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Abstract

UML is very popular in software engineering and is used for at least two purposes:
00 software design and conceptual modeling. However, UML's origins in software
engineering may limit its appropnateness for conceptual modeling. Evermann and Wand
(2003, 2002, 2001) point out that conceptual modeling involves representing the real
world, and that ontology is the branch of philosophy dealing with that. They developed a
set of ontological rules placing constraints on the construction of UML diagrams, to
ensure that they properly represent underlying ontological assumptions. However, no
existing UML-based CASE tools enforce such rules. The purpose of this research is to
implement such functionality in an UML-based CASE tool to guide the modeling
process. Also, this research develops better understandings of the rules by considenng
how they can be implemented. Our implementation has built-in 'intelligence’ to detect and

explain the nature of violations.
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Chapter 1 Introduction

1.1 Background
1.1.1 Popularity of UML

As time goes on, software systems are becoming increasingly complex. Thus, modemn
software development is increasingly challenging. In addition, a high proportion of
projects fail. Under these circumstances, a visual language for software engineering, the
Unified Modeling Language (UML) has emerged, to help people develop complex
software. Since 1997, when UML was adopted as the standard for software engineering by
Object Management Group (OMG), many organizations have begun using UML. Today,
there are many books as well as papers about UML published every year; there are many
universities introducing UML in their software engineermg courses; there are many
software development companies hiring employees with a UML background. UML is very
popular, and has de facto become a standard for software engineering. The emergence of

UML is very important for future software engineening.

1.1.2 Purposes of UML

What is UML? The formal description of UML by Object Management Group (OMG)



The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
constructing and documenting the artifacts of software systems, as well as for business modeling
and other non-software sysiems. The UML offers g standard way 10 write a system’s blugprins,
including conceptual things such as business processes and system functions as well as concrete
things such as programming langpage statements, database schemas and reusable software
components (OMG, 2003, p.25, p.45).
UML ig used for at least two purposes:
1.1.2.1 Object-Oriented software design
The original purpose of UML is for Object-Oriented (OO) software design. When
people develop seftware systems, UML is used to describe system requirements, control
flow, data flow and so on. UML has several types of diagrams to describe software
systems, including Usecase (diagram) to describe system from the user perspective; class
diagram to describe static classes; sequence diagram and collaboration diagram to describe
the process of information passing among objects. The diagrams and their functions will
be listed in Section 2.1.
1.1.2.2 Conceptual modeling
Another purpose of UML is conceptual modeling of a domain for which a system is to
be required. This is for the analysis step in software engineering. UML diagrams are used
to describe business modeling, or even non-software systems. UML is utilized as a tpol for

communicating between users and developers in understanding and eliciting requirements,

and also for documentation purposes.



The Unified Modeling Language was formed by integrating several dingramming techniques for the
purpose of softwa‘e specification, design, construction and maintenance. It would be advantageous
10 use the same modeling method throughout the development process of an information system,
mhr. o extend the use of UML to conceptual mmlu]ing {Evermann &Wand, 2001, p.1).

1.2. Problems
1.2.1 Limitations of UML

UML works relatively well for the first purpose: 00 software design. However, it may
lead problems when used for the second purpose: Conceptual Modeling, because this was
not the onginal purpose of UML.

The suitability of UML for modeling concrete problem domains in the ecarly
development phases has been called into question. The applicability of object-oriented
modeling in general in the early development phases is also controversial (Opdahl and
Henderson-Sellers, 2002, p.1).

The following example demonstrates how problems may occur. If a group develops a
POS (Point of Sale) system there will be an analyst doing the system analysis. He may
model the *Order” as a class and however does not include any attribute of the class. When

other programmers implement the project in the implementation stage, they will set up the

Because there is no attribute in the ‘Order’ class, they will not setup a table for the *Order.

Finally, the system will have a serious problem, that orders cannot be stored in the

database.



Now, let us analyze the reason why these problems may occur. UML is based on
Object-Oriented (QO) technology and the first emergence out of OO technology is the OO
programming language. Since UML can automatically generate code, we can see how well
UML concepts are mapped to the OO programming language. For example, in Java
language, there are concepis of ‘class’ and ‘method’. These are also included in the UML.
If looking at the whole system development as a sequence from top to bottom, we may say
that UML 1s developed from down to up. That is, UML is developed from the perspective
of system implementation. However, the details of design and implementation are not
significant in the system analysis stage. Now, people are using UML for conceptual
modeling in the carly analysis stage of system development. In this situation, UML's

origins in software enginecring may limit its appropniateness for conceptual modeling.

1.2.2 Everman and Wand's research on those limitations

Because of these limitations of UML, Evermann and Wand’s research is particularly
salient. Their research has analyzed and examined the suitability and highlighted the
weakness of UML for domain modeling. In addition, they developed constraints (rules) to

make UML more appropriate for domain modeling.

This research goes beyond pointing out the ontological defects and instead suggests rules and
guidelines for the modeler and analyst which alleviate these problems and enable the use of UML
for conceptual modeling of real-world domains. (Evermann& Wand, 2003, p215)

Evermann and Wand's research points out that conceptual modeling represents the real



world. When people use UML for conceptual modeling purposes, UML is used as a tool,
which describes and helps people to understand and model the real world. A tool to fulfill
this job should be based on the perspective of the real world. Ontology is the branch of
philosophy dealing with the nature and structure of the real world and thus is an
appropriate theory for their research, Evermann and Wand have developed a set of
ontological rules that place constraints on the construction of UML diagrams to ensure that

they properly represent underlying ontological assumptions.

1.2.3 Existing UML-based CASE tools do not enforce such rules

Although some research has tried to help make UML more suitable for conceptual
modeling, notably Evermann and Wand’s ontological rules, there is no existing
UML-based Computer Aided System Engineering (CASE) tools that reflect these rules.

(We will review the current CASE tools in Section 2.4.)

1.3 Research Purpose

The purpose of this research is 10 implement Evermann and Wand’s ontological rules
in an UML-based CASE tool, The software will check UML diagrams and indicate if
those diagrams violate one or several of these rules. The input data are diagrams drawn by
a UML CASE (Computer Aided Software Engineering) tool and the output would show

which rules are violated and explain how the diagram violates the rule. The system will



give examples for each rule to help users comprehend the rule. Thus, the research question
is:

Are Evermamn’s ontological rules practical? How can we implement these rules into
CASE rools?

As an addinonal contribution, we will also evaluate Evermann's rules according to

ontology.

1.4 Structure

The remainder of this thesis is structured as follows. In the next chapter, we review
the related concepts and research. This is done by reviewing UML in Section 2.1, research
on using UML for conceptual modeling in Section 2.2, and Evermann and Wand's research
in Section 2.3. In Section 2.3, we also discuss ontology and Evermann's rules. Next, we
review existing UML-based CASE tools in Section 2.4, Since our implementation is also
a critiquing expert system, the last section of Chapter 2 analyzes ArgoUML from
perspective of a critiquing expert system. Chapter 3 introduces our research approach. The
choosing of the CASE tool (ArgoUML) is explained in Section 3.1. Then we explain the
principles we followed during our implementation. Section 3.3 explains the discussion
order of Evermann’s rules and corollaries in our thesis, Chapter 4 begins to introduce the
main part of the thesis, the specific rules and corollaries are covered. Evermann developed

the riles and corollaries through three stages: static, change and interaction. Thus the rules



and corollaries can be classified into three categories. Since some latter rules / corollaries
are based on the previous ones, also for convenient and consistency reasons, our
discussion follows the order of Evermann's rules / corollaries. That is, rules and corollaries
related to static, change and interaction are discussed in Chapler 4, Chapter 5, and Chapter
6 respectively. For each rule and corollary, we first explain its motivation and meaning.
Then our implementation approach is discussed. For those which are difficult to
comprehend we also give examples. After that, we will talk about the implementation in
ArgoUML in Chapter 7. In that chapter, we first introduce how the critics work in
ArgoUML. Then, we explain problems in current ArgoUML. In Section 7.3, the
communication structure between the system and users is described. The main section
(Section 7.4) of that chapter is the alternative implementation approaches for some rules
and corollanies, which cannot be actually implemented in ArgoUML using solutions we
gave in Chapters 4, 5 and 6. Finally, Chapter 8 concludes the thesis including our
implementation results. In Appendix A, we introduce how to setup, run and test our
implementation. Appendix B includes all of our implementation source codes and test
data, which is bumed on a compact disk. In Appendix C, we list all Evermann’s

ontological rules and corollaries.



Chapter 2 Related research

In this chapter, we review other research, concepts, and technologies related to our

research.

2.1 UML

UML is the abbreviation of the Unified Modeling Language. It is integrated and
developed from three technologies for system modeling. They are OOAD
(Ohject-Oriented Analysis and Design) by Booch (1994), OMT (Object Modeling
Technique) by Rumbaugh (1991) and OOSE (Object-Orient Software Engineering) by
Jacobson (1992). UML uses diagrams to model and thus is a graphical language. Table 2-1

lists all UML diagrams and their functions.

Diagram Function

Show a collection of declarative (static) model elements, such as

Class diagram

classes, types, and their contents and relationships.

s Encompasses objects and their relationships at a point in time. An
ject

object diagram may be considered a special case of a class diagram

diagram

or a collaboration diagram.



Use case

diagram

Sequence

diagram

Collaboration

diagram

Statechart

diagram
Activity graph

Component
diagram

Deployment
diagram

Since our research is based on Evermann and Wand's ontological rules, we only focus

Show the relationships among actors and use cases within a system.

Show object interactions arranged in time sequence. In particular, it
shows the objects participating in the interaction and the sequence of
messages exchanged. Unlike a collaboration diagram, a sequence
diagram includes time sequences but does not include object
relationships. A sequence diagram can exist in a genenc form
(describes all possible scenarios) and in an instance form (describes
one actual scenario). Sequence diagrams and collaboration diagrams

Express similar information, but show it in different ways.

Show interactions orgamized around the structure of a model, using
either classifiers and associations or instances and links. Unlike a
sequence diagram, a collaboration diagram shows the relationships
among the instances. Sequence diagrams and collaboration diagrams

express similar information, but show it in different ways.
Show a state machine.

A special case of a state machine that 1s used to model processes

involving one or more classifiers.
Show the organizations and dependencies among components.

Show the configuration of run-time processing nodes and the
components, processes, and objects that live on them. Components

represent run-time manifestations of code units.

Table 2.1 UML diagrams and their functions (OMG, 2003)



on diagrams related to those rules. Our research covers the following three types of
diagrams in UML.
e Diagrams related to static structure
This category of diagrams is used to describe static structure of things. It
includes class diagram, object diagram and components of class, atiribute,
operation object, association, binary association, association class, N-ary
association, composition, link, generalization, and dependency.
o Diagrams related to change
This category of diagrams is used to describe change within things. It includes
statechart diagram, activity diagram and components of state, composite states,
events, simple transitions, transitions to and from concurrent states, transitions
to and from composite states, submachine states and synch states, action state,
subactivity state, call states, swimlanes, and synch states.
* [Diagrams related to interaction
This category of diagrams is used to describe interaction between things. It
includes sequence diagram, collaboration diagram and components of
interactions, messages, and stimulus.
We assume readers of this thesis have basic knowledge of UML. Thus, we do not
explain UML concepts in our thesis. Readers can reference UML 1.5 Specification (OMG,

2003) for detailed descriptions and definitions of UML components covered in this thesis.

({4



2.2 Research on using UML for conceptual modeling

Since UML is also used for conceptual modeling of a domain for which a system is to
be required, some research has analyzed and examined the suitability and pointed out the
weakness of UML for domain modeling.

One important study is Opdahl and Henderson-Sellers's Ontological Evaluation of the
UML Using the Bunge—-Wand-Weber Model (Opdahl and Henderson-Sellers, 2002). They
evaluated the UML constructs and found some weaknesses of UML for system analysis.
They also pointed out that using UML for early development phases has some problems.
Their research evaluated UML through BWW-Ontology (Bunge-Wand-Weber Ontology,
discussed in detail in Section 2.3.2). They systematically and iteratively compared 47
BWW-ontological concepts with 216 modeling constructs in the UML, which covers
concepts of Objects & Types, Properties & Attributes, Behavior, Links & Association,
Aggregates & Systems, States & Transitions, Action & Interaction, Use Case & Scenario
and Time. They used the approach of representation mapping (from the BWW-model to
UML) as well as interpretation mapping (from UML to the BWW-model) and evaluated
UML for ontological discrepancies of construct redundancy, overload, excess and deficit.
Their research showed that many UML constructs conform to BWW-Ontology. However,
they also found the following problems. There are eight construct redundancies, which
means several UML constructs map with the same ontological concept. There are one

problematic, and two less problematic construct overloads, which means one UML



construct maps with several ontological concepts. There are two construct excesses, which
means there is a UML construct cannot map with any ontological concept. There are three
categories of construct deficit, which means no UML construct maps with a particular
ontological concept.

There is some other research that evaluated different structures in UML for conceptual
modeling. Burton-Jones and Meso have tested the *“Wand and Weber Good Decomposition
Maodel® as the basic theory of improving Object-Oriented Analysis (Burton and Meso,
2002). This research used the approach of empirical laboratory experiment and examples
of class diagrams, state chart diagrams and use case diagrams. Guizzardi, Heinrich and
Gerd evaluated a conceptual UML class model for ontological correctness and assigned
well-defined ontological semantics to UML constructs (Guizzardi, Heinrich and Gerd,
2002[11). Their research used the General Ontological Language (GOL) and its underlying
ontology. However, they only evaluated UML structure of Classes & Objects, Powertypes,
Associations & Part-whole Relations (Aggregation / Composition). Guizzardi, Herre and
Wagner used the same approach to evaluate other UML structures of Datatypes, Abstract
class and Association (Giancarlo, Heinnch and Gerd, 2002[2]). In this research, they also
compared underlying ontology of General Ontological Language (GOL) and
BWW-ontology as well as other ontology, such as the IEEE Standard Upper Ontology.
Cranefield and Purvis investigated the use of UML as an ontology modeling language

(Cranefield and Purvis, 1999), They compared common ontology modeling languages to



UML and also gave required extensions to UML for conceptual modeling. They used an

example including UML structures of Class Diagram, Generalization, Association and

Aggregation.
For the purpose of this research, the most relevant is Evermann and Wand's research
on using UML for conceptual modeling. They not only examine the defects of UML, but

also develop constraints (rules) to make UML better suited for domain modeling,

This research goes beyond pointing out the ontological defects and instead suggests rules and
guidelines for the modeler and analyst which alleviate these problems and enable the use of UML
for conceptual modeling of real-world domains. (Evermann and Wand, 2003, p215)

We will talk about Evermann and Wand’s research specifically in the next section.

2. 3Evermann and Wand’s research
Evermann and Wand’s research not only analyzed and examined the suitability and
pointed out the weakness of UML for domain modeling, but also developed constraints

(rules) to make UML better suited for domain modeling.

2.3.1 Conceptual modeling represents the real world

In Evermann and Wand’s research, they point out that conceptual modeling involves
representing aspects of the real world. The conceptual model is the output of system
analysis and the purpose of system analysis is to describe the business and organizational
domain. When people use UML for conceptual modeling purposes, UML is used as a tool

to describe and help people to understand the real world. A tool to fulfill this job should be



based on the perspective of the real world. The system design siage is used for the
implementation stage (coding) and UML is relatively well mapped with OO programming
languages, so UML works well in the system design stage. If we also want UML to work
well in the conceptual modeling and / or system analysis stage, UML needs to be well
mapped into the real world, so that people can use UML to represent everything that exists

in the world.

2.3.2 Omtology as the appropriate basis

We need a theory that is used to capture the real world, to do the mapping. Ontology
is an appropriate theory to do this job. Ontology is the branch of philosophy dealing with
the nature and structure of the real world. Ontology defines the real world, telling us what
the world consists of and how the world works.

There are several ontology. For example, Brentano’s ontology (Routledge and Paul,
1874), Gottlob Frege on Being, Existence, and Truth (Klemke, 1968), Kazimicrz
Twardowski on Ideas and their Intentions (Nijhoff, 1977), and s0o on. Within the
ontologies, Bunge-Wand-Weber's Ontology (BWW-ontology) is a philosophy specific to
science. It is a combination of three researchers work. The BWW-ontology model is based
on Bunge's Ontology (Bunge, 1977, 1979), and then Wand and Weber applied this
ontology to Information Systems Analysis (Wand, 1989; Wand and Weber, 1989, 1990,

1991, 1993, 1995; Wand, Veda and Weber, 1999; Weber and Zhang, 1996; Green and



Rosemann, 2002). Evermann and Wand’s research chooses BWW-ontology for the

following reasons:

1. It is well formalized in terms of set theory and has not been developed specially for use in
information systems analysis and design.

2, It has been successfully adapted to information systems modeling and shown to provide a good
benchmark for the evaluation of modeling languages and methods.

3. It has been used to suggest an ontological meaning io object concepts.

4. It has been empirically shown to lead to useful ouicomes by Bodart and Weber (1996); Gemino
(1999); Weber and Zhang {1996). (Evermann and Wand, 2001a,p3).

All these features of ontology make it appropriate as a basis for developing rules about
what a conceptual modeling language should do. The BWW-ontology gives the definitions
oft “Thing”, “Property”, “Change”, “Law”, and “State”. It describes the worid like this:
The world consists of things that possess properties. Properties are either mutual or
intrinsic. Every thing has states by the specific value of its properties. States change as the
property value changes. All these changes follow rules, which are called laws. Every thing
can change. Change is either gqualitative, in which a thing acquires or loses properties; or
quantitative, in which property values of a thing changes. Two things are said to interact

when they act on each other.

2.3.3 Evermann and Wand’s ontological ruies

From all of these assumptions, Evermann and Wand have developed a set of
ontological rules that place constraints on the construction of UML diagrams to ensure that
they properly represent underlying ontological assumptions. In this section these rules and

how they fimction will be discussed An example of a specific rule is: “All classes must

s



possess at least one attribute.” This rule comes from the definition of “Thing” in
BWW-ontology. In ontology, the world consists of things that possess properties. Things
change as the properties change, (UML-Object comresponds to BWW-Thing and
UML-Attribute corresponds to BWW-Property.) If objects are defined without specifying
any attribute, what is the difference among them? People may argue that they have
different names. The class (object) names are only symbols to help people locate them
casily. Without any attribute, the names have no meaning. For example, Mr. A and Mr. B
buy the same book in a bookstore. Now, the book class has a new mutual attribute
“Owner”. The two books are becoming two different objects (A's book and B's book),
because the values of the book atiribute (Owner) are different. If we do not include the
“Owner” attribute in the “Book™ class, the two books will not be different. The difference
among objects in a class is the different value of their attributes. A class has to have at least
one attnbute to distingush different objects in that class. Thus, to define a class without
any attribule may be a serious mistake. We need this rule to help us prevent it from
happening.

The example above illustrates one of the Evermann and Wand’s ontological rules.
There are in total 36 rules and 39 corollaries. We include all of them in Appendix C. These

rules and corollaries will be reviewed and explained in Chapters 4, 5 and 6.

2.4 Existing UML-based CASE tools



Although some research has tried 1o help UML become more suitable for conceptual
modeling, notably Evermann and Wand's ontological rules, there is no existing
UML-based Computer Aided System Engineering (CASE) tools that reflect these rules.
Here, the practical UML toals will be reviewed. In existing UML Tools, the Rational Rose
scries of products (Rose Professional) are the most well known and popular. They are
developed by the Rational Company, which is now a sub-branch of IBM. These products
provide support for different UML concepts. The UML standards are also very well
manifested in Rational Rose. They integrate the diagram and notation template for users to
choose. When people use Rational Rose to draw UML diagrams, they only need to choose
a template and fill in related content information into corresponding area. For example,
“name” and “attribute™ for a class diagram.

Despite the fact that Rational Rose supplies a full coverage of UML concepts, it only
does one job, to help people draw diagrams. (Rational Rose also does “Code Generation™,
but the focus of this research is on the UML diagram layer of the products.) An ideal UML
ool should have the ability not only to help people draw diagrams, but also to guide
people how 1o draw diagrams well by adopting some constraints. An ideal tool should
have some packages to examine the quality of diagrams. The tool should integrate some
theory to help people draw good UML diagrams. Rational Rose only realizes this function
in low level. It examines UML diagrams, according to UML semantics and syntax. It does

not examine UML diagrams based on any other theory, for example, the research



discussed above. 17 you use a dashed line to connect two classes as an association,
Rational Rose will prohibit you from doing that because it violates the UML syntax.
However, if you identify a “Student” as an association, which is supposed to be a class,
there is no way for Rose to indicate such a problem so far.

We have also reviewed part of other UML tools; none handles the second function
better than Rativnal Rose does. From the above review of existing UML tools, we
conclude that no existing UML-based CASE tool enforces Evermann and Wand's

ontological rules.

2.5 Expert system for implementing Evermann’s rules

Our research implements a mechanism to check UML diagrams to see whether they
violate Evermann and Wand's ontological rules. We adopt technology of expert systems,
which eritiques modeler's UML diagrams. In this section, we review critiquing expert
Eysiems.

Critiquing expert systems have a history of over twenty years. In 1981, Langlotz and
Shortliffe developed the ONCOCIN system. (Joson, 1998, p15) It is to critique doctors’
treatments of paticuls. The treatment plan given to a patient by a doctor is the input data of
the critiquing system. The system critiques the treatment and gives advice to the doctor. In
1989, Fischer et. al developed Janus, a system that can aid users designing a houschold

kitchen. (Jason, 1998, p17) When the desi gner creates a Kitchen plan, the system responds
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hased on its critiques. There are other critiquing expert systems such as, ATTENDING
(1983), CLEER (1992), VDDE (1993), TraumaTIQ (1993), AIDA (1995), SEDAR
(1995), ICADS (1997). Since our research relates to critiquing systems in the domain of
software development, we focus more on critiquing expert systems of software analysis
and design. That is, the expert systems help users to develop software. In this domain, we
will discuss four systems: Framer, KRI/ AG, UIDA and Argo. In 1990, Fischer, G. et al
developed the Framer system. (Jason, 1998, p18) It is a tool for designing user interfaces.
When designers are working on an interface, the system critiques the design and lists
advice. For example, if a “Menu Bar” has not been created yet, the system will prompt the
user 1o “Add a menu bar” in its “Things to take care of” panel. Another critiquing system
is KRI/ AG, developed by Lowgren and Nordgvist in 1992, Similar to Framer, KR1/ AG
15 also used for designing graphical user interface (GUI). It cntiques the user's design
according to 70 rules based on published guidelines on designing Motif user interfaces.
However, Jason pointed out that “KRI/ AG does not satisfy all of our requirements for a
critiquing system because it is not integrated into a design tool and it is not tightly
mntegrated inlo the designer's tasks™ (Jason, 1998, p18). User Interface Design Assistant
(UIDA) is another expert system for user interface design. Bolcer, G. A. applied 72 Ul
style rules into UIDA for critiquing user designs. Since it is a stand-alone system, UIDA
does not satisfy all of the requirements for a critiquing system. The last critiquing system

in software development is the Argo family, which consists of three tools (Jason, 1998,
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mm is ArgoC2, a tool for high-level software architecture design. PREFER is
for software system design. These three tools use the same infrastructure to support their
critic Mm. Since we choose ArgolIML as the platform for our research, we will



Chapter 3 Research Approach

In this chapter, we introduce our research approach. We will first explain which
CASE tool we choose and why we chose it. Then, we explain principles we followed in the

research. Finally, we specify the order in which we discuss rules and corollaries.

3.1 Choice of ArgoUML
To implement the ontological rules, we need to choose a UML CASE tool as the
platform. There are several UML products that help people to draw UML diagrams. We

chose ArgolUUML as the platform for our research based on the following reasons.

3.1.1 Critic system in ArgoUML

ArgoUML is a UML CASE tool for software system design. As we mentioned above,
it also supports the function of critiquing user's design. It uses the ADAIR critiquing
process, which is Activate, Detect, Advise, Improve, and Record. That is, when ArgoUML
starts, its critiques will be activated. When users draw UML diagrams, it will detect
mistakes and advise users. Then it can help users to improve their design by solving the

problems. Finally, it can record mistakes as well as their solutions for future reference.
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ArgolIM1s critiquing is based on UML syntax. For example, a class name normally
begins with a capital letter.

As we can see, ArgoUML is a UML CASE tool, which well supports critiquing a
user's design. It is convenient for us to implement Evermann and Wand's ontological rules

into this CASE tool.

3.1.2 Open source

In our system, the input data are UML diagrams drawn by the CASE tool. The system
will read the diagrams and check if they violate those rules. However, diagrams created by
different products have different file format. To read a file, we must know its format. Since
most business products code their file for copyright protection purpose, our system could
not read diagrams drawn by them. However, ArgoUML is an open source project and to

get related information from diagrams for our checking is not a problem.

ArgolUML is an open source project. The availability of the source ensures that a new generation of
software designers and researchers now have a proven framework from which they can drive the
development and evolution of CASE tool technologies (CollabNet Ing. 2003).

As we know, ArgoUML is not the most popular tool people choose to draw UML
diagrams. However, we still chose it because it is open to us. The format, the structure, and
the code are all free to read. In addition, our implementation is for research purposes, not

for business purposes, so we do not concern whether our software can be used for the most

popular UML product.



3.2 Add to ArgoUML

Our research follows the following three principles. First, we do not change or delete
any function of ArgoUML, but add our implementation to it. This is because Evermann
and Wand's ontological rules currently have not been adopted by UML (OMG), we should
not change or delete UML components. Second, for rules and corollaries we propose to
revise or delete, we still implement them because our basic purpose of this research is to
implement these rules and corollaries. Revising, deleting and creating rules and corollaries
are additional contributions. Third, for rules / corollaries that cannot be implemented in
ArgoUML by our proposed approach for general CASE tools, we use an altemative
implementation for UML. This 1s because that approaches given in Chapter 4, Chapter 5
and Chapter 6 are general ideal solutions to a fully functional CASE tool. However,
ArgoUML currently does not support all UML specifications. Alternative solutions for

affected rules / corollaries are discussed in Chapter 7.

3.3 Discussion order

According 1o Evermann, “Our world consists of a static structure of things with their
properties, changes in things and interactions of things"” (Evermand, 2003, p37). Their
rules and corollaries based on this order. Since we are implementing these rules and
corollaries, in addition some latter rules / corollaries are based on the previous ones, our

discussion follows the order of Evermann and Wand’s rules / corollaries for convenience



and consistency. That is, rules and corollaries related to static, change and interaction are
discussed in Chapter 4, Chapter 5, and Chapter 6 respectively.

