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Abstract 

The statistical analysis of gamma data (exponential being a special case) is quite 

common in many biomedical or engineering research. The existing studies deal with 

this type of data either in the independence or time series set up. Independence, as 

the name suggests implies that the data at time point 't + 1' is independent of the 

data at time point 't', whereas the time series set up suggests dependence in the data 

collected at subsequent time points. 

It may however happen in practice that one collects the gamma responses re­

peatedly along with a set of multi-dimensional covariates, from a large number of 

independent individuals over a small period of time. In this set up, it is natural that 

the repeated gamma responses of an individual will be correlated. It is of interest 

to obtain consistent and efficient estimates for the effects of the covariates on the 

responses after taking the longitudinal correlation into account. 

In this thesis, we study an autoregressive order 1 (AR(1)) type longitudinal gamma 

model consisting of a regression vector, a scale, and a longitudinal correlation parame­

ter. The likelihood and a generalized quasilikelihood (GQL) inferences are considered 

for the estimation of these parameters. It is argued that the likelihood approach is 

extremely complicated whereas the GQL approach appears to be much simpler which 

also provides consistent and highly efficient estimates. This is verified through a 

simulation study. 
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Chapter 1 

Introduction 

1.1 Background of the Problem 

In traditional longitudinal studies it is common to collect binary or count responses 

repeatedly along with a set of multi-dimensional covariates over a small period of 

time from a large number of independent individuals. We, for example, refer to Liang 

and Zeger (1986), Crowder (1995), Sutradhar and Das (1999), and Sutradhar (2003) 

for such longitudinal studies. There has also been some discussion on the longitudinal 

studies for exponential failure time data. For this type of studies we refer to Cai and 

Prentice (1995), Guo and Lin (1994), Lin (1994), Hsu and Prentice (1996), Prentice 

and Hsu (1997), and Hasan (2004). Note that as opposed to the longitudinal set up, 

that is, in the independence set up, there exists many studies [see Kalbfleisch and 

Prentice (2002), for example] involving exponential, gamma and Weibull data, for 

example. But there is no adequate discussion in the literature on the use of gamma 

or Weibull data in the longitudinal set up. This motivated us to explore a longitudinal 

model for the gamma data. 

As far as the inference in the longitudinal set up is concerned, we refer to the 

generalized quasilikelihood (GQL) approach suggested recently by Sutradhar (2003). 
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This GQL approach is treated to be an alternative simpler approach as compared to 

the maximum likelihood (ML) approach. In fact, in practice, it may not be possible 

to write the likelihood function for certain longitudinal models which makes the like­

lihood approach useless. In contrast, recent studies in the longitudinal set up indicate 

that the GQL approach is quite simpler and it provides consistent and highly efficient 

estimates for the parameters of the longitudinal model. This motivated us to adapt 

the GQL estimation approach in our set up to make inferences about the parameters 

involved in our longitudinal gamma model. 

1.2 Objective of The Thesis 

One of the main objectives of the thesis is to develop an autoregressive order 1 (AR(l)) 

type longitudinal model for gamma data which we do in chapter 2 for the stationary 

gamma data. Here, stationarity means that the multi-dimensional covariates asso­

ciated with the repeated gamma responses are time independent. This also leads to 

a longitudinal correlation structure which is independent of time. The second main 

objective of the thesis is to make inferences about the parameters of the longitudinal 

gamma model. In our set up, there will be 3 types of parameters: (i) the regression 

effects, (ii) a scale parameter and (iii) a longitudinal correlation parameter. The esti­

mation of these parameters are discussed in chapter 3 for the longitudinal stationary 

model. As far as the estimation techniques are concerned, we consider the well known 

likelihood approach and a relatively less known GQL approach. We conduct a simu­

lation study in the same chapter to examine the performance of the GQL approach, 

likelihood approach being extremely complicated. We also study the basic properties 

of a longitudinal non-stationary AR(l) type model in chapter 4. The thesis concludes 

in chapter 5. 



Chapter 2 

Stationary AR(l) Gamma Model 

In the traditional longitudinal set up [Sutradhar, 2003], one collects discrete such as 

Poisson or Binary data along with multi-dimensional covariates over a short period 

of time, say T, from a large number of independent individuals, say K. But, there are 

situations in practice where the response may follow continuous such as exponential 

[Hassan, 2004] or the gamma distribution. For the purpose, in the thesis, we will 

consider a longitudinal model for the responses following gamma distribution. Note 

that there does not exist any discussions in the literature on this type of longitudinal 

model (where T is small and K ---+ oo), there exists however time series model, for 

gamma data, that is, for the case when T ---+ oo and K=l. 

In the following section, we present some of these time series models. 

2.1 Time Series Models 

The gamma distribution has found extensive application in reliability and life test­

ing [see Engelhardt and Bain (1977), Glaser (1976), and Gross and Clark (1975), 

for example] and in insurance [see Ammeter (1970) and Seal (1969), for example]. 

3 
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The statistical inferences using such gamma distributions for example, have been dis­

cussed by DiCiccio (1987), Lawless (1980), and Miller (1980). These inferences were, 

however, confined to the independence set up only. But, in practice, it may happen 

that the gamma responses are collected from an individual system over a long period 

of time. The responses in this case will be naturally correlated. Some authors such 

as Lewis (1982), and Gaver and Lewis (1980) have modeled this type of correlated 

gamma data. To be specific, these authors have studied the distribution properties 

of the the correlated gamma data in the time series set up. To have a feel for such 

models, we review in brief some of their models as in the following. 

2.1.1 The Gamma Autoregressive Process, GAR(l) 

Let {yt}, t = 1, ... , T be a sequence of responses collected over T time points. Also, 

let { dt} be a sequence of independent and identically distributed random variables. 

For the cases when Yt follows a gamma distribution marginally, say Yt"' Ga(1, >.), 

that is 

(2.1) 

Gaver and Lewis (1980) [see also Lawrence (1982)] introduced an AR(1) model given 

by 

Yt = a Yt-l + dt (2.2) 

where a is a correlation parameter ranging from 0 to 1 whereas in the classical Gaus­

sian model this type of parameter satisfies a wider range from -1 to + 1. Note that, it 

was shown by these authors that to maintain the same marginal gamma distribution 

for Yt for all t = 1, ... , T, it is essential that dt in (2.2) follows the distribution of a 

mixture given by 
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dt = { 
0 with probability a 

Gamma(!, .X) with probability 1- a(= a) 
(2.3) 

For details on other distributional properties of this model (2.2), one may refer to the 

above mentioned studies. 

2.1.2 The Gamma Beta Autoregressive Process, GBAR(l) 

The gamma process mentioned in last subsection (2.1.1) was developed by Gaver 

and Lewis (1980) for the one parameter gamma family. An extension of this type 

of process to the two parameters gamma family is generally complicated because of 

the complexity of its innovation process. Lewis (1982) has provided a more flexible 

and simpler approach for gamma processes in general. To be specific, Lewis (1982) 

presented a linear, random coefficient auto-regression model 

Yt = at Yt-t + dt (2.4) 

where Yt-t rv Ga(.X, ~) and at has the beta distribution, namely, at "' Be(.Xt, A- At), 

that is, 

_ l >.-t -/;Yt-1 
f(Yt-t I .X,~) - r(.X) ~->. Yt-t e (2.5) 

(0 <at < 1) (2.6) 

. r(.Xt) r(.x- .At) 
With Beta(At,A- At) = r(.X) . 

Here, to maintain the same distribution for Yt as that of Yt-l, it is essential that 

dt in (2.4) follows the gamma distribution, namely, dt "' Ga(.X -At,~). It may be 

further noted that dt, Yt-t, and at are independent for all t. Furthermore, it was 
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shown by Lewis (1982) that the autocorrelation function of the process has the form 

given by Pv(k) = [E(at)]k = ()q ~ .xJk, where ..\2 = ..\- ..\1. 

2.2 Regression Models in Longitudinal Set up 

In this section, we exploit the time series model considered by Lewis (1982) for gamma 

data in the longitudinal set up. To be specific, we write the model (2.4) for the 

longitudinal case as 

Yit = ait Yi,t-1 + dit (2.7) 

where, Yit denotes the response collected at time t (t = 1, ... , T) from the ith(i = 
1, ... , K) individual, ait and dit are similar variables as in (2.4) corresponding to 

time point t for a given i. Note that in (2.7), T is considered to be small and K 

--+ oo; whereas in (2.4), K = 1 and T--+ oo in terms of the notations in (2.7). 

