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Abstract 

We discuss Neyman's partial score test for homogeneity of variances in nonparamet­

ric models. We considered two data structures. First, we consider longitudinal data 

where the observations from each subject are generated from a nonparametric model 

with heteroscedastic errors. In this context, we found that the discrete wavelet trans­

form approach used by Cai, Hurvich and Tsai (1998) does not lead to a consistent 

estimate of the mean response function which in turn affects the score statistic. Sec­

ond, we consider longitudinal data where the observed response from each subject is 

assumed to be a time series that is nonstationary in mean and variance. The trend 

component of each series is estimated by a wavelet version of weighted least squares 

and the residuals are used in estimating the local variances. These estimates are used 

in a simulation study of the score statistic we construct for testing homoscedasticity 

in the longitudinal set-up. In the simulation study we examine the size and power of 

the test. 
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Chapter 1 

Introduction 

The problem of testing for heteroscedasticity in nonparametric regression models or 

in a time series with deterministic trend has been discussed and very well motivated 

by several authors. In general, observed data from a nonparametric regression model 

or time series data with deterministic trend can be represented in the form 

Yi i=1, ... ,n (1.1) 

where Xi's are equally spaced points. In nonparametric regression, Ei's are random 

noise and usually assumed to be normally distributed with mean 0 and constant vari­

ance a 2
. For time series data Ei's are correlated and usually assumed to have the 

correlation structure of a seasonal autoregressive moving average process. Cai, Hur­

vich and Tsai (1998) and Kovac and Silverman (2000) argue that the errors may not 

have constant variance. In the nonparametric regression set-up Kovac and Silverman 

(2000) assumed that the variance of Ei is a[. Cai, Hurvich and Tsai (1998) assumed 

that the Ei are independent normal random variables with mean zero and variance 

gia2
, where gi = g(zi, 6) is a twice differentiable function of a p x 1 vector of parame­

ters 6 and Zi is a p x 1 vector of covariates. For examining homogeneity, Cai, Hurvich 
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and Tsai (1998) defined the null hypothesis as H0 : o = 00 with the requirement that 

g(zi, o0 ) = 1, i = 1, 2, ... , n. In their simulation study, they used g(zi, o) = exp(zio). 

It follows that g(zi, o) = 1 when o = o0 = 0. Therefore, they considered the score 

test statistic for testing the null hypothesis H0 : o = o0 = 0, where the function is 

estimated by discrete wavelet transformation. They compared the performance of the 

score statistic and studentised score statistic when the error distribution is normal 

and non-Gaussian. According to their simulation results, the score statistic has satis­

factory power when the sample size is large, but the score statistic performed poorly 

in controlling the size of the test. Oyet and Sutradhar (2003) found that this result 

may be due to the fact that the formulation of the null hypothesis H0 : o = o0 = 0 

appears to have serious limitations. They stated that, if it is considered that the noise 

variances depend on the covariates, it is then reasonable to assume that for zi = z, 

say, for all i = 1, 2, ... , n one would expect that <7f = g(zi, 0)<72 will be the same. 

Now, for Zi = z, it is still possible to have g(zi, 00 = 0) = g(z, 00 =1- 0) = 1. 

As opposed to the homogeneity regression model (1.1), Oyet and Sutradhar (2003) 

defined a heterogeneity regression model as 

i = 1, ... ,n (1.2) 

where ~i's are assumed to be normally distributed with mean 0 and variance 1 and 

Var(c:i) = Var(<7i~i) = <7f. They assumed that a group of observations have the 

same local variance. Suppose that there are q such local groups with variances 
q 

<7f1), <7f2), ..• , <7fq) and the jth group has nj observations, so that L nj = n. Then 
j=l 

the null hypothesis for testing for homogeneity in the model (1.2) becomes 

lJ • ,.,.2 - ,.,.2 - - ,.2 
l:lQ • V(l) - V(2) - • • • - V(q)• (1.3) 
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Oyet and Sutradhar (2003) then developed a partial score test for testing the null 

hypothesis H0 in (1.3) based on Neyman's (1959) score test which requires only a 

consistent estimate for the nuisance parameter. Contrary to the claim of Cai, Hurvich 

and Tsai (1998), they found that under this new formulation of the null hypothesis, if 

the function f ( x) is estimated by a wavelet version of weighted least squares instead of 

discrete wavelet transformation, the statistic performed well in controlling the size of 

the test. Oyet and Sutradhar (2003) noted that in the context of time series models, 

the Yi could be treated as arising from a deterministic time series model with trend 

or seasonal effects represented by f ( x). 

Earlier, Sutradhar (1996) had discussed the hypothesis (1.3) for q independent 

time series where each series follows a seasonal autoregressive moving average process. 

The author assumed that Yi "'N(O, alL:) where Yi = (Yil, Yi2, ... , Yir)', i = 1, 2, ... , q 

and I; is a r x r scalar matrix. In his study, the author compared the performance 

of Neyman's (1959) score test and Bartlett's test when each of the q time series is 

assumed to come from an autoregressive process of order 1 ( AR( 1)) and a moving 

average process of order 1 (MA(1)). 

In this thesis, we study the performance of Neyman's (1959) score statistic un­

der three situations. First, we follow the set-up of Oyet and Sutradhar (2003) by 

considering observed data from a nonparametric regression model. We then follow 

Cai, Hurvich and Tsai (1998) to estimate the regression function by discrete wavelet 

transformation and use the wavelet coefficients at the finest scale to estimate the 

variance parameter in Chapter 2. We found that the test performed poorly in con­

trolling the size when the function was estimated by discrete wavelet transformation. 

However, when the true value of the function was used in the test and the variance 

parameter estimated by discrete wavelet transformation, we found that the test per­

formed well in controlling the size of the test. This result appear to suggest that 

when using data from a time series containing a deterministic trend component or 
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data generated by a mean response function in a nonparametric regression model, 

Neyman's score statistic requires a consistent estimate of the nuisance parameter o}q) 

and also of the mean response function f ( x) to perform well in both size and power. 

In Chapter 3, we extend the work of Oyet and Sutradhar (2003) to data arising from 

a nonparametric regression model with correlated errors. In the context of a time 

series, we consider k independent time series with length r where each series follows 

a seasonal autoregressive moving average process. We assume that a group of series 

follow the same seasonal auto regressive moving average process. Suppose that there 

are q such groups with different seasonal autoregressive moving average processes, j 

= 1, 2, ... , q, where each group j contains p subgroups. The model for the data can 

be represented as 

i=1,2, ... ,p j = 1, 2, ... , q, (1.4) 

where Yij = (Yijl,Yijz, ... ,yijr)', f = (f(xl),j(xz), ... ,j(xr))' and eij = (cijl,fij2, 

... , fijr )'. Here eij follows a seasonal autoregressive moving average process with 

correlation structure a-[yj)R. Here a-[yj) is the variance of fijh for a given group j (j 

= 1, 2, ... , q) and all i = 1, 2, ... , p, h = 1, 2, ... , r, and R is a r x r correlation 

matrix of eij· 

Neyman's (1959) score test is well known to be asymptotically unbiased in esti­

mating a preassigned level of significance. Also, this test is asymptotically locally 

most powerful and in general asymptotically equivalent to the likelihood ratio and 

Wald's tests (Moran (1970)) and does not have any convergence problem for highly 

correlated data. We prefer Neyman's (1959) score test as this requires .Jfi consis­

tent estimates of the nuisance parameters, which need not be maximum likelihood 

estimates. 



5 

1.1 Some Background on Wavelets 

This section is devoted to a brief introduction to the definition and theory of wavelets 

that will be used in our study. Additional details can be found in Mallat (1989), 

Meyer (1992), Daubechies (1992), Erlebacher, Hussaini, Jameson (1996), Hardie, 

Kerkyacharian, Picard, Tsybakov (1998) and Vidakovic (1999). 

To define wavelets, we consider two functions: <P(x), referred to as the scaling func­

tion, and '1/J(x), commonly called the primary wavelet. Wavelets arise naturally from 

the multiresolution analysis of the space of square integrable functions £ 2 (IR). From 

the multiresolution analysis, a dilation equation (two-scale equation or refinement 

equation) for the scaling function given by 

<P(x) L v'2 hk <P(2x- k), (1.5) 
kEZ 

is obtained, where <P(x) is normalized so that J::oo <P(x) dx = 1. Once the scaling 

function is found as a solution to (1.5), the primary wavelet '1/J(x) is then defined in 

terms of the scaling function as 

'1/J(x) L v'2gk <P(2x- k), (1.6) 
kEZ 

where 'ljJ(x) satisfies J::oo '1/J(x) dx = 0. The coefficients {hk, k E Z} are called filter 

coefficients and {hk, k E Z} and {gk, k E Z} are related by 

By definition, a wavelet system is the collection of translated and dilated versions 

{<Pj,k(x),'l/Jj,k(x), j,k E Z} of a scaling function <P(x) and the primary wavelet '1/J(x) 
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with 

j, k E Z, (1.7) 

and 

j, k E Z, (1.8) 

where j is the dilation parameter and k is the translation parameter. The dilations 

and translations of the wavelet, {¢j,k(x), j, k E Z}, form an orthonormal basis of 

L2 (JR). Therefore, any f(x) E L 2 (JR) can be written as 

f(x) = I: I: djk ¢j,k(x). (1.9) 
jEZ kEZ 

Two important properties of filter coefficients are normalization and orthogonality. 

The normalization condition 

ensures the existence of a unique solution to (1.5) and (1.6). The orthogonality 

condition, for any l E /Z 

I: hk hk-2l = 5z, 
kEZ 

ensures the orthogonality of the translate of <P(x). Let the spaces spanned by <Pj,k(x) 
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and ¢J,k(x) over the parameter k, with j fixed, be denoted by Vj and Wj respectively, 

Vj spankEZ ¢J,k ( x), 

Wj SpankEZ '1/Jj,k(x). 

It has been shown that (see Vidakovic (1999)) the spaces Vj and WJ are related by 

· · · · · · c V-2 c v_l c Vo c V1 c V2 · · · · · · (1.10) 

The nested spaces Vj have the following properties. 

(i) An intersection that is trivial. That is, 

(1.11) 

(ii) A union that is dense in L2 (JR.). That is, 

u Vj = L2 (JR.). (1.12) 
jEZ 

The spaces Vj and WJ are also related by 

Here W1 is the orthogonal complement of Vj within the larger space VJ+l· That is, 

any function f(x) E VJ+1 can be written as a linear combination or direct sums of 

functions in Vj and WJ. By iteration, it is easily verified that 

j 

VJ+l Vo $ E9 Wi· 
i=O 
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For any fixed jo the decomposition L2 (JR) = Yj0 EB EB~Jo Wj corresponds to the 

representation 

f(x) = L Cj0k </Yj0 ,k(x) + L L djk '1/Jj,k(x), (1.13) 
kEZ j~k kEZ 

where due to orthonormality of the wavelets, the coefficients are given by 

Cj0 k =I: f(x) </Yj0 ,k(x) dx, dJk =I: f(x) '1/JJ,k(x) dx. 

