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ABSTRACT 

Changing vegetation distributions due to climate change are a concern world wide. 

Understanding these potential changes is of special interest in the proposed 

Akamiuapishku (Mealy Mountains) national park (Labrador, Canada). The potential for 

change under future climate scenarios was investigated through spatially explicit 

statistical models. The models are based on sampling data from classified Quickbird high 

resolution satellite imagery. Topoclimatic variables were used to predict percentage cover 

by vegetation cover classes. Temperature was by far the most important predictor 

variable but other variables such as incident solar radiation and measures of slope and 

sheltering also proved to be useful predictors. The relationships between temperature and 

the percentage cover variables were nonlinear in most cases and so nonlinear parameter 

estimation was used to build the predictive equations. The predictions suggest there is 

great potential for an increase in abundance of coniferous forest in the study area given 

future climate scenarios used. 
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1. INTRODUCTION 

1.1. Nature and rationale 

The literature discussing our planet's changing climate agrees that climate is changing 

at a faster rate than in the past (IPCC, 2001). There is, however, uncertainty about finer 

details such as how large the changes are going to be. Regardless of the details, changing 

conditions are likely to impact ecosystems because many of the processes that control 

ecosystems are affected by climatic conditions. Changing conditions are likely to have the 

most significant effects on high latitude ecosystems because these areas are predicted to 

experience the greatest climatic changes. Recent studies in the Canadian Arctic have 

shown that a dramatic rise in temperature around a decade ago caused displacement of 

tundra by forested areas (Danby and Hik, 2007). Figure 1.1 shows the results of a 

simulation from the Canadian Institute for Climate Studies (CICS). The example given is 

for mean summer temperatures but the trend of greater changes further north is similar in 

predictions for other conditions such as quantity of precipitation. Alpine areas such as the 

Alps (Pauli et al., 2007) and the Tibetan Plateau (Klein et al., 2004) have been shown to 

be particularly sensitive to climate change because climate is often the limiting factor 

with regard to vegetation distribution. The Mealy Mountains contain high elevation alpine 

areas which are likely to be sensitive to change. The alpine areas in the Mealy Mountains 

are also of particular interest because of their isolation, which increases the risk of local 

extinction of alpine species. 
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Figure I I Prodicted summer (JJA) mean tempe111rure change- 2050s (Canadian Institute 
for C'limate Studies. 2003) 

Predicti\'C modelling is one ""·ay to anempt to understand the link bet\\een an areas's 

climatic conditions and the vegeHUion 1haL occurs there (Gottfried''' al. 1999, Guisan and 

Zimmennann. 2000) With this under.;lllnding further modelling may pred1ct how 

distributions might be different 1n the future under d10erent climatiC Conditions 

J.2. Study arrn 

The study area is located inside the proposed Akamiuapishlru (Mealy Mountains) 

national pari. The Mealy \lounwns are located south of LAke \1ehille '" the south eaSI 

of Labrador (Figure I 2) The geollflplucaJ extent of the study area ranges from 58 898• 

West and 53 634° North in the SO<Ilheast comer to 58.777• West and 54 559• North in the 

northeast 
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Labrador 
Sea 

Figure 1.2 Study area location. Proposed park extent from Parks Canada (2005) 
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The summits of the Mealy Mountains do not generally reach sharp peaks but are 

rather more rounded and broad. Reaching a maximum height of 11 OOm ( asl) the 

mountains are a relatively isolated area of high ground (Figure 1.3). The isolation of this 

region makes it particularly important for conservation because if species assemblages are 

displaced they may have nowhere to move to and will become locally extinct. The Mealy 

Mountains are composed mainly of the Canadian Shield "gneissic" rocks and have been 

affected by Quaternary glaciations and other tectonic and erosional forces (Gray and 

Lauriol, 1985, Jacobs et at., 2005). The climate of the area is affected both by large scale 

continental circulation patterns and maritime effects of the Labrador Sea. In the winter, 

the Icelandic low, an area of low pressure south of Greenland, causes prevailing 

northwesterly winds. Cold arctic air is brought to the region when high pressure regions 

form in the north or northwest. A persistent low pressure area near Ungava Bay causes 

westerly winds in the summer (Keith, 2001). The close proximity of the Labrador Sea 

results in a damp maritime climate with large accumulations of winter snow some of 

which remains late into the summer (Jacobs et at., 2005). Climate records (Environment 

Canada, 2007) show a warming trend in the region over the last 11 years, which is most 

significant for summer and fall temperatures. Climate modelling exercises predict 

warming in this region over the coming decades (Canadian Institute for Climate Studies, 

2003). In the scenario used in this study taken from the Coupled Global Climate Model 

Two, with the results modified for the local situation, the mean summer temperature is 

predicted to rise from the current (1971-2000) 0.8°C to 1.8 oc in 2040-2069 and 3.0 oc in 

2070-2099 (Jacobs, 2006l 

1 Personal communication, Dr. John Jacobs, Department of Geography, Memorial University (2006) 
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The area of main interest to the Labrador Highlands Research Group (LHRG) is the 

valley informally known as Moraine Valley (Figure 1.4) and the summit at the top of the 

valley known as summit 1057. For this research, the study area is extended to include a 

wider range of topographic conditions and vegetation cover. The extended area includes 

two other valleys one to the north and another to the south. The northern valley is 

unnamed while the southern valley known (unofficially) as Swiss Valley. There is also a 

smaller unnamed valley between Moraine Valley and Swiss Valley. The extent of the 

study area to be used in this research is best defined by the extent of the Quickbird 

satellite imagery, from which vegetation cover was estimated. The extent of the 

Quickbird image is shown in Figure 1.4. The area covered by the image is approximately 

63 km2 but this is reduced slightly when the imagery is orthorectified and cropped. 
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Figure 1.4 Study area extent; Derived from NTDB data (Natural Resources Canada, 
2005). All place names are unofficial. 
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1.3. Purpose 

Given that the study area falls inside the Mealy Mountains National Park (Parks 

Canada, 2005) knowledge about vegetation dynamics will aid future management. An 

understanding of how vegetation distributions might respond to different changes in 

conditions will allow better educated decisions in the future. This knowledge could be 

useful for operations such as park zoning, conservation prioritisation and future 

monitoring. Methodologies developed as part of this research may also be applied in other 

areas where similar issues are under investigation. 