In the time series set up such as (2.4), many authors confined their studies to 

the non-regression models. Since the responses recorded in a longitudinal set up 

are often affected by certain covariates, in this thesis, we are mainly interested to 

the inferences about the effects of such covariates after taking the correlations of the 

repeated gamma data into account. 

Let xit = (xit1 , ... , Xitu, ... , Xitp)' be the p-dimensional covariate vector corre-

sponding to Yit and (3 = ((31, ... , (3p )' is the effect of X it on Yit for all t = 1, ... , T and 

all i = 1, ... , K. Thus, in notation, it is of main interest to estimate the regression 

effect (3 after taking the correlations of Yi1 , ... , Yit, ... , YiT into account. 

Note that in general it is likely that Xit's are time dependent covariates. This 

time dependent case will be referred to as the non-stationary case which we will deal 

with, in chapter 4. However, when Xit remains fixed for all t = 1, ... , T, the non­

stationary case reduces to the stationary case. In this section, we deal with this type 
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of stationary models. 

For the stationary case, let Xi. = Xit for all t = 1, ... , T. FUrther, let 

). . = e-x:./3 = e-(xi.1fJ1 + ...... +xi.p/3p) and ). . = g(>.. ) z.1 z.2 z.1 ' (2.8) 

where g(·) is a suitable known function. Now by following Lewis (1982), we provide 

the distributional result for the model (2.7) as in the following lemma. 

Lemma 2.1. Suppose that~ > 0 is a scale parameter. If Yi,t-1 "' Ga(>.i.l + Ai.2, ~), 

ait "' Be(>.i.l, >.i.2) and dit "' Ga(>.i.2, ~), and Yi,t-1, ait and dit are assumed to be 

independent to each other, then Yit"' Gamma(>.i.1 + >.i.2, ~). 

Proof. In (2.7), let Zit= ait Yi,t-1· Now, as ait"' Be(>.i.1,>.i.2), it follows from (2.6) 

that the probability density function (pdf) of ait is given by 

!( I , , ) _ r(>.i.l + >.i.2) .xi.l-1 (1 ).xi 2-1 
CXit Ai.1, Ai.2 - r(.\. ) r(.\. ) (Xit - CXit . · z.1 z.2 

(2.9) 

Similarly, as Yi,t-1 "'Ga(>.i.1 + Ai.2, ~), the pdf of Yi,t-1 by (2.5) may be written as 

(2.10) 

Next, as Yi,t- 1 and ait are assumed to be independent, by using the transformation 

wi,t-1 = Yi,t-1 - Zit, where Zit = ait Yi,t-1, it then follows that the joint density of Zit 

and wi,t-1 is given by 

(2.11) 

We now obtain the marginal distribution of Zit by integrating (2.11) over wi,t-1 as 

follows: 
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(2.12) 

which is the pdf of gamma Zit· That is, Zit rv Gamma(>.i.1, ~). Therefore, by using 

the additive property of the gamma distribution [Johnson and Kotz (1979)] for two 

independent gamma variable, we obtain the distribution of lit as Yit rv Ga(>.i.l + 
>.i.2, ~). 

In the following subsection, we provide the auto-covariance structure for the 

gamma responses under the model (2.7). 

2.2.1 Basic Properties of the Model: Mean, Variance, and 

Auto-Covariance Structure 

Let f.-lit and O'itt denote the mean and variance of Yit for all t = 1, ... , T, respectively. 

By Lemma (2.1), these mean and variance are given by 

(2.13) 

(2.14) 

Following the time series model considered by Lewis (1982), we consider Pi = ).. Ai.\ 
i.l + i.2 

which is the mean of ait in the stationary case. This formula helps one to identify 

the relationship between >.i.l and >.i.2 under this type of stationary model. That is, 

for given Pi, Ai.2 = C ~/i)>.i.l = g(>.i.l,Pi) provides the form of 'g' in (2.8). 

Using the above notations we now state the auto-correlations structure for {yit} as 

in the following lemma. 

Lemma 2.2. For u < t, the (t- u)-th lag correlation between Yiu and Yit is given by 

corr(liu, lit) = p~-u 
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Proof. We prove this lemma by induction. For the purpose, we first find the lag 1 

covariance, namely cov(lit, li,t-1), 

Lag 1 auto-covariance: 

cov(lit, li,t-1) =E(lit li,t-1) - E(lit) E(li,t-1) 

=E[(ait li,t-1 + dit) li,t-1]- E(lit) E(li,t-1) 

=Eait (ait Yi~t-1) + Ed;1 (dit li,t-1) - E(lit) E(li,t-1) 

As ait has the beta distribution with parameters >.i.1 and >.i.2, it follows that E(ait) = 

).. ).~\ . . Similarly, as Yi,t-1 f'.j Ga(>.i.l +.Xi.2,e) and dit f'.j Ga(>.i.2,e), it follows from 
z.1 z.2 

(2.13) and (2.14) that E(Yi~t- 1 ) = (>.i.1 + >.i.2) (;;·1 + '\.2 + 1) and E(dit) = >.~.2 

Furthermore, as ait, Yit and dit are independent, after some algebra we obtain 

Next for convenience, we re-express the covariance in terms of Pi as 

cov(lit, li,t-d 
>.i.1 >.i.1 + >.i.2 

.xi.1 + .xi.2 e2 

(2.15) 

By similar calculations as for the lag 1 auto-covariance, we now find the lag 2 and 

lag 3 auto-covariances, namely, cov(lit, li,t-2) and cov(lit, li,t-3)· 

Lag 2 auto-covariance: 

cov(lit, li,t-2) =E(lit li,t-2) - E(lit) E(li,t-2) 

=E[(ait li,t-1 + dit) li,t-2]- E(lit) E(li,t-2) 

=E[{ait (ai,t-1 li,t-2 + di,t-1) + dit} li,t-2]- E(lit) E(li,t-2) 
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- E(lit) E(li,t-2) 

>.7.1 1 
/;,

2 
>.i.1 + >.i.2 

= ( >.i.1 ) 
2 

>.i.1 + >.i.2 

).i.l + >.i.2 1;,2 

2 >.i.1 + >.i.2 
=pi 1;,2 (2.16) 

Lag 3 auto-covariance: 

cov(lit, li,t-3) =E(lit li,t-3)- E(lit) E(li,t-3) 

=E[(ait li,t-1 + dit) li,t-3]- E(lit) E(li,t-3) 

>.~.1 1 
7,2 ( >.i.1 + >.i.2)

2 

= ( ).i.l ) 
3 

).i.l + >.i.2 

>.i.1 + >.i.2 /;,2 

(2.17) 

Note that by using (2.15), (2.16) and (2.17) and the formula for the correlation 

( ) 
cov(lit, li t-t) . 

given by corr Yit, Yi,t-l = ' , one obtams the lag 1, lag 2 and lag 
JVar(lit) Var(li,t-z) 

3 correlation as Pi, pr and p~ respectively. 

In the manner similar to these of lag 1, lag 2 and lag 3 correlation, we can obtain 

any lag correlations such as corr(Yiu, Yit) = p~-u, for u < t. 

Aliter: We may have an alternative proof of the lemma by using general 't' as follows: 

Note that 
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[

l-1 l l-1 m-1 n ai,t-j Yi,t-l + dt + ~ ( n ai,t-j) di,t-m, (2.18) 

for any l E N. So, 

[ 
l-1 l [ k-1 m-1 l 

cov(Yit, Yi,t-l) = cov ( n ai,t-j) Yi,t-l, Yi,t-l + cov dt + ~ ( n ai,t-j) di,t-m, Yi,t-l 

[

l-1 l 
= E IJ ai,t-j Var ( Yi,t-l I ait, ai,t-1, . .. , ai,t-l+1) 

J=O 

[ 

k-1 m-1 l 
+ cov dt + ~ ( n ai,t-j) di,t-m, Yt-l 

= E(ai,t-j)Var(Yi,t-l) 

(2.19) 

Hence the result. 