The relation (1.9) is called homogeneous wavelet expansion and (1.13) is called inho­

mogeneous wavelet expansion. 

The idea of multiresolution analysis was introduced by Mallat(1989) to obtain the 

scaling function <P(x) and the primary wavelet '1/J(x). This is one of the most important 

concepts in discrete wavelet theory. A multiresolution analysis of the space £ 2 (JR) 

consists of a sequence of nested, closed subspaces as in (1.10). 

Definition 1.1.1. A multiresolution analysis of £ 2 (JR) consists of an increasing 

sequence of closed subspaces Yj, j E Z, of £ 2 (JR) such that 

(a) n Yj = {0}, 

(b) u Yj = £2 (JR), 

(c) there exists a scaling function </J(x) E V0 such that {</J(x- k), k E Z} is an 

orthonormal basis of V0 , 

(d) j ( 2j X) E YJ =? j ( 2j X - k) E YJ, '1/ k E Z 

(e) j(x) E Yj {:} j(2x) E YJ+I, Vj E Z. 

The intuitive meaning of (e) is that in passing from Yj to YJ+l> the resolution of the 

approximation is doubled. Mallat (1989) has shown that given any multiresolution 

analysis, it is possible to derive any function 'ljJ ( x) such that the family { 'l/;j,k ( x), k E Z} 

is an orthonormal basis of the orthogonal complement WJ of Yj in "YJ+ 1 , so that 
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{'l/Jj,k(x),j, k E Z} is an orthonormal basis of L2 (IR). 

Once { 'l/Jj,k(x), k E Z} is a general basis for Wj, the relation (1.13) is called a 

multiresolution expansion of f(x). The space Wj is called resolution level of multires­

olution analysis. To turn (1.13) into a wavelet expansion one needs to justify the use 

of (1.8) in (1.13). We have only one resolution level in Fourier analysis and there are 

many resolution levels in multiresolution analysis. 

1.1.1 Some Important Wavelet Bases 

Several families of wavelets have been introduced in the wavelet literature by several 

authors. In this section we discuss only two important families of wavelets. These 

are the Haar and Daubechies' wavelets. 

Haar Wavelet 

The Haar wavelet is the simplest wavelet system. The disadvantage of the Haar 

wavelet is that it is not continuous and therefore not differentiable. The Haar scaling 

function is defined by 

{ 

1, 0 <X< 1; 
cjy(x) = -

0, othewise. 

and the primary wavelet can also be described by a step function: 

1
1, 0:::; X < 1/2; 

'lf;(x) = -1, 1/2 :::; x < 1; 

0, othewise. 

The dilation equation for the Haar scaling function is given by 

cjy(x) = cjy(2x) + cjy(2x- 1). 
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From (1.5) we deduce that h0 = ~' h1 = ~ and hk = 0, otherwise. It then follows 

that go = ~' g1 = - ~ and 9k = 0, otherwise. Therefore, from (1.6) the primary 

wavelet 1/J(x) is defined as 

1/J(x) = ¢(2x)- ¢(2x- 1). 

Daubechies' Wavelet 

Daubechies' was the first to construct compactly supported orthogonal wavelets with 

a preassigned degree of smoothness. The set { ¢j,k(x ), j, k E Z} of Daubechies' com­

pactly supported dilated and translated versions of the scaling function is an or­

thonormal system, and the set { 1/Jj,k(x), j, k E Z} formed by Daubechies' compactly 

supported dilated and translated versions of the wavelet function is also an orthonor­

mal basis in L2 (JR.). The primary wavelet 1/J(x) has N vanishing moments which 

determines the accuracy of approximations based on the wavelet. That is, 

J xn 1/J(x) dx = 0, n = 0, 1, ... , N- 1. 

For all versions of the Daubechies' wavelet, the length of the filter coefficients is 

related to the number of vanishing moments. That is, if L is the length of the filter 

coefficient then L = 2N and ¢(x) and 1/J(x) have compact support supp<f> = [0, 2N-

1], supp'I/J = [-N + 1, N]. 

Daubechies' wavelets are usually denoted by DAUB N, where N is the number 

of vanishing moments. We note that the DAUB1 wavelet coincides with the Haar 

wavelet. Figure 1.1 show the plots of DAUBN, (N = 2, 4, 8) scaling and wavelet 

functions and Table 1.1 gives the filter coefficients for DAUB2-DAUB10 wavelets. 
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Table 1.1: The h filters for Daubechies' wavelets for N = 2, ... , 10 vanishing moments 

k DAUB2 DAUB3 DAUB4 
0 0.4829629131445342 0.3326705529500827 0.2303778133088966 
1 0.8365163037378080 0.8068915093110930 0.7148465705529161 
2 0.2241438680420134 0.4598775021184915 0.6308807679298592 
3 -0.1294095225512604 -0.1350110200102548 -0.0279837694168604 
4 -0.0854412738820267 -0.1870348117190935 
5 0.0352262918857096 0.0308413818355607 
6 0.0328830116668852 
7 -0.0105974017850690 
k DAUBS DAUB6 DAUB7 
0 0.16010239797 41926 0.1115407433501095 0.0778520540850092 
1 0.6038292697971887 0.4946238903984531 0.3965393194819173 
2 0.7243085284377723 0.7511339080210954 0.7291320908462351 
3 0.1384281459013216 0.3152503517091976 0.4697822874051931 
4 -0.2422948870663808 -0.2262646939654398 -0.1439060039285650 
5 -0.0322448695846383 -0.1297668675672619 -0.2240361849938750 
6 0.0775714938400454 0.0975016055873230 0.0713092192668303 
7 -0.0062414902127983 0.0275228655303057 0.0806126091510831 
8 -0.0125807519990819 -0.0315820393174860 -0.0380299369350144 
9 0.0033357252854738 0.0005538422011615 -0.0165745416306669 

10 0.0047772575109455 0.0125509985560998 
11 -0.0010773010853085 0.0004295779729214 
12 -0.0018016407040475 
13 0.0003537137999745 
k DAUBS DAUB9 DAUB10 
0 0.0544158422431070 0. 03807794 73638881 0.0266700579005487 
1 0.3128715909143165 0.2438346746126514 0.1881768000776480 
2 0.6756307362973218 0.6048231236902548 0.5272011889316280 
3 0.5853546836542239 0.6572880780514298 0.6884590394535462 
4 -0.0158291052563724 0.1331973858249681 0.2811723436606982 
5 -0.2840155429615815 -0.2932737832793372 -0.2498464243271048 
6 0.0004724845739030 -0.0968407832230689 -0.1959462743773243 
7 0.1287474266204823 0.1485407493381040 0.1273693403356940 
8 -0.0173693010018109 0.0307256814793158 0.0930573646035142 
9 -0.0440882539307979 -0.0676328290613591 -0.0713941471663802 

10 0.0139810279173996 0.00025094 71148278 -0.0294575368218849 
11 0.0087460940474065 0.0223616621236844 0.0332126740593155 
12 -0.0048703529934519 -0.004 723204 7577528 0.0036065535669515 
13 -0.0003917403733769 -0.0042815036824646 -0.0107331754833277 
14 0.0006754494064506 0.0018476468830567 0.0013953517470513 
15 -0.0001174767841248 0.0002303857635232 0.0019924052951842 
16 -0.0002519631889428 -0.0006858566949593 
17 0.0000393473203163 -0.0001164668551292 
18 0.0000935886703200 
19 -0.0000132642028945 
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DAUB2 scaling function DAUB2 wavelet function 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 

DAUB4 scaling function DAUB4 wavelet function 

0 2 3 4 5 6 7 -3 -2 -1 0 2 3 4 

DAUBS scaling function DAUBS wavelet function 

q 
GO 

.... 
0 

0 
(\J 0 
ci 

"<t q 
ci I I 

0 5 10 15 -5 0 5 

Figure 1.1: Graph of scaling and wavelets functions from Daubechies' family, N = 2, 
4, and 8 
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1.1.2 Wavelet System Construction 

The general framework for wavelet system construction is given as follows, 

1. Pick a scaling function ¢(x) such that {¢o,k(x),k E Z} is an orthonormal basis 

of V0 , and the relations (1.10), (1.11) and (1.12) are satisfied. Then, ¢(x) 

generates a multiresolution analysis of £ 2 (JR). 

2. Find a primary wavelet '!j;(x) E W0 such that { '1/Jo,k(x), k E Z} is an orthonormal 

basis of W0 . Consequently, { '1/Jj,k(x), k E Z} becomes an orthonormal basis of 

Wj. 

3. Conclude that any J(x) E £2 (JR) has the unique representation in terms of an 

£ 2-convergent series: 

00 

J(x) L Cok c/Jo,k(x) + L L djk '1/Jj,k(x). (1.14) 
kEZ j=O kEZ 

The expansion (1.14) starts with the reference space V0 • One can also choose 

Vj0 , for some j 0 E Z, in place of V0 . Then the inhomogeneous wavelet expansion 

is of the form (1.13). 

Strang (1989) and Pinheiro and Vidakovic (1997) have outlined techniques for the 

constructions of the scaling function ¢(x). Once ¢(x) is known, we can compute the 

primary wavelet '1/J(x). Construction 1 - Construction 4 are described below. 

Construction 1. Here, we iterate ¢j(x) = I: V'ihk¢j-I(2x- k) with the box 

function as ¢0 (x), that is, ¢0 (x) = Iro, 1J(x). When ho = v'2 the boxes get taller 

and thinner, approximating the delta function. For h0 = h1 = ~ the box is 

invariant: ¢1 = ¢0 . For 2~, ~' 2~ the hat function appears as j -+ oo, and 

8~, 8~, 8~, 8~, 8~ yields the cubic B-spline. The DAUB2 wavelet has four filter 

coefficients 4~(1 + J3), 4~(3 + J3), 4~(3- J3), and 4~(1- J3). This scaling 
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function ¢(x) leads to orthogonal wavelets. 

Construction 2. The second construction takes the Fourier transform of (1.5). To 

transform the equation, multiply ¢(x) by e-~~x and integrate with respect to x to 

obtain 

(1.15) 

The symbol P(~) = ~ I:kEZ hk e-~k~ is the crucial function in this theory. Note that 

P(O) = 1 is the normalization condition. Now iterate equation (1.15) at ~/2 to obtain 

After N iterations, this becomes 

As N --+ oo, ~/2N is approaching zero, and ¢(0) = J cp(x) dx = 1(see (1.15)). Then 

the iteration leads to the infinite product 

(1.16) 

For h0 = v'2 we find P = 1 and ¢ = 1, the transform of the delta function. For 

h0 = h1 = ~ the product of the P's is a geometric series: 
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and 

As N -too, this approaches the infinite product (1 - e-~e)/(zt;,). This is J0
1 e-~exdx, 

the transform of the box function. The hat function comes from squaring P(t;,) which 

by (1.16) also squares ¢(t;,). The cubic B-spline comes from squaring again. 

