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Abstract 

In this thesis, we focus on the discontinuous Galer kin (DG) methods for the func

tional integra-differential equations and on the cascading multigrid (CMG) methods 

for the parabolic PDEs, Volterra integra-differential equations (VIDEs) and Fred

holm equations. 

We give both a priori and a posteriori error estimates of the DG method for linear, 

semilinear and nonstandard VIDEs. Furthermore the superconvergence of the mesh

dependent Galerkin method for VIDEs is also considered. The fully discretized DG 

method for VIDEs is also analyzed. Numerical examples are provided to compare 

the DG method with the continuous Galerkin (CG) method and the continuous 

collocation (CC) method. We study the primary discontinuities of several classes of 

VIDEs with time dependent delays, which include the functional VIDEs of Hale's 

type , delay VIDEs with weakly singular kernels and delay VIDEs of neutral type 

(with weakly singular kernels). According to the regularity information established, 

we construct an adaptive DG method for functional VIDEs of Hale's type. 

Two new cascading multilevel algorithms are analyzed to the semi-linear parabolic 

PDEs and extended to the partial Volterra integra-differential equations (PVIDEs) 

and the parabolic PDEs with delays. More distinctly the cascading multigrid method 

could very well solve the Fredholm equations without dealing with the full stiffness 

matrix directly. Therefore we can save much more computing time. Most im-



portantly, we contribute to the multigrid arts by developing an abstract cascading 

multigrid method in Besov spaces and a discontinuous Galerkin cascading multigrid 

method. We extend these methods to evolutionary equations and PVIDEs. Finally, 

we discuss briefly the future works on (partial) VIDEs with blow-up solutions and 

artificial boundary methods for PVIDEs on unbounded domains. 
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Chapter 1 

The discontinuous Galerkin 
Inethod for ODEs: an introduction 

The discontinuous Galerkin (DG) method can be traced back to 1973 when Reed 

and Hill used it to solve the neutron transport problem. The DG method was 

first analyzed in 1974 by Lesaint and Raviart in the application to ODEs. Since 

DG methods assume discontinuous approximate solutions, they can be considered 

as generalizations of finite volume methods. What makes DG methods popular 

is that they are able to capture the physically relevant discontinuities of the exact 

solutions without producing spurious oscillations near them. A more detailed history 

of DG methods for ODEs and PDEs will be presented at the end of this chapter, in 

Section 1.4. 

1.1 The DG method for ODEs 

1.1.1 Basic description of the DG method for ODEs 

Consider the initial value problem 

y'(t) = f(t, y(t)), t E I:= [0, T], y(O) =Yo, (1.1.1.1) 

1 
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and assume that the (Lipschitz continuous) function f : I x f2 c IR ~ IR is such 

that ( 1.1.1.1) possesses a unique solution y E C 1 (I) for all Yo E f2. Let 

Ih := { tn : 0 = to < t1 < · · · < tM < · · · < tN = T} 

be a given mesh on I, and set In := (tn-l, tn], ln := [tn-l, tn], hn := tn- tn-l (n = 

1, ... , N- 1); h := max{hn : 1 < n < N- 1} will be called the diameter of the 

mesh Ih. Note that we have, in rigorous notation, 

We will usually suppress this dependence on N, the number of subintervals corre-

sponding to a given mesh Ih, except occasionally in the convergence analysis where 

N ~ CXJ with Nh(N) uniformly bounded. At the mesh points the left- and right-

sided limits of piecewise continuous functions <p : I ----+ IR will be important. They 

are defined as follows: 

<p-:; := lim <p(tn + s), 0 < n < N- 1; <.p;;_ := lim <p(tn- s), 1 < n < N. 
s---+0, s>O s---+0, s>O 

The jump across the mesh points is given by [<p]n := <p~ - <p:;;_. 

In the DG method, we are looking for an approximate solution of (1.1.1.1) in the 

finite space 

(1.1.1.2) 

where p(m) (In) denotes the space of all (real) polynomials of degree not exceeding 

m. We define the DG method for (1.1.1.1) as: Find Y E v1m) such that 

Bvc(Y,X) = Y0- Xt, VX E V(m) 
N' (1.1.1.3) 
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where Y0 = Yo and 

M M 

Bnc(Y, X) := L 1 (Y'(t)- f(t, Y))X dt + L[Y]n-lx:-1 +yo+ xt' (1.1.1.4) 
n=l In n=2 

Note that the exact solution y of (1.1.1.1) satisfies 

Hence the Galerkin orthogonality property, 

Bnc(Y- Y,X) = 0, 'r/X E V(m) 
N1 (1.1.1.5) 

holds true. We remark also that the DG method (1.1.1.3) can be interpreted as a 

time-stepping scheme: For n = 1, · · · , N, find YIIn E p(m)(fn), such that 

{ (Y'- f(t, Y))Xdt + Yn~ 1X:_ 1 = Yn~1X:_1 , 'r!X E p(m)(Jn)· 
}In 

Here we set Y0- := Yo· 

(1.1.1.6) 

In order to make the readers capture the basic idea of DG methods for ODEs 

easily, we shall first introduce the DG method with piecewise constant approximation 

(i.e., m = 0 in (1.1.1.2)); it will be denoted by DG(O). If piecewise linear polynomial 

approximation (m = 1) is used, we write DG(1). For more general DG schemes 

with high-order polynomial approximation, we refer to Section 1.2. Here we also 

remark that an analogous analysis holds for systems of ODEs if the products are 

replaced by the corresponding inner products in JRd (d denotes the dimension of the 

systems) [see for example Section 1.2]. Throughout this thesis we define the norm 

II ·IIJ :=sup I· I, where J is some compact interval. 
tEJ 

1.1.2 A priori error estimate for ODEs 

In this section we study the a priori error analysis of DG methods for ODEs. 
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Theorem 1.1.2.1. Assume that f has continuous partial derivatives and there is a 

constant L > 0 such that 

(1.1.2.1) 

for all t E I and y1 , y2 E fl. Then there exists a constant C, independent of hn, 

such that for 0 < M < N, the error of DG(m) for {1.1.1.1) satisfies 

(1.1.2.2) 

with C := C(L, tM) and m = 0, 1. 

Proof. If V E v1m) is determined by Yo-= Yo and, for 1 < n < M < N, by 

(1.1.2.3) 

for all X E V1m) (m = 0, 1), then 

(1.1.2.4) 

(See Estep [43] for the proof of (1.1.2.4)). We now compare Y to V. Setting 

p, := y- V and ¢ := Y- V E V1m), we have e = p,- ¢. We subtract (1.1.2.3) from 

(1.1.1.6) and obtain 

{ ¢'Xdt- j (f(t, Y)- f(t, y))X(t)dt + ¢~_ 1 X;t_ 1 = ¢;;_1X;t_1 , 

vlln In 
(1.1.2.5) 

for all X E v1m). Choosing X = ¢ leads to 

(1.1.2.6) 

Subsequently, we arrive at 

(1.1.2.7) 
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We now substitute e = J.l- ¢ into (1.1.2. 7) to find that 

(1.1.2.8) 

Next we choose X= (t- tn_ 1 )¢' in (1.1.2.5) to obtain 

Since 

we find that 

(1.1.2.9) 

provided that 1
3
6 L2h~ < !· 

By combining (1.1.2.8) and (1.1.2.9), we see that 

(1.1.2.10) 

Now we iterate (1.1.2.10), assuming 12Lhn < !· This yields 

(1.1.2.11) 

Theorem 1.1.2.1 follows from (1.1.2.11) directly when m = 0. For m = 1, we use 

equation (1.1.2.6) and the fact that¢ E v1=) implies that il¢ilt < i¢~_ 1 , 2 + 1¢;;-1 2
, 

to obtain 

An analogous argument establishes Theorem 1.1.2.1 for m = 1. We also refer to 

Estep [43] for the original proof of Theorem 1.1.2.1. 
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Corollary 1.1.2.1. Assume j(t, y) := -a(t)y(t) + g(t) in {1.1.1.1} where a, g are 

continuous on each interval In (1 < n < N), and set A:= !Iaili· Then there exists 

a constant C, independent of h, such that the error of DG(m) satisfies 

with C := C(tM, A) and m = 0, 1. 

1.1.3 A posteriori error estimates for ODEs 

The a posteriori error analysis is based on representing the error in terms of the 

solution of a continuous dual problem related to (1.1.1.1), which is used to determine 

the effects of the accumulation of errors, and in terms of the residual of the computed 

solution, which measures the propagation of error. After showing the stability of the 

dual problem, we can estimate the a posteriori error bound of DG(m). The details 

for the DG(O) method can be found in the book [45]. 

Theorem 1.1.3.1. Assume j(t,y) = -a(t)y(t) + g(t) in {1.1.1.1} where a, g are 

continuous on each interval In (1 < n < N), and let m = 0, 1. Then the a posteriori 

error of DG{m) at the mesh point tM (0 < M < N) satisfies 

IY+ -Y- I 
where IR(Y)I := n-\n n-l + lg- aYI (t E In) and II. II := maxl~n~M{II. IIIn}. If 

A:= I Iaili, then S(tM) < exp(AtM) and if, in addition, a(t) > 0 for all t E I, then 

S(tM) < 1. 

Proof. The proof for DG(O) is in [45]. The analysis of a posteriori error estimate of 

DG(l) for (1.1.1.1) is similar to DG(O). We give the details as follows. 



7 

Firstly we consider the continuous dual problem for (1.1.1.1): Find x = x(t) such 

that 

{ 
- x' + a ( t) ~ = 0, for t M > t > 0, 
x(tM) =eM, 

(1.1.3.1) 

where we denote by e(t) := y(t) - Y(t) the error at the time t and set e"M .

y(tM)- YM. Starting from the identity 

M 

(e"M )2 
= (e"M )2 + L j e · ( -x' + a(t)x)dt, 

n=1 In 

we integrate by parts over each subinterval In to obtain 

M M-1 

(e"M) 2 = L j (e' + a(t)e)xdt + L [e]nx~ +(Yo- Y0+)xt. 
n=1 In n=1 

(1.1.3.2) 

Using Y0- =Yo, we can simplify (1.1.3.2) to 

M 

(e"M) 2 = L(l (g-aY- Y')xdt- [Y]n-1X~_ 1 ). 
n=1 In 

We use the Galerkin orthogonality (1.1.1.5) by choosing X = x to be the £ 2 projec

tion into the space v~> and obtain the error representation formula: 

M 

(e"M) 2 = L(j (g- aY)(x- x)dt- [Y]n-1(x- x)~-1). 
n=1 In 

From the error estimates of interpolation: 

we arrive at 

(e"M)2 

f. lx- xldt < hn f. lx'ldt; lx- xi < jlx'ldt, 
~ ~ ~ 

< 

< 

< 

< 

t, {liB- aYIII. L lx- Xldt+ I[Y~:- 1 I hnlx- XI} 

t, { hnll(lg- aYI + I!YI:-11 )III. L lx'ldt} 

max .{hnll(lg- aY I + I[Yln-1I)11In} tM lx'ldt 
1::;n::;M n Jo 

S(tM) ·le"Mi·llhnR(Y)Ii[o,tMJ' (1.1.3.3) 
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where IR(Y)I := lg- aYI + lfYl:- 11 • The stability factor S(tM) is defined by 

For the estimate of S ( t M), we give the following lemma. 

Lemma 1.1.3.1. If A:= llallh then the solution x of (1.1.3.1) satisfies 

lx(t)l < exp(AtM)ieM-1, 

for all 0 < t < tM and S(tM) < exp(AtM ). If, in addition, a(t) > 0 for all t E I, 

then x satisfies 

for all 0 < t < tM and S(tM) < 1. 

Proof. The proof can be found in [45). 

By combining Lemma 1.1.3.1 and (1.1.3.3) we complete the proof of Theorem 1.1.3.1. 

The following theorem gives a measure for the efficiency of the a posteriori esti-

mator in Theorem 1.1.3.1. 

Theorem 1.1.3.2. Assume f(t, y) = -a(t)y(t) + g(t) in {1.1.1.1} and that a, g are 

continuous on each interval In (1 < n < N), and let A:= I Iaili· Then we have 

iy(tM)- YMI < S(tM)ilhnR(Y)Ii[o,tM] 

< CS(tM)(1 + AtMeCAtM) 112 hiiY'Iho,tMJ' 

forO< M < N. 



9 

Proof. We need to estimate llhR(Y)II[o,tM] in Theorem 1.1.3.1 and Theorem 1.1.3.1: 

IIIYn~l- Yn-=:..11 + hnlg- aYIII[o,tM] 

IIYn~l - Y + Y - Yn-=:..lll[o,tM] 

+ hniia(t)y(t)- a(t)Y(t)ii[o,tM] + hiiY'Iho,tM] 

< (2 + A)lie(t)il[o,tM] + hiiY'II[o,tMJ· 

Upon applying Corollary 1.1.2.1, we complete the proof. 

(1.1.3.4) 

1.2 Mesh-dependent Galerkin methods for ODEs 

In this section we survey the paper Delfour and Dubeau [40] and discuss the mesh

dependent Galerkin methods (including the discontinuous Galerkin method) for 

ODEs and the corresponding superconvergence results. 

1.2.1 Mesh-dependent Galerkin methods for ODEs 

Consider the following system of ODEs, 

y'(t) = j(t, y(t)), t E I:= [0, T], y(O) =Yo, (1.2.1.1) 

where y0 E D C JRd, with d > 1, and y : [0, T] ----+ D is a vector function and 

f : n X [0, T] ----+ n is a given map such that (1.2.1.1) possesses a unique solution 

for all y0 E n. Before we begin the analysis, we formulate some notations and 

definitions. 

(i) Define the inner product: 

d 

x · Y = L XiYi, x = (xi, ... , xd), y = (yi, ... , Yd) E IRd. 
i=l 
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(ii) V([a, b]; D) is the space of p-integrable (1 < p < oo) or essentially bounded 

functions (p = oo); 

(iii) Hk([a, b]; D) is the Sobolev space of functions with derivatives through order 

k in L 2 ([a, b]; D) (k is a nonnegative integer); 

(iv) C([a, b]; D) denotes the space of continuous functions; 

(v) p(m)([a, b]; D) is the space of all polynomials of degree not exceeding m; 

(vi) ll·ll=,n :=sup 1·1, where I· I is the Euclidean norm; define, for nonnegative 
tEln 

integer k, 
k 

II· ll~,n := L(·(i), .(i))n, 
i=O 

where (·, ·)n denotes the inner product in L 2 (In; D); define also 

N 

II · II= := max{ll · ll=,n : n = 1, · · ·, N}; II · II~ := L II · lltn· 
n=l 

Now we present the weak form of (1.2.1.1). On each interval In, form the inner 

product of (1.2.1.1) with Vn in H 1 (In; D) and integrate by parts: 

(1.2.1.2) 

where f(y) denotes the function t --+ j(t, y(t)) : [0, T] --+ D. Then sum over all n 

equations (1.2.1.2), observing (1.2.1.1) to obtain the following variational equation: 

N-l 

Y (to) · [Vo - V1 (to)] + L Y (tn) · [ Vn ( tn) - Vn+ 1 ( tn)] + Y ( t N) · V N ( t N) 
n=l 

N N 

L j Y · v'ndt =Yo· Vo + L j f(y) · Vndt, 
n=l In n=l In 

(1.2.1.3) 

which is to hold for all 

N 

v := (Vo, vl, ... 'VN) E v := D X II H 1(In; D). 
n=l 
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The space V will be endowed with the norm 

This suggests the following variational problem: Find 

N 

u := (Uo, 0 0 ° l UN, u1,o 0 0 l UN) E u := nN+1 
X II L 2 (In; n), 

n=1 

such that 

N-1 

Uo o [Vo- v1(to)] + 2::: Uno [vn(tn)- Vn+1(tn)] +UN ° VN(tN) 
n=1 

N N 

~ 1. Un · v'ndt =Yo· Vo + ~ 1. f(u,) · Vndt, \IV E V. (1.2.1.4) 

Locally, the weak form (1.201.4) is equivalent to finding Un in L 2 (In; n) and Un inn 

such that 

{ 

Uo =Yo, 

Un ° Vn(tn) = Un-1 ° Vn(tn-1) + 1n [un ° V1 n + f(un) · Vn]dt, 
(1.201.5) 

for all Vn E H 1(In; n) and n = 1, 0 0 0 l No 

Theorem 1.2.1.1. [Delfour and Dubeau (1986)] 

(a) There exists a unique solution u E U to the variational equation {1020104)0 

(b )Moreover, 

where y is the solution of problem {1020103) and YIIn denotes the restriction of the 

function y to the interval In 0 

Now we introduce the Galerkin scheme corresponding to the weak form (1.201.5)0 

Define the finite-dimensional subspaces Uh of U, and Vh of V as follows: 

u - {- I uh = (U~, 0 0 0 l UfV, u?, 0 0 0 l u'Jv) E u such that u~ E p(m)(fn; n) } 
h - uh subject to J (> 0) additional conditions for n = 1, .. 0 , No ' 
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V _ {v I vh = (Voh, v?, ... , vR,) E V such that } 
h- h v~ E p(m+1-J)(Jn; 0) for n = 1, ... , N. ' 

where m and J are nonnegative integers such that m + 1- J > 0. Note also that 

dimUh = (1 + (m + 2- J)N] dimO =dim Vh. 

With the above definition, the approximation scheme for (1.2.1.5) is defined to find 

uh in Uh such that Uo = Yo and 

{ 
u~. v~(tn)- J u~-v~' dt = u~-1. v~(tn-1) + J f(u~). v~dt, 

In In 
J additional conditions on u~, 

(1.2.1.6) 

for all v~ in p(m+1-J)(Jn; 0) and n = 1, ... , N. Delfour and Dubeau (40) showed 

that (1.2.1.6) possesses a unique solution whenever his small enough. 

Remark 1.2.1.1. 

{i) For J = 0 we obtain the completely discontinuous Galerkin methods; 

{ii) For 0 < J < m + 1, and on each interval In, the J conditions are of the form 

(1.2.1. 7) 

where nl E {0, ... , N}. These Galerkin methods will be referred to as nodal 

methods: 

{1) for J = 1, i.e., u~(tn) = U~, n = 1, ... , N, the nodal method coincides 

with the DG scheme of Lesaint and Raviart {82}. 

{2) for J = 2, i.e., u~(tn-1) = u~-1 (tn-1) = u~-11 the nodal methods become 

the continuous Galerkin methods of Hulme {73} {74}. 

{3) for J = m + 1 in the nodal methods, we obtain multistep methods {see 

e.g., Butcher {30}}. 
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(4) for J < m+ 1, the nodal methods reduce to hybrid methods (see e.g., Gear 

(50}). 

(iii) for J = 1, on each interval In, 

the method is called the a-method (see Delfour, Hager and Trochu (41}). 

1.2.2 Superconvergence 

Now we establish the convergence results in two main theorems. The first theorem 

shows that if the solution of (1.2.1.1) belongs to Hm+1 ([0, T]; 0), the L 2 and nodal 

errors are proportional to hm+l. The second theorem states that under appropriate 

assumption on the function f there is an asymptotic superconvergence at the mesh 

points proportional to h 2m+2-J (0 < J < m + 1). We assume that h is sufficiently 

small, in order to guarantee the existence of a unique solution u to (1.2.1.6). C will 

denote a generic constant independent of h. 

Theorem 1.2.2.1. [L2 and Nodal Errors] 

Assume that the solution y of (1.2.1.1} belongs to Hm+1 ([0, T]; 0). ForM > 1, 

assume that on the first M - 1 intervals the solution of ( 1. 2.1. 6) is such that 

and for j = 0, ... , m + 1, 

Thus, 
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and for j = 0, ... , m + 1, 

where uh = I::Z"=l UnXIn and ll·llj := { I::Z"=l II · ll],n} 
112

. Here XIn is the character

istic function of In. 

Proof. See Delfour and Dubeau (40]. It can also be found in Chapter 2 as a special 

case of Theorem 2.6.1.1. 

Theorem 1.2.2.2. (Superconvergence] 

Assume that the assumptions of Theorem 1. 2. 2.1 hold. Assume also that 

(i) the matrix 

A(t) := (ai,j(t))1,j=l, 

with ai ,j := ~~;(t,y), exists and that its columns belong to Hm+l-J([O ,T];O), 

and 

(ii) there exist a neighborhood V of the origin y in n and a positive constant B 

such that 

lf(t, x)- f(t, y)- A(t)(x- y)l <Ely- xl 2
, 

for all t and all x in y + V. Then, 

max{IU~- y(tn)l: n = 0, · · ·, N} < Clluh- Yllo[hm+l-J + lluh- Yllo] 
< Ch2m+2-J 

Proof. See Delfour and Dubeau (40]. It will also be derived in Chapter 2 as a special 

case of Theorem 2.6.1.2. 
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1.3 The discretized DG method for ODEs 

The discussion in this section originates from Brunner [23], which is based on Lesaint 

and Raviart [82). 

1.3.1 The comparison of the discretized DG method with 
the collocation method 

We recall the DG time-stepping scheme for (1.1.1.1): For n = 1, · · · , N, find Yl 1n E 

p(m)(Jn), such that 

1 (Y'- f(t, Y))Xdt + Yn~ 1X:_ 1 = Y~1X:_ 1 , VX E p(m)(In)· 
In 

(1.3.1.1) 

Here we set Yo- := y 0 . Suppose now that the integrals in (1.3.1.1) are approximated 

by interpolatory (m + 1)-point quadrature formulas with abscissas tn,j := tn + 

Cjhn (0 =: Co < c1 < ... < Cm < 1) and weights Wj (j = 0, 1, ... , m). We denote 

the resulting discretized DG solution in v}vm) by Y. The fully discretized version of 

(1.3.1.1) is then given by 

m 

j=O 

(1.3.1.2) 

for all X E p(m) (In). Let 

Yn := Y(t~), Yn,o := Y(t~) (= Y(t~.o)), Yn,j := Y(tn,j) (j = 1, ... , m), 

and let Lj ( v) be the jth Lagrange canonical polynomial (of degree m-1) correspond

ing to the points {ci: i = 1, ... , m}. Moreover, denote by {Xj : j = 0, 1, ... , m} a 

(canonical) basis for p(m) (In) so that 
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Since the restriction of Y' to In is a polynomial of degree m - 1 we may write 

m 

Y'(tn + vhn) = :L Lj(v)Y'(tn,j), V E (0, 1], 
j=l 

and hence 

(1.3.1.3) 

On the other hand, (1.3.1.2) with X = X 0 yields 

hnwo[Y'(tn,o)- f(tn,o, Y(tn,o)] + Y(t;;)- Y(t~) = 0, 

implying that 

m 

Y(t;;) = Yn + hnwo[f(tn,o, Y(t;;))- 2: Lj(Co)Y'(tn,j)]. (1.3.1.4) 
j=l 

For X Xi (i = 1, ... , m), with Xi(tn,J) = 6i,J, we obtain from (1.3.1.2) the 

equations 

where wi =/:. 0. This result can be used in (1.3.1.4) to produce 

m 

Y(t;;) = Yn + hnwof(tn,o, Y(t;;)) - hn 2: WoLj(co)f(tn,j, Y(tn,j)). (1.3.1.5) 
j=l 

The identity (1.3.1.3) allows us to write 

m 

Y(tn,i) = Y(t;;) + hn :L {Jj(Ci)J(tn,j, Y(tn,j)), (1.3.1.6) 
j=l 

with 

fJJ(v) := 1v Lj(s)ds (j = 1, ... , m), 

and fJJ(Ci) =: ai,j· Hence, setting Yn,i := Y(tn,i) and recalling (1.3.1.5) we obtain 

m 

Yn,i = Yn + hnwof(tn,o, Y(t;;)) + hn :L[ai,j- woLj(co)]f(tn,j, Yn,j) 
j=l 

(1.3.1.7) 
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(i =I, ... ,m). The equations (1.3.1.5) and (1.3.1.7) formasystemofm+I nonlinear 

algebraic equations for Yn := ( Y(t;t"), Yn,1, ... , Yn,m )T E JR.m+l: its form closely 

resembles the one corresponding to collocation at the points {tn,o, tn,1, ... , tn,m}· 

We now show that these equations may indeed be interpreted as the stage equations 

of an implicit (m + I)-stage Runge-Kutta method. Let bJ := f3J(I) (j = I, ... , m), 

and observe that 

1 m 

bJ = 1 LJ(s)ds = L wkLJ(ck) = w 0 LJ(c0 ) + Wj, 
O k=O 

because our interpolatory (m+ I)-point quadrature formula is exact for polynomials 

of degree not exceeding m. This leads to the relationship 

and hence by (1.3.1.7) to 

m 

Yn+l := Y(t~+l) = Yn + hn L Wjf(tn,j, Yn,j)· 
j=O 

(1.3.1.8) 

We conclude that (1.3.1.7) together with (1.3.1.5) and (1.3.1.8) represents a collocation

based (m + I)-stage implicit Runge-Kutta method for (l.l.l.I). We summarize the 

above discussion as the following theorem. 

Theorem 1. 3 .1.1. The fully discretized D G scheme ( 1. 3.1. 2) may lead to the collocation

based (m +I)-stage implicit Runge-Kutta method {(1.3.1.7), (1.3.1.5), (1.3.1.8)} for 

(1.1.1.1). 

1.4 History of the DG methods for ODEs 

In I974, Lesaint and Raviart (82] gave the first analysis of the discontinuous Galer kin 

method when applied to ordinary differential equations. They showed that the 
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method is strongly A-stable and has order 2m+ 1 at the mesh points, and that the 

Gauss-Radau discretization of the DG method is also of order 2m+ 1 when piecewise 

polynomials of degree m are used. 

In 1981, Delfour, Hager, and Thochu [41] introduced a class of DG methods, 

the so called a-methods, for which they proved that the global £ 2-convergence and 

nodal convergence rates are m + 1 and 2m+ 1. It is interesting that in 1986 Delfour 

and Dubeau [40] (refer to Remark 1.2.1.1 in Section 1.2.1) considered the discontin

uous Galerkin method based on the mesh-dependent variational framework, which 

includes the "completely discontinuous" Galerkin methods, the a-methods, the con

tinuous Galerkin methods, one-step methods of the Runge-Kutta type, hybrid and 

multi-step methods as special cases. It is shown that the convergence rate in the 

£ 2-norm ism+ 1. The nodal-convergence rate can go up to 2m+ 2, depending on 

the particular scheme under consideration. 

In 1988, Johnson [77] gave an analysis of error control for the DG method for stiff 

ODEs and later in 1995, Estep [43] extended this analysis to general non-autonomous 

ODEs. 

Recently Schotzau and Schwab [96] analyzed the hp-version of the discontinuous 

Galerkin methods. New a priori error bounds explicit in the time steps and in the 

approximation orders are derived and it is proven that the DG method gives spectral 

and exponential accuracy for problems with smooth and analytic time dependence, 

respectively. It is further shown that temporal singularities can be resolved at ex

ponential rates of convergence if geometrically refined time steps are employed. 

The readers may wish also to consult the 2000 survey paper [31] by Cockburn 

et al. for more applications of discontinuous Galerkin methods and for an extensive 

list of references. 



Chapter 2 

The discontinuous Galerkin 
method for VIDEs 

The discontinuous Galerkin method for Volterra integral equations was first studied 

by Shaw and Whiteman [99] in 1996 extending the approach of [77] and [45]. In [99], 

they studied the discontinuous Galerkin method with a posteriori Lp([O, ti]) error 

estimate for linear second-kind Volterra equations (compare [100]). Later in 1998 

Larsson, Thomee, and Wahlbin [80] analyzed the discontinuous Galerkin method 

for linear parabolic integra-differential equations. Recently Brunner and Schozau 

[27] studied the hp-version of discontinuous Galerkin methods for parabolic Volterra 

integra-differential equations with weakly singular kernels. 

2.1 The discontinuous Galerkin method for linear 
VIDEs 

In this section, we consider the a priori error estimates, a posteriori estimates and 

supercon':"ergence of DG method for linear Volterra integra-differential equations. 
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2 .1.1 A priori error estimates for linear VID Es 

We study the scalar linear Volterra integro-differenti~l equation, 

{ 
y'(t) + a(t)y(t) = V(y)(t), t E I= [0, T], 
y(O) =Yo, 

where V(y)(t) := fo\(t- s)y(s)ds and a, k E C[O, T]. 
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(2.1.1.1) 

We use the notations introduced in Section 1.1. We define the finite-dimensional 

space ( cf. (1.1.1.2)) 

v1m) := { <p E L 2 (I) : 'Pi In E pCm) (In), 1 < n < N}, (2.1.1.2) 

where p(m) (In) denotes the space of all (real) polynomials of degree not exceeding 

m. Then the DG method for (2.1.1.1) is : Find Y E v1m) such that 

Bnc(Y,X) =Yo-Xt, \:IX E V(m) 
N' (2.1.1.3) 

where Yo- = Yo and 

M 

Bna(Y, X) .- ~ 1. (Y'(t) + a(t)Y(t) - V(Y)(t)) X(t)dt 

M 

+ 2:::::[Y]n-1X;t_1 +Yo+ Xt · (2.1.1.4) 
n=2 

Note that the exact solution y of (2.1.1.1) satisfies 

hence the Galerkin orthogonality property 

Bnc(Y- Y, X) = 0, VX E v1m), (2.1.1.5) 

holds true. We remark also that the DG method in (2.1.1.3) can be interpreted as 

a time-stepping scheme. For n = 1, · · · , N, find YIIn E p(m)(In), such that 

1 (Y'(t) + a(t)Y(t)- V(Y)(t))Xdt + Yn~1 X;t_ 1 = Yn-=_ 1X;t_l, 
In 

(2.1.1.6) 
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for all X E p(m)(In)· Here we set Y0 := y0 . We will refer this method as DG(m). 