Chapter 3 

Estimation of Parameters for 

Stationary Longitudinal Model 

Recall from Section (2.2) that the AR(1) type gamma model is given by 

Yit = ait Yi,t-l + dit 

where Yit marginally follows the gamma distribution denoted by Yit r-v Ga(>.i.l +.Ai.2 , ~), 

with Ai.l = e-xUJ and >.i.2 = ( l-p;) Ai.l· Suppose that Pi = ). Ai.\ = p for all 
p, i.l + i.2 

i = 1, ... , K. In this case, Ai.2 = ( 7") Ai.l· Note that it was shown in the last chapter 

that p~-u is the lag ( t-u) auto-correlation between Yiu and Yit ( u < t), Pi being the 

lag 1 correlation. When Pi = p is assumed, one deals with a stationary dynamic 

model with the same stationary auto-correlation structure for all individuals, which 

may be a reasonable situation in practice. In view of this, we consider p; = p for all 

i = 1, ... , K throughout the thesis. 

It is clear from the above discussion that the statistical inference for the present 

gamma AR(1) model requires the estimation of the so-called regression effects /3, 
the AR(1) auto-correlation parameter p and the scale parameter~· In the following 

subsection, we discuss the traditional maximum likelihood (ML) approach for the 

12 
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estimation of these parameters but find that the ML approach is extremely complex 

from numerical point of view. As a remedy, we use the generalized quasilikelihood 

(GQL) approach suggested recently by Sutradhar (2003) which unlike the ML ap­

proach requires only the first two moments of the data. The GQL approach provides 

consistent estimates for all parameters of the model and it appears to be much simpler 

as compared to the ML approach. 

3.1 Likelihood Estimation and Its Complexity 

3.1.1 Construction of the Likelihood Function 

Note that the for a given i, the repeated responses for the ith individual, i.e., Yil, ... , Yit, 

... , YiT are generated following the model (2.7). These responses are correlated, where 

the correlation structure is given by lemma (2.2). Let fi(Yil• ... , Yit• ... , Yiri,B, p, ~) 

denote the joint density of the repeated gamma responses for the ith(i = 1, ... , K) 

individual. We then write the likelihood function under the model ( 2. 7) as 

K 

C(/3, p, ~) = II fi(Yil'" . 'Yit, " . 'YiT) (3.1) 
i=1 

K 

=II fi(Yi1) fi(YdYir) ... fi(YitiYi,t-d ... fi(YiT,Yi,T-1) (3.2) 
i=1 

where Yi 1 I'.J Ga(.Ai.1 + Ai.2 , ~) leading the pdf 

(3.3) 

and fi(YitiYi,t-d denotes the conditional density of Yit given Yi,t-1, for t = 2, ... , T. 

The derivation of this density function is given in the following lemma. 
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Lemma 3.1. For t = 2, ... , T, the conditional density of Yit given Yi,t-l under the 

model (2. 7) is given by 

min(Yi,t-l,Yit) 

f( I ) r(-Xi.I/P) I {z~i.1-1y~-~jle-~(Yit-Zit) 
Yit Yi,t-1 = r(-\· ) [r(!::E,X. )] 2 c-(¥).\;. 1 zt z,t-1 

d p z.1 '> 0 

(l=.e.).X· -1} [(Yi,t-1- Zit)(Yit- Zit)] P L1 dZit (3.4) 

Proof. Using zit = ait Yi,t-b we first write the conditional distribution of zit given 

Yi,t-1 as 

f (Zit I Yi,t- t) 
f(zit, Yi,t-d 

f(Yi,t-1) 

r(-Xi.l + -Xi.2) 
r(-Xi.l) r(-Xi.2) ( ) 

Ai.J-1 ( ) .\;.2-1 
~ 1-~ 
Yi,t-1 Yi,t-1 

1 
(3.5) 

Yi,t-1 

Since Yit = Zit + dit, where dit = Yit - Zit I".J Ga(Ai.2, ~) and because Zit and dit are 

independent, by using (3.5), one may then write the conditional distribution of Yit 

given Yi,t-1 as 

f(Yit I Yi,t-d = ( ) 

.\;.1-1 ( ) Ai.2-1 
~ 1-~ 
Yi,t-1 Yi,t-1 

1 

Yi,t-1 

(3.6) 

Note that in (3.6), 0 < zit < min(Yit, Yi,t-1) as dit > zit =::} Yit > 0 and ~ < 1 =::} 
Yi,t-1 

Yi,t-1 > Zit· 

After some algebra, this equation (3.6) yields 
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which by using Pi 

distribution 

).i.l 
---- = p for all i = 1, ... , K produces the conditional 
>.i.l + >.i .2 

min(yi,t-l,Yit) 

f(Yit I Yi,t-1) I 
0 

(!=.e.).A· -1} [(Yi,t-1- zit)(Yit- zit)] P '·
1 dzit 

for all t = 2, ... , T, as given in (3.4) mentioned in the lemma 

3.1.2 Estimation 

Let()= (/3', p, ~'· The ML estimation of() requires to solve the likelihood estimating 

equation 
81~~ = 0 where the likelihood function £ is constructed in the previous 

8log£ 
subsection. Note that the likelihood estimating equation 

80 
= 0 may be solved 

iteratively by using the Newton-Raphson equation 

(3.7) 

where iJML(r), for example, is the value of() obtained at the rth iteration. In order 

to compute (3.7), we need to calculate the first and second derivatives of the 'log£' 

with respect to '()'. By (3.2), the first derivative of the log-likelihood equation w.r.t 

e may be written as 

Note that () is a vector of three independent parameters, namely, /3, p and e. The 

computations of :() log£, therefore, requires the calculations for :/3 log£, :p log£ 

8 
and 

8
e log£. The formulas for these derivatives are provided as follows. The actual 
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deduction of these results is however lengthy and complicated, which is deferred to 

the Appendix 1. 

First order derivatives: 

a aK KT 1 a 
a{3log .C = a{3 I)og f(yil) + L L f( . I . _ ) a{3f(Yit I Yi,t-1) 

i=1 i=1 t=2 Yzt Yz,t 1 

1 K [ [r(Ai.t/ p)]'] K T 1 
=--I:Ai.lxi. log~Yil- +2:2:---

p i=1 r(Ai.d p) i=1 t=2 f(Yit I Yi,t-1) 

[ 

min(Yit,Yi,t-1) min(yit,Yi,t-1) l 
api f f X a{3 Qi Ti dzit +Pi I1i dzit , 

0 0 

where 

r(Ai.d p) 
Pi= 1 

r(Ai.I) [r(7Ai.1)J2 C(7l"i.1 
~ 

q. _ zAi.1-1 y P e-~(Yit-Zit) 
z - it i,t-1 

Ti = [(Yi,t-1- Zit)(Yit- zit)(T·)Ai.l-1 

aqi ari 
fti = a{3 Ti + Qi a{3 · 

Next, 

a aK KT 1 a 
alog.C =a- I::logf(yil) + LL !( . I . ) a f(Yit I Yi,t-1) 

p P i=1 i=1 t=2 Yzt Yz,t-1 P 

K T 
1 

+ ~ ~ f(Yit I Yi,t-1) [ 

min(yit,Yi,t-1) min(yit,Yi,t-1) l 
api f f ap Qi Ti dzit +Pi hi dzit ' 

0 0 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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where Pi, Qi and ri are as in (3.10), (3.11) and (3.12), and 

(3.15) 

Similarly, 

8 8
K KT 

1 8 
8C log .c = 8C L log f(Yi1) + L L !( . I . - ) 8Cf(Yit I Yi,t-d 

"' '> i=1 i=1 t=2 Y~t Yt,t 1 ., 

K 
1 

K K T 
1 

= - L Yi1 + - L Ai.1 + L L . . 
i=1 ~ P i=1 i=1 t=2 f(Yzt I Yz,t-1) 

[ 

min(y;t,Yi,t-I) min(Yit.Yi,t-I) l 
x :i j Qi ri dzit +Pi j I3i dzit , 

0 0 

(3.16) 

where Pi, Qi and ri are as in (3.10), (3.11) and (3.12), and 

(3.17) 

Th /! 1 /! h d . . h 8pi 8qi 8ri 8pi 8qi 8ri 8pi 8qi d 
e 10rmu as 10r t e envatiVeS SUC as 

813
, 

813
, 

813
, 

8
p' 8p' 8p' 8e ' 8e an 

~ required to compute (3.9), (3.14) and (3.16) are given in the appendix 1. 