Construction 3. This construction of cp(x) works directly with the dilation equation 

(1.5). Suppose¢ is known at all integers x = n, the dilation equation (1.5) gives ¢at 

the half-integers (just use the dilation equation (1.5) at x = n/2): 

¢(~) = LV'ihk¢(n-k). 
kEZ 

(1.17) 

Then the relation (1.17) gives ¢ at the quarter-integers: 

and ultimately at all dyadic points x = nj2J. This is fast to program. 

With the four Daubechies coefficients (h0 , h1, h2, h3) = ( 4~(1 + v'3), 4~(3 + 
v'3), 4~(3- v'3), 4~(1 - v'3)), it is usual to set x = 1 and x = 2 in the dilation 

equation (1.5) and use the fact that ¢ = 0 unless 0 < x < 3 : 

¢(1) 

¢(2) 

1 1 
4(3 + v'3) ¢(1) + 4(1 + V3) ¢(2), 

1 1 
4(1- V3) ¢(1) + 4(3- V3) ¢(2). 

This is ¢ = L¢, with matrix entries L 2j = h2~-j, which is an eigenvalue problem. The 
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eigenvalues are 1 and ~· The eigenvector for .A= 1 has components ¢(1) = H1 + vl3), 
¢(2) = ~(1- v'3). The other eigenvalue .A= ~ means that the dilation equation can 

be differentiated: <P'(x) = 2: 2..J2 hk ¢>'(2x- k) leads similarly to ¢'(1) and ¢'(2). For 

the hat function, the dilation matrix again has .A = 1, ~· For the cubic spline the 

. 1 1 1 1 1 mgenva ues are , 2, 4, 8. 

Construction 4. In this construction, we describe an algorithm for fast numerical 

calculation of wavelet values at a given point, based on the Daubechies and Lagarias 

(1992) local pyramidal algorithm. The Daubechies and Lagarias algorithm enables 

us to evaluate ¢> and '1/J at a point with preassigned precision. We will illustrate the 

algorithm with wavelets from the Daubechies family. However, the algorithm works 

for all finite impulse response quadrature mirror filters. 

Let ¢>be the scaling function of DAUBN wavelet with support [0, 2N- 1]. Let 

x E (0, 1) and denote the subset of the first n 0-1 digits in the dyadic expansion of x 

( x = 2:;:1 dj2-i) by dyad(x,n). That is, dyad(x,n) = { d1 , d2 , ... , dn}· 

Let h = (h0 , h1, ... , h2N-d be the wavelet filter coefficients. Define two (2N-1) x 

(2N-1) matrices as: 

Then, the local pyramid algorithm can be constructed based on Theorem 1. 

Theorem 1. (Daubechies and Lagarias, 1992} 

¢>(x) 

¢>(x + 1) 

¢>(x) 

¢>(x + 1) 

¢>(x + 2N - 2) ¢>(x + 2N - 2) 

¢>(x) 

¢>(x + 1) 

¢>(x + 2N- 2) 
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The convergence of jjTd1 • Td2 • • • Tdn - Td1 • Td2 • • • Tdn+m II to zero, for fixed m, 

is exponential and constructive, That is, effective decreasing bounds on the error can 

be established. See Vidakovic (1999) and Pinheiro and Vidakovic (1997) for details. 

Example 1. Consider the DAUB2 scaling function (N = 2). The corresponding 

filt · h ( 1+0 3+¥'3 3-¥'3 1-0) A d' t (1 18) th t . 'T' d T er IS = 4v'2 , 4v'2 , 472 , 4v'2 . ccor mg o . e rna nces .L 0 an 1 

are given as 

1+¥'3 0 0 3+¥'3 1+¥'3 0 4 -4- -4-

To= 3-0 3+0 1+0 and T1= 1-0 3-¥'3 3+0 
4 4 4 4 4 4 

0 1-¥'3 3-¥'3 0 0 1-0 -4- -4- 4 

If we evaluate the scaling function at an arbitrary point, say x = 0.45, then 

the twenty "decimals" in the dyadic representation of 0.45 are dyad (0.45,20) = 

{0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}. The advantage of this procedure is that 

in addition to the value at 0.45, we also get the values at 1.45 and 2.45. The values 

¢(0.45), ¢(1.45), and ¢(2.45) may be approximated as averages of the first, second, 

and third row, respectively in the matrix 

IT 1i-
iEdyad(0.45,20) I 

0.86480582 0.86480459 

0.08641418 0.08641568 

0.04878000 0.04877973 

0.864803361 

0.08641719 . 

0.04877945 

The Daubechies and Lagarias algorithm gives only the values of the scaling func­

tion. To find the values of the primary wavelet, we either use (1.6) or apply Theorem 

2. 

Theorem 2. Let x be an arbitrary real number and let the DAUBN wavelet be 

given by its filter coefficients {h0 , h1, h2 , ... , h2N-1}. Define a vector u with 2N - 1 
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components as 

u(x) = {(-1) 1
-[

2x]hi+l-[2x],i=0, .... ,2N-2}. 

If for some i the index i + 1 - [2x] is negative or larger than 2N - 1, then the 

corresponding component of u is equal to 0. 

Let the vector v be 

v(x, n) 1 I IT 
2N -1 1 ~' 

iEdyad( {2x },n) 

where 1' = (1, 1, ... , 1) is the row-vector of ones. Then, 

'1/;(x) = lim u(x)' v(x, n), 
n--too 

and the limit is constructive. 

We used Construction 4 in this thesis to construct the Daubechies' wavelet system. 

1.2 Some Wavelet Methods for Estimating Func-

tions 

Wavelet expansion and discrete wavelet transformation are two main wavelet methods 

for estimating the functions. 
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1.2.1 Wavelet Expansion 

The function f may be expanded in a generalized Fourier series of the form 

kEZ j?_jo kEZ 

where the coefficients are given by 

Cj0 k =I: f(x) ¢j0 ,k(x) dx 

Oyet and Sutradhar (2003) have shown that the coefficients Cjok and djk can be 

estimated by the weighted least squares method and by a modified Gasser-Muller 

method. In this thesis, we are going to use the weighted least squares method to 

estimate the wavelet coefficients. 

1.2.2 Discrete Wavelet Transformations 

An estimator off by discrete wavelet transformation can be obtained by performing 

the following three steps. 

Step 1. Transform the observations by applying the discrete wavelet transformation. 

Discrete wavelet transformations (DWT) are applied to discrete data sets and 

produce discrete outputs. Discrete wavelet transformations map data from the time 

domain of the original or input vector to the wavelet domain. The result is a vector of 

wavelet coefficients of the same size as the input data vector. These transformations 

are linear and can be defined by matrices of dimension n x n if they are applied to 

inputs of size n. When the matrix is orthogonal, the corresponding transformation is 

a rotation in JRn in which the data is a point in JRn. The coordinates of the point in the 
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rotated space comprise the discrete wavelet transformation of the original coordinates. 

Here we provide one example. 

Example 2. Let the vector be (1, 2) and let M(1, 2) be the point in IR2 with coor­

dinates given by the data vector. The rotation of the coordinate axes by an angle of 

1r /4 can be interpreted as a DWT in the Haar wavelet basis. The rotation matrix is 

W _ ( cos % sin % ) ( 0 72 ) 
7l" • 7l" 1 1 cos 4 - sm 4 vl2 - v12 

and the discrete wavelet tansformation of ( 1, 2 )' is W · ( 1, 2 )' = ( ~, ~) '. 

The change of basis can be performed by matrix multiplication. Therefore, it is 

possible to define discrete wavelet transformation by matrices. That is, first we have 

to construct the orthogonal wavelet transformation matrix W. We have already seen 

a transformation matrix corresponding to Haar forward transformation in Example 

2. The construction of W is given as follows: 

Let the length of the input observations be 2J, h = { h8 , s E Z} be the wavelet 

filter and N be an appropriate chosen constant. Denote by Hk a matrix of size 

(2J-k x 2J-k+1 ), k = 1, 2, ... with entries 

h8 , s = (N- 1) + (j- 1)- 2(i- 1) modulo 2J-k+1
, 

at the position ( i, j). The matrix Gk which is corresponding to the already defined 

Hk can be obtained by changing hi by ( -l)ihN+l-i· For filters from the Daubechies 

family, a standard choice for N is the number of vanishing moments. 
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The matrix [ ~: ] is a basis-changing matrix in zJ-k+l dimensional space; con­

sequently, it is unitary. Therefore, 

and 

I 

This implies, 

Now, for a sequence y the }-step wavelet transformation is d::::::: WJ · y, where 

' ... 

Example 3. Suppose that y {1, 0, -3, 2, 1, 0, 1, 2} and the filter is h 
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(h h h h ) - ( 1+0 3+v'3 3-v'3 1-0) Then, J = 3 and the matrices Hk and 
0' 1' 2' 3 - 4v'2 ' 4v'2 ' 4v'2 ' 4v'2 . 

Gk are of dimension 23-k x 23-k+1. 

h1 h2 h3 0 0 0 0 ho 

0 ho h1 h2 h3 0 0 0 
H1 -

0 0 0 ho h1 h2 h3 0 

h3 0 0 0 0 ho h1 h2 

-h2 h1 -ho 0 0 0 0 h3 

0 h3 -h2 h1 -ho 0 0 0 
G1 

0 0 0 h3 -h2 h1 -ho 0 

-ho 0 0 0 0 h3 -h2 h1 

Since, 

H1· y {2.19067, -2.19067, 1.67303, 1.15539} 

G1· y = {0.96593, 1.86250, -0.96593, 0.96593}. 

The one-step DAUB2 discrete wavelet transformation of y is 

w1. y = {2.19067, -2.19067, 1.67303, 1.15539 1 o.96593, 1.86250, -0.96593, 0.96593}, 



Since, 

H2 • {2.19067, -2.19067, 1.67303, 1.15539} 

- {1.68301, 0.31699}, 

G2 · H1 · y G2 · {2.19067, -2.19067, 1.67303, 1.15539} 

- { -3.28109, -0.18301 }, 

the two-step DAUB2 discrete wavelet transformation of y is 

23 

W1·Y = {1.68301, 0.316991-3.28109, -0.183011 0.96593, 1.86250, -0.96593, 0.96593}. 

In this example, due to the lengths of the filter and the data, we can perform the 

transformation for two steps only, wl and w2. 

Step 2. Threshold the wavelet coefficients. 