1.4. Theory 

The common hypothesis about vegetation dynamics under a changing climate in 

northern hemisphere highland ecosystems is that species assemblages will migrate 

upwards in elevation and northward in latitude. Eventually the assemblages that currently 

occur at the highest elevations and northern most latitudes will be displaced (Pauli et al., 

2003, Pauli eta/., 2007). As shortage of suitable areas for these highland assemblages 

will force them to be out competed by species and assemblages better suited to the new 

conditions. This theory is commonly reduced to the level of tree-line shift, where 

vegetation is considered as either forested or not. Forests occur at lower elevations and 

more southerly latitudes, while at higher elevations and latitudes non forested areas 

prevail (Komer, 1998, Korner and Paulsen, 2004). The result is one northern latitudinal 

tree-line and many elevational tree-lines. The situation in the Mealy Mountains study area 

is a little different, mainly due to issues of scale. Tree-line rarely occurs as a distinct 
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break between forest and tundra but rather occurs as a progression where trees become 

less frequent and more stressed (Korner and Paulsen, 2004). In mountainous areas that 

reach high elevations and have steep gradients the progression can occur in a relatively 

narrow range, when compared to the whole of the mountain. In the Mealy Mountains the 

progression occurs over a much larger proportion of the mountains range and is therefore 

not seen as a line. The lack of a distinct tree-line is shown in Figure 1.5, which looks 

down on a valley from a high ridge. Trees are generally seen lower down in the valley, 

closer to the lake, and the high ridge on the left side is free of trees. From extensive 

inspection of the study area it was seen that there is no clear elevation at which trees no 

longer occur and variation in the other types of vegetation do not follow discrete 

elevational gradients. Thus factors other than elevation, such as topographic sheltering 

and moisture retention have some impact on vegetation distribution (Komer, 1998). This 

is an issue of scale because on larger, steeper mountains these variations caused by other 

factors would be smaller relative to the overall distribution. 
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Figure 1.5 Topographic effects on altitudinal tree-line in the Mealy Mountains, 
Labrador. No clear elevation tree.Jine is seen as the distribution of trees appears very 
patchy and irregular. 

1.5. Objectives 
The primary objective of this research is to create a spatial model (spatially explicit) 

that can predict vegetation distributions for the current topoclimatic condid011S and future 

conditions. This model will be calibrated for the study area but may be applicable to areas 

where conditions are similar l11is objec1ive can be broken down into the following five 

tasks 

I. Map the current distribution of vegetation types 

2. Build a database of curremtopoelimatic conditions. 

3. Perform exploratory analysis to infonn the model building process 

4. Create a model that predicts current vegetation distribution based on the 
topoclimatic variables. 

S. Apply the model to altered topoclimatic conditions that represent past or 
furure scenarios 

10 



1.6. Assumptions 
The primary assumption in this research is that the distribution of vegetation types is 

at least partially dependent on climatic factors and their interaction with topographic 

conditions. 

In this study the formulation of models was based on the current distribution of 

vegetation, which is assumed to be in equilibrium with the prevailing conditions though 

this is unlikely in reality (Bennet et al., 1986, Ritchie and MacDonald, 1986, Malcolm et 

al., 2002 and Midgley et al., 2006). Rules and correlations about the distribution of 

vegetation cannot be created based on vegetation that is not in equilibrium with its 

environment because the vegetation is essentially occurring where it should not. This is a 

problem of inertia (resistance to change). When a type of vegetation is established in an 

area it may require a large change in conditions to cause it to be replaced (Komer, 1998). 

However the difference in initial conditions that would cause another type of vegetation 

to occur at that position may be small (Guisan and Zimmermann, 2000). 

1. 7. Context of research 
This research is being conducted as part of the work of the Labrador Highlands 

Research Group (LHRG). The LHRG is a multidisciplinary group with students and 

faculty from the departments of Biology and Geography at Memorial University of 

Newfoundland and other associated institutes. The objectives of the group are: to better 

understand highland ecosystems in relation to their local climates, to determine how 

ecosystems developed in the past and to predict what will happen to alpine ecosystems 

under a future, perhaps very different, climate (Jacobs et al., 2005). 
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This research will focus on the first and final aims, while information from other 

researchers in the project will be used as necessary. The primary information that will be 

required from the research group is climate data collected from the three climate stations 

in the study area (Jacobs, 2007). 
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2. LITERATURE 

This section presents a review of the current knowledge regarding modelling 

techniques used to model vegetation distribution. There is a significant dichotomy in the 

approaches for the prediction of future vegetation distributions. The division occurs 

between equilibrium models and transient models (Guisan and Zimmermann, 2000). 

Transient models are commonly based on the processes that cause a particular distribution 

to be formed. Consequently transient models normally require extensive knowledge 

regarding processes such as seed dispersal and disturbance regimes that are crucial to the 

formation of these patterns. Transient models also tend to be considerably more complex 

than equilibrium models (Starfield and Chapin, 1996, Cousins et al., 2003 ). Due to the 

significant increases in required data and model complexity transient models were not 

considered for use in this research and so modelling was restricted to equilibrium 

techniques. The second section of this review introduces some issues associated with 

scale. The third section introduces and discusses neighbourhood effects and spatial 

autocorrelation. 

2.1. Equilibrium models 

Equilibrium models can be constructed using a range of methodologies but are all 

based on a similar concept. The general concept of equilibrium modelling can be broken 

into three stages; calibration, altering input conditions, and making predictions (Figure 

2.1). The model is calibrated to represent relationships between the environmental 
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conditions and vegetation distributions. These relationships can be used with alternative 

conditions that represent possible future or past conditions. 

Existing 
distributions I

I Alternative // 
_ conditions . 

Existing 
conditions 

c:;~b:::e ········ e Alternative 
distributions 

~------------~ 

Figure 2.1 Conceptual overview of equilibrium models. Existing conditions and 
distributions are used to calibrate the model then the conditions are altered to make a 
prediction. 

Equilibrium models are generally dependent upon the ecological theory of niches. 