Second order derivatives: 

To compute the second order derivatives, we note that 

8 2 log £ 8 2 log £ 8 2 log £ 
a(3 Df3' 8!3 ap 8!3 a~ 

82 
8() 8()' log .C = (3.18) 
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We now provide the formulas for the components of the second order derivative 

matrix in (3.18). The formula for the first leading component is given by 

a2 log £ a2 K K T [ 1 a 
a(3 a(3' = a(3a(3' I)og f(yil) + L L - ]2( . I . _ ) a(3,f(Yit I Yi,t-1) 

i=1 i= 1 t=2 Y~t Y~,t 1 

KT[ 1 a a 1 
+ L L - ]2( . I . ) 8(3,f(Yit I Yi,t-1) 8(3f(Yit I Yi,t-d + J( . I . ) 

i=1 t=2 Y~t Y~,t-1 Y~t Y~,t-1 

(3.19) 

where, the formula for the Digamma function w( ·) and its derivative w'(·) may be 

found, for example, in Abramowitz and Stegun [1964, §6.3.1, p. 258; §6.4.12, p. 265] 

which are given as 

r(z)' 
w(z) = r(z)' 

1 1 1 1 1 1 1 
W (z) rv-+-+---+---+ ....... 

z 2z2 6z3 30z5 42z7 30z9 

The formulas for the remaining diagonal elements are given by 

1 8
2 

] + f( . I . ) ~ 2f(Yit I Yi,t-1) 
Yzt Yz,t-1 UP 
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1[ K 1 l KT[ 1 
- 2 - L '11'(/\.d p) ( -2;\i.l)Ai.l + L L - j2( . I . ) 

P i=1 P i=1 t=2 Yzt Yz,t-1 

min(yit,Yi,t-I) } { 
2
min(Yit,Yi,t-Il min(y;t,Yi,t-1) ( I ) 2 

1 a Pi I api I + Pi I2i dzit + f( . I . ) -a 2 qi ri dzit + 2 -a I2i dzit 
Yzt Yz,t-1 P P 

0 0 0 

(3.20) 

and 

1 a
2 

J + J( . I . ) ac2f(Yit I Yi,t-d Yzt Yz,t-1 <, 
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respectively. 

The formulas for the elements of the first off-diagonal of the matrix ( 3.18) are 

given by 

a2 log .C a2 K K T [ 1 a 
a(3 a = fJ(3a L log f(Yid + L L - J2( . 

1 
. _ ) a f(Yit I Yi,t-1) 

P P i=1 i= 1 t=2 Y~t Y~,t 1 P 

KT[ 1 a a 1 
+ :L :L - J2( . 

1 

. ) a f(Yit I Yi,t-d a(3f(Yit I Yi,t-d + !( . 
1 

. ) 

i=1 t=2 Y~t Y~,t-1 P Y~t Y~,t-1 

and 

a 1 a2 
] 

X 7) f(Yit I Yi,t-1) + !( . I . ) !;} !;}(:f(Yit I Yi,t-1) 
up Y~t Y~,t-1 up U<, 

1 KT KT[ 1 a 
=- C2 L L Ai.l + L L - j2( . I . ) acf(Yit I Yi,t-1) 

.,p i=1 t=2 i=1 t=2 Y~t Y~,t-1 "' 
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(3.23) 

The elements of the second off-diagonal of the matrix (3.18) has the formula given 

by 

a2 log £ a2 K K T [ 1 a 
a(3 a~ = a(3ac L log f(Yi1) + L L - J2( . I . - ) acf(Yit I Yi,t-1) 

"' i=1 i=1 t=2 Ytt Yt,t 1 "' 

1K KT[ 1 a a 
=- c L Ai.1Xi. + L L -J2( . I . - ) acf(Yit I Yi,t-1) a(3f(Yit I Yi,t-1) 

':.P i=1 i=1 t=2 Ytt Yt,t 1 "' 

min(y;t,Yi,t-1) }] 

J a11i 
+Pi a~ dzit . 

0 

(3.24) 

It is clear from the above formulas (3.8)- (3.24) that the computation for the first 

and second order derivatives necessary to construct the likelihood estimating equation 

(3.8) is extremely cumbersome. This makes the maximum likelihood (ML) approach 

for the present longitudinal gamma AR(1) model ( 2. 7) practically less appealing. As 

a remedy, in the next section, we use a generalized quasilikelihood (GQL) approach 

suggested by Sutradhar (2003). Note that unlike the ML approach, this GQL ap­

proach requires only the mean, variance and covariance of the longitudinal responses, 
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making the approach simpler and practically useful. 

3.2 Quasi-Likelihood Estimation 

Recall that the mean fLit = E(Yit), variance aitt = V(Yit), and the covariance 

aiut = E(Yiu - f.Liu) (Yit - J.Lit), for the repeated responses Yil, ... , Yit, . .. , YiT un­

der the present gamma AR(1) model (2.7) were computed in section (2.2.1). Let 

Yi = (Yil, ... , Yit, ... , YiT )' be the T x 1 response vector for the ith individual, and 

f.Li = (Mil, ... , fLit, ... , fLiT)' and Ei = ( aiut) be the mean and covariance matrix of Yi, 

respectively. Here, J.Li and Ei are the functions of /3, p and e parameters. In the tradi­

tional longitudinal set up, there exists a generalized quasilikelihood (GQL) approach 

[Sutradhar (2003)] to estimate the regression effects f3 consistently and efficiently, 

whereas other nuisance parameters are estimated consistently by using the method 

of moments. In this section, we follow this GQL approach and for known p and e, we 

write the GQL estimating equation for f3 as 

(3.25) 

which may be solved iteratively by Newton-Raphson method using the iterative equa­

tion given by 

Snew =Sold+ (3.26) 

Note that to construct the GQL estimating equation ( 3.25), it was assumed that 

p and e are known. But these parameters are rarely known in practice. As mentioned 

above, one may however obtain consistent estimates for these nuisance parameters by 

using the method of moments. The formulas for these estimates are given as in the 

following lemma. 
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Lemma 3.2. Under the given stationary AR(l) model (2.7), the moment estimators 

for p and ~ are given by 

t I: (Yit :.ftit) (Yi,t+;.- fti,t+l) I K(T- 1) 
A i=1 t=1 .;a;;;_ J z,t+1,t+1 
p=--------~~~--------------------

K T v A 2 L L ( 1 it :.Mit) I KT 
i=1 t=1 .;a;;;_ 

(3.27) 

K T 

LLYit!KT 
~ = i=1 t=1 

K T 
(3.28) 

L L(Yit- ftit) 2 I KT 
i=1 t=1 

Proof. For Pi = p, it follows from lemma (2.2) that the formula for lag 1 auto­

covariance (2.15) is given by 

and 

leading to 

E (Yit - /1it) (Yi,t+ 1 - /1i,t+ 1) p= 
E(Yit - l1it) 2 

(3.29) 

Note that under the present stationary model, as Pit and O"itt are time independent, 

(3.29) can be re-expressed as 

p = E ( Yit - Pit) ( Yi,t+1 - /1i,t+1) 

...;a;ti -Jai,t+1,t+1 
(3.30) 

Also, it is obvious that E ( Y:foftt) 2 

= 1. Consequently, we can use the method of 

moments and write the moment equation for p as in the lemma. 



Next, in developing a moment equation for ~' we observe that 

and 

implying that 

K T 

LL/Jit 
~ = i=l t=l 

K T 

:L:Laitt 
i=l t=l 
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It then follows that we may estimate this ~ parameter by using the method of moments 

as in (3.28). Once the p and ~ parameters are estimated using lemma (3.2), we 

use these estimates in (3.26) to obtain an improved estimate for (3. This improved 

estimate of (3 is then used in lemma (3.2) to obtain improved estimates of p and ~. 

This constitutes a cycle of iterations and it continues until convergence. 

In the next section, we examine the performance of the GQL estimation approach 

in estimating (3, p, and ~ through a simulation study. 

