, there are exact and approximate interpolation

methods (Goodchild et aI., 1990). Exact interpolators honor the data points upon which

the interpolation is based, while approximate interpolation is used when there is some

uncertainty with the given surface values. Spatial interpolation can also be classified as

stochastic or deterministic, where the concept of randomization is used in stochastic

interpolation while deterministic methods use no concept of probability (Goodchild et aI.,

1990).

The accuracy of any spatial interpolation method mainly depends on the density of known

control points. There are a variety of spatial interpolation techniques. The basic

assumptions in each are very similar and the accuracy is always dependent upon the

number of control points and their distributions. The primary assumption is that the

prediction is influenced by nearby control points and as one goes further afield the

influence diminishes. In the final section of this chapter, various spatial interpolation

processes are described.

Inverse Distance Weighted Interpolation

Inverse Distance Weighted Interpolation is one of the most common techniques used in

spatial interpolation. Here the unknown value of a point is influenced by nearby control

points than those further away, and the degree of influence is expressed by the inverse of

the distance between points.

Nearest Neighbor Interpolation
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Nearest neighbor interpolation is a simple interpolation method which can also be used in

spatial prediction. In this process all values at unknown points are assumed to be equal to

the nearest known points. Thiessen polygons are typically used with this method.

Thin-Plate Splines

Thi~ method is similar to spline for line generalization, but applies to surfaces. Minimum

curvature can be achieved by using thin-plate spline, and it is useful for producing smooth

surfaces. It is recommended for spatial interpolation of elevations, water tables and

climate data.

Kriging

Kriging is a geo-statistical method that assumes the spatial variation of an attribute is

neither totally random nor deterministic. Kriging was developed by Georges Matheron, as

the "theory of regionalized variables", and D.G. Krige as an optimal method of

interpolation for use in the mining industry. The basis of this technique is that the rate of

variance between points changes spatially (Goodchild et aI., 1990). This can be defined as

a variogram calculated from semi-variance. Different types of variograms can be fitted

for use in kriging; with Spherical, Exponential and Gaussian being the most common.

Kriging can be simple kriging, ordinary kriging, universal kriging, and co-kriging. Simple

kriging assumes that the surface has a constant mean with no trend (Goodchild et aI.,

1990). Ordinary kriging focuses on spatially related components but assumes that there is

no trend, while universal kriging incorporates a trend. In co-kriging, one or more

secondary variables, that are correlated with the response are used.

Trend Surface Analysis
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In this method the surface is approximated by a polynomial equation, and trend surface

models are used to estimate values at unknown points by fitting a trend with the sample

points. The goodness of fit for the trend surface is measured by R2
.

Regression

Multivariate regression can also be used for spatial prediction and interpolation. These

models relate dependent variables to a number of independent spatial predictors. The

accuracy of a regression model depends upon its prediction capacity as denoted by R2
•

Summary

Among the above methods, universal kriging, multivariate regression and co-kriging are

the most promising, as there are option to use background fields or other variables in the

interpolation. While there is ample software which can be used for the interpolation, in

the current study R statistical analysis software is used.

Spatial interpolation techniques are used in various fields of water resources and

environmental study. Additionally, they can be used in precipitation, temperature,

elevation, snow depth and snow water equivalent prediction. Different spatial

interpolation techniques are evaluated in Chapter 4 in order to determine the best

technique to carry out the final analysis.



30

Chapter 3 Data Collection

3.1 Introduction

Different types of data are necessary for conducting the SWE analysis. These data include

Canadian snow course data, USA snow data, National Snow and Ice Data Center

(NSIDC) snow extent data, Canadian- Meteorological Center (CMC) snow depth analysis

data, Physiographical data, elevation data, and snow cover classification data. All these

data were collected from a number of sources. The quality of the data was unknown, but

it seems to have some error on it which is denoted by the Nugget effect on variogram

fitting. All these data were organized in a fixed format to use in the analysis. In most

cases the gridded data are varied in spatial scales and inverse distance interpolation

technique was used in this cases to convert all the gridded data into CMC grid resolution

used in snow depth analysis. Our final SWE product is also produced in the same grid as

CMC snow depth analysis. In the following part of this chapter, these data types will be

discussed in details.

3.2 Construction of Snow Course Database

A Canadian snow course database was constructed within the transect as part of the

study. Construction of this snow course database builds on the work of the "Snow CD"

product developed by Environment Canada (MSC, 2000). In addition to these data, the

time base of the measured data has been extended from 2003-2004 to 2010-2011 with

data from Newfoundland Hydro, the Ontario Power Generation Authority, the Ontario

Ministry and the Quebec Ministry. Figure 3.1 shows the location of the snow course
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throughout the period and some stations have stopped functioning in the recent years. In

fact, most Canadian stations record snow course only twice per month during the snow

accumulation period, and many of the stations have short records.
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Figure 3.1 The Study Domain and Snow Course Station's Location

A snow course is a permanent site, where manual measurements of snow depth and snow

water equivalent are conducted (Arsenault, 2010). Measurements are usually taken during

the winter and spring seasons. Snow course sites are usually selected at wind protected

locations. They are mainly located in valleys and mountainous regions. At snow course

sites, measurements are mainly conducted using the standard snow tube survey method.

Snow pillow measurements are also used at some locations. Figure 3.2 details a sample
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snow course survey conducted by the U. S. Department of Agriculture's (USDA) Natural

Resources Conservation Service (NRCS).

Figure 3.2 Snow Course Survey in USA (NRCS-USDA)

One of the main objectives of the current study is to construct a snow course database

within the transect. The database was constructed in a fixed format, which makes it easy

to read and update on a regular basis. The database was compiled by FORTRAN code
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to read and update on a regular basis. The database was compiled by FORTRAN code

and visually represented by Grid Analysis and Display System (GRADS) software

packages. Two database files were created. One was for the station database which

contained name, id, location, Lat, Lon, and elevation of the snow course stations. The

other file was for the snow course database and which contained snow depth and snow

water equivalent data with corresponding lat, Ion and date. Both these files are in text

format. FORTRAN codes have been written to update the database with new available

data. Real time update of the constructed database is also possible by using real time

snow course data. The database was later converted in binary format for visual

representation using GRADS software package. Details about the data collection are

provided in Appendix-A.

GRADS scripts have been written for the visual representation of the compiled data.

Three types of visual representation were generated in the current study. Figure 3.3

presents a sample time series variation of the SWE data for the snow course station at

Philip Lake, BC, while Figure 3.4 represents a sample spatial variation of SWE data over

Canada on December 01, 1986. In GRADS, spatial interpolation of data is also possible.

Figure 3.5 represents Creesman spatial interpolation of the point data on December 18,

1982. These data are plotted as a visual guide. All dates could be represented in a simpler

manner.
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Figure 3.3 Time Series Variation of SWE Data for Philip Lake, BC
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Figure 3.4 Spatial Distribution of Measured SWE Data on 01 December, 1986
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Figure 3.5 Creesman Interpolation of the Point Data on 18 December, 1982

3.2 USA Snow Data

USA snow data was also incorporated into the present study. USA snow course data can

play an important role to predict SWE around the Great Lakes area. Only data from the

USA stations close to the Canadian border and from the North East region were

incorporated in the current SWE analysis. The intent here was to develop a more

complete database of snow measurements within the region to enhance prediction and

assess the value of these additional data.

Northeastern United States data were drawn from online sources as required and have not

been directly incorporated into the database. The National Operational Hydrologic

Remote Sensing Center (NOHRSC) contains all the USA snow data. Daily snowfall,

snow depth and snow water equivalent data are available on their website

(http://www.nohrsc.noaa.gov/nsa/).
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Point SWE measurements are the primary interest for the research. SWE and only the

corresponding snow depth data for the analysis period were collected from the NOHRSC

database. Data only from the North-East region of the USA, the Northern Great Lakes,

the Southern Great Lakes and the Allegheny Front were collected in the current study. It

should be kept in mind that all incorporated USA data are not collected from the standard

snow tube survey method. There are some data which are measured by the snow pillow

measurement technique.

3.3 Snow Extent Data

Snow cover and snow extent data could have been helpful in the current SWE analysis.

The snow extent data could have been used to validate the predicted SWE. The Ice

Mapping System (IMS) daily Northern Hemisphere snow and ice analysis data was used

in the analysis as the source of snow cover or snow extent data. This data is available at a

resolution of 4 km and 24 km and can be downloaded from National Snow and Ice Data

Center (NSIDC) (NOAA, 2004). 4 km resolution data is used in our analysis.

The National Environmental Satellite, Data, and Information Service (NESDIS), part of

the National Oceanic and Atmospheric Administration (NOAA), is responsible for the

monitoring of snow and ice, cover. By inspecting environmental satellite imagery,

analysts from the Satellite Analysis Branch (SAB), Satellite Services Division (SSD)

created a Northern Hemisphere snow and ice map from November 1966.

The speed, accuracy, and resolution of the dataset was improved by applying IMS with

which maps could be also produced by adding additional data. Passive microwave data

were used as well the IMS dataset to improve snow detection under cloudy or nighttime
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conditions. However, automated snow detection via passive microwave is subject to error

in certain situations. Therefore, for the greatest possible accuracy, creation of a manual

analysis product from a variety of sources continues (Ramsay, 1998).

The snow extent data are in ASCII format and available from the NSIDC website

(http://nsidc.org/data/g02156.html). Snow extent data for the simulation period was

downloaded and used in the validation of the SWE analysis product. The data can also be

visually presented by using GRADS software packages. Figure 3.6 represents a sample

snow and ice image of the Northern Hemisphere mapped by NOAA.

Figure 3.6 24 km Resolution Northern Hemisphere Snow and Ice Chart at Feb 29, 2004 (SateUite

Services Division, USA)
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3.4 Canadian Meteorological Center Snow Depth Analysis

The Canadian Meteorological Center (CMC) has developed a gridded snow depth

analysis product (Brasnett, 1999). This product has a global spatial resolution and daily

temporal resolution. It is a gridded product with a resolution of24 km. Snow depth data

collected from surface synoptic observations (synops), meteorological aviation reports

(metars), and special aviation reports (SAs) were acquired from the World Meteorological.

Organization (WMO) to use in the CMC analysis. This CMC data set includes daily

observations from 1998 through 2011 and will be updated annually. This CMC snow

depth analysis data is of great interest in the current study as it is the main predictor of

SWE. The advantage of using CMC snow depth data is that it is a gridded and daily data

set.

The CMC dataset can be downloaded from the NSIDC website (Brown and Brasnett,

2010). The data set are in gridded format and provided in tab-delimited ASCII format.

There are separate files for location and snow depth data. CMC snow depth data was

downloaded for the simulation period and later Fortran codes were used to input these

data in the SWE prediction tool.

A monthly gridded snow depth and SWE data set has also been developed for weather

prediction (Brown, 2003). This dataset is also available in the NSIDC (Brown and

Brasnett, 2010) website. This dataset can be used in future analysis of a predicted SWE

product. Validation of the newly developed product can also be done using this monthly

average dataset.
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3.5 Physiographical Data

Physiographic variables can be used as a very good predictor of SWE. Previous studies

show that different physiographical variables such as elevation, slope, aspect, easting,

northing, vegetation, forest density, and distance from ocean have good correlations with

SWE (Fassnacht et aI., 2003). To make a better prediction of SWE, a number of

physiographical variables were used in this research, These physiographical variables

included elevation, slope, aspect, local slope, eastness, northness, barrier height,

vegetation type, vegetation mass, distance from ocean, and distance from water bodies.

Elevation is one of the most important physiographic variables evaluated in the current

research. Elevations have been extracted from the Global Land Data Assimilation System

(GLDAS) (Rodell et aI. 2004). The goal of GLDAS is to combine satellite and ground

based observational data products, using advance~ land surface mode ling and data

assimilation techniques to generate optimal fields of land surface states and fluxes

(Rodell, 2004a). Elevation data are available in two resolution formats. 1/4 degree

resolution was used in the current study. Though, there are more accurate elevation data

available, this data set has been chosen as it can be extracted easily by using Fortran

codes and GRADS software packages and the SWE prediction grid resolution in the

current research is around 24 km.

Barrier height is the elevation difference between the maximum barrier in direction of the

ocean and the grid, and derived from the GLDAS elevation data. Land surface slope are

derived from the GTOP030 DEM (Bliss et aI., 1996). GTOP030 is a global digital

elevation model with a resolution of 30 arc second. Figure 3.7 presents the global slopes



40

derived from GTOP030 dataset. Aspect, local slope, eastness, and northness data used in

the current analysis, were calculated from the slope and elevation dataset.
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Slope Derived from GTOP030

Figure 3.7 Slope Derived from GTOP030 (NASA, USA)

Vegetation density is another important physiographical variable. Vegetation mass has

been calculated by combining the global vegetation cover data from the Global Land Data

Assimilation System (Rodell et aI., 2004) and unit mass look-up table used in Canadian

Land Surface Scheme (CLASS) (Verseghy et aI., 1993). Data of Vegetation types are

available in GLDAS in 1/4 degree and 1 degree format. 1/4 degree vegetation type data

was used in the current study. 14 vegetation types classified by the University of

Maryland (UMD) are used in GLDAS. Figure 3.8 details the global distribution of

different vegetation types. The frequency of each vegetation type at each 1/4 degree grid

is also available. By using the frequency of vegetation types within the grids and
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vegetation mass table in CLASS, the final relative vegetation mass at each 1/4 degree grid

was produced within the transect.

1 = Evergreen Needleleaf Forest

3 = Deciduous Neeclleleaf Forest

5 = Mixed Cover

7 = Woocled Grassland

9 = Open Shrubland

11 = Cropland

13 = Urban and Build-Up

2 = Evergreen Broadleaf Forest

4 = Deciduous Broadleaf Forest

6 = Woodland

8 = Closed Shrubland

10 = Grassland

12 = Bare Ground

Figure 3.8 Global Map of Vegetation Type (NASA, USA)

Distance from ocean has been calculated from the Global Self-consistent, Hierarchical,

High-resolution Shoreline Database (Wessel et aI., 1996) and distance from water bodies

was calculated from the land-water mask.
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Chapter 4 Spatial Interpolation

4.1 Introduction

The goal of the current research is to develop a spatial daily Snow Water Equivalent

(SWE) dataset. One of the challenges is to convert the point data into a spatially

consistent gridded dataset. To do this, spatial interpolation techniques are used, which

could also be used for data assimilation by incorporating background fields.

Previously, statistical methods have been used to interpolate SWE over large areas, but

within areas that experience limited variation in topography (Carroll et aI., 1999). Kriging

(Carroll, 1995), elevation-detrended kriging (Carroll and Cressie, 1996) and binary

regression tree analysis (Elder et aI., 1998) have also been used for spatial interpolation of

SWE (Fassnacht et aI., 2003). To predict SWE within the Colorado River basin, a number

of spatial interpolation techniques were evaluated (Fassnacht et aI., 2003) including

inverse distance averaging, optimal distance averaging, hypsometric (HYP) and

multivariate physiographic regression (MVR) techniques.

Based on these previous studies, five spatial interpolation methods including Inverse

distance weighting (IDW), Multivariate Linear Regression, Universal Kriging (UK),

Ordinary Kriging (OK), Regression+IDW were considered for SWE map production in

this study. Details about these methods are provided in the following section. These

various methods were compared over 14 test days spanning 2008-2010.
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4.2 Interpolation Techniques

Five spatial interpolation techniques were evaluated and are pr~sented here. Oetails about

each techniques are described within.

4.2.1 Inverse Distance Weighted

Inverse distance weighted (IOW) is commonly used in spatial analysis and follows the

Tobler (1970) first law of geography: "Everything is related to everything else, but near

things are more related than distant things". Known points or control points are used to

predict at unknown points, and the closer points have more influence than those further

away. This influence is denoted as weight, and hence "inverse distance weighted"

method.

IOW assumes that each measured point has a local influence that decreases with distance

and weighs the points closer to the prediction location greater than those farther away

(Brusilovskiy, 2009). In other words, weights of each measured point are proportional to

the inverse distance. The decreasing rate of weight depends upon the power. Spatial

analysis software allows one to select the optimum power by minimizing the Root I';1ean

Square Prediction Error (RMSPE) (Brusilovskiy, 2009). The Root Mean Square

Prediction Error is calculated based on the cross-validation statistics, where one known

point is excluded from the analysis, and all other known points are used to predict the said

point.

Sometimes localized IOW is applied to predict unknown points. In localized IOW, the

number of measured points used in the prediction can be limited by using a radius of
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influence. The radius of influence is assumed to be the maximum distance after which the

control points have no influence in the prediction.

Here, IDW was applied to 14 test days and the optimum power was calculated separately

for each day. No radius of influence was used. IDW works well when there is good

density of point measurements available such as the area around the Great lakes, but its

performance in upper Quebec and Labrador is lacking. The advantage of using IDW is in

its simplicity. The drawback is that the prediction is totally dependent on the surrounding

measured points, and without sufficient control points it may produce garbage values.

4.2.2 Kriging

Kriging is a geostatistical approach to predict the value at an unsampled point from the

sampled points around. Kriging is named after Danie Gerhardus Krige, who fifst

presented the ideas in 1951. These ideas were later formalized by Georges Matheron.

Kriging has mainly two parts: the fifst part is called the variogram which is the spatial

structure of the data, and the second part involves a fitted variogram to predict unknown

values. Details about these two parts are discussed below.

All interpolation algorithms use some kind of weighted sum of sample points to estimate

the val~e at a prediction point. Most assigned weights follow functions that give a

decreasing weight with increasing distance from the unknown point (Bohling, 2005).

Kriging assigns weight according to a data driven weighted function, in addition to some

arbitrary functions (lsaaks and Srivastava, 1989). Kriging produces similar results to

other interpolation process if the data locations are dense and uniformly distributed

(Bohling, 2005). Like many other interpolation techniques, kriging often underestimates
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high values and overestimate low values. The main advantage of kriging is that it uses a

data derived weighted function. It is possible to generate an error field from the kriging

prediction. Due to these advantages, kriging is widely used in environmental science,

hydrology, hydrogeology, natural resources, remote sensing, mining, etc.

Variogram

The first part ofkriging requires one to fit a variogram. The weighting function ofkriging

is derived using a fitted variogram. Before fitting a variogram, one needs to understand

covariance, correlation and semivariance. Covariance and correlation are measures of

spatial similarity between two variables (Bohling, 2005). If one plots inter point distance,

h, on the x axis and covariance, c(h), on the y axis, the plot is called a co-variogram.

Geostatistical methods incorporate this covariance-distance relationship into the

interpolation models to calculate weights (Brusilovskiy, 2009). Semivariance is the

measure of dissimilarity of the variables, and a semi-variogram is the plot of distance vs.

semivariance (Bohling, 2005). In time series analysis, covariance and correlation

functions are mainly used. In geo-statistics semivariance and semi-variogram are more

important, as they averages squared differences of the variable, and tend to filter the

influence of a spatially varying mean (Bohling, 2005). Semivariance may keep increasing

proportionally with lag leading to an infinite global variance which is described more

accurately in a semivariogram than a covariogram (Bohling, 2005). Figure 4. I presents a

sample plot of lag vs. covariance, lag vs. correlation, and lag vs. semivariance. The plot is

taken from Bohling's (2005) lecture.
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Figure 4.1 Sample Plot of Lag vs. Covariance, Lag vs. Correlation and Lag vs. Semivariance

(Bohling, 2005)

If u denotes a vector of spatial co-ordinates, z(u) represents a spatial variable under

consideration, h represents the lag vector and denotes separation distance between two

spatial locations, z(u+h) represents the lagged version of variable under consideration,

and N(h) represents the number of pairs separated by lag h. The semivariance y(h)

statistics for lag h can be computed as shown in Eq. 4.1, derived from Bohling (2005).

Fitting the Variogram Model

Various curve types can be fitted to a variogram model. The curve fitting generally

follows the method of least squares, which is often used for multivariate linear regression.
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To fit a variogram one needs to understand the characteristics of a semivariogram. There

are three parameters to fit a variogram model: sill, range and nugget (Bohling, 2005) as

shown in Figure 4.2. The definition of sill, range and nugget is elegantly described by

Bohling (2005) in his geostatistics and variogram analysis lecture. The value of the

semivariance at which the variogram levels off is known as the sill. The lag distance at

which the semivariogram levels off is denoted as the range. Autocorrelation is essentially

zero beyond the range. Theoretically, the semivariance value at the origin should be zero.