Niches can be defined as either driven by the environmental requirements of the species 

or the impact the species has on the environment. In distribution modelling it is the 

environmental requirements of the species that are of interest. If it is possible to 

determine the environmental conditions that a species or assemblage requires to survive, 

then its distribution can be predicted based on those environmental conditions. There are 

two methods that may be used to quantify the niche of a species or assemblage (Guisan 

and Thuiller, 2005). The first is sampling of observed plant (or animal) distributions in 

relation to the variation in environmental conditions, known as in situ sampling. The 

second is ex situ sampling where different environmental conditions can be investigated 

individually, this requires controlled conditions such as those found on a laboratory. In 
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situ sampling is preferred in this case for several reasons. First, ex situ sampling would be 

impractical especially as the focus here is on all assemblages present in the study area not 

just a single species. Second, in situ sampling has the advantages of ease of sampling and 

cost efficiency but has a large disadvantage. When the in situ distribution is sampled it is 

the realised not fundamental niche that is being assessed. The fundamental niche may not 

be realised because of factors such as competition and interactions (Guisan and 

Zimmermann, 20005). The result is that the niche is most likely underestimated. 

Equilibrium models only predict potential distributions that an assemblage or species 

could achieve given certain conditions. There is no inclusion of movement from one 

distribution to another. The potential distribution is therefore the distribution that would 

be achieved once the vegetation has reached equilibrium with the environment. For these 

reasons equilibrium models are sometimes called static distribution models. 

All of the stages in the conceptual model (Figure 2.1) will vary with each model but 

the stage that is of most importance is the method of calibration. The majority of 

calibration methods are statistical but other methods use artificial intelligence or machine 

learning methods (Cairns, 2001 ). Table 2.1 provides an overview of model construction 

methods used in the literature. This table is not in anyway exhaustive but does provide a 

framework for discussion of the variety of methods that are used. Some of these methods 

are discussed to provide an overview of what they involve and how they can be applied. 
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Table 2.1 An overview model construction methods, full details can be found in Guisan 
and Zimmermann, 2000. 

Type of response Probability Statistical Possible modeling technique Examples of hnbitat 
variable distribution approaches modeling studies 

Quantitative Gaussian MULltEG WA, LS, LOWESS, GLM, Hnntley et al .• 1995; 
(continuous) GAM, Regression tree Heik:kinet1, 1996 

ORDIN CANOCO Hill, 1991; Gottfried et at, 
1998; Ouisan et al., 1999 

Poisson MULREG GLM,GAM Vincent and Haworth, 1983; 
Guisan, 1997 

Negative MULREG GLM,GAM 
binomial 

Semi-quantitative Discretized MULREG PO model, CR model Ouisan, 1997; Guisan et al., 
(ordinal) continuous 1998; Guisan ami Harrell, 

200(1; Guisan, in press2000 
True ordinal MULREG Stereotype model 

Qualitative Multinomial MULREG Polychotomous logit Davis and Goelz, 1990 

regression 
nominal) 

CLASS IF Classification tree Walker and Moore, 1988; 
Burke et al., I 989; Mooa-e et 
uL, 1991; Lees and Ritman, 
1991 

MLC Frank, 1988 
R tde~based class Twery et al., 1991; Leuiban 

and Neilson. 1993: Li, 1995 
DISCR DFA Lowell, 1991 
ENV-ENV Boxcar, Convex HuU, Box, 1981; Busby. 1986; 

poiut-to-point metrics Carpenter et al., 1993; 
Tcbebakc:rv·d et ai., 1993 

Binomial MULREG GLM, GAM, Regression Nicholls, 1989; Austin et at., 
tree 1990, 1994; Yee aud 

Mitchell, 1991; Lenihan. 
1993; Brown, 1994; Van de 
Rijt et al., 1996: Gui:san, 
1997~ Saetersdal and Birks. 
1997; Franklin, 1998; 
Leathwick, 1998; 
Zimmermann and Kienast, 
1999; Guisan et al., 1999; 
Gui:san and Tbeurillat, 1000 

CLASS IF Clas.sifk.arion tree Fraukliu, 1998; Franklin et 
al., 2000 

BNV-ENV Boxcar, Convex HuU, Busby, 1986; Busby 1991; 

point-to-point metrics Walker and Cocks, 1991; 
Shao and Halpin, 1995; 
Huntley et al., t 995 

BAYES Bayes formula Skidmore, 1989; Fischer, 
1990; Aspinall, 1992; 
Brzeziecki et al., 1993 

Adapted from Guisan and Zimmermann, 2000. 
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2.1.1. Multiple regressions 

The multivariate form of the general linear model (GLM) forms the basis of multiple 

regressions in which the dependent variable is predicted as the sum of explanatory 

variables multiplied by their respective regression coefficients (Equation 2.1). The GLM 

has many weaknesses when used for vegetation distribution models, such as the limitation 

to linear relationships, but it is an important starting point from which many other 

methods are developed (Tabachnick and Fidell, 1996). 

J=v 

Y; =A+ L:M1 xXiJ 

Where: 
r; = The dependent variable. 

X 1 = The jth explanatory variable. 

A = The intercept. 
M 1 = Thejth regression coefficient. 

V= The number of explanatory variables. 

(Shaw, 2003) 

j=l 

Equation 2.1. The general linear model 

Different combinations of variable types (discrete, continuous and dichotomous) for 

the independent variables (IVs) and dependent variables (DVs) result in different 

analytical methods which fit the GLM. Cairns (200 1) used a mixture of continuous and 

dichotomous IVs to predict continuous DVs. The continuous variables including slope 

and elevation, while fire and geomorphology were included as dichotomous IVs and the 

probability of a vegetation type occurring was predicted (continuous DV). This 
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methodology can be thought of as analysis of covariance; the continuous predictor 

variables are the covariates and the discrete variables are the IVs. 

Calef et al. (2005) also predicted the probability of the occurrence of a class but in the 

method they used (logistic regression) a threshold is used to divide the probability into 

two binary states. In their work they used a hierarchical structure to divide classes. The 

hierarchical structure works by first splitting the highest level of ecological difference, 

forested and non forest for example, then making further divisions of the classes below. 

