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Abstract

In this thesis, we focus on the discontinuous Galerkin (DG) methods for the func-
tional integro-differential equations and on the cascading multigrid (CMG) methods
for the parabolic PDEs, Volterra integro-differential equations (VIDEs) and Fred-
holm equations.

We give both a priori and a posteriori error estimates of the DG method for linear,
semilinear and nonstandard VIDEs. Furthermore the superconvergence of the mesh-
dependent Galerkin method for VIDESs is also considered. The fully discretized DG
method for VIDEs is also analyzed. Numerical examples are provided to compare
the DG method with the continuous Galerkin (CG) method and the continuous
collocation (CC) method. We study the primary discontinuities of several classes of
VIDEs with time dependent delays, which include the functional VIDEs of Hale’s
type, delay VIDEs with weakly singular kernels and delay VIDEs of neutral type
(with weakly singular kernels). According to the regularity information established,
we construct an adaptive DG method for functional VIDEs of Hale’s type.

Two new cascading multilevel algorithms are analyzed to the semi-linear parabolic
PDEs and extended to the partial Volterra integro-differential equations (PVIDEs)
and the parabolic PDEs with delays. More distinctly the cascading multigrid method
could very well solve the Fredholm equations without dealing with the full stiffness

matrix directly. Therefore we can save much more computing time. Most im-



portantly, we contribute to the multigrid arts by developing an abstract cascading
multigrid method in Besov spaces and a discontinuous Galerkin cascading multigrid
method. We extend these methods to evolutionary equations and PVIDEs. Finally,
we discuss briefly the future works on (partial) VIDEs with blow-up solutions and

artificial boundary methods for PVIDEs on unbounded domains.
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Chapter 1

The discontinuous Galerkin
method for ODEs: an introduction

The discontinuous Galerkin (DG) method can be traced back to 1973 when Reed
and Hill used it to solve the neutron transport problem. The DG method was
first analyzed in 1974 by Lesaint and Raviart in the application to ODEs. Since
DG methods assume discontinuous approximate solutions, they can be considered
as generalizations of finite volume methods. What makes DG methods popular
is that they are able to capture the physically relevant discontinuities of the exact
solutions without producing spurious oscillations near them. A more detailed history
of DG methods for ODEs and PDEs will be presented at the end of this chapter, in

Section 1.4.

1.1 The DG method for ODEs

1.1.1 Basic description of the DG method for ODEs

Consider the initial value problem

y(t) = f(ty(8), te I:=[0,T), y(0)= o, (1.1.1.1)
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and assume that the (Lipschitz continuous) function f : I x € R — R is such

that (1.1.1.1) possesses a unique solution y € C!(I) for all yo € Q. Let
]h;_—_{tn; O=to<t) < - <ty<---<ty=T}

be a given mesh on I, and set I, := (tn_1,tn), In = [tn_1,tn), An i=tn —tn_1 (n =
1,...,N —1); h:=max{h,: 1 <n < N — 1} will be called the diameter of the

mesh ;. Note that we have, in rigorous notation,
. tﬁlN), I, = I,(LN), hp:=h™M (n=1,...,N—=1), h:= RN,

We will usually suppress this dependence on N, the number of subintervals corre-
sponding to a given mesh I, except occasionally in the convergence analysis where
N — oo with NA®™) uniformly bounded. At the mesh points the left- and right-
sided limits of piecewise continuous functions ¢ : I — R will be important. They

are defined as follows:

o=l <n<N-1; o7 := i —s), 1<n<N.
or S_’l&n}w(p(tn-f—s),O_n_N 1; o s_»lé’rr;wcp(tn 5), 1<n<N

The jump across the mesh points is given by [p], := ¢ — ¢, .
In the DG method, we are looking for an approximate solution of (1.1.1.1) in the

finite space
Vi = {p e L*U): ¢|1, € PU(I,), 1<n< N}, (1.1.1.2)

where P(™)(I,) denotes the space of all (real) polynomials of degree not exceeding

m. We define the DG method for (1.1.1.1) as: Find ¥ € V{" such that

Bpc(Y. X) =Yy X5, vXxX e v, (1.1.1.3)



where Y; = yo and

M M
Bpa(Y,X) =3 f, (Y'(8) - F&, Y)Xdt + S [VIr Xy + Y5 XS, (LL14)

n=2

Note that the exact solution y of (1.1.1.1) satisfies
Bpo(y, X) = woXgs, VX eVy.
Hence the Galerkin orthogonality property,
Bpe(y-Y,X)=0, VXeV{, (1.1.1.5)

holds true. We remark also that the DG method (1.1.1.3) can be interpreted as a

time-stepping scheme: For n = 1,--- , N, find Y|;, € P(™)(1,), such that
/ (V' = f(t, V) Xdt + Y} X, = Y X2y, VX eP™(L,).  (L1.L6)
In

Here we set Yy := yp.

In order to make the readers capture the basic idea of DG methods for ODEs
easily, we shall first introduce the DG method with piecewise constant approximation
(i.e., m = 0in (1.1.1.2)); it will be denoted by DG(0). If piecewise linear polynomial
approximation (m = 1) is used, we write DG(1). For more general DG schemes
with high-order polynomial approximation, we refer to Section 1.2. Here we also
remark that an analogous analysis holds for systems of QDEs if the products are
replaced by the corresponding inner products in R? (d denotes the dimension of the
systems) [see for example Section 1.2]. Throughout this thesis we define the norm

[| - ||; :=sup]| - |, where J is some compact interval.
teJ

1.1.2 A priori error estimate for ODEs

In this section we study the a priori error analysis of DG methods for ODEs.
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Theorem 1.1.2.1. Assume that f has continuous partial derivatives and there is a

constant L > 0 such that

|f(t,y1) — f(t,y2)| < Llys — yal, (1.1.2.1)

for allt € I and y1, ya € 2. Then there exists a constant C, independent of h,,

such that for 0 < M < N, the error of DG(m) for (1.1.1.1) satisfies
llelloea < € mazx AT *Hly ™ Pl (1.1.2.2)
with C := C(L,tp) and m = 0, 1.
Proof. If V € Vl(vm) is determined by V- = yp and, for 1 <n < M < N, by
/In ViXdt— [l yE)Xd+ VX = Vi X (1.1.2.3)
for all X € V7™ (m =0, 1), then
ly = Vi, < CRZHH g™ Vs, (1.1.2.4)

(See Estep [43] for the proof of (1.1.2.4)). We now compare Y to V. Setting
pw=y—Vandgp:=Y -V € VJ(Vm), we have e = u — ¢. We subtract (1.1.2.3) from
(1.1.1.6) and obtain
/ ¢’ Xdt — / (f(&.Y) = fty) X (B)dt + o1 X1 = dp_1 Xoy,  (1.1.2.5)
In In
for all X € VI(Vm). Choosing X = ¢ leads to
Loow 2, 1) 2 -+
Slonal +516al" = [ (F(&Y) = f(v)e@)dt = dn167s- (1.1.2.6)

n

Subsequently, we arrive at

—
—
h
(V]
~1

N

310" < glenal + [ 10 7) - st s



We now substitute e = p — ¢ into (1.1.2.7) to find that
621" < |¢noa|” + L / |u|?dt + 3L |¢|2dt (1.1.2.8)

Next we choose X = (t — t,—1)¢’ in (1.1.2.5) to obtain
R2IIGII, < 8L%hn [ luPde+8L%hn [ |oPdt.
i In

Since
[ 101 e < 2ha g + SRR,
we find that
/I 8% dt < 4k, 67| + /I p2dt, (1.1.2.9)
provided that 2 L2h2 < 1.
By combining (1.1.2.8) and (1.1.2.9), we see that

NI PO 2+—f1-1-;—f 24t. 1.1.2.10

Now we iterate (1.1.2.10), assuming 12Lh, < 1. This yields

— i
|6ae|” < CLtarlliallfo,ene- (1.1.2.11)

Theorem 1.1.2.1 follows from (1.1.2.11) directly when m = 0. For m = 1, we use
equation (1.1.2.6) and the fact that ¢ € V (m) implies that ||¢||2 I <&} 1[ + |67 12,
to obtain

il|¢|l§-,. < |¢aal" + %/I prdt + %fl ¢’dt.
An analogous argument establishes Theorem 1.1.2.1 for m = 1. We also refer to
Estep [43] for the original proof of Theorem 1.1.2.1.
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Corollary 1.1.2.1. Assume f(t,y) := —a(t)y(t) + g(¢t) in (1.1.1.1) where a, g are
continuous on each interval I, (1 < n < N), and set A := ||a||;. Then there exists

a constant C, independent of h, such that the error of DG(m) satisfies
ly = Y llosd < CH™ Iy llpo,e0a),
with C := C(tm,A) and m =0, 1.

1.1.3 A posteriori error estimates for ODEs

The a posteriori error analysis is based on representing the error in terms of the
solution of a continuous dual problem related to (1.1.1.1), which is used to determine
the effects of the accumulation of errors, and in terms of the residual of the computed
solution, which measures the propagation of error. After showing the stability of the
dual problem, we can estimate the a posteriori error bound of DG(m). The details

for the DG(0) method can be found in the book [45].

Theorem 1.1.3.1. Assume f(t,y) = —a(t)y(t) + g(t) in (1.1.1.1) where a, g are
continuous on each interval I, (1 < n < N), and let m = 0, 1. Then the a posteriori

error of DG(m) at the mesh point ty; (0 < M < N) satisfies
ly(tr) — Yar| < SEm)|AnR(Y )l 10,241

+ -
where |[R(Y)| := Te=aomdl 4 1 4y (t € 1) and || - | := maxycnenme{l| - .} If
A := ||a||r, then S(tym) < exp(Atar) and if , in addition, a(t) > 0 for allt € I, then

S(ta) < 1.

Proof. The proof for DG(0) is in [45]. The analysis of a posteriori error estimate of
DG(1) for (1.1.1.1) is similar to DG(0). We give the details as follows.
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Firstly we consider the continuous dual problem for (1.1.1.1): Find z = z(¢) such

that
{ -’ +a(t)z =0, forty >t>0,
x(tar) = €34y

where we denote by e(t) := y(t) — Y (¢) the error at the time ¢ and set ey, :=

(1.1.3.1)

y(tm) — Y. Starting from the identity

(ea)® = (ea)* + D /1 e (—z' +a(t)z)dt,

n=1 n

we integrate by parts over each subinterval I,, to obtain

M M-1
=N / (€ +at)e)zdt + 3 [elnz? + (v0 — Yeh)zd (1.1.3.2)
n=1 In n=1
Using Y, = o, we can simplify (1.1.3.2) to
M
e* = > ([ (9= a¥ = Y')zdt = WVlp-s).
I

n=1 n

We use the Galerkin orthogonality (1.1.1.5) by choosing X = Z to be the L, projec-

tion into the space V,(J) and obtain the error representation formula:

M
(en)? = 3 / (g — aY)(z — B)dt — [V]nor(z — B)F_y).

n=1 n

From the error estimates of interpolation:

/ —_—r / |dt; |z —%| < / I |dt,
In T Tos

we arrive at

M
€ < X {io-ariis, [ 1o slar+ etlng -z}

n=1 g

M
Y]n- ,
< 3 {mits - av1+ ety [ w10}
tM
< max, {mlito - avi+ E=hyy 4 [ joa
< S(ta) - leial - ARVl (1133)



where |R(Y)| := |g — aY| + uxhl';;ﬂ The stability factor S(tas) is defined by

M |2 |dit
gtisi= II—MI—

For the estimate of S(f)s), we give the following lemma.

Lemma 1.1.3.1. If A := ||a||r, then the solution z of (1.1.8.1) satisfies
|2(t)| < exp(Atm)lenl,

for all 0 < t < tyr and S(tyr) < exp(Aty). If, in addition, a(t) > 0 for all t € I,
then = satisfies
lz(2)| < lenl,

for all0 <t < tp and S(ty) < 1.

Proof. The proof can be found in [45].
By combining Lemma 1.1.3.1 and (1.1.3.3) we complete the proof of Theorem 1.1.3.1.
The following theorem gives a measure for the efficiency of the a posteriori esti-

mator in Theorem 1.1.3.1.

Theorem 1.1.3.2. Assume f(t,y) = —a(t)y(t)+9g(t) in (1.1.1.1) and that a, g are

continuous on each interval I, (1 < n < N), and let A := ||a||;. Then we have

ly(tsr) = Yarl < SEa)l[RnB(Y )]l fo,2]

< CS(tm)(1 + Atae® ) 2R |y |01,

for0< M < N.
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Proof. We need to estimate ||AR(Y")||(0,tp,] in Theorem 1.1.3.1 and Theorem 1.1.3.1:

IlhﬂR(Y)”[O,tml = ” |Yn+—1 - Yn——ll + hnlg - aYl |I[0,tM]
= HYn-t-l _y+y—Yn——1||[0,tM]
+  halla@®)y(t) — a@®)Y Olljo,ear] + AIY 0,601]

< (2 + A)He(t)ll[o,tu] + h”y,”[O,tM]' (1134)
Upon applying Corollary 1.1.2.1, we complete the proof.

1.2 Mesh-dependent Galerkin methods for ODEs

In this section we survey the paper Delfour and Dubeau [40] and discuss the mesh-

dependent Galerkin methods (including the discontinuous Galerkin method) for

ODEs and the corresponding superconvergence results.

1.2.1 Mesh-dependent Galerkin methods for ODEs

Consider the following system of ODEs,
y'(t) = f(t,y(t)), tel:=][0,T], y(0)=yo, (1.2.1.1)

where yg € @ C RY, with d > 1, and y : [0,7] — Q is a vector function and
f: Qx[0,T] — Qis a given map such that (1.2.1.1) possesses a unique solution
for all yo € €2. Before we begin the analysis, we formulate some notations and

definitions.

(i) Define the inner product:

d
I-yzzziyi) .'13:(.'131,...,.'1361),y:(yl,...,yd)eRd‘

=1
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(ii) L*([a,b]; 2) is the space of p-integrable (1 < p < o) or essentially bounded
functions (p = o0);

(iii) H*([a, b]; 2) is the Sobolev space of functions with derivatives through order

k in L?([a, b]; ) (k is a nonnegative integer);
(iv) C([a,b]; ©2) denotes the space of continuous functions;

(v) P ([a,b]; ) is the space of all polynomials of degree not exceeding m;

(vi) || - lloo,n :=sup| - |, where | - | is the Euclidean norm; define, for nonnegative
tel,
integer k,
k
” . ”lzc,n = Z('(i)’ '(i))ns
i=0

where (-, -),, denotes the inner product in L%(I,;2); define also
N
I Nloo := max{|| - lloomn : m=1,...,N}; || [l :=D_ Il |l n
n=1

Now we present the weak form of (1.2.1.1). On each interval I,, form the inner

product of (1.2.1.1) with v, in H!(I,; ) and integrate by parts:
Y(ta) - va(tn) = y(tn-1) - vn(tn—1) + / [y -v'n + f(y) - va]dt, (1.2.1.2)
I,

where f(y) denotes the function t — f(¢,y(t)) : [0,7] — Q. Then sum over all n

equations (1.2.1.2), observing (1.2.1.1) to obtain the following variational equation:

N-1

y(to) 3 [V() e ‘Ul(to)] 4 Z y(tn) ? [vn(tn) == vn+1(tn)] e y(tN) : 'UN(tN)
N N
a ,;fz., y-vadt =yo- Vo + ;/}ﬂ f(y) - vndt, (1.2.1.3)

which is to hold for all

N
b= (Vo,v1,...,0n) €V i=Q x [[ H'(I; Q).

n=1
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The space V will be endowed with the norm

5 1/2
ol = {I%F’ £y nvnn%,,.} .
n=1

This suggests the following variational problem: Find

N
@ = (Uo,...,Un,t1,...,un) €U = Q¥ x [] L?(I; Q)

n=1
such that

N-1
Uo - [Vo — va(to)] + Z Un - [n(ta) — Uns1(ta)] + Un - un(tN)

- /u,, Vndt = yo - VO+Z/ f(up) - vadt, VO EV. (1.2.1.4)
I,

n=1 n=1

Locally, the weak form (1.2.1.4) is equivalent to finding u,, in L2(I,; ) and U, in Q
such that

Uo = Yo,
Un . 'Un(tn) =5 Un_l -3 'Un(tn_l) + [un . v’n + f(un) 9 'Un]dt, (1-21.5)
In

for all v, € H'(I,;Q) andn=1,...,N.

Theorem 1.2.1.1. [Delfour and Dubeau (1986)]
(a) There ezists a unique solution @ € U to the variational equation (1.2.1.4).
(b) Moreover,
i = (y(to),-- -, Y(tn), ¥ln, - - -, Ylin )
where y is the solution of problem (1.2.1.8) and y|1, denotes the restriction of the

function y to the interval I,,.

Now we introduce the Galerkin scheme corresponding to the weak form (1.2.1.5).
Define the finite-dimensional subspaces U, of U, and V; of V as follows:

by, = {ﬁh

ap = (Ug,..., Uk, ub,...,ul) €U such that ul € ‘P("‘)(In;Q)
subject to J (Z 0) addltlona.l conditions for n =1,..., N. J
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o = (V},vh,...,v}) € V such that
yh e pnti-IN(L - D) forn=1,...,N. |°

where m and J are nonnegative integers such that m + 1 — J > 0. Note also that

dimUy, = [1+ (m+2 — J)N]dimQ = dim V.

With the above definition, the approximation scheme for (1.2.1.5) is defined to find

i in Up such that Uy = yp and

{ Uh h(tn) / uh 'vh di = =i vh(tn—1)+/ f(u") 'Uhdt (1.2.1.6)

J additional conditions on u"

for all v? in Pm+1-I)(1:Q) and n = 1,..., N. Delfour and Dubeau [40] showed

that (1.2.1.6) possesses a unique solution whenever h is small enough.

Remark 1.2.1.1.
(i) For J =0 we obtain the completely discontinuous Galerkin methods;
(ii) For 0 < J < m+ 1, and on each interval I,,, the J conditions are of the form
uhtn) =UR, 1=1,...,J, (1.2.1.7)

where n; € {0,...,N}. These Galerkin methods will be referred to as nodal

methods:

(1) for J =1, i.e, uk(t,) = UF, n =1,...,N, the nodal method coincides
with the DG scheme of Lesaint and Raviart [82].

(2) for J =2, i.e., ub(tn—1) = ul_,(tn—1) = UP_,, the nodal methods become
the continuous Galerkin methods of Hulme [73] [74].

(3) for J = m + 1 in the nodal methods, we obtain multistep methods (see
e.g., Butcher [30]).
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(4) for J < m+1, the nodal methods reduce to hybrid methods (see e.g., Gear
[50]).

(iii) for J =1, on each interval I,,
ntif(tn) + (1 — am)unyy(ta) = Un,
the method is called the a-method (see Delfour, Hager and Trochu [41]).

1.2.2 Superconvergence

Now we establish the convergence results in two main theorems. The first theorem
shows that if the solution of (1.2.1.1) belongs to H™*([0,T7]; ©2), the L? and nodal
errors are proportional to h™*1. The second theorem states that under appropriate
assumption on the function f there is an asymptotic superconvergence at the mesh
points proportional to h?™+2-7 (0 < J < m + 1). We assume that h is sufficiently
small, in order to guarantee the existence of a unique solution @ to (1.2.1.6). C will

denote a generic constant independent of h.

Theorem 1.2.2.1. [L? and Nodal Errors]
Assume that the solution y of (1.2.1.1) belongs to H™*([0,T];2). For M > 1,

assume that on the first M — 1 intervals the solution of (1.2.1.6) is such that
max{|Up — y(ta)| : n=0,..., M — 1} < CA™|jy™D],
and for j =0,...,m+1,

M-1 1/2
{Z ||lut — yll?,n} < Ch™H1=3||ytm+)| |,
n=1

Thus,
ma.x{lU,"l =yta)f: n=8... N} € C’h’"+1||y(’"+1)||o,
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and for j=0,...,m+1,

|lu* — y|l; < CA™1=3||ytm+D)|

1/2 -
where u* = N w.x1, and ||-||; :== {Z,’:’___l Il - ||;{,,} . Here xy, 1s the character-

istic function of I,.
Proof. See Delfour and Dubeau [40]. It can also be found in Chapter 2 as a special
case of Theorem 2.6.1.1.
Theorem 1.2.2.2. [Superconvergence]
Assume that the assumptions of Theorem 1.2.2.1 hold. Assume also that
(i) the matriz
A(t) := (a:3(t)) o1
; of; : . o
with a; ; == g(t,y), ezists and that its columns belong to H™ ([0, T7; ),
3

and

(ii) there exist a neighborhood V of the origin y in Q and a positive constant B
such that
|f(t,2) — F(t,y) — A(t)(z — y)| < Bly — z*,

for allt and all x iny+ V. Then,
max{|Up = y(ta)| : n=0,...,N} < Cl|u*—yllo[h™~7 + [[u — y]lo]

= h2m+2—J

Proof. See Delfour and Dubeau [40]. It will also be derived in Chapter 2 as a special

case of Theorem 2.6.1.2.
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1.3 The discretized DG method for ODEs

The discussion in this section originates from Brunner 23], which is based on Lesaint

and Raviart [82].

1.3.1 The comparison of the discretized DG method with
the collocation method

We recall the DG time-stepping scheme for (1.1.1.1): Forn=1,--- ,N, find Y|, €
P(™)(1,,), such that

/ (Y — F(&, V) Xdt + Y5 X =Y X+ ., VX eP™(L).  (L3.11)
In

Here we set Y; := yo. Suppose now that the integrals in (1.3.1.1) are approximated
by interpolatory (m + 1)-point quadrature formulas with abscissas t,; := t, +
cihn (0 =1 cp < ¢ < ... < ¢p < 1) and weights w; (j = 0,1,...,m). We denote
the resulting discretized DG solution in V,(v"‘) by Y. The fully discretized version of
(1.3.1.1) is then given by
b Y wi[Y(bn) = F(tngs ¥ (b)) X (tng) + V(&)X (87) = Y (57)X (t7) = 0,
3=0

(1.3.1.2)
for all X € P(™)(I,). Let

~

Ya=Y(t7), Yao=Y@E&) (=Y(t5o) Yas:=Y(tas) G=1,...,m),

and let L;(v) be the jth Lagrange canonical polynomial (of degree m—1) correspond-
ing to the points {¢; : i =1,...,m}. Moreover, denote by {X;: j=0,1,...,m} a

(canonical) basis for P™)(I,,) so that

X,’(tn -+ thn) — 5{’3‘ (Z, ] = O, 1, 560 4 m)
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Since the restriction of ¥’ to I, is a polynomial of degree m — 1 we may write

V't + vha) = zm: L;()?(tn;), ve(0,1],
Jj=1

and hence
Y (tn + vhy) = V() + by /o ¥ Y'(tn + shn)ds, v € (0,1]. (1.3.1.3)
On the other hand, (1.3.1.2) with X = X, yields
hawolY (tn0) = f(tno, ¥ (tn0)] + ¥ (83) — Y (87) = 0,
implying that
V() = Yo+ bl s (ED) = 3 Lieo) V(1) (13.1.4)
i=1
For X = X; (i = 1,...,m), with X;(t,;) = di;, we obtain from (1.3.1.2) the
equations
WiV (tas) = ftnss Y (tag))] = 0,

where w; # 0. This result can be used in (1.3.1.4) to produce

Y(£}) = Yo + hawof(tno, Y (£1)) — B D _ woLj(co) f(tng, Y (tny)).  (1.3.1.5)

Jj=1
The identity (1.3.1.3) allows us to write
?(tn,i) == ?(t:) +hn E :Bj(ci)f(tn.j’ Y’Ct'nd))’ (1'3'1'6)
j=1

with
Biw) = [ Li(e)ds (G =1,...,m)
and Bj(c;) =: a;;. Hence, setting Yy ; := Y (t,;) and recalling (1.3.1.5) we obtain

Yoi = Yo + hawof(tno, Y(81)) + b D _lai; — woLj(co)lf (tngs Yns)  (1.3.1.7)
j=1
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(i =1,...,m). The equations (1.3.1.5) and (1.3.1.7) form a system of m+1 nonlinear
algebraic equations for ¥, := ( Y(t}),¥n1,..., Yam )T € R™!: its form closely
resembles the one corresponding to collocation at the points {ts0,%tn1,---,%nm}-
We now show that these equations may indeed be interpreted as the stage equations
of an implicit (m + 1)-stage Runge-Kutta method. Let b; := 3;(1) (7 = 1,...,m),
and observe that
1 m
b; = /0- L;i(s)ds = kz%kaj(ck) = woL;(co) + wj,

because our interpolatory (m+ 1)-point quadrature formula is exact for polynomials

of degree not exceeding m. This leads to the relationship
bj — woL;(co) = wj,
and hence by (1.3.1.7) to

?n+1 = ?(t;+1) = f,n + hnzwjf(tn,j,?n,j)- (1.3.18)
j=0
We conclude that (1.3.1.7) together with (1.3.1.5) and (1.3.1.8) represents a collocation-
based (m + 1)-stage implicit Runge-Kutta method for (1.1.1.1). We summarize the

above discussion as the following theorem.

Theorem 1.3.1.1. The fully discretized DG scheme (1.8.1.2) may lead to the collocation-
based (m + 1)-stage implicit Runge-Kutta method {(1.3.1.7), (1.3.1.5), (1.3.1.8)} for
(1.1.1.1).

1.4 History of the DG methods for ODEs

In 1974, Lesaint and Raviart [82] gave the first analysis of the discontinuous Galerkin

method when applied to ordinary differential equations. They showed that the
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method is strongly A-stable and has order 2m + 1 at the mesh points, and that the
Gauss-Radau discretization of the DG method is also of order 2m+ 1 when piecewise
polynomials of degree m are used.

In 1981, Delfour, Hager, and Trochu [41] introduced a class of DG methods,
the so called a-methods, for which they proved that the global L?-convergence and
nodal convergence rates are m+ 1 and 2m + 1. It is interesting that in 1986 Delfour
and Dubeau [40] (refer to Remark 1.2.1.1 in Section 1.2.1) considered the discontin-
uous Galerkin method based on the mesh-dependent variational framework, which
includes the “completely discontinuous” Galerkin methods, the a-methods, the con-
tinuous Galerkin methods, one-step methods of the Runge-Kutta type, hybrid and
multi-step methods as special cases. It is shown that the convergence rate in the
L%-norm is m + 1. The nodal-convergence rate can go up to 2m + 2, depending on
the particular scheme under consideration.

In 1988, Johnson [77] gave an analysis of error control for the DG method for stiff
ODEs and later in 1995, Estep [43] extended this analysis to general non-autonomous
ODEs.

Recently Schétzau and Schwab [96] analyzed the hp-version of the discontinuous
Galerkin methods. New a priori error bounds explicit in the time steps and in the
approximation orders are derived and it is proven that the DG method gives spectral
and exponential accuracy for problems with smooth and analytic time dependence,
respectively. It is further shown that temporal singularities can be resolved at ex-
ponential rates of convergence if geometrically refined time steps are employed.

The readers may wish also to consult the 2000 survey paper [31] by Cockburn
et al. for more applications of discontinuous Galerkin methods and for an extensive

list of references.



Chapter 2

The discontinuous Galerkin
method for VIDEs

The discontinuous Galerkin method for Volterra integral equations was first studied
by Shaw and Whiteman [99] in 1996 extending the approach of [77] and [45]. In [99],
they studied the discontinuous Galerkin method with a posteriori L,([0,¢;]) error
estimate for linear second-kind Volterra equations (compare [100]). Later in 1998
Larsson, Thomée, and Wahlbin [80] analyzed the discontinuous Galerkin method
for linear parabolic integro-differential equations. Recently Brunner and Schézau
[27] studied the hp-version of discontinuous Galerkin methods for parabolic Volterra

integro-differential equations with weakly singular kernels.

2.1 The discontinuous Galerkin method for linear
VIDEs

In this section, we consider the a priori error estimates, a posteriori estimates and

superconvergence of DG method for linear Volterra integro-differential equations.

