

ENFORCING ONTOLOGICAL RULES IN

CONCEPTUAL MODELING USING UML:

PRINCIPLES AND IMPLEMENTATION

by

© Shan Lu

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of
(Master of Science)

Department of Computer Science
Memorial University of Newfoundland

August 2005

St.John's Newfoundland

Abstract

UML is very popular in software engineering and is used for at least two purposes:

00 software design and conceptual modeling. However, UML's origins in software

engineering may limit its appropriateness for conceptual modeling. Evermann and Wand

(2003, 2002, 2001) point out that conceptual modeling involves representing the real

world, and that ontology is the branch of philosophy dealing with that. They developed a

set of ontological rules placing constraints on the construction of UML diagrams, to

ensure that they properly represent underlying ontological assumptions. However, no

existing UML-based CASE tools enforce such rules. The purpose of this research is to

implement such functionality in an UML-based CASE tool to guide the modeling

process. Also, this research develops better understandings of the rules by considering

how they can be implemented. Our implementation has built-in 'intelligence' to detect and

explain the nature of violations.

11

Acknowledgments

This study is the result of the wise counsel and the generous contributions of a

number ofpersons.

To Dr. Jeffrey Parsons, my supervisor, my sincere gratitude for his advice and

assistance. His criticisms, suggestions and confidence have guided my efforts in this

study from their formative stages to the concluding statements. Also my thanks to him for

helping to clarify problems of the on-going study.

I would like also to express my appreciation and gratitude to faculties and staffs of

the Department of Computer Science for their support and cooperation during the courses

and research of the program.

Finally, to my parents, Jialin Lu and Mengling Li, my wife, Xuting Chen heartfelt

gratitude, for their support and encouragement, which is vitally necessary to my study.

111

Table of Contents

Abstract .ii

Acknowledgments .iii

List of Tables vi

. fF' ..LIst 0 Igures VII

List of Appendices ix

Chapter 1 Introduction , 1
1.1 Background l

1.1.1 Popularity ofUML 1
1.1.2 Purpose of UML 1

1.1.2.1 Object-Oriented software design 2
1.1.2.2 Conceptual modeling 2

1.2 Problems 3
1.2.1 Limitations ofUML 3
1.2.2 Evermann and Wand's research on those limitations .4
1.2.3 Existing UML-based CASE tools do not enforce such rules 5

1.3 Research Purporse 5
1.4 Structure 6

Chapter 2 Related Research 8
2.1 UML 8
2.2 Research on using UML for conceptual modeling 11
2.3 Evermann and Wand's research 13

2.3.1 Conceptual modeling represents the real world 13
2.3.2 Ontology as the appropriate basis 14
2.3.3 Evermann and Wand's ontological rules 15

2.4 Existing UML-based CASE tools 16
2.5 Expert system for implementing Evermann's rules 18

Chapter 3 Research Approach 21
3.1 Choose ofArgoUML 21

3.1.1 Critic system in ArgoUML .21

IV

3.1.2 Open source 22
3.2 Add on ArgoUML 23
3.3 Discussion order 23

Chapter 4 Static Rules 25

Chapter 5 Change Rules 82

Chapter 6 Interaction Rules 119

Chapter 7 Implementation in ArgoUML 141
7.1 How ArgoUML criticizes 141

7.1.1 Criticism Control Mechanism 142
7.1.2 Communication Mechanisms 143
7.1.3 Inference Engine 147
7.1.4 Knowledge Base 148

7.2 Problems in ArgoUML 150
7.3 Four Communication Mechanisms 152
7.4 Alternative solution 155

Chapter 8 Conclusion 193

v

List of Tables

Table 2.1 UML diagrams and their functions 9

Table 7.1 Incompatibilities of Current ArgoUML 151

Table 8.1 Categories of feasible (to implement) rules 196

Table 8.2 Categories of no need (to implement) rules 196

VI

List of Figures

Figure 4.1 Incorrect 2-ary association class .37

Figure 4.2 Correct 3-ary association 37

Figure 4.3 Incorrect model for Corollary 4 39

Figure 4.4 Correct model for Corollary 4 39

Figure 4.5 Incorrect model for Rule 4 .44

Figure 4.6 Correct model for Rule 4 .44

Figure 4.7 Incorrect model for Rule 7 50

Figure 4.8 A correct model for Rule 7 51

Figure 4.9 Another correct model for Rule 7 51

Figure 4.10 Multiplicity of association ends 61

Figure 4.11 Incorrect model ofRule 12 62

Figure 4.12 Correct model of Rule 12 63

Figure 4.13 Incorrect model of Rule 14 69

Figure 4.14 Correct model of Rule 14 70

Figure 5.1 State chart before class is specialized 116

Figure 5.2 State chart after class is specialized 116

Figure 7.1 Criticism Control Center. 143

Vll

Figure 7.2 Show Violation of Rule 18 145

Figure 7.3 Explain Violation of Rule 18 146

Figure 7.4 Violation in Reminder List. 147

Figure 7.5 Knowledge Base List. 149

Figure 7.6 Violation ofRule 1 156

Figure 8.1 Implementation result for general CASE tools 195

Figure 8.2 Implementation result for ArgoUML 197

VIn

List of Appendices

Appendix A Implementation Manual. " 203

Appendix B Implementation Source Code and Demo Data 207

Appendix C List ofEvermann's Ontological Rules and Corollaries 208

IX

Chapter 1 Introduction

1.1 Background

1.1.1 Popularity of UML

As time goes on, software systems are becoming increasingly complex. Thus, modem

software development is increasingly challenging. In addition, a high proportion of

projects fail. Under these circumstances, a visual language for software engineering, the

Unified Modeling Language (UML) has emerged, to help people develop complex

software. Since 1997, when UML was adopted as the standard for software engineering by

Object Management Group (OMG), many organizations have begun using UML. Today,

there are many books as well as papers about UML published every year; there are many

universities introducing UML in their software engineering courses; there are many

software development companies hiring employees with a UML background. UML is very

popular, and has de facto become a standard for software engineering. The emergence of

UML is very important for future software engineering.

1.1.2 Purposes of UML

What is UML? The formal description ofUML by Object Management Group (OMG)

IS:

The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,

constructing and documenting the artifacts of software systems, as well as for business modeling

and other non-software systems. The UML offers a standard way to write a system's blueprints,

including conceptual things such as business processes and system functions as well as concrete

things such as programming language statements, database schemas and reusable software

components (OMG, 2003, p.25, p.45).

UML is used for at least two purposes:

1.1.2.1 Object-Oriented software design

The original purpose of UML is for Object-Oriented (00) software design. When

people develop software systems, UML is used to describe system requirements, control

flow, data flow and so on. UML has several types of diagrams to describe software

systems, including Usecase (diagram) to describe system from the user perspective; class

diagram to describe static classes; sequence diagram and collaboration diagram to describe

the process of information passing among obj ects. The diagrams and their functions will

be listed in Section 2.1.

1.1.2.2 Conceptual modeling

Another purpose of UML is conceptual modeling of a domain for which a system is to

be required. This is for the analysis step in software engineering. UML diagrams are used

to describe business modeling, or even non-software systems. UML is utilized as a tool for

communicating between users and developers in understanding and eliciting requirements,

and also for documentation purposes.

2

The Unified Modeling Language was formed by integrating several diagramming techniques for the

purpose of software specification, design, construction and maintenance. It would be advantageous

to use the same modeling method throughout the development process of an information system,

namely, to extend the use ofUML to conceptual modeling (Evermann &Wand, 2001, p.l).

1.2. Problems

1.2.1 Limitations of UML

UML works relatively well for the first purpose: 00 software design. However, it may

lead problems when used for the second purpose: Conceptual Modeling, because this was

not the original purpose ofUML.

The suitability of UML for modeling concrete problem domains in the early

development phases has been called into question. The applicability of object-oriented

modeling in general in the early development phases is also controversial (Opdahl and

Henderson-Sellers, 2002, p.l).

The following example demonstrates how problems may occur. If a group develops a

POS (Point of Sale) system there will be an analyst doing the system analysis. He may

model the 'Order' as a class and however does not include any attribute of the class. When

other programmers implement the project in the implementation stage, they will set up the

database table, according to the classes created in the system analysis and design stages.

Because there is no attribute in the 'Order' class, they will not setup a table for the 'Order.'

Finally, the system will have a serious problem, that orders cannot be stored in the

database.

3

Now, let us analyze the reason why these problems may occur. UML is based on

Object-Oriented (00) technology and the first emergence out of00 technology is the 00

programming language. Since UML can automatically generate code, we can see how well

UML concepts are mapped to the 00 programming language. For example, in Java

language, there are concepts of 'class' and 'method'. These are also included in the UML.

If looking at the whole system development as a sequence from top to bottom, we may say

that UML is developed from down to up. That is, UML is developed from the perspective

of system implementation. However, the details of design and implementation are not

significant in the system analysis stage. Now, people are using UML for conceptual

modeling in the early analysis stage of system development. In this situation, UML's

origins in software engineering may limit its appropriateness for conceptual modeling.

1.2.2 Everman and Wand's research on those limitations

Because of these limitations of UML, Evermann and Wand's research is particularly

salient. Their research has analyzed and examined the suitability and highlighted the

weakness ofUML for domain modeling. In addition, they developed constraints (rules) to

make UML more appropriate for domain modeling.

This research goes beyond pointing out the ontological defects and instead suggests rules and

guidelines for the modeler and analyst which alleviate these problems and enable the use of UML

for conceptual modeling of real-world domains. (Evermann&Wand, 2003, p215)

Evermann and Wand's research points out that conceptual modeling represents the real

4

world. When people use UML for conceptual modeling purposes, UML is used as a tool,

which describes and helps people to understand and model the real world. A tool to fulfill

this job should be based on the perspective of the real world. Ontology is the branch of

philosophy dealing with the nature and structure of the real world and thus is an

appropriate theory for their research. Evennann and Wand have developed a set of

ontological rules that place constraints on the construction ofUML diagrams to ensure that

they properly represent underlYing ontological assumptions.

1.2.3 Existing UML-based CASE tools do not enforce such rules

Although some research has tried to help make UML more suitable for conceptual

modeling, notably Evennann and Wand's ontological rules, there is no existing

UML-based Computer Aided System Engineering (CASE) tools that reflect these rules.

(We will review the current CASE tools in Section 2.4.)

1.3 Research Purpose

The purpose of this research is to implement Evennann and Wand's ontological rules

in an UML-based CASE tool. The software will check UML diagrams and indicate if

those diagrams violate one or several of these rules. The input data are diagrams drawn by

a UML CASE (Computer Aided Software Engineering) tool and the output would show

which rules are violated and explain how the diagram violates the rule. The system will

5

give examples for each rule to help users comprehend the rule. Thus, the research question

IS:

Are Evermann's ontological rules practical? How can we implement these rules into

CASE tools?

As an additional contribution, we will also evaluate Evermann's rules according to

ontology.

1.4 Structure

The remainder of this thesis is structured as follows. In the next chapter, we review

the related concepts and research. This is done by reviewing UML in Section 2.1, research

on using UML for conceptual modeling in Section 2.2, and Evermann and Wand's research

in Section 2.3. In Section 2.3, we also discuss ontology and Evermann's rules. Next, we

review existing UML-based CASE tools in Section 2.4. Since our implementation is also

a critiquing expert system, the last section of Chapter 2 analyzes ArgoUML from

perspective of a critiquing expert system. Chapter 3 introduces our research approach. The

choosing of the CASE tool (ArgoUML) is explained in Section 3.1. Then we explain the

principles we followed during our implementation. Section 3.3 explains the discussion

order of Evermann's rules and corollaries in our thesis. Chapter 4 begins to introduce the

main part of the thesis, the specific rules and corollaries are covered. Evermann developed

the rules and corollaries through three stages: static, change and interaction. Thus the rules

6

and corollaries can be classified into three categories. Since some latter rules / corollaries

are based on the previous ones, also for convenient and consistency reasons, our

discussion follows the order of Evermann's rules / corollaries. That is, rules and corollaries

related to static, change and interaction are discussed in Chapter 4, Chapter 5, and Chapter

6 respectively. For each rule and corollary, we first explain its motivation and meaning.

Then our implementation approach is discussed. For those which are difficult to

comprehend we also give examples. After that, we will talk about the implementation in

ArgoUML in Chapter 7. In that chapter, we first introduce how the critics work in

ArgoUML. Then, we explain problems in current ArgoUML. In Section 7.3, the

communication structure between the system and users is described. The main section

(Section 7.4) of that chapter is the alternative implementation approaches for some rules

and corollaries, which cannot be actually implemented in ArgoUML using solutions we

gave in Chapters 4, 5 and 6. Finally, Chapter 8 concludes the thesis including our

implementation results. In Appendix A, we introduce how to setup, run and test our

implementation. Appendix B includes all of our implementation source codes and test

data, which is burned on a compact disk. In Appendix C, we list all Evermann's

ontological rules and corollaries.

7

Chapter 2 Related research

In this chapter, we review other research, concepts, and technologies related to our

research.

2.1 UML

UML is the abbreviation of the Unified Modeling Language. It is integrated and

developed from three technologies for system modeling. They are OOAD

(Object-Oriented Analysis and Design) by Booch (1994), OMT (Object Modeling

Technique) by Rumbaugh (1991) and OOSE (Object-Orient Software Engineering) by

Jacobson (1992). UML uses diagrams to model and thus is a graphical language. Table 2-1

lists all UML diagrams and their functions.
- --

Diagram Function

Show a collection of declarative (static) model elements, such as
Class diagram

classes, types, and their contents and relationships.

Encompasses objects and their relationships at a point in time. An
Object

object diagram may be considered a special case of a class diagram

I

diagram
I or a collaboration diagram.

8

Use case
Show the relationships among actors and use cases within a system.

diagram

Show object interactions arranged in time sequence. In particular, it

shows the objects participating in the interaction and the sequence of

Sequence

diagram

Collaboration

I diagram

I

Activity graph

I

Component

I
diagram

I

Deployment

diagram

I

messages exchanged. Unlike a collaboration diagram, a sequence

diagram includes time sequences but does not include object

relationships. A sequence diagram can exist in a generic form

(describes all possible scenarios) and in an instance form (describes

one actual scenario). Sequence diagrams and collaboration diagrams

Express similar information, but show it in different ways.

Show interactions organized around the structure of a model, using

either classifiers and associations or instances and links. Unlike a I

sequence diagram, a collaboration diagram shows the relationships

among the instances. Sequence diagrams and collaboration diagrams I

express similar information, but show it in different ways.

Show a state machine.

A special case of a state machine that is used to model processes

involving one or more classifiers.

Show the organizations and dependencies among components.

Show the configuration of run-time processing nodes and the

components, processes, and objects that live on them. Components

represent run-time manifestations of code units.

Table 2.1 UML diagrams and their functions (OMG, 2003)

Since our research is based on Evermann and Wand's ontological rules, we only focus

9

on diagrams related to those rules. Our research covers the following three types of

diagrams in UML.

• Diagrams related to static structure

This category of diagrams is used to describe static structure of things. It

includes class diagram, object diagram and components of class, attribute,

operation object, association, binary association, association class, N-ary

association, composition, link, generalization, and dependency.

• Diagrams related to change

This category of diagrams is used to describe change within things. It includes

statechart diagram, activity diagram and components of state, composite states,

events, simple transitions, transitions to and from concurrent states, transitions

to and from composite states, submachine states and synch states, action state,

subactivity state, call states, swimlanes, and synch states.

• Diagrams related to interaction

This category of diagrams is used to describe interaction between things. It

includes sequence diagram, collaboration diagram and components of

interactions, messages, and stimulus.

We assume readers of this thesis have basic knowledge of UML. Thus, we do not

explain UML concepts in our thesis. Readers can reference UML 1.5 Specification (OMG,

2003) for detailed descriptions and definitions ofUML components covered in this thesis.

10

2.2 Research on using UML for conceptual modeling

Since UML is also used for conceptual modeling of a domain for which a system is to

be required, some research has analyzed and examined the suitability and pointed out the

weakness ofUML for domain modeling.

One important study is Opdahl and Henderson-Sellers's Ontological Evaluation of the

UML Using the Bunge-Wand-Weber Model (Opdahl and Henderson-Sellers, 2002). They

evaluated the UML constructs and found some weaknesses of UML for system analysis.

They also pointed out that using UML for early development phases has some problems.

Their research evaluated UML through BWW-Ontology (Bunge-Wand-Weber Ontology,

discussed in detail in Section 2.3.2). They systematically and iteratively compared 47

BWW-ontological concepts with 216 modeling constructs in the UML, which covers

concepts of Objects & Types, Properties & Attributes, Behavior, Links & Association,

Aggregates & Systems, States & Transitions, Action & Interaction, Use Case & Scenario

and Time. They used the approach of representation mapping (from the BWW-model to

UML) as well as interpretation mapping (from UML to the BWW-model) and evaluated

UML for ontological discrepancies of construct redundancy, overload, excess and deficit.

Their research showed that many UML constructs conform to BWW-Ontology. However,

they also found the following problems. There are eight construct redundancies, which

means several UML constructs map with the same ontological concept. There are one

problematic, and two less problematic construct overloads, which means one UML

11

construct maps with several ontological concepts. There are two construct excesses, which

means there is a UML construct cannot map with any ontological concept. There are three

categories of construct deficit, which means no UML construct maps with a particular

ontological concept.

There is some other research that evaluated different structures in UML for conceptual

modeling. Burton-Jones and Meso have tested the 'Wand and Weber Good Decomposition

Model' as the basic theory of improving Object-Oriented Analysis (Burton and Meso,

2002). This research used the approach of empirical laboratory experiment and examples

of class diagrams, state chart diagrams and use case diagrams. Guizzardi, Heinrich and

Gerd evaluated a conceptual UML class model for ontological correctness and assigned

well-defined ontological semantics to UML constructs (Guizzardi, Heinrich and Gerd,

2002[1]). Their research used the General Ontological Language (GOL) and its underlying

ontology. However, they only evaluated UML structure of Classes & Objects, Powertypes,

Associations & Part-whole Relations (Aggregation / Composition). Guizzardi, Herre and

Wagner used the same approach to evaluate other UML structures of Datatypes, Abstract

class and Association (Giancarlo, Heinrich and Gerd, 2002[2]). In this research, they also

compared underlying ontology of General Ontological Language (GOL) and

BWW-ontology as well as other ontology, such as the IEEE Standard Upper Ontology.

Cranefield and Purvis investigated the use of UML as an ontology modeling language

(Cranefield and Purvis, 1999). They compared common ontology modeling languages to

12

UML and also gave required extensions to UML for conceptual modeling. They used an

example including UML structures of Class Diagram, Generalization, Association and

Aggregation.

For the purpose of this research, the most relevant is Evermann and Wand's research

on using UML for conceptual modeling. They not only examine the defects of UML, but

also develop constraints (rules) to make UML better suited for domain modeling.

This research goes beyond pointing out the ontological defects and instead suggests rules and

guidelines for the modeler and analyst which alleviate these problems and enable the use of UML

for conceptual modeling of real-world domains. (Evermann and Wand, 2003, p215)

We will talk about Evermann and Wand's research specifically in the next section.

2.3Evermann and Wand's research

Evermann and Wand's research not only analyzed and examined the suitability and

pointed out the weakness of UML for domain modeling, but also developed constraints

(rules) to make UML better suited for domain modeling.

2.3.1 Conceptual modeling represents the real world

In Evermann and Wand's research, they point out that conceptual modeling involves

representing aspects of the real world. The conceptual model is the output of system

analysis and the purpose of system analysis is to describe the business and organizational

domain. When people use UML for conceptual modeling purposes, UML is used as a tool

to describe and help people to understand the real world. A tool to fulfill this job should be

13

based on the perspective of the real world. The system design stage is used for the

implementation stage (coding) and UML is relatively well mapped with 00 programming

languages, so UML works well in the system design stage. If we also want UML to work

well in the conceptual modeling and / or system analysis stage, UML needs to be well

mapped into the real world, so that people can use UML to represent everything that exists

in the world.

2.3.2 Ontology as the appropriate basis

We need a theory that is used to capture the real world, to do the mapping. Ontology

is an appropriate theory to do this job. Ontology is the branch of philosophy dealing with

the nature and structure of the real world. Ontology defines the real world, telling us what

the world consists of and how the world works.

There are several ontology. For example, Brentano's ontology (Routledge and Paul,

1874), Gottlob Frege on Being, Existence, and Truth (Klemke, 1968), Kazimierz

Twardowski on Ideas and their Intentions (Nijhoff, 1977), and so on. Within the

ontologies, Bunge-Wand-Weber's Ontology (BWW-ontology) is a philosophy specific to

science. It is a combination of three researchers work. The BWW-ontology model is based

on Bunge's Ontology (Bunge, 1977, 1979), and then Wand and Weber applied this

ontology to Information Systems Analysis (Wand, 1989; Wand and Weber, 1989, 1990,

1991, 1993, 1995; Wand, Veda and Weber, 1999; Weber and Zhang, 1996; Green and

14

Rosemann, 2002). Evermann and Wand's research chooses BWW-ontology for the

following reasons:

1. It is well fonnalized in tenns of set theory and has not been developed specially for use in

infonnation systems analysis and design.

2. It has been successfully adapted to infonnation systems modeling and shown to provide a good

benchmark for the evaluation ofmodeling languages and methods.

3. It has been used to suggest an ontological meaning to object concepts.

4. It has been empirically shown to lead to useful outcomes by Bodart and Weber (1996); Gemino

(1999); Weber and Zhang (1996). (Evennann and Wand, 2001a,p3).

All these features of ontology make it appropriate as a basis for developing rules about

what a conceptual modeling language should do. The BWW-ontology gives the definitions

of: "Thing", "Property", "Change", "Law", and "State". It describes the world like this:

The world consists of things that possess properties. Properties are either mutual or

intrinsic. Every thing has states by the specific value of its properties. States change as the

property value changes. All these changes follow rules, which are called laws. Every thing

can change. Change is either qualitative, in which a thing acquires or loses properties; or

quantitative, in which property values of a thing changes. Two things are said to interact

when they act on each other.

2.3.3 Evermann and Wand's ontological rules

From all of these assumptions, Evermann and Wand have developed a set of

ontological rules that place constraints on the construction ofUML diagrams to ensure that

they properly represent underlying ontological assumptions. In this section these rules and

how they function will be discussed. An example of a specific rule is: "All classes must

15

possess at least one attribute." This rule comes from the definition of "Thing" in

BWW-ontology. In ontology, the world consists of things that possess properties. Things

change as the properties change. (UML-Object corresponds to BWW-Thing and

UML-Attribute corresponds to BWW-Property.) If objects are defined without specifying

any attribute, what is the difference among them? People may argue that they have

different names. The class (object) names are only symbols to help people locate them

easily. Without any attribute, the names have no meaning. For example, Mr. A and Mr. B

buy the same book in a bookstore. Now, the book class has a new mutual attribute

"Owner". The two books are becoming two different objects (A's book and B's book),

because the values of the book attribute (Owner) are different. If we do not include the

"Owner" attribute in the "Book" class, the two books will not be different. The difference

among objects in a class is the different value of their attributes. A class has to have at least

one attribute to distinguish different objects in that class. Thus, to define a class without

any attribute may be a serious mistake. We need this rule to help us prevent it from

happening.

The example above illustrates one of the Evermann and Wand's ontological rules.

There are in total 36 rules and 39 corollaries. We include all of them in Appendix C. These

rules and corollaries will be reviewed and explained in Chapters 4, 5 and 6.

2.4 Existing UML-based CASE tools

16

Although some research has tried to help UML become more suitable for conceptual

modeling, notably Evermann and Wand's ontological rules, there is no existing

UML-based Computer Aided System Engineering (CASE) tools that reflect these rules.

Here, the practical UML tools will be reviewed. In existing UML Tools, the Rational Rose

series of products (Rose Professional) are the most well known and popular. They are

developed by the Rational Company, which is now a sub-branch of ffiM. These products

provide support for different UML concepts. The UML standards are also very well

manifested in Rational Rose. They integrate the diagram and notation template for users to

choose. When people use Rational Rose to draw UML diagrams, they only need to choose

a template and fill in related content information into corresponding area. For example,

"name" and "attribute" for a class diagram.

Despite the fact that Rational Rose supplies a full coverage of UML concepts, it only

does one job, to help people draw diagrams. (Rational Rose also does "Code Generation",

but the focus of this research is on the UML diagram layer of the products.) An ideal UML

tool should have the ability not only to help people draw diagrams, but also to guide

people how to draw diagrams well by adopting some constraints. An ideal tool should

have some packages to examine the quality of diagrams. The tool should integrate some

theory to help people draw good UML diagrams. Rational Rose only realizes this function

in low level. It examines UML diagrams, according to UML semantics and syntax. It does

not examine UML diagrams based on any other theory, for example, the research

17

discussed above. If you use a dashed line to connect two classes as an association,

Rational Rose will prohibit you from doing that because it violates the UML syntax.

However, if you identify a "Student" as an association, which is supposed to be a class,

there is no way for Rose to indicate such a problem so far.

We have also reviewed part of other UML tools; none handles the second function

better than Rational Rose does. From the above review of existing UML tools, we

conclude that no existing lJML-based CASE tool enforces Evermann and Wand's

ontological rules.

2.5 Expert system for implementing Evermann's rules

Our research implements a mechanism to check UML diagrams to see whether they

violate Evermann and Wand's ontological rules. We adopt technology of expert systems,

which critiques modeler's UML diagrams. In this section, we review critiquing expert

systems.

Critiquing expert systems have a history of over twenty years. In 1981, Langlotz and

Shortliffe developed the ONCOCIN system. (Joson, 1998, p15) It is to critique doctors'

treatments ofpatients. The treatment plan given to a patient by a doctor is the input data of

the critiquing system. The system critiques the treatment and gives advice to the doctor. In

1989, Fischer et. al developed Janus, a system that can aid users designing a household

kitchen. (Jason, 1998, pI?) When the designer creates a kitchen plan, the system responds

18

based on its critiques. There are other critiquing expert systems such as, ATTENDING

(1983), CLEER (1992), VDDE (1993), TraumaTIQ (1993), AIDA (1995), SEDAR

(1995), ICADS (1997). Since our research relates to critiquing systems in the domain of

software development, we focus more on critiquing expert systems of software analysis

and design. That is, the expert systems help users to develop software. In this domain, we

will discuss four systems: Framer, KRI / AG, UIDA and Argo. In 1990, Fischer, G. et al

developed the Framer system. (Jason, 1998, p18) It is a tool for designing user interfaces.

When designers are working on an interface, the system critiques the design and lists

advice. For example, if a "Menu Bar" has not been created yet, the system will prompt the

user to "Add a menu bar" in its "Things to take care of' panel. Another critiquing system

is KRI / AG, developed by Lowgren and Nordqvist in 1992. Similar to Framer, KRI / AG

is also used for designing graphical user interface (GUI). It critiques the user's design

according to 70 rules based on published guidelines on designing Motif user interfaces.

However, Jason pointed out that "KRI / AG does not satisfy all of our requirements for a

critiquing system because it is not integrated into a design tool and it is not tightly

integrated into the designer's tasks" (Jason, 1998, pI8). User Interface Design Assistant

(VIDA) is another expert system for user interface design. BoIcer, G. A. applied 72 UI

style rules into UIDA for critiquing user designs. Since it is a stand-alone system, UIDA

does not satisfy all of the requirements for a critiquing system. The last critiquing system

in software development is the Argo family, which consists of three tools (Jason, 1998,

19

p21). The first is ArgoC2, a tool for high-level software architecture design. PREFER is

another tool for state-based requirements documentation design. The last tool is ArgoUML

for software system design. These three tools use the same infrastructure to support their

critiquing function. Since we choose ArgoUML as the platform for our research, we will

discuss it in the next chapter.

20

Chapter 3 Research Approach

In this chapter, we introduce our research approach. We will first explain which

CASE tool we choose and why we chose it. Then, we explain principles we followed in the

research. Finally, we specify the order in which we discuss rules and corollaries.

3.1 Choice of ArgoUML

To implement the ontological rules, we need to choose a UML CASE tool as the

platform. There are several UML products that help people to draw UML diagrams. ·We

chose ArgoUML as the platform for our research based on the following reasons.

3.1.1 Critic system in ArgoUML

ArgoUML is a UML CASE tool for software system design. As we mentioned above,

it also supports the function of critiquing user's design. It uses the ADAIR critiquing

process, which is Activate, Detect, Advise, Improve, and Record. That is, when ArgoUML

starts, its critiques will be activated. When users draw UML diagrams, it will detect

mistakes and advise users. Then it can help users to improve their design by solving the

problems. Finally, it can record mistakes as well as their solutions for future reference.