Donoho and Johnstone (1994) and Donoho, Johnstone, Kerkyacharian and Picard 

(1995) proposed the thresholding technique in wavelet analysis. The idea behind 

thresholding is the removal of small wavelet coefficients considered to be noise. That 

is, set to 0 the coordinates of a vector d if they are smaller in absolute value than a 

fixed non-negative number-the threshold .A . There are two thresholding methods fre­

quently used in wavelet theory which are referred to as hard and soft. The expressions 

for the hard- and soft- thresholding rules are 

Jh(d, .A) = dl(ldl >.A), .A~ 0, dE lR 

and 

b8 (d, .\) = (d- sgn(d) ·.A) l(ldl > .A), A~ 0, dE lR 
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respectively. The hard thresholding method keeps some coefficients fixed and sets 

others to 0 and the soft thresholding method either shrinks coefficients or sets them 

to 0. 

There are several choices for the threshold A. If the threshold is too small or too 

large, then the wavelet shrinkage estimator will tend to overfit or underfit the data. 

Donoho and Johnstone(1994) proposed the universal threshold A = O".j2log n. The 

universal threshold removes noise with high probability that no noise is present in 

the data after thresholding. 

We observe that an estimate of the variance 0"2 is needed for computing the thresh­

old A. There are several choices for the estimator of O". Almost all methods involve 

the wavelet coefficients at the finest scale. The finest scale is only used to estimate 

the variance of noise. The signal-to-noise ratio (SNR) 2 is usually small at high reso­

lutions and, if the signal is not too irregular, the finest scale should contain mainly 

noise. Moreover, the finest scale contains 50% of all coefficients. Some estimators of 

O" are 

8 

1 n/2 2 
---:---"' [d(J-1)- (j(J-1)] 
n/2 -1 ~ 2 

' 
z=1 

(1.19) 

or a more robust MAD (median absolute deviation from the median) estimator 

M AD[d(J-1)] 

0.6745 

median[ld(J-1)- median(d(J-1))1] 
0.6745 

(1.20) 

where d(J-1
) is the vector of finest detail coefficients associated to the multiresolution 

subspace WJ-1· 
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Step 3. Invert the DWT to obtain an estimate of the function. Let 

tU11 tU1n 

w-

be the discrete wavelet transformation matrix. In terms of W, the wavelet shrinkage 

estimator of f can be written as 

i = w-1(8-o.x(Wy/G-)). 

Therefore, the component fi can be written as L:k tUki (8- 6.x(Wy /8-)k), i = 1, ... , n. 



Chapter 2 

Partial Score Test for Homogeneity 

in the Model with U ncorrelated 

Errors 

In this chapter, we assume that a group of observations from (1.2) have the same local 

variance. Suppose that there are q such local groups with variances O"f1), O"f2), ... , O"fq). 
q 

Let the number of observations in each group be nj (j = 1, 2, ... , q), so that L nj = 
j=l 

n, where n is the total number of observations. In terms of new groupings, Xi in (1.2) 

represent the hth (h = 1, 2, ... , nj) time point of the jth (j = 1, 2, ... , q) group such 

that Xjh = Xz:;~:,~ nu+h = Xi· The model (1.2) can then be written as 

(2.1) 

where ~jh's are assumed to be normally distributed with mean 0 and variance 1. 

Therefore, the null hypothesis for testing the homogeneity in the model can be written 
2 

as Ho : O"f1) = O"f2) = · · · = O"fq)· By the reparametrization, /j = ~' the null 

26 
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hypothesis reduces to 

Ho : 11 = /2 = · · · = /q-1 = 1. (2.2) 

In what follows, we develop a partial score test statistic for testing the null hy­

pothesis in (2.2). We begin with a definition of the score function and score statistic. 

Definition 2.0.1. (Rao's Score} Given a statistical model {fx(x; !) : 1 E r} 

with likelihood function L( 1; x), a score or score function is defined to be the partial 

derivative of the logarithm of the likelihood function with respect to the parameter 

'Y· Then the score function U is given by 

u a 
a'Y log L(t; x), 

1 a 
L(1; x) a1 L(t; x). 

See Hogg, McKean and Craig (2005) for details. The expected value of U, written 

E(Uit), is zero. To see this, rewrite the definition of expectation, using the fact 

that the probability mass function is just L( 1; x), which is conventionally denoted by 

j(x; 1) (in which the dependence on xis more explicit). The corresponding cumulative 

distribution function is denoted as F(x; 1). With this change of notation and writing 

j 1 (x; 1) for the partial derivative with respect to /, 

E(UI!) = f j~(x; 'Y) dF(x; !) 
J[o,1] f(x; !) 
r J~(x; 'Y) 
J x f(x; 'Y) j(x; 1)dx 

l :,f(x; 1)dx, 

where the integral runs over the whole of the probability space of X and a prime 
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denotes partial differentiation with respect to 'Y· If certain differentiability conditions 

are met, the integral may be rewritten as 

:'Y fx J(x; "f)dx 
8 

0"( 1 = o. 

Because the expectation of the score function is zero, the variance of the score function 

may be written as 

Var(Ui"f) E {[:,log L('Y;x)]' J 
-E { [:;, log L(,;x)liJ 

This is called the Fisher information I ( 'Y). When there are p parameters, so that r 

is a p x 1 vector of parameters (r = (11 , "(2 , ... , "fp)') and U is a p x 1 vector of score 

function, then the variance of the score function U is known as the Fisher information 

matrix I (r). The ( i, j)th element of the Fisher information matrix can be written 

(I(r))i,j = E [a~i log L(r;x) 8~j log L(r;x)J, 

- E [ O"f~;'Yj log L(r; x)] . 

Definition 2.0.2. Let U(r) be the vector of first partial derivatives of the log likeli­

hood function with respect to the parameter vector {, and let H(r) be the matrix of 

second partial derivatives of the log likelihood function with respect to r· Let I(r) 

be the expected value of - H(r). Consider a null hypothesis H 0 • Let i' o be the MLE 

of r under H0 • The chi-square score statistic for testing Ho is defined by 

and it has an asymptotic x2 distribution with r degrees of freedom under H 0 , where 
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r is the number of restrictions on r by H 0 • See Cox and Hinkley (1974) for details. 

2.1 Partial Score Statistic 

We begin the mathematical development of the score statistic with the likelihood 

function of the parameters O"(J) which may be written as 

L = rrrr 1 
2 

exp[-~ ((YJh~f(xJh)))
2

]· 
j=1 h=1 J27fO"(j) (J) 

Clearly, the log likelihood function can then be written as 

£ = -~ [n log(27r) + t nj log O"(J) + t t (YJh ~~(xJh))
2

]. 
j=1 j=1 h=1 (J) 

Under the reparametrization (2.2), the log likelihood becomes a function of the pa­

rameters "/j (j = 1, 2, ... , q-1) and O"(q) given by 

£ -~ [n log (27r) + t nj log(ryj O"(q)) + t t ( (YJh -. ~~Xjh))2) l ' 
j=1 j=1 h=1 'YJ (q) 

- ~ [ n Jog (21r) + n Jog "fol + t, n; Jog 'Y; + ("[,))-' t ~ -yj1 (Y;h - f(x;•))'] , 

where "/q = 1 and YJh and f(xjh) are the observations and the value of the trend at 

time point Xjh respectively. Since O"(q) in "/j is unknown in practice, it becomes a 

nuisance parameter and "/j, j = 1, 2, ... , q-1, are the main parameters of interest for 

the test. 

Definer= ("11 , ry2 , ... , "/q-1)' and let &(q) be a consistent estimator of O"(q)· Neyman's 
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partial score test is based on the score function 

(2.3) 

where 'l/;11 (j = 1, 2, ... , q-1) is the partial regression coefficient of 'TJJ on 6. In (2.3) 

'TJJ and 6 are given by 

ac / 'T/j =-a,j l=lq-1 

and 
ac 

6=--
8CJ2 

(q) /=lq-1 

respectively. Now, 

So that 

Similarly, 

q nj 

L L 1}1 (YJh- f(xJh)) 2 

1 j=l h=l 

2 ( (J(q) )2 
n 

--2- ' 
(J(q) 

(2.4) 



which leads to 

I 

2a[q) 

q ni 

L L (Yjh- f(xjh)) 2 

j=l h::::l 
-------,2=------ - n 

a(q) 

The score function in (2.3) may be used to construct the score vector 
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where 'rf = (TJ1, ... , TJq-d' is a (q- I)-dimensional vector with its jth (j =I, 2, ... , q-I) 

element given by (2.4). The vector d = (d1 , ... ,dq_1)' is also a (q -I)-dimensional 

vector with its jth (j = I, 2, ... , q-I) element and the scalar quantity g defined as 

and 

respectively. By differentiating the log likelihood function, we find that 

82£ 1 
-

a"'/j 8a[q) 2 

It follows that, 

nj 

L (Yjh- f(xjh)) 2 

h=l 

2 ( 2 )2 'Yj a(q) 
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2 2 ( 2 )2 "'j (J(q) 

Therefore, it can be verified that 

Similarly, we obtain 

q nj 

2 L L "1} 1 (Yjh- f(xjh)) 2 

1 j=l h=l 

2 

So that, 

q ni 

n 
- ((Jfq))2 

2 L L "'t E[(YJh- f(xjh)) 2
] 

1 j=l h=l 

2 

1 

2 

q ni 

2 2::: 2:: "'t (Jrj) 
j=l h=l n 

- ((Jfq))2 

n 
- ((J2 )2 

(q) 

32 
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and 

g 
n 

-4-. 
20"(q) 

(2.5) 

Lemma 1. The variance-covariance matrix of u is given by C - dg- 1d', where 

Cq-1xq-1 is a diagonal matrix with elements 

for j = k. 

Proof. To compute the variance-covariance matrix of u, we first show that E(u) = 

0. Now, 

It is clear that E(u) = 0, since E(ry) = 0 and E(6) = 0. Therefore, 

Cov(u) E [(TJ- dg-16)(TJ- dg- 1~1)'], 

= E [TJ'r/ 1
- ryd'g- 16- dg-16ry' + dg-2~~d'], 

Cov(ry)- E(ry6) g-1d'- dg-1 E(6TJ') + dg-2d' Var(~I), (2.6) 

where from Definition 2.0.1 Var(6) = - E [a(:: 1\ 2 ] = g is given in (2.5) and 
(q) /=lq-1 

Cov(ry) =Cis a matrix with its (j,k)th element defined by 



Now, it is easy to verify that Cjk = 0, j =!= k and 

Therefore, 

and 

fh] 

E [fJ2£] 
ch] 

= 
2 

1 

2 

Cjk = 

3 2 
"ij ()"(q) 

for j = k. 