If the value is significantly different from zero when lag is close to zero, then this

semivariogram value is known as the nugget. The nugget represents variability at smaller

distances and also includes measurement error (Bohling, 2005).

semiVaraanoe

Distance h

{I Range
ugger_---------..A.--------"

o

III

Figure 4.2 Parameters of a Sample Semivariogram
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The ratio of the nugget to sill is known as nugget effect, which represents the percentage

in variation of data that is not spatial (Brusilovskiy, 2009), while the difference between

sill and nugget is known as partial sill. Sometimes, variogram occur with a pure nugget

effect when there is absolutely no spatial autocorrelation in the data. This causes the

interpolation to produce unreasonable predictions. Singular models may also be produced

when there is an infinite number of possible combinations of sill and range (both very

large) to fit to a straight line(Bohling, 2005).

For kriging, the empirical semivariogram model needs to be replaced with an acceptable

semivariogram model; most common among them are the Spherical, Exponential,

Gaussian, and Power models. Figure 4.3 presents the shape of curve fitting produced by

Spherical, Exponential, and Gaussian models. If the spatial correlation structures are not

the same in all directions, then directional fitting of the semivariogram model is

necessary. This effect is known as anisotropy (Bohling, 2005) .

.. _.. _..... _.~!I! .. . .. -·.-···_·-·---- ..-.:·_··..-,.=-..::..:.:.1~·-:::..:.-~-=-=--=·'-=.=-~~-----i
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Figure 4.3 Curve Fitting in Different Variogram Models (Bohling, 2005)
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Ordinary Kriging

As derived by Bohling (2005), the estimator Z*(u) is defined as in Eq. 4.2 follows:

[4.2] Z*(u) - m(u) = L:~u2 Aa [Z(ua ) - m(ua )]

Where Z*cu) is defined as the kriging estimator, u and Uu are the location vectors of the

estimated point and one of the neighbor data points, respectively n(u) is the number of

data points used in kriging, m(u) and m(uu) are the expected means of Z(u) and Z(uu)

respectively, and Aa is denoted as the kriging weight assigned to Z(uu) for estimating at

the location ofu. Here Z(u) is treated as a random component.

The weights of Eq. 4.2 are calculated by using a fitted variogram. In the case of simple

kriging, it is assumed that the trend component is a constant with a known mean,

m(u)=m, while in ordinary kriging the mean is assumed to be a constant in the local

neighborhood of each estimation point rather than the entire domain (Bohling, 2005).

The basic assumption ofkriging is the normality of the dataset. If the dataset violate this

assumption, the prediction may be inaccurate, and data transformation will be necessary.

The end result of ordinary kriging should produce a continuous surface.

Universal Kriging

More recently, hybrid interpolation techniques have been widely used (Hengl et aI.,

2007). One of the most promising techniques is known as universal kriging which

combines both the regression technique and simple kriging. It is also known as regression

kriging or kriging with external drift. Details about regression kriging and its application

in spatial analysis are described by Hengl et al. (2007).
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According to HengI et al. (2007), universal kriging (UK), regression kriging (RK),

kriging with external drift (KED) all are mathematically equivalent, even though some

authors use different terms depending on circumstances. All these methods basically

fo llow the universal kriging model, which was ftrst introduced by Matheron (1969).

Originally, the UK term was used if the trend was mode led as a function of coordinates

(Hengl. et aI., 2007). If the drift is defined externally as a function of some auxiliary

variables rather than the coordinates, it is commonly referred to as kriging with external

drift (KED). The term regression kriging is used in the literature when the drift and

residuals are estimated separately and then summed (Hengl et aI., 2007). There may be

little difference in the deftnition of these three terms and each produces the same

prediction and variance. Here the term universal kriging (UK) will be used.

Spatial predictions are generally made by calculating a weighted average of observations.

Eq. 4.3 denotes basic spatial prediction (Webster and Oliver, 2001)

[4.3] z(u) = L~=l Aa' z(ua)

where, z(u) is the estimated value at an unsampled location u, z(ua ) is the sample data

and their locations, and A is the calculated weights. In ordinary kriging, the weights

depend on the spatial autocorrelation structure of the variable and is calculated in such a

manner that the prediction error variance is minimized (Hengl et aI., 2007). As an

alternative to kriging, multivariate regression can be used, which makes predictions by

establishing a relationship between the response and auxiliary variables. Again, prediction

by regression is based on the weighted average and can be denoted by the following Eq.

4.4. (Hengl et aI., 2007).
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[4.4] z(u) = I.f=O{Ji.qi(U)

In Eq. 4.4, qi(U) are values of the auxiliary variables at the target or unsampled location;

{Ji are the regression coefficients, which can be calculated by generalized or ordinary least

square methods; and n is the number of predictors.

In regression kriging or universal kriging, these two approaches are combined.

Regression is used to fit the explanatory variation while simple kriging is used to fit the

residuals. The prediction by UK can be defined by Eq. 4.5 as offered by Hengl et aI.

(2007).

[4.5] z(u) = m(u) + e(u) = I.i"=O{Ji.qi(U) + I.~=lAa.Z(Ua)

Here m(u) is the fitted drift from regression and e(u) is the interpolated residual by simple

kriging technique.

Among various interpolation techniques IDW, spline, and OK are relatively simple, and

often included in almost all software packages. That being said, when the background

information or auxiliary variables are available these methods are less favorable. In such

cases regression or the UK method are more suitable. There is also co-kriging, which is

suitable when the measurement density of auxiliary variables is greater than that of the

target variable. However, if the auxiliary variables are available in a map or grid format,

then UK is the best choice.

Kriging in CRAN-R

CRAN-R is a software package that can be used in geostatistical analysis. A well known

geostatistical analysis package gstat (Pebesma, 2004) can be incorporated in CRAN R.

Gstat contains multiple options for variogram fitting and kriging prediction. There is also
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a package named automap (Hiemstra et aI., 2012) that is based on gstat geostatistical

routines, which can be used for automatic fitting of the variogram and automatic kriging.

The "fit. variogram" function in gstat is used to fit the variogram. The initial sill is taken

as the mean of the max and median of the semivariance. The initial range is defined as

0.10 times the diagonal of the bounding box of the data (Hiemstra et aI., 2008). As stated

in Hiemstra et al. (2008), the minimum semivariance is taken as the initial nugget. Five

variogram models (Spherical, Exponential, Gaussian, Matern family, Matern and Stein's)

are iterated to chose the best model based on the smallest residual sum of squares, and the

fitted variogram is used to krige the data. The problem associated with automatic kriging

is that sometimes negative sill values occur due to a wrong initial guess, and in such cases

automatic kriging cannot be applied.

4.2.3 Multivariate Linear Regression

Multivariate Linear Regression (MVR) can also be used as a spatial interpolation

technique. The best example of using Regression in SWE interpolation can be found in

Fassnacht et al. (2003), where physiographical variables were used as auxiliary variables

and SWE was the response. The developed regression equation (Fassnacht et aI., 2003)

was compared with other interpolation methods and found that the Multivariate Linear

Regression worked better than other techniques, such as optimal interpolation.

For SWE prediction in Fassnacht et al. (2003), various physiographical variables were

considered; and only those variables that had a good co-relation with SWE were used in

regression. These included latitude, elevation, footprint slope, local slope, barrier height,

distance from ocean, and forest density (Fassnacht et aI., 2003).
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4.2.4 Regression + IDW

Fassnacht et aI. (2003) also used the regression detrended inverse distance weighting

method. It can be called as the "Regression+IDW" method. The method contains two

parts: regression and inverse distance weighted interpolation of residuals. Regression was

conducted with SWE as the response and other correlated variables as predictors. The

residuals were calculated and spatially interpolated, and the final prediction was done by

adding the regression predicted values and the interpolated residuals (Fassnacht et aI.,

2003).

Regression techniques can play an important role in spatial analysis; however, the

problem with regression, is its sen'sitivity to the residual assumptions (normality, constant

variance and homogeneity). Automatic interpolation by regression is quite difficult.

Regression + IDW seems a very promising method with the same difficulties as in

regression. This method is quite similar to UK. In UK, the residuals are spatially

interpolated by using Simple Kriging (SK), but in Regression+IDW, Inverse distance

weighted (IDW) was used to interpolate the residuals.

4.2.5 Summary

From the basic theoretical review of various spatial interpolation methods, it seems that

all the techniques are based on weighted averages, and the prediction accuracy depends

on the number and density of control points. Inverse Distance Weighted (lDW) and

Ordinary kriging (OK) are simple interpolation techniques that only depend on data

points. These techniques may be accurate enough to predict at ranges close to the known

points, however by going further the accuracy reduces significantly. Between these two
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methods, OK seems theoretically more sound as it considers the spatial structure of the

known points rather than using some power functions. Regression is a promising

interpolation technique, but theoretically Universal Kriging and Regression + IDW are

more sound, as regression residuals are considered in these two methods. In UK and

Regression + IDW, a number of variables or background fields in addition to the control

points, can be used in the prediction.

4.3 Evaluation of Spatial Interpolation Techniques

Based on different SWE prediction studies, five spatial interpolation methods (Inverse

distance weighting (IDW), Multivariate Linear Regression, Universal Kriging (UK),

Ordinary Kriging (OK) , Regression+IDW) were considered for SWE map production.

These methods were compared over 14 test days selected during the period 2008-2010.

These test days are selected from each month of snow period between 2008-2010 and also

based on data availability. The five spatial interpolation methods were evaluated

calculating the RMSE at the independent SWE validation points throughout the transect,

as well as with visual consistency checks. For multivariate linear regression, a number of

physiographical variables together with CMC snow depth were added as predictors. Our

analysis has shown that, the CMC snow depth analysis provided a very good background

field for Universal Kriging and similarly as an important variable in Multivariate Linear

Regression for SWE interpolation. Among these five spatial interpolation method trials,

it was found that SWE prediction by Universal Kriging with CMC snow depth as the

predictor produced the lowest RSME result. Table 4.1 details the calculated RMSE for 5

spatial interpolation techniques over the 14 trial days.
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Table 4.1 Root Mean Square Error (RMSE) of swe (mm)

Date IDW OK Regression Regression+IDW UK

17/03/2008 96.52 130.50 59.08 52.60 55.47

04/02/2008 32.36 25.70 47.45 36.74 30.47

15/01/2008 19.92 20.13 23.02 19.89 21.00

15/04/2008 33.36 37.57 93.48 80.70 65.15

01112/2008 11.68 12.93 23.44 13.16 13.43

15/0112009 28.39 24.85 31.06 25.87 25.14

02/02/2009 27.82 28.28 29.54 30.14 28.95

30/03/2009 66.05 65.64 84.53 66.48 66.44

01/04/2009 33.97 33.03 51.66 90.00 31.86

15/12/2009 12.29 15.10 26.26 11.18 13.20

04/0112010 26.12 25.51 41.54 29.79 27.02

02/02/2010 19.98 19.95 17.10 16.72 20.03

01103/2010 46.85 52.51 46.99 31.64 34.05

01/04/2010 2.88 2.70 13.42 2.74 3.03

AVERAGE 32.73 35.31 42.04 36.26 31.09

Multivariate regression revealed that in most cases CMC snow depth, vegetation mass,

distance from ocean, latitude and longitude were significant to SWE prediction. Residual
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analysis checks also found that log transformations of data were required in cases with

more than 20% zero values. Figure 4.4, presents graphical analysis checks on residuals.

These show residuals maintain normality, constant variance, and randomization after the

regression.

Normal Probability Plot
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Figure 4.4Residuals Plot after the Regression for SWE Prediction

Variogram fitting plays an important role in kriging. Spatial distribution trends in SWE

can be found by constructing the variogram based on the semi variance of the data. For

OK, point data plotting is necessary for variogram construction. However, for UK

residual variograms are generated via regression. Figure 4.5, shows sample variograms

plotted for OK.
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Figure 4.5 Variogram Fitted with Measured SWE at 15 December, 2009 for OK

Universal Kriging (UK) allows a number of background fields to be used as predictors

and therefore it can guide the interpolation. Once relationships are established with

predictors, the spatial distribution of residuals provide a guide to finalize the interpolation

prediction. This method relies on the information extracted by predictor variables and on

simple kriging of regression residuals (Hengl et. al 2007). This technique has not been

widely used as an assimilation technique with preference given to the Kalman filter,

Creesman interpolation, and Statistical Interpolation methods. For this study, UK allows

both background fields and point data to be incorporated into the data assimilation

process. In fact, any guess field can be selected as a background field provided it is well

correlated with SWE.
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Figure 4.6 Sample SWE Maps Produced on 01 March, 2010 (from top IDW, OK, Regression, UK,

Regression+IDW)

Figure 4.6 presents maps produced from different interpolation methods. This figure is

important for checking the visual consistency, where it seems OK and IDW can predict

well near the control points, but predict relatively poorly when the distance is greater.

Regression, UK and Regression +IDW predict SWE adequately, but UK appears to be the

most promising method based on the theoretical view as UK use regression and data

derived kriging technique.

In this chapter, different spatial interpolation techniques were discussed and UK was

selected as the most suitable spatial interpolation technique for further analysis in this

research for its simplicity and accuracy. UK is theoretically sound and performs more

accurately than other techniques investigated. Automatic interpolation and variogram
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fitting in UK can be accomplished by using different software packages. UK is better

theoretically than Regression+IDW as it uses data derived function to interpolate

residuals. For these reasons, UK was selected to develop statistical models in further

SWE prediction, the results of which are discussed in Chapter 7.
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Chapter 5 Snow Depth Adjustment

5.1 Introduction

In Canada, real time snow information is necessary for important services such as weather

forecasting and water resources management. To meet this need, a real time operational

snow depth analysis was established at the Canadian Meteorological Center (CMC): the

global gridded daily snow depth analysis (Brasnett, 1999). An initial guess for snow

depth was first produced from a simple snow pack model then combined with collected

snow depth point measurements using the spatial interpolation technique (Daley, 1991).

The final product is a 24 km resolution daily snow depth analysis (Brasnett, 1999).

According to Brasnett (1999), there is a bias in the CMC snow depth analysis product,

which is caused primarily by inaccurate precipitation forecasting and a lot of

representative snow depth measurements from open areas. Most of the snow depth

stations are located in urban areas and in valleys, and it is assumed that the snow depth in

mountainous terrain or other regions were not well represented by the CMC snow depth

analysis (Brasnett, 1999).

In the current research, the CMC snow depth analysis was shown to be strongly

correlated with the Snow Water Equivalent (SWE). One of the main reasons behind CMC

snow depth bias, since most measurements of snow depth are drawn from open areas,

such as airports (Brasnett, 1999). In the current study, the CMC snow depth data is altered

to reflect snow depth conditions from the dominant vegetation of the region.
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In the current research, the accuracy of the CMC snow depth was validated by calculating

the Root Mean Square Error (RMSE) at the snow course points. As expected, it was

found that the CMC snow depth contains a significant amount of error. Subsequently, a

methodology was established from the current study to adjust the CMC snow depth

product within a tolerable distance of snow course measurements. The goal of the current

analysis was to improve the CMC snow depth product within a distance of 150 km of the

measured snow course points. The tolerable distance is assumed based on localized

influence from a previous SWE prediction study (Fassnacht et aI., 2003) and the change

of topography. It should be noted that, the CMC product was generated by using a

standard data assimilation methodology (Brasnett, 1999) and it was not the goal to

improve this product in the full spatial scale.

5.2 Methodology

The current research aimed to adjust the CMC snow depth by incorporating snow course

measurements. The plan was to adjust the CMC snow depth within a close range to the

snow course stations and only on those days when Canadian snow course data were

available. Initially, the adjustment process was conducted using 14 days spanning 2008 to

2010, which were selected to be representative of differing conditions associated with the

snow course data set. The snow depth was estimated at snow course stations using nearest

neighbor interpolation from the gridded CMC snow depth. Then, the RMSE was

calculated for each of the test days from the estimated and measured snow depth values,

resulting in an estimation of the error associated with CMC snow depth. The objective

was to reduce this error around snow course stations. Two methods were attempted for
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the adjustment process. The first method was based on multivariate linear regression and

the second one was based on Universal Kriging (UK) interpolation. It seemed that the

Universal Kriging method was easy to use and more promising. However, the conclusion

drawn from the regression helped to establish the UK models. Details about these two

methods and the final adjustment methodology is described in the following sections.

5.2.1 Multivariate Linear Regression

A multivariate linear regression was developed using daily snow depth data from snow

course sites as the response variable, and estimated CMC snow depth as the main

predictor or auxiliary variable. Other physiographic variables, including vegetation mass,

elevation, barrier height, local slope, aspect distance to ocean and distance to water were

also used as predictors. The regression equation was developed separately for each test

day. Following the regression, the RMSE was calculated daily based on measured and

newly predicted snoW depth values and compared with the previously calculated RMSE

value for CMC snow depth. During most of the test days, the RSME values were reduced

in the newly predicted snow depth.

In order to fulfill the assumptions regarding residuals in regression, it was necessary to

transform the snow depth data (both CMC and measured snow course) using the Box-Cox

or log transformation. Both transformations produce singularities with zero values

requiring that 1 be added to each snow depth before transformation.

The regression showed that in most cases vegetation mass and distance from the ocean

have a significant relationship with snow depth. Log transformation was necessary in

cases of more than 20% zero snow depth values, and if there was more than 50% zero
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values then the adjustment did not produce any improvements. Some sample regression

equations and the analysis are provided in Appendix-B.

5.2.2 Universal Kriging

Universal Kriging (UK) was evaluated based on the effectiveness and benefit associated

with UK in spatial analysis. The benefit of applying UK was described in Chapter 5. The

effectivenes's of applying UK for the CMC snow depth adjustment was evaluated on the

selected 14 day samples. Two UK-based strategies were developed to incorporate snow

depth from the snow course sites. The first model simply used the relationship between

the measured snow depth and the CMC snow depth analysis. The second model added

other predictors, such as distance from ocean, and vegetation mass to improve results. It

need to be noted that all the physiographical variables including elevation, aspect, slope,

vegetation mass, distance from ocean, distance from water body, vegetation type are

evaluated but only vegetation mass and distance from ocean was found significant in test

days. The selection between the two models was based on the calculated RMSE of snow

depth in validation and cross validation points. It should be noted that the CMC snow

depth adjustment was implemented only on those grid points within 150 km of a snow

course station. Outside the 150 km radius, CMC snow depth was used directly. Thus, the

new snow depth product represented a blend of both data sources and provided an

improved background field for SWE assimilation.

By comparing the RMSE of the regression and UK methods, it was found that UK

produced the best prediction of snow depth. Theoretically, UK is also more sound and

easy to use as it is regression with simple kriging of residuals. A single month March,
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2009; was selected to test the UK method developed above. A cut-off distance of 150 km

around the snow course data points was applied. If at any grid points, there was no

measured data within 150 km, then the CMC snow depth product was used directly rather

than adjusting at those grids. Based on these criteria, an R script was developed to

automatically adjust the CMC snow depth. The code automatically adjusted the snow

depth and calculated RMSE on cross-validation and validation points, and compared it

with the RMSE associated with the CMC snow depth data.

5.3 Results

In this section, the effectiveness of the CMC snow depth adjustment is discussed. It was

found that UK could reduce the bias significantly compared to the Multivariate Linear

Regression (see Table 5.1). In regression separate regression equations need to be

developed manually for each day, but automation with UK is easier for longer simulation

period. In this section, the results generated from the UK methods are mainly discussed.

First, the adjustment process was evaluated within 14 trial dates. Table 5.1 presents the

RMSE error in CMC snow depth before and after adjustment. In this table, the error

associated with adjusted CMC snow depth was obtained by two separate UK models and

also by regression. In most of the cases, UK can adjust the CMC snow depth quite

significantly especially around the snow course points. It was also verified that if one

goes further from the snow course points, the adjustment is not significant. Therefore, a

cut-off distance of 150 km was assumed in the adjustment process. An R script was

developed to automate the adjustment process. The script evaluates the two UK models

based on the calculated RMSE at validation and cross validation points, and the best
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model was selected for the adjustment. In the case of an increasing RMSE error after the

adjustment, the CMC snow depth was used directly for future analysis. This methodology

was applied in a trial month period. Figure 5.1 presents the RMSE error of CMC snow

depth and the revised product during March, 2009 which was calculated based on snow

course sites only. 11 days were provided among 14 days as adjustment was not possible

on the rest three days due to number of zero values resulting in increasing the error.