21

ArgoUML's critiquing is based on UML syntax. For example, a class name normally

begins with a capital letter.

As we can see, ArgoUML is a UML CASE tool, which well supports critiquing a

user's design. It is convenient for us to implement Evermann and Wand's ontological rules

into this CASE tool.

3.1.2 Open source

In our system, the input data are UML diagrams drawn by the CASE tool. The system

will read the diagrams and check if they violate those rules. However, diagrams created by

different products have different file format. To read a file, we must know its format. Since

most business products code their file for copyright protection purpose, our system could

not read diagrams drawn by them. However, ArgoUML is an open source project and to

get related information from diagrams for our checking is not a problem.

ArgoUML is an open source project. The availability of the source ensures that a new generation of

software designers and researchers now have a proven framework from which they can drive the

development and evolution of CASE tool technologies (CollabNet Inc. 2003).

As we know, ArgoUML is not the most popular tool people choose to draw UML

diagrams. However, we still chose it because it is open to us. The format, the structure, and

the code are all free to read. In addition, our implementation is for research purposes, not

for business purposes, so we do not concern whether our software can be used for the most

popular UML product.

22

3.2 Add to ArgoUML

Our research follows the following three principles. First, we do not change or delete

any function of ArgoUML, but add our implementation to it. This is because Evermann

and Wand's ontological rules currently have not been adopted by UML (OMG), we should

not change or delete UML components. Second, for rules and corollaries we propose to

revise or delete, we still implement them because our basic purpose of this research is to

implement these rules and corollaries. Revising, deleting and creating rules and corollaries

are additional contributions. Third, for rules / corollaries that cannot be implemented in

ArgoUML by our proposed approach for general CASE tools, we use an alternative

implementation for UML. This is because that approaches given in Chapter 4, Chapter 5

and Chapter 6 are general ideal solutions to a fully functional CASE tool. However,

ArgoUML currently does not support all UML specifications. Alternative solutions for

affected rules / corollaries are discussed in Chapter 7.

3.3 Discussion order

According to Evermann, "Our world consists of a static structure of things with their

properties, changes in things and interactions of things" (Evermand, 2003, p37). Their

rules and corollaries based on this order. Since we are implementing these rules and

corollaries, in addition some latter rules / corollaries are based on the previous ones, our

discussion follows the order of Evermann and Wand's rules / corollaries for convenience

23

and consistency. That is, rules and corollaries related to static, change and interaction are

discussed in Chapter 4, Chapter 5, and Chapter 6 respectively.

Another thing we have to note here is that even through we evaluate Evennann's rules,

this is not our main purpose but an additional contribution. For most rules, our research

borrows tenninology from Evennann and we assume they are correct

24

Chapter 4 Static Rules

Things, properties and compositions are static concepts in ontology. In this chapter,

we will discuss the approach of implementing rules related to static structures.

Rule 1 Only substantial entities in the world are modeled as object.

First, the key words "substantial entities" in this rule need to be explained. In

BWW-Ontology, "thing" is the basic element in the world and it refers to "substantial

entity" (Bunge, 1977, plIO). Substantial entities are something which physically exist in

the world. They have two meanings. First, they have to be entities. That is, the entities are

actually something in the world. Second, they have to be substantial. They can be seen,

heard or felt by humans. For example, 'book' is a substantial entity since we can see it;

'sound' is a substantial entity since we can hear it, and 'wind' is a substantial entity since

we can feel it. However, 'job', and 'order' are not substantial entities since we cannot see,

hear or feel them.

Now, let us see another example: 'air'. Is 'air' a substantial entity or not? Some

people may say that 'air' is not substantial, because we cannot see it, hear it, or feel it. Not

only 'air', but also 'wind', and 'water' are different from 'book'. The 'air' is not so easily

25

perceived by human as 'book'. In Evermann and Wand's research, they did not discuss

such a group of entities. In this case, we propose a sub-classification of substantial entities.

The substantial entities consist of boundary entities and nonboundary entities. For the

boundary entities, they have physical boundaries, like 'book', and 'car'. For the

nonboundary entities, they do not have physical boundaries, like 'air', and 'sound'.

However, for nonboundary entities, for example, 'air', even though we cannot see, hear or

feel it, the 'air' physically exists in the world. Thus, even boundary entities and

nonboundary entities are different; they still belong to substantial entities. In our research,

we still propose them to be substantial. Because Rule 2 is also related to this issue, we will

discuss it in another way in Rule 2.

To realize this rule in the CASE tool, we mapped the "substantial entity" into human

language. The human language consists of sentences and sentences consist ofwords. Thus,

words are the basic element of a language. Every word has its part of speech. For example:

noun, verb, and adjective. We find that most "entities" can be mapped to nouns. To let the

computer know whether a noun is substantial or not, we used the following approach: First,

classify all nouns (in a dictionary) into two groups: Substantial and Non-substantial. Then

we create a database to store those nouns. When checking UML diagrams, the program

gets the "object" and match in the database. If an object is "Non-substantial", the program

gives an error and shows this rule. If an object cannot be found in our database, the

program will interact with the user by asking whether that object is substantial or not. The

26

program will remember the new substantial or nonsubstantial noun in its database. Thus,

the system has the ability to learn by remembering newly added nouns. This is expressed

in the following:

Get object/class name;

Map name with substantialDB;

If(name = non-sub)

Show error;

Explain error;

Else if(name = sub)

Exit;

Else query the user;

Explain what is sub and nonsub;

Give sub and non-sub examples;

Ask user to select sub or non-sub ofthat name;

Ifselect = non-sub

Show error;

Add to nonsub DB;

Else ifselect = sub

Add to sub DB;

Exit;

This approach also has shortcomings. Nouns and substantial entities are not strictly

one to one mapping. Thus this approach may be inaccurate sometimes. In addition, if the

user uses an abbreviation for an object name or a class name, the system cannot find it in

the database. However, we can propose an approach to reduce the problem. A heuristic

search algorithm can be adopted. If the user's input is similar to a word in our database, the

system can ask the user whether the input is the same as the database's word. For example,

'school' is listed in the subnouns. If the user inputs 'highschool', the system can ask the

user whether the 'highschool' is a subclass of 'school'. Actually, in this case,

27

'highschool' consists of two words: 'high (adj.)' + 'school (n.)'. The system can match

the 'school' in subnouns with all kinds of schools, such as, 'seniorschool', 'juniorschool',

and 'primaryschool.'

Rule 2 Ontological properties ofthings must be modeled as UML-attributes.

"Property" is another important concept in ontology, since every thing owns

properties (Bunge, 1977, p58). We have already explained that only substantial entities

should be modeled as UML-objects. What should we model the nonsubstantial entities as?

This rule tells us that nonsubstantial entities should be modeled as UML-attributes. This is

because things own properties and UML-objects own UML-attributes. We model things,

which are substantial entities as UML-objects and model properties, which are

nonsubstantial entities as UML-attributes. An example of this rule is that 'job' and 'color'

must be modeled as UML-attributes.

Now, let us analyze the nonboundary substantial entities based on both Rule 1 and

Rule 2. As we already know, entities in the world can be classified as three groups:

boundary substantial entities, nonboundary substantial entities, and nonsubstantial entities.

In Rule 1, it is clear that boundary substantial entities are modeled as objects. In Rule 2, it

is clear that nonsubstantial entities are modeled as attributes. For the third group,

nonboudary substantial entities, should we model them as objects or attributes? Let us

analyze some specific examples. Boundary substantial entities, such as 'worker' are

28

normally modeled as objects, while nonsubstantial entities, such as 'skill' are normally

modeled as attributes. The relations between objects and attributes are that objects own

attributes, like 'workers' possesses 'skills'. To answer the question we gave above, we

have to answer: Are nonboundary substantial entities more like objects or attributes?

'Water' is an example of nonboundary substantial entity; it is hard to model 'water' as an

attribute of an object. It is hard to find an object which possesses 'water'. On the other

hand, 'water' owns attributes such as 'color', 'temperature', and 'taste'. It seems that

'water' is more like an object than an attribute. Thus, the same conclusion as discussion in

Rule 1 is reached. That is nonboundary substantial entities are still substantial entities and

should be modeled as objects.

We can use the following approach to realize this rule. Since properties are

nonsubstantial entities, we can still map nonsubstantial entities into human language. As

discussed in Rule 1, entities can be mapped with nouns. Thus, properties can be mapped

with nonsubstantial nouns. The database of substantial nouns and nonsubstantial nouns in

Rule 1 can also be used here. When checking UML diagrams, the program needs to get all

the text strings from all diagrams. Then, all the strings will be matched with the substantial

nouns and nonsubstantial nouns database. If the program finds any string in the

nonsubstantial database, then it checks whether the string is an attribute. If the string is not

an attribute, then the program issues a violation warning. For the noun which is not in any

database, the program will inquiry the user and add it to the appropriate database. This is

29

expressed in the following:

Get text strings;

Map string with substantialDB;

If (string = sub)

Exit;

Else if(name = non-sub)

Retrieve String_type;

If(String_type = attribute)

Exit;

Else Show error;

Explain;

Else query the user;

Explain what is sub and nonsub;

Give sub and non-sub examples;

Ask user to select sub or non-sub ofthat name;

Ifselect = non-sub

Show error;

Add to nonsub DB;

Else ifselect = sub

Add to sub DB;

Exit;

Corollary 1 Attributes in a UML-description ofthe real world cannot refer to substantial

entities.

This IS the corollary of Rule 2. In Rule 2, we have known that, "ontological

properties", which are nonsubstantial entities, must be modeled as UML-attributes. That

means that UML-attributes must be nonsubstantial entities. This is Corollary 1 as stated

above.

As we can see, this corollary has a very similar structure to Rule 1. We use the

approach for Rule 1 to realize this corollary. We still use the substantial nouns and

30

nonsubstantial nouns database and the matching approach. Note that association classes

are also properties (we will explain this in Rule 3) and thus should be checked. This is

expressed in the following:

Get attribute name;

Get associationClassName;

Map name with substantialDB;

If (name = non-sub)

Show error;

Explain error;

Else if(name = sub)

Exit;

Else query the user;

Explain what is sub and nonsub;

Give sub and non-sub examples;

Ask user to select sub or non-sub ofthat name;

Ifselect = non-sub

Show error;

Add to nonsub DB;

Else ifselect = sub

Add to sub DB;

Exit;

Rule 3 Sets ofmutual properties must be represented as attributes ofassociation classes.

Now, let us talk more about properties. There are two kinds of properties: intrinsic

properties and mutual properties. Intrinsic properties are the properties that only belong to

one thing. Mutual properties are the properties that belong to more than one thing

(Everman, 2003, p38). That is, for a single thing, the mutual properties do not exist. For

example, a customer orders a book from a bookstore. The 'customerName' is the intrinsic

property of the 'Customer'. However, the 'orderNumber' is the mutual property of the

31

'Customer' and the 'Bookstore'. The order happens between the customer and the

bookstore. Neither of them can own the order by itself.

In this rule, we will discuss mutual properties. First, in Rule 2, we have explained that

properties should be modeled as UML-attributes. Mutual properties are a subtype of

properties. Thus, they should be modeled as attributes. Second, mutual properties are

properties not belonging to a single thing, but a group of things. As we map

BWW-properties as UML-attributes and BWW-things as UML-objects, this means that

mutual UML-attributes belong to a group ofUML-objects. As these objects have mutual

attributes, there must be some association to connect these objects together. In UML,

association classes are used to represent associations between objects. Since association

class is a kind of class, it has attributes. This rule specifies that mutual attributes should be

modeled as the attributes of association class. Like the 'orderNumber' we discussed in

Rule 2, it is not the intrinsic property but the mutual property of 'Customer' and

'Bookstore'. Thus, we cannot have the 'orderNumber' as attributes in both 'Customer' and

'Bookstore' classes. The fact is that the customer orders a book from the bookstore. 'Order

from' is the association between customer and bookstore. We can have an association class

'Order' and model 'orderNumber' as the attribute of this association class.

Readers may have a question here. Classes are used to represent substantial things.

However, this rule specifies that association classes are used to represent mutual properties,

which are nonsubstantial entities. This is because association classes are a special kind of

32

class. They have characters of both association and class. To separate association classes,

we call other classes ordinary classes. So, we give constraints that Rule 1 does not apply to

association classes but only to ordinary classes.

We can give a clearer description of properties. Even through intrinsic properties and

mutual properties are both properties and must be modeled as UML-attributes, they are

modeled as different attributes. First, intrinsic properties should be modeled as attributes

of ordinary classes. Second, mutual properties should be modeled as attributes of

association classes.

In other words, mutual properties should not be represented as attributes of ordinary

classes associated by an association. That is, there should not be the same attribute in two

classes. We use the following approach to implement this rule. First, the program gets all

of the associations in a diagram. Then it checks all attributes in each association end. To do

this, the program first gets all the attributes from the first associated class, and writes them

into a vector. Then an attribute in the second class is retrieved and matched with the vector.

If two attributes are found with the same name, the system shows a violation warning. If

not, the program gets the next attribute in the second class and matches it with the vector

again, and so on. This is expressed in the following:

Get association;

Get associationEnds;

Get end_class1;

Get class_attributes;

While class attributes.hasNext

33

Add attribute to vector;

Get end_class2;

Get class_attributes;

While class attributes.hasNext

Match with attri_vector;

Ifmatch = true

Show error;

Exit;

In UML, there are two special associations: composition and aggregation. We will

discuss composition in Rule 6. Here we discuss aggregation. Aggregations are parts-whole

associations and the whole classes are the aggregate classes. Based on this, if a designer

models the same attributes in whole and part classes, the "mutual" attribute should not be

modeled as the association class. That is no association class can be connected to an

aggregate association. Thus, we add the constraint that the examination for Rule 3 does not

check an aggregation association. In the implementation, the program simply skips this

rule if it finds the association end is an aggregation.

We also need to consider other two special cases. First, attributes with the same name

in associated classes may represent different meanings. That is, they are not really mutual

properties. For example, in 'Customer buys Book', 'name' attributes of both 'Customer'

and 'Book' classes are not mutual attributes possessed by both of them. Actually, they

refer to 'customerName' and 'bookName', respectively. In this case, the examination will

show a wrong violation warning. To reduce this effect, we can enable users to dismiss the

warning. Second, attributes with different names in the associated class may represent the

same meaning. That is, they are actually mutual properties. For example, in 'Traveler takes

34

Plane', 'flyPeriod' of traveler and 'inAirDuration' ofplane are mutual attributes possessed

by both of them. Actually, they both refer to the 'flyingTime'. In this case, the examination

will not show a violation warning. To solve this problem, the possible solution is to adopt a

dictionary (we only give this solution idea and do not implement it). It lists different words

with the same meanings. For the specific domain, a domain related glossary could be even

used.

Corollary 2 An association class cannot represent substantial entities or composites of

substantial entities.

Because mutual properties must be modeled as attributes of association class, mutual

properties cannot be modeled as attributes of ordinary class. From Rule 2, we know that

only intrinsic properties can be represented as attributes of substantial entities. If we

assume that an association class can represent substantial entities, then we get that the

attributes of the association class must be intrinsic properties. This is obviously in conflict

with Rule 2 and Rule 3. Thus, the assumption is incorrect. Also the composition of

substantial entities is a substantial entity, thus Corollary 2 is approved. Here are two

examples of this corollary: The 'Worker' in a 'company hires worker' relation cannot be

modeled as an association class. The 'plane' in a 'plane consists of engine and body'

relation cannot be modeled as an association class.

To implement Corollary 2, we can simply match association class names with our

35

substantial nouns and nonsubstantial nouns database. The examination will show a

violation warning when matching an association name with a substantial noun. This is

expressed in the following:

Get association class name;

Map name with substantialDB;

If(name = sub)

Show error;

Explain error;

Else if(name = non-sub)

Exit;

Else query the user;

Explain what is sub and nonsub;

Give sub and non-sub examples;

Ask user to select sub or non-sub ofthat name;

Ifselect =sub

Show error;

Add to sub DB;

Else ifselect = non-sub

Add to non-sub DB;

Exit;

Corollary 3 If an association class of an n-ary association is intended to represent

substantial things, the association should instead be modeled as one with arity (n+ 1).

We have proved that an association class cannot represent substantial things. So if this

situation happens, how can we correct it? Corollary 3 is actually the solution of a kind of

violation of Corollary 2. The n-ary association means that the association, which owns the

association class, has n association ends. In other words, the association connects n

ordinary classes.

36

I

I

I

ClassA ClassB
+At trl .+Attr3
+Attr2 I +Attr4
+Operl() : +Oper2()

AssociationClass
+Attr5
+Attr6
+Oper3()

.'.
'.........

~...."
.~' ...

.,'r------------__.
This AssociationClass
is representing a
subst ant i al ent i t y.

Figure 4.1 Incorrect 2-ary association class

In this case, if the association class is intended to represent substantial things, the

solution is to change the association class into a n+1 ordinary class. By doing this, the

association class will no longer belong to the association, but will be an association end of

the association. For example, in the 'customer buys book from bookstore' relation,

someone uses an association class to represent the 'book.' This is incorrect. Instead, the

'book' should be modeled as an ordinary class along with the 'customer' and 'bookstore'

class. Figure 4.1 and Figure 4.2 describe this process.

Since this corollary is the solution of Corollary 2, there is no need to implement

Corollary 3.

37

ClassA Association ClassB
+At trl +At tr3
+Attr2 +At tr4

+Operl() +Oper2()

ClassC
+Attr5
+At tr6
+Oper3()

Figure 4.2 Correct 3-ary association

Corollary 4 An association class representing a composite must instead be modeled as a

composite with attributes representing emergent intrinsic properties.

We have proved that an association class cannot represent composites of substantial

entities. So if this situation happens, how can we correct it? This corollary is actually the

solution of another kind of violation of Corollary 2. An association class sometimes is

used to represent a composite relationship, which is a part-whole relationship (Everman,

2003, p41). For example, among three classes: 'Engine, Body and Plane', it is incorrect to

model 'Plane' as an association class between 'Engine' class and 'Body' class. This is

because 'Engine' and 'Body' are two parts of 'Plane,' the 'Plane' class is actually a

composite of 'Engine' and 'Body.' Thus, the 'Plane' class should not be modeled as an

association class, but a composite class of 'Engine' and 'Body.' The attributes of the

38

composite class are emergent intrinsic properties. The composite class 'Plane' has

emergent properties such as 'speed,' because neither 'Engine' nor 'Body' has that property.

Also, the property 'speed' is the intrinsic property of the composite class 'Plane.' Figure

4.3 and Figure 4.4 illustrate this example.

Since this corollary is the solution of Corollary 2, there is no need to implement it.

Plane
+speed

Figure 4.3 Incorrect model for Corollary 4

Engine Body
+power +size

Q ()
Plane

+speed

Figure 4.4 Correct model for Corollary 4

39

Corollary 5 An association class cannot possess methods or operations.

This is also a corollary of Rule 3. We have already shown that the association class

cannot represent substantial entities. According to Everman's research, "all changes are

tied to things. There can be no change without a thing that changes" (Everman, 2003, p45).

That is, if there is no substantial entity change, nothing would change. Since attributes of

association classes do not specify substantial entities, they should not change

spontaneously. That is, methods or operations which are able to change the association

class attributes, should not be modeled.

To implement this corollary, the examination can get all associations and check

whether they have any methods or operations. If any method or operation is found, the

program will give a violation warning to users. This is expressed in the following:

Get associationClass;

Get operations;

Ifoperation = null

Exit;

Else show error;

Corollary 6 An association class cannot be associated with a state machine.

This is also a corollary of Rule 3. In the last corollary we have explained that, if there

is no substantial entity change, nothing would change. Now, we are talking about state

machines. In UML, "A state machine can be used to model the behavior ofclass instances"

(OMG, 2003, p2-140). Since state machines are used to describe the state change of an

40

element, some change must exist for that element. Ordinary classes represent substantial

entities and own methods or operations, which can change the class states. However,

association classes have no method or operation (Corollary 5), for their states to change.

Thus, we should not model state machines for association classes.

To implement this corollary, we need to give this constraint to UML specification.

Also, in UML CASE tools, the feature ofmodeling state chart diagrams should be disabled

and there is no need to write a program to examine this.

Corollary 7An association class must possess at least one attribute.

This is a straightforward corollary of Rule 3. Since sets of mutual properties must be

represented as attributes of association classes, the attributes of an association class are

used to represent the mutual properties. If an association class has no attribute, that means

that the mutual properties set is empty. Because ''while an empty set ofmutual properties is

still a set and thus technically satisfies Rule 3, it is ontologically meaningless" (Everman,

2003, P46), an association class must have an attribute.

The implementation gets all association classes and checks whether there is any

attribute in each of them. If an association class attribute space is null, it shows a violation

warning. This is expressed in the following:

Get association_class;

Get aClass_attribute;

IfaClass_attribute = null

41

Show error;

Else exit;

Corollary 8 An association class must not be associated with another class.

According to Everman, "properties in ontology cannot themselves possess mutual

properties with other properties or things" (Everman, 2003, p46). Because association

classes themselves are mutual properties of associated classes, thus, association classes

cannot have mutual properties with any others.

According to UML notation, association classes do not directly connect to classes.

Instead, a dashed line connects association classes to associations. That is, association

classes cannot be association ends. We can disable this function in CASE tool by

proscribing association connection to association class. For those CASE tools that do not

have the function of connecting association classes to ordinary classes, the corollary is

automatically satisfied.

Corollary 9 An association class must not participate in generalization relationships.

According to Everman's research: "properties themselves cannot be generalized"

(Everman, 2003, p47). Also, association classes are a group of mutual properties of

participating ordinary classes. Thus, association classes cannot be generalized.

To implement this corollary, we need to include this constraint into UML specification.

Also, we can disable this function in CASE tool. That is, to proscribe generalization

42

connections (triangle with solid line) to association classes.

Rule 4 Ifmutualproperties can change quantitatively, methods and operations that change

the values ofattributes of the association class must be modeled for one or more of the

classes participating in the association, objects ofwhich can effect the change, not for the

associations class.

This rule covers Corollary 5 and gives solutions to it. In Corollary 5, we already

concluded that association classes could not possess methods or operations. So, where

should we put these methods or operations? In other words, how are the attributes of

association classes changed? This rule tells us the answer. Association classes are mutual

properties of a group of ordinary classes. The methods and operations, which change the

value of these mutual properties, should be put in those ordinary classes. That is, only

methods or operations of ordinary classes participating in an association can change the

attributes value of the association class. As well these methods or operations do not have

to be modeled in all participating classes. Which ordinary classes own which methods or

operations will depend on which ordinary classes actually change the attributes value. In

the example of "customer orders book", there is an attribute 'date' of the association class

'order'. The method 'changeDateO' should be modeled in the ordinary class 'customer'

instead of in 'order'. Figure 4.5 and Figure 4.6 depict this rule.

43

ClassA ClassB
+At trl +Attr3
+Attr2 I +Attr4
+Operl() +Oper2()

AssociationClass
+AttrS
+At tr6
+Oper3()

."'"''
~ .. ,,~

'. "
....". r------------,.

This AssociationClass
is representing a
substantial entity.

Figure 4.5 Incorrect model for Rule 4

ClassA ClassB
+at t ri but el +attribute3
+attribute2 I +attribute4
+changeAt t rl () +changeAt t r3()
+changeAttr2()

1
+changeAt tr4()

+changeAt t r5() +changeAt t r6 ()
+changeAt t r6 ()

AssociationClass
+attribute5
+at t ri but e6

Figure 4.6 Correct model for Rule 4

We can look at this rule as two parts. The first part is to specify that association classes

cannot own methods or operations. The second part is the solution that specifies how to

44

model these methods and operations. We just implement the first part and show the

solution part in the text field. The examination can get all association classes, then gets

their operation fields. If return values are not null, the program will show a violation

warning. This is expressed in the following:

Get associationClasses;

Get operations;

Ifoperations = null

Exit;

Else show error;

Rule 5 An association class represents a set ofmutual properties arising out of the same

interaction.

According to ontology, interaction is defined through the state history of a thing: If the

way attributes of one thing change depends on the presence of another, then the second is

said to act on the first (Bunge, 1977, p258). Things interact, if and only if each acts upon

the other (Bunge, 1977, p259) and everything acts on, and is acted on by other things

(Bunge, 1977, p259). Association classes represent mutual properties of participating

ordinary classes. However, all these mutual properties may not come from a same

interaction. That is, some interactions create a group of mutual properties, while another

interaction creates another group of mutual properties. For example, two ordinary classes:

'Worker' and 'Company' have mutual properties such as 'hiredate', 'firedate', 'salary',

'firereason', and so on. Not all these properties come from the same interaction. When the

45

'hire' interaction happens between a 'Company' and a 'Worker', it creates mutual

properties of 'hiredate' and 'salary.' When the 'fire' interaction happens between a

'Company' and a 'Worker', it creates mutual properties of 'firedate' and 'firereason.' This

rule specifies that the mutual properties created by a single interaction should be modeled

in a single association class. Mutual properties created by different interactions should be

modeled in different association classes. Like the above example, there should be two

association classes created by 'hire' and 'fire', to own 'hiredate', 'salary' and 'firedate',

'firereason', respectively. This satisfied that ordinary classes could have more than one

association.

It is difficult for a program to tell whether attributes in an association class come from

the same interaction. What we can do is to interact with users for the critique. When the

program finds the possible violation, it will let the user indicate whether it is a real

violation. Once the program finds an association class, it gets all attributes from that

association class and asks users whether these attributes are from one interaction. If the

user indicates that they are not from a same interaction, the program gives a violation

warning. This is expressed as the following:

Get associationClass;

Get attributes;

Query user;

Ifsamelnteraction

Exit;

Else show error;

There is a problem with this approach. It only focuses on whether all attributes in an

46

association are created from the same interaction. If a user models a set of attributes

created by interaction 'A' in association class created by interaction 'B', the program still

gets "Yes" from the user and will not show a violation warning. In fact, this case violates

the rule. For example, the user models 'hiredate' and 'salary' as attributes of association

class created by 'fire.' These two attributes are from the same interaction 'fire.' The user

would indicate "Yes" when the system queries him. In this case, the examination will not

show any warning information. We realize that every attribute in an association class and

this association class must be created from the same interaction. The reason to give this

constraint is that every attribute in an association class is created by the interaction that

creates this association class. So we can revise this rule into the following:

All mutual properties arising out of the same interaction must be represented by the

same association class.

Thus, we adopt another approach. The program will retrieve each attribute in an

association class one by one. It will query users whether each attribute is created by the

interaction creating the association class. If the user indicates, 'Yes', this attribute will be

saved in an 'Ok' vector. Otherwise, this attribute will be saved in a 'Bad' vector. So if

there is any attribute in the "Bad" vector for an association class, the examination will

show a violation warning. In this way, we can guarantee that the above problem will not

happen. If every attribute is created by the same interaction, which creates the association

class, all these attributes must be created by the same interaction. This is expressed in the

47

following:

Get associationClass;

Get acAttribute;

Inquiry user "IfacAttribute and AC created by a same interaction" ;

Ifyes

Add attribute to Ok;

IfNo

Add attribute to Bad;

While acAttribute in Bad

Show error;

Exit;

Rule 6 A composition relation must not be modeled.

In UML, there are two associations related to the whole-part relationship: composition

and aggregation. Both composition classes and aggregation classes are the whole of some

part classes. For example, a ;person' class is the composition of 'arm' classes, 'head'

classes, and so on. The difference between composition and aggregation is that

composition is a many to one relationship, while aggregation is a many to many

relationship. In composition, part classes can only attend one composition relationship.

For example, the 'Arm' can only belong to one 'Person'. In aggregation, part classes can

attend more than one aggregation relationship. For example, the 'Person' can belong to

several 'Groups'. However, according to Everman and Wand's research, there are only

composition relationships in ontology (Evermann, 2003, p50). Another important thing is

that we need to separate the term 'composition' in ontology and the term 'composition' in

UML clearly. The term 'composition' in ontology does not refer to composition in UML.

48

Instead, it matches with aggregation in UML. That is, UML-composition cannot match

anything in ontology. Thus, this rule specifies that the composition relations in UML

should not be modeled. For example, the 'plane-engine-body' relation should be modeled

as a UML-aggregation instead of a UML-composition.

To realize this rule, we need to add this constraint to UML specification. Also, we can

disable this feature in CASE tools. That is, to proscribe composition (hollow diamond) as

association ends.

Rule 7 Every UML-aggregate must possess at least one attribute which is not an attribute

ofits parts or participate in an association.