When adopting the Picard iteration technique, we can easily prove that (2.1.1.3) 

has a unique solution. 

Theorem 2.1.1.1. Assume A:= llaiii, B := llkiii· Then there is a constant C, 

independent of hn, such that for 1 < n < M < N the error of DG{m) for {2.1.1.1) 

satisfies 

llell(o,tM] < C ~~ h~+1 IIY(m+l)I1In' 

with C := C(tM, A, B) and m = 0, 1. 

Proof. If V E v1m) is determined by VQ- =Yo and, for 1 < n < M < N, by 

(2.1.1. 7) 

for all X E V1m) (m = 0, 1), then 

(2.1.1.8) 

We now compare Y to V. Setting J.L := y- V and ¢ := Y - V E v1m), we have 

e = J.L- ¢. We subtract (2.1.1.7) from (2.1.1.6) and get 

for all X E V1m). We choose X = ¢ to obtain 

Hence 

~ 1¢~1 2 
< ~ l¢~_ 1 1 2 + ( i{a(t)e¢- V(e)(t)¢(t)}l dt. 

}In 

(2.1.1.9) 

(2.1.1.10) 

(2.1.1.11) 
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We now substitute e = J.l- <Pinto (2.1.1.11) and find that 

11. a(t)e¢dtl - 11. a(t)(¢- JL)¢dtl 

- 11. a(t)¢
2

- L a(t)JL¢dtl 

< A 1 ¢2dt + ~ 1 (J.l2 + <P2)dt 
In In 

- ~ 1 J.12dt + 3: 1 <P2dt. (2 .1.1.12) 
In In 

11. V(e)(t)¢(t)dtl < B L ¢2
(t)dt + ~ L (V(e)(tn- 1 ))

2 
dt 

+ ~ 1. u:_, k(t- s)e(s)ds) 
2 

dt 

< B L ¢2
(t)dt+ ~ L U. k2

(t)dt) . U. e2
dt) dt 

+ ~ L (1"'-' k 2(t- s)ds · ["-' e2 (s)ds) dt 

< B 1 </J2(t)dt + Bh~ j e2(t)dt + Btn_1hn ltn- 1 

e2(t)dt 
In In 0 

< (B + 2Bh~) j ¢2(t)dt + 2Bh~ 1 J.I
2dt 

In In 

+ Btn-lhn 1'•-' e2 (t)dt. (2.1.1.13) 

Combining (2.1.1.11), (2.1.1.12), and (2.1.1.13), we obtain 

I<P;;:-12 < I<P;;:-112+(A+4Bh~)1 J.12dt 
In 

+ (3A + 4Bh~ + 2B) 1 ¢2dt + 2Btn-lhn ltn- 1 

e2(t)dt. (2.1.1.14) 
In 0 
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Next we choose X= (t- tn-1 )¢/ in (2.1.1.9) to obtain 

< 1 (a(t)) 2 
e2 

• (t- tn-l)dt + ~ 1 (t- tn-l)(¢') 2dt 
In In 

+ 1 (V(e)(t)) 2 (t- tn-l)dt + ~ 1 (t- tn-l)(¢') 2dt 
In In 

< A 2 hn 1 e2dt + ~ 1 (t- tn_ 1 )(¢') 2dt 
In In 

+ 2h~B2 1 e2dt + 2h~B2tn-l1tn- l e2dt 
~ 0 

< 2 (A2 hn + 2h~B2) 1· (i.t2 + ¢ 2
) dt 

In 

+ ~ 1 (t- tn-I)(¢') 2dt + 2h~B2tn-l rn-l e2 dt. 
2 In ~0 

Since 11¢1 2 dt < 2hn 1¢;;-1 2 + ~h~ll¢'11J , we find that 
~ n 

(2.1.1.15) 

By combining (2.1.1.14) and (2.1.1.15), we see that 

(2.1.1.16) 

provided that 4hn(3A + 4Bh~ + 2B) < ~· It thus follows that 

(2.1.1.17) 

The estimate of Theorem 2.1.1.1 is obtained from (2.1.1.17) directly when m = 0. 

Form= 1, we use (2.1.1.10) and the fact that ¢ E v1m) implies that 
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and this yields 

< I""- 12 A+ 2h~B 1 2d (3A + 2h~B + 2B) 1 ,.t,.2d 
'Pn-1 + 2 f.1, t + 2 'P t 

In In 

An analogous argument now leads to the estimate when m = 1. 

2.1.2 A posteriori error estimates for linear VIDEs 

We analyze the a posteriori error bound for DG(m) approximation to (2.1.1.1), by 

using the stability of the continuous dual problem associated with (2.1.1.1). 

Theorem 2.1.2.1. Assume that A:= I Iaili, B := llkiii, and let m = 0, 1. Then 

the DG(m) finite element solution Y for (2.1.1.1) satisfies, for 0 < M < N, 

where C := C(tM, A, B) and R(Y) := I[Y~:- 11 + ia(t)Y- V(Y)(t)i (t E In)· 

Proof. We study the dual problem of (2.1.1.1), 

{ 
-z' + a(t)~ = V*(z)(t), 
z(tM) =eM, 

(2.1.2.1) 

where v•(z)(t) := i'M k(s- t)z(s)ds. From the definition of Bvc in (2.1.1.4), we 

find that for all piecewise continuous functions, x, z E C(J), the exact solution of 

(2.1.2.1) satisfies 

Bvc(x, z) = (x"M, e"M)· (2.1.2.2) 

If we choose x = e in (2.1.2.2) we obtain, 

le"MI 2 
= Bvc(e, z), (2.1.2.3) 
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and we know from the Galerkin orthogonality (2.1.1.5) that 

(2.1.2.4) 

Now we define for X E V~m) (m = 0, 1) and 1 < n < M < N, 

~m(X, M; n) := S(M) (hr;: I(X]n-11 + hr;:+1 lla(t)X- V(X)(t)IIIJ (2.1.2.5) 

where S(M) ~ 1'M Jz(m+I) J dt, and z is the exact solution of (2.1.2.1). 

We now show that 

leA11 2 = IBna(e, z- X) I< max~m(Y, M; n). 
nSM 

(2.1.2.6) 

Because of (2.1.1.1), and since [Y]n = 0 for all n, Y0- = y0 , and by the definition of 

Bnc in (2.1.1.3), we have 

M 

Bvc(e, z- X) ~ - "'!;.1. {(Y' + a(t)Y) (z- X) 

M 

(V(Y)(t)) (z- X)}dt- L)Y]n-1(z- X)~_ 1 . 
n=1 

Hence, 

M 

IBvc(e, z- X) I < "'!;.1. Y'(z- X)dt 

M 

+ "'!;.1. (a(t)Y- V(Y)(t)) (z- X)dt 

M 

+ L[Y]n-1 (z- X)~_ 1 
n=1 

I+ II+ III. 

We set X:= P(z), where P(z) denotes the projection of z onto V~m) and satisfies, 

X;; = z(tn) for m = 0, 1; and { (X- z)dt = 0 for m = 1. 
}In 

(2.1.2.7) 
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Furthermore, we know that the estimates 

JJz- Po(z)Jlin < hr;: ln jz<m+l)j dt and JJz- Po(z)Jlin < ~~h~m+l)JJz <m+l)J Jin' 
(2 .1.2.8) 

hold for m = 0, 1. Thus, I = 0 and 

M 

I I < L hnJJa(t)Y- V(Y) (t) I lin JJz- P(z) Jlin 
n=l 

M 

< ~~h,.lla(t)Y- V(Y)(t)III. ~ h;:' 1. lz(m+l) I dt 

-. S(M) ~~h~m+l) JJa(t)Y- V(Y)(t)Jlin· 

The same kind of argument shows for m = 0 and 1, 

I I I < S(M) max hr;: I (Y]n-11· 
n~M 

Hence, (2.1.2.6) holds true. 

Now we prove the stability of (2.1.2.1). 

Lemma 2.1.2.1. If A := JJaJJI and B := JJkJJI, then the solution z of (2.1.2.1) 

satisfies 

S(M) := lM lz(m+l) I dt < C I eM I , 

where C := C(tM, A, B). 

Proof. Taking t = tM- sin (2.1.2.1) and setting ?j;(s) = z(tM- s), (2.1.2.1) can be 

rewritten as 

{ 
,P'(s) + a~tM- s),P(s) = 1' k(t- v),P(v)dv 

'lj;(O) = eM. 

Dirichlet's formula applied to (2.1.2.9) yields 

,P(s) = ,P(O) + [ Q(s, v),P(v)dv, 

(2.1.2.9) 

(2.1.2.10) 
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where Q(s, v) := a(tM- v) + 18 

k(r- v)dr. Thus, 

11/J(s)i < 11/J(O)I + 18 

IQ(s, v)II1/J(v)l dv. 

It follows from the well-known Gronwall's lemma [26] that 

1'1/!(s)l < 1'1/1(0)1 + [ IQ(s, v)l exp ([ IQ(r, r)ldr) 1'1/!(0)Idv, 

and so 

tM J o I z' ( t) I dt - lM 1'1/!'(s)l ds 

< lM { la(tM- s)ll'l/l(s)l + [ lk(v- s)ll'l/l(v)l dv} ds 

< 1'1/!(0)IlM {la(tM- s)l ( 1+ [ IQ(s, v)l exp ([ IQ(r, r)ldr) dv) 

+ [ lk(v- s)l ( 1 + [ IQ(v, 1')1 exp ([ IQ(r, r)l dr) d~t) dv}ds 

- CI1/J(O) I' 

where C := C(tM, A, B). The similar argument can lead to 

1
tM 

o I z" ( t) I dt < c 11/J ( o) I· 

The proof of the lemma has been completed. 

From (2.1.2.6), (2.1.2.7), (2.1.2.8), and Lemma 2.1.2.1, we obtain 

< ~(~) max { h;:' I [Y]n-d + h;:'+'IIY(t)- V(Y)(t)llr.} 
eM n~M 

< Ch';:+1 ~~ { I[Yt-ll + lla(t)Y- V(Y)(t)III.}. (2.1.2.11) 

This concludes the proof of Theorem 2.1.2.1. 
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2.1.3 Efficiency of the a posteriori error estimator 

If its upper bound is large, the a posteriori error estimator llh~+l R(Y) ll ro,tM] in 

Theorem 2.1.2.1 cannot efficiently indicate the error. Therefore we need to derive 

a sharper upper bound of the a posteriori error estimate. This estimate is called 

"efficiency of a posteriori error estimator" (see also Ainsworth and Oden [2]). 

Theorem 2.1.3.1. Under the assumptions of Theorem 2.1.2.1 and Theorem 2.1.1.1, 

we have 

where C := C(tM, A, B) is independent of the mesh size h. 

Proof. We only need to bound the term llh~+l R(Y)IIro,tM] in Theorem 2.1.2.1: 

llh:+1R(Y)IIro,tM] < llh:[Y]n-lllro,tM] + h:+1 iia(t)Y- V(Y)(t)llro,tM] 

- llh:(Yn~l- Y + Y- Yn~l)llro,tM] + llh~+ 1 ( -y'(t)- a(t)y(t) 

+ V(y)(t) + a(t)Y- V(Y)(t))llro,tM] 

< 2llh:ellro,tM] + llh:+1y'(t)llro,tM] 

+ llh:+1(-a(t)e(t) + V(e)(t))llro,tMJ 

< 2llh:ellro,tMJ + llh:+1y'(t)llro,tMJ 

+ Allh:+1ellro,tM] + tMBIIh:+1ellro,tM]· 

Then we appeal to Theorem 2.1.1.1 to complete the proof. 
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2.2 The discontinuous Galerkin method for semi
linear VIDEs 

We now extend a priori and a posteriori error estimates of Section 2.1 to semilinear 

VIDEs. 

2.2.1 A priori error estimates for semilinear VIDEs 

We study the scalar semilinear Volterra integro-differential equation 

{ 
y'(t) + a(t)y(t) = Va(y)(t), 
y(O) =Yo, 

t E I= [0, T] 
(2.2.1.1) 

where Vc(y)(t) := fo\(t- s)G(y(s))ds, and a, k E C(I). Furthermore assume G 

satisfies 

(2.2.1.2) 

for all y 1 , Y2 E 0 c JR. We begin with the definition of the DG(m) scheme to 

(2.2.1.1): Find Y E v1m) such that 

Bna(Y, X)= Fna(X), \IX E vtn), (2.2.1.3) 

where 

M 
Bna(Y,X) - L j {Y'(t)X(t) + a(t)Y(t)X(t) 

n=l In 

(Va(Y)(t)) X(t)}dt 
M-l 

+ L [Y]nx: +Yo+ xt, (2.2.1.4) 
n=l 

Fna(X) - YoXt. (2.2.1.5) 

We note that 

Bna(Y, X)- Bna(y, X)= 0, \IX E v1m). (2.2.1.6) 
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The DG method (2.2.1.3) can again be interpreted as a time-stepping scheme: Find 

YII .. E p(m)(fn), n = 1, · · · , M, such that, 

l {Y'(t)X(t) + a(t)Y(t)X(t)- (1:_, k(t- s)G(Y)ds) X(t)}dt + Yn":_1X;t_ 1 

- Yn-::_,x;;_, + l (1'"-' k(t- s)G(Y)ds) X(t)dt (2.2.1.7) 

Theorem 2.2.1.1. Suppose that A:= JJaJJI, B := JJkJII· Then there is a constant 

C, independent of hn, such that for 1 < n < M < N, the error of DG(m) for 

(2.2.1.1) satisfies 

JJeJJ(o,tM] < C~~h:+ljjy(m+l)llt .. , 

with C := C(tM, L, A, B) and m = 0, 1. 

Proof. If V E V1m) is determined by Yo- = Yo and by 

{ V'Xdt + { {a(t)y(t)- Vc(Y)(t)}Xdt + Vn~1X:_ 1 = Vn-=._ 1X:_ 1 , (2.2.1.8) 
}In }In 

for all X E v1m) (m = 0, 1) and for 1 < n < M < N, then it follows from the 

definition of the interpolant (2.1.1.8) that 

(2.2.1.9) 

Setting fJ, := y- V and¢ := Y- V E v1m), we have e = fJ,- ¢. We subtract (2.2.1.8) 

from (2.2.1.3) and obtain 

{ ¢'Xdt+ { -{a(t)eX-1t k(t-s) (G(Y)- G(y)) dsX}dt+¢~_ 1X:_ 1 = ¢;;:_1X:_1 , 
}In }In 0 

for all X E v1m). The remaining steps follow exactly those of Theorem 2.1.1.1 after 

we use the Lipschitz condition (2.6.1.2). 
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2.2.2 A posteriori error estimates for semilinear VIDEs 

In this section, we derive the a posteriori estimates of the DG(m) in the mesh-point 

sense and the general a global posteriori error estimates of DG(O) for (2.2.1.1). 

Theorem 2.2.2.1. Assume that A:= !Iaili, B := llki!I, and the function G satisfies 

IGy(u)l < L, \/u En. 

Then the error of the DG(m) approximation to (2.2.1.1} satisfies 

with m = 0 and 1, C := C(tM, A, B, L) and 

R(Y) = I[Y~:-tl + la(t)Y- l k(t- s)G(Y(s))dsl. 

Proof Recall (2.2.1.6): 

Bnc(Y,X)- Bvc(y,X) = 0, \IX E v1m)_ 

We write this as 

D(e, X)= 0, \IX E v1m)' 

where 

M 

b(W,X) .- ~l{W'X+a(t)WX 

1' k(t- s) 1' G, (ry + (1- r)Y) drW(s) 

dsX(t)}dt 
M 

+ L[W]n-lx:_1 + wet xt. 
n=2 

(2.2.2.1) 

(2.2.2.2) 



We consider the linearized dual problem of (2.2.1.1): 

{ 
-z' + a(t)~ = i'M k(s- t)A(s)z(s)ds, tM > t > 0, 

z(tM) =eM, 
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(2.2.2.3) 

where A(s) := 1' G 1 (ry + (1- r)Y) dr. We note that, for any piecewise continuous 

function x, 

(2.2.2.4) 

Selecting x = e in (2.2.2.4), we have 

[eA1) 2 = D(e, z). (2.2.2.5) 

In view of (2.2.2.1), we obtain 

[eA1) 2 = D(e, z- X), vx E v}vm)' m = 0, 1. 

Similarly to the proof of Theorem 2.1.2.1, we can continue the analysis, to find 

M 

fJ(e, z- X) := - ~ l {(Y' + a(t)Y) (z- X)- (Va(Y)(t)) · 

Hence, 

M 

(z- X) }dt - L)Y]n-1 (z- X)~_ 1 . 

+ 

+ 

n=1 

M 

~ 1 Y'(z- X)dt 
n=1 In 

M 

~ l (a(t)Y- Va(Y)(t)) · (z- X)dt 

M 

~[Y)n-1 (z- X)~-1 
n=1 

-. l+ll+III 

< S(M) max{h7:[Y]n-1 
n~M 

+ h7:+1 ia(t)Y- Vc(Y)(t)i}, (2.2.2.6) 
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where S(M) can be easily estimated as in Lemma 2.1.2.1, 

(2.2.2.7) 

Here C := C(tM, A, B, L). Combining (2.2.2.5), (2.2.2.6), and (2.2.2.7), we finish 

the proof. 

Theorem 2.2.2.2. Assume that A:= liai!I, f3 := 1'M ik(t)idt, and G satisfies 

flu- vi< IG(u)- G(v)l < Llu- vi; IG1(u)- G1(v)l < Liu- vi, (2.2.2.8) 

for all u, v E n. Then the error of the DG(O) approximation to (2.2.1.1} satisfies 

llell[o,tM] < maxC (I[Y]n-11 + hn ia(t)Y- Vc(Y)(t)1) 2 

n~M 

+ C ([Y]M-1) 2 + C (a(t)Y + Vc(Y)(t)) 2
. 

Proof. We begin the proof with the related linearized form of (2.2.2.2), 

D(W,X) := t, 1. { W'X + a(t)WX -1' k(t- s)A(s)W(s)dsX(t)} dt 

M 

+ L[W]n-1X;t_1 +war xt 
n=2 

- t, 1. { -WX' + a(t)WX- (1' k(t- s)A(s)W(s)ds)X(t)} dt 

M 

+ L w;_r[X]n-1 + w; x;, 
n=2 

where A(s) := G 1 (y(s)). 

We consider the linearized dual problem of (2.2.1.1): 

{ 
-z' + a(t)~ = l'M k(s- t)A(s)z(s)ds, tM > t > 0, 

z(tM) =eM. 

(2.2.2.9) 

(2.2.2.10) 
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We note that Z, the DG(m) approximation to z, solves 

D(X, Z) = X"MeM. (2.2.2.11) 

We claim also, for any piecewise continuous function x, 

D(x, z) = xMeM. (2.2.2.12) 

The choice x = e in (2.2.2.12) gives 

D(e, z) = leMI 2 = D(e, z) + (D- D)(e, z). 

This, together with (2.2.2.1), yields the error representation formula 

- 2 - - (m) jeMI = D(e, z- X)+ (D- D)(e, z), VX E VN . (2.2.2.13) 

Now we define for X E vJ:') and 1 < n < M < N, 

Rm(X,M;n) 

.- S(M) (j(X]n-11 + hn ia(t)X- Vc(X)(t)l), (2.2.2.14) 

for m = 0 and 1. 

Note that by the assumption (2.2.2.8), 

len- fJ)(e, z)l = ll'M [ k(t- s)A(s)e(s)dsz(t)dt (2.2.2.15) 

lM 1' k(t- s) 11 

G1 (ry + (1- r)Y) dre(s)dsz(t)dtl 

< CL 1'M [lk(t- s)i(e(s)) 2dsiz(t)idt 

< CL (lM ([ik(t- s)(e(s)) 2ds )' dtr

2 

([M z2 (t)dt t 2 

< CL lM lk(t)ldt ([M e4 (t)dt) 
112 ([M z2 (t)dt) 

112 

< CLf3 ([M e2 (t)dt) 
112 ([M z2 (t)dt) 

112 

·lie(t)ilto,tM] 



We define p to be the solution of 

{ 
-p' + a(t)~ = j'M k(s- t)A(s)p(s)ds, tM > t > 0, 

p(tM) = eM/IeMI, 
That is, p = z/le:WI· So from (2.2.2.15) 
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j(D- b)(e, z)J < cLB ieMI ([M e2dt t 2 ([M p 2dtt
2

11e(t)llro,tM[· (2.2.2.16) 

Next, we conclude that there exists a X E v1m) such that the first term of (2.2.2.13) 

satisfies 

I
D(e,z-X)j < max~m(Y,M;n). (2.2.2.17) 

n~M 

Now we will now prove (2.2.2.17). Because of y' + a(t)y - Vc(Y)(t) = 0, [Y]n = 

0, (for all n) and Y0- = y0 , we find 
M 

b(e, z- X) = - ~ L (Y' + a(t)Y- Va(Y)(t)) (z- X)dt 

M 

L[Y]n-1 (z- X)~_ 1 . 
n=1 

Hence, 

M M 

< ~ L Y'(z- X)dt + ~ L [a(t)Y- Va(Y)(t)](z- X)dt 

M 

+ L I [Y]n-1(z- X)~-1l 
n=1 

-. 1+11+111. 

The remaining lines are then the same as in the proof of (2.1.2.6). 

Thus, from (2.2.2.13), (2.2.2.15), (2.2.2.17), we derive 

(2.2.2.18) 
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Since G satisfies (2.2.2.8) and z is the solution of (2.2.2.10), following the proof of 

Lemma 2.1.2.1 leads to 

S(M) ~ lM lz'l dt < C je;;,.j, (2.2.2.19) 

where C := C(tM, A, B, L). Thus, combining (2.2.2.14), (2.2.2.19), and (2.2.2.19), 

we obtain 

maxC (I[Y)n-11 + ia(t)Y- Vc(Y)(t)i hn) 
n~M 

(2.2.2.20) 

To complete the proof of the theorem, we need the following lemma. 

Lemma 2. 2.2.1. Let A :. II a III. i3 : ~ 1'M I k ( t) I dt, and suppose that G is Lipschitz 

continuous, i.e., 

IG(u)- G(v)i < Llu- vi, 

for all u, v En. Then the error of DG(O) to (2.2.1.1) satisfies 

where C := C(tM, L, A, B) is independent of the mesh size hn. 

Proof. For m = 0, we have the following identity on In, 

Y' + a(t)Y- Vc(Y)(t) = a(t)Y- Vc(Y)(t). 

Subtracting this from (2.2.1.1) leads to 

e' + a(t)e- (l k(t- s)(G(y) - G(Y))ds) ~ -a(t)Y + Vc(Y)(t). (2.2.2.21) 

Consequently, we have 

e'e + a(t)e2
- (l k(t- s)(G(y)- G(Y))ds) e ~ -a(t)Ye + Vc(Y)(t)e, 



Integrating from tn- 1 tot, we obtain 

[_, ~ d~t
2

) + [_, a(t)e2dt -[_, ([ k(t- s)(G(y)- G(Y))ds) edt 

= l ( -a(t))Ye dt + l Va(Y)(t)e dt, 
tn-1 tn-1 

and hence 

< ~(e~-1? + r ia(t)Yei dt + r IVc(Y)(t). ei dt 
~In ~In 

+ (L ([ k(t- s)(G(y)- G(Y))dsy dtr

2 

(L e2
dt) 

112 

+ L la(t)le
2
dt 

< ~(e~_ 1 ) 2 + { ja(t)Yei dt + 11Vc(Y)(t) · ej dt 
~In In 

+ vz[" lk(t)idt · ([" (G(y)- G(Y))2 dt) 
112 

(L e2
dt) 

112 

+ L la(t)le
2
dt 

< ~(e~-1) 2 + lla(t)Yeldt + r IVc(Y)(t). el dt 
In ~In 

+ .../2TBLlieil~,tn]hn + 1ia(t)je2dt 
In 

< ie~-1! 2 + I(Y]n-11 2 + ~n (a(t)Y + Vc(Y)(t))
2 
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+ ~n I lei It+ Ahnllellfo,tM] + .../2TBLhniieii[o,tM]· (2.2.2.22) 

For sufficiently small hn(~ +A+ V2TBL) we derive that, from (2.2.2.22), 

(2.2.2.23) 

According to Theorem 2.2.2.1 and the procedure of the proof of Lemma 2.1.2.1, we 

know that, for sufficiently small hn, 

(2.2.2.24) 
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Combining (2.2.2.20), Lemma 2.2.2.1, and (2.2.2.24), we arrive at 

< maxC (I[Y]n-11 + hn la(t)Y- Va(Y)(t)i)
2 

nSM 

+ C([Y]M-1) 2 + C (a(t)Y + Va(Y)(t)) 2
. 

2.2.3 Efficiehcy of the a posteriori error estimator 

We shall use the a priori error estimates to deduce the efficiency of the a posteriori 

estimator described in Theorem 2.2.2.1. 

Theorem 2.2.3.1. Under the assumptions of Theorem 2.2.2.2 and Theorem 2.2.1.1, 

we have 

where C := C(tM, L, A, B) is independent of the mesh size h. 

Proof. We only need to bound the term llh~+ 1 R(Y)IIro,tM] in Theorem 2.2.2.1: 

llh~+ 1 R(Y) llro,tM] < llh~[Y]n-11 ho,tM] + llh~+ 1 (a(t)Y - Va(Y) (t)) llro,tM] 

- llh:(Yn~1- Y + Y- Yn~1)11ro,tM] + lih:+1(-y'(t)- a(t)y(t) 

+ Va(y)(t) + a(t)Y- Va(Y)(t))liro,tM] 

< 2ilh:e(t)llro,tMJ + llh:+1y'(t)llro,tMJ + lih:+1[-a(t)e(t) 

+ l k(t- s)(G(y(s))- G(Y(s)))ds]iho.tMI 

< 2h~lle(t)llro,tM] + hm+1IIY'(t)llro.tMJ 

+ (Ahm+1 + Lhm+1tM )Biie(t)liro,tMJ· 

Then we combine this with the result of Theorem 2.2.1.1 and complete the proof. 
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2.3 Numerical examples 

In this section, we compare the accuracy and stability of DG(O), CG(1) and the 

collocation method using piecewise linear polynomial approximation (denot ed by 

CC(1)) by means of numerical examples. The effect of quadrature on the total error 

is considered, too. 

2.3.1 Example for the case of constant coefficient 

Example 2.3.1.1. We consider the linear scalar Volterra integra-differential equa-

tion 

y' + ay = [ exp ( -(t- s))y(s)ds, t E I= [0, 1], y(O) = 1, (2.3.1.1) 

where a is a constant. 

The exact solution of (2.3.1.1) is 

y(t) = a+1 (· j (a+1)2) exp (- -
2 
-t) cosh y 1 - a + 

4 
t 

1- a a+ 1 (Vr-----(a-+-1)2) + exp( ---t) sinh 1- a+ t . (2.3.1.2) 
v'a2 - 2a + 5 2 4 

We take uniform meshes: {ti : ti = ih, i = 0, 1, · · · , n}, where his the mesh size, 

and the initial value is Y0- = y(O) = 1. 

DG(O): 

n-1 
+ 2::: Yt(- exp ( -(tn- ti)) + exp ( -(tn- ti-1)) 

i=l 
+ exp ( -(tn-1- ti))- exp ( -(tn-1- ti-l))]. (2.3.1.3) 
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CG(l): 

Yn- Yn-l + { a(t)Y(t)dt = { t k(t- s)Y(s)dsdt, 
}In }In Jo (2.3.1.4) 

Taking YIIn = t=~n Yn-l + t-t;;- 1 Yn in (2.3.1.4), we obtain the exact CG(1) and 

CG(1) with quadrature scheme for Example 2.3.1.1 as follows. 