Table 5.1 RMSE ofCMC snow depth (cm) before and after Adjustment

Date RMSE Error of Snow depth (cm)
CMC

Linear
UK2 (with

Snow
Regression

UK1 physiographical
depth variables)

0110312010
validation 27.00 18.08 18.14 18.39
Cross-Validation 21.48 18.80 13.47 13.90

01/12/2008
validation 9.08 11.34 4.53 5.23
Cross-Validation 8.63 7.90 1.04 1.11

02/02/2009
validation 14.89 7.80 9.68 9.50
Cross-Validation 18.96 11.48 10.00 9.40

02/02/2010
validation 20.78 7.00 7.21 6.98
Cross-Validation 15.07 11.70 0.76 0.78

04/01/2008
v'alidation 10.56 10.73 7.19 7.67
Cross-Validation 16.55 13.03 12.81 12.97

04/02/2008
validation 23.25 15.61 14.28 20.00
Cross-Validation 20.94 16.34 16.23 14.00

15/01/2008
validation 7.018 6.84 5.83 5.57
Cross-Validation 17.48 16.84 1.50 1.36

15/01/2009
validation 13.80 8.66 8.34 7.66
Cross-Validation 13.10 8.28 8.51 8.36

15/12/2009
validation 8.43 8.65 5.21 5.82
Cross-Validation 11.80 14.56 1.48 1.34

17/03/2008
validation 37.90 22.12 36.19 25.09
Cross-Validation 29.97 16.32 14.36 13.42

30/03/209
validation 40.57 26.34 27.18 21.12
Cross-Validation 24.66 23.22 2.03 1.72
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Day in March, 2009
••••••• CMC snow depth --Adjusted CMC snow depth

Figure 5.1 RMSE Error ofCMC Snow Depth (cm) before and after Adjustment

5.4 Conclusion

The current research project was mostly dependent on the accuracy of the CMC snow

depth product as it was used as the main predictor of SWE. Brasnett (1999) used a

statistical interpolation technique to incorporate available snow depth measurements. The

CMC analysis was produced with most of the available snow depth measurements, but

these snow depths were mostly measured in open areas and valleys, resulting in a bias. In

the current analysis, it was attempted to adjust the CMC snow depth by incorporating

unused snow course points. It should be noted that it was not possible to reduce the CMC

product bias in the full spatial and temporal scale based on only snow course

measurements as snow course measurements are not spatially well distributed and only
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available twice per month. The goal was to reduce the bias only around the snow course

points, not to reduce the bias in the total CMC product. Although, the conducted

adjustment reduced bias over a small spatial and temporal scale, it was still beneficiary

for the current research.
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Chapter 6 SWE Prediction

6.1 Introduction

In this chapter, a snow water equivalent (SWE) prediction methodology is presented

based on a review of existing literature (Chapter 2) and evaluation of different spatial

interpolation techniques (Chapter 4). Existing deterministic models are combined with

developed statistical models. Based on the work in Chapter 4 Universal Kriging (UK) was

selected for spatial interpolation with the statistical models. Two different scenarios were

developed with the expectation that the final SWE output should be a smooth surface. An

R script was developed from the current research to combine all the data, adjust CMC

snow depth, and apply the SWE prediction methodology described in this chapter. The

approach can produce daily gridded SWE maps, predicted SWE, snow density and

corresponding snow depth files in text format, and Root Mean Square Error (RMSE)

values at validation and cross-validation points. In this chapter, the selected deterministic

models, developed statistical models, scenario development, and the final SWE prediction

are discussed.

6.2 Deterministic Models

Two deterministic models were selected to predict snow density. Inspite of using complex

snowpack models (Brasnett, 1999; Brown et aI., 2003), simple snow density prediction

models are used. The model based on the snow climate class (Sturm and Holmgren,

1998), derived by Sturm et aI. (2010) was selected as it was simple and could predict the

SWE with acceptable accuracy. This model was developed by considering adequate field
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measurements from the US and Canada, and it was expected that the model prediction

would represent the actual conditions. Snow course data was not used in the Sturm et aI.

(2010) model development, but it was used in validation. The second deterministic

model applied in this research is based on the snow aging formula used in the Canadian

Land Surface Scheme (CLASS) (Verseghy et ai, 1993). These two models are discussed

in the following sections.

6.2.1 Snow Climate Class Model

Two deterministic models have been used to predict the spatial distribution of SWE. The

first is based on Snow Climate Class from Sturm et aI. (1995). Sturm et aI. (2010) present

a bulk snow density estimator based on the Snow Climate Class (Sturm et aI. 1995), day

of year (DOY), and snow depth. From this predicted density and the adjusted CMC snow

depth from Chapter 5, the SWE was spatially predicted. These SWE predictions can be

used directly to produce SWE maps or can be used as background fields in statistical UK

models. The equation presented by Sturm et aI. (2010) is as follows:

[6.1] Phi.DOYi = (Pmax - Po)[l - exp(-k1 x hi - k2 x DOli)] + Po

In this equation, P is the predicted density in gcm-3
, h is the snow depth in cm, pmax, po, k,

and k2 are model parameters selected based on snow climate classes and assigned values

as noted in table 6.1 from Sturm et aI. (2010). Because the winter season spanned two

calendar years, the DOY runs from -92 (1 October) to +181 (30 June) excluding the 0

value (Sturm et aI. 2010).
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From the predicted density and CMC snow depth, the SWE at each prediction grid was

easily predicted. This method is very simple and can predict SWE quite accurately.

Details about the prediction accuracy are discussed in the literature review (Chapter 2).

Table 6.1 Parameter Table for Snow Density prediction (Sturm et aI., 2010)

Snow class Pmax Po k1 k2

Alpine 0.5975 0.2237 0.0012 0.0038

Maritime 0.5979 .2578 0.001 0.0038

Prairie 0.5940 .2332 0.0016 0.0031

Tundra 0.3630 .2425 0.0029 0.0049

Taiga 0.2170 0.2170 0.0000 0.0000

6.2.2 Snow Aging Model

An alternative deterministic model is the snow aging model approach. The snow aging

used in CLASS (Verseghy et aI., 1993) was used here to predict the change in density

with time. Adjusted CMC snow depths, were differenced to yield daily increases or

decreases in snow depth. Thus new snow was separated from old snow. The density of

aged snow was calculated based on snow aging and the density of new snow was

assumed as to be 100 kg/m3
.

The maximum snow density pS,max was estimated as a function of snow depth Zs according

to Tabler et al. (1990) and represented in equation [6.2]:

[6.2] Ps,max = As - [204.70] [1.0 - exp (-~)]
Zs 0.673
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The empirical constant As was assigned a value of 450.0 for cold snow packs, and 700.0

for melting snow packs (Brown et al. 2006). In Eq. [6.2] Zs is the snow depth and Pmax is

the maximum density. The density of snow ps for snow aging is assumed to increases

exponentially with time (Longley et aI., 1960; Gold et aI., 1958) and is reflected in Eq.

[6.3] with t as the time step and ~t used as 24hr = 86400 sec for the daily prediction.

[6.3] Ps(t+l) = [Ps(t) - Ps,max] exp[-0.01 ~t/3600] + Ps.max

These two deterministic methods were selected based on their simplicity and adequacy in

snow density prediction.

6.3 Statistical Models

The statistical models developed in the current research are based on Universal Kriging

spatial interpolation technique. Background variables, possessing good correlation with

SWE, are used to develop the models. Among these background fields, CMC snow depth

is the main predictor. Other background fields are selected from various physiographical

variables, and the significant physiographical variables are selected by using a

multivariate linear regression technique on 14 test days. It was found that latitude,

longitude, CMC snow depth, vegetation mass, and distance from ocean were good

predictors of the SWE. The correlation between the predictor and response varied on a

daily basis (see Appendix-B), however from the regression analysis it seemed that the

selected auxiliary variables had significant relation with SWE in most of the test days.

Some sample regressions on test days were provided in Appendix-B. Statistical models

are developed in the current analysis using different combinations of predictors which is
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provided in the scenario development section 6.4. Predicted SWE from deterministic

models were also used as predictors or backgrounds field in the statistical analysis.

6.4 Scenario Development

Two scenarios were developed to predict the SWE that depended on the number of snow

course data points available for interpolation. Recall that snow courses in Canada are

typically measured twice per month during the snow accumulation period. The first

scenario (Scenario-I) was applied on those days when more than 50 Canadian snow

course measurements were available. The number 50 was chosen just to differentiate

between two scenarios in coding. For Scenario-I, only the snow climate class

deterministic model was employed. Four UK models were evaluated within this scenario.

The background fields used in these UK models include of the predicted SWE from snow

climate class model, the adjusted CMC snow depth, the CMC snow depth and

physiographical variables, and the predicted SWE from the snow climate class model and

physiographical variables. The second scenario (Scenario-H) was applied when fewer

than 50 Canadian snow course data are available. In this scenario two deterministic

models: the snow climate class and snow aging models were used. The snow aging model

calculated snow density based on the increasing or decreasing snow depth and required a

spatial SWE field from the previous day. In the second scenario, only the generated SWE

from the deterministic models were used as predictors, rather than using the CMC snow

depth or other physiographic variables. It was found that as there were relatively few or

no Canadian data points in second scenario, statistical models would have been difficult

to develop and deterministic models would have worked more accurately. For this reason,
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scenario-II statistical models were developed by incorporating point measurements into

the deterministic model prediction, rather than using CMC snow depth or other

physiographical variables as predictors due to the less snow course points. Therefore, in

scenario-II two statistical UK models were developed considering background fields as

generated SWE from two deterministic models. In both scenarios, the best deterministic

model and best statistical model were selected based on calculated the RMSE values and

then later combined based on the Cressman interpolation algorithm (Cressman et aI.

1959). A summary of developed scenarios are provided in Table 6.2 below.

Table 6.2 Summary of Scenario Development

Scenario Criteria
Deterministic Statistical

Predictors/Background Fields
Models Models

UKl
Predicted SWE from Snow
Climate Class

50 snow course
Scenario- Snow Climate UK2 V\djusted CMC snow depth
I

measurements
Class Model

Or more Adjusted CMC snow depth,
UK3 latitude, longitude, vegetation

mass and distance from ocean

Predicted SWE from Snow

UK4
Climate Class, latitude, longitude,
vegetation mass and distance from
ocean

Snow Climate
UKl

Predicted SWE from Snow

Scenario-
less than 50 snow Class Model Climate Class

11
course
measurements

Snow Aging
UK2

Predicted SWE from Snow Aging
Model Model
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6.5 Cressman Data Assimilation

The final SWE product was produced from the combination of statistical and

deterministic model output. Finally, the best statistical and deterministic models were

selected based on calculated RMSE values at validation and cross validation points.

Then, Cressman data assimilation was applied to combine both models prediction. In

scenario-I only the snow climate class model (Sturm et aI. 2010) was used for direct

density prediction, while in scenario-IT both the snow climate class and snow aging model

(Verseghy et aI, 1993) were used. As stated above, in scenario-I the best statistical model

was selected from four statistical UK models and in scenario-II from two models.

Cressman analysis technique (Cressman et aI. 1959) is based on weighted distances. The

weights are calculated for the point measurements by w= (R2_r2)/(R2+r2
), where w is the

weight to the point, R is the cut-off distance after which the point has no influence at all,

and r is the minimum distance between the measured points and the prediction grid. In the

current research, the basic concept of the Cressman analysis technique was applied in a

modified way. The minimum distance between the grid and all other snow course

measurements were calculated and denoted as r. This needed to be calculated at each

prediction grid and on a daily basis. The value of cut-off distance R was assumed

separately for each scenario beyond which the measured points had no influence on

prediction grids. The influence of snow course at grid points was incorporated by using

the predictions from UK models. Thus weights are calculated at each prediction grid and

these weights were assigned to the predicted SWE from the statistical model. After

subtracting the calculated weight from the total weight, a subtracted weight was assigned
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to the deterministic model prediction. The final SWE at each grid point was calculated by

combining statistical model and deterministic model results.

The cut-off distance used in Cressman analysis was applied to construct the range of the

effect of the statistical models or influence of measurement points. In the grid points

beyond the cut-off distance, only one prediction from the best deterministic model was

used as the final SWE. The importance of cut-off distance was obtained by conducting a

simple analysis. In this study, most of the snow course points were around the North

American Great Lakes region. Great Lakes data was used to predict the SWE in Labrador

and it was found that the SWE predicted from the deterministic model was more accurate

than the results from the statistical model. From this, it was evident that data points only

had influence within a limited area, and that influence decreases with increasing distance.

As such, a cut-off distance needs to be fixed after which the snow course points will have

no influence in prediction. Two cut-off distances were assumed for two different

scenarios. In scenario-I the cut-off distance was selected as 500 km and in scenario-II, it

was assumed as 1000 km. The cut-off distance in scenario-II was assumed greater than

scenario-I due to the unavailability of Canadian snow course points for scenario-H. This

cut-off distance was assumed based on a previous SWE prediction by Fassnacht et al.

(2003).

6.6 Final SWE Prediction

In this chapter the main methodology of predicting SWE from adjusted CMC snow depth

is described. However, the total SWE prediction methodology contains both the data

collection part in Chapter 3 and CMC snow depth adjustment in Chapter 5. This complex
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methodology is compiled in a prediction tool which is a combination of FORTRAN codes

and R scripts. Details about this prediction tool is described in Appendix C but the full

SWE prediction methodology used in the prediction tool is described in the flow chart

below (Figure 6.1). The tool is solely developed by the author and the copyright of the

tool is belonged to the author only. This SWE prediction tool is named as

SWE_MAP_Vl.O and is provided in a DVD with the thesis.
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- Add new point measurements to the database for the S1muabon penod
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-Comblne snow depth and snow water equivalent data to create the snow course data file
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-~ • USA and canadian data are combined for each IndMdual day ~~

• Combmmg IS conducted both for sample pomts and validation POlAts

.. : .~,_. PredietlC;nbased(iilll~e~sttclllOCleiSandstatiStieal~ersat gt!lg(UK} ,,?

• Two determel1lstic models (snowc!imate class and SOOWllglOg model)
- Two UK models UK1 (based on predicted SWE by snow cnrnate class) UK2 (based on predicted SWE by snow aging model)

Best determeOls!tc model and best stalistlcal model IS selected based on RMSE of SWE and then comblOed by Cressman algonthlm

- - - SWE prediction base on one rmemStle tnodel'{snowCtrrnate classrliodeO and four Ul< models • • ' ,
• - UK1 (based on dell!flllelllslic SWE), UK2 (based on adjusted CMC sdI, UK3 (based on CMC ad and others), UK4 (modified UK1)

- Best sta11stlcal method 15 chosen based on RMSE of SWE and then combmed With determeOlstic model by Cressman algomhim

Figure 6.1 Flow Chart Using in SWE Prediction Tool
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Chapter 7 Results and Discussions

7.1 Introduction

In this chapter, the output of the current research and its effectiveness is discussed,

including a critical analysis of achievements and drawbacks. The primary objective of

this work was to develop a Snow Water Equivalent (SWE) prediction tool, which could

produce spatial SWE analysis on a daily operational basis. In addition to the SWE

analysis, other outputs were also generated including:

• An adjusted Canadian Meteorological Center (CMC) snow depth analysis product

Corresponding snow density

Spatial SWE, snow depth and snow density maps from the prediction

All the outputs were generated on a daily basis within a selected time period and within

the selected transect from the Great Lakes to Labrador through Quebec. Adjusted snow

depth was predicted in cm, SWE and RMSE in mm, and snow density in g/cm3
. All these

outputs were generated in a text file format and the maps were generated in jpeg format.

The SWE analysis output is evaluated and validated on the basis of a 3-year (2008-2010)

model run. From the critical analysis of the outputs, the research showed quite accurate

results in spatial daily prediction of SWE, however, there were some limitations in finer

scale, as discussed below.

7.2 Accuracy of the SWE Analysis

The accuracy of the SWE analysis was determined by calculating the RMSE values of the

predicted SWE. The RMSE is widely used in spatial analysis to find out the accuracy of



81

the spatial prediction (Fassnacht et aI., 2003). In the current research, the difference

between predicted and measured values were calculated in both validation and cross

validation points on a daily basis, and the final RMSE values were calculated by

combining errors at all validation and cross-validation points. The validation points were

selected only in scenario-I, where a significant amount of Canadian snow course

measurements were available. These validation points were not used in the development

of the predictive tool and were selected at random. Additionally, cross-validation, where a

point is isolated and other points are used to predict, was also applied. The average

RMSE values obtained for the snow period (December-April) was 37.22 mm for 2008,

33.31 mm for 2009, and 31.93 mm for 2010. All the errors were calculated at validation

and cross-validation points and tended to increase with greater distance from snow course

stations.

As shown below, Figure 7.1 represented RMSE values for the SWE prediction. January,

February and March of the years 2008, 2009 and 2010 were selected for the plotting as

they were the main periods when significant amounts of snow are on the ground. While

there were no significant patterns in the RMSE values with time, there appeared to be

increasing error as the snow season advanced. This was consistent with greater

complexity of the snow pack. The RMSE depends primarily on the number of control

points and their spatial distributions. As such, the SWE prediction accuracy also

depended on the number and densities of snow course points. The highest RMSE found in

each of the three years was around 90 mm. That being said, if one used the measured

points to predict SWE at distances greater than 500-1000 km from the snow course



82

stations then the RMSE may have increased to roughly 100 mm or higher on the peak

snow period. January to March is considered for plotting as there is zero RMSE values at

December, April and May.
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Figure 7.1 RMSE Values for SWE Prediction at First 3 Months of 2008,2009,2010
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7.3 Point Validation

Three independent stations were selected to compare observed and simulated values.

These stations had not been used in the analysis. The SWE was predicted from the final

gridded SWE output by using a nearest neighbor interpolation technique. The locations of

these stations are shown in Figure 7.2 in three parts of Canada: Ontario, Quebec, and

Labrador. This was done to validate the SWE in larger spatial scales. The period from

2008 to 2010 was selected for this point validation and three snow months (January,

February, and March) were primarily considered. April was also considered for 2008 and

2010.

--/-;J---

"-

Figure 7.2 Independent Validation Station's Location

In Figure 7.3 the comparison was made between the simulated and observed values for

the period of January-April, 2008. It seemed that the prediction was generally satisfactory

based on the graphical plot for all three stations, while SWE was slightly underestimated
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in Churchill Falls and Lac Castor. In both Churchill Falls and Lac Castor the simulation

showed sudden melting of snow, but the observed value suggested slow snow melt. In

Typol the simulation slightly over-predicted at certain locations, as shown in Figure 7.3.
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Figure 7.3 Comparison Between Simulated and Measured SWE at 2008
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Figure 7.3: Similarly, Figure 7.4 represents the comparison for 2009 and Figure 7.5 for

2010. Results were consistently good for Churchill Falls and the Typol station in 2009,

however, there appeared to be a large under- prediction ofSWE for Lac Castor.
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Figure 7.4 Comparison Between Simulated and Measured SWE at 2009
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The SWE prediction was less accurate in 2010 than in 2008 and 2009. That being said,

results were typically good for Churchill Falls and Typol except on one day. There does

appears to be a consistently large under prediction of SWE for Lac Castor towards the

end of season.
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Figure 7.5 Comparison Between Simulated and Measured SWE at 2010
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From the above discussion and graphs, it is evident that there are some limitations or

drawbacks to the SWE prediction. SWE was poorly predicted in 2010 compared to 2008

and 2009. One possible explanation may be that in 2010 there was less snowfall and the

background fields generated from deterministic models might have appeared to be a large

under prediction of SWE due to smaller snow depth values than usual, which would

affect the final prediction. The SWE prediction seems inconsistent in Lac Castor. The

main reason behind this is likely the complex topography of Quebec. More detailed

topographic analysis might be necessary in this case.

7.4 Comparison with CMC Monthly SWE Estimation

The CMC has developed a monthly SWE estimation product, based on the snow depth

analysis (Brasnett, 1999) and a density lookup table (Brown et aI., 2003), though no snow

course data has been used in their SWE estimation. In this section, a comparison is made

between the CMC monthly SWE and the daily SWE analysis resulting from this work. In

order to perform the comparison, the daily SWE was constructed into a monthly scale for

2008. Both large spatial and snow course station comparisons were conducted, the result

of which are presented in Figures 7.6 and 7.7. The mean monthly observed value at the

snow course station was also included as a point of reference. As snow course

measurements were conducted twice per month, these monthly averaged values are not

the representative mean of daily values for the whole month. From the graphs below, it

shows that the monthly average of the SWE analysis is very much similar to the CMC

monthly SWE estimation.
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Figure 7.6 Comparison Between Monthly Average Simulated and CMC SWE

Figure 7.7 presents a comparison of the spatial monthly average SWE maps from the

current simulation and monthly CMC SWE estimations for January, 2008.
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Figure 7.7 Monthly Average SWE Map (Top- CMC SWE map, Bottom- Current Simulated SWE

MAP)

From the above figure, it seems that the simulated SWE is slightly less than that of CMC,

though the spatial variation is similar. It is difficult to say which monthly average

estimation is more accurate, as snow course measurements were only available twice per

month.
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7.5 Validation with Respect to Snow Cover

Satellite measurements of snow cover are currently available at a relatively high

resolution. However the current research is primarily based on the CMC snow depth

analysis while the CMC product was independently validated with available snow cover

data (Brasnett, 1999). Therefore, a random selection of daily data was chosen to validate

results from this work. The National Snow and Ice Data Center (NSIDC) snow extent

cover data was useful for this purpose. Figure 7.8 represents a validity check for 20

December, 2009. The map on the left was generated from the NSIDC snow extent data

where the value of4 denotes that there is snow on the ground. On the right side, the SWE

map is generated from the current simulation. Both maps show that only the US portion

below the Great Lakes has no snow.