19
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2.1.1 A priori error estimates for linear VIDEs

We study the scalar linear Volterra integro-differential equation,

{ Z’(((f)) : ;(Ef)y(t) =V(y)(t), te I=[0,T], (@i.1.5)

t
where V(y)(t) := / k(t — s)y(s)ds and a, k € C[0,T.
0
We use the notations introduced in Section 1.1. We define the finite-dimensional

space (cf. (1.1.1.2))
Vi = {p € L*() : |1, € P™(1,), 1<n< N}, (2.1.1.2)

where P(™)(I,,) denotes the space of all (real) polynomials of degree not exceeding
m. Then the DG method for (2.1.1.1) is : Find Y € V™ such that

Bpa(Y,X) =Yy X, VX eV, (2.1.1.3)
where Yy, = yo and

M
Bp(¥,X) = > /I (Y'(®) + a()Y (£) — VY) () X (£)dt

n=]"vn
M
+ D Wl X, + Y5 XS (2.1.1.4)
n=2
Note that the exact solution y of (2.1.1.1) satisfies
BDG(y) X) = yOX(S'—s VX € vj(VM))
hence the Galerkin orthogonality property

Bpe(y—Y,X) =0, VX eV, (2.1.1.5)

holds true. We remark also that the DG method in (2.1.1.3) can be interpreted as
a time-stepping scheme. For n=1,--- , N, find Y|, € P(™)(l,), such that

fI (Y'(2) + a(®)Y (£) — V(Y) () Xdt + Y5 X5, = Yo, XF ), (2.1.1.6)
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for all X € P™)(I,). Here we set Y;~ := yo. We will refer this method as DG(m).
When adopting the Picard iteration technique, we can easily prove that (2.1.1.3)

has a unique solution.

Theorem 2.1.1.1. Assume A := ||a||r, B := ||k||r. Then there is a constant C,
independent of hy,, such that for 1 <n < M < N the error of DG(m) for (2.1.1.1)

satisfies

llellfo.n < C max A7+|y™* D],
with C := C(tm, A, B) and m =0, 1.

Proof. If V € V(™ is determined by Vg~ =y and, for 1 <n < M < N, by
V' Xdt + / {a@®)y(t) = V()(@)}Xdt + V) X}, =V, X}t ., (21.1.7)
In In
for all X € V,(vm) (m =0, 1), then

lly = Vllz, < Chp Iy ]z, (2.1.1.8)

We now compare Y to V. Setting u :=y—Vandodp =Y -V € V,(Vm), we have
e = pu — ¢. We subtract (2.1.1.7) from (2.1.1.6) and get
dXdt+ [ —{a(t)eX —V(e)(®)X}dt+ o} X} =05 X ., (21.1.9)
I, I,

for all X € V{™. We choose X = ¢ to obtain
I Ll +5 I¢"I & f —{a(t)ed — V(e)()p(t)}dt = r_147_1.  (2.1.1.10)
Hence

319717 < 5lenal + [ Hates - vie)Orp®)at (21.1.11)



We now substitute e = u —

i V(ext)qs(t)dtl <

IA

IA

IA

-

a.(t)e¢dt' =
I,
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¢ into (2.1.1.11) and find that
[ a6 - uyaar
[ [ a(t)u¢dt|

< A/ ¢2dt+£/ (4 + ¢?)dt
3 2 J)n

s ﬁ/ p,zdt+% P2dt. (2.1.1.12)
2 b 2 VY

1 2
B / S()dt + = / - (V(e) )

[13 ( ; k(t—s)e(s)ds)zdt

B ¢2(t)dt+ 113 ( X kz(t)dt) . ( /In e2dt) dt
% 9 ('/ot“-l K2(t — s)ds - ‘/ot“-1 e2(s)ds) dt

tn—1
B | ¢*(t)dt + Bh2 / e?(t)dt + Btn_1hn e?(t)dt
In 0

In

(B+2Bh2) | ¢%(t)dt + 2Bh2 / pdt
In

In

th-1
Bt,_1h, ./0 e2(t)dt. (2.1.1.13)

Combining (2.1.1.11), (2.1.1.12), and (2.1.1.13), we obtain

o S iy Y | A+4Bh2)/

tn~1
+ (3A+ 4BhZ + 2B) / ¢*dt + 2Bt,_1hn / e?(t)dt. (2.1.1.14)
I, 0
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Next we choose X = (t — t,—;)¢’ in (2.1.1.9) to obtain
2 2D 1 7\ 2
[e—t@ra < [ @2 tandt+g [ ¢ tas)@)e
n 1 n
+ [ OO ¢~ taiddt+ g [ (¢ tas)(#)at
< A’h, ezdt+l f (t — tn—1)(¢')?dt
3 2Jn
tn—-l
+ 2h3B? / edt + 2h2B%t,_, / e2dt
In 0
< 2(A%h, +2h3B?) / (1 + ¢%) dt
In
1

tn—1
g (t — tn_1)(¢')%dt + 2h2B%t,_, /o edt.
In

Since / |¢|? dt < 2k, 671 + 2R3||¢'[|2 , we find that
In =

2 tn-1
/ |¢|* dt < 4h, |07|" + f pidt + %hith,,_l / e2dt, (2.1.1.15)
Ia & 0
provided that &h2 (A% + 2A2B?%) < 1.
By combining (2.1.1.14) and (2.1.1.15), we see that
62" < 2l6mal+@A+4B) [ wat
In
4 tn—1
+ 2(2Btn-shn + 3hiB%n ) / e2dt, (2.1.1.16)
0

provided that 4h,, (3.4 + 4Bh2 + 2B) < 1. It thus follows that

tM—1
6ul* < C ( [ B ax zs)tMnmufo,,M]) | (2.1.1.17)

The estimate of Theorem 2.1.1.1 is obtained from (2.1.1.17) directly when m = 0.
For m = 1, we use (2.1.1.10) and the fact that ¢ € V,(vm) implies that
I2

gl 12 < |¢i.| + |¢7

’
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and this yields

2 2
A+22hn3/ 3t + (3A + 2h2B + 2B) Fdt
In

1 =
AlE < o'+ - .

12 =
i 53 tn_lh"‘/o. e“dt.
An analogous argument now leads to the estimate when m = 1.

2.1.2 A posteriori error estimates for linear VIDESs

We analyze the a posteriori error bound for DG(m) approximation to (2.1.1.1), by

using the stability of the continuous dual problem associated with (2.1.1.1).

Theorem 2.1.2.1. Assume that A := ||a||;, B := ||k||;, and let m = 0, 1. Then
the DG(m) finite element solution Y for (2.1.1.1) satisfies, for0< M < N,

ly(ta) — Yzl < ClHRT R(Y)ljo.eaa)s

where C = C(ty, A, B) and R(Y) := ls=tl 4 |a(t)Y — V(Y)(2)] (t € In).

Proof. We study the dual problem of (2.1.1.1),

—2' +a(t)z =V*(2)(t), te(0,tm),
{ ¥ g A (2.1.2.1)

tar
where V*(2)(t) := [ k(s — t)z(s)ds. From the definition of Bpg in (2.1.1.4), we
t

find that for all piecewise continuous functions, z, z € C(I), the exact solution of
(2.1.2.1) satisfies
Bpe(z, 2) = (234, €x)- (2.1.2.2)

If we choose £ = e in (2.1.2.2) we obtain,

lear|® = Bpa(e, 2), (2.1.2.3)
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and we know from the Galerkin orthogonality (2.1.1.5) that

lex;|> = Bpele, z — X), VX € V™. (2.1.2.4)

NowwedeﬁneforXGV,(vm) (m=0, 1)and 1<n<M<N,

Rn (X, M;1) := S(M) (A7 |[X]n—1] + B7* [la(O)X = V(X)(@®)|,)  (2.1.2.5)

1774
where S(M) = / |2(™+1)| dt, and z is the exact solution of (2.1.2.1).
0

We now show that

lerl” = 1Boc(e, 2 = X)| < max R (¥, M; ). (2.1.2.6)

Because of (2.1.1.1), and since [y], = 0 for all n, Y5~ = yo, and by the definition of

Bpg in (2.1.1.3), we have

Hence,

BDG(C,Z = X) =

|Bpg(e, z — X))|

IA

M
“3 /I {(Y' + a(®)Y) (z — X)

M
(V) ®)) (2 — X)}dt — Y [Y]aa(z = X)is-

M
> | Y(z—X)at
n=1 In
nZ___; /I,. (a(t)Y = V(Y)(t)) (z — X)dt
M
Z[l,]n—l(z = )();1'_1

I+I1I+111.

We set X := P(z), where P(z) denotes the projection of 2z onto VIS'") and satisfies,

X, = 2(t,) for m =0, 1; and / (X —2)dt=0for m=1. (2.1.2.7)
In
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Furthermore, we know that the estimates

e = Po(lz, < b [ |#9)] it aud 1z = Po(a)llr, < ma 1),
(2.1.2.8)

hold for m =0, 1. Thus, I = 0 and

M
II < ) halla@®)Y = V)®zllz = Pz,

n=1

M
< maxhalla®)Y — V)OIl Y b /1 |20 gy
" n=1 n

= S(M) max h{™ |la()Y — V(Y)(®) Iz,
The same kind of argument shows for m = 0 and 1,
HI < S(M) max b |[Y]n-a] -
Hence, (2.1.2.6) holds true.

Now we prove the stability of (2.1.2.1).

Lemma 2.1.2.1. If A := ||a||s and B := ||k||1, then the solution z of (2.1.2.1)
satisfies
tar
S(M) = / |2+ dt < C |exy|,
0
where C := C(tp, A, B).

Proof. Taking t = t)s — s in (2.1.2.1) and setting ¥(s) = z(tar — s), (2.1.2.1) can be

rewritten as g
U -— ——
W(s) +altw = s)0(s) = [ k(e — vyp(w)av (21.2.9)
Y(0) = exy-
Dirichlet’s formula applied to (2.1.2.9) yields

#(s) = $(0) + /0 Qs (), (2.1.2.10)
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where Q(s,v) :=a(ty —v) + / ’k(r — v)dr. Thus,

w(s)] < [ (0)] + /0 " Gl )] IR .

It follows from the well-known Gronwall’s lemma [26] that
o) < o)+ [ 1 nles [ 1 lr ) o),
and so
[frole = [“wones
<, {lattse = 11w+ [ 1k = ) w1 av } as
< WOl [ tatew - o) (1+ [ 1@ 1ews ([ 100 nlar) av)

+ [rw-an(1+ [ 1@wmien ( [ 1eto ar) du) dv}ds

= Cly(0)|,
where C := C(tum, A, B). The similar argument can lead to
tar
[ e < oo

The proof of the lemma has been completed.

From (2.1.2.6), (2.1.2.7), (2.1.2.8), and Lemma 2.1.2.1, we obtain

sl = T (A2 ol + AT () = VOO,
& Thr %a.&c {l—%’—l + llea(®)Y — V(Y)(t)||,—"} ; (2.1:2:11)

This concludes the proof of Theorem 2.1.2.1.
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2.1.3 Efficiency of the a posteriori error estimator

If its upper bound is large, the a posteriori error estimator |[R7* R(Y)||0s,, in
Theorem 2.1.2.1 cannot efficiently indicate the error. Therefore we need to derive
a sharper upper bound of the a posteriori error estimate. This estimate is called

“efficiency of a posteriori error estimator” (see also Ainsworth and Oden [2]).

Theorem 2.1.3.1. Under the assumptions of Theorem 2.1.2.1 and Theorem 2.1.1.1,

we have
ly(tar) = Yiz| < CIRTH R(Y)loea < CE™ (1Y Olliostaa + 1180 )l 0.621)
where C := C(tp, A, B) is independent of the mesh size h.

Proof. We only need to bound the term |[A*+!R(Y)||j0,¢5, in Theorem 2.1.2.1:

IA

A7 R(Y ) lj0,6] AR 1Y Tn-1lliota + T la(®)Y = V(Y)(®)|l10,t

1o (Yafs — ¥ + 3 — Yal)lloead + 1R (=4 (2) — a(t)y(?)
V()() +a@)Y — V(Y)(E)lo.tr

2||hrelloea + Ihn 'y ()| l0,ea]

IR+ (—a(t)e(t) + V(e)(®))liotn

2{|hnelloer + l1hn ™y ()li0,6]

A||h7 el o,eae) + e BlIRT T el l0,62)-

AT R R

e E

Then we appeal to Theorem 2.1.1.1 to complete the proof.
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2.2 The discontinuous Galerkin method for semi-
linear VIDESs

We now extend a priori and a posteriori error estimates of Section 2.1 to semilinear

VIDEs.

2.2.1 A priori error estimates for semilinear VIDEs

We study the scalar semilinear Volterra integro-differential equation

{ z,((g)) 2 Zc(:)y(t) R e Y (2.2.1.1)

t

where Vg (y)(t) := / k(t — s)G(y(s))ds, and a, k € C(I). Furthermore assume G
0

satisfies

|G(%1) — G(y2)| < Liya — e}, (2.2.1.2)

for all y1, y2 € Q C R. We begin with the definition of the DG(m) scheme to
(2.2.1.1): Find Y € V{™ such that

Bpe(Y, X) = Fpe(X), VX eV, (2.2.1.3)
where

Boa(¥,X) = 3 [ {Y(OXE)+a®Y (X0

— (Vo(Y)(®) X(2)}at
M-1
+ D [YIXG + Y5 XS, (2.2.1.4)
Fpe(X) = ;0_)1(; (2.2.1.5)

We note that
Bpe(Y,X) — Bpe(y, X) =0, VX e V™. (2.2.1.6)
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The DG method (2.2.1.3) can again be interpreted as a time-stepping scheme: Find
Y|, € P™(I,), n=1,---, M, such that,

t

/ {Y'®)X (1) +a®)Y(#)X(t) — ( k(t — s)G(Y)ds) X(@)}dt + Y,V X,
I,

th-1

= YoaKte+ fI ( /o a3 k(t — s)G(Y)ds) X(t)dt (2.2.1.7)

Theorem 2.2.1.1. Suppose that A := ||a||;, B := ||k||r. Then there is a constant
C, independent of hy, such that for 1 < n < M < N, the error of DG(m) for
(2.2.1.1) satisfies

llellioza) < C max Rt [y Dz,
with C := C(tp, L, A,B) and m =0, 1.

Proof. If V € V{™ is determined by V;~ = yo and by

V' Xdt + / {a(®)y(t) — Ve(Y) (O} Xdt + VoH X2, = Vi, X,  (2.218)
Iﬂ I’I

for all X € V,(vm) (m=20, 1) and for 1 < n < M < N, then it follows from the

definition of the interpolant (2.1.1.8) that

lly — Vliz, < CRZ* |y, (2.2.1.9)

Setting u :=y—Vandgp:=Y -V € V(™ we have e = p—¢@. We subtract (2.2.1.8)
from (2.2.1.3) and obtain

[ #xat [ ~(a@ex~ [ Kt-9) @(F) - G)) dsX 1 XEr = 671X,
In In 0

for all X € V,(v’"). The remaining steps follow exactly those of Theorem 2.1.1.1 after

we use the Lipschitz condition (2.6.1.2).
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2.2.2 A posteriori error estimates for semilinear VIDESs

In this section, we derive the a posteriori estimates of the DG(m) in the mesh-point

sense and the general a global posteriori error estimates of DG(0) for (2.2.1.1).

Theorem 2.2.2.1. Assume that A := ||a||1, B := ||k||1, and the function G satisfies
|Gy(u)| < L, Yuen.
Then the error of the DG(m) approzimation to (2.2.1.1) satisfies
|y(ta) — Yaz| < CIRTT R(Y)lfo.taa);
withm =0 and 1, C := C(tm, A, B,L) and
R(Y) = mh:;" +la()Y — /O " k(t — 8)G(Y (5))ds|.
Proof. Recall (2.2.1.6):
Bpa(Y, X) = Bpe(y, X) =0, VX € V3.

We write this as

D(e,X) =0, ¥X € V™, (2.2.2.1)

where

M
DW,X) = > / {(W'X + a(t)WX

4 / * Kt - 9) / "Gy (ry+ (1 = 1)Y) dr W (s)
dsX (t)}dt

M
+ Y WX, + Wi X5 (2.2.2.2)

n=2
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We consider the linearized dual problem of (2.2.1.1):

{ —2 +a(t)z = /t “k(s — t)A(s)2(s)ds, tm >t>0, (2.2.2.3)

Z(tM) = e;{,

1
where A(s) := / Gi1(ry + (1 — r)Y) dr. We note that, for any piecewise continuous
0

function z,

D(z,z) = z3ey, (2.2.2.4)
Selecting z = e in (2.2.2.4), we have
[exs]? = D(e, 2). (2.2.2.5)
In view of (2.2.2.1), we obtain
[eg)? = D(e,z— X), VXeV{™, m=o0, 1.
Similarly to the proof of Theorem 2.1.2.1, we can continue the analysis, to find

M
Ble,z=X) == =3 [ {(¥'+a(®)Y)(z - X) - Vo))

M
(z = X)}dt = 3 _[¥]n-1(z — X)3 s

Hence,

f: Y'(z — X)dt

D(e, z —X)I
In

IA

n=1

M
+ 5" /, (@)Y — Va(¥)(®) - (z — X)dt

n=1 4

M
+ Z[Y]n—l (z— X)ay

n=1

= I+II+1III

< S(M) max{h7'[Y]n1
+ Ryt a)Y — Va(Y)(9)1}, (2.2.2.6)
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where S(M) can be easily estimated as in Lemma 2.1.2.1,
taM
S1(M) = / |20 dt < C ey, - (2.2.2.7)
0

Here C := C(tp, A, B,L). Combining (2.2.2.5), (2.2.2.6), and (2.2.2.7), we finish

the proof.

" tm
Theorem 2.2.2.2. Assume that A := ||al|, B :=/ |k(t)|dt, and G satisfies
0
llu — v| < |G(u) — G(v)| < Lju —v|; |Gi(uw) — Gi(v)| < Lju —v|, (2.2.2.8)
for all u, v € Q. Then the error of the DG(0) approzimation to (2.2.1.1) satisfies

llellfo,en < g;aj;!cc (Y Jn=1] + b [a(t)Y — Va(Y)(t)])?
+ C([Y)m-1)*+C(a@®)Y +Ve(Y)())%.

Proof. We begin the proof with the related linearized form of (2.2.2.2),
M t
DWW, X) = 3 / {W’X +a()WX — / i s)A(s)W(s)dsX(t)} dt

n=1YIn 0
M

+ D WhaXt, + Wixs
n=2
M t

e Z/ {—WX’ +a(t) WX — (/ k(t — s)A(s)W(s)ds)X(t)} dt
=1 JIn 0
M

+ > WX + Wi X, (2.2.2.9)
n=2

where A(s) := G1(y(s)).
We consider the linearized dual problem of (2.2.1.1):

i

{ —2 +a(t)z = f tuk(s —t)A(s)z(s)ds, tm >1t>0, (2.2.2.10)

Z(tM) = epy-
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We note that Z, the DG(m) approximation to z, solves
D(X,Z) = Xyex. (2.2.2.11)
We claim also, for any piecewise continuous function z,
D(z, z) = zy,e3- (2.2.2.12)
The choice z = e in (2.2.2.12) gives
D(e, z) = |eg|* = D(e, 2) + (D — D)(e, 2).
This, together with (2.2.2.1), yields the error representation formula
leg |2 = D(e, z — X) + (D — D)(e, 2), VX € V™. (2.2.2.13)
Now we define for X € V,(vm) andl1<n<M<N,

R (X, M;n)
= S(M) (|[X]n-a| + hala(®)X — Va(X)®)]), (2.2.2.14)

for m =0 and 1.

Note that by the assumption (2.2.2.8),

/0 5 /0 R = s e Tl (2.2.2.15)
= /0 A /0 s 4 /0 G tri s (T B dre(s)dsz(t)dtl

ci /0 - /0 k(¢ — 5)](e(s))2ds|2(2)|dt

ci ( /0 o ( /0 "kt — s)(e(s))zds)zdt) ( /0 v z?-(t)dt) g
cL /O ¥ |k(t)|dt ( /0 o e4(t)dt) & ( _/o ) zz(t)dt) i
cLB ( /0 ki e’(t)dt) " ( /0 - z2<t>dt) . le@lnsa

(D = D)(e, z)l =

IA

1/2

IA

IA

IA



35

We define p to be the solution of
th
{ —p' +a(t)p = / k(s — t)A(s)p(s)ds, tm >t > 0,
t
p(tsr) = exr/ |en;
That is, p = z/|ey|. So from (2.2.2.15)
- s tas 1/2 tar 1/2
(D~ D)(e, )| < CLB |ez ( / ezdt) ( / pzdt) le®llon- (2.2.2.16)

0 0

Next, we conclude that there exists a X € V,(v'") such that the first term of (2.2.2.13)

satisfies

|D(e, z— X)| < max R (Y, M; 7). (2.2.2.17)
Now we will now prove (2.2.2.17). Because of ¥’ + a(t)y — Ve(Y)(t) = 0, [y]. =
0, (for all n) and Y, = yo, we find

Ble,z-X) = -3 /I (¥ + ()Y — Va(Y)(®)) (z — X)dt

DY (RS o

n=1

Hence,

|D(e,z—X)'

; /I . Y'(z — X)dt
* Z I[Y]n—l(z . X):—ll

n=1

=: I+II+1II.

< + 13 [ @Y - Ve - X)at

n=1 "

The remaining lines are then the same as in the proof of (2.1.2.6).
Thus, from (2.2.2.13), (2.2.2.15), (2.2.2.17), we derive

maxn<m Rem (Y, M; 1)
lend|
1/2

e tar 1/2 tar
+ CLB”e“[o,gM] (j ezdt) . (/ pzdt) , (2.2.2.18)
0 0

less| <
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Since G satisfies (2.2.2.8) and z is the solution of (2.2.2.10), following the proof of

Lemma 2.1.2.1 leads to
tM
S(M) = / |Z|dt < C ey, (2.2.2.19)
0

where C := C(tpy, A, B,L). Thus, combining (2.2.2.14), (2.2.2.19), and (2.2.2.19),

we obtain

len] < max C (|[Y]n-1] + a(t)Y — Ve(Y)(#)| hn)

Ty tae 1/2 M 1/2
+ CLB|le|ljo,tn] (/ ezdt) (/ pzdt) . (2.2.2.20)
0 0

To complete the proof of the theorem, we need the following lemma.

i t
Lemma 2.2.2.1. Let A := ||a|;, B:= / |k(t)|dt, and suppose that G is Lipschitz
. 0
continuous, t.e.,

|G(u) — G(v)| < Lju — |,
for allu, v € Q. Then the error of DG(0) to (2.2.1.1) satisfies
lellByeng < C lefoa]® + ClY sl +C @R + Va(¥)(®)’,

where C := C(ty, L, A, B) is independent of the mesh size hy,.
Proof. For m = 0, we have the following identity on I,

Y’ +a(t)Y — Va(Y)(t) = a(t)Y — Ve(Y)(t).
Subtracting this from (2.2.1.1) leads to

e +a(t)e — ([: k(t — s)(G(y) — G(Y))ds) = —a(t)Y + Ve(Y)(t). (2.2.2.21)

Consequently, we have

e'e + a(t)e? — (/ot k(t — s)(G(y) — G(Y))ds) e=—a(t)Ye+ Ve(Y)(t)e,



Integrating from ¢,_; to t, we obtain

/t,,t léd(;:)_'- / a(t)e’dt — [ ( / k(t — s)(G(y) — G(Y))ds)edt

E /‘ (—a(t)Ye dt + / Ve(Y)(t)e dt,
tn-1

tn-1
and hence

2 <

IA

IA

.

+

1 2
s(eta)?+ /1 la(t)Ye| dt + /I Ve(Y)(2) - | dt

(-/I.,‘ (/01 k(t — s)(G(y) — G(Y))ds>2 dt) 1/2
(-/In e2dt) 1/2 4 /1,, la(t)|e2dt

s+ [ lavelar+ [ Vo) -elar
tn tn 1/2
v [ Ik(t)ldt-( i (6) - G(¥)Y'at)

1/2
(/Ine dt) +/z,, la(t)[e2dt

1 A= 2

2+ [ la@Yeldt+ [ Vo)) eld
ﬁTéLllell[zo,tﬂ]h,, - /I... la(t)|e?dt

enal? + ¥ 1ol + 22 (@0 + Ve () @)?

hﬂ o
< llellf, + Ahallellfyep) + V2T BLAn|le][fos,-
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(2.2.2.22)

For sufficiently small hn(3 + A+ \/§T§L) we derive that, from (2.2.2.22),

llell? e < C lerr—a]” + C Y m-al? + C (a®)Y + Va(Y)(®)* -

(2.2.2.23)

According to Theorem 2.2.2.1 and the procedure of the proof of Lemma 2.1.2.1, we

know that, for sufficiently small A,

o, « tar 1/2 tar 1/2 1
CLB ( / ezdt) - ( / p2dt]) <-.
(1] (1] 2

(2.2.2.24)
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Combining (2.2.2.20), Lemma 2.2.2.1, and (2.2.2.24), we arrive at

+ C([Y]m-1)? + C(a(t)Y + Ve(Y)(2).

lelliotn) < maXC([Y]n-al + hnla(®)Y - Ve (Y)(@)))?

2.2.3 Efficiency of the a posteriori error estimator

We shall use the a priori error estimates to deduce the efficiency of the a posteriori

estimator described in Theorem 2.2.2.1.

Theorem 2.2.3.1. Under the assumptions of Theorem 2.2.2.2 and Theorem 2.2.1.1,

we have

|ly(ts) — Yiz| < CUATH RY)ljoeag < CA™ (Il )l j0,2ae1 + 5™ ()l l10,601)
where C := C(tym, L, A, B) is independent of the mesh size h.
Proof. We only need to bound the term ||+ R(Y)||(0,¢»,) in Theorem 2.2.2.1:

IR R lotrg < 1167 [Y]n-1llioa) + BT+ (@)Y = Va(Y) () lio.trl

= |Ihp(Yahs =y +y = Yo )l + AT (=4 (2) — a(t)y(?)

+ Ve®)@) +a@®)Y — Ve (Y) ()0

< 2lhme®) o) + IEEY Ollosa + AT [—a(t)e(t)
+ [ (¢ — 5)(G(u(s)) — G(Y()))dslllpen

< 2h™||e(®)|ljoiae] + A™ 1Y (E)]li0,t0e]

+ (AR™! 4+ LA™ t0)Blle(t)|]o,ta-

Then we combine this with the result of Theorem 2.2.1.1 and complete the proof.
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2.3 Numerical examples

In this section, we compare the accuracy and stability of DG(0), CG(1) and the
collocation method using piecewise linear polynomial approximation (denoted by
CC(1)) by means of numerical examples. The effect of quadrature on the total error

is considered, too.

2.3.1 Example for the case of constant coefficient
Example 2.3.1.1. We consider the linear scalar Volterra integro-differential equa-
tion
t
¥ +ay= / exp (—(t — s))y(s)ds, teI=][0,1], y(0) =1, (2.3.1.1)
0
where a is a constant.