Exact CG(l): 

1 
(2- h/2 + ah/2 + h exp (-h)- 1/h)Yn 

1 
- (1- ah/2 + h/2 + exp (-h)+ h exp (-h)- 1/h)Yn-1 

n-1 1 1 
+ L: Yi-I[exp ( -(tn- ti-I))- h exp ( -(tn- ti)) + h exp ( -(tn- ti-l)) 

i=l 
1 1 

exp ( -(tn-1- ti-l))+ h exp ( -(tn-1- ti))- h exp ( -(tn-1- ti_I))] 

n-1 1 1 
+ L: Yi[exp ( -(tn- ti)) + h exp ( -(tn- ti))- h exp ( -(tn- ti-l)) 

i=l 
1 

+ exp ( -(tn-1- ti))- h exp ( -(tn-1- ti)) 

1 
+ h exp ( -(tn-1- ti_I))]. (2.3.1.5) 

From [23], we know that the collocation method using piecewise linear polynomial, 

i.e., CC(1) to (2.1.1.1), has the form 

(1 + ha(tn+t)- h211 

k(tn+l- (tn + sh))sds)Yn+t 

- (1 + h211 

k(tn+l - (tn + sh))(1- s)ds)Yn + hFn(tn+t), 

n-1 1 
where Fn(tn+d = L: h 1 k(tn+l- (ti + sh))[(1- s)Yi + sYi+l]ds. 

i=O O 



Exact CC(1): 

(2 + ah- h- exp ( -h))Yn+l 

- (2- hexp (-h)- exp ( -h))Yn 
n-l 

+ h 2:~)exp ( -(tn+l- ti))(exp (h)- exp (h)/h + 1/h)Yi+l 
i=O 
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1 + [- exp ( -(tn+l- ti)) + h exp ( -(tn+1- ti))(exp(h)- 1)]Yi]. (2.3.1.6) 

We take the end-point rule for the inner product and the trapezoidal rule for the 

memory term, and call it "Quadrature Scheme 1". 

Quadrature Scheme 1 for DG(O): 

[ah + 1- h2 /2- h2 exp ( -h)/2]Yn-
n-1 h2 

- Yn~l + 2:: ~-2[exp ( -(tn- ti)) + exp ( -(tn- ti-l))]. (2.3.1.7) 
i=1 

Quadrature Scheme 1 for CG(1): 

h2 n-1 h2 
(1 + ah- h2 /2)Yn = (1 + 2 exp ( -h))Yn-1 + 2:: Yi-12 exp ( -(tn- ti_I)) 

i=l 

n-1 h2 
+ ?= Yi2 exp ( -(tn- ti)). (2.3.1.8) 

t=l 

Quadrature Scheme 1 for CC(1): 

n-1 h 
(1 + ah- h2 /2)Yn+l = (1 + h 2 exp ( -h)/2)Yn + h 2:: 

2 
exp ( -(tn+1- ti))Yi 

i=O 

n-l h 
+ h ?= 2 exp ( -(tn+l- ti- h))Yi+I· 

t=O 

(2.3.1.9) 

The "Quadrature Scheme 2" is defined by taking the end point rule for the inner 

product and the mid-point rule for the memory term. 

Quadrature Scheme 2 for DG(O): 
n-l 

[ 2 """' 2 ti + ti-l ) ) ah + 1- h exp(-h/2)]Yn- = Yn~l + L.J ~-h exp(-(tn-
2 

· (2.3.1.10) 
i=l 
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Quadrature Scheme 2 for CG(l): 

[1 + ah- h2 exp ( -h/2)/2]Yn 

[ 2 ( ] h
2 ~ ( ( ti +ti-l)) - h exp -h/2)/2 + 1 Yn-1 + 2 6 Yi-1 exp - tn-

2 
i=l 

h2 n-1 

L "\/" ( ( ti + ti-l ) ) + -
2 

L i exp - tn - . 
. 2 
t=l 

(2.3.1.11) 

Quadrature Scheme 2 for CC(l): 

(1 + ah- h2 exp ( -h/2)/2)Yn+l 
h2 n-1 

- (1 + 2 exp ( -h/2))Yn + h2 /2 L Yi exp ( -(tn+l- ti- h/2)) 
i=O 

n-1 
+ h2 /2 L Yi+l exp ( -(tn+l- ti- h/2)). (2.3.1.12) 

i=O 

First of all, we compare the accuracy of DG(O), CG(1) and CC(1) through Ex

ample 2.3.1.1 with a= 7, using the same method as [44). Other values of a lead to 

similar results. We assume that the maximum norm of the error in I is proportional 

to hP, that is, JerrorJ ~ ChP with the constant of C independent of meshsize h. To 

determine the order p experimentally, we take logarithms: 

log(JerrorJ) ~log( C)+ plog(h), 

By doing so we can determine p as the slope of a line that passes through the points 

(log( h), log(JerrorJ)). We plot the logarithms of the errors versus the logarithms of 

the corresponding time steps for exact scheme in Figure 2.1. The slopes of the lines 

are 0.9837 for DG(O), 0.9836 for CC(1) and 2.0004 for CG(1). Correspondingly 

in Figure 2.2 for Quadrature Scheme 1, the line slope for DG(O) is 0.9861, for 

CG(1), 0.9414, for CC(1), 0.9836, which reveals that they have the same order of 

convergence. However, the distance between the lines indicates that the constant 
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C in the representation of the error, ierrorl ~ ChP, for Quadrature Scheme 1 is 

different from the exact DG(O). The same explanation holds for Quadrature Scheme 

2 in Figure 2.3. Figure 2.4 illustrates that the stability of DG(O) and CC(1) is better 

than that of CG(1). 

2.3.2 Example of a VIDE with time-dependent coefficient 

Example 2.3.2.1. We consider the linear scalar Volterra integra-differential equa-

tion 

y' + a(t)y = [ exp ( -(t- s))y(s)ds, t E I= (0, 1), y(O) = 1, (2.3.2.1) 

where a(t) = r + l~r - l~r exp ((r- 1)t) and r =/= 1 is a positive constant, 

The exact solution of (2.3.2.1) is 

y(t) = exp( -rt). (2.3.2.2) 

We take uniform meshes: {ti: ti = ih, i = 0, 1, · · · , n} and choose the initial value 

yo- = y(O) = 1. 

We easily formulate the schemes of DG(O), CG(1) and CC(1) for Example 2.3.2.1, 

as follows. 

Exact DG(O): 

1 1 
(h(r + 1 _ r) + (r _ 1)2 (exp ((r- 1)tn) 

exp ((r- 1)tn-l)] - h + 2- exp ( -h))Yn-
n-1 

- Yn--=._1 + L ~-[- exp ( -(tn- ti)) + exp ( -(tn- ti-l)) 
i=l 

+ exp ( -(tn-1- ti))- exp ( -(tn-1- ti-l))]. (2.3.2.3) 
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Exact CG(l): 

1 h 1 1 1 
(2- h/2 + (r + --)-

2 
+ ( )2 exp ((r- 1)tn)- h ( )3 exp ((r- l)tn) 

1-r r-1 r-1 
1 1 1 

+ h (r _ 1)3 exp ((r- 1)tn-1) + h exp (-h)- 1/h)Yn 

1 h 1 1 1 
- (1- [(r + --)-- ( )2 exp ((r- 1)tn_1) + -h ( )3 exp ((r- 1)tn) 

1-r 2 r-1 r-1 
1 1 1 

- h (r _ 
1

)3 exp ((r- 1)tn-l)] + h/2 + exp (-h)+ h exp (-h)- 1/h]Yn-l 

n-1 1 1 
+ L }i_I(exp ( -(tn- ti-1))- h exp ( -(tn- ti)) + h exp ( -(tn- ti-l)) 

i=l 
1 1 

- exp ( -(tn-1- ti-l))+ h exp ( -(tn-1- ti))- h exp ( -(tn-1- ti-l))] 

n-1 1 1 
+ L Yi[- exp ( -(tn- ti)) + h exp ( -(tn- ti))- h exp ( -(tn- ti-l)) 

i=l 
1 

+ exp ( -(tn-1- ti))- h exp ( -(tn-1- ti)) 

1 
+ hexp(-(tn-1 -ti-l))]. (2.3.2.4) 

Exact CC(l): 

1 1 
(2 + h(r + --- -- exp ((r- 1)tn+l))- h- exp ( -h))Yn+l 

1-r 1-r 
n-1 

- ( 2 - h exp (-h) - exp (-h)) Yn + h L { exp (- ( tn+ 1 - ti)) 
i=O 

(exp (h)- exp (h)/h + 1/h)Yi+l + [- exp ( -(tn+l- ti)) 

1 
+ h exp ( -(tn+l- ti))(exp (h)- 1))}i}. (2.6.2.5) 

Now we consider the "Quadrature Scheme 2" for DG(O), CG(1) and CC(1). 

Quadrature Scheme 2 for DG(O): 

1 1 
[h(r + --- -- exp ((r- 1)tn)) + 1- h2 exp( -h/2)]Yn-

1-r 1-r 
n-1 

- """'"' - 2 ( ( ti + ti-1 )) - yn-1 + ~ Y: h exp - tn - ') . 
i=l ~ 

(2.3.2.6) 



Quadrature Scheme 2 for CG(l): 

[1 + h(r + - 1
-- -

1
- exp ((r- 1)tn))- h2 exp ( -h/2)/2]Yn 

1-r 1-r 
h2 n-1 

- [h2 exp ( -h/2)/2 + 1]Yn-1 + 2 2:::: Yi-1 exp ( -(tn- ti +
2
ti-l )) 

i=l 
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h2 n-1 

2:::: "\/" ( ( ti + ti-l ) ) +- I..exp-t----2 t n 2 . (2.3.2.7) 
i=l 

Quadrature Scheme 2 for CC(l): 

(1 + h(r + 
1 

1 
r -

1 
1 

r exp ((r- 1)tn+r))- h2 exp ( -h/2)/2)Yn+l 

h2 n-1 
- (1 + 2 exp ( -h/2))Yn + h2 /2 2:::: Yi exp ( -(tn+l- ti- h/2)) 

i=D 

n-1 
+ h2 /2 2:::: Yi+l exp ( -(tn+l- ti- h/2)). (2.3.2.8) 

i=O 

When we taker = 6, we obtain the numerical results shown in Figure 2.5 and 

Figure 2.6, whose explanation is the same as for Example 2.3.1.1. Other values of r 

lead to similar results. 
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2.4 The discontinuous Galerkin method for non
standard VIDEs 

2.4.1 Preliminaries 

In this section, we study the nonstandard Volterra integra-differential equation, 

{ 
y' + a(t)y = V~(y)(t), 
y(O) =Yo, 

t E I : = [ 0, T], 
(2.4.1.1) 

where V{j(y)(t) := 1'k(t- s)G(y(t),y(s))ds and a, k E C(J). Assume that the 

(Lipschitz continuous) function G : n X n ~ IR (n c IR) is such that (2.4.1.1) 

possesses a unique solution y E C 1 (I) for all Yo ED. 

We give the a posteriori error estimates of DG(m) to (2.4.1.1). As in the above 

sections, we write the DG scheme as 

Bvc(Y,X) := Fvc(X), \IX E V(m) 
N1 (2.4.1.2) 

where 

N 

Bnc(Y, X) .- ~ L {Y'(t)X(t) + a(t)Y(t)X(t) (2.4.1.3) 

M-1 

V~(Y)(t)X(t)}dt + ~ [Y]nX;t + Y0+ Xfi, 
n=l 

Fvc(X) .- YoXfi. (2.4.1.4) 

To show that (2.4.1.2) has a unique solution Y!In E p(m)(In) we define that for 

Y E p(m)(fn), Y = TY E p(m)(fn) as the solution of 

L {Y'(t)X(t) + a(t)Y(t)X(t)- (l k(t- s)G(Y(t), Y(s))ds)X(t)}dt 

+ Yn~lx;t_l = Yn-=._lx;t_l, (2.4.1.5) 

for all X(t) E p(m)(fn)· If the operator T is a contraction on p(m)(Jn) for all 

sufficiently small hn, the assertion follows from Banach's fixed point theorem. 
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2.4.2 A posteriori error estimates for nonstandard VIDEs 

Theorem 2.4.2.1. Let A:= liaiii, B := Ilk! II, and let m = 0, 1. Assume that G 

satisfies 

IVG(u, v)i < L, Vu, v En. 

Then the error of the DG(m) approximation to (2.4.1.1) satisfies 

where C := C(tM,A,B,L) and R(Y) := lfYl:- 11 + ia(t)Y- V~(Y)(t)i (t E In)· 

Proof. From (2.4.1.2), we know that 

Bnc(Y,X)- Bnc(y,X) = 0, VX E V~m). 

We write this as 

D(e, X)= o, VX E V(m) 
N' (2.4.2.6) 

where 

b(W,X) .- f;,l.{W'X+a(t)WX-lk(t-s) (2.4.2.7) 

(11 

'VG(ry(t) + (1 - r)Y(t), ry(s) + (1 - r)Y(s))dr 

M-1 

(W(t), W(s)))ds. X(t)}dt + L [W]nx: + wo+ xt. 
n=l 

We know that for all piecewise continuous w 

(2.4.2.8) 

where z is the solution of the continuous linearized dual problem of (2.4.1.1), defined 
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as 

-z' + [a(t) + l k(t- s) 11

G 1(ry(t) + (1- r)Y(t),ry(s) 
0 t~ 

+(1- r)Y(s))drds]z = 1 k(t- s).A(s)z(s)ds, tM > t > 0, 
(2.4.2.9) 

z(tM) =eM. 

Here, A(s) := 1' G2 (ry(t) + (1 - T)Y(t), ry(s) + (1- r)Y(s ))dr, "i!G := (G, G 2). 

Selecting w = e := y- Y in (2.4.2.8), we get 

[eM] 2 
- D(e, z) = D(e, z- X) 

- BDc(Y, z- X) - BDc(Y, z- X) 
M M 

- - L J. Y'(t)(z- X)dt- L {a(t)Y(t)(z- X) 
n=l In n=1 

M 

- vg(Y)(t)(z- X)}dt- L[Y]n-1(z- X);t_1, 
n=l 

-. I+II+III, (2.4.2.10) 

From the definition of (2.1.2. 7), we easily derive 

I= 0, !III!< S(M) max I[Y]n-11, 
nS.M 

(2.4.2.11) 

M 
!III - I L[a(t)Y(t)- V~(Y)(t)](z- X)dt!, 

n=l 
M 

< L hnl!a(t)Y(t)- V~(Y)(t)I!IJ!z- Xllln' 
n=l 

M 
< ~~hnl!a(t)Y- V~(Y)(t)I!In · Lh7:'+1 J. !z'jdt, 

- n=1 In 

- S(M) ~~hnl!a(t)Y- vg(Y)(t)I!In' (2.4.2.12) 

1
tM 

where S(M) := 
0 

jz(m+l) jdt. We need the stability of (2.4.2.9), 

tM 
S(M) = Jo jz<m+1)jdt <CleM!, (2.4.2.13) 
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where C := C(tM, A, B, L). Because (2.4.2.9) is the linearized dual problem, the 

proof of (2.4.2.13) is very similar to that of Lemma 2.1.2.1. 

Combining the estimates (2.4.2.11), (2.4.2.12), and (2.4.2.13) with (2.4.2.10), we 

complete the proof of Theorem 2.4.2.1. 

2.4.3 Efficiency of the a posteriori error estimator 

We shall first derive the a priori error estimate of (2.4.1.1). This is then used to 

prove the efficiency of the a posteriori error estimator in Theorem 2.4.2.1. 

Theorem 2.4.3.1. Define A:= llall1 , B* := ( { ik(t)idt) 2
, and assume G satisfies 

}In 

IVG(u, v)l < L, 'r/u, v En. 

Then the error of the DG(m) approximation to (2.4.1.1) satisfies 

with m = 0, 1, and C := C(tM, L, A, B*). 

Proof. The proof is very similar to that of Theorem 2.2.1.1 and is thus left to the 

reader. 

Theorem 2.4.3.2. Under the assumptions of Theorem 2.4.2.1 and Theorem 2.4.3.1, 

we have 

where C := C(tM, L, A, B) is independent of the mesh size h. 
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Proof. We only need to bound the term llh:+1R(Y)II[o,tM] in Theorem 2.4.2.1: 

llh:+1 R(Y)il[o,tM] < llh:[Y]n-lll[o,tM] + llh:+1[a(t)Y- vg(Y)(t)]il[o,tM] 

[h:IYn~l- Y + Y- Yn~liJ[o,tM] + llh:+1(-y'(t)- a(t)y(t) 

+ vg(y)(t) + a(t)Y- Vg(Y)(t))ii[o,tM] 

< 2llh:e(t)il[o,tM] + llh:+1y'(t)ll[o,tM] + llh:+1 [-a(t)e(t) 

+ l k(t- s)( G(y(t), y(s )) - G(Y(t), Y(s)))ds]ii[o,tM] 

< 2hmlle(t)ll[o,tM] + hm+lly'(t)l 

+ Ahm+llle(t)l![o,tM] + .J2Lhm+ltMBIIe(t)il[o,tM]· 

The proof is completed by recalling Theorem 2.4.3.1. 

2.5 The discretized discontinuous Galerkin method 
for VIDEs 

In this section we consider the discontinuous Galerkin methods with quadrature for 

the memory term and for the inner product for linear Volterra integra-differential 

equations. The readers are suggested to compare this section with Brunner [23]. 

2.5.1 The comparison with collocation method for VIDEs 

We recall the DG time-stepping scheme for (2.1.1.1): For n = 1, · · · , N, find YIIn E 

p(m) (In), such that 

1 (Y'(t) + a(t)Y(t)- V(Y)(t))Xdt + Yn~1 X;t_ 1 = yn-_1X;t_l, 
In 

(2.5.1.1) 

for all X E p(m)(Jn)· Here we set Y0- = y0 . Suppose now that the integrals in 

(2.5.1.1) are approximated by interpolatory (m+ 1)-point quadrature formulas with 

abscissas tn,j := tn + cjhn (0 =: c0 < c1 < ... < Cm < 1) and weights Wj (j = 
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0, 1, ... 'm). We denote the resulting discretized DG(m) solution in v~m) by Y. The 

semi-discretized version of (2.5.1.1) is then given by 

m 

hn L Wj[Y'(tn,j) + a(tn,j)Y(tn,j)- Z(tn,j)]X(tn,j) + Y(t~)X(t~)- Y(t~)X(t~) = 0, 
j=O 

(2.5.1.2) 

for all X E p(m) (In), where 

Z(tn,j) .- V(Y)(tn,j) 

1'"·; k(tnJ - s)Y(s)ds 

.- Fn + ltn,j k(tn,j- s)Y(s)ds. 
tn 

We denote the discretized version of Z ( tn,j) by 

j 

Z(tn,j) := Fn + hn L Wn,ek(tn,j- tn,z)Y(tn,z). (2.5.1.3) 
e=o 

The fully discretized version of ( 2. 5 .1.1) is then defined by 

m 

hn L Wj[Y'(tn,j) + a(tn,j)Y(tn,j)- Z(tn,j)]X(tn,j) + Y(t~)X(t~)- Y(t~)X(t~) = 0, 
j=O 

(2.5.1.4) 

for all X E p(m)(Jn)· 

The above fully discretized DG method (2.5.1.4) is called: 

(i) an extended fully discretized DG method if the lag term formula for Fn is given 

by 
n-1 m 

Fn := hn L L Wn,jk(tn- te + Cjh)Ye,j, n = 1, ... , N- 1; (2.5.1.5) 
e=o j=l 

(ii)a mixed fully discretized DG method if the lag term formula is defined by 

n-1 

Fn := hn L Wn,ek(tn- te)Ye, n = 1, ... , N- 1. 
i=O 

(2.5.1.6) 
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Let 

Yn - Y(t~), 

Yno - Y(t~) (= Y(t~,0 )), , 

Yn,j - Y(tn,j) (j = 1, ... , m), 

Zn,j - Z(tn,j) (j = 1, ... , m). 

and let Li ( v) be the j th Lagrange canonical polynomial (of degree m -1) correspond

ing to the points { Ci : i = 1, ... , m }. Moreover, denote by {Xi : j = 0, 1, ... , m} a 

(canonical) basis for p(m) (In) so that 

Since the restriction of Y' to In is a polynomial of degree m - 1 we may write 

Y'(tn + vhn) = L Lj(v)Y'(tn,j), V E (0, 1], 
j=l 

and hence 

Y(tn + vhn) = Y(t~) + hn 1v Y'(tn + shn)ds, V E (0, 1]. (2.5.1.7) 

On the other hand, (2.5.1.4) with X= X 0 yields 

hnwo[Y'(tn,o) + a(tn,o)Y(tn,o)- Z(tn,o)] + Y(t~)- Y(t~) = 0, 

implying that 

m 

Y(t~) = Yn + hnwo[Z(tn,o)- a(tn,o)Y(t~)- L Lj(Co)Y'(tn,j)]. (2.5.1.8) 
j=l 

For X = Xi (i = 1, ... , m), with Xi(tn,j) = 6i,j, we obtain from (2.5.1.4) the 

equations 
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where Wi =I= 0. This result can be used in (2.5.1.8) to produce 

m 

Y(t;) = Yn+hnwo[-a(tn,o)Y(tn,o)+Z(tn,o)]+hn 2::= WoLj(co)[-a(tn,j)Y(tn,j)+Z(tn,j)]. 
j=l 

(2.5.1.9) 

The identity (2.5.1. 7) allows us to write 

m 

Y(tn,i) = Y(t~) + hn L ,Bj(Ci)[-a(tn,j)Y(tn,j) + Z(tn,j)], (2.5.1.10) 
j=l 

with 

,BJ(v) := 1v Lj(s)ds (j = 1, ... , m), 

and ,Bj(Ci) =: ai,j· Hence, setting Yn,i := Y(tn,i) and recalling (2.5.1.9) we obtain 

m 

+ hn L[-ai,j + WoLj(Co)][a(tn,j)Y(tn,j)- Z(tn,j)] (2.5.1.11) 
j=l 

(i = 1, ... , m). The equations (2.5.1.9) and (2.5.1.11) form a system ofm+1 nonlin

ear algebraic equations for Yn := ( Y(t;), Yn,1, ... , Yn,m )T E JRm+l: its form closely 

resembles the one corresponding to collocation at the points { tn,o, tn,b ... , tn,m}· We 

now show that these equations may indeed be interpreted as the stage equations of 

an implicit (m+1)-stage Volterra-Runge-Kutta (VRK) method. Let bi := ,BJ(1) (j = 

1, ... , m), and observe that 

1 m 

bi = 1 LJ(s)ds = 2::= wkLJ(ck) = woLj(Co) + Wj, 
0 k=O 

because our interpolatory ( m + 1 )-point quadrature formula is exact for polynomials 

of degree not exceeding m. This leads to the relationship 



and hence by (2.5.1.7) to 

m 

Yn+l := Y(t~+l) = Yn + hn L Wj[-a(tn,j)Y(tn ,j) + Z(tn,j)]. 
j=O 
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(2.5.1.12) 

We conclude that (2.5.1.12) together with (2.5.1.9) and (2.5.1.10) represents a collocation

based (m + 1)-stage implicit VRK method for (2.1.1.1). We summarize the above 

presentation as the following theorem. 

Theorem 2.5.1.1. The fully discretized DG scheme {2. 5.1.4) may lead to the collocation

based (m + 1)-stage implicit VRK method {{2.5.1.12), {2.5.1.9), {2.5.1.10)} for 

{2.1.1.1). 

Remark 2.5.1.1. We see that the discussion is exactly the same in Section 1.3 for 

k = 0. 

2.5.2 A posteriori error estimator 

If the memory term V(y)(t) in (2.1.1.1) is computed approximately, then the result-

ing quadrature error also contributes to the total error. We consider the quadrature 

error as the perturbation of the DG(m) approximation to (2.1.1.1). The total error 

can be estimated by using the triangle inequality. 

DG approximation to (2.1.1.1) is described by: Find Y E v1m) such that 

Bnc(Y, X)= Fnc(X), \IX E V(m) 
N' (2 .5.2.1) 

where 

M 

Bvc(Y, X) .- ~ L {Y'(t)X(t) + a(t)Y(t)X(t)- V(Y)(t)X(t)}dt 

M-1 

+ L [Y]nx: +yo+ xt' 
n=l 

Fnc (X) .- YoXt. 
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Thus we define the discretized DG(m) with quadrature for the memory term as: 

Find Y E V1m}, 

Bvc(Y, X) = Fvc(X), VX E V(m) 
N' (2.5.2.2) 

where 

M 

Bvc(Y, X) .- L 1. {Y'(t)X(t) + a(t)Y(t)X(t)- V(Y)(t)X(t)}dt 
n=l In 

M-1 

+ L [Y]nx: + yo+ xt' 
n=1 

Fvc(X) .- YoXt. 

Thus the total error of the DG approximation to (2.1.1.1) with quadrature for the 

memory term can be written as 

e := Y- y = (Y- y) + (Y- Y) := e + Q. (2.5.2.3) 

We analyze e := Y- y as in the discussion in the above sections. The remaining 

work consists in estimating the term Q := Y- Y. By subtracting (2.5.2.1) from 

(2.5.2.2), we get 

Bvc(Y, X)- Bvc(Y, X)= 0, (2.5.2.4) 

that is, 

M 

~ L {Q'(t)X(t) + a(t)Q(t)X(t)- (V(Y)(t)- V(Y(t)))X(t)} 

M-1 

+ L[Q]nx: + Qtxt 
n=1 
M 

- L 1 {Q'(t)X(t) + a(t)Q(t)X(t)- V(Q(t))X(t)}dt 
n=1 In 

M-1 M 

+ ~ [Q]nX;i + Q(j X.j - ~ L (V(Y)(t) - V(Y)(t))X(t)dt 

I+ II= 0, (2.5.2.5) 
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where 

M 

I .- ~ L {Q'(t)X(t) + a(t)Q(t)X(t)- V(Q(t))X(t)}dt 

M-1 

+ L:)Q]nX;t + Qtxt, 
n=1 

M 

II :~ ~ L (-V(Y)(t) + V(Y)(t))X(t)dt. 

These observations allow us to establish the following theorem. It focuses on VIDEs 

with completely monotonic kernels, due to their importance in many applications 

(see e.g., Gripenberg, Landen and Staffans (53, Ch. 5]). 

Theorem 2.5.2.1. Consider the discretized DG(m) with quadrature for the memory 

term ((2.5.2.2) with m = 0 and 1) for equation (2.1.1.1). We suppose that k E C(!), 

k E Cd(R+), and k is completely monotonic: (-l)ik(i)(t) > 0 (t > 0, 0 < j <d), 

and we take the quadrature form as 

M-1 

VCY)(t) = .L WMik(t- ti)Y(ti) 
i=O 

M-1 

+ .L WMik(t- ti)Y(tt) + WMMk(O)tY(t). (2.5.2.6) 
i=1 

Then 

(2 .5.2.7) 

where C := C(tM, A, B) and A, B are as in Theorem 2.1.2.1, and 

R(Y) :~ lfYt-d + ia(t)Y- V(Y)(t)i (t E In)· 

Proof. First we prove (2.5.2. 7) with m = 0. The well-known Peano theorem for 



quadrature [44) enables us to write the error as 

E(Y)(t) .- V(Y)(t)- V(Y)(t) 
M-1 

- L 1 Kq(s)o~q)[k(t- s)Y(s)]ds 
i=O Ii 

+ Jt Kq(s)o~q)[k(t- s)Y(s)]ds, 
tn-1 

where the Peano kernel is given by 

Kq(s) = (q ~ 1)! for (t- s)~- 1 dt- (q ~ 1)! i; wn;(t,- s)r', 

with q > 2. From (2.5.2.5), 

1 .. {Q'(t)X(t) + a(t)Q(t)X(t)}dt + Q~_ 1X;t_ 1 

- Q:;;_1X;t_1 -1. (1t k(t- s)Q(s)ds)X(t)dt 
In · 0 

- 1 .. (V(Y)(t)- V(Y)(t))X(t)dt, 

for all X E p(m)(fn), n = 1, · · · , M. Selecting X(t) = Q(t) in (2.5.2.9) 

~[Q:;;)2 + ~[Q~-1]2 + 1. aQ2dt 
In 

- Q:;;_1Q~-1 -1. c1t k(t- s)Q(s)ds)Q(t)dt 
In 0 

- f E(Y)(t)X(t)dt. 
}In 

~ [Q:;;)2 + r aQ2dt 
}In 

< ~[Q:;;_ 1 ) 2 + f c1t ik(t- s)IIQ(s)ids)IQ(t)idt 
}In 0 

+ L lt'(Y)(t)IIQ(t)idt, 
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(2.5.2.8) 

(2.5.2.9) 

(2.5.~.10) 

(2.5.2.11) 



We notice that form= 0, 

~[Q~] 2 + f a(t)dt[Q~] 2 
}In 

< ~[Q;;_,j2 + l1'"-' lk(t- s)ldsdt 'ft IQiiiQ;;I 

+ ~n [Q~] 2 + ~ { [E(Y)(t)] 2dt, 
}In 

we obtain, if hn is sufficiently small, 0 < {31 < ~, 

We abbreviate (2.5.2.13) as 

where f3IJ {32 are obvious. Using discrete Gronwall lemma (26], we get 

[Q~] 2 < c 1 (E(Y)(t)) 2dt. 
In 

The estimate 
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(2.5.2.12) 

(2.5.2.13) 

(2.5.2.14) 

(2.5.2.15) 
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now follows from (2.5.2.3) and Theorem 2.1.2.1. Because Y = Y - Q, 

max llhnR(Y)III 1:=;n::;M n 

{h I[Y]n-1- [Q]n-11 max n~~--~~~ 

1:=;n::;M hn 

+ hnlla(t)Y- a(t)Q;;- -l k(t- s)[Y- Q;;-Jdsiii.J 

{h I[Y]n-11 + I[Q]n-11 max n~~--~~--

1:s;n::;M hn 
< 

+ hnlla(t):Y -l k(t- s)Y(s)dsiii, 

+ hnlla(t)Q;;-III, + hnll[ k(t- s)Q;;-dslld 

< lhnR(Y)I + max {I(Q]n-11 1::;n::;M 

+ lla(t)Q;;-III, + 11[ k(t- s)Q;;-dsllf.}, 

Combining (2.5.2.14), (2.5.2.15), (2.5.2.16), and noting that 

1~'2'M{I[Q]n-d + lla(t)Q;;-III, + 11[ k(t- s)Q;;-dsllr.} = O(h"), 

with q > 2, we obtain (2.5.2. 7) with m = 0. 

