
TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(Without Author' s Permission) 





I' 



An Anchor-based Model 

for Global Multiple Alignment of Whole GenQme Sequences 

St. John's 

by 

©YueMa 

A thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

Department of Computer Science 

Memorial University of Newfoundland 

March 2005 

Newfoundland 



Abstract 

, 
With the benefit of advanced biotechnology, large numbers of ,,;hole genome sequences 

have been compiled. Aligning whole genome sequences is a fundamentally different 

problem than aligning short sequences. Recently, intensive research activities have been 

devoted to this problem. We propose an anchor-based model for global multiple 

alignment of whole genome sequences. The model includes three main phases. Firstly, an 

enhanced suffix array method is employed to find anchors. Next, an exact chaining 

algorithm, which is based on the dynamic programming technique and the longest 

common subsequence idea, calculates an anchor-chain for the weighted anchors. Lastly, a 

progressive mUltiple alignment method is used to close the gaps between the anchors. The 

proposed chaining procedure is based on evolutionary theory and can align whole genome 

sequences not only for close homologs, but also distant species. Combined with the exact 

suffix array approach, this model can compute partially accurate solutions and generate a 

high-quality alignment result in terms of computation and biology. 



I' 

Acknowledgments 

I would like to give many thanks to my supervis<ir, Dr. Caoan Wapg, for his guidance and 

• 
financial support of my study. I appreciate his suggestion, patience and kindness. His 

encouragement inspired me during the whole research period. 

I would like to thank all the members of our computer science department. Thanks to Dr. 

lianbo Qian for many friendly conversations. Thanks also to Dr. Wolfgang Banzhaf, Ms. 

Elaine Boone and Dr. Todd Wareham for their continuing kindness and help. 

I would like to thank many of my colleagues and friends. Thanks to biologist GuangXu 

Liu and his colleagues from the Evolutionary Genetics Laboratory for many helpful 

consultations. Thanks to Ms. Sarah Morrissey from biology department for producti ve 

dialogues. Thanks to all my friends who shared many happy moments with me. 

Finall y, I would like to express my gratitude to my family. Their unconditional love 

accompanied me through the toughest periods of this program. 

iii 



Contents 

Abstract 

Acknowledgments 

Contents 

List of Figures 

1 Introduction 

1.1 

1.2 

1.3 

Biological Background .......... . ..... . 
1.1.1 DNA and Protein 
1.1.2 Gene and Genome. 
1.1.3 Evolutionary Theory .... 
Bioinfonnatics .. 
1.2.1 What is bioinformatics? ................... .. . .. . 
1.2.2 Why bioinformatics? 
1.2.3 What is the goal of bioinformatics? 
Basic problem: Sequence Alignment .................. . 
1.3.1 Standard Sequence Alignment 
1.3.2 Genome Sequence Alignment 

1.4 Our Contributions 

2 Related Theories and Techniques 

ii 

iii 

iv 

vii 

1 

...... 1 
...... 1 

.. .......... 2 
.. .... 3 
.. .... .4 

.. ..... .4 
.. 4 

......... 5 

....... 5 

..... .5 
...... 6 

... 8 

10 

2.1 Complexity Issue: P, NP and NP-Completeness... .. ...... 10 
2.2 Dynamic Programming ........... Il 
2.3 Longest Common Subsequence. ............................ .. ......... 12 

2.3.1 Solving the Longest Common Subsequence Problem for Two 
Sequences...... . ......................... .. .......... 13 

2.3.2 Solving the Longest Common Subsequence Problem for Multiple 
Sequences. .. ....... 18 

2.4 Suffix Array .................. .. .. ..... 19 



2.5 Progressive Global Multiple Sequence Alignment. . . ... . 20 
I' 

3 A Literature Review for Recent Progresses in Anchor-based Genome 

Sequence Alignment 

MUMmer ............. . . . . . . . 
PipMaker and MultiPipMaker. ......... . . . . . . . . . . . .... ! 
GLASS ......... . . . . ......... . . . ....... . 

WABA. ' 
LSH-ALL-PAIRS 

CHAOS + DLALIGN 
MGA. 
EMAGEN. 
MAUVE .. 
LAGAN and Multi-LAGAN. 
AVID and MAVID 

4 Our Chaining Algorithm 

4.1 
4.2 

Our Ideas and Their Origins .............. . 
Computational Complexity ..... 

4.2.1 Definition of the Problem. 
4.2.2 The Multiple Heaviest Common Subsequence Problem 

22 

. ....... 22 
...... 24 

. ....... 25 
.......... 26 

........ 27 

.. 28 
. .......... .. 31 

. ... 34 
.......... 36 

. . . . . . 38 
............ .41 

45 

. ...... .45 
. .. 47 

. ....... .47 

is NP-Complete... . ................................................... .48 
4.2.2.1 The Restriction Technique of Proving NP-Completeness ......... .48 

4.2.2.2 The Complexity of the Longest Common Subsequence 
Problem. . . . .. . ............................ .49 

4.2.2.3 Prove the NP-Completeness for MHCS problem ................... .51 
4.3 Algorithm Description. . .................................................. 52 

4.3.1 The Algorithm for 3 Sequences and Its Complexity Analysis ....... 53 
4.3.2 The Algorithm for k Sequences and Its Complexity Analysis .. . 56 

4.4 Implement and Results .. ..... 58 

5 The Whole Procedure of Our Model 60 

5.1 Our Ideas and their Origins ...................... . . ... ... 60 
5.2 Phase I: Find Multi-MUMs as Anchors . . . . ..... . . ... 62 
5.3 Phase 2: Find the Multiple Heaviest Common Subsequence 



as Anchor-chain to Align Anchors ... 

5.4 Phase 3: Close Gaps and Get Detailed Alignment ..... ,' " 
5.5 Time Complexity Analysis .................................. . 

6 Conclusions and Future Work 

6.1 Conclusions 
6.2 Future Work .. ·f ...... 

...68 
...... 71 

.. .. 71 

73 

...... 73 

....... 74 

Bibliography 76 

Appendix A CLUSTAL W: a tool for progressive global multiple alignment 84 

Appendix B Source Code 86 

vi 



I' 

List of Figures 

The b and I tables computed by LCS-Length (X, Y) .. . .. ,. .. .. 16 

2 The template sequence T and the sequence 5, ...... . .. ... 51 

3 The enhanced suffix array for four sequences 5" 52' 53' 5, ... ................. . ....... 66 

4 The multi-MUM index sequences of input sequences .............. . 

5 The alignment of the anchor-computing multi-MUM index sequences 

6 The alignment of all the multi-MUM index sequence. 

7 The alignment of all the anchors .... 

The alignment result.. 

vii 

.. ........ 68 

........ 69 

.. ........ 70 

... 70 

..71 



I' 

Chapter 1 

Introduction 

1.1 Biological Background 

1.1.1 DNA and Protein 

DNA (Deoxyribonucleic Acid) is a very large chemical molecule made up of linear, 

unbranched chains of subunits called nucleotides. According to the chemical structure, 

there are four types of the bases: Adenine (A), Cytosine (C), Thymine (T) and Guanine (G) 

[28]. Nucleotides are linked together by chemical bonding to form the long DNA polymer. 

In living cells, DNA is double-stranded, forming a double helix structure. The two strands 

in the double helix are complementary to each other through the pairing of the bases, 

where A pairs with T and C pairs with G [41]. 

Proteins are nitrogenous organic compounds that are essential constituents of living 

cells. Proteins, which are formed by the polymerization of amino acids, are coded by the 

segments of DNA. All of the proteins in living things are made of only 20 kinds of amino 



acids [53]. 
I' 

1.1.2 Gene and Genome 

A gene can be defined as a segment of DNA on' a chromosome. ,Each gene carries some 

• 
information for making certain proteins, which can determine lhr physical appearance of 

an organism, certain behavioral characteristics, how well it combats specific diseases, and 

other characteristics. It is a unit of heredity [41]. 

A genome used to be defined as the entire complement of the genetic material in a 

chromosome set. It is the entire genetic complement of a prokaryote, virus, 

mitochondrion, chloroplast or the haploid nuclear genetic complement of a eukaryotic 

species [47]. Now an increasing number of biologists simply define the genome as the 

sum of all DNA in an organism, including genes. The particular order of the four 

chemical bases A, T, C, G, as they repeat millions and even billions of times, is what 

makes species different. The genome of each organism is unique. 

Genomes are complex but interesting materials. The genome of each person is 

unique. For humans, differences in just 0.1 % of the genome will cause the different hair 

colors, builds, etc. The human genome shares 98.4% identity to that of chimpanzees [29]. 



1.1.3 Evolutionary Theory 

Living things are fundamentally similar in their basic anatomical structures and chemical 

compositions. They all begin as single cells that reproduce themselves by similar division 

processes. All plants and animals receive their g·pecific characte9stics from their parents 
, 

by inheriting particular combinations of genes. Despite the grfat diversity of life, the 

simple language of DNA is the sarne for all living things. The anatomical and chemical 

similarities between the living things imply that they either share a common ancestry or 

came into existence as a result of similar natural processes [39]. This is where the idea of 

evolution comes from. 

After ancient Greek philosophers such as Anaximander supposed that the 

development of life is from non-life, Charles Darwin presented his theory of "natural 

selection" in which species accumulate minor advantageous genetic mutations. Suppose a 

member of a species developed a functional advantage, its offspring would inherit that 

advantage and pass it on to their offspring. The inferior (disadvantaged) members of the 

same species would gradually die out, leaving only the superior (advantaged) members of 

the species. Natural selection is the preservation of a functional advantage that enables a 

species to compete better in the wild. It eliminates inferior species traits gradually over 

time [39]. Even though some refutations of Darwin's theory have been presented, the 

basic idea commendably explains many evolutionary phenomena and holds a significant 



position in molecular biology, biochemistry and genetics. 

1.2 Bioinformatics 

1.2.1 What is bioinformatics? 

I' . 

As more and more computational problems are arising from bi~lpgy, bioinformatics (or 

computational molecular biology) is an emerging field combining Computer Science and 

Molecular Biology. Bioinformatics uses computational technology to deal with biological 

problems. 

1.2.2 Why bioinformatics? 

In the Human Oenome Project (HOP) that was completed in 2003, one of the key 

research areas was bioinformatics. Without bioinformatics, people would have no idea 

how to analyze and draw meaning from the large amounts of data and information 

gleaned from the HOP. Since the human genome consists of approximately three billion 

base pairs (42), and it is difficult to imagine carrying on without computational support. 

Advanced biotechnology brings us more and more important biological data, and 

computer science is all about automated problem solving. With its ability to analyze a 

problem, identify a suitable formula and design an efficient algorithm, computer science 

is continually called upon to solve the complex problems of biology. 



1.2.3 What is the goal of bioinformatics~ 

The final goal of this interdisciplinary field is to design algorithmic solutions, which work 

efficiently on computers and are biologically correct. However, some of those solutions 

are quite far from this goal. Most efficient algorithmic solufions are not precisely 
, 

biologically correct, while correct solutions do not always work ~ery efficiently. Thus far, 

people are still looking for a trade-off. 

1.3 Basic Problem: Sequence Alignment 

1.3.1 Standard Sequence Alignment 

Sequence alignment is the procedure of comparing sequences. The procedure involves 

searching for individual characters or character patterns that are in the same order in the 

sequences [41]. Identical or similar characters are aligned in the same column. At the 

same time, in a mismatch , nonidentical or different characters can be put in the same 

column. Also, a gap can be inserted in the sequences. Nonidentical characters and gaps 

are placed in order to bring as many identical or similar characters as possible into each 

column. 

Sequence alignment can be used to discover functional, structure and evolutionary 

information between biological sequences [27]. If the sequences are relatively similar, 

even in some parts, they may have a similar biochemical structure and function. Similar 



sequences from different organisms may belong to a commo~ ancestor sequence; these 

sequences are then defined as being homologous [41]. 

There are two types of sequence alignment: global alignment and local alignment [53]. 

Global alignment attempts to align entire sequences by trying to ljIign as many characters 
, 

as possible until the ends. Global alignment is suitable for alijlning similar sequences 

about the same length. Local alignment focuses on aligning the blocks that have the 

highest density of matches in the sequences, which leads to some subalignments between 

the sequences. Local alignment is suitable for aligning sequences that have some similar 

parts but which are dissimilar in others. Those sequences can have different lengths but 

have some conserved regions [28]. If only two sequences are aligned, it is called pairwise 

sequence alignment; otherwise, it is multiple sequence alignment [53]. 

1.3.2 Genome Sequence Alignment 

People are always concerned about evolutionary changes in organisms. With the benefits 

of advanced biotechnology, more and more available whole genome sequences have been 

detected. People are no longer satisfied with aligning only short DNA and protein 

sequences; they now want to use different techniques to align genome sequences. 

Whole genome alignment can be used for many purposes. It can be used to detect the 

conserved gene blocks, to find orthologous regions between sequences, to compare 



evolutionary strains, and to analyze syntenic chromosomal regip.ns [17]. 

Sequence alignment techniques have been developed considerably in recent decades. 

However, the standard sequence alignment methods cannot be used for whole genome 

alignment directly. Because the standard sequeirce alignment m'1thods can only observe 
, 

point mutation, insertion and deletion, the time and space ,complexity of existing 

algorithms are too high for large-scale sequences. The technique of whole genome 

alignment is slightly different from sequence alignment, but is based on it. The objective 

for whole genome alignment focuses on extracting the conserved gene blocks, which are 

the anchors for the alignment, and finding an optimal anchor chain for large transposition, 

insertion, and deletion in the genomes [13]. 

The inputs of whole genome alignment programs are usually assumed to be relatively 

conserved genome sequences. Many available whole genome alignment software systems 

have been developed recently [13]. Most of them can only align two genome sequences, 

which is defined as pairwise genome sequence alignment. However, many existing 

pairwise programs have been improved to deal with multiple genomes and several 

multiple genome alignment methods have been recently proposed. This technique has 

recently attracted more attention. 