Another thing we have to note here is that even through we evaluate Evermann’s rules,
this is not our main purpose but an additional contribution. For most rules, our research

borrows terminology from Evermann and we assume they are correct
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Chapter 4 Static Rules

Things, properties and compositions are static concepts in ontology. In this chapter,

we will discuss the approach of implementing rules related to static structures.

Rule 1 Only substantial entities in the world are modeled as object.

First, the key words “substantial entities” in this rule need to be explained. In
BWW-Ontology, “thing” is the basic element in the world and it refers to “substantial
entity” (Bunge, 1977, pl10). Substantial entities are something which physically exist in
the world. They have two meanings. First, they have to be entities. That is, the entities are
actually something in the world. Second, they have to be substantial. They can be seen,
heard or felt by humans. For example, “book” 1s a substantial entity since we can see it;
‘sound’ is a substantial entity since we can hear it, and ‘wind’ is a substantial entity since
we can feel it. However, ‘job’, and *order” are not substantial entities since we cannot see,
hear or feel them.

Now, let us see another example: “air’. Is ‘air” a substantial entity or not? Some
people may say that ‘air’ is not substantial, because we cannot see it, hear it, or feel it. Not

only *air’, but also ‘wind", and “water’ are different from *book’. The “air” is not so easily

25



perceived by human as ‘book’. In Evermann and Wand's research, they did not discuss
such a group of entities. In this case, we propose a sub-classification of substantial entities.
The substantial entities consist of boundary entities and nonboundary entities. For the
boundary entities, they have physical boundaries, like ‘book’, and ‘car’. For the
nonboundary entities, they do not have physical boundaries, like ‘air’, and ‘“sound’.
However, for nonboundary entities, for example, *air’, even though we cannot see, hear or
feel it, the ‘air’ physically exists in the world. Thus, even boundary entities and
nonboundary entities are different; they still belong to substantial entities. In our research,
we still propose them to be substantial. Because Rule 2 is also related to this issue, we will
discuss it in another way in Rule 2.

To realize this rule in the CASE tool, we mapped the “substantial entity” into human
language. The human language consists of sentences and sentences consist of words. Thus,
words are the basic element of a language. Every word has its part of speech. For example:
noun, verb, and adjective. We find that most “entities” can be mapped to nouns. To let the
computer know whether a noun is substantial or not, we used the following approach: First,
classify all nouns (in a dictionary) into two groups: Substantial and Non-substantial. Then
we create a database to store those nouns. When checking UML diagrams, the program
gets the “object” and match in the database. IF an object is “Non-substantial”, the program
gives an error and shows this rule. If an object cannot be found in our database, the

program will interact with the user by asking whether that object is substantial or not. The
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program will remember the new substantial or nonsubstantial noun in its database. Thus,
the system has the ability to leam by remembering newly added nouns. This is expressed

in the following:

Ger ohject/class name;
Map name with substantialDB;
If {name = non-sub)
Show error;
Explain error:
Else if fmame = sub)
m—
Else gquery the user;
Explain what is sub and nonsub;
Give sub and non-sub examples;
Ask user to select sub or non-sub of that name;
If select = non-sub
Show error;
Add to nonsub DB;
Else if select = sub
Add to sub DB;
Exit;

This approach also has shortcomings. Nouns and substantial entities are not strictly
one to one mapping. Thus this approach may be inaccurate sometimes. In addition, if the
user uses an abbreviation for an object name or a class name, the system cannot find it in
the database. However, we can propose an approach to reduce the problem. A heuristic
search algorithm can be adopted. If the user’s input is similar to a word in our database, the
system can ask the user whether the input is the same as the database’s word. For example,
‘school’” is listed in the subnouns. If the user inputs ‘highschool’, the system can ask the

user whether the ‘highschool® is a subclass of ‘school’. Actually, in this case,



‘highschool® consists of two words: *high (adj.)" + ‘school (n.)". The system can match

the ‘school’ in subnouns with all kinds of schools, such as, ‘seniorschool’, ‘juniorschoel’,

and ‘primaryschool.’

Rule 2 Ontological properties of things must be modeled as UML-atributes.

“Property” is another important concept in ontology, since every thing owns
properties (Bunge, 1977, p58). We have already explained that only substantial entities
should be modeled as UML-objects. What should we model the nonsubstantial entities as?
This rule tells us that nonsubstantial entities should be modeled as UML-attributes. This is
because things own properties and UML-objects own UML-attributes. We model things,
which are substantial entities as UML-objects and model properties, which are
nonsubstantial entitics as UML-attributes. An example of this rule is that *job’ and “color’
must be modeled as UML-attributes.

Now, let us analyze the nonboundary substantial entities based on both Rule 1 and
Rule 2. As we already know, entities in the world can be classified as three groups:
boundary substantial entities, nonboundary substantial entities, and nonsubstantial entities.
In Rule 1, it is clear that boundary substantial entities are modeled as objects. In Rule 2, it
15 clear that nonsubstantial entities are modeled as attributes. For the third group,
nonboudary substantial entities, should we model them as objects or attributes? Let us

analyze some specific examples. Boundary substantial entities, such as ‘worker’ are



normally modeled as objects, while nonsubstantial entities, such as ‘skill’ are normally
modeled as attributes. The relations between objects and attributes are that objects own
attributes, like ‘workers’ possesses ‘skills’. To answer the question we gave above, we
have to answer: Arc nonboundary substantial entities more like objects or atinbutes?
‘Water’ is an example of nonboundary substantial entity; it is hard to model ‘water’ as an
attribute of an object. It is hard to find an object which possesses ‘water’. On the other
hand, “water’ owns attnbutes such as ‘color’, ‘temperature’, and ‘taste’. It seems that
‘water' 15 more like an object than an attribute. Thus, the same conclusion as discussion in
Rule 1 is reached. That is nonboundary substantial entities are still substantial entities and
should be modeled as objects.

We can use the following approach to realize this rule. Since properties are
nonsubstantial entities, we can still map nonsubstantial entities into human language. As
discussed in Rule 1, entities can be mapped with nouns. Thus, properties can be mapped
with nonsubstantial nouns. The database of substantial nouns and nonsubstantial nouns in
Rule 1 can also be used here. When checking UML diagrams, the program needs 1o get all
the text strings from all diagrams. Then, all the strings will be matched with the substantial
nouns and nonsubstantial nouns database. If the program finds any string in the
nonsubstantial database, then it checks whether the string is an attribute. If the string is not
an attribute, then the program issues a violation waming. For the noun which is not in any

database, the program will inquiry the user and add it to the appropriate database. This is
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expressed in the following:

Cret text strings;
Map string with substantialDB;
If (string = sudy)
Exir;
Else if {name = non-sub)
Retrieve String _type;
If (String_type = atiribute)
Exif;
Eise Show error;
Explain;
Else query the user;
Explain what is sub and nonsub;
Give sub and non-sub examples,
Ask user to select sub or non-suby of that name;
if select = non-sub
Show error;
Add to nonsub DR;
Else if select = sub
Add te sub DR;
Exit;

Corollary 1 Attributes in a UML-description of the real world cannot refer to substantial

entifies.

This is the corollary of Rule 2. In Rule 2, we have known that, “ontological

properties”, which are nonsubstantial entities, must be modeled as UML-attributes. That

means that UML-attributes must be nonsubstantial entities. This is Corollary 1 as stated

above,

As we can see, this corollary has a very similar structure to Rule 1. We use the

approach for Rule 1 to realize this corollary. We still use the substantial nouns and
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nonsubstantial nouns database and the matching approach. Note that association classes
are also properties (we will explain this in Rule 3) and thus should be checked, This is

expressed in the following:

(ret attribute name;
et assoctationClass Name,
Map name with substantialDB;
if (name = non-sith)
Show error;
Explain error:
Else if (name = sub)
Exit;
Else query the user;
Explain what is sub and nonsub;
Give sul and non-sub examples;
Ask user to select sub or non-sub of that name;
If select = non-sub
Show error;
Add to nonsub DB;
Else if select = sub
Add to sub DB;
Exit;

Rule 3 Sets of mutual properties must be represented as attributes of association classes.
Now, let us talk more about properties. There are two kinds of properties: intrinsic
properties and mutual properties. Intrinsic properties are the properties that only belong 1o
one thing. Mutual properties are the properties that belong to more than one thing
(Everman, 2003, p38). That is. for a single thing. the mutual properties do not exist. For

example, a customer orders a book from a bookstore. The ‘customerName® is the intrinsic

property of the ‘Customer’. However, the ‘orderNumber' is the mutual property of the
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‘Customer’ and the ‘Bookstore’. The order happens between the customer and the
bookstore, Neither of them can own the order by itself,

In this rule, we will discuss mutual properties. First, in Rule 2, we have explained that
properties should bz modeled as UML-attributes. Mutual properties are a sublype of
properties. Thus, they should be modeled as attnbutes. Second, mutual properties are
properties not belonging to a single thing, but a group of things. As we map
BWW-properties as UML-attributes and BWW-things as UML-objects, this means that
mutual UML-attributes belong to a group of UML-objects, As these objects have mutual
attributes, there must be some association to connect these objects together. In UML,
association classes are used to represent associations between objects. Since association
class is a kind of class, it has attributes. This rule specifies that mutual attributes should be
modeled as the attributes of association class. Like the “orderNumber® we discussed in
Rule 2, it is not the intnnsic property but the mutual property of ‘Customer’ and
‘Bookstore’. Thus, we cannot have the ‘orderNumber’ as attributes in both “Customer” and
‘Bookstore’ classes. The fact is that the customer orders a book from the bookstore. "Order
from” is (he association between customer and bookstore. We can have an association class
‘Order’ and model ‘orderNumber” as the attribute of this association class.

Readcrs may have a question here. Classcs arc uscd o rcpresent substantial things,
However, this rule specifies that association classes are used to represent mutual propertics,

which are nonsubstantial entities. This is because association classes are a special kind of
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class. They have characters of both association and class. To separate association classes,
we call other classes ordinary classes. So, we give constraints that Rule 1 does not apply to
association classes but only to ordinary classes.

We can give a clearer description of properties. Even through intrinsic properties and
mutual properties are both properties and must be modeled as UML-attributes, they are
modeled as different attributes. First, intrinsic properties should be modeled as attributes
of ordinary classes. Second, mutual properties should be modeled as attributes of
association classes.

In other words, mutual properties shounld not be represented as attributes of ordinary
classes associated by an association. That is, there should not be the same attribute in two
classes. We use the following approach to implement this rule. First, the program gets all
of the associations in a diagram. Then it checks all attributes in each association end. To do
this, the program first gets all the attributes from the first associated class, and writes them
into a vector. Then an attribute in the second class is retrieved and matched with the vector.
If two attributes are found with the same name, the system shows a violation waming. If
not, the program gets the next attribute in the second class and matches it with the vector

again, and so on. This is expressed in the following:

Gier associanon;

Get associationEnds;

Get end_class!;

Get class_attributes;

While class_atiributes. hasNext
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Add attribute 1o vector,
et end _class2;
Ger class_attributes;
While class _atiribures hasNext
Match with aliri_vecior;
If match = true
Shaw error;
Exii;

In UML, there are two special associations: composition and aggregation. We will
discuss composition in Rule 6. Here we discuss aggregation. Aggregations are parts-whole
associations and the whole classes are the aggregate classes. Based on this, if a designer
models the same attributes in whole and part classes, the “mutual™ attribute should not be
modeled as the association class. That is no association class can be connected to an
aggregate association. Thus, we add the constraint that the examination for Rule 3 does not
check an aggregation association. In the implementation, the program simply skips this
rule if it finds the association end is an aggregation.,

We also need to consider other two special cases. First, attributes with the same name
in associated classes may represent different meanings. That is, they are not really mutual
properties. For example, in ‘Customer buys Book’, ‘name’ attributes of both *Customer’
and ‘Book’ classes are not mutual attributes possessed by both of them. Actually, they
refer to *customerName' and *bookName’, respectively. In this case, the examination will
show a wrong violation wamning. To reduce this effect, we can enable users to dismiss the
waming. Second, attributes with different names in the associated class may represent the

same meaning. That is, they are actually mutual properties. For exampie, in *Traveler takes
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Plane’, ‘flyPeriod’ of traveler and “inAirDuration’ of plane are mutual attributes possessed
by both of them. Actually, they both refer to the *flyingTime’, In this case, the examination
will not show a violation waming. To solve this problem, the possible solution is to adopt a
dictionary (we only give this solution idea and do not implement it). It lists different words
with the same meanings. For the specific domain, a domain related glossary could be even

used.

Corollary 2 An association class cannot represent substantial entities or composites of
substantial entities.

Because mutual properties must be modeled as attributes of association class, mutual
properties cannot be modeled as attributes of ordinary class. From Rule 2, we know that
only intrinsic properties can be represented as attributes of substantial entities. If we
assume that an association class can represent substantial entities, then we get that the
attributes of the association class must be intrinsic properties. This 1s obviously in conflict
with Rule 2 and Rule 3. Thus, the assumption is incorrect. Also the composition of
substantial entities is a substantial entity, thus Corollary 2 is approved. Here are iwo
examples of this corollary: The ‘Worker’ in a ‘company hires worker’ relation cannot be
modeled as an association class. The ‘plane’ in a ‘plane consists of engine and body’
relation cannot be modeled as an association class.

To implement Corollary 2, we can simply match association class names with our
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substantial nouns and nonsubstantial nouns database. The examination will show a

violation warmning when matching an association name with a substantial noun. This is

expressed in the following:
Get association _ clasy name;
Map name with substantialDB,;
If (mname = sub)
Show error;
Explain error;
Else if (name = pon-sub)
Exii;
Else query the user;
Explain what is sub and nonsub;
Give sub and non-sub examples;
Ask user to select sub or non-sub of that name;
If sefect =suh
Show error;
Add to sub DB;
Else if select = non-sub
Add to non-sub DB;
Exii;

Corollary 3 If an association class of an n-ary association is intended to represent
substantial things, the association should instead be modeled as one with arity (n+1).

We have proved that an association class cannot represent substantial things. So if this
situation happens, how can we correct it? Corollary 3 is actually the solution of a kind of
violation of Corollary 2. The n-ary association means that the association, which owns the
association class, has n association ends. In other words, the association connects n

ordinary classes,
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Figure 4.1 Incorrect 2-ary association class

In this case, if the association class is intended to represent substantial things, the

solution is to change the association class into a n+1 ordinary class. By doing this, the

association class will no longer belong to the association, but will be an association end of

the association. For example, in the ‘customer buys book from bookstore’ relation,

SOmeone uses an association class to represent the “book.” This is incorrect. Instead, the

*pook’ should be modeled as an ordinary class along with the ‘customer’ and ‘bookstore’

class. Figure 4.1 and Figure 4.2 describe this process.

Since this corollary is the solution of Corollary 2, there is no need to implement

Corollary 3.
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Figure 4.2 Correct 3-ary association

Corollary 4 An association class representing a composite must instead be modeled as a
composite with attributes representing emergent intrinsic properties.

We have proved that an association class cannot represent composites of substantial
entities. So if this situation happens, how can we correct it? This corollary is actually the
solution of another kind of violation of Corollary 2. An association class sometimes is
used to represent a composite relationship, which is a part-whole relationship (Everman,
2003, p41). For example, among three classes: ‘Engine, Body and Plane’, it is incorrect to
model ‘Plane’ as an association class between ‘Engine’ class and ‘Body’ class. This is
because ‘Engine’ and ‘Body’ are two pants of ‘Plane,” the ‘Plane’ class is actually a
composite of ‘Engine’ and ‘Body.” Thus, the *Plane’ class should not be modeled as an

association class, but a composite class of ‘Engine” and ‘Body." The attnbutes of the



composite class are emergent intrinsic properties. The composite class ‘Plane’ has
emergent properties such as *speed,” because neither ‘Engine’ nor ‘Body’ has that property.
Also, the property “speed” is the intrinsic property of the composite class ‘Plane.” Figure
4.3 and Figure 4.4 illustrate this example.

Since this corollary is the solution of Corollary 2, there is no need 10 implement it.

Engine Body
+power | +size
I
I
I
Plane

+speed

Figure 4.3 Incorrect model for Corollary 4

Tpees +tgsize

0 9

Plane
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Figure 4.4 Correct model for Corollary 4
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Caorollary 5 An association class cannot possess methods or operations.

This is also a corollary of Rule 3, We have already shown that the association class
cannot represent substantial entities. According to Everman's research, “all changes are
tied to things. There can be no change without a thing that changes™ (Everman, 2003, p45).
That is, if there i no substantial entity change, nothing would change. Since attributes of
association classes do not specify substantial entities, they should not change
spontaneously. That is, methods or operations which are able to change the association
class attributes, should not be modeled.

To implement this corollary, the examination can get all associations and check
whether they have any methods or operations. If any method or operation is found, the

program will give a violation waming to users. This is expressed in the following:

Get associationClass;
Gat gperafions;

If operation = null
Else show error;

Corollary 6 An association class cannot be associated with a state machine.

This is also a corollary of Rule 3. In the last corollary we have explained that, if there
1s no substantial cntity change, nothing would change, Now, wc arc talking about statc
machines. In UML, “A state machine can be used to model the behavior of class instances™

(OMG, 2003, p2-140). Since state machines are used to describe the state change of an
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clement, some change must exist for that element. Ordinary classes represent substantial
entities and own methods or operations, which can change the class states. However,
association classes have no method or operation (Corollary 5), for their states to change,
Thus, we should not model state machines for association classes.

To implement this corollary, we need to give this constraint to UML specification.
Also, in UML CASE tools, the feature of modeling state chart diagrams should be disabled

and there is no need to write a program to examine this.

Corollary 7 An association class must possess at least one attribuie.

This is a straightforward corollary of Rule 3. Since sets of mutual properties must be
represented as attributes of association classes, the attributes of an association class are
used to represent the mutual properties. If an association class has no attribute, that means
that the mutual properties set is empty. Because “while an empty set of mutual properties is
still # set and thus technically satisfies Rule 3, it is ontologically meaningless™ (Everman,
2003, P46), an association class must have an attribute.

The implementation gets all association classes and checks whether there 1s any
attribute in each of them. If an association class attribute space is null, it shows a violation

wamning. This is expressed in the following:

Get association_class;
Get aClass_attribute;
If aClass_atiribute = null
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Show error;
Else exiy;

Coroflary 8 An association class must not be associated with another class.

According to Everman, “properties in ontology cannot themselves possess mutual
properties with other properties or things” (Everman, 2003, p46). Because association
classes themselves are mutual properties of associated classes, thus, association classes
cannot have mutual properties with any others.

According to UML notation, association classes do not directly connect to classes.
Instead, a dashed line connects association classes to associations. That is, association
classes cannot be association ends. We can disable this function in CASE tool by
proscribing association connection to association class. For those CASE tools that do not
have the function of connecting association classes to ordinary classes, the corollary is

automatically satisfied.

Corollary 9 An association class must not participate in generalization relationships
According to Everman’s rescarch: “properties themselves cannot be generaliced™
(Everman, 2003, p47). Also. association classes are a group of mutual properties of
participating ordinary classes. Thus, association classes cannot be generalized.
To implement this corollary, we need to include this constraint into LIML specification.

Also, we can disable this function in CASE tool. That is, to proscribe generalization

42



connections (triangle with solid line) to association classes.

Rule 4 If mutual properties can change quantitatively, methods and eperations that change
the values of attributes of the association class must be modeled for one or more of the
classes participating in the association, objects of which can effect the change, not for the
associations class.

This rule covers Corollary 5 and gives solutions to it. In Corollary 5, we already
concluded that association classes could not possess methods or operations. So, where
should we put these methods or operations? In other words, how are the attnbutes of
association classes changed? This rule tells us the answer. Association classes are mutual
properties of a group of ordinary classes. The methods and operations, which change the
value of these mutual properties, should be put in those ordinary classes. That is, only
methods or operations of ordinary classes participating in an association can change the
attributes value of the association class. As well these methods or operations do not have
to be modeled in all participating classes. Which ordinary classes own which methods or
operations will depend on which ordinary classes actually change the attributes value. In
the example of “customer orders book”, there is an attribute “date’ of the association class
‘order’. The method ‘changeDate()’ should be modeled in the ordinary class ‘customer’

instead of in ‘order’. Figure 4.5 and Figure 4.6 depict this rule.
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Figure 4.5 Incorrect model for Rule 4
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Figure 4.6 Correct model for Rule 4

We can look at this rule as two parts. The first part is to specify that association classes

cannot own methods or operations. The second part is the solution that specifies how to




model these methods and operations. We just implement the first part and show the
solution part in the text field. The examination can get all association classes, then gets

their operation fields. If retum values are not null, the program will show a violation

warning. This is expressed in the following:

Ger associationClasses:
Ger operations;

If operations = null
Exit;
Else show error;

Rule 5 An association class represents a set of mutual properties arising out of the same
interaction.

According to ontology, interaction is defined through the state history of a thing: 1f the
way attributes of one thing change depends on the presence of another, then the second is
said to act on the first (Bunge, 1977, p258). Things interact, if and only if each acts upon
the other (Bunge, 1977, p259) and everything acts on, and is acted on by other things
(Bunge, 1977, p259). Association classes represent mutual properties of participating
crdinary classes. However, all these mutual properties may not come from a same
interaction. That is, some interactions create a group of mutual properties, while another
interaction creates another group of mutual properties. For example, iwo ordinary classes:
‘Worker" and ‘Company’ have mutual properties such as ‘hiredate’, “firedate’, “salary’,

‘firereason’, and so on, Not all these properties come from the same interaction. When the
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‘hire’ interaction happens between a ‘Company’ and a ‘Worker’, it creates mutual
properties of ‘hiredate’ and ‘salary.’” When the *fire’ interaction happens between a
‘Company” and a “Worker’, it ereates mutual properties of “firedate” and *firereason.” This
rule specifies that the mutual properties created by a single interaction should be modeled
in a single association class. Mutual propertics created by differcnt interactiuns should be
modeled in different association classes. Like the above example, there should be two
association classes created by “hire’ and ‘fire’, to own ‘hiredate’, “salary’ and ‘firedate’,
“firereason’, respectively. This satisfied that ordinary classes could have more than one
association.

It is difficult for a program to tell whether attributes in an association class come from
the same interaction. What we can do is to interact with users for the critique. When the
program finds the possible vielation, 1t will let the vser indicate whether it is a real
violation. Once the program finds an association class, it gets all attributes from that
association class and asks users whether these attributes are from one interaction. If the
user indicates that they are not from a same interaction, the program gives a violation

warmning. This is expressed as the following:

Crel associationClass;

Ger atiributes;

Ouery user;

If samelmieraction
Exir}

Else show errar;

There is a problem with this approach. It only focuses on whether all attributes in an



association are created from the same interaction. If a user models a set of attributes
created by interaction 'A' in association class created by interaction "B, the program still
gets “Yes” from the user and will not show a violation waming. In fact, this case violates
the rule. For example, the user models “hiredate’ and “salary’ as attributes of association
class created by ‘fire.” These two attributes are from the same interaction ‘fire." The user
would indicate “Yes” when the system queries him. In this case, the examination will not
show any warning information. We realize that every attribute in an association class and
this association class must be created from the same interaction. The reason to give this
constraint is that every attribute in an association class is created by the interaction that
creates this association class. So we can revise this rule into the following:

All mutual properties arising out of the same interaction must be represented by the
same association class.

Thus, we adopt another approach. The program will retrieve each attribute in an
association class one by one. It will query users whether each attribute is created by the
interaction creating the association class. If the user indicates, *Yes’', this attribute will be
saved in an *Ok’ vector. Otherwise, this attribute will be saved 1n a ‘Bad’ vector. So if
there is any attribute in the “Bad"” vector for an association class, the examination will
show a violation waming. In this way, we can guarantee that the above problem will not
happen. If every atiribute is created by the same interaction, which creates the association

class, all these attributes must be created by the same interaction. This is expressed in the

47



following:

et assaciationClass;
Cret acdtiribure;
Inguiry user “If acAteribute and AC created by a same interaction” ;
If yes
Adid attribnire 1o Ok;
If No
Add atiribute io Bad,
While acAttribute in Bad
Show ervor;
Exir;

Rule 6 A composition relation must not be modeled.

In UML, there are two assgciations related to the whole-part relationship: composition
and aggregation, Both composition classes and aggregation classes are the whole of some
part classes. For example, a “person’ class is the composition of *arm’ classes, ‘head’
classes, and so on. The difference between composition and aggregation i1s that
composition is a many to one relationship, while aggregation is a many to many
relationship. In eomposition, part classes can only atlend one composition relationship.
For example, the *Arm’ can only belong to one *Person’. In aggregation, part classes can
attend more than one aggregation relationship. For example, the *Person’ can belong to
several *Groups’, However, according to Everman and Wand's research, there are only
compaosition relationships in ontology (Evermann, 2003, p50). Another important thing is
that we need to separate the term ‘composition’ in ontology and the term “composition’ in

UML clearly. The term “composition” in ontology does not refer to composition in UML.
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Instead, it matches with aggregation in UML. That is, UML-composition cannot maich
anything in ontology. Thus, this rule specifies that the composition relations in UML
should not be modeled. For example, the ‘plane-engine-body’ relation should be modcled
as a UML-aggregation instead of a UML-composition.

To realize this rule, we need to add this constraint to UML specification. Also, we can
disable this feature in CASE tools. That is, to proscribe composition (hollow diamond) as

association ends.

Rule 7 Every UML-aggregate must possess at leas! one attribute which is not an attribute
of ils parts or participate in an association.