Logistic regression is a generalized linear model and therefore can be used to deal with 

non linear relationships between IVs and DVs (Tabachnick and Fidell, 1996). Logistic 

regression also makes no assumptions about the distributions of the IVs further increasing 

is potential utility for vegetation distribution modelling. 

Another extension to the GLM uses link functions to relate linearly combined IV s to 

the DV so that non-normal distributions can be modelled (Guisan et al., 2002). This 

group of methods is confusingly called generalised linear models and so will not be 

abbreviated to GLMs here; instead the abbreviation LGLMs (linked general linear 

models) will be used to maintain the distinction. The main advantage ofLGLMs is the 

ability to deal with DVs that have a wider range of distributions (Normal, Poisson, 

binomial), the IVs are, however, still combined linearly. LGLMs can also be extended to 

a more developed set of methods called general additive models (GAMs). The main aim 

of GAMs is to automate the process of creating the link functions that in LGLMs can be 

over reliant on the user. Miller and Franklin (2002) used LGLMs to model the 

distribution of vegetation assemblages in the Mojave Desert. They also used GAMs as a 

means of creating the link functions but used the simpler LGLMs in the actual modelling. 
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Miller and Franklin (2002) used a mixture of discrete and continuous environmental 

variables such as average summer precipitation and landform classes to model the 

distribution of four vegetation classes; a different model was used for each vegetation 

class. 

2.1.2. Non parametric methods 

Advances in the availability of computing power have aided development of a variety 

of methods that are not reliant on specific data distributions in the same way that the 

linear regression techniques described earlier are (O'Sullivan and Unwin, 2003). These 

methods are of increasing interest to those performing ecological modelling because 

many of the relationships in ecological studies are nonlinear, involving high order 

interactions that are not adequately represented in linear models (De'ath and Fabricicus, 

2000). These methods come in various forms and with a host of different names such as 

artificial intelligence and machine learning. A full discussion of these methods is not 

relevant to this thesis but two methods of particular interest in vegetation distribution 

modelling will be reviewed briefly. The two methods to be covered here are artificial 

neural networks (ANNs) and classification and regression trees (CARTs). 

A conceptual representation of an ANN is shown in Figure 2.2. ANNs get their name 

from their brain like structure and learning like behaviour (O'Sullivan and Unwin, 2003). 

The input layer contains the IVs, each IV is a node (neuron) and is represented by a single 

circle. The output layer contains the results, one node for each vegetation class, normally 

consisting of binary values, but values in a continuous range from zero to one can also be 

used (O'Sullivan and Unwin, 2003). Between the input and the output are a number of 

hidden layers, one is shown in Figure 2.2 but many more can be used. The hidden layers 
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are "here the ICIUal pr~"nll ocxu,.. and they work by applyinsoteratl\ ely adjusted 

"eights to the data In 'esecanon dascnbullon modelling applications ANNs are normally 

used in supervised mode, the model is trained using existing distribmion data. Given a set 

of environmental variables as inputs and existing class distribUiions the model applies 

randomly created weights co the an put in an attempt to prediccchc output The initial 

ran6om weights are iterathdy adJUSted until the model can predact the output (O'Sulli,·an 

and Un"in. 2003) Once the model has been uained it can be apphed to dafferent inputs to 

predJct the distributions gl-.en tho~e n~ conditions 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

() 

Figure 2 2 Concepcual repr~ntation of an A-'1". Adapted from Cairns (2001) The 
nodes in the hidden layef(s) are oterall•d) adJuSted in order to predactche output layer 
based on the nodes in theanput layer 

ANNs have two common iU\Ies that resu-ict their usage ovrr·fitting and the black 

box etTect The internal strucn1re of an ANN can be so complex that it predicts the 

training data very well but does nocr~eneralise so chat the model could be used for other 

tnpuc data The conceptual issue of o-cr-fitting is illuStrated in Figure 2.3, wheremo 



distributions can be divided by the two environmental conditions (x andy). The 

generalised model divides the majority of the points and finds the main trend, the over

fitted model correctly classifies all the points even those that do not fit the general trend. 

The over-fitted model therefore performs well when classifying the training data but is 

not as good for representing the main trend. This problem of over-fitting can be avoided 

by using an appropriate level of complexity in the hidden layer(s); this is a slightly 

subjective process that requires a certain amount of skill. The black box problem only 

matters when there is some desire to know what the trends are that divide populations. 

Because of the nature of the weights in the middle layer(s) little can be learned about their 

meaning. In a linear regression, one may find that soil moisture has a positive effect on a 

certain vegetation class through looking at the variable's weightings but this sort of 

information is much less clear in an ANN. 
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Environmental factor x 

,J Overfitted 

, 
Generalised 

o Distribution B 

• Distribution A 

Figure 2.3 Over-fitting ANN models; Adapted from O'Sullivan and Unwin (2003). Two 
populations can be divided using two environmental factors (x and y). The over-fitted 
solution does not generalise the differences between the two distributions. 

Classification and Regression Trees (CARTs) can use continuous, discrete or 

dichotomous IVs to predict either discrete DVs (classification trees) or continuous DVs 

(regression trees). CARTs work by dividing the data in a hierarchical manner, this is 

shown conceptually in Figure 2.4. The IVs (elevation, curvature, soil depth, air 

temperature, and soil moisture) are used to divide the data into new groups; the final 

groups are labelled as G6 to Gil. Each division is based on one IV and aims to split the 

previous group into two groups that are different from each other but homogenous within 

themselves (De'ath and Fabricicus, 2000). The final groups (leaves) can be defined in two 

ways: 

1. By the mean values of the observations that are put into the group. 
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2. By a frequency distribution of the classes the observations put into that group 
come from. 

CARTs are especially advantageous because the divisions make simple rules that can be 

easily incorporated into other systems, for example the rules can be incorporated into 

expert systems. 

Cu 

Sheltered i Exposed 

J 

I 

Elevation 

Above tl Below 
600m 600m 

.. L_"~ ··~--,. . .. . . .. l 
i 

Soil depth 
Deep J Shallow 

i 

1 .......... ] 

I • GJO • Gil 
Wet !Dry Hot Cold 

t i • r··· _L __ --------------·--1 

1 l I • • 
G6 G7 G8 G9 

Figure 2.4 Classification and regression trees. Distributions are sequentially divided using 
environmental factors such as elevation. 