1.4 Our Contributions l' 

To compare whole genome sequences, biologists increasingly need alignment methods 

that are both efficient enough to handle large numbers of long sequences, and accurate 

enough to correctly align the conserved biologfca! features of di'tant species present in 

the sequences. So far, most programs work efficiently in ali&ning small numbers of 

closely related genome sequences. Very few genome alignment programs can align 

distant homologs and they usually cannot work efficiently for large numbers of genome 

sequences. 

We present an anchor-based model for aligning multiple whole genome sequences. 

The model includes three main phases: finding anchors, finding an anchor-chain and 

closing gaps to get a detailed alignment. In the first phase, we employ an enhanced suffix 

array method to find anchors. In the second phase, we propose a chaining algorithm based 

on the dynamic programming technique and longest common subsequence idea to 

calculate an anchor-chain for the anchors, to which we append biologically meaningful 

weights. We refer to the problem of finding the anchor-chain as the problem of finding the 

multiple heaviest common subsequence (MHCS). Then, we analyze the computational 

complexity of the MHCS problem and present methods to solve its conditional cases. In 

order to make up for the lack of methods for aligning distantly related genome sequences, 

we propose a novel strategy with biological reasons: the genome sequences from close 



homo logs are first selected for assembly, and then distantly rell~ted genome sequences are 

appended to the anchor alignment iteratively. In the last phase, we use the progressive 

multiple alignment method to close the gaps between the anchors. 

Our chaining algorithm involving evolutionary theory fin~s a biologically more 

correct anchor-chain for the whole aligning process. Experiment~ show that this approach 

obtains meaningful results according to the appended weight. Our chaining procedure 

generates a more accurate and convincing anchor alignment in terms of computation and 

biology. It helps the model to assemble flexible genome sequences (i.e. more genome 

sequences at any evolutionary distance). Combined with the exact suffix array approach 

in the first phase, this model leads to a high-quality alignment result. 



Chapter 2 

Related Theories and Techniqu~s 

2.1 Complexity Issue: P, NP and NP-Completeness 

The class P includes the problems which can be solved in time O(Il') for some constant 

k ,where n is the size of the input. Simply speaking, by a deterministic Turing machine, 

these problems can be solved in polynomial time [25]. 

Given a "certificate" of a solution to one problem, if the certificate can be verified by 

a Turing machine in polynomial time in the size of the input of the problem, we say that 

the problem belongs to the class NP. 

NP-Complete problems are the hardest problem in NP. Formally, a language L is 

defined to be NP-Complete if LE NP and for all other languages L'E NP, L' can be 

transformed from L in polynomial time [16]. 

Any problem in P is in NP. Because if a problem is in P, it definitely can be solved in 

polynomial time without a certificate, that is, p!;; NP. However, whether or not P is a 

10 



proper subset of NP is still a famous open problem. If one Nr,-Complete problem has a 
j. 

polynomial algorithm solution, every problem in NP can be solved in polynomial time. 

Until now, no polynomial-time algorithm has ever been discovered for any NP-Complete 

problem, that is, any problem belonging to NP-Completeness c1asf has not been solved in 

polynomial time [15]. 

2.2 Dynamic Programming 

Dynamic programming (DP) is a commonly used method for solving multi-stage decision 

problems and it is typically applied to optimization problems. DP is applicable when the 

subproblems are not independent, that is, when subproblems share subsubproblems. 

The development of a DP algorithm normally can be divided into a sequence of four 

steps. 

I. Characterize the structure of an optimal solution. 

2. Recursively define the value of an optimal solution. 

3. Compute the value of an optimal solution in a bottom-up fashion. 

4. Construct an optimal solution from computed information. 

Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 4 

can be omitted if only the value of an optimal solution is required. When step 4 is 

performed, additional information needs to be maintained sometime during the 

\I 



computation in step 3 to ease the construction of an optimal solution [16]. 
j' 

DP is known to be an efficient algorithm technique for solving certain combinatorial 

problems. It is the basis of comparing biological sequences [53]. Examples include the 

Needleman-Wunsch and Smith-Waterman algorithms. Hence, Dr is said to be the most 

fundamental technique in bioinformatics. 

Exact DP algorithm not only gives an optimal solution for pairwise sequence 

alignment, but also provides an optimal global alignment of multiple sequences [36]. 

Because the number of computational steps and the amount of memory required grow 

exponentially, the number of sequences to be aligned is limited [26]. 

2.3 Longest Common Subsequence 

The Longest Common Subsequence (LCS) problem has been studied for a long time and 

it deals with many problems in the Computational Biology field, especially for 

assembling biological sequences. 

A subsequence of a given sequence is just the given sequence with zero or more 

elements left out [16]. Basically, given a sequence, a sequence is a subsequence of the 

given sequence if there exists a strict1y increasing sequence of indices of the given 

sequence, and all the characters of both sequences that have those indices are the same. 

For example, X =(A,C,T,A) is a subsequence of Y =(G,A,G,C, A,T,A) with 

12 



corresponding index sequence (2, 4, 6, 7). 
I' 

For two sequences X and Y, a common subsequence of X and Y is defined as a 

subsequence of both X and Y. For example, if X = (A, T, C, G, T, A, A, C) and Y 

=(T, C, G, A, C), then the sequence(T, C, G) is a common sub~equence of both X and 
, 

y. But the sequence(T, C, G) is not a longest common subsequ~nce of X and Y because 

there is another common subsequence (T, C, G, A, C) and its length is five, which is 

greater than the length of(T, C, G). Since there is no common subsequence with a length 

of six or greater, the common subsequence (T, C, G, A, C) is a longest common 

subsequence of X and Y. 

2.3.1 Solving the Longest Common Subsequence 

Problem for Two Sequences 

In the traditional Longest Common Subsequence problem, the input is two sequences and 

the output is a common subsequence with maximum length [16). The brute-force 

approach to solve this problem is to check all the subsequences of one sequence and to 

see if each subsequence is a subsequence of the other sequence. The procedure ends when 

the longest subsequence is found, which is corresponding to a subset of the indices of the 

first sequence. If one sequence includes n characters, it has 2" subsequences. 

The problem has been extensively investigated [49] and many approximation 

13 



algorithms have already been proposed [4]. However, as an ,,exact algorithm, dynamic 

programming technique can compute an accurate solution in reasonable time. 

According to the book of Cormen [16], there are four basic steps. The first step is to 

characterize a longest common subsequence. Ail optimal substr~cture property has been 

proposed for the problem. 

Given a sequence X ~(X"X2' ... 'X.), the ith prefix of X, for i~O,I, .. ,m, is 

defined as Xi ~(X"X2,·.·,Xi) For example, if X ~(A,T,C,G,c, A,T) , then 

X, ~(A,T,C,G,C) and Xo is the empty sequence. 

The optimal substructure property of LCS is known as: Let X ~ (x"x" ... ,x.) and 

Y~(Y"Y2' ... 'Y') be the two sequences, and let Z~(Z"Z2' ... 'Z,) be any LCS of 

Xand Y. 

1. If xm = Yn, then Zk == xm = Y" and Z.I;_1 is an LCS of Xm_1 and YII _ 1 · 

2. If x."* Y" then z,"* x. implies that Z is an LCS of X . - 1 and Y. 

3. If x."* Y" then z,"* y, implies that Z is an LCS of X and Y'_I· 

The second step is a recursive solution. The recursive solution is to establish a 

recurrence for the value of an optimal solution. l[i,j] is defined to be the length of an 

LCS of sequence Xi and Y,. 

The optimal substructure has already been discovered [16], which is the recursive 

formula: 

14 



{
o if i~O or j ~ O I' 

I[i, j] ~ 1[i-I, j-I]+1 if i , j>O and x; ~Yj ' 

max(l[i, j -1] ,I[i -I, j]) if i, j > 0 and x; '" Yj" 

The third step is to compute the length of an LCS. A dynamic programming method 
, 

can be used to compute the solution of the G(mn) distinct subp~oblems. 

In the dynamic programming table, the I[i, j] values are stored in the entries that 

are computed in row-major order. In order to simplify the construction of the optimal 

subproblem solution , there is a table b[l...m, 1...11] , and b[i,j] points to the table entry 

according to the choice of the optimal subproblem solution when computing l[i, j]. In 

the end, b and I tables are both returned and the length of an LCS of X and Y is in 

l[m,lI]. 

LCS-Length (X, Y) 

mf-length[X] 

2 n f-length[Y] 

3 for i f-l to m 

4 do l[i ,O] f- 0 

for jf-O to n 

6 do 1[0, j] f- 0 

7 for if-I to m 

do for j f-I to n 

9 do if Xj = Yj 

10 then I[i, j]f-I[i-l, j-l]+l 

15 



b[i.j]<-"A " II 

lZ else if t[i -I. j] ~ t[i. j -1] 

13 then t[i. j] <-t[i -I. j] 

14 bU.j]<-"i" 

15 else t[i. j] <-t[i. j -1] 

16 b[i.j]<-"<-" 

17 return t and b [16] 

" 

For example. if we have two sequences X = <A. T. C. G. T. A. A. C> and Y = <T. C. 

G. .A. C>. the band t tables computed by LCS-Length (X. Y) is: 

o Z 4 

T C G A C 
Yj 

o 0 0 0 0 0 0 
Xi 

A 0 
oi oi oi 

1<-lA 

z T 0 IA 1<- 1<- 1<- 1<-

C 0 
Ii ZA z<- z<- ZA 

4 G 0 
Ii zi 3A 3<- 3<-

T 0 lA zi 3i 3i 3i 

A 0 
Ii zi 3i 

4<-4A 
6 

A 0 
Ii zi 3i 

4<-4A 
7 

C 0 
Ii ZA 3i 4i 5A 

Figure 1: the band t tables computed by LCS-Length (X. Y). 

16 



The entry square [i, j] contains the value of I[i, j] an?, the appropriate arrow for 

the value of b[i,j]. For i,j>O, entry I[i,j) depends on whether Xi=Yj and the 

values in entries l[i-l, j),/[i,j-l] and I[i-l,j-l], which are computed before I[i,j]. 

The entry 5 in 1(8,5) is the length of the longes'tcommon subsq~ence (T,e,G,A,e). 

The running time of each entry takes 8(1) time to cOll'pute. Hence, the time 

complexity of this procedure is 8(mn). 

The fourth step is to construct an LCS. In this step, the b table is used to construct an 

LCS of X=(xpx" ... ,xm ) and Y=(y"y" ... ,y,). Beginning at b[m,n], we can trace 

through the table following the arrows. The symbol "A "in entry b[i, j] implies that 

Xi = Yj is the element of the LCS. After that, the procedure reverses the order of the LCS, 

and prints it out. As the example above illustrates, we follow the b[i, j] arrows from the 

lower right-hand corner, find each "A " on the way for which Xi = Yj is one of the 

members of the LCS. 

This procedure can be described as: 

PRINT-LCS (b, X,i , j) 

if i=O or j=O 

2 then return 

if b[i,j]="A " 

4 then PRINT-LCS (b, X ,i - I, j - 1) 

print Xi 

6 elseif b[i, j]="I" 

17 



7 then PRINT-LCS (b, X,i -1, j) 

8 else PRINT-LCS (b, X, i-I, j) 

Following this procedure, the LCS(T,C,G,A,C) will be printed. Because in each 

step of the recursion, at least one of i and j . has to be determined, this step takes 

8(m+n) time. 

2.3.2 Solving the Longest Common Subsequence 

Problem for Multiple Sequences 

To solve the longest common subsequence problem for multiple sequences, the traditional 

case is extended. For the three sequences case, in the first step, the optimal substructure 

property is obtained. Let A=(apa" ... ,am ) , B=(bpb" ... ,b"), C=(cpc" .. ,cp ) be the 

three sequences, and let Z =(zpz" ... ,z,) be any LCS of A,B andC. 

1. If am =bn =cp.then zr=am=bn=cp and Z,_L is an LCSof An_I,Bn_Iand Cp _1 ' 

2. If am" b" " c p , then Z," am implies that Z is an LCS of A",-l' Band C . 

3. If am "b" "cp,then z,,,b" implies that Z is an LCS of A,B"_1 andC. 

4. If am" b" "cp , then z," cp implies that Z is an LCS of A, Band Cp _l 

The second step is a recursive solution. Still, the recursive solution is to establish a 

recurrence forthe value of an optimal solution. I [i , j, k 1 is defined to be the length of an 

LCS of sequence. 

The recursive fannula is revised from the optimal substructure. 

18 



/[i,j,k] 

o ~ 

.{ 'HHHl" . . " 

max(l[l -I, J,k],/[I, J,k -1], /(1, J -I,k]) 

i = O 19r j=O or k=O , 

i , j , k > 0 and a, = bj = c, ' 

if i, j ,k > 0 and) a, ;0' b j or b j ;o' c, 
, 

The third and the fourth steps compute the length of ~nd construct the LCS. 

According to the two sequences case and the recursive formula above, the algorithm can 

be straightforwardly extended. 

2.4 Suffix Array 

Suffix Array is a lexicographical sorted array of all the suffixes of a string [38]. It is a 

simpler and more compact alternative to the suffix tree method [41] in numerous 

applications. The main advantage of suffix array over suffix tree is that, in practice, it 

uses three to five times less space [38]. It is much more space-efficient and has 

competitive performance. Suffix array provides an efficient data structure to search for a 

query in a very long text, to find repeats in a string, and matches among multiple 

sequences. It works well for indexing and analyzing long genome sequences. 

Many algorithms have been proposed to construct suffix arrays. Some of them first 

built a suffix tree then converted to suffix array. This idea takes linear time but the extra 

space requirement is very high. Fortunately, some direct linear time construction 

19 



algorithms [12] [32] are very simple and works desirably well in linear time and lower 

space requirement. 