3.3 A Simulation Study 

In this simulation study, we choose K = 100, T = 4, p = 2, i.e., (3 = ((31 , (32 )', and 

the design covariates as 
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0 i=1, ... ,25 

0 i = 26, ... '50 
Xitl = 

1 i=51, ... ,75 

1 i = 76, ... ' 100 

and 

-1 i=1, ... ,25 

0 i = 26, ... '50 
Xit2 = 

0 i =51, ... ' 75 

1 i = 76, ... ' 100' 

for all t = 1, ... , T. As far as the value of (3 is concerned, we choose (3 = (1.0, 1.0)'. 

Furthermore, to examine the effect of small as well as large values of p and~ on (3, we 

choose p = 0.2, 0.4, 0.5, 0.6, 0.8, 0.9 and ~ = 0.5, 1.0, 1.5. For a selected set of values 

of p and ~' such as p = 0.2 and ~ = 0.5, we now generate the first response Yil from 

Ga(Ai.l + Ai.2 , ~), where ).i.l is computed as ).i.l = exp( -x~.f3) with Xi. = (xitl, Xit2)' 

and >.i.2 = C ~ P)>.i.l. To generate gamma variable we used the IMSL subroutine 

RNGAM. Further, we generate ai2 from Be(>.i.l, Ai.2) and di2 from Ga(Ai.2, ~),where 

beta values were generated using the IMSL subroutine RNBET. We then use (2.7) to 

generate Yi2 . This pattern of data generation continues until we generate YiT (T = 4). 

To compute the estimating equation (3.26), we use the notation 

(3.31) 



26 

and then use these values of Xi and Yi = (yi1, . .. , YiT) generated earlier. Note that in 

terms of xi given in (3.31), Di = diag(P,i1, ... '!LiT), Ai = diag(CJm, ... 'O"iTT ), where 
e-x;,a e-x;.f3 ( ) ( ) 

!Lit = ~ and O"itt = p e and Ci = Ciut = pit-ui , the estimating equation 

(3.26) may be re-expressed as 

~new =~old+ [t Xi Di ~i 1 D~ xi]-
1 [t XI Di ~i 1 (Yi - tli)l ' 

z=l old z=1 old 

(3.32) 

1 1 

with ~i =At Ci At. 
The estimation of f3 by (3.32) requires p and~ to be known. As pis a correlation 

parameter and ~ is a scale parameter, we have chosen initial values of p = p0 = 0.5 

and ~ = ~0 = 1.0 all throughout the simulation study. Now by using these initial 

values of p and ~ and chosen initial values of f3 = /30 = (/310 , /320 )' = (0.0, 0.0)' in 

(3.32), we obtain an estimate of the f3 vector. This estimate of f3 vector is then used 

in the Lemma (3.2) to obtain an estimate for p as well as an estimate of ~· Next, 

these estimates of p and ~ are used in (3.32) to obtain an improved estimate of f3 
vector. This constitutes a cycle of iterations and it continues until convergence. The 

converged values are treated as the final estimates for /3, p and ~. Let ~' p and € 
denote the final estimates. We repeat this operation for all three parameters 5000 

times. The average of 5000 values of~= (~1 , ~2 )', p and € are reported in Tables 3.1, 

3.2 and 3.3, for the cases ~ = 0.5, 1.0 and 1.5, respectively. The simulated standard 

errors of the estimates are also reported in these tables. 

It is clear from the tables that the estimating technique performs quite well in 

estimating all three parameters except when both p and ~ are small. For example, 

when we conducted the 5000 simulations for the case with ~ = 0.5 and p = 0.2, 0.4 

and 0.5, we did not get any estimates for any of our parameters. However, as the 

value of pis increased top= 0.6, simulated estimates were obtained as shown in Table 

3.1. In these converged cases, the SM are found to be very close to the parameter 
A A A 

values. For example, when p = 0.6 the values of /31 , /32 , p and~ were found to be 0.98, 
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Table 3.1: Simulated means (SM) and Simulated standard errors (SSE) of the GQL 
estimates for regression parameters /31, /32 ; and the moment estimates of the nuisance 
parameters p and~' for~ = 0.5 and p = 0.2, 0.4, 0.5, 0.6, 0.8, 0.9 for the longitudinal 
gamma AR(1) set up with K = 100, T = 4, /31 = /32 = 1.0, based on 5000 simulations 

I ~ p Statistic I ~1 
0.5 0.2 SM - - - -

SSE - - - -

0.4 SM - - - -

SSE - - - -

0.5 SM - - - -

SSE - - - -

0.6 SM 0.9800 1.0080 0.6026 0.5161 
SSE 0.2880 0.1683 0.0827 0.0813 

0.8 SM 0.9779 1.0207 0.7955 0.5296 
SSE 0.3199 0.1817 0.0697 0.1024 

0.9 SM 0.9731 1.0372 0.8951 0.5391 
SSE 0.3500 0.2033 0.0528 0.1144 

Table 3.2: Simulated means (SM) and Simulated standard errors (SSE) of the GQL 
estimates for regression parameters /31, f32;and the moment estimates of the nuisance 
parameters p and~' for~ = 1.0 and p = 0.2, 0.4, 0.5, 0.6, 0.8, 0.9 for the longitudinal 
gamma AR(1) set up with K = 100, T = 4, /31 = /32 = 1.0, based on 5000 simulations 

I ~ p Statistic I 
1.0 0.2 SM 0.6672 1.2771 0.3510 0.8493 

SSE 0.5717 0.4307 0.1638 0.1533 
0.4 SM 0.9909 1.0051 0.4116 1.0065 

SSE 0.2890 0.1957 0.0821 0.1311 
0.5 SM 0.9855 1.0054 0.5061 1.0198 

SSE 0.2763 0.1743 0.0831 0.1440 
0.6 SM 0.9800 1.0080 0.6026 1.0321 

SSE 0.2880 0.1683 0.0827 0.1627 
0.8 SM 0.9779 1.0207 0.7955 1.0592 

SSE 0.3199 0.1817 0.0697 0.2049 
0.9 SM 0.9733 1.0370 0.8951 1.0781 

SSE 0.3512 0.2041 0.0527 0.2289 
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Table 3.3: Simulated means (SM) and Simulated standard errors (SSE) of the GQL 
estimates for regression parameters (31, (32 ;and the moment estimates of the nuisance 
parameters p and~' for~ = 1.5 and p = 0.2, 0.4, 0.5, 0.6, 0.8, 0.9 for the longitudinal 
gamma AR(1) set up with K = 100, T = 4, (31 = (32 = 1.0, based on 5000 simulations 

p Statistic I 
1.5 0.2 SM 0.7486 1.2153 0.3533 1.2615 

SSE 0.6275 0.4691 0.1636 0.2592 
0.4 SM 0.9913 1.0048 0.4117 1.5096 

SSE 0.2892 0.1957 0.0829 0.1966 
0.5 SM 0.9856 1.0054 0.5062 1.5297 

SSE 0.2763 0.1744 0.0830 0.2159 
0.6 SM 0.9800 1.0080 0.6026 1.5482 

SSE 0.2880 0.1683 0.0827 0.2440 
0.8 SM 0.9782 1.0205 0.7955 1.5887 

SSE 0.3204 0.1822 0.0696 0.3075 
0.9 SM 0.9744 1.0363 0.8941 1.6167 

SSE 0.3552 0.2072 0.0541 0.3443 

1.00, 0.60 and 0.52 respectively, whereas the corresponding true parameter values are 

1.0, 1.0, 0.6 and 0.5. The SSE of these estimates are however found to be large in 

general for ~1 and ~2 but they are reasonably small for p and ~· This indicates that 

all estimates are unbiased leading them to be consistent estimates but the efficiencies 

of ~1 and !-J2 perhaps may be improved by using other estimation approach such as 

the ML approach, which is however beyond the scope of the present thesis. When 

~ increases, the estimates of all three parameters work quite well, when p is not too 

small. This behavior of the estimates is found to be the same in all other cases for 

larger ~ = 1.0 and 1.5 and for any values of p = 0.2, 0.4, 0.5, 0.6, 0.8, 0.9. 

For example, when ~ = 1.5 and p = 0.2, the SM of ~1 , ~2 , p and ~are 0.7486, 

1.2153, 0.3533 and 1.2615 respectively, whereas for~= 1.5 and p = 0.4, the SM of ~1 , 
A A 

(32, p and ~ are 0.9913, 1.0048, 0.4117 and 1.5096, respectively. Thus, it is clear that 

except for the case with, p = 0.2, the proposed GQL approach appears to perform 

well irrespective of the values of ~· Note that the estimation difficulty encountered 
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for small p as well as small ~ is not surprising. This is because, in this case, both the 
e-xi.fJ e-xi.f3 

mean, Jl-it = ~ and the variance, aitt = ---;;(2 become quite large implying that 

the data may be possibly erratic. 