The exact solution of (2.3.1.1) is

y(t) = exp(—a-;-lt)cosh (\/l—a+ (a-};l)zt)

l—a a+1,, . (a+1)2
] 0 o exp(— 7 t) sinh (\/1 —a+ —Tt) .(2.3.1.2)

We take uniform meshes: {t; : t; = ih, i =0,1,--- ,n}, where h is the mesh size,

and the initial value is Y5~ = y(0) = 1.
DG(0):
(ah—h+2—exp(—h))Y, =Y,_,
n—1
+ Y[ exp(—(tn — ;) + exp (—(tn — ti1))

i=1

+ exp (_(tn—l —_ ti)) — exp (‘—(tn-—l - ti—l))]- (2313)
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CG(1):

i /I ()Y (t)dt = /; /0 k(t — 5)Y (s)dsdt, (2.3.1.4)

Taking Y|, = EbY,; + t‘f;‘Y,, in (2.3.1.4), we obtain the exact CG(1) and
CG(1) with quadrature scheme for Example 2.3.1.1 as follows.
Exact CG(1):

2 = h/2+ah/2 + L exp(—h) — 1/R)Y,

h
= (1-—ah/2+h/2+exp(—h)+ % exp (—h) — 1/h)Yn1
-+ Z—:Y,-_l[exp (—(tn — tiz1)) — %exp (—(tn —t:)) + %exp (—(tn — ti-1))

— exp(—(tn-1 — ti1)) + ;ll'exp (—(tn—1—-t)) — ;lz'exp (=(tn-1 — ti-1))]

n—1

+ 3 Vilexp (~(ta — ) + % aRp =it = 5)) = %exp fibes e o)
& ey =) = -}-];—exp et 503
+ 2 exp (—(tn-1 — ti-1)))- (2.3.1.5)

h

From [23], we know that the collocation method using piecewise linear polynomial,

i.e., CC(1) to (2.1.1.1), has the form

1
(b ool ) P / k(Eagy = (b 4 55))8de) ¥t
0

= (1+Ah? /1 k(tn1 — (tn + sh))(1 — 8)ds)Yn + hFy(tns1),
0

n—1 1
where Fp,(tp41) = Z h/ k(tas1 — (8 + sh))[(1 — 8)Y; + sYiy]ds.
juyg IO
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Exact CC(1):
(24+ah — h —exp(—h)) Yo

= (2—hexp(—h) —exp(-h))Ys

+ h_[exp (—(tns1 — t:))(exp (k) — exp (h)/h + 1/h)Yix

=0
1
+ [—exp (—(tns1 — t:)) + 7 €XP (—(tn+1 — t:))(exp(h) — 1)]¥;]. (2.3.1.6)
We take the end-point rule for the inner product and the trapezoidal rule for the

memory term, and call it “Quadrature Scheme 1”.
Quadrature Scheme 1 for DG(0):
[ah + 1 — h%/2 — h%exp (—h)/2]Y;
n—1 h2
Yai+ ) Y, [exp (=(tn — t:)) +exp (—(t — ta)l). (84T

i=1

Quadrature Scheme 1 for CG(1):

(1+ah—h%/2)Y, = (1+ %2 exp (—h))Yn_1 + "z—:l Y-_l%z- exp (—(tp — ti1))
n=l 4o S
+ ; Yimg exp (= (tn — t4))- (2.3.1.8)
Quadrature Scheme 1 for CC(1):
(1+ah — h?/2)Yp41 = (1+h’exp(—h)/2)Yn+h "Zl g exp (—(ta+1 — 4:))Y:
n-1, 3
+ h ; 3 exp (—(tn+1 — ti — h))Yit1. (2.3.1.9)

The “Quadrature Scheme 2” is defined by taking the end point rule for the inner
product and the mid-point rule for the memory term.
Quadrature Scheme 2 for DG(0):
o= &+t
[ah+1 — A exp(—h/2)]Y; =Y, + 3 Yi h*exp(—(tn — 'T“‘)). (2.3.1.10)

1=1



42

Quadrature Scheme 2 for CG(1):

[1 + ah — h®exp (—h/2)/2]Y,

= [h?exp(—h/2)/2+ 1] +h—2nZ-IY- 1exp (—(t, — ti+t"1))
h2 . i g —
Ty > Yiexp (—(tn - t—%—l))- (2.3.1.11)

i=1

Quadrature Scheme 2 for CC(1):

(1 + ah — h%exp (—h/2)/2)Yns1

= (1+ %2 exp (—h/2))Y, + h%/2 "Z-: Y; exp (—(tn+1 — ti — h/2))
=0
+ h2/2 nz—: },.'+1 exp (—(tn+1 —t; — h/Z)) (23112)
i=0

First of all, we compare the accuracy of DG(0), CG(1) and CC(1) through Ex-
ample 2.3.1.1 with a = 7, using the same method as [44]. Other values of a lead to
similar results. We assume that the maximum norm of the error in I is proportional
to h®, that is, |error| ~ Ch? with the constant of C independent of meshsize h. To

determine the order p experimentally, we take logarithms:
log(|error|) = log(C) + plog(h),

By doing so we can determine p as the slope of a line that passes through the points
(log(h), log(|error|)). We plot the logarithms of the errors versus the logarithms of
the corresponding time steps for exact scheme in Figure 2.1. The slopes of the lines
are 0.9837 for DG(0), 0.9836 for CC(1) and 2.0004 for CG(1). Correspondingly
in Figure 2.2 for Quadrature Scheme 1, the line slope for DG(0) is 0.9861, for
CG(1), 0.9414, for CC(1), 0.9836, which reveals that they have the same order of

convergence. However, the distance between the lines indicates that the constant
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C in the representation of the error, |error| ~ ChP, for Quadrature Scheme 1 is
different from the exact DG(0). The same explanation holds for Quadrature Scheme
2 in Figure 2.3. Figure 2.4 illustrates that the stability of DG(0) and CC(1) is better
than that of CG(1).

2.3.2 Example of a VIDE with time-dependent coefficient

Example 2.3.2.1. We consider the linear scalar Volterra integro-differential equa-

tion

¥ +a(t)y = /ot exp (—(t — s))y(s)ds, teI=(0,1], y(0)=1, (2.3.2.1)

where a(t) = r + 1= — £-exp ((r — 1)t) and r # 1 is a positive constant,

The exact solution of (2.3.2.1) is

y(t) = exp(—rt). (2%:0.3)

We take uniform meshes: {t;: t; =ih, i =0,1,--- ,n} and choose the initial value
Yo =y(0)=1

We easily formulate the schemes of DG(0), CG(1) and CC(1) for Example 2.3.2.1,
as follows.

Exact DG(0):

(e + =) + = galexp (7 = 1)ta)
— exp((r = Dtn-r)] — h+2 — exp (-h)Y¥;

n—1

e Yn_—l = Z Y;_[— exp (—(tn i tg)) -+ exp (—(tn = t‘i—-l))

i=1

+ exp(—(tn-1— t,-?) — exp (—(tn-1 — ti=1))]. (2.3.2.3)



Exact CG(1):

1 | )ﬁ + 1 2 exp ((r — Dt,) — %z'r%l)i exp ((r — 1)t,)

2=h/2+(r+1—)3 =1

+ R (= Dtas) + 7 exp (—h) — /R)Y,

= [1-[(r+ l—i;)g - (r_—lﬁ exp ((r — Dtp—1) + = 1 (—1—) exp ((r — 1)t,)
E %('r—;l)" exp ((r — Dtncs)] + h/2+ exp (~h) + 3 exp (~h) — 1/]Yo s

& ':_ilv-l[exp (~(tn = tict)) = > exXD (—(tn — 8)) + & &xp (—(tn )

— exp(—(tn-1 = 1)) + 3 XD (—(tnr — 1)) — 7 €5 (~(tn-1 — ti-))]

+ Nl exp (—(on — ) + L exp (—(tm — ) — Lexp (~(ta = t1)

i=1

+ exp (~(tn1 — 1)) = 7 XD (~(tn1 — )

+ 3 e (~(tnr — )] (23.2.4)

Exact CC(1):

(2+h(r + == — 7= exp (( = Dtns)) = h — xp (~h))¥oss
= (2— hexp(—h) —exp(—h))Yan+h i{exp (—(fn+1 — &)
(exp (B) — exp (B)/h + 1/R)Yig1 + [— exp (—(tns1 — )
+ = exp (—(tas1 — t))(exp () — DY), (23.2.5)

h
Now we consider the “Quadrature Scheme 2” for DG(0), CG(1) and CC(1).
Quadrature Scheme 2 for DG(0):

[h(r + 72 — = exp ((r — 1)tn)) +1 — h*exp(=h/2)}¥;"

n-—1

= Y‘1+ZY h? exp(—(t, —
i=1

e t“l g = (2.3.2.6)
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Quadrature Scheme 2 for CG(1):

1 1
L+h(r+ 17— - 7= exp((r— Dta)) - h%exp (—h/2)/2]Ys
h? t; +tio
— 2 = ol a LE — (3 (]
= [h®exp(=h/2)/2+ ¥nr + ;y-l exp (= (tn — =)
h? = t; + ti-
* > Yiexp(—(tn — ——2—1)). (2.3.2.7)
=1
Quadrature Scheme 2 for CC(1):
1 1 5
(1+h(r+ I Ty P ((r = Dtny1)) — h®exp (—=h/2)/2) Y41
h2 n-1
= (1+ 5 exp(=h/2))Ya + h?/2 > " Yiexp(—(tns1 — ti — h/2))
=0
n-—1
+ h%/2) " Yipexp(—(tas1 — t — h/2)). (2.3.2.8)
=0

When we take r = 6, we obtain the numerical results shown in Figure 2.5 and
Figure 2.6, whose explanation is the same as for Example 2.3.1.1. Other values of r

lead to similar results.
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Accuracy of DG(0), CG(1), CC{1) with mid—point rule of lag term and exact DG(0)
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2.4 The discontinuous Galerkin method for non-
standard VIDEs

2.4.1 Preliminaries

In this section, we study the nonstandard Volterra integro-differential equation,

{ Z,((; a=(t‘;§/,= VE@)(t), tel:=[0,T), (2.4.1.1)

t

where VY (y)(t) = /k(t — 5)G(y(t),y(s))ds and a, k € C(I). Assume that the
)

(Lipschitz continuous) function G : 2 x Q — R (@ C R) is such that (2.4.1.1)

possesses a unique solution y € C*(I) for all y, € Q.

We give the a posteriori error estimates of DG(m) to (2.4.1.1). As in the above

sections, we write the DG scheme as

Bpg(Y, X) := Fpe(X), VX eV, (2.4.1.2)
where
N
Bl ) = 5 /I (Y ()X () + a)Y )X (2) (2.4.1.3)
M-1
- VW)X B}t + ) [V XT + Y5 X7,
Fog(X) = wXi. 5 (2.4.1.4)

To show that (2.4.1.2) has a unique solution Y|, € P™(I,) we define that for
Ye P™(1,), Y = TY € P™ (In) as the solution of

/I {Y'®)X () +a@®)Y ()X () — (-/: k(t — s)G(Y (), Y (s))ds) X (t)}dt

+ YL LX =YX, (2.4.1.5)

for all X(t) € P™)(I,). If the operator T is a contraction on P™)(I,) for all

sufficiently small h,,, the assertion follows from Banach’s fixed point theorem.
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2.4.2 A posteriori error estimates for nonstandard VIDEs

Theorem 2.4.2.1. Let A := ||a||;, B := ||k||1, and let m = 0, 1. Assume that G

satisfies

IVG(u,v)| < L, Yu,ve.

Then the error of the DG(m) approrimation to (2.4.1.1) satisfies
ly(tar) — Y| < ClIAT T R(Y)ljo 0001
where C == C(ty, A, B, L) and R(Y) == =il 4 |a(t)Y — VI(Y)(2)| (t € I).
Proof. From (2.4.1.2), we know that
Bpo(Y, X) — Bpo(y, X) =0, VX e V3.

We write this as

D(e,X)=0, vXeV{, (2.4.2.6)
where
DW,X) = é /I n{W’X +a(t)WX — /; ; k(t — s) (2.4.2.7)
( /0 1 VG(ry(t) + (1 — )Y (), ry(s) + (1 — r)Y (s))dr
(W (t), W(s)))ds - X (t)}dt + Af[mnx,ﬂ: + Wit Xy .
We know that for all piecewise continuous w n—l
D(w, 2) = wyey, (2.4.2.8)

where z is the solution of the continuous linearized dual problem of (2.4.1.1), defined
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—2' +[a(t) + /ot k(t — s) /olGl(ry(t) + (1 —7)Y(2),ry(s)

H1 =AY dife= /‘ k(e — 5) Als)2()ds, ‘i >1> 0,

Z(tM) = e&.

(2.4.2.9)

1
fhivs, A{s) / Galryle) + (1= AFD), rple) + (1= Y (@) dh, T = (Gy, Ga).
0
Selecting w = e :=y — Y in (2.4.2.8), we get

[e]? = Df(e,z) = D(e,z— X)

= Bpg(y,z—X) — BD(;'(KZ—X)
M

T 5 /I Y/(t)(z — X)dt — 3 {a(t)Y (t)(z — X)

— VEW)(®)(z— X)}dt — Y _[Y]n-a(z — X)i,

n=1

= I+ II+1II, (2.4.2.10)

From the definition of (2.1.2.7), we easily derive

I=0, |III| < S(M) nm(aﬁ)lcl[Y]n_ll, (2.4.2.11)
M
1] = 13 @Y () - VEE)@(z - X)dtl,
< S halla@Y (@) - VIO Ollzllz - Xllz,,
< maghlle)Y ~VE@)@llr, - S ohr S 11,
= S(M) max halla(®)Y ~VE¥)O)lIr, (24.2.12)

2%
where S(M) := / |2(m+1)|dt. We need the stability of (2.4.2.9),
0

tm
S(M) = /; |2tm ) |dt < Clexyl, (2.4.2.13)
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where C := C(tum, A, B,L). Because (2.4.2.9) is the linearized dual problem, the
proof of (2.4.2.13) is very similar to that of Lemma 2.1.2.1.
Combining the estimates (2.4.2.11), (2.4.2.12), and (2.4.2.13) with (2.4.2.10), we

complete the proof of Theorem 2.4.2.1.

2.4.3 Efficiency of the a posteriori error estimator

We shall first derive the a priori error estimate of (2.4.1.1). This is then used to

prove the efficiency of the a posteriori error estimator in Theorem 2.4.2.1.

Theorem 2.4.3.1. Define A := ||a||;, B* := (‘/I |k(t)|dt)?, and assume G satisfies
IVG(u,v)| < L, Vu, veflld
Then the error of the DG(m) approrimation to (2.4.1.1) satisfies
lle@)llioern < C max h7* ||y D]z,

withm =0, 1, and C := C(tm, L, A, B*).

Proof. The proof is very similar to that of Theorem 2.2.1.1 and is thus left to the

reader.

Theorem 2.4.3.2. Under the assumptions of Theorem 2.4.2.1 and Theorem 2.4.3.1,

we have
ly(tam) — Yazl < ClRTHR(Y)|lioier < CA™ (1Y @) o.eaa) + 150 ()1l 10,2001)

where C := C(ty, L, A, B) is independent of the mesh size h.
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Proof. We only need to bound the term ||h7*1R(Y)||(0,tp) in Theorem 2.4.2.1:

B R lotw) < AT Jncilliosad + IBEHa(Y — V) ONlosad

B 1Yt — 5+ 0 = Y losan + A2 (=4 (8) — a(®y(®)
VE()(®) + ()Y — V) oa

21T e(®) o) + AT ()llosaa + AT [—a(t)e(t)

[ K- 96w ®,u(6) - 0 0, Y (asllloan

2™ e(!)llpana + B 1Y/ (0

AR le(t)|lj0.42e] + V2LR™ 1 Bl|e(t) ljo,tn-

1 R G Y

+

The proof is completed by recalling Theorem 2.4.3.1.

2.5 The discretized discontinuous Galerkin method
for VIDESs

In this section we consider the discontinuous Galerkin methods with quadrature for
the memory term and for the inner product for linear Volterra integro-differential

equations. The readers are suggested to compare this section with Brunner [23].

2.5.1 The comparison with collocation method for VIDEs

We recall the DG time-stepping scheme for (2.1.1.1): Forn=1,--- ,N, find Y|, €
P(™(1,), such that

/ (Y'(8) + a(®)Y (£) — VY)(£)) Xdt + V.5 X, = Yo, X, (2.5.1.1)

for all X € P™)(I,). Here we set Y;- = yo. Suppose now that the integrals in
(2.5.1.1) are approximated by interpolatory (m + 1)-point quadrature formulas with

abscissas tn; := t, + cjhn (0 =: ¢g < ¢; < ... < ¢ < 1) and weights w; (j =
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0,1,...,m). We denote the resulting discretized DG(m) solution in V{™ by ¥. The
semi-discretized version of (2.5.1.1) is then given by

hn i Wy [?'(tn,j) + a'(tn,j)?(tn,j) — Z(tn,j)]X(tn,:i) ad ?(t:)X(t:) = ?(t;)X(t;) =0,
=0

(2.5.1.2)
for all X € P™)(I,), where
Z(tng) = V(Y)(tn,)
tn.s .
& f kit = sY¥ (o)da
0
tn.j -
= F,+ / k(tn; — 8)Y(s)ds.
tn
We denote the discretized version of Z(t, ;) by
J
Z(tng) = Fut b Y _ wngk(tng — tap)Y (tay)- (2.5.1.3)

£=0

The fully discretized version of (2.5.1.1) is then defined by

ha ij ;Y (tn ;) + a(tng)Y (tng) — Z(tng)] X (tny) + Y (D)X (1) - Y (£7) X (£;) = 0,
= (2.5.1.4)

for all X € P™)(1,).

The above fully discretized DG method (2.5.1.4) is called:
(i) an extended fully discretized DG method if the lag term formula for F;, is given
by

n—-1l m

Foi=hy ) > wnjk(ta—te+ch)¥e5, n=1,...,N—1; (2.5.1.5)

£=0 j=1

(ii) @ mazed fully discretized DG method if the lag term formula is defined by

n—1

Fpi=hn ) wnek(ta—t)¥s, n=1,...,N -1 (2.5.1.6)
=0
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Let
?n = ?(t;)s
Voo = Y(&1) (=Y (o)),
~n,j = f’(t,,'j)(j=1,...,m),
Zn,j = Z(tﬂ;j) (.7 = 1)"'7m)‘

and let L;(v) be the jth Lagrange canonical polynomial (of degree m—1) correspond-
ing to the points {¢; : i =1,...,m}. Moreover, denote by {X;: j=0,1,...,m} a
(canonical) basis for P™)(I,,) so that

Xt(tn'*'cjh'n):at (Z, .7=0;11’m)

Since the restriction of Y’ to I, is a polynomial of degree m — 1 we may write

Y'(tn + vhy) = }"ij(v)?'(t,,,j), v € (0,1],

=1

and hence
Y (tn + vhy) = Y (t]) + by /o . Y'(tn + shn)ds, v € (0,1]. (2.5.1.7)
On the other hand, (2.5.1.4) with X = X yields
hnwo[Y” (tn,0) + a(tn0)Y (tn0) — Z(tno)] + Y (&) = Y (t7) =0,

implying that

Y(t%) = Yo + hawo[Z(tn0) — altao) Y (£1) — ij,-(co)?'(tn.,-)]- (2.5.1.8)

i=1

For X = X; (i = 1,...,m), with X;(t,;) = 6;j, we obtain from (2.5.1.4) the

equations

wi[?'(tnl,-) + a(t.,,',-)f’(tn,,-) — Z(tn,t’)] = 0,
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where w; # 0. This result can be used in (2.5.1.8) to produce

Y (&) = Yat+hnwo[—a(tn0)Y (tn,0)+Z (tn,0)]+hn i woLj(co)[—a(tn)Y (tng)+Z(tns))-
= (2.5.1.9)
The identity (2.5.1.7) allows us to write
P(tns) = V(6 + b D By -altn) ¥ tng) + Zng))h (25110)
with

Bi(v) = [L_.,-(s)ds (F =1, <50}

and Bj(c;) =: a;j. Hence, setting ¥y ; := Y (t,:) and recalling (2.5.1.9) we obtain

Yo: = Yn i hnwo[—a(tn,o)?(tn,o) F Z(tn,O)]

+ ) [=as; +woLj(co)l[a(tn)Y (tng) — Z(ta)]  (2.5.1.11)

j=1
(i =1,...,m). The equations (2.5.1.9) and (2.5.1.11) form a system of m+1 nonlin-
ear algebraic equations for Y, := ( Y (¢}), Yo1,.- ., Yom )T € R™: its form closely
resembles the one cc;rresponding to collocation at the points {¢n,0,tn,1,--.,tnm}. We
now show that these equations may indeed be interpreted as the stage equations of
an implicit (m+1)-stage Volterra-Runge-Kutta (VRK) method. Let b; := §;(1) ( =
1,...,m), and observe that

1 m
b; = /0 Lj(s)ds = kZ;ka,-(c,,) = woLj(co) + wj,

because our interpolatory (m+ 1)-point quadrature formula is exact for polynomials

of degree not exceeding m. This leads to the relationship

bj — woLj(co) = wj,
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and hence by (2.5.1.7) to
o~ -~ -~ iy ~ ~
Yo =Y (o) = Yo+ b D wil—a(tn )Y (tag) + Z(tas)]- (2.5.1.12)
=0
We conclude that (2.5.1.12) together with (2.5.1.9) and (2.5.1.10) represents a collocation-
based (m + 1)-stage implicit VRK method for (2.1.1.1). We summarize the above

presentation as the following theorem.

Theorem 2.5.1.1. The fully discretized DG scheme (2.5.1.4) may lead to the collocation-
based (m + 1)-stage implicit VRK method {(2.5.1.12), (2.5.1.9), (2.5.1.10)} for
(2.1.1.1).

Remark 2.5.1.1. We see that the discussion is exactly the same in Section 1.8 for

k=0.
2.5.2 A posteriori error estimator

If the memory term V(y)(¢) in (2.1.1.1) is computed approximately, then the result-
ing quadrature error also contributes to the total error. We consider the quadrature
error as the perturbation of the DG(m) approximation to (2.1.1.1). The total error
can be estimated by using the triangle inequality.

DG approximation to (2.1.1.1) is described by: Find Y € V,(vm) such that

Bpe(Y, X) = Fpa(X), VX e VM, (2.5.2.1)

where

M
Boo(Y,X) = 3 f (Y ()X () + a()Y {)X () — V(Y) (D)X ()}t

M-1
+ D VX + Y5 XS,
fi=l

Fpg(X) = woXy.
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Thus we define the discretized DG(m) with quadrature for the memory term as:
Find ¥ € V{™,

Bpe(Y,X) = Fpe(X), VX eV, (2.5.2.2)

where

M
Bpa(V,X) = 3 / {F'(OX @) +at)7 ()X () - V() ()X (@)} dt
n=1 n
b P+ T
FDG(X) = po(;"

Thus the total error of the DG approximation to (2.1.1.1) with quadrature for the

memory term can be written as
E=Y—y=F-p)+ (¥ -Y)=e+0Q. (2.5.2.3)

We analyze e := Y — y as in the discussion in the above sections. The remaining
work consists in estimating the term Q := Y — Y. By subtracting (2.5.2.1) from
(2.5.2.2), we get

Bpe(Y,X) — Bpe(Y, X) =0, (2.5.2.4)

that is,

¥ /I {QOX ) +a()QMX(t) — (VY)() — VY ()X (1)}

M-1
+ > [QlXF +QfXs

n=1

= 3 [{QOX® +a0@®X () - VQE)X (@)

n=1 e

+ X_: Rl X +QEXs - /I (YY) (t) — V(Y) ()X (t)dt

n=1

= I+II=0, (2.5.2.5)
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where

1= Y [{Q®X®)+aQ®X® - V@QWX@)dt

n=1 %"

M-1
+ D [RlLXF + QT X{,
n=1

M -~ ~ -~
o=y /I (—VF)(t) + V(T)(£) X (B)dt.

n=1 n
These observations allow us to establish the following theorem. It focuses on VIDEs
with completely monotonic kernels, due to their importance in many applications

(see e.g., Gripenberg, Londen and Staffans [53, Ch. 5]).

Theorem 2.5.2.1. Consider the discretized DG(m) with quadrature for the memory
term ((2.5.2.2) withm = 0 and 1) for equation (2.1.1.1). We suppose that k € C(I),
k € C4R,), and k is completely monotonic: (—1)7k0)(t) >0 (t >0, 0 < j < d),

and we take the quadrature form as

M-1
VX)) = D wank(t -tV ()

=0
M-1 - .
+ Y Wik (t — t)Y (£F) + wamk(0)Y (2). (2.5.2.6)
§==1
Then
|&n| == [¥ar — y(ta)| < ClRPH RV ) liortnl» (2.5.2.7)

where C := C(tum, A, B) and A, B are as in Theorem 2.1.2.1, and
R(V) := '_[_’%Li' +[a®)¥ = VTP)@)| (¢ € L).

Proof. First we prove (2.5.2.7) with m = 0. The well-known Peano theorem for
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quadrature [44] enables us to write the error as
V(Y)(t) — V(Y)(¢)

M-1 .

3, /1 Ko(s)0@[k(t — s)Y (s)]ds

=0 i
t

EX)(E) =

- K,(5)09[k(t — s)Y(s)]ds, (2.5.2.8)
tn—1

where the Peano kernel is given by

1 = - 1 =
Kq(s)=m/° (t = )5t = =gy D il — o

= |

)i

with ¢ > 2. From (2.5.2.5),
/, (QWX(®) +a(®QE) X (D)}t + @} X,

= QX - [ ([ K- QeI X0

= / VP)(@) - V(T) (@) X (t)dt,

for all X € P™(I,), n=1,--- , M. Selecting X (¢t) = Q(t) in (2.5.2.9)

(2.5.2.9)

S1QaP + 5@l + [ ot
In

= Gy = fl ( fo (- 5)Q(s)ds)Q(t)de
(2.5.2.10)

=] / E(V)(B) X (¢)dt.
In
Since Q,_,Q}_; < 1[Q,_1)% + 1[Q}_,)?, we obtain
%[Q,‘,]Z + /I aQat
t
< s+ [ (f Ikt —olQee s

+ /I IE(Y)(®)]|Q(t)|dt, (2.5.2.11)




61

We notice that for m = 0,
3107 + [ a)aazy
l ) = . tn—-1 3 n-—1 = -
< gl@mat+ [ [ e olasa 317171
hn - 1 y
+ M+ [ E@ @ (2:5.2.12)

we obtain, if h, is sufficiently small, 0 < 8, < 3,

-5 -3 [ [ - olasari@zy
n—2 tn—1
< g@mal+ 3 2 [T - sasiviarr
+ /I e @ (25.2.13)

We abbreviate (2.5.2.13) as
2 152 =t g, o Y, 2
AR < BlQr P+ 5 3 ([ [T Ikt - s)asanlQr P+ 5 [ ED P,
22, Jo DU
where 3, B are obvious. Using discrete Gronwall lemma [26], we get
Q<cC / (E(T) ()4t (2.5.2.14)
I,
The estimate

x| < lea] + 1Qa| < C(tar, A, B)||ha R(Y ) lj0,t00) + @l (2.5.2.15)
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now follows from (2.5.2.3) and Theorem 2.1.2.1. Because Y =Y — Q,

1 R(Y) 0,01 =

+

max ||k, R(Y)||r,

1<n<M
max (Pl = [l

1<n<M h,
halla@®)¥ — a(t)Q; — [o k(t — $)[¥ — Qzldsl|z}
(¥l + 1[Qln

1<n<M hn

mlla)? - [ M~ S el

t
halla®@z1z, + hall /0 k(t — 5)Qds||z,)

< |haR(Y)| + max {|[Qln-1]

1<n<M

le®)@3 11z, + Il / kGt = 9)Qzdsliz.}, (2.5.2.16)

Combining (2.5.2.14), (2.5.2.15), (2.5.2.16), and noting that

1<n<M

max {|[Qln-1| + |la(t)@7 Iz, + |l /ot k(t — 5)Qnds||r,} = O(h9),

with ¢ > 2, we obtain (2.5.2.7) with m = 0.
We shall now prove (2.5.2.7) with m = 1. Recall (2.5.2.10):

e 1
310 + 5105 + [ aQar

= Q@b - [ ([ Kt - Qe
~ f EY)()Q(t)dt. (2.5.2.17)

Since Q;_1Q7_1 < €[Qpy]? + %[Q3 1) and for m = 1, |IQI13, < |Qi.|* + Q5 1%,
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we obtain

@+l < ¢ f (e(7) dt+ QP

In
n—2
+ C) h([Q1P+(QF)- (2.5.2.18)
i=1
Using again discrete Gronwall lemma [26], we reach
~\2
Qi+ [Qt 2 <C (E(Y)) dt. (2.5.2.19)
In
Because Y =Y — Q,
B3R ) loeng = max IIRR(Y)II,
— e {hiI[Y]n_l - [Q]n—1|
1<n<M hn

+hmwMKWmQ—Aka—ﬂ?—mmm}
2 |[Y]n—1| + I[Q]n—1|

0
+—@mmmm+ﬁwﬂmvwwwm}
|RZR(Y)| + 12}%‘5\1{hn|[Q]n—1|

IA

t
+ 2la@Qll, + 12 [ K- 9)Qasllz). (25220
0
Combining (2.5.2.19), (2.5.2.15), (2.5.2.20), an observing that

mmﬂmwn+mw@m+uéuwwmwm3=wmx

1<n<M

with ¢ > 2, we obtain (2.5.2.7) with m = 1.
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2.6 Superconvergence of mesh-dependent Galerkin
methods for VIDEs

In this section we extend the mesh-dependent Galerkin methods (including the dis-
continuous Galerkin method) of Section 1.2 to Volterra integro-differential equa-
tions, including the semilinear case. Furthermore, theorems on superconvergence

are proven.