An enhanced suffix array, which combines with the information of longest common 

prefixes can require much less space than all fhe algorithms bfsed on the bottom-up 

traversal of the suffix trees [I]. 

2.5 Progressive Global Multiple Sequence Alignment 

The problem of finding the multiple sequence alignment with Sum-of-Pairs score was 

proved to be NP-complete [59]. No optimal algorithm exists for solving the multiple 

sequence alignment problem in polynomial time unlessP = NP. The progressive global 

alignment method is the most commonly used heuristic today for aligning biological 

sequences. It is rapid, requires low memory space and offers good performance on 

relatively well-conserved, homologous sequences [28]. 

This method has three basic steps: first, compute the alignment scores (or distance) 

between all pairs of sequences; next, build a guide tree that reflects the similarities 

between sequences, using pairwise alignment distances; then, align the sequences 

following the guide tree. Corresponding to each node in the tree, the algorithm aligns the 

two sequences or alignments associated with its two daughter nodes. The process is 

repeated beginning from the tree leaves, which are the sequences, and ending with the 

20 



tree root. I' 

21 



Chapter 3 

, 
A Literature Review of Recent Progresses 
in Anchor-based Genome Sequence 
Alignment 

MUMmer (Maximal Unique Match(mer)) 

MUMmer[19] is a pairwise anchor-based alignment program and it can detect every 

difference between two microbial genomes. The program can assemble two different 

versions of genome sequence: two drafts or a drafted and a complete genome. The 

anchors of this program are MUMs. 

The system is packaged with three typical anchor-base alignment procedures: firstly, 

construct a suffix tree to find anchors; then, sort and extract the Longest Increasing 

Subsequence as an optimal chain; lastly, import the Smith-Waterman alignment for 

aligning all the regions between the anchors. 

In MUMmer, a MUM is a maximal unique match, which is a subsequence that 

22 



occurs only once in both sequences and is not contained in a ~onger subsequence. Using 

the suffix tree method, MUMs can be computed in O(n) time and space, where n is the 

length of both input sequences and the symbol appended. After the MUM decompositions 

have been sorted, the longest possible set of MUMs that occurs i'l the same order in both 

genomes can be extracted. The set is the Longest Increasing Su\>sequence, which is the 

anchor-chain for alignment. If there are m MUMs, this can be done in O(m log m) time. 

However, MUMer actually uses a simplerO(m' ) time dynamic programming algorithm. 

At last, the gaps between the anchors are closed with a standard dynamic programming 

algorithm. The length of gap has a certain limit, and the default is 5,000 bp. Gaps longer 

than this limit are unaligned. This step takes 0(11') time and O(min(I,I') space for 

one gap that consists of two sequences of length I and I' . 

The MUMmer program is a major solution for pairwise alignment of sufficiently 

similar whole genome sequences. MUMmer 1.0 was used to detect numerous large-scale 

inversions in bacterial genomes, leading to a new model of chromosome inversions. 

MUMmer 2.1 was used to align human chromosomes and detected numerous large-scale 

ancient segmental duplications in human genomes. MUMmer 3.0 has a completely 

rewritten core suffix tree library and is used for numerous applications [56]. 

However, the major drawback of MUMmer is that it can only align no more than two 

whole genome sequences. 

23 



The program is an open source package that is available ati' 

ftp://ftp.tigr.orgipub/softwarelMUMmer/ 

PipMaker (Percentage Identity Plot ~AKER) and 

MultiPipMaker 

PipMaker [52] is a web server that was designed to align two long DNA sequences to 

identify the conserved segments and produce informative, high-resolution displays of the 

resulting alignments. Now it is used for compating genome sequences for two related 

species, although the information types depend on the level of conservation and the 

separation of the species. PipMaker can not only align those input sequences, but also 

summarize them with a percentage identity plot (PIP). It supports analysis of draft 

sequence to single reference sequence, but not a draft-to-draft comparison. The PipMaker 

program uses the k-mers (i.e. strings of length k) as the anchors. 

In the anchor finding and chaining steps, PipMaker has two options. The program 

identifies only the anchors that appear in the same relative order in sequences when the 

invoking option "chaining" is selected. When the selected option is "single coverage", 

PipMaker avoids duplicate anchors by allowing only the highest scoring set of the 

alignments. In gap-closing step, the program uses the greedy algorithm. 

The advanced version of PipMaker is the Advanced PipMaker program, and the 

24 



multiple input version is developed as MultiPipMaker [50]. T~<;y are also available at the 

same website. The MultiPipMaker program compares sequences pairwisely between the 

reference sequence and each of the secondary sequence that is computed by the blastz 

program [51]. MultiPipMaker is processed by 'lm iterative refi?ement procedure from 

ReAligner [3] involving much more flexible alignment scores. 

The main limitation of the PipMaker family was that they were only available on 

server; hence, the inputs were restricted. Last year, a beta version of PipMaker was 

developed. The server is located at: http://bio.cse.psu.edulpipmaker. 

GLASS (Global Alignment SyStem) 

GLASS [5] was developed for the processing step of the gene prediction tool ROSETTA. 

It is also an anchor-based alignment tool for pairwise genome sequence alignment. 

GLASS is designed for aligning eukaryotic sequence model that contains long, weakly 

conserved introns and short, strongly conserved exons. 

In the first step, GLASS searches all pairs of exact matching k-mers of two input 

sequences. Then, for a given pair of matching k-mers, a dynamic programming algorithm 

is applied to twelve nucleotides to the left of both k-mers and yields a score. DP does the 

same work to the right of both k-mers and yields the other score. It adds the two scores 

together to represent the score of the given pair of matching k-mers. In the second step, 

25 



DP computes the highest scoring sequence of k-rners that occur,s in the same order in both 

sequences. Any matching k-rner will be removed if its score is below a given threshold or 

it inconsistently overlaps. The resulting k-rners serve as anchors in the alignment. 

Afterward, all the steps above are applied to the unaligned regiors between the anchors 

recursively, with a decreasing value of k , namely 15, 12,9,8,7,,6,5. In the last step, all 

remaining gaps are aligned by a standard dynamic programming method. 

However, GLASS gives a partial alignment of two sequences and its space 

requirement is very large. This program is not suitable for prokaryotes and may leave 

some unaligned regions in the input sequences. 

GLASS is available at: http://crossspecies.lcs.mit.edul. 

WABA (Wobble Aware Bulk Aligner) 

WABA [34] is the first alignment tool that accounts for divergence in the wobble position 

of coding regions. The anchors of this program are two 8-mers that ignore wobble bases 

in the I kb region. WABA works well to uncover exons. The key feature of WABA is that 

it is sensitive to the wobble base, which is the third base in a codon, treats it differently 

from other bases, because the mutations in this base are often si lent in the sense that they 

do not change the corresponding amino acid. WABA was developed for separately 

aligning 229 different sequences from two closely related nematodes of the genus 

26 



Caenorhabditis: the C. briggsae and the C. elega/lS. 
I' 

In the procedure of WABA, the two input sequences first break into short 

overlapping sequence fragments. Then, the homologies between those fragments and the 

other sequence are found. Two 8-mers, which ignore wobble base, in the 1 kb region, are 
, 

found as anchors. This search is implemented in a modified gavped BLAST-like style. 

Then, homologous regions are aligned in an extended window using a pairwise hidden 

Markov model [23]. However, if any two of these local alignments overlap by at least 15 

bp and are identical in overlapping regions, they are merged into one larger alignment. In 

WABA, high scoring pairs are not required to match exactly but may contain a mismatch 

every three bases. This is because the homologous regions in two related DNA sequences 

are most likely protein coding regions, so most point mutations occur in the third bases of 

a codon. 

WABA was designed specially for certain sequences and is limited only to pairwise 

alignment. It is impractical for larger genome alignment. 

LSH-ALL-PAIRS (Locality-Sensitive Hashing in All 

PAIRS) 

LSH-ALL-PAIRS [11] is designed for finding ungapped alignments in genome sequences. 

The anchors of this program are gap-free fragments. The locality-sensitive hashing 

27 



method, which is an efficient randomized search technique, ,is used to look for those 

anchors and continue with the exact matching later. The exact matching requires selecting 

a minimum anchor length, which balances sensitivity and weak similarity against 

efficiency on long sequences, in order to reduc'" bias caused by random chance. This 

algorithm can find similar sequences in long anchors with frequynt substitutions. It runs 

iteratively to reduce the risk of missing true positives with the random search. The 

overlapping part will be fixed into longer and ungapped local alignment. 

LSH-ALL-PAIRS can only work for pairwise alignment and not yet for multiple 

genome sequences. Some other drawbacks are mentioned by Jeremy [11]: if the gaps 

between the segments are too small, they are likely to be missed in the initial random 

search; the long gapped similarities may be missed if their ungapped anchors do not score 

significantly; moreover, the initial anchor search is scored by a mismatch count not by a 

general score function. 

CHAOS (CHAins Of Scores) + DIALIGN (DIagonal 

ALiGNment) 

Almost all the available alignment programs before 1996 were developed to focus on 

relatively short sequences. The era of large-scale alignment algorithms began in 1996 

with the versatile alignment program, DIALIGN [40] [13] . The DLALIGN method can 

28 



deal with both pairwise and multiple alignment. The fi rst v1fSion can only use single 

bases for comparison, but the new version can use gap-free whole segments. The anchors 

of this program are fragments of equal length that form diagonals in a dot-matrix 

comparison. Quality scores will be assigned to ihose fragments 9ased on the probability 

• 
of their random occurrence and look for a collinear collection of non-overlapping 

fragments with maximum total score. 

In the pairwise alignment case, DIALIGN is trying to find, through a modified 

dynamic programming scheme, the fragments that have the maximum sum of scores over 

all the optimal alignments. In the multiple alignment case, DIALIGN employs a greedy 

algorithm. It first creates all the pairwise alignments. Then the fragments contained in 

those pairwise alignments are sorted according to their scores and the degree of overlap 

with each other. After that, they are integrated into a growing multiple alignment. The 

result shows that the fragments are collinear with the alignment, and the non-colinear 

parts will be discarded. In the case that no additional fragment can be combined, gaps that 

are without gap penalty will be imported to arrange the selected segment pairs. 

However, DIALIGN cannot handle very large and complicated genome sequences, 

because it takes too much time and requires too much memory. One way of speeding-up 

DIALIGN without compromising on alignment quality is to use the anchored-alignment 

procedure. The program called CHAOS [8] [10] is developed for rapid identification of 

29 



chains of local pair-wise sequence similarities. In the firfl step of whole genome 

alignment, it calculates local alignments as anchors. 

Every genome alignment tool has to solve the chaining problem somehow [2]. 

CHAOS chains together pairs of similar regionS that are anchors, one from each input 

sequence. An anchor can be chained to the other only if the indic!,s of one are higher than 

the other and the distance and gap criteria are near to each other. The final score of the 

chain is the total number of the matching basic pairs in it. After computing the maximal 

chains, CHAOS scores each chain by using match and mismatch penalties for the base in 

each anchor, and throws away chains below a certain threshold. 

After CHAOS identifies a collection of local alignments for the pair of input 

sequences, an algorithm based on the longest increasing subsequence is used to find the 

highest scoring chain as the anchor-chain in the next step. This step takes O(lllog Il) time, 

where Il is the number of local alignments. 

For pairwise alignment, the chain can be directly used into DIALIGN alignment. For 

multiple alignment, in the first step, CHAOS is applied to all possible pairs of input 

sequences to get a list of similarities which can be considered as candidates for anchor 

points. Then, the greedy algorithm, which DIALIGN uses to find consistent sets of local 

pairwise alignment during the multiple alignment calculation, is employed to solve the 

problem in the case that the similarities contradict each other. Each of the candidate 

30 



anchors is sorted by the quality score that is associated with tt,em. Starting from the one 

with the highest score, those anchors are accepted as final anchor points if they do not 

contradict with others. So the set of pairwise anchor points has been found to fit into one 

multiple alignment in the greedy procedure of DrALIGN. 

Anchor points created by CHAOS speed-up DIALIGN b)l one to two orders of 

magnitude without reducing the alignment quality. CHAOS+DIALGN can align large 

genome sequences very fast and sensitively. 

The drawback of this program comes from the nature of the greedy algorithm. In the 

program, once a fragment has been put into the alignment, it is fixed and cannot be 

removed. This problem always happens in methods that involve greedy algorithms. The 

results may be misaligned, especially where the sequence contains a repeating part. 

Recently, Some new strategies, e.g. the sequence clustering algorithm-BAG [14], have 

been proposed. They can be used to deal with this problem. 

The website to run the CHAOS+DIALGN program is: 

hnp://dialign.gobics.de/chaos-dialign-submission 

MGA (Multiple Genome Aligner) 

MGA [30] use an anchor-based method to produce a global multiple alignment for closely 

related whole genomes. The anchors of this program are multiMEMs, which is the 

31 



maximal multiple exact matches. 
I' 

In the first phase of this method, all the multiMEMs whose lengths exceed a given 

threshold are detected. The anchor (multiMEM) is a small sequence that occurs in all 

genomes sequences and cannot simultaneously be extended to theileft or right maximality , 
in each genome. Those multiMEMs are computed in there st!'ps. First, the program 

constructs a virtual suffix tree of all the genome sequences and different separator 

symbols that do not occur in any of the genomes. This step takes O(n) time and space, 

where n is the length of the sequence that comes from combining all the genome 

sequences and those separator symbols. Next, for every node of the suffix tree, a set of all 

the positions in the sequence that made from the genome sequence and symbols is 

computed. Then the set is divided into pairwise disjoint and possible empty position sets. 