Cairns (2001) performed a comparison between GLMs, ANNs and CARTs using 

these methods to classify vegetation into five cover classes. The classifications 

(predictions) were made using IVs such as topographic moisture potential, direct beam 
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solar radiation and disturbance history. He found that each ofthe three methods had their 

respective advantages and that ANNs were generally the best predictor but they exhibited 

a higher degree of variability than the other methods. 

2.2. Issues of scale 

Scale is a critical issue in vegetation modelling. Working at the wrong scales can 

cause a wide range of problems including the complete failure of a model and the 

production of an essentially useless model. In modelling efforts abstraction is necessary, 

as there is no way to represent reality completely. Mismatching levels of abstraction have 

limited the progress of vegetation distribution modelling (O'Connor, 2002). The results of 

mismatching levels of abstraction could for example mean that the output from the model 

is too vague to be useful (not matching the model to its purpose).The planned level of 

precision could be too fine resulting in a model that can't make predictions with an 

accuracy. Therefore in performing this research scales were considered at an early stage 

so that a useful model could be produced. There are a number of scales or levels of 

abstraction and associated issues that must be considered: 

1. Spatial scales: Model operation spatial resolution, input topographic data 
resolution, satellite data resolution, field sampling spatial resolution, 
neighbourhood size, and assemblage migration rates. 

2. Temporal scales: Climate data period coverage (yearly averages, seasonal 
averages etc.), prediction temporal resolution, time differences between data 
collection, assemblage migration rates, and season changes in vegetation. 

3. Ecological scale: Resolution of vegetation classification systems and resolution of 
ecological behaviour. 

Most of the issues detailed above relate to the resolution of information in some scale. In 

this study resolution can be defined as: 
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"The smallest spacing between two displayed or processed elements; the smallest size of 

feature that can be mapped or sampled" (Burrough and McDonnell, 1998. p305). 

It is important to consider that most of the scale issues are interrelated, often 

maximising the resolution on one scale will require a decrease in others. If a model is 

desired to make predictions at the ecological level of species it is likely to have to be 

more spatially and temporally coarse than a model predicting assemblages. Another 

consideration is that there is no one correct resolution for each scale but appropriate 

resolutions depending on research objectives (Morrison, 2002 p123). 

2.3. Neighbourhood effects 

W. R Tobler (1970) stated his first law of geography "everything is related to 

everything else but, near things are more related than distant things". If this apparently 

obvious and relatively simple premise were false there would be little to study in the field 

of geography. The relationship Tobler (1970) stated can be described as positive spatial 

autocorrelation, negative spatial autocorrelation can also occur where similar values are 

found scattered and values close to each other are dissimilar. 

Tobler's first law raises the important, but frequently ignored issue of suppressed 

variance. This issue can be illustrated through an example of an agricultural experiment 

(Griffith, 1987). The aim of the experiment was to test if fertilizing crops altered their 

yield. To investigate this effect crops were treated in patches some being fertilized and 

some not. The idea behind this treatment was that there would be some difference (or 

variance) between the yields in the treated and untreated areas. The resulting variance 

between the two treatments was not as great as was expected. This was found to be due to 

seepage of fertilizer from treated sections into untreated sections. The patches were 
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therefore not as different as they should have been; the variance between them was 

suppressed by the seepage. The seepage effect is more widely known as a neighbourhood 

effect. A neighbourhood effect is a process that makes near observations more similar (or 

different) than is expected. Failure to account for any neighbourhood effects in an 

analysis results in the incorrect estimation of variance, as in the fertilizer study where the 

variance was underestimated. 

It is not the spatial autocorrelation in a data set that causes issues and weakens 

analysis, rather it is neighbourhood effects that are unseen or unaccounted for. In the 

fertilizer example the actual level of spatial autocorrelation does not matter since it would 

have been largely controlled by the layout of the patch treatment. It is the suppression of 

variance due to seepage of fertilizer that weakens the analysis. If the researchers 

accounted for effect of seepage on the variance they could have estimated the real 

variance. 

2.4. Summary of findings from the literature 
The review of relevant literature confirms that objectives of this study are reasonable 

and that there are a range of established methods that can be used to achieve them. The 

methods used in this research will be limited based on the objectives, data and resources. 

Transient modelling techniques will not be used because they are beyond the scope of this 

project as are ex situ sampling methods. Consequently modelling will be based on in situ 

sampling using equilibrium modelling methods. Within these limits there is still a large 

range of possible methods that can deal with different data types. Parametric modelling 

techniques will be explored first and if required non-parametric methods will be 

investigated. In order to create a model that is useful various issues of scale must be 
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considered and resolved, for example an appropriate spatial resolution must be chosen 

and a suitable level of ecological abstraction must be found. Neighbourhood effects must 

also be investigated as they could potentially lead to serious errors in model construction 

but also because they may be used to strengthen the model. 
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3. DATA 

3.1. Field data 

A vegetation survey was completed in the summer of 2005. This survey was designed 

to fulfill two purposes. First, vegetation distribution information was required for ground-

truthing of satellite imagery. Second, the survey was designed to quantify present day 

variation in vegetation parameters such as tree height and density. 

Sampling was carried out at two different levels of detail in order to capture the 

spatial variability of vegetation and record more detail at some of the sites. The detailed 

sampling (planned) was carried out at 80 of 201 potential predetermined sites, focusing 

on those sites within the area of planned satellite image acquisition. The less detailed 

sampling (ad-hoc) was carried out while travelling between the planned sites. The ad-hoc 

points were primarily designed to fulfill the satellite imagery ground-truthing objectives. 

The surveying was completed using a set of predetermined ground cover classes which 

were identified on the ground through visual inspection. 