U . h f h (: 2:3=1 'r/j b . smg t e act t at ., 1 = 2 , we o tam 
()" (q) 

= --i- E ["' t 'r/il , 
()"(q) j=1 

1 
= -2-c, 

()" (q) 

d. 

where c = (cu, ... , Cq-1,q-d
1 

34 
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By applying these results to (2.6), we obtain 

Cov(u) = C- dg- 1d'. 

0 

After replacing O"fq) in u, C, d and g by a[q)' we obtain Neyman's partial score 

test statistic as 

(2.7) 

which is asymptotically distributed as x2 with q - 1 degrees of freedom. 

2.2 Simulation Study 

In this section, we conduct a numerical study to examine the size and power perfor­

mances of the score test statistic S(O"fq)). In our simulation study, we used four mean 

response functions. These are 

(i) A Constant function: 

f(x) = 3 

(ii) A Balanced block function consisting of 16 means: 
16 

f(x) = L hj 1[2-P(j-1),2-PjJ(x), 

j=1 
where p = 4, hJ = ( -1.2, 0.5, 3, 2, 4, 1.5, -1.2, 0.5, 3, 2, 4, 1.5, 3, 2, 4, 1.5) 

(iii) The HeaviSine function: 

f(x) = 4 sin47rx- sgn(x- 0.3)- sgn(0.72- x) and 

(iv) The Doppler test function: 

f(x) = y'x(l- x) sin x!~~05 
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Figure 2.1 shows the plots of these mean functions. Several authors, including Oyet 

and Sutradhar (2003), Cai, Hurvich and Tsai (1998) and Donoho and Johnson (1994) 

have used these functions in their study of the score statistic and in other examples. 
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Figure 2.1: Plots of mean functions 

It is clear that a simulation study requires the estimation of the mean response 

function and the nuisance parameter O'~q)' We consider two estimators for the variance 
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O"fq) based on discrete wavelet transformation. The first estimator is the standard 

estimator given in (1.19) and the second estimator is the median absolute deviation 

(MAD) given in (1.20). The DWT approach described in Chapter 1 was also used 

in estimating the function. Here, we use the DAUBS filter coefficient to estimate the 

variance and function. 

2.2.1 Size of the Score Test 

To compute the size of the score test, we consider q = 4 groups of observations. The 

distribution of the error terms Ejh, h = 1, ... , nj and j = 1, ... , 4 in (2.1) is chosen to 

be the normal distribution. Therefore, we generate the observations, Yjh, h = 1, ... , nj 

and j = 1, ... , 4, in (2.1) from a normal distribution with O"f1l = O"f2) = O"f3) = 0"(4) 

= 0.8. Using these observations, we estimate O"fq) and compute the value of the score 

statistic S(a(q)) for testing the null hypothesis H0 : 'Yl = "(2 = "(3 = 1 under two 

conditions. These are (a) when the function is known; and (b) when the function is 

estimated by DWT. The null hypothesis was rejected if the value of score statistic 

in (2.7) exceeded the 95th percentile of a x2 distribution with q - 1 = 3 degrees of 

freedom. We repeat this process 1000 times and compute the proportion of rejections 

for the test for a nominal significance level of 5%. The results are shown in Table 2.1. 

It is clear from Table 2.1 the score test statistic performed well in controlling the 

size of the test with the constant, HeaviSine and Doppler mean response functions 

when the mean functions are assumed to be known and the variance is estimated by 

the standard method. However, when the Balanced block function is used, more time 

points are needed for the test statistic to perform well in controlling the size of the 

test. If the variance is estimated by median absolute deviation method, the score 

test statistic performed poorly in controlling the size except for the Balanced block 

function. 
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Table 2.1: Estimates of size of H0 : 'Yl = '1'2 = '1'3 = 1 at nominal 5% level, with 0'~4) 
= 0.8 

Mean function n Known function Estimated function 
S-estimate MAD-estimate S-estimate MAD-estimate 

Constant 128 0.055 0.107 0.033 0.054 
256 0.054 0.083 0.038 0.047 
512 0.049 0.068 0.035 0.045 
1024 0.055 0.068 0.039 0.045 

Balanced block 128 0.009 0.042 0.118 0.125 
256 0.02 0.046 0.161 0.164 
512 0.032 0.047 0.165 0.169 
1024 0.04 0.054 0.159 0.154 

HeaviSine 128 0.044 0.095 0.056 0.074 
256 0.044 0.086 0.111 0.139 
512 0.048 0.065 0.151 0.162 
1024 0.054 0.065 0.188 0.208 

Doppler 128 0.052 0.096 0.03 0.056 
256 0.056 0.085 0.058 0.076 
512 0.048 0.068 0.048 0.062 

1024 0.055 0.068 0.098 0.104 

In all cases, the score test statistic performed poorly in controlling the size when 

the mean functions are estimated by DWT and the variance is estimated by the 

standard method. The variance is estimated by median absolute deviation method, 

the score test statistic performed poorly in controlling the size except the constant 

function. 

According to these results, we can conclude that the score test statistic performed 

well in controlling the size of the test when the function is known but performed 

poorly in controlling the size of the test when the function is unknown and estimated 

by DWT. It follows that the score test statistic performed poorly due to the estimation 

by DWT. Oyet and Sutradhar(2003) have shown that the test statistic performs well 

if the function is estimated by a wavelet version of weighted least squares method. 
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We infer from this that the poor performance of the score statistic in terms of size is 

as a result of the estimation by DWT. We will therefore use the wavelet version of 

weighted least squares method in Chapter 3. 

2.2.2 Power of the Score Test 

To compute the power, we consider q = 4 groups of observations with different group 

variances. We choose four different set of group variances. These are o-(1) = 3.2, o-(2) = 

2.4, a~) = 1.6 and a[4) = 0.8; a(1) = 0.8, o-(2) = 0.8, a[3) = 1.6 and a[4) = 0.8; 

a(l) = 0.8, o-(2) = 0.8, o-(3) = 3.2 and o-(4) = 0.8; a(l) = 0.8, o-(2) = 2.4, o-(3) = 2.4 and 

a(4) = 0.8. The distribution of the error terms Ejh, h = 1, ... , nj and j = 1, ... , 4 

in (2.1) is chosen to be normally distributed. We then generate the observations, 

Yjh, h = 1, ... , nj and j = 1, ... , 4, in (2.1) from a normal distribution with different 

set of group variances. Using these observations, we compute a(q) under the null 

hypothesis and then compute the value of the score statistic S(&(q)) for testing the 

null hypothesis H0 : "Yl = "'(2 = "'(3 = 1 against the specified alternatives H1 : "'(1 = 

4, "Y2 = 3, "'(3 = 2; H2 : 11 = 1, 12 = 1, "Y3 = 2; H3 : "Y1 = 1, "Y2 = 1, "Y3 = 4; H41 

: "Yl = 1, "'(2 = 3, "'(3 = 3 under two conditions. These are (a) when the function is 

known; and (b) when the function is estimated by DWT. The null hypothesis was 

rejected if the value of score statistic in (2. 7) exceeded the 95th percentile of a x2 

distribution with q - 1 = 3 degrees of freedom. We repeat this process 1000 times. 

Finally, we compute the proportion of rejections for the test for a nominal significance 

level of 5%. The results are shown in Table 2.2. 

It is clear from Table 2.2 that the power of the score test statistic is higher under 

constant, HeaviSine and Doppler mean response functions than the Balanced block 

function for either of the variance estimators. Even for a small sample size of n 

= 128, the power exceeds 93% with the alternative hypotheses H 3 and H 4 except 

for the Balanced block function. However, the power is about 86% with alternative 
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hypothesis H 1. We observe that for alternative hypothesis H 2 , the score statistic 

required more time points for the power of the test to be high because the variation 

between the group variances is small. From these results, we can conclude that the 

performance of the power of the score test statistic is satisfactory for a small sample 

size when the variation between the group variances is large. 

Table 2.2: Estimates of power of H0 : 11 = 12 = 13 = 1 versus specified alternatives 
at nominal 5% level 

Alternative set Mean function n Known function 
S-estimate MAD-estimate 

HI : /1 = 4, /2 = 3, Constant 128 0.87 0.886 
/3 = 2 256 1 0.999 

Balanced block 128 0.758 0.788 
256 0.998 0.997 

HeaviSine 128 0.86 0.875 
256 1 0.999 

Doppler 128 0.867 0.879 
256 1 0.999 

H2 : 11 = 1,12 = 1, Constant 128 0.549 0.582 
/3 = 2 256 0.857 0.841 

512 0.994 0.993 
1024 1 1 

Balanced block 128 0.325 0.391 
256 0.762 0.775 
512 0.985 0.986 
1024 1 1 

HeaviSine 128 0.512 0.557 
256 0.845 0.845 
512 0.989 0.99 
1024 1 1 

Doppler 128 0.535 0.574 
256 0.854 0.842 
512 0.994 0.992 
1024 1 1 
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(Table 2.2 Contd .... ) 

Alternative set Mean function n Known function 
S-estimate MAD-estimate 

H3 : /1 = 1,/2 = 1, Constant 128 0.986 0.985 
/3 = 4 256 1 0.999 

Balanced block 128 0.965 0.959 
256 1 1 

HeaviSine 128 0.985 0.989 
256 1 0.999 

Doppler 128 0.986 0.988 
256 1 1 

H4 : 11 = 1,12 = 3, Constant 128 0.937 0.939 
/3 = 3 256 1 0.999 

Balanced block 128 0.836 0.875 
256 1 0.998 

HeaviSine 128 0.944 0.932 
256 1 1 

Doppler 128 0.932 0.929 
256 1 1 

It is clear from Table 2.3 the score test statistic has higher power with constant, 

HeaviSine and Doppler mean response functions than the Balanced block function for 

either of the variance estimators. The alternative hypotheses H3 and H4 produced the 

power of the test in the range of 0. 777 - 0.87 except for the Balanced block function 

when the sample size is n = 128. However, the power of the test is about 0.7 under 

the alternative hypothesis H1. For alternative hypothesis H2 with n = 128 the range 

of the power is 0.303 - 0.383 which confirm that the score statistic needs more time 

points to achieve a high power because the variation between the group variances is 

small. From these results, we can conclude that the score test statistic achieves good 

power with small sample size when the variation between the group variances is large. 
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Table 2.3: Estimates of power of H0 : ')'1 = ')'2 = ')'3 = 1 versus specified alternatives 
at nominal 5% level 