We have discussed that UML-aggregate IS a whole-part relationship. This rule

specifies more constraints on aggregations. It is stated that "In the BWW-ontology, a

composite must possess at least one emergent property, otherwise there exists not a

composite but only a set of things" (Evermann, 2003, p5I). This means that aggregate

classes should not only be the whole of their parts, but more than that. For example, in the

'Person has Arm, Head', the 'Person' acquires the new emergent attribute of 'Language'

which is not processed by 'Arm' or 'Head'. This rule can be illustrated in the following:

Classes A and B are two parts of aggregate class C. A possesses attributes attrl and attr2,

B possesses attributes attr3 and attr4. This rule tells us that there should be at least one

attribute attr5 not in the set of {attrl, attr2, attr3, attr4}; or class C participates in an

49

association. Note that the sentence in quotations above is talking about the composite in

ontology, namely, aggregate in UML. We give Figure 4.7, Figure 4.8 and Figure 4.9 to

describe this rule.

ClassA
+at t ri but el
+attribute2

v V
ClassC

+at t ri but el
+attribute2
+attribute4

ClassB
+attribute3
+attribute4

Figure 4.7 Incorrect model for Rule 7

50

ClassA
+at t ri but e1
+attribute2

Q \>
ClassC

+at t ri but e1
. +at tri but e2
+attribute5

ClassB
·+attribute3
+attribute4

ClassA
+at t ri but e1
+at t ri but e2

Figure 4.8 A correct model for Rule 7

ClassB
+attribute3
+at t ri but e4

() o
ClassC

+at t ri but e1
+attribute2
+attribute4

association ClassD

Figure 4.9 Another correct model for Rule 7

51

To implement this rule, we use the following approach. First, the program needs to

find aggregate classes. This is done by checking each association end of each class. If an

aggregation end is found, the program gets this association. Now, we can get attributes of

both aggregate class and part classes. However, we only get the part class attributes and

add them to a vector. After all part class attributes are added into the vector, the program

begins to match each attribute in the aggregate class with the vector. If any aggregate class

attribute is not found in the vector, the examination terminates without a violation warning.

This is expressed in the following:

Get classes;

Get associationEnds;

IfassociationEnd=aggregation

Get assoczation;

Get partC/asses;

Add pcAttributes to vector;

Get aggregateC/asses;

Get acAttributes;

While acAttributes.hasNextO;

If !vetor.contains(acAttribute)

Exit;

Show error;

Rule 8 All UML-classes must possess at least one attribute or participate in an

association.

In Rule 1 and Rule 2, we have discussed that classes represent things and attributes

represent properties. In ontology, a thing is different from another because they own

different properties. That is, if things have no properties, we cannot distinguish different

52

things. Also, things map to UML-classes and properties map to UML-attributes. Thus, we

can get that UML-classes must own attributes. On the other hand, in UML, "A class is a

description of a set of objects that share the same attributes, operations, methods,

relationships, and semantics" (OMG, 2003, p2-26). Attributes are fundamental elements of

classes and classes must possess attributes. However, there is one case where a class can

have no attribute. That is when the class participates in an association. However, on closer

analysis, this is still following Rule 8. That is because if the class participates in an

association class, the association class itself represents mutual attribute of all participating

classes.

For the implementation, the program only needs to check all classes to see whether

they have any attribute or association. Ifneither attribute nor association is found, it shows

a violation warning. This is expressed in the following:

Get classes;

Get attributes;

Ifattribute=null

Get associationEnds;

IfassociationEnd=null;

Show error;

Exit;

Rule 9 Object ID's must not be modeled as attributes.

In UML, classes are a group of objects with the same attributes and behaviors. In

reverse, objects are instances of classes. How can we distinguish different objects of a

53

class? Some people may think of creating an objectID attribute. For example, in the

'Book' class, different book objects can be identified by a bookID attribute, whose values

are 'book1', 'book2', and so on. However, "In our ontology, things are identified through

their unique set of property values and there exists no special identification criterion or

identifier" (Everman, 2003, p53). Now, we explain this in detail.

Even though objects in a class own the same group of attributes the attribute values of

different objects are different. The attribute groups with different values are used to

distinguish different objects in a class. The 'Book' class may own attributes of 'title',

'author', and 'year'. {UML1.5, OMG, 2003}, {UML1.4, OMG, 2001}, and {Ontology,

Bunge,] 977} are three different book objects.

To implement this rule, the examination checks class attributes to see whether there is

any attribute name space that includes 'ID'. However, the 'objectID' in this rule does not

only specify the string 'ID'. It applies to all attributes, which are used for identification.

Thus, we also check strings starting with or ending with 'Number' and 'No.'. It is obvious

that this approach is not very accurate. There may be attributes including 'ID', 'Number',

or 'No.' in their names are not for purpose of object identification. In this situation, our

approach asks users whether attribute 'A' only valid within the class 'B'? This is because, if

an attribute is only used for distinguishing different objects in a class, this attribute will be

useless in any other domain out of this class. For example, from the perspective of a class

diagram with several classes, an attribute 'author: Bunge' can give some information,

54

while an attribute 'bookID: bookl' makes no sense. If the user indicates that the attribute

is only valid within that class, the program shows a violation warning and saves this

attribute in the 'checkedBad' vector. Otherwise, the program only saves this attribute in

the 'checkedOk' vector. This is expressed in the following:

Get classes;

Get attributes;

While attributes.hasNextO;

Get name;

If(name.startWith(IDIINo·IINumber) Ilname.endWith(IDIINo·IINumber))

If !(name in checkedOk)

If(name in checkedBad)

Show error;

Else

Query user;

Ifanswer=Y

Show error;

Add name to checkedBad;

Else ifanswer=N

Add name to checkedOk;

Exit;

There are two aspects of limitation in this implementation approach. One is that,

strings include 'No.' or 'ill' may not really be an object ill. In this case, the examination

will show an incorrect violation warning. The query structure in our approach can reduce

this effect to some extent. Another is that a designer may not use strings including 'No.' or

'ill' to represent an object ill. In this case, the examination will not detect the violation. A

possible solution may be adopting a dictionary to list all words representing ill. In a

specific domain, we can even use some glossary related to that domain.

55

Rule 10 The set of attribute values (representing mutual and intrinsic properties) must

uniquely identify an object.

In the last rule, we have explained that different objects in a class are identified by

different values of the attribute set. That means that if every attribute value in two objects

of a class is the same, respectively, the two objects are identified as a same object. For

example, if two book objects are {UML1.5, OMG, 2003} and {UML1.5, OMG, 2003},

they are actually the same book object.

The implementation approach is to compare values of each attribute of each object. If

two objects have absolutely the same attribute value set, the program shows a violation

warning. This is expressed in the following:

Get objects;

Set same=l;

While objects.hasNextO

Get attributes;

While attributes.hasNextO

Get value;

Ifvaluel !=value2

Set same=O;

Ifsame==l

Show error;

Else exit;

Now, we talk more about identification of each object in a class. In UML, "An object

is an instance that originate from a class" (OMG, 2003, p2-101). However, in conceptual

modeling, we do not identify individual objects of a class, but only focus on classes. Thus,

Rule 10 and other related rules, for example Rule 11, are not applicable to conceptual

56

modeling.

Rule 11 Every attribute has a value.

It is stated that "Since attributes represent properties by being assigned some value at

some time, these values reflect a property"(Everman, 2003, p55). That is, there cannot be

any attribute without a value. In UML, attributes can have multiplicities. That is, an

attribute can have one value, two values or n values. However, there are two situations

contradicting with this rule. First, a user can choose attribute multiplicities as '0.' This

means that the number of this attribute value is '0.' The second is that a user can specify

the attribute value as 'null.' Both these two cases imply that an attribute can have a

meaningless value. These are inconsistent with this rule. In programming, sometimes we

need to set 'null' values to attribute. For example, the 'age' attribute of a 'Person' class.

When we set the variable, we do not know what value this variable would be and set 'null'

for its initial value. However, this will not happen in conceptual modeling because

everybody has an age. Thus, every attribute has a value. We will talk about this in

Corollary 10.

To implement this rule, we just proscribe a value of "null" and multiplicity of "0" for

attributes. According to UML specification, "The second compartment (of object notation)

shows the attributes for the object and their values as a list. Each value line has the syntax:

attributename: type = value" (OMG, 2003, p3-65). Thus, the implementation affects two

57

diagrams: class diagram and object diagram. In class diagrams, we proscribe 'null' for an

initial value. In object diagrams, we proscribe 'null' for the attribute list. We still need to

remind users to specify values for attributes. The program simply gets all attributes. If any

attribute is found without a value, it shows a violation warning. This is expressed in the

following:

Get class/object;

Get attributes;

Get value;

Ifvalue=null

Show error;

Else exit;

Corollary 10 Attribute multiplicities greater than one imply that the order of the dffferent

individual attribute value components is semantically irrelevant.

Attribute multiplicity specifies the number of values of the attribute. The last rule

prohibits attribute multiplicities of '0', here we will discuss attribute multiplicities greater

than' 1.' When the multiplicity is greater than one, it means that the attribute has more than

one attribute value. This corollary specifies that only order irrelevant values can be

modeled as attribute multiplicities greater than one. For example, an address in the real

world may consist of 'number', 'street', 'city', and 'country.' One instance would be {123,

Cook 8t., Victoria, Canada}. A user may model the 'address' as an attribute with a

multiplicity of '4.' According to this corollary, it is incorrect, because the order of these

four values is relevant. Ifwe change the order to {Victoria, Cook 8t., Canada, 123}, this is

58

obviously an invalid address. In this case, 4 attributes with multiplicity of '1' will be

modeled instead of 1 attribute with multiplicity of '4.' That is, attributes of 'number',

'street', 'city', and 'country' should be modeled.

The above discussion is about the definition of attribute multiplicity in UML

specification and Everman's research. However, we feel the above (un)ordered attribute

multiplicity structure confusing and redundant. To simplify this, we propose our approach,

which is to model an attribute for each attribute value. For the 'address' attribute, a much

simpler modeling is to decompose it into four attributes of 'no.', 'street', 'city' and

'country.' In this way, every attribute only has a single value and we need not think about

rnultiplicity and ordered or unordered. The above is for the ordered values case; for

unordered values, this modeling also works fine. For example, in the current UML

structure, a 'contactNo.' attribute may have multiplicity of '3.' A 'contactNo.' may have

three values, such as 'homePhone, cellPhone and fax.' In this case, we can also decompose

the 'contactNo.' into three attributes of 'homePhone', 'cellPhone' and 'fax.' People may

ask when some 'Persons' have 'cellPhone', while others have not, can we assign null to

the attribute 'cellPhone'? The answer is no. In the last rule, we have discussed that an

attribute cannot be null. However, it is a fact that some people do not have a cellPhone. In

this case, we say that people with 'cellPhone' possess this additional attribute than those

who do not have 'cellPhone.' These people should be specialized from regular people.

According to the above discussion, we propose Rule-New 01 to take the place ofCorollary

59

10. Thus, there is no need to implement Corollary 10.

Rule-New 01: Every UML attribute can only have a single value. An attribute of

multiplicity of 'N' should be decomposed into 'N' attributes of multiplicity of '1 '. An

attribute multiplicity of '0' should be generalized as a super-class not possessing the

attribute.

Even through this rule strictly follow ontology, it has a severe restriction making this

new rule a little difficult to be satisfied. For the implementation of this rule, UML

specification as well as CASE tools are proposed to disable the feature of assigning

multiplicity to attributes. Thus, there is no need to implement it.

Now, we discuss a little more about order and unordered attributes. Actually, ordered

attributes depend on each other, while unordered attributes are independent. For example,

attributes 'street', 'city', 'province', and 'country' can only specify an address when they are

together. A independent 'street' makes no sense. Attributes 'homePhoneNumber',

'businessPhoneNumber', and 'cellPhoneNumber' can give information independently.

However, these are out of the scope of our thesis, future research can be done about it.

Rule 12 Classes of objects that exhibit additional behavior, additional attributes or

additional association classes with respect to other objects of the same class, must be

modeled as specialized sub-classes.

60

We have discussed multiplicity of attributes. In this rule, we will discuss multiplicity

of association ends. Since associations connect classes, the multiplicity of association ends

specifies the number of class objects participating in an association. For example, in

Figure 4.10, a company can hire zero or more persons while a person can work for one and

only one company. Here, zero means the company does not hire any person.

Company Person

Ii hire p. . *
I

Figure 4.10 Multiplicity of association ends

Consider a situation where the company hires one or more persons. These persons

share the same attributes and behaviors, so they are modeled as a person class. When the

multiplicity is zero, it means that no person participates in this association. That is, a

person does not participate in this hire association. In this case, the person does not possess

the attributes and behaviors of an 'employee', such as 'skill' and 'fireO.' In other words,

the person class exhibits additional attributes or behaviors when multiplicity changes from

'0' to '1..*.' In UML, "A class is a description of a set of objects that share the same

attributes, operations, methods, relationships, and semantics" (OMG, 2003, p2-26). The

61

'employee' exhibits more behaviors and attributes than the 'person.' They should be

separated into two classes instead of modeling them in one class. Considering that all

employees are persons and inherit all attributes and behaviors ofperson, the 'Employee' is

modeled as the sub-class of 'Person.' Thus, the 'Person' class does not participate in the

'hire' association, but the 'Employee' class does. Generally speaking, all classes with

multiplicity of '0..*' (* = 1, 2, ...N) participating in an association have the problem

discussed above. Thus, association ends with multiplicity of '0..*' should not be modeled.

Objects exhibiting additional attributes or behaviors actually participate in this association.

They should be modeled as a specialized sub-class. This rule can be depicted in Figure

4.11 and Figure 4.12.

ClassA ClassB

p.. l p.. *
I

AssociationClass
+attributeABl
+attributeAB2

Figure 4.11 Incorrect model of Rule 12

62

ClassA ClassB

~ ~

ClassC ClassD

l 1. . *

J

I

AssociationClass
+attributeABl
+attributeAB2

Figure 4.12 Correct model of Rule 12

The implementation of this rule applies to both UML specification and CASE tools. In

UML specification, multiplicity of '0..*' (* = 1, 2, ...N) for association ends should be

proscribed. That is, users should separate '0..*' into '0' and '1..*.' However, "A

multiplicity of 0..0 is meaningless as it would indicate that no instances can occur" (OMG)

2003, p3-75). Thus, the multiplicity of '0' for association ends should not be modeled and

the option ofmultiplicity of '0' should be disabled in CASE tools. In the current stage, if a

CASE tool permits users to input association end multiplicity from the keyboard, an

examination is still needed. The program gets association ends and checks whether the

63

multiplicity begins with '0.' If this is the case, it shows a violation warning. This is

expressed in the following:

Get associations;

Get associationEnds;

Get multiplicity;

Ifmultiplicity.startsWith("0 ")

Show error;

Else exit;

Corollary 11 An object acquiring additional behavior or properties must be destroyed as

instance of the general class and created as instance of the specialized class that is

modeled with the relevant operations or association classes.

The last rule describes a situation where objects acquire additional behaviours or

additional attributes. It also gives a solution for when this happens. That is, when an object

acquires additional behaviors or properties, it should no longer be modeled in the original

class, but to be modeled in a specialized sub-class. That means that the object is

reclassified from one class to another class. However, there is no construct in UML to

model this. Evermann and Wand suggest a mechanism of re-classification to make up such

a UML deficiency. They propose to employ the UML semantics of object creation and

destruction (Evermann, 2003, p59). That is, when objects acquire additional behaviors or

properties, the objects should be destroyed as instances of the original class and created as

instances of the newly specialized class.

With respect to Rule 12, this corollary specifies another solution to model objects

64

acquiring additional behaviours or additional attributes. However, "UML does not provide

a construct to express this. In this respect it is ontologically deficient" (Evermann, 2003,

p59). Thus, a formal construct of re-classification to express this needs to be defined.

However, "Object creation and destruction have no direct equivalent in the

BWW-ontology as things cannot be created or destroyed" (Evermann, 2003, p61).

Actually, objects cannot be created or destroyed. Instead, they only change memberships

of classes by acquiring or losing properties. For example, a 'Person' acquiring a mutual

property of 'enrol' by a 'University' is a 'Student.' In this case, there is not a new

'Student' created, but the 'Person' instance becomes a member of the 'Student' class. We

would not consider it a good way to employ a non-ontological semantic (Object creation /

destroying) for an ontological deficiency (no mechanism of re-classification), which

actually need a formal definition. The original and basic motivation for this corollary is to

model the process of an object changing its membership from a class to its sub-class,

namely re-classification. Thus, the mechanism needs formal definition and further

refinement so that it can be added to UML specification. Since there is no such mechanism

in UML specification currently, we could not implement this corollary in CASE tools at

this time.

Corollary 12 Re-classification occurs only within a generalization / specialization

hierarchy.

65

Re-classification is a mechanism to model the process of objects being specialized or

generalized through acquiring or losing properties or behaviours. When objects acquire

additional behaviours or attributes, they possess the original behaviours or attributes as

well as the additional behaviours or attributes. According to UML specification, "The

more specific element is fully consistent with the more general element (it has all of its

properties, members, and relationships) and may contain additional information" (OMG,

2003, p2-38). Objects acquiring additional behaviours or attributes are specialized from

the original class. That is, re-classification occurs within a specialization hierarchy. For

example, a 'Person' acquiring an additional attribute of 'department' is re-classified as an

<Employee.' This re-classification occurs only within the 'Person---Employee'

specialization hierarchy. Conversely, an 'Employee' losing the attribute of 'department' is

re-classified as a 'Person.' This re-classification occurs only within the

'Employee---Person' generalization hierarchy.

To implement this corollary, first, we need to get the re-classification. This can only be

done after re-classification is fully defined in UML specification. Then we can check

whether the re-classification only occurs within a generalization / specialization hierarchy,

that is, check the new class and original class, which the re-classified object belongs to. If

the two classes have no generalization / specialization (direct or indirect) association then

the program shows a violation warning. This is expressed in the following:

Get re-classification;

66

Get object;

Get origina/C/ass;

Get newC/ass;

Object interClass = newC/ass;

While interC/ass.associationEnd=generalize

Get anotheEnd;

Get anotherC/ass;

Interclass = anotherC/ass;

Ifinterclass == origina/C/ass

Exit;

Show error;

Because there is no re-classification mechanism either in UML specification or in

UML CASE tool, we cannot implement this corollary at this time.

Rule 13 Every UML-aggregate object must consist ofat least two parts.

This rule discusses UML aggregations. First, we explain the meaning of this rule.

Because objects are instances of a class, this rule specifies that every UML-aggregate

object must consist of at least two parts. There are two cases that apply to this rule. First,

an aggregate object should consist of least two objects in different part classes. For

example, a 'Committee' class is the aggregate of classes of department faculties. The

object of 'Committee' class can consist of an object of faculty from 'Computer Science',

and an object of faculty from 'Business.' The second case is that an aggregate object can

consist of at least two objects from one part class. In this case, the number of objects in that

part class must be greater than one. For example, the object of the 'Committee' class can

consist of two faculty objects from 'Computer Science.' That is, the committee can consist

67

of both two people from computer science; or one person from computer science and

another from business; or both two people from business. Now, let us see why we should

have this rule. We have explained in Rule 6 and Rule 7 that aggregation is a kind of

association related to the whole-part relationship. Aggregation classes are the whole of

some part classes. If an aggregation only consists of one object, how can the aggregation

acquire emergent properties? According to Rule 7, every aggregate has to have at least one

emergent property. Thus, it is better to equate this aggregation to that object than say that it

is an aggregation consisting of one object.

We can calculate the number of part classes to make sure the number is greater than

two. However, in the second case, the part class number would only be one. Thus, we

calculate the number of aggregate associations. If the number is greater than one, the

program does nothing and exits. Otherwise, it shows a violation warning. However, in the

above approach, the system will show a warning message for all umelated classes. This is

because the umelated classes have no aggregate association at all and the count number is

zero. Thus, we add another restriction in the program. Only if the aggregate association

number of a class is less than two and does not equals zero, the system shows a violation

warning. This is expressed in the following:

Get classes;

Get associationEnds;

Count=O;

While associationEnds.hasNextO

IfassociationEnd=aggregate

68

Count+l

Ifcount>1 or count=O

Exit;

Else show error;

Rule 14 An instance of a class that by virtue of additional aggregation relationships

acquires emergent properties or emergent behavior must be modeled as an instance ofa

specialized class which declares the corresponding attributes and operations.

This rule is very similar to Rule 12, which discusses objects acquiring additional

properties or behaviors through association interactions. This rule discusses objects

acquiring emergent properties or behaviors through a special association: aggregation.

Thus, this rule has the same motivation and rational as Rule 12. From Rule 7, we know

that objects can acquire emergent properties by participating in an aggregation as a whole

side. Conversely, if objects do not participate in this aggregation, they do not possess these

emergent properties. This difference is expressed by aggregate multiplicity of '0..*' (* = 1,

2, ...N). We use Figure 4.13 and Figure 4.14 to explain this.

Head

1

Wing

o.. 2

Otlh 01
CreabJre

69

Body

1

Figure 4.13 Incorrect model of Rule 14

Head

1

Body

1

I J
01 01
CreabJre

Bird

2

Wing

Figure 4.14 Correct model ofRule 14

A 'Creature' is an aggregate of 'Head', 'Body' and so on. In Figure 4.13, ifno 'Wing'

(multiplicity of '0') participates in the aggregation, it is fine. When a 'Creature' has two

'Wings' (multiplicity of '2'), it acquires an emergent behavior of 'Fly.' However, not all

'Creature' objects possess the behavior of 'Fly.' This conflicts with the definition of class,

which is a group of objects with the same properties and behaviors. Thus, Figure 4.13,

70

which violates this rule, is an incorrect modeling. According to this rule, we model the

objects, that acquire emergent property of 'Fly' by virtue of 'Wing' aggregation, as a

specialized 'Bird' class in Figure 4.14.

The implementation of this rule also applies to both UML specification and CASE

tools. In UML specification, multiplicity of '0..*' (* = 1, 2, ...N) for aggregation ends

should be proscribed. That is, users should separate '0..*' into '0' and '1..*.' However, "A

multiplicity of 0..0 is meaningless as it would indicate that no instances can occur" (OMG,

2003, p3-75). Thus, the multiplicity of '0' should not be modeled for aggregation ends.

Remember that multiplicity of '0' should not be modeled for attributes (Rule 11) and

multiplicity of '0' should not be modeled for association ends (Rule 12). We propose that

multiplicity of '0' should not be modeled at all in UML specification. For the same reason~

the option of multiplicity of '0' should be disabled in CASE tools. However, if a CASE

tool permits users to input aggregation ends multiplicity, an examination is still needed.

The examination gets aggregation ends and checks whether the multiplicity begins with

'0.' If this is the case, the program shows a violation warning. This is expressed in the

following:

Get aggregations;

Get aggregationEnds;

Get multiplicity;

Ifmultiplicity.startsWith("0 ")

Show error;

Else exit;

71

Rule 15 Object creation occurs when an entity acquires a property so that it becomes a

member ofa different class.

According to class definition, "A class is a description of a set of objects that share the

same attributes, operations, methods, relationships, and semantics" (OMG, 2003, p2-26).

If an entity acquires a property other than the 'n' properties of the class it currently belongs

to, it can no longer belong to this class. It does not only possess the 'n' attributes possessed

by other objects in that class, but also posses one (the 'n+1') more attribute than other

objects. In this case, the entity becomes a member of a different class whose members all

possess these 'n+l' attributes. In the 'Creature--Bird' example, a 'Creature' acquires a

property of 'Wing' so that it becomes a member of the 'Bird' class.

This rule specifies the use of object creation to model the above process. However,

"Object creation and destruction have no direct equivalent in the BWW-ontology'~

(Evermann, 2003, p61). In addition, we notice that the above process is like the following

description: "Changes in natural kind of a thing correspond to changes in class

membership of an object" (Evermann, 2003, p59). This description is actually the

proposed re-classification. (Please refer Corollary 11 for details ofre-classification.) Based

on the above thinking, we would rather employ the re-classification mechanism than

object creation to model the process that entities acquire properties so that it becomes a

member of a different class.

This rule will change the UML specification. Implementation in CASE tool will only

72

be realized after this is done in UML specification.

Corollary 13 Object destruction occurs when an entity loses a property that is necessary

for membership in a particular class.

This corollary describes the reverse process of Rule 15. An entity of 'n' properties

loses a property and becomes to possess "n-l" properties. This entity no longer belongs to

that 'n' property class, because this entity no longer share all the 'n' properties with other

objects in that class. For example, when the 'Employee' loses the property of 'job', it no

longer belongs to the 'Employee' class. This is because 'job' is necessary for membership

of the 'Employee' class.

This corollary specifies the use of object destruction to model the above process.

Based on the same thinking in Rule 15, we would rather employ the re-classification

mechanism than object destruction to model the process that entities lose properties. These

properties are necessary for membership of a particular class.

This rule will change the UML specification. Implementation in CASE tools will only

be realized after this is done in UML specification.

Rule 16 Attributes with class scope should instead be modeled as attributes of an

aggregate representing the objects ofthe class.

In UML classes, there are two kinds of attributes: instance-scope attribute and

73

class-scope attribute. The instance-scope attribute is an attribute of the instance objects of

a class. A class is a set of objects with the same attributes and behaviors. Objects are

instances of a class. So, every object of a class possesses the instance-scope attributes.

Attributes we normally model are the instance-scope attributes. However, not all attributes

can be possessed by each object. Some attributes are only possessed by the whole group of

objects, namely the class. These attributes are class-scope attributes. This rule specifies

that no class-scope attribute should be modeled. This is because"An object as a class

instance possesses all methods and attributes defined for its class" (Evermann, 2003, p52);

however, class-scope attributes are not possessed by a class instance, but by the set

(aggregate) of all class instances. Let us look at an example. In the modeling of a

bookstore, the designer models a 'Book' class with attributes: 'BookName',

'NumberOfBooks' and so on. This is an incorrect modeL The 'BookName' is an

instance-scope attribute because every book instance possesses a name. The

'NumberOfBooks' is a class-scope attribute because each book instance cannot possess

the book number but only the book class can. According to this rule, the

'NumberOfBooks' should not be modeled as an attribute of the 'Book' class. Instead, we

should create an aggregation relationship in this case. The 'Book' is the part class and

'Inventory' is the whole class. The 'NumberOfBooks' should be modeled as an attribute of

the aggregated class 'Inventory.' This is because on the book inventory, every book title

possesses the attribute ofbook number and book number is the instance-scope attribute of

74

the inventory class.

For the implementation, the program gets each attribute from each class to see

whether any attribute is class-scope. If an attribute is found class-scope, it shows a

violation warning. This is expressed in the following:

Get classes;

Get attributes;

While attributes.hasNextO

Get attributeScope;

IfattributeScope=classScope

Show error;

Else exit;

Rule 17 If a class that is specialized is declared as abstract, the specialization must be

declared to be 'complete'.

In UML, specializations inherit all attributes and behaviors from their generalization.

Generalization is the super-class of all their specialized sub-classes. If all objects in

generalized super-class are members of the set of specialized sub-classes, this is called

"complete". Another concept we need to introduce is that a class can be declared

"abstract". This means, there is no actual instance for the abstract class. A generalized

super-class is a class, so it can be declared abstract, which means there is no instance for

the super-class. That implies an abstract super-class has attributes and behaviors and there

is no class object to possess them. In addition, "There are no properties without things

possessing them and there are no laws without things adhering to them" (Evermann, 2003,

75

p65). Thus, the abstract super-class has to be specialized by its sub-classes so that objects

of the specialized class can possess those attributes and behaviors. Since the super-class is

abstract and cannot have any object, the specialization has to be complete. For example,

'GraduateStudent' and 'UndergradStudent' are two specialized sub-classes of 'Student'

class. If the super-class 'Student' is declared as abstract~ it means, there is no object for it.

The actual student has to be member of 'GraduateStudent' or 'UnderagradStudent.' Since

'Student' is abstract, this specialization must be complete. That is, a student must be either

a gradstudent or undergradstudent. Note that specializations can also be declared abstract.

In this case, their sub-specializations should be complete.

To implement this rule, we need to first check all generalized super-class. Then these

super-classes are checked to see whether they are abstract or not. For those super-classes,

which are declared abstract, we finally check the specialization constraints to see whether

it is declared complete. If the program fmds a specialization not complete, it shows a

violation warning. This is expressed in the following:

Get generalizations;

Get parentEnd;

IfparentEnd==abstract

Get constraints;

If !constraint==complete

Show error;

Exit;

However, the notion of abstract class in UML refelects implementation thinking, not

conceptual thinking. We propose that this notion be removed from UML for conceptual

76

modeling.

Rule 18 A class that is not specialized cannot be declared abstract.