We shall now prove (2.5.2.7) with m = 1. Recall (2.5.2.10): 

~[Q;]2 + ~[Q!-1]2 + 1 aQ2dt 
In 

- Q;_1 Q!_1 -1 ( t k(t- s)Q(s)ds)Q(t)dt 
In Jo 

- 1 E(Y)(t)Q(t)dt. 
In 

(2.5.2.16) 

(2.5.2.17) 



63 

we obtain 

n-2 
+ c I: hi ([Q;]2 + [Qt]2) . (2.5.2.18) 

i=l 

Using again discrete Gronwall lemma (26], we reach 

(2.5.2.19) 

Because Y = Y- Q, 

max llh~R(Y)III 
1~n~M n 

{h2 I [Y]n-1 - [Q]n-11 
max n h 
1~n~M n 

+ h~lla(t)Y- a(t)Q- l k(t- s)[Y- Q]dslld 

{h21[Y]n-11 + I[Q]n-11 
max n h 
l~n~M n 

< 

+ h~lla(t)Y -l k(t- s)Y(s)dsllt. 

+ h~lla(t)QIIt. + h~lll k(t- s)Qdslld 

< ih~R(Y)i + max {hni[Q]n-11 
1~n~M 

+ h~lla(t)QIIt. + h~lll k(t- s)Qdslltn}. 

Combining (2.5.2.19), (2.5.2.15), (2.5.2.20), an observing that 

1 ~~M{I[Q]n-ll + lla(t)QIIt. + 111' k(t- s)Qdslld ~ O(h•), 

with q > 2, we obtain (2.5.2. 7) with m = 1. 

(2.5.2.20) 
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2.6 Superconvergence of mesh-dependent Galer kin 
methods for VIDEs 

In this section we extend the mesh-dependent Galerkin methods (including the dis

continuous Galerkin method) of Section 1.2 to Volterra integra-differential equa-

tions, including the semilinear case. Furthermore, theorems on superconvergence 

are proven. 

2.6.1 Superconvergence for semilinear VIDEs 

Consider again the semilinear Volterra integra-differential equation 

{ 
y'(t) + a(t)y(t) = Vc(y)(t), 
y(O) =Yo, 

t E I= (0, T], 
(2.6.1.1) 

where Vc(Y)(t) := 1' k(t - s)G(y)(s)ds. Assume that a, k E C(J), and G is 

Lipschitz continuous, i.e., 

(2.6.1.2) 

for all Y1, Y2 E D C JR. 

As in Section 1.2.1, we introduce the mesh-dependent weak form of (2.6.1.1): 

Find 
N 

u := (Uo, ... 'UN, ul, ... 'UN) E u := nN+l X IT L 2 (In; n), 
n=l 

such that 

N-1 

Uo[Vo- vl(to)] + L Un[vn(tn)- Vn+l(tn)] + UNvN(tN) 
n=l 

N N 

~ 1. UnV~dt = YoVo + ~ 1. [-a(t)u, 

+ [ k(t- s)G(u(s))ds]vndt, (2.6.1.3) 
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for all 

where u = :L~=l UiXIi, with XIi denoting the characteristic function of Ii. 

The local meaning of (2.6.1.3) is to find Un in L 2 (In; 0) and Un in 0 such that 

Unvn(tn) = Un-l Vn(tn-d + r [unv~ 
}In 

+( -a(t)un(t) + lk(t- s)G(u(s))ds)vn]dt, 

Uo =Yo, 

for all Vn E H 1 (In; 0) and n = 1, ... , N. 

(2.6.1.4) 

Thus the mesh-dependent Galerkin scheme for (2.6.1.4) is to find uh E Uh such 

that Uo = Yo and 

U~v~(tn)- { u~(v~)'dt = U~_ 1v~(tn_ 1 ) + { [-a(t)u~ 
}In }In 

+ lk(t- s)G(u'(s))ds]v~dt, 
J additional conditions on u~, 

(2.6.1.5) 

u - {- I Uh = (U~, ... 'u;,, u~, ... 'u'N) E uh such that u~ E p(m)(fn; 0) } 
h - uh subject to J (> 0) additional conditions for n = 1, ... , N. ' 

We estimate the L 2- and nodal error of the mesh-dependent Galerkin scheme (2.6.1.5) 

for VIDE (2.6.1.1) in the following theorem. 

Theorem 2.6.1.1. Assume that the solution y of {2.6.1.1) belongs to sm+1 ((0, T]; 0). 

ForM> 1, assume that on the first M -1 intervals the solution of {2.6.1.5) is such 

that 

(2.6.1.6) 
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and for j = 0, ... , m + 1, 

(2.6.1.7) 

Subsequently, we have that for sufficiently small h, 

(2.6.1.8) 

and for j = 0, ... , m + 1, 

(2.6.1.9) 

N { N }1/2 
where Uh = :l:n=l U~XIn and II · IIi := :l:n=l II · IIJ,n · 

Proof. Since y solves (2.6.1.5), we have 

(U::- y(tn))v~(tn) = [u::_1 - y(tn-l)]v~(tn-l) + 1 (u~- y)(v~)'dt 
In 

{ a(t)(u~- y)v~dt + { tk(t- s)[G(uh(s)) 
~ J~h 
G(y(s) )]dsv~dt. (2.6.1.10) 

Let v~ be the solution of 

where u~ is the Lagrange interpolating polynomial of degree m, such that 

PJ denotes the L 2-projector of L 2 (In; D) onto p(m-J)(fn; D). We substitute v~ into 



(2.6.1.10) and obtain 

j (u~- u~)[PJ(u~- u~)(t)]dt 
In 

- [u:_l - y(tn-d] r PJ(U~- u~)(t)dt + 1 (u~ _y)[-SJJ(U~- u~)(t)]dt 
~In I~ 

- 1 a(t)(u~- Y) 1"' PJ(u~- u~)(v)dvdt + 1 d' k(t- s)[G(uh(s)) 

- :~y(s))]ds l" p~(u~- il~)(v)dv}dt. In ~ 
Hence we arrive at 

IIPJ(U~- u~)(t)llo,n < h;I21Un-1- y(tn-1)1 i- h;l21 1a(t)llo,nllu~- u~llo,n 

+ [1 + h;l2 lla(t)llo,nJIIu~- Yll o•n 
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+ Lh;_l2 { t jk(t- s)lluh(s) - y(s)ldsdt. (2.6.1.11) 
~In ~0 

We need Lemma 2.6.1.1 whose proof can be found in DeH'our and Dubeau (40]. 

Lemma 2.6.1.1. The map Jn defined by 

is an isomorphism, and there exist two constants j31 and p2 (independent of h and 

the points { tnJ(=1 ) such that 

It follows from Lemma 2.6.1.1 and (2.6.1.11) that 

(/31- h;/2lla(t)llo,n- Lh~2 llk(t)llo,n]llu~- #~llo,n 

< h;/2IU:_1- y(tn-1)1 + [1 + h;l2 lla(t)llo,n]llu~- Yllo,n 
J 

+ Lh~2 llk(t)llo,nllu~(t)- y(t)llo,n + hlj2 L lv·~(tnl)- u~(tnJI 
l=l 

n-1 
+ Lh;/

2 L ~ llk(t- s)lluJ(s)- y(•)idsdt• 
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Hence, 

llu~ - Yiio,n < llu~ - u~llo,n + iiu~ - Yiio,n 
J 

< Ch~12 {IU~-1- y(tn-dl + L iu~(tnt)- u~(tnt)i} 
l=1 

+ Cllu~(t)- y(t)llo,n 
n-1 

+ Ch';!2 l ~ 1, lk(t ~ s)lluj(s) ~ y(s)ldsdt. (2.6.1.12) 

Substitute v~ = U~- y(tn) into (2.6.1.10): 

IU~- y(tn)l < IU~-1- y(tn-dl + lla(t)llo,nllu~- Yllo,n (2.6.1.13) 

+ Lh~12 llk(t)llo,nllu~(t)- y(t)llo,n 

+ Lh;/2 1. (~ 1, lk(t ~ s)lluj(s) ~ y(s)lds) dt. 

We therefore obtain 
n n 

IU~- y(tn)l < L lla(t)llo,illu7- Yllo,i + L Lh;12 llk(t)llo,illu7- Yllo,i 
i=1 i=1 

n n-1 
+ ?= Lhi12 J.. L 1. ik(t- s)iiuJ(s)- y(s)idsdt. (2.6.1.14) 

t=1 I, j=1 IJ 

We note that for J < M and u~(tn1 ) = U~1 , inequality (2.6.1.12) can be rearranged 

to read 
M 

llu~- Yllo,n < Ch;/2 L IU~-i- y(tn-i)i + Chm+1IIY(m+1)llo,n 
i=1 

n-1 
+ Ch;/2 J. L J. ik(t- s)lluj(s)- y(s)idsdt, (2.6.1.15) 

In j=1 Ii 

where ll·llo,n is the L 2-norm over [tn-M, tn]· Set an:= IU~- y(tn)l, n = 1, ... , N, 

and 

f3j .- lla(t)llo,jlluJ- Yllo,j + Lhjiik(t)ilo,jlluJ- Yllo,j 
n-1 

+ Lh}12 1 L 1ik(t- s)ilu~(s)- y(s)idsdt, 
I; m=1 Im 
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for j = 1, ... , N. If we abbreviate (2.6.1.14) by setting an < ~7=1 /3j, then 

M M M n-i n-1 

L IU:_i- y(tn-i)j = L D'n-i < L L /3j < M L /3j· 
i=1 i=l i=l j=1 j=l 

Since 

/3j < h~12 Allu7 - Yllo,j + LhY
2 
Bllu7 - Yllo,j 

n-1 

+ LBh~12 L h;(2 1!u~(s)- y(s)llo,m, 
m=l 

we have 

Recalling (2.6.1.15), we then derive the bound 

n-l 
+ CBhn L h;(2 1!u~- Yllo,m + Chm+l IIY(m+l) llo,n 

m=1 

n-l 
< Ch;/2 L h;(2 1!u~- Yllo,m + Chm+li!Y(m+l)llo,n, 

m=l 

and Gronwall's lemma leads to 

n-1 

llu~ - Yllo.~ < Chm+l exp( Ch;/2 L h;(2
) IIY(m+l) llo,n 

m=l 

Thus (2.6.1.7) and (2.6.1.9) hold true when j = 0. From (2.6.1.13) and Gronwall's 

lemma we also obtain (2.6.1.6) and (2.6.1.8). The inequalities (2.6.1.9) (1 < j < 

m + 1) are obtained by using the estimates 

llu~- YiiJ.n < llu~- u~ilj,n + llu~- Yiij,n 
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and 

Now we describe the superconvergence property of the mesh-dependent Galerkin 

method (2.6.1.5) for the VIDE (2.6.1.1). 

Theorem 2.6.1.2. Assume that the assumptions of Theorem 2.6.1.1 hold. Then 

for all sufficently small h > 0 we have 

max{jU~- y(tn)l: n = 0, ... , N} < Ch2m+2-J. (2.6.1.16) 

Proof. Choose vh = (V0 , v~, ... , v~) such that v~(t0 ) = V0 and v~(tn) = v~+1 (tn), n = 

1, ... , N- 1. Substitute that vh in (2.6.1.10) and sum over j = 1, ... , n. This yields 

(U~- y(tn))v~(tn) 1'" (u"- y)(v")'dt -l" a(t)(u"- y)v"dt 

+ 1"' l k(t- s)[G(u"(s)) 

G(y(s))]ds vhdt. (2.6.1.17) 

Let win Hm+ 2-J (0, t; D) be the solution of 

{ 
w'- a(t)wh + 1'" k(s- t) 11 

c.(ru" + (1- r)y)dr. w(s)ds = 0, 

w(tn) - un - y(tn), 

for t E [0, tn]. Let wh be a continuous piecewise interpolating polynomial of d"'gree 

m + 1- J of w such that wh(tn) = U~- y(tn)· It follows from Sobolev interpolation 

theory [22] that 

Now we shall use the following Lemma 2.6.1.2 to express the norm of w<m+2-J) in 

terms of u~- y(tn). 
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Lemma 2.6.1.2. Suppose that g is such that gl 1n E Hm+l-J(In; D) (n = 1, ... , N), 

and that w in H 1 ([0, T]; D) satisfies the equation 

l
tn 

w'(t)- a(t)w(t) + t k(s- t)A(s)w(s)ds = g(t), (2.6.1.18) 

for t E [0, tn]. Then there exists a constant C, independent of g and tn, such that 

Proof. We differentiate (2.6.1.18) m + 1- J times to express w(m+2-J) in terms of 

{ w, v;w(t) (q = 0, ... 'm + 1 - J), g, g(l)' ... 'g(m+l-J) }, where 

i
tn . 

v;w(t) := t kiq)(s- t)A(s)w(s)ds. 

Then we replace w by the identity 

l
tn 

w(t) = R(t, tn)w(tn) + t R(t, s)g(s)ds, (2.6.1.19) 

where the resolvent kernel R has the form 

R(t,s) = 1 +is r(t,u)du, (t,s) E S := {(t,s): 0 < t < s < tn < T}, 

with r satisfying 

r(t, s) = Q(t, s) +is Q(t, r)r(r, s)dr, 

and with 

Q(t, s) := a(s) +is kiq)(u- s)du, (t, s) E S. 

We refer to ([26] or [23]) for the proof of (2.6.1.19). The proof of Lemma 2.6.1.2 is 

now complete. 

We then have 



Set vh = wh in (2.6.1.17): 

IU~- y(tn)l 2 < !!uh- Ylloll(wh)'- a(t)wh + [" k(s- t)A(s)wh(s)ds!!o 

< !!uh- Ylloll(wh)'- a(t)wh + [" k(s- t)A(s)wh(s)ds 

Hence, 

i
tn 

- [w'-a(t)w+ t k(s-t)A(s)w(s)ds]Jlo 

< JJuh- yJJo{JJ(wh)'- w'llo + Allwh- wJJo + TLBJJwh- wJJo} 

< Jluh- YIJo{Chm+l-JJU~- y(tn)l 

+ C(A + TLB)hm+2-JJU~- y(tn)J}. 
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Combining this equation with (2.6.1.9) we arrive at the desired estimate (2.6.1.16). 

2.6.2 Superconvergence of the discretized mesh-dependent 
Galerkin methods for VIDEs 

Consider, for ease of exposition, the linear VIDE 

{ 
y'(t) + a(t)y(t) = V(y)(t), t E I= [0, T], 
y(O) =Yo, 

where V(y)(t) := 1' k(t- s)y(s)ds and a, k E C(I). 

(2.6.2.1) 

As in Section 1.2.1, we introduce the mesh-dependent weak form of (2.6.1.1): To 

find 
N 

u := (Uo, ... 'UN, U!, ... 'UN) E u := nN+l X IT L2 (In; D), 
n=l 
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such that 

N-1 

Uo[Vo- v1(to)] + L Un[vn(tn)- Vn+1(tn)] + UNvN(tN) 
n=1 

N N 

~ L u,v~dt = YoVo + ~ L [-a(t)un 

+ V(u)(t)]vndt, \lv E V, (2.6.2.2) 

The local form of (2.6.2.2) is: Find un in L 2 (In; D) and Un in D such that 

1 
Unvn(tn) = Un-1Vn(tn-1) +in [unV~ 
+( -a(t)un(t) + V(u)(t))vn]dt, 
Uo =Yo, 

for all Vn E H 1(In; D) and n = 1, ... , N. 

(2.6.2.3) 

Thus the approximation scheme for (2.6.2.3) consists in finding uh in Uh such 

that Uo = Yo and 

1 
U~v~(tn)- { u~(v~)'dt = U~_1v~(tn-d + 1 [-a(t)u~ 

v~In In 
+ V( uh(s) )(t)]v~dt, 
J additional conditions on u~, 

(2.6.2.4) 

f 11 h . pCm+1-J) (I . n) d - 1 N H h - "'n-1 h d or a vn In n, ~" an n - , ... , . ere u - L..Ji=1 ui Xi an 

U _ {- I uh = (U(;, · .. , URr, u~, ... , u'N) E U such that u~ E p(m)(fn; D) } 
h - uh subject to J (> 0) additional conditions for n = 1, ... , N. ' 

When we apply the numerical quadrature to the memory term, we obtain the semi

discretized DG scheme for (2.6.2.3): Find iih in uh such that Uo =Yo and 

1 
u~v~(tn) -1 u~(v~)'dt = u~_1 v~(tn-1) + 1 [-a(t)u~ 

In In 
+ V( uh) ( t) ]v~dt, 
J additional conditions on u~' 

(2.6.2.5) 
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f 11 -h . p(m+1-J) (1 . n) d - 1 N H -h - ~n-1 -h . d or a vn In n, ~ G an n - , ... , . ere u - L...,i=1 ui Xt an 

u - - uh - Uo' ... ' N> u1, ... l UN E sue a un n, - {- I ::: - (T-Th u-h -h -h) u- h th t -h E p(m)(J . n) } 
h - uh subject to J (> 0) additional conditions for n = 1, ... , N, ' 

where we will use the interpolatory quadrature approximation (for example, Newton-

Cotes formulas (44]) for the memory term: 

n-1 

(2.6.2.6) 
i=O 

To make the error of the quadrature formula (2.6.2.6) be O(hm) for all t E (0, T], 

we adapt the old mesh (with meshsize h := max{hn, n = 1, ... , N}) by choosing 
(n) 

max{ hi : 1 < i < m} : = h m. 

We describe the L 2 and nodal error of the semi-discretized DG scheme (2.6.2.5) for 

(2.6.2.1) in the following theorem. 

Theorem 2.6.2.1. Assume that the solution y of (2.6.2.1} belongs to Hm+1 ([0, T]; D). 

ForM> 1, assume that on the first M -1 intervals the solution of (2.6.2.5) is such 

that 

(2.6.2.7) 

and for j = 0, ... , m + 1, 

{I: IIU~- Yll}n} 
112 

< Chm+HIIY(m+l)llo· (2.6.2.8) 

Hence, we have that for sufficiently small h > 0, 

(2.6.2.9) 

and for j = 0, ... , m + 1, 

(2.6.2.10) 



75 

Proof. Since y satisfies (2.6.2.5), we have 

(U~- y(tn))v~(tn) - [U~_ 1 - y(tn-1)]v~(tn-1) + 1 (u~- y)(v~)'dt 
In 

1 
a(t)(u~- y)v~dt + f [V(uh)(t) 

In ~In 
V(y)(t)]v~dt. (2.6.2.11) 

Let v~ be the solution of 

where u~ is the Lagrange interpolating polynomial of degree m, 

u~ ( tnl ) = y ( tnl ) ' l = 1 ' ... ' J. 

PJ is the £ 2-projector of L 2 (In; 0) onto p<m-J)(In; 0). Then we substitute v~ into 

(2.6.2.11) and obtain 

1 
(u~- u~)[PJ(u~- u~)(t)]dt 

In 

- [U~_ 1 - y(tn-1)] 1 PJ(u~- u~)(t)dt + 1 (u~- y)[-pJ(u~- u~)(t)]dt 
In In 

1 
a(t)(u~- y) ltn PJ(u~- u~)(v)dvdt + f [V(uh)(t) 

~ t ~~ 

l
tn 

V(y)(t)] t PJ(u~- u~)(v)dv}dt. 

So we can arrive at 

IIPJ(U~- u~)(t)llo,n < h;/2 1Un-1- y(tn-1)1 + h;/2 lla(t)llo,nllu~- u~llo,n 

+ [1 + h~12 lla(t)llo,n]llu~- Yllo,n 

+ Lh;/2 1!V(uh)(t)- V(y)(t)!dt. 
In 

(2.6.2.12) 
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We again use Lemma 2.6.1.1, where we have now replaced u by u. Recalling 

(2.6.2.12), we obtain 

[,81- h:f2 iia(t)lio,n- Ch~2]11u~- u~ilo,n 

< h;(2 jU~-1- y(tn-1)1 + [1 + h~12 iia(t)ilo,n]liu~- Yilo,n 
J 

+ Ch~2 llu~(t)- y(t)ilo,n + h;(2 L iu~(tnc)- u~(tnc)l 
l=1 

+ Ch~2 {j[V(uh)(tn-1)- V(y)(tn-1)]1 + i[V(y)(tn)- V(y)(tn)]j}. 

Hence 

iiu~- Ylio,n < iiu~- u~llo,n + llu~ - Ylio,n 
J 

< Ch;!2{IU~-1- y(tn-1)1 + L iu~(tnc)- u~(tnc)l} 
l=1 

n-1 
+ Cllu~(t)- y(t)llo,n + Ch~2 L iUf- y(te)l 

£=1 

+ Ch~2 IV(y)(tn)- V(y)(tn)l. 

Substitute v~ = [!~- y(tn) into (2.6.2.11) 

IU~- y(tn)l < IU~-1- y(tn-1)1 + iia(t)lio,nllu~- Ylio,n 
n-1 

+ Ch~2 llu~(t)- y(t)llo,n + Ch~2 L iUeh- y(te)l 
£=1 

(2.6.2.13) 

+ Ch~2 IV(y)(tn)- V(y)(tn)l. (2.6.2.14) 

We therefore obtain 

We note that for J < M and the u~(tn1 ) = U~1 , inequality (2.6.2.13) can be rear-
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ranged in the form 

n-l 
llu~- Yllo,n < Ch;/2 L IUeh- y(te)l + Chm+liiY(m+l)llo,n 

l=l 

n-l n 

< Ch;/2 L hi12 llu~- Yllo.e + C L h~12 IV(y)(te)- V(y)(te)l 
l=l l=l 

+ Chm+liiY(m+l) llo,n· (2.6.2.16) 

Therefore, 

n 

llu~- Yllo,n < Chm+liiY(m+l)llo,n + C L h~12 IV(y)(tz)- V(y)(tz)l. 
l=l 

Here II · llo,n is the L 2-norm over [tn-M, tn]· Thus (2.6.2.8) and (2.6.2.10) hold true 

when j = 0. From (2.6.2.14) and Gronwall's lemma we also know that (2.6.2.7) and 

(2.6.2.9) hold. Inequalities (2.6.2.10) for 1 < j < m + 1 are obtained by using the 

inequalities 

llu~ - Ylij,n < llu~ - u~llj,n + llu~ - Ylij,n 

and 

The following theorem is the analogue of Theorem 2.6.1.2. 

Theorem 2.6.2.2. Assume that the assumptions of Theorem 2.6.2.1 hold and take 

{ tn}~=l as the Gaussian points in I := [0, T]. Then for sufficiently small h we have 

max{IU:- y(tn)l: n = 0, ... , N} < Ch2m+2
-J. 

Proof. Choose vh = (Vo, v?' ... 'v~) such that v?(to) = Vo and v~(tn) = v~+l (tn), n = 

1, ... , N- 1. Substitute that vh in (2.6.2.11) and sum up over j = 1, ... , n. This 
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yields 

(2.6.2.17) 

Let w in Hm+2-J ([0, t]; D) be the solution of 

for t E [0, tn]. Let wh be a continuous piecewise interpolating polynomial of degree 

m + 1- J of w such that wh(tn) = [!~- y(tn)· From Sobolev interpolation theory 

[22], we deduce 

Now we use the following Lemma 2.6.2.1 to express the norm of iiJ(m+2-J) in terms 

-h 
of un - y(tn)· 

Lemma 2.6.2.1. Fix s in [0, T]. Suppose that g is such that giin E Hm+l-J (In; D) 

for n = 1, ... , N, and that w in H 1 ([0, T]; D) satisfies the equation 

w'(t)- [a(t) + Wnnk(O)t]w(t) = g(t), 

fort E (0, tn]. Then there exists a constant C independent of g and s E (0, tn] such 

that 

Proof. The lemma is a special case of Lemma 2.6.1.2 without the memory term. 

Compare also with Delfour and Dubeau [40]. 

We then have 

(2.6.2.18) 
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Set vh = wh in (2.6.2.17) 

(2.6.2.19) 

Since 

V(uh)- V(y) - V(uh)- V(y) + V(y)- V(y) 
n-l 

- V(y)- V(y) + L Wni([Jih- y(ti)) 
i=l 

(2.6.2.20) 

and from Lemma 2.6.2.1 we have 

llwhllo < llw- whllo + llwllo 

< Chm+2-JI[J~- y(tn)l + CIU~- y(tn)l, (2.6.2.21) 

Combining {(2.6.2.18), (2.6.2.19), (2.6.2.20), (2.6.2.21), and Lemma 2.6.2.1} yields 

n-l 

(2.6.2.22) 
i=l 

Hence, Gronwall's lemma leads to 

Remark 2.6.2.1. We conclude that it is not substantially more difficult to analyze 

the mesh-dependent Galerkin method for nonstandard Volterra integra-differential 

equations containing memory terms of the form V{j (y) ( t) : ~ 1' k( t~ s )G (y(t), y ( s ))ds. 

We leave the details to the interested readers. 



Chapter 3 

The discontinuous Galerkin 
method for delay VIDEs 

In this chapter we focus on three kinds of delay Volterra integro-differential equa

tions. We show the regularities of those problems and thus construct and analyze 

the robust adaptive discontinuous Galerkin methods for them. The readers may 

wish to consult Brunner and Zhang [28), Hale [58), Hale and Verduyn Lunel [59), 

and Bellen and Zennaro [12] and the references therein for the background materials 

and related results about delay differential or integro-differential equations. 

3.1 Primary discontinuities of several classes of 
delay Volterra integra-differential equations 

3.1.1 Delay VIDEs with weakly singular kernels 

Let us consider 

{ 
y'(t) = f(t, y(t)) + l (t ~ s)-aG(s, y(s ), y(O(s)))ds, t E I:= [0, T], (3.1.1.1) 

y(t) = ¢(t), t E [a,O), 

where we assume 0 <a< 1 and 

(i) j, G , ¢ are sufficiently smooth. 
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(ii) B(t) := t - T(t), with T sufficiently smooth, t > T(t) > To > 0 (t E I). 

Moreover, B is strictly increasing on I and a= inft~o B(t) < 0. 

(iii) The points { ~J.L} are defined by 

(3.1.1.2) 

where ~0 := 0. Obviously 

~J.£+1 - ~J.L > To > 0, V J.1 > 0. 

For simplicity we denote G(s) .- G(s, y(s), y(B(s))). We shall use the following 

formula frequently. 

H(t) l'(t- s)-aG(s)ds 

1 G(~)(t- ~)1-a + 1 c' (~)(t- ~)2-a 
1 -a (1 - a)(2- a) 

+ ... + 1 c<m\~)(t- ~)m+1-a 
(1- a)m+1 

+ 
1 t c<m+1\s)(t- s)m+1-ads, (3.1.1.3) 

(1- a)m+1 Jo 

with (1-a)m := (1-a)(2-a) · · · (m-a). We remark that (3.1.1.3) can be obtained 

by using repeated integration by parts. 

Definition 3.1.1.1. If the solution of (3.1.1.1) and its derivatives of order less than, 

or equal to J.1 are continuous at some points ~ E I but the derivatives of order J.1 + 1 

is not, then~ is called a primary discontinuity of problem (3.1.1.1) 

Denote J[J.L] := (~J.L- 1 , ~J.£+ 1 ] (J.l > 0), where ~- 1 := a. We shall describe the 

primary discontinuities in solutions for (3.1.1.1) as the following theorem. 
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Theorem 3.1.1.1. The primary discontinuities of problem (3.1.1.1) are the points 

~11- (J-L = 0, 1, ... ) generated by (3.1.1.2). To be more· precise, y E C 211-·1- 0 (J[11-l ), but 

y<211-+1
) is not continuous at the point ~11- ' provided the assumptions (i) and (ii) hold. 

Remark 3.1.1.1. We use Cf3(I) (0 < {3 < 1) to denote the well-known Holder 

space: V is in .Cf3(I) if, for any t 1 , t 2 E I (t1 =1- t 2 ), we have 

A function V is in CJ1.,f3(I) (J-L EN, J-L > 1) if V E 011-(J) and V(Jl.) E Cf3(I). We set 

C 0·f3(I) = Cf3(I). 

Proof. The proof is based on the method of steps. 

(1) Consider the regularity of the solution for (3.1.1.1) at the point ~0 := 0. It is 

possible to satisfy the condition y(O) = ¢(0), but not, in general, also the condition 

y'(O+) = ¢'(0-). The continuity of the derivative of the solution can be guaranteed 

at the initial point 0 only for deliberately chosen ¢(t), and such a function ¢(t) must 

satisfy the condition ¢'(0-) = f(O, ¢(0)). 

(2) Consider the regularity at the point 6. We write the equation (3.1.1.1) as 

where 

{ 
y' ( t) = f ( t, y ( t)) + H 1 ( t) , t E I : = ( 0, T], 
y(t) = ¢(t), t E [a, O], 

H,(t) := 1'(t- s)-aG(s)ds. 