2.6.1 Superconvergence for semilinear VIDEs

Consider again the semilinear Volterra integro-differential equation

{ z’((()t)) : ng)y(t) =Ve(y)(t), telI=|[0, T (2.6.1.1)

¢
where Vg (y)(t) = /k(t — 8)G(y)(s)ds. Assume that a, £k € C(I), and G is
0

Lipschitz continuous, i.e.,

|G(y1) — G(y2)| < Llyr — w2l (2.6.1.2)

for all y;, ¥y € Q2 C R.

As in Section 1.2.1, we introduce the mesh-dependent weak form of (2.6.1.1):

Find
N
= Uo,...,Un,t1,...,un) €U == Q¥ x [[ L*(I; ),
n=1
such that
N-1
UO[% e ‘Ul(to)] 2 Z Un[vn(tn) p— 'Un+l(tn)] * UN'UN(tN)
n=1
N N
- Z / Unvhdt = yoVo + Z / [—a(t)un
n=1 In n=1 In

+ -/t k(t — s)G(u(s))ds]vndt, (2.6.1.3)
0
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for all

7= (Vo,v1,...,un) € V:=Q x III_ HY(I,,; ),
where u = ) ., u;xr,, with x;, denoting the characteristic function of I;.
The local meaning of (2.6.1.3) is to find u, in L%(I,;2) and U, in §2 such that

Unvn(tn) = Un—lvn(tn—-l) + ['unv’
In

H-altyud) + / k(t — 5)G(u(s))ds)un]dt,
UO Yo,

(2.6.1.4)

for all v, € H(I,;Q) andn=1,...,N.
Thus the mesh-dependent Galerkin scheme for (2.6.1.4) is to find @, € U, such

that Up = yp and

Ubuh(t,) — / B (uhYdt = UP_ oh(ta_s) + / (—a(t)ut

+/ k(t — s)G(u"(s))ds)vhdt,

h

(2.6.1.5)
J additional conditions on u,

for all v in P+1-I)([.-Q) and n = 1,..., N. Here uh = 3.7 uly; and

= {a

We estimate the L2- and nodal error of the mesh-dependent Galerkin scheme (2.6.1.5)

ip = (UR,...,Uk,ub, ... ,uk) €Uy such that u® € 'P(’")(In,Q)
subject to J (> O) addltlonal conditions forn =1,...,N. 3

for VIDE (2.6.1.1) in the following theorem.

Theorem 2.6.1.1. Assume that the solution y of (2.6.1.1) belongs to H™+1([0, T); Q).
For M > 1, assume that on the first M — 1 intervals the solution of (2.6.1.5) is such
that

max{|U" — y(ta)]: n=0,..., M — 1} < ChA™||y(m+D}|,, (2.6.1.6)
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and for j=0,... m+1,

M-1 1/2
{Z |[up — yll;{,.} < Ch™H1-3||ym+D)||,, (2.6.1.7)
n=1
Subsegquently, we have that for sufficiently small h,
max{|U* —y(t,)|: n=0,...,N} < CR™|[y™+1)|,, (2.6.1.8)
and for j=0,...,m+1,
lu® — yll; < CA™ 13| |ym*D) g, (2.6.1.9)

N h N 2 142
where up = En__.l UpXr, and || - ||; := {En:l Il - ”.7'.n} )

Proof. Since y solves (2.6.1.5), we have
(Un —y(ta))on(tn) = [Upy — y(tn-1)lvp(ta-1) + /I (un — y)(vp)'dt

i =S ’U.h
- flﬂau)(uz—y)v::dw / JRECRIEO)
— G(y(s))]dsvhdt. (2.6.1.10)

Let v be the solution of
(vR)'(8) = —ps(up — Gp)(t), t €I, va(tn) =0,
where %! is the Lagrange interpolating polynomial of degree m, such that
Balted = wbagly €58 ok

ps denotes the L2-projector of L?(I,; ) onto P™~7)(1,;). We substitute v? into




67

(2.6.1.10) and obtain
[ = alpauh - et

= [Ur_; — y(ta)] / ps(ul — al)(t)dt + / (ah _y)[——pJ(Uﬁ — ah)(t)dt
In i t
- / a(t)(ul — p) / g ps(ul — @) (v)dvdt + [ { l k(t — 5)[G(u"(s))
' t &

tn
- Gly(sNlds [ pauh - )}t

Hence we arrive at

h =h
lps(ul = @) (Dllon < BY2Unos — y(ta—s)| + hYZE)lonllun = Tallon
+ [L+h2lla®)llonlllE} — y|l
t
= Lh111/2/ / |k(t — S)HU"(S) — y(s)|dsdt. (2.6.1.11)
In JO

We need Lemma. 2.6.1.1 whose proof can be found in Delfour and Dubeau [40].

Lemma 2.6.1.1. The map J, defined by

u — Jnu . (pJu, u(tn,), o 7u(tﬂ.1)) . P(m)(In;Q) = P(m"’-’)(ln; Q) X QJ

is an isomorphism, and there ezist two constants By and ﬁz (independent of h and

the points {t,,}i_,) such that
Billullon < I1null < Ballullon.
It follows from Lemma 2.6.1.1 and (2.6.1.11) that
[81 — hY2|la()llon — LA?1E(t)llon]lfus — nllom
< Uy = y(taer)| + [1+ Bl a(@®)o ) [ — Yllom

= s
LRl lonl 1) — y(B)llom + B2 hhltn) — Taltn)
=1

+ oy | ¥ /, Ikt = 5)]Ja(s) — y(s)|dsde:

n j=1
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Hence,
lun = yllon < [lup = @pllon + lan — yllon

J
Chy/ {|Un_y = y(ta-1)| + D _ lun(tn,) — Gn(tn)[}

=1
+ Cllan ) — y(®)llon
+ C’h,ll/Q/I ”Z—l /1 |k(t — s)||uj(s) — y(s)|dsdt.  (2.6.1.12)

n =1 j
Substitute v = U* — y(t,) into (2.6.1.10):

n

IA

U = y(ta)l < Un_y = y(tan)l + Hla(@®)llomllun = yllon (2.6.1.13)
+  LE|Ik(@®)]loallun () = y(@)llon

+ Lh;/"?/[ <i /1 |k(t — s)llu;‘(s) — y(s)|ds> dt.

We therefore obtain

U2 =yt < 3 lla®loslluf = wllos + 3 LAY lIkO)llosllesd = vllos

i=1

n n—1
+ ZLh}/Q/IZ/I |k(t — s)l|ul(s) — y(s)|dsdt.  (2.6.1.14)
=1 i Jj=1 7

We note that for J < M and u’(t,,) = U?, inequality (2.6.1.12) can be rearranged

ng?
to read
M
[t = gllom < CRYZS U, = y(tas)] + CA™ g™ D]l
i=1
n—1
+ CRY? Z/ k(¢ — 8)|[ul(s) — y(s)|dsdz, (2.6.1.15)
I'n. j_—_l Ii
where || - ||o.n is the L2-norm over [t,_as,ta]- Set a,, = [UP —y(t,)|, n=1,... N,
and

B = lla@®lloslle} = ylloj + La|Ik®llosllu; — vllo,

b L [ [ Ikt ol (o) - wlolldsat
- !

7 m=1 m
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for j=1,...,N. If we abbreviate (2.6.1.14) by setting o, < 37, ;, then

M M n—
DU = yltai)l = Zan <> N s < MZ@
=il =l g=il
Since
B; < hPAllut — ylloy + LhY*Bllul — yllo,
n—1
+ LBRY? > W2 |ul (s) — y(s)llom,
m=1
we have
n—1 1/2 3/2
Ah h
< 1/2 m .
ZH i)l S LBTM 5 (f® + g + =)l = wllo

Recalling (2.6.1.15), we then derive the bound

. ” n—1 e Ah1/2 h3/2 .
— . < CRVPLBTM h - e = .
lun = vllon < Ch/’LB ;<m+L3T 7l = wllo,
n—1
+ CBhy > B2l = yllom + CA™ |y ™V lon
m=1

< ChY? Z P2, = llom + CA™H [yl s,

and Gronwall’s lemma leads to

n—1
lul —yllon < Ch™exp(CRY2 S Ry ™ Vo5
m=1

S Chm+1||y(m+1)“0,ﬁ-

Thus (2.6.1.7) and (2.6.1.9) hold true when 7 = 0. From (2.6.1.13) and Gronwall’s
lemma we also obtain (2.6.1.6) and (2.6.1.8). The inequalities (2.6.1.9) (1 < 7 <

m + 1) are obtained by using the estimates

llur, = llin < Hlun — @5l + 118 = Yllin
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and

lup = Gnlljn < Ch™|luz; — tpllon.

Now we describe the superconvergence property of the mesh-dependent Galerkin

method (2.6.1.5) for the VIDE (2.6.1.1).

Theorem 2.6.1.2. Assume that the assumptions of Theorem 2.6.1.1 hold. Then

for all sufficently small h > 0 we have
max{|U" — y(t,)|: n=0,..., N} < Ch?™+2=/, (2.6.1.16)

Proof. Choose 9" = (Vg,v?,...,v%) such that v} (tg) = Vo and v (¢,) = vt (t,), n =

1,..., N —1. Substitute that " in (2.6.1.10) and sum over j = 1,...,n. This yields

(U — )0 (ta) = /"wh—w<ﬂ'-—A"mwwh—wwﬁ

+‘/./ku—@0w<»

— G(y(s)))ds v" (2.6.1.17)

Let w in H™*277(0,¢;2) be the solution of

tn

w' —a(t)w + / k(s —t) /1G’1(ruh + (1 —r)y)dr - w(s)ds =
wita) = UL —y(ta),

for t € [0,¢,]. Let w” be a continuous piecewise interpolating polynomial of ¢ *gree

m+1—J of w such that w"(t,) = U" — y(t,). It follows from Sobolev interpolation

theory [22] that

H,w . whHI < Chm+1—]|[w(m+2—.])’|0_

Now we shall use the following Lemma 2.6.1.2 to express the norm of w(m+2=/) ip

terwns of U" — y(t,).
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Lemma 2.6.1.2. Suppose that g is such that g|;, € H™ 1/ ([,;; ) (n=1,...,N),

and that w in H'([0,T); Q) satisfies the equation
w'(t) — a(t)w(t) + /tn k(s — t)A(s)w(s)ds = g(t), (2.6.1.18)

fort € [0,t,]. Then there exists a constant C, independent of g and t,, such that

[wllmi2—s < C{lw(tn)| + lgllm+1-s3

Proof. We differentiate (2.6.1.18) m + 1 — J times to express w(™*2=7) in terms of

{w, Vw(t) (¢g=0,.... m+1-1J), g, g¥,...,gm"=7}, where

Viw(t) = /ttnkt(q)(s — t)A(s)w(s)ds.

Then we replace w by the identity

w(t) = R(t, ta)w(tn) / R(t,$)9(s (2.6.1.19)

where the resolvent kernel R has the form
R(t,s) = 1+/ r(t,u)du, (t,s)e€ S :={(t,s): 0<t<s<t,<T},
t

with 7 satisfying
r(t,s) = Q(t,9)+ [ QU Ir(r,o)dr
t
and with

Q(t,s) :==a(s) + /S kﬁq)(u — s)du, (t,s) € S.

t

We refer to ([26] or [23]) for the proof of (2.6.1.19). The proof of Lemma 2.6.1.2 is
now complete.
We then have
lw = whlly < CR™=7|U% — y(ts)].
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Set v* = wh in (2.6.1.17):

o 2 h_ Ry _ i - Y 5 h
U —y(@a)l® < [[u* —yllol|(w") — a(t)w" + [ k(s — t)A(s)w"(s)dsllo

IA

I~ lli @Y — a(ut + [ ks ~ ) Al)u(s)ds

e ) t
o D =i ft k(s — £)A(s)w(s)ds]llo
lu® — yllo{||(w*)’ — w'||o + Allw® — wllo + TLB||w" — w||o}

IA

IA

|l = yllo{CA™ '~ |UR — y(t)]

C(A + TLB)R™2=J|UP — y(t,)|}.

-

Hence,

Uz = y(ta)| < CA™H||u — y]lo.

Combining this equation with (2.6.1.9) we arrive at the desired estimate (2.6.1.16).

2.6.2 Superconvergence of the discretized mesh-dependent
Galerkin methods for VIDEs

Consider, for ease of exposition, the linear VIDE

{ Y() +a)y(t) = V@)®), tel=[T], -
y(O) = Yo,

T
where V(y)(t) := / k(t — s)y(s)ds and a, k € C(I).

0

As in Section 1.2.1, we introduce the mesh-dependent weak form of (2.6.1.1): To
find
N
= (Uo,...,Unyu1,...,un) €U = Q! x [] L*(I; ),

n=1
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such that

N-—1

Uo[Vo = v1(to)] + D Un[va(tn) = vns1(tn)] + Unon(tw)

n=1

Z/ U dt = yoVh + Z/ [—a(t)un

=il

+ V(u)(t)]v.dt, Yo €V, (2.6.2.2)

where u = > u;X7,.
The local form of (2.6.2.2) is: Find u, in L?(I,; Q) and U, in Q such that

Unvn(tn) = Un—lvn(tn—l) + / [un/U:l

+(—a(t)un(t) + V(u)(t))vn]dz{:l
UO = Yo,

(2.6.2.3)

for all v, € HY(I[,,;Q2) and n=1,..., N.
Thus the approximation scheme for (2.6.2.3) consists in finding 4, in U such

that Uy = yo and

Ukoh(tn) = [ wh(oh)dt = U_ol(tn) + [ [a(®)ud
In

I
+V(u"(s))(t)]vhdt,
J additional conditions on u”,

(2.6.2.4)

for all v? in PM+1=I)([ . Q) and n=1,..., N. Here u* = > "' ulx; and

= { s

When we apply the numerical quadrature to the memory term, we obtain the semi-

ap = (UL, ..., Uk ub, ... ul) €U such that u? € P™(I,;Q) l
subject to J (2 0) additional conditions for n = 1,..., V. J’

discretized DG scheme for (2.6.2.3): Find iy, in U, such that Uy = Yo and

Oh(tn) — [ ah(ERYdt = O ihltn) + [ [-a(e)i
_ Hem In

V() ()], (2.6.

J additional conditions on %

o
o
o
&)

S—

h
7
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for all 3 in Pm+1=/([-Q) and n = 1,...,N. Here @* = 577 @lx; and
mz{@

ap = (Up, ..., Uk, @k, ... 4%) € U such that @ € P(™(I,; Q) }
where we will use the interpolatory quadrature approximation (for example, Newton-

subject to J (> 0) additional conditions for n =1,..., N,

Cotes formulas [44]) for the memory term:
V(@M (t) = Zwm-k(tn_l — t)UP 4+ wnnk(0)tal(2). (2.6.2.6)

To make the error of the quadrature formula (2.6.2.6) be O(h™) for all t € (0,71,

we adapt the old mesh (with meshsize h := rr(wix{hn, n=1,...,N}) by choosing
max{h;: 1 <i<m}:=h"

We describe the L? and nodal error of the semi-discretized DG scheme (2.6.2.5) for

(2.6.2.1) in the following theorem.

Theorem 2.6.2.1. Assume that the solution y of (2.6.2.1) belongs to H™+1([0,T}; ).
For M > 1, assume that on the first M — 1 intervals the solution of (2.6.2.5) is such

that
max{|U" —y(t,)|: n=0,...,M —1} < CA™ ||y D||o, (2.6.2.7)

and for 7 =0,..., m+ 1,

M—1 1/2
{E:IWQ—%”@n} < CR™ ||y )] o, (2.6.2.8)
n=1
Hence, we have that for sufficiently small h > 0,
max{|U" — y(t,)|: n=0,...,N} < ch™ |y, (2.6.2.9)
and for 7=0,... m+1,

13" — yll; < CR™ 13 ]|ym+D)|, (2.6.2.10)

e N ~h _ N 2 /2
where Up = ) UyXy, and || - ||; = {Zn:l - Hj,n} '
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Proof. Since y satisfies (2.6.2.5), we have

(TP = y(t))5t(tn) = [0y — y(tan)]T" (tn 1>+/I<a,’z—y><a::>'dt

- / a(t) (@ — y)ohdt + / V@E)(@)

— V(y)(t)]ordt. (2.6.2.11)
Let 9" be the solution of
(52) () = —pu(ln — @p)(t), t € Lo, Dn(tn) =0,
where 4" is the Lagrange interpolating polynomial of degree m,

Thtn) = Ylt))s L=1,..., .

©s is the L2-projector of L?(1,; Q) onto P(™m~Y)(I,;Q). Then we substitute 3? into
(2.6.2.11) and obtain
JACELAIIC RSO
= O = vta)) [ pal@h —abOdt + [ (@ —v)l-ou(Ek - ool
n [n

— /1 a(t)(&ﬁ —y) t ’ pJ(ﬁﬁ — ﬁﬁ)(u)dudt—i—/ [1}(ﬂh)(t)

In

— V@) ) / " st — @) (v)dv}t.

So we can arrive at

los (@ — al)()llom < A2 |Unct — y(ta)l + RY*la(®)]lonl Tk — @210
+ [1 + hl/zlla(t HO n]llﬁﬁ - yHO,n

+ hl/Z/ |V (@ — V(y)(t)|dt. (2.

3]
2
[
—
[ \]
pa—
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We again use Lemma 2.6.1.1, where we have now replaced u by u. Recalling

(2.6.2.12), we obtain

[6: — R ?lla(®)]lo — CRY?||an — @ llon

IA

ha210n_1 = y(ta-0)l + [1 + B2 la(®)loall 12 = yllon

J
+ CRY||an(t) — y(®)llop + hy/? D lan(ta,) — @h(ta,)|

=1

+ CRYH|V(@")(tr-1) = V(@) (tn-1)]l + V@) (E) — V(@) ()11}

Hence

||712 - y”O,n S

IA

+

-+

lan = @nllon + llag = yllon

J
Chi*{1T7_1 = y(ta-)l + D lGn(ta,) — Tt}
=1

OINEAE) — y(®)llom + CH2 S 07 — u(te)
ChRY2V(y)(tn) — V() (tn)]. (2.6.2.13)

Substitute #* = U* — y(t,) into (2.6.2.11)

U —y(ta)| <

Un—1 = y(ta1)l + lla(®)lonllEn — yllom

n—1

+ ChY|@k(t) — y(©)llom + ChY2 D 107 — y(te)]

£=1

+ CHYPV)(t) — V(y)(ta)]- (2.6.2.14)

We therefore obtain

U = y(ta)| <

We note that for J < M and the ul(t,,) = Ul

Chi||@h — yllon + ChY 2V (Y)(ta) — V(y)(¢)](2.6.2.15)

inequality (2.6.2.13) can be rear-

ng?
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ranged in the form

n—1
1@y = yllon < CRY?D T —y(te)l + CR™ [y ™ o
=1

+ CRY*IV(y)(ta) — V() (tn)]

n—1 n
< ChY2SThPNay — ylloe +C Y R P V() (te) — V() ()]
=1

=1
+ Chm+1||y(m+1)[|0,ﬁ. (2.6‘2.16)

Therefore,
n
1@y = yllom < CE™ Iy ™ lon + C D WZV(W)(0) = V@) (@)]-
1=1
Here || - ||o.n is the L?-norm over [t,_as, t,]. Thus (2.6.2.8) and (2.6.2.10) hold true
when 7 = 0. From (2.6.2.14) and Gronwall’s lemma we also know that (2.6.2.7) and
(2.6.2.9) hold. Inequalities (2.6.2.10) for 1 < 7 < m + 1 are obtained by using the
inequalities
lan = yllin < llag = @nllsn + 1lan = yllin
and

l|ﬂ3 - _ZHj.n = Ch_j!lftﬁ - ﬂZHD,n-
The following theorem is the analogue of Theorem 2.6.1.2.

Theorem 2.6.2.2. Assume that the assumptions of Theorem 2.6.2.1 hold anu take

{t.}251 as the Gaussian points in I := [0,T]. Then for sufficiently small h we have
max{|U} — y(t,)|: n=0,...,N} < ChR*™+*7/.

Proof. Choose " = (Vy, &0, ..., 5%) such that 3% (to) = Vp and 9!(t,) = o, ,(t,), n =

1,..., N — 1. Substitute that 3" in (2.6.2.11) and sum up over j = 1,...,n. This
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yields

+ V(") — V(y)]o"dt. (2.6.2.17)

Let @ in H™2=7([0, t]; ) be the solution of

{ W' — [a(t)y—i— wnnk(0)t]w = 0,
W(tn) = Uy — y(tn),

for t € [0,t,]. Let w" be a continuous piecewise interpolating polynomial of degree
m + 1 — J of w such that @w"(t,) = U* — y(t,). From Sobolev interpolation theory
[22], we deduce

H’LD . ,d-}hHl < Chm+l_J|l’lZ/(m+2_J)||0-

Now we use the following Lemma 2.6.2.1 to express the norm of w(™+2=7) in terms

of U,’f — y(tn)-

Lemma 2.6.2.1. Fiz s in [0,T]. Suppose that g is such that g|;, € H™17/(1,; Q)

forn=1,... N, and that w in H'([0,T]; Q) satisfies the equation
W' (t) — [a(t) + wnnk(0)t]w(t) = g(t),

for t € [0,t,]. Then there exists a constant C independent of g and s € [0,t,] such
that

[[@|lmt2—s < C{lw(s)| + [Igllm+1-s}

Proof. The lemma is a special case of Lemma 2.6.1.2 without the memory term.
Compare also with Delfour and Dubeau [40].
We then have
@ — @"||; < CA™ T |0 — y(t,)). (2.6.2.18)
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Set 7" = w" in (2.6.2.17)

U —y(t)? < /O (@ — )@ — @) — a(t)(B — M)t (26.2.19)
= /Ot" Ot (W — y)dt + /Otn[f)(ﬂ") — V(y)w"dt.

Since

V(@ah) - v(y) = V@' - V() + V) - V)
= V(y) - V() + Z wni (U — y(2:))

+  want(@(t) — y(t)), (2.6.2.20)
and from Lemma 2.6.2.1 we have

@™o < [l — @"lo + [[@llo

< Ch™Y|UR — y(ta)| + ClUR — y(ta)], (2.6.2.21)
Combining {(2.6.2.18), (2.6.2.19), (2.6.2.20), (2.6.2.21), and Lemma 2.6.2.1} yields

U = y(ta)l < CR™||@" — yllo + CRE™27 |y ™o

+ CD wnik(tny — t)|TF — y(t)l. (2.6.2.22)
Hence, Gronwall’s lemma leads to
TP = y(ta)| < CRP™27,

Remark 2.6.2.1. We conclude that it is not substantially more difficult to analyze
the mesh-dependent Galerkin method for nonstandard Volterra integro-differential
t
equations containing memory terms of the form Vg (y)(¢) := / k(t—s)G(y(t), y(s))ds.
0

We leave the details to the interested readers.



Chapter 3

The discontinuous Galerkin
method for delay VIDEs

In this chapter we focus on three kinds of delay Volterra integro-differential equa-
tions. We show the regularities of those problems and thus construct and analyze
the robust adaptive discontinuous Galerkin methods for them. The readers may
wish to consult Brunner and Zhang [28], Hale [58], Hale and Verduyn Lunel [59],
and Bellen and Zennaro [12] and the references therein for the background materials

and related results about delay differential or integro-differential equations.

3.1 Primary discontinuities of several classes of
delay Volterra integro-differential equations

3.1.1 Delay VIDEs with weakly singular kernels

Let us consider

0

{y’(t)=f(t,y(t))+ [ (= 9Gs,ylshyl6(eN)ds, tel=0.T) (5,
y(t) = 6(t), te€ a0,

where we assume 0 < o < 1 and

(i) f, G, ¢ arc sufficiently smooth.

80
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(ii) 6(t) := t — 7(t), with 7 sufficiently smooth, t > 7(t) > 70 > 0 (¢t € I).

Moreover, 6 is strictly increasing on I and @ = inf;>¢ 6(t) < 0.
(iii) The points {£,} are defined by

0(8.) =6, —7(€u) =1 &ur, Y21, (3.1.1.2)

where & := 0. Obviously

§ut1 =€, =270 >0, Vu>0.

For simplicity we denote G(s) = G(s,y(s),y(0(s))). We shall use the following

formula frequently.

H(t) := /;(t — 8)"*G(s)ds
1

T—oE—aC Oe—o"

= G-+

arE -

(1 - a)m+1
1 t_(m+1) m+l—o
e = ] U (s)(t —s) ds, (3.1.1.3)
(1 - Of)m+1 0

with (1—a), := (1—a)(2—a)--- (m—q«). We remark that (3.1.1.3) can be obtained
by using repeated integration by parts.

Definition 3.1.1.1. If the solution of (3.1.1.1) and its derivatives of order less than,
or equal to p are continuous at some points £ € I but the derivatives of order p + 1
is not, then £ is called a primary discontinuity of problem (3.1.1.1)

Denote JW = (&,1,&,41] (¢ > 0), where £&_; := a. We shall describe the

primary discontinuities in solutions for (3.1.1.1) as the following theorem.
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Theorem 3.1.1.1. The primary discontinuities of problem (8.1.1.1) are the points
£, (u=0,1,...) generated by (3.1.1.2). To be more precise, y € C*1=(JWH  put

yHY) s not continuous at the point €, provided the assumptions (i) and (ii) hold.

Remark 3.1.1.1. We use CP(I) (0 < B < 1) to denote the well-known Holder

space: V' is in CP(I) if, for any t1, ty € I (t; # t3), we have
V() = V()| < L-[t1 — ta.

A function V is in C*P(I) (n € N, > 1) if V. € C*(I) and VW € CP(I). We set
CO8(I) = CP(I).

Proof. The proof is based on the method of steps.

(1) Consider the regularity of the solution for (3.1.1.1) at the point & := 0. It is
possible to satisfy the condition %(0) = ¢(0), but not, in general, also the condition
Y’ (0+) = ¢’(0—). The continuity of the derivative of the solution can be guaranteed
at the initial point 0 only for deliberately chosen ¢(t), and such a function ¢(¢) must
satisfy the condition ¢'(0—) = f(0, #(0)).

(2) Consider the regularity at the point £;. We write the equation (3.1.1.1) as

{ y(t) = f(t,y(t)) + Hi(t), tel:=[0,T],
y(t) = ¢(t), tela,0],

_ /O (¢ — 5)=T(s)ds

From the formula (3.1.1.3), we obtain
/ )(t — s)'%ds.
1 = @

HI(8) = G(0)t—= +/ T (s)(t — 5)~*ds.

where

Hy() = — ! ——T(O)

Thus
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So y” is continuous at the points £, (¢ > 1). But y® is discontinuous at &;. Now

we are going to prove that
t—/
/ G (s)(t — 5)~*ds € Cr==(Ju). (3.1.1.4)
0

For any to, t; € JU and without loss of generality we assume tg < & < t;. From

1 5’(3)(151 — 8)7%ds — i 05’(8)(&) — s) " %ds

Otl —, to _ ——;
< | [ @t -sds|+| [ (E Ot -9 =Tt - )7 ds

to 0

2(t; —to)17® ¢y “ e
< I _
- ¢ { l—-a N l-a 1-«
3Ly

S 1 ~_Ga (tl - tO)l_aa

where L= is the upper bound of |5/(3)| in JU. So y € C3(J).
(3) Consider now the regularity at the point £,. We write the equation (3.1.1.1)

as

&1
{ Y (t) = f(t,y(t)) +/0 (t — s)"2G(s)ds + Ho(t), t€ I:=1[0,T],

where
H, = t — 8)"*G(s)ds.
(t) /61 (¢ ) (s)

By using the formula (3.1.1.3) again, we obtain

Ha(t) = 1_1—a6(£1)(t—£1)1_a+(1_a)l(Q_a)a,(&)(t_&)z_a
1 ==l 3—a
" (l—a)(2—a)(3_a)G (&)t — &)
1 t__3) ey
. <l“a)(2—a)(3—a)/&G (t = 5)°%ds.
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Thus we can calculate the derivatives of order up to three of Hs(t) as:

Hy(t) = T&N(t—&)"+ =T (&)t — &)

l —«o

1 —n 2o
+ (1__a) Q—Q)G (fl)(t—'fl)
1 SOy -ags
t G mETa L O @ s ds
Hy(t) = —aG(&)(t—6&) >+ @I(fl)t(t — &)+ igén(fl)(t — &)
+ L [T - )0-as
1l—a /g

HP@) = ala+1)GE)(E - &) 2 —aG (E)(t - &)

t
+ Gt —-e) o+ [ TGt - s)ds.
&1

Hence y¥) is continuous at the point &, (1 > 2). But y® is discontinuous at &,.