Having "There are no properties without things possessing them and there are no laws

without things adhering them" (Evennann, 2003, p65), we can deduce this rule in two

ways. First, a class is not specialized implies that this class has no sub-class. That means

that all objects are instances of the class itself. Also beacuse there must be some objects to

possess the class properties and behaviors, this class cannot have no instance and cannot

be declared abstract. Second, a class that is declared abstract implies that this class has no

object. Thus, the abstract class has to be realized by some specialized sub-classes. In

addition, the specialization has to be declared complete according to Rule 17. For example,

a 'Student' class without any specialized sub-class cannot be declared abstract.

To implement this rule, we need to check whether a class is abstract or participates in

generalization as a parent. If it is abstract but does not satisfy the latter condition, the

program shows a violation warning. This is expressed in the following:

Get classes;

Ifclass==abstract

Get associationEnds;

While associationEnds. hasnextO

IfassociationEnd==generalizeParent

Exit;

Show error;

77

Rule 19 A specialized class must define more attributes, more operations or participate in

more associations than the general class.

According to UML specification, "Generalization IS the taxonomic relationship

between a more general element (the parent) and a more specific element (the child) that is

fully consistent with the first element and that adds additional infonnation" (OMG, 2003,

3-86). That is, the features of a specialized sub-class consist of two parts. One is the

features inherited from its super classes, another is the additional features only possessed

by itself. If the specialized class does not define more attributes, more operations or

participate in more associations than the general class, the specialized class is absolutely

the same as the general class. Thus, a specialized class must define more features than the

general class. For example, a specialized sub-class 'Student' defines more attribute:

'studentNo,' more operation: 'study,' and participates in more association: 'School enroll

student' than the general super-class 'Person.'

The implementation approach of this rule is to compare specialized sub-class with

general super-class to see whether the sub-class possess more features. First, we get

generalizations as well as both "parentEnds" and "childEnds." Second, the program gets

all parentEnd features, such as attributes, methods and associations and puts them into a

vector. Then, each attribute, method or association of the childEnd will be matched with

the vector. If any feature is not found in the vector, the system exits. Otherwise, it shows a

violation warning. This is expressed in the following:

78

Get associations;

Ifassociation==generalization

Get parentEnd;

Get attributes;

Get operations;

Get associationEnds;

Add to vector;

Get childEnds;

Get attributes;

While attributes.hasNextO

Match with vector;

Ifnotfind in vector

Exit;

Get operations;

While operations.hasNextO

Match with vector;

Ifnotfind in vector

Exit;

Get associationEnds;

While associationE:nds.hasNext()

Match with vector;

Ifnotfind in vector

Exit;

Show error;

Else exit;

Noticing that the inherited attributes, operations or associations from the super-class

should not be shown in the sub-classes, we only need to check whether a sub-class

possesses any attribute, operation or participates in any association except the

specialization itself. This is because the super-class should not possess any of the above

features. If the program cannot find any feature of attribute, operation or participating in

association for a sub-class, it shows a violation warning. This is expressed in the

following:

79

Get associations;

Ifassociation==generalization

Get childEnds;

Get attributes;

While attributes.hasNextO

Exit;

Get operations;

While operations.hasNextO

Exit;

Get associationEnds;

While associationEnds.hasNextO

Exit;

Show error;

Rule 20 Every ordinary association must be an association class.

In Rule 3, we discussed that mutual properties of classes participating an association

should be modeled as attributes of association classes. For classes that have no mutual

property or their mutual properties are out of our modeling scope, we only model an

association to connect these classes. In lJML, there are two functions of associations. One

use of association is message passing. It is stated that "The link is used for transportation

of the stimuli" (OMG, 2003, p3-130), "A link is an instance of an association" (OMG,

2003, g9), and "A message is a specification of a stimulus" (OMG, 2003, p3-111).

However, message passing is not consistent with our ontology because "Since message

passing is a design related concept and there exist no equivalent in the BWW-ontology, we

propose that associations are ontologically excessive. Hence, they should not be employed

for conceptual modeling" (Evermann, 2003, p67). Another situation of modeling

80

associations is that there is a mutual property ofparticipated classes. However, if there are

more than one mutual property, an association class is employed. That is, "the same

ontological concept, mutual property, would be mapped to two different UML constructs,

attributes and associations" (Evermann, 2003, p67). To avoid ambiguities, this rule

specifies that association classes should take the place of associations. Please note that

associations we discuss here only refer to ordinary associations, excluding aggregations.

To implement this rule, we can change it to other words. That is, all associations

should be modeled together with association class. The approach is to check whether there

is any association without association class connecting to it. If the program finds an

independent association not connecting to association class, it shows a violation warning.

Because this rule only applies to ordinary associations, our progran1 does not check

generalizations and aggregations. This is expressed in the following:

Get associations;

Ifgeneralization IIaggregation

Exit;

Get associationClass;

IfassociationClass = =null

Show error;

Else exit;

81

Chapter 5 Change Rules

In the last chapter, we discussed the static structure of things and their related concepts.

According to ontology, every thing can change. In this chapter we will discuss the

approach of implementing rules related to change within things.

Rule 21 A UML-state represents a specific assignment of values to the attributes [of

ordinary classes] and attribute ofassociation classes of the objects for which the state is

defined.

According to BWW ontology, a thing can be represented by state functions, whose

values are determined by properties of the thing (Bunge, 1977, p126). That is, states of

things associate with properties of things. We have discussed before, that each property

has its value. The different property value sets correspond to different states. In Evermann

and Wand's research, UML-states and UML-state transitions are mapped with

BWW-states and BWW-state transitions, respectively. Also, "There exist no states which

are independent of attributes because properties express all the characteristics of a thing"

(Evermann, 2003, p71). In addition, properties consist of intrinsic properties and mutual

properties, which are represented by attributes of ordinary and association classes

82

respectively. Thus, we get this rule. For example, a 'Person' object has an attribute of

'location.' Different values of 'location' specify different states of the 'Person.' A value of

'office' implies state of 'work'; a value of 'bus' implies state of 'go home'; and a value of

'home' implies state of 'rest.' (Note that 'work', 'go home', and 'home' are high-level

composite states. Our example model only concerns this level.)

However, there is no mechanism in UML mapping with ontology in this case: "States

in UML are independent of attributes or properties and UML provides no mechanism with

which to specify any such connection" (Evermann, 2003, p72). Thus, this rule can be

realized" by enabling this feature in both UML specification and CASE tools. That is, to

implement this rule some additional mechanism needs to be added to UML. CASE tools

will enable some functions based on this mechanism. Because UML is ontologieally

deficient with respect to the rule, until such a connection is defined in lnvIL, there is no

way to implement it.

Corollary 14 A UML-transition must change the value of at least one attribute used to

define the state space.

We have discussed in the last rule that different states of a thing are determined by

different property value sets. This also means that the same property value sets correspond

to the same state of a thing. In UML, "A transition is a directed relationship between a

source state vertex and a target state vertex" (OMG, 2003, p2-149). A state of a thing

83

changed by transition indicates that property values are changed. For example, states of a

'Person' transiting from 'work' to 'go home' imply values of 'location' attribute changing

from 'office' to 'bus.' However, we notice that other 'Person' attributes, such as 'height'

remain invariant with this transition. There can be different modelings of a thing depends

on the different purposes (Bunge, 1977, P119). In each modeling, the thing can have a state.

Not all properties have to be used to define states in a model. For example, the attribute of

'location' is used to describe states of modeling for one purpose, while the attribute of

'height' is used to describe states of another modeling for another purpose. Values of

'location' only determine state space of {work, go home, home}; values of 'height' only

determine state space of {child, youth, adult}. That is why this corollary only relates to the

"attribute used to define the state space."

It is possible that the source and target are actually the same state. Same state means

same attributes of this state space. If this is the case, the transition between the same states

would not change any attribute value. This is inconsistent with this corollary. We revise

this corollary by proposing a constraint to it. That is:

If source state and target state are not the same, a UML-transition must change the value of

at least one attribute used to define the state space.

In the last rule, we have known that states and attributes of an object are independent

(unrelated) in UML. Evermann proposes a meta-model in which UML-states should be

associated with attributes. If this is adopted by UML, we can implement the corollary in

84

this way. Once the program finds a transition, it will check whether any attribute of that

object changes. If the transition does not change any attribute, the program shows a

violation warning. Otherwise, the program checks whether these changed attributes span

the state space of that object. If not, it shows a violation warning. This is expressed in the

following.

Get transition;

Get attributes;

Ifattribute change

Get stateSpace;

IfstateSpace. contains(attribute)

Exit;

Show error;

Rule 22 For every level of refinement of a state C, there must be an additional set of

attributes in the class description or in participating association classes that change as the

object transitions among the sub-states.

According to Evermann and Wand's research, "A composite state or submachine state

may be refined as a state machine comprising sub-states and transitions among sub-states"

(Evermann, 2003, p77). That is, designers can decompose a composite state into a set of

sub-states. Whatever sub-state a thing is currently in, it remains in the same composite

state of those sub-states. Thus, the attribute values determining the composite state also

remain invariant. From Rule 21, we know that this set of sub-states is also defined by some

attribute values. That is, a transition between the sub-states must change the value of at

85

least one attribute used to define the sub-state space (Corollary 14). What are these

attributes used to define the sub-state? Because the sub-states are extended from a

composite state, some attributes extended from the attributes defining composite state are

used to define these sub-states: "Whenever we encounter sub-states, the set of attributes

used to describe them must be extended from the set used to describe the super-state"

(Evermann, 2003, p79). These extended-attributes are an additional set of attributes in the

class description or in participating association classes that change as the object undergoes

transition among the sub-states. For example, we refine the state 'rest' of a 'Person.'

Sub-states of 'rest' may be 'eat', 'shower', and 'sleep.' The additional attributes describing

these sub-states are extended from 'location.' Namely, an attribute of 'position' with values

of {kitchen, bathroom, bedroom} describes the three sub-states respectively.

The implementation is similar to Corollary 14. The difference is this rule only checks

composite super-states. The program gets all transitions among sub-states within a

composite state. Because extended attributes are also attributes of the same object, they

should be added to the same class / object. Thus the program checks whether any attribute

of that object changes. If the transition does not change any attribute, it will show a

violation warning. Otherwise, the program checks whether these changed attributes are in

the state space of the composite super-state. If yes, it shows a violation warning. Since the

top-level composite state represents direct attributes of a class and this rule discusses

extended attributes, we do not check such top-level composite states. This rule also needs

86

to use the proposed meta-model discussed in Corollary 14. This IS expressed in the

following:

Get compositeState;

IfcompositeState==top

Get sub-states;

Ifsub-states.size>1

Get transition;

Get attributes;

Ifattribute not change

Get superStateSpace;

IfsuperStateSpace. contains(attribute)

Show error;

Else exit;

Corollary 15 For all immediate sub-states of a super-·state, the values assigned co

attributes describing the super-state are invariant and are equal to those defining the

super-state.

Since all immediate sub-states of a super-state share the same super-state, the

super-state remains invariant when transitions happen among sub-states. That means the

values assigned to attributes describing the super-state are invariant and are equal to those

defining the super-state. It is conform with the conclusion we made in Rule 22.

The implementation of the last rule has made sure the transitions among sub-states

would not change any attributes of their composite super-state. If users follow Rule 22,

they will not violate this corollary. Therefore, there is no need to implement it.

87

Corollary 16 Concurrent sub-states require mutually disjunct sets ofadditional attributes

in the class description or in participating association classes.

We have known from Rule 22 that for sub-states there must be an additional set of

attributes in the class description or in the participating association classes that change as

the object experiences transition among these sub-states. Now, we will talk about

concurrent sub-states. In UML, the concurrent sub-state is defined as "a sub-state that can

be held simultaneously with other sub-states contained in the same composite state"

(OMG, 2003, gI0-5). That is, a thing is in 'N' sub-states at the same time. Since different

attribute values determine different states, an attribute can only possess one value for one

state. Otherwise, it specifies other states. That means it requires 'N' attributes to specify 'N'

values to describe the 'N' sub-states. For example, there can be several concurrent

sub-states describing a 'Person' in a state of 'rest'. He can 'eat' and 'think' at the same time.

However, state 'eat' is determined by the 'position' attribute with the value of 'kitchen.'

There needs to be another attribute to describe the 'think' state. An attribute of 'plan' with

the value of 'go to cinema' can be the solution.

To implement this corollary, the program first gets a sub-state. If it has concurrent

states, both of their related attributes will be examined. If attributes related with these

concurrent sub-states are the same, the program shows a violation warning. This rule also

needs to use the proposed meta-model discussed in Corollary 14 (Please refer to discussion

of Corollary14 for details). This is expressed in the following:

88

Get subStates;

IfsubState==concurrent

Get ssAttributes;

While attributes.hasNextO

Get concurrentState;

Get csAttribute;

IfssAttribute!==csAttribute

Exit;

Show error;

Rule 23 Guard conditions on transitions from the same state to nonconcurrent sub-states

must be mutually disjunct.

It is stated that "Ontologically, a thing can be in only one current state in any given

model" (Evermann, 2003, p83). When we map this into UML, some constraints are

required to ensure that an object will not go into two states at the same time. In UML,

transition is "A relationship between two states indicating that an object in the first state

will perform certain specified actions and enter the second state when a specified event

occurs and specified conditions are satisfied" (OMG, 2003, glo16). States change from

one to another through transitions. That is, there can be at most one transition fired from

the same state. Also, transitions can be enabled or disabled via guard conditions: "Guard

condition is a condition that must be satisfied in order to enable an associated transition to

fire" (OMG, 2003, gl08). To avoid the transition of objects from one state to more than one

state, we need to prohibit more than one guard condition being satisfied. That is, guard

conditions on transitions from the same state must be mutually disjunctive and not the

89

same. However, in the discussion of Corollary 16 we gave an example of a 'Person' in the

'eat' and 'think' states at the same time. That example does not violate this ontological

mapping. When we began discussing this rule we specified that a thing can be in only one

current state in any given model. A thing can be in 'N' states concurrently in 'N' different

models. The purpose of the 'eat' state is to capture the physical status of what a 'Person' is

doing. The 'think' state is for purpose ofmodeling the mental activity of that 'Person.' They

are two concurrent sub-states in two given models. Thus, this rule only applies to

nonconcurrent cases.

To implement this rule, we need to check with state chart diagrams. First, the program

checks whether a state has more than one outgoing transition. If this is the case, it then

checks whether these transition targets are concurrent sub-states. For those which are not

concurrent, we check whether the guard conditions of these transitions are the same. If

they are the same, a violation warning is shown. This is expressed in the following:

Get states;

Get transitions;

While transition.hasNextO

Iftransition == outgoing

Get target;

Iftargets==concurrent

Exit;

Get guards;

While guards.hasNextO

Ifvector.contains(guard)

Show error;

Else add to vector;

There is a limitation of this implementation approach. In some cases where more than

90

one guard condition is satisfied, the examination will not show a violation warning. For

example, guardl is 'X>3' and guard2 is 'X>5.' If in some cases 'X=6', both guardl and

guard2 are true and the object goes into two states. That is because, if there is overlap of

two guards, they are not disjunct. In this case, the program cannot accurately tell whether

two guards are strictly disjunctive. The reason is that the firing of transitions depends on

the boolean values of guard conditions. However, different guard expressions may result in

a same boolean value. There is no general method for the program to tell whether two

different expressions always result in the same boolean value. However, for some specific

domains, we can find solutions. In the above example, if 'X' is an integer and has a range of

'-50...+50', we can let the program test each value of 'X.' The program will easily find that

guardl and guard2 are not mutually disjunctive.

Rule 24 Action states are super-states ofa set ofsub-states. The object transitions among

these while in the action state. State charts must reflect this fact.

In UML, there is a notion of action states: "An action state is a simple state with an

entry action whose only exit transition is triggered by the implicit event of completing the

execution of the entry action" (OMG, 2003, p2-172). That means, in the whole process

(from entry to exit) of an action, an object is always in one state. In the discussion of Rule

21, we know that a state represents specific attribute values. That is, in the whole process

of an action, attribute values determining the action state remain invariant. In UML, "An

91

action typically results in a change in the state of the system, and can be realized by

sending a message to an object or modifying a link or a value of an attribute" (OMG, 2003,

g2). Thus, Evermann and Wand map a UML-action to the ontological concept of a

BWW-state transition (Evermann, 2003, p120, We will discuss this in detail in Corollary

31.). In addition, "BWW-state transitions are mapped to UML-state transitions"

(Evermann, 2003, p72). Futhermore, because of Corollary 14 (A UML-transition must

change the value of at least one attribute used to define the state space), we can conclude

that an action changes attribute values. However, this contradicts with the UML notion of

action state described above.

This contradiction can be explained by the fact that action states are in fact not simple

states, but composite states. When an action happens, namely a transition happens~ it

changes the attribute values and consequently changes the object states. However, the

action does not change the composite super-state, but those sub-states. The unchanged

state is actually a super-state. Let us see the example of a 'Person' in the action state of 'go

home.' In the action from the person leaving office to arriving home, s/he is continually in

the super-state 'go home.' However, its sub-states are changing. The person experiences

sub-states of 'in elevator', 'on bus', 'at door' and so on. According to the above analysis,

action states should be specializations of composite states. However, in UML action states

are specializations of simple states. Thus, this rule indicates such a deficiency of UML. If

it is adopted, the UML specification should be changed to require analysts to model a

92

group of sub-states for each action state. As a result, CASE tools will enforce analysts to

follow this rule, which can use the following approach: to check whether every action state

in activity diagrams is a composite state in a state chart diagrams. If there is no such

mapping for any action state, the program shows a violation warning. This is expressed in

the following:

Get actionState;

GetasName;

Get states;

Get sNames;

IfsNames.contains(asName)

Ifstate==composite

Exit;

Show error;

Corollary 17 States must not be associated with any actions. Sub-states corresponding to

different models should be used instead.

The last rule already requires modeling a group of sub-states for each action state.

That means the actions of action states can be represented by the whole series of

transitions among those sub-states. Thus, "there appears no need to assign such an action"

(Evermann, 2003, p84). That is, all actions associated with states can be modeled by

sub-states instead. States should not associate with any actions. This is Corollary 17.

This corollary proposes a change in UML specification. If adopted, CASE tools will

disable the feature of associating actions with states.

93

Corollary 18 All states in an activity diagram must be states ofthe same object.

In activity diagrams, there are states and state transitions. In addition, "ontologically,

states are defined for a given thing and state transitions are defined only between states of

the same thing" (Everrnann, 2003, p86). Thus, all states in activity diagrams must

represent the same object.

In UML, "an activity graph is a special case of a state machine" (OMG, 2003, p2-172).

In addition, UML specifies that a state machine is a behavior that specifies the sequences

of states of an object (OMG, 2003, gI4). That is, an activity diagram only represents one

object. Consequently, all states in an activity diagram must be states of the same object.

That means that this corollary cannot to be violated. Thus, there is no need to implement it.

Corollary 19 If the partitions ofan activity diagram represent differeni objects, they must

be part ofa composite, which is shown in the class diagram.

According to Everrnann and Wand, "partitions (swimlanes) are employed in UML

activity diagrams to group states or action states together" (Everrnann, 2003, p86). States

in different partitions of activity diagrams can describe different objects. In addition, "an

activity graph is a special case of a state machine that is used to model processes involving

one or more classifiers" (OMG, 2003, g2). However, according to Corollary 18, all states

in an activity diagram must be states of the same object. This seems to be a contradiction.

However, the same object in Corollary 18 is the single composite object of those different

94

objects in this corollary (Corollary 20). That is, all different objects represented by states

in an activity diagram must be part of a composite object. Thus, this composite object

should be modeled in a class diagram. For example, in an activity diagram a swimlane

divides states into two partitions of 'make motor' and 'make body.' These two groups of

states represent two objects of 'Motor Workshop' and 'Body Workshop' respectively. These

two objects are actually parts of the composite object 'Car Factory.' The composite

relationship: {Car Factory: Motor Workshop, Body Workshop, ...} should be modeled in a

class diagram.

In UML, activity diagrams use swimlanes for partitions: "A swimlane maps into a

Partition of the states in the ActivityGraph" (OMG, 2003, p3-162). In activity diagrams,

the program can check state partitions divided by swimlanes to see what objects the

partitions describe. If these partitions describe more than one object, the program checks in

class diagrams whether these objects participate an aggregate association as parts. If no

such composition is found, the program shows a violation warning. This is expressed in

the following:

Get swim/anes;

Get partitions[i};

Get objects;

Ifobjects[j}!==objects[k}

Get aggregates;

Get partC/asses;

IfpartC/asses. contains(objects[jJ)&&partC/asses. contains(objects[kJ)

Exit;

Show error;

95

Rule 25 The quantitative object behaviour (for each model) is entirely describable by

top-level state chart (SeO)

In UML, object behaviours are modeled by operations: "An operation is a service that

can be requested from an object to effect behaviour" (OMG, 2003, p2-44). In addition,

"operations are related to ontological notion of change and ontologically, all (quantitative)

changes of a thing are describable by a series of state transitions among stable states"

(Evermann, 2003, p87). That is, behaviours correspond with state transitions through

operations and changes. For an object, the class diagram models its behaviours while the

state chart diagram models its states and state transitions. In state chart diagrams, the

top-level state chart is the composite super-state describing the whole object. Thus, all

behaviours of an object can be described by state transitions in top-level state charts.

Since object behaviours are modeled by operations in UML, our program checks class

operations in class diagrams for this rule. Then it searches top-level state charts to see

whether there are transitions corresponding with every operation. If the program cannot

find any transition for an operation, it shows a violation warning. This is expressed in the

following:

Get transitions;

Iftransition = = top;

Add to vector;

Get class;

Get operation;

96

If! vector.contains(operation)

Show error;

Exit;

Rule 26 All UML-transitions in sea must correspond to an operation ofthe object which

sea is associated with.

By the last rule, we know that every operation of an object can be described by

transitions in the top-level state chart (SeO) of that object. That is, these seo transitions

correspond to the operation they describe. Note that several transitions correspond to one

operation, because there may be several state charts modeling one object for different

purposes. For example, two seos of a 'Person' object model for purposes of capturing

his/her physical and mental activities. In the physical model, states change from 'sleep' to

'shower' by the transition 'get up.' In the mental model, states change from 'dream' to 'think'

by the transition 'get up' as well. The transitions 'get up' in these two models correspond to

the operation 'get up' of the 'Person' object.

To implement this rule, we check each transition III seo to see whether it has

corresponding operations in class diagrams. This can be done by first getting all operations

of a class and adding them to a vector. Then the program gets each transition in seo of this

class. After this, it checks whether the transition is included in the vector. If the transition

is excluded, it shows a violation warning. This is expressed in the following:

Get class;

Get operations;

97

Add operations to opVector;

Get stateMachine;

Get transition;

Get sourceState;

Get targetState;

IfsourceState. container==top&&targetState.container==top

IfopVector.contains(transition)

Exit;

Show error;

Corollary 20 Every object must have at least one operation.

It is stated that "In our ontology everything must be able to change" (Evermann, 2003,

p89). Also, we map BWW-thing with UML-object (Rule 1) and map BWW-change with

UML-operation (Rule 25). Thus, every object must possess at least one operation to ensure

it is able to change.

To implement this corollary, the program only needs to check each class to see

whether it possesses operation. If the program finds any class has no operation, it shows a

violation warning. This is expressed in the following:

Get class;

Get operation;

Ifoperation= =null

Show error;

Exit;

Corollary 21 States in SCO are stable.

"In UML, an object remains in a particular state until an operation invoked by some

other object" (Evermann, 2003, p90). That is, if there is no other object participating, an

98

object will remain in a stable state. Also, states in SCO only describe a whole object. That

means that in a SCO of an object, all states are stable.

The implementation approach uses trigger of transitions to identify the stability of

states. In state chart diagrams, transitions can have triggers by defIning an event. That is, if

a state transition has a trigger event, only the event can cause the transition. If a state

transition has no trigger event, it can spontaneously happen. This is consistent with

BWW-ontology, which identifIes stable and unstable states by judging whether state

transitions are externally induced or spontaneous (Evermann, 2003, p90). Thus, UML

specifIcation should force analysts to model a trigger for transitions in SCO. Also, CASE

tools should enable this feature.

Corollary 22 All UML-transitions in SCO must be associated with a UMLevent.

Since states in SCO are stable (last corollary), they must not have any spontaneous out

transitions. In other words, all transitions in SCO must have a trigger event. Actually, we

already use this corollary in the implementation approach of the last corollary.

This is a corollary and already covered by Corollary 21, there is no need to implement

it.

Rule 27 An object must exhibit additional operations expressing qualitative changes, ifa

super- or sub-class is defined and instances can undergo changes ofclass to the super- or

99

sub-class.

We have discussed object generalization / specialization; in this rule, we will talk

about operations applying to super / sub classes. According to Rule 21, a state corresponds

to a certain property value set. In addition, generalization / specialization through losing /

acquiring additional properties is a qualitative change (Bunge, 1977, p220); different

property sets identify different things (Bunge, 1977, p88). When an object undergoes

qualitative change it acquires / loses properties and is specialized / generalized into the sub

/ super class. Since "the acquisition or loss of behaviour is generally concurrent with loss

or acquisition of properties that change in that behaviour" (Evermann, 2003, p33), an

object is specialized / generalized into the sub / super class through acquisition / loss of

additional properties and behaviours concurrently. Thus, we get this rule.

The implementation approach of this rule is to compare specialized sub-classes with

general super-classes to see whether the sub-classes possess more operations. First, the

program gets generalizations as well as both parent and child ends. Second, it gets all

parentEnd operations and puts them into a vector. Then, each operation of the childEnd

will be matched with the vector. If the program finds any operation not in the vector, the

system exits. Otherwise, it shows a violation warning. This is expressed in the following:

Get associations;

Ifassociation==generalization

Get parentEnd;

Get operations;

Add to vector;

100

Get childEnds;

Get operations;

While operations.hasNextO

Match with vector;

Iffind not in vector

Exit;

Show error;

Else exit;

Notice that the inherited operations from the super-class should not be shown in the

sub-classes; any operation in the sub-class is supposed to be additional than its super-class.

Thus, we only need to check whether a sub-class possesses any operation. If we cannot

find any operation for a sub-class, it shows a violation warning. This is expressed in the

following:

Get associations;

Ifassociation = =generalization

Get childEnds;

Get operations;

While operations.hasNextO

Exit;

Show error;

Rule 28 Methods may be described by state charts other than top-level state charts.

We have mapped operations with state transitions. In UML, a method is "the

implementation of an operation. It specifies the algorithm or procedure associated with an

operation" (OMG, 2003, g9). In ontology, a lawful transformation can be thought of as

transition laws (Evermann, 2003, p34). Thus, methods are mapped with lawful

transformations (Evermann, 2003, p94). A lawful transformation is defined as a "path" in

101

state space between an initial and a final state. That means that we can use a state chart to

model lawful transformations, namely methods. However, the top-level state chart models

behaviour from a class-scope. This top-level seo cannot model methods. In other words,

state transitions in the seo represent operations of a class, while other state charts

represent methods implementing these operations.

Since UML allows state charts to describe methods (OMG, 2003, p3-136), this rule is

consistent with UML. We need to proscribe methods described by the seo. This can be

done by checking state charts describing methods. If a state chart is the top-level seo, the

program shows a violation warning. This is expressed in the following:

Get class;

Get sco;
Get method;

Get stateChart;

IfstateChart==SCO

Show error;

Exit;

Corollary 23 A state chart describing a method must begin and end with those states in

SCO which the operation that the method implements is a realization of

The last rule specifies that methods can be described by state charts. In addition,

methods implement operations. State charts describing methods actually describe

implementations of operations. Rule 25 specifies that every operation can be represented

as a state transition in a top-level state chart (SeO). That is, state charts describing methods

102

associate with transitions in sea. Thus, these state charts must begin with source states

and end with target states of those transitions in sea.

The implementation approach for this corollary is to check whether the initial and

final states of state charts describing methods equal the source and target states of

transitions describing operations, respectively. First, the program gets the sea of a class.

Then it gets transitions in this sea corresponding to operations of the class. For each

transition, its source and final states will be retrieved. Then the program checks state chart

describing the method implementing the operation, which corresponds to this transition. If

the initial or final state of the method and the source or target state of the transition are not

the same respectively, it shows a violation warning. Please note that not every operation

has to be implemented by a method; for example, an abstract operation has no method

(OMG, 2003, p3-46). That is, the program also needs to make clear whether an operation

has a method. This is expressed in the following:

Get class;

Get seO;

Get seOTransitions;

While seOTransitions.hasNextO

Get transitionName;

Get soureeState;

Get targetState;

Get methods;

While methods.hasNextO

Get methodName;

IfmethodName==transitionName

Get methodStateChart;

Get initialState;

103

Get jina/State;

If!(initia/State==sourceState) II!(fina/State==targetName)

Show error;

Exit;

Corollary 24 State transitions out of the initial state of a method realizing an operation

must be associated with the same event that is associated with the transition in SCD which

represents that operation.