From the formula (3.1.1.3) , we obtain 

1 - 1 1 1t -1 1 H1(t) = G(O)t -a+ G (s)(t- s) -ads. 
1-a 1-a 0 

Thus 
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So y" is continuous at the points f,J.L (J-L > 1). But yC3) is discontinuous at 6. Now 

we are going to prove that 

(3.1.1.4) 

For any t 0 , t1 E J[1l and without loss of generality we assume to < 6 < t1. From 

11" c' (8)(t, - 8)-ad8- 1'• c' (8)(t0 - 8)-ad81 

< If c' (8)(t, - 8 )-ad81 + If ( c' (8 )(t1 - 8)-a- c' (8)(t0 - 8 )-a) d81 

< £-r., 1 0 + 0 - --=-1-
{ 

2(t - t )1-a t1-a t1-a } 

G 1-a 1-a 1-a 

< 3£cl (t - t )1-a 
1 1 0 ' -a 

where Lei is the upper bound of I c' ( s) I in J[1l. So y E c 3-a ( Jl1l). 

(3) Consider now the regularity at the point f.2. We write the equation (3.1.1.1) 

as 

where 

{ 
y'(t) = f(t, y(t)) + [' (t- 8 )-ac(8)d8 + H2 (t), t E I := [0, T], 

y(t) = ¢(t), t E [a, o], 

H2(t) := lt (t- s)-aG(s)ds. 
6 

By using the formula (3.1.1.3) again, we obtain 

1 - 1 1 _, 2 
1- a G(f.1)(t- 6) -a+ (1- a)(2- a) G (6)(t- 6) -a 

+ (1- a)(2 ~ a)(3- a) c" (6 )(t- 6 )
3
-a 

+ 1 lt G(3\t- s)3-ads 
(1- a)(2- a)(3- a) 6 . 



Thus we can calculate the derivatives of order up to three of H 2 (t) as: 

H~(t) -

+ 

+ 

H~(t) -

+ 

H~3)(t) 

+ 

- 1 ~ 1 a(61)(t- 6)-a + a (6)(t- 6) -a 
1-a 

(1 - a)1(2- a) a" (6)(t- 6)2-a 

1 it a(3) ( ) ( )2-ad 
(1 - a)(2- a) 6 s t- s s. 

- 1 _, 1 -// 1 
-aa(6)(t- 6)-a- +a (~1)t(t- 6)-a + a (6)(t- 6) -a 

1 it a(3\s)(t- s)(l-a)ds. 
1- a 6 

1-a 

a( a+ 1)a(6)(t- ~I)-a-2 - aa' (~1 )(t- 6)-a-l 

a" (6)(t- 6)-a + 1t a<3) (s)(t- s)-ads. 
6 
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Hence y<4
) is continuous at the point ~JJ. (f.L > 2). But y<5) is discontinuous at 6-

Furthermore along the lines proving (3.1.1.4) we can verify that 

i t a<3)(t- s)-ads E C 1-a(J[2l). 
6 

(4) We suppose y E C 2JJ.,l-a(J[JJ.l) andy E C2JJ.(~m) (m > f.L). Now we consider 

the regularity at ~JJ.+l· We write the equation (3.1.1.1) as 

where 

{ 
y'(t) = f(t, y(t)) + [" (t- s)-aG(s)ds + H~+I (t), t E I := (0, Tj, 

y(t) = ¢(t), t E [a, o], 

HJJ.+1 (t) := t (t- s)-aa(s)ds. 
}{~ 

We write HJJ.+l (t) as, by using (3.1.1.3), 



Thus we can calculate the derivatives of order up to 2f..L + 1 of H1-£+1(t) as: 

H~+1 (t) - G(f,~-')(t- f,~-')-a + 
1 
~a G' (f.~-')(t- f,~-') 1 -a 

+ ... + (1 -1ah~-' G(2J.') (f.~-') (t- f,~-')21-£-a 

+ 1 lt G(2~-£+1)(s)(t- s)2~-'-ads. 
(1- a)2~-' ~~-' 

+ 1 1t G(21-'+1)(s)(t- s)-0 ds. 
(1- a)2~-' ~~-' 

Hence y E C2(1-£+1),1-a(J~+1l). 

Let us consider now 
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(3.1.1.6) 

(3.1.1. 7) 

{ 
y'(t) = f(t, y(t), y(O(t))) + [ (t- s)-aG(s, y(s ), y(O(s)))ds, t E I := [0, T], 

y(t) = ¢(t), t E (a, O], 
(3.1.1.8) 

with the assumptions (i), (ii), (iii) in (3.1.1.1). 

Theorem 3.1.1.2. The primary discontinuities of problem {3.1.1.8) are the points 

f.~-' (J.L = 0, 1, ... ) generated by (3.1.1.2). To be more precise, y E C~-'· 1 -a(J~l), but 

y<~-'+ 1 ) is not continuous at the point f.~-'' provided the assumptions (i) and (ii) hold. 

Proof. From [125] we know the primary discontinuities of problem 

{ 
y' ( t) = f ( t, y ( t) , y ( (} ( t))) , t E I : = [ 0, T], 
y(t) = ¢(t), t E (a, o], (3.1.1.9) 

are the points f.~-' (J.L = 0, 1, ... ) generated by (3.1.1.2). To be more precise, y(~-£) is 

continuous at the point f.~-' and y<~-'+ 1 )(~1-'+1) is bounded, but y<~-'+ 1 ) is not continuous 

at f.~-'' provided the assumptions (i) and (ii) hold. Thus, recalling Theorem 3.1.1.1, 

we obtain Theorem 3.1.1.2. 
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Theorem 3.1.1.3. Consider 

{ 
y'(t) = J(t, y(t), y(O(t)), y'(O(t))) + l (t- s)-aG(s, y(s ), y(O(s )))ds, t E I := [0, T], 

y(t) = ¢(t), t E [a, o]. 
(3.1.1.10) 

with the assumptions (i), (ii), (iii) in {3.1.1.1). There is no smoothing to the solu

tions of {3.1.1.10); more precisely, y E C 1-a(J!1-'l), VJ-L > 1. 

Proof. It is known that there is no smoothing to the solutions of neutral delay dif

ferential equations (see [125]), so there is no smoothing to the solutions of (3.1.1.10). 

Following the lines in the proof of Theorem 3.1.1.1, we can verify that 

Remark 3.1.1.2. The delay integra-differential equations may include terms such 

as 

l K(t- s)G(y(O(s)))ds, (3.1.1.11) 

and 

1
0(t) 

0 

K(t- s)G(y(s))ds. (3.1.1.12) 

A natural question arises: ((What is the difference between the regularity of the 

delay integra-differential equation with the term {3.1.1.11) and that with the term 

{3.1.1.12)?". 

The term {3.1.1.11) can be expressed as 

1
0(t) 

K(t- e-1 (s))(e- 1 (s))'G(y(s))ds. 
0(0) 

(3.1.1.13) 

Therefore, if the kernel function K is sufficiently smooth, then the regularities of 

{3.1.1.11) and {3.1.1.12) are the same. But when K has weakly singular behavior_. 

their regularities will be different. Discussion of Section 3.1. 2 will explain this well. 



3.1.2 Delay functional VIDEs of Hale's type 

Consider 

{ ! (y(t) - [(') K(t- s)G(y(s))ds) ~ f(t, y(t), y(O(t))), t E I := [0, T], 

y(t) = ¢(t), t E [a, o], 
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(3.1.2.1) 

where we assume that 

(a) K is sufficiently smooth, and 

(b) (i), (ii), (iii) in (3.1.1.1) hold. 

We describe the primary discontinuities of problem (3.1.2.1) in the following theo-

rem. 

Theorem 3.1.2.1. The primary discontinuities of problem {3.1.2.1) are the points 

E,,_, (J-L = 0, 1, ... ) generated by {3.1.1.2). To be more precise, yC!-') is continuous atE,,_, 

but y(p,+l) is, in general, not provided the assumptions (i) and (ii) hold. 

Proof. We rewrite the left-hand side of (3.1.2.1) as 

! (y(t)- [(') K(t- s)G(y(s))ds) = y'(t) - O'(t)K(t- O(t))G(y(O(t))) 

1
8(t) 

0 
Kt(t- s)G(y(s))ds . (3.1.2.2) 

Thus the remaining lines of the proof are easily generated by using the method of 

steps ( cf. Brunner and Zhang [28]). 

For the equation: 

{ ! (y(t) - [(') (t- s)-aG(y(s))ds) = f(t, y(t), y(O(t))), t E I:= [0, T], 

y(t) = ¢(t), t E [a, o], 
(3.1.2.3) 



88 

where 1 < a < 1 and assuming (i), (ii), (iii) in (3.1.2.1) hold, we have Theo

rem 3.1.2.2. 

Theorem 3.1.2.2. The primary discontinuities of problem (3.1.2.3) are the points 

E,J-t (J.L = 0, 1, ... ) generated by (3.1.1.2). To be more precise, yCJ-t) is continuous 

at E,J-t but yCJ-t+l) is, in general, not provided the assumptions (i) and (ii) hold. If, 

in addition, we assume y E C 1-a(Jl0l), then y E CJ-£·1-a(J[JJ.l), but y(J-t+l) is not 

continuous at f,J-£+ 1 . 

Proof. Since 

! (y(t)- [(t) (t- s)-aG(y(s))ds) (3.1.2.4) 

{B(t ) 
- y'(t)- B'(t)(t- B(t))-aG(y(B(t))) +a Jo (t- s)- 1

- .
0 G(y(s))ds, 

and t-B(t) = 1(t) >To> 0 hold, assuming that y is continuous at the point f,0 := 0, 

we can realize the assertion with the method of steps as in Brunner and Zhang [28]. 

If we assume, in addition, y E C 1-a(Jl0l), then we can prove the second assertion 

still by using the method of steps. 

We now consider 

{ 
:t (y(t) - J.:,) K(t- s)G(y(s))ds) = f(t, y(t), y(B(t))), t E I := [0, T], 

y(t) = ¢(t), t E [a, o], 
(3.1.2.5) 

where we assume K is sufficiently smooth and (i), (ii), (iii) in (3.1.1.1) hold. The 

primary discontinuities of problem (3.1.2.5) are described by Theorem 3.1.2.3. 

Theorem 3.1.2.3. The primary discontinuities of problem (3.1.2.5) are the points 

E,J-t (J.L = 0, 1, ... ) generated by (3.1.1.2). More precisely, y(J-t) is continuous at E,J-t but 

yCJJ.+l) is not, in general, provided the assumptions (i) and (ii) hold. 
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Proof. We rewrite the left-hand side of (3.1.2.5) 

d
d (y(t)- t K(t- s)G(y(s))ds) 
t ~O(t) 

- y'(t) + B'(t)K(t- B(t))G(y(B(t)))- K(O)G(y(t)) 

J. t Kt(t- s)G(y(s))ds. 
O(t) 

(3.1.2.6) 

Hence the proof can be completed by using the method of steps ( cf. Brunner and 

Zhang [28]). 

Consider now 

{ ! ( y(t) - J.;,) (t- s)-aG(y(s))ds) = f(t, y(t), y(ll(t))), t E I:= [0, T], 

y(t) = ¢(t), t E [a, o], 
(3.1.2. 7) 

where we assume 0 <a:< 1 and (i), (ii), (iii) in (3.1.1.1). This case is different from 

the one treated in Theorem 3.1.2.2, since we cannot use the techniques in the proof 

of Theorem 3.1.2.1. We describe the primary discontinuities of problem (3.1.2. 7) in 

the following theorem. 

Theorem 3.1.2.4. There is no smoothing to the solution of (3.1.2. 7). To be more 

precise, y E C 1•1-a:(J!J.Ll), for all J-L > 1, where C is independent on J-L, provided the 

assumptions (i) and (ii) hold. 

Proof. Consider first the regularity of the solution for (3.1.2.7) at the point ~0 := 0. 

It is possible to choose y(O) = ¢(0). The continuity of the derivative of the solution 

can be guaranteed at the initial point ~0 := 0 only for ¢(t) satisfying the condition 

¢'(0-) = dd ( t (t- s)-o:G(¢(s))ds) + f(O, ¢(0), ¢(B(O))). 
t ~O(t) 

Consider now the regularity at the point 6. We write the equation (3.1.2.7) as 

{ 
y' ( t) = f ( t, y ( t) , y ( () ( t))) + :t ( H 1 ( t)) , t E I : = [ 0, T], 

y(t) = ¢(t), t E [a, o], 



where 

H 1 (t) := J.t (t- B(t))-0 G(s)ds, 
O(t) 

where G(s) := G(y(s)). From the formula (3.1.1.3), we obtain 

1 - 1 1 J.t -1 1 H 1 (t) = G(B(t))t -ex+ G (s)(t- s) -ads. 
1- a 1- a o(t) 

Thus 

d
d (H1 (t)) = G(B(t))(t- B(t))-cx(l- B'(t)) + J.t G'(s)(t- s)-0 ds, 
t O(t) 

where G' (s) = Gy(y(s))y'(s). Similarly, we calculate that 

YO 

[G(B(t)) · (t- B(t))-cx · (1- B'(t))]' + c' (B(t))(t- B(t))-0 (1- B'(t)) 

+ 1t c" (s)(t- s)-0 ds. 
O(t) 

Since 

c' ( e ( t)) = c y ( y ( e ( t))) y' ( e ( t)) . 

we see that y" is discontinuous at the point ~1 and thus there is no smoothing to the 

solution of (3.1.2.7). To prove that y E C 1•1- 0 (J[1-'l), it is sufficient to verify that 

11t (t- s)-cxG'(s)dsl < C(t- 6) 1-cx. 
O(t) 

Since G' (t) is continuous in [a, T], we have 

IJ.t (t- s)-aG'(s)dsl 
O(t) 

< La J.t (t- s)-0 ds 
O(t) 

< C(t- B(t)) 1-a 

< C(t- 6)1-cx. 

(3.1.2.8) 

(3.1.2.9) 

In the last step of (3.1.2.9), we use that e is strictly increasing in I and thus 

6 = 8(6) > 8(t) > 8(6) = ~o, Vt E (6, 6). 
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Following the above process we can establish that 

3.1.3 Delay VIDEs of neutral type with smooth kernels 

Consider the following delay VIDEs of neutral type: 

{ 
y'(t) = f(t, y(t), y(B(t))) + l K(t- s)G(s, y(s), y'(s ), y'(B(s)))ds, t E I := [0, T], 

y(t) = ¢(t), t E [a, O], 
(3.1.3.1) 

where we assume that 

(a) K is sufficiently smooth, and 

(b) (i), (ii), (iii) in (3.1.1.1) hold. 

We describe the primary discontinuities of problem (3.1.3.1) in the following theo-

rem. 

Theorem 3.1.3.1. The primary discontinuities of problem (3.1.3.1) are generated 

inductively by the recursion (3.1.1.2), where ~0 := 0. More precisely, y(J.L) and lower

order derivatives are continuous at ~J.L' but y<J.L+l) is , in general, not under the as-

sumptions (a) and (b) for (3.1.3.1). 

Proof. (1) We consider the regularity of the solution for (3.1.3.1) at the point f.o := 0. 

It is possible to choose¢ to satisfy y(O) = ¢(0). However in general, ¢'(0-) =I y'(O+ ). 

Hence y is continuous at f.J.L (J.L > 0), but y' is not continuous at f.0 . 

( 2) Consider the regularity at 6. 0 bviously, y' is continuous at f.J.L (J.L > 1). 

But since the epression for y" at the point 6 include y' at the point f.o, y" is not 

continuous at the point 6 . 
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(3) Consider the regularity at 6. Set G(s) := G(s, y(s), y'(s), y'(B(s))). We 

obtain 

y"(t) ~ f'(t, y(t), y(8(t))) + K(O)G(t) + l K,(t- s)G(s)ds. 

Hence y" is continuous at ~J-L (J-L > 2). But yC3) is not continuous at 6, since yC3) 

includes y<2
) which is not continuous at 6· 

(4) Suppose y(J-L) is continuous at ~m (m > J-L). Consider now the regularity at 

~J-L+l· We know that y<J-L+l)(~I.L) includes y(m)(~J-L) (m < J-L), so y<J-L+l) is continuous at 

~J-L+l· But y<J-L+2)(t) is discontinuous at ~J-L+l, since yCJ-L+ 2)(~J-L+ 1 ) includes yCJ-L+l)(~J-L), 

and y<J-L+l) is not continuous at ~J-L+l· 

3.1.4 Delay VIDEs of neutral type with weakly singular ker
nels 

Consider 

{ 
y'(t) ~ f(t, y(t), y(8(t))) + l (t- s)-"G(s, y(s ), y'(s), y'(8(s)))ds, t E I :~ [0, T], 

y(t) = ¢(t), t E [a, o], 
(3.1.4.1) 

where we assume 0 <a< 1 and (i), (ii), (iii) in (3.1.1.1). 

We describe the primary discontinuities of problem (3.1.4.1) as the following 

theorem. 

Theorem 3.1.4.1. The primary discontinuities of problem {3.1.4.1) are generated 

inductively by the recursion {3.1.1.2), where ~0 := 0. More precisely, under the as

sumption (i), (ii) and (iii) in {3.1.1.1), y E CJ-L,l-a(J[J-Ll), but y<J-L+l) is not continuous 

at ~J-L in general. 

Proof. (1) We consider the regularity of solution for (3.1.4.1) at the point ~0 := 0. It 

is possible to choose¢ to satisfy y(O) = ¢(0). However in general ¢'(0-) =f y'(O+ ). 
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Hence y is continuous at E,J-L (J-L > 0) , but y' is not continuous at E,0 . 

(2) Consider the regularity at 6. Obviously, y' is continuous at 6, hence y' is 

continuous at E,J-L (J-L > 1). We can prove 

by following the lines proving (3.1.1.4). 

(3) Consider the regularity at f.2. We write the equation (3.1.4.1) as 

{ 
y'(t) ~ f(t, y(t)) + [' (t- s )-nc(s)ds + H2 (t), t E I :~ [0, T], 

y(t) = ¢(t), t E [a, o], 

where H 2 (t) := 1t (t- s)-aG(s)ds. By using the formula (3.1.1.3), we obtain 
6 

H~(t) 

1 - (1 ) 1 1t -1 1 --G(6)(t- 6) -a + G (s)(t- s) -ads 
1-a 1-a 6 

- G(6)(t- 6)-a + t c' (s)(t- s)-ads. 
}~1 

Hence y" is continuous at f.2. Thus y" is continuous at E,J-L (J-L > 2). Furthermore we 

can prove that y" E C 1-a ( j[J-L]). 

We consider the regularity at E,J-L+ 1 . We rewrite the equation (3.1.4.1) as 

{ 
y'(t) ~ f(t, y(t)) + [" (<;~- s)-nG(s)ds + H"+1(t), t E I:= (0, T], 

y(t)=¢(t), tE[a,O], 



Thus we can calculate the derivatives of order up to J-L + 1 of HJ-L+1 (t) as: 

G(f,J-L)(t- f,J-L)-a + 1 ~a c' (f,J-L)(t- f,J-L)l-a 

+ ... + (1 ~ a)J-L G(J-L) (f,J-L)(t- f,J-L)J-L-a 

+ ( ~) ltc(J-L+l)(s)(t-s)J-L-ads. 
1 a J-L ~~-' 

Hence yCJ-L+l)(t) is continuous at f,J-L+l· Furthermore we know that 

1' d"+I)(s)(t- s)-ads E C 1-a(Jii-<+1l), 
~I-' 
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(3.1.4.3) 

3.2 The discontinuous Galerkin method for delay 
VIDEs 

3.2.1 The discontinuous Galerkin method for functional VIDEs 
of Hale's type 

In this section we analyze the discontinuous Galerkin method for 

{ ! (y(t) -l(t) K(t- s)G(y(s))ds) = f(t, y(t), y(8(t))), t E I:= [0, T], 

y(t) = ¢(t), t E (a, o], 
(3.2.1.1) 

where we assume yEn c JR and 

(a) K is sufficiently smooth. 

(b) ( i) , ( ii) , (iii) in ( 3 .1.1.1) . 
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Without loss of the generality we set T = ~M+l for some M > 1, and introduce 

ZM:={~J.L: p,=0,1, ... ,M}. 

Since, as we have already seen in Section 3.1.2, the solution of (3.2.1.1) suffers 

from a loss of regularity at the primary discontinuity points {~J.L}, the meshes h 

underlying the DG space will have to include these points if the DG solution is to 

attain its optimal global (or local) order. Thus, we shall employ meshes of the form 

M 

I ·= UI(J.L] 
h. h ' (3.2.1.2) 

J.L=O 

with the local mesh given by 

Such a mesh is called a constrained mesh (with respect to 8) for I. We introduce 

the following notations 

I[J.L] ·= (c c ] I[J.L] ·= (t(J.Ll t[J.Ll] J[J.L] ·= [c c ] J[J.L] ·= [t(J.Ll t(J.Ll] · '-,J.L, '-,J.L+l ' n · n-1' n ' · '-,J.L, '-,J.L+l ' n · n-ll n ' 

and 

Consider now the local graded meshes of the form 

t)il := (;Jr .. II"'II 
(;"r · (E"+'- O(E"H)) 

(;") r". T{E"+1), 0 < n < N"- 1 (N" > 2), (3.2.1.3) 

where the grading exponent r J.L E IR will always be assumed to satisfy r J.L > 1. vVe 

know that 

h[J.L] < h[J.LJ < r · r(c +1)N-1 0 < n < N - 1 (N > 2). n - - p, ~J.L J1. ' - - J1. JJ -
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In this presentation, for simplicity, we take r J.L = 1 (\:/~J.L E Z M) (i.e. , each J}t'l is a 
1 

uniform mesh) and NJ.L := (N)~-'+ 1 for all ~J.L E ZM. 

We recall the problem (3.2.1.1) and denote 

Let 
{B(t) 

z(t) := y(t)- Jo K(t- s)G(y(s))ds. (3.2.1.4) 

It is easily seen from (3.2.1.4) that z(t) and y(t) possess the same regularity. We 

have 

z'(t) - f(t, y(t), y(B(t))) 

- f (t, z(t) + [(') K(t- s)G(y(s))ds, y(O(t))) . (3.2.1.5) 

We write (3.2.1.4) and (3.2.1.5) locally on the interval J[J.Ll. 

J.L-2 r lfJ(t) 
y[J.L] = z[J.L] + ~ JJ[iJ K(t- s)G(y[il(s))ds + ~~-'- 1 K(t- s)G(y[J.L-ll(s))ds. (3.2.1.6) 

(z"'l)' - f (t. z"'l + x; L K(t- s)G(yl'l(s))ds 

+ l~': K(t- s)G(yl~-tl(s))ds,yiP-ll(O(t))). 
Here we set y[o] := ¢(0). 

We abbreviate 

/(t) f (t, z(t) + [(t) K(t- s)G(y(s ))ds, y(O(t))) , 

r~l f (t. z!J<l + ~ L.l K(t- s)G(yi'l(s))ds 

+ l"<'l K(t- s)G(yl~-ll(s))ds, y!J<-ll(e(t))) . 
(J.t-1 

(3.2.1.7) 



Define: 

V[AI(h) := { tp E £ 2(1) : tpj
1
Jtl E pC~-t+l)(JJi'l), J.L E ZM}, 

where A := {p, + 1 }~0 . 
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Now we are ready to define the DG(A) scheme to (3.2.1.1): Find zh E V[AI(h), 

such that 

f~ f; u):'l [(z);1)'- fl!'1(t)]X(t)dt + [z);1]nX;t) + (z~l);j Xii = ¢(0)Xii (3.2.1.8) 

for all X E V[AI(Jh)· Here, 

fh(t) .- f (t,zh(t) + 1"(') K(t- s)G(yh(s))ds,yh(O(t))), 

ffl(t) .- f (t,z);l + ~ 1
1
,
1 
K(t- s)G(y~l(s))ds 

+ {~': K(t- s)G(yj;-'1 (s) )ds, yJ;-11(e(t))) . 

This represents a time-stepping method: Find 

such that 

N~-' N~-' 

~ l.IPI ((z);1)'- fl!'1(t)]X(t)dt + ~(z);1]n-1X;;_1 + (zj;l);j Xii 

- (zJt1)0 xt, vx E vC~-t)(J[~-tl), (3.2.1.9) 

for p, = 0, 1, ... , M. Here, we set (zJt1)0 := (zJt- 11)N-~-' (for p, = 1, 2, ... , M) and 

(~[~-tl)0 = ¢(0) (for J.L = o). 

Also, (3.2.1.9) can be interpreted as a local time stepping method: Find zJtl E 

pC~-t+ l) ( JJil), such that 

{ ((z[J-£1)'- Jf~-ti]X(t)dt + (z[~-tl)+ x+ = (z[J-£1)- x+ }IJil h h h n-l n-l h n-l n-l (3.2.1.10) 
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for all X E pCtJ.+l)(JJi1). Again, we set (zJt1)0 := (zJt- 11 )N . Hence define 
J.1. 

11--2

1 1
e(t) 

yJtl := zJtl+ 2::: . K(t-s)G(y~l(s))ds+ K(t-s)G(yJt- 1l(s))ds. (3.2.1.11) 
i=O I[•1 ~J.J.-1 

We set 

e ·- y- y e ·- z- z e[t-L] ·- e 1-[ 1 e[t-L] ·= e 1-[ 1 y .- h, z .- h, y .- y I J.J. ' z · z I J.J. • 

Subtracting (3.2.1.11) from (3.2.1.6) we obtain 

tJ.-2 
ej;l efl + ~ L., K(t- s)[G(yi'i(s))- G(y~l(s))]ds 

1
e(t) 

+ K(t- s)[G(y[t-L-ll(s))- G(yJt- 1l(s))]ds. 
~J.J.-1 

Thus we have 

tJ.-2 
llet111J[J.J.1 < ller111J[J.J.I + 2:::KLc IJ[iJI11et111I[i1 +KLc IJ[t-L-lllllet- 11 III[J.J.-11, 

i=O 

where K := IIKII[a.,T], Lf := llflln, La:= IIGIIn· Hence, from Gronwall's lemma, we 

have 

(3.2.1.12) 

Now we estimate the error lle~1 11J[J.J.1· Define the projection .Tz[t-L] E V(t-L)(J[t-Ll), f.11- E 

ZM, by 

(Iz[t-Ll): .-

1. (Iz[~-Ll) X'(t)dt .
IJi1 

(z[t-Ll)~, 1 < n <NI-L, 

1. z[I-Ll X' (t)dt 
IJil 

(3.2.1.13) 

(3.2.1.14) 

for all X E pCt-L+l)(JJil), 1 < n < Nw The approximation properties of I in 

(3.2.1.13) and (3.2.1.14) have been thoroughly investigated in (96]: On the generic 

subinterval IJil there holds 

(3.2.1.15) 
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where C is independent of hWl. 

We split the error erl = z[J.Ll - zJt1 := plJ.Ll + 77lJ.Ll into plJ.Ll := z[J.LJ - TzlJ.Ll and 

7J[J.LJ := Tz[J.L] - zJtl. It is easily seen that 7J[J.L] satisfies 

for all X E pCJ.L+l)(JJil). Equivalently, 

- 1J::l ( 171"1 )X' dt + ( 17 1><1 )~X~ = 1J::l [J"'I ( t) - J};l ( t) ]X ( t) dt + ( 17 ~><1 )~_ 1 x,;_, , 
(3.2.1.17) 

Lemma 3.2.1.1. We have 

< 2£11 [plJ.Llfdt + (4£1 + L 1LcKE,J.L) 1 [7J[J.Llfdt 
JJil IJil 

J.L-1 
+ LJh!i1 JJe1J.L-l]ll}[~'-lJ + LJLcKh!i1 L JililJJJetlJJ}(iJ + [(7J[J.Ll)~_ 1 ] 2 . 

i=O 

Proof. We take X = 7J[J.L] in (3.2.1.16) and obtain 

~[(7J[J.L])~f + ~[(7J[J.Ll)!-1]2 

< £ 1 j { erl +I: j K(t- s)[G(ylil(s))- G(yJt-1l(s))]ds 
1(1'] . J(i] 

n t=O 

+ l~': K(t- s)[G(yi><-II(s))- G(y);-'l(s))]ds + le~-'l(e(t))i} 
·J7JlJ.L-llJdt + ~[(77lJ.Ll)~-1]2 + ~[(77lJ.Ll)!-lJ2. 