Figure 7.8 Validation of SWE with Snow Cover Data at 20 Dee, 2009 (Left- NSIDC Snow Extent,

Right- Simulated SWE)
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7.6 SWE Trend Analysis

The developed daily SWE analysis can be useful for the SWE trend analysis, which can

be conducted from the generated SWE maps. Additionally, graphs can be plotted for

individual stations, to analyze time series trends on a finer scale. From this kind of time

series trend analysis, the change ofSWE over years can be visualized, and can be used in

decision making for the weather forecasting and climate change study. Graphs can be

plotted for multiple stations, to identify temporal trends as well as location dependency.

In Figure 7.9, time series plots of the SWE for January to March from 2008-2010 for

three locations are provided. While, no patterns were apparent from the graphs, they were

still helpful in identifying SWE peaks and other important decision making inputs.

In Figure 7.1 0, time series of the SWE is plotted for three different stations. From these

plots, one can understand how the SWE varied over time and the difference between

stations. The graphs were plotted by taking the SWE analysis for the period of January

March, 2008. It appears that the peak SWE for all three stations was reached coincidently.

Sudden variations in the SWE was observed for Lac Castor, Quebec while, the other two

stations showed less extreme changes in SWE with time.
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7.7 SWE Map

The final output of the current research was daily SWE maps. Visual consistency checks

of the SWE are necessary to validate the SWE analysis. These SWE maps can also be

used to identify spatial and temporal changes in the SWE and can play an important role

in decision making.

In Figure 7.11 the SWE maps are provided for the first 6 days of January, 2008. It seems

that the variation of SWE was quite consistent over time and space. The main drawback

from the generated maps is that, the SWE can vary unexpectedly and suddenly. It seemed

that sometimes the melting of snow was very sudden as snow appeared and disappeared
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very suddenly in certain regions. This inconsistency is the major concern of the current

research.

Figure 7.11 SWE Maps from 01 Januray-06 January, 2008 (Start from top left Corner)
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7.8 Achievements and Limitations

In this section the achievements and drawbacks orlimitations of the current research are

discussed.

The achievements of the current research are as fol!)ws:

• A daily gridded spatial SWE and snow den5'y product was created.

• The point SWE measurements were successfully transferred into a spatially

consistent dataset.

• The time series gaps between SWE measure ents were constructed.

• An automated SWE prediction tool was dr\'eloped, which could produce a daily

spatial SWE product. This tool could be \.sed in real time SWE analysis, if real

time SWE measurements were available.

• The calculated RMSE values were quite reasonable compared to other studies

(Fassnacht et al. 2003), and implied that the accuracy of the product was ,quite

adequate around the stations.

• The prediction of the SWE around Great Lakes tended to have relatively higher

accuracy due to the availability of a large number of point SWE measurements in

the area.

Snow course data were incorporated into the SWE prediction and the CMC snow

depth adjustment for the first time.

Universal Kriging (UK) was successfully applied for data assimilation and spatial

prediction. UK is a relatively new approach in data assimilation studies.
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• It was found that vegetation mass and distance from ocean had a significant

relationship with the SWE.

The limitations of the current research are as follows:

• As there were very few SWE measurements in northern Quebec and Labrador, the

prediction was more difficult in these regions. The details summary of data

collection are provided in appendix A. In most simulation days, one needed to

rely on deterministic models in this region, rather than using statistical models.

The RMSE values were slightly higher in this regions and can be more than 100

mm of the SWE.

On some days, the S WE suddenly disappeared and the next day it appeared again.

This sudden increase and decrease in SWE is a major concern of the current

research.

• Prediction of SWE became more difficult in complex topography. That's why

during validation, prediction of the SWE in Lac Castor, Quebec was less accurate.

• The snow climate class model is derived from primary data collection. As such, if

the precipitation rate of snowfall changes significantly in future, the results of this

model may not be as accurate.

• The RMSE value increased during the melting period of snow. The SWE

prediction at the melting period needed to be more accurate.

7.9 Discussion

A gridded daily SWE prediction tool was developed from the current research. A

simulation was also run for the period of 2008-2010 to generate the SWE analysis. The
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outputs from the research will help water resources engineer, hydrologists, water

managers, hydro logical modelers, and climate change researchers. Environment Canada

is interested in this research, as the gridded SWE product could be used for numerical

weather prediction. The results and the achievements and drawbacks of the study are

already discussed at the above sections. The goal of the research was attained for a

coarser resolution purpose, as the results generated from the SWE prediction tool seemed

accurate. However, for finer scale analysis, more accurate SWE prediction may be

necessary.

In the current study, the SWE analysis was developed on the basis of the CMC product by

incorporating snow course data sets and physiographical variables. The current research

did not develop a new data product based on primary data collection or by establishing a

forecast model. It just used the CMC snow depth and incorporated this in a prediction tool

developed from the current research. Mainly an approach was developed which could

predict SWE from the CMC snow depth. The accuracy of the SWE analysis is dependent

on the of the CMC analysis. Without the CMC snow depth product, it will be very

difficult to develop the SWE analysis. So, the methodology developed from the current

research is dependent on the availability of gridded snow depth.

Snow course data is an important source of information, which has not been used

previously in the CMC snow depth or SWE prediction. A snow course database was built

as a part of current research and was used in the SWE prediction. Continuous updating of

this snow course database will be very helpful for future analysis.
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It would be difficult to validate and determine the actual accuracy of the developed SWE

analysis product, as there is no independent database. Validation and Cross-validation

was conducted on a small number of points, and mostly the accuracy of the product was

determined from the visual consistency check.

UK was applied here to convert point snow measurements into a spatial consistent

database. UK is a very robust method (Hengl et aI., 2007) and it is expected that it can be

used widely for data assimilation.

From the results of the daily gridded _SWE analysis, it seems that the research showed

significant progress in SWE prediction. The limitations associated with the current

research may be overcome by future studies. Some recommendations about the future

studies are provided in the concluding chapter.
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Chapter 8 Conclusion and Recommendation

8.1 Conclusion

In this chapter, a summary of the current research and the findings are discussed.

A methodology was developed as part of the current research to predict Snow Water

Equivalent (SWE) from the CMC snow depth analysis product (Brasnett, 1999),

physiographical variables, and by incorporating snow course measurements. In Canada,

there is no Snow Water Equivalent (SWE) data assimilation system and this research

aimed to fill this gap. It is also important that snow course measurements were

incorporated for the first time in the daily SWE analysis. In the established methodology,

a combination of deterministic snow density prediction models and developed statistical

models are used to generate the final analysis. Universal Kriging (UK) a relatively new

approach in spatial prediction was applied here to convert the point measurements into a

spatially consistent data set. The methodology developed here could be used, with

modification, for other future spatial analysis.

A SWE prediction tool was developed from the current research, which could

automatically generate daily spatial SWE analysis within the transect of the Great Lakes

through Quebec and into Labrador. The outputs from the prediction tool were the SWE

analysis product, the adjusted CMC snow depth product, and the corresponding snow

density. All these outputs were generated in a 24-hr format and using the same grid

locations of the CMC snow depth. The grid resolution was 24 km. The SWE analysis,

adjusted CMC snow depth, and corresponding snow density maps were also produced
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using the prediction tool. For each day within the simulation period, the RMSE values

were also generated from validation and cross-validation points.

The SWE analysis outputs were generated for the period of 2008-2010. The generated

outputs were used to validate the prediction tool, and to determine the accuracy of the

analysis. The significance of the generated results were discussed, and the limitations of

the current research were also identified in Chapter 7. From the prediction, it seemed that

the results were accurate at a coarser scale. At single station validation points, one found

quite accurate results at Churchill Falls, Labrador and Typol, Ontario. The results at Lac

Castor, Quebec were less accurate. The generated RMSE values were quite reasonable,

but they only denoted accuracy around the snow course points. The calculated mean from

the SWE analysis product and CMC monthly average SWE values (Brown et aI., 2003)

were similar to the selected station points, but varied spatially. The SWE analysis product

was also checked with the snow cover dataset. Though there were some limitations, but

the spatial and temporal variation of the SWE seemed reasonable from visual consistency

checks though the tool had a tendency to underestimate the SWE.

The prediction of SWE was relatively accurate around the Great Lakes area, however

results were less reliable in Quebec. The reason behind this is primarily due to the

complex topography of Quebec.

The SWE evolved quite naturally in both the spatial and temporal scales. However,

sometimes the SWE suddenly appeared and disappeared. These sudden increases and

decreases in the SWE are a major concern in the current research.



101

In the analysis, the RMSE values increased during the melting period, due to the

associated complexity of the snow pack at the time of snowmelt.

A snow course database from the Great Lakes to Ontario was constructed as part of the

current research, as an extension of Ross Brown's Snow CD (MSC, 2000) until 2011 and

was used in the prediction of the SWE. The snow course data were collected from a

variety of agencies and organizations around Ontario, Labrador and Quebec. It needs to

be noted that snow course data for upper Quebec was not incorporated in the current

research due to availability of the data. These data are available at Quebec-Hydro, but

within the research period it was not possible to collect this data-set. It is expected that

incorporating this data set would increase the prediction accuracy in Quebec regions.

The developed SWE analysis can be very helpful in water resources modelling,

Numerical Weather Prediction (NWP), hydrological modelling, climate change studies,

and water management. The SWE analysis could be used for SWE trend analysis and to

determine water availability for hydro-electric development.

8.2 Recommendations

The current research aimed to develop an approach to generate a daily spatial SWE

analysis product. It is the first step of developing a snow data assimilation system for the

whole of Canada. In the current study, a methodology was developed and by applying the

methodology, a gridded daily SWE product was generated for the period of 2008-2010.

Environment Canada was interested in the project, as the gridded SWE product could be

very much helpful in water resources modelling especially in hydrological modelling.

From the findings of the research, it appeared that the results were accurate enough to be
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useful, but still have some limitations at the finer scale. These limitations could be

improved by future studies. Some recommendations are mentioned in this chapter, which

may guide future researchers. The recommendations below may also help Environment

Canada, develop gridded SWE products for further periods and in real time. The

recommendations for future improvements are as follows.

• The prediction can be improved especially in the Quebec region by incorporating

data from Quebec-Hydro.

• The sudden increase and decrease in the SWE may be due to the use of different

methods and the best selected method can be different from day to day. This

problem can be solved by introducing variables such as temperature. Based on

temperature, one can fix the threshold value of maximum snow melting within

24 hours and thus reduce the sudden snow melting problem.

In future studies, more focus is necessary regarding the SWE prediction in

complex topography. Details regarding land cover type and more accurate forest

density would be useful in this endeavour. Different methodologies and

regression equations for different land cover types can also be developed for

more accurate SWE prediction.

More snow course sites can be established for the SWE measurements and these

primary data would be a very good step for future SWE prediction.

Representative snow course sites of different topographies can be established

and data collected from the newly established snow course sites to improve the

SWE prediction.
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• There are also some approaches that can be used in the near future to improve

the prediction tool. One could incorporate snow density predictions from other

deterministic models which have not been used here, especially complex'

snowpack models output. One can also incorporate historical climatologically

prediction in the prediction tool. If the prediction tool frequently underestimates

the SWE then a multiplication factor to increase the predicted SWE could be

applied.

• The current research has compared five spatial interpolation techniques to

choose the best one. Theoretically, the UK is sound and suitable in the current

work, but other methods, such as statistical interpolation, or the kalman filter,

still could be explored.

By following the recommendations, the SWE prediction can be improved in finer scale.

The actual success of the current research mainly depends upon its contribution in the

field of hydrological and water resources modelling. The developed SWE product need to

be integrated in hydrological modelling to find out the improvement in hydrological

prediction. An improvement in flood forecasting or water availability prediction can

suggest a great success of the current research.



104

Bibliography

Arsenault, R. K. "Snow Hydrology: Guest Lecture." 201 O.Web.

Barrett, A. National Operational Hydrologic Remote Sensing Center Snow Data

Assimilation System (SNODAS) Products at NSIDC. NSIDC Special Report 11. Vol. .

Boulder, CO ,USA: National Snow and Ice Data Center, 2003. Print.

Bliss, N. B., L. M. Olsen. "Development of a 30-Arc-Second Digital Elevation Model of

South America". Thirteen, Human Interactions with the Environment - Perspectives from

Space, Sioux Falls, South Dakota, USA 1996. Print.

Bohling, G.

ANALYSIS."

"INTRODUCTION TO GEOSTATISTICS AND VARIOGRAM

17 October 2005. Web. 02 January 2012

<http://people.ku.edu/~gbohling/cpe940>.

"KRIGING." 19 October 2005. Web. 02 January 2012

<http://people.ku.edu/~gbohling/cpe940>.

Brasnett, B. "A Global Analysis of Snow Depth for Numerical Weather Prediction." 1.

Appl. Meteorol. 38 (1999): 726-740. Print.

Brown, D. R., and P. Mote. "The Response of Northern Hemisphere Snow Cover to a

Changing Climate." Journal of Climate 22 (2009): 2124-2145. Print.



105

Brown, D. R., Walker A., and Goodison B. E. "Seasonal Snow Cover Monitoring in

Canada-an Assessment of Canadian Contributions for Global Climate Monitoring". 57th

Eastern Snow Conference, Syracuse, New York, USA, 17-19 May, 2000.131-141. Print.

Brown, D. R. "Analysis of Snow Cover Variability and Change in Quebec 1948-2005." 1.

Hydro logical Processes 24 (2010): 1929-1954. Print.

---. "Northern Hemisphere Snow Cover Variability and Change, 1915-1997." Journal of

Climate 13 (2000): 2339-2355. Print.

Brown, D., R.; BRASNETT, B.; ROBINSON, D. " Gridded North American Monthly

Snow Depth and Snow Water Equivalent for GCM Evaluation." 1. Atmosphere-Ocean 41

(2003): 1-14. Print.

---. "Development of a Gridded North American Daily Snow Depth and Snow Water

Equivalent Dataset for GCM Validation". 58th Eastern Snow Conference, Ottawa,

Ontario, Canada. 14-17 May, 2001. 333-340. Print.

Brown, R., et aJ. " Estimation of Snow Cover in CLASS for SnowMIP." 1. Atmosphere

Ocean 44 (2006): 223-238. Print.

Brown, Ross D., and Brasnett B. Canadian Meteorological Centre (CMC) Daily Snow

Depth Analysis Data. Boulder, Colorado, USA: National Snow and Ice Data Center,

2010. Print.



107

Cressman, G. " An Operational Objective Analysis System." Mon. Weather Rev 87

(1959): 367-374. Print.

Daley, R. Atmospheric Data Analysis. Cambridge University Press, 1991. Print.

Dingman, L. S. "Snow and Snowmelt." Physical Hydrology. New Jersey, USA: Prentice

Hall, 2002.167-219. Print.

Elder, K., W. Rosenthal, and R. E. Davis. " Estimating the Spatial Distribution of Snow

Water Equivalence in a Montane Watershed." 1. Hydrological Processes 12 (1998): 1793

1808. Print.

Fassnacht, S. R., K. A. DressIer, and R. C. Bales. " Snow Water Equivalent Interpolation

for the Colorado River Basin from Snow Telemetry (SNOTEL) Data." 1. water resources

research 39 (2003): 1-10. Print.

Finkelstein, P. L. "The spatial analysis of acid precipitation data." 1. Clim. AppI.

Meterolo. 23 (1984): 52-62. Print.

Foster, 1. L., D. K. Hall, and A. T. C. Chang. " Remote Sensing of Snow." EOS 11 Aug

1987: 681-684. Print.

Garstka, W. U. "Snow and Snow Survey." Handbook of Applied Hydrology. New York:

NY: McGraw-Hill, 1964. Print.

Gelman, A., et aI. Bayesian Data Analysis. 2 nd ed. CRC Press, 2004. Print.



106

Brusilovskiy, E. "Spatial Interpolation: A Brief Introduction." 2009.Web. 10 October

2012 <http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php>.

Bussieres, N., and W. Hogg." The Objective Analysis of Daily Rainfall by Distance

Weighting Schemes on a Mesoscale Grid." 1. Atmosphere-Ocean 27 (1989): 521-541.

Print.

Carroll, S. S. "Modeling Measurement Errors when Estimating Snow-Water Equivalent."

J. Hydro!. 172 (1995): 247-260. Print.

Carroll, S. S., T. R. Carroll, and R. W. Poston." Spatial Modeling and Prediction of

Snow-Water Equivalent using Ground-Based, Airborne, and Satellite Snow Data." 1.

Geophys. Res. 104 (1997): 19,623- 19,629. Print.

Carroll, S. S., and N. Cressie. " A Comparison of Geostatistical Methodologies used to

Estimate Snow-Water Equivalent." Water Resour. Bull. 32 (1996): 267-278. Print.

---. "Spatial Modeling of Snow-Water Equivalent using Covariances Estimated from

Spatial and Geomorphic Attributes." J. Hydro!. 190 (1997): 42-59. Print.

Carroll, T., et a!' "NOHRSC Operations and the Simulation of Snow Cover Properties for

the Conterminous." 69th Annual Meeting of the Western Snow Conference (2001): 1-14.

Print.

Chow, V. T. Handbook of Applied Hydrology. New York, USA: NY: McGraw-Hill,

1964. Print.



108

Gold, L. W. "Changes in a Shallow Snow Cover Subject to a Temperate Climate." 1.

Glaciol. 3 (1958): 218-222. Print.

Goodchild, M. F., and K. K. Kemp. "NCGIA Core Curriculum in GIS." 1990.Web.

<http://www.ncgia.ucsb.edu/giscc/>.

Hengal, T., G. B. M. Heuvelink, and G. D. Rossiter. "About Regression-Kriging: From

Equations to Case Studies." 1. Computers and Geosciences 33 (2007): 1301-1355. Print.

Hengal, T., G. Heuvelink, and A. Stein. "A Generic Framework for Spatial Prediction of

Soil Variables Based on Regression-Kriging." Geoderma 120 (2004): 75-93. Print.

Hiemstra, P. H., et al. "Real-Time Automatic Interpolation of Ambient Gamma Dose

Rates from the Dutch Radioactivity Monitoring Network." 1. Computers and Geosciences

(2008)Print.

Isaaks, H. E., and M. R. Srivastava. Applied Geostatistics. New York: Oxford University

Press, 1989. Print.

Longley, R. W. "Snow Depth and Snow Density at Resolute, Northwest Territories." 1.

Glaciol. 3 (1960): 733-738. Print.

Magono, c., and W. C. Lee. "Metrological Classification of Natural Snow Crystals." J.

Faculty Sci., Hokkadio Uni. 2 (1996): 321-335. Print.



109

Mahfouf, J-F, B. Brasnett, and S. Gagon. "A Canadian Precipitation Analysis (CaPA)

Project: Description and Preliminary Results." J. Atmosphere-Ocean 45 (2007): 1-17.

Print.

Matheron, G. "Part 1 of Cahiers Du Centre De Morphologie Mathematique De

Fontainebleau." Le krigeage universe\. Ecole nationale· superieure des mines de Paris

(1969) Print.

McKay, G. A. Handbook on the Principle of Hydrology. Precipitation. In D. M. Gray, ed.

ed. Port Washington, NY: Water Information Center, Inc., 1970. Print.

Melior, M. Snow and Ice at the Earth's Surface. Hanover, NH:U.S. Army Cold Regions

Research and Engineering Laboratory: Cold Regions Science and Engineering

Monograph II-C1, 1964.

MSC. Canadian Snow Data CD-ROM. CRYSIS Project. Downsview, Ontario, Canada:

Climate Processes and Earth Observation Division, Meteorological Service of Canada,

2000. Print.

NOAAlNESDIS/OSDPD/SSD. IMS Daily Northern Hemisphere Snow and Ice Analysis

at 4 km and 24 km Resolution. Boulder, Colorado, USA: National Snow and Ice Data

Center., 2004. Print.