Since a state chart describing a method begins with the source state of transition

describing an operation in seo, the initial state of the method is the same as the source

state of the operation. The source state transits to the target state via the transition

describing the operation and this transition is triggered by a trigger event. Since the state

chart describes the method of the operation, the initial state of the method should be

triggered by the same event, which triggers the transition describing the operation. Note

that 'associated' in this corollary is not UML-associations, but means 'relate with'.

The implementation approach for this corollary is to check whether the trigger event

of transition in seo representing an operation equals the trigger event of transition out of

the initial state ofmethod implementing the operation.

First, the program gets the seo of a class. Then, the program gets transitions in this

seo corresponding to operations of the class. For each transition, the program gets its

trigger event. Then it checks the state chart describing the method implementing the

operation, which corresponds to this transition. It gets trigger events of transitions out of

104

the initial state of the method. If these two trigger events are not same, the program shows

a violation warning. This is expressed in the following:

Get class;

Get seO;

Get seOTransitions;

While seOTransitions.hasNextO

Get transitionName;

Get trigger;

Get eventI;

Get eventNameI;

Get methods;

Get methodName;

IfmethodName==transitionName

Get methodStateChart;

Get initialState;

Get outTransition;

Get trigger;

Get event2;

Get eventName2;

If !(eventnameI ==eventName2)

Show error;

Exit;

Corollary 25 A state chart either expresses the external behaviour ofan object (SCO), a

method, a signal reception or is a composite state contained in another state machine.

According to the UML specification, "A statechart diagram can be used to describe

the behavior of instances of a model element such as an object or an interaction" (OMG,

2003, p3-315). If the state chart is a top-level seo, it expresses the external behaviour of

an object (Rule 26). Other state charts may express methods (Rule 28). According to UML,

receptions designate signals and are the summary of expected behaviours (OMG, 2003,

105

p2-102). Thus, state charts can also express signal receptions. (We will discuss signal

receptions in Rule 30.) However, there is a kind of state charts not expressing these

behavioural model elements. These are composite states contained in other state machines,

which express behaviours of instances ofmodel elements.

The implementation approach is to check whether all state charts express one of the

four situations in this corollary. The program gets a state chart to see whether it is a

composite state other than SCQ. If it is not a composite state, the program checks the model

element that owns the state chart. If the owner model element is not an object, a method or

a signal reception, it shows a violation warning. This is expressed in the following:

Get stateChart;

If !(stateChart.isComposite)

While state.hasContainer

Get container;

Get container.ownerO;

If!(owner= =object) II!(owner= =method) Ii!(owner= =signaIReception)

Show error;

Exit;

Rule 29 An operation is not directly specified by state machines. Instead, the methods that

implement an operation are specified by state machines.

In Corollary 25, we know that state machines represent behavioural features of model

elements. These model elements include objects, methods and signal receptions. Rule 25

specifies that operations are described as state transitions in top-level state charts (SCOs).

That is, operations are not behavioural features of model elements and cannot be specified

106

by state machines. Thus, it is not operations specified by state machines directly, but

methods specified by state machines. In addition, these methods implement those

operations.

The implementation approach of Corollary 25 will shows a violation warning if a state

machine specifies a model element other than an object, a method or a signal reception.

That is, if an operation is specified by state machine, the program for Corollary 25 will

detect the violation. There is no need to implement this corollary.

Corollary 26 A state machine that specifies the behaviour of a class or a method is not

contained in other state machines.

State machines are used to represent behavioural features of model elements. Classes

and methods are these model elements and can be specified by state machines. In

Corollary 25, we have discussed that some state machines can be contained in other state

machines. Can a state machine that specifies the behavior of a class or a method be

contained in other state machines? The answer is "No". State machines contained in other

state machines actually do not model behavioural features of model elements. They only

describe some states within the global behavioural features modeling of model elements.

Since classes and methods are model elements, they cannot be described by some states

within other state machines.

The implementation approach is to check whether a state machine attaching to a class

107

or a method is top-level. The program first gets a class or method. Then it gets state

machines attaching to this class or method. Finally, it checks the containers of these state

machines. If any container is not top-level, the program shows a violation warning. This is

expressed in the following:

Get class/method;

Get stateMachine;

Get smContainer;

If !(smContainer==top)

Show error;

Else exit;

Corollary 27 The method corresponding to a state chart must modify the attribute values

of the object corresponding to the values defined for the initial and final state of the

method.

Since operations are described as transitions by top-level state charts and methods

implement operations, methods actually describe transitions in sca. Corollary 14 specifies

that every transition must change the value of at least one attribute used to define the state

space. That is, methods must change some attribute values. What are these attributes used

to define the state space in this case? Corollary 23 tells us that the initial and final states of

state charts describing methods equal the source and target states of transitions describing

operations, respectively. According to Rule 21, there must be a set of object attributes,

whose values correspond to these initial/source and final/target states. This set of object

attributes is the answer to our question above. Thus, we get this corollary.

108

Since this corollary is a consequence of other rules and corollaries, if modellers

strictly follow other rules and corollaries, this corollary will be satisfied. Thus, there is no

need to implement it.

Rule30, Rule31, Corollary28:

State machines describe behavioural features of model elements. We have discussed

behavioural features of operations and methods. Now, we discuss another behavioural

feature, receptions: "A reception is a declaration stating that a classifier is prepared to react

to the receipt of a signal" (OMG, 2003, p2-1 02). That is, receptions capture the process of

receiving signals of classifiers. Actually, this process can be realized by operations.

Operations are modeled by transitions in state charts. For each transition, if there is a

signal, the trigger of the signal event can be modeled. That means that classifiers receiving

signals can be represented via operations by the trigger of signal events of transitions in

state charts. Thus, receptions in UML are redundant. We propose a rule in the following.

Rule-New 03 1 Receptions should not be modeled.

The implementation of the new rule is to check whether there IS any reception

declared. Since all receptions attach to signals, the program gets signals first. Then it

checks whether a signal has any reception. If the program finds one, it shows a violation

warning. This is expressed in the following:

I For consistency between the thesis and the program code, we use 'Rule-New 03' for this new rule and 'Rule-New 02'
for the next new rule.

109

Get signal;

Get receptions;

If !receptions.isEmpty

Show error;

Exit;

However, even though we propose receptions in UML to be redundant, it does not

conflict with UML or ontology. Analysts may still want to use it. If this is the case~ there

are some rules which must be followed to ensure consistency. We still discuss and

implement these rules (Rule 30, Rule 31 and Corollary 28) in the following. Please note

that even though we implement both Rule-New 03 and {Rule 30, Rule 31, Corollary 28},

they can not be satisfied concurrently.

Rule 30 An operation must be associated with the declaration ofsignal reception.

States and transitions in BWW-ontology describe all behavioural features in the world

(Evermann, 2003, p99). In UML, state charts, operations and methods are behavioural

features and have been mapped with BWW-states and transitions. There is another

behavioural feature in UML, reception: "Reception is a child of BehaviouralFeature"

(OMG, 2003, p2-102). That is, UML-receptions should also map with BWW-states and

transitions. In addition, these UML concepts map with the same BWW concept, and they

should be consistent with each other. Previous rules and corollaries have specified

operations and methods to be associated. This rule specifies that signal reception should

also be associated with them.

110

Because receptions are a sub-class of behavioural features, which associate with

signals, we use the implementation approach to check whether an operation associates

with signals and whether the signals possess receptions. The program gets classes with

their operations. For each operation, it gets signals. If the signal is not null, the program

gets its receptions. If no reception is detected, it shows a violation warning. This is

expressed in the following:

Get class;

Get operation;

Get signals;

If !(signals==null)

Get receptions;

if!(receptions==null)

Exit;

Showaror;

Rule 31 The event associated with an operation must be identical to the event associated

with the signal associated with the reception.

In the last rule, we have discussed that operations, methods and signal receptions in

UML map with the same ontology behaviour, namely state and transitions. That means,

they should be consistent with each other. Thus, the event triggers of an operation should

equal the event trigger transition out of initial state of the reception associated with the

signal.

The implementation approach is to compare trigger events associated with operations

and transitions out of the initial states of receptions to see whether they are identical. The

111

program first obtains classes as well as its operations. Second, it gets seo describing the

operations. For each operation / transition, it gets the trigger event. Then the program gets

signal receptions associating with this operation. In state charts describing these signal

receptions, trigger events of transitions out of the initial states will be compared with the

event above. If these two events are not identical, the program shows a violation warning.

This is expressed in the following:

Get class;

Get operation;

Get SCD;

Get transitionl;

Get eventl;

Get signal;

Get reception;

Get stateChart;

Get initialState;

Get transition2;

Get event2;

If !(eventl ==event2)

Show error;

Exit;

Corollary 28 The state machines associated with a reception and with a method specifying

the implementation ofan operation which is in turn associated with that reception, must

possess the same initial andfinal states.

We have discussed in Rule 30 and Rule 31 that, operations, methods and receptions

should be consistent with each other. That is, these behavioural features should begin and

end in consistent states. Previous rules and corollaries have specified this consistency

112

between operations and methods. This corollary specifies this consistency between

methods and receptions.

The implementation approach is to compare initial and final states of state machines

of receptions and methods to see whether they are identical respectively. The program first

gets an operation. Second it gets reception and method associating with the operation.

Then, it gets two state machines associating with them respectively. Finally, the program

checks whether the initial states in these two state machines are identical, as well as final

states. If they are not the same, it shows a violation warning. This is expressed in the

following:

Get class;

Get operation;

Get reception;

Get stateMachinel;

Get initialStatel;

Get finalStatel;

Get method;

Get stateMachine2;

Get initianState2;

Get fin aIState2;

If(!initiaIState1= =initiaIState2) II (!finaIStatel = =finaIState2)

Show error;

Exit;

Rule 32 Acquisition (loss) of independent properties leads to expansion (contraction) of

the thing s top-level state space sea by an orthogonal region.

According to previous rules and corollaries (Rule 14, 15, Corollary 11, 12,13),

113

specialized sub-classes possess properties inherited from their super-classes and acquire

additional properties. How does an analyst model this in state chart diagrams? First, we

need to discuss what is acquisition of independent properties. In the acquired additional

properties in specialized classes, some are independent from other properties of their

super-classes, while some are dependent. Dependent additional properties only exist when

some super-class properties have some certain values. For example, in a 'Person'

specialized by 'SinglePerson' and 'MarriedPerson' association, 'MarriedPerson' acquires

the additional property of 'nameOfSpouse' while 'SinglePerson' does not possess this

additional property. The property 'nameOfSpouse' only exists when the value of the

'Person's' property 'marrigeStatus' IS 'married.' In this case, the property

'nameOfSpouse' is a dependent property. Independent additional properties exist all the

time and are irrelevant with properties of their super-classes. For example, in a 'Person'

specialized by 'Employee' association, 'Employee' acquires the additional property of

'skill.' In this case, an 'Employee' has the property 'skill' regardless of whether, for

example, the value of that 'Employee's sex' is 'male' or 'female.' Now we discuss how to

model state charts for specialized classes by acquisition of independent properties and

acquisition of dependent properties, respectively. Since independent properties of

sub-classes and properties of super-classes are irrelevant, their values may change

concurrently. For example, 'sex' changes from 'male' to 'female' while 'skill' changes

from 'driving' to 'programming.' Also, according to Rule 21, values of these independent

114

properties define states of objects they describe, in this example, the 'employee.' Since

these irrelevant property values change concurrently, the structure of an orthogonal region

is adopted. That is, the states and transitions in seo should be inherited and the

independent properties should be modeled as concurrent states and transitions with those

in seo.

The implementation approach is as follows: First, we search for specialized

sub-classes and get their attributes. Second, we need to identify whether these attributes

are independent or not with attributes of their super-classes. However, the program cannot

know whether they are independent or dependent. It will ask users for the answer. When

users indicate 'independent', the program continues; otherwise it exits. Next, it checks

state charts for the specialized class. According to the rule, these state charts must have an

orthogonal region. Thus, for those state charts, which are not concurrent, it shows a

violation warning. This is expressed in the following:

Get genaralization;

Get superClass;

Get subClass;

Get attributes;

Query user;

Ifattributes = =independent

Get stateMachine;

Get top;

If !(top==concurrent)

Show error;

Exit;

115

Now, we talk about modeling of state charts for specialized classes by acquisition of

dependent properties. Additional properties of specialized classes only exist when

properties of super-classes have certain values. According to Rule 21, these certain values

define a certain state. That is, change of additional property values of specialized classes

only happens within the certain state. Thus, this certain state should be modeled as the

composite super-state of states and transitions corresponding to the additional properties.

However, Evermann's research does not formalize this as a rule. Here we propose a rule to

fill in this blank:

Rule-New 02 Acquisition (loss) of dependent properties should be modeled as a

sub-machine of the related state of things modeled by top-level state seo.

Figure 5.1 and Figure 5.2 describes this rule.

Figure 5.1 State chart before class is specialized

F G I

[K H M] F: , [K H M] H: , [K H M]/" /"

Figure 5.2 State chart after class is specialized

116

The first part of the implementation approach is the same as Rule 32. First, we search

for specialized sub-classes and get their attributes. Second, we need to identify if these

attributes are dependent or not with attributes of their super-classes. Since the program

cannot know whether they are independent or dependent, it asks users for the answer.

When the user indicates dependent, the program continues; otherwise it exits. Then, it

checks state charts for the specialized class. According to the rule, to model additional

features of the sub-class, all states in sea of the sub-class must be composite states. In this

way, the additional features can be modeled within each of these composite states. If the

above are not satisfied, the program shows a violation warning. This is expressed in the

following:

Get generalization;

Get superClass;

Get subClass;

Get attributes;

Query user;

Ifattributes==nonlndependent

Get stateMachine;

Get transitions;

While transitions.hasNextO

Get sourceState;

Get targetState;

Get stateContainer;

If (sourceStateContainer= = top)&&(targetStateContainer== top)

If!(sourceState. isComposite) II!(targetState. isComposite)

Show error;

Exit;

Corollary 29 Every object must be capable of at least one state transition or be able to

117

undergo change ofclass to a super- or sub-class.

The Bunge's ontology specifies that all things are changeable (Bunge, 1977, p219).

Mapping this to UML, we get the conclusion that every object must be capable of change.

There are two types of change, namely quantitative change and qualitative change

(Evermann, 2003, p33). Quantitative change is the change of values of properties.

Qualitative change is the change of acquiring or losing properties. That is, attributes of

objects must be capable of either changing their values or being acquired or lost. In UML,

operations change the values of attributes and all operations can be described by state

transitions in top-level state charts (Rule 25). In addition, every object must possess at

least one operation (Corollary 20). Thus, objects that have undergone quantitative change

must be capable of at least one state transition. When objects change by acquiring or losing

properties, they should be specialized as sub-class or generalized as super-class,

respectively (Rule 12, 14, 15,27, Corollary 11,12,13)

This corollary comes from previous rules and corollaries. It specifies the modeling of

two types of change. Modeling of quantitative change was already discussed and

implemented by Rule 25 and Corollary 20. Modeling of qualitative change was already

discussed and implemented by Rule 12, 14, 15,27 and Corollary 11, 12, 13. Thus, there is

no need to implement it.

118

Chapter 6 Interaction Rules

The last chapter discussed change within things. In this chapter, we will discuss the

implementation approach of rules related to interactions between things. Interactions are

expressed by message-passing: "An interaction contains a set of partially ordered

messages, each specifYing one communication" (OMG, 2003, p2-128). Messages may be

considered as ontological things. For example, when a 'Manager' interacts with an

'Employee' by sending an email including tasks. This email is the message passing from

'Manager' to 'Employee.' However, this is only a special case and does not apply to all

interactIons. For example, when a 'Driver' interacts with a 'Car' by turning the steering

wheel, the 'Driver' does not send any message. In addition, "a message is a specification

of stimulus" (OMG, 2003, p3-111). Thus, "Stimuli are not things in the world. They are

abstract concepts that serve as descriptions, illustrations, abstractions or representations of

interaction" (Evermann, 2003, p118). That is, both stimuli and messages have no

equivalent in ontology and are ontologically excessive (Evermann, 2003, p120). We

propose the following rule:

Rule-New04 Neither stimuli, nor messages should be modeled.

119

The implementation is to check whether there is any stimuli or message modeled. If

the program finds one, it shows a warning. This is expressed in the following:

Get stimuli;

Get message;

If !(stimuli==null)II!(message==null)

Show error;

Exit;

However, even through we propose that messages are ontologically unnecessary in

UML, they do not conflict with ontology or other concepts in UML. Analysts may still

want to use them. If so, there are some rules that must be followed to insure consistency.

We still discuss and implement these rules and corollaries in the following. Please note that,

Rule-New 04 and the following rules / corollaries cannot be satisfied concurrently.

Rule 33 For every class ofobjects between which message passing is declared, there exists

an association class or the two classes are parts ofthe same aggregate.

According to the above discussion, interactions are expressed by message-passing: "A

message defines a particular communication between instances that is specified in an

interaction" (OMG, 2003, p2-119). That is, when message-passing exists, there is an

interaction. Since interactions happen between objects, we need to know how interactions

affect participating objects. According to Bunge, "Two different things X and Y interact iff

each acts upon the other" (Bunge, 1977, p259). That means both objects participating an

120

interaction undergo changes. Since "change may be quantitative, in which case the values

of one or more properties is changed" (Evermann, 2003, p33), property values of both

objects should change. Also because every property must lawfully relate to other

properties (Bunge, 1977, p77), the changes of both objects must obey laws. That is, an

interaction must lawfully change properties of both participating objects. However, a law

is any restriction on the possible values of a thing (Bunge, 1977, pI29). A law only

constrains property values of a single object (Evermann, 2003, p32). How can an

interaction change property values while satisfYing laws in both objects? The answer is,

the interaction must change the mutual properties of participating objects. We have

mapped mutual properties to association class before (Rule 3). Thus, for every class of

objects between which message-passing is declared, there exists an association class. For

example, a 'Company' interacts with an 'Employee' by promotion. This promotion

interaction changes the value of mutual property 'salary' of both 'Company' and

'Employee. '

Now, consider the latter part of this rule. One interpretation is that if two interacting

objects are parts of an aggregation, there does not have to exist an association class.

However, we disagree with Evermann's conclusion, which motivates from "If the two

things are parts of the same composite, changes among them may happen by virtue of

emergent properties" (Evermann, 2003, p113). The motivation conflicts with ontology that

"emergent properties are not possessed by any of the parts of a composite" (Evermann,

121

2003, p32), while mutual properties are properties possessed by all participating objects.

That is, while change of mutual properties affects all participating objects, change of

emergent properties do not have to affect all objects as parts. For example, a 'CPU' and a

'HardDisk' are two parts of composition 'Computer.' When the property 'type' of 'CPU'

changes from 'Celeron-l.2G' to 'Pentium4-2.4G', the emergent property

'computationSpeed' changes from 'medium' to 'fast.' However, no property of the

'HardDisk' changes. Thus, we propose to delete the latter conclusion of this rule.

The implementation approach only needs to check whether there is an association

between interacting objects. This is because we already enforce an association class for

every association in Rule 20. The program first gets interaction and its message. Then the

sender and receiver objects will be retrieved. Next, it will check objects corresponding to

the sender and receiver in class diagrams. If there is an association between them, the

program exits. Otherwise, it shows a violation warning. This is expressed in the following:

Get interaction;

Get message;

Get sender;

Get receiver;

Get class;

Ifclass= =sender

sendClass=class;

Ifclass==receiver

receClass=class;

Get sendClass;

Get association;

While association.hasNextO

Get assoOtherEnd;

122

Get class;

Ifclass = =receClass

Exit;

Show error;

Rule 34 Every object must be the receiver and sender ofsome message.

In ontology, "every thing acts on, and is acted upon by, other things" (Bunge, 1977,

p259). Previously, BWW-things were mapped to UML-objects (Rule 1) and interactions

were expressed by message-passing (Rule 33), thus, every object must send and receive

some message. For example, a human resource manager interacts with ajob applicant. The

'Applicant' object sends the message of 'applyJob' and receives the message of 'accept /

decline.' The 'Manager' object sends the message of 'accept / decline' and receives the

message of 'applyJob.' However, according to Evermann's research, this rule does not

apply to every object participating in an aggregation as a part (Evermann, 2003, p114).

That is, not every part object has to send and receive messages. As long as some part

objects send messages and some part objects receive messages, the whole object sends and

receives message. There is one thing needs to be noted here, which is not explained by

Evermann. Sending and receiving messages discussed above for part objects should not

include messages between these part objects. Even though one part object sends / receives

messages to / from other part objects, from the scope of the object as a whole, it does not

send / receive messages. For example, a whole object 'Person' consists of part objects

'Brain' and 'Eye.' When 'Brain' sends message 'open' to 'Eye', this message is sent

123

inside the 'Person.' From the scope of the 'Person', there is no message sent or received.

That is, if class 'A' is an aggregate of classes 'B' and 'C', in addition messages only be sent

and received between 'B' and 'C', this still violates this Rule. This is because from the

scope of 'A', it does not send or receive messages.

The implementation approach is to check whether every object is the sender or

receiver of any message. First, the program gets messages in collaboration diagrams. For

each message, it gets the sender and receiver. Then, it gets base classes of sender and

receiver and adds them into "_sender" and "_receiver" vectors, respectively. After this, all

classes and their associationEnds will be retrieved. If there is an aggregation, it gets the

association and the part class. These part classes will be added into the "-'part" vector.

Finally, it gets an object (class). (Please note, this step is inside a loop. An object is

retrieved in each loop. Eventually, all objects will be retrieved.) For each class not in the

"-.part" vector, if it can be found in both "_sender" and "_receiver" vectors, the program

will exit. Otherwise, it shows a violation warning. Since this rule does not apply to every

object participating in an aggregation as a part, we do not check part objects. This is

expressed in the following:

Get interaction;

Get message;

Get sender;

Get base;

Add to _sender;

Get receiver;

Get base;

124

Add to _receiver;

Get class;

Get assoEnd;

If(asoEnd==aggregate)

Get otherAssoEnd;

Get type;

Add to yart;

If(!_sender.contains(classJII(!_receiver.contains(class)))&&!yart.contains(classJ

Show error;

Corollary 30 An association class cannot be sender or receiver ofa message.

The motivation ofRule 34 is that every thing acts on and is acted upon by other things

in ontology. From Rule 1, we know that BWW-things map with UML-objects. In addition,

from Corollary 2 we know that association classes cannot represent objects. That is,

association classes are not ordinary classes, which must be the receiver and sender. Can

association classes send or receive messages? From Corollary 5 and Rule 4, we know that

mutual properties cannot act on or be acted upon. Thus, association classes cannot be

sender or receiver.

Since this corollary can be fully deduced from previous rules and corollaries, strictly

following them should satisfy this corollary.

However, this is not true in our CASE tool. If the user models an association class as a

message sender or receiver, no violation warning will be shown. This is because, this

corollary applies to collaboration diagrams while programs implementing those rules and

corollaries only check class diagrams. Because association classes are not classes of

125

objects, but classes of mutual properties, association classes in class diagrams should not

correspond to objects in other diagrams, such as collaboration diagrams and sequence

diagrams. We propose a rule to fill this gap:

Rule-New05 Association classes in class diagrams should not be instantiated by

link-objects modeled in other UML diagrams.

According to the previous rules and corollaries, association classes are mutual

properties and objects are substantial things. Properties will not equal things. That is, the

implementation of this rule is covered by previous rules and corollaries. Thus, there is no

need to implement it.

Rule 35 A constraint relates attributes ola single class or attributes ofassociation classes

the class participates in.

UML has a concept of constraint, which is "a semantic relationship among model

elements that specifies conditions and propositions that must be maintained as true;

otherwise, the system described by the model is invalid" (OMG, 2003, p3-26). As we can

see, constraints are restrictions, which guarantee a model's validity. This conforms to the

concept of law in ontology. In ontology, a law is any restriction on the possible values of a

thing (Bunge, 1977, p129). Thus, UML-constraints are mapped with BWW-Iaw. Ontology

also specifies that a law applies to a thing. That is, BWW-Iaw cannot relate the properties

126

of different things (Evennann, 2003, p32). So, UML-constraints should also apply to a

single class. Note that association classes are groups of mutual properties of participating

classes. Constraints relating attributes of association classes do not conflict the above

discussion. For example, class 'A' interacts with class 'B' via association class 'C.' A

constraint cannot relate attributes of 'A' to attributes of 'B', but only relates attributes of

'A' or that of 'C.'

The implementation approach is to check constraints attached to class attributes to see

whether they extend to different classes. The program first gets constraints of an attribute

in a class. Then, it reads these constraints. If any constraint relates to attributes of other

classes, then it checks whether these other classes are association classes, which this class

participates in. If any is not an association class, the program shows a violation warning.

This is expressed in the following:

Get classA;

Get attribute;

Get constraint;

Get associatedAttributes;

If !(associatedAttribute==null)

Get assoAttOwner;

If!(assoAttrOwner= =classA);

Show error;

Exit;

According to UML, constraints may use uncertain languages: "One predefined

language for writing constraints is OCL; otherwise, the constraint may be written in

natural language" (OMG, 2003, p3-27). That is, the computer may not be able to read

127

constraints. One possible, but not accurate, solution is to search the whole constraint text

string. If any string equals an attribute string in the whole class diagram, we consider it

specifying that attribute. It is obvious that this solution is not accurate.

Rule 36 For every attribute there exists a constraint which relates this attribute to some

other attribute.

In ontology, "every substantial property is lawfully related to other substantial

property" (Bunge, 1977, p78). That is, every UML-attribute must relate to other attributes.

In the last rule, we map Ontology-law with UML-constraint. That means that there exists a

constraint of every attribute to relate it to other attributes. Note that other attributes here

refer to attributes of the same class (See Rule 35 for details).

The implementation approach is to check every attribute to see whether there exists its

constraint specifying the relation among it and other attributes. The program first gets

constraints ofan attribute in a class. Then, it reads these constraints. Ifno constraint relates

to other attributes, it shows a violation warning. When there are constraints relating to

other attributes, the program exits. It does not continue to check whether these attributes

belong to the same class, because this has been done in Rule 35. This is expressed in the

following:

Get class;

Get attribute;

Get constraint;

128

Get associatedAttributes;

IfassociatedAttribute==null

Show error;

Exit;

Also, this implementation has the limitation as we discussed in the last rule.

Corollary 31 A UML-state transition associated with an action must modify an association

class attribute's value.

In this corollary, we discuss actions: "The action that causes a stimulus to be sent

according to the message" (OMG, 2003, p2-119). That is, an action causes

message-sending. According to the discussion of Rule 33, message-passing expressing

interaction changes attribute values of an association class. Since the object whose state

transition associated with the action sends the message, the transition must modify an

association class attribute's value. This association class is the one which represents the

mutual properties of this object and the object receiving the message. Evermann also

proposes that this corollary only applies to transitions in method descriptions. The

motivation is that in seos, "operations may leave the object in the same state or in a state

in which at least the mutual or emergent properties possess the same values" (Evermann,

2003, p120). When an object is still in the same state after a transition, it does not change.

If this is the case, then according to "a UML-action is similarly interpreted as change in

one object that brings about a change in another object" (Evermann, 2003, p120), there is

no action accompanying this transition at all. Thus, this corollary should not only restrict

129

to state machine of methods, but also applies to the top-level state chart (SCO).

UML does not require modeling different attribute values for different object states

(before and after transitions) (OMG, 2003, p3-42). Thus, our program cannot tell whether

attributes values change. The ideal solution is to add this corollary in UML, including

specifYing such a mechanism. CASE tools will enable this feature according to the UML

specification.

Corollary 32 For every interaction between UML-objects, there must exist a

corresponding UML-state transition in both interacting UML-objects.

From the discussion ofRule 33 and Corollary 31, we know that an interaction between

two objects change values ofmutual properties ofthese objects. That is, property values of

both objects are modified. From Rule 21 and Corollary 14, different property value sets

determine different states of a thing. That is, both object states are changed via change of

mutual property values by interaction. Thus, there exist corresponding state transitions in

both interacting objects.

The ideal implementation approach is to adopt this corollary in UML. In this way, all

CASE tools will enable the feature of associating interactions to state transitions of

participating objects and force modellers to do that.