This yields 

< 2£1 j JerlJJ 77 lJ.LlJdt + 2L1 1 je~- 1l(e(t))j·J 77 lJ.LlJdt 
JJil IJil 

+ 2LtLaK j)tl (~ II1'1! · ilet1llrl•l) 1'7"'1idt + [('7"'1 )~_ 1 ]2 
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Lemma 3.2.1.2. We have 

1J:I [(ri"')'J 2(t- t~~1)dt 

< 6h!;l L} 1~:1 [p1PI] 2 dt + 6hl;l L} 1~:1 [1J1Plf dt + 3( h!;l) 2 L} [I e~-lJ I IJt.-,1 
J.L-1 

+ 3(hWl) 2L}L~K2tL~~ IJ(i]l 2 
· L llet111}riJ· 

i=O 

Proof. To verify the lemma, we select X= (7J[J.Ll)'(t- t~~ 1 ) in (3.2.1.17) and obtain 

1~:1[(1J"''l'J 2 (t- t~~,)dt 

1~:1 lfl"' (t) - 11:'' ( t) l ( 1)"'')' . (t - t~~,)dt 

< (1 (t- t~~1)[]1J.Ll(t)- J}t1(t)]2dt) 
112

. (1 (t- t~~1). [(7J(J.Ll)'] 2dt) 
112 

I~] I~] 

Hence we have 

1~][(7J[J.Ll)') 2 (t- t~~1)dt 

< h!:'' 1~:1 [Jl"' (t) - 11:'' (t) ]2 dt 

< h\:'1 1~:1 [ Ltler1 I+ Ltle~-'1 (O(t))l + LtLcK. }~; II1'1 I · I let111JI•I] 
2 

dt 

< 3h[J.LlL21 [elJ.Ll] 2dt+3(h[J.Ll) 2L2lle(J.L-1JII?_1 1 n f I~l z n f y I J.£-1 

J.L-1 
+ 3(hWl) 2L}L~K2tL~~IJ(iJI 2 · L llet111}riJ 

i=O 

< 6h[J.LJ L 2 j [p[J.Ll] 2dt + 6h[J.L] L 2 j [7J[J.Ll] 2dt + 3(hlJ.Ll)2 L21JelJ.L-1]11?_ _ 
n f I~l n f I~] n f y I[J.£ 1] 

J.L-1 
+ 3(h(J.Ll)2 L 2 L 2 K 211 &.al.iJ(iJI2 · ~ lle(i]ll?_ · 

n f G ,.- i=O L....., y I[•] ' 
(3.2.1.18) 

i=O 

thus completing the proof. 
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Lemma 3.2.1.3. We have 

(11:'
1 

'71J.<l(t)) 
2 

< 2(hJ:'i)2 [('7iJ.<l);;:j2 + 4(hJ:'i)3 L} ll:'l [pl~lj>dt 
+ 4(h[J.Ll)3 L 2 { [r~[J.Ll] 2 dt + ~ (h[J.Ll) 6 L 2 jje[J.L-lljj?. 

n f }IJ.il 'I 3 n f y f[J..<-1] 

J.L-1 
+ ~(h[J.L]) 6 L 2 L 2 K}J-L &.tx IJ(iJI 2 

• """'lle(illl?. · 3 n f G i=O 6 y J[•l. 
i=O 

Proof. We choose X= t~~ 1 - t in (3.2.1.17) to obtain 

Hence, by the Cauchy-Schwarz inequality, we have 

Recalling the second inequality of (3.2.1.18) we finish the proof. 

To derive the error estimates we need also the following two lemmas from (96]. 

Lemma 3.2.1.4. There holds 

Lemma 3.2.1.5. There holds 

for all c.p E p(J.L+l) (JJil), f-L > 0. The constant C is independent of IJil and f-L· 

Now we are ready to prove the error estimates. 
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Corollary 3.2.1.1. Let JC := IIKIIra,T], Lf := ll!lln and La := IIGIJn. Then, for 

h!il L f small enough, we have 

(3.2 .1.20) 

Proof. Combine Lemma 3.2.1.3 and Lemma 3.2.1.4 into 

(1 TJ[J.Ll(t)dt)
2 

I!fl 

< c(hJil)2[(TJ[J.Ll)~] 2 + c[hJil]3 L} l!fl [p(Jtlfdt 

+ c[h!('l]' L} (llfl '71PI ( t)dt) 
2 

+ c[h]('l] 4 L} lifl [( '71~1)'] 2 ( t - t~~1 )dt 
J.L-l 

+ c[h(J.tl]6 L211e[J.L-l] II~ + c[h[J.L]]6 £2£2 }(2 &a3c IJ(i]l2 . """'lle(i]ll~. 
n f y f[J.t-ll n f G i=O L.....t y J[•l· 

i=O 

where c is a generic constant independent of any parameter. Hence for h!i1 L 1 small 

enough, we have 

(llfl '71PI (t)dt) 2 < c(hj('l )2[( 1)1PI);;]2 + c[hj('lf L} llfl [p1PI]2dt 

+ c[ hj('1]4 L} llfl [ ( 1)1PI )']2 ( t - t~~l )dt + c[ hj('l] 6 L J II e);-II m]p-'] 

J.L-1 
+ c[hJil]6 L}L~JC2 rr!t IJ(i]l2 . 2: llet1 IIJ[iJ· (3.2.1.21) 

i=O 
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We combine Lemma 3.2.1.1, Lemma 3.2.1.2 and Lemma 3.2.1.4 to obtain 

1)fl [( 'li.PI ( t) )']'( t - t~~l )dt + [( '71~1 );;]' 

< eLf { [p[J.Ll]2dt +eLf { [7J!J.Ll]2dt + [(7J!J.Ll)~-1]2 
}IJil }IJil 

J.L-1 
+ eLfh!iliie~- 1111}(~<-11 + eL,LaKTh!i1 :2: liet111}[iJ 

i=O 

< eLf { [p!J.Ll] 2dt+ eLf ( { 7J[J.Lldt)
2 
+eL1h!il { [(7J!J.Ll)'] 2 (t-t~~ 1 )dt J IJil hWl J IJil J IJil 

J.L-1 
+ [(7J[J.Ll)~_ 1 ] 2 + eL 1h!illle~- 1lii}[~<-1J + eL tLcKTh!il :2: lletlll}(iJ. 

i=O 

Using (3.2.1.21) we obtain 

1)fl [( 'li.PI ( t) )']'(t- t~~,)dt + [ ( 1)1~1 );;]' 

< cL 1 1)fl [pi~IJ' dt + ch~l L 1 1!:'
1 

[ ( '71~1 ( t ))']2 
( t - t~~ 1 )dt + cL 1 h~l [ ('liP I);; ]2 

J.L-1 
+ [(7J[J.tl)~_ 1 ] 2 + eL th!illle~- 1 ] 11}[~<-1! + eL 1 LcKTh!il :2: lletlll}(iJ. (3.2.1.22) 

i=O 

Iterating (3.2.1.22) yields 

1)fl [( 'li.PI ( t) )']2
( t - t~~ 1 )dt + [( 'li.PI);;]' 

< cLt t. h\~1 11P"'I[I~)"I + cLt t. ( 1!"1 [('71PI)']
2
(t- t\"11 )dt + [('71~1);-] 2) 

J.L-1 
+ eL,IJ!J.Lll·lie~- 11 11~~<-1] + eL,LaKTIJ!J.Lll :2: llet111}[iJ· 

i=O 

For all sufficiently small hWl L 1 , Gronwall's lemma can be applied and gives 

1Jil [(7J[J.L] (t))']2(t- t~~1)dt + [(7J[J.tl)~] 2 

< ( cL t II"'l[ · IIP"'111 ~-~ + cL t I I1~1 1 · lle);-'111 Jl•-'1 + cL t LcKTII"'11 ?~: II et1 11~<1) 
exp(eLtlf[J.Lll)· 
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Observing Lemma 3.2.1.5 we then find 

11'7"'1 11~!fl < log(max(JL+l, 2))cLtii"'11 [IIP"'111}J•l + llel;-'111}J>.-•l + LaKT }~; lle~1 1 1 ~'1 ] . 
We obtain, by using the triangle inequality, 

p.-1 

+ clog(max(J.L + 1, 2))LtLcJCTIJ[P.]I L lletlll?riJ· 
i=O 

From (3.2.1.12) we know that 

llerlll~~ < C(Lt, T, J.L)IIpfp.JIIJrJll 

+ clog(max(J.L + 1, 2))L11JfP.ll exp(2JCLc~p.-1)11er- 1JIIJr~'-lJ 
p.-1 

+ c log(max(J.L + 1, 2))LtLcJCTIJ[P.] I L exp(2JCLc~i) · lle~l IIJriJ. 
i=O 

vVe use Gronwall 's lemma again and obtain 

Our main result is presented as the following theorem. 

Theorem 3.2.1.1. Under the assumptions in Corollary 3.2.1.1, we have 

1 
lleyll 1 < C(Lt, Lc, JC, T, J.L, M, y) · N. 

Proof. From Corollary 3.2.1.1 and (3.2.1.15) we have 

Combining (3.2.1.24) and (3.2.1.12) we arrive at 

We obtain 

(3.2 .1.23) 

(3.2 1.24) 

(3.2.1.25) 
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3.2.2 The DG method for delay VIDEs of neutral type with 
weakly singular kernels 

In this section we establish the convergence results of the DG method for equations 

with weakly singular kernels (3.1.2.3), (3.1.2.7), and (3.1.4.1). 

In view of Theorem 3.1.2.4, the solution of (3.1.2. 7) satisfies 

Hence, DG(A) with A:= {J.L + 1}~~0 for equation (3.1.2.7) can only yield 

on uniform meshes. If we use the graded meshes with grading exponent 

rp. := (J.L + 1)/(1- a) 

(see (3.2.1.3)), then we may achieve the following theorem 

Theorem 3.2.2.1. The error estimate of DG(A) method for equation {3.1.2. 7) 

satisfies 

(3.2.2.1) 

Proof. We can analyze the DG(A) for equation (3.1.2.7) by following that of Sec

tion 3.2.1 except the estimate (3.2.1.15). The paper [96] shows that on the generic 

subinterval JJfl there holds 

(3.2.2.2) 

for any q E p(p.+l)(JJil). Here and throughout this section, positive constant C is 

independent of hWl. Babuska and Suri [5] stated that 

(3.2.2.3) 
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and 

(3.2.2.4) 

where z is the FEM approximation to z[JL] on the graded meshes (3.2.1.3) with grading 

exponent 

rJL := (J-L + 1)/(1- a). 

The original proof of (3.2.2.4) can be found in Gui and Babuska [54] (compare also 

Rice [93]). 

Combining (3.2.2.2), (3.2.2.3), and (3.2.2.4) leads to 

(3.2.2.5) 

This estimate essentially helps us to complete the proof of (3.2.2.1). 

The reads may compare Brunner [24, 23] which established these results in collo

cation methods on graded meshes for weakly singular Volterra integral and integra

differential equations. 

Similarly, if we choose the grading exponent as 

rJL = (J-L + 1)/(1- a), 

then we may obtain the following theorem 

Theorem 3.2.2.2. We have the error estimate of DG(A) for equation (3.1.2. 3) 

Proof. The proof is similar to that of Theorem 3.2.2.1. 

Remark 3.2.2.1. As for DG(A) for equation (3.1.4.1), we can establish the con

vergence results by combining the techniques in Section 3.2.1 and {80}. 



Chapter 4 

Cascading multilevel discretization 
method for parabolic problems 

4.1 Introduction 

The two-grid method was first proposed by Xu [121, 120, 119] and later further 

studied by many others such as [4], [11], [38), [39), [81], [88], [116], [123], and [124]. 

So far the cascading multilevel discretization method has been investigated by [47], 

[71], [72], and [86]. 

The scheme of Marion and Xu [88] for the semi-linear parabolic equation (4.2.1.1) 

is based on two different finite element spaces one defined on a coarse grid with 

grid size H, and the other one on a fine grid with grid size h << H, respectively. 

Nonlinear and time-dependence are both treated in the coarse space, and only a fixed 

stationary equation needs to be solved on the fine space at each time. Howe .rer a 

question arises: "how to solve the two equations efficiently?". We realize that when 

the coarse grid size is small, solving the nonlinear time-dependent equation on the 

coarse grid is not trivial. In [86] and Section 4.2 of this thesis, we construct cascading 

multilevel algorithms (Algorithm A and Algorithm B) based on the scheme proposed 

by Marion and Xu [88]. In Algorithm A, only fixed stationary linear equations need 
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to be solved at each step and the result shows that the convergence rate is O(hJ) 

in the energy norm I · h, but it depends on the number of the grids. Algorithm B 

requires to solve both stationary linear equations and linear parabolic equations at 

each step, the total dimension of which equals to that of the corresponding level of 

the P1 conforming finite element space. The convergence rate of Algorithm B is also 

O(hJ) in the energy norm I · h and is independent of the number of the grids. vVe 

also present Algorithm C, Algorithm D and Algorithm E for the parabolic equation 

with variable delays, parabolic equation with memory term and parabolic Fredholm 

equation. 

4.2 Cascading multilevel discretization algorithms 

In this section, we construct the cascading multilevel discretization algorithms and 

derive their convergence theorems. 

4.2.1 Algorithm A 

We consider the semilinear equation 

Ut - 6. u + f ( u) = 0' in n X IR +' (4.2.1.1) 

with initial condition 

u(x, 0) = u(x) inn, 

and boundary condition 

u = 0, on an, 

where n c JRd (with d < 3) is a bounded convex polygonal domain. The nonlinear 

term f from IR into IR is assumed to be of class C 4 and its derivatives of order up 
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to four are bounded on IR. We start our analysis from the weak form of (4.2.1.1): 

(ut, v) + ((u, v)) + (f(u), v) = 0, Vv E H6(n), (4.2.1.2) 

where ((u, v)) := ('Vu, 'Vv), and (·, ·) is the L 2 inner product. We denote lul 1 := 

((u,u)) 112
, and llullo := (u,u) 112

. Let Th1, j = 0,1, ... ,J, be the nested quasi

uniform triangulations of n, and let "Vj be the corresponding P1 conforming finite 

element spaces. Thus 

We assume hj = hj-1/2 (j = 1, ... , J), without loss of generality. The corresponding 

P1 conforming finite element approximation for (4.2 .2.1) is: Find Uj E "Vj such that 

(uj,t, v) + ((uj, v)) + (f(uJ), v) = 0, Vv E "Vj, (4.2.1.3) 

with uj(O) = Qju, where the operator QJ is defined in (4.2.1.8) below. We present 

some results for the P1 conforming finite element approximation to (4.2.1.1). First, 

which are the well-known inverse inequalities ( cf. Ciarlet [35], Brenner and Scott 

[22], Xu [122]). We have the following estimates: 

l(u- Uj)(t)ll < Chjllog hjla, 

ll(u- Uj)(i)(t)llo < ChJilog hjla, 0 < i < 2, 

( 4.2.1.5) 

( 4.2.1.6) 

where a is some nonnegative constant. Here and throughout this chapter C denotes 

the generic constant, which is independent of hj and j, but may depend on t. 

The proofs of (4.2.1.5) and (4.2.1.6) with i = 0 can be found in Johnson et al. 
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[78] and in Crouzeix, Thomee, and Wahl bin [36]. Their techniques together with 

those in Thomee [113] can be extended in a straightforward manner to higher-order 

derivatives. 

Now we consider the splitting of the space Vj: 

V - v vj-l · h vj-1 ·-(I Q )V j - j -1 EB j , Wit j . - - j -1 j, ( 4.2.1. 7) 

where Qj-1 : L 2 (f2) -+ Vj_ 1 is the L2 orthogonal projection into Vj_1 , as defined by 

(4.2.1.8) 

Note also that Vj_ 1 and ~j-I are orthogonal with respect to the scalar product(-,·). 

We introduce the operator RJ_ 1 : Vj -+ vj-1 by setting 

The cascading multilevel Algorithm A and Algorithm B associated with 

(Vj, Vj_1 , ~j-I) consist of looking for an approximate solution 

ui :=vi-I+ wi, with ui E Vj, vi-I E VJ-ll wi E Vj-1 

for (4.2.2.1). 

Algorithm A: Solve directly with respect to v 0 

0, V¢ E VQ, 

For j = 1, ... , J, solve the linear system of equations for wi: 

( 4.2.1.9) 

( 4.2.1.10) 

(4.2.1.11) 

(4.2.1.12) 

(4.2.1.13) 
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(4.2.1.14) 

Note that equation (4.2.1.12) defines wi uniquely in terms of vi-1. vVe denote the 

corresponding mapping by 

(4.2.1.15) 

In order to establish the convergence of Algorithm A, we shall prove or cite a number 

of lemmas and assertions. 

The following lemmas (Lemma 4.2.1.1 and Lemma 4.2.1.2) and assertions ((4.2.1.18)

(4.2.1.25)) and their proofs can be found in Marion and Xu [88]. 

Lemma 4.2.1.1. Let [v , ¢h := (((I- R~-1 )v, (I- R~-1 )¢)). Then Vj-1 satisfies 

(vj-1,t, ¢) + [vj-1, ¢h = (uj ,t, R~- 1 ¢) + (f(uj), R~- 1¢- ¢), V¢ E "0-1· (4.2.1.16) 

Lemma 4.2.1.2. Let JJ¢1 h := I (I- R~- 1 )</>h- Then there exist two constants C1 and 

c2, independent of the grid size, such that, 

For t > 0, we have 

JJwillo + llwj,tllo < Ch]-1 , 

Jwi- <I>(vj-dl1 < Ch]_1, 

Jlwi- <I>(vj-1)llo < Chj_1 , 

(4.2.1.17) 

(4.2.1.18) 

(4.2.1.19) 

( 4.2.1.20) 

where <I> is as in (4.2.1.15). The following two assertions are essential in proving the 

convergence of Algorithm A and also Algorithm B for (4.2.1.1). 

Jwi- wih < ChJ_1 + (1 + C3hj)Jejh, 

llwi- wiJJo < Chj_1 + (1 + C4hi)leiJI. 

(4.2.1.21) 

(4.2.1.22) 
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ej := Vj_ 1 - vJ-1. The following estimates are also helpful in the proof of the results 

in the thesis: 

ll(f(uj)- f(uj), ¢)llo < C{lleJIIo + hj-1ieJh + hj_I}II<PIIo, 

i(uJ,t, R~- 1 ¢)h < Ch]-ll¢h. 

Lemma 4.2.1.3. We assume that 

and 

uJ := vj-1 + wJ, with :uJ E Vj, vj-1 E VJ-1, wJ E vJ-1, 

(v{- 1
, ¢) + ((vJ-I, ¢)) + (f(vj- 1), ¢) - o, V¢ E VJ-1, 

vJ-1 (0) - Qj-1 u. 

In particular, let 

and the initial value u E L 2 (D.) be given. Assume also that 

where a is as in (4.2.1.5} and (4.2.1.6}. Then 

where K 1 = 2(1 + C3 hJ_ 1 ) and C3 as in (4.2.1.21}. 

( 4.2.1.23) 

( 4.2.1.24) 

( 4.2.1.25) 

(4.2.1.26) 

(4.2.1.27) 

( 4.2.1.28) 

(4.2.1.29) 

( 4.2 . .L.30) 

(4.2.1.31) 
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Proof. Firstly, we note that (4.2.1.30) is necessary for the proof of (4.2.1.18) (see 

Marion and Xu [88]). Let 

( 4.2 .1.32) 

We estimate the term 

lwJ- wJI1 < Ch]_1 + (1 + C3hJ-1)1vJ-1- vJ-1h 

- Ch]-1 + (1 + C3hj-1)1uj-1- uj-1 + Vj-1- Uj-111 

Ch]-1 + (1 + C3hj-1)1uj-1- uj-1 + Vj-1 - Uj + Uj- Uj-111 

< (1 + C3hJ-1)1uJ-1- uJ-1h + lwJI1 + ChJ-1 + Ch]_1. (4.2.1.33) 

In view of (4.2.1.32) and (4.2.1.33), we have 

Noting (4.2.1.18), the previous inequality arrives at 

(4.2.1.34) 

which is ( 4.2.1.31). 

Theorem 4.2.1.1. The error estimate of Algorithm A for {4.2.1.1) is given by 

( 4.2.1.35) 

where K 2 = 1 + ChJ_ 1 . 

Proof. From (4.2.1.27), we know that vJ-1 = Uj_ 1 , thus (4.2.1.28) becomes, 

( 4.2.1.36) 
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And ( 4. 2.1.12) is 

((ui-l + wi,x)) + (f(ui- 1),x) = 0, Vx E Vj- 1
• ( 4.2.1.37) 

Combining (4.2.1.36) and (4.2.1.37), we obtain 

( 4.2.1.38) 

substituting x = wi- wi into (4.2.1.38), we get 

( 4.2.1.39) 

Hence, 

(4.2.1.40) 

Now we estimate 

(4.2.1.41) 

where the second step follows from (4.2.1.13) and (4.2.1.26), and the fourth step is 
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based on (4.2.1.31) and (4.2.1.40). Therefore, (4.2.1.41) yields 

luJ- uJh < C(K1)JhJ + K2luJ-1- uJ-1I1 

< C(KI)JhJ + CK2K/-1hJ-1 + K~lluJ-2- uJ-2
11 

( 4.2.1.42) 

Consequently, we achieve 

which is ( 4.2.1.35). 

Remark 4.2.1.1. We know from Theorem 4.2.1.1 that when we fix the number of 

grids1 the convergence rate of Algorithm A is O(hJ). 

4.2.2 Algorithm B 

In this section, we construct Algorithm B, which solves both time-dependent linear 

and stationary linear equations at each level of the P1 finite element space. 

Algorithm B: Let 

For j = 2, ... , J, solve 

for vi-1 and wi. 

0 Q A u = 0u. (4.2.2.1) 

(4.2.2.2) 

(4.2.2.3) 

(4.2.2.4) 
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Theorem 4.2.2.1. Under the assumptions of Theorem 2.1 we have 

(4.2.2.5) 

where the constant C is independent of the grid size hJ and the grid J. 

Proof. We use the corresponding notation of Section 4.2.2.1 and we claim that 

The proof of ( 4.2.2.6) is the analog of that of ( 4.2.1.16). Because of ( 4.2.2.6) and 

( 4.2.1.16), di := Vj_1 - vi-1 satisfies 

(dj,t, ¢) + [dj, ¢h = (uj,t, R~- 1 ) + (f(ui)- f(vi- 1), R~- 1 ¢) + (f(uj- 1)- f(uj), ¢). 

(4.2.2.7) 

We estimate 

ii(f(ui-1)- f(uj), ¢)ilo < Cllui-1 - ujlloll¢ilo 

< (iiui- 1 - uj-11io + Chj-1) 11¢11 0 . ( 4.2.2.8) 

Substituting¢= dj,t into (4.2.2.7) and using (4.2.2.8), we see that 

(4.2.2.9) 

The estimates (4.2.1.23), (4.2.1.25), (4.2.1.17) and Young's inequality leads to 

d(ldili) < Ch~ id -1 2 + Ch~ iui-1 - u ·_ 12 + Ch~ . dt - J-1 J 1 J-1 J 1 1 J-1 

Hence, 
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Thus we have 

lui- u11i < 2ldJii + 2lwJ- w11i < CldJii + ChJ_1 

< ChJ_1 + Ch]_1iu;-1- u1ii + Ch~_1 1' iu;-1- u1-
1iids. 

Therefore, 

( 4.2.2.10) 

Iterating ( 4.2.2.10) yields 

iuJ- uJI1 < ChJ-1 + ChJ-1iuJ-1- uJ-
1!1 

< ChJ-1 + ChJ-1hJ-2 + ChJ-1hJ-2,UJ-2 - UJ-2 h 

< ChJ[l + h1 (2-(J-3) + 2-(J-3)2-(J-4) + ... 

+ 2-(J-3)2-(J-4) • • • 1)] < ChJ(1 + Ch1) < ChJ. 

Remark 4.2.2.1. In Algorithm A and Algorithm B, we need to solve the linear 

equations (4.2.1.12) and (4.2.2.3) , respectively. For the further study of the linear 

systems in vJ-\ the author refers to Marion and Xu {88}. 

4.3 Comparison and discussion 

We summarize the presentation of Section 4.2 in Table 4.3, and add some discussions. 

Table 4.1: Comparison of Algorithm A and Algorithm B 

Algorithm Convergence Open question Literature 
A O(hJ) (but dependent on J) CMGI [88] 
B O(hJ) (independent on J) CMGI 
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Algorithm A and Algorithm B are based on the £ 2 decomposition techniques. Al

gorithm A needs only to solve a linear fixed stationary system of equations in vj-1 

of each step. Algorithm B requires the solution of the linear parabolic equations in 

"VJ-1 and the linear fixed stationary equations in Vj- 1 at each step. If we incorporate 

the classical iteration methods (called smoot hers) into the linear stationary system 

or the linear system arising from the linear parabolic equations with discontinuous 

Galer kin (DG) time-stepping methods or other methods, then it is not difficult to 

formulate the cascading multigrid iteration method (CMGI) , which is ongoing work. 

For the idea of cascading multigrid methods, Algorithm A avoids the solving of the 

linear parabolic equations. Hence, it is much easier to implement cascading multi

grid iteration methods, but it can be used only when we fix the number of grids. 

Although Algorithm A and Algorithm B have the same convergence rate O(hJ), 

Algorithm A is dependent of the number of grids J, while Algorithm B is not. So 

Algorithm B is more accurate than Algorithm A with respect to convergence: it has 

a smaller error constant. 

4.4 Extensions to other parabolic problems 

In this section we extend the analysis of the cascading multilevel discretization 

algorithms to parabolic partial differential equations with variable delays and with 

nonlinear memory terms. 

4.4.1 Parabolic equation with delay argument 

We consider 

ut(x, t) - 6u(x, t) + f(u(x, t), u(x, B(t))) = 0, Vx E !1, t E 1 := (0, T], ( 4.4.1.1) 
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with initial condition 

u(x, t) = u(x, t), V'x E 0, 'r!t < 0, 

and boundary condition 

u(x , t) ian = 0, 'r/t E I, 

where n c JRd (with d < 3) is a bounded convex polygonal domain. Consider the 

case of 

f(u,v) = fi(u) + h(v). 

Here fi and h from lR into lR are assumed to be of class C 1 and their derivatives are 

bounded on JR. The delay function B(t) will be subject to the following conditions 

( i )-(iii): 

(i) B(t) = t- T(t), e E Cd(I) for some d > 0; 

(ii) T(t) > To > 0 fortE I; 

(iii) e is strictly increasing on I. 

We define the points {~J.L}, f..L = 0, 1, ... , M, by 

where ~0 := 0. I[i] := [~i-l, ~i], i = 1, ... , M. Furthermore we assume, without 

loss of generality, that T = '2:~ 1 II[ill. We note that we shall use the corresponding 

notations in Section 4.2.2.1. We shall analyze the P1 conforming finite element 

approximation to ( 4.4.1.1). The weak form of ( 4.4.1.1) is 

(ut, v) + ((u, v)) + (f(u(x, t), u(x, B(t))), v) = 0, V'v E HJ(O). (4.4.1.2) 
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If we set uliJ := u(x, t), t E J[i), then ( 4.4.1.2) can be written as 

(uiil,v) + ((uli]),v)) + (h(ulil(x,t)),v) + (f2 (uli-ll(x,B(t))),v) = 0, Vv E HJ(O), 

(4.4.1.3) 

for all t E J[i]. Correspondingly, the P1 conforming finite element approximation to 

( 4.4.1.1) is 

(uj,t, v) + ((uj, v)) + (j(uj(X, t), Uj(X, B(t))), v) = 0, (4.4.1.4) 

for all v E Vj with Uj := Rj'fl(x, t) (t < 0), and 

(4.4.1.5) 

for all v E Vj (t E J[il), where u1i] := uj(x, t) (t E J[iJ). We are now ready to present 

the convergence results of the P1 conforming finite element method for (4.4.1.1). 

Theorem 4.4.1.1. Let u and Uj be the solution of (4.4.1.1) and (4.4.1.4), respec

tively. Then we have 

llu- uJIIo < Ch]llog hjlu, 

lu- Ujh < Chjllog hJiu, 

where a is as in (4.2.1.5} and (4.2.1.6). 

Proof. For convenience, we define 

e(t) ·= u(x t)- u ·(x t) eli)·= ulil(x t)- ul!l(x t) e[~J ·= ul!l- u[~J 
. ' J '' • ' J '' J. J J' 

where u1i) is the solution of 

(u1~Lv)+((u1i1 ,v))+(h(u1i1 (x,t),v)+(h(uli-lJ(x,e(t))),v) = 0, Vv E Vj, (4.4.1.6) 



fortE J[iJ. From (4.2.1.5) and (4.2.1.6), we know that 

Because of 

llu[il_u1i]llo < Ch7iloghJI 17
, VtEJ[iJ, 

julil_ u1illl < ChJjloghJiu, Vt E J(iJ. 
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( 4.4.1. 7) 

( 4.4.1.8) 

( 4.4.1.9) 

we need only to estimate the term e1il := u1il - u1il. Subtracting ( 4.4.1.5) from 

( 4.4.1.6), we obtain 

(e1~Lv) + ((e1i1,v)) + (h(u1i1(x,t))- h(u1i1(x,t)),v) 

+(h(u[i-ll(x, fJ(t)))- h(u1i-l](x, fJ(t))), v) = 0, Vv E Vj. (4.4.1.10) 

Substituting v := e1i] into (4.4.1.10) leads to 

and 

Consequently, we have 

lleY11m < Clle1'1(t,_,)ll6 + [ exp(C. (t- s))lle[i-li(O(s))ll6ds. 
ti-1 

Hence, the estimates 

lle1i1(t)llo < Clle[i-ll(t)llo, 

ie1i1(t)il < Cje[i-ll(t)jl, 

hold. According to (4.4.1.9), (4.4.1.7) and (4.4.1.8), we get 

(4.4.1.11) 

(4.4.1.12) 



Similarly, we find 

and this leads to 

Algorithm C: Let 

For j = 2, ... , J, solve 

lie(t)llo < Ch]iloghjia, 

ie(t)h < Chjjlog hila. 

u0 = R0u(x, t), \It < 0. 