Alternative set Mean function n Estimated function 
S-estimate MAD-estimate 

H1 : 1'1 = 4, 1'2 = 3, Constant 128 0.69 0.732 
1'3 = 2 256 0.993 0.995 

512 1 1 
Balanced block 128 0.573 0.598 

256 0.955 0.951 
512 1 1 

HeaviSine 128 0.7 0.725 
256 0.994 0.993 
512 1 1 

Doppler 128 0.722 0.739 
256 0.995 0.994 
512 1 1 

H2 : 1'1 = 1, 1'2 = 1, Constant 128 0.329 0.376 
1'3 = 2 256 0.731 0.71 

512 0.977 0.971 
1024 1 1 

Balanced block 128 0.38 0.368 
256 0.394 0.44 
512 0.855 0.861 
1024 0.999 0.996 

HeaviSine 128 0.383 0.382 
256 0.761 0.765 
512 0.98 0.982 

1024 1 1 
Doppler 128 0.303 0.324 

256 0.691 0.687 
512 0.955 0.954 
1024 1 1 
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(Table 2.3 Contd .... ) 

Alternative set Mean function n Estimated function 
S-estimate MAD-estimate 

H3: /1 = 1,12 = 1, Constant 128 0.842 0.804 
/3 = 4 256 0.999 0.999 

Balanced block 128 0.743 0.706 
256 0.947 0.931 
512 1 1 

HeaviSine 128 0.87 0.812 
256 0.995 0.994 
512 1 1 

Doppler 128 0.824 0.77 
256 0.99 0.99 

H4: 11 = 1,12 = 3, Constant 128 0.795 0.807 
/3 = 3 256 0.998 0.998 

Balanced block 128 0.633 0.644 
256 0.966 0.972 
512 1 1 

HeaviSine 128 0.831 0.821 
256 0.999 0.999 

Doppler 128 0.777 0.777 
256 0.999 0.999 

The power performance when the function is known is high compared to when the 

function is estimated by DWT. However, the power performance of the test is quite 

satisfactory when the function is estimated by DWT. But this statistic may be too 

conservative in controlling the size. 



Chapter 3 

Partial Score Test for Homogeneity 

in the Model with Correlated 

Errors 

In this chapter, we discuss the problem of testing for homogeneity in k independent 

time series each of length r with the ith ( i = 1, 2, ... , k ) series represented by a 

seasonal autoregressive moving average (SARMA) process. Let Yih represent the hth 

observation in the ith time series. Then, in operator notation, we can write 

where <Pu(B) is the autoregressive polynomial of order u in nonnegative power of B, 

Ov(B) is the moving average of polynomial of order v in nonnegative power of B, 

<I>u(B 8
) is the autoregressive polynomial of order U in nonnegative power of B 8 and 

8v(B8
) is the moving average of polynomial of order V in nonnegative power of B 8

• 

That is, 
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cPu(B) 

Ov(B) 

<'Pu(B 8
) 

8v(B8
) 

1 - cP1B - cP2B2 - · · · - cPuBu 

1 - 01B - 02B2 - · · · - OvBv 

1- <'PlBs- <'P2B2s- ... - <'PuBus 

1- 81B8
- 82B28 - • • ·- 8vBVs 
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The notation B is the backshift operator such that BJYih = Yih-j, s is the sea­

sonal period and aih 's are uncorrelated random variables and assumed to be normally 

distributed with mean 0 and variance ai. Throughout this chapter, we will assume 

that a group of series have the same seasonal auto regressive moving average process. 

Similar to the grouping in Chapter 2, suppose that there are q such groups with 

different seasonal auto regressive moving average processes, j = 1, 2, ... , q, where 

each group j contains p time series. Let Yij = (Yijl, Yij2, ... , Yijr)' be the r x 1 vector 

representing the observations of the ijth ( i = 1, 2, ... , p and j = 1, 2, ... , q) time series 

and f = (f(x1), j(x2), ... , f(xr))' be the r x 1 vector of trend values. Then it follows 

that the time series can be modelled as in (1.4). We assume that Cij "' Nr(O, ~j) 

for a given group j and all i = 1, 2, ... , p, where ~j is a r x r scalar matrix whose 

elements are functions of c/J, 0, <'P and e. We observe that ~j can be written as 

where Rj is the correlation matrix for a given group j and all i = 1, 2, ... , p. For 

simplicity, we have assumed that Rj = R for all i = 1, 2, ... , p and j = 1, 2, ... , q. 

Then, the data can be modelled as 

Yijh i= 1,2, ... ,p, j= 1,2, ... ,q, h= 1,2, ... ,r, (3.1) 
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where Eijh follows the SARMA process. 

where aijh is a sequence of normally distributed white noise processes with mean 

0 and variance <7[j) for a given group j and all i = 1, 2, ... , p and h = 1, 2, ... , 

r. Under the model (3.1), R is a function of c/J, (),<I> and 8. We note that O"(yj) 

can be written as b* ( c/J, ()' <I>' e) (/(j). That is, (/(yj) = b* ( c/J, ()' <I>' e) (/U). It follows 

that Cij rv Nr(O, b* (/(j)R). The null hypothesis for testing homogeneity can then be 
a2 

expressed as in (1.3). By the reparametrization, "/j = ::¥2-, the null hypothesis reduces 
a(q) 

to (2.2). In what follows, we develop a partial score test statistic for testing the null 

hypothesis in (2.2), under the model (3.1). 

3.1 Partial Score Test for Homogeneity under 

SARMA Model 

When the observations in a time series are highly correlated, the likelihood ratio and 

Wald's test are known to have convergence problems (see Sutradhar and Bartlett 

(1993)) in testing the hypothesis (2.2) due to the large values of the correlation 

parameters (c/J, (),<I> or 8). However, as opposed to the likelihood ratio and Wald's 

tests, Neyman's (1959) score test requires only y'ri consistent estimates for c/J, (),<I>, 8 

and O"(q) under the null hypothesis. We also saw in Chapter 2 that for the score test 

to perform well in controlling the size of the test a consistent estimator of the trend 

function is needed. 

Based on (3.1), the likelihood function of the parameters c/J, (),<I>, 8 and O"(j) may 

be written as 
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The log likelihood function becomes 

.e = 1 [ q - 2 n log (27r) + n log (b*) + pr ~ log (o-[j)) + pq log /R/ + 

~ ~ (Yii -f)'R-1(Yii -/)] 
L..J L..J b* 2 ' i=l j=1 O"(j) 

where n = pqr. 

Under the reparametrization (2.2), the log likelihood of the parameters 'Yi (j = 1, 

2, ... , q-1), ¢, e, <I>, e and O"[q) is written as 

1 [ q .e = -- n log (27r) + n log (b*) + pr L log('Yj O"[q)) + pq log /R/ + 
2 . 1 

J= 

(~ ~ (Yii -f)'R-
1
(Yii -/))] 

~a~ L..JL..J ~ . 2 ' 
i=l j=1 'YJ O"(q) 

1 [ q - - 2 n log (27r) + n log (b*) + pr f; log {'Yj) + n log (O"(q)) + pq log JRI + 

trace (R-1 t t (Yij ~!)(~ij -/)')], 
i=1 j=1 "/j O"(q) 

1 [ q = - 2 n log(27r) +n log(b*) +pr ~ log('Yj) +n log(O"(q))+ 

pq log /RI +~trace (R-1W)l , 
O"(q) 



48 

~ ~ (Y·· -f)(Y·· -f)' 
where /q = 1 and W = ~ ~ zJ . zJ is a symmetric matrix of order 

i=l j=l lJ 
r x r. 

We define 1 = (11, 12, ... , /q-1)' and 

Let /3 be some consistent estimator of (3. Neyman's partial score test is then based 

on 

b 

Uj(/3) = rJj(/3)- L '1/Jjk ~k(/3), j = 1, ... , q- 1, (3.2) 
k=1 

where Wjk (j = 1, 2, ... , q-1, k = 1, 2, ... , b; b = u+v+U+V+1) is the partial 

regression coefficient of 17) on ~k. We recall that 17} and ~k are defined as 

(3.3) 

and 

(3.4) 

respectively. Next, we use (3.2) to construct the score vector 

(3.5) 

where 'f1 = ( 171 , •.. , rJq- I)' is a ( q - 1 )-dimensional vector with its j th (j = 1, 2, ... , q-1) 
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element given by (3.3), e = (6, ... , ~b)' is also a b-dimensional vector with its kth 

(k = 1, 2, ... , b) element given by (3.4) and the (j,k)th element of Dq-lxb and Gbxb 

defined as 

(3.6) 

and 

(3.7) 

respectively. It can be shown that the variance-covariance matrix of u is given by 

C- DG-1D', where the elements of Cq-lxq-l are given by 

After replacing (3 in u, C, D and G by [3, we obtain Neyman's partial score test 

statistic as 

(3.8) 

which is asymptotically distributed as x2 with q - 1 degrees of freedom. 

3.2 Partial Score Test for Homogeneity under AR(l) 

Model 

In this Section, we consider a special case of the SARMA model in which ¢2 = ¢3 = 

... =cPu= o,ei = 0 for all i = 1,2, ... ,v, <I>j = 0 for all j = 1,2, ... ,u and ek = 0 
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for all k = 1, 2, ... , V. In this case the SARMA model reduces to the autoregressive 

model of order 1, AR(1). Here, we consider q groups of heterogeneous time series 

where each group contains p time series and each series follows the AR(1) process. 

That is, the model for the term Eijh in (3.1) reduces to Eijh = ¢Eijh-l + aijh where 

-1 < ¢ < 1 is the parameter of the process and aijh's are independent and identically 

normally distributed random variables with mean zero and variance O'[i) for a given 

group j (j = 1, 2, ... , q) and all i = 1, 2, ... , p, and h = 1, 2, ... , r. Since the AR(1) 

process is stationary, it is straightforward to see that E(Eijh) = 0 and 

E(c;jh), 

E[(¢Eijh-l + aijh)
2
], 

= E(¢2 
c;jh-l + 2 ¢Eijh-l aijh + a;jh), 

- ¢
2
Var(Eijh) + 0 + O'(J)' 

2 
(J(j) 

1- ¢2' 

with auto-covariance function given by 

Fork= 1, 

Cov(Eijh, Eijh+l) = E(Eijh Eijh+l), 

E[cijh(¢Eijh + aijh+l)], 

= ¢Var(Eijh), 

¢ (J(j) 
= 1- ¢2' 



Fork= 2, 

E(Eijh Cijh+2), 

- E[c:iJh(¢c:iJh+l + aijh+2)], 

= 

¢ Cov(c:ijh, Eijh+l), 
A.2 2 
'~-' a(j) 

1- ¢2" 
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In general, for the AR(l) process Eijh, we find that the autocovariance function can 

be written as 

( 
a2 ) It follows that eij "' Nr 0, 

1 
~J ~2 R( ¢) , where R( ¢) = qylh-h'l is the r x r correlation 

matrix. 