Furthermore along the lines proving (3.1.1.4) we can verify that

it
GOt — s)ods € ¢l (J1)).
&1

(4) We suppose y € C?*1=a(JW) and y € C*(&,,) (m > u). Now we consider

the regularity at §,,. We write the equation (3.1.1.1) as

N

{ v (t) = ft,y(t)) + /0 (t — s)‘o‘é(s)ds + Hya(t), tel:=][0,T),
y(t) = &(t), tela,0],

where

L

H,o(t) = [ (t—s)"*G(s)ds.

We write H,.1(t) as, by using (3.1.1.3),

1 — 1 =)
H“+l(t) = EG(&;)UI - gﬂ)l—a + (l . O.’)(2 . a)G (£#>(t - Eﬂ)Q—a
Y = . \2utl-a
+ + (1 . C¥>2u+1G (fu)(t f/»l)
1 t—(2u+1) 2ut+l—a
- — G ; — s ds. 3.1.1.5
T /{ (5)(t - s) 5 (3.1.1.5)
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Thus we can calculate the derivatives of order up to 2u + 1 of H41(t) as

Hon(t) = 5@)@—e,‘)-“+#5’(s,‘)(t—e,‘)l-°

+ o G () - £)*

(1 a)p

d —(2u 1) 2u—a
+ m/ *D(5)(t — 5)2H2ds. (3.1.1.6)

;(t?!{‘l-’-l)(t) = (a)2#5(§p) (t T 5#)_a_2“ Rkl ﬁ(zy) (§p) (t == 5#)—0‘

1 ‘—(2,u+1) e
e /qu (8)(t — 5)°ds. (3.1.1.7)

Hence y € C?w+Dil—a( jlu+l]),
Let us consider now

{ y'(t) = f(t,y(2), y(6(2)) + /ot(t — 5)7*G(s,y(s),y(6(s)))ds, tel:=[0,T],

y(t) = #(t), t € [a,0],
(3.1.1.8)

with the assumptions (i), (ii), (iii) in (3.1.1.1).

Theorem 3.1.1.2. The primary discontinuities of problem (3.1.1.8) are the points
& (1 =0,1,...) generated by (3.1.1.2). To be more precise, y € crl=a(JH), but

y¥+Y) 4s not continuous at the point £,, provided the assumptions (i) and (ii) hold.

Proof. From [125] we know the primary discontinuities of problem

v(t) = f(t,y(t),y(0())), tel:=I0,T],
{ y(t) = ¢(t),y t ey[a, 0], (3.1.1.9)

are the points &, (4 = 0,1,...) generated by (3.1.1.2). To be more precise, y* is
continuous at the point £, and y#*+1(£,,,) is bounded, but y®+1) is not continuous
at &, provided the assumptions (i) and (ii) hold. Thus, recalling Theorem 3.1.1.1,

we obtain Theorem 3.1.1.2.
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Theorem 3.1.1.3. Consider

y'(t) = f(t,y(t),y(0(2), ¥ (6(1))) + /Ot(t —5)7*G(s,y(s), y(0(s)))ds, te:=[0,T],

y(t) = (1), te (a0
(3.1.1.10)

with the assumptions (i), (ii), (iii) in (3.1.1.1). There ts no smoothing to the solu-

tions of (3.1.1.10); more precisely, y € C*~(JWM), Vu > 1.

Proof. 1t is known that there is no smoothing to the solutions of neutral delay dif-
ferential equations (see [125]), so there is no smoothing to the solutions of (3.1.1.10).

Following the lines in the proof of Theorem 3.1.1.1, we can verify that
y e Cte(JHY, v > 1,

Remark 3.1.1.2. The delay integro-differential equations may include terms such

./o K(t —s)G(y(6(s)))ds, (3.1.1.11)

and
" K(t — s)G(y(s))ds. (3.1.1.12)

A natural question arises: “What is the difference between the regularity of the
delay integro-differential equation with the term (3.1.1.11) and that with the term
(3.1.1.12)%".

The term (3.1.1.11) can be ezpressed as

o(t)
K(t—07s)(071(s))G(y(s))ds. (3.1.1.13)

6(0)
Therefore. if the kernel function K is sufficiently smooth. then the regularities of
(3.1.1.11) and (3.1.1.12) are the same. But when K has weakly singular behavior,

their reqularities will be different. Discussion of Section 3.1.2 will explain this well.
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3.1.2 Delay functional VIDESs of Hale’s type

Consider

4 (vor- [ ket~ )G@(eds) = 1t ), w0®), te1:=[0,7)
dt o ? ? 3 = b ?

y(t) = ¢(t), te€ (a0,
(3.1.2.1)

where we assume that
(a) K is sufficiently smooth, and
(b) (i), (ii), (iii) in (3.1.1.1) hold.

We describe the primary discontinuities of problem (3.1.2.1) in the following theo-

rem.

Theorem 3.1.2.1. The primary discontinuities of problem (3.1.2.1) are the points
€, (1=0,1,...) generated by (3.1.1.2). To be more precise, y¥) is continuous at £,

but y#+Y) is, in general, not provided the assumptions (i) and (ii) hold.

Proof. We rewrite the left-hand side of (3.1.2.1) as

®
gt- <y(t) e K(t— S)G(y(S))dS) = ¥() - OK(E - 0()G(y(6(2)))

a(t)
- Ky(t — s)G(y(s))ds. (3.1.2.2)

Thus the remaining lines of the proof are easily generated by using the method of

steps (cf. Brunner and Zhang [28]).

For the equation:

d

o(t)
: (y<t> -["e —s)-aa<y<s>>ds) = f(t,¥(®), y(6®)), tel=[0,T]

y(t) = ¢(t)’ te [(.-l, 0],
(3.1.2.3)
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where 1 < a < 1 and assuming (i), (ii), (iii) in (3.1.2.1) hold, we have Theo-

rem 3.1.2.2.

Theorem 3.1.2.2. The primary discontinuities of problem (3.1.2.3) are the points
£, (0 = 0,1,...) generated by (3.1.1.2). To be more precise, y*) is continuous
at £, but y"+) 4s, in general, not provided the assumptions (i) and (ii) hold. If.
in addition, we assume y € C'~*(JO), then y € CHI=o(JH), but y*+1) 45 not

continuous at §,41.

Proof. Since
d 6(t)
o (ym - <t—s>—aG<y<s>>ds) (3.1.24)

o(t)
= y'@) -0 @)t —0(t) *Gy(o@))) + a/o (t = s)"'7G(y(s))ds,

and t—6(t) = 7(t) > 75 > 0 hold, assuming that y is continuous at the point & := 0,
we can realize the assertion with the method of steps as in Brunner and Zhang [28].
If we assume, in addition, y € C'I_O‘(J{O]), then we can prove the second assertion
still by using the method of steps.

We now consider

(v - [ K- 960e)s) = fu0.560), tel=pT)

y(t) = o(t), te€la.o]
(3.1.2.5)
where we assume K is sufficiently smooth and (i), (ii), (iii) in (3.1.1.1) hold. The

primary discontinuities of problem (3.1.2.5) are described by Theorem 3.1.2.3.

Theorem 3.1.2.3. The primary discontinuities of problem (3.1.2.5) are the points
£ (u=0,1,...) generated by (3.1.1.2). More precisely, y** is continuous at &, but

y*“ Y 4s not, in general, provided the assumptions (i) and (ii) hold.



Proof. We rewrite the left-hand side of (3.1.2.5)

< (v /Kt—s (v(s))ds

= y( )+ O (K (- 0(1)G(y(8(1)) — K(0)G(y(t))

— / K (t —s)G(y(s))ds. (3.1.2.6)

0(t)

Hence the proof can be completed by using the method of steps (cf. Brunner and
Zhang [28]).

Consider now

% (v = [ ¢=9cuents) = fe0.9000)), teli=p.1)

y(t) = ¢(t), telao],
(3.1.2.7)

where we assume 0 < @ < 1 and (i), (ii), (iii) in (3.1.1.1). This case is different from
the one treated in Theorem 3.1.2.2, since we cannot use the techniques in the proof
of Theorem 3.1.2.1. We describe the primary discontinuities of problem (3.1.2.7) in

the following theorem.

Theorem 3.1.2.4. There is no smoothing to the solution of (3.1.2.7). To be more
precise. y € CV1=(JW), for all p > 1, where C is independent on u, provided the

assumptions (1) and (ii) hold.

Proof. Consider first the regularity of the solution for (3.1.2.7) at the point & := 0.
It is possible to choose y(0) = ¢(0). The continuity of the derivative of the solution

can be guaranteed at the initial point & := 0 only for ¢(¢) satisfying the condition

d

510-) = 7 ([ (e=97"Glo)ds ) + £(0,60) 6(60)).

Consider now the regularity at the point &,. We write the equation (3.1.2.7) as

{y’(t)=f(t,y(t),y(0(t)))+%(H1()), tel=[7),
y(t) = 6(0), te a0,



where
Hi(t) = /a = 00)"T(a)s

where G(s) := G(y(s)). From the formula (3.1.1.3), we obtain
Hy(t) = - GO0) + —— /a T = ods
Thus
d . -a ’ . —-a
5 (H1(8) = G(O(e)(t - 6(2))™*(1 - 6'(2)) +/ G (s)(t — s)™"ds,
a(t)

where G (s) = Gy(y(s))y'(s). Similarly, we calculate that

TED _ Gow) - ¢ -o0)=- (- #@)] +TO@)E - 00) (1 - #(®)
4 t G (s)(t — s)~%ds.
a(t)
Since

G (6(t)) = Gy(y(6(1)))¥ (6(2))-
we see that y” is discontinuous at the point £; and thus there is no smoothing to the

solution of (3.1.2.7). To prove that y € C'*~=(JWM), it is sufficient to verify that

/ t (t — 5)"°G (s)ds
(2

()

<C(t—&)' ™ (3.1.2.8)

Since G (¢) is continuous in [&, T], we have

t (t—s)°G(s)ds| < Lg t (t—s)"%ds
o(t) o(t)
< C(t-6(t) =
< Clt—&) ™ (3.1.2.9)

In the last step of (3.1.2.9), we use that 6 is strictly increasing in I and thus

& =0(&) > 0(t) > 0(&1) = &, Ve (&1,6).
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Following the above process we can establish that

Y(t) SOt — )7 Vu > 1.

3.1.3 Delay VIDEs of neutral type with smooth kernels

Consider the following delay VIDESs of neutral type:

y'(t) = f(t,y(0), y(0())) + / K(t —5)G(s,y(s),y'(s),y'(6(s)))ds, tel:=][0,T],

y(©) = &(2), telao,
(3.1.3.1)

where we assume that

(a) K is sufficiently smooth, and
(b) (i), (ii), (iii) in (3.1.1.1) hold.

We describe the primary discontinuities of problem (3.1.3.1) in the following theo-

rem.

Theorem 3.1.3.1. The primary discontinuities of problem (3.1.8.1) are generated
inductively by the recursion (3.1.1.2), where & := 0. More precisely, y**) and lower-
order derivatives are continuous at &,,, but y®#+D) s in general, not under the as-

sumptions (a) and (b) for (3.1.3.1).

Proof. (1) We consider the regularity of the solution for (3.1.3.1) at the point & := 0.
It is possible to choose ¢ to satisfy y(0) = ¢(0). However in general, ¢'(0—) # 3/'(0+).
Hence y is continuous at &, (1 > 0), but ¥’ is not continuous at &.

(2) Consider the regularity at &. Obviously, 3’ is continuous at £, (u > 1).
But since the epression for y” at the point £; include 3’ at the point &, y” is not

continuous at the point &;.



(3) Consider the regularity at &. Set G(s) := G(s,y(s),¥'(s). ¥ (6(s))). We

obtain
t

y"(t) = f'(t, y(t), y(6(1))) + K(0)G(¢) +/ K (t — 5)G(s)ds.

0

Hence y” is continuous at §, (¢ > 2). But v is not continuous at &, since y®
includes y®' which is not continuous at &.

(4) Suppose y* is continuous at &, (m > u). Consider now the regularity at
€,11. We know that y#+1(€,) includes y(™(€,) (m < u), so y*#*V is continuous at
£,11. But y*#*2(¢) is discontinuous at &,41, since y#2 (€, ) includes y#+Y(E,),

and y**1 is not continuous at Eus.

3.1.4 Delay VIDEs of neutral type with weakly singular ker-
nels

Consider

y'(t) = £t y(t).y(6(2))) +/O (t—5)7*G(s,y(s),y'(s),y'(6(s)))ds, tel:=[0T]

y(t) = ¢(t), tela0],
(3.1.4.1)

where we assume 0 < a < 1 and (i), (ii), (iii) in (3.1.1.1).
We describe the primary discontinuities of problem (3.1.4.1) as the following

theorerm.

Theorem 3.1.4.1. The primary discontinuities of problem (3.1.4.1) are generated
inductively by the recursion (3.1.1.2), where & := 0. More precisely, under the as-
sumption (i), (ii) and (iii) in (3.1.1.1), y € C*1=(JH)), but y*Y is not continuous

at &, wn general.

Proof. (1) We consider the regularity of solution for (3.1.4.1) at the point &, := 0. It

is possible to choose ¢ to satisfy y(0) = ¢(0). However in general ¢'(0—) # 3'(0+).
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Hence y is continuous at &, (¢ > 0). but ¥’ is not continuous at &.
(2) Consider the regularity at &,. Obviously, 3’ is continuous at &), hence y’ is

continuous at &, (¢ > 1). We can prove
L —
H(t) .= / (t — 8)~*G(s)ds € Ct(Jl,
0

by following the lines proving (3.1.1.4).

(3) Consider the regularity at &. We write the equation (3.1.4.1) as

§1 .
y'(t) = f(t,y(t)) +/ (t —s)"°G(s)ds + Hx(t), teI:=][0,T],

y(t) = o(t), te [a,(())],

t
where H(t) := / (t — s)~G(s)ds. By using the formula (3.1.1.3), we obtain
&1

Hyt) = —— (et — &) + —— [ T(s)(t — s)'~*ds

1_a 1_a El

Hi(t) = G&)(t—¢&) %+ 5 G (s)(t — s)™*ds.

Hence y” is continuous at &. Thus y” is continuous at &, (¢ > 2). Furthermore we
can prove that y” € C'=(JH),
We consider the regularity at €,.;. We rewrite the equation (3.1.4.1) as

§u _
y(8) = F(t, y(®) + / (6. — 5)=°C(s)ds + Hym (1), tel:=[0,T],

y(t) = o(t), t € [a.0],

where H, ., (t) := f;#(t — 5)~2G(s)ds.

1 = l-a 1 ol 2—a
Hu-}—l(t) - I—_Q‘G(gu)(t - fﬂ) + (1 _ a)(2 _ a)G (f,u)(t - 5#)
R erypericl Lo S
. —1— té(li+1)(8)(t . S)”+l_ad8. (3_1'4'2)

(1= a)u+1 £,
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Thus we can calculate the derivatives of order up to u+ 1 of H,4,(2) as:

Ho(t) = 5(£p)(t—£p)-°+La’(s,‘)(t—su)l-a

+ - (1_ )#E‘“’(sp)(t £y

/ G (5)(t — s)—2ds. (3.1.4.3)

(1= a)“

H&D(@) = (a)y6<s“)<t—sp)-°-“+ . + TMENE=8) "

+ / G (5)(t — s)—ds. (3.1.4.4)

L= a)“

Hence y*#+1)(t) is continuous at £,41. Furthermore we know that
t—(u+l) —-a 1—a( 7lp+1]
G (s)(t — 8)™%ds € C 7 (J¥ T,
&u
thus y € CrtLt—a(Jl+l),
3.2 The discontinuous Galerkin method for delay
VIDEs

3.2.1 The discontinuous Galerkin method for functional VIDEs
of Hale’s type

In this section we analyze the discontinuous Galerkin method for

2 y(t) — fs mK (t - 8)G(y(s))ds | = f(t,y(8),y(6(2)), tel:=[0,T]
dt 0 ? ) ) ) ?

y(t) = ¢(t)7 te [a'a 0]7
(3.2.1.1)

where we assume y € {2 C R and

(a) K is sufficiently smooth.

(b) (i), (ii), (iii) in (3.1.1.1).
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Without loss of the generality we set T = &4, for some M > 1, and introduce
Zy =4 : n=0,1,...,M}.

Since, as we have already seen in Section 3.1.2, the solution of (3.2.1.1) suffers

from a loss of regularity at the primary discontinuity points {£,}, the meshes I

underlying the DG space will have to include these points if the DG solution is to

attain its optimal global (or local) order. Thus, we shall employ meshes of the form
M
= (3.2.1.2)
pu=0
with the local mesh given by
e (s g =t < <l — ) (6 € Z).

Such a mesh is called a constrained mesh (with respect to 6) for I. We introduce

the following notations
(§u>€u+1] ,u] = ( n—l’t%]] [6#’€#+1] I[#] = [t[ =1 #]]’

and

V] o o — £, A e g g 0 e

" (n)

Consider now the local graded meshes of the form

il (1)”.|1m[
N,

- (%> RTIRET)

N (—]\Tfl—> T(Euv1), 0SSN, —1 (N, 22), (3.2.1.3)
u

where the grading ezponent r, € R will always be assumed to satisfy r, > 1. We

know that

R < h <rp 7 (E)NTY, 0<n <N, —1 (N, >2).
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In this presentation, for simplicity, we take r, = 1 (V€, € Z,,) (i.e., each I,[L’J'] is a

uniform mesh) and N, := (N)P% for all §, € Zx;.

We recall the problem (3.2.1.1) and denote

v =yl
Let
o(t)
z(t) = y(t) — / K(t —s)G(y(s))ds. (3.2.1.4)
0
It is easily seen from (3.2.1.4) that z(¢) and y(¢) possess the same regularity. We

have

Z(t) = f(t,y@),y(0())

o(t)
= (t, 2(t) + K(t — s)G(y(s))ds, y(@(t))) . (3.2.1.5)

0

We write (3.2.1.4) and (3.2.1.5) locally on the interval Il¥,

=3 _ 6(t)
gl = 4 Z/ K(t — s)G(y¥(s))ds + K(t —s)G(y*"(s))ds. (3.2.1.6)
=0 v It

gp—l

u—2
oD ) _ 4]
@ = (e 5 - Deui

+ " K(t — )Gy U(s))ds, y[ﬂ—ll(e(t))> . (3.2.1.7)
Ep—1

Here we set y° := 4(0).

We abbreviate

8(t)
ft) = f<t,2(t)+/0 K(t*S)G(y(S))ds,y(ﬁ(t))),

pu—2
Flul . — (1] _ (3]
f : f (t, W 4 iz:; /m K(t —s)G(y"“(s))ds

o(t)
+ K(t - S)G(y[”‘”(S))ds,y““”(9(t))> :

fu-l
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Define:
V(L) = {o € L) : olga € PUOIM), pe Zu},

where A := {u + 1})L,.
Now we are ready to define the DG(A) scheme to (3.2.1.1): Find z, € VI(I},),

such that
M Ny

3y ( ” (=) = FE@OIX @)at + [ ]]nX-:-) + (ZMExF = #(0)XF (3.2.1.8)

p=0 n=1
for all X € VIAI(I,). Here,

2 (t)
@) = f (t, zh(t)+/: K(t_S)G(yh(s))ds’yh(e(t))) ;

) = f(t,z!:"+£j [, K= 960 s)as
a(t)
+ K= )GERT )ds ™ (e<t))) .

This represents a time-stepping method: Find
2 e v (1) = {p € L2(IM) : gl € PUAI (11},
such that

Ny Ny
> [ Gy - X+ Yo Xt + xS

n=2

= (s xF, vX e v, (3.2.1.9)

for p = 0,1,..., M. Here, we set (z,[f‘])g = (z,[f‘_ll);,“ (for p = 1,2,...,M) and

(€5 = #(0) (for p = 0).
Also, (3.2.1.9) can be interpreted as a local time stepping method: Find z,[f‘] €
P+ (1), such that

/I (@D = BAX @)t + (D X = (e X (3:2.1.10)



for all X € Pr+D (1), Again, we set (z,[l“])a = (z,[l“—l]);“. Hence define

- ~u]+Z/ K(t—s)G .](5))d3+/6(t) K(t—-s)G(y,[L”—l](S))ds. (3.2.1.11)

Eu—1

We set
€y ‘=Y — Yhy, €z 1= 2 — Zh, e_Lu] = eylﬂu]; e,[:#] = e:li[u!~
Subtracting (3.2.1.11) from (3.2.1.6) we obtain

e = ~I+Z/ K(t - $)[G(M(s)) — Gl (s))]ds

6(t)

+ K(t — s)[G¥(s)) — Gyt (s))lds
&.p—l

Thus we have

#_2 . .

e[z < le¥lr + D> KLa [T¥] |lel]jz + KLg [T {|el= 1],

i=0
where K := ||K||a1), Ly := ||flla, L := ||G||n. Hence, from Gronwall’s lemma, we
have

||e£l#]||f[“] < |Ie!zu]‘|f[u] eXp(KLG§u>- (3.2.1.12)

Now we estimate the error He[”]H,M. Define the projection ZzH € V() ¢, €

Zar, by
(Iz[“]); — (z[“]);, 1<n<N,, (3.2.1.13)

/[](Iz[”])X'(t)dt = /[]z[“]X'(t)dt (3.2.1.14)
I Jils

for all X € PWO(IH) 1 < n < N,. The approximation properties of Z in
(3.2.1.13) and (3.2.1.14) have been thoroughly investigated in [96]: On the generic

subinterval I there holds

Hziu] — IZ[M]HI’LM < C(h%ﬂ])u+ll|<z[#])(u+l)||I_LF]’ (3.2.1.15)



99

where C' is independent of Rl
We split the error el = i — z,[{‘] = plHl 4 plHl into pll = W — T2 and

n = Tz — z,[f‘]. It is easily seen that nl#l satisfies

/, Y Xde+ (b X = / L@ = RA@IX (@)t + ()7 X,
) i (3.2.1.16)
for all X € PW+D ([, Equivalently,

- /I @V X e+ (T XT = / [FH(E) — FH@)]X (@)t + ()m_, X,

g
(3.2.1.17)
for all X € P+ (i),
Lemma 3.2.1.1. We have
(P77 < 2Ly [ I6WRdt+ (g + LyLaKe,) [l
e In'
u—1
+  Lehl|el Y1 + LyLakChld Y 119 |lef 3y + (D)7, ]%
i=0
Proof. We take X = nl* in (3.2.1.16) and obtain
1 . 1
Sl + 5[(77["])7:—1]2
u—2
< o f { i+ 3 [ K= 9)[608 () - Gl o)lds
n =0 :

This yields

(P < 2ny [ i 2Ly [ leb=i 6] - e

i

p—1
" 2L;LG/C/ (ZIIMI-IIGL"]IIfm) [n¥|dt + ("), ]%.
I["']

n \i=0
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Since |e¥!||nl| < || + 2|nl|2, the lemma is proved.

Lemma 3.2.1.2. We have

|l = 22 )t

< OhIL] [ [pWPde+ RIS [ [nPdt+ 3Ll el e

p—1

=1 1 112 i
+ 3(hB)2LELEK pitiax | 18] 1€l 3.

i=0

Proof. To verify the lemma, we select X = (npl#)’(t — tn_l) in (3.2.1.17) and obtain

<

(PP — L)t

[ 790 - ) ()’ - ¢ = kL ae

( " (t— £ )W) - f,[,"](t)]zdt> o (/ —)). [(n[“])']zdt> 1/2.

Hence we have

IA

(A

IA

<

-

T - L)

Al / 1Y) - FP et

1 2
i [ [Lflewu+Lf|e"*-“(e(t))|+LfLa/CZII"‘I Ile"’“ﬂ']

i=0
L3 [ Pat-+ 3L
p—1

3(RM)2L2LE K uih ma.x 1782 ||| 1y

=0

6hLL% /I ,[PP)dt + 6hL L / [n¥]2dt + 3(Rl1)2 L3 |l 1| (Z-y

3(h)? L3 LK iax | 1V1]2 Enef'lnm, (3.2.1.18)

=0

thus completing the proof.
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Lemma 3.2.1.3. We have

</17[{‘] 77&!]@)) < 2(/1%])2[(,7[#]);]2+4(h£¢l)3[l?/ [p[“}]gdt

17[1#]
. 4 11112
+ 4(hlhL3 ./1[#1 [n)2dt + g(hw)ﬁfz?”@gf S

4 Bt
5 (RMD° LG LK wthax [TV el |17

+

Proof. We choose X = t[ ] — tin (3.2.1.17) to obtain

/1,[54 n#(t)dt — A (nlth - = /M (Fl(t) — “](t)](t[“ _ byt

Hence, by the Cauchy-Schwarz inequality, we have

2
(/1,[;‘1 77[u](t)alt) < 2(h #]) [(n ]2+2/,n#1 [f[u](t) _ ﬂ“](t)]th . /,;m(tgﬂl — )24t

Recalling the second inequality of (3.2.1.18) we finish the proof.

To derive the error estimates we need also the following two lemmas from [96].

Lemma 3.2.1.4. There holds

2
/,Lm[@(t)]zdtfg;“](/“] ‘P(ﬂdt) +%/[L#](t£i‘]—t)(t-t Dl (B)]2dt (3.2.1.19)

for all p(t) € PHHI(T [“])

Lemma 3.2.1.5. There holds

leliZ < CMﬂu+)/'wvwa—ﬂﬂmﬁ+cw32

i
for all o € PEO(IHY) 11> 0. The constant C is independent of I¥ and u.

Now we are ready to prove the error estimates.
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Corollary 3.2.1.1. Let K := ||K

1[aT]r Lf = HfHQ and Lg = HGHQ Then, for

hi{‘]Lf small enough, we have
e ||z < C(Ly, Le, K, T, )| |2 — Z24|| 7. (3.2.1.20)
Proof. Combine Lemma 3.2.1.3 and Lemma 3.2.1.4 into

</1L“1 s mdt) 2

< (R + clPLE [ Pt

n

2
+ Py ([ o) e [P - dl e
Ut s Ues

p—1
: - ~L ik i
+ clPEN LYl IFumy + c[AENP LS LEKC? max |10 - 7 1l 1.
i=0

I

where c is a generic constant independent of any parameter. Hence for R L s small

enough, we have

2
(/ﬂnl n[#](t)dt> < (A (o) + c[h[n”]]SL?/I“] [pH)2de

n

+ J4L2 / (=2 (¢ — e )dt+c[h[,i‘]]GL§]|e£,‘“”IIf—[,‘_u

+ c[nlH® LQL2 K? max|l[ ZHe[’]H2 (3.2.1.21)
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We combine Lemma 3.2.1.1, Lemma 3.2.1.2 and Lemma 3.2.1.4 to obtain
(M OYT(E - trl)dt + (oM7)

< oty [ PP+ cLy [P+ )P
p—1

+ cLehl||el |y + cL LeKThES ~ |lell|%,

1=0

2
< oy [ (oPae+ S ([ i) er [ PG - e
X In
p—1

+ ()7 + cLehll) el Fumn + cLeLaKTREL Y _ |lef| o

Using (3.2.1.21) we obtain o
(O = t2l)de + ()3T

< ety [ PPt oLy [ [PV~ e+ oL )i

p—1
+  [(0")7s? + cLh |l Fpmsy + cLs LeKTRE >~ |lell| 3. (3.2.1.22)
1=0

Iterating (3.2.1.22) yields

AP @)PE = e )dt + ()]

< chzh“"anH,mchZ( [P — e,)dt + ()7 12)

i=1 =1
p—1
+ cLg|I™|. ||e3‘-11|[§b,_,, + cLyLcKT|IW) Z ||e51||§—[,.,.
1=0

For all sufficiently small R L ¢, Gronwall’s lemma can be applied and gives

@) — t8,)dt + ()7 ]

p—1
< (chII"‘]I o™ | F + cLg| TW] - ||el= |2y + cLyLeKT|TW]| D ue{:]ll%.-])
i=0

exp(cLy| T¥)).
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Observing Lemma 3.2.1.5 we then find
p—1
HU[MH%[I#] < log(max(p+1,2))eL [ T¥] | [1p¥]|3) + el Gy + LeKT > [el]3y
i=0
We obtain, by using the triangle inequality,

1% < C(Ls, T w)llp% [ + clog(max (s + 1,2)) Ly 1M - el |2,y
p—1
+ clog(max(u + 1,2))L;LeKT|TH Z ||€£f]|ﬁ‘[i1-
1=0

From (3.2.1.12) we know that

||eL“IHf_L#; < C(Lf,T»M)HP[”]H?‘[#I

+ clog(max(u + 1,2)) Ly [T¥| exp(2KLe,r)l e~y

+ clog(max(p +1,2)) L LKT|TH| “Z_lexp(QlCLGEi) Jlef 3.