If all position sets are not empty, a maximum exact match has been found to occur in each 

of the genome sequences at certain positions. Because the right maximality has been 

ensured during the incrementa] computing, the maximum exact match is ensured to be a 

multiMEM by comparing to the left characters to check if it is left maximal. The first step 

takes O(kn + r) time to compute all multiMEMs, where k is the number of genomes, n is 

their total length and r is the number of right maximal multiple exact matches. The later 

version of MGA changed the suffix tree method to enhanced suffix arrays, which makes 

the method more efficient. 

32 



In the second phase, MGA computes the anchors ~\lnsisting of the longest 

non-overlapping sequence of multiMEMs that occur in the same order in each genome. 

Every multiMEM is viewed as a k-dimensional cube in the Euclidean space with 

associated weight. In order to find the best noh-overlapping s9quence, the maximum , 
weight chain has to be found. The problem has been studied befole, and can be solved by 

constructing a weighted acyclic directed graph. A maximum weight chain of cubes 

corresponds to a path with maximum weight from the starting vertex to the stopping 

vertex in the acyclic graph. Because there are O(m2) edges in the graph, this phase needs 

O(km2) time to computer the chain, where m is the number of multiMEMs. This makes 

the time of the algorithm run up to quadratic. Later, an algorithm based on kd-trees is 

used, uti lizing the genomic nature of the input data. The running time of this case cannot 

be precisely analyzed because of the nature of kd-tree algorithm, but it was proved to be 

practical. 

In the third phase, MGA uses the progressive multiple alignment tool CLUSTAL W 

to close the gaps between the anchors and computes the alignment result. 

In practice, MGA works well for aligning similar bacterial and double-stranded DNA 

viral genomes. The drawback of MGA is that it requires all the anchors existing in all the 

input sequences. MGA cannot find enough anchors for many short single-stranded RNA 

viral genomes and the search for relatively short anchors exhausts its memory. 

33 



MGA is available at: http://bibiserv.techfak.uni-bielefeld.df/mgaldownload.html. 

EMAGEN (Efficient Multiple Alignment algorithm for 

whole GENomes) 

EMAGEN [20] is also an anchor-based multiple whole genom, alignment program. It 

first finds the anchors among multiple genomes in linear time and it works especially well 

on prokaryotic genomes. The anchors of this program are MUMs: maximum unique 

matchs. 

The first phase is to find the anchors. EMAGEN uses a suffix array algorithm to find 

MUMs among the multiple whole genome data group. It creates a generalized suffix array 

for the concatenated string S of input data and different separator symbols. At the same 

time, it put three more arrays in the data structure. One is lcp, which is the longest 

common prefix of the suffix array. Another is ps, which is the proceeding symbol of the S 

sequences in the suffix array. The other is so, which is the order of the sequence within 

which the suffix S sequences begins in the suffix array. Then the program looks for the 

MUM-Intervals and outputs the MUMs. An interval in the input sequences can be called a 

MUM-Interval if the so parameters are pairwise distinct and the ps parameters are not the 

same value. So, the lcp-string of a MUM-Interval can be output as a MUM. 

EMAGEN uses an efficient method to find all the MUM-Intervals. It first scans the 

34 



suffix array to locate a maximum interval, then checks if it iSI a MUM-Interval. All the 

MUM-Intervals can be found by checking the suffix array once, hence, all MUMs can be 

found in linear time. However, during our research, we have doubts with this method. 

In the second phase, graph theory has been '~mployed to chqose the optimal chain. 

EMAGEN constructs a MUM diagram according to the MUMs tllat have been found in 

the first step, and a MUN graph is defined accordingly. This step takes O(km' ) time, 

where k is the number of input sequences and m is the number of MUMs. After that, the 

program finds a maximum independent set of the MUM graph as alignment chains: 

LIS-MUMs, which is the longest increasing subsequence of the MUM graph. The longest 

increasing subsequence is the largest subset of the MUMs which appears in ascending 

order in each MUM sequence. The MUMs in LIS-MUMs do not cover each other. This 

step takes O(m + e) time, where e is the number of edges in the complement graph of the 

MUM graph. 

EMAGEN includes a special method for aligning the coding regions among multiple 

prokaryotic genomes, which constructs concatenated amino acid sequences to represent 

genomes instead of the original nucleotide sequences. The maximum sets of conserved 

regions from these long amino acid sequences are found as anchors for alignment. These 

anchors are actually short amino acid subsequences, which are mapped back to nucleotide 

sequences positions. 

35 



In the third phase, the gaps between LIS-MUMs are aligped by CLUSTAL W [54]. 

The program sets a threshold as the maximum length of the gaps that should be aligned. 

MAUVE 
• 

Mauve [18] is a new tool for multiple whole genome alignment, It is the first alignment 

system that integrates analysis of large-scale evolutionary events with traditional multiple 

sequence alignment. It performs better than other systems for comparing genomes with 

significant rearrangements. Mauve also falls into the category of anchor-based alignment 

tools. The anchors of this program are Multi-MUMs of some minimum length. However, 

unlike other systems, the input genomes of Mauve's selection method do not necessarily 

have to be collinear. Instead, Mauve identifies and aligns regions of local collinearity 

called locally collinear blocks (LCBs), which are the homologous regions of sequences 

shared by two or more input sequences, and do not contain any rearrangements of 

homologous sequence. 

Firstly, Mauve uses a simple seed-and-extend hashing method to find multi-MUMs, 

which are the Multiple Maximal Unique Matches. Although the algorithm 

takesO(G2n+GnlogGn)time, where G is the number of input sequences and n is the 

average genome length, it performs fast in practice. Mauve uses the information from the 

subset multi-MUMs as a distance metric to construct a phylogenetic guide tree using 

36 



Neighbor Joining method. Then, it tries to select a proper su~~et of the multi-MUMs as 

anchors, because some sets may contain spurious matches due to random sequence 

similarity. This can be done when determining the boundaries of locally collinear blocks. 

Given a minimum weight criterion, Mauve 'uses a greedy ,breakpoint elimination 
, 

algorithm to remove low-weight collinear blocks of the set. Bec~use this anchoring step 

may not be sensitive enough to detect the full region of homology within and surrounding 

the LCBs, the program uses the existing anchors as a guide to perform 

recursive-anchoring repeat. Mauve searches the regions outside of LCBs to extend the 

boundaries of existing LCBs and to identify new ones. It also searches the unanchored 

regions within LCBs for additional alignment anchors. Unlike other methods that perform 

a fixed number of recursives passed with a predetermined sequence of anchor sizes, in 

this program, the minimum anchor size is based on the sequences and 

recursive-anchoring will stop either when no additional anchors are found or the length of 

the intervening region is smaller than a certain border. After getting a complete set of 

alignment anchors, in the last phase, Mauve uses CLUSTAL W to calculate a global 

alignment over each LCB. 

This program works well for nine enterobacteria. As the writer mentioned, a more 

sophisticated rearrangement scoring method may improve the system. The program is 

free available at: http://gel.ahabs.wisc.edulmauve/. 

37 



LAGAN (Limited Area Global Alignmellt of Nudeotides) 

and Multi-LAGAN 

As most methods work efficiently in aligning closel y related genome sequences, LAGAN 

[9] system is tested on alignments between dista nt relali ves suqh as human and fugu. 

LAGAN is an efficient and reliable pairwise aligner even for i\enomes from distantly 

related organisms, and Multi-LAGAN is a multiple aligner based on progressive 

alignment with LAGAN. 

LAGAN aligns pairwise genome sequences in the three phases, which anchor-based 

alignment usually has. In the first step, the program is to compute the local alignment 

between two sequences and assigns a weight to each local alignment. It uses CHAOS 

[8][10] to find local homologies between two sequences. Besides CHAOS, any efficient 

local alignment method can also be used for this task. The details about CHAOS can be 

referred to in the description of CHAO+DIALIGN above. After CHAOS finds the local 

alignments, LAGAN orders them into a rough global map. The highest-scoring chain is 

the optimal rough global map, which can be computed using Sparse Dynamic 

Programming in O(n log n) time, where n is the total number of local alignments [24]. 

Then, LAGAN uses a recursive method similar to the one used in GLASS [5] to try to get 

a trade-off of speed and sensitivity. During the recursive-anchoring step, LAGAN uses 

CHAOS with some restrictive parameters to compute a rough global map based on the 

38 



resulting local alignments. CHAOS has been used recursively 1I'ith more permissive sets 

of parameters in the regions between each anchor of the global map. One thing has to be 

mentioned here, that some recursive anchoring steps can be translated. After that, 

LAGAN uses dynamic programming to compute ihe final global alignment and it uses the 

rough global map to limit the search area. For every anchor in,the rough global map, 

LAGAN limits the computation of Needleman-Wunsch algorithm in two comer 

rectangles and the diagonal areas of the DP table. Hence, the anchors in this program are 

more flexible and provide only approximate locations by which the alignment should pass. 

In practice, LAGAN uses a memory-efficient idea that performs the entire computation 

with memory proportional to the size of the largest rectangle. Besides, if the anchors are 

about evenly spaced and get a constant density, the time complexity of the program can 

be linear. 

Multi-MLAGAN is a tool for multiple genome alignment. It includes a progressive 

alignment phase based on LAGAN and an optional iterative improvement phase. It first 

finds the rough global maps between each pair of sequences. During the progressive 

alignment, Multi-MLAGAN imports LAGAN to give global alignment of the two closest 

sequences according to their order in the given phylogenetic tree. Then, it finds the rough 

global maps of the produced alignments (which are between two or more sequences) to 

other produced alignments. Afterward, the program iterates the two steps above to 

39 



perform a global alignment in every step and repeats until it gelf a multiple alignment of 

all sequences. Each step merges two sequences or alignments into a larger alignment and 

constructs a profile of all the sequences. This program uses a combination of scoring 

approach: sum-of-pairs for substitution and conseiisus for gaps, wl)ich is the most similar 

to the CLUSTAL W method. However, the difference is that CLYSTAL W heuristically 

weights per-sequence penalties to score gaps while Multi-MLAGAN uses appropriately 

scaled consensus. In the optional iterative anchor refinement phase, Multi-MLAGAN 

performs a limited-area idea that performs more work in the needed area and allows 

large-scale adjustment: each sequence will be removed iteratively and every region, 

which is in the removed sequence and improves the alignment score significantly, is an 

anchor. Then it aligns each sequence to the multiple alignment of the other sequences 

with LAGAN. 

LAGAN and Multi-MLAGAN both take advantage of some existing efficient 

methods, combine them and improve them to align 12 genome sequences, some of which 

are not closely related. However, because Multi-LAGAN performs progressive pairwise 

alignments that are guided by a user-specified phylogenetic tree, it still has some 

drawback as other progressive alignment methods: it might focus on a local optimal 

alignment and cannot get the global optimal solution. Besides, because the method uses 

sum-of-pairs metric, which is known to be NP-Complete [59], to align alignments, it will 

40 



consume more time. /' 

The alignment server is available at: hup:lliagan.stanford.edu/lagan_web/. 

AVID and MAVID 

AVID [6] is a global alignment program for large genomic regi'lns up to the megabase 

range. The input of this program is two genome sequences and the output is a global 

alignment with some additional information, e.g. , an overall score. At first, the input 

sequences can be processed with the RepeatMasker program [48]. But different from the 

original program, AVID keeps both the masked and unmasked sequences used into the 

alignment process. The "match", which is maximal but not necessarily unique, can be 

divided into two groups: those overlapping repeats (repeat matches) and those not 

overlapping ones (clean matches). Each is used in a different way. The program 

transforms the problem of finding maximal repeated substrings in one string to find all 

maximal matches between two sequences. It uses a generalized suffix tree data structure 

of two sequences to find those matches. 

After the matches have been found, AVID begins to the recursive process of 

anchoring and aligning. The anchor set here is a collection of non-overlapping, non

crossing matches. The program uses a heuristic to remove matches that are less than half 

the length of the longest match from initial consideration and the shorter matches will be 

41 



reconsidered for anchoring later. This is done in a certain ord~r first, clean matches are 

sorted by length; then, repeat matches are sorted when there are no more clean matches. 

Those anchors are selected using a different version of Smith-Waterman algorithm [27], 

which are required to be non-overlapping. The··gap scores zero" the mismatch scores 

• 
infinity, and the match scores based on its length and the alignmrnt score of the regions 

flanking the match (10 bp on each side). This anchor-selecting process is similar to the 

GLASS method [5]. 

Once the anchors have been selected, they will form part of the final global 

alignment as a set. The program will check each match to see whether it lies entirely 

between two sets of anchors. Once the maximal matches have been found, the smaller 

regions between the anchors will be realigned using the anchor selection step before. This 

recursion will terminate when either no remaining bases are aligned or no significant 

matches exist in the remaining sequences. 

AVID can order and orient draft sequences by using comparisons a finished 

sequence. It works well but only can handle two sequences. However, when the aligned 

regions are short enough to perform an optimal alignment, AVID will use anchors only if 

the total length of the anchor set is> 50% of the sequence length; otherwise, it will use the 

standard Needleman-Wunsch algorithm [27] to align those regions. And if the sequences 

are short ("; 4kb each), AVID will align them by the Needleman-Wunsch algorithm and 

42 



return a trivial alignment, where both sequences are complet~ly gapped. 

AVID can be used online at http://math.berkeley.edulavidl 

In order to improve AVID to deal with a large number of genomic regions, MAVID 

[7] was proposed one year later for obtaining a global multiple ~Iignment. In this method, 

the gene-base anchors constrain a progressive alignment t6 . incorporate biological 

information into the alignment procedure. These anchors will be computed firstly 

according to gene prediction and their protein alignments, and then assemble into the 

program as input data. 

The core in MAVID is a progressive ancestral alignment that incorporates 

preprocessed constraints. Given a phylogenetic tree, the program constructs the 

alignments of all the sequences in the tree by aligning alignments recursively from leaves 

to root, and associates them into the vertices. Sequences are aligned by the AVID program 

after the ancestral sequence calculation. The alignment result will glue two alignments 

together to produce a new multiple alignment in the vertex. This procedure terminates 

with a final pairwise alignment at the root node. 