We have discussed that UML-aggrepate is a whole-part relationship. This rule
specifies more constraints on aggregations. It is stated that “In the BWW-ontology, a
composite must possess at least one emergent property, otherwise there exists not a
composite but only a set of things” (Evermann, 2003, p51). This means that aggregate
classes should not only be the whole of their parts, but more than that. For example, in the
‘Person has Arm, Head', the *Person’ acquires the new emergent attribute of ‘Language’
which 1s not processed by “Arm’ or ‘Head’. This rule can be illustrated in the following:
Classes A and B are two parts of aggregate class C. A possesses attributes attrl and attr2,
B possesses attributes attr3 and attrd. This rule tells us that there should be at least one

attribute attr5 not in the set of {attrl, attr2, attr3, attrd}; or class C participates in an



association. Note that the sentence in quotations above is talking about the composite in
ontology, namely, aggregate in UML. We give Figure 4.7, Figure 4.8 and Figure 4.9 to

descnbe this rule.
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Figure 4.7 Incorrect model for Rule 7
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Figure 4.8 A correct model for Rule 7
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Figure 4.9 Another correct model for Rule 7
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To implement this rule, we use the following approach. First, the program needs to
find aggregate classes. This is done by checking each association end of each class, If an
aggregation end i1s found, the program gets this association. Now, we can get attributes of
both aggregate class and part classes. However, we only get the part class attributes and
add them to a vector. After all part class attributes are added into the vector, the program
begins to match each attribute in the aggregate class with the vector. If any aggregate class
attribute is not found in the vector, the examination terminates without a violation warning.

This is expressed in the following:

Get classes;

Get nssociationEnds;

If associationEnd=aggregation
Ger associalion;
Get partClasses;
Add peAgiributes to vecior,

Get aggregateClasses:

Ger acAtiributes;
While acAttrifnites. hasNexif),
If lvetorcontainsiacAtrritnte)
Exit;
Show error;

Rule 8 All UML-classes must possess at least one attribute or participate in an
assoctation,

In Rule 1 and Rule 2, we have discussed that classes represent things and atiributes
represent properties. In ontology, a thing is different from another because they own

different properties. That is, if things have no properties, we cannot distinguish different
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things. Also, things map to UML-classes and properties map to UML-attributes. Thus, we
can get that UML-classes must own attributes. On the other hand, in UML, “A class is a
description of a sel of objects that share the same attributes, operations, methods,
relationships, and semantics” (OMG, 2003, p2-26). Attributes are fundamental elements of
classes and classes must possess attributes. However, there is one case where a class can
have no attribute. That is when the class participates in an association. However, on closer
analysis, this is still following Rule 8. That is because if the class participates in an
association class, the association class itsell represents mutual attribute of all participating
classes.

For the implementation, the program only needs to check all classes to see whether
they have any attribute or association. If neither attnbute nor association is found, it shows

a violation wamning. This is expressed in the following:

Get classes;
Gel attributes;
If attribute=null
Get associationEnds;
If associationEnd=nuli;
Shaw error;
Exii;

Rule 9 Object ID's must not be modeled as attributes.
In UML, classes are a group of objects with the same attributes and behaviors. In

reverse, objects are instances of classes. How can we distinguish different objects of a
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class? Some people may think of creating an objectlD attribute. For example, in the
‘Book’ class, different book objects can be identified by a bookID attribute, whose values
are *book1’, ‘book2’, and so on. However, “In our ontology, things are identified through
their unique set of property values and there exists no special identification criterion or
identifier” (Everman, 2003, p53). Now, we explain this in detail.

Even though objects in a class own the same group of attributes the attribute values of
different objects are different. The aftribute groups with different values are used to
distinguish different objects in a class. The “Book” class may own attributes of “title’,
‘author’, and “year’. {UMLIL.5, OMG, 2003}, {UMLI1.4, OMG, 2001}, and {Ontology,
Bunge, 1977} are three different book objects.

To implement this rule, the examination checks class attributes to see whether there is
any attribute name space that includes *ID’. However, the “objectID” in this rule does not
only specify the string *ID". It applies to all attributes, which are used for identification.
Thus, we also check strings starting with or ending with ‘Number® and ‘No.". It is obvious
that this approach is not very accurate. There may be attributes including ‘ID’, ‘Number’,
or ‘No.” in their names are not for purpose of object identification. In this situation, our
approach asks users whether attribute 'A’ only valid within the class 'B'? This is because, if
an attribute 1s only used for distinguishing different objects in a class, this attribute will be
useless in any other domain out of this class. For example, from the perspective of a class

diagram with several classes, an attribute ‘author: Bunge’ can give some information,
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while an attribute ‘bookID: hook1’ makes no sense. If the user indicates that the attribute
is only valid within that class, the program shows a violation warming and saves this
attribute in the ‘checkedBad’ vector. Otherwise, the program only saves this attribute in

the ‘checkedOk” vector. This is expressed in the following:

et classes;
Get atiributes;
While aitributes. hasNexti):
et mame;
If (name. stariWisth(ID| |No. | |Number) |[name.endWith(ID}|No. || Number})
If Ifname in checkedOk)
If (name in checkedBad)
Show error;
Else
Ouery wier;
If answer=Y
Show error;
Add name 1o checkedBad;
Else if answer=N
Add name 1o checkedOk;
Exii;

There are two aspects of limitation in this implementation approach. One is that,
strings include ‘No.” or “‘ID" may not really be an object ID. In this case, the examination
will show an jncorrect violation warning. The query structure in our approach can reduce
this effect 1o some extent, Another is that a designer may not use strings including “No,” or
‘ID" to represent an object ID. In this case, the examination will not detect the violation. A
possible solution may be adopting a dictionary to list all words representing ID. In a

specific domain, we can even use some glossary related to that domain.
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Rule 10 The set of attribute values (representing mutual and intrinsic properties) must
uniquely identify an object.

In the last rule, we have explained that different objects in a class are identified by
different values of the attribute set. That means that if every attribute value in two objects
of a class is the same, respectively, the two objects are identified as a same object. For
example, if two book objects are {UMLL.5, OMG, 2003} and {UML1.5, OMG, 2003},
they are actually the same book object.

The implementation approach is to compare values of each attribute of each object. If
two objects have absolytely the same attribute value set, the program shows a violation

warning. This is expressed in the following:

Ger obfects;
Set same=1;
While objects. hasNext{)
Cer attributes;
While attributes hasNext()
Get value;
Ifvalue! I=value2
Set same=(i;
If same==
Sheow error;

Efse exit:

Now, we talk more about identification of each object in a class. In UML, “An object
is an instance that originate from a class” (OMG, 2003, p2-101). However, in conceptual
modeling, we do not identily individual objects of a class, but only focus on classes. Thus,

Rule 10 and other related rules, for example Rule 11, are not applicable to conceptual



modeling.

Rule 11 Every attribute has a value.

It is stated that “Since attributes represent properties by being assigned some value at
some {ime, these values reflect a property”(Everman, 2003, p55j. That is, there cannot be
any attribute without a value. In UML, attributes can have multiplicities. That is, an
attribute can have one value, two values or n values. However, there are two situations
contradicting with this rule. First, a user can choose attribute multiplicities as “0." This
means that the number of this attribute value is *0." The second is that a user can specify
the attribute value as ‘null.” Both these two cases imply that an attribute can have a
meaningless value. These are inconsistent with this rule. In programming, sometimes we
need to set ‘null” values to attribute. For example, the ‘age’ attnibute of a *Person’ class.
When we set the variable, we do not know what value this variable would be and set *null’
for its initial value. However, this will not happen in conceptual modeling because
everybody has an age. Thus, every attribute has a valne. We will talk about this in
Corollary 10,

To implement thiz rule, we just proscribe a value of “null” and multiplicity of “0" for
attnbutes. According to UML specification, “The second compartment (of object notation)
shows the attributes for the object and their values as a list. Each value line has the syntax:

attributename: type = value”™ (OMG, 2003, p3-65). Thus, the implementation affects two
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diagrams: class diagram and object diagram. In class diagrams, we proscribe ‘null’ for an
initial value. In object diagrams, we proscribe ‘null’ for the attribute list. We still need to
remind users to specify values for attributes. The program simply gets all attributes. If any
attribute is found without a value, it shows a violation waming. This is expressed in the

following:
Get class/object;

Ger atiributes;

Get value!

I value=null
Show error;

Else exit;

Corollary 10 Attribute multiplicities greater than one imply that the order of the different
individual attribute value components is semanticaily irrelevant.

Attnbute multiplicity specifies the number of values of the attribute. The last rule
prohibits attribute multiplicities of *0°, here we will discuss attribute multiplicities greater
than “1." When the multiplicity is greater than one, it means that the attribute has more than
one attribute value. This corollary specifies that only order irrelevant values can be
modeled as attribute multiplicities greater than one. For example, an address in the real
world may consist of ‘number’, *street’, ‘city’, and *country.” One instance would be {123,
Cook St, Victoria, Canada}. A user may model the ‘address’ as an attnbute with a
multiplicity of ‘4.” According to this corollary, it is incorrect, because the order of these

four values is relevant. If we change the order to {Victoria, Cook St., Canada, 123}, this is
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obviously an invalid address. In this case, 4 attributes with multiplicity of 1" will be
modeled instead of 1 attribute with multiplicity of ‘4.” That is, attributes of ‘number’,
‘street’, ‘city’, and ‘country’ should be modeled.

The above discussion is about the definition of attribute multiplicity in UML
specification and Everman’s research. However, we feel the above (un)ordered atiribute
multiplicity structure confusing and redundant. To simplify this, we propose our approach,
which 1s to model an attribute for each attribute value. For the ‘address’ attribute, a much
simpler modeling is to decompose it into four atiributes of ‘no.”, ‘street’, ‘city’ and
‘country.’ In this way, every attribute only has a single value and we need not think about
multiplicity and ordered or unordered. The above is for the ordered values case; for
unordered values, this modeling also works fine. For example, in the current UML
structure, a ‘contactNo." attribute may have multiplicity of “3." A ‘contactNo." may have
three values, such as *homePhone, cellPhone and fax.” In this case, we can also decompose
the *contactNo.” into three attributes of *homePhone’, ‘cellPhone’ and *fax.’ People may
ask when some ‘Persons’ have ‘cellPhone’, while others have not, can we assign null 1o
the attribute ‘cellPhone’? The answer is no. In the last rule, we have discussed that an
attribute cannot be null. However, it is a fact that some people do not have a cellPhone. In
this case, we say that people with “cellPhone’ possess this additional attribute than those
who do not have ‘cellPhone.” These people should be specialized from regular people.

According to the above discussion, we propose Rule-New 01 to take the place of Corollary
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10. Thus, there is no need to implement Corollary 10.

Rule-New 01: Every UML attribute can only have a single value. An attribute of
multiplicity of ‘N° should be decomposed into ‘N’ attnbutes of multiplicity of *1°, An
attribute multiplicity of *0" should be generalized as a super-class not possessing the
attribute.

Even through this rule strictly follow ontology, it has a severe restriction making this
new rule a little difficult to be satisfied. For the implementation of this rule, UML
specification as well as CASE tools are proposed to disable the feature of assigning
multiplicity to attributes. Thus, there is no need to implement it.

Now, we discuss a little more about order and unordered attributes. Actually, ordered
attributes depend on each other, while unordered attnibutes are independent. For example,
attributes 'street’, "city’, ‘province’, and 'country’ can only specify an address when they are
together. A independent 'street’ makes no sense. Attributes ‘homePhoneNumber,
'businessPhoneNumber’, and ‘cellPhoneNumber' can give information independently.

However, these are out of the scope of our thesis, future research can be done about it.

Rule 12 Classes of objects that exhibit additional behavior, additional attributes or
additional association classes with respect to other objects of the same class, must he

modeled as specialized sub-classes.
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We have discussed multiplicity of attributes. In this rule, we will discuss multiplicity
of association ends. Since associations connect classes, the multiplicity of association ends
specifies the number of class objects participating in an association. For example, in
Figure 4.10, a company can hire Zero or more persons while a person can work for one and

only one company, Here, zero means the company does not hire any person.

Company Person

L

rep P' . ¥

- — —F

Hire

Figure 4.10 Muluplicity of association ends

Consider a situation where the company hires one or more persons, These persons
share the same attributes and behaviors, so they are modeled as a person class. When the
multiplicity is zero, it means that no person participates in this association. That is, a
person does not participate in this hire association. In this case, the person does not possess
the attributes and behaviors of an ‘employee’, such as *skill® and “fire()." In other words,
the person class exhibits additional attributes or behaviors when multiplicity changes from
‘0" to *1.%." In UML, “A class is a descnption of a set of objects that share the same

attributes, operations, methods, relationships, and semantics™ (OMG, 2003, p2-26). The
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‘employee’ exhibits more behaviors and attributes than the “person.’ They should be
separated into two classes instead of modeling them in one class. Considering that all
employees are persons and ihent all attributes and behaviors of person, the *Employee’ is
modeled as the sub-class of “Person.” Thus, the ‘Person’ class does not participate in the
*hire’ association, but the ‘Employee’ class does. Generally speaking, all classes with
multiplicity of *0.*" (* = 1, 2, ...N) participating in an association have the problem
discussed above. Thus, association ends with multiplicity of “0..*" should not be modeled.
Objects exhibiting additional attributes or behaviors actually participate in this association,
They should be modeled as a specialized sub-class. This rule can be depicted in Figure

4.11 and Figure 4.12.

ClassA ClassB
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+attributeaABl
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Figure 4.11 Incorrect model of Rule 12
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The implementation of this rule applies to both UML specification and CASE tools. In
UML specification, multiplicity of *0..¥" (* = 1, 2, ...N) for association ends should be
proscribed. That is, users should separate ‘0..*°
multiplicity of 0..0 1s meaningless as it would indicate that no instances can occur” (OMG,
2003, p3-75). Thus, the multiplicity of *0° for association ends should not be modeled and
the option of multiplicity of 0" should be disabled in CASE tools. In the current stage, ifa
CASE tool permits users to input association end multiplicity from the keyboard, an

examination 1s still needed. The program gets association ends and checks whether the

|

AssociationClass

+attribut=aB]
+attribut=sABR2

Figure 4.12 Correct model of Rule 12
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into ‘0" and *“1..*." However, *




multiplicity begins with ‘0." If this is the case, it shows a violation waming. This is

expressed in the following:

Ger associations;

Get assoctationEnds;

Ger multiplicity;

I multiplicity. starts With( 0"}
Show error;

Elve exit;

Corollary 11 An object acquiring additional behavior or properties must be destroyed as
instance of the general class and created as instance of the specialized class that is
modeled with the relevant operations or association classes.

The last rule describes a situation where objects acquire additional behaviours or
addilional attributes. It also gives a solution for when this happens. That is, when an object
acquires additional behaviors or properties, it should no longer be modeled in the original
class, but to be modeled in a specialized sub-class. That means that the object is
reclassified from one class to another class. However, there is no construct in UML to
model this. Evermann and Wand suggest a mechanism of re-classification to make up such
a UML deficiency. They propose to employ the UML semantics of object creation and
destruction (Evermann, 2003, p59). That is, when objects acquire additional behaviors or
properties, the objects should be destroyed as instances of the original class and created as
instances of the newly specialized class,

With respect to Rule 12, this corollary specifies another solution to model objects



acquiring additional behaviours or additional attributes. However, “UML does not provide
a construct to express this. In this respect it is ontologically deficient” (Evermann, 2003,
p59). Thus, a formal construct of re-classification to express this needs to be defined.
However, “Object creation and destruction have no direct equivalent in the
BWW-ontology as things cannot be created or destroyed” (Evermann, 2003, p61).
Actually, objects cannot be created or destroyed. Instead, they only change memberships
of classes by acquiring or losing properties. For example, a ‘Person’ acquiring a mutual
property of ‘enrol’ by a ‘University’ is a ‘Student.” In this case, there is not a new
‘Student’ created, but the ‘Person’ instance becomes a member of the ‘Student’ class. We
would not consider it a good way to employ a non-ontological semantic (Object creation /
destroyving) for an ontological deficiency (no mechanism of re-classification), which
actually need a formal definition. The original and basic motivation for this corollary is to
model the process of an object changing its membership from a class to its sub-class,
namely re-classification. Thus, the mechanism needs formal definition and further
refinement so that it can be added to UML specification. Since there is no such mechanism
in UML specification currently, we could not implement this corollary in CASE tools at

this time.

Corollary 12 Re-classification ocewrs only within a generalization / specialization

hierarchy.



Re-classification is a mechanism to model the process of objects being specialized or
generalized through acquiring or losing properties or behaviours. When objects acquire
additional behaviours or attributes, they possess the original behaviours or attributes as
well as the additional behaviours or atiributes. According to UML specification, “The
more specific element is fully consistent with the more general element (it has all of its
properties, members, and relationships) and may contain additional information” (OMG,
2003, p2-38). Objects acquiring additional behaviours or attributes are specialized from
the onginal class. That is, re-classification occurs within a specialization hierarchy. For
example, a ‘Person’ acquiring an additional attribute of ‘department’ is re-classified as an
‘Employee.” This re-classification occurs only within the ‘Person---Employee’
specialization hicrarchy. Conversely, an *Employee’ losing the attribute of “department’ is
re-classified as a ‘Person.’ This re-classification occurs only within the
‘Employee---Person’ generalization hierarchy.

To implement this corollary, first, we need to get the re-classification. This can only be
done after re-classification is fully defined in UML specification. Then we can check
whether the re-classification only occurs within a generalization / specialization hierarchy,
that is, check the new class and original class, which the re-classified object belongs to. If
the two classes have no generalization / specialization (direct or indirect) association then

the program shows a violation warning. This is expressed in the following:

Get re-classificarion;



Cref object;
et originalClass;
Get newClass;
Object interClass = newClass;
While interClass.associationEnd=generalize
Cret anotheEnd:
Get anotherClass;
fnterelass = anotherClass;
If interclass == originalClass
Exit;
Show error;

Because there is no re-classification mechanism either in UML specification or in

UML CASE tool, we cannot implement this corollary at this time.

Rule 13 Every UML-aggregate obhject must consist of at least two paris.

This rule discusses UML aggregations. First, we explain the meaning of this rule.
Because objects are instances of a class, this rule specifies that every UML-aggregate
object must consist of at least two parts. There are two cases that apply to this rule. First,
an aggregate object should consist of least two objects in different part classes. For
example, a *Commitlee’ class is the aggregate of classes of department faculties. The
object of *Committee’ class can consist of an object of faculty from ‘Computer Science’,
and an object of faculty from *Business.” The second case 1s that an aggregate object can
consist of at least two objects from one part class. In this case, the number of objects in that
part class must be greater than one. For example, the object of the *Committee’ class can

consist of two faculty objects from *‘Computer Science.” That is, the committee can consist

67



of both two people from computer science; or one person from computer science and
another from business; or both two people from business. Now, let us see why we should
have this rule. We have explained in Rule 6 and Rule 7 that aggregation is a kind of
association related to the whole-part relationship. Aggregation classes are the whole of
some part classes. If an aggregation only consists of one object, how can the aggregation
acquire emergent properties? According to Rule 7, every aggregate has to have at least one
emergent property. Thus, it is better to equate this aggregation to that object than say that it
1s an aggregation consisting of one object.

We can calculate the number of part classes to make sure the number is greater than
two. However, in the second case, the part class number would only be one. Thus, we
calculate the number of aggregate associations. If the number is greater than one, the
program does nothing and exits. Otherwise, it shows a violation waming. However, in the
above approach, the system will show a waming message for all unrelated classes. This is
because the unrelated classes have no aggregate association at all and the count number is
zero. Thus, we add another restriction in the program. Only if the aggregate association
number of a class is less than two and does not equals zero, the system shows a violation

wamning. This is expressed in the following:

Ger classes;

Get associationEnds;

Count=1);

While associationEnds. hasNexi()
If associationEnd=ageregare
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Couni+f
I count=1 or count=10)
Exit;
Else show error;

Rule 14 An instance of a class that by virtue of additional aggregation relationships
acquires emergent properties or emergent behavior must be modeled as an instance of a
specialized class which declares the corresponding attributes and operations.

This rule is very similar to Rule 12, which discusses objects acquiring additional
properties or behaviors through association interactions. This rule discusses objects
acquiring emergent properties or behaviors through a special association: aggregation.
Thus, this rule has the same motivation and rational as Rule 12. From Rule 7, we know
that objects can acquire emergent properties by participating in an aggregation as a whole
side. Conversely, if objects do not participate in this aggregation, they do not possess these
emergent properties. This difference is expressed by aggregate multiplicity of “0.** (* =1,

2, ...N). We use Figure 4.13 and Figure 4.14 to explain this.

Head Wing Body
1 0..2 £
0:0.0;
Creature
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Figure 4.13 Incorrect model of Rule 14

Head Body
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Creature
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Figure 4.14 Corrget model of Rule 14
A *Creature” 15 an aggregate of ‘Head', *‘Body’ and so on. In Figure 4.13, if no *Wing'
(multiplicity of ‘0°) participates in the aggregation, it is fine. When a ‘Creature’ has two
‘Wings® (multiplicity of ‘27), it acquires an emergent behavior of ‘Fly.” However, not all
‘Creature’ objects possess the behavior of “Fly.” This conflicts with the definition of class,

which is a group of objects with the same properties and behaviors. Thus, Figure 4.13,



which violates this rule, is an incorrect modeling. According to this rule, we model the
objects, that acquire emergent property of ‘Fly’ by virtue of ‘Wing" aggregation, as a
specialized ‘Bird’ class in Figure 4.14.

The implementation of this rule also applies to both UML specification and CASE
tools, In UML specification, multiplicity of “0..*" (* = 1, 2, .,.N) for aggregation ends
should be proscribed. That is, users should separate “0..*" into *0’ and *1..*." However, “A
multiplicity of 0..0 is meaningless as it would indicate that no instances can occur” (OMG,
2003, p3-75). Thus, the multiplicity of ‘0" should not be modeled for aggregation ends.
Remember that multiplicity of *0" should not be modeled for attributes (Rule 11) and
multiplicity of ‘0" should not be modeled for association ends (Rule 12). We propose that
multiphicity of “0” should not be modeled at all in UML specification. For the same reason.
the option of multiplicity of ‘0" should be disabled in CASE tools. However, if a CASE
tool permits users to input aggregation ends multiplicity, an examination is still needed.
The examination gets aggregation ends and checks whether the multiplicity begins with
‘0." If this is the case, the program shows a vicolation waming. This is expressed in the

following:

Crel aggregalions;

Ger ageregationEnds;

Get multiplicity;

If mudtiplicity. staris With{ “0")
Show error,

Else exit:
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Rule 15 Object creation occurs when an entity acquires a property so that it becomes a
member of a different class.

According 1o class definition, “A class is a description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics™ (OMG, 2003, p2-26).
[f an entity acquires a property other than the ‘n’ properties of the class it currently belongs
to, it can no longer belong to this class. It does not only possess the ‘n’ attributes possessed
by other objects in that class, but also posses one (the ‘n+1") more attribute than other
objects. In this case, the entity becomes a member of a different class whose members all
possess these ‘n+1° attributes. In the *Creature—Bird" example, a *Creature” acquires a
property of *“Wing’ so that it becomes a member of the *Bird’ class.

This rule specifies the use of object creation to model the above process. However,
“Object creation and destruction have no direct equivalent in the BWW-ontology™
(Evermann, 2003, p61). In addition, we notice that the above process is like the following
description: “Changes in natural kind of a thing correspond to changes in class
membership of an object” (Evermann, 2003, p59). This description is actually the
proposed re-classification. (Please refer Corollary 11 for details of re-classification.) Based
on the above thinking, we would rather employ the re-classification mechanism than
object creation to model the process that entities acquire properties so that it becomes a
member of a different class.

This rule will change the UML specification. Implementation in CASE tool will only



be realized after this is done in UML specification.

Corollary 13 Object destruction occurs when an entity loses a property that is necessary
for membership in a particular class.

This corollary describes the reverse process of Rule 15. An entity of ‘n” properties
loses a property and becomes to possess “n-1" properties. This entity no longer belongs to
that ‘n’ property class, because this entity no longer share all the *n’ properties with other
objects in that class. For example, when the ‘Employec’ loses the property of ‘job’, it no
longer belongs to the “Employee’ class. This 1s because “job® is necessary for membership
of the ‘Employee’ class.

This corollary specifies the use of object destruction to model the above process.
Based on the same thinking in Rule 15, we would rather employ the re-classification
mechanism than object destruction to model the process that entities lose properties. These
properties are necessary for membership of a particular class.

This rule will change the UML specification, Implementation in CASE tools will only

be realized afler this is done in UML specification.

Rule 16 Anributes with class scope should instead be modeled as atiributes of an

aggregate representing the objects of the class.

In UML classes, there are two kinds of attributes: instance-scope attribute and
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class-scope attribute, The instance-scope attribute is an attribute of the instance objects of
a class. A class is a set of objects with the same attributes and behaviors. Objects are
instances of a class. So, every object of a class possesses the instance-scope attributes.
Attnibutes we normally model are the instance-scope attributes. However, not all attributes
can be possessed by each object. Some attributes are only possessed by the whole group of
objects, namely the class. These atirihutes are class-scope attributes, This rule specifies
that no class-scope attribute should be modeled. This is because “An object as a class
instance possesses all methods and attributes defined for its class™ (Evermann, 2003, p52);
however, class-scope attributes are no! possessed by a class instance, but by the set
(aggregate) of all class instances. Let us look at an example. In the modeling of a
bookstore, the designer models a ‘Book’ class with attributes: ‘BookName’,
‘NumberOfBooks’ and so on. This is an incorrect model. The ‘BookName' is an
instance-scope attribute because every book instance possesses a name. The
‘NumberOfBooks® is a class-scope attribute because each book instance cannot possess
the book number but only the book class can. According to this rule, the
‘NumberOfBooks' should not be modeled as an attnbute of the *Book” class. Instead, we
should create an aggregation relationship in this case. The ‘Book” is the part class and
‘Inventory’ is the whole class. The ‘NumberOfBooks’ should be modeled as an attribute of
the agegregated class ‘Inventory.” This is because on the book inventory, every book title

possesses the attribute of book number and book number is the instance-scope attribute of
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the inventory class.
For the implementation, the program gets each attnbute from each class to see
whether any attribute is class-scope. If an attnbute is found class-scope, it shows a

violation warning. This is expressed in the following:

Ger classes;
Get atiributes;
While atiributes. hasNexif)

Get attributeScope,

If anributeScope=classScope
Show error;

Else exit;

Rule 17 If a class that is specialized is declared as abstract, the specialization must be
declared to be ‘complete’.