We use Gronwall’s lemma again and obtain -

le¥| | < C(Lys, La, K, T, )10 1
Our main result is presented as the following theorem.
Theorem 3.2.1.1. Under the assumptions in Corollary 3.2.1.1, we have

lleylls < C(Ly, Loy K, T oy M, ) - % (3.2.1.23)

Proof. From Corollary 3.2.1.1 and (3.2.1.15) we have

eVl < C(Ly, L, K, T, , z)[RlH]#F1. (3.2 1.24)
Combining (3.2.1.24) and (3.2.1.12) we arrive at

e[ < C(Ly, La, K, T, p, y) [R]#F. (3.2.1.25)

We obtain

1
lleyllr < C(Ly, L, K, T, gy My y) - 5
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3.2.2 The DG method for delay VIDESs of neutral type with
weakly singular kernels

In this section we establish the convergence results of the DG method for equations
with weakly singular kernels (3.1.2.3), (3.1.2.7), and (3.1.4.1).

In view of Theorem 3.1.2.4, the solution of (3.1.2.7) satisfies
y € MM (Fu 2 1),
Hence, DG(A) with A := {u + 1}]}L, for equation (3.1.2.7) can only yield
1y = ynllrwm = O(N; =),
on uniform meshes. If we use the graded meshes with grading exponent
re = (u+1)/(1 - a)

(see (3.2.1.3)), then we may achieve the following theorem

Theorem 3.2.2.1. The error estimate of DG(A) method for equation (3.1.2.7)
satisfies

ly — ynllfu = O(N; W2, (3.2.2.1)

Proof. We can analyze the DG(A) for equation (3.1.2.7) by following that of Sec-
tion 3.2.1 except the estimate (3.2.1.15). The paper [96] shows that on the generic

subinterval I there holds
18— T 1 < Ol D112 — all g, + CIEHY = llpagry,  (3:2:2.2)

for any ¢q € 73(““)([,[{‘]). Here and throughout this section, positive constant C is

independent of h¥!. Babuska and Suri [5] stated that

|2 — 2|| 2w < CNH-(H?), (3.2.2.3)
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and

() = 2| 2y < CNS@HD), (3.2.2.4)

where Z is the FEM approximation to 2 on the graded meshes (3.2.1.3) with grading

erponent

re = (u+1)/(1 - a).
The original proof of (3.2.2.4) can be found in Gui and Babuska [54] (compare also
Rice [93]).

Combining (3.2.2.2), (3.2.2.3), and (3.2.2.4) leads to
|2 — T2 | < ONS®F2), (3.2.2.5)

This estimate essentially helps us to complete the proof of (3.2.2.1).

The reads may compare Brunner (24, 23] which established these results in collo-
cation methods on graded meshes for weakly singular Volterra integral and integro-
differential equations.

Similarly, if we choose the grading ezponent as

rw=(e+1)/(1-0),
then we may obtain the following theorem

Theorem 3.2.2.2. We have the error estimate of DG(A) for equation (3.1.2.0)

1y — yall = OV Z#+1),

u

Proof. The proof is similar to that of Theorem 3.2.2.1.

Remark 3.2.2.1. As for DG(A) for equation (3.1.4.1), we can establish the con-

vergence results by combining the techniques in Section 3.2.1 and [80).



Chapter 4

Cascading multilevel discretization
method for parabolic problems

4.1 Introduction

The two-grid method was first proposed by Xu [121, 120, 119] and later further
studied by many others such as [4], [11], [38], [39], [81], [88], [116], [123], and [124].
So far the cascading multilevel discretization method has been investigated by [47],
[71], [72], and [86].

The scheme of Marion and Xu [88] for the semi-linear parabolic equation (4.2.1.1)
is based on two different finite element spaces one defined on a coarse grid with
grid size H, and the other one on a fine grid with grid size h <« H, respectively.
Nonlinear and time-dependence are both treated in the coarse space, and only a fixed
stationary equation needs to be solved on the fine space at each time. Howe.er a
question arises: “how to solve the two equations efficiently?”. We realize that when
the coarse grid size is small, solving the nonlinear time-dependent equation on the
coarse grid is not trivial. In [86] and Section 4.2 of this thesis, we construct cascading
multilevel algorithms (Algorithm A and Algorithm B) based on the scheme proposed

by Marion and Xu [88]. In Algorithm A, only fixed stationary linear equations need

107
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to be solved at each step and the result shows that the convergence rate is O(hy)
in the energy norm | - |;, but it depends on the number of the grids. Algorithm B
requires to solve both stationary linear equations and linear parabolic equations at
each step, the total dimension of which equals to that of the corresponding level of
the P1 conforming finite element space. The convergence rate of Algorithm B is also
O(hy) in the energy norm | - |; and is independent of the number of the grids. We
also present Algorithm C, Algorithm D and Algorithm E for the parabolic equation
with variable delays, parabolic equation with memory term and parabolic Fredholm

equation.

4.2 Cascading multilevel discretization algorithms

In this section, we construct the cascading multilevel discretization algorithms and

derive their convergence theorems.

4.2.1 Algorithm A

We consider the semilinear equation
uy — Au+ f(u) =0, in QxR", (4.2.1.1)

with initial condition

u(z,0) = 4(x) in £,

and boundary condition

u =0, on 09,

where O C R? (with d < 3) is a bounded convex polygonal domain. The nonlinear

term f from R into R is assumed to be of class C* and its derivatives of order up
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to four are bounded on R. We start our analysis from the weak form of (4.2.1.1):
(ue.v) + ((w,v)) + (f(u),v) =0, Yv € HY (D). (4.2.1.2)

where ((u,v)) := (Vu,Vv), and (+,-) is the Ly inner product. We denote |u|, :=
((u,w))?, and ||ullp := (u,u)/?. Let Th, j = 0,1..... J, be the nested quasi-
uniform triangulations of €2, and let V; be the corresponding P1 conforming finite

element spaces. Thus
VoCcViCVy - CVyC HYD.

We assume h; = h;_; /2 (j = 1,...,J), without loss of generality. The corresponding

P1 conforming finite element approximation for (4.2.2.1) is: Find u; € Vj such that
(uje, v) + ((u5,0)) + (f(u;),v) =0, Vv € V}, (4.2.1.3)

with u;(0) = Q;u, where the operator Q; is defined in (4.2.1.8) below. We present

some results for the P1 conforming finite element approximation to (4.2.1.1). First,
ol < chiYlvllo, Ilvllz=(@) < chy*Pllvlliam), for 1< p< oo, VueV;, (4.2.1.4)

which are the well-known inverse inequalities (cf. Ciarlet [35], Brenner and Scott

[22], Xu [122]). We have the following estimates:

|(u—u;)(t)y < Chy|logh,l°, (4.2.1.5)

1w =)@l < ChZloghyl”, 0<i<2, (4.2.1.6)

where o is some nonnegative constant. Here and throughout this chapter C denotes
the generic constant, which is independent of 4; and j, but may depend on ¢.

The proofs of (4.2.1.5) and (4.2.1.6) with ¢ = 0 can be found in Johnson et al.
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(78] and in Crouzeix, Thomée, and Wahlbin [36]. Their techniques together with
those in Thomée [113] can be extended in a straightforward manner to higher-order
derivatives.

Now we consider the splitting of the ~space Vj:
V=V eV with V™= (1 - Q1) (4.2.1.7)
where Q;_, : L*(Q) — Vj_; is the L? orthogonal projection into V;_,, as defined by
(Qj;—1v,v5) == (v,v;), Yv; € Vj_;. (4.2.1.8)

Note also that V;_, and ij_l are orthogonal with respect to the scalar product (-, ).

We introduce the operator R§—1 Vo — ij“l by setting
(B w5, %)) = ((v3, %)), YVx € Vi~ (4.2.1.9)

The cascading multilevel Algorithm A and Algorithm B associated with

Vi, Vi1, V?™1) consist of looking for an approximate solution
J J 7 S
W=+l withu! € V), v/ e Vo, wl e VI (4.2.1.10)

for (4.2.2.1).

Algorithm A: Solve directly with respect to v°

(07, ) + (0%, 0)) + (f(2°),4) = 0, Vo€, (4.2.1.11)
UO(O) = Qoﬁ
For j =1,...,J, solve the linear system of equations for w’:
(@' +w?, ) + (f(71),x) =0, vx eV, (4.2.1.12)

uw =7+ (4.2.1.13)
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v o=, (4.2.1.14)
Note that equation (4.2.1.12) defines w’ uniquely in terms of v/~!. We denote the

corresponding mapping by

w = o 1). (4.2.1.15)

In order to establish the convergence of Algorithm A, we shall prove or cite a number

of lemmas and assertions.
The following lemmas (Lemma 4.2.1.1 and Lemma 4.2.1.2) and assertions ((4.2.1.18)—

(4.2.1.25)) and their proofs can be found in Marion and Xu [88].

Lemma 4.2.1.1. Let [v, 9], := ((({ — Rg"l)v, (I — Rg_l)gb)). Then vj_, satisfies
(V—1. ) + [Vj-1, 8l = (W, RI7'S) + (f(uy), RI7'6 — ¢), Vo€ V. (4.2.1.16)

Lemma 4.2.1.2. Let ||¢]]; := |(I—R§—1)d>|1. Then there exist two constants C, and

Cs, independent of the grid size, such that,

Crlgl < 18l < Caléli, Vo € V). (4.2.1.17)
For t > 0, we have
llwjllo + [lwsello < ChZ_y, (4.2.1.18)
jw; — ®(vj_1)li < Chd_y, (4.2.1.19)
[lw; — @(vi-1)llo < Chj_,, (4.2.1.20)

where ® is as in (4.2.1.15). The following two assertions are essential in proving the

convergence of Algorithm A and also Algorithm B for (4.2.1.1).

lwj —w|y < Chj_y + (1 + Cshy)lels, (4.2.1.21)

llw; —w’llo < Chj_; + (14 Cihy)lejls. (4.2.1.22)
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ej := vj—1 — v7~1. The following estimates are also helpful in the proof of the results

in the thesis:
1(f(u;) = F@*1), RE7'¢)llo < Chjallejllolgl + Ch3_,|d)1,

I(£(?) = £(u;), B)llo < C{llesllo + hi-alesh + h_y Higllo,
|(uje, BRI @)1 < CRY_, o)1
Lemma 4.2.1.3. We assume that
W=+, withw eV, ¥ e Vi, @ e V],
and

@, 0) + (F, 8)) + (F(#1),6) = 0, Ve Vi,
#40) = Qb
(@ + 97, %) + (F(# ), x) =0, VxeV/™

In particular, let

i =u, ¥V=sv,d =w,

and the initial value 4 € L%(Q) be given. Assume also that
h3|log hj|” < h3_;,
where o is as in (4.2.1.5) and (4.2.1.6). Then

luj — @) < C(K1)h,

where Ky = 2(1 + Cs3hj_,) and Cs3 as in (4.2.1.21).

(4.2.1.23)
(4.2.1.24)

(4.2.1.25)

(4.2.1.26)

(4.2.1.27)

(4.2.1.28)

(4.2.1.29)

(4.2.1.30)

(4.2.1.31)
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Proof. Firstly, we note that (4.2.1.30) is necessary for the proof of (4.2.1.18) (see

Marion and Xu [88]). Let

u; =@ = Juy = T =@ =y -+ wy — @ - ws

< lwy — @7y + |lwsly + Chy_y. (4.2.1.32)
We estimate the term

|’U.)j — ’LZ)jll < Ch?_l + (1 =F Cghj_l)lvj__l — ﬁj—lll
= Ch?_l ol (1 SF Cghj_l)]Uj_l — ﬂj—l ol Uj—1 — Uj—lll

= Ch?_l S (1 SF Cghj_l)lu_j_l — ﬂj_l + Vj—1 — Uy als U; — Uj_1|1

IA

(1+ Cshj_1)luj—1 — @1 + |wjly + Chjy + Ch_;. (4.2.1.33)
In view of (4.2.1.32) and (4.2.1.33), we have
lu; — @)1 < (1+ Cshjoy)|uj—1 — @ 1 + Clwjly + Chjy + Ch3_,.
Noting (4.2.1.18), the previous inequality arrives at
lu; — @) < Kiluj_1 — @71 + Chjo1 < C(K1) hy, (4.2.1.34)

which is (4.2.1.31).

Theorem 4.2.1.1. The error estimate of Algorithm A for (4.2.1.1) is given b

lu — u?]y < C(2K2)"hy, (4.2.1.35)
where Ky = 1+ Ch?_,.
Proof. From (4.2.1.27), we know that 297! = u;_;, thus (4.2.1.28) becomes,

((wj-1 + @, X)) + (f(y5-1),X) =0, ¥x € Vi~ (4.2.1.36)
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And (4.2.1.12) is
(W 4w X))+ (f(W ™). x) =0, Vxe V)™ (4.2.1.37)
Combining (4.2.1.36) and (4.2.1.37), we obtain
(@ —w?, x)) = =((41 — W75 %)) = (f(u1) = f(@?71), x0). (4.2.1.38)
substituting v = @’ — w’ into (4.2.1.38), we get

@ —w|f = —((wyor — 7@ —w?)) = (fuj-1) = f(W/ ), @7 — )
< ujor — T [ — W),

+ Ch3_jluj — W/ [ — wy (4.2.1.39)

Hence,

@7 = wly < (1+ Chj_)lujmr — w7 (4.2.1.40)

Now we estimate

lu; — |y = |u; — @ + @ — W)

I

luj — @ +ujo — W+ —

< Juy =@+ o =@+ [ - W
S C([\,l)]h] ain ’uj——l — Uj_lll = (1 ain C'h?—_l)luj_l — uj—l\l
< C(Kl)]h] ain I(2|uj—1 — Uj_1|1, (42141)

where the second step follows from (4.2.1.13) and (4.2.1.26), and the fourth step is
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based on (4.2.1.31) and (4.2.1.40). Therefore, (4.2.1.41) yields

luy —u?)y < C(K1) hy+ Koluy_y —u? ™Y

< C(K)’hy+CKyK{7 7 Yhy_y + K3 |luy_s —u’/ 72|

IA

C(K\) hy+CKoK{*hy_1+ -+ CKJhg

< (2K3)’hy. (4.2.1.42)
Consequently, we achieve
|u-uJ|1 =|u—uy+uy —ul|) £ lu —uy|y + |uy —u’|, < C(2K3)7 hy,
which is (4.2.1.35).

Remark 4.2.1.1. We know from Theorem 4.2.1.1 that when we fix the number of

grids, the convergence rate of Algorithm A is O(hy).

4.2.2 Algorithm B

In this section, we construct Algorithm B, which solves both time-dependent linear
and stationary linear equations at each level of the P1 finite element space.

Algorithm B: Let

u’ = Qoll (4.2.2.1)
For j =2,...,J, solve
(W7 0) + (VT +wd,0) + (fF(W7),0) =0, Vo€V, (4.2.2.2)
(@ +w, X)) + (f(771),x) =0, VxeV]™ (4.2.2.3)
w = v (4.2.2.4)

for v7~! and w’.
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Theorem 4.2.2.1. Under the assumptions of Theorem 2.1 we have
IU—UJ|1 S ChJ, (4225)
where the constant C s independent of the grid size hy and the grid J.

Proof. We use the corresponding notation of Section 4.2.2.1 and we claim that

W) + [T ol = —(fF(WTh), @) + (f(V71), RTM¢), Vo E Vil (4.2.2.6)

The proof of (4.2.2.6) is the analog of that of (4.2.1.16). Because of (4.2.2.6) and

(4.2.1.16), d; := v;—; — v/~ satisfies

(dje, @) + [dj, ol = (wje: R2TH) + (F(uy) — f(0771), R7'¢) + (F(w7 1) — Fwy), ©).
(4.2.2.7)

We estimate

Cllw ™" — u;lloll#llo

< (™t = ullo + Chi—)|ldllo.  (4.2.2.8)

(™) = f(w5), D)o

IA

Substituting ¢ = d;,; into (4.2.2.7) and using (4.2.2.8), we see that

Hdjells + [d,djei < (we, ij‘ldj,t) + (f(uy) — fF(*71), Rj:_ldj,t)
= (||uj_1 - Uj_1||0 + Chj_l)HGsHO (4229)

The estimates (4.2.1.23), (4.2.1.25), (4.2.1.17) and Young’s inequality leads to

d([dJl%) < ChZ ld[2 + Ch2 |uj—1 — U l2 + Ch2
dt = j—11%711 7—1 J—1l1 j—1-

Hence,

t
|d;1T < Ch3_y + Chi_y|w/ ™" —wyafi + Ch§—1/ W™ — u;|Tds.
0
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u; =] < 20dlT + 20w, — W’} < Cldsf; + CRS_,
t
< CR, +CRfuy_y — w2 + Chj_l/ ;1 — i~ |2ds.
0
Therefore,
‘LLJ - ujll S Chj_l = Chj_1|Uj_1 — Uj o
Iterating (4.2.2.10) yields

luy —u’|y < Chy_1+ Chy_qluj_y —u’™)

IN

Vas A

+

ChJ[]. JL hl (2“(J_3) JL 2_(J_3)2_(J_4) dL oo

Chyj_1+ Chy_1thj_o+ Chy_1hy_sluj_s —u’ 72|

ChJ_l+ChJ_1hJ_2+"‘+ChJ_1hJ_2"'h1

2-(U=39=U=9 .. . 1)] < Ch,(1 4+ Chy) < Chy.

Remark 4.2.2.1. In Algorithm A and Algorithm B, we need to solve the linear

equations (4.2.1.12) and (4.2.2.3), respectively. For the further study of the linear

systems in ij—l, the author refers to Marion and Xu [88].

4.3 Comparison and discussion

We summarize the presentation of Section 4.2 in Table 4.3, and add some discussions.

Table 4.1: Comparison of Algorithm A and Algorithm B

Algorithm

Convergence

Open question

Literature

A

O(hy) (but dependent on J)

CMGI

B

O(h,) (independent on J)

CMGI

[88]
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Algorithm A and Algorithm B are based on the L, decomposition techniques. Al-
gorithm A needs only to solve a linear fixed stationary system of equations in V;-J'l
of each step. Algorithm B requires the solution of the linear parabolic equations in
V;_1 and the linear fixed stationary equations in ij_l at each step. If we incorporate
the classical iteration methods (called smoothers) into the linear stationary system
or the linear system arising from the linear parabolic equations with discontinuous
Galerkin (DG) time-stepping methods or other methods, then it is not difficult to
formulate the cascading multigrid iteration method (CMGI). which is ongoing work.
For the idea of cascading multigrid methods, Algorithm A avoids the solving of the
linear parabolic equations. Hence, it is much easier to implement cascading multi-
grid iteration methods, but it can be used only when we fix the number of grids.
Although Algorithm A and Algorithm B have the same convergence rate O(hy),
Algorithm A is dependent of the number of grids J, while Algorithm B is not. So
Algorithm B is more accurate than Algorithm A with respect to convergence: it has

a smaller error constant.

4.4 Extensions to other parabolic problems

In this section we extend the analyvsis of the cascading multilevel discretization
algorithms to parabolic partial differential equations with variable delays and with

nonlinear memory terms.
4.4.1 Parabolic equation with delay argument

We consider

u(z,t) — Au(z, t) + flu(z,t),u(z,0(t)) =0, Vee, tel:=[0,T], (4.4.1.1)
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with initial condition
u(z,t) = a(z.t), YVreQ, Vi <0,

and boundary condition

w(z, t)sa =0, Vtel,

where Q C R? (with d < 3) is a bounded convex polygonal domain. Consider the

case of
flu,v) = fi(u) + fa(v).

Here f; and f, from R into R are assumed to be of class C'! and their derivatives are

bounded on R. The delay function 6(¢) will be subject to the following conditions
(i)—(iii):
(i) 6(t) =t — 7(t), 8 € C4(I) for some d > 0;
(ii) 7(t) > 10 >0 fort € I;
(iii) @ is strictly increasing on 1.

We define the points {£,}, 0 =0,1,...,M, by

9(6#) = f/.t-—la p=1,

where & := 0. I = [£i-1,&], ¢ = 1,..., M. Furthermore we assume, without
loss of generality, that T' = Z;Zl |I|. We note that we shall use the corresponding
notations in Section 4.2.2.1. We shall analyze the P1 conforming finite element

approximation to (4.4.1.1). The weak form of (4.4.1.1) is

(ug,v) + ((u,v)) + (f(u(z, t),u(z,8(¢)),v) =0, Yve Hy(Q). (4.4.1.2)
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If we set ull := u(z,t), t € I, then (4.4.1.2) can be written as

(!, v) + (@, ) + (A2, 1)),0) + (fo(uE (2, 6(2))),v) = 0, Vv € HY(D).
(4.4.1.3)
for all t € I, Correspondingly, the P1 conforming finite element approximation to

(4.4.1.1) is

(use, v) + ((u5, ) + (f (us(z, 8), u;(z,6(2))), v) =0, (4.4.1.4)
for all v € V; with u; := R;a(z,t) (¢t <0), and

(u[-i]

o) + (@ 0)) + (L2, 0),0) + (ol (=, 00),v) =0,  (4.4.1.5)

for all v € V; (¢t € I1), where ugi] = u;(z,t) (¢t € IU). We are now ready to present

the convergence results of the P1 conforming finite element method for (4.4.1.1).

Theorem 4.4.1.1. Let u and u; be the solution of ({.4.1.1) and (4.4.1.4), respec-

tiwely. Then we have

lu —uille < ChI|loghyl%,
IU'—UjII S Chjlloghjlg,
where o is as in (4.2.1.5) and (4.2.1.6).
Proof. For convenience, we define

e(t) := u(z, t) — u;(x,t), el := ull(z,t) — u?](z,t), gl .= glil — ugi},

where &?] is the solution of

(@, o) + (@, 0)) + (Fu(@ (=, £), v) + (fo(ul (2, 6(2))),v) = 0, Vv € Vj, (4.4.1.6)
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for t € I®. From (4.2.1.5) and (4.2.1.6), we know that

|l — @, < Ch?|loghyl7, Vie IW, (4.4 1.7)
jull — @), < Chylloghyl®, vt e IU. (4.4.1.8)
Because of
el (t) := ull(z, 1) — ull(z,1) = (ul? - @) + (@ - ully, (4.4.1.9)
we need only to estimate the term égi] o= ﬂg-i] — ugil. Subtracting (4.4.1.5) from

(4.4.1.6), we obtain

(&%, v) + (&, ) + (AE (2, 1) - A (=,1)),v)

+(fo(ub(z,0))) = folul(z,0())),v) =0, Vv eV, (4.4.1.10)

Substituting v := e?] into (4.4.1.10) leads to

1d (11E"13)
2 dt

a (118")13)
dt

+ (&2 < ¢))e2 + C|leb =1 9(2) ol e o,
and
< C|1e@)]]2 + ||et=1(a())]|2.

Consequently, we have

. . t R
189112 < ety 2 + / exp(C - (¢ — ))][ei=Y(8(s))|2ds.
ti—1

Hence, the estimates

18 @)1l < Clle @)1, (4.4.1.11)
&N B < Cleb=1(e)]s, (4.4.1.12)

hold. According to (4.4.1.9), (4.4.1.7) and (4.4.1.8), we get

lle®(®)]lo < |Juf(2) — @ (2)]o + |1E]|o < Ch2|log hs|” + C||et=Y(t)|lo, Wt € IV,



Similarly, we find
lell(t)], < Ch;|log h;]° + Clel=YU(t)|,, vt e 11
and this leads to

lle(t)lo < Ch3|loghy|°,

le(t)li < Chylloghyl°.

Algorithm C: Let
u’ = Rpii(z,t), vt <O0. (4.4.1.13)

For j=2,...,J, solve
(u,v) + (v, v)) + (fF(? ™ (x, 1), W "}z, 8(t))),v) =0, VvV, (4.4.1.14)
for u?.
Theorem 4.4.1.2. Assume that
|loghj1|” < C. (4.4.1.15)

Let u and u’ denote the solution of (4.4.1.1) and Algorithm C, respectively. Then
we have

lu —u’|, < Chy,
where C s independent of hy and the number of the grids.

Proof. Let §; := uj — u/. Then subtracting (4.4.1.14) from (4.4.1.4), we get

(85,6, v) + (85, 0)) + (f(ws(z, 1), u(z,0(2)) — fF(W! ™, 1), v " (=, 6(2))),v) = 0.
(4.4.1.16)



Now we estimate

1(f(ws(z, 1), u;(2, 0(2))) — F(w 7 (@, t), W~ (2, 6(2))), v)llo (4.4.1.17)

< IS (w2, 8), w2, 0(1))) — £(7 (=, 8), v/ (z, 6(2)))llolvllo
< [Cllus(z,t) = uja(2,t) + 651l

+ Cllui(,0(8)) — uy—1(2,0(2)) + 6;-1(2, 6())llo] - [[v]]o

< [Chi_illog hja|* + [16;-1(z, t)llo + [16;-1(, 6(£))llo] - [[vllo.

Substituting v = §;,; into (4.4.1.16) and combining (4.4.1.17), we obtain the estimate

d(|9512)
165,618 + d—il

IN

[Chi_1llog hj1|* +18;-1(z, t)llo + [18;-1(z, 8(t))llo] - 118;.ello
< Chj_yllogh;1[* + h3_ 1|6, 1(z, )3 + hi_,|6;-1(z, 6(¢))3.
Hence, it holds that
G
5,12 < iy log hyma [ + B2, [ (1(2,s)E + 65a(,6())D)ds. (4.4.1.18)
0

Iterating (4.4.1.18) leads to

16;13 < Chi_j|logh;_1]** + ChZ_h;_,|logh;_o|* + - -

+ Chj_yhi -+ hillogh|* < Chj_;. (4.4.1.19)

In the last step of (4.4.1.19), we used the assumption (4.4.1.15). Recalling Theo-

rem 4.4.1.1 and (4.4.1.19), we obtain
lu—u’l|; < 1U—UJ|1+|UJ_UJ|1 < chy|logh;|7 + ch; < chy,

which is our desired result.
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4.4.2 Parabolic equation with memory term

We consider
t
u — Au +/ k(t —s)G(u(z,s))ds =0, VzeQ, Vte I :=|0,T], (4.4.2.1)
0

with initial condition

u(z,0) = a(x), Ve Q,

and boundary condition
u(z,t) =0, Vred, Vtel,

where 2 C R? (with d < 3) is a bounded convex polygonal domain. The nonlinear
term G from R into R is assumed to be of class C!, with bounded derivatives on R.

Furthermore we assume k € C*(I). The weak form of (4.4.2.1) is
t
(e 0) + ((@,0) + | K(t = 5)(Glula,5)),v)ds =0, Vv HY(®)
0

where (G(u(z,s)),v) := /G(u(:r, s))vdz. Correspondingly, the P1 conforming finite
)

element approximation is given by
t
(uje,v) + ((uj,v)) + / k(t —s)(G(u;(s)),v)ds =0, Vv eV, (4.4.2.2)
0
with u;(0) = R;4. We know that
lu — uj|1 < Ch;, (4.4.2.3)

which can be found in [34].
Algorithm D: Let

UO = Ro’ll



For j=2,...,J, solve

(ul,v) + ((v?, ) + /O k(t—s) (G + G (W)W — w7, v)ds =0, Yevel],

for u’.