The gene matches and constraints are based on a homology map for the input 

sequences and MAVID identifies the order and orientation of matching gene runs between 

the sequences. Gaps are assigned a linear gap penalty but prefer an affine gap penalty [7]. 

The MAVID program is based on AVID and other existing models of multiple 

43 



genome sequence alignment. The drawback of MAVID comes from the greedy nature of 

the progressive method, and the iterative algorithm is less sophisticated than some other 

exiting methods. However, in practice, the approach can deal with larger multiple 

., 
problem, divergent sequences, as well as incomplete unfinished Isequences reasonably 

• 
quickly. 

The program is available at: hup:/lbaboon.math.berkeley.edu/mavidl 

44 



Chapter 4 

Our Chaining Algorithm 

4.1 Our Ideas and their Origins 

The anchor-based alignment approach divides initial large alignment problems into 

smaller, more manageable ones and combines program speed and sensitivity [10], which 

is a good solution for whole genome sequence alignment tasks. The procedure of the 

anchor-based whole genome alignment can be divided into three phases [13]: 

I) Computation of all the anchors; 

2) Computation of an optimal anchor-chain of collinear non-overlapping anchors: the 

anchors that form the basis of the alignment; 

3) Alignment of the regions between the anchors. 

We propose a chaining algorithm as one part of our model in the second phase. The 

algorithm uses the dynamic programming technique and is based on the standard Longest 

Common Subsequence idea. 

45 



The quality of a whole genome alignment method is l1)easured not only by the 

running efficiency, but also by the biological significance [10] [7]. Therefore, it is 

important to involve biological ideas to improve the alignment quality and practicality. 

We place a weight on every anchor in order · to find a biologically more correct 

anchor-chain. We believe that this idea can help our alignment. model obtain a more 

meaningful result. After some helpful talks with biologists, we determined that our weight 

tends to be related to the length of the anchor. This is based on biological evolutionary 

theory, which was summarized in Chapter I. If the large-scale sequences are assumed to 

be whole genome sequences, every anchor can be considered a conserved nucleotide 

block. According to evolutionary theories such as natural selection, the longer the block is, 

the more important the evolutionary infonnation and structure it might contain. The 

reason for this is that only very valuable nucleotide blocks can survive during those 

significant sequence changes that result from selective pressures. During evolution, there 

are likely certain important reasons to keep some nucleotide blocks that do not easily 

change. According to this idea, the longer the block is, the heavier the weight we put on 

it. 

We refer to this chaining procedure as a problem of finding the Multiple Heaviest 

Common Subsequence (MHCS) or the multiple maximum weight common subsequence 

(MMWCS), which is the common subsequence with maximum weight in multiple 

46 



weighted sequences. 

4.2 Computational Complexity 

4.2.1 Definition of the Problem 

We now formally define this problem. 

Given a finite sequence S=(SI'Sz. ",sm). a subsequenceS'ofS is any sequence 

that consists of S with k terms deleted. for kE [O.m]. Given a set R = {SpS, •.... S,]of 

sequences, a Common Subsequence is a sequence that is the subsequence of each 

sequence SI'SZ"",Sr in R.lntheweightset W={wpwz, ... ,w/}, wpwz, ...• w/ arethe 

real numbers associated with each character in those sequences. 

Definition 4.2.1.1 Multiple Maximum Weight Common Subsequence (MMWCS) 

problem or Multiple Heaviest Common Subsequence (MHCS) problem: 

Given a multiple sequence set R={SpS, •...• S,) with a particular weight w 

assigned to every character of each sequence S, what is the common subsequence with the 

maximum weight. i.e .• what is the MHCS(R)? 

The decision version of the problem is as follow. Given R and an integer bound B. is 

47 



the weight of an MHCS(R) greater than B? 
" 

4.2.2 The Multiple Heaviest Common Subsequence 

Problem is NP-Complete. 

THEOREM 1 (COMPLEXITy) The decision version of the Multiple Heaviest 

Com mOil Subsequellce problem belongs to NP-Complete. 

To prove this theorem, we reduce the Longest Common Subsequence problem to it. 

4.2.2.1 The Restriction 

NP-Completeness 

Technique of Proving 

As we know, there are various techniques for proving NP-Completeness. We use the 

restriction technique to prove the MHCS problem. 

The restriction technique is the most frequently used proof type for the NP-Complete 

problem [25]. Garey and Johnson mentioned in their book that an NP-completeness proof 

by restriction for a given problem n E NP consists of showing that n contains a known 

NP-complete problem n' as a special case. The keystone of this proof is to place the 

specification of the additional restrictions on the instance of n, so that the resulting 

48 



restricted problem will be identical to n ' , The restricted p;"0blem and the known 

NP-complete problem are not required to be exactly the same, but there must be a clear 

one-lo-one correspondence between their instances that preserves "yes" and "no" 

answers. 

The restriction proof technique is different from the standard NP-completeness 

proofs, Instead of trying to discover a way of transforming a known NP-complete 

problem to the target problem, the technique focuses on the target problem itself and tries 

to restrict the inessential aspects to show the NP-Completeness of the problem, 

4.2.2.2 The Complexity of the Longest Common 

Subsequence problem 

The Longest Common Subsequence (LCS) problem has been described in Chapter 2, 

Here, we only focus on the complexity issue of this problem, When an arbitrary number 

of sequences is considered, this problem is proved to be NP-Complete [37). 

The yes/no version of the problem is: given an integer k and a listing of the 

sequences in R={SI' S"" "Sp}' is ILCS(R)I~k? , where II denotes the cardinality of 

the set. I(R) , which is defined to be the alphabet of R, is the finite set of values in 

The proof is done by the reduction of the vertex cover problem, which is one of the 

49 



six basic NP-Complete problems. I' 

Given an undirected graph G = (N, E) and an integer k, the vertex cover problem 

is to determine if there is an N'~N, forIN'I=k, such that for every (X,y)E E, either 

xE N' or yE N' (possibly both). The edge of E lis assumed to be 

k;(X"y,);(X2'Y2);···;(X"y,) , which is encoded into a string of ltngth n. An arbitrary 

order {vl'v2 , ... ,v, }is assigned to N. Here, r.t~n. r+l sequences of length at most 

2(/-1) has been constructed as shown in Figure 2. The first sequence is the template 

sequence T, which is the sequence VI ' v2 •... , Vi' A sequence Sj is constructed for each 

edge e, = (xi' Yj ) in E. Assume without loss of generality that Xi = vj ' Yi = vm and 

T 

ALL NODES 

5j 

Figure 2: The template sequence T and the sequence S, [37]. 

It has been proved that the graph G has a vertex cover of size k if and only if the 

50 



set R;{T,S"S" ... ,S,) has a common subsequence of size tl-; k. Hence, the minimal 

vertex cover of G has size k if and only if LCS(R) has size t-k. If the vertex cover problem 

has length n, the input for the LCS algorithm is of length t+2r(t-l)';O(n'). So the 

construction can be done in polynomial time. Bec-ause of the polypomial reduction from 
, 

the vertex cover problem, the LCS problem for I(R) of arbitrar)' size is NP-Complete 

[37]. 

4.2.2.3 Proof of the NP-Completeness for the MHCS 

problem 

Now we prove that the MHCS problem is NP-Complete. 

The instance is: given a set of sequence R;{S"S" ",S,) and a weight set 

w; {w(x,), w(x,), '" w(x,)) for the alphabet of R, L(R), whose size IWI; II(R)I. 

Clearly II(R)I';m, +m, +".+m" where m; ;ISJ ff>1HCS(R)"' represents the weight 

of the heaviest common subsequence of R. 

The yes/no version of the problem is: given an integer k, a listing of the sequences 

in R and a listing of the weights in W, is ff>1HCS(R)"? k? 

Proof: First, it is easy to see that MHCSE NP, since a nondeterministic algorithm 

need only guess a k and check in polynomial time whether the weight of the heaviest 

51 



common subsequence is larger than or equal to k, after the wei/lhts have been assigned to 

the alphabets. 

Next, we use the restriction technique. We restrict the MHCS problem for I(R) of 

arbitrary size by allowing only instance with weight 1 in I(R~. Then, the restricted 

• 
MHCS problem becomes the LCS problem for I(R) of arbitrary size. In other words, 

the LCS problem is a special case of the MHCS problem. 

Therefore, the Multiple Heaviest Common Subsequence (MHCS) problem is 

NP-Complete. 

4.3 Algorithm Description 

We propose an algorithm for solving the MHCS problem with the idea of extending 

the dynamic programming technique of the standard longest common subsequence 

method. The MHCS problem has been proved to be NP-Complete, which means that no 

polynomial time algorithm exists for this problem unless P = NP. Moreover, with regard 

to the theory of parameterized complexity, an approach to attack intractable problems 

mainly developed by Doweny and Fellows [22] [21] , the fixed alphabet longest common 

subsequence parameterized in the number of strings (FLCS) has recently been proved to 

be W[I]-hard [45]. Therefore, we can say that, in general, no exact polynomial-time 

algorithm can find an exact anchor-chain from arbitrary numbers of weighted sequences. 

52 



However, traditionally, for all the genome alignment programs, ,the number of the input 

sequences is forced to be limited to ignore the computational complexity. We limit the 

number of the input genome sequences, then, this algorithm can find the result in 

polynomial time. We describe two cases here: the' case for three spquences and the case 

for k sequences, with a fixed integer k. 

4.3.1 The Algorithm for 3 Sequences and Its Complexity 

Analysis 

The input of the algorithm are three sequencesX=(x"x" ... ,xm ), Y=(y"y" ... , y"), 

Z=(z"z" ... ,z,) and a weight set for all the characters of those sequences. Xi is a 

character in X; Yj is a character in Y; and z/ is a character in Z. c[i. j.T] represents 

the weight cost of the heaviest common subsequence. A dynamic programming table 

b[1..IIl, 1..n, 1..1] is maintained to simplify construction of the optimal solution. Therefore, 

the recursive formula is: 

o if i = 0 or j = 0 or t = 0, 

o', j " J o{ oHj-J,H)'w(,) " " ',j,<>O ~. 'n, 0; , 

max(c[,-I, J,t],c[" J,t -I],C(/, J -I,t]) 

if i , j,l>O and X j ::tYj or y j :tz/. 

Clearly, the lengths of those three sequences are length [X] = Ill, length [YJ = 11, 

53 



lenglh [Z] = I. 

Therefore, the procedure is: 

MHCS-weighl (X, Y, Z) 

In <- lenglh [Xl 

2 II <- lellglh [y] 

I <- lenglh [Z] 

4 for j<-I to n 

do for I <- I to I 

6 do e[O, j, I] <-0 

for i<-I to In 

do for I <- I to I 

9 do eU, 0, I] <-0 

!O for j <-I to n 

II do for i <-I to II! 

12 do e[i, j, 0] <-0 

13 fori<-I tOil! 

14 doforj<-I tOil 

15 do for I <-I to I 

16 do if Xi = Yj=z, 

" 

17 then c[ i,j, I] <-e[ i-I,j-I, I-I]+w(xil 

18 b[i,j,I]<-1 

19 else if e [i-IJ ,I] = max (e[i-I,j, I], e[i,j-I, I] , e[i,j , I-I] l 

20 then e[i,j, I] <-e[i-I,j, I] 

21 b[i, j, I] <-2 

22 else if e [i,j-I, I] = max (e[i-I,j, I] , e[i,j-I, I], e[i,j, I-I] l 

54 



23 

24 

2S 

26 

27 return e and b 

PRINT- MHCS (b,e, X ,i, j,t) 

then eli, j, I] ;-e[i , j-I , I] 

b[i,j, 1];-3 

elsee[i,j, I] ;-e[i,j,I-1], 

b[i, j, 1];-4 

if i=O or j=O or t=O 

2 then return 

if b[i,j,/] = I 
4 then PRINT- MHCS (b, X, i-I,j-I, I-I), Print x, 

else if b[i,j,l] =2 

7 thenPRINT-MHCS (b,e,X,i-l,j,t) 

else if b[i, j,t] = 3 

9 thenPRINT-MHCS (b,e,X,i,j-l ,t) 

JO elsePRINT-MHCS (b,e , X ,i , j ,t - l) 

I ' 

The running time of the MHCS-weight (X, Y, Z) is 8(mnl) and the running time of the 

PRINT- MHCS (b,e,X ,i,j,t) is 8(111+11+/). We can see that line 13 to line 27 in 

MHCS-weight IX, Y, Z) dominant the total running time. 

55 



4.3.2 The Algorithm for k Sequences and Its Complexity 

Analysis 

Given ksequenees in the sequence set a=(X\, X" X" ... , X,), letT= (e[i, -I, i" 

i, ],e[i" i, -I , ... , i, ] ... , e[i" i" ... , i, -I] ) 'and w is the corresponding weights. 