In UML, specializations inhenit all attributes and behaviors from their generalization.
Generalization is the super-class of all their specialized sub-classes. If all objects in
generalized super-class are members of the set of specialized sub-classes, this is called
“complete”, Another concept we need to introduce is that a class can be declared
“abstract”. This means, there is no actual instance for the abstract class. A generalized
super-class is a class, so it can be declared abstract, which means there is no instance for
the super-class. That implies an abstract super-class has attributes and behaviors and there
is no class object to possess them. In addition, “There are no properties without things

possessing them and there are no laws without things adhenng to them™ (Evermann, 2003,
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p635). Thus, the abstract super-class has to be specialized by its sub-classes so that objects
of the specialized class can possess those attributes and behaviors. Since the super-class is
abstract and cannot have any object, the specialization has to be complete. For example,
‘GraduateStudent” and *UndergradStudent’ are two specialized sub-classes of ‘Student’
class. If the super-class “Student’ is declared as abstract, it means, there is no object for it.
The actual student has to be member of *GraduateStudent” or ‘UnderagradStudent.” Since
‘Student’ is abstract, this specialization must be complete. That is, a student must be either
a gradstudent or undergradstudent. Note that specializations can also be declared abstract.
In this case, their sub-specializations should be complete.

To implement this rule, we need to first check all generalized super-class. Then these
super-classes are checked to see whether they are abstract or not. For those super-classes,
which are declared abstract, we finally check the specialization constrainis to see whether
it is declared complete. If the program finds a specialization not complete, it shows a

violation waming. This is expressed in the following:

Get generalizations;
Get parentEnd;
If parentEnd==absiract
Get constrainis;
If leonstraini==complete
Show error;

Exit:

However, the notion of abstract class in UML refelects implementation thinking, not

conceptual thinking. We propose that this notion be removed from UML for conceptual
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modeling.

Rule 18 A class that is not specialized cannot be declared abstract.

Having “There are no properties without things possessing them and there are no laws
without things adhering them”™ (Evermann, 2003, p65), we can deduce this rule in two
ways. First, a class is not specialized implies that this class has no sub-class. That means
that all objects are instances of the class itself. Also beacuse there must be some objects to
possess the class properties and behaviors, this class cannot have no instance and cannot
be declared abstract. Second, a class that is declared abstract implies that this class has no
object. Thus, the absiract class has to be realized by some specialized sub-classes. In
addition, the specialization has to be declared complete according to Rule 17. For example,
a ‘Student” class without any specialized sub-class cannot be declared abstract.

To implement this rule, we need to check whether a class 1s abstract or participates in
generalization as a parent. If it is abstract but does not satisfy the latter condition, the

program shows a violation wamning. This is expressed in the following:

Get classes;
If class==abstract
Get associationEnds;
While associationEnd's. hasnexi()
If association End==generalizeParent
Exil;
Show error;



Rule 19 A specialized class must define more attributes, more operations or participate in
more associations than the general class.

According to UML specification, “Generalization is the taxonomic relationship
between a more general element (the parent) and a more specific element (the child) that is
fully consistent with the first element and that adds additional information™ (OMG, 2003,
3-86). That is, the features of a specialized sub-class consist of two parts. One is the
features inherited from its super classes, another is the additional features only possessed
by itself. If the specialized class does not define more attributes, more operations or
participate in more associations than the general class, the specialized class is absolutely
the same as the general class. Thus, a specialized class must define more features than the
general class. For example, a specialized sub-class *Student’ defines more attribute:
‘studentNo,” more operation: ‘study,” and participates in more association: *School enroll
student’ than the general super-class “Person.’

The implementation approach of this rule is to compare specialized sub-class with
general super-class to see whether the sub-class possess more features. First, we get
generalizations as well as both “parentEnds™ and “childEnds.” Second, the program gets
all parentEnd features, such as attributes, methods and associations and puts them into a
vector. Then, each attribute, method or association of the childEnd will be matched with
the vector. If any feature is not found in the vector, the system exits. Otherwise, it shows a

violation wamning. This is expressed in the following:
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Get associations;
If association==generalization
Get parentEnd;
Gel attributes;
Cret aperations;
Get asvociationEnds;
Aded to vector;
Gt ehildEnds;
Gret attributes;
While attributes. hosWexif)
Match with veciar;
I not find in vector
Exin;
et operations;
While operations. hasNext()
Match with vector;
If not find in vectar
E:H;
Ger associationEnds;
While associationEnds hasNexif)
Mateh with vecior,
If not find in vector
EHL.
Show error;

Else exit;
Noticing that the mherited attributes, operations or associations from the super-class

should not be shown in the sub-classes, we only need to check whether a sub-class
possesses any attribute, operation or participates in any association except the
specialization itself. This is because the super-class should not possess any of the above
features. If the program cannot find any feature of attribute, operation or participating in
association for a sub-class, it shows a violation waming, This is expressed in the

following:



et associations;
If association==generalization
Get childEnds;
Giet atiributes;
While atrributes. hasNexii)
Exir,
Giet operations;
While operations hasNext()
Exir;
Ger association Ends;
While assoctationEnds. hasNexi()
Exit;
Show error;

Rule 20 Every ordinary association must be an association class.

In Rule 3, we discussed that mutual properties of classes participating an association
should be modeled as attributes of association classes. For classes that have no mutual
property or their mutual properties are outl of our modeling scope, we only model an
association to connect these classes. In UML, there are two functions of associations. One
use of association is message passing. It is stated that “The link is used for transportation
of the stimuli” (OMG, 2003, p3-130), “A link is an instance of an association™ (OMG,
2003, g9), and “A message is a specification of a stimulus” (OMG, 2003, p3-111).
However, message passing is not consistent with our ontology because “Since message
passing is a design related concept and there exist no equivalent in the BWW-ontology, we
propose that associations are ontologically excessive. Hence, they should not be employed

for conceptual modeling” (Evermann, 2003, p67). Another situation of modeling



associations is that there is a mutual property of participated classes. However, if there are
more than one mutual property, an association class is employed. That is, “the same
ontological concept, mutual property, would be mapped to two different UML constructs,
attributes and associations” (Evermann, 2003, p67). Te avoid ambiguities, this rule
specifies that association classes should take the place of associations. Please note that
associations we discuss here only refer to ordinary associations, excluding aggregations.
To implement this rule, we can change it lo other words. That is, all associations
should be modeled together with association class. The approach is to check whether there
is any association without association class connecting to it. If the program finds an
independent association nol connecling lo association class, it shows a violation warmning,
Because this rule only applies to ordinary associations, our program does not check

generalizations and aggregations. This is expressed in the following:

Gel associations;

If generalization|laggregation
Exir;

If associafionClass==null
Show error;

Else exit;
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Chapter 5 Change Rules

In the last chapter, we discussed the static structure of things and their related concepts.
According to ontology, every thing can change. In this chapier we will discuss the

approach of implementing rules related to change within things.

Rule 21 A UML-state represents a specific assignment of values to the attributes [of
ordinary classes] and attribute of ussociation classes of the objects for which the state is
defined.

According to BWW ontology, a thing can be represented by state functions, whose
values are determined by properties of the thing (Bunge, 1977, p126). That is, states of
things associate with properties of things. We have discussed before, that each propeny
has itg value. The different praperty value sets correspond to different states. In Evermann
and Wand’s research, UML-states and UML-state fransitions are mapped with
BWW-states and BWW-state transitinns. respectively. Also, “There exist np states which
are independent of attributes because properties express all the characteristics of a thing”
{Evermann, 2003, p71). In addition, properties consist of intrinsic properties and mutual

propertics, which arc represented by attnibutes of ordinary and association classcs
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respectively. Thus, we get this rule. For example, a ‘Person’ object has an attribute of
‘location.” Different values of ‘location’ specify different states of the ‘Person.” A value of
‘office’ implies state of *work’; a value of ‘bus’ implies state of ‘go home’; and a value of
*home’ implics statc of ‘rest.” (Note that ‘work', 'go home', and 'home' are high-level
composite states, Our example model only concerns this level.)

However, there is no mechanism in UML mapping with ontology in this case: “States
in UML are independent of attributes or properties and UML provides no mechanism with
which to specify any such connection” (Evermann, 2003, p72). Thus, this rule can be
realized by enabling this feature in both UML specification and CASE tools. That is, to
implement this rule some additional mechanism needs to be added to UML. CASE tools
will enable some functions based on this mechanism. Because UML is ontologically
deficient with respect to the rule, until such a connection is defined in UML, there is no

way to implement it.

Corollary 14 A UML-transition must change the value of at least one attribute used to
define the state space.

We have discussed in the last rule that different states of a thing are determined by
different property value sets. This also means that the same property value sets correspond
to the same state of a thing. In UML, “A transition is a directed relationship between a

source state vertex and a target state vertex" (OMG, 2003, p2-149). A state of a thing
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changed by transition indicates that property values are changed. For example, states of a
*Person” transiting from ‘work” to *go home’ imply values of ‘location’ attribute changing
from ‘office’ 10 *bus.” However, we notice that other ‘Person’ attributes, such as *height’
remain invariant with this transition. There can be different modelings of a thing depends
on the different purposes (Bunge, 1977, p119). In each modeling, the thing can have a state.
Not all properties have to be used to define states in a model. For example, the attribute of
‘location’ is used to describe states of modeling for one purpose, while the attribute of
*height’ 1s used to describe states of another modeling for another purpose. Values of
‘location’ only determine state space of {work, go home, home}; values of ‘height’ only
determine state space of {child, youth, adult}. That is why this corollary only relates to the
“attribute used to define the state space.”

It is possible that the source and target are actually the same state. Same state means
same attributes of this siate space. If this is the case, the transition between the same states
would not change any attnbute value. This 15 inconsistent with this corollary. We revise
this corollary by proposing a constraint to it. That is:

If source state and target state are not the same, a UML-transition must change the value of
at least one attrnibute used to define the state space.

In the last rule, we have known that states and attributes of an object are independent
(unrelated) in UML. Evermann proposes a meta-model in which UML-states should be

associated with attributes. If this is adopted by UML, we can implement the corollary in
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this way. Once the program finds a transition, it will check whether any attribute of that
object changes. If the transition does not change any attribute, the program shows a
violation waming. Otherwise, the program checks whether these changed attributes span
the state space of that object. If not, it shows a violation warning. This is expressed in the

following.

Get transition;
Gel attributes;
If attribute change
Get stateSpace;
If staveSpace contains{atiribute)
Exit;

Show error;

Rule 22 For every level of refinement of a state C, there must be an additional set of
attributes in the class description or in participating association classes that change as the
object transitions among the sub-states.

According to Evermann and Wand’s research, A composite state or submachine state
may be refined as a state machine comprising sub-states and transitions among sub-states™
(Evermann, 2003, p77). That is, designers can decompose a composite state into a set of
sub-states. Whatever sub-state a thing is currently in, it remains in the same composite
state of those sub-states. Thus, the attribute values determining the composite state also
remain invariant. From Rule 21, we know that this set of sub-states is also defined by some

attribute values. That is, a transition between the sub-states must change the value of at
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least one attribute used to define the sub-state space (Corollary 14). What are these
attributes used to define the sub-state? Because the sub-states are extended from a
composite state, some attributes extended from the attributes defining composite state are
used to define these sub-states: “Whenever we encounter sub-states, the set of attributes
used to describe them must be extended from the set used to describe the super-state™
(Evermann, 2003, p79). These extended-attributes are an additional set of attributes in the
class description or in participating association classes that change as the object undergoes
transition among the sub-states, For example, we refine the state ‘rest’ of a Person.’
Sub-states of ‘rest’ may be ‘eat’, ‘shower’, and 'sleep.’ The additional attributes describing
these sub-states are extended from "location.' Namely, an attribute of 'position’ with values
of {kitchen, bathroom, bedroom} describes the three sub-states respectively.

The implementation is similar 1o Corollary 14. The difference is this rule only checks
composite super-states. The program gets all transitions among sub-states within a
composile state. Because extended attributes are also attributes of the same object, they
should be added to the same class / object. Thus the program checks whether any attribute
of that object changes. If the transition does not change any attribute, it will show a
violation waming. Otherwise, the program checks whether these changed attributes are in
the state space of the composite super-state. If yes, it shows a violation warmning. Since the
top-level composite state represents direct attributes of a class and this rule discusses

extended attributes, we do not check such top-level composite states. This rule also needs



to use the proposed meta-model discussed in Corollary 14. This is expressed in the

following:

Giet compasiteState;
If compasiteState==top
Get sub-siares;
If sub-states.size> ]
Get transition;
Ger attributes;
If attribute not change
Get superSiateSpace;
If superSiaieSpace.contains(attribute)
Show error;

Else exit;

Corollary 13 For all immediate sub-states of a super-siate, the values assigned to
attributes describing the super-state are invariant and are equal to those defining the
Super-stare.

Since all immediate sub-states of a super-state share the same super-state, the
super-stale remains invariant when transitions happen among sub-states. That means the
values assigned to attributes describing the super-state are invanant and are equal to those
defimng the super-state, 1t 1s conform with the conclusion we made in Rule 22.

The implementation of the last rule has made sure the transitions among sub-states
would not change any attributes of their composite super-state, If users follow Rule 22,

they will not violate this corollary. Therefore, there is no need to implement it.



Corallary 16 Concurrent sub-states require mutually disjunct sets of additional attributes
in the class description or in participating association classes.

We have known from Rule 22 that for sub-states there must be an additional set of
attributes in the class description or in the participating association classes that change as
the object experiences transition among these sub-states, Now, we will talk about
concurrent sub-states. In UML, the concurrent sub-state is defined as *‘a sub-state that can
be held simultaneously with other sub-states contained in the same composite state™
(OMG, 2003, glo-5). That is, a thing is in 'N' sub-states at the same time. Since different
attribute values determine different states, an attribute can only possess one value for one
state. Otherwise, it specifies other states. That means it requires N' attributes to specify 'N'
values to describe the 'N' sub-siates. For example, there can be several concurrent
sub-states describing a 'Person’ in a state of 'rest’. He can 'eat' and 'think' at the same time.
However, state ‘eat' is determined by the 'position’ attribute with the value of 'kitchen.'
There needs to be another attribute to describe the "think' state. An attribute of "plan’ with
the value of 'go Io cinema’ can be the solution.

To implement this corollary, the program first gets a sub-state. If it has concurrent
states, both of their related attributes will be examined. If attributes related with these
concurrent sub-states are the same, the program shows a violation wamning. This rule also
needs to use the proposed meta-model discussed in Corollary 14 (Please refer to discussion

of Corollaryl4 for details). This 1s expressed in the following:
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Cet subStates:
If subState==concurrent
Crer ssAttributes;
While artributes. hasNexti)
(ret concurrentSiate;
Get exdiiribute;
{f ssAntribwie!==csAriribuie
Exit;
Show error:
Rule 23 Guard conditions on transitions from the same state to nonconcurrent sub-states
musi be mutually disjunct.

It is stated that “Ontologically, a thing can be in only one current state in any given
model” (Evermann, 2003, p83). When we map this into UML, some constraints are
required to ensure that an object will not go into two states at the same time. In UML,
transition is “A relationship between two states indicating that an object in the first state
will perform certain specified actions and enter the second state when a specified event
occurs and specified conditions are satisfied” (OMG, 2003, glol6). States change from
one to another through transitions. That is, there can be at most one transition fired from
the same state. Also, transitions can be enabled or disabled via guard conditions: “Guard
condition is a condition that must be satisfied in order to enable an associated transition to
fire” (OMG, 2003, glo8). To avoid the transition of objects from one state to more than one

state, we need to prohibit more than one guard condition being satisfied. That is, guard

conditions on transitions from the same state must be mutually disjunctive and not the
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same. However, in the discussion of Corollary 16 we gave an example of a "Person’ in the
‘eat’ and 'think' states at the same time. That example does not violate this ontological
mapping. When we began discussing this rule we specified that a thing can be in only one
current state in apy given model. A thing can be in "N’ states concurrently in 'N' different
models. The purpose of the "eat’ state is to capture the physical status of what a 'Person’ is
doing. The 'think' state 15 for purpose of modeling the mental activity of that 'Person.’ They
are two concurrent sub-states in two given models. Thus, this rule only applies to
nonconcurrent cases.

To implement this rule, we need to check with state chart diagrams. First, the program
checks whether a state has more than one outgoing transition. If this is the case, it then
checks whether these transition targets are concurrent sub-states. For those which are not
concurrent, we check whether the guard conditions of these transitions are the same. If

they are the same, a violation waming is shown. This i1s expressed in the following:

Cet states:
Gref transitions;
While transition. hasNexi()
If transition== outgoing
Gret targel;
If targets==concurrent
Eixit;
Get guards;
While guards. hasNext()
If vector.contains{guard)
Show error,
Else add fo vector;

There ic a limitation of thie implementation approach. In some cases where more than



one guard condition is satisfied, the examination will not show a violation waming. For
example, guardl is 'X>3' and guard2 is "X>5." If in some cases 'X=6', both guardl and
guard2 are true and the object goes into two states. That is because, if there is overlap of
two guards, they are not disjunct. In this case, the program cannot accurately tell whether
two guards are strictly disjunctive. The reason is that the firing of transitions depends on
the boolean values of guard conditions. However, different guard expressions may result in
a same boolean value. There is no general method for the program to tell whether two
different expressions always result in the same boolean value. However, for some specific
domains, we can find solutions. In the above example, if "X’ is an integer and has a range of
*-50.. +50', we can let the program test each value of "X.' The program will easily find that

guardl and guard2 are not mutually disjunctive.

Rule 24 Action states are super-staies of a set of sub-states. The object transitions among
these while in the action state. State charts must reflect this fact.

In UML, there is a notion of action states: “An action state is a simple state with an
entry action whose only exit transition is triggered by the implicit event of completing the
execution of the entry action™ (OMG, 2003, p2-172). That means, in the whole process
(from entry to exit) of an action, an object is always in one state. In the discussion of Rule
21, we know that a state represents specific attribute values. That is, in the whole process

of an action, attribute values determining the action state remain invariant. In UML, “An



action typically results in a change in the state of the system, and can be realized by
sending a message to an object or modifying a link or a value of an attribute” (OMG, 2003,
g2). Thus, Evermann and Wand map a UML-action to the ontological concept of a
BWW-state transition (Evermann, 2003, p120, We will discuss this in detail in Corollary
31.). In additton, “BWW-state transitions are mapped to UML-state transitions”
(Evermann, 2003, p72). Futhermore, because of Corollary 14 (A UML-transition must
change the value of al least one attribute used to define the state space), we can conclude
that an action changes aftribute values. However, this contradicts with the UML notion of
action state described above.

This contradiction can be explained by the fact that action states are in fact not simple
states, but composite states. When an action happens, namely a transition happens, it
changes the attribute values and consequently changes the object states. However, the
action dees not change the composite super-state, but those sub-states. The unchanged
state is actually a super-state. Let us see the example of a ‘Person’ in the action state of ‘go
home,’ In the action from the person leaving office to arriving home, s’he is continually in
the super-state ‘go home.’ However, its sub-states are changing. The person experiences
sub-states of ‘in elevator’, “on bus’, *at door® and s0 on. According to the above analysis,
action states should be specializations of composite states. However, in UML action states
are specializations of simple states. Thus, this rule indicates such a deficiency of UML. If

it is adopted, the UML specification should be changed to require analysts to model a
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group of sub-states for each action state. As a result, CASE tools will enforce analysts to
follow this rule, which can use the following approach: to check whether every action state
in activity diagrams is a composite state in a state chart diagrams. If there is no such
mapping for any action state, the program shows a violation waming. This is expressed in

the following:

Gref actionState;

Ger asName;

Crer sfoies,

Get sNames;

If sNames_containsfasName)
If state==composite

Exit;
Show errar;

Corollary 17 States must not be associated with any actions. Sub-states corresponding to
different models should be used instead.

The last rule already requires modeling a group of sub-states for each action state.
That means the actions of action states can be represented by the whole series of
transitions among those sub-states. Thus, “there appears no need to assign such an action”
(Evermann, 2003, p84). That 1s, all actions associated with states can be modeled by
sub-states instead. States should not associate with any actions. This is Corollary 17,

This corollary proposes a change in UML specification. If adopted, CASE tools will

disable the feature of associating actions with states.
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Corollary 18 All states in an activity diagram must be states of the same object,

In activity diagrams, there are states and state transitions. In addition, “entologically,
states are defined for a given thing and state transitions are defined only between states of
the same thing” (Evermann, 2003, p&6). Thus, all states In activity diagrams must
represent the same object.

In UML, “an activity graph is a special case of a state machine” (OMG, 2003, p2-172).
In addition, UML specifies that a state machine is a behavior that specifies the sequences
of states of an object (OMG, 2003, gl4). That is, an activity diagram only represents one
object. Consequently, all states in an activity diagram must be states of the same object.

That means that this corollary cannot to be violated. Thus, thei is no need to implement it.

Corollary 19 If the partitions of an activity diagram represent different objects, they must
be part of a compasite, which is shown in the class diagram.

According to Evermann and Wand, “partitions (swimlanes) are employed in UML
activity diagrams to group states or action states together” (Evermann, 2003, p86). States
in different partitions of activity diagrams can describe differcnt objects. In addition, “an
activity graph is a special case of a state machine that is used to model processes invalving
one or more classifiers” (OMG, 2003, g2) However, according to Corollary 18, all states
in an activity diagram must be states of the same object. This seems to be a contradiction.

However, the same object in Corollary 18 is the single composile object of those different



objects in this corollary (Corollary 20). That is, all different objects represented by states
in an activity diagram must be part of a composite object. Thus, this compesite object
should be modeled in a class diagram. For example, in an activity diagram a swimlane
divides states into two partitions of ‘'make motor’ and 'make body.' These two groups of
states represent two objects of "Motor Workshop' and "Body Workshop' respectively. These
two objects are actually parts of the composite object ‘Car Factory.” The composite
relationship: {Car Factory: Motor Workshop, Body Workshop, ...} should be modeled in a
class diagram.

In UML, activity diagrams use swimlanes for partitions: “A swimlane maps into a
Partition of the states in the ActivityGraph™ (OMG, 2003, p3-162). In activity diagrams,
the program can check state partitions divided by swimlanes to see what objects the
partitions describe. [ these partitions describe more than one object, the program checks in
class diagrams whether these objects participate an aggregate association as parts. If no
such composition is found, the program shows a violation waming. This is expressed in

the following:

et swimlanes;
(et partitions[i];
Get objecis;
If objects[j] I==objects{k]
Cret aggregates;
Get pariClasses;
If partClasses comtains{objects (| )& &partClasses comtainsfobfects[kf)
Exir;
Show error;
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Rule 25 The quantitative object behaviour (for each model) is entirely describable by
<
top-level state chari (5C0)

In UML, object behaviours are modeled by operations: “An operation is a service that
can be requested from an object to effect behaviour™ (OMG, 2003, p2-44). In addition,
“operations are related to ontological notion of change and ontologically, all (quantitative)
changes of a thing are describable by a series of state transitions among stable states™
(Evermann, 2003, p87). That is, behaviours correspond with state transitions through
operations and changes. For an object, the class diagram models its behaviours while the
state chart diagram models its states and state transitions. In state chart diagrams, the
top-level state chart is the composite super-state describing the whole object. Thus, all
behaviours of an object can be described by stale trunsitions in top-level state charts.

Since object behaviours are modeled by operations in UML, our program checks class
operations in class diagrams for this rule. Then it searches top-level state charts to see
whether there are transitions corresponding with every operation. If the program cannot
find any transition for an operation, it shows a violation warning. This is expressed in the

following:

(et transitions;

If transition==top;
Add to vector;

Ger elass;

Get aperation;



If ! vector.containsioperation)
Show grror;
Exit;

Rule 26 All UML-transitions in SCO must correspond to an operation of the object which
SCO is associated with.

By the last rule, we know that every operation of an object can be described by
transitions in the top-level state chart (SCO) of that object. That is, these SCO transitions
correspond to the operation they descnibe. Note that several transitions correspond to one
operation, because there may be several state charts modeling one object for different
purposes, For example, two SCOs of a Person’ object model for purposes of capturing
his‘her physical and mental activities. In the physical model, states change from 'slesp’ to
‘shower' by the transition 'get up.’ [n the mental model, states change from 'dream’ to ‘think'
by the transition 'get up' as well. The transitions 'get up’ in these two models correspond to
the operation 'get up’ of the 'Person’ object.

To implement this rule, we check each transition in SCO to see whether it has
corresponding operations in class diagrams. This can be done by first getting all operations
of a class and adding them to a vector. Then the program gets each transition in SCO of this
class. Afier this, it checks whether the transition is included in the vector. If the transition

is excluded, it shows a violation waming. This is expressed in the following:

Ger class;

Giel aperations;
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Add operatians In opVecior,

Giet stateMachine;

et transition;

Get sourceState;

Gret targetState;

If sourceState.container==top&&targetState.contatner==top

{f apVecior.contains(transition)
Exi;

Show error:

Corollary 20 Every object must have at least one operation.

It is stated that *‘In our ontology everything must be able to change™ (Evermann, 2003,
p89). Also, we map BWW-thing with UML-object (Rule 1) and map BWW-change with
UML-operation (Rule 25). Thus, every object must possess at least one operation to ensure
it is able to change.,

To implement this corollary, the program only needs to check each class to see
whether it possesses operation. If the program finds any class has no operation, it shows a

violation warning. This is expressed in the following:

Cret class;

Get operation;

If operation==null
Show error;

Exil;

Corollary 21 States in SCO are stable.
“In UML, an object remains in a particular state until an operation invoked by some

other object” (Evermann, 2003, p90). That is, if there is no other object participating, an
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object will remain in a stable state. Also, states in SCO only describe a whole object. That
means that in a SCO of an object, all states are stable,

The implementation approach uses trigger of transitions to identify the stability of
states. In state chart diagrams, transitions can have triggers by defining an event. That is, if
a state transition has a trigger event, only the event can cause the transition. If a state
transition has no trigger event, it can spontancously happen. This is consistent with
BWW-ontology, which identifies stable and unstable states by judging whether state
transitions are externally induced or spontaneous (Evermann, 2003, p90). Thus, UML
specification should force analysts to model a trigger for transitions in SCO0. Also, CASE

tools should enable this [eature,

Corollary 22 All UML-transitions in SCO must be associated with a UMLevent.

Since states in SCO are stable (last corollary), they must not have any spontaneous out
transitions. In other words, all transitions in SC0O must have a tngger event. Actually, we
already use this corollary in the implementation approach of the last corollary.

This is a corollary and already covered by Corollary 21, there is no need to implement

Rule 27 An object must exhibit additional operations expressing gualitative changes, if a

super- or sub-class is defined and instances can undergo changes of class to the super- or



sub-class.