( u{, v) + ( ( ui , v)) + ( f ( ui - 1 
( x, t) , ui - 1 

( x, e ( t))) , v) = 0, \f v E Vj , 

for ui. 

Theorem 4.4.1.2. Assume that 
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(4.4.1.13) 

(4.4.1.14) 

(4.4.1.15) 

Let u and uJ denote the solution of (4.4.1.1) and Algorithm C, respectively. Then 

we have 

where C is independent of hJ and the number of the grids. 

Proof. Let 8i := Uj- ui. Then subtracting (4.4.1.14) from (4.4.1.4), we get 

(8j,t, v) + ((8j, v)) + (f(uj(X, t), Uj(X, 8(t)))- f(ui- 1 (x, t), ui-1 (x, 8(t))), v) = 0. 

(4.4.1.16) 
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Now we estimate 

II ( f ( Uj ( x, t), Uj ( x, () ( t))) - f ( uJ - 1 ( x, t), uJ - 1 ( x, () ( t))), v) II o ( 4. 4 .1.1 7) 

< II ( f ( u J ( x, t) , Uj ( x, () ( t))) - f ( uj - 1 ( x, t) , uJ - 1 ( x, () ( t))) II o II vII o 

< [CIIuJ(x, t)- UJ-1(x, t) + 8j-1llo 

+ ClluJ(x,e(t)) -uJ-1(x,e(t))+8J-1(x,e(t))llo] ·llvllo 

< [C hJ_1Ilog hj-1l2
u + II8J-1 (x, t) llo + II8J-1 (x, ()(t)) llo] · llvllo· 

Substituting v = 8J,t into ( 4.4.1.16) and combining ( 4.4.1.17), we obtain the estimate 

II8J,tll~ + d(I~~ID < [ChJ_1Ilog hj-1l 2
u + II8J-1(x, t)llo + II8J-1(x, e(t))llo] ·II8J,tllo 

< Chj_1llog hj-1l 4
u + hJ-118J-1(x, t)li + hJ-1 18J-1(x, ()(t))li· 

Hence, it holds that 

Iterating ( 4.4.1.18) leads to 

I8Jii < Chj_1llog hj-1l 4
u + Ch]_1hj_2llog hj-2l 4

u + · · · 

+ Ch]_1h]_2 ···h{llogh114
u < Chj_1 . (4.4.1.19) 

In the last step of (4.4.1.19), we used the assumption (4.4.1.15). Recalling Theo

rem 4.4.1.1 and (4.4.1.19), we obtain 

which is our desired result. 
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4.4.2 Parabolic equation with memory term 

We consider 

u,- D.u + 1' k(t- s)G(u(x, s))ds ~ 0, Vx E fl, Vt E I:~ [0, T], (4.4.2.1) 

with initial condition 

u(x, 0) = u(x), Vx E 0, 

and boundary condition 

u(x, t) = 0, \:lx E 80, \It E J, 

where n c JRd (with d < 3) is a bounded convex polygonal domain. The nonlinear 

term G from lR into lR is assumed to be of class C\ with bounded derivatives on JR. 

Furthermore we assume k E C 1 (J). The weak form of (4.4.2.1) is 

(u,, v) + ((u, v)) + l k(t- s)( G(u(x, s)), v)ds ~ 0, Vv E HJ(D), 

where (G(u(x, s)) , v) := 1 G(u(x, s))vdx. Correspondingly, the P1 conforming finite 

element approximation is given by 

(u1,,, v) + ((u,, v)) + 1' k(t- s)(G(u,(s)), v)ds ~ 0, Vv E V;, 

with ui(O) = Rju. We know that 

which can be found in (34]. 

Algorithm D: Let 

lu- u ·l1 < Ch· J - Jl 

o R ~ u = 0 u. 

( 4.4.2.2) 

( 4.4.2.3) 
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For j = 2, ... , J, solve 

(ui, v) + ((u;, v )) + l k(t- s)( G( u;-1
) + G'(u;-1 

)( u; - uj-1 ), v)ds = 0, Vv E Vj, 

( 4.4.2.4) 

Theorem 4.4.2.1. Assume that 

c 
h· 1 < ---=--
J- - (2v'2)j. ( 4.4.2.5) 

Then 

where C is independent on hJ and the number of the grids. 

Proof. Let ej := Uj - uj. Subtracting ( 4.4.2.4) from ( 4.4.2.2) yields 

(e;,t. v) + ((e;, v)) + 1' k(t- s) ( G(u;-1) - G(u;-1) + G'(u;-1 )(u; - u;-1) 

-G'(uj-1 )(uj- uj-
1

) + O((uj- Uj_ 1 )
2
), v) ds = 0, 'ilv E Vj. (4.4.2.6) 

Bringing v = ej,t into (4.4.2.6), we arrive at 

Hence, we achieve 

d(l=~li) < Ch1_1 + ChJ_1(llk(t- s)lle;-1hds)2 < C(h1-1 + 2l1e;-1llds), 

(4.4.2.7) 

by using labl < 2(a2 + b2
). 

Integrating ( 4.4.2. 7) yields 
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Therefore, by using assumption ( 4.4.2.5) we get 

( 4.4.2.8) 

Then ( 4.4.2.8) and ( 4.4.2.3) lead to 

which completes the proof. 

4.5 Application to parabolic Fredholm equation 

4.5.1 Finite element method for parabolic Fredholm equa
tion 

Consider the parabolic Fredholm equation 

Ut- b..u = 1 J(u)dx, 'ix En, t E I:= (0, T], (4.5.1.1) 

with initial condition 

u(x, 0) = u(x), 'ix E .0, 

and boundary condition 

u ( x, t) = o, 'i x E an, t E I. 

We assume that f satisfies 

such that (4.5.1.1) possesses a unique solution u EA. We refer (32] for the general 

description of the parabolic Fredholm equation. We begin our analysis with the 

weak form of (4.5.1.1), 

(ut, v) + ((u, v)) = (1 J(u)dx, v), Vv E HJ(.O). ( 4.5.1.2) 
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The corresponding Pl conforming finite element approximation for (4.5.1.2) is: Find 

Uj E Vj such that 

(uj,t, v) + ((uJ, v)) =(in f(uJ)dx, v), Vv E Vj, 

with uj(O) = Rj'u, where RJ : L2 (D.) -+ Vj is defined by 

((u- Rju, v)) = 0, Vv E Vj. 

We know from Ciarlet (35] or Brenner and Scott (22] that 

liu- RJullo < Ch], 

iu- RJuh < Chj, 

where the constant C is independent of hj. 

( 4.5.1.3) 

( 4.5.1.4) 

(4.5.1.5) 

( 4.5.1.6) 

Theorem 4.5.1.1. Let u and Uj be the solution of (4.5.1.2) and (4.5.1.3), respec

tively. Then we have 

llu-uJIIo < Ch], 

iu- uJil < Chj, 

where the constant C is independent of hj. 

Proof. Let 

Subtract ( 4.5.1.3) from ( 4.5.1.2), 

(et,v) + ((e,v)) = (k[f(u)- f(uJ)]dx,v), \lv E Vj. 

(4.5.1.7) 

( 4.5.1.8) 

(4.5.1.9) 
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Hence, we have the estimate 

(Bt, v) + ((fJ, v)) - (In [f(u)- f(RJu)]dx, v) 

+ (k[f(RJu)- f(uJ)]dx,v)- (pt,v) , (4.5.1.10) 

for all v E Vj, with fJ(O) = uJ- Rj'u in 0, where 

(4.5.1.11) 

Taking v = fJ in (4.5.1.10), we obtain 

~ d(l~tll6) + IBii < Ltlrli·IIBII~ + Ltlrli·IIPIIoiiBIIo + IIPtlloiiBIIo 

< (3Ltirli + 2)11BIIo + 2L,Ir2111PIIo + 2IIPtllo· 

Consequently, it holds that 

d(l~ll6) < 2(3L1 irli + 2)IIBII~ + 4Ltlr2IIIPII~ + 4IIPtll~· (4.5.1.12) 

Integrate (4.5.1.12) with respect tot: 

IIBII~ < IIB(O)II6 + [2{3Ltl!11 + 2)IIBII6ds + [[4Lti!1IIIPII6 + 4IIP<II6Jds. 

Gronwall's lemma leads to 

IIBII6 < c (11B(OJII6 + [u1PII6 + IIPtii~Jds) . 

Therefore, we have 

(4.5.1.13) 

where Cis independent of hj. Hence, we only need to derive (4.5.1.7). 



To prove (4.5.1.7), choose v = Bt in (4.5.1.10) and arrive at 

11 8 ll2 I. d(IBID 
t 0 + 2 dt - (1 [f(u)- f(Rju)]dx, Bt) 

+ (1 [f(Rju)- f(uj)]dx, Bt) - (pt, Bt) 

< 111[f(u)- f(Rju)]dxllo ·IIBtllo 
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+ 111[f(Rju)- f(uj)]dxllo ·IIBtllo + IIPtlloiiBtllo 

< ~IIBtll~ + 2L}IDI 2 IIPII~ + 2L}JDI 2 IIBII~ + 2i!Ptll~· 

After eliminating the first term on the right-hand side and integrating with respect 

tot, we obtain (in view of (4.5.1.13) and (4.5.1.11)) 

where Cis independent of hj. Thus, we have verified Theorem 4.5.1.1. 

4.5.2 Algorithm for parabolic Fredholm equation 

Algorithm E: Let 

For j = 2, ... , J, solve 

0 R A u = 0u. 

(u{, v) + ((uj, v)) = (1 f(ui- 1 )dx, v)ds, Vv E Vj, 

for uj. 

Theorem 4.5.2.1. Assume 

Then 

where C is independent of hJ and the number of grids. 

(4.5.2.1) 

(4.5.2.2) 



Proof. Let e1 := u1 - u1. Subtracting (4.5.2.1) from (4.5.1.3) yields 

(ej ,t,v) + ((e1,v)) = (fn[J(u1)- f(u1- 1)]dx,v)ds, Vv E Vj , 

Substitute v = e1,t into ( 4.5.2.3) to obtain 

li e · 112 1 d(ie1ii) < 
J ,t 0 + 2 dt iiej,tlloll k[f(uj)- J(uj-1)]dxllo 

+ iiej,tlloll k[f(uj-1)- f(ui- 1)]dxllo 

< ~llei,tll~ + L}IDI 2
11ui- uj-11!~ 
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(4.5.2.3) 

( 4.5.2.4) 

Therefore, after eliminating the first term of right-hand side of ( 4.5.2.4) we find 

d(iei ID < Ch~ + 2Cie ._ 12· dt - J-1 J 1 1 ( 4.5.2.5) 

Integrating ( 4.5.2.5) leads to 

In view of the assumption (4.5.2.2), we achieve 

(4.5.2.6) 

and hence, combining ( 4.5.2.2) with ( 4.5.1.8), 

which completes the proof. 



Chapter 5 

The abstract cascading rnultigrid 
method in Besov spaces 

It is important to mention that Bramble [19] contributed the general analysis of 

the V-cycle and the W-cycle in an abstract setting. Consider the FEM equation 

(5.2.1.2): 

where Ak is symmetric positive definite. Let Amax and Amin denote the largest and 

smallest eigenvalue of Ak, respectively. The condition number of Ak is defined by 

In view of the process of iteration, we know that the smaller the condition num-

ber K(Ak) the more effective the iteration method is. Therefore, we define the 

preconditioning operator (or: preconditioner) 

such that the condition number K(BkAk) is as small as possible. Instead, we now 

solve the equation 
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by the iteration method. Indeed, this approach is more efficient. However the new 

problem arising is how to construct such a precondition operator Bk with as little 

computational cost as possible. Bramble [19) and the references mentioned there 

showed that the multigrid processes, the V-cycle and the W-cycle, are the ideal 

methods. We shall prove that the cascading multigrid process is also a simple and 

robust method. Bornemann and Deuflhard [15) provided the numerical examples to 

compare the cascading multigrid algorithm with the V-cycle algorithm. We analyze 

this by using the general framework with the assumptions abstracted from the FEN! 

discretization of a given problem. In fact, the abstract multigrid framework provided 

us with a good way to describe the method for more complicated problems. To 

see this, we shall apply the cascading multigrid algorithms to the heat equation 

with mild regularity in Besov spaces [6] and to the equation discretized by the 

interior penalty discontinuous Galerkin method (see [52] and references therein). In 

comparison with the analysis in Shi and Xu [107], a distinctive feature of our method 

is the use of block Jacobi and symmetric Gauss-Seidel iteration as smoothers. We 

also extend these methods to VIDEs. 

5.1 Notations and definitions 

5.1.1 Bilinear form and induced norm 

A bilinear form A(·, ·) in a Hilbert space V is called symmetric and elliptic, if it 

satisfies 

1. (Symmetry) A(u, v) = A(v, u), Vu, v E V. 

2. (Continuity) There exists a positive constant C, such that, 

A(u,v) < Cllullvllvllv, \fu, v E V. 
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3. (Coercivity) There exists a positive constant c, such that, 

A(u, u) > cllull~, Vu, v E V 

Here II · llv is the norm in V. 

We find that the elliptic bilinear forms can define norms in V. Let the elliptic 

bilinear form A(·, ·) define the norm Ill · Ill by 

ill· Ill :=(A(·, ·)) 112
, 

and let the elliptic mesh-dependent bilinear form Ak(·, ·)induce the norm Ill· !Ilk via 

Define the time-dependent norm (see Section 5. 2. 2): 

and 

Here ( ·, ·) is defined by 

(u, v) :=in uvdx, Vu, v E V, 

and the temporal mesh size T is a given positive number. 

5 .1. 2 Function spaces and their norms 

We introduce the multi-index notation. A multi-index is defined as 
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The length of a is given by 
n 

lal :=I: ai. 
i=l 

For¢ E c=, we let 

Given a vector x := (x1 , ... , Xn), we define xo: := x~1 
• x~2 

• • • x~n. 

Let k be nonnegative integer and let 

wE LfocUJ) := {w: wE L1 (K), V compact K C interior 0}. 

Suppose also that the weak derivatives Do:w exist for allial < k. Define the Sobolev 

space norm 

We define the Sobolev spaces via 

and 

Let s be a nonnegative real number and let [s] denote the integer part of s. 

Define the norm 

( 
{ { lwo:(x)- wo:(y)i 2 

) 

112 

llwiiHs(n) := llwll~[sJ(n) + I: Jr: Jr: lx _ Yin+(s-(s])2 dxdy 
lo:l=[s] n n 

Then we define the fractional Sobolev spaces (Slobodeckeij space) via 

and 

H~(O) :={wE H 8 (fl): wlan = 0}. 
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Remark 5.1.2.1. We direct the readers to the book [1} for more general definitions 

and properties of Sobolev spaces. 

Kufner, John, and Fucik [79] and Triebel [114] discuss the method of defining 

fractional Sobolev spaces and Besov spaces by using the interpolation theory. 

Let X andY be two complex Banach spaces. Then we define, for 8 E (0 , 1) , the 

interpolation space 

[X, Y]s,oo := {wE Y : sup t-28 K(t, w) 2 < oo }, 
t>O 

and the K-functional by 

For an appropriate bounded domain 0 c JRn, we define the Besov space via 

where e E (0, 1), and s0 and s 1 are nonnegative integers that satisfy s0 =f. s 1 , 

s = (1 - e)so + esl. 

Remark 5.1.2.2. If s is a fractional and positive number, then H 8 (0) := B 8 (0) is 

the fractional Sobolev space. 

We now introduce the Besov space BQis defined by the subspace interpolatiun of 

multilevel norms. The definition originates from [6]. 

Assume that 

is a sequence of finite-dimensional subspaces of HJ (0) whose union is dense in HJ (0), 

and let Qk denote the L 2 (0) orthogonal projection onto vk with Qo := 0 (see also 
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(5.2.1.1) of Section 5.2). Let 

We introduce two norms, namely 

00 

llwiiB1 3 := L)4k-l)-s12 II(Qk- Qk_I)wll£2, 
k=l 

and 

llwll~-s := llwll1-s + llwll~-s· 
01 1 

The space Bm8 is then defined as the completion of L 2 (f2) with respect to the norm 

5.2 The abstract cascading rnultigrid method 

5.2.1 The cascading multigrid algorithm 

Consider a finite-dimensional space V equipped with an inner product (·, ·) and a 

bilinear form A(·, ·), with corresponding norms II · II and Ill · Ill· We further assume 

that A(·,·) is elliptic (i.e., continuous and coercive) and symmetric. We let the 

subspaces vk satisfy 

VoCV1C···CVJ=V, 

and we define the linear operator Ak : Vk ----+ Vk by 

(Aku, v) := A(u, v), for all u, v E Vk. 

Obviously Ak is symmetric and positive definite. Furthermore, we define two pro-

A(Pku, v) := A(u, v), 
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and 

(Qku,v) := (u,v), (5.2.1.1) 

for all u E VJ and v E Vk. We also need to introduce a generic linear smoothing 

operator Rk : Vk ~ Vk with the assumption that Ro := A01
. For ease of analysis, 

we assume also that Rk is symmetric. To solve the equations for each level k := 

0, 1, ... 'J: 

(5.2.1.2) 

we shall now define the precondition operator B - BJ by the following cascading 

multigrid algorithm. 

CMG Algorithm I: 

0) Eo:= A01
. 

Define Bk implicitly in terms of Bk_1, fork= 1, ... , J: 

1) For f = 1, ... , mk, we set 

Here y~ := Bk-1 Qk-1g. 

2) BkQkg := y",;k. 

e e-1 + R (Q A e-1) Yk := Yk k kg- kYk · 

In order to analyze the CMG Algorithm I, we need to make the following four 

natural assumptions. 

Assumption 5.2.1.1. Let )..k denote the maximum eigenvalue of Ak, i.e., 

(5.2.1.3) 

For given a E [0, 1], there exists Ca independent of k such that 
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Assumption 5.2.1.2. Let Kk :=I- RkAk, Rk,w := w.A,;; 1 I and Kk,w := I- Rk,wAk. 

There exists w E (0, 1] such that 

Hence it holds that 

Assumption 5.2.1.3. We suppose that, for the given constant b > 0, 

Here and throughout the paper, c and C denote generic positive constants which are 

independent of k. 

Assumption 5.2.1.4. For (3 > 0, let 

where L· J means the greatest integer function. 

Remark 5.2.1.1. We see that Assumption 5.2.1.1 is reasonable, if we refer to the 

elliptic boundary value problems with less than full regularity (cf. {15} {105}). 

Remark 5.2.1.2. Bramble {19} tells us that block Jacobi and (symmetric} Gauss-

Seidel are the examples of Rk satisfying Assumption 5.2.1.2. 

We need also the following lemma about a property of Kk,w, which is neces~arY 

for the analysis of the cascading multigrid method. 

Lemma 5.2.1.1. The iterates of K;::~ possess the following two properties: 

A(KJ::~v, KJ::~v) < A(v, v), (5.2.1.4) 
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and 

(5.2.1.5) 

for wE (0, 1] and a E (0, 1]. 

Proof. See (pp. 164, Brenner and Scott [22]). 

Theorem 5.2.1.1. Let BJ be defined by CMG Algorithm I and assume that As

sumptions {5.2.1.1 , 5.2.1.2, 5.2.1.3, 5.2.1.4} hold. Then we have 

for all u E VJ. 

1 ). -a/2 

C. 1- (b/{3)af2 . ~a/2 A(u, u), for {3 > b, 
J 

). -a/2 

C · J · Ja/2 A(u, u), for {3 = b, 
mJ 

Proof. We begin with the estimate: 

- K7J(YJ- y
0

) = K7J(YJ- BJ-1QJ-19) 

- K7J(YJ- YJ-1) + K7J(YJ-1- BJ-1QJ-19) 

K mJKmJ-l Km1 ( ) + · · · + J J-1 · · · 1 Y1 -Yo · 

In view of (5.2.1.2), we obtain 

Since Bramble (19] proved 

(5.~.1.6) 

(5.2.1.7) 



we have 

Yk = PkyJ, for k = 0, ... , J- 1. 

Bringing these equations into (5.2.1.6) leads to 
J J-k+l 

I- BJAJ = L II K7j_i!_-;i(Pk- Pk-1)· 
k=l i=l 

Consequently by using the Cauchy-Schwartz inequality, we obtain 

i: A CIT K;';{!_i'(P•- P._,)u, u) 
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(5.2.1.8) 

J (J-k+l J-k+l ) 
< £;[A g K7j_i!_t(Pk- Pk-l)u, g K7j_i!_-:t(Pk- Pk-l)u p12 

• [A(u, u)] 112
. 

In view of {Assumption 5.2.1.2, Lemma 5.2.1.1, Assumption 5.2.1.1}, we estimate 

A err K;';i:_i'(P•- Pk-l)u, J1J K;':i!_i'(Pk- pk_1)u) 

< A ( K::~12 (Pk- Pk-l)u, K::~12 (Pk- Pk_I)u) 

< CXi/~ (A1- 0 (Pk- Pk-l)u, (Pk- Pk-l)u) 
m'k 
.A-a 

< C-k-x;;o A(u, u). (5.2.1.9) 
m'k 

The estimates (5.2.1.8) and (5.2.1.9) lead to 

A((I- BJAJ)u,u) < C (t .A!;2 ) A(u,u). 
k=l mk 

(5.2.1.10) 

Combining (5.2.1.10), Assumption 5.2.1.3 and Assumption 5.2.1.4, we obtain our 

desired result. 

Theorem 5.2.1.2. Let Nk := dim(Vk) and assume Nk+l > aNk. Then the compu

tational cost of the CMG Algorithm I is given by 

t mkNk < { C. 1 -1(3/a . mJNJ, for (3 <a, 

k=l C·J·mJNJ, for{3=a. 
(5.2.1.11) 
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Proof Nk+l > aNk implies Nk ~ a-(J-k) NJ. Recalling Assumption 5.2.1.4, we 

estimate 

Hence (5.2.1.11) is true. 

Remark 5.2.1.3. The parameter b in the expression of Theorem 5.2.1.1 solely de

pends on the original problem. It is well known that the finite element method for a 

partial differential equation of order n leads to b = 2n. The parameter a in (5. 2.1.11) 

(Theorem 5.2.1.2) depends only ion the dimension d of the domain, e.g. , a = 2d. 

When 2d = a > b, that is, d > Llog b J, the condition number K(I - BJAJ) is 

uniformly bounded by 0(-\~0/2 ), and the amount of work is proportional to O(lVJ). 

The cascading algorithm is henceforth called optimal. The algorithm will be called 

near-optimal if it satisfies the following corollary. 

Corollary 5.2.1.1 (Bornemann and Deuflhard (1996)) . In case ofb =a= 2d, 

we choose f3 = 2d and the number of iterations on level J as 

Then we have the estimates 

and 
J 

L mkNk ~ Cm*NJ(1 + logNJ)l+o/2
• 

k=l 

5.2.2 The method for the heat equation 

Shi and Xu [107] analyzed the cascading multigrid method for the heat equation 

with Richardson and Conjugate Gradient iteration as smoothers. We shall solve the 

... ... 
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heat equation with mild regularity by the abstract cascading multigrid method with 

block Jacobi and symmetric Gauss-Seidel iteration as smoothers. 

Let n c JRd (d = 2, 3) be a open polygonal domain with the largest corner angle 

r:v. We consider the heat equation: 

Ut- b:.u = f(x, t), on n X [0, T], (5.2.2.1) 

with boundary condition 

u(x, t) = 0, on an X [0, T], 

and initial condition 

u(x, 0) = uo(x), on n, 

where f E H-l+o(n). The weak form of (5.2.2.1) is to find u E HJ(O), with 

u(x, 0) = u 0 (x) E H 1+0 (0) n HJ(O), such that 

(ut, v) + B(u, v) = (f, v), \/v E HJ(O), t E [0, T], 

where the bilinear form B is 

B(u, v) = 1 \lu · \lvdx, \/u, v E HJ(O), 

and 

(f, v) = 1 fvdx. 

We use the backward Euler scheme for the time-stepping. Let 

Ir := { tn : 0 =: to < t1 < · · · < tN := T}, 

be the mesh on I with 

Tn := tn- tn-1 1 T :=max Tn· 
(n) 

(5.2.2.2) 
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Moreover, we set 

w := un- un-1, (g, v) := (f, v)- B(un-1, v). 

Then (5.2.2.2) leads to the weak form with time-stepping: Find w E HJ(D) such 

that 

Ar(w, v) = (g, v), Vv E HJ(n), (5.2.2.3) 

where 

Ar(w, v) := T-
1 (w, v) + B(w, v). (5.2.2.4) 

We conclude that (5.2.2.3) has a unique solution w E H 1+a(n) n HJ(D) which 

satisfies 

llwi!Hl+a < CllgiiH-l+a, 

where 0 < a < a 0 = : (see Ciarlet [35] and Johnson [76]). 

(5.2.2.5) 

Let ~ (k := 0, 1, ... , J) be a sequence of quasi-uniform triangular partitions of 

n with mesh size hk = h0 2-k. Let Vk denote the Pl conforming finite element space 

on ~. It is well known that 

Vo c Vi c · · · c VJ = V c HJ (D). 

We derive the discrete form of (5.2.2.3): Find Wk E vk such that 

(5.2.2.6) 

Define 

(Akwk, v) := Ar(wk, v), Vwk, v E Vk. 

Then (5.2.2.6) can be expressed by 

(5.2.2.7) 
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where 9k E Vk, (gk, v) := (g, v), Vv E Vk. It is well-known that 

(5.2.2.8) 

where 

We know from the definitions (5.2.1.3) and (5.2.2.4) that 

Since [10] observed that some commonly used iterative methods, like Richardson 

iteration, can already guarantee good convergence for T < >.:J1
, we therefore only 

consider the case 
). -1 

>.:J1 < T < _J_' for some 'Yo E (0, 1). 
'Yo 

(5.2.2.9) 

Now we shall verify that Assumptions {(5.2.1.1), (5.2.1.2), (5.2.1.3), (5.2.1.4)} hold 

true in this case. Let 

From [19] and [113], we conclude that Assumption 5.2.1.1 is satisfied. Assump-

tion 5.2.1.3 can be easily written as 

(5.2.2.10) 

Assumption 5.2.1.2 and {(5.3.1.2), (5.3.1.3)} concern only Rk· Therefore they re-

main true as discussed in Section 5.2.1. Thus, recalling (5.2.1.10), we obtain 

A((I- BJAJ)w,w) (5.2.2.11) 

< C (t ).~;2 ) A(w, w) 
k=l mk 

< C (
1 

1 )o ~12 t (13
::2 ) k A(w, w). 

+ro mJ k=l 
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So (5.2.2.11) yields the following theorem. The last estimate in (5.2.2.11) reveals 

that the attainable (optimal or nearly optimal) order depends on the value of {3; for 

{3 = 4 the estimate will contain the factor J, i.e., the number of the grid points. 

Compare also Bornemann and Deufthard [15). 

Theorem 5.2.2.1. Under Assumption 5.2.1.4, we have the following convergence 

estimate of CMG Algorithm I for (5.2.2. 7): 

1 h0 

C(a) · _ (-2-)a · mY2 A(w,w), 
1 {31/2 

hQ 
C(a) · J · ; 12 A(w, w), 

mJ 

for {3 > 4, 

for {3 = 4, 

with C(a) := C(1/(1 + /o)) 0
. These estimates hold for all wE VJ. 

In view of 

we conclude that Theorem 5.2.1.2 remains true with a= 2d. Clearly, when d = 2, 

CMG Algorithm I for (5.2.2.7) is near optimal; when d = 3, the algorithm is optimal. 

For a detailed discussion on how to choose {3 so that the cascading multigrid 

method has optimal accuracy and complexity, we refer to Shi and Xu [107) or Bor

namann and Deufthard [15). 

5.2.3 The cascading multigrid method in Besov spaces 

For s E ( 0, 1), define the interpolation space 

[X, Y)s,oo := {WE Y : sup t-2
s K(t, w) 2 < oo }, 

t>O 

and the K-functional by 
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Recall the equation (5.2.2.3): Find w E HJ (0) such that 

Ar(w, v) = (g, v), \lv E HJ(O), (5 .2.3.1) 

where 

Ar(w, v) := T-
1 (w, v) + B(w, v). 