3. 1.1. Ground cover classes 

The ground cover class system was based on the system used in Natural Regions of 

Newfoundland and Labrador (Meades, 1990) and recommendations given by Dr. Luise 

Hermanutz (2005i and Dr. John Jacobs (2005l With a total of 28 classes the system 

was designed to be finer than any system that will be used in modelling efforts. The finer 

2 Personal communication, Dr. Luise Hermanutz, Department of Biology, Memorial University of 
Newfoundland (2005). 

3 Personal communication, Dr. John Jacobs, Department of Geography, Memorial University of 
Newfoundland (2005). 
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classification systems allows for wider udlity oft he data and aggregation based on further 

analysis. The classes. summarised in Table 3. 1, are intended to represent distinct plant 

communities that are based on species and fonn These classes are intended to be easily 

identified on the ground and have significantly different environmental requirements. TI1e 

system uses major and minor classes The minor classes are subsections of the major 

classes, for example I Ieath is a major class and there a number of types of heath that fom1 

minor classes. 

Table 3.1 Ground cover classes used in this study. The classes are identified by a major 
and minor class, for example sedge tundra (TUN_SED) is member of the tundra major 
class. The major classes are as follows: TUN =tundra, KHZ= Krummholz, DSH • 
deciduous shrub. CSH - coniferous shrub (low fonn conifers but not Krummholz), COP= 
coniferous open canopy. CCL= coniferous closed canopy. UNO= understory, BRK• bare 
rock or soil, 1120• Water, and FBG • fens and bogs. 

2 

Bilbeny 

Heath 

(Tundra 

Heath) 

Sedge Tundra 

TUN HET Labrador tea, 

Bilbeny, Crowberry, 

Bearberry and 

Kalmia 

dominate with 

very few heath plants 

and dry soil not deep, 

wet peat. 
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(Aipone 

Heath) 

4 Moss Tundra TUN 

Krummholz 

6 KHZ 

Krummholz 

7 Tamarack 

Krummholz 

<hrub 

DBIR 

hugging forms of 

plants. cushoon plants 

(Dia~nsoa) and 

mosses 

Rhacomilrium 

spruce and 

White spruce 

occurring in 

krummhol: form 

krummholz lbml 

Larch (Tamarack) in 

krummhol1 Forno 

shrubby fonn 
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9 Alder shrub DSH ALD Alder in shrubby 

fonn 

10 Mixed DSH DBA Dwarf birch and 

deciduous Alder (sometimes 

shrub willow) in shrubby 

form 

II Amalanchier DSH AMA Amalanchier in 

shrub shrubby form 

12 Willow shrub DSH WIL Willow in shrub form 

13 Spruce shrub CSH SP \Vhite spn1ce and 

Block spruce in 

shrubby fonn 

14 Balsam fir CSH BSF Balsam fir in shrubby 

Shrub fonn 

IS L.arch shrub CSH TAM Larch in shrubby 

form 

16 Open Canopy COP SP Erect spruce stems 

spruce 'vi1hou1 a closed 

canopy 

17 Open Canopy COP BSF Erecl Balsam fir 

Balsam fir stems without a 

closed canopy 
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canopy COP 

Larch 

CCL 

canopy spruce 

CCL 

canopy Larch 

21 Closed 

canopy 

Balsam fir 

22 Raspberry 

understory 

23 Bedrock 

TAM Erect larch stems 

without a closed 

canopy 

SP 

TA.\1 

Erecl sp"'ce stems 

very close or 

touching. 

Erect larch stems 

very close or 

touching. 

Erect 

stems vel)• close or 

tooching 

blackberry and 

not 

boulders 

BOL Rock broken 

boulders 
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25 

rock 

3 1.2 Planned sj1es 
Survey site locations were pre-dclem1ined using stratified random points 11tese 

points were designed 10 be approxin1ately one kilometre apan \"ith no poinl occurring in 

mapped areas of water The pointS"~ also checked for 01<en repre«ntatton of elevation 

cla:.ses and any areas "llh panu:ulariy dense or spare co-·crage had poonb removed or 

odded to correct these problems The points were located on the ground u<tng GPS 

(global positioning system) rece1ver~. using two receivers to L:eep track of any unusual 

inaccuracies and the general level accuracy achieved with receivers 
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These planned sites were surveyed using a system of four transects radiating in 

cardinal directions from the centre point as shown in Figure 3.1 Each transect had four 

observation points at one metre spacing and the centre was also used as a recording point 

giving a total of 17 recording points for each sample site. 

Area= SO m2 

Observation 
point 

Plot 
Centre 

Figure 3.1 Plot sampling method. The plots included 17 observation points 
with four on each of the cardinal directions and one in the centre. 

Further parameters, such as the number of erect stems, were also recorded for the site as a 

whole. Each of the 17 recording points at a site was classified into a major and minor 

class, discussed in 3 .1.1. Where applicable, the under-storey type was recorded and the 

presence or absence of moss and lichen was noted. The major and minor class for each 

recording point was based on the class definitions and what plants occurred at the point 

and within 30cm of the point. Where more than one class was present the dominant class 

was chosen. If two or more classes appeared equally abundant the class that was most 
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abundant in the surrounding metre was recorded. Counts of the number of upright tree 

sterns and erect leaders showing high growth rates (long leaders) were recorded for the 

site. More detailed information about larger trees was recorded on a tree by tree basis~ 

larger trees were defined as having a measurable (greater than four centimetres) 

circumference at breast height (CBH). Where larger trees were found in a plot the species, 

CBH and presence or absence of cones (or other reproductive structures) were all 

recorded for each tree. 

3.1.3. Ad-hoc points 

Ad-hoc points were chosen where good representations of classes were found with 

one class clearly dominating an area larger than a four metre radius. At ad-hoc point 

locations only the location and major and minor classes were recorded. Where possible 

the planned sites were visited via straight lines to ensure that the ad-hoc point collection 

was not biased towards more easily traversed terrain. Figure 3.2 illustrates the distribution 

of the ad-hoc data. Ad-hoc points are represented by the major class only as there are too 

many sub classes to summarise. 
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• BRK 
• CSH 

• FEN 

• HEATH 

• DSH * 

--Index 

Intermediate 

Kilometers 
0.4 0.8 1.6 

- water Courses 

Woodland 

Figure 3.2 Ad-hoc point distribution; major classes are detailed in Table 3 .1. 
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3.1.4. Ground control features 

Differential GPS (DGPS) was used to digitize the outlines of features such as ponds 

and gravel areas. Ground control point (GCP) collection was concentrated in the proposed 