We have discussed object generalization / specialization; in this rule, we will talk
about operations applying to super / sub classes. According to Rule 21, a state corresponds
to a certain property value set. In addition, generalization / specialization through losing /
acquiring additional properties is a qualitative change (Bunge, 1977, p220); different
property sets idemtify different things (Bunge, 1977, p88). When an object undergoes
qualitative change it acquires / loses properties and is specialized / generalized into the sub
/ super class. Since “the acquisition or loss of behaviour is generally concurrent with loss
or acquisition of properties that change in that behaviour” (Evermann, 2063, p33), an
object is specialized / generalized into the sub / super class through acquisition / loss of
additional properties and behaviours concurrently. Thus, we get this rule.

The implementation approach of this rule is to compare specialized sub-classes with
general super-classes 1o see whether the sub-classes possess more operations. First, the
program gets generalizations as well as both parent and c¢hild ends. Second, it gets all
parentEnd operations and puts them into a vector. Then, each operation of the childEnd
will be matched with the vector. If the program finds any operation not in the vector, the

system exits. Otherwise, it shows a violation warning. This 1s expressed in the following:

{Fer wssociations,

I assaciation==peneralization
Get parentEd;
(ref operations;
Add 1o vector,;



Get childEnds;

Cret operations;

While operations_hasNexi{)
Match with vector:
If find not in vector

_Er'n-l_
Show error;
Else exit;

Notice that the inherited operations from the super-class should not be shown in the
sub-classes; any operation in the sub-class is supposed to be additional than its super-class.
Thus, we only need to check whether a sub-class possesses any operation. If we cannot
find any operation for a sub-class, it shows a violation waming. This is expressed in the

following:
Get assoctations;
If association==generalization
Get childEnds;
Ciet operations;
While operations. hasNexs()
Evxit;

Show grrar:

Rule 28 Methods may be described by state charts other than tap-level state charts.

We have mapped operations with state transitions. In UML, a method is “the
implementation of an operation. It specifies the algorithm or procedure associated with an
operation™ (OMG, 2003, g9). In ontology, a lawful transformation can be thought of as
transition laws (Evermann, 2003, p34). Thus, methods are mapped with lawful

transformations (Evermann, 2003, p94). A law-ul transformation is defined as a “path” in
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state space between an initial and a final state. That means that we can use a state chart to
model lawful transformations, namely methods. However, the top-level state chart models
behaviour from a class-scope. This top-level SCO cannot model methods. In other words,
state transitions in the SCO represent operations of a class, while other state charts
represent methods implementing these operations.

Since UML allows state charts to deseribe methods (OMG, 2003, p3-136), this rule is
consistent with UML. We need to proscribe methods described by the SCO. This can be
done by checking state charts describing methods. If a state chart is the top-level SCO, the

program shows a violation waming. This is expressed in the following:

Gei class;

Get SCO;

Cret method;

el stateChart,

If stateChart==5C0
Show ervor;

Exie;

Corollary 23 A state chart describing a method must begin and end with those states in
SCO which the operation that the method implements is a realization of.

The last rule specifies that methods can be described by state charts. In addition,
methods implement operations. State charis describing methods actually describe
implementations of operations. Rule 25 specifies that every operation can be represented

as a state transition in a top-level state chart (SCO0). That is, state charts describing methods
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associate with transitions in SC0. Thus, these state charts must begin with source states
and end with target states of those transitions in SCO.

The implementation approach for this corollary is to check whether the initial and
final states of state charts describing methods equal the source and target states of
transitions describing operations, respectively. First, the program gets the SCQ of a class.
Then it gets transitions in this SCO corresponding to operations of the class. For each
transition, its source and final states will be retrieved. Then the program checks state chart
describing the method implementing the operation, which corresponds to this transition. If
the imitial or final state of the method and the source or target state of the transition are not
the same respectively, it shows a violation waming. Please note that not every operaiion
has to be implemented by a method; for example, an abstract operation has no method
(OMG, 2003, p3-46). That is, the program also needs to make clear whether an operation

has a method. This is expressed in the following:

Cref efiass;
Cret el
Ger sellTransitions;
White seOTransitions. hasNexif)
Cret fransitionName:
et sourceSiate:
(ref farpelStale;
Get methods:
While methods. hasNexif)
et methodName;
{f methodName==transitionName
Geil methodStateChart;
Cret initialState;
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et finalSiate;
If YinitialState==sourceState)||(finalState==targetName)
Show error;
Exit;

Corollary 24 State transitions owt of the initial state of a method realizing an aperation
must be associated with the same event that is associated with the transition in SCO which
represents that operation.

Since a state chart describing a method begins with the source state of transition
describing an operation in SC0, the initial state of the method 1s the same as the source
state of the operation. The source state transits to the target state via the transition
describing the operation and this transition is triggered by a trigger evenl. Since the state
chart describes the method of the operation, the inmial state of the method should be
triggered by the same event, which triggers the transition describing the operation. Hut:
that “associated’ in this corollary is not UML-associations, but means “relate with'.

The implementation approach for this corollary is to check whether the trigger event
of transition in SCO representing an operation equals the trigger event of transition out of
the initial state of method implementing the operation.

First, the program gets the SCO of a class. Then, the program gets transitions in this
SCO corresponding to operations of the class. For each transition, the program gets its
trigger event. Then it checks the state chart describing the method implementing the

operation, which corresponds to this transition. It gets tngger events of transitions out of



the initial state of the method. If these two trigger events are not same, the program shows

a violation warning. This is expressed in the following:

et class;
Get sel);
Get scllTransitions;
While sc0Transitions hasNexty)
Get transitionName;
Ger irigger;
et event!;
Get eventNamel
Crel methods;
Crer methodName,
If methodName==gransitionName
Get methodStareChart;
Get inirfalStare;
Ger outTransition;
Get trigger,
Get event2;
et eveniName2;
If !feveniname ] ==¢gventNamel)
Shew error:
Exif:

Corollary 25 A state chart either expresses the exiernal behaviour of an object (5C0), a
method, a signal reception or is a composite state contained in another state machine.
According to the UML specification, “A statechart diagram can be used to describe
the behavior of instances of a model element such as an object or an interaction” (OMG,
2003, p3-315). If the state chart is a top-level SC0, it expresses the external behaviour of
an object (Rule 26). Other state charts may express methods (Rule 28). According to UML,

receptions designate signals and are the summary of expected behaviours (OMG, 2003,
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p2-102). Thus, state charts can also express signal receptions. (We will discuss signal
receptions in Rule 30.) However, there is a kind of state charts not expressing these
behavioural model elements. These are composite states contained in other state machines,
which express behaviours of instances of model elements.

The implementation approach is to check whether all state charts express one of the
four situations in this corollary. The program gets a state chart to see whether it is a
composite state other than SCO. If it is not a composite state, the program checks the model
element that owns the state chart. If the owner model element is not an object, a method or

a signal reception, it shows a violation wamning. This is expressed in the following:

Get stateChart;
If l{stateChart.isCompaosite)
While state hasContainer
et comtainer;
et containerowner();
If ffowner==object)||!fowner==method) || fowner==signalReception)
Shaow errar;
Exit;

Rule 29 An operation is not directly specified by state machines, Instead, the methods that
implement an operation are specified by state machines.

In Corollary 25, we know that state machines represent behavioural features of model
elements. These model elements include objects, methods and signal receptions. Rule 25
specifies that operations are described as state transitions in top-level state charts (SCOs).

That is, operations are not behavioural features of model elements and cannot be specified

1456



by state machines. Thus, it is not operations specified by state machines directly, but
methods specified by state machines. In addition, these methods implement those
operations,

The implementation approach of Corollary 25 will shows a violation warning if a state
machine specifies a model element other than an object, a method or a signal reception.
That is, if an operation is specified by state machine, the program for Corollary 25 will

detect the violation. There 1s no need to implement this corellary.

Corollary 26 A state machine that specifies the behaviour of a elass or a method is not
conigined in other siate machines.

State machines are used 1o represent behavioural features of model elements. Classes
and methods are these model elements and can be specified by state machines. In
Corollary 25, we have discussed that some state machines can be contained in other state
machines. Can a state machine that specifies the behavior of a class or a method be
contained in other state machines? The answer is “No"”, State machines contained in other
state machines actually do not model behavioural features of model elements. They only
describe some states within the global behavioural features modeling of model elements.
Since classes and methods are model elements, they cannot be described by some slates
within other state machines.

The implementation approach is to check whether a state machine attaching to a class
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or a method is top-level. The program first gets a class or method. Then it gets state
machines attaching to this class or method. Finally, it checks the containers of these state
machines. If any container is not top-level, the program shows a violation warning. This is

expressed in the following:

et classimethod;

Cer stareMachine;

et smContainer;

If l{smContainer==top)
Show error;

Else exiy:

Coroflary 27 The method corresponding to a state chart must modify the attribute values
of the object corresponding to the values defined for the initial and final state of the
method.

Since operations are described as transitions by top-level state charts and methods
implement operations, methods actually describe transitions in SC0. Corollary 14 specifies
that every transition must change the value of at least one attribute used to define the state
space, That is, methods must change some attribute values. What are these attributes used
to define the state space in this case? Corollary 23 tells us that the initial and final states of
state charts describing methods equal the source and target states of transitions deseribing
operations, respectively. According to Rule 21, there must be a set of object attributes,
whose values correspond to these initial / source and final / target states. This set of object

attributes is the answer to our guestion above. Thus, we get this corollary.
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Since this corollary is a consequence of other rules and corollaries, if modellers
strictly follow other rules and corollaries, this corollary will be satisfied. Thus, there is no

need Lo implement it

Rule30, Rule31, Corollary28:

State machines descnbe behavioural features of model clements. We have discussed
behavioural features of operations and methods. Now, we discuss another behavioural
feature, receptions: **A reception is a declaration stating that a classifier is prepared to react
to the receipt of a signal” (OMG, 2003, p2-102). That is, receptions capture the process of
receiving signals of classifiers. Actually, this process can be realized by operations.
Operations are modeled by transitions in state charts. For each transition, if there is a
signal, the trigger of the signal event can be modeled. That means that classifiers receiving
signals can be represented via operations by the trigger of signal events of transitions in
state charts. Thus, receptions in UML are redundant. We propose a rule in the following.
Rule-New 03' Receptions should not be modeled.

The implementation of the new rule is to check whether there is any reception
declared. Since all receptions attach to signals, the program gets signals first. Then it
checks whether a signal has any reception. If the program finds one, it shows a violation

warming. This is expressed in the following:

' For consistency between the thesis and the program code, we usc “Rule-New 03" for this new rule and *Rule-New 02
for the next new rule,
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Get signal!
Get receptions;

If freceprions.isEmpty
Show error;
Exit:

However, even though we propose receptions in UML to be redundant, it does not
conflict with UML or ontology. Analysts may still want to use it. If this is the case, there
are some rules which must be followed to ensure consistency. We still discuss and
implement these rules (Rule 30, Rule 31 and Corollary 28} in the following. Please note
that even though we implement both Rule-New 03 and {Rule 30, Rule 31, Corollary 28},

they can not be satisfied concurrently.

Rule 30 An aperation must be associated with the declaration of signal reception.

States and transitions in BWW-ontology describe all behavioural features in the world
(Evermann, 2003, p99). In UML, state charts, operations and methods are behavioural
features and have been mapped with BWW-states and transitions. There is another
behavioural feature in UML, reception: “Reception 15 a child of BehaviouralFeature”
(OMG, 2003, p2-102). That is, UML-receptions should also map with BWW-states and
transitions. In addition, these UML concepts map with the same BWW concept, and they
should be consistent with each other. Previous rules and corollaries have specified
operations and methods to be associated. This rule specifies that signal reception should

also be associated with them.
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Because receptions are a sub-class of behavioural features, which associate with
signals, we use the implementation approach to check whether an operation associates
with signals and whether the signals possess receptions. The program gets classes with
their operations. For each operation, it gets signals. If the signal is not null, the program
gets its receptions. If no reception is detected, it shows a violation waming. This is

expressed in the following:

Ger class;
Get operation;
Get signals;
If !fsignals ==pnull)
Clet recepiions;
if ffreceprions==null)
Exil;

Show error:

Rule 31 The event associated with an operation must be identical to the event associated
with the signal associated with the reception,

In the last rule, we have discussed that operations, methods and signal receptions in
UML map with the same ontology behaviour, namely state and transitions. That means,
they should be consistent with each other. Thus, the event triggers of an operation should
equal the event trigger transition out of imitial state of the reception associated with the
signal.

The implementation approach is to compare trigger events associated with operations

and transitions out of the initial states of receptions to see whether they are identical. The
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program first obtains classes as well as its operations. Second, it gets SC0 describing the
operations. For each operation / transition, it gets the trigger event. Then the program gets
signal receptions associating with this operation. In state charts describing these signal
receptions, trigger events of transitions out of the initial states will be compared with the
event above. If these two events are not identical, the program shows a violation waming.

This is expressed in the following:

et class;

Get operation;

Ger SCO;

(et transition! :

ref event!;

Gef signal;

Gt reception,

Cet stateChart;

Get initialState;

Gl fransilion2;

(Fet evenrl;

If ffevent! ==¢vem2)
Show error;

Exit;

Caroliary 28 The state machines associated with a reception and with a method specifving
the implementation of an operation which is in turn associared with that reception, must

possess the same initial and final states.
We have discussed in Rule 30 and Rule 31 that, operations, methods and receptions
should be consistent with each other. That is, these behavioural features should begin and

cnd in consistent states. Previous rules and corollaries have specified this consistency
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between operations and methods. This corollary specifies this consistency between
methods and receplions.

The implementation approach is to compare initial and final states of state machines
of receptions and methods to see whether they are identical respectively. The program first
gets an operation. Second it gets reception and method associating with the operation.
Then, it gets two state machines associating with them respectively. Finally, the program
checks whether the initial states in these two state machines are identical, as well as final

states. |f they are not the same, it shows a violation warning. This is expressed in the

following:

Get class!

Gier operation;

Get reception;

Get stateMachine !

Get initialState ! ;

Get finalStatel;

Get method;

Get stateMachinel;

Get initlanStated;

Cret finalStatel;

If (NimitdalState I ==initialState2)||( finalState | ==finalState2)
Show error;

Exit;

Rule 32 Acquisition (loss) of independent properties leads to expansion (contraction) of
the thing 5 top-level state space SCO by an orthogonal region,

According to previous rules and corolfaries (Rule 14, 15, Corollary 11, 12,13),
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specialized sub-classes possess properties inherited from their super-classes and acquire
additional properties. How does an analyst model this in state chart diagrams? First, we
need to discuss what is acquisition of independent properties. In the acquired additional
properties in specialized classes, some are independent from other properties of their
super-classes, while some are dependent. Dependent additional properties only exist when
some super-class propertics have some certain values. For example, in a ‘Person’
specialized by ‘SinglePerson’ and “MarriedPerson” association, ‘MamedPerson’ acquires
the additional property of ‘nameOfSpouse’ while ‘SinglePerson’ does not possess this
additional property. The property ‘nameOfSpouse’ only exists when the value of the
‘Person’s” property “mamrigcStatus’ s ‘mammicd.” In  this case, the property
‘nameOfSpouse”’ is a dependent property. Independent additional properties exist all the
time and are irrelevant with properties of their super-classes. For example, in a “Person’
specialized by “Employee’ association, ‘Employee’ acquires the additional property of
‘skill." In this case, an Employee’ has the property ‘skill' regardless of whether, for
example, the value of that "Employee's sex’ is ‘male’ or 'female.’ Now we discuss how 1o
model state charts for specialized classes by acquisition of independent properties and
acquisition of dependemt properties, respectively. Since independent propeities of
sub-classes and properties of super-classes are irrelevant, their values may change
concurrently. For example, ‘sex’ changes from ‘male’ to ‘femalz” while ‘skill' changes

from ‘driving’ to ‘programming.” Also, according to Rule 21, values of these independent
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properties define states of objects they describe, in this example, the ‘employee.” Since
these irrelevant property values change concurrently, the structure of an orthogonal region
is adopted. That is, the states and transitions in SCO should be inherited and the
independent properties should be modeled as concurrent states and transitions with those
in SC0.

The implementation approach is as follows: First, we search for specialized
sub-classes and get their attnbutes. Second, we need to identify whether these attnibutes
are independent or not with attnibutes of their super-classes. However, the program cannot
know whether they are independent or dependent. It will ask users for the answer. When
users indicate ‘independent’, the program continues; otherwise it exits. Next, it checks
state charts for the specialized class. According to the rule, these state charts must have an
orthogonal region. Thus, for those state charts, which are not concurrent, it shows a

violation waming. This is expressed in the following:

Gret genaralization;

Get superClass;

Ger subClass;

et attribures;

Ouery user;

If attributes==independent
Gef stateMachine:
Get tap;
If lftop==concurrent)

Show error,

Exit;
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Now, we talk about modeling of state charts for specialized classes by acquisition of
dependent properties. Additional properties of specialized classes only exist when
properties of super-classes have certain values. According to Rule 21, these certain values
define a certain state. That is, change of additional property values of specialized classes
only happens within the certain state. Thus, this certain state should be modeled as the
composite super-state of states and transitions corresponding to the additional properties.
However, Evermann’s research does not formalize this as a rule. Here we propose a rule to

fill in this blank:

Rule-New 02 Acquisition (loss) of dependent properties should be modeled as a
sub-machine of the related state of things modeled by top-level state SCO.

Figure 5.1 and Figure 5.2 describes this rule.

s T

Figure 5.1 State chart before class is specialized
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Figure 5.2 State chart after class is specialized



The first part of the implementation approach is the same as Rule 32. First, we search
for specialized sub-classes and get their attributes. Second, we need to identify if these
attributes are dependent or not with attributes of their super-classes. Since the program
cannot know whether they are independent or dependent, it asks users for the answer.
When the user indicates dependent, the program continues; otherwise it exits. Then, it
checks state charts for the specialized class. According to the rule, to model additional
features of the sub-class, all states in SCO of the sub-class must be composite states. In this
way, the additional features can be modeled within each of these composite states. If the
above are not satisfied, the program shows a violation waming. This is expressed in the

following;

Ger generalization;
Get superClass;
Get subClass;
(zet attributes;
Duery user;
If attributes = =nonindependent
Gret stateMachine;
et transitions;
While transitions hasNexty)
Get sourceState;
(ret targeiState;
Get stateContainer;
If (sourceState Container==top)&&targetStateContainer==top)
If {{sourceState. isComposite) || (targeiSiate.isComposite)
Show error;
Exit;

Corpllary 29 Every object must be capable of at least one state transition or be able to
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undergo change of class to a super- or sub-class.

The Bunge's ontology specifies that all things are changeable (Bunge, 1977, p219).
Mapping this to UML, we get the conclusion that every object must be capable of change.
There are two types ol change, namely quantitative change and qualitative change
(Evermann, 2003, p33). Quantitative change i1s the change of values of properties.
Qualitative change is the change of acquiring or losing properties. That is, attributes of
objects must be capable of either changing their values or being acquired or lost. In UML,
operations change the values of attributes and all operations can be described by state
transitions in top-level state charts (Rule 25). In addition, every object must possess at
least one operation (Corollary 20). Thus, objects that have undergone quantitative change
must be capable of at least one state transition. When objects change by acquiring or losing
properties, they should be specialized as sub-class or generalized as super-class,
respectively (Rule 12, 14, 15, 27, Corollary 11, 12,13)

This corollary comes from previous rules and corollaries. It specifies the modeling of
two types of change. Modeling of quantitative change was already discussed and
implemented by Rule 25 and Corollary 20. Modeling of gualitative change was already
discussed and implemented by Rule 12, 14, 15, 27 and Corollary 11, 12, 13, Thus, there is

no need to implement it.
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Chapter 6 Interaction Rules

The last chapter discussed change within things. In this chapter, we will discuss the
implementation approach of rules related to interactions between things. Interactions are
expressed by message-passing: “An interaction comtains a set of partially ordered
messages, each specifying one communication™ (OMG, 2003, p2-128). Messages may be
considered as ontological things. For example, when a ‘Manager’ interacts with an
‘Employee’ by sending an email including tasks. This email is the message passing from
‘Manager” to ‘Employee.’ However, this is only a special case and does not apply to all
interactions. For example, when a ‘Driver’ interacts with a *Car’ by tuming the steering
wheel, the ‘Driver’ does not send any message. In addition, “a message is a specification
of stimulus™ (OMG, 2003, p3-111). Thus, “Stimuli are not things in the world. They are
abstract concepts that serve as descriptions, illustrations, abstractions or representations of
interaction” (Evermann, 2003, pl18). That is, both stimuli and messages have no
equivalent in ontology and are ontologically excessive (Evermann, 2003, p120). We

propose the following rule:

Rule-New(4 Neither stimuli, nor messages should be modeled.
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The implementation is to check whether there is any stimuli or message modeled. If

the program finds one, it shows a warmning. This is expressed in the following:

Get stimuli;
et messags;

If !{stimuli==null)||!{message==null}
Show error;
Exit:

However, even through we propose that messages are ontologically unnecessary in
UML, they do not conflict with ontology or other concepts in UML. Analysts may still
want to use them. If so, there are some rules that must be followed to insure consistency.
We still discuss and implement these rules and corollaries in the following. Please note that,

Rule-New 04 and the following rules / corollaries cannot be satisfied concurrently.

Rule 33 For every class of objects between which message passing is declared, there exists
an association class or the two classes are parts of the same aggregate.

According to the above discussion, interactions are expressed by message-passing: “A
message defines a particular communication between instances that is specified in an
interaction” (OMG, 2003, p2-119). That is, when message-passing exists, there is an
interaction. Since interactions happen between objects, we need to know how interactions
affect participating objects. According to Bunge, “Two different things X and Y interact iff

each acts upon the other” (Bunge, 1977, p259). That means both objects participating an
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interaction undergo changes. Since “change may be quantitative, in which case the values
of one or more properties is changed” (Evermann, 2003, p33), property values of both
objects should change. Also because every property must lawfully relate to other
properties (Bunge, 1977, p77), the changes of both objects must obey laws, That is, an
interaction must lawfully change properties of both participating objects. However, a law
is any restriction on the possible values of a thing (Bunge, 1977, p129). A law only
constrains property values of a single object (Evermann, 2003, p32). How can an
interaction change property values while satisfying Jaws in both objects? The answer is,
the interaction must change the mutual properties of participating objects. We have
mapped mutual properties to association class before (Rule 3). Thus, for every class of
ohjects between which message-passing is declared, there exists an association class. For
example, a ‘Company’ interacts with an ‘Employee’ by promotion. This promotion
interaction changes the value of mutual property ‘salary” of both ‘Company’ and
‘Employee.’

Now, consider the latter part of this rule. One interpretation is that if two interacting
objects are parts of an aggregation, there does not have to exist an association class.
However, we disagree with Evermann's conclusion, which motivates from “If the two
things are parts of the same composite, changes among them may happen by virtue of
emergent properties” (Evermann, 2003, pl113). The motivation conflicts with ontology that

“emergent properties are not possessed by any of the parts of a composite” (Evermann,
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2003, p32), while mutual properties are properties possessed by all participating objects.
That is, while change of mutual properties affects all participating objects, change of
emergent properties do not have to affect all objects as parts. For example, a "CPU" and a
‘HardDisk" are two parts of composition ‘Computer." When the property “type’ of “*CPU’
changes from ‘Celeron-1.2G" to ‘Pentium4-2.4G’, the ecmergent property
‘computationSpeed’ changes from ‘medium’ to ‘fast.” However, no property of the
‘HardDisk’ changes. Thus, we propose to delete the latter conclusion of this rule.

The implementation approach only needs to check whether there is an association
between interacting objects, This is because we already enforce an association class for
every association in Rule 20. The program first gets interaction and its message. Then the
sender and receiver objects will be retrieved. Next, it will check objects comresponding to
the sender and receiver in class diagrams. If there is an association between them, the

program exits. Otherwise, it shows a violation waming. This is expressed in the following:

Get interaction;

Giet message;

Get sender:

et receiver;

Ger class:

If cluss==sender
sendClass=class;

If class==receiver
receClass =class;

Get sendClass;

Ger association;

While association. hasNext()
Get assoOtherEnd;
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Get class:
If class==receClass
Exie;
Show error;
Rule 34 Every object must be the receiver and sender of some message.

In ontology, “every thing acts on, and is acted upon by, other things” (Bunge, 1977,
p259). Previously, BWW-things were mapped to UML-objects (Rule 1) and interactions
were expressed by message-passing (Rule 33), thus, every object must send and receive
some message. For example, a human resource manager interacts with a job applicant. The
*Applicant’ object sends the message of “applyJob’ and receives the message of “accept /
decline.” The ‘Manager’ object sends the message of ‘accept / decline’ and receives the
message of ‘applyJob.” However, according to Evermann's research, this rule does not
apply to every object participating in an aggregation as a part (Evermann, 2003, pl14).
That is, not every part object has to send and receive messages. As long as some part
objects send messages and some part objects receive messages, the whole object sends and
receives message. There is one thing needs to be noted here, which is not explained by
Evermann. Sending and receiving messages discussed above for part objects should not
include messages between these part objects. Even though one part object sends / receives
messages to / from other part objects, from the scope of the object as a whole, it does not

send / receive messages. For example, a whole object ‘Person’ consists of part objects

*Brain’ and *Eye.” When *Brain’ sends message ‘open’ to ‘Eye’, this message is sent



inside the ‘Person.’ From the scope of the ‘Person’, there is no message sent or received.
That is, if class 'A’ is an aggregate of classes 'B' and 'C”, in addition messages only be sent
and received between 'B' and 'C’, this still violates this Rule. This is because from the
scope of 'A, it does not send or receive messages.

The implementation approach is to check whether every object is the sender or
receiver of any message. First, the program gets messages in collaboration diagrams. For
cach message, it gets the sender and receiver. Then, it gets base classes of sender and
receiver and adds them into *_sender” and ™ _receiver” vectors, respectively. After this, all
classes and their associationEnds will be retrieved. If there is an aggregation, it gets the
association and the part class. These part classes will be added into the “_part™ vector.
Finally, it gets an object (class). (Please note, this step is inside a loop. An object is
retrieved in each loop. Eventually, all objects will be retrieved.) For each class not in the
*_part” vector, if it can be found in both *_sender” and **_receiver” vectors, the program
will exit. Otherwise, it shows a violation waming. Since this rule does not apply to every
object participating in an aggregation as a part, we do not check part objects. This is

expressed in the following:

Get interaction;
Get message;
Ger sender;
Get base;

Add to _sender;
Get receiver:

Ger base;



Add to _receiver;
Gt class;
Get assoEnd;
If fasoEnd==aggregare)
et otherdssoEnd,
Get ivpe;
Add to _part;
I (!_sendercontains(class)||(!_receivercontains{class)))&&!_part.containsiclass)
Show grror;

Corollary 30 An association class cannot be sender or receiver of a message.