Here is the procedure: 

MHCS- weight (X\, X" X" .. , X , ) 

X,. length ..... lellgth[X,] 

X, .length ..... lellgth[X, ] 

X, .length ..... lellgth[X , ] 

for i, ..... 1 to X, .Iength 

do for i, ..... 1 to X, .Iength 

do for i, ..... 1 to X, .Iength 

doe[O, i,,~, .. . , i, ] ..... 0 

for i, ..... lto X, . length 

do for i, ..... 1 to X, .length 

do for i,_, ..... 1 to X,_, .length 

do e [i\'i" ... ,;,_\'O] ..... O 

for i, ..... 1 to X, .Iength 

56 



do for i2 f-I to X, .Iength I' 

do for i3 f- I to X 3 .length 

do for i, f-I to X, .Iength 

do if X 1 it = X 2 i2 .... . = X ki t 

thene[il , i2, ... , i, ] =e[il-I, i2-1 , .,.' i, -I] + w 

b [~ , i2, .. . , i, ] f-I 

elseife[il-I, i2, i, ] is max ofT 

thene[ip i" ... , i, ] f- e[il-I, i" ... , i, ] 

b [ii ' i2, ... , i, ] f-2 

elseife[ip i, -I , i, ] is max ofT 

thene[il , i2, .. . , i, ] f- e[il , i2-1 , ... , i, ] 

b [ii' i" ... , i, ] f-3 

elseifc[i" i2 , ... , it_I -I, it JismaxofT 

thene[il , i" ... , i, ] f- e[il , i" ... ,i'_I-I , i, ] 

blip i" ... , i, ]f- k 

b[il , i" ... , i, ]f- k+ I 

return c and b 

PRINT- MHCS(b, e, XI , il ,i2, .. ,i, ) 

then return 

if b[il , i2, i, ] =1 

then PRINT-MHCS(b, e,XI,il -l,i, -l,i3-1 , .. ,i, -I), Print X 1 II 

57 



else if b[ i" i" ... , i, ] = 2 

then PRINT- MHCS (b, c,X"i,-l,i, ,~ , . . . , i, ) 

else if b[ i" i" ... , i, ] = 3 

then PRlNT-MHCS(b, c,X"i, , i, -I,i, , ... , i, ) 

else if b[ i" i" ... , i, ] = k 

then PRINT-MHCS(b,c,X" i, ,i, , i, , .. , ik-] -I , i, ) 

else PRlNT-MHCS(b, c, X" i, ,i, ,~ , ... , i'_1< i, -I) 

I' 

The running time of the MHCS- weight (XI' X" X" ""X, ) is e (X, .Iength 

X, .Iength ..... X, .Iength ) and the running time of the PRINT- MHCS (b, 

c,X"i"i" ... ,i, )is e( X, .length+ X,. length+ ... + X, .length). 

4.4 Implementation and Results 

We use JAVA language to implement the MHCS-weight (X, Y, Z) and PRINT-MHCS 

(b,c, X , i , j ,t). The program runs fast on our Intel Pentium III processor 1.20GH" with 

30GB' hard drive. 

If the input sequences are X =(A,B,C,D) , Y=(B,C,D, A) , Z=(D, A,B,C) 

and the user~defined weights are A <-I , B <-I, C <-I, D <-I , the result of the 

program is BC. 

If we define the weights to be A <- 5, B <-I , C <- I , D <-I , the result is A. 

58 



If we define the weights to be A f- 5, B f- 5 , e f-l, L\ 'f-l, the result is Be. 

If we define the weights to be A f- 5 , B f-l, e f-l, D f- 5 , the result is A. 

If we define the weights to be A f-l, B f-l, e f-l, D f- 5 , the result is D. 

The running results show that different weights assigned to different characters of 

the input sequences lead to different output solutions. 

59 



I' 

Chapter 5 

The Whole Procedure of Our Model 

5.1 Our Ideas and their Origins 

After proposing our algorithm of finding the anchor-chain, we now describe the whole 

procedure of our anchor-based global multiple alignment model for whole genome 

sequences. 

In the first phase, we use the enhanced suffix array method to find the conserved 

blocks among the input genome sequences. Because these conserved blocks are more 

likely to belong to the global alignment, they are used as anchors for assembling the 

multiple genome alignment. 

In the second phase, we first weigh the anchors based on their lengths. Next, we use 

OUf chaining algorithm to find the heaviest common subsequence as the anchor-chain. 

Then, all the anchors are assembled based on this anchor-chain. In our model, we propose 

a novel alignment method to assemble the anchors. This method wi ll make our model 

60 



more flexible for different input sequences and user requiremeryls. After consulting with 

biologists who are currently using sequence alignment tools to help their evolutionary 

experiment, we realize that a tool for aligning the genome sequences of distantly related 

species and assembling large numbers of genomesequences are de~ired. Referring to our 

survey, most programs work efficiently in aligning closely related genome sequences and 

small number of input genomes (usually less than 15 sequences). Only very few genome 

alignment programs can align distant homologs and they usually cannot work efficiently 

for more than 12 sequences [9]. Therefore, we use a different aligning structure to 

assemble the anchors. For small numbers of closely related genome sequences, this model 

uses our chaining algorithm to find the anchor-chain and obtain an alignment from all 

anchors, which is the same as most alignment programs. However, when the inputs are 

many genome sequences from distantly related species, the model will use a new strategy: 

it asks users to choose the genome sequences that are from close homologs (i.e. from 

closely related species). Then, it uses the chaining algorithm to find an anchor-chain from 

these chosen sequences. Afterward, those unselected anchor sequences append to the 

anchor alignment iteratively based on the anchor-chain. This idea makes OUf model 

suitable for aligning not only closely related genome sequences but also distantly related 

ones, and it helps our model to align even large numbers of input genome sequences. 

Moreover, this method will lead to an evolutionary more correct and meaningful 

61 



anchor-chain. Because the inputs are genome sequences, everY tanchor found in the first 

phase consists of nucleotides. For closely related species, these nucleotide blocks are very 

likely to represent the same or similar traits that are beneficial to evolutionary research . 

. , 
However, for distantly related species, though the constituent nucleotides are the same, 

these blocks may not represent similar traits. In evolution, the anchors/nucleotide blocks 

from the closely related species may come from the same ancestor and be very 

meaningful , but those from the distantly related species may be just a result of unexpected 

mutation. If the anchor-chain is computed from all the anchor/nucleotide blocks from 

both closely related and distantly related genome sequences, this computing procedure 

will chain the anchors that have the same components together; however, this 

anchor-chain may only have structural meaning but not any evolutionary meaning. Hence, 

for genome sequences at any evolutionary distance, OUf strategy produces an evolutionary 

more correct anchor-chain that leads to a high-quality alignment result. 

In the last phase, gaps between the anchors are further aligned by an existing 

progressive global mUltiple alignment tool to generate a detailed sequence alignment. 

5.2 Phase 1: Find Multi-MUMs as Anchors 

A MUM is defined a maximal unique match decomposition of two genomes in the 

program MUMmer [19]. It is a subsequence that occurs exactly once in both genomes, 

62 



and is not contained in any longer such sequence. The two ch"!'acter positions bounding 

an MUM must be mismatches [19]. Because of the assumption that input genome 

sequences are highly similar, a large number of MUMs are assured to be identified. The 

global alignment of two whole genome sequences can be built bas~d on MUM alignment , 
[19]. Our model aligns multiple whole genome sequences; th~r~fore, we define the 

MUMs for multiple genomes as multi-MUMs. Aligning Multi-MUMs is the basic step for 

aligning multiple whole genomes. 

Definition S.2.1 A multi-MUM is a maximal unique match decomposition of multiple 

genomes. It occurs exactly only once in each sequence of a multiple sequence set and is 

not contained in any longer such sequence. The two characters bounding a multi-MUM 

must be mismatches in all the sequences. 

In order to find the multi-MUMs from the input genome sequences, we use the 

enhanced suffix array algorithm [I], which is a suffix array enhanced with a table for 

longest common prefixes. We consider that the enhanced suffix array algorithm is better 

than the widely used suffix tree method because it requires much less space than the latter 

does. The enhanced suffix array method require not only less space but also much less 

time than other programs for genome analysis task [1]. 

63 



Given k genome sequences: SI'S2'''.'S" a suffix array/is built for the string S 

=S,$,S,$, S,$, ... S,$" which concatenates all the nucleotides of the genome sequences 

terminating with different separation symbols. This procedure takes O(n)time, where n 

is the length of the string S [32]. 

Here are some basic notations and definitions for an enhanced suffix array: 

Definition 5.2.2 

sa: sa denotes a suffix array of S; sa = sa[O ... n -I]. 

sa[i]: sa[i] is the suffix array (sa) value in an entry of the suffix array. 

si: si denotes the ith suffix of S, which is S[i ... n -I]. 

Icp[i] : IcpU] is the longest common prefix value of an entry i. Icp[O] equals 0; Icp[i] 

equals the length of the longest common prefix of sa[i] and sa[i-1] when i > O. 

ps[i]: ps[i] is the proceeding symbol of a suffix s,," i . So ps[i] = S["u,_, ]. ps[i] will 

be undefined if sa[i] = O. 

so[i]: soli] is the sequence order (so) value in an entry i of S; it is the order number of 

the sequence where the suffix S ",n· begins. If sa[i] begins from separation symbols, so[i] 

will be undefined. 

Icp-Illterval[i ... j] : For a suffix array sa, lllterval[i .. .j] is called a Icp-Interval[i. j] of 

Icp-value I if both Icp[i] and IcpU + 1] are smaller than I, and the smallest Icp value for 

entry i + I, ... , j is l. The length of the Icp-lllterval is (j -i+1). The Icp-string of a 

64 



Icp-Interval[i, j] is the string S[sa[i]".sa[i] +1-1]. 

Definition 5.2.3 A Icp-Interval[i. j] is a MUM-Interval if: 

(I) the length of Icp-Interval[i, j] is k; 

(2) soli] , ... , soU] are pairwise distinct; 

(3) ps[i], ... , psU] are not the same value. 

From the definition of the MUM-Interval, the longest common prefix string of a 

MUM-Interval[i, j] occurs exactly only once in each input sequences and cannot be 

contained in a longer such sequence. So, this Icp-string is a Multi-MUM. 

The brute force method to find Multi-MUMs is to scan the suffix array and check all 

the Intervals of length k to find MUM-Intervals, and then output the Multi-MUMs. We 

use a different method to speed up the process of finding all the MUM-Intervals. First, we 

scan the suffix array to locate all the Icp-Intervals. Next, for a Icp-Interval of length k, we 

check them with the requirements in Definition 5.1.3 to determine whether it is a 

MUM-Interval or not. Therefore, all the MUM-Intervals are found by scanning the suffix 

array only once, which indicates that muiti-MUMs are found in linear time. 

Here is an example: 

Input sequences: S, = abeadc 

S,= edbcaba 

65 



S3= cabed 
I' 

S, = dcabea 

S = abeadc$edbcaba*cabed#dcabea! 
Suffix Array· 

~ sa Icp ps so 

0 11 aba*cabed#dcabea! 0 c ' 2 

1 0 abeadc$edbcaba*cabed#dcabea! 2 1 

2 23 abea! 4 c 4 
3 16 abed# dcabea! 3 c 3 

4 3 adc$edbcaba*cabed# dcabea! 1 e 1 

5 13 a*cabed# dcabea! 1 b 2 

6 26 a! 1 e 4 

7 12 ba*cabed# dcabea! 0 a 2 

8 9 bcaba*cabed# dcabea! 1 d 2 

9 1 beadc$edbcaba*cabed#dcabea! 1 a 1 

10 24 bea! 3 a 4 

11 17 bed#dcabea! 2 a 3 

12 10 caba*cabed#dcabea! 0 b 2 

13 22 cabea! 3 d 4 

14 15 cabed#dcabea! 4 * 3 

15 5 c$edbcaba *cabed#dcabea! 1 d 1 

16 8 dbcaba*cabed#dcabea! 0 e 2 

17 21 dcabea! 1 # 4 

18 4 dc$edbcaba*cabed#dcabea! 2 a 1 

19 19 d#dcabea! 1 e 3 

20 2 eadc$edbcaba *cabed#dcabea! 0 b 1 

21 25 ea! 2 b 4 

22 7 edbcaba*cabed#dcabea! 1 $ 2 

23 18 ed#dcabea! 2 b 3 

24 6 $edbcaba*cabed#dcabea! 0 c 

25 14 *cabed#dcabea! 0 a 

26 20 #dcabea! 0 d 

27 27 ! 0 a 

Figure 3: The enhanced suffix array for four sequences SI' S" S3'S,. 

66 



From the enhanced suffix array for four sequences Sf'S"S"S" we find that 

Icp-Interval[O.3]. Icp-Interval[I2.I5]. Icp-Interval[I6.I9] and Icp-Interval[20.23] are 

MUM-Intervals. Therefore. we detect four multi-MUMs: (ab). (c). (d). (e). 

After multi-MUMs have been identified. we'fabel each of theJl1 with an integer from 

{1.2.3 •...• m}. according to their positions in the first input sequenpe. Obviously. In is the 

number of the multi-MUMs and the integers are assigned as the indices of each of them. 

The indices are unique identifier of each multi-MUMs. In different input sequences. 

Multi-MUMs appear in different order according to their positions but the indices are 

always unique. 

Therefore. each input sequence can be represented by the multi-MUMs and the gaps 

between them on a horizontal line. We use the corresponding index to represent each 

multi-MUM and ignore the gaps in this step. So. each input sequence can be transformed 

to a sequence consisting of the indices, which is defined as a multi-MUM index sequence. 

Definition 5.2.4 A multi-MUM index sequence consists of the indexes of all the 

multi-MUMs. It is a permutation of {1.2.3 •.. .• m}. 

A multi-MUM index sequence for the input sequence S, is denoted by 1,. every 

character of which is the index of the corresponding multi-MUM. In our example. the 

67 



four multi-MUMs are labeled as: l=(ab), 2=(e), 3=(d), 4=(c). Sp the four input sequences 

can be transfonned to four multi-MUM index sequences. 

I, 

I, 

I, 

Figure 4: The multi-MUM index sequences of input sequences. 

5.3 Phase 2: Find the Multiple Heaviest Common 

Subsequence as Anchor-chain to Align Anchors 

The inputs of this phase are the multi-MUM index sequences that we got in phase 1. 

Based on the evolutionary relationship among the original genome sequences, certain 

numbers of multi-MUM index sequences are chosen to calculate the anchor-chain. A 

typical bioinformatics trade-off occurs here: large numbers of chosen sequences will 

result a more believable anchor-chain, but the procedure will consume more running time 

and space; small numbers of chosen sequences will use less running time and space but 

probably leads to a relative less accurate anchor-chain. This number choice depends on 

68 



the users' requirements. We weight the multi-MUMs in the crosen multi-MUM index 

sequences based on their length. Afterwards, our chaining algorithm is employed to find 

the heaviest common subsequence to be the anchor-chain. Different associated weights 

will result in different anchor-chains. The weighi; containing evQ1utionary information 

lead to a biologically more meaningful anchor-chain. 