Quickbird image acquisition area. The coverage was not as dense or as uniform as would 

be ideal, but the data proved to work well for the orthorectification of the Quickbird 

imagery. Figure 3.3 below shows the distribution of collected features in relation to the 

topography and the Quickbird image. 
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Intermediate 
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-- DGPS features 
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Figure 3.3 Ground control point collection. The ground control points are a bit sparser in 
the southeast than would be desired. 
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3.2. Satellite data 
A Quickbird image covering the study area was acquired on the sixth of September 

2005 at 3:04 pm. LHRG purchased the ortho ready kit bundle product from this 

acquisition. This product includes four multi-spectral bands, three visible and one 

infrared, at a resolution near to 2.4m and a panchromatic band with a pixel resolution 

close to 60cm. The acquisition included some cloud over the northwest corner of the 

study area, which excludes data from some of the higher areas. Both the panchromatic 

and multispectral images were orthorectified using the DGPS features collected in the 

field season as ground control (PCI Geomatics, undated). The orthorectified multispectral 

images were then used to create a classified vegetation map. The classification was 

performed using a maximum likelihood algorithm with signature data collected in the 

field. Polygons were digitized around ground truth points using the imagery as a basis to 

constrain the polygons to areas where vegetation was identical. Extra polygons were also 

digitized for areas where ground cover was clear, such as the rock and water classes. The 

resulting classification was then aggregated based on spectral and ecological differences 

between classes. The aggregation of classes is shown in Table 3 .2. The most notable 

aggregation is the grouping of shrubby form and full form trees coniferous trees into the 

CSH class, this is necessary because the spectral signatures are very similar. This 

grouping is unfortunate since there would be value in being able to differentiate the two 

classes. The two classes are, however, not that distinct in reality as there is more a 

progression from shrubs up to full form trees rather than two clearly discrete classes. 
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Table 3.2 Aggregation of vegetation classes. 

Bare ground 
or rock 

Heath 
communities 

Coniferous 
shrub and 
forest 

Deciduous 
shrub 
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The accuracy of the resulting classified image is detailed in Table 3.3, where the 

classification accuracy is presented in terms of pixels. The overall percentage of cells 

correctly classified is 98.6% when water is included and 81.3% when water is excluded. 

Most individual classes are also well classified, with the exception of fens, which show a 

large amount of omission error (92%) with many pixels being miss-classified into the 

CSH class. A further problem with the fens class is the very small proportion of the study 

area occupied by the class. Consequently the fens class was not considered in the main 

analysis. 

Table 3.3 Vegetation classification accuracy. Accuracy is presented in pixels and 
summarized in percentages; the classes are as detailed in Table 3.2. 

92.4 75.2 77.2 76.2 81.7 99.9 

7.57 24.8 22.8 23.8 18.3 0.102 

3.3. Topoclimatic Variables 
The topoclimatic variables were designed to represent the interaction of climate and 

weather with the topography of the land. None of the conditions were sampled 

extensively in the field so surrogate variables were used. These surrogates estimate the 
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spatial variability in conditions such as wind exposure using a digital elevation model 

(DEM) and knowledge about the local climate. A large number oftopoclimatic variables 

were produced so that the important variables could be identified. Two main types of 

topoclimatic variables were used. The first type is purely topographic measurements such 

as slope and aspect that are not modified with knowledge of climatic conditions. The 

second type is variables that are produced by combining the topographic variables with 

information about climate. For example aspect can be modified to produce a variable that 

represents the degree to which an area is exposed to winds from a certain direction. 

The topoclimatic variables were integrated with the vector based point and area data 

sets discussed later in this chapter. The topoclimatic variables were integrated with the 

point-based data sets by extracting the values from each topographic variable raster layer 

to each point. To allow investigation of the spatial scales of interactions the values from 

smoothed topoclimatic variables were also integrated. The topoclimatic variables (with 

the exception of elevation) were smoothed using circular median filters with varying 

diameters. Filters with diameters of 1OOm, 500m and 1 OOOm were used to produce a total 

of four versions of each topoclimatic variable. The topoclimatic data were integrated with 

the area-based data through the use of the zonal statistics tool in Arc View 3.2. The zonal 

statistics tool produces statistics in the form of a table for input summary zones. In this 

case the input zones are the buffers and the statistic of interest is the mean value of the 

topoclimatic variable. The zonal statistics tool produces a separate summary table for 

each topoclimatic variable; the summary variables of interest were then integrated using a 

unique identifier to build a complete summary data set. 
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3. 3 .1. Elevation 

Elevation is related to many topoclimatic conditions but the one of primary 

importance is air temperature. In general air temperature decreases with increasing 

elevation, though inversions do occur and have been observed in the study area (Dr. John 

Jacobs 20054
) they are not considered to be the general climatic situation. Temperature 

has well documented effects on vegetation and especially the vegetation dynamics in 

areas where a transition from forest to tundra occurs (Arsenault and Payette, 1992, Hobbie 

and Chapin 1998, Komer1998, Komer and Paulsen, 2004). For the initial investigations, 

elevation was taken directly from the digital elevation model. In later analyses, 

temperatures were estimated from elevation using information from the climate stations 

in the study area. The elevation range for the area surrounding the study area is zero (sea 

level at Lake Melville) to I 188m but within the study area the elevation ranges from 

477m to 1046m. 

3.3.2. Slope 

A slope variable was calculated from the DEM. Slope is related to a number of 

conditions such as exposure and soil moisture holding potential. The slope variable is 

measured in degrees CO), but does not have issues associated with circular variables as the 

potential range is between zero degrees and 90°. 

3.3.3. Aspect 

Aspect, defined as the direction the maximum slope faces, is a problematic circular 

measure. When an average is taken of two values near north (ten degrees and 350° for 

example) the result would be a south facing aspect (180°). To avoid this problem two 

4 Personal communication, Dr. Jolm Jacobs, Department of Geography, Memorial University of 
Newfoundland (2005) 
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alternative variables were made from an aspect variable, these layers were created by 

taking the sine or cosine of aspect. The cosine of aspect works as a measure of northness, 

values close to north are near one, values close to south approach minus one and values 

near east or west move towards zero. The sine of aspect produces a measure of eastness 

with similar behaviour to northness (Calef et al., 2005). 