In the simulation study, the GQL estimation approach was applied to the longi­

tudinal stationary gamma data and this approach was found to perform quite well in 

estimating the parameters of the stationary model. In practice, there may however 

be some situations where the clustered covariates may be time dependent leading to 

non-stationary models for such longitudinal gamma data. One may, therefore, re­

quire to develop a non-stationary gamma model to meet this challenge. In the next 

chapter, we make an attempt to generalize the stationary models developed in chap­

ters 2 and 3 to the non-stationary case, which however appears to be complicated. 

The difficulties in constructing a complete AR(l) type gamma models as well the 

difficulties in estimation of the parameters are also highlighted. 



Chapter 4 

Non-stationary AR(l) Type 

Longitudinal Gamma Models 

Recall that the model (2.7) is given by 

( 4.1) 

but, unlike the assumptions about the distributions of nit, Yi,t- 1 and dit given in 

section (2.2), we now have to make new assumptions mainly by accommodating the 

non-stationary nature of the covariates. For the purpose, we first assume that 

Yi,t-1 ""Gamma(>.i,t-1,1 + Ai,t-1,2, ~) (4.2) 

which is different than that of the distribution of Yi,t- 1 in (2.7). The first parameter, 

namely, >.i,t-1,1 +>.i,t-1,2 of the gamma distribution reflects the time dependence. Note 

that in view of lemma (2.2), it is not at all clear what parameters one should use for 

the beta distribution of nit and gamma distribution of dit in order to obtain a new 

gamma response, namely Yit· We however make an attempt to resolve this issue by 

choosing the above parameters such that the first two moments of Yit are the same as 

the corresponding moments of a gamma distribution. 

30 
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To achieve the above moment condition satisfied, we consider arbitrary parameters 

77 and E for the distribution of O'.it such that O'.it "' Beta(77i,t,t-b Ei,t,t-d and further 

assume that dit "'Gamma(77i,t,t-1, ~). For convenience, we suppress the subscripts of 

the parameters 77i,t,t-ll Ei,t,t-1 and 77'i,t,t-1 and use 77, t and 77* respectively. 

Note that in terms of these parameters, the expectation and variance of Yit may 

be derived as 

E(yit) = E(ait Yi,t-1) + E(dit) 

..\itl + Ait2 _77_ Ai,t-1,1 + Ai,t-1,2 + 77* 

~ 77+E ~ ~ 
77* - E '1/Jt 

77- -=-----
- '1/Jt- '1/Jt-1' 

where '1/Jt = ..\itl + Ait2, and 

Var(Yit) =Var(ait Yi,t-1) + V(dit) 

=Var[E(aitYi,t-1 I O'.it)] + E[Var(aitYit I O'.it)] 

x ( Ai,t-1,1..\i,t-1,2) 2 + (-77-) 2 Ai,t-1,1 + Ai,t-1,2 + 77* 
~ 77+E ~2 e 

(4.3) 

77E 77E 2 ( 77 )2 * 
(77 + t)2(77 + E + 1) '1/Jt-1 + (77 + E)2(77 + E + 1) '1/Jt-1 + 77 + E '1/Jt-1 + 77 

(4.4) 

Using this rJ = 77*- ~ '1/Jt in (4.4) and simplifying this forE= !(77*), after long and 
'1/Jt- t-1 

cumbersome algebraic calculations, one may obtain the first two moments, namely; 

mean, E(Yit) and variance, V(Yit) as that of the gamma density. Furthermore, one 

may make an attempt to establish the covariance cov(yit, Yi,t+l)· After the compu­

tations of the first two moments of the non-stationary data Yit, one may then write 

the GQL estimating equation for f3 and may obtain moment estimates of p and ~, 
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which is complicated in our present longitudinal AR(l) non-stationary set up and is 

beyond the scope of the present thesis. 



Chapter 5 

Conclusion 

We have considered a gamma AR(l) model in the longitudinal set up which was not 

discussed so far in the literature. For the stationary case, that is, when covariates 

are time independent, we have discussed the basic properties such as mean, vari­

ance and covariance structures of this gamma AR(l) model. Note that unlike many 

traditional longitudinal models, in the present set up, all of these basic moments 

contains regression, scale and a longitudinal correlation parameters. It was clearly 

shown in the thesis that the familiar likelihood approach is quite cumbersome for the 

inferences about the parameters of the present model. As an alternative estimation 

approach, we have used a GQL approach for the estimation of the regression parame­

ters whereas the scale and the longitudinal correlation parameters were estimated by 

using the well-known method of moments. We have conducted a simulation study 

for a wide range of values of the parameters and found that the GQL approach in 

general performs quite well in estimating the parameters of the model. 

Furthermore, we have made an attempt to generalize the stationary gamma model 

to the non-stationary case. We must however mention that much more research is 

needed with regard to the development of this type of non-stationary models as well 

as their inferences. We believe that this theoretical research should be useful to the 
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practitioners working especially in the biomedical and engineering fields. 



Appendix A 

Derivation of the First Order Derivatives: 

First order derivatives w.r.t (3: 

8pi 8qi 8r i 
To solve (3.9), we have to calculate {)(3, {)(3, {)(3 and 11i where Pi, Qi and ri are 

given by (3.10)- (3.12) and the formula for 11i in terms of Qi and ri is given by (3.13) 

For convenience, we re-write Pi as follows 

=Pil Pi2 Pi3 Pi4, 

with 

- - -1 - 1- p - (l=.e.)>.i.l 
[ ] 

-2 

Pil- f(>.i.lj p),Pi2- [f(>.i.l)] ),Pi3- r(-p-)..i.l) ,Pi4- ~ P (A.1) 

It then follows that 

4 4 
{)pi "'""' {)Piu II 
8(3 = ~ 8(3 Pij, 

u=l j=l 

(A.2) 

j#u 

where 

(A.3) 
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8;~2 = [r ( ,\i.l) ]' (- ,\i.l xi.) (A.4) 

8pi3 [ ( 1 - p ) ] -3 
[ ( 1 - p ) ] I ( 1 - p) 

813 
= -2 r -P--\i.1 r -P--\i.1 -P- ( --\i.1 xi.) (A.5) 

8pi4_c(l=£)Ai.ll c(1-p)(, ) 
8(3 - '> P og '> -p- -/\i.1 Xi. (A.6) 

Similarly, we write Qi as 

= Qi1 Qi2 Qi3' 

with 

q. _ y(p-A;.J)/p q· _ zAi.l-1 q· _ e-€(Yit-Zit) 
z1 - i,t-1 ' z2 - it ' z3 - (A.7) 

It then follows that 

(A.8) 

where 

8Qi1 _ (P-Ai.l)/p l (1, ) 
813 

- Yi,t-1 og Yi,t-l p/\i.l xi. (A.9) 

8Qi2 _ Ai.l -1 l ( , ) 
813 

- zit og Zit -/\i.l Xi. (A.10) 

finally leading to the computation of ~~ as 
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(A.ll) 

By (3.12), recall that ri = [(Yi,t-1- zit)(Yit- zit)]<7)>.i.I-l 

It follows clearly 

ari [( (!.=E.)>.; 1 -1 
a{3 = Yi,t-1- Zit)(Yit- Zit)] P · log[(Yi,t-1 - Zit)(Yit- zit)] 

(
1- P) x -p- ( -/\.1 xi.) (A.12) 

First order derivatives w .r. t p: 

api aqi ari 
To solve (3.14), we have to calculate ap, ap, ap and hi where Pi, Qi and n are 

given by (3.10)- (3.12) and the formula for / 2i in terms of Qi and ri is given by (3.15). 