Theorem 4.4.2.1. Assume that

hj_1 <

(2v2)7
Then

lu —u’|; < Chy,

where C s independent on h; and the number of the grids.
Proof. Let e; := u; — u’. Subtracting (4.4.2.4) from (4.4.2.2) yields

(e56,v) + ((e5,v)) + /O k(t —5) (Gluj—1) = G ™) + G'(w5-1) (yy

—G' (W =)+ O((uj —uj—1)?),v)ds =0, Yve V.

Bringing v = e;, into (4.4.2.6), we arrive at

|[ || 1d(|€]])
Cello ¥ 55

Hence, we achieve

dt

by using |ab] < 2(a? + b?).

Integrating (4.4.2.7) yields

lej|? < Ch; 1+2t/ lej—1]3ds < Chi_; + C2h;_, +

t
<Ch,+ C(/ k(t — 5)[|e;_1]ds)2.
0

(4.4.2.4)

— uj-1)

(4.4.2.6)

d(le;|?
(le; 1) < Chi, +CR2, / k(t — s)llej—1]1ds)® < C(h 1+‘>/ lej-1]7ds),

(4.4.2.7)

-+ C2P72h} < Ch287R2_)



Therefore. by using assumption (4.4.2.5) we get

lejli <Ch; (1=1,...,J). (4.4.2.8)
Then (4.4.2.8) and (4.4.2.3) lead to
I

lu —u’ly < fu—uyly + |uy —u’|y < chy,

which completes the proof.

4.5 Application to parabolic Fredholm equation

4.5.1 Finite element method for parabolic Fredholm equa-
tion

Consider the parabolic Fredholm equation
uy — Au = / fluw)dz, Yz e Q, tel :=]0,T], (4.5.1.1)
Q

with initial condition

u(z,0) = u(z), Vx €,
and boundary condition
u(z,t) =0, Ve o, tel.
We assume that f satisfies
|f(w1) — flu2)| < Lyllur — uallo, Vui, us € A CR,

such that (4.5.1.1) possesses a unique solution u € A. We refer [32] for the general
description of the parabolic Fredholm equation. We begin our analysis with the

weak form of (4.5.1.1),

(ug,v) + ((u,v)) = (/(; flu)dz,v), Vv € H} Q). (4.5.1.2)
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The corresponding P1 conforming finite element approximation for (4.5.1.2) is: Find

u; € V; such that

(uje, v) + ((uj,v)) = (/Qf(uj)da:,v), Vv eV,
with u;(0) = R;i, where R; : L?(Q) — V; is defined by
((u — Rju,v)) =0, YveV,.

We know from Ciarlet [35] or Brenner and Scott [22] that

HU — RjUHo < Chjz,

IU = Rlel S Chj,

where the constant C is independent of Aj;.

(4.5.1.3)

(4.5.1.4)

(4.5.1.5)

(4.5.1.6)

Theorem 4.5.1.1. Let u and u; be the solution of (4.5.1.2) and (4.5.1.8), respec-

tively. Then we have

Ch2,

VAN

||u — ullo

lu—u;|; < Ch;
where the constant C is independent of h;.

Proof. Let

e=u—uj=u— Rju+ Rju—u;:=p+0.

Subtract (4.5.1.3) from (4.5.1.2),

(e0r0) + (e, 1)) = ( /Q (F(w) — flu;)ldz, v), VeV

(4.5.1.7)

(4.5.1.8)

(4.5.1.9)
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Hence, we have the estimate

WMWHWM)=(LWM—N&Mﬁw)
+<Lm&w—ﬂwwLw—mm» (4.5.1.10)
for all v € Vj, with 8(0) = 4; — R;4 in §2, where
160110 < ll; — @lo + 1 — Ryallo < CK2 (45.1.11)

Taking v = 0 in (4.5.1.10), we obtain

14d(1611)

5= TIO < LAl 116115 + Ls191 - llellol 1610 + [lellol 16110

< BLAQL + 2)116l]o + 2L£1€2[]pllo + 2][ello-

Consequently, it holds that

a(110115)
dt

< 2(3Ly |9 + 2)I10115 + 4L £ 12011113 + 4l1p¢][5- (4.5.1.12)
Integrate (4.5.1.12) with respect to t:
t ) t R
116115 < 116(0)]13 +/ 2(3Lf|Q + 2)16]l3ds +/ 4Lf1Q[ol15 + 4l]oel5)ds.

0 0
Gronwall’s lemma leads to

t
16173 < € (16IE+ [ 1iAIR -+ 11pdBids ).

Therefore, we have

18llo < Ch3, (4.5.1.13)

where C' is independent of h;. Hence, we only need to derive (4.5.1.7).
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To prove (4.5.1.7), choose v = 6, in (4.5.1.10) and arrive at

e+ 355 = ([ (7w) — f(Rwdz, 60

L / F(Ryw) — F(u,)]dz,0.) — (pr, 6r)

IA

Q
I () = F(Rzwldsllo - 18dl
+ ) [ U Rsw) = £ ldall - 18l -+ llclol el
Q
< SN8IR + 2L30P116l1E + 23191116113 + 2llodl i

After eliminating the first term on the right-hand side and integrating with respect

to t, we obtain (in view of (4.5.1.13) and (4.5.1.11))

101 < Chy,
where C is independent of h;. Thus, we have verified Theorem 4.5.1.1.
4.5.2 Algorithm for parabolic Fredholm equation

Algorithm E: Let

u® = Rot
For j =2,...,J, solve
(ul,v) + ((v,v)) = (‘/Q f(WYdz,v)ds, Vv eV, (4.5.2.1)
for u’.
Theorem 4.5.2.1. Assume
hj—1 < (—2%2)—]— (4.5.2.2)

Then

Iu—uJ|1 < Chy,

where C is independent of hy and the number of grids.
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Proof. Let e; := u; — u/. Subtracting (4.5.2.1) from (4.5.1.3) yields
(eje,v) + ((e5,v /[f w) — f(WH]dz,v)ds, Vv eV, (4.5.2.3)
Substitute v = e, into (4.5.2.3) to obtain

12
lesll + 37 < leseloll | (7(us) = fus-nldsly

+ legalloll / [Fagm) — FlaI=dzllo
< Slleslld + L3Ol — w3

+  L3HQP w1 — T3 (4.5.2.4)
Therefore, after eliminating the first term of right-hand side of (4.5.2.4) we find
('(‘Z D < ond, +200e; 42 (4.5.2.5)
Integrating (4.5.2.5) leads to

le;|3 < Chi_, + oc/ lej—1l3ds < Chi_y + 2Ch}_, + - -+ 277°Ch} < Ch287h%_,
In view of the assumption (4.5.2.2), we achieve
lejl1 < Ch,. (4.5.2.6)
and hence, combining (4.5.2.2) with (4.5.1.8),
lu —uw!|; < Ju—uy| + |us —u!|; < Chy,

which completes the proof.



Chapter 5

The abstract cascading multigrid
method in Besov spaces

It is important to mention that Bramble [19] contributed the general analysis of
the V-cycle and the W-cycle in an abstract setting. Consider the FEM equation
(5.2.1.2):

Aryr = Qig,
where Ay is symmetric positive definite. Let A, and Ay, denote the largest and

smallest eigenvalue of Ay, respectively. The condition number of Ay is defined by

/\max
K(Ak> = N 0

In view of the process of iteration, we know that the smaller the condition num-
ber K(Ax) the more effective the iteration method is. Therefore, we define the

preconditioning operator (or: preconditioner)
Bk o Vk — V; 5

such that the condition number K (B Ay) is as small as possible. Instead, we now

solve the equation

BrAryr = ByQryg,

131
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by the iteration method. Indeed, this approach is more efficient. However the new
problem arising is how to construct such a precondition operator By with as little
computational cost as possible. Bramble [19] and the references mentioned there
showed that the multigrid processes, the V-cycle and the W-cycle, are the 1deal
methods. We shall prove that the cascading multigrid process is also a simple and
robust method. Bornemann and Deuflhard [15] provided the numerical examples to
compare the cascading multigrid algorithm with the V-cycle algorithm. We analyze
this by using the general framework with the assumptions abstracted from the FEM
discretization of a given problem. In fact, the abstract multigrid framework provided
us with a good way to describe the method for more complicated problems. To
see this, we shall apply the cascading multigrid algorithms to the heat equation
with mild regularity in Besov spaces [6] and to the equation discretized by the
interior penalty discontinuous Galerkin method (see [52] and references therein). In
comparison with the analysis in Shi and Xu [107], a distinctive feature of our method
is the use of block Jacobi and symmetric Gauss-Seidel iteration as smoothers. We

also extend these methods to VIDEs.

5.1 Notations and definitions

5.1.1 Bilinear form and induced norm
A bilinear form A(-,-) in a Hilbert space V is called symmetric and elliptic, if it
satisfies

1. (Symmetry) A(u,v) = A(v,u), Yu, ve V.

2. (Continuity) There exists a positive constant C, such that,

A(u,v) < Cllullv||vllv, Yu, veV.
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3. (Coercivity) There exists a positive constant ¢, such that,

A(u,u) > cllullz, VYu, veV.

Here || - ||v is the norm in V.
We find that the elliptic bilinear forms can define norms in V. Let the elliptic

bilinear form A(-,-) define the norm ||| - ||| by
- 11l = (A )Y2,
and let the elliptic mesh-dependent bilinear form A(-, -) induce the norm ||| - |||« via
- e == (Ax(, )2
Define the time-dependent norm (see Section 5.2.2):
1l = (772G ) + AG, )Y,

and
U ks = (P72 ) + Ak, )2

Here (-, -) is defined by
(u,v) :=/uvd:c, Yu, v eV,
Q
and the temporal mesh size 7 is a given positive number.

5.1.2 Function spaces and their norms

We introduce the multi-index notation. A multi-index is defined as

a:=(a1,...,q,), a; €Ny.
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The length of « is given by

n
ley] o= Z 0.

i=1
For ¢ € C*, we let
aal aan
Da¢:= e ...a - ¢.
T Lp"
Given a vector z := (z1,...,Z,), we define z* := zJ* - 252 - - - 2%~

Let k£ be nonnegative integer and let
w € L} () :={w: we L'(K), V compact K C interior Q}.

Suppose also that the weak derivatives D*w exist for all |a| < k. Define the Sobolev

space norm

1/2
||w|| ey = (Z ||D°w||%=(n)) -

lal<k

We define the Sobolev spaces via
H*Q) := {w € Lin(Q) : ||w||a@) < oo},
and
HYQ) := {w € H¥Q) : w|snq = 0}.

Let s be a nonnegative real number and let [s] denote the integer part of s.

Define the norm

1/2
- 2 lw*(z) — w*(y)[?
[lw||ere(e) == (”w”m-l(n) s+ llz—%] aJa lz— y|"+(“[’])2 ddy '

Then we define the fractional Sobolev spaces (Slobodeckeij space) via
H*(Q) == {w € Lj,o(Q) : ||wl|ae(a) < o0},

and

H2(Q) = {w € H*(Q) : w|sa = 0}.
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Remark 5.1.2.1. We direct the readers to the book [1] for more general definitions

and properties of Sobolev spaces.

Kufner, John, and Fucik [79] and Triebel [114] discuss the method of defining
fractional Sobolev spaces and Besov spaces by using the interpolation theory.
Let X and Y be two complex Banach spaces. Then we define, for 8 € (0, 1). the

interpolation space

(X, Y]sc i ={weY: supt‘QGK(t,w)2 < o0},

t>0

and the K-functional by
K(t,w) := inf (|lwoll% + ¢*|lw — woll})"2.
wo€X
For an appropriate bounded domain 2 C R™, we define the Besov space via

B*(Q) := (H>* (), H(Q))

6,00

where § € (0,1), and sy and s; are nonnegative integers that satisfy so # s,

s=(1-—8)sg+ 0s;.

Remark 5.1.2.2. If s is a fractional and positive number, then H*(Q2) := B*(Q2) is

the fractional Sobolev space.

We now introduce the Besov space Bj;’ defined by the subspace interpolativ.l of
multilevel norms. The definition originates from [6].
Assume that

WwcVWecCc---CcVeC---

is a sequence of finite-dimensional subspaces of H}(€2) whose union is dense in H} (),

and let Q; denote the L?(Q2) orthogonal projection onto Vi with Qg := 0 (see also
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(5.2.1.1) of Section 5.2). Let
B*(Q) := [L*(Q), H ()]s 0

We introduce two norms, namely

o0

|lwl| gz = D (@ TR(Qk — Qr—1)wl |2,
k=1
and
w|l5=. = [lwl|5-« + [Jw]|3-..
01 1

The space Bg,® is then defined as the completion of L*(2) with respect to the norm
H ’ HBo—f'

5.2 The abstract cascading multigrid method
5.2.1 The cascading multigrid algorithm

Consider a finite-dimensional space V' equipped with an inner product (-,-) and a
bilinear form A(:,-), with corresponding norms || - || and ||| - |||. We further assume
that A(-,-) is elliptic (i.e., continuous and coercive) and symmetric. We let the

subspaces Vj satisfy

VocVic---CcV;=V,

and we define the linear operator Ay : 1V, — Vi by
(Agu,v) := A(u,v), forall u, v e V.

Obviously Ay is symmetric and positive definite. Furthermore, we define two pro-

jectors P : V; — Vi and Qr : V; — Vi by

A(Peu,v) = A(u,v),
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and

(Qiu,v) = (u,v), (5.2.1.1)

for all u € V; and v € V. We also need to introduce a generic linear smoothing
operator Ry : Vi — Vi with the assumption that Ry := Agl. For ease of analysis,
we assume also that Ej is symmetric. To solve the equations for each level A :=
0,1,...,J:

Aryr = Qk9, (5.2.1.2)

we shall now define the precondition operator B = B; by the following cascading
multigrid algorithm.

CMG Algorithm I:

0) Bg := Ag'.

Define By implicitly in terms of By, for k=1,...,J:

1) For £ =1,...,my, we set
Ye = Up |+ Re(Qrg — Aryph).

Here y2 = Br_1Qk19.
2) BrQxrg = yi *
In order to analyze the CMG Algorithm I, we need to make the following four

natural assumptions.
Assumption 5.2.1.1. Let A\ denote the maximum eigenvalue of Ai. i.e.,

A
M = sup U Y)

5.2.1.3
veVk (U,U) ( )

For giwen a € [0, 1], there exists Cy, independent of k such that

(A7 = Pe)u, (I = Per)u) < Cadp®A(w,u), for allu € Vi
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Assumption 5.2.1.2. Let Ky :=1— R Ay. Ry, := w/\,:1[ and Ky, =1 — Ry ,4,.

There exists w € (0, 1] such that
A(Krv, Kpv) < A(Rgw)2v, Kiwiov), for allv € V.
Hence it holds that

A(K™ v, K[*v) < A(K:jﬁv, K,Z""'/Qv), for nonnegative number m and for v € V.

Assumption 5.2.1.3. We suppose that, for the given constant b > 0,

Ag

Ag
< /\kSCbJ—k'

pl—k =

&

Here and throughout the paper, ¢ and C denote generic positive constants which qre

independent of k.

Assumption 5.2.1.4. For 3 > 0, let

mg = LﬁJ_kaJ )

where |-| means the greatest integer function.

Remark 5.2.1.1. We see that Assumption 5.2.1.1 is reasonable, if we refer to the

elliptic boundary value problems with less than full reqularity (cf. [15] [105]).

Remark 5.2.1.2. Bramble [19] tells us that block Jacobi and (symmetric) Gawss-

Seidel are the examples of Ry satisfying Assumption 5.2.1.2.

We need also the following lemma about a property of Ky, which is necessary

for the analysis of the cascading multigrid method.

Lemma 5.2.1.1. The iterates of K'% possess the following two properties:

A(Ksv, Kgv) < A(v,v), (5.2.1.4)
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and

A—a
A(K M0, Kh) < C'ng(Al—av. v), (5.2.1.5)
for w € (0,1] and a € (0.1].

Proof. See (pp. 164, Brenner and Scott [22]).

Theorem 5.2.1.1. Let B, be defined by CMG Algorithm I and assume that As-
sumptions {5.2.1.1, 5.2.1.2, 5.2.1.8, 5.2.1.4} hold. Then we have

C ! /\;a/QA b
’ 1 — (6/6)0/2 : ma/g (U,U), fOT'ﬁ > 0,
A((I - BjAj)u,u) < \-o/2 /
C-J- JQ/QA(U,,U), for 3 =0,
g
for allu € Vj.
Proof. We begin with the estimate:
ys— BsjAyy;, = ys—B,Qug=ys—y™’

= K7 (ys—y°) = K (ys — Bj-1Qs-19)
= K7 (ys—ys-1) + K77 (yso1 — Bjo1Qu-19)

= K7 (ys—vys—1) + KTVKT 7 (Yr-1 — yi—2)

+ o+ KK KT (Y — yo). (5.2.1.6)
In view of (5.2.1.2), we obtain
Y = A;leleAJyJ = A;leAJyJ, for k = O, 500 J—1. (5217)

Since Bramble [19] proved

QrAy = AP, on Vj,
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we have
yr = Peyy, fork=0,...,J—1.

Bringing these equations into (5.2.1.6) leads to
J J—k+1

I—BjA;= Z H K755 (Pe — Peoa).
Consequently by using the Cauchy-Scth artz inequality, we obtain

/4((]'—-E3J/4J)U,IL) (5.2.1.8)
J J—k+1
= ZA( H A;n_:flzl Pk—Pk_l)u,u)
k=1

J J- k+1 J—k+1
< 2 A ( [T K755 = P, [T K527 (P - Pk_nu)w? (A w2,
k=1 i=1 i=1
In view of {Assumption 5.2.1.2, Lemma 5.2.1.1, Assumption 5.2.1.1}, we estimate

J—k+1 J—k+1
(H KJ405 (P — P, [] K;":r:"(Pk—Pk-nu)

i=1

< A (KD 2(Pe = Peot)u, K7 (P — Peoy)u)
AL
< CHE(AY%(Pi — Py, (Pe — Peo1)u)
my
AL
< C'——/\ r CA(u, u). (5.2.1.9)

The estimates (5.2. .8) and (5.2.1.9) lead to

A((I — BjAju,u) <C (XJ: Ag;) A(u,u). (5.2.1.10)

k=1 T
Combining (5.2.1.10), Assumption 5.2.1.3 and Assumption 5.2.1.4, we obtain our

desired result.
Theorem 5.2.1.2. Let N, := dim(V}) and assume Niy, > aNy. Then the compu-

tational cost of the CMG Algorithm [ is given by

J 1
S mey < C1Tgg ™ frB<a, (5.2.1.11)
C-J-myNy, for G = a.
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Proof. Nipy1 > aN; implies Ny < a" RN Recalling Assumption 5.2.1.4, we

estimate

J J B\ 7*
Z me N < CZ (E) V.
k=1 k=1

Hence (5.2.1.11) is true.

Remark 5.2.1.3. The parameter b in the expression of Theorem 5.2.1.1 solely de-
pends on the original problem. It is well known that the finite element method for a
partial differential equation of order n leads to b = 2™. The parameter a in (5.2.1.11)
(Theorem 5.2.1.2) depends only ion the dimension d of the domain, e.g.. a = 2°.
When 2¢ = a > b, that is, d > |logb|, the condition number K(I — B;A,) is

—a/2

uniformly bounded by O(N;7"7), and the amount of work is proportional to O(N).

The cascading algorithm is henceforth called optimal. The algorithm will be called

near-optimal if it satisfies the following corollary.
Corollary 5.2.1.1 (Bornemann and Deuflhard (1996)). In case of b = a = 2¢,
we choose 3 = 2% and the number of iterations on level J as
my = |m.-J¥].
Then we have the estimates

K(I — BjA;) < CA;*?,

and
J

Z meNg < Cm,,NJ(l +- log ]\/'J)H-a/z'

k=1

5.2.2 The method for the heat equation

Shi and Xu [107] analyzed the cascading multigrid method for the heat equation

with Richardson and Conjugate Gradient iteration as smoothers. We shall solve the
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heat equation with mild regularity by the abstract cascading multigrid method with
block Jacobi and symmetric Gauss-Seidel iteration as smoothers.
Let Q C R? (d = 2,3) be a open polygonal domain with the largest corner angle

. We consider the heat equation:
uy — Au = f(z,t), on Q x[0,T], (5.2.2.1)
with boundary condition
u(z,t) =0, on 90 x [0,T],

and initial condition

U(I, 0) = UO(I)’ on Q)

where f € H'7*(Q). The weak form of (5.2.2.1) is to find u € Hy(Q), with
u(z,0) = ug(z) € H**(Q) N H}(N), such that

(us,v) + B(u,v) = (f.v), Yve HQ), t€[0,T], (5.2.2.2)
where the bilinear form B is
B(u,v) = / Vu-Vuvdz, Yu, v € Hy(Q),
Q

and
) = dzx.
(f.v) /va 45

We use the backward Euler scheme for the time-stepping. Let
L:={t,: 0=ty <t; <--- <ty =T},
be the mesh on I with

Ty 5= Uy = Upeily T == DIERR T

(n)
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Moreover, we set
wi=u" —-u""!, (g,v) := (f,v) — B(u" ).

Then (5.2.2.2) leads to the weak form with time-stepping: Find w € Hy(Q2) such
that

A (w,v) = (g,v), Vv e Hy(Q), (5.2.2.3)

where

A (w,v) =177 (w,v) + B(w,v). (5.2.2.4)

We conclude that (5.2.2.3) has a unique solution w € H'™*(Q) N H}(2) which
satisfies

wllm+e < Cllglla-1+a, (5.2.2.5)

where 0 < o < ap = I (see Ciarlet [35] and Johnson [76]).
Let 7 (k:=0,1,...,J) be a sequence of quasi-uniform triangular partitions of
2 with mesh size hy = ho27%. Let Vi denote the P1 conforming finite element space

on 7. It is well known that
VocWVic---CcV,=V C H)D).
We derive the discrete form of (5.2.2.3): Find wy € Vi such that
Ar(wg,v) = (g,v), Vv € V. (5.2.2.6)

Define

(Akwk,v) = AT(wk,v), Vwk, (S Vk.

Then (5.2.2.6) can be expressed by

Akwk = Gk, (5227)
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where g € Vi, (gr.v) := (g.v). Vv € V. It is well-known that

Nw — willls < ChS(1 + 77 he)Y2?|| || gr=1+a, (5.2.2.8)

where
-1l = (772, + B, )2,

We know from the definitions (5.2.1.3) and (5.2.2.4) that
/\k = O(h;g) ain T_l.

Since [10] observed that some commonly used iterative methods, like Richardson
iteration, can already guarantee good convergence for 7 < A7 ", we therefore only

consider the case

/\—l

—_ b

0

Now we shall verify that Assumptions {(5.2.1.1), (5.2.1.2), (5.2.1.3), (5.2.1.4)} hold

for some vy € (0,1). (5.2.2.9)

true in this case. Let

A=A,

From [19] and [113], we conclude that Assumption 5.2.1.1 is satisfied. Assump-

tion 5.2.1.3 can be easily written as

2(J—k) _ A 2J—k) _
c< A + 2 17‘—1) <A\ <C ( L 2 17_1) . (5.2.2.10)

22(J—k) 22(J~k) 2(J—k) 22(J—k)

Assumption 5.2.1.2 and {(5.3.1.2), (5.3.1.3)} concern only Ry. Therefore the' re-

main true as discussed in Section 5.2.1. Thus, recalling (5.2.1.10), we obtain

J Ao
< C(Z O/Q)A(w,w)

k=1 Ml

1 k
“ <1 +7’o) m3/2 Z <ﬁ"/2> £

IA
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that the attainable (optimal or nearly optimal) order depends on the value of 3; for
0 = 4 the estimate will contain the factor J, i.e., the number of the grid points.

Compare also Bornemann and Deuflhard [15].

Theorem 5.2.2.1. Under Assumption 5.2.1.4, we have the following convergence

estimate of CMG Algorithm I for (5.2.2.7):

1 (07
C(OZ) a -’ J‘v"{(waw% fOT" 8 =y
1— 2 m‘;/‘
A((I - BJAJ)’LU,UJ) S 131/2
Cla)-J- QJ/QA(w,w), for B =4,
m;

with C'(a) := C(1/(1 + ~0))*. These estimates hold for all w € V.
In view of
Nk+l 2 QdeH

we conclude that Theorem 5.2.1.2 remains true with a = 2¢. Clearly, when d = 2.
CMG Algorithm I for (5.2.2.7) is near optimal; when d = 3, the algorithm is optimal.

For a detailed discussion on how to choose 3 so that the cascading multigrid
method has optimal accuracy and complexity, we refer to Shi and Xu [107] or Bor-

namann and Deuflhard [15].
5.2.3 The cascading multigrid method in Besov spaces
For s € (0,1), define the interpolation space

(X, Y)so :={w €Y : supt ™ K(t,w)* < oo},

t>0

and the A'-functional by

K(t,w) = inf (|lwollk + £*llw — wol 3)>.
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.. an

Ar(w.v) = (g,v), Yve Hy(Q).

where
A (w,v) :i= 77w, v) + B(w,v).
Z , we have the regularity

Recall (5.2.2.5): for0 < a < ap =

Hw||give < Cligllu-1+, Vg € H1H0(Q).

For the critical case a = ap, Bacuta, Bramble and Xu [6] proved the estimate

|]wl|Bl+a0(Q) < CHQHB&H“O(Q)’ Vg € Bo—ll+ao(Q)7 (5.2.3.2)

where B!'*0((Q)) is a standard Besov space and Bj;'T*°(f2) was defined in [6]. Cor-

respondingly, the convergence estimate of the P1 finite element method for (5.2.3.1)

1S

< ChP(1+ 77 i) V21wl (2 (0) nHA (9), HA ()1 — g oo

w — willlk,-
(5.2.3.3)

< ChRP(1+ 77 ) V2 |gl] porvenq).

We begin our analysis with an analogue of equation (5.2.1.9). Triebel [114, pp. 59]

proved the interpolation property

HY(Q) = [H(Q), H (Q)]o,0-

Hence, we have

(P = Pe-t)w, K o(Pe = Be1)w)

A (KT,
Ky 1o(Pe = Pe—1)wo, K% 1o (P — Pk—l)wo)

< Csupt20-00) jpf A(
< Csup wffév,[ kan/2

+ 24 (KD (P = Pet)(w = wo), KT p(Pe = Poc)(w = wo) )] (5.23.4)
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We use Lemma 5.2.1.1 and Assumption 5.2.1.1 with « = 0 and a = 1 to get the

equations
A (KI::I:'/2(PA - Pk—l)wf)) K]:LL‘;/Q(PI‘: - Pk_l)LL'O)
A A ,
< C—= ((Px — Pe-1)wo, (P — Pi—1)wp) < C——=A(wo, uyp), (5.2.3.5)
Mg M
and

A (K;‘l‘;/Q(Pk — Peo1)(w —wo), K% o (P — Pror) (w — u‘o)) < CA(w — wo, w— wo).

(5.2.3.6)
Hence {(5.2.3.4), (5.2.3.5), (5.2.3.6)} lead to
A (K5 (Pe = Peot)w, K% 5 (Pe = Pey)w)
—2ap
< C/\k o sup(mi/g/\kt)_Q(l‘a") inf [A(wo,wp) + (m,lc/Q/\kt)QA(w — wp, W — Wo)]
mg~ >0 wo€Vy
A—an
< CHE—A(w,w). (5.2.3.7)
m:o/

Therefore we obtain

A((I = ByA))w,w) < C (Z Ae™ ) A, w),

00/2
k=1 M

This suggests the following theorem:

Theorem 5.2.3.1. Under Assumption 5.2.1.4, we have the convergence estimcte of

the CMG Algorithm I for (5.2.3.1), namely

1 h&o
C- 5 N aJo/QA(w’w)’ for 3 > 4,
= || == J
A((I = BJAJ)w,w) < 1 (61/2>
h5°
C-J ao/QA(w’w)’ fO’I‘ ﬁ — 47
J

for all w e V.
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5.2.4 The method for VIDESs

We consider
t
uy — Au —+—/ k(t — s)Bu(z, s)ds = f(z,t), x€Q, tel:=][0,T], (5-2.1.1)
0

with initial condition

u(z.0) = up(z), z € 1,
and boundary condition
u(z,t) =0, z€IN, tel,

where 2 C R? (d = 2,3) is a bounded convex polygonal domain. B is an elliptic
differential operator of order up to two. We can easily follow the idea of Chapter 4
to analyze the cascading multigrid method for (5.2.4.1) with less than second-order
B. So it is interesting to analyze the case with dominant memory term (i.e., the
operator B is second order). For ease of exposition, we suppose B := —A. Im most
cases of application, k is nonnegative. We want to use the trapezoidal rule (%.2.4.3)
for the memory term, hence we assume & € C'(I). If k is weakly singular, we can
use the left-rectangular rule (see [34}).