Recall (5.2.2.5): for 0 <a< a0 = ; , we have the regularity 

For the critical case a= a 0 , Bacuta, Bramble and Xu (6] proved the estimate 

(5.2.3.2) 

where B 1+oo (0) is a standard Besov space and BQi1+oo (0) was defined in (6]. Cor

respondingly, the convergence estimate of the Pl finite element method for (5.2.3.1) 

is 

(5.2.3.3) 

We begin our analysis with an analogue of equation (5.2.1.9). Triebel (114, pp. 59] 

proved the interpolation property 

Hence, we have 

A ( K;::!12 (Pk - Pk_I)w, K~12(Pk- Pk-l)w) 

< C sup t-2
(l-oo) inf [A (K;;!12 (Pk - Pk-l)wo, K;;!12 (Pk - Pk_I)wo) 

t>O woEVJ ' ' 

+ t 2 A ( K;::!12 (Pk- Pk-l)(w- wo), K';;;!;2 (Pk- Pk-l)(w- wo) )J. (5.2.3.4) 
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We use Lemma 5.2.1.1 and Assumption 5.2.1.1 with a = 0 and a = 1 to get the 

equations 

A ( K;::!12 (Pk - Pk-1)wo, K;;:!12 (Pk - Pk_r)wo) 
).-1 ).-2 

< C-k- ((Pk- Pk-1)wo, (Pk- Pk-1)wo) < C-k-A(wo, wo), (5.2.3.5) 
mk mk 

and 

A ( K;::!12 (Pk- Pk-1)(w- wo), K;::!12 (Pk- Pk-1)(w- wo)) < CA(w- Wo, w- wo). 

(5.2.3.6) 

Hence { (5.2.3.4), (5.2.3.5), (5.2.3.6)} lead to 

A ( K;::!;2(Pk- Pk-1)w, K;::!12 (Pk- Pk-1)w) 
). -2oo 

< C k 
00 

sup(m!12.\kt)-2C1-oo) inf [A(wo,wo) + (m!12 .\kt)2A(w- Wo,w- wo)] 
mk t>O woEVJ 

). -2oo 

< C koo/ 2 A(w, w). (5.2.3.7) 
mk 

Therefore we obtain 

This suggests the following theorem: 

Theorem 5.2.3.1. Under Assumption 5.2.1.4, we have the convergence estima+e of 

the CMG Algorithm I for {5.2.3.1), namely 

for {3 > 4, 

for f3 = 4, 

for all wE VJ. 



5.2.4 The method for VIDEs 

We consider 

u, - D.u + 1' k(t- s)Bu(x, s)ds = f(x, t), x E !1, t E I := [0, TJ, 

with initial condition 

u(x, 0) = Uo(x), X E 0, 

and boundary condition 

u(x, t) = 0, x E 80, t E J, 
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(5 2.4.1) 

where n c JRd (d = 2, 3) is a bounded convex polygonal domain. B is an elliptic 

differential operator of order up to two. We can easily follow the idea of Cha.pter 4 

to analyze the cascading multigrid method for (5.2.4.1) with less than second-order 

B. So it is interesting to analyze the case with dominant memory term (i.e., the 

operator B is second order). For ease of exposition, we suppose B := -6. In most 

cases of application, k is nonnegative. We want to use the trapezoidal rule (5 .2.4.3) 

for the memory term, hence we assume k E C 1 (I). If k is weakly singular, we can 

use the left-rectangular rule (see [34]). 

The weak form of (5.2.4.1) is to find u E HJ(O), with u(x, 0) - u 0 (x) E 

H 1+a(n) n HJ(O), such that 

(u,,v)+B(u,v)+ [ k(t-s)B(u(x,s),v)ds = (f,v), \lv E HJ(O), t E I, (5.2.4.2) 

where the bilinear form B is as before: 

B(u, v) = 1 "Vu · "Vvdx, Vu, v E H6(D), 

and also 

(J, v) = 1 fvdx. 
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We use the backward Euler scheme for time-stepping of (5.2.4.2) and the trapezoidal 

rule, 

(5.2.4.3) 

for discretizing the memory term. 

Let kj := k(tn- tj) (j = 0, ... , n). Then we get that: Find un- un- 1 =: w E 

HJ+a(n), such that 

AT(w, v) = (g, v), \lv E HJ(n), (5.2.4.4) 

where 

-1 1 
AT(w, v) := T (w, v) + (1 + 2'kn)B(w, v), 

and 

1 1 n-1 . 

(g,v) := (f,v)- (1 + 2Tkn)B(un-1 ,v)- 2TkoB(uo,v)- LTkjB(uJ,v). 
j=1 

The same discussion as that in Section 5.2.2leads to the P1 conforming finite element 

approximation to (5.2.4.4): Find Wk E vk c HJ(n)' such that 

(5.2.4.5) 

and its error estimate is 

(5.2 4.6) 

We also define 

(5.2.4.7) 

Then (5.2.4.5) can be written as 

(5.2.4.8) 
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where 

We see that 

Hence, we have 

( 
(1 + ~Tko)AJ 22(J-k) - 1 _1) ( (1 + ~Tko)AJ 22(J-k) - 1 _1) 

c 22(J-k) + 22(J-k) T < Ak < c 22(J-k) + 22(J-k) T . 

(5.2.4.9) 

Assumption 5.2.1.2 and {(5.3.1.2), (5.3.1.3)} concern only Rk· They henceforth 

remain true as discussed in Section 5.2.1. Thus, recalling (5.2.1.10), we obtain 

A((I-BJAJ)w,w) < c(t .A~;2 )A(w,w) 
k=1 mk 

(5.2.4.10) 

< c hZ2 t (
13
::2)k A(w,w). 

mJ k=1 

We used a+ b > 2..JO]j in the calculation from (5.2.4.9) to (5.2.4.10). 

So (5.2.4.10) yields the following theorem. 

Theorem 5.2.4.1. Under Assumption 5.2.1.4, we have the following convergence 

estimate of the CMG Algorithm I for (5.2.4.8): 

for /3 > 4, 

< 

for /3 = 4, 

for all wE VJ. 

Remark 5.2.4.1. We notice that compared with Section 5.2.2 and Section 5.3.2, 

the analysis of this section does not need the assumption (5.2.2.9). 
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5.3 Abstract cascading multigrid method with non
nested spaces and varying inner products and 
bilinear forms 

In the previous sections w e assumed that V0 C V1 C · · · C VJ = V, and that ( ·, ·) 

and A ( ·, ·) are defined on .all Vk. In this section, we allow the spaces Vk to be not 

necessarily nested and defim.e a symmetric elliptic bilinear form Ak ( ·, ·) and an inner 

product ( ·, ·) k corresponding to 0 < k < J. 

5.3.1 The cascading multigrid algorithm 

Consider the following setting: 

(1) Let VQ, ... , VJ be J finite dimensional spaces with VJ V, which are not 

necessarily nested. 

(2) Define J linear operators 

h : vk-1 -T vk, k = 1, ... , J, 

·which connect the spaces. 

(3) Let ( ·, · )k be an inne r product on Vk x Vx:, with induced norm II · Ilk, and let 

Ak(·, ·)be symmetric:: and elliptic bilinear form on vk X vk with AJ(·, ·) -A(-,·) 

and induced norm Il l ·lllk· 

( 4) Define Ak : Vk -t Vk= by 



152 

and 

for all v E Vk-1· 

(6) Let Rk be a linear symmetric operator Rk : Vk ---+ Vk with Ro := A01. 

We shall solve the equation (5.2.1.2) on each level k := 0, 1, ... , J by the cascading 

multigrid algorithm. 

Define the precondition operator B _ BJ by the 

CMG Algorithm II: 

0) B ·- A-1. 0 .- 0 l 

Define Bk implicitly in terms of Bk_1, fork= 1, ... , J: 

1) For f = 1, ... , mk, we set 

Here y~ := IkBk-1Qk-19· 

3) BkQkg := y";k. 

e e-1 R (Q A e-1) Yk := Yk + k k9- kYk · 

Before we analyze the CMG Algorithm II, we add the following three natural 

assumptions. 

Assumption 5.3.1.1. We suppose 

(5.3.1.1) 

Using the Cauchy-Schwartz inequality, we can easily prove that {5.3.1.1) holds true 

if and only if 
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Assumption 5.3.1.2. Let Ak denote the maximum eigenvalue of Ak, i.e., 

, ·- (Akv, v)k 
Ak .- sup ( ) . 

vEVk V,V k 

For given a E (0, 1], there exists a constant Ca., independent of k, such that 

(compare with Assumption 5.2.1.1, (·, ·)- (·, ·)k). 

Assumption 5.3.1.3. Let Kk :=I- RkAk, Rk,w := w>..;1 I and Kk,w :=I- Rk,wAk· 

There exists w E (0, 1] such that 

Hence it holds that 

(compare with Assumption 5.2.1.2). 

By using the same argument as in the proof of Lemma 5.2.1.1, we can prove the 

following lemma. 

Lemma 5.3.1.1. K~ satisfies the following two properties: 

(5.3.1.2) 

and 

(5.3.1.3) 

for wE (0, 1] and a E (0, 1]. 

Now we are ready to present our main results. 
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Theorem 5.3.1.1. Let BJ be defined by the CMG Algorithm II, and let Assumptions 

{5.3.1.1, 5.3.1.2, 5.3.1.3, 5.2.1.3, 5.2.1.4} hold. Then we have 

1 .A -Ct./2 

C · 1 _ (b/f3)Ct./2 · ~~12 A(u, u), for f3 > b, 

.A-Ct./2 
C · J · JCI./ 2 A(u, u), for /3 = b, 

mJ 

for all u E VJ. 

Proof. We first estimate: 

From (5.2.1.2): 

we derive 

Hence, 

(5.3.1.4) 

- K7J (YJ- IJYJ-1) + (K7J IJ )K7!1 1 (YJ-1 - IJ-IYJ-2) 

+ ... + (K7J IJ )(K7!1 1 IJ_I) ... (K-;"2 l2)K";1 (Yl - liYo). 

In view of the definitions of Pk and Qk, we obtain 
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which leads to 

Therefore, we have 

Yk-1 = Pk-lYk, for k = 0, ... , J- 1. (5.3.1.5) 

Combining (5.3.1.5) and (5.3.1.4) we find 

J-1J-k J-k 
I- BJAJ = xr;J (I- IJPJ-1) +I: II (K7:i~i' IJ+l-i) · x;;k ·(I- hPk-1) ·II PJ-i· 

k=1 i=1 i=1 

By the Cauchy-Schwarz inequality and Lemma 5.3.1.1, 

A((I- BJAJ)u,u) 

< [A(Kr_tJ (I- IJPJ_I)u, Kr_tJ (I- IJPJ_I)u)p12 
• [A(u, u)p12 

+ })A• ( (K;'' · (I- J.P._1 ) ·D. PJ_,)u, (K;'' · (I- J.P._1 ) · g PJ-i)u) J'i' 

[A(u, u)P12
. (5.3.1.6) 

From Assumption 5.3.1.3, Lemma 5.3.1.1, and Assumption 5.3.1.2, we have 

A (Kr_tJ (I- IJPJ_1)u, Kr_tJ (I- IJPJ_1)u) 

< C~= (A1-a(I- IJPJ-1)u, (I- IJPJ-1)u) 
J 

.\-a 
< C-J-A(u,u), 

mJ 

and in addition, using Assumption 5.3.1.1, 

(5.3.1.7) 

(5.3.1.8) 
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Hence (5.3.1.6), (5.3.1.7) and (5.3.1.8) lead to 

(5.3.1.9) 

Combining (5.3.1.9) and Assumption 5.2.1.3 and Assumption 5.2.1.4, we obtain our 

desired result. 

The computational cost estimate theorem is the same as Theorem 5.2.1.2. 

5.3.2 Application to interior penalty discontinuous Galerkin 
method 

The V-cycle algorithm for the interior penalty discontinuous Galerkin method was 

presented in the paper by Gopalakrishnan and Kanschat [52], which was based on 

Arnold [3]. In this section, we analyze the CMG Algorithm II for the heat equation 

(5.2.2.1) with the interior penalty discontinuous Galerkin discretization. We will 

essentially use the notations in Section 5.3.1. 

Let 7k (k := 0, 1, ... , J) be a quasi-uniform triangular partition of 0 with the 

mesh size hk = h0 2-k. We define the multilevel spaces 

VoCV1C···CVJ=V, 

by 

Vk := {v: vir E p Cm)(T), VT E 7k,}, 

where pCm) (T) denotes the polynomial with degree not exceeding m on T. 

To describe the interior penalty discontinuous Galerkin method, we need the 

spaces 

HJ(7k) := { v E L 2 (0) : vir E H 1(T) and viannr = 0, VT E 7k,}. 
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Let £k denote the set of edges of the triangulation 7k. If e E £k is an interior edge, 

we denote by ne one of the two unit normal vectors at e, and we define the jumps 

and averages of the normal derivatives (for x E e) of v E HJ(7k) by 

and 

[v]e(x) := lim [v(x- 8ne)- v(x + 8ne)], 
cS-+0+ 

1 . 
(Bnv)e(x) :=- hm [ne · 'Vv(x- 8ne) + ne · 'Vv(x + 8ne)]. 

2 cS-+0+ 

If e c an, we fix ne to be the outward normal vector and let 

[v]e(x) := lim v(x- 8ne) and (Bnv)e := lim ne · 'Vv(x- 8ne)· 
cS-+0+ c5-+0+ 

Define Bk(·, ·) on HJ(7k) x HJ(7k) by 

+ I: (;, ([u], [v]), - ( (8n u), [v]), - ([u], (8n v) ), ) . 
eE£k 

(5.3.2 .1) 

Here fe denotes the length of the edge e and a is a positive parameter to be chosen 

later. 

The weak form of (5.2.2.1) is defined by: Find u E HJ(7k), with u(x, 0) 

u0 (x) E H 1+a(7k) n HJ(7k), such that 

(ut, v) + Bk(u, v) = (f, v), Vv E HJ(7k), t E [0, T]. (5.3.2.2) 

As in Section 5.2.2, we use the backward Euler scheme for the time-stepping of 

(5.3.2.2). Then we derive the weak form with time-stepping: To find w E HJ+a(7k) 

such that 

AT,k(w, v) := (g, v), Vv E HJ(7k), (5.3.2.3) 
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where 

and 

(g,v) := (f,v)- Bk(un-1 ,v). 

The interior penalty discontinuous Galerkin approximation to (5.3.2.3): 

Find Wk E vk, such that 

(5.3.2.4) 

Define 

(5 .3.2.5) 

Then (5.3.2.4) can be expressed by 

(5.3.2.6) 

where 

From [3), we can easily obtain that 

(5.3.2.7) 

From [52], we know that 

Hence we have 
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In (52] it was also proved that Assumption 5.3.1.1 and Assumption 5.3.1.2 hold true. 

Assumption 5.3.1.3 and Lemma 5.3.1.1 are guaranteed, since they only concern the 

smoother operator Rk. We assume T satisfies (5.2.2.9). So by recalling (5.3.1.9), we 

derive that 

A((I- BJAJ)w,w) 

< C (t ;\~;2 ) A(w,w) 
k=l mk 

< C (1+:+-ror m~2 i~ cJ:~2 r A(w,w) 

The following theorem is therefore established. 

Theorem 5.3.2.1. Under Assumption 5.2.1 .4, we have the convergence estimate of 

CMG Algorithm II for {5.3.2.6): 

for all wE VJ. 

1 ha. 
C· - (-2-)a.. m12A(w,w), 

1 (31/2 
ha. 

C · J · :;2 A(w, w), 
mJ 

for {3 > 4, 

for {3 = 4, 

The computational cost estimate is that of Theorem 5.2.1.2 with a= 2d. 

Remark 5.3.2.1. The foregoing discussion reveals that the abstract setting of the 

cascading multigrid method provides a more feasible way to establish the convergence 

theorem of the method for the time-dependent problems with mild regularity, and for 

problems that are discretized by other new FEM methods. We believe it is also 

possible to extend this abstract framework to the mesh-free method described in, e.g., 

[14, 85}. 
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5.3.3 Extension to VIDEs 

In this section, we shall extend the CMG Algorithm II to (5.2.4.1) with the interior 

penalty discontinuous Galerkin approximation. We start from the interior penalty 

discontinuous Galerkin weak form of (5.2.4.1). 

Find u E HJ('4) with u(x, 0) = u 0 (x) E H 1+o:('4) n HJ('4), such that 

(u,, v) + Bk(u, v) + 1' Bk(u(x, s), v)ds = (!, v), 1/v E Hd (7k), t E I, (5.3.3.1) 

where Bk was defined by (5.3.2.1), i.e., 

+ L (;. ([u], [v]), - ((Gnu), [v]),- ([u], (Onv) ), ) . 
eE£k 

We use the backward Euler scheme to approximate (5.3.3.1), and the trapezoidal 

rule to discretize the memory term. Then we get the form: Find wE HJ('4), such 

that 

Ar,k(w, v) = (g, v), "i/v E HJ('4), (5.3.3.2) 

where 

-1( ( 1 Ar,k(w, v) := T w, v) + 1 + 2Tko)Bk(w, v), 

and 

1 1 n-1 . 

(g, v) := (f, v)- (1 + 2Tko)Bk(un-I, v)- 2TknBk(uo, v)- L TkjBk(u1 , v). 
j=1 

The interior penalty discontinuous Galerkin approximation to (5.3.3.2) is formulated 

as: Find Wk E vk such that 

(5.3.3.3) 
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Its error estimate: 

(5.3.3.4) 

can be easily proved by using the techniques in [3]. 

Define 

(5.3.3.5) 

Then (5.3.3.3) can be expressed by 

(5.3.3.6) 

where 

From [52], we know that 

1 1 
c(1 + 2Tk0 )(1 + a)h/;2 + T-1 < )..k < C(l + 2Tko)(1 + a)h/;2 + T-1

. 

Therefore, we derive 

( 
1 ).. 22(J-k) - 1 ) 

c (1 + 2Tko) (1 +a) 22(J~k) + 22(J-k) T-1 (5.3.3.7) 

( 
1 ).. 22(J-k) - 1 ) 

< )..k < C (1 + 2Tk0 )(1 +a) 22(J~k) + 
22

(J-k) T-
1 

. 

In [52] it was also verified that Assumption 5.3.1.2 holds true. Assumption 5.3.1.3 

and Lemma 5.3.1.1 are guaranteed, since they only concern the smoother operator 

Rk· We assume T satisfies (5.2.2.9). So by recalling (5.3 .1.9), we obtain 

A((I- BJAJ)w,w) 

< C (t )..~;2 ) A(w, w) 
k=l mk 

< c(1+~+2~2{~+1)rm72i;(;,:2rA{w,w) 
The following theorem is henceforth established. 
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Theorem 5.3.3.1. Under Assumption 5.2.1.4, we have the convergence estimate of 

the CMG Algorithm II for {5.3.3.6) 

for {3 > 4, 

< 

for {3 = 4, 

for all wE VJ. 

5.4 History of cascading multigrid method 

At present there exist three types of multigrid algorithms: the V-cycle algorithm, 

the W-cycle algorithm and the cascading multigrid algorithm. You may consult 

Hackbusch [55] and Bramble [19] for background material, and Brandt [21] and 

Trottenberg et al. [115] for references. The cascading algorithm is the new member 

of the family of multigrid methods. As a distinctive feature, the algorithm does not 

need nested correction at all and performs more iterations on coarser levels so as to 

obtain fewer iterations on finer levels. The first publication of this algorithm (Deuft

hard [42] in 1994) contained rather convincing numerical results, but no theoretical 

justification. In 1996, Bornemann and Deuflhard [15] provided a theoretical analysis 

of this algorithm. In 1998 and 1999, Shi and Xu [104, 105] generalized the idea and 

applied it to nonconforming finite element method. Later many papers such as ([51], 

[106], [17], [103], [102], [107], [108], [112], [110], [126], [18], [87]) contributed to this 

area. In this thesis and [86], we provided an abstract cascasing multigrid, which is 

more general than [104, 105] and is applicable for the problems with mild regularity 

in Besov spaces and for the interior penalty discontinuous Galerkin method. 



Chapter 6 

Future works 

In this chapter, we shall mention some future research topics growing out of this 

thesis. 

6.1 Adaptive discontinuous Galerkin time-stepping 
for (partial) VIDEs with blow-up solutions 

6.1.1 VIDEs with blow-up solutions 

Consider the semilinear Volterra integra-differential equation: 

{ 
y'(t) + a(t)y(t) = Vc(y)(t), fort> 0, 
y(O) =Yo , 

(6.1.1.1) 

where Vc(y)(t) := fo\(t- s)G(y(s))ds. The solution of (6.1.1.1) will blow up in 

finite time under suitable assumptions on the functions a, k, and G. For example, 

blow-up will occur in finite time under the following assumptions: 

1. G(y) := yP, for p > 1. 

2. For T > 0, k satisfies 

k E C 1
, k(T) > const. > 0, and k'(T) < 0. 

3. y0 > 0 and 0 < -a(t) < const. (for t > 0). 

(Compare Roberts and Olmstead [94] for the case of Volterra integral equations, 
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and see Bellout [13) for PVIDEs in Section 6.1.2). 

As shown in Stuart and Floater [111), the time-stepping method (one-point col

location method) with fixed temporal mesh is totally inadequate for dealing with 

ODEs with blow-up solutions. The same is true for the discontinuous Galerkin 

method on a fixed mesh, and one will resort to techniques for the computation of 

blow-up problems. There exist various methods for generation of adaptive meshes 

(e.g., defining the adaptive mesh according to the asymptotic profile of the solution 

near the blow-up time (if it is known)). Time-stepping based on a posteriori error 

estimates of DG is definitely one of the efficient approaches for mesh adaptivity. 

Another approach for the blow-up problem (6.1.1.1) is the p- or hp-version of 

the adaptive DG time-stepping method (Brunner and Schotzau [27]). It will likely 

be very effective in dealing with blow-up equations, especially when the asymptotic 

behavior of the solution near the blow-up time is known. 

6.1.2 PVIDEs with blow-up solutions 

Let n be a bounded domain in lRn with piecewise smooth boundary an and 

Qt := n x (o, t), rt :=an x (o, t). 

We consider the PVIDE: 

u, = 6u + 1' k(t- s)G(u(x, s))ds, in Q,, 

with initial condition 

u(x, 0) = uo(x) > 0, inn, 

and boundary condition 

u(x, t) = 0, on rt. 

(6.1.2.1) 



Bellout (13] proved that u blows up in finite time, i.e., 

if 

and 

3Tb < oo such that lim m~u(x, t) = oo, 
t-+T& xEf2 

c E C1
, G(o) > o; G'(T) > o, G"(T) > o ('riT > o), 
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(6.1.2.2) 

(6.1.2.3) 

Problem (6.1.2.1) can be viewed as the generalization of problem (6.1.1.1): be-

cause it now also involves a spatial variable, its numerical analysis and computation 

become much more complicated. Future efficient methods for the computation of 

(6.1.2.1) are based on moving meshes in which the spatial mesh is generated by 

appropriately chosen moving mesh PDEs (see, e.g., (67, 68, 69, 70], also Bandle and 

Brunner (7]). 

Readers are referred to the book by Samarskii, Galaktionov, K urdyumov, and 

Mikhailov (95], an the survey papers by Bandle and Brunner (8] and Souplet (109] 

for numerous references on theoretical and numerical blow-up. 

6.2 The artificial boundary method for PVIDEs 
on unbounded spatial domains 

6.2.1 The artificial boundary method 

Consider the following initial-boundary-value problem for the one-dimensional dif-

fusion equation with memory term: 

u, + 1' k(x, t- -r)u(x, -r)d-r = 6.u + j(x, t), x E JR1
, t E J, (6.2.1.1) 

uit=O = uo(x), x E IR\ 

u ---+ 0, as lxl ---+ oo, 

(6.2.1.2) 

(6.2.1.3) 
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where I := (0, T], f:lu := 82u/ 8x2 
0 Suppose that 

(i) the functions f and u0 are continuous and have compact support: 

supp {f(x)} c (0, 1], supp {u0 (x)} C (0, 1]; 

(ii) the kernel k satisfies k(t, x) = k0 (t) when x t/. (0, 1), with k0 continuous or 

weakly singular 0 

In order to solve this problem numerically we introduce two artificial boundaries, 

as follows: 

r 1 0- { x = 1 : o < t < T}, 

r o 0- { x = o : o < t < T} 0 

(60201.4) 

(60201.5) 

These artificial boundaries divide the given spatial-temporal domain into three sub-

domains: 

Ql - {(x, t) : 1 < x < +oo, 0 < t < T}, 

Qo 0- {(x, t) : -oo < x < 0, 0 < t < T}, 

Qi o- {(x, t) : 0 <X< 1, 0 < t < T}o 

Consider first the restriction of the given initial-boundary-value problem (60201.1)

(60201.3) to the domain Q1 0 Because of our assumptions (i) and (ii), u = u(x, t) has 

to satisfy 

u, + 1' ko(t- T)u(x, T)dT = i:lu, 1 < x < co, 0 < t < T, (6.2.1.6) 

uit=O = 0, 1 < X < 00, 

u -+ 0, as x -+ ooo 

(60201.7) 

(60201.8) 
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Using Laplace transform techniques one can show that (see Han, Brunner and Ma 

[61]) the exact (artificial) boundary conditions on r 1 and on r 0 are respectively 

given by 

and by 

au(1, t) = __ 1_1t H(t- T) au(1, T) dT 
ax fi 0 ..jt=T aT 

(6.2.1.9) 

au(O, t) - +-1-lt H(t- T) au(O, T) dT 
ax - fi 0 ..jt=T aT 1 (6.2.1.10) 

with t E [0, T] and with appropriate kernel H. 

By the artificial boundary conditions (6.2.1.9) and (6.2.1.10) the original initial-

boundary-value problem (6.2.1.1)-(6.2.1.3) can thus be reduced to one defined on 

the bounded spatial-temporal computational domain Qi: 

':;: + 1' k(x, t- T)u(x, T)dT = Ll.u + f(x, t), 

uit=O = uo(x), 0 < x < 1, 

au I = __ 1_1t H(t- T) au(1, T) dT 
ax x=l fi 0 y't T aT ' 

au I = +-1-lt H(t- T) au(O,T) dT. 
ax x=O fi 0 ..jt=T aT 

(x, t) E Qi, (6.2.1.11) 

(6.2.1.12) 

(6.2.1.13) 

(6.2.1.14) 

On Qi the problem (6.2.1.11)-(6.2.1.14) is equivalent to (6.2.1.1)-(6.2.1.3). 

Han and Huang [62, 63] proposed an artificial boundary method for the heat 

equation on unbounded domains. The method focuses on introducing an appropriate 

computational domain with an artificial boundary and adding the nonlocal boundary 

condition. Han, Brunner, and Ma [61] used this method to solve linear PVIDEs on 

unbounded spatial domains in JR1
. Work is currently being done on the extension 

to unbounded domains in JR2 and JR3 • 
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6.2.2 The finite element method and the DG time-stepping 
for the reduced problems 

Since the reduced problem (6.2.1.11)-(6.2.1.14) includes the artificial boundary con

ditions (6.2.1.9) and (6.2.1.10), it is important to verify the coercivity and continuity 

of the bilinear form a( u, v) in the error estimate of the finite element approximation 

to the reduced problem. The reader may consult the following fundamental refer-

ences: 

1. Han and Wu [64]: artificial boundary method for Laplace's equation and linear 

elastic equations on unbounded domains and error estimates for its finite element 

approximations. 

2. Han and Bao [60]: the finite element approximation of elliptic problems on un-

bounded domains is formulated on a bounded domain using a nonlocal approximate 

artificial boundary condition and error estimates are based on the mesh size, the 

terms used in the approximate artificial boundary condition, and the location of the 

artificial boundary. 

3. Han and Zheng [65]: mixed finite element methods and high-order local artificial 

boundary conditions for exterior problems of elliptic equations. 

The analysis of the finite element method for the reduced problems coming from 

artificial boundary methods for parabolic PDEs and , especially, PVIDEs, is still at 

an early stage. 

We see from (6.2.1.11)-(6.2.1.14) that the artificial boundary conditions are ex-

pressed in time integral form. Hence, it will be necessary to employ suitable quadra

ture for the boundary conditions while applying the discontinuous Galerkin time-

stepping method to the reduced problem. The error analysis of the DG time-stepping 

for the reduced problem will be based on error estimates of its finite element method 
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in space, the time-stepping error estimates, and the quadrature errors. 

6.2.3 Blow-up problems on unbounded spatial domains 

An obvious extension of (6.2.1.1)-(6.2.1.3) is the initial-boundary-value problem for 

the nonlinear diffusion equation with memory term: 

Ut = D.u + 1' k(x, t- T)u•(x, T)dT, x E !Rn, t > 0, p > 1, (6.2.3.1) 

ult=O = uo(x), x E lRn, (6.2.3.2) 

u -+ 0, as Jxl -+ oo. (6.2.3.3) 

The blow-up property for (6.2.3.1)-(6.2.3.3) with unbounded spatial domains is not 

yet known, in contrast to that for parabolic PDEs, 

Ut = D.u+uP, 

compare Fujita [48] (in JRn), Bandle and Levine [9] (for sectorial domains), Bandle 

and Brunner [8], and their references. For the purpose of computation of the problem 

(6.2.3.1)-(6.2.3.3), we shall introduce the artificial boundaries and the corresponding 

artificial boundary conditions. We have be very careful on the choice of the location 

of the artificial boundary, otherwise it is possible that some blow-up points are not 

included into the computational domains. Is it true that the blow-up property of 

the blow-up of the reduced problem with nonlinear artificial boundary conditions 

is the same as that of the original problem (6.2.3.1)-(6.2.3.3)? If we have not 

established these corresponding analysis, how can we numerically detect the blow-

up and determine the suitable location of the artificial boundaries? 
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