The motivation of Rule 34 is that every thing acts on and is acted upon by other things
in ontology. From Rule 1, we know that BWW-things map with UML-objects. In addition,
from Corollary 2 we know that association classes cannot represent objects. That is,
association classes are not ordinary classes, which must be the receiver and sender. Can
association classes send or receive messages? From Corollary 5 and Rule 4, we know that
mutual properties cannot act on or be acted upon. Thus, association classes cannot be
sender or receiver.

Since this corollary can be fully deduced from previous rules and corollaries, strictly
following them should satisfy this corollary.

However, this is not true in our CASE tool. If the user models an association class as a
message sender or receiver, no violation warning will be shown. This is because, this
corollary applies to collaboration diagrams while programs implementing those rules and

corollaries only check class diagrams. Because association classes are not classes of
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abjects, but classes of mutual properties, association classes in class diagrams should not
correspond to objects in other diagrams, such as collaboration diagrams and sequence

diagrams. We propose a rule to fill this gap:

Rule-New(5 Association classes in class diagrams should not be instantiated by
link-objects modeled in other UML diagrams.

According to the previous rules and corollaries, association classes are mutual
properties and objects are substantial things. Properties will not equal things. That is, the
implementation of this rule is covered by previous rules and corollaries. Thus, there is no

need to implement it.

Riile 35 A constraint relates artribiites of a single elass or attributes of association classes
the elass participates in.

UML has a concept of constraint, which is “a semantic relationship among model
clements that specifies conditions and propositions that must be maintained as true;
otherwise, the system described by the model is invalid” (OMG, 2003, p3-26). As we can
see, constraints are restrictions, which guarantee a model’s validity. This conforms to the
concept of law in ontology. In ontology, a law is any restriction on the possible values of a
thing (Bunge, 1977, p129). Thus, UML-constraints are mapped with BWW-law. Ontology

also specifies that a law applies to a thing. That is, BWW-law cannot relate the properties
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of different things (Evermann, 2003, p32). So, UML-constraints should also apply to a
single class. Note that association classes are groups of mutual properties of participating
classes. Constraints relating attributes of association classes do not conflict the above
discussion. For example, class *A’ interacts with class ‘B’ via association class ‘C." A
constraint cannot relate attributes of *A’ to attributes of ‘B’, but only relates attributes of
‘A’ or that of *C."

The implementation approach is to check constraints attached to class attributes to see
whether they extend to different classes. The program first gets constraints of an attribute
in a class. Then, it reads these constraints. If any consiraint relates to attributes of other
classes, then it checks whether these other classes are association classes, which this class
participates in. If any is not an association class, the program shows a violation waming.

This is expressed in the following:

Get classA;
Get attribure;
{ret constraini;
(et asmnciatedAdtributes;
If lfassociatedAnribute==null)
Get assoAuOwner;
If lfassoAdurOwner==classA);
Show error;
Exit;

According to UML, constraints may use uncertain languages: “One predefined
language for writing constraints is OCL; otherwise, the constraint may be wrntten in

natural language” (OMG, 2003, p3-27). That 1s, the computer may not be able to read
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constraints. One possible, but not accurate, solution is to search the whole constraint text
string. If any string equals an attribute string in the whole class diagram, we consider it

specifying that attribute. It is obvious that this solution is not accurate.

Rule 36 For every attribute there exists a constraint which relates this attribute to some
other attribute.

In ontology, “every substantial property is lawfully related 1o other substantial
property” (Bunge, 1977, p78). That is, every UML-aitribute must relate to other attributes.
In the last rule, we map Ontology-law with UML-constraint. That means that there exists a
constraint of every attribute to relate it to other attributes. Note that other attributes here
refer to attributes of the same class (See Rule 35 for details).

The implementation approach is to check every attribute to see whether there exists its
constraint specifying the relation among it and other attributes. The program first gets
constraints of an attribute in a class. Then, it reads these constraints. [f no constraint relates
to other attributes, it shows a violation warning. When there are constraints relating to
other attributes, the program exits, It does not continue to check whether these attributes
belong to the same class, because this has been done in Rule 35. This is expressed in the

following:

Gt class;
Get anribute;
(et constraing;
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Ger associatedAttributes;
If assoctatedAttribute==null

Show error:
Exit;

Also, this implementation has the limitation as we discussed in the last rule.

Corollary 31 A UML-state transition asseciated with an action must modify an asseciation
class attribute’s value.

In this corollary, we discuss actions: “The action that causes a stimulus to be semt
according to the message” (OMG, 2003, p2-119). That is, an action causes
message-sending. According to the discussion of Rule 33, message-passing expressing
interaction changes attribute values of an association class. Since the object whose state
transition associated with the action sends the message, the transition must modify an
association class attribute’s value. This associgtion class is the one which represents the
mutual properties of this object and the object receiving the message. Evermann also
proposes that this corollary only applies to transitions in method descriptions. The
motivation is that in SC0Os, “operations may leave the object in the same state or in a state
in which at least the mutual or emergent properties possess the same values™ (Evermann,
2003, p120). When an object is still in the samc statc after a transition, it does not change.
If this is the case, then according to “a UML-action is similarly interpreted as change in
one object that brings about a change in another object” (Evermann, 2003, p120), there is

no action accompanying this transition at all. Thus, this corollary should not only restrict
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to state machine of methods, but also applies to the top-level state chart (SC0).

UML does not require modeling different attribute values for different object states
(before and after transitions) (OMG, 2003, p3-42). Thus, our program cannot tell whether
attributes values change. The ideal solution is to add this corollary in UML, including
specifying such a mechanism. CASE tools will enable this feature according to the UML

specification.

Corollary 32 For every interaction berween UML-objects, there must exist a
corresponding UML-state transition in both interacting UML-objects.

From the discussion of Rule 33 and Corollary 31, we know that an interaction between
two objects change values of muiual properties of these objects. That is, property values of
both objects are modified. From Rule 21 and Corollary 14, different property value sets
determine different states of a thing. That is, both object states are changed via change of
mutual property values by interaction, Thus, there exist corresponding state transitions in
both interacting objects.

The ideal implementation approach is to adopt this corollary in UML. In this way, all
CASE 1o0ls will enable the feature of associating interactions to state transitions of

participating objects and force modellers to do that.

Corollary 33 A state transition associated with an event must modify an association class
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attribute’s value,

According to the UML specification, “Event instances are generated as a result of
some action either within the system or in the environment surrounding the system™ (OMG,
2003, p2-155). Evermann proposes that events signify reception of the stimulus
(Evermann, 2003, p121). For example, “a call event represents the reception of a request to
synchronously invoke a specific operation™ (OMG, 2003, p2-142). Since “a stimulus is
created and sent by an action, receipt of a stimulus is an event”™ (Evermann, 2003, p117),
action and event are a pair of concepts and should have similar interpretations. According
to the discussion of Rule 33, message-passing expressing interaction changes attribute
values of an association class. However, it i1s the sender object which changes the mutual
property values of itself and the receiver object, and thus makes the receiver object transit
to another state. The receiver object does not actually actively modify association class
attributes values. We change the wording of this corollary into the following:

A slate transition associated with an event must be associated with the change of the
attribute’s value of an association class, This association class is the one which represents
the mutual properties of this object and the object sending the message. Evermann
proposes that this corollary also only applies to transitions in method descriptions.
Because of the same thinking in Corollary 31, we propose that this corollary should not

only be restricted to state machine of methods, but also applies to top-level state chart

(SC0).
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UML does not supply a mechanism of modeling different attribute values for before
and after transitions (OMG, 2003, p3-42). Thus, the program cannot tell whether attribute
values change. The ideal solution is to add this corollary in UML, including specifying
such a mechanism. CASE tools will enable this feature according to the UML

gpecification.

Corollary 34 A signal event may only be associated with a transition in a top-level state
chart and the initial transition of a method implementing this.

“A signal 1s a specification of an asynchronous stimulus communicated between
instances” (OMG, 2003, p2-102). As we have discussed at the beginning of this chapter,
stimuli are ontologically excessive, the signal is a redundant concept and must conform to
others. Evermann proposes an additional association in the UML meta-model that every
signal must associate with an operation (Evermann, 2003, p123). Rule 25 specifies that
every operation maps with a transition in the top-level state chart (SCO). That is, signals
can only correspond into SCO. In addition, “a signal event represents the reception of a
particular (asynchronous) signal” (OMG, 2003, p 2-146), and every signal evenl associates
with a signal (OMG, 2003, p2-142). We get that every signal event must be represented in
SC0. Since events trigger transitions in state charts, a signal event may only be associated
with a transition in a top-level state chart. From Corollary 24, we can know that the signal

event also associates with the initial transition of a method implementing the operation.
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The implementation approach is to check whether there is any signal event modeled in
state charts other than SC0. The program first gets a transition and its trigger cvent. If a
trigger event is a signal event, then it gets the state chart which possesses this transition. If
the owner of the state chart is a class, it checks whether the transition's container is top. If it
is top, the program exits; otherwise it shows a violation waming. Since the latter part of
this corollary comes from Corollary 24, which we have already implemented, there is no

need to implement it. This is expressed in the following:

Gret transition;
Get triggerEvent;
If lftriggerEveni==signalEveni)
Exit;
Ger stateMachine;
Get smOwner;
If smOwner==class
Crer sowrceStare;
Cret targetState;
If (sourceStare.isTop) & &(targetState.is Top)
Exit;

Show error;

Corollary 35 A call event may only be associated with a transition in a top-level state chart
or the initial transition of a method implementing this.

In UML, “A call event represents the reception of a request to synchronously invoke a
specific operation. (Note that a call event instance is distinct from the call action that
caused it.)"” (OMG, 2003, p2-142). A call event receives the stimuli sent by a call action.

According to the UML meta-model, every call event must associate with an operation
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(OMG, 2003, p2-142). Rule 25 specifies that every operation maps to a transition in the
top-level state chart (SCO0). That is, every call event must be represented in SC0. Since
events trigger transitions in state charts, a call event may only be associated with a
transition in a top-level state chart, From Corollary 24, we can know that the call event
also associates with the initial transition of a method implementing the operation.

The implementation approach is to check whether there is any call event modeled in
state charts other than SCO, The program first gets a transition and its trigger event, If a
trigger event is a call event, then it gets the state chart, which possesses this transition, If
the owner of the state chart is a class, it checks whether the transitions container is top. If it
is top, the program exits; otherwise it shows a violation waming. This is expressed in the

following:

Gel transition;
Ger triggerEvent;
If 'firiggerEvenmt==callEvent)
Exit;
Get stateMachine;
Get smOwner;
If smOwner==class
Get sourceSiate;
Giel targetState;
If fyourceState.is Top) & & targeiState. is Jop)
Exit;
Show errar;

Corollary 36 Synchronous communication of objects implies transition to a state which

cannot be left except through a state transition associated with the return signal.
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Interactions between objects can be synchronous or asynchronous. We discuss
synchronous communication in this corollary and leave asynchronous to the next corollary.
In UML, “A synchronous invocation is the transmission of a request from a requestor to a
target object in which the requestor waits for a reply from the invoked execution. The
invoked execution may supply retum values, but even if there are no return values, the
requestor waits for a reply indicating that the invoked execution has completed” (OMG,
2003, p2-313). In addition, “while the execution of a procedure invoked by a synchronous
invocation is progressing, the requesting action execution is *blocked.” This does not
require any special mechanisms; the synchronous action execution is simply in the
‘executing” state until the invoked procedure execution terminates and returns” (OMG,
2003, p2-315). Thus, synchronous communication of objects implies a transition to a state
which cannot be left except through a state transition associated with the return signal.

This corollary is fully deduced from UML specification. Actually, it is a rewording of
UML. Thus, it is fully covered by UML and all CASE tools implementing UML

specification should follow this corollary. There is no need to implement it.

Corollary 37 Asynchronous communication of objects with expected response implies the
existence of at least one state transition caused by the object acted upon, signifying the
return interaction after the state transition signifving the original communication.

“An asynchronous invocation is the transmission of a request from a requestor to a
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target object in which the requestor continues execution immediately, without waiting for a
reply” (OMG, 2003, p2-312). The motivation of this corollary is that even the acting
object does not wait for a reply, the acted object may still return a reply, which is
considered the “expected response™ (Evermann, 2003, p127). However, UML specifies
that “it is permissible to asynchronously invoke a request to a procedure that eventually
issues a reply; the reply message 18 simply discarded” (OMG, 2003, p2-312). People may
argue that if the reply message actually sends some useful information, how can it just be
discarded? The answer is that “if the invocation is repliable, a subsequent reply by the
invoked execution is transmitted to the requesting object as an asynchronous request”
(OMG, 2003, p2-322). That is, the response actually invokes another new communication.
This is because “the targel object might later communicate to the requestor, but any such
communication must be explicitly programmed and it 1s not part of the asynchronous
invocation action itself” (OMG, 2003, p2-312). As we can see, there is no “expected
response” for asynchronous communication. The motivation of this corollary is incorrect.

We propose not to adopt it.

Corollary 38 The final state transitions of any method implementing an eperation that may
be invoked through a call action must cause a return action.
There are several types of action, for example, signal action and call action. Among

these actions, call actions are synchronous and require response: “The (call) action
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execution waits until the effect invoked by the request completes and returns to the caller.
When the execution of a procedure is complete, its result values are returned to the calling
execution” (OMG, 2003, p2-324). That is, there exist return values for a call action. When
a method implementing an operation is invoked by a call action, the method must return
values at the end of its procedure. This is because “during the execution of a synchronous
invocation, the invoked procedure execution must have sufficient information to be able to
awaken the invoking action execution when execution of the invoked procedure is
complete” (OMG, 2003, p2-320). The final state transition is the last behaviour of a
method procedure. Thus, it causes a return action to return values.

The implementation approach searches coliaboration diagrams for call actions. For an
interaction, whose message includes a call action, the program gets the object and method
being called. Then it checks state chart diagram attaching to this method. The final
transition and its action will be retrieved. If the action is a return action, the program exits;

otherwise, it shows a violation warning. This is expressed in the following:

Get collaborationDiagram;

Gret interaction;

Get message;

Get calldction;

If calldction==null
Exit;

Get methodl;

Get receiver;

Get classDiagram,

Get classes;

While classes. hasNext()
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If class==receiver
(Fet method2s;
While method2s hasNexif)
I method2==method]
Get stateChart;
Get transition;
(ret target;
If target==finalState
Cet actlon,
If action==returnAction
Exit;
Show errar;

Corollary 39 For the state machine of a method to contain a state transition whose effect is
@ refurn action, there must exist a corresponding state transition in a state machine of
some other object whose effect is a corresponding call action.

As we discussed in the last corollary, an interaction with a call action works like this:
Method A implementing operation B of object C calls method D implementing operation
E of object F. When the call happens, object C waits for retumn from object F, while F
begins running method D. When D completes, its return action returns values to method A
and A continues. Corollary 38 specifies that there must be a corresponding return action in
the called object for every call action in the caller object. In reverse, since methods with
return actions are invoked by call actions, there must be a corresponding call action in the
caller object for every return action in the called object. According to Corollary 32, there is
a corresponding transition in both caller and called objects. The transition of the called

object canses a return action, which is specified by Corollary 38 The transition of the
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caller object causes a call action. Through the last corollary and this one, three diagrams
are associated to ensure consistency. These diagrams are state chart diagrams of both caller
object and called object, and collaboration diagram specifying the interaction between

them.

The implementation approach is to check whether there is a transition with a call
action corresponding to every transition with a return action in caller class and called class,
respectively. The program first gets a class method and its state machine. Then it checks
the transition leading to the final state. If there is no return action attaching with that
transition, the program exits; otherwise, it reads the return action and gets the caller class
and method. Then it searches state machine attaching to the caller method. If there is a
transition with call action, which invokes the called method, the program exits; otherwise,

it shows a violation warmning. This is expressed in the following:

Get class !
et methodl -
Get stateMachinel;
Cret fransition;
Gel targei;
If target==finalState
Get acrion;
If lfaction==returnAction)
Exit;
Get class2;
el method2;
Get stateMachine2;
(Fel transitions;
While transitions. hasNexif)
Get callAction;

139



Read callAction;
If elass==class | ) &&imethod==method )
Exat;
Show error;



Chapter 7 Implementation in ArgoUML

The previous three chapters discussed Evermann's rules and provided a general
implementation approach. However, they are not CASE tool specific. That is, all those
approaches can work for any UML CASE tools. This chapter actually discusses the
implementation of the proposed approach in a specific tool: ArgoUML. The approaches
presented in earlier chapters are based on assumption of a fully functional UML CASE
tool. However, ArgoUML is an open source project, and is still being developed. There are
several UML functions that do not work properly in ArgoUML as well as some bugs. That
means that not all of the approaches discussed in previous chapters can actually be
implemented in the current ArgoUML. In this situation, we give the alternative solutions
for those rules which cannot be actually implemented in the current ArgoUML. This is
expressed in the following structure. First, we explain how our implementation works in
ArgoUML and related issues. Then, we introduce the communication structure between
our system and users. Finally, we give the alternative approaches for rules that cannot be

actually implemented in the current ArgoUML.

7.1 How ArgoUML criticizes
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The critiquing system of ArgoUML has the following features: Critics for rules are
agents that continually analyze the design. The system can present feedback as soon as
violations arise. In addition, feedback is retracted as soon as violations are fixed. These
features are realized through four components: Criticism control mechanisms,

Communication Structure management, Inference engine, and Knowledge base.

7.1.1 Criticism Control Mechanism

The criticism control mechanisms controls critique execution to keep feedback
relevant and timely to the modeler’s activities. It processes all critiques in each task and
disables selected critiques for fixed time of periods. The following is a picce of code
implementing these functions and the screenshot of the *Criticism Control Center.” (For

explanation of specific code please refer to www.argouml.org.)

Process all critics in each task:

Agency.registerferR20, classCls);
Agency.register(crR20, assocCls);
Agency.registerferR21, stateVertexCls),
Agency.registerferR22, transitionCls),

Disables selected critics for fixed time periods:

public void snooze() |

if (_snovzedgainafler(getNow())) _interval = nextlmerval(_interval);
else _interval = _initiallntervalMS;

long now = (getNow()).getTime();

_snoozeUntil serTimefnow + _imterval);

_snoozedgain.setTimefnow + _interval + _initialintervalMS);
cat.infof"Setting snooze order to: "+ _snoozeUntil toString()). )
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public void unsnooze() {_snoozeUntil = new Date(0); }
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Figure 7.1 Criticism Control Center

7.1.2 Communication Mechanisms

Communication mechanisms present violations to users. It is also responsible for the
interaction between the machine and users. There are four structures for the system to
communicate with users. We will explain these in detail in Section 7.3 (Please refer to

Table 8.1 Categories of feasible (to implement) rules for details). Following is a piece of
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code and the screenshots of the ‘High-Priority’ communication mechanism. (Please refer
to discussion for R18 for code comment. )

The “High-Priority” communication mechanism:

Hif afready checked
if {_checked.contains{dm)){
switchOn = J;
return PROBLEM _FOUND;|
elsef
Muser select
tryf
Hshow error
Object{] options = { "Put into Reminder”, "Explain” };
int in = JOprionPane.showOptionDigloginull, "Class ' "tnameStr+™ is not
specialized and cannor be declared absiract”, “Violate Rule [8",
JOptionPane. DEFAULT OPTION, JOptionPane. WARNING MESSAGE, null,
options, options[0]);
if fin == 1)} JOptionPane showMessageDialog(null, “Explain:  Onlv a
super-class being speciaiizeded can be declared as abstract.\n inExample: None",
"Rulel8: A eclass that is not specialized cannot be declared abstract.”,
JOptinnPane INFORMATION MESSAGE): ]}
catchfException ex){ System.out. printinfex); }
Hadd this class o checked vector
_checked. addElement({dm);
switchOn = 1;
return PROBLEM FOUND;}

Screenshot:
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Figure 7.4 Violation in Reminder List

7.1.3 Inference Engine
The inference engine is the control mechanism that applies knowledge of rules
presented in the knowledge base to the specific diagram as input data to arrive at a
conclusion of firing a violation or not. This is also a key component of an expert system.
Following is a piece of code of the inference engine.
Inference engine:
/** Examine the given Object and Designer and, if appropriate, produce one or more violations
and add them 1o the offending modeling material’s and the modeler's ToDoList. By default this is

basically a simple if-statement that reites on predicatef) to determine if there is some appropriate
feedback, and toDoltem() to produce the ToDoltem. ™/
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public void critigue(Object dm, Designer dsgr) |
if (predicate(dm, dsgr)) {
_numCriticsFired++;
ToDaltem item = toDoltem{dm, dsgr);
postltem{item, dm, dsgr);}}

7.1.4 Knowledge Base

The knowledge base is the implementation set of all ontological rules and corollaries
and is the core part of the system. Following is a piece of code of the knowledge base and
the screenshot of the knowledge base list.

Knowledge base:

/ File: CrR18. java

# Classes: CrR18

A Author: Shan, In@es.mun.ca

& 3ld: CrR18 java,v 0.1 2004/4/22 15:43
package org.argoumi.uml.cognitive.critics;
import java.util.*;

import javautil regex Pattern;

public class CrR18 extends CrlUML |

int switchOn = 1.

public static Vecior _checked = new Vecior();
public CrRIS8() |

seiHeadline{"Rule [8");
setPriority{ToDoftem HIGH PRIORITY);
addSupportedDecisionfCrUML.dec NAMING);
setKnowledgeTipes(Critic. KT _SYNTAX);)
public boolean predicate2(Object dm, Designer dsgr}{
if (switchOn == 0))

return NO_PROBLEM;

HPause the paralle critic for this rule
switchOn = 0;

A "High-Priority ' communication structure
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switchOn = |;
return NO_PROBLEM; )
J /* end class CrRIS %/
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Figure 7.5 Knuwl:dge Base List

The above four components work in the following process: When the ArgoUML starts,
the criticism control mechanisms activate and initialize rules and corollaries. When user
develops UML diagrams, the inference engine monitors users activities in real-time. It
checks diagrams according to the knowledge base. Once a violation is matched with rules /

corollaries in the knowledge base, the communication mechanisms present feedback or
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interact with the modeler.

7.2 Problems in ArgoUML

ArgoUML is not a complete business product, but an open source project for research
purposes. It is still being developed and not all functions have been realized. Some realized
components currently do not work properly. The following are problems known in
ArgoUML currently.

Known Incompatibilities

Here is a list of features, which are not implemented vet and can be seen as a violation of the UML

specification (1.3)

All Diagrams
1 Qualjfiers are missing.
2 Optignal directional triangle missing on association names.
3 List of provided multiplicities is not complete.

Class Diagram

Association classes are missing. i.'?mugfr- A:F‘Q'EUML can read association classes from
4 XMl files, it cannot display them correctly. That is due to a flaw in GEF, which needs a
major rework.

5 Parameterized classes are missing.
6 Notes 1o any model element not implemented.
7 Cannot add a method to an operation.

8 Cannot show collaborations on a class diagram.
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Object Diagrams

Currently not implemented, use a Deploymentdiagram.

Auributes cannot have attribute values.

Activity Diagrams

11

12
13

14
15
16

17

Swimlanes missing.
Signal receipt/sending missing.
Sequence Diagrams

Missing completely from ArgoUML 0.14. {They were present in 0.10.1)

Starechart Diagrams

— e —

Regions are drawn and handied as ordinary composite states.

There ix no distinction between kinds of Actions.

Distinction between kinds of Evenis is only parily implemented.

IA "unction" is only partially supporied

Please note: This list is not complete!

(Tigris, 2004, http://arpouml.tigris org/documentation/umlsupport)

These incompatibilities will affect us when our implementation relates to these
components. To solve this problem, we try to use altemative solutions, instead of just

skipping rules or corollaries, We will discuss the specific issues in related rules or

Table 7.1 Incompatibilities of Current ArgoUML

corollanes in Section 7.4.
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7.3 Four Communication Mechanisms

There are four structures for the communication between critiques and users.

The first structure is for the “MustBe” rules. “MustBe" rules are rules which specify
that something must be or must not be in a particular way; for example, Rule 9 states that
object ID’s must not be modeled as attributes. For this type of rule, the violation waming
must be shown immediately to prevent further problems. That is, as soon as the rule is
violated, the system should alert the user. For some violations, for example violating Rule
| (details can be found in Rule I of Section 6.4), which can be easily corrected by the user,
we popup a dialogue informing the user of the violation and reset the related space so that
the user can re-input correct information. We call this ‘Critique’ communication structure.

However, not all violations are easy to correct. We cannot simply delete the violation
component. For example, when a diagram violates Rule 3 (details can be found in Rule 3
of Section 6.4), we cannot delete the whole association class. Since this kind of violations
are difficult to correct, a user may need a long time fixing it or even do not want to fix it
immediately. In this case, the system continues popup dialogues, showing something
wrong here and something wrong there and the user may become annoyed. To prevent this,
we adopt the *“High-Priority’ communication structure. Once the input is considered as a
violation, the system will popup a dialogue to wam the user. However, we do not clear
anything in diagrams. Instead, we keep the input there and give the option for the user to

correct it later or even not to change it at all (Users can also dismiss violations and snooze
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critiques. We will explain these structures at the end of this section). To prevent users from
forgetting it later and also to avoid continually popping-up violation dialogues, we put this
violation into the high-priority reminder list. That means the popup dialogue will only be
shown once for each instance of a rule violation. The reminder will continue to examine
the diagram in real time. However, all this is done in the background. If the user does not
change the input, the violation message will be shown in the reminder list all the time, It
does not affect the user’s job. The user only needs to check the list at any time, s'he will be
aware of what violation s/he has not corrected yet.