In the example here, we choose the first three sequences as the candidate sequences 

to compute the anchor-chain. "2" is weighed to the multi-MUM I, "]" is weighed to the 

multi-MUM 2, "]" is weighed to the multi-MUM 3 and "]" is weighed to the 

multi-MUM 4. After running our program, we find the heaviest common subsequence of 

the first three sequences is the multi-MUM I. Therefore, we choose the multi-MUM] to 

be the anchor-chain and assemble the three anchor-computing sequences according to the 

selected anchor-chain. 

I, 

/---,~ 

",'::./J I, 

Figure 5: The alignment of the anchor-computing multi-MUM index sequences: Three 

anchor-computing multi-MUM index sequences [1'12,!3 are aligned according to the 

selected anchor-chain multi-MUM I. 

69 



The multi-MUM index sequellces, which are not s~lected to calculate the 

anchor-chain, are aligned according to this chain. That is: place the multi-MUMs, which 

have the same characters as the anchor-chain, to the anchor-chain column. Based on this 

procedure, an alignment for all the anchors is asse;nbled. 

In the example, 14 is appended to the alignment based 9n the multi-MUM I. 

Accordingly, an alignment of all the four multi-MUM illdex sequences is obtained. 

Figure 6: The alignment of all the multi-MUM index sequences: the fourth multi-MUM 

index sequence 14 is appended to the alignment of the three anchor-computing 

multi-MUM index sequences according to the anchor-chain multi-MUM I. 

Therefore, the alignment of the anchorsfMulti-MUMs is: 

d 

d 

Db e 
a b -
abe 
abe 

Figure 7: The alignment of all the anchors. 

70 

d 

d 



5.4 Phase 3: Close Gaps and Get Detaile~ Alignment 

In this phase, the progressive global alignment method is used to ali gn the gap regions 

between the anchors to generate detailed ali gnment. 

The CLUSTAL W program [54] (Appendix A) can be used in/this phase for detailed , 
alignment. Because the target sequences are whole genomes, Mlhich are large-scale 

sequences, a threshold is set for the maximum length of the gaps to evaluate whether they 

shou ld be align or not. If the length of a gap is out of the threshold, the gap will be 

ignored. For our example, the alignment result is: 

d b 

d 

Db e 
a b -
abe 
abe 

d 

d 

Figure 8: The alignment result: the progressive global alignment method is used to al ign 

the characters in the gaps; together with the al igned anchors, the alignment result is 

obtained. 

5.5 Time Complexity Analysis 

In the first phase, a suffix array can be directly constructed in linear time [32]. The lcp 

array and the ps array can be obtai ned from the suffix array in linear time [33]. Hence, in 

the first phase, constructing a suffix array and computing all the multi-MUMs of input 

sequences requires linear time: O(n), where II is the total length of all the input genome 

sequences. 

71 



With the finite automata algorithm [16], the anchor seque~ces can be transferred to 

multi-MUM index sequence in linear time. 

In the second phase, the chaining algorithm for k multi-MUM index sequences works 

in O(m' ) time, where m is the length of the mulli-MUM index sqquence. Then, it takes 

O(k'm) time for the remaining k' sequences to be appended to 1)1e alignment. 

The running time of the third phase depends on the threshold set by the user. 

72 



I' 

Chapter 6 

Conclusions and Future work 

6.1 Conclusions 

We presented an anchor-based model for the global multiple alignment of whole genome 

sequences. Firstly, we introduced some background information on biology and 

bioinfonnatics. Then, we discussed several theories and techniques in computer science. 

Subsequently, we surveyed some existing anchor-based global alignment programs for 

two genome sequences or multiple genome sequences. We described the programs, some 

drawbacks, and their availability information. Next, we proposed a chaining algorithm. 

This algorithm is based on the dynamic programming technique and weighs each anchor 

by a proper weight that is based on evolutionary theory. Our algorithm finds the heaviest 

common subsequence among the weighted anchor sequences. Though we proved the 

MHCS problem is NP-complete, the algorithm works in polynomial time for limited 

sequence inputs. Our algorithm is presented in both the three sequences case and k 

73 



sequences case. We analyzed the running time of both cases. WG ,mplemented the case of 

three sequences by JAVA and verified that different associated weights lead to different 

results. Lastly, we described the whole procedure of our alignment method: first, we 

employed the enhanced suffix array method to find anchors; nex!,)we used our chaining 

strategy to find the anchor-chain and to generate the alignment of lJle anchors; finally, we 

used the progressive multiple alignment tool CLUSTAL W to close the gaps. In the 

second phase of this procedure, in order to make up for the lack of methods for aligning 

distantly related genome sequences, we proposed a novel strategy: the genome sequences 

from close homologs are selected to assemble first, and then distantly related genome 

sequences are appended to the anchor alignment iteratively. This phase produces a more 

meaningful and accurate anchor alignment in terms of both computation and biology. It 

helps our model to assemble more genome sequences at any evolutionary distance. 

Combined with the exact suffix array approach in the first phase, this model leads to a 

high-quality alignment result. 

6.2 Future work 

Scientists usually evaluate sequence alignment programs by applying them to real-world 

data. For functional noncoding DNA, several benchmarking tools have been developed 

recently [46]. For protein alignment, some sets of benchmark sequences are available [55] 

74 



[35]. They have always been used as the standard to ev~luate and compare the 

performance of multiple alignment programs. And for pairwise whole genome alignment, 

several benchmark data also have been compiled [5] [31]. 

As far as we know, there are still no generally accepted reference data to evaluate 
• 

software programs for multiple alignment of genome sequences . at any evolutionary 

distance. Because of this, we are lacking a standard for evaluating our method. We desire 

to test our method on a group of genome sequences in which several are from close 

homologs and others are from distant species. 

Often, a model can be modified and improved. We will continue our research on 

improving and implementing this model to make it more efficient while retaining its 

accuracy_ 

75 



j' 

Bibliography 

[l] Abouelhoda M.I. , Kurtz S. , Ohlebusch E. , "The enhanced suffix array and its 

application to genome analysis." Proceeding of the second workshop on algorithms in 

Bioinforrnatics (2002), Lecture Notes in Computer Science. 

[2] Abouelhoda M.I., Ohlebusch E. , "Multiple Genome Alignment: Chaining Algorithms 

Revisited", Proceeding of the Fourteenth Annual Symposium on Combinatorial Pattern 

Matching (2003): 1-16. 

[3] Anson E.L. , Myers E.W., "ReAligner: a program for refining DNA sequence 

multi-alignments." Journal of Computational Biology 4 (1997): 369-383. 

[4] Apostolico A. and Guerra C. "The longest common subsequence problem revisited." 

Algorithmica 18(1) (1987): I-II. 

[5] Batzoglou S., Pachter L., Mesirov J.P., Berger B., Lander E.S. "Human and mouse 

gene structure: comparative analysi s and application to exon prediction." Genome 

Research !o(7) (2000): 950-958. 

[6] Bray N., Dubchak I. , Pachter L. "AVID: A Global Alignment Program." Genome 

76 



Research 13 (2003): 97-102. 
I' 

[7] Bray N., Pachter L. "MAYID: Constrained Ancestral Alignment of Multiple 

Sequences." Genome Research 14 (2004): 693-699. 

I 
[8] Brudno M., Chapman M., Gougens B., Batzoglou S. , Morgenstern B. "Fast and . 

sensitive multiple alignment of large genomic sequences." BMC Bioinformatics (2003). 

Available from hup:/Iwww.biomedcentral.comlI471-2105/4/66. 

[9] Brudno M., el ai. "LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale 

Multiple Alignment of Genomic DNA." Genome Research 13 (2003): 721-731. 

[10] Brudno M., Morgenstern B. "Fast and sensitive alignment of large genomic 

sequences." In Proceedings IEEE Computer Science Bioinformatics Conference (2002): 

138-147. 

[II] Buhler J. "Efficient large-scale sequence comparison by locality-sensitive hashing." 

Bioinformatics YoU7 (2001): 419-428. 

[12] Burkhard S., el al. "Fast lightweight suffix array construction and checking." CPM 

(2003), LNCS 2676: 55-69. 

[13] Chain P., Kurtz S., Ohlebusch E., Slezak T., "An applications-focused review of 

comparative genomics tools: Capabilities, limitations and future challenges." Briefings 

in Bioinformatics Yol. 4 No.2 (2003): 105-123. 

[14] Jeong-Hyeon Choi, el. ai, "Multiple Genome Alignment by Clustering Pairwi se 

77 



Matches", Proceeding of 2"d RECOMB Comparative GenOlinics Satellite Workshop 

(2004): 30-41. 

[15] Stephen Cook "The P versus NP Problem." (2000) http://www.claymath.org 

[16] Tomas H. Cormen, Charles E. Leiserson: Ronald L. RiNest , Clifford Stein, 

Introduction to Algorithms. The MIT Press, 2001. 

[17] Couronne c., Poliakov A. , Bray N., Ishkhanov T., Ryaboy D., Rubin E., Pachter L. , 

Dubchak I., " Strategies and Tools for Whole-Genome Alignments." Genome Research 

13 (2003): 73-80. 

[18] Darling A. , Mau B., Blattner E, Perna N. "Mauve: Multiple Alignment of Conserved 

Genomic Sequence With Rearrangements." Genome Research (2004). 

[19] Arthur L. Deicher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen 

White and Steven L. Salzberg. "Alignment of whole genomes." Nucleic Acids 

Research Vo1.27, No.11 (1999): 2369-2376. 

[20] Deogun J. S., Yang J., Ma E, "EMAGEN: An Efficient Approach to Multiple Whole 

Genome Alignment." APBC (2004). 

[21] Downey R. G., Fellows M. R. "Fixed-Parameter Intractability (Extended Abstract)." 

In the Proceeding of the Seventh Annual Conference on Structure in Complexity 

Theory. (1992): 36-49. 

[22] Downey R. G., Fellows M. R. Parameterized Complexity. Springer-Verlag, 1998. 

78 



[23] Durbin R., Eddy S., Krogh A. and Mitchison G, Biolog\~al Sequence Analysis. 

Cambridge University Press, Cambridge, 1998. 

[24] Eppstein D., Galil Z., Giancarlo R., Italiano GF. "Sparse dynamic programming I: 

Linear cost functions." JACM 39 (1992): 546-567. 

[25] Michael R. Garey, David S. Johnson, Computers and Intractab!lity: A Guide to the 

Theory of NP-Completeness. New York: W. H. Freeman and Company, 1979. 

[26] Gupta S.K., Kececioglu J.D. , Schaffer A.A. "Improving the Practical Time and Space 

Efficiency of the Shortest-Paths Approach to Sum-of-Pairs Multiple Sequence 

Alignment." J. Computational Biology 2(1995): 459-472. 

[27] Gusfield D., Algorithms on Strings, Trees, and Sequences: Computer Science and 

Computational Biology. Cambridge University Press, 1997. 

[28] Des Higgins, Willie Taylor, Bioinformatics: Sequence, structure and databanks. The 

Oxford University Press, 2000. 

[29] http://cse.stanford.eduJclass/sophomore-college/projects-OO/computers-and-the

hgp/bio.html 

[30] Hohl M., Kurtz S., Ohlebusch E. "Efficient multiple genome alignment." 

Bioinformatics Vol.l8 (2002): S312-S320. 

[31] Niclas Jareborg, Ewan Birney, Richard Durbin. "Comparative Analysis of noncoding 

Regions of 77 Orthologous Mouse and Human Gene Pairs." Genome Research 9(1999): 

79 



815-824. I ' 

[32] Karkkainen J., Sander P. "Simple Linear Work Suffix array Construction." ICALP, 

LNCD 2719 (2003): 943-955. 

., 
[33] Kasai T., Lee G , Arimura H., Arikawa S., Prufk K. "Linear-Time 

Longest-Common-Prefix Computation in Suffix array and it& Applications." CPM, 

LNCS 2089 (2001): 181-192. 

[34] Kent W. J., Zahler A. M. "Conservation, regulation, synteny, and introns in 

large-scale C. briggsae-c.elegalls genomic alignment." Genome Research Vol. 

10(2000): 1115-1125. 

[35] Lassmann T., Sonnhammer E.L.L. "Quality assessment of multiple alignment 

programs." FEBS Letters 529 (2002): 126-130. 

[36] Lipman DJ., Altschul S.P., Kececioglu J.D. "A Tool for Multiple Sequence 

Alignment." Proc. Natl. Acad. Sci. USA 86 (1989): 4412-4415. 

[37] David Maier "The Complexity of Some Problems on Subsequences and 

Supersequences." Journal of the Association for Computing Machinery (1978). 

[38] Manber G Myers G "Suffix arrays: A new method for on-line string searches." 

SIAM J. Comput. 22(5) (1993): 935-948. 

[39] Ernst Mayr What evolution is. New York: Basic Books 2001. 

[40] Morgenstern B., Dress A., Werner T. "Multiple DNA and protein sequence alignment 

80 



based on segment-to-segment comparison." Proc. Nat! Acad. Sci. USA, Vol. 93 (1996): 

12098-12103. 

[41] David W. Mount, Bioinfonnatics - Sequence and Genome Analysis. Cold Spring 

Harbor Laboratory Press, 200 I. 

[42] National Human Genome Research Institute: http://www.genome.gov/. 

[43] Parra G, Agarwal P. , Abril J. F., Wiehe T. , Fickett J. w., Guigo R. "Comparative 

Gene Prediction in Human and Mouse." Genome Research 13 (2003): 108-117. 