We noted earlier that for the SARMA model a~yJ) = b*(¢, e, <I>, 8) a~j)· For the 

AR( 1) model, b* ( ¢, e, <I>, 8) = 
1 
! ¢

2 
. Therefore, replacing b* ( ¢, e, <I>, 8) by 

1 
! ¢2 

in the loglikelihood function in Section 3.1 we obtain 

1 [ q -- n log (21r)- n log (1- ¢2
) + pr L log('/'j) + n log (a~q)) + pq log IR(¢)1 + 

2 . 
J=l 

(
1- ¢2) l 

2 
trace (R- 1(¢)W) , 

a(q) 

.f.,~ ( y .. - !)( y .. - f)' 
where "/q = 1 and W = ~ ~ 21 

. 
21 is a symmetric matrix of order 

i=l j=l 'YJ 
p 

r X r. Let Vij = ( yij- !)( yij- f)' and vj = L vij· Define 
i=l 



D(¢) = 
DR(¢) 

8¢ , 

= ih- h'i q;ih-h'i-1, 
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and the vectors 1 = (11, 12, ... , /q-d and /3 = (/31, /32)' = (a-(q)' ¢)'. Let S be the 

consistent estimator of (3. In the special case of an AR(1) process we find that 

and 

ac 
8¢ 

= 
n¢ pq -1 

(
1 

_ ¢2 ) - 2 trace (R (¢)D(¢)) + 

~[(1- ¢2
) trace (R-1(¢)D(¢)R-1(¢)W) + 2¢trace (R-1(¢)W)]. 

2a(q) 

It then follows from (3.3) and (3.4) that 
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and 

n¢ pq 1 
6 = - (1 _ ¢2 ) - "2 trace (R-1 (¢)0(¢)) + 20"fq) [2¢trace (R-1(¢)V) 

+ (1- ¢2
) trace (R-1(¢)D(¢)R-1(¢)V)], (3.11) 

q 

where V = ~ Vj. These expressions are then used to construct the vectors TJ = 
j=1 

('171, ... , r}q-1)
1 and e = (6, 6)' in the score vector 

To compute the evaluation of u, we obtain the elements of the matrices D and G 

using (3.6) and (3.7). Now it is quite straightforward to show that 

rFe ( (1 - ¢2
)) -1 

8 
.a 2 = -

2 2 4 trace(R (¢)Vj)· 
'YJ O"(q) 'Yj O"(q) 

By noting that 

p 

- ~ E[( Yij- f)( Yij- !)'], 
i=l 

p 

= L Var(cij), 
i=l 

= 
PO"fy)R(¢) 

1 - ¢2 ' 
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we obtain 

( 
pa[j) ) -

2 2 4 trace (Ir), 
! 3 a(q) 

pr 
= 2 2 . 

/j a(q) 

Therefore, 

j = 1,2, ... ,q- 1. (3.12) 

Similarly, it can be shown that 

Thus, 
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It follows that 

dj2 = -E [ a~2~¢] l=lq-1 

= (P) -1 pr ¢ 
2 trace [R (¢)0(¢)] + (1- ¢2), j = 1, 2, ... 'q- 1. (3.13) 

From (3.7) it is clear that 

and 

Using the loglikelihood function it is easily verified that 

= -~ [(1- ¢2
) trace (R- 1(¢)S1(¢)R- 1(¢)W)+ 

(J(q) 

2¢trace (R- 1(¢)W)] 



and 

n(1 + (P) (pq) -1 -1 - - (1 _ (p)z + 2" trace [R (¢)0(¢)R (¢)0(¢)]-

Now, 

Therefore, 

(p2q) trace [ R- 1(¢) a~~)] + 

2
\ {(1- ¢2 )[-trace (R- 1(¢)0(¢)R- 1 (¢)0(¢)R- 1 (¢)W) + 

a(q) 

trace ( R- 1(¢) a~~) R-1(¢)W) -

trace (R- 1 (¢)0(¢)R- 1(¢)0(¢)R- 1(¢)W)] + 2trace (R- 1(¢)W)-

2</Jtrace (R- 1 (¢)0(¢)R-1(¢)W)- 2¢trace (R- 1(¢)0(¢)R- 1(¢)W)}. 

E[W] 

n 
--4. 

2 a(q) 
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Similarly, 

912 - -E [8</>8;!fq)] -
/-lq-1 

= 4 [--;.-{(1- ¢>2) trace (R-1(¢>)0(</>)R-1(</>)E[W]) + 
8a(q) 

~¢>trace (R-
1
(</>)E[W])}] /=lq-

1 

[ 
1 2 1 2n¢>a[q) l = 

2
a 4 {pq a ( q) trace ( R- ( ¢>) 0 ( ¢>)) + 

1 
_ ¢2 } 

(q) /=lq-1 
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-
2
:fq) [pqtrace (R-1(¢)0(¢)) + 1

2~!2 ]. (3.14) 

922 = - E [ 
82 

e J 
8¢2 /=lq-1 

[
n(1 + </>2) n (pq) -1 -1 

= (
1 

_ ¢>2)2 - 1 
_ ¢2 - 2 trace [R (¢)0(¢>)R (¢>)0(¢)]+ 

(p
2
q) trace [ R- 1(¢) 

8~~)] + (p;) trace [R- 1(¢>)0(¢)R-1(¢)0(¢)]­

(~q) trace [R- 1 (¢) 8~~)] + (~q) trace[R-1(¢)0(¢)R-1(¢)0(¢)] + 

(/~!2 ) trace[R-
1
(¢)0(¢>)] + ( 1p~!2 ) trace[R-

1
(¢)0(¢)]]/=lq-

1 

= [ ~?-+¢>~;~ -
1 

_:: ¢2 + (p2q) trace [R-1(¢>)0(¢)R-1(¢>)0(¢)]+ 

( 12~q : 2 ) trace [R-
1
(¢)D(¢)J] /=lq-

1 

= ( 1
2~!:) 2 + (p

2
q) trace [R-1(¢)0(¢)R-1(¢)0(¢)] + 

( 12~ : 2) trace [R-1 (¢)0( ¢)]. (3.15) 
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Lemma 2. The variance-covariance matrix of u is given by C - DG-1D', where 

Cq-1xq- 1 is a diagonal matrix with elements 

[ 
[J2f ] 

Cjk = -E ' 
8"/j 8'Yk l=lq-1 

for j = k. 

Proof. From Lemma 1, it is clear that E(u) = 0. From (2.6) we write 

Cov(u) = Cov(ry)- Cov(ry, ~) G-1D'- DG-1 Cov(~, ry) + 

DG-1 [Cov(~)]G- 1 0'. (3.16) 

By definition of a score function, Cov(ry) =Cis a diagonal matrix with its (j, k)th 

element defined as 

Now, it is easy to verify that cjk = 0, j "/= k and 

It follows that 

pr 
2' 

for j = k. (3.17) 



59 

Now Cov(e) and Cov('fl, e) are, by definition of a score function, given by 

= G, 

and 

- D, 

respectively. By applying these results to (3.16), we obtain 

Cov(u) = C- nG-1D'. 

0 

After replacing {3 in u, C, D and G by~' we obtain Neyman's partial score test 

statistic as in (3.8), which is asymptotically distributed as x2 with q - 1 degrees of 

freedom. 
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3.2.1 Estimation of Function 

Previously, we used the DWT approach to estimate the trend function which led to 

the poor performance of the size of the score statistic. In this section, we use a wavelet 

version of weighted least squares to estimate the trend J(x). First, we express f(x) 

in terms of its finite order m wavelet expansion, (see Section 1. 2.1) for all x E [ 0, 1], 

m 2J-l oo 2J-l 
f(x) = c¢(x) + L L dJk'lfJJ,k(x) + L L dJk'lfJJ,k(x), 

j=O k=O j=m+l k=O 
m 2J-l 

- c ¢(x) + L L djk '1/Jj,k(x) + g(x), 
j:::::O k=O 

00 2J -1 
where g(x) = L L djk 'lfJJ,k(x) is the remainder term in the wavelet expansion. 

j=m+l k=O 
Define (} = { c, doo, d10, du, ... , dm2m-1}' and qm(x) = { ¢(x), '1/Jo,o(x), 'l/J1,o(x), ... , 

'l/Jm,2m_1(x)}'. Then, we can rewrite the model (3.1) as 

(3.18) 

where(}= f0
1 f(x)qm(x)dx. We note that in actual computations only the first term 

in (3.18) can be estimated. 

The vector of filter coefficients (}ij is then estimated by weighted least squares 

method as 

where X is the model matrix with rows q~(xh), A is the r x r diagonal matrix with 

diagonal elements a(xh), the weighted least square weights. For the construction of 

the weighted least squares weights, we follow Oyet and Wiens (2000). Oyet and Wiens 
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(2000) derived the minimum variance unbiased weights given by 

where llq(x) II denotes the Euclidean norm. It follows that 

p q 

I:I:oij 
{J i=l j=l 

pq 

Therefore the trend function is estimated by 

}(x) = q~(x) {J 

In our simulation studies, we have used the DAUBS filter coefficients to construct 

the function. 

3.2.2 Estimation of Nuisance Parameters 

To compute Neyman's partial score test statistic S(/3), we need to obtain a consistent 

estimates of a(
9
) and ¢. We use the residuals and the weights from the weighted least 

squares method to compute the estimates of a(
9

) and ¢ as 

p q r 

L L L a(xh) (Yijh- }(xh)) 2 

i=l j=l h=l 
(3.19) 
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and 

P q r-1 

L L L(Yijh- /(xh))(Yijh+l- /(xh+l))jpq(r- 1) 
i=l j=l h=l 

p q r (3.20) 

L L L (Yijh- /(xh))2 jpqr 
i=l j=l h=l 

respectively. 

3.3 Size and Power Performance of the Score Test: 

Simulation Study 

In this section, we performed a simulation study to examine the size and power 

performance of Neyman's partial score test statistic S(/3). Here we used the same 

mean response functions used in Chapter 2 to examine the size and power performance 

of Neyman's partial score test statistic S(/3). For each choice of mean response 

function, we considered time series of length r = 8 and r = 16. Due to the nature 

of weighted least squares, when r = 8, we set m = 2 and when r = 16, we obtained 

the best result with m = 3. We compute the proportion of rejections for the test, 

based on the number of simulations, for a nominal significance level of 5%. For each 

simulation, the null hypothesis was rejected if the test statistic exceeded the 95th 

percentile of a x2 distribution. 

3.3.1 Size of the Score Test 

We consider q = 4 groups of time series to compute the values of score test statistic 

S(/3) in 5000 simulations, when o-(q) is estimated by (3.19) and ¢ is estimated by 

(3.20). The data used in the computations were generated as described earlier in 
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Section 2.2.1 with the addition of a correlated error term. We compute the size for 

testing the null hypothesis H0 : 11 = 12 = 13 = 1 at nominal level 5% under the 

x2 distribution with q - 1 = 3 degrees of freedom, when the mean response function 

is estimated by wavelet version of weighted least squares method. The results are 

shown in Table 3.1. 