The ‘Medium-Priority’ communication structure is for “MustHave™ rules.
“MustHave” rules specify that something must be or must not be included in a diagram;
for example, Corollary 7 (details can be found in Corollary 7 of Section 6.4), which states
that an association class must possess at least one attribute. For this kind of rule, it is hard
to say whether the user forgets having something, or not input it yet. On the other hand, the
examination is in real time. For rules of the form “A must have B, as spon as A is created,
the system will find there is no B in A before a user can input B. In this case, we should not
let the system popup a dialogue saying. A must have B. Instead, we put all these kinds of
violations into the medium-priority reminder list directly. The system does not popup any
dialogue at all. Using this structure, we can keep track of the violation without annoying
USETs.

The ‘Low-Priority’ communication structure is not for violation wamings, but
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consists of reminders. The newly proposed structures by Evermann do not exist in current
UML. Also, some structures in UML have not been implemented or are not working
properly in ArgoUML. There is no way for the program to detect violations for this kind of
rule. In this case, the program will only popup reminders to users. Then it will put the
reminder into the low-priority reminder list. The user can dismiss the reminder at any time.

The system may make mistake of some complex rules. For example, attributes ‘name’
in “Customer’ and ‘BookStore' classes are considered the violation of Rule 3 (details can
be found in Rule 3 of Section 6.4). In this case, ArgoUML also offers mechanisms of
dismissing violations and snoozing critiques. If the system shows an unexpected critique.
the user can simply click the “Dismiss™ button and the critique will disappear. If the user
wants to disable a rule critique temporarily, he / she can simply click the “Snooze™ button
and the critigue will be deactivated temporarily. If the user wanits to disable a rule critique
forever, he / she can simply desclect the corresponding critique in the setting menu and the
critique will no longer be activated. Since this i1s a critique expert system, we also have a
mechanism of inguiry users for required information. When our program cannot get
enough information it inquiries users, For example in Rule 5 (details can be found in Rule
5 of Chapter 3), the program inquires users whether each attribute is created by the
interaction creating the association class.

We will explain these four communication structures through rule examples in the

discussion below. Specifically, we will explain the ‘Critique’ structure in Rule 1, the
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‘High-Prionty’ structure in Rule 3, the *‘Medium-Priority’ structure in Rule 7, and the

‘Low-Priority’ structure in Rule 21.

7.4 Alternative solution
This section will discuss alternative approaches for rules that cannot be implemented
in the current ArgolUML. We still discuss this by order of Evermann's rales. For those rules

which can be implemented by the previous approaches, we do not discuss them again here.

Rule | Only substantial entities in the world are modeled as ohject.

In the implementation, we have two text files, “subnouns™ and “nonsubnouns”™ to
save the substantial nouns and non-substantial nouns, respectively. We have a class
“CrR1" (CrR* is the implementation java code, please refer 1o Rule 1 in Chapter 4 for
details) to match the object name in the two text files. For the object, the “CrR1" not only
examines the object name, but also examines the class name. Because a class is a group of
objects, they normally have the exact same name. For the GUL if a name is found in the
“nonsubnouns”, the system will popup a message window, indicating the error. The user
can choose “0OKk™ to reinput a name or choose “Explain” to read the explanation and
examples of this rule. If a name cannot be found in either “subnouns™ or “nonsubnouns™,
the system will popup a message dialogue, asking the user whether the name is substantial

or not. The user can choose *“Yes"” or “No" to save the name in “subnouns” or
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“nonsubnouns”, respectively, or choose “Explain™ to see the explanation and examples of
this rule. In the query window, we also give users an “others” option, in case the user input
a string which is neither substantial noun nor nonsubstantial noun. This is because we use
the ‘Critique’ communication structure for this rule. When a non-substantial noun is input,
the system will popup a violation waming as well as clearing string of the non-substantial
noun in the diagram and waits for the new input string. That is, the user cannot continue
until he / she inputs a substantial noun. However, users may not agree with the violation

warning. In this case, he / she can choose the “Other” option to continue his / her job.

Figure 7.6 Violation of Rule 1

Rule 2 Ontological properties of things must be modeled as UML-attributes.

156



The approach for this rule in Chapter 3 has already been shown realistic for Rule 1;
however, we meet some difficulties in this rule. The program needs to get all the text
strings from all diagrams, for example, class name, class attribute, class operation,
association, and even strings in sequence diagram, collaboration diagram, and state
machine. However, ArgoUML currently does not support returning all text from all
diagrams. Actually, ArgoUML is using the class library of the NUSoft Company, which
does not release the source code. The other problem is that this implementation will keep
searching all strings in all diagrams and matching with databases. This will cost lots of
CPU time, which is considered inefficient. According to the above reason, we decide to
implement corollaries of this rule. This does not mean that Rule 2 is not realistic. There is
no principle problem here. It is neither Rule 2 nor its implementation approach is

infeasible, but the development environment has a problem currently.

Corollary 1 Attributes in an UML-description of the real world cannot refer to substantial
entities.

There is a “CrC1" class to fulfill this corollary. When the input string is found in the
nonsubnouns file, the program returns no problem. When the input string is matched with
a siring in the subnouns file, the program will show a violation waming and explain this
corollary to users. Also, if an object cannot be found in our database, the program will

interact with the user by asking whether that object is substantial or not. The program will
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remember the new substantial or nonsubstantial noun in its database. Thus, the system has
the ability to learn by remembering newly added nouns. The ‘Critique’ communication

structure is used for this corollary.

Rule 3 Sets of mutual properties must be represented as attributes of association classes.
This rule adopts the ‘High-Priority’ communication structure. First, this rule is a
“must be” rule. The system should inform users as soon as the violation appears. Thus, we
design this examination to popup a dialogue when it matches the same attribute in two
associated classes. However, this violation cannot be cormrected immediately. The user
needs to create an association and put this attribute in that association class. The user needs
at least several minutes to do this. OQur examination system is in real time and it will fire
another examination thread for this rule within several seconds. It is very possible that the
user has not enough time to correct it before the next thread is fired. Since the correction is
complex, another possibility is that the user does not want to correct this right away and
will correct it later. In these two cases, the next thread will still find the violation and
popup a dialogue. That is, a dialogue will popup every few seconds, which is unacceptable.
On the other hand, the system may even make mistakes here. Consider the customer and
bookstore example. Both customer and bookstore may have their intrinsic attribute
“name”, which refers to customer name and bookstore name, respectively. These “name”

attributes are not a mutual attribute between customer and bookstore and thus should not
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be modeled in an association class. However, this situation still satisfies the violation of
this rule in the program. Because of the above situations, the popup dialogue will only be
shown once. After that, if the violation is still considered by the program, the information
will be shown in the reminder list. If the violation is correct, the user will not forget it If
the violation is incorrect, the user can just leave il there or simply dismss the violation, or
even snooze the examination for this rule. Now, how about if a violation of another
association appears? To prevent the new violation being thrown into the reminder list
directly, we create a vector to record the associations that have already violated this rule
and still popped up dialogues for new violations. In this way, we guarantee that each

violation will popup the dialogue once and only once.

Corollary 2 An association class cannot represent substantial entities or composites of
substantial entities.

This is a “must be” corollary and we can use the ‘Critique’ communication structure
here. Because this is a corollary of Rule 3 and we have already implemented Rule 3, there

is no need to implement the corollary. We just proved the corollary and gave the

implementation approach in Chapter 3.

Corollary 5 An association class cannot possess methods or operations.

This corollary is part of Rule 4, we will implement it in Rule 4.
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Corollary 6 An association class cannot be associated with a state machine.

If this corollary is finally adopted by UML specification, all CASE tools will disable
this feature and there is no need to write a program to examine this. Currently, ArgoUML
allows this feature. So, we use an alternative way to implement this corollary. The
implementation of this corollary relates to two diagrams. First, the examination nceds to
get all association class names in a class diagram. Then, the state machine names need to
be retrieved from a statechart diagram. These names will be matched. If an association
class name and a state machine name are found to be the same, the program will fire the

violation warning. This is expressed in the following:

Get associationClass;

Get acNames;

While acNames_haveNexify
Get stateMachine;
Get smNames;
If acName = anName

Show error;

Else exit;

However, the association class and state machine are in different diagrams. It is
possible that the user occasionally uses the same names. If the program wamns the user just
by matching a same class name and statemachine name, it may not be accurate. In the
detailed implementation, we decide 1o use another more accurate approach. We realized
that a statemachine is associated with a class. That is, there is no independent statemachine

that exists. So, we can get all elements owned by an association class. If any element is a
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statemachine, then the program shows a violation waming. This is expressed in the

following:

Get associationClass;

Ger ownedElements;

While element. isSiatemachinef)
Show error.

Exit;

For communication structure, this is a “must be" corollary and we use the
*‘High-Priority’ structure for this corollary.

A problem here is that the ArgoUML currently does not support association classes.
That is, one cannot model an association class. We adopt the following solution for this
problem.

We use ordinary classes o represent association classes. To distinguish them from
those “real™ ordinary classes, users must add a stereotype of “associationClass” of the
classes. We do not use regular association lo connect association classes to ordinary
classes. Instead, we use the solid line in the “Select Tool” menu, which currently has no

meaning in ArgoUML. The reason will be explained in Corollary 8.

Corollary 7 An association class must possess at least one attribute.
From the above discussion in chapter3, we can see that this corollary is covered in

Rule 3. Thus, there is no need to implement it.
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Corollary & An association class must not be associated with another class.
The examination only needs to check association classes to see whether they own any
association ends, If the program finds any, it shows a violation warming. This is expressed

in the following:

This is a “must be™ corollary and we use the ‘High-Priority” communication structure
here.

However, the current ArgoUML does not support association classes and we use the
stereotype to identify association classes. If we use associations to connect association
classes and ordinary classes, we could not use the above approach. In this case, association
classes have to own association ends. The program cannot tell which association is a
violation. Thus, we use the solid line in the “Select Tool” menu to connect ordinary classes
and association classes. Note that even though we can see the connection between
association classes and ordinary classes on the diagram, there is actually not any
relationship between these classes. ArgoUML does not give any role to symbols in the

“Select Tool” menu,

Corollary 9 An association class must not participate in generalization relationships.
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The examination can simply check all association classes to see whether there is any
generalization. If the program finds any, it shows a violation wamning. This is expressed in

the following:

Ger associationClasses;
While generalization. hasNexif)

Show error;

Exit;
We can also use another approach. First to get all generalization relationships, then the

program checks both sides of these relations. If any side is an association class, it shows a

violation warning. This is expressed in the following:

Get generalization;

Get ends;

If end=associationClass
Show error;

Exir;

We use the latter approach for this corollary. This is a “must be" corollary and we use

the ‘High-Priority’ communication structure.

Rule 4 If mutual properties can change quantitatively, methods and operations that change
the values of attributes of the association class must be modeled for one or more of the
classes participating in the association, objects of which can effect the change, not for the
associations class.

This rule is a “must be" type and we use the ‘High-Priority’ communication structure

here.
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Rule 5 An association class represents a set of mutual properties arising out of the same
interaction.

The program for this rule can only work by interacting with users., It separates a
complex problem to several simple questions. The user only needs to answer these
questions and the program will examine diagrams based on the user's answer. We use the

*High-Priority” communication structure.

Rule 6 A composition relation must not be modelled.
This is an alternative implementation. The examination just checks each association
end of each class. If any composition association is found, it shows a violation wamning.

This is expressed in the following:

Get classes;

Get associationEnds;

If associationEnds=composition
Show errar;

Else exit;

For the communication structure, we use the ‘High-Priority’ one.

Rule 7 Every UML-aggregate must possess at least one attribute which is not an attribute
of its parts or participate in an association.

This is a “must have™ rule so we use the “Medium-Prionity’ communication structure
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here: Immediately after the user creates an aggregate class, the system will find that there
is no additional attribute in the aggregate class than in its parts. The system fires a
violation warning. However, the fact is that the user has no time to input an attribute yet.
To prevent annoving users, the ‘Medium-Priority’ communication structure does not
popup a window, but only show this violation in the reminderList. If the user models an

additional attribute in a later time, the warning will disappear.

Rule 8 All UML-classes must possess at least one attribute or participate in an
association.
This is a “must have" rule and we use the ‘Medium-Priority’ communication structure

for it.

Rule 9 Object ID's must not be modelled as attributes.
This is a “must be” rule. However, the program needs to interact with users by asking

them to confirm the examination. We use the *High-Priority’ communication structure.

Rule 10 The set of attribute values (representing mutual and intrinsic properties) must
uniquely identify an object.
The ArgoUML environment does not support identification of different objects. That

is. there is no object diagram and no place to save object attribute values. This is not a
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problem of ArgoUML either, because LJML1.5 specifies that “Tools need not support a
separate format for object diagrams” (OMG, 2003, P3-35). Thus, we could not implement

this rule in ArgoUML. However, we have shown that this rule is feasible to implement.

Rule 11 Every attribute has a value.

As we explained in Rule 10, ArgoUML does not support object diagrams; the
examination can only check class diagrams. Also, since the ArgoUML already allows
users to specify multiplicity of “0" and value of “null” for attributes, we use an alternative
way to implement this rule. We get all attributes and check their values. The examination
shows a violation waming until every attribute’s initial value is specified. Also, the
program checks attribute multiplicities. If any attribute multiplicities of 0" is found, it
shows a violation waming. Currently, ArgoUML only has three options of attribute

multiplicities: 17, “0..1", and “1..*". This is expressed in the following:

Get class;
Cet atiributes;
While attributes. hasNexi()
Gret initial value;
Get multiplicin;
If initial value=null| |multiplicity=0
Show errar;
Else exit;

Since this is a must have rule, we use the “Medium-Priority’ communication structure.

Rule-New 01 Every UML attribute can only have a single value. An attribute of



multiplicity of “N" should be decomposed into “N™ attributes of multiplicity of “1.” An
attribute multiplicity of “0” should be generalized as a super-class not possessing the
attribute.

In the current stage, we use an examination to enforce this rule in the ArgoUML. First,
the program gets attribute multiplicities. When finding any multiplicity not equal “17, it

shows a violation warning, This is expressed in the foliowing:

Get class;

et attribute;

Get muddplicity;

If muliiplicity==1
Exit;

Show error;

We use the ‘High-Priority’ communication structure for this corollary.

Rule 12 Classes of objects that exhibit additional behavior, additional attributes or
additional association classes with respect to other objects of the same class, must be
modeled as specialized sub-classes.

The *High-Priority’ communication structure is used for this rule.

Rule 13 Every UML-aggregate object must consist of at lcast two paris.

This 15 a must have rule. Thus, we use the ‘Medium-Pnionty’ communication

structure.
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Rule 14 An instance of a class that by virtue of additional aggregation relationships
acquires emergent properties or emergent behavior must be modeled as an instance of a
specialized class which declares the corresponding attributes and operations.

The *“High-Priority’ communication structure is adopted for this rule.

Rule 16 Attributes with class scope should instead be modeled as attributes of an
aggregate representing the objects of the class.

This is a “must be™ rule and we use the ‘High-Prionity’ communication structure here.
In AgroUML, a “static” box in an attribute property is used to indicate whether an attribute
is instance-scope or nol. Thus, we check whether the “static” box is selected for

instance-scope attribute,

Rule 17 If a class that is specialized is declared as abstract, the specialization must be
declared to be 'complete’.

The ArgoUML currently does not support declaring “complete™ for generalizations.
We use the “stereotype” to declare complete. ArgoUML allows users to model several
specializations for a single super-class. The stereotype is defined for each specialization
independently. Thus, if all super-class objects are members of one of the sub-classes, each
specialization should be defined as complete. If a specialization is defined as complete, it

does not mean that this single specialization is complete; but that all specializations of the
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super-class together are complete. The *High-Priority’ communication structure is used

here.

Rule 18 A class that is not specialized cannot be declared abstract,

The ‘High-Priority” communication structure is adopted for this rule.

Rule 19 A specialized class must define more attributes, more operations or participate in
more associations than the general class.

The ‘Medium-Priority’ communication structure is used for this rule.

Rule 20 Every ordinary association must be an association class.

As mentioned before, ArgoUML currently does not support modeling of association
classes. In the implementation of previous rules, we use the stereotype of
“associationClass™ to identify association classes. However, even the structure looks fine,
the solid line connecting association and association class does not include any
information. Our alternative solution for association class cannot return an association and
association class pair. That means that the system could not know whether an association
class connects with an association. We have to force users to specify the same name for
both the association and the association class. In this way, our program will consider an

association and association class connected if they have the same name. The alternative



approach is expressed in the following:

Get associations;

If generalization||aggrezation
Exit;

et assoName:

Get associationClass;

(et assoClassName;

If assoClassName==assoName
Exit;

Show error;

According to ArgoUML structure, only one model element can be passed to one
examination thread. Because association and class are different types of model elements,
we cannot get both association and association class in one examination process. Thus, we
have to depend on the parallel examination process. In process threads, which get an
association class element, the class name is added into a vector. In process threads, which
gel an association element, the association name will be matched in the vector. In the latter
type of threads, if an association name cannot be found in the vector, the violation warning
will be fired. The ideal working processes are expressed in the following: Firstly, the
program gets all association class elements and adds them to the vector. Then, it begins to
get associations and match their names in the vector. That is, to finish all the second type
of threads before the first type of threads begin. However, because the parallel threads get
model elements randomly, we cannot guarantee the ideal situation happening. If the
computer running this program is too slow, it may show incorrect vielation wamings. All

these problems are because ArgoUML currently does not support association class. In a
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fully functional UML CASE tool, the approach will work. This is a must have rule and we

use the ‘Medium-Priority’ communication structure for it.

Rule 21 A UML-state represents a specific assignment of values to the attributes [of
ordinary classes] and attributes of association classes of the objects for which the state is
defined.

Because there is no mechanism connecting states and attribute values in current UML,
We use an alternative implementation for this corollary in ArgoUML. The program gets
all states and state machines they belong to. Then it gets the model element owning the
state machine and reminds users to follow this rule. If the user does not want to keep this
reminder, it can be dismissed and will not appear in the reminder list again. However,
because state machines are not allowed for signals (we will discuss this in Corollary 25),
the program does not check signal state machines.  Actually, the program cannot detect
violations, but only remind users for each state. Thus, the ‘Low-Priority” communication

structure of reminder is adopted here. This is expressed in the following:

Get states;
Get stateMachine;
Get smOwner,
If l{smOwner==signal)
Show reminder;
Put to reminderLiss;
Exit;
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Corollary 14 A UML-transition must change the value of at least one attribute used to
define the state space.

Even though Evermann proposes a meta-model of associating states with attributes,
this is not in the current UML specification. Thus, the program will not know whether a
transition actually changes attributes with that state space. We implement an alternative
way to enforce this corollary in ArgoUML. The program gets all transitions and reminds
modellers to enforce this corollary. However, the modeller can dismiss this reminder and it
will not show in the reminder list. The ‘Low-Priority’ communication structure is adopted

here. This is expressed in the following:

Ger iransitions;

Show reminder;

Put o reminder;

Exit;
Rule 22 For every level of refinement of a state C, there must be an additional set of
attributes in the class description or in participating association classes that change as the
abject transitions among the sub-states,

Based on the same reasoning as in the last corollary, we implement an alternative way

to remind users following this rule in ArgoUML. The program gets transitions and their
sourcc states and target states. Then it checks whether the source state and target state

belong to a same composite state. If this is the case, the program shows the reminder to

users. The ‘Low-Priority’ communication structure is adopted here. This is expressed in
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the following:

Get transition;
Get sourceState;
Gt targeiState;
JJ'F sourceState container==igrgetSiate.container;
If sourceState.comtainer==top
Exii;
Show reminder;
Put to reminder;
Exit;

Corollary 16 Concurrent sub-states require mutually disfunct sets of additional attributes
in the class description or in participating association classes.

Based on the same reasoning as in Corollary 14, we implement an alternative way to
remind users following this corollary in ArgoUML. In addition, ArgoUML does not
strictly follow the notation of concurrent sub-states (region) in UML specification. It only
supplies a “concurrent” option for a whole composite state. We could not set or get
concurrent information for each state. Thus, we deem all sub-states concurrent if the whole
composite state is set to concurrent and vice versa. The program first gets a sub-state. If the
composite super-state is not declared concurrent, then it exits; otherwise, the program
reminds the user. The ‘Low-Priority’ communication structure is adopted here. This is

expressed in the following:

Gei sub-siate;
Gel super-state;
If !{super-state==concurreni)

Exit;
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Show reminder;
Query user;
If answer=="Y"

Put to reminder,
Else exit;

Rude 23 Guard conditions on transitions from the same state to nonconcirrent sub-states
muist be mutually disjunct,

Based on the same reasoning as in Corollary 16, we deem all sub-states concurrent if
the whole composite state is set to concurrent and vice versa. The ‘High-Priority’

communication structure 1s used here.

Rule 24 Action states are super-siates of a set of sub-states. The object transitions among
these while in the action state. State charts must reflect this fact.
This is a must have rule and we use the ‘Medium-Priority’ communication structure

for it.

Corollary 17 States must not be associated with any actions. Sub-states corresponding to
different models should be used instead,

Currently, ArgoUML allows users to associate actions with states. We use an
alternative way to prohibit users from doing so. If any state action is created, the program

shows a violation warning. This is expressed in the following:
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Gret states;

Cret entryAction;

Get exitAction;

If entryAction==null && exitAction==null
Exir;

Show error;

The “High-Priority’ communication structure is used here.

Corollary 19 If the partitions of an activity diagram represent different objects, they must
be part of a composite, which is shown in the class diagram.

ArgoUML currently does not support swimlanes. Our program cannot know what
ohjects (he states describe. Thus, our program can only show a reminder for this corollary
for all states in activity diagrams. We use the *Low-Priority’ communication structure here.

This is expressed in the following:
Get actionSiate;
Show reminder;

Add to reminder list;
Exit;

Rule 25 The quantitative object behaviour (for each model) is entirely describable hy
top-level state chart (SC0)
This is a must have rule and we adopt the *“Medium-Priority’ communication structure

for it

Rule 26 All UML-transitions in SC0 must carrespond to an operation of the object, which
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SCO is associated with.

This 1s a must have rule and the ‘Medium-Priority’ communication structure is

adopted.

Corollary 20 Every object must have at least one operation.
This is a must have corollary and we use the *Medium-Priority’ communication

structure for L.

Covollary 21 States in SC0 are stable.

The ideal solution is to add this corollary in the UML specification. Currently, we use
an altermative solution in ArgoUML for this corollary. To define a state as stable or
unstable, our program first gets all transitions with this state as the source state in SCO.
Then each of these transitions is checked to see whether it has a trigger event. 1f any
transition has no tnigger, it can happen spontaneously. Thus, this state is unstable and the

program shows a violation warning. This 15 expressed in the following:

Get state;
Get container;
If contamer==1op
Get outTransitions;
While outTransitions hasNext()
Get trigger;
If trigger==null
Show error;

Exit;
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Since the implementation shows violation waming unless all out-transitions have
trigger, this is a must have corollary. The ‘Medium-Priority’ communication structure is

used.

Rule 27 An object must exhibit additional operations expressing qualitative changes, if a
super- or sub-class is defined and instances can undergo changes of class to the super- or
sub-class.

This is a must have rule. We use the *‘Medium-Priority’ communication structure for

it

Rule 28 Methods may be described by state charts other than top-level state charts.

The ArgoUML currently has the problem of modeling methods. Users cannot attach a
note to operations. We altemnatively use the stereotype of <<method>> to model methods
of operations. That is, if the stereotype of an operation is <<method>>, this operation is
actually a method. This method implements the operation with the same name. However,
operations cannot associate with state charts, which are already associated with classes in
ArgoUML. In other words, a class and its operation cannot associate with a same state
chart. That is, using our altermative way of modeling methods, it is impossible to describe
methods using SCO. This rule is always true in ArgoUML. Thus, there is no need to

implement it.
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Corollary 23 A state chart describing a method must begin and end with those states in
SCO which the operation that the method implements is a realization of.
Since we use <<method>> stercotypes 1o identify methods, the program needs o

check an operation stereotype before getting a method. This is expressed in the following:

Get class;
Gt scl);
Get scOTransitions;
While sclTransirions, hasNexi()
Get transitionName;
Gret sourceState;
Gt targetState;
Get operations;
While operations. hasNexif)
(et stereohype;
If stereotype==method
Get operationName;
If operationName==iranisitionName
Get operationStatehart;
Get initialSiate;
Get finalSrate;
If finitialState==yamurc EEII:H'EH | -’fﬁﬂﬂmﬂfﬂ:Wﬂmﬂﬁmj
Show error:
Exit;

This is a must be corollary and the ‘High-Priority’ communication structure is

adopted.

Corollary 24 State transitions out of the inititl state of a method realizing an operation

must be associated with the same event that is cssociated with the transition in SCO, which
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represents that operation.
Based on the same reasoning as in Corollary 23, the program needs to check an

operation stereotype before getting a method. This is expressed in the following:

Get class;
Gt scfl;
Get scllTransitions:
While se0Transitions. hasNexif)
Get transitionName;
Get trigger;
Get eventl;
Get eveniNamel
Ger operations;
While aperations. hasNexi()
Get stercotype;
If stereotvpe==method
Get operations;
Get operationName;
If operationName ==transitionName
Get operationStateChart;
Cret initialSiate;
Get out Transition;
Get trigger;!
Get event2;
Get eventName2;
If 'feveniname [ ==eveniName2)
Show error;
Exir;

This is a must be corollary and we use the “High-Priority’ communication structure

here.

Corollary 25 A state chart either expresses the external behaviour of an object (SC0), a

method, a signal reception or is a composite state contained in another state machine,

179



Rule 29 gives the solution when state charts specify operations. Thus, in the
implementation of this corollary in ArgoUML, if a model element is an operation, the
program does not show a violation warning. We leave this to be implemented in Rule 29.
In ArgoUML, state machines as composite states contained in another state machine are
different from ordinary state machines. That is, when we get state machines, those state
machines as composite states would not be retrieved. We can simplify our implementation
by ignoring these state machines. In addition, ArgoUML currently has the problem of
attaching state machines to receptions. That is, we only need to check classes, operations
and methods. The program gets ordinary state charts and elements owning them. If these
elements are not classes or methods (operations), it shows a violation warning. This is

expressed n the following:

Get stateChart;

Get owner;

If l(owner==object)||!{owner==method)|| (owner==operation)
Show error;

Exit;

This is a must be corollary and the ‘High-Priority’ communication structure is

adopted.