For simplification convenience, we re-express Pi as follows 

with 

* - * - - p * - (!.=E.)>.i.! 
[ 

1 ] -
2 

Pil- r(>..i.l/p),Pi2- r(-P->..i.l) ,pi3- ~ p (A.l3) 

It then follows that 

a 3 a * 3 

_12 = [r(>..· )J-1 """'~II ~-a z.l L-t a Pz1 
p u=1 P j=l 

(A.14) 

j#u 
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where 

(A.15) 

0pi2 [ ( 1 - p ) ] -
3 

[ ( 1 - p ) ] I ( 1 ) op = -2 r -P-.xi.1 r -P-.xi.1 - P2 .xi.l (A.16) 

0Pi3 _ c( l=.e. l>•i.l 1 c ( 1 ' ) op -., P og., - p2 "'i.1 (A.17) 

~ 
B (3 11) (3 12) P A; 1-1 -e(y·t-Z·t) d [( )( Y · . - · . . , Qi = Yi,t- 1 zit· e ' ' an ri = Yi,t-1 - Zit Yit -

zit)](l:f)>.i.!-1, respectively. From the direct computation of their respective deriva­

tives with respect to p, it then clearly follows that 

(A.18) 

OTi (l=.e.)>.·l-1 ( 1 ) 
op = [(Yi,t-1- Zit)(Yit- Zit)] P '· log[(Yi,t-1 - Zit)(Yit- Zit)] - p2 ).i.l 

(A.19) 

First order derivatives w.r.t ~: 

op· oq· or· 
To solve (3.16), we have to calculate ai' ai' ai and J3i where Pi, Qi and Ti are 

given by (3.10)- (3.12) and the formula for hi in terms of Qi and ri is given by (3.17). 

By (3.10) - (3.12), it follows quite easily that 

(A.20) 

(A.21) 

(A.22) 
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Derivation of the Second Order Derivatives: 

Second order derivatives w .r. t (3: 

To solve (3.19), we have to calculate a~
2

;fi, which may be obtained by using ~~ 
given in (A.2), and calculate ~;i which may be obtained by using hi given in terms 

of qi and ri in (3.13). 

From (A.2), it then follows that 

4 [ 2 { 4 } { 4 4 }j a Piu aPiu aPiv 
= L a(3a(3' II Pij + a(3 L a(3' .II Pij 

u=l J=l vi-u rfu,v 
rlu 

(A.23) 

where :;~(J,, for u = 1, ... , 4 is calculated using the formulae given in (A.3)- (A.6), 

respectively. 

From (A.3) - (A.6), 

a
2
Pil = ..!!_ [[r( .\i.l )J' ~ (->.. x. )] 

a(3a(3' a(3 p p d z. 

1 a [ [ ( >.il )J' J = [/i· a(3 - r --); >.i.l 

(A.24) 

:;~~' = ~([r(>.i.I)]'(->.i.lxd) 
= >.i.l xi. ([r(>.i.I)]"( ->.i.l) + [r(>.i.l)J'), (A.25) 
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rJ2pi3 a [ [ (1-p )]-3
[ (1-p )]'(1-p) ] a(3a(3' = a(3 -2 r -p->.i.l r -p->.i.l -p- ( ->.i.l xi.) 

and 

=2 C ~ p) x, ~ [[rC ~ P)'·f [rC ~ P)'•'J' '"] 

(1-p) { [ (1-p )]-2

[ (1-p )]'(1-p) =2 -p- Xi. -3 f -p-).i.l f -p-).i.l -p- (-Ai.l xi.) 

X [rC ~ p >.i.l) r >.i.l + [rC ~ p ).i.l)] -
3 

[rC ~ p >.i.l) r 
X c ~ p) (-A;, x;)A,, + [rC ~ PA,,) r [rC ~ p Au) r (-A;, x,)} 

=- 2 c ~ p) ;., x1 [rC ~ PA,,) r { -3 [rC ~PAil) l ([rC ~ PA,,)]') 
2 

X ( 1 ~p) + [rC~p>.i.l)J" c~P)>.i.t+ [rC~p>.i.l)J'}, (A.26) 

a
2
Pi4 = _!!__ [c(~),\u l c (1- P) (->.· . )] 

a(3a(3' a(3 <, og <, p z.l Xz. 

=log f. C ~ P)>.i.t x;.e<~)Ai.l [ C ~ P).xi.1logf, + 1] (A.27) 

From (3.13), it then follows that 

a11i a [aqi ari] 
a(3 = a(3 a(3 Ti + Qi a(3 

(A.28) 

where 



and 
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= !_ [e-e(Y;t-z;t) y(p->.u)/p z>.u-1 (~A· x·) log (Yzz·,~~-t 1 )] 8/3 z,t-1 zt p z.1 z. • 

= e -<(Yu-~.) G "'·) 2 

A; 1 Yi;.=;" )/' z~" - 1 log ( y~i,' ) [log ( y~f.1 
) - P] , 

(A.29) 

x c ~ P) ( -.Xi.l xi.)] 

=C ~ P)xi.log[(Yi,t-1- Zit)(Yit- Zit)] 

a [ (l=£)>.;1-1 ] X B/3 [(Yi,t-1 - zit)(Yit- zit)] P • ( -\.1) 

( 
1- P) 2 (l=£)>.· -1 

= -p- Ai.lxi. [(Yi,t-1- Zit)(Yit- zit)] P '·
1 log[(Yi,t-1 - zit)(Yit- zit)] 

X [1- c ~ P) log[(Yi,t-1- Zit)(Yit- Zit)]] (A.30) 

Second order derivatives w .r. t p: 

To solve (3.20), we have to calculate ~~i which may be obtained by using Z; 
given in (A.14), and calculate a;;i which may be obtained by using I2i given in terms 
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of Qi and ri in (3.15). 

From (A.14), it then follows that 

()2 * 
where Ptu is given by (A.13) and a:;u, u = 1, 2, 3 is calculated using the formulae 

given in (A.15) - (A.17), respectively. 

From (A.15) - (A.l7), 

(A.32) 

a
2

pi2 a { [ ( 1 - P ) J -
3 

[ ( 1 _ P ) J I ( 
1 ) } ap2 = ap -2 r -P-.Ai.l r -P-.Ai.l - p2 .Ai.l 

a { [ ( 1 _ P ) J -
3 

[ ( 
1 _ P ) ] I 1 } =2..\i.l ap r -P-.Ai.l r -P-.Ai.l P2 

{ [ 
1 - p ] -

2 
( [ 1 - p ] I) 2 

( 1 ) 1 =2..\i.t -3 r(-P-..\i.1) r(-p-..\i.l) - P2..\i.t P2 
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+ [rC ~ P;,,) r [rC ~PAil) r ( ~)} 
=-:A,, [rC ~ PA,,) r { -3A,, [rC ~ PA,,) l ( [rC ~ PA,,)]') 

2 

+-\.1 [rC ~ p Ai.l) r + 2p [rC ~ p Ai.l) ]'}' (A.33) 

and 

(A.34) 

From (3.15), it then follows that 

a;;i = :P [~~ri + qi ~~ J 

(A.35) 

where 

= - Y· P logy· t-1 (- A. 1) zAi.!-1 e-t;(Y;t-z;t) a [ ~ 1 ] 
8p t,t-1 '• p2 '· tt 

=_!_A· z~i.!-1 e-f;(y;t-Zit) y~p-A;.l)/p logy· [~A· logy· - 2] 
3 t.1 tt z t-1 z,t-1 t.1 z,t-1 ' p ' p 



and 

8
2
ri _ 8 [8ri] 

8p2 - 8p 8p 
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= :p [[(Yi,t-1- Zit)(Yit- zit)](~)-Xi.l- 1 log[(Yi,t-1- zit)(Yit- zit)] (- p~ Ai.1)] 

8 [ (.!=E.),\· -1 1] =- Ai.1 log[(Yi,t-1 - Zit)(Yit - Zit)]
8

P [(Yi,t-1 - zit)(Yit- Zit)] P d p2 

1 (.!=E.),\· -1 
=3 Ai.1 [(Yi,t-1 - Zit)(Yit- zit)] P '·

1 log[(Yi,t-1 - zit)(Yit- Zit)] 
p 

X G .Ai.llog[(Yi,t-1 - zit)(Yit- Zit)]+ 2] 

Second order derivatives w.r.t ~: 

To solve (3.21), we have to calculate ~~i which may be obtained by using ~ 
given in (A.20), and calculate 

8:t which may be obtained by using lai given in terms 

of Qi and ri in (3.17). 