Table 3.1: Estimates of size of H0 : 11 = 12 = 13 = 1 at nominal 5% level, with o-[4) 

= 0.8, ¢ = 0.9 

Mean function k r=8 k r = 16 
Constant 16 0.318 16 0.3352 

64 0.0834 64 0.071 
128 0.0628 112 0.0598 
144 0.0534 120 0.0532 

Balanced block 16 0.318 16 0.3352 
64 0.0834 64 0.071 
128 0.0628 80 0.0572 
144 0.0534 120 0.0532 

HeaviSine 16 0.308 16 0.3352 
64 0.0834 80 0.0572 
128 0.0628 96 0.0612 
144 0.0534 120 0.0532 

Doppler 16 0.318 16 0.3352 
64 0.0834 96 0.0612 
128 0.0628 112 0.0598 
144 0.0534 120 0.0532 

It is clear from Table 3.1, for all mean response functions that a large sample size 

is needed for the score test statistic to control the size of the test due to the correlation 

between the observations. According to this result, we can conclude that when the 

sample size is sufficiently large, the score statistic performs well in controlling the 

size of the test when the function is estimated by wavelet version of weighted least 

squares method. 
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3.3.2 Power of the Score Test 

Again, the data is generated as described earlier with the addition of correlation error 

terms. We compute the power for testing the null hypothesis H0 : /l = 12 = 13 = 1 

against the same alternatives hypothesis which was used in Chapter 2 at nominal level 

5% under the x2 distribution with q - 1 = 3 degrees of freedom in 5000 simulations, 

when the mean response function is estimated by wavelet version of weighted least 

squares method. The results are shown in Table 3.2. 

It is clear from Table 3.2 that for all mean response functions, the score test 

statistic has satisfactory power. However, the score statistic needs more time points 

to achieve the high power under the alternative hypothesis H 2 because the variation 

between the group variances is small. The alternative hypotheses H1, H3 and H4 

produced a power of the test which was above 96% when the number of time series k 

= 16 with length r = 16. But the power exceeds 87% with the alternative hypotheses 

H3 and H4 when the number of time series k = 16 with length r = 8. However 

the power is about 80% with alternative hypothesis H 1 . From these results, we can 

conclude that the score test statistic achieve high power when the variation between 

the group variances is large. 
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Table 3.2: Estimates of power of H0 : 'Yl = 'Y2 = 'Y3 = 1 versus specified alternatives 
at nominal 5% level 

Alternative set Mean function k r=8 k r = 16 
Hl : /"1 = 4, /"2 = 3, Constant 16 0.8094 16 0.9648 

/"3 = 2 32 0.9922 24 0.9948 
40 0.999 32 0.9988 

Balanced block 16 0.8094 16 0.9648 
32 0.9922 24 0.9948 
40 0.999 32 0.9988 

HeaviSine 16 0.8206 16 0.9648 
32 0.9922 24 0.9948 
40 0.9978 32 0.9988 

Doppler 16 0.8094 16 0.9648 
32 0.9922 24 0.9948 
40 0.9978 32 0.9988 

H 2 : 'Yl = 1' /"2 = 1' Constant 16 0.587 16 0.8 
/"3 = 2 64 0.9894 32 0.9806 

80 0.9972 40 0.9942 
88 0.9992 48 0.9994 

Balanced block 16 0.5874 16 0.8 
64 0.9854 32 0.9806 
80 0.9968 40 0.9942 
88 0.999 48 0.9994 

HeaviSine 16 0.5874 16 0.8 
64 0.9854 32 0.9806 
80 0.9972 40 0.9942 
88 0.9992 48 0.9994 

Doppler 16 0.5874 16 0.8 
64 0.9854 32 0.9806 
80 0.9968 40 0.9942 
88 0.9992 48 0.9994 
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(Table 3.2 Contd .... ) 

Alternative set Mean function k r=8 k r = 16 
H3 : 1'1 = 1, 1'2 = 1, Constant 16 0.9222 16 0.9784 

/'3 = 4 40 0.998 24 0.994 
48 0.9992 32 0.999 

Balanced block 16 0.9222 16 0.9784 
40 0.998 24 0.994 
48 0.9992 32 0.999 

HeaviSine 16 0.9222 16 0.9784 
40 0.998 24 0.994 
48 0.9992 32 0.999 

Doppler 16 0.9222 16 0.9784 
40 0.998 24 0.994 
48 0.9992 32 0.999 

H4: 1'1 = 1,/'2 = 3, Constant 16 0.8724 16 0.9802 
/'3 = 3 48 0.9994 24 0.9956 

56 1 32 0.9992 
Balanced block 16 0.8724 16 0.9802 

48 0.9994 24 0.9956 
56 0.9998 32 0.9992 

HeaviSine 16 0.8724 16 0.9802 
48 0.9994 24 0.995 
56 1 32 0.9992 

Doppler 16 0.8724 16 0.9802 
48 0.9994 24 0.9956 
56 1 32 0.9992 



Chapter 4 

Concluding Remarks 

In this thesis, we have constructed partial score test statistics for testing homogeneity 

of variances when the data is from a nonparametric regression model with uncorre­

lated and correlated errors. 

In Chapter 2, we have described the construction of Neyman's partial score test 

for testing the homogeneity of variances in nonparametric model with uncorrelated 

errors. Neyman's partial score test statistic only requires the consistent estimate of 

nuisance parameters. We follow Cai, Hurvich and Tsai (1998) to estimate the mean 

response function by DWT and use the wavelet coefficients at the finest scale to es­

timate the variance parameter. In the simulation study, we found that the score test 

statistic performed well in controlling the size of the test when the function is known 

but performed poorly in controlling the size of the test when the function is unknown 

and estimated by DWT. This finding appeared to suggest that the score test statistic 

performed poorly due to the estimation by DWT. That is, the discrete wavelet trans­

form approach may not lead to a consistent estimate of the mean response function 

which will in turn affect the performance of the score statistic. Cai, Hurvich and 

Tsai (1998) in their study found that the score test performed poorly in controlling 

the size of the test under the assumption of normality even when the sample size is 

67 
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large. The results in this thesis show that the poor performance of the score statistic 

in their study can be attributed to two factors. These are 

(i) the formulation of the hypothesis in their paper which leads to identifiability 

problems. 

(ii) the fact that they used the DWT approach in estimating the response function. 

We note that if the hypothesis is properly formulated and a wavelet version of the 

weighted least squares approach is used in estimating the response, the score statistic 

performs well in controlling the size of the test. See Oyet and Sutradhar (2003) for 

details. We also found that if the sample size is small, the power of the score test is 

high when the variation between the group variances is large. 

In Chapter 3, we have also described the construction of Neyman's partial score 

test for testing the homogeneity of variances when the data arises from a non paramet­

ric model with correlated errors. We followed Oyet and Sutradhar (2003) to estimate 

the mean response function by a wavelet version of weighted least squares. Here, 

we use the residuals from the weighted least squares estimation to estimate the cor­

relation and variance parameters. In the simulation study, we found that the score 

statistic performed well in controlling the size of the test. We also found that the 

power performance of the score statistic is best when the variation between the group 

variances is large. 



Bibliography 

[1] Cai, Z., Hurvich, C.M. and Tsai, C., (1998), Score tests for heteroscedasticity in 
wavelet regression, Biometrika, 85, 229-234. 

[2] Cox, D. R. and Hinkley, D. V., (1974), Theoretical Statistics, Chapman and Hall 
Ltd, London. 

[3] Daubechies, I., (1992), Ten Lectures on Wavelets, Number 61 in CBMS-NSF 
Series in Applied mathematics, Society for industrial and Applied Mathematics, 
Philadelphia. 

[4] Daubechies, I. and Lagarias, J.C., (1992), Two-scale difference equations II. Local 
regularity, infinite products of matrices and fractals, SIAM Journal on Mathemat­
ical Analysis, 23, No.4, 1031-1079. 

[5] Donoho, D. L., and Johnstone, I. M., (1994), Ideal spatial adaptation by wavelet 
shrinkage, Biometrika, 81(3), 425-455. 

[6] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D., (1995), 
Wavelet shrinkage: Asymptopia?(with discussion), Journal of Royal statistical so­
ciety, Series B, 57(2), 301-369. 

[7] Erlebacher, G., Hussaini, M. Y. and Jameson, L. M., (1996), Wavelets, Theory 
and Applications, Oxford University Press, Oxford, New York. 

[8] Hi:irdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A., (1998), Wavelets, 
Approximation, and Statistical Applications, Lecture Notes in Statistics 129, 
Springer-Verlag, New York. 

[9] Hogg, R. V., McKean, J. W. and Craig, A. T., (2005), Introduction to Mathe­
matical Statistics, Upper Saddle River, New Jersey. 

[10] Kovac, A. and Silverman, B.W., (2000), Extending the scope of wavelet regres­
sion methods by coefficient dependent thresholding, J. Amer. Statis. Assoc. 95, 
172-182. 

69 



70 

[11] Mallat, S. G., (1989), Multiresolution approximations and wavelet orthonormal 
bases of £2 (JR), Transactions of the American Mathematical Society, 315, 69-87. 

[12] Meyer, Y., (1992), Wavelets and Operators, Cambridge University Press, Cam­
bridge. 

[13] Moran, P. A. P., (1970), On asymptotically optimal tests of composite hypothe­
sis, Biometrika, 57, 47-55. 

[14] Neyman, J., (1959), Optimal Asymptotic Tests of Composite Hypothesis, Proba­
bility and Statistics, The Harald Cramer Volume, Ulf Grenander, Wiley, New York, 
pp. 213-234. 

[15] Oyet, A.J. and Sutradhar, B., (2003), Testing variances in wavelet regression 
models, Statistics and Probability Letters, 61, 97-109. 

[16] Oyet, A.J., and Wiens, D.P., (2000), Robust designs for wavelet approximations 
of regression models, J. Nonparametric Statist., 12: 837-859. 

[17] Piheiro, A. and Vidakovic, B., (1997), Estimating the square root of a density 
via compactly supported wavelets, Computational Statistics and Data Analysis, 
25, no. 4, 399-415. 

[18] Strang, G., (1989), Wavelets and dilation equations: A brief introduction, SIAM 
Review, 31, no. 4, 614-627. 

[19] Sutradhar, B.C., (1996), Score test versus Bartlett type modified test for testing 
homogeneity of variances with autocorrelated errors, Sankhya B, 58, 10-27. 

[20] Sutradhar, B. C. and Bartlett, M. S. (1993), A small and large sample com­
parison of Wald's, likelihood ratio and Rao's test for testing linear regressin with 
autocorrelated errors, Sankhya B, 55, 186-196. 

[21] Vidakovic, B., (1999), Statistical Modeling by Wavelets, Wiley, New York. 