The weak form of (5.2.4.1) is to find u € H}(Q), with u(z,0) = up(x) €
H'(Q) N H}(Q), such that

t
(ut,v)-+—B(u,U)-+—/ k(t—s)B(u(x,s),v)ds = (f,v), Yv € H}(Q), tel, (5.2.4.2)
0
where the bilinear form B is as before:
B(u,v) = / Vu-Vudz, Yu. v e H)Q),
0

and also

(f,v)-—-/ﬂfvd:c.
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We use the backward Euler scheme for time-stepping of (5.2.4.2) and the trapezoidal

rule,
tn 1 n—1 1
/ p(s)ds = =7p(0) + > _ 7p(t;) + =7p(ts), (5.2.4.3)
0 2 e 2
for discretizing the memory term.
Let k; := k(t, — t;) ( = 0,...,n). Then we get that: Find v —u""! =1 w €
H}™*(2), such that

A (w,v) = (g,v), Yv e Hj(Q), (5.2.4.4)
where
1
Ar(w,v) =77 (w,v) + (L+ 57kn) B(w, v),
and
1 1 n—1 .
(g.v) := (f,v) — (1 + é-Tkn)B(u”_l,v) = 57koB(uo, v) — > TkiB(u,v).
j=1

The same discussion as that in Section 5.2.2 leads to the P1 conforming finite element

approximation to (5.2.4.4): Find wy € Vi € H3(2), such that

A (wg,v) = (g,v), Yv € V,, (5.2.4.5)
and its error estimate is
w — willl; < ChE(L+ 77 kohe) 2| |g]| -1+e. (5.2 4.6)
We also define
(Arwk,v) = A (wg,v), Ywg, v € V4. (5.2.4.7)

Then (5.2.4.5) can be written as

Arwi = g, (5.2.4.8)
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where
gk € Vi, (gx,v) :=(g,v), Yv € V}.
We see that
A =C(1+ %Tko)hkfg + 771

Hence, we have

1+ i7k0)A 92(J—k) _ 14 Lo 92(J—k) _
. <( T 5T O) J 17__1) < Ak < C (( =P QTA,())/\J 17_1> ‘

22(J—k) + 22(J—k) 22(J—k) + 92(J—k)
(5.2.4.9)

Assumption 5.2.1.2 and {(5.3.1.2), (5.3.1.3)} concern only R;. They henceforth

remain true as discussed in Section 5.2.1. Thus, recalling (5.2.1.10), we obtain

J
/\—a
A((I -= BjA))w,w) < C (Z ‘;/2) Alw, w) (5.2.4.10)

k=1 Tk

« J 2& k

J

< 05> (52) Atww)

J k=1

We used a + b > 2v/ab in the calculation from (5.2.4.9) to (5.2.4.10).
So (5.2.4.10) yields the following theorem.

Theorem 5.2.4.1. Under Assumption 5.2.1.4, we have the following convergence

estimate of the CMG Algorithm I for (5.2.4.8):

A((I - BJAJ)’LU,’LU)

1 h&
C- a . A(w,w), fOTB>4,
9 a/2
1— (=) ™
< <51/2)
ha
c-J- o“I/gA(w,w), for B =4,
Wt

for all w € V.

Remark 5.2.4.1. We notice that compared with Section 5.2.2 and Section 5.3.2.

the analysis of this section does not need the assumption (5.2.2.9).
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5.3 Abstract cascading multigrid method with non-

nested spaces and varying inner products and
bilinear forms

In the previous sections we assumed that Vo € V} € --- € V; = V| and that (-,)

and A(-,-) are defined on all Vj. In this section, we allow the spaces Vi to be not

necessarily nested and defime a symmetric elliptic bilinear form A, (-,-) and an inner

product (-, -)x correspondinng to 0 < k < J.

5.3.1 The cascading multigrid algorithm

Consider the following setting:

Let V4,...,V, be J fnite dimensional spaces with V; = V', which are not

necessarily nested.
Define J linear operators

I Viely = Vi, k=1,...,J,
which connect the spaces.

Let (-,-)x be an inner product on Vi x Vi, with induced norm || - ||, and let
Ag(-,-) be symmetric and elliptic bilinear form on Vi, x Vi with A,(:,-) = A(-.")

and induced norm ||| - |||-
Define A, : Vi, — Vi by

(Agu,v)g := Ag(u,v), for all v e V.
Define P, : Vi — Vi and Qx—;: Vi — Vi_1 by

‘Ak—l(Pk—1u1 1") = Ak<u7 Ikv)v



and
(Qk—lu> U)k—l = (U, Ikv)ka

for all v € Vj_1.
(6) Let Ry be a linear symmetric operator Ry : Vi — Vi with Ry := Ag'.

We shall solve the equation (5.2.1.2) on each level k :=0,1,...,J by the cascading
multigrid algorithm.
Define the precondition operator B = B by the
CMG Algorithm II:
0) By := A
Define By implicitly in terms of Bx_1, for k=1,...,J:

1) For £ =1,..., my, we set

vt = yi + Re(Qrg — Aryt™h).

Here 3 := I Bi1Qx-19-
3) BkQxrg = y; ~
Before we analyze the CMG Algorithm II, we add the following three natural

assumptions.

Assumption 5.3.1.1. We suppose
Ap(Liu, [ru) < Ag_1(u,u), for allu € Vi_y. (5.3.1.1)

Using the Cauchy-Schwartz inequality, we can easily prove that (5.3.1.1) holds true
if and only if
Ak—1(Pr_qu, Peoqu) < Ag(u,u), for allu € V.
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Assumption 5.3.1.2. Let A\, denote the mazimum eigenvalue of Ax, i.e.,

Av
Ak 1= sup _(kl—’v)’c
veVk (U’v)k

For given o € (0, 1], there exists a constant C,, independent of k, such that
(A = IkPir)u, (I = IePeot)ul < Cadii®A(u,w), for allu € Vi

(compare with Assumption 5.2.1.1, (-,+) = (-, )).
Assumption 5.3.1.3. Let Ky := I — Ry Ay, Ry, = w/\,jlf and Ky, =1 — Ry . Ag.
There exists w € (0, 1] such that

Ap(Kirv, Kpv) < Ag(Kiw)ov, Kiw/2v), for allv € Vi.

Hence it holds that

A (K v, K*v) < Ak(K,Z”,u’jﬂv, ’,Z”j/gv), for nonnegative number m and forv € Vi

(compare with Assumption 5.2.1.2).

By using the same argument as in the proof of Lemma 5.2.1.1, we can prove the

following lemma.

Lemma 5.3.1.1. K,Tw" satisfies the following two properties:

A (K kv, Kkv) < Ag(v,v), (5.3.1.2)
and
Ap(KTFRu, KR 0) < C'/\LQ(A}C_av,v)k, (5.3.1.3)
: : me

for w € (0,1] and a € (0,1].

Now we are ready to present our main results.
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Theorem 5.3.1.1. Let B be defined by the CMG Algorithm I, and let Assumptions
{5.8.1.1, 5.83.1.2. 5.3.1.8, 5.2.1.8. 5.2.1.4} hold. Then we have

1 /\;Q/Q
C- YL . —aT? A(u.u), for 3 >0,
A((I = BsAyu,u) < -2 g
c-J- Ja/2 Alu, u). for 3 =0b.
J
for allu e V.
Proof. We first estimate:
ys— BsAyys = ys—BsQig=y;—y™’ (5.3.1.4)

= K7 (y;—y°) =K (ys— 1;B;-1Qs_19)
= KTJ(?JJ — Iyys-1) + KTJ(IJyJ—l —1;B;_1Q,-19)
= K7 (ys— Liys-1) + (K7 I)K T (Yoo — Timays—2)

+ o (KLY (KGE T ) (K2 L) KT (y1 — Liyo)-
From (5.2.1.2):
Aryr = Qk9,

we derive
(Akyr, Lv)r = (Qkg, Ixv)r, Vv € Vi1,

Hence,

Ar (Y, Irv) = (Qrg, Ixv)k, Yv € Vi_1.

In view of the definitions of P, and Qk, we obtain

A 1(Pe1yk, v) = (Qk=19, V) k-1, Yv € Vi,



which leads to
A1 Py = Qr—19.

Therefore, we have

Yk—1 = Pk_lyk, fOI‘ k= 0, 500 J — 1. (5315)

Combining (5.3.1.5) and (5.3.1.4) we find

J—-1J-— J—k
I-BjA; = K[ (I-1;P;, +Z (K3 Lrnms) K- (I = LPey) - [ | Po-se
k=1 i1=1 i=1

By the Cauchy-Schwarz inequality and Lemma 5.3.1.1,

A(([ - BJ_AJ)U, U)

(A

[A(KTY (I — I;P;_))u A’"”([—JJPJ D)2 [A(u, w)]?
J—1

J—k
+ > [A (K’”“ (I — Ik Pe-y) - HPJ (K (I—IkPk_l)-HPJ-i)u>]”2
k=1 o=l
- [A(

u, u)]'/2.

(5.3.1.6)

From Assumption 5.3.1.3, Lemma 5.3.1.1, and Assumption 5.3.1.2, we have

AKTI(I — L, Py_y)u, KT (I — I, Py_1)u)

)\_
C—— (Al Q(I—IJPJ 1) ’(I—IJPJ_I)'U)

< C
s me

A(u, u), (5.3.1.7)

and in addition, using Assumption 5.3.1.1,

J—k

J—k
Ak ((K,T“ (I = LiPeer) - [ Prou, (K% - (I = LPea) - || PJ_i)u>
i=1 i=1
J—k J—k

A—Q
C n:a (A};a(f — IkPey) [ | Prosu, (I = IePe) [ PJ_iu>
k

k i=1 i=1

N J—k J—k
< koA (H Pryu, [ ] PJ_iu> <C
k i=1 i=1

IN

)\—-a
£ Ay, u). (5.3.1.8)
.
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Hence (5.3.1.6), (5.3.1.7) and (5.3.1.8) lead to

J —Q
‘uu—Bﬁhmﬂ)gc<Z:“m>Amwy (5.3.1.9)

k1 M
Combining (5.3.1.9) and Assumption 5.2.1.3 and Assumption 5.2.1.4, we obtain our
desired result.

The computational cost estimate theorem is the same as Theorem 5.2.1.2.

5.3.2 Application to interior penalty discontinuous Galerkin
method

The V-cycle algorithm for the interior penalty discontinuous Galerkin method was
presented in the paper by Gopalakrishnan and Kanschat [52], which was based on
Arnold [3]. In this section, we analyze the CMG Algorithm II for the heat equation
(5.2.2.1) with the interior penalty discontinuous Galerkin discretization. We will
essentially use the notations in Section 5.3.1.

Let 7 (k :=0,1,...,J) be a quasi-uniform triangular partition of 2 with the

mesh size hy = ho27*. We define the multilevel spaces
WwCcWicCc-.-CV, =V,

by
Vi i= {v: vijr € P™(T), VT € Tp},
where P(™(T) denotes the polynomial with degree not exceeding m on 7.

To describe the interior penalty discontinuous Galerkin method, we need the

spaces

Hy(Tx) :={v e L*Q): vir € HY(T) and vlga~r = 0, VT € Ti}.
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Let &, denote the set of edges of the triangulation 7;. If e € & is an interior edge.
we denote by n. one of the two unit normal vectors at e, and we define the jumps

and averages of the normal derivatives (for = € e) of v € H}(7;) by

[V]e(x) := lim [v(z — dn.) — v(z + dn.)],

§—0+

and

. 1 : :
(Opv)e(z) := 5 6£r£1+[ne - Vu(z — dne) + n. - Vo(z + one)).

If e C 012, we fix n. to be the outward normal vector and let

[vV]e(z) = 51—1}&1)(33 — dne) and (0,v), := 51-1.%1+ ne - Vo(z — on.).

Define Bx(-,-) on H(Tx) x H3(7;) by

Bi(u,v) = Y (Vu,Vo)r (5.3.2.1)
+ 3 (£ e = (0, oD — (] 001 )
e€fy

Here /. denotes the length of the edge e and o is a positive parameter to be chosen
later.

The weak form of (5.2.2.1) is defined by: Find u € Hj(7;), with u(z,0) =
uo(z) € H***(T) N Hi(7x), such that

(us, v) + Be(u,v) = (f,v), Vv e Hy(Tx), t € [0,T). (5.3.2.2)

As in Section 5.2.2, we use the backward Euler scheme for the time-stepping of
(5.3.2.2). Then we derive the weak form with time-stepping: To find w € H)"*(7%)
such that

Arp(w,v) = (9,v), Yv e Hy(Ty), (5.3.2.3)



where

Arp(w,v) = 77w, v) + Be(w,v),

and
(g,v) := (f,v) = Be(u"1,0).

The interior penalty discontinuous Galerkin approximation to (5.3.2.3):

Find wy € Vi, such that
Arp(we.v) = (g,v), Yv € Vi (5.3.2.4)

Define

(Akwk,v) = Ak(wk, U) = AT’k(wk,’U), Ywe, v € V. (5325)

Then (5.3.2.4) can be expressed by
Arwr = g, (5.3.2.6)

where

g € Vi, (gk,v) := (g,v), Yv € V.

From [3]. we can easily obtain that

Hw — we|le.r < CRE(L + 77 ) 29| g-1+a. (5.3.2.7)

From [52], we know that
clo+ DRIP4+ 7' <M< Clo+ A2+

Hence we have

Ay 22U-R) 1 ) © S @ -
¢ (U+1)22(J—k) v 22(J—k) =ap=C (U+1)22(J—k) * 20K




&
In [52] it was also proved that Assumption 5.3.1.1 and Assumption 5.3.1.2 hold true.
Assumption 5.3.1.3 and Lemma 5.3.1.1 are guaranteed, since they only concern the
smoother operator R,. We assume 7 satisfies (5.2.2.9). So by recalling (5.3.1.9), we

derive that

A((I - BJA_])w, w)

C (Z Ai;) A(w, w)

k=1 T

. "
< ).
a C<1+U+“/0> m3/22<5“/2> S

IA

The following theorem is therefore established.

Theorem 5.3.2.1. Under Assumption 5.2.1.4, we have the convergence estimate of

CMG Algorithm II for (5.3.2.6):

1 hs
C - 5N 3“]/,ZA(w,w), for 3 > 4,
A(( = ByAjyw,w) < o <51/2>

«
c-J- aj/zA(w,w), e 8= 4L,

My

for all w € Vj.

The computational cost estimate is that of Theorem 5.2.1.2 with a = 2¢.

Remark 5.3.2.1. The foregoing discussion reveals that the abstract setting of the
cascading multigrid method provides a more feasible way to establish the convergence
theorem of the method for the time-dependent problems with mild regularity, and for
problems that are discretized by other new FEM methods. We believe it 1s also

possible to extend this abstract framework to the mesh-free method described in, e.g..

[14. 85].
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5.3.3 Extension to VIDEs

In this section, we shall extend the CMG Algorithm II to (5.2.4.1) with the intecior
penalty discontinuous Galerkin approximation. We start from the interior penalty

discontinuous Galerkin weak form of (5.2.4.1).

Find u € Hj(7;) with u(z,0) = ug(z) € H'**(7;) N H(7x), such that
t
(us. v) + Be(u,v) +/ Bi(u(z,s).v)ds = (f,v), Yv € Hy(Tx), t€ I, (53.3.1)
0
where By was defined by (5.3.2.1), i.e.,

Bi(u,v) := Z (Vu, Vo)r

TeT,

# 3 (F b e = (@ bl = (@, @) ).

e€ly
We use the backward Euler scheme to approximate (5.3.3.1), and the trapezoidal

rule to discretize the memory term. Then we get the form: Find w € H}(7%), such

that
Ark(w,v) = (g,v), Yv € Hy(Ty), (5.3.3.2)
where
1
A p(w,v) = 77w, v) + (1 + ngo)Bk(w, v),
and
1 1 n—1 .
(g,v) = (f,v) — (1 + -Q—Tko)Bk(u"_l,v) - ETkan(Uo,U) — ZTijk(uJ,v).
j=1

The interior penalty discontinuous Galerkin approximation to (5.3.3.2) is formulated

as: Find wy € Vi such that

Ari(wr,v) = (g,v), Vv € Vi (5.3.3.3)



161

Its error estimate:
[l — welllkr < Chg(l+ T“lhk)1/2||g|\H_1+a, (5.3.3.4)

can be easily proved by using the techniques in [3].

Define

(Agwy, v) = Ap(wi,v) = Arp(wg,v), Ywg, v € Vi. (5.3.3.5)

Then (5.3.3.3) can be expressed by
Arwi = g, (5.3.3.6)
where
gk € Vo (g v) :=(g,v), Yv € V4.
From [52], we know that
q1+§m@u+amf+¢*fgngcxy+%%@u+amf+¢*.

Therefore, we derive

N, 22UR
! 7'_1> (5.3.3.7)

1
¢ <(1 + §Tk0)(1 + 0)22(J—k) + 52(J—k)

A 200K _ 1
20—kt Toaa—m T )

S‘Mgc<u+%m@u+@

In [52] it was also verified that Assumption 5.3.1.2 holds true. Assumption 5.3.1.3

and Lemma 5.3.1.1 are guaranteed, since they only concern the smoother operator

A(([ — BJAJ)‘LU, U,')

< C (Z /\i;) A(w, w)

k=1 M

1 “he I/ o2a \*
< C - (——) Alw, w).
(l-&-a-&-?\/?(a—i-l)) mc;ﬂ; po/? (w, )

The following theorem is henceforth established.
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Theorem 5.3.3.1. Under Assumption 5.2.1.4, we have the convergence estimaie of

the CMG Algorithm II for (5.3.3.6)

A(([ - BJAJ)U), ’LU)

C ! = —L_A(w,w), forB > 4,
2 ma/2
1 — [ —— J
< </31/‘2>
ha
cJ aJ/QA(w,w), for 3 =4,
B

for all w € V.

5.4 History of cascading multigrid method

At present there exist three types of multigrid algorithms: the V-cycle algorithm,
the W-cycle algorithm and the cascading multigrid algorithm. You may consult
Hackbusch [55] and Bramble [19] for background material, and Brandt [21] and
Trottenberg et al. [115] for references. The cascading algorithm is the new member
of the family of multigrid methods. As a distinctive feature, the algorithm does not
need nested correction at all and performs more iterations on coarser levels so as to
obtain fewer iterations on finer levels. The first publication of this algorithm (Deufl-
hard [42] in 1994) contained rather convincing numerical results, but no theoretical
justification. In 1996, Bornemann and Deuflhard [15] provided a theoretical analysis
of this algorithm. In 1998 and 1999, Shi and Xu [104, 105] generalized the idea and
applied it to nonconforming finite element method. Later many papers such as ([51],
[106], [17], [103], [102], [107], [108], [112], [110], [126], [18], [87]) contributed to this
area. In this thesis and [86], we provided an abstract cascasing multigrid, which is
more general than [104, 105] and is applicable for the problems with mild regularity

in Besov spaces and for the interior penalty discontinuous Galerkin method.



Chapter 6

Future works

In this chapter, we shall mention some future research topics growing out of this

thesis.

6.1 Adaptive discontinuous Galerkin time-stepping
for (partial) VIDEs with blow-up solutions

6.1.1 VIDEs with blow-up solutions

Consider the semilinear Volterra integro-differential equation:

V03wt = Vo0, fore>0 61.11)

where Vg (y)(t) = /tk(t — 8)G(y(s))ds. The solution of (6.1.1.1) will blow up in
finite time under suigable assumptions on the functions a, k, and G. For example,
blow-up will occur in finite time under the following assumptions:

1. G(y) :==yP, forp>1.

2. For 7 > 0, k satisfies

ke C', k(1) > const. > 0, and k'(7) < 0.

3. Yo > 0 and 0 < —a(t) < const. (for t > 0).

(Compare Roberts and Olmstead [94] for the case of Volterra integral equations,
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104
and see Bellout [13] for PVIDESs in Section 6.1.2).

As shown in Stuart and Floater [111], the time-stepping method (one-point col-
location method) with fixed temporal mesh is totally inadequate for dealing with
ODEs with blow-up solutions. The same is true for the discontinuous Galerkin
method on a fixed mesh, and one will resort to techniques for the computation of
blow-up problems. There exist various methods for generation of adaptive meshes
(e.g., defining the adaptive mesh according to the asymptotic profile of the solution
near the blow-up time (if it is known)). Time-stepping based on a posteriori error
estimates of DG is definitely one of the efficient approaches for mesh adaptivity.

Another approach for the blow-up problem (6.1.1.1) is the p- or hp-version of
the adaptive DG time-stepping method (Brunner and Schotzau [27]). It will likely
be very effective in dealing with blow-up equations, especially when the asymptotic

behavior of the solution near the blow-up time is known.

6.1.2 PVIDEs with blow-up solutions

Let 2 be a bounded domain in R™ with piecewise smooth boundary 92 and
¢ :=Qx(0,¢), T,:=090 % (0,¢t).
We consider the PVIDE:
t
us = Au +/ k(t — s)G(u(z,s))ds, in Q, (6.1.2.1)
0

with initial condition
u(z.0) = up(z) >0, in €,

and boundary condition

u(z.t) =0, on I,



Bellout [13] proved that u blows up in finite time, i.e.,

3T}, < oo such that lim maxu(z,t) = oc,

t—Ty zeQ
if
GedC', GI0)>0; G'(r) >0, G"(t) >0 (Vr >0), (6.1.2.2)
and
ke C'; k(r) > const. >0, k(1) <0 (Vr >0). (6.1.2.3)

Problem (6.1.2.1) can be viewed as the generalization of problem (6.1.1.1): be-
cause it now also involves a spatial variable, its numerical analysis and computation
become much more complicated. Future efficient methods for the computation of
(6.1.2.1) are based on mowving meshes in which the spatial mesh is generated by
appropriately chosen moving mesh PDEs (see, e.g., [67, 68, 69, 70|, also Bandle and
Brunner [7]).

Readers are referred to the book by Samarskii, Galaktionov, Kurdyumov. and
Mikhailov [95], an the survey papers by Bandle and Brunner [8] and Souplet [109]

for numerous references on theoretical and numerical blow-up.

6.2 The artificial boundary method for PVIDEs
on unbounded spatial domains

6.2.1 The artificial boundary method

Consider the following initial-boundary-value problem for the one-dimensional dif-

fusion equation with memory term:
t
Uy +/ k(z,t — T)u(z,7)dr = Au+ f(x,t), ze€ R tel, (6.2.1.1)
0
ul,_o = uo(z), z R, (6.2.1.2)

u—0, as |z|]— oc, (6.2.1.3)
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where [ := [0,T}, Au := 8?u/0z%. Suppose that

(1) the functions f and ug are continuous and have compact support:
supp {f(z)} € [0,1],  supp {uo(z)} C [0,1};

(ii) the kernel k satisfies k(t,z) = ko(t) when z & (0,1). with kg continuous or

weakly singular.

In order to solve this problem numerically we introduce two artificial boundaries,

as follows:

These artificial boundaries divide the given spatial-temporal domain into three sub-

domains:

Q1 = {(z,t): 1<z <+oc0, 0<t<T},
Qo = {(z,t): —cc<z <0, 0<t<TY},
Q: = {(z,t): 0<z<1, 0<t<T}.

Consider first the restriction of the given initial-boundary-value problem (6.2.1.1)-
(6.2.1.3) to the domain @Q;. Because of our assumptions (i) and (ii), v = u(z, t) has

to satisfy

t

Uy +/ ko(t — T)u(z, 7)dT = Au, 1<z<co, 0<t<T, (6.2.1.6)
0

U, =0, 1<z<o0, (6.2.1.7)

u—0, as z — oc. (6.2.1.8)



—

oY
Using Laplace transform techniques one can show that (see Han, Brunner and Ma

[61]) the exact (artificial) boundary conditions on I'y and on I'y are respectively

given by

Ou(1,t) H(t—7)0u(l,7) 5
TN 2.1
e \/_/ N —— p dr (6 9)

and by

2.1.1
ox or (6 0)

Ou(0,t) / (t — T) du(0, 7')
\/_
with ¢ € [0,7] and with appropriate kernel H.
By the artificial boundary conditions (6.2.1.9) and (6.2.1.10) the original initial-
boundary-value problem (6.2.1.1)—(6.2.1.3) can thus be reduced to one defined on

the bounded spatial-temporal computational domain @;:

v /t k(z,t — tu(z, 7)dT = Au + f(z,t), (z,t) € Q;, (6.2.1.11)
0

ul,_o = uo(z), 0z <1, (6.2.1.12)
ou 1 "H(t—7)0u(l,7)

— = - 6.2.1.
oz - Vil Vier or o (6.2.1.13)
du H(t —7)0u(0,7) 5

= . .2.1.14
ox|, _, \/—/ Vi—1  Or ar (6 1)

On Q; the problem (6.2.1.11)—(6.2.1.14) is equivalent to (6.2.1.1)—(6.2.1.3).

Han and Huang [62, 63] proposed an artificial boundary method for the heat
equation on unbounded domains. The method focuses on introducing an appropriate
computational domain with an artificial boundary and adding the nonlocal boundary
condition. Han, Brunner, and Ma [61] used this method to solve linear PVIDEs on
unbounded spatial domains in R!. Work is currently being done on the extension

to unbounded domains in R? and R3.
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6.2.2 The finite element method and the DG time-stepping
for the reduced problems

Since the reduced problem (6.2.1.11)-(6.2.1.14) includes the artificial boundary con-
ditions (6.2.1.9) and (6.2.1.10), it is important to verify the coercivity and continuity
of the bilinear form a(u.v) in the error estimate of the finite element approximation
to the reduced problem. The reader may consult the following fundamental refer-
ences:

1. Han and Wu [64]: artificial boundary method for Laplace’s equation and linear
elastic equations on unbounded domains and error estimates for its finite element
approximations.

2. Han and Bao [60]: the finite element approximation of elliptic problems on un-
bounded domains is formulated on a bounded domain using a nonlocal approximate
artificial boundary condition and error estimates are based on the mesh size. the
terms used in the approximate artificial boundary condition, and the location of the
artificial boundary.

3. Han and Zheng [65]: mixed finite element methods and high-order local artificial
boundary conditions for exterior problems of elliptic equations.

The analysis of the finite element method for the reduced problems coming from
artificial boundary methods for parabolic PDEs and , especially, PVIDEs, is still at
an early stage.

We see from (6.2.1.11)—(6.2.1.14) that the artificial boundary conditions are ex-
pressed in time integral form. Hence, it will be necessary to employ suitable quadra-
ture for the boundary conditions while applying the discontinuous Galerkin time-
stepping method to the reduced problem. The error analysis of the DG time-stepping

for the reduced problem will be based on error estimates of its finite element method
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in space, the time-stepping error estimates, and the quadrature errors.

6.2.3 Blow-up problems on unbounded spatial domains

An obvious extension of (6.2.1.1)—(6.2.1.3) is the initial-boundary-value problem for

the nonlinear diffusion equation with memory term:

t

uy = Au +/ k(zx,t —)uP(z.7)dr, zeR™ t>0, p>1, (6.2.3.1)
0

Ul = wo(z), z €R", (6.2.3.2)

u—0, as |z|— . (6.2.3.3)

The blow-up property for (6.2.3.1)—(6.2.3.3) with unbounded spatial domains is not

yet known, in contrast to that for parabolic PDEs,
U, = Au + u?,

compare Fujita [48] (in R™), Bandle and Levine [9] (for sectorial domains), Bandle
and Brunner [8], and their references. For the purpose of computation of the problem
(6.2.3.1)-(6.2.3.3), we shall introduce the artificial boundaries and the corresponding
artificial boundary conditions. We have be very careful on the choice of the location
of the artificial boundary, otherwise it is possible that some blow-up points are not
included into the computational domains. Is it true that the blow-up property of
the blow-up of the reduced problem with nonlinear artificial boundary conditions
is the same as that of the original problem (6.2.3.1)-(6.2.3.3)? If we have not
established these corresponding analysis, how can we numerically detect the blow-

up and determine the suitable location of the artificial boundaries?
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