Rule 29 An operation is not directly specified by state machines. Instead, the methods that
implement an operation are specified by state machines.

[n the implementation of Corollary 25 in ArgoUML, we did not check operations and
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feft that job to be done by this rule. The program gets classes and their operations. Then it
checks behavioural features of every operation. If any behaviour owned by an operation 1s
a state machine, the program shows a violation wamning as well as the solution. This is

expressed in the following:

Get class;
Get operations;
While operations.hasContainer

Get behaviours;

While behaviours.hasNext()

If behaviour==stateMachine
Show error;

Exit;

This is a must be rule and the ‘High-Priority’ communication structure is adopted.

Corollary 26 A state machine that specifies the behaviour of a class or a method is not
contained in other state machines.

UML does not specify that a CASE tool has to supply functions of attaching
submachines to the behaviour of a class or a method. Thus, ArgoUML does not support
modeling a state machine as a container for state machines of classes, operations and
methods. That is, modellers using ArgoUML cannot model a class, operation or method
state machine contained by another state machine. This corollary is always true in

ArgoUML and there 1s no need to implement it.

Rule-New 03 Receptions should not be modeled.
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This is a must be rule and the “High-Priority” communication structure is used here.

Rule 30 An operation must be associated with the declaration of signal reception.
This i1s a must have rule and the “Medium-Priority’ communication structure 1s used

for it.

Rule 31 The event associated with an operation must be identical to the event associated
with the signal associated with the reception.

In Corollary 25, we have discussed that statemachine for receptions does not work in
ArgoUML. Thus, the program is not able to compare events associated with operations
and receptions. When there is an event associated with an operation, it shows a reminder to
users and the ‘Low-Priority’ communication structure is used. This is expressed in the

following:

Get class;

Get operation;

Get SCO;

Cret transition;

(et event;

Get signal;

Get reception;

Show reminder;

Put into reminderlList;

Exit;

Corollary 28 The state machines associated with a reception and with a method specifying



the implementation of an operation which is in turn associated with that reception, must
possess the same initial and final states.

The ArgoUML currently throws exceptions when attaching statemachines to
receptions. Thus, there 1s no way to get trigger events of receptions. We can only get the
initial and final states of the method. When the program finds the corresponding reception,
it reminds users to follow this corollary. The ‘Low-Priority’ communication structure is

adopted here. This is expressed in the following:

Get class;

Get operation;
Get method;

Get stateMachine;
Get initialState;:
Get finalState;
Get reception;
Show reminder;
Put to reminder;

Exit;

Rule 32 Acquisition (loss) of independent properties leads to expansion (contraction) of
the thing s top-level state space SCO by an orthogonal region.

This is a must be rule and we use the “High-Priority’ communication structure here.

Rule-New 02 Acquisition (loss) of non-independent properties should be modeled as a
sub-machine of the related thing’s state modeled by top-level state SCO.

This is a must be rule and the ‘High-Priority’ communication structure is adopted.
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Rule-New 04 Neither stimuli, nor messages should be modeled.
Since stimuli cannot be modeled in ArgoUML currently, we only check messages.
The *Medium-Priority’ communication structure for must have rules is used here. This 1s

expressed in the following:

Cret interaction;

(el message;

If limessage==nuli)

Gel collabaration;
Show error;

Exit;

Currently, the biggest deficiency in ArgoUML is that the sequence diagrams do not
work at all: “Sequence diagrams missing completely from ArgoUMLO0.14" (Tigris, 2003).
In addition, in UML “collaboration diagrams show the full context of an interaction™
(OMG, 2003, p3-122). Thus, for Rules 33-36 and Corollaries 30-39, we only check
collaboration diagrams.

Another thing we have to mention is the retrieving of collaboration diagrams does not
work properly. When a diagram file is opened, collaboration diagrams in it will not be
shown. However, all information, such as interactions and senders are correctly saved. We
can go to the text field to read them. This deficiency is merely inconvenience when we see

the demo or test our program.
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Rule 33 For every class of objects between which message passing is declared, there exists
an association class or the twe classes are parts of the same aggregate.
This is a must have rule and we use the *Medium-Prnionty’ communication structure

here.

Rule 34 Every object must be the receiver and sender of some message.
This is a must have rule and we the ‘Medium-Priority’ communication structure is

used.

Rule 35 A constraint relates attributes of a single class or attributes of association classes
the class participates in.

Constraints in ArgoUML do not follow the notation in UML and do not work
properly. At least, one needs to have a field to input constrains. However, ArgoUML uses
an very different way doing that and it"s not working Thus, when there is an attribute, our
implementation gels the owner class and association classes. Then, it shows this rule to
remind modelers following this rule. If the user does not want to keep this reminder, it can
be dismissed and will not appear in the reminder list again. The ‘Low-Priority’

communication structure is adopted here. This is expressed in the following:

{ret attribiute;
Get class:

Cret assoctationClasses;
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Show reminder:
Put 1o reminderList;

Exit;

Rule 36 For every attribute there exists a constraint which relates this attribute to some
other attribute.

When there 1s an attribute, the program only shows this rule to remind modelers to
follow 1t. If the user does not want to keep this reminder, it can be dismissed and will not
appear in the reminder list again. Because ArgoUML does not follow the notation of
constraints in UML, the ‘Low-Prionity’ communication structure is used here. This 1s

expressed in the following:

Get attribute;

Show reminder;

Put to reminderList;
Exit,

Corollary 31 A UML-state transition associated with an action must modify an association
class attribute's value.

[deally, this corollary can be implemented by adding a mechanism to UML. CASE
tools will also enable the mechanism based on UML specification. In the current stage, we
implement an altemative way to enforce this corollary in ArgoUML. The program first
gets state transitions. Then it checks whether there are actions for a transition. If an action

1s not null, it checks what model element the state machine represents. Because of
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Corollary 25, the program only reminds user to follow this corollary when the model
element is a class or method. However, transitions of methods cannot be retrieved using
the above method. We have to get a method and its state machine, then get transitions and
actions. When such an action is found, the program shows a reminder to users. If the user
does not want to keep this reminder, it can be dismissed and will not appear in the
reminder list again. The ‘Low-Prionity’ communication structure 1s adopted here. This is

expressed in the following:

Get transition;
Get action;
If H{action==null)
Get stateMachine;
Get owner;
If owner==class
Show reminder;
Put to reminderlList;
Get method:
Get stateMachine;
Get transition;
Ger action;
If lfaction==null)
Show reminder;
Put to reminderList;
Exit;

Corollary 32 For every interaction between UML-objects, there must exist a
corresponding UML-state transition in both interacting UML-objects.
This corollary can be implemented by adding a mechanism to UML. CASE tools will

also enable the mechanism based on UML specification. Based on the same reasoning as
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i Corollary 31, we implement an alternative way to enforce this corollary in ArgoUML.
The program gets an interaction and its participating objects. Then it goes to class
diagrams looking for these two classes. Next, it gets the top-level state chart (SCO) of both
classes and reminds users to follow this corollary. If the user does not want to keep this
reminder, it can be dismissed and will not appear in reminder list again. The
‘Low-Priority’ communication structure is adopted here. This i1s expressed in the

following:

Get collaboration;

Get interactions;

Get sender;

Get senderBaseClass;
Get sheStateMachine;
Get receiverBaseClass;
Get rbeStateMachine;
Show reminder;

Put to reminderList;
Exit:

Corollary 33 A state transition associated with an event must modify an association class
attribute's value.

The 1deal solution for this corollary is also to add a mechanism to UML specification.
In current stage, we implement an alternative way to enforce it in ArgoUML. The program
first gets state transitions. Then it checks whether there is trigger events for a transition. If
the event is not null, it checks what model element the state machine represents. Because

of Corollary 25, the program only reminds users to follow this corollary when the model
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element is a class or method. However, transitions of methods cannot be retrieved in the
above manner. We have to get a method and its state machine, then get transitions and
events. When such an event 1s found, the program shows reminder to users. If the user
does not want to keep this reminder, it can be dismissed and will not appear in the
reminder list again. The ‘Low-Priority’ communication structure is adopted here. This is

expressed in the following:

Get transition,
Get event;
If !(event==null)
Get stateMachine;
Get owner;
If owner==class
Show reminder;
Put to reminderList;
Get method,;
Get stateMachine;
Get transition;
Get event,
If !(event==null)
Show reminder;
Put to reminderList;

Exit;

Corollary 34 A signal event may only be associated with a transition in a top-level state
chart and the initial transition of a method implementing this.

In Corollary 34, we discussed that some transitions in state machines other than class
state machines, specifically in ArgoUML: method state machines, could not be retrieved

by the ideal solution. Thus, for these transitions, the program gets a method and its state
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machine, then gets transitions and events. If the event is a signal event, it shows a violation

warning. The ‘High-Priority’ communication structure is adopted here. This is expressed

in the following:

Get transition;
Gt event;
If evenr==signalEvent
Ciet stateMachine;
Get owner;
If owner==clusy
Fet sourceSiate;
Get targetState;
If '{sourceState.is Tap)|| !/ (targeiState. is Top)
Show error;
Gret method:
et stateMachine;
Cred iramstiton;
Gt event;
If evenr==signalEveni
Show error;
Exir;

Corollary 35 A call event may only be associated with a transition in a top-level state chart

or the initial transition of a method implementing this.

Based on the same reasoning as in Corollary 34, for those corresponding transitions,

the program gets a method and its state machine, then it gets transitions and events. If the

event is a call event, it shows a violation wamning. The ‘High-Priority’ communication

structure is adopted here. This is expressed in the following:

(ret transition;
Get event;
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If event==callEvent
Get stateMachine,
Get owner;
If owner==class
Get sourceState;
Get targetState;
If !(sourceState.isTop)||! (targetState.isTop)
Show error;
Get method;
Get stateMachine;
Gel transition;
Get event;
If event==callEvent
Show error;

Exit;

Corollary 38 The final state transitions of any method implementing an operation that may
be invoked through a call action must cause a return action.

Currently, the action expression cannot be retrieved in ArgoUML. We specify it
through an action name. That is, an action name field is filled by an action expression. The

‘Medium-Priority’ communication structure for must have rules is used here.

Corollary 39 For the state machine of a method to contain a state transition whose effect is
a return action, there must exist a corresponding state transition in a state machine of
some other object whose effect is a corresponding call action.

Since the action expression does not work in ArgoUML, we cannot retrieve the acting

method. Thus, when the program finds a final transition with a return action representing a
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method, it shows a reminder. The ‘Low-Priority’ communication structure is used here.

This is expressed in the following:

et class;
Get method;
Get stateMachine;
Get target;
If target==finalState
(er action;
If action==returnAction
Remind user;
Put into reminderList:



Chapter 8 Conclusion

UML has become very popular in software engineering and is used for at least two
purposes: OO software design and conceptual modeling of a domain for which a system is
o be required (communication and documentation). However, UML's origins in software
engineering may limit its appropriateness for conceptual modeling. Thus, some research
has attempted to develop rules that make UML better suited for domain modeling.
Notably, Evermann and Wand's research specifically interests us. They point out that
conceptual modeling involves representing aspects of the real world and that ontology is a
branch of philosophy dealing with the nature and structure of the real world, making it
appropriate as a basis for developing rules about what a conceptual modeling language
should do. From these assumptions, they developed a set of ontological rules that place
constraints on the construction of UML diagrams to ensure that they properly represent
underlying ontological assumptions. On the other hand, there are no existing UML-based
CASE tools that enforce such rules. This research has proposed implementation
approaches for such functionality in UML-based CASE tools. In addition, we have
implemented them in a specific tool, namely ArgoUML. The main contribution of this

regearch 1& having developed software hagsed on Evermann and Wand's ontological rules to
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guide the modeling process. We have demonstrated the feasibility of implementing these
rules. Specifically, the system has built-in ‘intelligence’ to help people using UML to do
conceptual modeling. The software has the ability to realize two functions: first, to
examine UML diagrams and detect violations, and second, to explain the nature of
violations. There are in total 36 rules and 39 corollaries and the following result 1s
obtained.

We have given the general implementation approach to non-specific CASE tools.
Approaches of 35 rules and 26 corollaries are given. Within them, 3 rules and 11
corollaries are realized by enabling, disabling or modifying mechanisms (features) in
UML specification; 32 rules and 15 corollaries are realized by the critiquing expert
systems. We have given all algorithms to them. We did not give approaches for 1 rule and
13 corollaries. This 1s because 1 rule and 8 corollaries are covered by others; 2 corollaries
are actually solution of others; 2 corollaries are dropped by our research; | corollary is

always true and thus redundant.
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Figure 8.1 Implementation result for general CASE tools

Of the rules and corollaries that can be feasibly implemented, our analysis shows that

these can be divided into four categories, depending on their importance and the ease with

which they can be detected. The categories are listed in Table 8.1:

Communication

No. Rule Type Explain
“* Structure P
Must Be; The user is prevented from proceeding
1 Simple to CRITICAL in the construction of a diagram until the
correct violation is corrected.
The user 1s wamed once of the violation,
Ha e and the violation is added to a reminder
2 Difficult to HIGH-Priority ) (bl e
list with high priority.
correct
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There is no popup indicating the
violation. Instead, the potential violation

3 Dt
MiugtHave | MEDIUM-ProntY | o added to o reminder fist-with mediom
priority.
RRelates to a There is popup indicating the reminder.
necn-exisiing — Then a low prionty reminder is added to
4 UML LW riaeity the reminder list. The reminder can be
ccomponent discarded by users.

Table 8.1 Categories of feasible (to implement) rules
Of thee rules and corollaries that are no need to be implemented, our analysis shows

that these «can be also divided into four categonies. The categories are listed in Table 8.2:

No. Rule Types Explain

1 Covisiad These rules are covered or logically implied when others are

followed.
. These rules propose a kind of solution to violations of others.

2 Solution

3 Dropped These rules appear to be inconsistent with Bunge’s ontology or
UML.

4 Redundant These rules are impossihle 1o vinlare

Table 8.2 Categories of no need (to implement) rules
This recsearch also includes a Proof-of-Concept implementation. We have implemented
Evermanm and Wand’s ontological rules in the specific UML-base CASE tool: ArgoUML.
32 rules aand 20 corollaries are implemented. Within them, 27 rules and 12 corollaries are
fully impolemented (Critiques for these rules and corollaries can accurately detect
violationss and represent to users. When the user solves the problem and the diagram no
longer vieclates the rule / corollary, the system will automatically dismiss the violation

warning.ys; 5 rules and 8 corollaries are implemented by giving reminders. We did not
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implement 4 rules and 19 corollaries. This i1s because 1 rule and 4 corollaries relate 1
newly proposed mechanism, which is not supported by current UML; 10 corollaries are
covered by others; 2 corollaries are actually solution of others; 2 corollaries are dropped by
our research; 1 rule and 1 corollary are always true and thus redundant; the required

functions for 2 rules do not work in ArgoUML.

| Total
(Rules / Corollaries)
l 36 /39
‘ Implemented ' Not 1mplemented |
32720 4/19 |
| No E ArgoUML 1 ! i
Fully Reminder proposed j does not Covered | Solution | Dropped Redundas
implemented | Mechanis | support | I
m in UML ‘ , |
271712 5/8 | 1/4 2 O BRI G g | 02 1/1
| ! |

Figure 8.2 Implementation result for ArgoUML
To support the analysis and implementation of the ontological rules, we have also used
several other approaches: inquiry for required information, use of a dictionary, and
alternatives to proposed changes of UML.

As additional contribution of this research, we explained and evaluated Evermann and
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Wand's ontological rules. As a result, we dropped 2 corollaries and proposed 4 new rules

and also implemented them.
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Appendix A

Implementation Manual

In order to run the ArgoUML including our implemenation of Evermann and Wand’s
rules, you have to follow two steps. Also, you can use the ‘demo” step to experience and
test the implementation. The configuration is for Microsoft Windows XP and
Windows2000 operation systems. Because our programs (Rule 1 and Corollary 1) need
access to several data files, which must be able to be found in the comect path, those
programs have been configed for paths on Windows. However, we still cover Unix in case
users have no access to WinXP or Win2000. Note that Rule 1 and Corollary 1 will not

work properly on Unix.

1. Setup
1.1 Copy files to your computer
Please copy the *LS’ directory including all files and folders from our compact disk to

the root directory to your hard drive: “C:A\",

1.2 Set JAVA HOME for ArgoUML running environment

By setting JAVA_HOME to different values you can at different times compile and



run ArgolUML with different versions of JDK and java.

In windows, set JAVA_HOME=\where\you'have\installed\jdk.

In Unix, set JAVA_HOME=/where/you'have/installed/jdk, export JAVA_HOME. This
is for sh-style shells like sh, ksh, zsh and bash. If you use csh-style shells like e¢sh and tesh

you will instead have to write setenv JAVA HOME /where/you/have/installed/jdk.

2. Compile and run
For convinence, there are two scripts (one for Windows and one for Unix) that are

called build.bat and build.sh respectively.

2.1 Compiling and running for Windows

1. Change the current directory to the directory of ‘src_new":
chdir C:\ls\working'\src_new

2.Clear the already existing class files using:
build clean

3.Compile and run ArgoUML using:
build run

If you do this from Cygwin you work just like for Unix.

2.2 Compiling and running for Unix
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1. Change the current directory to the directory of ‘src_new’:
cd /your/copy/ofiworking/src_new

2. Clear the already existing class files using:
/build.sh clean

3. Compile and run ArgoUML using

Jbuild.sh run

Since there are 1322 files to compile, it may take a little while. For example, a
machine with a CPU of Celeron-D 2.8G spends | minute 31 seconds on compling and

starting this version of ArgoUML.

Please refer to ArgoUML User Manual (Tigris, 2004) for operation guide.

3. Demo

You can use this step to experience and test our implementation. You just simply click
on the “Open Project” in the “File” menu. Then choose the corresponding *.zargo® files.
For example, ‘R33-W.zargo’ is the example of the *Wrong’ case of Rule 33 and
*R33-R.zargo’ is the example of the ‘Right’ case of Rule 33. Note that, to see the demo,
the corresponding rule / corollary critic must be activated in the “Browse Critics™ of the

“Critique” menu. For a non-confusing demo for each rule / corollary, we suggest users to
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ONLY activate the corresponding critic for that rule / corollary.



Appendix B

Implementation Source Code and Demo Data

We have included all source code of the implementation in a compact disk. There is a
“*java’ file for each implemented rule or corollary. The file names correspond to rule /
corollary numbers. For example, ‘CrRO1.java’ is the source code for implementation of
Rule 1; ‘CrCOl1.java’ is the source code for implementation of Corollary 1. All the source
code files are located in the following folder:
“CD-Drive:\Is\working'src_new\org\argouml\uml\cognitive'critics”. The CD also includes
demo data for our implementation. There is one or two ‘*.zargo’ file(s) for each
implemented rule or corollary. The file names also correspond to rule / corollary numbers.
For example, ‘R33-W.zargo’ is the example of the wrong case of Rule 33, “‘R33-R.zargo’
is the example of the right case of Rule 33. For the simple to correct violation rules /
corollaries, we only give one demo file of the wrong case (some demo files include both
right and wrong cases) for each of them. For example, ‘RO1.zargo’ i1s both the right and
wrong case of Rule 1.

Please refer the attached compact disk for those files.



Appendix C

List of Evermann’s Ontological Rules and Corollaries

Rule 1 Only substantial entities in the world are modelled as objects.

Rule 2 Ontological properties of things must be modeled as UML-attributes.

Corollary 1 Attributes in a UML-description of the real world cannot refer to substantial
entities.

Rule 3 Sets of mutual properties must be represented as attnibutes of association classes.
Corollary 2 An association class cannot represent substantial entities or composites of
substantial entities.

Corollary 3 If an association class of an n-ary association is intended to represent
substantial things, the association should instead be modelled as one with anty (n+1).
Corollary 4 An association class representing a composite must instead be modelled as a
composite with attributes representing emergent intrinsic properties.

Corollary 5 An association class cannot possess methods or operations.

Corollary 6 An association class cannot be associated with a state machine,

Corollary 7 An association class must possess at least one atiribute.

Corollary 8 An association class must not be associated with another class.

Corollary 9 An association class must not participate in generalization relationships.
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Rule 4 Tf mutual properties can change quantitatively, methods and operations that change
the values of attributes of the association class must be modelled for one or more of the
classes participating in the association, objects of which can effect the change, not for the
assoctations class.

Rule 5 An association class represents a set of mutual properties arising out of the same
interaction.

Rule 6 A composition relation must not be modelled.

Rule 7 Every UML-aggregate must possess at least one attribute which is not an attribute
of its parts or participate in an association.

Rule 8 All UML-classes must possess at least one attribute or participate in an association.
Rule 9 Object ID's must not be modelled as attributes.

Rule 10 The set of attribute values (representing mutual and intrinsic properties) must
uniquely identify an object.

Rule 11 Every attribute has a value.

Corollary 10 Attribute multiplicities greater than one imply that the order of the different
individual attribute value components is semantically irrelevant.

Rule 12 Classes of objects that exhibit additional behaviour, additional attributes or
additional association classes with respect to other objects of the same class, must be
modelled as specialized sub-classes.

Corollary 11 An object acquiring additional behaviour or properties must be destroyed as
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instance of the general class and created as instance of the specialized class that is
modelled with the relevant operations or association classes.

Corollary 12 Re-classification occurs only within a generalization / specialization
hierarchy.

Rule 13 Every UML-aggregate object must consist of at least two parts.

Rule 14 An instance of a class that by virtue of additional aggregation relationships
acquires emergent properties or emergent behaviour must be modeled as an instance of a
specialized class which declares the corresponding attributes and operations.

Rule 15 Object creation occurs when an entity acquires a property so that it becomes a
member of a different class.

Corollary 13 Object destruction occurs when an entity loses a property that is necessary for
membership in a particular class.

Rule 16 Atinbutes with class scope should instead be modelled as attributes of an
aggregate representing the objects of the class.

Rule 17 If a class that is specialized is declared as abstract, the specialization must be
declared to be 'complete’.

Rule 18 A class that is not specialized cannot be declared abstract.

Rule 19 A specialized class must define more attributes, more operations or participate in
more associations than the general class.

Rule 20 Every ordinary association must be an association class.



Rule 21 A UML-state represents a specific assignment of values to the attributes and
attribute of association classes of the objects for which the state i1s defined.

Corollary 14 A UML-transition must change the value of at least one attribute used to
define the state space.

Rule 22 For every level of refinement of a state C, there must be an additional set of
attributes in the class description or in participating association classes that change as the
object transitions among the sub-states.

Corollary 15 For all immediate substates of a super-state, the values assigned to attributes
describing the super-state are invariant and are equal to those defining the super-state.
Corollary 16 Concurrent sub-states require mutually disjunct sets of additional attributes in
the class description or in participating association classes.

Rule 23 Guard conditions on transitions from the same state to nonconcurrent sub-states
must be mutually disjunct.

Rule 24 Action states are super-states of a set of sub-states. The object transitions among
these while in the action state. State charts must reflect this fact.

Corollary 17 States must not be associated with any actions. Sub-states corresponding to
different models should be used instead.

Corollary 18 All states in an activity diagram must be states of the same object.

Corollary 19 If the partitions of an activity diagram represent different objects, they must

be part of a composite which is shown in the class diagram.
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Rule 25 The quantitative object behaviour (for each model) is entirely describable by
top-level state chart (SC0)

Rule 26 All UML-transitions in SC0 must correspond to an operation of the object which
SCO is associated with,

Corollary 20 Every object must have at least one operation.

Corollary 21 States in SCO are stable.

Corollary 22 All UML-transitions in SCO must be associated with a UML event.

Rule 27 An object must exhibit additional operations expressing qualitative changes, if a
super- or sub-class is defined and instances can undergo changes of class to the super- or
sub-class,

Rule 28 Methods may be described by state charts other than top-level state charts.
Corollary 23 A state chart describing a method must begin and end with those states in
SCO which the operation that the method implements is a realization of.

Corollary 24 State transitions out of the first state of a method realizing an operation must
be associated with the same event that is associated with the transition in SCO which
represents that operation.

Corollary 25 A state chart cither expresses the external behaviour of an object (SCO), a
method, a signal reception or is a composite state contained in another state machine.

Rule 29 An operation is not directly specified by state machines. Instead, the methods that

implement an operation are specified by state machines.
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Corollary 26 A state machine that specifies the behaviour of a class or a method is not
contained in other state machines.

Corollary 27 The method corresponding to a state chart must modify the attribute values of
the object corresponding to the values defined for the initial and final state of the method.
Rule 30 An operation must be associated with the declaration of signal reception.

Rule 31 The event associated with an operation must be identical to the event associated
with the signal associated with the reception,

Corollary 28 The state machines associated with a reception and with a method specifying
the implementation of an operation which is in tum associated with that reception, must
possess the same initial and final states.

Rule 32 Acquisition (loss) of independent properties leads to expansion (contraction) of
the things top-level state space SC0 by an orthogonal region.

Corollary 29 Every object must be capable of at least one state transition or be able to
undergo change of class to a super- or sub-class.

Rule 33 For every class of objects between which message passing is declared, there exists
an association class.

Rule 34 Every object must be the receiver and sender of some message.

Rule 35 For every attribute there exists a constraint which relates this attribute to some
other attribute.

Corollary 30 An association class cannot be sender or receiver of a message.
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Rule 36 A constraint relates attributes of a single class or attnbutes of association classg
the class participates in.

Corollary 31 A UML-state transition associated with an action must modify an associatin
class attribute’s value.

Corollary 32 For every interaction between UML-objects, there must exisl a
corresponding UML-state transition in both interacting UML-objects.

Corollary 33 A state transition associated with an event must modify an association clas
attribute's value.

Corollary 34 A signal event may only be associated with a transition in a top-level stig
chart and the initial transition of a method implementing this.

Corollary 35 A call event may only be associated with a transition in a top-level state chi
or the initial transition of a method implementing this,

Corollary 36 Synchronous communication of objects implies transition to a state which
cannot be left except through a state transition associated with the return signal.
Corollary 37 Asynchronous communication of objects with expected response implies te
existence of at least one state transition caused by the object acted upon, signifying the
return interaction after the state transition signifying the original communication.
Corollary 38 The final state transitions of any method implementing an operation that may
be invoked through a call action must cause a retum action.

Corollary 39 For the state machine of a method to contain a state transition whose effects
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a return action, there musl exist a corresponding state transition in a state machine of some

other object whose effect is a corresponding call action.