Pebesma, E. J. "Multivariable Geostatistics in S: The Gstat Package." 1. Computers and

Geosciences 30 (2004): 683-691. Print.



110

Ramsay, B. H. "The Interactive Multisensor Snow and Ice Mapping System." 1.

Hydrological Processes 12 (1998): 1537-1546. Print.

Rodell, M., et al. "The Global Land Data Assimilation System." Bull. Amer. Meteor. Soc

85.3 (2004): 381-394. Print.

Solomon, I. S., and P. 1. Denouvilliez. " the use of a Square Grid System for Computer

Estimation of Precipitation, Temperature, and Runoff." 1. Water Resources Research 4

(1968): 919-929. Print.

Sommerfeld, R. A. Classification Outline for Snow on the Ground. Research paper RM

48 Vol. Fort Collins, CO, USA: U.S. Forest Service-Rocky Mountain Forest and Range

Experiment Station, 1969. Print.

Spiegelhalter,.D. 1., et al. "Bayesian Measures of Model Complexity and Fit." 1. Stat. Soc.

64B (2002): 583-639. Print.

Sturm, M., 1. Holmgren, and G. Liston. "A Seasonal Snow Cover Classification System

for Local to Global Applications." 1. Climate 8 (1995): 1261-1283. Print.

Sturm, M., et al. " Estimating snow water equivalent using snow depth data and climate

classes." 1. of Hydro meteorology 11 (2010): 1380-1394. Print.

Tabler, R. D., et al. "Estimating Snow Transport from Wind Speed Records: Estimates

Versus Measurements at Prudhoe Bay, Alaska".17-19 April, Sacramento, CA., USA. 58th

Western Snow Conf., 1990.61-78. Print.



111

UNESCO/IASH/WMO. Seasonal Snow Cove. Paris, French.: UNESCO/lnt. Assoc. Sci.

Hydrol./World Meteorological Organization, 1970. Print.

Verseghy, D. L., N. A. McFarlane, and M. Lazare. "A Canadian Land Surface Scheme for

GCMS, II. Vegetation Model and Coupled Runs." Int. J. Climatol 13.4 (1993): 347-370.

Print.

Wessel, P., and W. H. F. Smith. " A Global Self-Consistent, Hierarchical, High

Resolution Shoreline Database." ." J. Geophys. Res. 101 (1996): 8741-8743. Print.



112

Appendix-A Snow Course Data

Snow course data are collected from different sources of Canada. Snow course data

mainly means snow depth and snow water equivalent measured by standard snow tube

survey method. In the current research, Ross Brown snow course data (MSC, 2000) is

extended for a period of 2011, within the research are. Our research area starts from the

Great lakes to Labrador through Quebec.

a. Snow Course Database (MSC 2000)

The main snow course database was created by Ross Brown (MSC,2000). It contains both

snow depth and snow water equivalent data. The database was created by collecting data

from different agencies and some snow water equivalent were estimated. The database

has data throughout Canada for the period of 1935 to 2004. This is the best collection of

data so far. For Quality Control of this data set Flag was also provided.

The summary of the dataset (MSC, 2000) is given below

The database consists of the following file types:

• Observed SWE Data

• Observed SWE Files - Snow depth in cm and SWE in mm, collected from

six agencies across Canada.

• Station Cataloger File - Station information including latitude, longitude,

name, elevation for all stations with observed SWE data.

• Estimated SWE Data

• Estimated SWE Files - Biweekly snow depth measurements and SWE

estimated at stations from the Canadian Daily Snow Depth Database.



113

SWE estimates were based on snow depth and interpolated snow densities

from the Observed SWE Dataset.

• Station Cataloger File - Station information including latitude, longitude,

name, elevation for all stations with observed SWE data.

• Gridded Snow Density Normals Files - Gridded snow density normals were

computed from the Observed SWE Dataset. The frequency of these data were bi

weekly.

• FORTRAN Files - Sample FORTRAN extraction software and sample FORTRAN

code for reading data files.

The database was constructed by co llecting data from AES snow cover data books,

British Columbia Environment, Ontario Ministry of Natural Resources, Atmospheric

Environment Service, Environment New Brunswick, Alberta Environment, Indian and

Northern Affairs Canada (MSC, 2000).

The Contact address regarding this data set is

Climate Processes and Earth Observation Division

Atmospheric Environment Service

Environment Canada

2121 Route Trans-Canadienne

Dorval, Quebec, H9P 113

CANADA

b. Labrador Precipitation data

Churchill Falls precipitation data was collected from NALCOR Energy for Labrador



114

region. The data set contains snow depth and snow water equivalent. The data was

collected from field by using a precipitation can at each site. The data was collected for

four months January, February, March, April. The data is from 1984 to 2010.

Contact Information

GHynes@nalcorenergy.com

c. Ontario Provence Data

Ontario Prov.ince Data was collected from Ontario Power Generation (OPG) authority

and Ontario Ministry.

The contact information for OPG is

http://www.opg.com/safety/water/snow_survey.asp

For more information on water use please contact:

Margaret McMahon

(905) 357-0322 ext.2911

margaret.mcmahon@opg.com

The contact information for Ontario Ministry is

Gordon Gallant

Water Level Management Specialist

Surface Water Monitoring Centre

Integration Branch, Regional Operations

Ministry of Natural Resources

300 Water St, 5th Floor South Tower

Peterborough, ON
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K9J 8M5

(705)755 5200 voice

(705)755 5038 fax

(705)761 3700 cell

gordon.gallant@ontario.ca

d. Quebec Data

Quebec province data is collected from Quebec Ministry. We have tried to collect data for

upper Quebec from Quebec Hydro, but unable to collect within the research period.

The contact information is

Pierre-Yves St-Louis

Info-Climat

Service de I'information sur le milieu atmospherique (SIMAT)

Direction du suivi de l'etat de l'environnement (DSEE)

Ministere du Developpement durable, de l'Environnement et des Parcs

675, boul. Rene-Levesque Est, 7e etage

Quebec (Quebec) G1R 5V7
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Appendix-B Regression

In this appendix, details regression equations and assumptions related with the regression

for 14 test days are provided. Details about regression on CMC snow depth adjustment

and SWE prediction on 14 test days are provided. From these regression equations and

assumptions regarding residuals, one can easily identify predictors which has significant

relationship with SWE, and the results obtained from the regression is very helpful to

develop Universal Kriging model in future. In some cases, the assumptions are not

satisfied quite well, these can happen in real life data. Different transformations have also

tried to satisfy the assumptions.

CMC snow depth adjustment

01-03-2010

General Regression Analysis: sd+1 versus y, CMC_sd, slope, lslope, bar_NE, .•.

Box-Cox transformati on of the response wi th rounded 1ambda = 0.384185
The 95% Cl for lambda is (0.325, 0.435)

Regression Equation

sd+1AO.384185 = -16.0551 + 0.0731812 Y + 0.0304689 CMcsd - 0.219557 slope +
0.312011 lslope + 0.0350206 bar_NE + 0.00118094 bar_Nw +
0.000382895 bar_sE + 0.0372048 elev + 8.4063ge-005 vm

648 cases used, 1 cases contain missing values

Coeffi ci ents

Term
Constant
y
CMc_sd
slope
1slope
bar_NE
bar_NW
bar_SE
elev
vm

Coef SE Coef
-16.0551 8.70370

0.0732 0.01919
0.0305 0.00257

-0.2196 0.05895
0.3120 0.09999
o.03 50 0 . 00722
0.0012 0.00051
0.0004 0 . 00017
0.0372 0.00716
0.0001 0.00002

T
-1. 8446

3.8144
11.8747
-3.7247

3.1204
4.8522
2.3102
2.2169
5.1941
5.5358

p
0.066
0.000
0.000
0.000
0.002
0.000
0.021
0.027
0.000
0.000

Summary of Model
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S = 0.796258 R-Sq = 55.67% R-sq(adj) 55.05%
PRESS = 415.782 R-sq(pred) = 54.44%

Analysis of variance

Source OF seq SS Adj SS Adj MS F P
Regressi on 9 508.006 508.006 56.4451 89.026 0.0000000

Y 1 60.253 9.225 9.2248 14.550 0.0001498
CMc_sd 1 372 .174 89.404 89.4038 141.009 0.0000000
slope 1 1.037 8.796 8.7963 13.874 0.0002128
lslope 1 5.486 6.173 6.1734 9.737 0.0018877
bar_NE 1 30.669 14.928 14.9276 23.544 0.0000015
bar_NW 1 1. 334 3.384 3.3838 5.337 0.0211957
bar_SE 1 0.000 3.116 3.1159 4.915 0.0269836
elev 1 17.624 17.105 17.1051 26.979 0.0000003
vm 1 19.430 19.430 19.4296 30.645 0.0000000

Error 638 404.510 404.510 0.6340
Lack-of- Fi t 533 404.279 404.279 0.7585 345.870 0.0000000
pure Error 105 0.230 0.230 0.0022

Total 647 912.515

Fi ts and oi agnosti cs for unusual observati ons for Transformed Response

obs sd+1AO.384185 Fit SE Fit Resi dual St Resi d
1 1.00000 2.79537 0.085551 -1. 79537 -2.26788
6 1.00000 3.86154 0.082234 -2.86154 -3.61306
9 1.00000 3.86154 0.082234 -2.86154 -3.61306

25 1.17095 2.80874 0.109316 -1. 63779 -2.07652
44 2.52637 4.31281 0.070892 -1. 78644 -2.25249
45 2.41179 4.30802 0.071305 -1. 89623 -2.39104
51 7.41309 4.39064 0.067829 3.02245 3.80966
76 7.41309 3.78820 0.071300 3.62489 4.57076
78 7.41309 3.78820 0.071300 3.62489 4.57076
81 4.43201 3.75530 0.176708 0.67671 0.87160

101 7.12905 5.34897 0.098398 1.78008 2.25282
108 5.98043 4.38438 0.068257 1. 59605 2.01184
109 5.44285 3.27964 0.097711 2.16321 2.73741
113 5.98043 5.98043 0.398129 -0.00000 -0.00001 x
114 5.98043 5.98042 0.398129 0.00000 0.00000 x
131 4.55637 4.18584 0.171455 0.37053 0.47652 x
134 1. 85581 4.06908 0.066774 -2.21327 -2.78941
175 6.08983 4.38511 0.068205 1. 70472 2.14881
180 5.29797 3.26568 0.070278 2.03229 2.56230
216 5.98043 5.98043 0.398129 -0.00000 -0.00001 x
217 5.98043 5.98042 0.398129 0.00000 0.00000 x
284 1. 70334 3.50972 0.064477 -1. 80638 -2.27606
286 1. 70334 3.30735 0.086751 -1. 60401 -2.02649
288 1. 70334 3.75290 0.052535 -2.04955 -2.57960
290 2.91802 3.64805 0.243517 -0.73003 -0.96297
295 2.91802 3.64805 0.243517 -0.73003 -0.96297
300 5.45604 3.52362 0.072680 1. 93242 2.43705
312 5.86772 4.18477 0.171419 1.68295 2.16433 x
313 5.86772 4.18493 0.171425 1. 68279 2.16412 x
322 5.86772 4.18477 0.171419 1. 68295 2.16433 x
323 5.86772 4.18493 0.171425 1.68279 2.16412 x
351 1. 85581 3.99977 0.102202 -2.14396 -2.71500
356 1. 52512 3.17282 0.094309 -1. 64770 -2.08397
370 6.27789 6.64736 0.212892 -0.36947 -0.48154 x
376 7.26226 6.35843 0.173742 0.90383 1.16312 x
392 3.23966 3.50403 0.352190 -0.26437 -0.37019 x
395 5.92450 4.13993 0.075076 1.78458 2.25123
406 5.92450 3.84540 0.077014 2.07911 2.62339
407 5.92450 3.84540 0.077014 2.07911 2.62339
439 7.10093 7.13717 0.172408 -0.03623 -0.04661
456 3.23966 3.50403 0.352190 -0.26437 -0.37019
459 5.56958 3.68934 0.059684 1.88024 2.36801 R
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505 1. 30512 2.96270 0.083859 -1.65757 -2.09335
507 1. 52512 3.22489 0.074416 -1.69977 -2.14408
532 4.86697 4.87909 0.174640 -0.01212 -0.01561 X
553 4.08969 2.21686 0.094060 1.87283 2.36862
565 1. 70334 3.65626 0.078859 -1. 95291 -2.46473
576 5.09261 2.99472 0.137523 2.09789 2.67488
606 3.08682 4.93392 0.137557 -1. 84710 -2.35513
615 1. 30512 2.89071 0.079291 -1. 58559 -2.00124
619 1. 30512 2.97161 0.077911 -1.66648 -2.10299
632 1. 30512 3.06344 0.084108 -1. 75831 -2.22064
645 1.17095 2.80874 0.109316 -1.63779 -2.07652

Fits for unusual observations for original Response

obs sd+1 Fit
1 1.000 14.523
6 1.000 33.674
9 1.000 33.674

25 1. 508 14.704
44 11.160 44.898
45 9.890 44.768
51 183.880 47.038
76 183.880 32.034
78 183.880 32.034
81 48.200 31. 315

101 166.100 78.637
108 105.140 46.863
109 82.280 22 .012
113 105.140 105.140 X
114 105.140 105.140 X
131 51. 800 41.538 X
134 5.000 38.589
175 110.220 46.884
180 76.700 21. 769
216 105.140 105.140
217 105.140 105.140
284 4.000 26.260
286 4.000 22 .499
288 4.000 31.263
290 16.240 29.040
295 16.240 29.040
300 82.800 26.532
312 100.060 41.510
313 100.060 41.515
322 100.060 41.510
323 100.060 41. 515
351 5.000 36.902
356 3.000 20.194
370 119.300 138.448 X
376 174.300 123.325 X
392 21. 320 26.150 X
395 102.600 40.363
406 102.600 33.308
407 102.600 33.308
439 164.400 166.592
456 21. 320 26.150
459 87.360 29.903
505 2.000 16.895
507 3.000 21.068
532 61.500 61. 900
553 39.100 7.942
565 4.000 29.210
576 69.200 17.375
606 18.800 63.727
615 2.000 15.847
619 2.000 17.028
632 2.000 18.431
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645 1. 508 14.704 R

Residual Plots for sd+ 1

Residual Plots for sd+l

Normal Probability Plot Versus Fits
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01-12-2008

Regression Analysis: In(sd+1) versus In (cmc_sd+1 ), dist_ocean, ...

The regression equation is
In(sd+1) = 28.7 + 0.414 In(cmc_sd+1) + 0.000003 dist_ocean + 0.000055 vm

- 0.00176 bar_NW - 0.000955 bar_SE - 0.218 slope - 0.511 lslope
+ 0.110 x

Predi ctor coef SE coef T P
constant 28.679 8.662 3.31 0.001
1n (cmc_sd+1) 0.41416 0.08102 5.11 0.000
di st_ocean 0.00000283 0.00000072 3.91 0.000
vm 0.00005463 0.00002326 2.35 0.020
bar_Nw -0.0017598 0.0005921 -2.97 0.003
bar_SE -0.0009546 0.0004589 -2.08 0.039
slope -0.21797 0.09201 -2.37 0.019
1slope -0.5108 0.1605 -3.18 0.002
x 0.10974 0.03421 3.21 0.002

S = 0.849183 R-Sq = 46.0% R-Sq(adj) = 44.0%

PRESS = 169.946 R-sq (p red) = 40.80%
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Anal ysi s of vari ance

Source OF SS MS F P
Regressi on 8 132.029 16.504 22 .89 0.000
Resi dual Error 215 155.039 0.721
Total 223 287.068

Source OF seq SS
1n(cmcsd+1) 1 42.735
di st_ocean 1 44.359
vm 1 9.466
bar_Nw 1 2.607
bar_SE 1 4.764
slope 1 14.765
lslope 1 5.915
x 1 7.418

unusual observations

obs 1n (cmc_sd+1) 1n (sd+1) Fit SE Fit Resi dual St Resid
31 2.86 0.0000 1.9225 0.1374 -1.9225 -2.29R
37 2.27 0.0030 1.8134 0.1898 -1. 8104 -2.19R
38 0.00 0.0000 -0.1990 0.3021 0.1990 0.25 x
39 0.00 0.0000 -0.3629 0.3277 0.3629 0.46 x
46 0.00 1. 8050 -0.4457 0.2464 2.2507 2.77R
56 0.26 3.3652 1. 6213 0.1825 1. 7439 2.10R
67 0.92 1.2641 1.7186 0.3528 -0.4545 -0.59 x
69 3.33 3.5553 1. 6358 0.2703 1. 9195 2.38R
76 0.41 2.2915 1.9906 0.5014 0.3009 0.44 x
98 0.00 2.5602 0.8804 0.2944 1. 6798 2.llR

184 0.92 2.0615 1.7079 0.3525 0.3536 0.46 x

~ ~~~~~~~ ~~ ~g~~ ~~~~~ ~~ :~~~eax
1
e~l~es~f~~;r~~zi~r~~s~ ~~~~age.

Residual Plots for In(sd+1)
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Residual Plots for In(sd+l)

Normal Probability Plot Versus Fits
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02-02-2009

Regression Analysis: sd versus y, x, ...

The regression equation is
sd = - 2.1 + 4.23 Y + 1.67 x + 0.487 CMLsd - 5.79 lslope + 0.0161 bar_N

- 0.0588 bar_Nw. - 1.79 north

Predi ctor Coef SE coef T P
Constant -2.13 21.07 -0.10 0.920
y 4.2268 0.4741 8.91 0.000
x 1. 6707 0.1757 9.51 0.000
CMLsd 0.48707 0.04614 10.56 0.000
1slope -5.788 1.451 -3.99 0.000
bar_N 0.016101 0.005859 2.75 0.006
bar_NW -0.058830 0.006263 -9.39 0.000
north -1. 7855 0.7900 -2.26 0.024

S = 11. 5851 R-Sq = 77.9% R-sq(adj) = 77.6%

PRESS = 61645.1 R-sq(pred) = 76.98%

Analysis of variance

Source
Regressi on
Residual Error
Total

DF SS MS F P
7 208646 29807 222.08 0.000

441 59188 134
448 267834

Source
y
x
CMc_sd

DF seq SS
1 109872
1 54519
1 24691
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1slope 219
bar_N 6944
bar_NW 11715
north 686

unusual obse rvati ons

obs y sd Fit SE Fit Residual St Resid
5 39.8 33.020 1.675 1. 676 31.345 2.73R

20 46.5 22 .860 47.769 1. 558 -24.909 -2.17R
41 42.3 45.720 22 .140 1.812 23.580 2.06R
58 44.'5 17.780 45.284 1.693 -27.504 -2.40R
65 47.2 73.660 50.782 2.095 22.878 2.01R
73 44.6 32.000 61. 756 1.471 -29.756 -2.59R

108 43.5 106.680 81.476 2.135 25.204 2.21R
126 44.2 57.150 83.958 1.766 -26.808 -2.34R
168 43.3 69.596 43.624 1. 351 25.972 2.26R
193 46.9 122 .300 98.270 2.432 24.030 2.12R
249 45.2 80.000 55.848 1. 379 24.152 2.10R
264 43.4 92.456 69.423 1. 569 23.033 2.01R
281 48.6 56.600 70.421 3.102 -13.821 -1. 24 x
299 46.0 107.400 77.613 1. 303 29.787 2.59R
303 43.2 86.868 60.074 1.209 26.794 2.33R
308 44.5 101.600 66.059 1.445 35.541 3.09R
323 43.4 114.808 80.804 2.153 34.004 2.99R
327 44.5 93.980 68.485 1.459 25.495 2.22R
328 39.1 25.400 22 .315 3.185 3.085 0.28 x
335 43.2 89.408 60.223 1.194 29.185 2.53R
337 43.4 99.060 69.090 1. 573 29.970 2.61R
356 44.0 52.000 23.980 1.492 28.020 2.44R
376 41.6 27.940 2.927 1. 775 25.013 2.18R
377 43.8 50.546 78.133 1.988 -27.587 -2.42R
382 43.4 109.982 80.888 2.152 29.094 2.56R
385 45.4 43.000 65.973 1.876 -22.973 -2.01R
386 44.5 16.000 47.405 0.920 -31.405 -2.72R
396 46.1 60.100 86.831 1.925 -26.731 -2.34R
410 43.2 7.620 31. 746 1. 901 -24.126 -2.11R
411 43.2 7.620 31.745 1.901 -24.125 -2.11R
418 44.5 77 .000 50.310 1. 348 26.690 2.32R
427 45.2 28.000 59.030 1.384 -31. 030 -2.70R
440 41.9 7.620 32.515 1. 741 -24.895 -2.17R

~ ~~~~~~~ ~~ ~~~~~~~~~~~ ~~~~eaxl~~l~es~f~~~rnZi~r~~s~ ~~;~~ge.