Corollary 33 A state transition associated with an event must modify an association class

130

attribute's value.

According to the UML specification, "Event instances are generated as a result of

some action either within the system or in the environment surrounding the system" (OMG,

2003, p2-155). Evermann proposes that events signify reception of the stimulus

(Evermann, 2003, p121). For example, '"a call event represents the reception ofa request to

synchronously invoke a specific operation" (OMG, 2003, p2-142). Since "a stimulus is

created and sent by an action, receipt of a stimulus is an event" (Evermann, 2003, p11?),

action and event are a pair of concepts and should have similar interpretations. According

to the discussion of Rule 33, message-passing expressing interaction changes attribute

values of an association class. However, it is the sender object which changes the lllutual

property values of itself and the receiver object, and thus makes the receiver object transit

to another state. The rec.eiver object does not actually actively modify association class

attributes values. We change the wording of this corollary into the following:

A state transition associated with an event must be associated with the change of the

attribute's value of an association class. This association class is the one which represents

the mutual properties of this object and the object sending the message. Evermann

proposes that this corollary also only applies to transitions in method descriptions.

Because of the same thinking in Corollary 31, we propose that this corollary should not

only be restricted to state machine of methods, but also applies to top-level state chart

(SCO).

131

UML does not supply a mechanism of modeling different attribute values for before

and after transitions (OMG, 2003, p3-42). Thus, the program cannot tell whether attribute

values change. The ideal solution is to add this corollary in UML, including specifYing

such a mechanism. CASE tools will enable this feature according to the UML

specification.

Corollary 34 A signal event may only be associated with a transition in a top-level state

:;hart and the initial transition ofa method implementing this.

"A signal is a specification of an aSYnchronous stimulus communicated between

instances" (OMG, 2003, p2-102). As we have discussed at the beginning of this chapter,

stimuli are ontologically excessive, the signal is a redundant concept and must conform to

others. Evermann proposes an additional association in the UML Ineta-model that every

signal must associate with an operation (Evermann, 2003, p123). Rule 25 specifies that

every operation maps with a transition in the top-level state chart (SCO). That is, signals

can only correspond into SCO. In addition, "a signal event represents the reception of a

particular (asYnchronous) signal" (OMG, 2003, p 2-146), and every signal event associates

with a signal (OMG, 2003, p2-142). We get that every signal event must be represented in

SCO. Since events trigger transitions in state charts, a signal event may only be associated

with a transition in a top-level state chart. From Corollary 24, we can know that the signal

event also associates with the initial transition of a method implementing the operation.

132

The implementation approach is to check whether there is any signal event modeled in

state charts other than SCO. The program first gets a transition and its trigger event. If a

trigger event is a signal event, then it gets the state chart which possesses this transition. If

the owner ofthe state chart is a class, it checks whether the transition's container is top. Ifit

is top, the program exits; otherwise it shows a violation warning. Since the latter part of

this corollary comes from Corollary 24, which we have already implemented, there is no

need to implement it. This is expressed in the following:

Get transition;

Get triggerEvent;

If !(triggerEvent==signaIEvent)

Exit;

Get stateMachine;

Get smOwner;

IfsmOwner==class

Get sourceState;

Get targetState;

If (sourceState. isTop)&&(targetState.zsTop)

Exit;

Show error;

Corollary 35 A call event may only be associated with a transition in a top-level state chart

or the initial transition ofa method implementing this.

In UML, "A call event represents the reception of a request to sYnchronously invoke a

specific operation. (Note that a call event instance is distinct from the call action that

caused it.)" (OMG, 2003, p2-142). A call event receives the stimuli sent by a call action.

According to the UML meta-model, every call event must associate with an operation

133

(OMG, 2003, p2-142). Rule 25 specifies that every operation maps to a transition in the

top-level state chart (SCO). That is, every call event must be represented in SCO. Since

events trigger transitions in state charts, a call event may only be associated with a

transition in a top-level state chart. From Corollary 24, we can know that the call event

also associates with the initial transition of a method implementing the operation.

The implementation approach is to check whether there is any call event modeled in

state charts other than SCO. The program first gets a transition and its trigger event. If a

trigger event is a call event, then it gets the state chart, which possesses this transition. If

the owner of the state chart is a class, it checks whether the transitions container is top. Ifit

is top, the program exits; otherwise it shows a violation warning. This is expressed in the

following:

Get transition;

Get triggerEvent;

If!(triggerEvent= =callEvent)

Exit;

Get stateMachine;

Get smOwner;

IfsmOwner==class

Get sourceState;

Get targetState;

If (sourceState. isTop)&&(targetState. isTop)

Exit;

Show error;

Corollary 36 Synchronous communication of objects implies transition to a state which

cannot be left except through a state transition associated with the return signal.

134

Interactions between objects can be synchronous or asynchronous. We discuss

synchronous communication in this corollary and leave asynchronous to the next corollary.

In UML, "A synchronous invocation is the transmission of a request from a requestor to a

target object in which the requestor waits for a reply from the invoked execution. The

invoked execution may supply return values, but even if there are no return values, the

requestor waits for a reply indicating that the invoked execution has completed" (OMG,

2003, p2-313). In addition, "while the execution of a procedure invoked by a synchronous

invocation is progressing, the requesting action execution is 'blocked.' This does not

require any special mechanisms; the synchronous action execution is simply in the

'executing' state until the invoked procedure execution terminates and returns" (OMG,

2003, p2-315). Thus, synchronous communication of objects implies a transition to a state

which cannot be left except through a state transition associated with the return signal.

This corollary is fully deduced from UML specification. Actually, it is a rewording of

UML. Thus, it is fully covered by UML and all CASE tools implementing UML

specification should follow this corollary. There is no need to implement it.

Corollary 37 Asynchronous communication ofobjects with expected response implies the

existence of at least one state transition caused by the object acted upon, signifying the

return interaction after the state transition signifying the original communication.

"An asynchronous invocation is the transmission of a request from a requestor to a

135

target object in which the requestor continues execution immediately, without waiting for a

reply" (OMG, 2003, p2-312). The motivation of this corollary is that even the acting

object does not wait for a reply, the acted object may still return a reply: which is

considered the "expected response" (Evermann, 2003, p127). However, UML specifies

that "it is permissible to aSYnchronously invoke a request to a procedure that eventually

issues a reply; the reply message is simply discarded" (OMG, 2003, p2-312). People may

argue that if the reply message actually sends some useful information, how can it just be

discarded? The answer is that "if the invocation is repliable, a subsequent reply by the

invoked execution is transmitted to the requesting object as an aSYnchronous request"

(OMG, 2003, p2-322). That is, the response actually invokes another new communication.

This is because "the target object might later communicate to the requestor, but any such

communication must be explicitly programmed and it is not part of the aSYnchronous

invocation action itself' (OMG, 2003, p2-312). As we can see, there is no "expected

response" for aSYnchronous communication. The motivation of this corollary is incorrect.

We propose not to adopt it.

Corollary 38 The final state transitions ofany method implementing an operation that may

be invoked through a call action must cause a return action.

There are several types of action, for example, signal action and call action. Among

these actions, call actions are sYnchronous and require response: "The (call) action

136

execution waits until the effect invoked by the request completes and returns to the caller.

When the execution of a procedure is complete, its result values are returned to the calling

execution" (OMG, 2003, p2-324). That is, there exist return values for a call action. When

a method implementing an operation is invoked by a call action, the method must return

values at the end of its procedure. This is because "during the execution of a sYnchronous

invocation, the invoked procedure execution must have sufficient information to be able to

awaken the invoking action execution when execution of the invoked procedure is

complete" (OMG, 2003, p2-320). The final state transition is the last behaviour of a

method procedure. Thus, it causes a return action to return values.

The implementation approach searches collaboration diagrams for call actions. For an

interaction, whose message includes a call action, the program gets the object and method

being called. Then it checks state chart diagram attaching to this method. The final

transition and its action will be retrieved. If the action is a return action, the program exits;

otherwise, it shows a violation warning. This is expressed in the following:

Get collaborationDiagram;

Get interaction;

Get message;

Get callAction;

IfcallAction==null

Exit;

Get methodl;

Get receiver;

Get classDiagram;

Get classes;

While classes.hasNextO

137

Ifclass= =receiver

Get method2s;

While method2s.hasNextO

Ifmethod2==methodl

Get stateChart;

Get transition;

Get target;

Iftarget= =finalState

Get action;

Ifaction = =returnAction

Exit;

Show error;

Corollary 39 For the state machine ofa method to contain a state transition whose effect is

a return action, there must exist a corresponding state transition in a state machine of

some other object whose effect is a corresponding call action.

As we discussed in the last corollary, an interaction with a call action works like this:

!vIethod A implementing operation B of object C calls method D implementing operation

E of object F. When the call happens, object C waits for return from object F, while F

begins running method D. When D completes, its return action returns values to method A

and A continues. Corollary 38 specifies that there must be a corresponding return action in

the called object for every call action in the caller object. In reverse, since methods with

return actions are invoked by call actions, there must be a corresponding call action in the

caller object for every return action in the called object. According to Corollary 32, there is

a corresponding transition in both caller and called objects. The transition of the called

object causes a return action, which is specified by Corollary 38. The transition of the

138

caller object causes a call action. Through the last corollary and this one, three diagrams

are associated to ensure consistency. These diagrams are state chart diagrams ofboth caller

object and called object, and collaboration diagram specifYing the interaction between

them.

The implementation approach is to check whether there is a transition with a call

action corresponding to every transition with a return action in caller class and called class,

respectively. The program first gets a class method and its state machine. Then it checks

the transition leading to the final state. If there is no return action attaching with that

transition, the program exits; otherwise, it reads the return action and gets the caller class

and method. Then it searches state machine attaching to the caller method. If there is a

transition with call action, which invokes the called method, the program exits; otherwise,

it shows a violation warning. This is expressed in the following:

Get classl;

Get methodl;

Get stateMachinel;

Get transition;

Get target;

Iftarget= =finalState

Get action;

If!(action = =returnAction)

Exit;

Get class2;

Get method2;

Get stateMachine2;

Get transitions;

While transitions.hasNextO

Get callAction;

139

Read callAction;

If(class = =classl)&&(method==methodl)

Exit;

Show error;

140

Chapter 7 Implementation in ArgoUML

The previous three chapters discussed Evermann's rules and provided a general

implementation approach. However, they are not CASE tool specific. That is, all those

approaches can work for any UML CASE tools. This chapter actually discusses the

implementation of the proposed approach in a specific tool: ArgoUML. The approaches

presented in earlier chapters are based on assumption of a fully functional UML CASE

tool. However, ArgoUML is an open source project, and is still being developed. There are

several UML functions that do not work properly in ArgoUML as well as some bugs. That

means that not all of the approaches discussed in previous chapters can actually be

implemented in the current ArgoUML. In this situation, we give the alternative solutions

for those rules which cannot be actually implemented in the current ArgoUML. This is

expressed in the following structure. First, we explain how our implementation works in

ArgoUML and related issues. Then, we introduce the communication structure between

our system and users. Finally, we give the alternative approaches for rules that cannot be

actually implemented in the current ArgoUML.

7.1 How ArgoUML criticizes

141

The critiquing system of ArgoUML has the following features: Critics for rules are

agents that continually analyze the design. The system can present feedback as soon as

violations arise. In addition, feedback is retracted as soon as violations are fixed. These

features are realized through four components: Criticism control mechanisms,

Communication Structure management, Inference engine, and Knowledge base.

7.1.1 Criticism Control Mechanism

The criticism control mechanisms controls critique execution to keep feedback

relevant and timely to the modeler's activities. It processes all critiques in each task and

disables selected critiques for fixed time of periods. The following is a piece of code

implementing these functions and the screenshot of the 'Criticism Control Center.' (For

explanation of specific code please refer to www.argouml.org.)

Process all critics in each task:

Agency.register(crR20, classCls);

Agency.register(crR20, assocCls);

Agency.register(crR2], stateVertexCis);

Agency.register(crR22, transitionCls);

Disables selected critics for fixed time periods:

public void snoozeO (

ifCsnoozeAgain.after(getNowO)) _interval = nextlntervaICinterval);

else _interval = _initiallntervaIMS;

long now = (getNowO).getTimeO;

_snoozeUntil.setTime(now + _interval);

_snoozeAgain.setTime(now + _interval + _initialIntervaIMS);

cat. info("Setting snooze order to: "+ _snoozeUntil.toStringO);}

142

public void unsnoozeO (_snoozeUntil = new Date(O);}

Screenshot:

06110104

. B:3B:2 t •

Priority: .:======::::::::=======::::;;,
More Info: !lehtml/manual/argomanual.html#crit'cs.CrCOl!

Description: CorollaryOl: Attributes in a UML-descripion of the
real world cannot refer to substantial entities.

Explain: All attributes must not be substantial nouns. j
'Substantial nouns' are something which physically
exist in the world.

Use Clarifier: I_A-"O:lw_a..:...ys_--:,...."".-::-_=---=----::::--_---:_~-o.--.l

Critie Details

Critic Class:

Hea~line:

I:J file:luserslcslgradllulcours' : iil Argo: ATool for EvoMng Sr
.J(Q ~g~~s.:~e.ld~c - ~p_,:nc:~ i~Untltl.~pius DlaSlr!'!J

~.9.l.9J!~!:..y~._l Ll.Q _
I r no

CoJ:.2lI~LY..~..~ . _.__ _ = nQ.......

C[itique 100ls .t:!elp

*" (» ;::& a., ... %i"1!lJ0mmm@B

EJ§ t 'it lu l' E3 l' =~ 0'"

j Crities

I[~rolla 01 Headline ==JP~I.
i iiLCorollary 06 __ no
i ~ Cor~li!r:.-'LQ~ .~_

! li'.i Coroliary09 _ _.__ -'l2.-I J~L~.9J:.21~ .. -'12__
, li'.i C.Qio.!@r::L16 _ _ _ __ _ no_
I J~Lc:::.Q!:.Qll.~rY_!L__. . . .-..D.,,__
I li'.i Corollary 19 no

I -l~ ~~~~*:f~~------------=- ~~
D__c:::Q.r:.9.!.I.~!:..Y...f:L . . __. y~__
li'.i CorollarY 24 _ no

JjLC:::..Q!.Q.[!~fL -'l.Q.__
Corollar 28 es

r-;--,----,------,-----,---,---------------------------------,---===
iG@J~

Figure 7.1 Criticism Control Center

7.1.2 Communication Mechanisms

Communication mechanisms present violations to users. It is also responsible for the

interaction between the machine and users. There are four structures for the system to

communicate with users. We will explain these In detail In Section 7.3 (Please refer to

Table 8.1 Categories of feasible (to implement) rules for details). Following is a piece of

143

code and the screenshots of the 'High-Priority' communication mechanism. (Please refer

to discussion for RI8 for code comment.)

The 'High-Priority' communication mechanism:

Ilifalready checked

ifCchecked.contains(dm)){

switchOn = 1;

return PROBLEM_FOUND;}

else{

Iluser select

try{

Iishowerror

Object[} options = {"Put into Reminder", "Explain"};

int in = JOptionPane.showOptionDialog(null, "Class / "+nameStr+ /II is not

specialized and cannot be declared abstract.", "Violate Rule 18",

JOptionPane.DEFA ULF_OPTION, JOptionPane. WARNING_MESSAGE,null,

options, options[O]);

if(in -== 1){ JOptiorzPane.showMessageDialog(null, ''Explain: Only f1

super-class being .~pecializededcan be declared as abstract. In inExample: None".

"Rule18: A class that is not specialized cannot be declared abstract.",

JOptionPane.INFORMATION_MESSAGE);}}

catch(Exception ex){ System.out.println(ex);}

Iladd this class to checked vector

_checked.addElement(dm);

switchOn = 1;

return PROBLEM_FOUND;}

Screenshot:

144

[tJ « M c. T ,. ~ 0 ~ IJ:) 00 ~ ~

~ i E'J § -T i j. to ,. E3 f § § D 0'"

, ~ untitledModel
~ Class Diagram 1o Use Case Diagram 1

f>o§A

• int
• void

-;v1~ Untitled - Class Diagram 1 -ArgoUML'

file j;dit Yiew ~reate ~rrange generation Critique Iools t:!elp

. Q. IS e:J 8 ., X ID

~ Package-centric

>;j~VIolate Rule 18

0llI10~1

tile luserslcslgradlluJcour~ !il Argo: A Tool tor EvoMng ~ I

i~ Argolssue.1.doc - OpenO' '>;jUntltl.d. Clus Diagram i

Class ' A' is not specialized and cannot be declared abstract.

Put into Reminder 11,-__Ex--:p_l_ai..,..n..,....,....,....,..-l

"''1': • Properties •

§ Qass X Client Dependencies: EJAttributes: InewAttr J
Name: A ~ r-

. Stereotype: ~ Supplier Dependencies. Association Ends J
,Namespace:l~untitledModel 1:3
'. Modifiers: t:;;; AL <tra- 0 Leaf ~-

1r:J ,,~ ~, Generalizations: _JO'perations: newOperat;on j
I'J Root D Active

ii p!:!.blic 0 pr.2,tected {Specializations: jOwned E:1ements:l==~~~==j1l

I

....1::: 4 ItemsBy Priority

L!High
&-L!Medlum
f>oL!Low

Figure 7.2 Show Violation of Rule 18

145

• Properties

new eraHonO: void {s~uential

A

nMAtt': int

Examplt: Non\!

~~ Rule18: A class that 1$ not specialized cannot be declared abstract. ""
r

Explain: Only a super-class being sp\!eializ\!ded can be declared as abstract.

• int
• void

;v1~ R18.zargo - Class Diagram 1 - ArgoUML

.. .0=1-1 III! Shell- Konsole ''1 tile-tuserslcslgractiluJcours. ;~ Argo /1 Tool tor EvoMng ~ I • B ~6 "fD •
_~~1~l ,r, "'Al~'~--'-M""e~s':l~~~n~9~e~r '~C::"_I""~~,n~e-~.:lC:~",,;.."ArgOI~SU::'l.~oc -..9pe'!911 f.::j R18.zargo • ClassDI~._~~~ ._ ,?O/.lOiO.L •.

Figure 7.3 Explain Violation of Rule 18

146

1m
f §~ ~ 0,.

A

. Shell- Konsole .iJfile:luserslcslgiadllUicour~' i~ Argo: A Tool torEvDiVin9S1 • B:-"5 :55
_'--.....;.~ AI'~~.:~nger ~ !)ffll~ __ ; ~..Argolss..tJe .1..E~- OP..:nOfl r,- R18.zargo • Class Diaar~I'L_._ _.__,-_ ... Ol!!lo.O'L.

rderSyType, N~me

~'E3 untitledModel
I!ID Class Diagram 1
00 Use Case Diagram 1

~ElA

• int
• void

ackage-centric

Figure 7.4 Violation in Reminder List

7.1.3 Inference Engine

The inference engine IS the control mechanism that applies knowledge of rules

presented in the knowledge base to the specific diagram as input data to amve at a

conclusion of firing a violation or not. This is also a key component of an expert system.

Following is a piece of code of the inference engine.

Inference engine:

/** Examine the given Object and Designer and, ifappropriate, produce one or more violations

and add them to the offending modeling material's and the modeler's ToDoList. By default this is

basically a simple if-statement that relies on predicateO to determine if there is some appropriate

feedback, and toDo/temO to produce the ToDo/tem, */

147

public void critique(Object dm, Designer dsgr) (

if(predicate(dm, dsgr)) (

_numCriticsFired++;

ToDoItem item = toDoItem(dm, dsgr);

postItem(item, dm, dsgr);jj

7.1.4 Knowledge Base

The knowledge base is the implementation set of all ontological rules and corollaries

and is the core part of the system. Following is a piece of code of the knowledge base and

the screenshot of the knowledge base list.

Knowledge base:

II File: CrR18java

II Classes: CrR18

II Author: Shan, lu@cs.mun.ca

II $Id: CrR18java, v 0.1 200414122 15:43

package org.argouml. uml. cognitive. critics;

import java. util. *;

import java.util. regex.Pattern;

public class CrR18 extends CrUML {

int switchOn = 1;

public static Vector _checked = new VectorO;

public CrR180 (

setHeadline("Rule 18'');

setPriority(ToDoItem.HIGH_PR/OR/TY);

addSupportedDecision(CrUML.decNAMING);

setKn0 wledgeTypes(Critic. KT_SYNTAX);j

public boolean predicate2(Object dm, Designer dsgr){

if(switchOn == 0)

return NO_PROBLEM;

IIPause the paraUe critic for this rule

switchOn = 0;

II'High-Priority' communication structure

148

switchOn = 1;

return NO PROBLEM;}

} /* end class CrR18 */

Screenshot:

CrR12 java

~
CrR21 iava

5J
CrR30java

~
Q:ElliQ2

lava.

CrC17iava

E;J
CrC31 iava

F::i
BJ

CrR03 java

~

!~',

LY
Q:ElliQl.

lava.

i
~l

!
itlBl

!
Free After Rebate ,"s in life are free dealsea ,co » !

5J
CrC09iava

~
CrC24iava

5J
CrC3Biava

5J r=>"1
liY

CrROBiava CrR09iava

5J
CrR1Biava

~
CrR26iava

51 ~
CrR34 iava CrR35java CrR36 java

~
CrC06iava

[!;l
CrC21 java

~

CrUMUava

CrR14iava

[;)
CrR23Java

~
CrR32iava

CrC20iava

r:lL::J7
CrC33 java

~
CrR05 java

5J

lil
CrC01iava

~

r ,
I WI i
L:::!t

CrRN03,
jgyg

£30 ~cation: rl~ file:lusers/cslgradllulworkinglworking2/src_new/orglargouml/umVcognitivelcritics

ModelFacade (ArgoUML Documentation) Overview (Java 2 Platform SE v1.4,2) Google

,;i'~org [!]
~@i argouml !
! -t\~application '

I f~cognitive
I I'-~CVS

I 1~doc-files
I r·~i1Bn

I r-~Images
I ~,~kemel
I *'~Ianguage
I d~model
I t'~OCI
I H~pattern

I '~-~persistence

I +.~resource
!r"~ swingext
I t,~U1

I 'T,~uml
I 17"~cognitive ,

I I ! r~checklist:
I I I t~critics
I I I L~CVS

! !--~CVS
. I r}~diagram

I ~'~generator

i ":~E3reveng

I I $~ui i!1
Iii !;L~"til ~ !

il 60 Items - 59 Files (3692 KB Total) -- One Folder !
- --.- ._. ,__ _ ·• ._. M ~._••M_~.J

~ £IJ:l..J~ Shell - Konsole l$ flle:Jus.rslcs/graclllUIWo !~ Argo A Tool for EvoMng~, I B:5D :5~
,_;;;...._~, ==r=J ·{~.~·s.~es~~nger - davidh.3pr: ~_~~_olssue.:2 ,t!0C - ope..~C'rt__ ';d R!8.zarg~-- Class D~agr~r!:l oel1Oi04

Figure 7.5 Knowledge Base List

The above four components work in the following process: When the ArgoUML starts,

the criticism control mechanisms activate and initialize rules and corollaries. When user

develops UML diagrams, the inference engine monitors users activities In real-time. It

checks diagrams according to the knowledge base. Once a violation is matched with rules /

corollaries in the knowledge base, the communication mechanisms present feedback or

149

interact with the modeler.

7.2 Problems in ArgoUML

ArgoUML is not a complete business product, but an open source project for research

purposes. It is still being developed and not all functions have been realized. Some realized

components currently do not work properly. The following are problems known in

ArgoUML currently.

!Cnown Incompatibilities

Here is a list offeatures, which are not implemented yet and can be seen as a violation ofthe UMlJ

sDecificatio/l (l.3)

All Diagrams

1 Qualifiers are missing.
f-----+--------------------------------------

2 Optional directional triangle missing on association names.

I

3 ,List ofprovided multiplicities is not complete.

I

: Class Diagram .

'Association classes are missing. Though ArgoUML can read association classes from

4 XMIfiles, it cannot display them correctly. That is due to a flaw in GEF, which needs a

I
major rework.

5 farameterized classes are missing.

6 Wotes to any model element not implemented.

7 Cannot add a method to an operation.

18 Cannot show collaborations on a class diagram.

150

Object Diagrams

9 Currently not implemented, use a Deploymentdiagram.

10 'Attributes cannot have attribute values.

Activity Diagrams

11 Swimlanes missing.

12 Signal receipt/sending missing.

Sequence Diagrams

13 Missing completely from ArgoUML 0.14. (They were present in 0.10.1)

Statechart Diagrams

14 Regions are drawn and handled as ordinary composite states.

15 There is no distinction between kinds ofActions.
I

I

16 Distinction between kinds ofEvents is only partly implemented.
1

j17 A "junction" is only partially supported

Please note: This list is not complete!

(Tigris, 2004, http://argouml.tigris.org/docunlentation/umlsupport)

Table 7.1 Incompatibilities of Current ArgoUML

These incompatibilities will affect us when our implementation relates to these

components. To solve this problem, we try to use alternative solutions, instead of just

skipping rules or corollaries. We will discuss the specific issues in related rules or

corollaries in Section 7.4.

151

7.3 Four Communication Mechanisms

There are four structures for the communication between critiques and users.

The first structure is for the "MustBe" rules. "MustBe" rules are rules which specify

that something must be or must not be in a particular way; for example, Rule 9 states that

object ill's must not be modeled as attributes. For this type of rule, the violation warning

must be shown immediately to prevent further problems. That is, as soon as the rule is

violated, the system should alert the user. For some violations, for example violating Rule

1 (details can be found in Rule 1 of Section 6.4), which can be easily corrected by the user,

we popup a dialogue informing the user of the violation and reset the related space so that

the user can re-input correct information. We call this 'Critique' communication structure.

However, not all violations are easy to correct. We cannot simply delete the violation

component. For example, when a diagram violates Rule 3 (details can be found in Rule 3

of Section 6.4), we cannot delete the whole association class. Since this kind of violations

are difficult to correct, a user may need a long time fixing it or even do not want to fix it

immediately. In this case, the system continues popup dialogues, showing something

wrong here and something wrong there and the user may become annoyed. To prevent this,

we adopt the 'High-Priority' communication structure. Once the input is considered as a

violation, the system will popup a dialogue to warn the user. However, we do not clear

anything in diagrams. Instead, we keep the input there and give the option for the user to

correct it later or even not to change it at all (Users can also dismiss violations and snooze

152

critiques. We will explain these structures at the end of this section). To prevent users from

forgetting it later and also to avoid continually popping-up violation dialogues, we put this

violation into the high-priority reminder list. That means the popup dialogue will only be

shown once for each instance of a rule violation. The reminder will continue to examine

the diagram in real time. However, all this is done in the background. If the user does not

change the input, the violation message will be shown in the reminder list all the time. It

does not affect the user's job. The user only needs to check the list at any time, s/he will be

aware of what violation s/he has not corrected yet.

The 'Medium-Priority' communication structure IS for "MustHave" rules.

"MustHave" rules specify that something must be or must not be included in a diagram;

for example, Corollary 7 (details can be found in Corollary 7 of Section 6.4), which states

that an association class must possess at least one attribute. For this kind of rule, it is hard

to say whether the user forgets having something, or not input it yet. On the other hand, the

examination is in real time. For rules of the form "A must have B", as soon as A is created,

the system will find there is no B in A before a user can input B. In this case, we should not

let the system popup a dialogue saYing, A must have B. Instead, we put all these kinds of

violations into the medium-priority reminder list directly. The system does not popup any

dialogue at all. Using this structure, we can keep track of the violation without annoYing

users.

The 'Low-Priority' communication structure IS not for violation warmngs, but

153

consists of reminders. The newly proposed structures by Evermann do not exist in current

UML. Also, some structures in UML have not been implemented or are not working

properly in ArgoUML. There is no way for the program to detect violations for this kind of

rule. In this case, the program will only popup reminders to users. Then it will put the

reminder into the low-priority reminder list. The user can dismiss the reminder at any time.

The system may make mistake of some complex rules. For example, attributes 'name'

in 'Customer' and 'BookStore' classes are considered the violation of Rule 3 (details can

be found in Rule 3 of Section 6.4). In this case, ArgoUML also offers mechanisms of

dismissing violations and snoozing critiques. If the system shows an unexpected critique,

the user can simply click the "Dismiss" button and the critique will disappear. If the user

wants to disable a rule critique temporarily, he / she can simply click the "Snooze" button

and the critique will be deactivated temporarily. If the user wants to disable a rule critique

forever, he / she can simply deselect the corresponding critique in the setting menu and the

critique will no longer be activated. Since this is a critique expert system, we also have a

mechanism of inquiry users for required information. When our program cannot get

enough information it inquiries users. For example in Rule 5 (details can be found in Rule

5 of Chapter 3), the program inquires users whether each attribute is created by the

interaction creating the association class.