[44] M. Paterson and V. Dancik. "Longest common subsequences." In Mathematical 

Foundations of Computer Science, 19th International Symposium (MFCS), Vol.841 of 

LNCS (1994): 127. 

[45] Pietrzak K. "On the parameterized complexity of the fixed alphabet shortest common 

supersequence and longest common subsequence problems." Journal of Computer and 

System Sciences 67 (2003): 757-771. 

[46] Daniel A. Pollard, Casey M. Bergman, Jens Stoye, Susan E. Celniker, Michael B. 

Eisen. "Benchmarking tools for the alignment of functional noncoding DNA." BMC 

Bioinfonnatics 5 (2004): 6. 

[47] Primrose S. B. , Twyman R. M. Principles of Genome Analysis and Genomics. (Third 

edition) Blackwell Publishing, 2003. 

[48] RepeatMasker: AFA. Smit, P. Green. Available from 

8 1 



http://repeatmaskeLgenome.washington.edui j' 

[49] Rick C. "A new flexible algorithm for the longest common subsequence problem." 

In Proceedings of the 5th Combinatorial Pattern Matching, volume 937 of LNCS 

(1995): 340-351. 

[50] Schwartz S. et al. "MuitiPipMaker and supporting tools: alignments and analysis of 

multiple genomic DNA sequences." Nucleic Acid Research Vol.3l , No.13 (2003): 

3518-3524. 

[51] Schwartz S., Kent W. J., Smit A. , Zhang Z., Baertsch R. , Hardison R. C., Haussler D., 

Miller W., "Human-mouse alignments with Blastz." Genome Research 13 (2003): 

103-105. 

[52] Schwartz S., Zhang Z., Fraszer K. et al. "PipMaker - a web server for aligning two 

genomic DNA sequences." Genome Research Vol. 10(2000): 577-586. 

[53] Setubal, J. and Meidanis, J. , Introduction to computational molecular biology. 

Boston , MA: PWS Publishing, 1997. 

[54] Julie D. Thompson, Desmond G. Higgins, Toby J. Gibson. "CLUSTAL W: improving 

the sensitivity of progressive multiple sequence alignment through sequence weighting, 

position-specific gap penaities and weight matrix choice." Nucleic Acids Research, 

Vo1.22, No. 22 (1994): 4673-4680. 

[55] Thompson JD, Plewniak F, Poch 0 "BAliBASE: A benchmark alignment database 

82 



for the evaluation of multiple sequence alignment programs.' ) Bioinformatics 15 (1999): 

87-88. 

[56] TlGR Genomes MUMmer page. 

., 
Available from http://www.tigr.orglsoftware/mummer/ 

[57] Vincens P., Badel-Chagnon A., Andre C. and Hazout S. "D-ASSIRC: distributed 

program for finding sequence similarities in genomes." Bioinformatics 18 (3) (2001): 

246-251. 

[58] Vincens P. , Buffat L., Andre c., Chevrolat J.P. , Boisvieux J.P. and Hazout S. "A 

strategy for finding regions of similarity in complete genome sequences." 

Bioinformatics 14 (8) (1998): 715-725. 

[59] Wang L., Jiang T. "On the complexity of Multiple sequence alignment." Journal of 

Computational Biology, Vol. 1(1994): 337-348. 

83 



Appendix A: 

CLUSTAL W: a tool for progres,sive global 
multiple alignment 

In the last step of our method, we use progressive global multiple alignment tool 

CLUSTAL W [54] to deal with the gaps between anchors. Here, we briefly describe 

CLUSTALW. 

The progressive alignment approach has been proposed to many tools. CLUSTAL W 

is a very classic and successful one. In the first step of this program, dynamic 

programming or heuristic algorithms compute the pairwise alignment cost. Dynamic 

programming gives more accurate scores, however, heuristic methods are faster. In 

CLUSTAL W, it allows to choose either dynamic programming or a heuristic method. In 

the second step, under a given distance matrix between sequences, CLUSTAL W builds a 

guide tree using the Neighbor-Joining algorithm. The third step is to consist of two 

alignments. CLUSTAL W uses profile alignment with position-specific gap penalties. 

CLUSTAL W is a general-purpose progressive global alignment program for 

84 



/' 
biological sequences. It works well and is very commonly used. 

CLUSTAL W is available at: http://www.ebi.ac.uk/clustalw/ 

85 



Appendix B 

Source Code 

/* This code follows the idea in Chapter 4 and can find the heaviest common subsequence 
in three sequences. *1 
import java.io.IOException; 
import java.utiJ.ArrayList; 
import java.utiJ.StringTokenizer; 

/* Entrance*/ 
public class Entrance { 

public static void main(String[] args) throws IOException { 

int[] weightArray = null; 
ArrayList sequences = null; 
boolean weightsNeeded = true; 
boolean sequencesNeeded = true; 
while (true) { 

if (weightsNeeded) { 
byte[] inputs = new byte[O]; 
inputs = new byte[1024]; 
System.out.print("Please enter the WEIGHTs for A,B,C,D(seperated 

by comma or space, optional):"); 
System.in.read(inputs); 
String strWeights = new String(inputs); 
strWeights = strWeights.substring(O, strWeights.indexOf('\n'»; 

ArrayList weightlist = new ArrayListO; 

86 



if (! ..... equals(strWeights.trimO)) ( 
I' 

for (StringTokenizer stringTokenizer 
StringTokenizer(strWeights, ", .. ); stringTokenizer.hasMoreTokensO;) ( 

String s = stringTokenizer.nextTokenO.trimO; 
try ( 

weightlist.add(new Integer(Integer.parseInt(s))); 
) catch (NumberFormatException e) .1 
) 

weightAlTay = new int[]( I, I, I, I); 
int loop = weightlist.sizeO < 4 ? weightlist.sizeO : 4; 
if (!weightlist.isEmpty()) { 

for (int i = 0; i < loop; i++) { 
weightArray[i] = ((Integer) weightlist.get(i)).intValueO; 

new 

System.out.println(new StringBufferO.appendC'The strWeights are: .. ) 
.append(weightAlTay[O]) 
.appendC', .. ) 
.append(weightAlTay[1 ]) 
.appendC', .. ) 

.append(weightAlTay[2]) 

.appendC', .. ) 

.append(weightAlTay[3]).toStringO); 
) else { 

weightsNeeded = true; 

if (sequencesNeeded) { 
char[] xyz = new char[]('X', 'Y', 'Z'); 
sequences = new AlTayListO; 
for (int i = 0; i < xyz.length; i++) { 

System.out.printC'Please enter sequence" + xyz[i] + ":"); 
byte[] inputs = new byte[1024]; 
System.in.read(inputs); 
String sequence = new String(inputs); 
sequence = sequence.substring(O, sequence.indexOf('\n')); 

87 



} else ( 

sequence = sequence.toUpperCase(); I' 
System.out.println("sequence = " + sequence); 
sequences. add(sequence); 

sequencesNeeded = true; 

Weighted weighted = new Weighted(weightArrpy[O], weightArray[J], 
weightArray[2], weightArray[3]); 

int res weighted.func«String) sequences.get(O), (String) 
sequences.get(1), (String) sequences.get(2)); 

if (res == 0) ( 
System.out.println("\nThe result is: " + weighted.getResult()); 
System.out.print("Another testing sequences?(Y/N)"); 
byte[] inputs = new byte[1024]; 
System.in.read(inputs); 
String answer = new String(inputs); 
answer = answer.substring(O, answer.indexOf(\n')).trim(); 
if ("Y".equalsignoreCase(answer)) ( 

weightsNeeded = false; 
) else ( 

System.exit(O); 

} else ( 
System.out.println("lnERROR: Invlid strWeights populated. Please 

select another weights for A,B,C,D."); 
sequencesNeeded = false; 

I*Weighted*1 
public class Weighted ( 

privateintWA= I; 
private int WB = I; 
private int WC = I; 
private int WD = I; 

88 



private StringBuffer result = new StringBufferO; 

public Weighted(int WA, int WB, int WC, int WD) { 
this.WA = WA; 
this.WB = WS; 
this.WC = WC; 
this.WD = WD; 

l' 

, 
public int func(String stringX, String stringY, String stringZ) {, 

stringX = stringX.toUpperCaseO.trimO; 
stringY = stringYtoUpperCaseO.trimO; 
stringZ = stringZ.toUpperCaseO.trimO; 
int I = stringX.lengthO; 
int m = stringYlengthO; 
int n = stringZ.lengthO; 
int[][][] matrixC = new int[l][m][n]; 
int[][][] matrixD = new int[l][m][n] ; 
for (int i = 0; i < matrixC.iength; i++) { 

int[][] ints = matrixC[i]; 
for (intj = O; j < ints.length; j++) { 

int[] anInt = ints[j]; 
for (int k = 0; k < anlnt.1ength; k++) { 

char xi = stringX.charAt(i); 
char yj = stringYcharAt(j); 
char zk = stringZ.charAt(k); 
boolean can = i * j * k != 0; 

if (xi == yj && yj == zk) { 
int tmp=O; 
if (can) { 

tmp = matrixC[i - I]li - l][k - I]; 

matrixD[i]li][k] = I ; 
switch (xi) { 

case 'A': 
matrixC[i][j][k] = tmp + WA; 
break; 

case 'B': 

matrixC[i]li][k] = tmp + WE; 

89 



break; I' 

case 'C': 
matrixC[iJlj][k) = tmp + WC; 
break; 

case'D': 

matrixC[!Ju][k) = tmp + WD; 
break; 

default: 

} else if (can && matrixC[i - IJ1j][k) max(matrixC[i -
I)U][kJ, matrixC[iJlj - I][k), matrixC[iJlj][k - I))) { 

matrixC[iJlj][k) = matrixC[i - IJ1j][k); 
matrixD[iJlj][k) = 0; 

else if (can && matrixC[iJlj - l][k) == max(matrixC[i -
I)U][kJ, matrixC[i)U - l][k) , matrixC[iJlj][k - I))) { 

try { 

matrixC[iJlj][k) = matrixC[iJlj - l][k); 
matrixD[iJlj][k) = 0; 

} else if (can) { 
matrixC[iJlj][k) = matrixC[iJlj][k - 1); 

matrixD[i)U][k) = 0; 

func2(matrixD, matrixC, stringX, I - 1, m - 1, n - 1); 
} catch (Exception e) { 

return-I; 

return 0; 

private int max(int x, int y, int z) { 
int m = x > y ? x : y; 
return m > z ? m : z; 

private void func2(int[)[)[) matrixD, int[)[J[) matrixC, String X, int i, int j, int k) 

90 



throws Exception ( 

if(i <0 Iii <0 II k<O) { 
return; 

try { 

I' 

if (matrixD[iJlj)[k] == 1) ( 1 
func2(matrixD, matrixC, X, i - l,j - 1, k - 1);' 
result.append(X.char A t(i)); 

} else if (matrixC[i - l]li][k] == max(matrixC[i - l]li)[k], matrixC[i]li -
l)[k], matrixC[i]li)[k - 1])) { 

func2(matrixD, matrixC, X, i - l,j, k); 
} else if (matrixC[i]li - l)[k] == max(matrixC[i - l]li)[k], matrixC[i]li -

l)[k], matrixC[i]li)[k - 1])) ( 
func2(matrixD, matrixC, X, i, j - 1, k); 

} else { 
func2(matrixD, matrixC, X, i,j, k - 1); 

} catch (Exception e) { 
throwe; 

public String getResultO { 
return result.toStringO; 

91 



I' 






	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Title Page
	0005_Abstract
	0006_Acknowledgements
	0007_Table of Contents
	0008_Page v
	0009_Page vi
	0010_List of Figures
	0011_Chapter 1 - Page 1
	0012_Page 2
	0013_Page 3
	0014_Page 4
	0015_Page 5
	0016_Page 6
	0017_Page 7
	0018_Page 8
	0019_Page 9
	0020_Chapter 2 - Page 10
	0021_Page 11
	0022_Page 12
	0023_Page 13
	0024_Page 14
	0025_Page 15
	0026_Page 16
	0027_Page 17
	0028_Page 18
	0029_Page 19
	0030_Page 20
	0031_Page 21
	0032_Chapter 3 - Page 22
	0033_Page 23
	0034_Page 24
	0035_Page 25
	0036_Page 26
	0037_Page 27
	0038_Page 28
	0039_Page 29
	0040_Page 30
	0041_Page 31
	0042_Page 32
	0043_Page 33
	0044_Page 34
	0045_Page 35
	0046_Page 36
	0047_Page 37
	0048_Page 38
	0049_Page 39
	0050_Page 40
	0051_Page 41
	0052_Page 42
	0053_Page 43
	0054_Page 44
	0055_Chapter 4 - Page 45
	0056_Page 46
	0057_Page 47
	0058_Page 48
	0059_Page 49
	0060_Page 50
	0061_Page 51
	0062_Page 52
	0063_Page 53
	0064_Page 54
	0065_Page 55
	0066_Page 56
	0067_Page 57
	0068_Page 58
	0069_Page 59
	0070_Chapter 5 - Page 60
	0071_Page 61
	0072_Page 62
	0073_Page 63
	0074_Page 64
	0075_Page 65
	0076_Page 66
	0077_Page 67
	0078_Page 68
	0079_Page 69
	0080_Page 70
	0081_Page 71
	0082_Page 72
	0083_Chapter 6 - Page 73
	0084_Page 74
	0085_Page 75
	0086_Bibliography
	0087_Page 77
	0088_Page 78
	0089_Page 79
	0090_Page 80
	0091_Page 81
	0092_Page 82
	0093_Page 83
	0094_Appendix A
	0095_Page 85
	0096_Appendix B 86
	0097_Page 87
	0098_Page 88
	0099_Page 89
	0100_Page 90
	0101_Page 91
	0102_Blank Page
	0103_Inside Cover
	0104_Back Cover