Residual Plots for sd
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Residual Plots for sd

Normal Probability Plot Versus Fits
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SWE Prediction

01-12-2008

Regression Analysis: In(swe+1) versus x, elev, •••

The reg ressi on equati on is
In(swe+1) = 47.7 + 0.246 x + 0.00341 elev - 0.341 slope + 0.000005 dist_ocean

+ 0.479 1n (sdc+1)

predi ctor coef SE coef T P
Constant 47.665 9.978 4.78 0.000
x 0.24634 0.04690 5.25 0.000
elev 0.0034058 0.0007753 4.39 0.000
slope -0.3411 0.1003 -3.40 0.001
di st_ocean 0.00000456 0.00000094 4.87 0.000
1n(sdc+1) 0.47878 0.09958 4.81 0.000

S = 1.12622 R-Sq = 33.0% R-sq(adj) = 31.5%

PRESS = 294.746 R-sq(pred) = 28.61%

Analysis of variance

Source
Regressi on
Residual Error
Total

DF SS MS F P
5 136.365 27.273 21.50 0.000

218 276.504 1. 268
223 412.869
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Source DF seq ss
x 1 2.931
elev 1 21. 208
slope 1 35.614
di st_ocean 1 47.292
1n(sdc+1) 1 29.319

Unusual Obse rvati ons

Obs x 1n(swe+1) Fit SE Fit Residual St Resi d
5 -80.8 0.0000 2.8132 0.1358 -2.8132 -2.52R

31 -80.8 0.0000 2.3023 0.1704 -2.3023 -2.07R
39 -77 .8 0.0000 -0.9059 0.3359 0.9059 0.84 X
42 -77.7 0.0000 2.5102 0.1990 -2.5102 -2.26R
47 -79.0 0.0000 0.6204 0.3784 -0.6204 -0.58 X
48 -78.0 0.0000 2.6351 0.2522 -2.6351 -2.40R
49 -85.8 0.0000 2.4135 0.1701 -2.4135 -2.17R
54 -85.2 0.0000 2.6315 0.1142 -2.6315 -2.35R
69 -81.2 3.3673 1.4968 0.3435 1.8704 1.74 X
76 -86.5 2.2116 3.1743 0.3894 -0.9628 -0.91 X
98 -79.3 2.6355 0.9989 0.4196 1. 6366 1.57 X

143 -81. 3 3.6636 1.5087 0.3317 2.1548 2.00RX
187 -78.8 3.1781 0.9413 0.1667 2.2367 2.01R
195 -87.5 3.9474 2.4624 0.3327 1.4850 1.38 X
196 -87.5 3.9474 2.4615 0.3328 1.4859 1.38 X
210 -81.9 4.6052 2.1655 0.1324 2.4397 2.18R
224 -69.3 3.2734 0.6013 0.2821 2.6720 2.45R

~ ~~~gi~~ ~~ g~~~~~~i~g~ ~~;~eaX
1
e~1~es~f~~~rnzi~r~~s~ ~~~~age.

Residual Plots for In(swe+ 1)
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Residual Plots for In(swe+l)

Normal Probability Plot Versus Fits
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02-02-2009

Regression Analysis: swe versus sdc, easter, elev

The regressi on equati on is
swe = - 11.5 + 2.15 sdc - 4.56 easter + 0.0270 elev

Predi ctor
Constant
sdc
easter
elev

Coef SE Coef T P
-11.467 3.953 -2.900.004
2.14537 0.07167 29.93 0.000

-4.559 1.957 -2.33 0.020
0.02704 0.01175 2.30 0.022

S = 29.6726 R-Sq = 72.3% R-sq(adj) = 72.1%

PRESS'= 399431 R-sq(pred) = 71. 75%

Analysis of variance

Source DF SS MS F P
Regressi on 3 1021907 340636 386.88 0.000
Residual Error 445 391805 880
Total 448 1413712

source
sdc
easter
elev

DF seq SS
1 1011934
1 5309
1 4664
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unusual Observati ons

obs sdc swe Fit SE Fit Resi dual St Resid
7 15 0.00 40.82 5.28 -40.82 -1.40 x
9 37 0.00 71.43 2.17 -71.43 -2.41R

20 48 25.40 96.90 2.53 -71. 50 -2.42R
27 42 30.00 91. 28 2.19 -61. 28 -2.07R
58 46 27.94 88.89 2.44 -60.95 -2.06R
73 62 53.00 131.78 . 2.36 -78.78 -2.66R
86 79 106.00 172.47 3.31 -66.47 -2.25R

103 91 134.00 195.48 3.51 -61.48 -2.09R
126 84 104.14 184.12 4.94 -79.98 -2.73RX
236 84 127.00 183.49 4.94 -56.49 -1. 93 x
299 78 236.00 164.68 3.02 71.32 2.42R
303 60 192.02 132.73 2.44 59.29 2.00R
308 66 228.60 142.13 2.05 86.47 2.92R
323 81 262.89 179.83 3.83 83.06 2.82R
325 48 157.48 96.16 2.53 61. 32 2.07R
326 48 157.48 96.17 2.53 61.31 2.07R
327 69 215.90 146.43 2.10 69.47 2.35R
328 23 58.42 58.34 6.24 0.08 0.00 x
335 60 208.79 133.05 2.44 75.74 2.56R
337 69 231.65 154.86 3.17 76.79 2.60R
351 80 236.22 170.65 2.90 65.57 2.22R
356 24 124.00 38.94 3.24 85.06 2.88R
376 3 68.58 4.87 3.50 63.71 2.16R
382 81 271.78 180.01 3.83 91.77 3.12R
386 48 40.00 100.98 2.15 -60.98 -2.06R
397 119 280.00 255.95 5.14 24.05 0.82 x
418 51 211.00 112.52 2.50 98.48 3.33R
424 68 218.44 144.37 2.16 74.07 2.50R
434 46 180.00 103.21 2.68 76.79 2.60R
435 47 165.00 100.51 2.87 64.49 2.18R
441 55 200.66 118.93 2.56 81. 73 2.76R
446 23 124.21 41.46 2.23 82.75 2.80R

~ ~~~~i~~ ~~ ~~~~~~~i~~~ ~~~~eax
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Residual Plots for swe
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Residual Plots for swe
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04-01-2010

General Regression Analysis: swe+ 1 versus sdC, y, vm

Box-Cox transformati on of the response wi th rounded 1ambda = 0.382887
The 95% er for lambda is (0.305, 0.455)

Regression Equation

swe+11\0.382887 = -9.0797 + 0.0415262 sdc + 0.264081 y + 6. 409ge-005 vm

Coeffi ci ents

Term coef SE coef T P
Constant -9.07970 1. 75889 -5.16219 0.000
sdc 0.04153 0.00695 5.97714 0.000
y 0.26408 0.04186 6.30918 0.000
vm 0.00006 0.00002 2.83107 0.005

Summary of Model

S = 0.980734 R-Sq = 51. 36% R-sq(adj) 50.89%
PRESS = 310.829 R-sq(pred) = 49.78%

Analysis of variance

Source DF seq SS Adj SS Adj MS F P
Regressi on 3 317.835 317.835 105.945 110.148 0.000000

sdc 1 275.880 34.363 34.363 35.726 0.000000
y 1 34.245 38.287 38.287 39.806 0.000000
vm 1 7.709 7.709 7.709 8.015 0.004940

Error 313 301.056 301.056 0.962
Lack-of-Fi t 310 298.861 298.861 0.964 1.318 0.482020
Pure Error 3 2.194 2.194 0.731

Total 316 618.891



128

Fits and Di agnosti cs for unusual observati ons for Transformed Response

obs swe+1"0.382887 Fit SE Fit Resi dual St Resi d
5 1.00000 3.27404 0.158279 -2.27404 -2.34951 R
6 1.00000 4.00476 0.095109 -3.00476 -3.07829 R
9 1.00000 3.66170 0.120544 -2.66170 -2.73472 R

11 1.00000 4.07940 0.094303 -3.07940 -3.15451 R
32 2.90748 5.15488 0.092648 -2.24740 -2.30184 R

147 1.70028 4.69397 0.237452 -2.99369 -3.14611 R x
150 5.14219 3.13421 0.090113 2.00797 2.05611 R
160 5.21411 3.92471 0.282833 1. 28940 1. 37307 x
161 5.21411 3.92384 0.282735 1. 29027 1.37395 x
174 1.98584 5.44724 0.197762 -3.46141 -3.60342 R x
185 5.32091 6.20545 0.213327 -0.88454 -0.92404 x
248 6.75829 4.61631 0.087850 2.14198 2.19287
261 6.55297 3.98894 0.114787 2.56403 2.63249
282 5.88900 3.50753 0.126075 2.38147 2.44856
289 4.54145 4.06009 0.199857 0.48136 0.50133
296 4.53309 4.06008 0.199878 0.47300 0.49263
308 6.61503 4.39878 0.074740 2.21625 2.26638
315 8.94624 4.48530 0.076585 4.46095 4.56251
316 7.66460 3.69092 0.115855 3.97368 4.08031

Fits for unusual Observations for original Response

obs
5
6
9

11
32

147
150
160
161
174
185
248
261
282
289
296
308
315
316

swe+1
1.00
1.00
1.00
1.00

16.24
4.00

72.00
74.66
74.66
6.00

78.72
147.00
135.62
102.60

52.05
51.80

139.00
305.80
204.20

Fit
22 .144
37.478
29.661
39.329
72 .465
56.740
19.759
35.553
35.532
83.695

117.630
54.321
37.092
26.510
38.845
38.845
47.887
50.386
30.284

R
R
R
R
R
R X
R

X
X

R X
X

Residual Plots for swe+ 1
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Residual Plots for swe+l
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Appendix-C SWE Prediction Tool Manual

1. Introduction

SWE_MAP_Vl.0 is a spatial prediction tool which can be used to predict SWE in space

and time. The tool can predict SWE within a range of55° W to 970 Wand 3SoN to 60oN.

The tool can be used for SWE prediction from January 200S. The tool is a combination of

different Fortran codes and R scripts. SWE map and spatial and temporal gridded SWE

product can be generated for a maximum period of one year at a time. This spatial

modelling tool combines deterministic SWE prediction models with statistical Universal

Kriging (UK) models. Comparison of different statistical and deterministic models can be
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me in this tool and the best models have been picked based on calculated Root Mean

uare Error (RMSE) of SWE at validation and cross validation points. Later, the best

terministic and statistical models are combined by cressman data assimilation algorithm

r final spatial prediction. CMC snow depth data product, Physiographical variables like

\ getation mass, elevation, distance from ocean, and Canadian and USA snow course

easurements have been used as input data. These data are processed by Fortran codes

aIld R scripts, in order to be read in the main modelling part. So, the whole

WE_MAP_Vl.O tool can be divided into two parts, one is data processing part and

other is SWE prediction part. SWE prediction part is the main modelling part which is

written in R scripts. The data processing has mainly done by Fortran codes along with R

'ripts. The whole tool setup, file structure and detail run procedure will be discussed in

this Appendix.

2. Concept and Logical Representation of Prediction Modelling Tool

In this part, only the logical representation behind the SWE prediction is described. In the

urrent research, CMC snow depth analysis product have been used as a main predictor of

WE. But, the CMC product contains some error due to the representative measurements

of snow depth from open area. Universal Kriging (UK) models is used to correct the

associated bias by using the snow course point measurements which is a independent data

et. These UK models is applied only within 150 km of radius of the measured point data.

In the rest of the portion, CMC snow depth is used directly without adjustment. After the

adjustment process, the SWE prediction can be done under two scenarios. Scenario I is
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applied to those days where more than 50 Canadian snow course measurements are

available. On other days scenar.io-B is applied. The starting day for the SWE simulation

period will always be in Scenario-I. One deterministic model named snow climate class

model, developed by Sturm et al. 2009 is used in s nario-I. There are four UK models in

this scenario. The best model among these four models is selected by calculating

RMSE of SWE at validation and cross validation points and then combine with snow

climate class model by Cressman algorithm. If snoW climate class model predicts better

than all the UK models, than the prediction from snow climate class model is used as the

final SWE. In scenario-B, there are two determini tic models, one is snow climate class

model and another is snow aging model used in Canadian Land Surface Scheme

(CLASS) (Verseghy et aI, 1993). In scenario II there are two UK models. The best

deterministic model and the best UK model is selected based on calculated RMSE .of

SWE and then combined by Cressman algorithm for final SWE prediction. If any

deterministic model provides good prediction than UK models, then the best deterministic

model is used for the final prediction of SWE. If there is more than 20% of zero values

present in the snow course data, then log transformation of snow depth and SWE is

necessary. If there is more than 60% of zero snow ourse values, then for final prediction

deterministic model is used. All this logical representation has been done by the following

flow chat.
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, ,~t'lnplltnewstationl;;'~IIOnTfnewslat(Onavallablt~J\I ,
• Add new potnlmeasuremenlslolhedatabaseforlhesJlllIAationpenod

• Updatelhe Canadian snow course database

,,'tc:"Downl<iid measuredT sfiOw'd8piliand snowWatere~ dita forUSA~r "1$>
• Combine snowdeplh and snow water equivalent data 10 aeate lhe snow course data file

• Extracl snow course dala for each mdMdual sllnulabon day

$'.~~~J,~:'r::~~uuS:~=:::~~C:=~,
• 10%canadlandata are selecledrandomlyforvaudatlon

·1 USA data pomt IS selecledasvaidabonpolI'll
-Resloflhepomlsareusedfortheslatlsbcalmodellingpurpose

- 'USA~ndCanadiandataare'c~nedfo7eachTrldr\lldualday -e

·Combinmglsconducledbothforsamplepomtsandvakdallonpomls

~" "?:,,, .SWEP1'edictionb~S~oilllel~~modtirsatldsllti!tical~rsaKnglllll(UKllJlllQels.. " ,,\ t -'"
-7wodetennemiticmodels(snowctmatfclassandsnowaglllgmodel)

• Two UK models UK1 (based on predlcled SWE by snow c1tmate class) UK2 (based on predicted SWE by snow aging model}
Best determenlsbc model and best stalistlcal model IS selected based on RMSE of SWE and then combmed by Cressman algonthlm

Figure: Flow Chart of the total Process for SWE prediction
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3. Installation

This prediction tool is a combination of different Fortran codes and R scripts. So, to run

this SWE_MAP_Vl.O tool fITst we need to install CRAN-R and Fortran compiler. The

tool has been developed and setup in an UNIX environment. So, UNIX operating system

will be helpful to run the tool and predict SWE in the simulation period. The

SWE_MAP_V1.0 tool is in a main folder named SWE_MAP_Vl.O, which contains three

sub folders; data, model and output. The tool can be placed at any location "in the home

directory. There is option to input the directory of SWE_MAP_Vl.O in the main R script.

The data folder contains preloaded three Fortran codes named mgrid.f90, canada.f90 and

usa.f90. There is also an R script in this folder named sample.R. There are some other

files which are necessary like Canadian database file finaI.txt, CMC snow depth analysis

lat Ion file, basic gridded file with physiographic variables and timeseries.txt. CMC snow

depth analysis product file for the simulation period need to be downloaded from the web

site (ftp: //sidads.colorado.edu/pub/ DATASETS/nsidc0447 CMC snow depth vOl/)

and placed in the data folder. The model folder mainly contains R scripts for SWE

prediction. There are four R scripts named main_swe.R which is the main script that

combines other R scripts and make the run for SWE prediction, UK_sdepth_tm.R is a r

script which is used for the snow depth adjustment, swe_inter_tm.R is a r script which is

used to predict SWE in days when significant Canadian snow course data are available

and swe_gap_tm.R is a r script for constructing SWE at time series gap. In spite of these r

scripts, there are some other files necessary like day of year file and snow climate class
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model's parameter file. Files and maps created from the modelling tool will be placed in

this fo Ider later.

.Two software are necessary for running these codes. G-Fortran is a good free Fortran

complier can be used for running Fortran codes. R is developed by CRAN is a language

software with different packages. R version> 2.14.1 is required to run the included

scripts in the prediction tool. To install these two software, following codes can be written

in the terminal of UNIX

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get install gfortran

$ sudo apt-get install r-base

R studio is a graphical interface of R language and easy to use. R studio can be

downloaded from http://rstudio.org/.Itis necessary to install different R packages

required for the tool. The necessary R packages are gstat, maps, mapproj, fields, mapdata,

lattice, maptools, raster, spam, splus2R, RSAGA, date, automap. These packages can be

installed by typing install.packages("package name") in R -studio console.

Here, it will be convenient to run the Fortran codes from the terminal by typing gfortran

file name (like: gfortran usa.f90) and then (.Ia.out). Before run the Fortran code from the

terminal it is necessary to select the directory, where the Fortran code has already placed.

The r script can be run from r studio by the source file.

4. File Structure
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FOR !'RAN CODE I R SCRIPT
rILES

I. mgnd.f90

2. canada f90

3.usa./90

4.:-.am le.R

INPur rILES

I cmc_analysls~ear txt

i 2. cmc_analysisysJaUon.t.....t

3. finaLt"t

4 mgrid.csv

"" 5. tlI11eseries.txt

atl rpUT fILES

I. samplejuliandute.<."S\'"
2. sample_lIsajuliandatc csv*

3. m rid ·uliandatc.csv*

INPUT FILES

I doycsv

2. mgridjuliandate.csv'"

3. sample_sdn.Juhandate.csv'"

4. \alidationjuliandatc.cs\ '"

5. sclass_mgrid.csv

R SCRIPT FILES
h I. main_s\\c.R

2. UK_sdeptIUm.R

3. s\\ejmer_tm.R

4 :me 'a t01 R
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Figure: File Structure of SWE_MAP_Vl.O

In the above figure, total file structure ofSWE_MAP_Vl.O is provided. The * sign means

this file will be created by running the codes and will not be in the folder at initial set up

stage. Year and juliandate are used as variables in the filename . Year will be the

simulation year. Julian date is a variable and will be created for each day within the

simulation period. So, the filename contain juliandate in the upper structure, is not a

single file, but a number of files will be created. For each day, separate file with Julian

date will be created. In data folder some intermediate temporary files will be also created

but not mentioned in the upper diagram. The details about each files type and run

procedure will be described in the next part.

5. Run of SWE_MAP_Vl.O

1. Run the Fortran code mgrid.f90 to add time dependent CMC Snow depth data into

physiographic gridded data set which is constant in time.