We will explain these four communication structures through rule examples in the

discussion below. Specifically, we will explain the 'Critique' structure in Rule 1, the

154

'High-Priority' structure in Rule 3, the 'Medium-Priority' structure in Rule 7, and the

'Low-Priority' structure in Rule 21.

7.4 Alternative solution

This section will discuss alternative approaches for rules that cannot be implemented

in the current ArgoUML. We still discuss this by order ofEvermann's rules. For those rules

which can be implemented by the previous approaches, we do not discuss them again here.

Rule 1 Only substantial entities in the world are modeled as object.

In the implementation, we have two text files, "subnouns" and "nonsubnouns" to

save the substantial nouns and non-substantial nouns, respectively. We have a class

"CrRl" (CrR* is the implementation java code, please refer to Rule 1 in Chapter 4 for

details) to match the object name in the two text files. For the object, the "CrRl" not only

examines the object name, but also examines the class name. Because a class is a group of

objects, they normally have the exact same name. For the GUI, if a name is found in the

"nonsubnouns", the system will popup a message window, indicating the error. The user

can choose "Ok" to reinput a name or choose "Explain" to read the explanation and

examples of this rule. If a name cannot be found in either "subnouns" or "nonsubnouns",

the system will popup a message dialogue, asking the user whether the name is substantial

or not. The user can choose "Yes" or ''No'' to save the name in "subnouns" or

155

"nonsubnouns", respectively, or choose "Explain" to see the explanation and examples of

this rule. In the query window, we also give users an "others" option, in case the user input

a string which is neither substantial noun nor nonsubstantial noun. This is because we use

the 'Critique' communication structure for this rule. When a non-substantial noun is input,

the system will popup a violation warning as well as clearing string of the non-substantial

noun in the diagram and waits for the new input string. That is, the user cannot continue

until he / she inputs a substantial noun. However, users may not agree with the violation

warning. In this case, he / she can choose the "Other" option to continue his / her job.

Eile s.dt ::!fe'¥ £reate trranQe ~enerallon c~ 1000 ljeIp

~ (S .9> ~'i\'" « > £ '\~ RID ill ~.a

~ i EJ § -~ t l' tu 'I' 8 'I' o~

'Job' Is not 3 sunslanll3l noun

~Hlgh

."~Medium

. ~Low

Figure 7.6 Violation ofRule 1

Rule 2 Ontological properties ofthings must be modeled as UML-attributes.

156

The approach for this rule in Chapter 3 has already been shown realistic for Rule 1;

however, we meet some difficulties in this rule. The program needs to get all the text

strings from all diagrams, for example, class name, class attribute, class operation,

association, and even strings in sequence diagram, collaboration diagram, and state

machine. However, ArgoUML currently does not support returning all text from all

diagrams. Actually, ArgoUML is using the class library of the NUSoft Company, which

does not release the source code. The other problem is that this implementation will keep

searching all strings in all diagrams and matching with databases. This will cost lots of

CPU time, which is considered inefficient. According to the above reason, we decide to

implement corollaries of this rule. This does not mean that Rule 2 is not realistic. There is

no principle problem here. It is neither Rule 2 nor its implementation approach is

infeasible, but the development environment has a problem currently.

Corollary 1 Attributes in an UML-description ofthe real world cannot refer to substantial

entities.

There is a "CrC1" class to fulfill this corollary. When the input string is found in the

nonsubnouns file, the program returns no problem. When the input string is matched with

a string in the subnouns file, the program will show a violation warning and explain this

corollary to users. Also, if an object cannot be found in our database, the program will

interact with the user by asking whether that object is substantial or not. The program will

157

remember the new substantial or nonsubstantial noun in its database. Thus, the system has

the ability to learn by remembering newly added nouns. The 'Critique' communication

structure is used for this corollary.

Rule 3 Sets ofmutual properties must be represented as attributes ofassociation classes.

This rule adopts the 'High-Priority' communication structure. First, this rule is a

"must be" rule. The system should inform users as soon as the violation appears. Thus, we

design this examination to popup a dialogue when it matches the same attribute in two

associated classes. However, this violation cannot be corrected immediately. The user

needs to create an association and put this attribute in that association class. The user needs

at least several minutes to do this. Our examination system is in real time and it will fire

another examination thread for this rule within several seconds. It is very possible that the

user has not enough time to correct it before the next thread is fired. Since the correction is

complex, another possibility is that the user does not want to correct this right away and

will correct it later. In these two cases, the next thread will still find the violation and

popup a dialogue. That is, a dialogue will popup every few seconds, which is unacceptable.

On the other hand, the system may even make mistakes here. Consider the customer and

bookstore example. Both customer and bookstore may have their intrinsic attribute

"name", which refers to customer name and bookstore name, respectively. These "name"

attributes are not a mutual attribute between customer and bookstore and thus should not

158

be modeled in an association class. However, this situation still satisfies the violation of

this rule in the program. Because of the above situations, the popup dialogue will only be

shown once. After that, if the violation is still considered by the program, the information

will be shown in the reminder list. If the violation is correct, the user will not forget it. If

the violation is incorrect, the user can just leave it there or simply dismiss the violation, or

even snooze the examination for this rule. Now, how about if a violation of another

association appears? To prevent the new violation being thrown into the reminder list

directly, we create a vector to record the associations that have already violated this rule

and still popped up dialogues for new violations. In this way, we guarantee that each

violation will popup the dialogue once and only once.

Corollary 2 An association class cannot represent substantial entities or composites C?f

substantial entities.

This is a "must be" corollary and we can use the 'Critique' communication structure

here. Because this is a corollary of Rule 3 and we have already implemented Rule 3, there

is no need to implement the corollary. We just proved the corollary and gave the

implementation approach in Chapter 3.

Corollary 5 An association class cannot possess methods or operations.

This corollary is part ofRule 4, we will implement it in Rule 4.

159

Corollary 6 An association class cannot be associated with a state machine.

If this corollary is finally adopted by UML specification, all CASE tools will disable

this feature and there is no need to write a program to examine this. Currently, ArgoUML

allows this feature. So, we use an alternative way to implement this corollary. The

implementation of this corollary relates to two diagrams. First, the examination needs to

get all association class names in a class diagram. Then, the state machine names need to

be retrieved from a statechart diagram. These names will be matched. If an association

class name and a state machine name are found to be the same, the program will fire the

violation warning. This is expressed in the following:

Get associationClass;

Get acNames;

While acNames.haveNext(;

Get stateMachine;

Get smNames;

IfacName = anName

Show error;

Else exit;

However, the association class and state machine are in different diagrams. It is

possible that the user occasionally uses the same names. If the program warns the user just

by matching a same class name and statemachine name, it may not be accurate. In the

detailed implementation, we decide to use another more accurate approach. We realized

that a statemachine is associated with a class. That is, there is no independent statemachine

that exists. So, we can get all elements owned by an association class. If any element is a

160

statemachine, then the program shows a violation warning. This is expressed in the

following:

Get associationClass;

Get ownedElements;

While element. isStatemachineO

Show error;

Exit;

For communication structure, this IS a "must be" corollary and we use the

'High-Priority' structure for this corollary.

A problem here is that the ArgoUML currently does not support association classes.

That is, one cannot model an association class. We adopt the following solution for this

problem.

We use ordinary classes to represent association classes. To distinguish them from

those "real" ordinary classes, users must add a stereotype of "associationClass" of the

classes. We do not use regular association to connect association classes to ordinary

classes. Instead, we use the solid line in the "Select Tool" menu, which currently has no

meaning in ArgoUML. The reason will be explained in Corollary 8.

Corollary 7 An association class must possess at least one attribute.

From the above discussion in chapter3, we can see that this corollary is covered in

Rule 3. Thus, there is no need to implement it.

161

Corollary 8 An association class must not be associated with another class.

The examination only needs to check association classes to see whether they own any

association ends. If the program finds any, it shows a violation warning. This is expressed

in the following:

Get associationClasses;

Get associationEnds;

While associationEnds.haveNextO

Show error;

Exit;

This is a "must be" corollary and we use the 'High-Priority' communication structure

here.

However, the current ArgoUML does not support association classes and we use the

stereotype to identify association classes. If we use associations to connect association

classes and ordinary classes, we could not use the above approach. In this case, association

classes have to own association ends. The program cannot tell which association is a

violation. Thus, we use the solid line in the "Select Tool" menu to connect ordinary classes

and association classes. Note that even though we can see the connection between

association classes and ordinary classes on the diagram, there is actually not any

relationship between these classes. ArgoUML does not give any role to symbols in the

"Select Tool" menu.

Corollary 9 An association class must not participate in generalization relationships.

162

The examination can simply check all association classes to see whether there is any

generalization. If the program finds any, it shows a violation warning. This is expressed in

the following:

Get associationClasses;

Get generalization;

While generalization. hasNextQ

Show error;

Exit;

We can also use another approach. First to get all generalization relationships, then the

program checks both sides of these relations. If any side is an association class, it shows a

violation warning. This is expressed in the following:

Get generalization;

Get ends;

Ifend=associationClass

Show error;

Exit;

We use the latter approach for this corollary. This is a "must be" corollary and we use

the 'High-Priority' communication structure.

Rule 4 Ifmutual properties can change quantitatively, methods and operations that change

the values of attributes of the association class must be modeled for one or more of the

classes participating in the association, objects ofwhich can effect the change, not for the

associations class.

This rule is a "must be" type and we use the 'High-Priority' communication structure

here.

163

Rule 5 An association class represents a set ofmutual properties arising out of the same

interaction.

The program for this rule can only work by interacting with users. It separates a

complex problem to several simple questions. The user only needs to answer these

questions and the program will examine diagrams based on the user's answer. We use the

'High-Priority' communication structure.

Rule 6 A composition relation must not be modelled.

This is an alternative implementation. The examination just checks each association

end of each class. If any composition association is found, it shows a violation warning.

This is expressed in the following:

Get classes;

Get associationEnds;

IfassociationEnds=composition

Show error;

Else exit;

For the communication structure, we use the 'High-Priority' one.

Rule 7 Every UML-aggregate must possess at least one attribute which is not an attribute

ofits parts or participate in an association.

This is a "must have" rule so we use the 'Medium-Priority' communication structure

164

here: Immediately after the user creates an aggregate class, the system will find that there

is no additional attribute in the aggregate class than in its parts. The system fires a

violation warning. However, the fact is that the user has no time to input an attribute yet.

To prevent annoYing users, the 'Medium-Priority' communication structure does not

popup a window, but only show this violation in the reminderList. If the user models an

additional attribute in a later time, the warning will disappear.

Rule 8 All UML-classes must possess at least one attribute or participate in an

association.

This is a "must have'~ rule and we use the 'Medium-Priority' communication structure

for it.

Rule 9 Object ID's must not be modelled as attributes.

This is a "must be" rule. However, the program needs to interact with users by asking

them to confirm the examination. We use the 'High-Priority' communication structure.

Rule 10 The set of attribute values (representing mutual and intrinsic properties) must

uniquely identify an object.

The ArgoUML environment does not support identification of different objects. That

is, there is no object diagram and no place to save object attribute values. This is not a

165

problem of ArgoUML either, because UML1.5 specifies that "Tools need not support a

separate format for object diagrams" (OMG, 2003, P3-35). Thus, we could not implement

this rule in ArgoUML. However, we have shown that this rule is feasible to implement.

Rule 11 Every attribute has a value.

As we explained in Rule 10, ArgoUML does not support object diagrams; the

examination can only check class diagrams. Also, since the ArgoUML already allows

users to specify multiplicity of "0" and value of "null" for attributes, we use an alternative

way to implement this rule. We get all attributes and check their values. The examination

shows a violation warning until every attribute's initial value is specified. Also, the

program checks attribute multiplicities. If any attribute multiplicities of "0" is found, it

shows a violation warning. Currently, ArgoUML only has three options of attribute

multiplicities: "1", "0.. 1", and "1 ..*". This is expressed in the following:

Get class;

Get attributes;

While attributes.hasNextO

Get initial value;

Get multiplicity;

If initial value=nullllmultiplicity=O

Show error;

Else exit;

Since this is a must have rule, we use the 'Medium-Priority' communication structure.

Rule-New 01 Every UML attribute can only have a single value. An attribute of

166

multiplicity of "N" should be decomposed into "N" attributes of multiplicity of "1." An

attribute multiplicity of "0" should be generalized as a super-class not possessing the

attribute.

In the current stage, we use an examination to enforce this rule in the ArgoUML. First,

the program gets attribute multiplicities. When finding any multiplicity not equal "1", it

shows a violation warning. This is expressed in the following:

Get class;

Get attribute;

Get multiplicity;

Ifmultiplicity==1

Exit;

Show error;

We use the 'High-Priority' communication structure for this corollary.

Rule 12 Classes of objects that exhibit additional behavior, additional attributes or

additional association classes with respect to other objects of the same class, must be

modeled as specialized sub-classes.

The 'High-Priority' communication structure is used for this rule.

Rule 13 Every UML-aggregate object must consist ofat least two parts.

This is a must have rule. Thus, we use the 'Medium-Priority' communication

structure.

167

Rule 14 An instance of a class that by virtue of additional aggregation relationships

acquires emergent properties or emergent behavior must be modeled as an instance ofa

specialized class which declares the corresponding attributes and operations.

The 'High-Priority' communication structure is adopted for this rule.

Rule 16 Attributes with class scope should instead be modeled as attributes of an

aggregate representing the objects ofthe class.

This is a "must be" rule and we use the 'High-Priority' communication structure here.

In AgroUML, a "static" box in an attribute property is used to indicate whether an attribute

is instance-scope or not. Thus, we check whether the "static" box is selected for

instance-scope attribute.

Rule 17 If a class that is specialized is declared as abstract, the specialization must be

declared to be 'complete'.

The ArgoUML currently does not support declaring "complete" for generalizations.

We use the "stereotype" to declare complete. ArgoUML allows users to model several

specializations for a single super-class. The stereotype is defined for each specialization

independently. Thus, if all super-class objects are members of one of the sub-classes, each

specialization should be defined as complete. If a specialization is defined as complete, it

does not mean that this single specialization is complete; but that all specializations of the

168

super-class together are complete. The 'High-Priority' communication structure is used

here.

Rule 18 A class that is not specialized cannot be declared abstract.

The 'High-Priority' communication structure is adopted for this rule.

Rule 19 A specialized class must define more attributes, more operations or participate in

more associations than the general class.

The 'Medium-Priority' communication structure is used for this rule.

Rule 20 Every ordinary association must be an association class.

As mentioned before, ArgoUML currently does not support modeling of association

classes. In the implementation of previous rules, we use the stereotype of

"associationClass" to identify association classes. However, even the structure looks fine,

the solid line connecting association and association class does not include any

information. Our alternative solution for association class cannot return an association and

association class pair. That means that the system could not know whether an association

class connects with an association. We have to force users to specify the same name for

both the association and the association class. In this way, our program will consider an

association and association class connected if they have the same name. The alternative

169

approach is expressed in the following:

Get associations;

Ifgeneralization IIaggregation

Exit;

Get assoName;

Get associationClass;

Get assoClassName;

IfassoClassName==assoName

Exit;

Show error;

According to ArgoUML structure, only one model element can be passed to one

examination thread. Because association and class are different types of model elements,

we cannot get both association and association class in one examination process. Thus, we

have to depend on the parallel examination process. In process threads, which get an

association class element, the class name is added into a vector. In process threads, which

get an association element, the association name will be matched in the vector. In the latter

type of threads, if an association name cannot be found in the vector, the violation warning

will be fired. The ideal working processes are expressed in the following: Firstly, the

program gets all association class elements and adds them to the vector. Then, it begins to

get associations and match their names in the vector. That is, to finish all the second type

of threads before the first type of threads begin. However, because the parallel threads get

model elements randomly, we cannot guarantee the ideal situation happening. If the

computer running this program is too slow, it may show incorrect violation warnings. All

these problems are because ArgoUML currently does not support association class. In a

170

fully functional UML CASE tool, the approach will work. This is a must have rule and we

use the 'Medium-Priority' communication structure for it.

Rule 21 A UML-state represents a specific assignment of values to the attributes [of

ordinary classes] and attributes ofassociation classes ofthe objects for which the state is

defined.

Because there is no mechanism connecting states and attribute values in current UML,

We use an alternative implementation for this corollary in ArgoUML. The program gets

all states and state machines they belong to. Then it gets the model element owning the

state machine and reminds users to follow this rule. If the user does not want to keep this

reminder, it can be dismissed and will not appear in the reminder list again. However,

because state machines are not allowed for signals (we will discuss this in Corollary 25),

the program does not check signal state machines. Actually, the program cannot detect

violations, but only remind users for each state. Thus, the 'Low-Priority' communication

structure of reminder is adopted here. This is expressed in the following:

Get states;

Get stateMachine;

Get smOwner;

If!(smOwner==signal)

Show reminder;

Put to reminderList;

Exit;

171

Corollary 14 A UML-transition must change the value of at least one attribute used to

define the state space.

Even though Evermann proposes a meta-model of associating states with attributes,

this is not in the current UML specification. Thus, the program will not know whether a

transition actually changes attributes with that state space. We implement an alternative

way to enforce this corollary in ArgoUML. The program gets all transitions and reminds

modellers to enforce this corollary. However, the modeller can dismiss this reminder and it

will not show in the reminder list. The 'Low-Priority' communication structure is adopted

here. This is expressed in the following:

Get transitions;

Show reminder;

Put to reminder;

Exit;

Rule 22 For every level of refinement of a state C, there must be an additional set of

attributes in the class description or in participating association classes that change as the

object transitions among the sub-states.

Based on the same reasoning as in the last corollary, we implement an alternative way

to remind users following this rule in ArgoUML. The program gets transitions and their

source states and target states. Then it checks whether the source state and target state

belong to a same composite state. If this is the case, the program shows the reminder to

users. The 'Low-Priority' communication structure is adopted here. This is expressed in

172

the following:

Get transition;

Get sourceState;

Get targetState;

IfsourceState.container==targetState. container;

IfsourceState.container==top

Exit;

Show reminder;

Put to reminder;

Exit;

Corollary 16 Concurrent sub-states require mutually disjunct sets ofadditional attributes

in the class description or in participating association classes.

Based on the same reasoning as in Corollary 14, we implement an alternative way to

remind users following this corollary in ArgoUML. In addition, ArgoUML does not

strictly follow the notation of concurrent sub-states (region) in UML specification. It only

supplies a "concurrent" option for a whole composite state. We could not set or get

concurrent information for each state. Thus, we deem all sub-states concurrent if the whole

composite state is set to concurrent and vice versa. The program first gets a sub-state. If the

composite super-state is not declared concurrent, then it exits; otherwise, the program

reminds the user. The 'Low-Priority' communication structure is adopted here. This is

expressed in the following:

Get sub-state;

Get super-state;

If !(super-state==concurrent)

Exit;

173

Show reminder;

Query user;

Ifanswer== 'y'

Put to reminder;

Else exit;

Rule 23 Guard conditions on transitions from the same state to nonconcurrent sub-states

must be mutually disjunct.

Based on the same reasoning as in Corollary 16, we deem all sub-states concurrent if

the whole composite state is set to concurrent and vice versa. The 'High-Priority'

communication structure is used here.

Rule 24 Action states are super-states ofa set ofsub-states. The object transitions among

these while in the action state. State charts must reflect this fact.

This is a must have rule and we use the 'Medium-Priority' communication structure

for it.

Corollary 17 States must not be associated with any actions. Sub-states corresponding to

different models should be used instead.

Currently, ArgoUML allows users to associate actions with states. We use an

alternative way to prohibit users from doing so. If any state action is created, the program

shows a violation warning. This is expressed in the following:

174

Get states;

Get entryAction;

Get exitAction;

IfentryAction = =null && exitAction==null

Exit;

Show error;

The 'High-Priority' communication structure is used here.

Corollary 19 If the partitions ofan activity diagram represent different objects, they must

be part ofa composite, which is shown in the class diagram.

ArgoUML currently does not support swimlanes. Our program cannot know what

objects the states describe. Thus, our program can only show a reminder for this corollary

for all states in activity diagrams. We use the 'Low-Priority' communication structure here.

This is expressed in the following:

Get actionState;

Show reminder;

Add to reminder list;

Exit;

Rule 25 The quantitative object behaviour (for each model) is entirely describable by

top-level state chart (SCO)

This is a must have rule and we adopt the 'Medium-Priority' communication structure

for it.

Rule 26 All UML-transitions in SCO must correspond to an operation ofthe object, which

175

SCO is associated with.

This is a must have rule and the 'Medium-Priority' communication structure IS

adopted.

Corollary 20 Every object must have at least one operation.

This is a must have corollary and we use the 'Medium-Priority' communication

structure for it.

Corollary 21 States in SCO are stable.

The ideal solution is to add this corollary in the UML specification. Currently, we use

an alternative solution in ArgoUML for this corollary. To define a state as stable or

unstable, our program first gets all transitions with this state as the source state in SCQ.

Then each of these transitions is checked to see whether it has a trigger event. If any

transition has no trigger, it can happen spontaneously. Thus, this state is unstable and the

program shows a violation warning. This is expressed in the following:

Get state;

Get container;

Ifcontainer==top

Get outTransitions;

While outTransitions .hasNextO

Get trigger;

Iftrigger= =null

Show error;

Exit;

176

Since the implementation shows violation warning unless all out-transitions have

trigger, this is a must have corollary. The 'Medium-Priority' communication structure is

used.

Rule 27 An object must exhibit additional operations expressing qualitative changes, ifa

super- or sub-class is defined and instances can undergo changes ofclass to the super- or

sub-class.

This is a must have rule. We use the 'Medium-Priority' communication structure for

it.

Rule 28 Methods may be described by state charts other than top-level state charts.

The ArgoUML currently has the problem of modeling methods. Users cannot attach a

note to operations. We alternatively use the stereotype of «method» to model methods

of operations. That is, if the stereotype of an operation is «method», this operation is

actually a method. This method implements the operation with the same name. However,

operations cannot associate with state charts, which are already associated with classes in

ArgoUML. In other words, a class and its operation cannot associate with a same state

chart. That is, using our alternative way of modeling methods, it is impossible to describe

methods using SeQ. This rule is always true in ArgoUML. Thus, there is no need to

implement it.

177

Corollary 23 A state chart describing a method must begin and end with those states in

SCO which the operation that the method implements is a realization of

Since we use «method» stereotypes to identify methods, the program needs to

check an operation stereotype before getting a method. This is expressed in the following:

Get class;

Get seO;

Get seOTransitions;

While seOTransitions. hasNextO

Get transitionName;

Get soureeState;

Get targetState;

Get operations;

While operations.hasNextO

Get stereotype;

Ifstereotype==method

Get operationName;

IfoperationName==traf1sitionName

Get operationStateChart;

Get initialState;

Get finalState;
If!(in itialState= =s ,ourceState) II !(finaIState= = targetName)

Show error;

Exit;

This IS a must be corollary and the '0igh-Priority' communication structure IS

adopted.

Corollary 24 State transitions out of the initic:j1 state of a method realizing an operation

must be associated with the same event that is Clssociated with the transition in SCO, which

178

represents that operation.

Based on the same reasoning as in Corollary 23, the program needs to check an

operation stereotype before getting a method. This is expressed in the following:

Get class;

Get seO;

Get seOTransitions;

While seOTransitions.hasNextO

Get transitionName;

Get trigger;

Get eventJ;

Get eventNameJ;

Get operations;

While operations.hasNext()

Get stereotype;

Ifstereotype==method

Get operations;

Get operationName;

IfoperationName==transitionName

Get operationStateChart;

Get initialState;

Get outTransition;

Get trigger;

Get event2;

Get eventName2;

If !(eventnameJ ==eventName2)

Show error;

Exit;

This is a must be corollary and we use the 'High-Priority' communication structure

here.

Corollary 25 A state chart either expresses the external behaviour of an object (SCO), a

method, a signal reception or is a composite state contained in another state machine.

179

Rule 29 gIves the solution when state charts specify operations. Thus, in the

implementation of this corollary in ArgoUML, if a model element is an operation, the

program does not show a violation warning. We leave this to be implemented in Rule 29.

In ArgoUML, state machines as composite states contained in another state machine are

different from ordinary state machines. That is, when we get state machines, those state

machines as composite states would not be retrieved. We can simplify our implementation

by ignoring these state machines. In addition, ArgoUML currently has the problem of

attaching state machines to receptions. That is, we only need to check classes, operations

and methods. The program gets ordinary state charts and elements owning them. If these

elements are not classes or methods (operations), it shows a violation warning. This is

expressed in the following:

Get stateChart:

Get owner:

If!(owner= =object) II!(owner==method) II !(owner = =operation)

Show error;

Exit;

This IS a must be corollary and the 'High-Priority' communication structure IS

adopted.

Rule 29 An operation is not directly specified by state machines. Instead, the methods that

implement an operation are specified by state machines.

In the implementation of Corollary 25 in ArgoUML, we did not check operations and

180

left that job to be done by this rule. The program gets classes and their operations. Then it

checks behavioural features of every operation. If any behaviour owned by an operation is

a state machine, the program shows a violation warning as well as the solution. This is

expressed in the following:

Get class;

Get operations;

While operations.hasContainer

Get behaviours;

While behaviours.hasNextO

Ifbehaviour== stateMachine

Show error;

Exit;

This is a must be rule and the 'High-Priority' communication structure is adopted.

Corollary 26 A state machine that specifies the behaviour of a class or a method is not

contained in other state machines.

UML does not specify that a CASE tool has to supply functions of attaching

submachines to the behaviour of a class or a method. Thus, ArgoUML does not support

modeling a state machine as a container for state machines of classes, operations and

methods. That is, modellers using ArgoUML cannot model a class, operation or method

state machine contained by another state machine. This corollary is always true in

ArgoUML and there is no need to implement it.

Rule-New 03 Receptions should not be modeled.

181

This is a must be rule and the 'High-Priority' communication structure is used here.

Rule 30 An operation must be associated with the declaration ofsignal reception.

This is a must have rule and the 'Medium-Priority' communication structure is used

for it.

Rule 31 The event associated with an operation must be identical to the event associated

with the signal associated with the reception.

In Corollary 25, we have discussed that statemachine for receptions does not work in

ArgoUML. Thus, the program is not able to compare events associated with operations

and receptions. When there is an event associated with an operation, it shows a reminder to

users and the 'Low-Priority' communication structure is used. This is expressed in the

following:

Get class;

Get operation;

Get seo;
Get transition;

Get event;

Get signal;

Get reception;

Show reminder;

Put into reminderList;

Exit;

Corollary 28 The state machines associated with a reception and with a method specifying

182

the implementation ofan operation which is in turn associated with that reception, must

possess the same initial andfinal states.

The ArgoUML currently throws exceptions when attaching statemachines to

receptions. Thus, there is no way to get trigger events of receptions. We can only get the

initial and final states of the method. When the program finds the corresponding reception,

it reminds users to follow this corollary. The 'Low-Priority' communication structure is

adopted here. This is expressed in the fo llowing:

Get class;

Get operation,'

Get method;

Get stateMachine;

Get initiaIState,'

Get finalState;

Get reception;

Show reminder;

Put to reminder;

Exit;

Rule 32 Acquisition (loss) of independent properties leads to expansion (contraction) of

the thing s top-level state space seo by an orthogonal region.

This is a must be rule and we use the 'High-Priority' communication structure here.

Rule-New 02 Acquisition (loss) of non-independent properties should be modeled as a

sub-machine of the related thing's state modeled by top-level state seo.

This is a must be rule and the 'High-Priority' communication structure is adopted.

183

Rule-New 04 Neither stimuli, nor messages should be modeled.

Since stimuli cannot be modeled in ArgoUML currently, we only check messages.

The 'Medium-Priority' communication structure for must have rules is used here. This is

expressed in the following:

Get interaction;

Get message;

If !(message==null)

Get collaboration;

Show error;

Exit;

Currently, the biggest deficiency in ArgoUML is that the sequence diagrams do not

work at all: "Sequence diagrams missing completely from ArgoUMLO.14" (Tigris, 2003).

In addition, in UML "collaboration diagrams show the full context of an interaction"

(OMG, 2003, p3-122). Thus, for Rules 33-36 and Corollaries 30-39, we only check

collaboration diagrams.

Another thing we have to mention is the retrieving of collaboration diagrams does not

work properly. When a diagram file is opened, collaboration diagrams in it will not be

shown. However, all information, such as interactions and senders are correctly saved. We

can go to the text field to read them. This deficiency is merely inconvenience when we see

the demo or test our program.