From (A.20), it then follows that 

8
2
pi = i_ [ r(.Ai.I/P) (1- P).A· ~(~)-Xi.!-1] 

8~2 8~ r(.Ai.l) [r( 7.Ai.t)J2 p z.
1 

= r(.Ai.dP) (1-p).A· (1-p.A· -1)c(~).x;.t-2 (A.36) 
r(.A· ) [r(.!.::e_A. )]2 z.1 d <, d p d p p 

From (3.17) and (A.22), it then follows that 

ai3i a [aqi ari] 
a~ = a~ a~ ri + Qi a~ 

(A.37) 

where 
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= _ -y. P z~i.l-1 e-((Yit-Zit) (Y·t _ Z·t) f) [ ~ ] 
f)~ z,t-1 zt z z 

~ 
_ y P z.Ai.l-1 e-((Yit-zit) (y· _ z· )2 - i~-1 u d d 

Second order derivatives w .r. t f3 and p: 

To solve (3.22), we have to calculate :;~~ which may be obtained by using ~ 
given in (A .. 2), and calculate a;;i which may be obtained by using I 1i given in terms 

of Qi and Ti in (3.13). 

From (A.2), it then follows that 

8
2 
Pi 8 [[)pi ] 

8f38p = 8p 8/3 

= :p [t ~; ll p;;l 
J'fu 

= t [~~u {fiPij} + 
8%~u {t 8%iv .IT Pij}] 

u=1 p J~l vf-u p Jf-u,v 
JrU 

(A.38) 

where ~~;,for u = 1, ... , 4 is calculated using the formulae given in (A.3)- (A.6), 

respectively. 

From (A.3) - (A.6), 

8
2
Pi1 _ 8 [ 8pil] 

8f38p - 8p 8/3 

= :p [[r(';1 
)]' (- ~ Ai.l Xi.)] 



a [[ (>.i.l )]'1] = ->.i.l xi. ap r ---;; P 

a2Pi2 _ a [aPi2] 
a;3ap - ap a13 

= :P ( [r ( >.i.l) ]' (->.i.l xi.)) 
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=0, (A.40) 

= :p [-2 [ r c ~ P A; 1) r [ r c ~ P A; 1) r c ~ P) (-A; 1 x;) l 
a { [ ( 1 _ P ) J -

3 

[ ( 
1 

_ P ) J ' ( 1 
_ P) } =2 >.i.l xi. ap r -P->.i.l r -P->.i.l -P-

=2 \ 1 X; { -3 [ r c ~ p \ 1) r ( [ r c ~ p A; 1) r )' (-~) c ~ p) 

+ [ r c ~ p ).i.l)] -3 [ r c ~ p ).i.l) r (- :2 ) ( 1 ~ p) 

+ [rC ~PAn) r [rC ~PA") ]' (-~)} 

= - 2 > 1 x; [ r c ~ p A; 1) r { -3 [ r c ~ P) l ( [ r c ~ p A; 1) l ')' 
X (

1 ~ p) + [rC ~ p>.i.l) r c ~ P) + [rC ~ p>.i.l) ]'}' (A.41) 
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and 

f) [ (!.::e)>. (1- p)] = - Ai,l Xi. loge f)p e p i.l -p-

(A.42) 

From (3.13), it then follows that 

8I1i _ 8 [f)qi 8ri] 
f)p - f)p {)(3 ri + Qi {)(3 

(A.43) 

( ) 
82qi 82ri . 

In order to solve A.43 , we need to compute f)(3f)p and f)(3f)p which can be computed 

using (A.8)- (A.lO), and (A.l2), respectively. 

Let us show the computations as follows: 

8
2
qi f) [f)qi] 

8(38p = f)p 8(3 

-~ [ -~(Yit-Zit) { fJQil . + . fJQi2 }] 
- f)p e {)(3 Qz2 Qzl {)(3 

_ -~(Yit-Zit) [ fJ
2

Qil . + fJQil fJQi2 + fJQil fJQi2 + . fJ
2

Qi2] 
-e 8(38p Qz2 8(3 8p 8p 8(3 Qzl 8(38p ' 

(A.44) 

where 

(A.45) 

f)qil (p->.i.l)/p l (1 \ ) 
{)(3 =Yi,t-l og Yi,t-l P/\i.l xi. (A.46) 



and 

0Qi2 =0 
8p 

0Qi1 - (P-Ai.l)/p l ( 1 \ ) op -Yi,t-1 og Yi,t-1 p2 Ai.1 

0Qi2 _ >.i.l-1l ( , ) 
o(3 -Zit ogzit -Ai.1 Xi. 

f) [ (!=.e.)>.. -1 
= 8p [(Yi,t-1- zit)(Yit- Zit)] p z.l log[(Yi,t-1- zit)(Yit- Zit)] 

X ( 
1 ~ p) (-Ai.1 Xi.)] 

X {p + (1- p)Ai.1log[(Yi,t-1 - Zit)(Yit- Zit)]} 

Second order derivatives w.r.t p and~: 
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(A.47) 

(A.48) 

(A.49) 

(A. 50) 

(A.51) 

To solve (3.23), we have to calculate :;~~ which may be obtained by using ~~ 
given in (A.14), and calculate 

8Jt which may be obtained by using hi given in terms 

of Qi and ri in (3.15). 

From (A.14), it then follows that 
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where ~~e' for u = 1, ... , 3 is calculated using the formulae given in (A.15) -

(A.17), respectively. 

From (A.15)- (A.l7), 

and 

=0, 

=0, 

a2Pi3 _ a [ap;3 J 
apa~- a~ ap 

=; [~<7l>.i.1 log~ (- : 2 Ai.l)] 

(A.53) 

(A.54) 
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(A.55) 

From (3.15), it then follows that 

ahi - a [aqi ari] ae - ae ap ri + Qi ap 

a2qi aqi ari aqi ari a2ri 
= apaeri + ap ae + ae ap + Qi apa( (A. 56) 

a2q· a2r· 
In order to solve (A.56), we need to compute apae and apae which can be computed 

using (A.l8) and (A.19) respectively, as follows. 

1 ~ 
_ \ Ai.l-1 P l -e(Yit-Zit) ( ) 
-- - 2 /\i.1 zit Yi t-1 og Yi,t-1 e Yit- Zit , 

p ' 
(A.57) 

and 

a [ (.!=.e.))..· -1 ( 1 )] = ae [(Yi,t-1- Zit)(Yit- Zit)] p ,,! log[(Yi,t-1- Zit)(Yit- Zit)] - p2 Ai.1 

=0 (A. 58) 
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Second order derivatives w.r.t f3 and~: 

To solve (3.24), we have to calculate :;~e which may be obtained by using ~ 
given in (A.2), and calculate a;~i which may be obtained by using J1i given in terms 

of Qi and ri in (3.13). 

From (A.2), it then follows that 

a2Pi a [aPi] 
a13a~ =a~ a13 

= :~ [t a;~· ]} P•;] 
rf'u 

= t [~;~~ {rrPij} + a;~u {t a:t .IT Pij}] 
u=l J=l v,tu J#u,v 

JopU 

(A. 59) 

where ~~~'for u = 1, ... , 4 is calculated using the formulae given in (A.3)- (A.6), 

respectively. 

From (A.3) - (A.6), it can easily be shown that 

(A.60) 

and 
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1- p !.=.e..A· -1 [1- p ] = - -P--\.1 Xi.~ P '·
1 -p- .. \.1 log~+ 1 (A.61) 

From (3.13), it then follows that 

aili a [aqi ari] 
a~ = a~ a(3 ri + Qi a(3 

a2qi aqi ari aqi ari a2ri 
= a(3a~ ri + a(3 a~ + a~ a(3 + Qi a(3a( (A.62) 

( ) a2qi a2ri . 
In order to solve A.62 , we need to compute a(3a~ and a(3a~ wh1ch can be computed 

using (A.ll) and (A.12), respectively, as follows. 

=- ~ A·l x· y~p-.Au)/P z~i.l-1 log (Yi,t-1) e-€(Y;t-Zit) (Y·t- Z·t) 
t. t. t,t-1 tt p t t ' p zit 

(A.63) 

and 

a2ri a [ari] 
a(3a~ =a~ a(3 

= :~ [[(Yi,t-1- Zit)(Yit- zit)](¥).A;. 1
-

1 log[(Yi,t-1- zit)(Yit- zit)] 

X c ~ P) (-\.1 xi.)] 

=0. (A.64) 
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