• To run this code three input files are necessary. These three input files are in the

data folder.

a. mgrid.csv- it is the basic grid file co'ntains all the position of CMC snow depth

grids with physiographical variables like elevation, vegetation mass, distance from

ocean etc. The sample of this file has been provided below
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y,x, elev,veg, slope,aspect,ls1ope, easter,north,bar_E,bar_N,bar_!i!;,bar_~"li,bar_sE,vrn,dist_I/ater,dist_ocean

38.039631,-96.721809,441.271,7,88.7031233674,134.6023210618,0.6732013145,0.4672369585,-0.8841321307,603.58899,141.45001,624.1789
38.217369,-96.789033,430.50601,1l,88.7?2455887,128.860t:694131,O.7228liC872,-0.0553423267,-0.9984674391,634.94397,152.215,634.94

38.395321,-96.858414,423.62399,7,88.7899467452,130.914218233,0.7347868904,-0.8586721473,0.5125252613,641.82593,159.09702,641.82"

38.57346,-96.927521,436.14001.10,88.775676185:3,138.7980186599,0.7250327085,0.5378981923,0.843009807,629.30994,146.58099,029.3099

38.751808,-96.997177,388.01401,n,88.7610.m86,143.0mm32,0.7148527216,-0.9942403489,0.10717335B1,£77.43591,194.707,606.80L

38.092659,-96.495987,430.237,7,88.8034508525,128.1880727615,0.'438194243,0.578775258:,-0.8154870941,614.62299,152.48401,635.2:29
38.270691,-96.56321,404.07199,7,88.9496942972,110.8404746919,0.0333273708,-0.7737451214,-0.034970301,661.37793,178.64902,661.37

38.448929,-96.630959,404.07199,7,68.9913300824,101.9929194428, 0.655613943S,0.9940325166, U086270264,6€1.37793,118. 64902,661.377
38.627369,-96.699249,434.01101,7,88.8884605492, 132. 9413006386,0.iS79379193,0.8384371203,0.5449983435,631.31891.148.64999,560.747

38.806011,-96.168089,38a.D1401,11,88.9691986709,161.91288004H,O.8439498083,-0.9868538899,-0.1616149748,671.43591,194.707,606.80

38.984859,-96.837479,388.01401,11,88.8746367863,143.759120159,0.7895298144,-0.6846634911,0.728859317,677.43591.194.707,606.80493
39.16391,-96.901411,370.61401,1,;8.191119158,135.0981996001,0.735988366,-0.0097153435,-0.9999528049,624.20496,212.10699,565.m

39.343151,-96.977943,395.91901,11,88.1272343503,139.2868439406,0.690868795,0.87G7704924,o.49163963B2,598.B9996,18U02,540.1669

38.145012,-96.269653,430.231,7,88.8886980128,124.1B5110i78,0.7980810255,-0.9957525017,0.0920703831,635.21295,133.75403,635.21295

38.32333,-SG.336037,381.1m1,1,29.2790126417,99.8439500696,O.9673:41865,-0.6342320608,0.7731427378,684.34094,182.88202,684.3409
38.50185,-96.4(2969,401.4970:,7,89.1574107401,117.8871462745,0.9294120414,-0.9970044319, .077344442,663.95294,181.224,£63.95294,

38.m58,-96.470444,401.4970l,7,89.1273319214,129.139259942,O.9178929121.-0.32778788?1,-0.9447513435,£63.95294,181.224,593.32196

38.85952,-96.533437,432.01401,7,89.203109996,193.7643842355,0.9453109741,-0.8491428527,0.5281632472,633.43591.150.707,562.30493

39.03B61,-96.H6987,363.54999,1l,89.00236S7621,103.4211619891,0.36:2754798,0.2487501007,-0.9685676989,701.89996,219.17102,631.2'

39.21801,-96.676086,363.54999,11.88.9182335138,102.5042798367,0.8155269826,O.92COmm,-O.3917368844,631.2689B,219.17l02,572.53

39.39756,-96.745758,391.064,7,88.8274080458,140.2985306867,0.7596753533,0.8787031587,-0.4173685775,603.755.191.65701.545.02197,4
39.517301,-96.815987,406.13599,11,88.6211219299,143.565030511,0.6108451154,-0.8123855583,0.5831206604,588.68298,176.58502,529.95

39.751252,-96.886803,40:.33801,11,88.6584358539,144.4147836829,0.639495260S,-0.09S3192856,0.99515492lt,391.39197,lBl.383,534.747

39,937401,-96.958183,401.33801,11,88.6828097841,143.0547897338,0.6580420131,-0.9936982898,0.1120879518,330.42297,181.383,534.747

Figure: Preview of mgrid.csv file

b. CMC snow depth analysis data product is a gridded data and can be

downloaded from

ftp://sidads.colorado.edu/pubIDATASETS/nsidc0447 CMC snow depth vO 1/

CMC snow depth data files are yearly and need to be downloaded for the

simulation year and to be placed in the data folder. The lat Ion file is a constant

file and is pre placed in the data folder with the SWE_MAP_Vl.O tool. The file

name for lat Ion is cmc_analysis_ps_lat_lon.txt and the data file is

cmc_analysis_year.txt (like cmc_analysis_2009.txt). Details about this file format

can be found in the documentation at the National Snow and Ice Data Center site

(NSIDC).
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Open the terminal and change the directory where the mgrid.f90 code i available.

Type gfortran mgrid.f90 in the terminal and then .Ia.out. On the screen input the

starting simulation year ,month and day also input the number of day for which

you want to simulate or process the data.

On screen, the Julian date for the starting simulation date will be shown. Please

keep this in record and it will be necessary in future simulation.

• After compiling the program, mgridjuliandate.csv file will be created for each

individual day with Julian date as a variable and it will also represent each day

separately. These created output files store gridded CMC snow depth analysis data

and physiographical variables. Below a preview of mgrid_2454892.csv is

provided.

JD,y,x,elev,vm,dist_ocean,CMC_sd
2454892, 38.039631 -96.721809 441.27100 3649.2866 934548.56 2.1

2454892, 38.217369 -96.789833 430.50601 3551.3218 934996.75 2.2

2454892, 38.395321 -96.858414 423.62399 4107.7725 934622.31 2.2

2454892, 38.573460 -96.927521 436.14001 2681.1626 934533.56 2.2

2454892, 38.751808 -96.997177 388.01401 2787.5231 934962.69 2.2

2454892, 38.092659 -96.495987 430.23700 3840.2571 926766.94 2.2

2454892, 38.270691 -96.563210 404.07199 3896.6360 929680.69 2.4

2454892, 38.448929 -96.630959 404.07199 3979.6985 931596.56 2.6

2454892, 38.627369 -96.699249 434.07101 3866.9514 933106.75 2.7

2454892 38.8060il -96.768089 388.01401 3181.5874 934595.38 2.7

2454892, 38.984859 -96.837479 388.01401 3215.4233 936087.19 2.7

2454892, 39.163910 -96.907417 370.61401 3329.6587 966864.44 2.7

2454892 39.343151 -96.977943 395.91901 2984.3333 973633.00 2.8

2454892, 38.145012 -96.269653 430.23700 3376.8025 918630.56 2.3

2454892, 38.323330 -96.336037 381.10901 3577.8345 923711.44 2.6

2454892, 38.501850 -96.402969 401.49701 3946.2913 928374.69 2.9

2454892, 38.680580 -96.470444 401.49701 4089.0737 932033.94 3.1

2454892, 38.859520 -96.538437 432.01401 3788.2136 934932.88 3.3

2454892, 39.038670 -96.606987 363.54999 3825.6238 966077.94 3.4

2454892, 39.218010 -96.676086 363.54999 3876.4263 973946.69 3.5

2454892 39.397560 -96.745758 391.06400 3535.1167 981174.5. 3.7

2454892, 39.577301 -96.815987 406.13599 2363.7312 987545.<3 3.9

2454892, 39.757252 -96.886803 401.33801 2120.8557 992941.8: 4.1

2454892, 39.937401 -96.958183 401.33801 2028.7667 997345.63 4.2

2454892, 3B.018291 -95.977737 346.76999 2785.0540 913136.0. 2.0

Figure: mgrid.csv file
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2. Run canada.f90 Fortran code and it will create the Canadian snow course data file for

each day within the simulation period

• To run this code, Canadian snow course database file (final.txt) is the only file

which is necessary. In below the preview of this database file has been provided.

In first column Julian day, then station id, lat, Ion, snow depth in cm and at last

SWE in mm.

Open the terminal and change the directory to the directory where the canada.f90

code is available. Type gfortran canada.f90 in the terminal and then type .la.out.

On the screen input the starting simulation year ,month and day and also input the

number of days for which you want to simulate or process the data.

Individual snow course data file with Julian date, lat, Ion, snow depth, Snow

Water Equivalent (SWE) and snow density will be created as the output file. The

quality of the data from the main database has been checked based on density,

before stored in each individual Canadian snow course file. Only data of the

spatial domain of current research is extracted from the main database final.txt.

Below a preview of sample_2454892.csv has been provided. In the created output

file snow depth is in cm and swe is in mm.
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2427884 356 50.53 -117 .28 152.0 389.0

2427885 232 49.37 -122.80 3.0 3.0
2427886 0 0.00 0.00 -999.0 -999 ..0
2427887 0 0.00 0.00 -999.0 -999.0

2427888 0 0.00 0.00 -999.0 -999.0

2427889 0 0.00 0.00 -999.0 -999.0
2427890 380 49.73 -120.18 91.0 246.0
2427891 0 0.00 0.00 -999.0 -999.0
2427892 381 49.82 -12G.02 94.0 259.0

2427893 0 0.00 0.00 -999.0 -999.0

2427894 0 0.00 0.00 -999.0 -999.0
2427895 0 0.00 0.00 -999.0 -999.0

2427896 383 49.99 -118.87 122.0 320.0
2427897 0 0.00 0.00 -999.0 -999.0
2427898 382 49.78 -119.20 79.0 188.0
2427899 0 0.00 0.00 -999.0 -999.0
2427900 0 0.00 0.00 -999.0 -999.0

2427901 0 0.00 0.00 -999.0 -999.0

2427902 0 0.00 0.00 -999.0 -999.0
2427903 0 0.00 0.00 -999.0 -999.0

2427904 0 0.00 0.00 -999.0 -999.0
2427905 0 0.00 0.00 -999.0 -999.0

2427906 0 0.00 0.00 -999.0 -999.0
2427907 0 0.00 0.00 -999.0 -999.0
2427908 0 0.00 0.00 -999.0 -999.0

2427909 0 0.00 0.00 -999.0 -999.0

Figure: Preview of finaI.txt file

JD,y,x,sd,swe,d
2454906, 48.430000 -81.169998 92.000000 180.00000 0.19565217
2454906, 49.779999 -94.370003 45.000000 119.00000 0.26444444
2454906, 50.630001 -93.180000 54.000000 84.000000 0.15555556
2454906, 51.169998 -90.220001 63.000000 140.00000 0.22222222
2454906, 50.119999 -91.919998 59.000000 155.00000 0.26271185
2454906, 48.700001 -89.620003 55.000000 107.00000 0.19454545
2454906, 50.279999 -89.029999 88.000000 170.00000 0.19318181
2454906, 49.060002 -87.070000 56.000000 122.00000 0.21785714
2454906, 49.770000 -86.919996 60.000000 96.000000 0.16000000
245496, 47.970001 -81.599998 68.000000 117.00000 0.17205882
2454906, 47.460000 -81.419998 63.000000 135.00000 0.21428572
2454906, 46.820000 -80.949997 55.000000 173.00000 0.31454545
2454906, 48.549999 -80.699997 88.000000 183.00000 0.20795454
2454906, 46.630001 -80.769997 73.000000 236.00000 0.32328767
2454906, 47.990002 -80.699997 79.000000 163.00000 0.20632911
2454906, 47.630002 -80.430000 83.000000 193.00000 0.23253012
2454906, 46.520000 -79.919998 78.000000 158.00000 0.20256411
2454906, 46.660000 -79.989998 75.000000 155.00000 0.20666666
2454906, 45.349996 -80.029999 46.000000 137.00000 0.29782608
2454906, 45.919998 -79.220001 55.000000 127.00000 0.23090909
2454906, 46.770000 -79.029999 75.000000 196.00000 0.26133335
2454906, 46.349998 -78.750000 59.000000 117.00000 0.19830509
2454906, 44.950001 -78.699997 48.000000 147.00000 0.30625001
2454906, 45.500000 -78.220001 58.000000 180.00000 0.31034482
2454906, 44.990002 -77.970001 45.000000 132.00000 0.29333332

Figure: Preview ofsample_2454892.csv file
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3. Run usa.t90 Fortran code and this code will first download the snow depth and SWE

data for the simulation period and then combine these two data set for each individual

days and create the USA snow course measurements file.

• To run this code no input data file is necessary as the code downloads the

necessary data directly from the web. The code downloads USA data from this

web site (http://www.nohrsc.noaa.gov/nsa/). One input file named timeseries.txt

is necessary to run the code. This file contains the time series date in

chronological order which will need to choose the download address based on

date.

• Open the terminal and change the directory to the directory where the usa.f90

code is available. Type gfortran usa.t90 in the terminal and then type .Ia.out. On

the screen input the starting simulation year ,month and day also input the number

of days for which you want to simulate or process the data.

• This code downloads the USA snow depth and SWE data separately, combine

them and then check the data quality based on density and store the data

separately in file for each individual day. The output file name is

sample_usajuliandate.csv . An example of a file sample_usa_2454892.csv has

been provided below.

• USA data from Northeast, Northern Great Lakes, Southern Great Lakes and

Alleghany Front has been only down loaded and processed.
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• It needs to be keep in mind that the usa.f90 code should not be run for more than 1

month simulation period at a time, otherwise it will take very long time. If the

simulation period will be 1 year then 12 run ofusa.f90 is necessary to cover the

total simulation period. So, it is always necessary to divide the total simulation

period in monthly basis.

JD,y,x,sd,swe,d
2454892, 44.533298 -72.833298 89.153999 312.42001 0.35042736

2454892, 43.049999 -73.033302 59.436001 241.29999 0.40598288

2454892, 43.933300 -71.716698 61.467999 175.25999 0.28512394

2454892, 43.783298 -72.033302 58.419998 160.02000 0.27391306
2454892, 43.057251 -78.861702 0.0000000 0.0000000 0.0000000

2454892, 41.432320 -81.371597 0.0000000 0.0000000 0.0000000

2454892, 46.493301 -86.305801 116.84000 289.56000 0.24782608

2454892, 46.531101 -87.548302 78.739998 187.95999 0.23870967

2454892, 46.533329 -87.550003 78.739998 187.95999 0.23870967

2454892, 45.071659 -83.564438 45.720001 106.68000 0.23333333
2454892, 48.058102 -92.752197 38.099998 99.059998 0.26000002

2454692, 44.907501 -84.719880 30.400000 76.199997 0.2500000

2454892, 44.479439 -88.136658 17.780001 27.939999 0.15714285

2454892, 41.633301 -87.083298 0.0000000 0.0000000 0.0000000
2454892, 43.242199 -88.288902 3.00000003E-03, 0.0000000 0.0000000

2454892, 42.833302 -84.766701 0.0000000 0.0000000 o.oeooooo
2454892, 41.721390 -83.732399 0.0000000 0.0000000 0.0000000
2454892, 42.464001 -83.116203 0.000000 0.000000 0.000000
2454892, 41.408920 -87.389900 0.0000000 0.0000000 0.0000000
2454892, 41.781429 -88.067398 0.0000000 0.0000000 0.0000000

2454892, 41.557690 -87.659401 0.0000000 0.0000000 0.0000000
2454892, 41.331902 -86.307404 0.0000000 0.0000000 0.0000000

2454892, 43.320068 -88.168198 0.0000000 0.0000000 0.0000000

2454892, 39.066700 -78.966400 0.0000000 10.160000 0.0000000

Figure: sample_usa_2454892.csv file

4. Run r script main_swe.R, this is the main prediction modelling part and it combines

four other R scripts within it to produce the final SWE prediction

main_swe.R is the only r script which needs to be run as the prediction model.

Four different r scripts for different purposes are integrated in this main r script.

We will discuss this four integrated r scripts separately.
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• To run main_swe.R, flrst open the r studio and then open the main_swe.R file and

run the file from the source. It requires to input the starting Julian date which can

be obtained during running the mgrid.f90 Fortran code or the starting date can be

converted to Julian date by Julian date converter web site

(http://www.iasfbo.inaf.it/-mauro/JD/). The prediction tool also requires to input

the number of simulation days. We need to also enter the directory where we

place SWE_MAP_Vl.0 prediction tool. Example- If SWE_MAP_Vl.0 has been

placed at /home/sh injan/S WE_MAP_Vl.0 then we just to enter /home/shinjan/ as

the directory.

• The first r script to be run within the main_swe.R is sample.R. The main purpose

of running this r script is to chose modelling and validation points randomly for

each single day, combine Canadian and USA snow course data for both modelling

points and validation points and at last place these snow course data files and daily

gridded CMC snow depth file to the model folder. The input file necessary for this

script to run is sample-.Juliandate.csv, sample_usa-.Juliandate.csv and

mgrid-.Juliandate.csv, and the output files are sample_sdn-.Juliandate.csv and

validation_sdn-.Juliandate.csv. In below a preview of sample_sdn_2454892.csv

and validation_sdn_2454892.csv has been provided.
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JD,¥{x,sd,slNe,d,CMC_sd,elev,VID,dist_ocean

2454892,48.630001,-81.4000(2,96.5,147.3,0.15264249,104.3,305.099,11675.797,294204.91

2454892,50.279999,-89.029999,66,24,0.18787879,46.3,353.30301,1766.453,55677'.19

2454892,45.52,-77.900002,53,150,0.29301886,27.3,442.30701,10904.539,554515.89

2454892,46.700001,-73.889999,61.700001{158,0.2560778,32.3,468.91101,10681.572,215498.03

2454892,47.669998,-81.720001,97.300003,185.39999,0.19054469,90.6,393.056{11574.215,398834.31

2454992{47.970001,-81.599998,72,127,O.17638889,97.9,359.549,11100.913,389125.97

2454892{48.549999,-80.69999I,93,145,O.15591398,98.8,273.44601{10024.651,297806.75

2454892,47.830002,-80.43,96,178,0.18541667,70.2,316.14899,11828.217{352534.72

2454892,46.3800(1,-71.650002,76.599998,191,O.2493427,44.9{155.229{10789.63,95515.742

2454892,49.719999{-94.370003{44,109,0.24712727,58.1,355.21301,9489.9736,793413.38

2454892,44.950001{-78.699997,63.5,172.7,0.27196851,37.3,331.29599,11560.695,598880.06

2454892,47.279999,-79.5,93.5,147.3,O.15754011{46.6,236.62601,8727.2197,425563.13

2454992,45.25,-76.75,35.299999,106.7,0.3022663,7.3,167.767,10980.852,459457.69

2454892,51.169998,-90.22000:,54.599998,109.2,O.2{54.4{371.367{9569.4199,570899.94
2454892,45.919998,-79.220001{35,79{O.22571428{38.4,429.23599,10869.604{572964.69

2454892,48.330002,-81.32,87,147,O.1689E552,106.3,319.3 399,10805.814{335528.69
2454892,49.77,-86.919998,46,71{O.15434782,45.2,320.30899,1'012.904,465468.94

2454892,45.919998,-79.220001{34.799999,73.699997,O.22614942,38.4,429.23599{10869.604,572964.69

2454892{47.080002,-79.279999{64.5,144.8,0.22449613,51.4,263.68399,10002.105{440399.5

2454992{47.990002,-80.699997,88,152,0.17272727,77.3,342.552,11436.429,375143.28

2454892,47.630001,-69.57,78.199997,212,0.27109975,57.7,173.25999,6729.1372,27503.17

2454892{49.080002,-87.07{53.299999{132.10001,O.24784242,39.1,417.7470:,11434.67,520555.47

2454892,46.630001{-81.769997,97.300003{228.60001{O.23494348{68.5,406.461,12212.555,508263.59

2454892,47.470001,-79.830002,94,147{O.15638298,34.4,202.569,9026.1182,401844.94

2454892,46.580002,-74.169998,82.800003,190{O.22946858,38.6,471.57:99,:0924.043,242701.16

Figure: sample_sdo_2454892.csv file

JD, y,x, sd, swe, d,CMC_sd, elev, vm,d~st_ocean
2454892,48.70001,-89.620003,55,127,0.23090909,52.1,459.96899,10261.796,684286.88

2454892,47.48,-81.49998,73,132,0.1808291,86.3,376.487,11759.498,42700.66

2454892,48.049999,-67.099998,77.5,186,0.23999999,65.2,247.84599,10246.392,15979.454

2454892,45.12,-73.5,27.1,76, .284428,1.3,65.72798,9749.293,2663.31

2454892,48.18,-78.33002,95,211, .2221526,68.3,319.9321,1706.105,35623.31

2454892,50.279999,-89.029999,66,124.5,0.18863636,46.3,353.30301,10766.453,556770.19

2454892,44.99002,-77.97000,51.799999,13 .8, .2"250965,28.2,372.9321, 26.42,563923.31

2454892,47.830002,-80.43,96.40002,177.8,0.18443984,70.2,316.14899,11828.217,352534.72

2454892,47.279999,-81.25,72.900002,132.10001,0.18120714,78.5,398.71701,12340.142,444685.59

2454892,41.37721,-75.5364,,0,0,0,485. 5601,12118.15,134204.81

Figure: validatioo_sdo_2454892.csv file
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• The second R script integrated in the main program is UK_sdepth_tm.R. The

purpose of running this r script is to adjust the CMCsnow depth analysis product

in the prediction grids. The outputs from this script is used as the final snow depth

on grid. The input file necessary is sample_sdn~uliandate.csv,

validation_sdn~uliandate.csv and mgrid~uliandate.csv. The output files are

sample_sdepth~uliandate.csv, val idation_sdepth~u Iiandate.csv and

mgrid_sdepth~ulianddate.csv. Below a preview of sample_sdepth_2454892.csv

and mgrid_sdepth_2454892.csv is provided. An error file of snow depth is also

generated from this program and a preview is provided below.