184

Rule 33 For every class ofobjects between which message passing is declared, there exists

an association class or the two classes are parts ofthe same aggregate.

This is a must have rule and we use the 'Medium-Priority' communication structure

here.

Rule 34 Every object must be the receiver and sender ofsome message.

This is a must have rule and we the 'Medium-Priority' communication structure is

used.

Rule 35 A constraint relates attributes ofa single class or attributes ofassociation classes

the class participates in.

Constraints in ArgoUML do not follow the notation m lflv1L and do not work

properly. At least, one needs to have a field to input constrains. However, ArgoUML uses

an very different way doing that and it's not working Thus, when there is an attribute, our

implementation gets the owner class and association classes. Then, it shows this rule to

remind modelers following this rule. If the user does not want to keep this reminder, it can

be dismissed and will not appear in the reminder list again. The 'Low-Priority'

communication structure is adopted here. This is expressed in the following:

Get attribute;

Get class;

Get associationClasses;

185

Show reminder;

Put to reminderList;

Exit;

Rule 36 For every attribute there exists a constraint which relates this attribute to some

other attribute.

When there is an attribute, the program only shows this rule to remind modelers to

follow it. If the user does not want to keep this reminder, it can be dismissed and will not

appear in the reminder list again. Because ArgoUML does not follow the notation of

constraints in UML, the 'Low-Priority' communication structure is used here. This is

expressed in the following:

Get attribute;

Show reminder;

Put to reminderList;

Exit;

Corollary 31 A UML-state transition associated with an action must modify an association

class attribute's value.

Ideally, this corollary can be implemented by adding a mechanism to UML. CASE

tools will also enable the mechanism based on UML specification. In the current stage, we

implement an alternative way to enforce this corollary in ArgoUML. The program first

gets state transitions. Then it checks whether there are actions for a transition. If an action

is not null, it checks what model element the state machine represents. Because of

186

Corollary 25, the program only reminds user to follow this corollary when the model

element is a class or method. However, transitions of methods cannot be retrieved using

the above method. We have to get a method and its state machine, then get transitions and

actions. When such an action is found, the program shows a reminder to users. If the user

does not want to keep this reminder, it can be dismissed and will not appear in the

reminder list again. The 'Low-Priority' communication structure is adopted here. This is

expressed in the following:

Get transition;

Get action;

If !(action = =null)

Get stateMachine;

Get owner;

Ifowner==class

Show reminder;

Put to reminderList;

Get method;

Get stateMachine;

Get transition;

Get action;

If !(action = =null)

Show reminder;

Put to reminderList;

Exit;

Corollary 32 For every interaction between UML-objects, there must exist a

corresponding UML-state transition in both interacting UML-objects.

This corollary can be implemented by adding a mechanism to UML. CASE tools will

also enable the mechanism based on UML specification. Based on the same reasoning as

187

in Corollary 31, we implement an alternative way to enforce this corollary in ArgoUML.

The program gets an interaction and its participating objects. Then it goes to class

diagrams looking for these two classes. Next, it gets the top-level state chart (SCQ) of both

classes and reminds users to follow this corollary. If the user does not want to keep this

reminder, it can be dismissed and will not appear in reminder list again. The

'Low-Priority' communication structure is adopted here. This is expressed in the

following:

Get collaboration;

Get interactions;

Get sender;

Get senderBaseClass;

Get sbcStateMachine;

Get receiverBaseClass;

Get rbcStateMachine;

Show reminder;

Put to reminderLIst;

Exit;

Corollary 33 A state transition associated with an event must modify an association class

attribute's value.

The ideal solution for this corollary is also to add a mechanism to UML specification.

In current stage, we implement an alternative way to enforce it in ArgoUML. The program

first gets state transitions. Then it checks whether there is trigger events for a transition. If

the event is not null, it checks what model element the state machine represents. Because

of Corollary 25, the program only reminds users to follow this corollary when the model

188

element is a class or method. However, transitions of methods cannot be retrieved in the

above manner. We have to get a method and its state machine, then get transitions and

events. When such an event is found, the program shows reminder to users. If the user

does not want to keep this reminder, it can be dismissed and will not appear in the

reminder list again. The 'Low-Priority' communication structure is adopted here. This is

expressed in the fo llowing:

Get transition;

Get event;

If !(event==null)

Get stateMachine;

Get owner;

Ifowner= =class

Show reminder;

Put to reminderList;

Get method;

Get stateMachine;

Get transition;

Get event;

If !(event==null)

Show reminder;

Put to reminderList;

Exit;

Corollary 34 A signal event may only be associated with a transition in a top-level state

chart and the initial transition ofa method implementing this.

In Corollary 34, we discussed that some transitions in state machines other than class

state machines, specifically in ArgoUML: method state machines, could not be retrieved

by the ideal solution. Thus, for these transitions, the program gets a method and its state

189

machine, then gets transitions and events. If the event is a signal event, it shows a violation

warning. The 'High-Priority' communication structure is adopted here. This is expressed

in the following:

Get transition;

Get event;

Ifevent==signaIEvent

Get stateMachine;

Get owner;

Ifowner==class

Get sourceState;

Get targetState;

If !(sourceState.isTopJII!(targetState.isTop)

Show error;

Get method;

Get stateMachine;

Get transl/ion;

Get event:

Ifevent==signaIEvent

Show error;

Exit;

Corollary 35 A call event may only be associated with a transition in a top-level state chart

or the initial transition ofa method implementing this.

Based on the same reasoning as in Corollary 34, for those corresponding transitions,

the program gets a method and its state machine, then it gets transitions and events. If the

event is a call event, it shows a violation warning. The 'High-Priority' communication

structure is adopted here. This is expressed in the following:

Get transition;

Get event;

190

Ifevent==caliEvent

Get stateMachine;

Get owner;

Ifowner==class

Get sourceState;

Get targetState;

If!(sourceState.isTop) II!(targetState.isTop)

Show error;

Get method;

Get stateMachine;

Get transition;

Get event;

Ifevent==caliEvent

Show error;

Exit;

Corollary 38 The final state transitions ofany method implementing an operation that may

be invoked through a call action must cause a return action.

Currently, the action expression cannot be retrieved in ArgoUML. We specify it

through an action name. That is, an action name field is filled by an action expression. The

'Medium-Priority' communication structure for must have rules is used here.

Corollary 39 For the state machine ofa method to contain a state transition whose effect is

a return action, there must exist a corresponding state transition in a state machine of

some other object whose effect is a corresponding call action.

Since the action expression does not work in ArgoUML, we cannot retrieve the acting

method. Thus, when the program finds a final transition with a return action representing a

191

method, it shows a reminder. The 'Low-Priority' communication structure is used here.

This is expressed in the following:

Get class;

Get method;

Get stateMachine;

Get transition;

Get target;

If target= =finalState

Get action;

Ifaction = =returnAction

Remind user;

Put into reminderList;

Exit;

192

Chapter 8 Conclusion

UML has become very popular in software engineering and is used for at least two

purposes: 00 software design and conceptual modeling of a domain for which a system is

to be required (communication and documentation). However, UML's origins in software

engineering may limit its appropriateness for conceptual modeling. Thus, some research

has attempted to develop rules that make UML better suited for domain modeling.

Notably, Evermann and Wand's research specifically interests us. They point out that

conceptual modeling involves representing aspects of the real world and that ontology is a

branch of philosophy dealing with the nature and structure of the real world, making it

appropriate as a basis for developing rules about what a conceptual modeling language

should do. From these assumptions, they developed a set of ontological rules that place

constraints on the construction of UML diagrams to ensure that they properly represent

underlYing ontological assumptions. On the other hand, there are no existing UML-based

CASE tools that enforce such rules. This research has proposed implementation

approaches for such functionality in UML-based CASE tools. In addition, we have

implemented them in a specific tool, namely ArgoUML. The main contribution of this

research is having developed software based on Evermann and Wand's ontological rules to

193

guide the modeling process. We have demonstrated the feasibility of implementing these

rules. Specifically, the system has built-in 'intelligence' to help people using UML to do

conceptual modeling. The software has the ability to realize two functions: first, to

examine UML diagrams and detect violations, and second, to explain the nature of

violations. There are in total 36 rules and 39 corollaries and the following result is

obtained.

We have given the general implementation approach to non-specific CASE tools.

Approaches of 35 rules and 26 corollaries are given. Within them, 3 rules and 11

corollaries are realized by enabling, disabling or modifying mechanisms (features) in

UML specification; 32 rules and 15 corollaries are realized by the critiquing expert

systems. We have given all algorithms to them. We did not give approaches for 1 rule and

13 corollaries. This is because 1 rule and 8 corollaries are covered by others; 2 corollaries

are actually solution of others; 2 corollaries are dropped by our research; 1 corollary is

always true and thus redundant.

194

Total
(Rules / Corollaries)

36/39

No need to implement
1/13

Need to implement
1:'\ /2n

r-

r-so~tionRealized Realized Covered Dropped
by by

Ichange critiquing 1/8 0/2 0/2

UML 32/15
I

I 0/1
I

------ L_

Figure 8.1 Implementation result for general CASE tools

Of the rules and corollaries that can be feasibly implemented, our analysis shows that

these can be divided into four categories, depending on their importance and the ease with

which they can be detected. The categories are listed in Table 8.1:

No. Rule Type
Communication

Explain
Structure

Must Be; The user is prevented from proceeding
1 Simple to CRITICAL in the construction of a diagram until the

correct violation is corrected.

Must Be;
The user is warned once of the violation,
and the violation is added to a reminder

2 Difficult to HIGH-Priority
list with high priority.

correct

195

There IS no popup indicating the

3 M1ust Have MEDfUM-Priority
violation. Instead, the potential violation
is added to a reminder list with medium
priority.

elates to a There is popup indicating the reminder.

4
non-existing

LOW-Priority
Then a low priority reminder is added to

UML the reminder list. The reminder can be
component discarded by users.

Table 8.1 Categories of feasible (to implement) rules

Of thCiC rules and corollaries that are no need to be implemented, our analysis shows

that these can be also divided into four categories. The categories are listed in Table 8.2:

No. Rule Types Explain

1 Covered
These rules are covered or logically inlplied when others are
followed.

2 Solution
These rules propose a kind of solution to violations of others.

3 Dropped
These rules appear to be inconsistent with Bunge's ontology or

UML.

4 Redundant
These rules are impossible to violate.

Table 8.2 Categories of no need (to implement) rules

This research also includes a Proof-of-Concept implementation. We have implemented

Evermanm and Wand's ontological rules in the specific UML-base CASE tool: ArgoUML.

32 rules £und 20 corollaries are implemented. Within them, 27 rules and 12 corollaries are

fully imIDlemented (Critiques for these rules and corollaries can accurately detect

violationsa and represent to users. When the user solves the problem and the diagram no

longer vioolates the rule / corollary, the system will automatically dismiss the violation

warning.).; 5 rules and 8 corollaries are implemented by giving reminders. We did not

196

implement 4 rules and 19 corollaries. This is because 1 rule and 4 corollaries relate to

newly proposed mechanism, which is not supported by current UML; 10 corollaries are

covered by others; 2 corollaries are actually solution ofothers; 2 corollaries are dropped by

our research; 1 rule and 1 corollary are always true and thus redundant; the required

functions for 2 rules do not work in ArgoUML.

.-----------~

Total
(Rules / Corollaries)

36/39

Implemented
32/20

Not implemented
4/19

Fully

implemented

27/12

Reminder

5/8

No

proposed

Mechanis

minUML

1/4

ArgoUML

does not

support

2/0

Covered

0/10

Solution

0/2

Dropped

0/2

RedundaJt

1 / 1

Figure 8.2 Implementation result for ArgoUML

To support the analysis and implementation of the ontological rules, we have also used

several other approaches: inquiry for required information, use of a dictionary, and

alternatives to proposed changes ofUML.

As additional contribution of this research, we explained and evaluated Evermann and

197

Wand's ontological rules. As a result, we dropped 2 corollaries and proposed 4 new rules

and also implemented them.

198

References:

1. Bodart, Francois and Ron, Weber. (1996). Optional Properties Versus Subtyping in

Conceptual Modeling: A Theory and Empirical Test. Proceedings of the International

Conference on Information Systems. P. 450.

2. Booch, Grady. (1994). Object Oriented Analysis and Design with Applications (2nd

Edition). Redwood City, CA: Benjamin/Cummings.

3. Burton-Jones, A. and Meso, P. (2002). How Good Are These UML Diagrams? An

Empirical Test of The Wand and Weber Good Decomposion Model.

2002-Twenty-Third International Conference on Information Systems.

4. Bunge, Mario Augusto. (1977). Ontology : The Furniture of the World: Volume 3

Treatise On Basic Philosophy. Dordrecht, Holland: D. Reidel Publishing Company.

5. Bunge, Mario Augusto. (1979). Ontology : A World of Systems: Volume 4 Treatise

On Basic Philosophy. Dordrecht, Holland: D. Reidel Publishing Company.

6. CollabNet, Inc. 2003. ArgoUML User Manual. Retrieve September 2003 from

http://argouml.tigris.org/documentation/defaulthtnll!manual/.

7. CollabNet, Inc. 2003. ArgoUML Known Incompatiable. Retrieve September 2003

from http://argouml.tigris.org/docunlentationJunllsupport.

199

8. Evennann, Joerg and Yair, Wand. (2001). An Ontological Examination of Object

Interaction. Proceedings of the Workshop on Infonnation Technologies WITS 2001,

New Orleans, LA.

9. Evennann, Joerg and Yair Wand. (2001a). Towards Ontologically based Semantics for

UML Constructs. Proceedings of the 20th International Conference on Conceptual

Modeling ER'2001, Yokohama, Japan. Berlin: Springer Verlag.

10. Evennann, Joerg. (2003). Using Design Languages For Conceptual Modeling: The

UML CASE. Doctor thesis draft.

11. Gemino, A. (1999). Empirical Comparisons of Systems Analysis Modeling

Techniques. Ph.D. thesis, University of British Columbia, Canada.

12. Guizzardi Giancarlo, Heinrich Herre and Gerd Wagner, (2002[1D. Towards

Ontological Foundations for UML Conceptual Models.

13. Guizzardi Giancarlo, Heinrich Herre and Gerd Wagner, (2002[2D. On the general

Ontological Foundation of Conceptual Modeling.

14. Green, Peter and Rosemann Michael. (2002). Developing a meta model for the

Bunge-Wand-Weber ontological constructs. Infonnation Systems, (27), P. 75-91.

15. Jacobson, 1. Christerson, M. Jonsson, P. Overgaard, G. (1992). Object-oriented

Software Engineering-A Use Case Driven Approach. Addison-Wesley,

Reading/MA.

16. Jason E. Robbins, (1998). Design Critiquing Systems. Tech Report UCI-98-41.

200

17. Klemke E.D. (Edited by). (1968). Essays on Frege. Urbana: University of Illinois.

18. Martinus Nijhoff. (1977). On the content and object of presentations. A psychological

investigation. Translated and with an introduction by Reinhardt Grossmann.

19. Object Management Group (OMG). (2003). OMG Unified Modeling Language

Specification. Version 1.5. Retrieve at June, 2003 from http://\vww.uml.org.

20. Opdahl, A.L. and B, Henderson-Sellers. (1999). Evaluating and Improving 00

Modeling Languages Using the BWW-Model. Proceedings of the Information

Systems Foundation Workshop. Ontology, Semiotics and Practice.

21. Opdahl, A.L. and B. Henderson-Sellers and F. Barbier. (1999). An Ontological

Evaluation of the OML Metamodel. Information System Concepts: An Integrated

Discipline. Dordrecht, Holland: Kluwer.

22. Opdahl, A. L. and B. Henderson-Sellers. (2001). Grounding the OML Metamodel in

Ontology. The Journal of Systems and Software, (57), P.119-143.

23. Opdahl, A. L. and B. Henderson-Sellers. (2002). Ontological Evaluation of the UML

Using the Bunge-Wand-Weber Model. Software System Model (2002) 1: P.43-67 /

Digital Object Identifier (DOl) 10.1007/s10270-002-0003-9.

24. Paul, Kegan. and Routledge. (1874). Psychology from an Empirical Standpoint.

25. Rumbaugh, J. Blaha, M. Premerlani, W. Eddy, F. Lorensen, W. (1991). Object-oriented

Modeling and Design. Prentice Hall Englewood Cliffs / NJ.

26. Wand, Yair. (1989). A Proposal for a Formal Model of Objects. Object-Oriented

201

Concepts, Languages, Applications and Databases. Boston, MA.: Addison-Wesley, P.

537-559.

27. Wand, Yair and Weber, Ron. (1989). An Ontological Evaluation of Systems Analysis

and Design Methods. Information System Concepts: An In-Depth Analysis.

North-Holland: Elsevier Science Publishers B.V.

28. Wand, Yair and Weber, Ron. (1990). Mario Bunge's Ontology as a Formal Foundation

for Information Systems Concepts. Studies on Mario Bunge's Treatise. Rodopi,

Atlanta.

29. Wand, Yair and Weber, Ron. (1991). A unified model of software and data

decomposition. Proceedings of the Twelfth International Conference on Information

Systems, P. 101-11 O.

30. Wand, Yair and Weber, Ron. (1993). On the Ontological Expressiveness of Information

Systems Analysis and Design Grammars, Journal of Information Systems. P.217-237.

31. Wand, Yair and Weber, Ron. (1995). Towards a theory of Deep Structure of

Information Systems. Journal of Information Systems, (5), P. 203-223.

32. Wand, Yair and Veda Storey and Weber, Ron. (1999). An Ontological Analysis of the

Relationship Construct in Conceptual Modeling. ACM Transactions on Database

Systems, (24) 4, P. 494-528.

33. Weber, R. and Zhang, Y. (1996). An Analytical Evaluation of NIAM's Grammar for

Conceptual Schema Diagrams. Information Systems Journal, 6(2), P. 147-170.

202

Appendix A

Implementation Manual

In order to run the ArgoUML including our implemenation of Evermann and Wand's

rules, you have to follow two steps. Also, you can use the 'demo' step to experience and

test the implementation. The configuration is for Microsoft Windows XP and

Windows2000 operation systems. Because our programs (Rule 1 and Corollary 1) need

access to several data files, which must be able to be found in the correct path, those

programs have been configed for paths on Windows. However, we still cover Unix in case

users have no access to WinXP or Win2000. Note that Rule 1 and Corollary 1 will not

work properly on Unix.

1. Setup

1.1 Copy files to your computer

Please copy the 'LS' directory including all files and folders from our compact disk to

the root directory to your hard drive: "C:\".

1.2 Set JAVA_HOME for ArgoUML running environment

By setting JAVA_HOME to different values you can at different times compile and

203

run ArgoUML with different versions of JDK and java.

In windows, set JAVA_HOME=\where\you\have\installed\jdk.

In Unix, set JAVA_HOME=/where/you/have/installed/jdk, export JAVA_HOME. This

is for sh-style shells like sh, ksh, zsh and bash. If you use csh-style shells like csh and tcsh

you will instead have to write setenv JAVA_HOME /where/you/have/installed/jdk.

2. Compile and run

For convinence, there are two scripts (one for Windows and one for Unix) that are

called build.bat and build.sh respectively.

2.1 Compiling and running for Windows

1. Change the current directory to the directory of'src_new':

chdir C:\ls\working\src_new

2.Clear the already existing class files using:

build clean

3.Compile and run ArgoUML using:

build run

If you do this from Cygwin you work just like for Unix.

2.2 Compiling and running for Unix

204

1. Change the current directory to the directory of 'src_new':

cd /your/copy/of/working/src_new

2. Clear the already existing class files using:

./build.sh clean

3. Compile and run ArgoUML using

./build.sh run

Since there are 1322 files to compile, it may take a little while. For example, a

machine with a CPU of Celeron-D 2.8G spends 1 minute 31 seconds on compling and

starting this version of ArgoUML.

Please refer to ArgoUML User Manual (Tigris, 2004) for operation guide.

3. Demo

You can use this step to experience and test our implementation. You just simply click

on the "Open Project" in the "File" menu. Then choose the corresponding' .zargo' files.

For example, 'R33-W.zargo' is the example of the 'Wrong' case of Rule 33 and

'R33-R.zargo' is the example of the 'Right' case of Rule 33. Note that, to see the demo,

the corresponding rule / corollary critic must be activated in the "Browse Critics" of the

"Critique" menu. For a non-confusing demo for each rule / corollary, we suggest users to

205

ONLY activate the corresponding critic for that rule / corollary.

206

Appendix B

Implementation Source Code and Demo Data

We have included all source code of the implementation in a compact disk. There is a

'*.java' file for each implemented rule or corollary. The file names correspond to rule /

corollary numbers. For example, 'CrR01.java' is the source code for implementation of

Rule 1; 'CrC01.java' is the source code for implementation of Corollary 1. All the source

code files are located In the following folder:

"CD-Drive:\ls\working\src_new\org\argouml\uml\cognitive\critics". The CD also includes

demo data for our implementation. There is one or two '*.zargo' file(s) for each

implemented rule or corollary. The file names also correspond to rule / corollary numbers.

For example, 'R33-W.zargo' is the example of the wrong case of Rule 33, 'R33-R.zargo'

is the example of the right case of Rule 33. For the simple to correct violation rules /

corollaries, we only give one demo file of the wrong case (some demo files include both

right and wrong cases) for each of them. For example, 'R01.zargo' is both the right and

wrong case of Rule 1.

Please refer the attached compact disk for those files.

207

Appendix C

List of Evermann's Ontological Rules and Corollaries

Rule 1 Only substantial entities in the world are modelled as objects.

Rule 2 Ontological properties of things must be modeled as UML-attributes.

Corollary 1 Attributes in a UML-description of the real world cannot refer to substantial

entities.

Rule 3 Sets of mutual properties must be represented as attributes of association classes.

Corollary 2 An association class cannot represent substantial entities or composites of

substantial entities.

Corollary 3 If an association class of an n-ary association IS intended to represent

substantial things, the association should instead be modelled as one with arity (n+1).

Corollary 4 An association class representing a composite must instead be modelled as a

composite with attributes representing emergent intrinsic properties.

Corollary 5 An association class cannot possess methods or operations.

Corollary 6 An association class cannot be associated with a state machine.

Corollary 7 An association class must possess at least one attribute.

Corollary 8 An association class must not be associated with another class.

Corollary 9 An association class must not participate in generalization relationships.

208

Rule 4 If mutual properties can change quantitatively, methods and operations that change

the values of attributes of the association class must be modelled for one or more of the

classes participating in the association, objects of which can effect the change, not for the

associations class.

Rule 5 An association class represents a set of mutual properties arising out of the same

interaction.

Rule 6 A composition relation must not be modelled.

Rule 7 Every UML-aggregate must possess at least one attribute which is not an attribute

of its parts or participate in an association.

Rule 8 All UML-classes must possess at least one attribute or participate in an association.

Rule 9 Object ill's must not be modelled as attributes.

Rule 10 The set of attribute values (representing mutual and intrinsic properties) must

uniquely identify an object.

Rule 11 Every attribute has a value.

Corollary 10 Attribute multiplicities greater than one imply that the order of the different

individual attribute value components is semantically irrelevant.

Rule 12 Classes of objects that exhibit additional behaviour, additional attributes or

additional association classes with respect to other objects of the same class, must be

modelled as specialized sub-classes.

Corollary 11 An object acquiring additional behaviour or properties must be destroyed as

209

instance of the general class and created as instance of the specialized class that IS

modelled with the relevant operations or association classes.

Corollary 12 Re-classification occurs only within a generalization / specialization

hierarchy.

Rule 13 Every UML-aggregate object must consist of at least two parts.

Rule 14 An instance of a class that by virtue of additional aggregation relationships

acquires emergent properties or emergent behaviour must be modeled as an instance of a

specialized class which declares the corresponding attributes and operations.

Rule 15 Object creation occurs when an entity acquires a property so that it becomes a

member of a different class.

Corollary 13 Object destruction occurs when an entity loses a property that is necessary for

membership in a particular class.

Rule 16 Attributes with class scope should instead be modelled as attributes of an

aggregate representing the objects of the class.

Rule 17 If a class that is specialized is declared as abstract, the specialization must be

declared to be 'complete'.

Rule 18 A class that is not specialized cannot be declared abstract.

Rule 19 A specialized class must define more attributes, more operations or participate in

more associations than the general class.

Rule 20 Every ordinary association must be an association class.

210

Rule 21 A UML-state represents a specific assignment of values to the attributes and

attribute of association classes of the objects for which the state is defined.

Corollary 14 A UML-transition must change the value of at least one attribute used to

define the state space.

Rule 22 For every level of refinement of a state C, there must be an additional set of

attributes in the class description or in participating association classes that change as the

object transitions among the sub-states.

Corollary 15 For all immediate substates of a super-state, the values assigned to attributes

describing the super-state are invariant and are equal to those defining the super-state.

Corollary 16 Concurrent sub-states require mutually disjunct sets of additional attributes in

the class description or in participating association classes.

Rule 23 Guard conditions on transitions from the same state to nonconcurrent sub-states

must be mutually disjunct.

Rule 24 Action states are super-states of a set of sub-states. The object transitions among

these while in the action state. State charts must reflect this fact.

Corollary 17 States must not be associated with any actions. Sub-states corresponding to

different models should be used instead.

Corollary 18 All states in an activity diagram must be states of the same object.

Corollary 19 If the partitions of an activity diagram represent different objects, they must

be part of a composite which is shown in the class diagram.

211

Rule 25 The quantitative object behaviour (for each model) is entirely describable by

top-level state chart (SCQ)

Rule 26 All UML-transitions in SCQ must correspond to an operation of the object which

SCQ is associated with.

Corollary 2Q Every object must have at least one operation.

Corollary 21 States in SCQ are stable.

Corollary 22 All UML-transitions in SCQ must be associated with a UML event.

Rule 27 An object must exhibit additional operations expressing qualitative changes, if a

super- or sub-class is defined and instances can undergo changes of class to the super- or

sub-class.

Rule 28 Methods may be described by state charts other than top-level state charts.

Corollary 23 A state chart describing a method must begin and end with those states in

SCQ which the operation that the method implements is a realization of.

Corollary 24 State transitions out of the first state of a method realizing an operation must

be associated with the same event that is associated with the transition in SCQ which

represents that operation.

Corollary 25 A state chart either expresses the external behaviour of an object (SCQ), a

method, a signal reception or is a composite state contained in another state machine.

Rule 29 An operation is not directly specified by state machines. Instead, the methods that

implement an operation are specified by state machines.

212

Corollary 26 A state machine that specifies the behaviour of a class or a method is not

contained in other state machines.

Corollary 27 The method corresponding to a state chart must modify the attribute values of

the object corresponding to the values defined for the initial and final state of the method.

Rule 30 An operation must be associated with the declaration of signal reception.

Rule 31 The event associated with an operation must be identical to the event associated

with the signal associated with the reception.

Corollary 28 The state machines associated with a reception and with a method specifying

the implementation of an operation which is in tum associated with that reception, must

possess the same initial and final states.

Rule 32 Acquisition (loss) of independent properties leads to expansion (contraction) of

the things top-level state space SCO by an orthogonal region.

Corollary 29 Every object must be capable of at least one state transition or be able to

undergo change of class to a super- or sub-class.

Rule 33 For every class ofobjects between which message passing is declared, there exists

an association class.

Rule 34 Every object must be the receiver and sender of some message.

Rule 35 For every attribute there exists a constraint which relates this attribute to some

other attribute.

Corollary 30 An association class cannot be sender or receiver of a message.

213

Rule 36 A constraint relates attributes of a single class or attributes of association classes

the class participates in.

Corollary 31 A UML-state transition associated with an action must modify an association

class attribute's value.

Corollary 32 For every interaction between UML-objects, there must exist a

corresponding UML-state transition in both interacting UML-objects.

Corollary 33 A state transition associated with an event must modify an association cl s

attribute's value.

Corollary 34 A signal event may only be associated with a transition in a top-level st e

chart and the initial transition of a method implementing this.

Corollary 35 A call event may only be associated with a transition in a top-level state chan

or the initial transition of a method implementing this.

Corollary 36 SYnchronous communication of objects implies transition to a state which

cannot be left except through a state transition associated with the return signal.

Corollary 37 ASYnchronous communication of objects with expected response implies the

existence of at least one state transition caused by the object acted upon, signifYing the

return interaction after the state transition signifYing the original communication.

Corollary 38 The final state transitions of any method implementing an operation that may

be invoked through a call action must cause a return action.

Corollary 39 For the state machine of a method to contain a state transition whose effect s

214

a return action, there must exist a corresponding state transition in a state machine of some

other object whose effect is a corresponding call action.

215