JD,y,x,e1ev,vm,dist_ocean,CMC_sd,sda,sdepth
2454892,38.039631,-96.721809,441.271,3649.2866,934548.56,2.1,2.1,2.1
2454892,38.217369,-96.789833,430.50601,3551.3218,934996.75,2.2,2.2,2.2

2454892,38.395321,-96.858414,423.62399,4107.7725,934622.31,2.2,2.2,2.2
2454892,38.57346,-96.927521,436.14001,2681.1626,934-33.56,2.2,2.2,2.2

2454892,38.75188,-96.997177,388.01401,2787.5237,934962.69,2.2,2.2,2.2

2454892,38.092659,-96.495987,430.237,3840.2571,926766.94,2.2,2.2,2.2

2454892,38.270691,-96.56321,404.07199,3896.636,92966C.69,2.4,2.4,2.4
2454892,38.448929,-96.630959,404.07199,3979.6985,931596.56,2.6,2.6,2.6

2454892,38.627369,-96.699249,434.07101,3866.9514,933106.75,2.7,2.7,2.7
2454892,38.806011,-96.768089,388.01401,3181.5874,934595.38,2.7,2.7,2.7

2454892,38.984859,-96.837479,388.01401,3215.4233,936087.19,2.7,2.7,2.7

2454892,39.16391,-96.907417,370.61401,3329.6587,966864.44,2.7,2.7,2.7
2454892,39.343151,-96.977943,395.91901,2984.3333,973633,2.8,2.8,2.8

2454892,38.145012,-96.269653,430.237,3376.8025,918630.56,2.3,2.3,2.3
2454892,38.32333,-96.336037,381.10901,3577.8345,923711.44,2.6,2.6,2.6

2454892,38.50185,-96.402969,401.49701,3946.2913,928374.69,2.9,2.9,2.9
2454892,38.68058,-96.470444,401.49701,4089.0737,932033.94,3.1,3.1,3.1

2454892,38.85952,-96.538437,432.01401,3788.2136,934932.88,3.3,3.3,3.3

2454892,39.03867,-96.66987,363.54999,3825.6238,966077.94,3.4,3.4,3.4

2454892,39.21801,-96.676086,363.54999,3876.4263,973946.69,3.5,3.5,3.5

2454692,39.39756,-96.745758,391.064,3535.1167,981174.56,3.7,3.7,3.7
2454892,39.577301,-96.815987,4C6.13599,2363.7312,987545.63,3.9,3.9,3.9

2454892,39.757252,-96.886803,401.33801,2120.8557,992941.81,4.1,4.1,4.1

2454892,39.937401,-96.958183,401.33801,2028.7667,997345.63,4.2,4.2,4.2

Figure: mgrid_sdepth_2454892.csv file
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JD,y,x,sd,swe,d,CMC_sd,elev,vm,dist_oeean,sdepth
2454892,46.630001,-81.400002,96.5,147.3,0.15264249,104.3,305.099,11675.797,294204.91,91.3351284878911

2454892,50.279999,-69.029999,66,124, .16767879,46.3,353.30301,10166.453,556770.19,65.3985562646265

2454692,45.52,-77.900002,53,150,0.28301866,27.3,442.30701,10904.539,554575.88,57.7790949966221

2454892,46.700001,-73.889999,61.700001,156,0.2560778,32.3,468.91101,10681.572,215498.03,68.3054276265502

2454892,47.669998,-81.720001,97.300003,165.39999,0.19054469,90.6,393.056,11574.215,398834.31,87.2344392436528

2454892,47.970001,-61.599998,72,127,0.17638889,97.6,359.548,11100.913,389125.97,82.9241315144314

2454892,48.549999,-80.699997,93,145,0.15591398,98.8,273.44601,10024.651,297806.75,93.5409049020335

2454892,47.830002,-80.43,96,176,0.18541667,70.2,316.14899,11828.217,352534.72,94.i786653271365

2454892,46.380001,-71.650002,76.599998,191,0.24934727,44.8,155.228,10789.63,85515.742,79.4843250242423

2454892,49.779999,-94.3700,13,44,109,0.24772727,58.1,355.21301,9489.9736,793413.38,48.4744767448289

2454892,44.950001,-78.699997,63.5,172.7,0.27196851,37.3,331.29599,11560.695,598880.06,58.7746869375164

2454892,47.279999,-79.5,93.5,147.3,0.15754011,46.6,236.62601,8727.2197,425563.13,80.42157 65474488

2454892,45.25,-76.75,35.299999,106.7,0.3022663,7.3,167.767,10980.852,459457.69,39.0824646955776

2454892,51.169998,-90.220001,54.599998,109.2,0.2,54.4,371.367,9569.4199,570899.94,59.6378965427638

2454892,45.919998,-79.220001,35,79,0.22571428,38.4,429.23599,10869.604,572964.69,50.396939478495

2454892,48.330002,-81.32,87,147,0.16396552,106.3,319.30399,10805.814,335528.69,91.0385315174427

2454892,49.77,-86.919998,46,71,0.15434782,45.2,320.30899,10012.904,465468.94,50.3711013994067

2454892,47.080002,-79.279999,64.5,144.8,0.22449613,51.4,2£3.68399,10002.105,440399.5,74.8209403607216

2454392,47.990002,-80.699997,88,152,0.17272727,77.3,342.552,11436.429,375143.28,92.2933392499659

2454892,47.630001,-69.57,78.199997,212,0.27109975,57.7,173.25999,6729.1372,27503.17,80.3360783253623

2454892,49.080002,-87.07,53.299999,132.10001,0.24784242,39.1,417.74701,11434.67,520555.47,56.0341081856488

2454892,46.630001,-81.769997,97.300003,228.60001,0.23494348,68.5,406.461,12212.555,508263.59,90.0616017969942

2454392,47.470001,-79.830002,94,147,0.15638298,34.4,202.569,9026.1182,401844.94,34.4

2454892,46.580002,-74.169998,82.800003,190,0.22946858,38.6,471.57199,10924.043,242701.16,75.5426056515412

Figure: sample_sdepth_2454892.csv file

~ulian_date, RMSE_erne_cv, RMSE_erne_v, RMSE_cv, RMSE_v, RMSE_nn_v, RMSE_nn_cv
2454892,26.6055646289601,18.521798063903,13.6757848340199,13.4113595569947,12.9198945361409,19.7838886116753

2454893,21.7410417003892,25.5346(11463909,12.2193178752385,14.6642351993568,19.7115152903934,14.5760933703211

2454894,26.8214060648016,32.963018616322,13.1042272285564,21.6335609548279,27.4817618147423,20.8860005703559

2454895,30.387687965406,17.4999297241447,17.1206672663811,13.2679309484625,13.1258488268242,22.043934000255

2454896,19.5037 944805208,10.3247275993122,17.1389270886034,24.4234022912238,11.9163529668807,8.60748463363036

2454897,17.247274326,NA,15.810669619791l,~A,N1'.,14.800342118753

2454898,17.4979556230144,NA,17.090380385539,NA,NA,9.95793163724892

2454899, 27.5803974509132,NA,25.1000660182663,NA,NA,26. 0729278444847

2454900,20.1919447423659,5.65685424949238,13.7132810007504,2.10562716757648,2.02407638978417,12.261785595669

2454901,20.5808388604316,NA,14.8985348534276,NA,NA,12.6542067049453

2454902, 14.3936138303353,NA,13.1733325317354,NA,NA,9.991134 61855385

2454903,25.6970559147069,NA,25.0233078833134,NA,NA,20.5846221513647

2454904,20.4481241943193,32.3147799002252,14.9632503851226,:.14781799200581,32.3310170950715,18.6764379289958

2454905,19.5368044311294,16.1220346110533,16.4357246208922,3.68977537311967,5.03016328031496,14.2610614459131

2454906,23.3974337063427,16.7266588229024,16.281795165709,0.888468763137992,2.07756404226501,15.2510480284774

2454907,24.9343648360221,18.5486482291679,15.015087752457,11.2430718509124,11.0841831922433,16.1076081764517

2454908,25.2974174094916,22.0446948590483.11.9856428698568,24.2720762305812,23.4676689573885,18.6269751273841

2454909,19.8629326177758,35.3282216223801,14.7001078889183,2.89719312412434,33.5319653550156,13.730002189889

2454910,13.9443832539496,15.6977705423414,18.9458456223411,14.154409852325,15.6977705423414,13.9443832539496

2454911,12.4771512389547,0.494974746830583,11.9960192095683,2.02628093002526,1.80919192664173,7.98511651618035

2454912,13.516613507692,NA,12.506692224201,NA,NA,11.0013727910291

2454913,14.7994950875169,NA,10.1277487352071,NA,NA,9.9957641468687

2454914,28.3017297887356,NA,15.649123315493,NA,NA,21.5556313808528

2454915,20.6751364138617,NA,14.9879566907114,NA,NA,10.8664259542154

Figure: error_sdepth.csv file
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• There are two other r scripts included in the main_swe.R. One is swe_inter_tm.R

and another is swe_gap_tm.R. Both these two r scripts are used to predict the final

swe from adjusted CMC snow depth product. The first R script is used for

scenario-I and the second R script is used for scenario-H. Input files in these R

scripts are the output from UK_sdepth_tm.R. There are lots of output files

produced from this R script. sample_swejuliandate.csv,

mgrid_swejuliandate.csv, validation_swejuliandate.csv and also error file for

each individual day. These files are not the final swe product. Final swe product

file is swe-IJredictjuliandate.csv. A preview of swe-IJredict_2454892.csv is

provided below. An error file for the full simulation period is also generated. This

file contains associated RMSE error of SWE for each simulation day. A preview

oferror_final.csv has been also provided.

X, y, swe . pred, snow-depth, snowdensi ty
-96.721809,38.039631,5.18823483710177,2.1,0. 247058801766751

-96.789833,38.217369,5.39687505699736,2 _ 2,0.245312502590789

-96.858414,38.395321,5.36100573636532,2 _2,0.243682078925696

-96.927521,38.57346,5.32867455768509,2.2,0.2422124 79894777

-96.997177,38.751808,5.29999351.550882,2 _2,0.240908796159492

-96.495987,38.092659,5.28658842248524,2.2,0.2402994 73749329

-96.56321,38.270691,5.72418828056021,2.4,0.23850784 5023342

-96.630959,38.448929,6.15878086045518,2.6,0.23687 618 694058 4

-96.699249,38.627369,6.3550651977996,2.7,0. 235372785103689

-96.768089,38.806011,6.31810708426152,2.7,0. 2340039660837 6

-96.837479,38.984859,6.2859428603918,2.7,0. 232812698533029

-96.907417,39.16391,6.25868914778096,2.7,0. 231803301769665

-96.977943,39.343151,6.46850850920638,2.8,0. 231018161043085

-96.269653,38.145012,5.36931588398239,2.3,0.2334 4 8516694 887

-96.336037,38.32333,6.0217435932028,2.6,0. 231605522815492

-96.402969,38.50185,6_ 66792945553498,2.9,0.229928601914999

-96.470444,38.68058,7.0799948185211,3.1,0. 228386929629713

-96.538437,38.85952,7.49175841601243,3.3,0. 227022982303407

-96.606987,39.03867,7.67743038032258,3.4,0. 225806775891841

-96.676086,39.21801,7.86729832255845,3.5,0.224 779952073099

-96.745758,39.39756,8.2873726587895,3.7,0. 223983044832149
-96.815987,39.577301,8.71194572895635,3.9,0. 223383223819394

-96.886803,39.757252,9.14234958601116,4.1,0. 222984136244175

-96.958183,39.937401,9.35558251592937,4 .2, 0.222751964664985
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Figure: swe_predict_2454892.csv file

fJulian_date, RMSE_nn_1IlIIl
2454833,7.89446621728533

2454834,20.8629476262892
2454835,12.9372600429426

2454836,22.6362377725243

2454837,20.3673241933546

2454838,16.857152391.4477

2454839,13.6742369125769

2454840,13.0413775523625

2454841,7.63625891735768

2454842,9.37771393927058

2454843,12.5412022274669

2454844,38.8810852087993

2454845,32.5051396463845

2454846,25.3294117867267
2454847,27.3594347324435

2454848,12.4081540224632

2454849,30.5811759610902

2454850,11.4208752793285

2454851,21.6667715398841

2454852,29.4191692935845

2454853,21.2798270833644
2454854,22.2801485749371

2454855,15.3522536023927
2454856,32.8327324210718

Figure: error_final.csv file

• Different spatial maps are produced by these two r scripts. On each day SWE,

snow density and snow depth maps are produced by the tool. In below a preview

ofSWE, snow depth and snow density map are provided.
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Figure: Preview of snow density_map_2454892.jpg, snow depth_map_2454892.jpg,

swe_map_2454892.jpg

6. Real Time Run / Incorporating more Data Points

The developed SWE prediction tool can be used for real time SWE prediction if real time

snow course data will be available. The main thing necessary for real time SWE

prediction is to incorporate real time data. The CMC snow depth data product and USA

data are collected from the web, so if these two datasets are updated in regular basis, then

these data can be down loaded and used in the prediction tool. There is no web base data

for Canadian snow course measurements, We have developed a Canadian snow course

database in extension of Ross Brown's CD (MSC,2009). We have tried to get all the

available snow course measurements from great lakes to Labrador. Unfortunately, data

from Quebec Hydro was not collected. So, when we get data from Quebec Hydro, there
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must be an option to input this new data set. In case of real time analysis, new snow

course measurements data need to input in daily basis.

So, in real time data analysis the only thing need to keep in mind, is to update the

Canadian data base daily. So, the main objective of real time analysis, is that there must

be an option to incorporate new data points in the existing database. A new folder named

datainput within the SWE_MAP_V1.0 has been created for updating the Canadian

database with new data sets. In this folder there are number of Fortran codes, the most

recent database file and station database file. The final.txt file is updated after adding new

data and can be used as input file in the data folder and to run canada.f90 Fortran code.

First thing in the datainput folder is the station information file. The station information

file is named as Station_LisUxt. In below, a preview of the file is provided. Ifwe need to

include new stations, then new station information (station id, station name, latitude,

longitude at least) need to be included in the Station_List.txt file. input_station.f90

Fortran code can be run by gfortran to add information in the station info database file. To

input station information the new file must be in a specific format. st1.prn is such a new

station info file which has been inputted to Station_ LisUxt file by running

input_station.f90 code. The Fortran code read format for the new file will be

(5X,A 11 ,2X,A31 ,I2,2X,I2,4X,I2,2X,I2) where at flIst is station id, then in serial station

name, latitude in degree, latitude in minute, longitude in degree, longitude in minute. In

Fortran code the name of the new station info file need to be inputted on screen.
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~tation Id
ALE-05ADB03

ALE-05AA803

ALE-070AB01

ALE-07BC802

AL.E-07BBBOB

ALE-05EC801

ALE-05CCB01

ALE-07GE802

ALE-05FA803

ALE-06AC801

ALE-05BA801

ALE-05BA813

ALE-05BA811

ALE-05DD801

ALE-05DD802

ALE-OSEE802

Station Name
AKAMI A

ALLISON PASS

ASSUMPTIO

BARRHEAD ORTH

BARRHEAD WEST

BELLIS

BE TLEY

BEZANSON

BIGSTONE

BONNYVILLE

BOW RIVER

BO'fl SUMMIT (NEW)

BOW SUMMIT (OLD)

BRAZEAU RES.

BRO,,_ CREEK

BRUCE SNOW PL

Lat Long Elev Start End tRecor
49 2 114 3 1800 19800131 20030529 140

49 44 114 36 1980 19630328 20030505 107

58 36 118 28 370 19860304 20030401 37

54 16 114 21 670 19730315 20030327 72

54 11 114 48 670 19730314 20030327 73

54 7 112 5 670 19730319 20030403 74

52 29 114 4 910 19730308 2003032B 72

55 14 118 31 690 19730315 20030328 73

53 2 113 51 850 19870304 20030328 35

54 30 110 40 540 19730320 20030327 71

51 25 116 11 1580 19370330 20030401 141

51 42 116 28 2080 19790227 20030528 119

51 42 116 28 2080 19680229 19800430 35

52 57 115 41 970 19770228 20030402 54

52 45 116 33 1340 19770301 20030401 54

53 17 112 4 670 19750313 2003032B 94

Figure: Preview of Station List.txt file

NAME

CHRISTIES CORNERS

MOUNT ALBION

VALE S

D DAS VALLEY

ETHEL

GALBRAITH

MORLEY (GORR_E)

HARRISTO

liffiSTFIELD (WAWONOSH)

KI LOSS TWP

WALLACE TWP

MCKILLOP TWP

BLAKENEY

BRIGHTSIDE

MABERLEY

BON ECHO PARK

lat_lat_mlon_dlon_m
43 17 -80 2

43 12 -79 50

43 23 -80 8

43 15 -80 1

43 43 -81 7

43 38 -80 55

43 55 -81 9

43 55 -80 52

43 50 -81 27

43 59 -81 26

43 44 -80 53

43 39 -81 18

45 15 -76 15

45 7 -76 30

44 50 -76 34

44 54 -77 12

Figure: Preview of new station info (st1.prn) file

To input new snow data in the database, we use input_snow.f90 code. It will create new

database file by combining old database file and new data file. There is option in this

input_snow.f90 program to input the old database file name, new snow course data file

name. In Canadian snow course data base file the first column is station id, then date in

yyyymmdd format after that snow depth in cm and than swe in mm. The new data file

must be in a specific format to input in the database. It also needs to be noted that the data
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in new data file must be arranged in ascending order. The Fortran code read format for

the new file will be (5X,All,4X,I4,I2,I2,2X,F6.1,2X,F6.1) which in serial station id,

year, month, day, snow depth in cm and swe in mm. A preview of both database file and

new data file has been provided below.

BCE-2D01 19350322 152.0 389.0

BCE-1D01 19350323 3.0 3.0

BCE-2F01 19350328 91.0 246.

BCE-2F02 19350330 94.0 259.0

BCE-2F04 19350403 122.0 320.0

BCE-2F03 19350405 79.0 188.0

BCE-2C01 19360304 48.0 89.0

BCE-2DOl 19360322 163.0 401.

BCE-2F02 19360322 74.0 185.

BCE-3A01 19360323 320.0 1316.0

Figure: Preview of Canadian snow course database file

OW-MNR-0301
OW-MNR-0302
O'i~-MNR-0303

01i~-MNR-0304

OW-MNR-0305
OW-MNR-0306
OW-MNR-0307
OW-MNR-0308
OW-MNR-0401
ow- R-0402

S OW-MNR-0450
s_ OW-MNR-0607
S:..OW-MNR-1401
S O'i~-MNR-1501

S OW-MNR-1601

20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115
20041115

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Figure: Preview of new snow course data file
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In this SWE_MAP_V1.0 Julian date has mainly been used inspite of normal date. To

convert this database file to Julian day database, to combine station database file and the

snow course database file and to assign numerical station id, we use another Fortran code

named compile.f90. This Fortran code has been used to convert database file in final.txt.

These final.txt is used as input file in the data processing part of the tool. A new station id

file named new_id.txt has also been created. In compile.f90 code there is an option to

input the database file name which will convert to final.txt later. A preview of finaI.txt

has been provided below. In the first column there is Julian day, then new numerical

station id, after that Lat and Lon in degree and at last snow depth in cm and swe in mm.

2427884 356 50.53 -117.28 152.0 389.0
2427885 232 49.37 -122.80 3.0 3.0
2427886 0 0.00 0.00 -999.0 -999.0
2427887 0 0.00 0.00 -999.0 -999.0
2427888 0 0.00 0.00 -999.0 -999.0
2427889 0 0.00 0.00 -999.0 -999.0
2427890 380 49.73 -120.18 91.0 246.0
2427891 0 0.00 0.00 -999.0 -999.0
2427892 381 49.82 -120.02 94.0 259.0
2427893 0 0.00 0.00 -999.0 -999.0
2427894 0 0.00 0.00 -999.0 -999.0
2427895 0 0.00 0.00 -999.0 -999.0
2427896 383 49.99 -1J.8.87 J.22.0 320.0
2427897 0 0.00 0.00 -999.0 -999.0
2427898 382 49.78 -119.20 79.0 188.0
2427899 0 0.00 0.00 -999.0 -999.0
2427900 0 0.00 0.00 -999.0 -999.0
242790J. 0 0.00 0.00 -999.0 -999.0
2427902 0 0.00 0.00 -999.0 -999.0
2427903 0 0.00 0.00 -999.0 -999.0
2427904 0 0.00 0.00 -999.0 -999.0
2427905 0 0.00 0.00 -999.0 -999.0
2427906 0 0.00 0.00 -999.0 -999.0
2427907 0 0.00 0.00 -999.0 -999.0
2427908 0 0.00 0.00 -999.0 -999.0
2427909 0 0.00 0.00 -999.0 -999.0

Figure: Preview offina1.txt file
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7.0 Conclusion

In this appendix, more basic things related with SWE_MAP_Vl.0 is discussed. The

concept and logics behind developing this tool has been described first. The procedure of

using this tool to predict SWE, is also described here.
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