3 .3 .4. Curvature 

Curvature was calculated from aDEM using ArcGIS 9.1. There are a number of 

different forms of curvature, these include profile and planiform curvature but the form of 

interest here is basic curvature. Basic curvature is a measure of how concave or convex a 

surface is; in the layers produced using ArcGIS 9.1 convex surfaces have positive values 

and concave surfaces have negative values. Curvature was also calculated from a 

smoothed version of the DEM. This was done because curvature over a wider area is 

probably more important than local curvature. The units of curvature are based on the 

amount of deformation of a surface over a unit of distance, in the output from spatial 

analyst the units are one over 100 elevation units (meters in this case). 

3.3.5. Solar radiation 

Annual solar radiation was estimated using an Arc View 3.2 script (McCune and 

Keon, 2002). The values created by this script are based on the work of Buffo eta!., 

(1972) where incident solar radiation was measured in a wide range of topographic 

situations. These measurements recorded by Buffo et al., (1972) are stored in tabulated 

form and are therefore oflittle direct use. The script predicts solar radiation using 

equations derived from regressions of the tabled data from Buffo et al., (1972). The 
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output of the script is the estimated annual incident solar radiation in MJ cm"2 yr·2. The 

values in the study area range from 0.47 to 0.918 MJ cm·2 yr"2
• 

3.3.6. Topographic moisture index 

A topographic moisture index was calculated based on one used by Cairns (2001). 

The index was calculated by taking the natural logarithm of the ratio between the upslope 

area draining through a location and the slope at the location (Equation 3.1 ). This is based 

on the theory that the larger the areas that drain into a site the wetter it will be, but steeper 

slopes will drain more quickly and therefore hold less moisture. Soil moisture could be an 

important factor as without sufficient moisture potential changes due to increased 

temperature may not be possible (Black and Bliss, 1980). 

ln(A/ S) 

Equation 3.1 Topographic moisture potential 
Where: 

Ln =The natural logarithm 

A= Upslope area draining into a location in square meters 

S = Slope in degrees. 

This index was created using the Model Builder in ArcGIS 9 .1. In the model, represented 

by a flow chart in Figure 3.4 the inverse of the result is taken so that potentially wetter 

areas have higher values. The model uses two tools from ArcToolbox 9.1 to estimate the 

area draining into a location (flow accumulation). The first of these tools processes the 

DEM to remove pits and the second calculates the flow accumulation. The range of 

values produced by the model for the study area and surrounding landscape is between -

4.4 and 14.4. 
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3.3.7. Wind exposure 

Wind can cause limitations to developing trees through desiccation and defoliation of 

trees that grow beyond the protection of surrounding vegetation. Two types of wind 

exposure variables were created. The first is based solely on local aspect and wind 

direction. The second, called Angle to sheltering topography, is intended to represent how 

areas may be sheltered by higher areas upwind (section 3.3.8). The first set of wind 

variables were calculated in a similar way to the measurement of northness or eastness 

discussed earlier. The difference is that rather than being a measure of how exposed to the 

north or east a slope is, the variables are changed to represent exposure to specific wind 

directions. Two wind directions are used based on the climate normals for the closest 

weather station (Goose Bay A) (Environment Canada 2002, Dr. John Jacobs 2005\ The 

wind directions used were 257.4°, based on an average of winds coming from the west 

and southwest, and 22.5° which represents the north easterly winds that dominate in the 

spnng. 

3.3.8. Angle to sheltering topography 

High ground upwind of an area provides shelter from the wind. The steeper the angle 

to a sheltering feature the greater the amount of shelter. This variable was calculated 

using hillshading. Hillshades were performed using the desired wind direction as the sun 

direction. A number of hill shades were performed at incrementally decreasing sun 

azimuths between 85° and 15°. The area of shadow was then taken from each hill shade so 

that areas in shade were coded one and areas not in shade were coded zero. A new layer 

5 Personal communication, Dr. John Jacobs , Department of Geography, Memorial University of 
Newfoundland (2005) 
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was then created by adding the values from areas of shade. The greater the number in the 

new layer the greater the angle is to the sheltering feature and so the more sheltered the 

spot is. The process was repeated three times, once for the dominant wind direction, once 

for 20° north of the dominant wind direction and once for 20° south. The three resulting 

variables were then combined using a weighted average where the dominant wind 

direction had the highest weight (50%). The use of multiple wind directions is intended to 

account for variation in the dominant wind. Because of the large number of operations 

required to build this variable the model builder in ArcGIS 9.1 was used to perform 

required processing, this also allows the index to be created using different inputs such as 

alternate wind directions. The angle to shelter variable was calculated for the two wind 

directions identified previously (257.4° and 22.5°). 

3.3.9. Snow potential index 

Snow has a number of influences on vegetation including providing shelter from 

harsh winds in the winter and blocking out sunlight in the spring. To include and assess 

the importance of snow cover an index of snow potential (SPI) was created. The snow 

potential index used is modified from Cairns (2001). The main modification is that 

elevation is not included to prevent issues of covariance. This index can be represented by 

the following equation. 

SPI = -(( C-:mm J x ((cos(A- W))+ l)J 
cmax cmm 2 

Equation 3.2 Snow potential index 
Where: 

C =A curvature layer 

A = An aspect layer 
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W =The dominant wind direction 

The index is essentially the inverse of curvature multiplied by shelter from the dominant 

wind with the two variables converted so that their ranges are constrained between zero 

and one. Constraining the ranges of the variables ensures that they both have equal 

influence on the final index value. Although the potential range of the SPI is between zero 

and one in the study area and surrounding landscape the highest value observed was 0.72. 

3.4. Randomly located samples from classified imagery 

Both of the previously discussed point-based data sets are limited to relatively small 

sample sizes (80 and 203). The ad-hoc points, with 203 sites, has a reasonable sample size 

but given the large number of independent variables a larger sample is desirable 

(Tabachnick and Fidell, 1996). The classified Quickbird image presents the possibility for 

a much larger number of samples though classification is limited to the aggregated classes 

in the classified image. Another disadvantage of using the classified imagery is the error 

that is added into the analysis due to errors in the classification. To facilitate analysis 

outside of a raster based environment the classified image was sampled using random 

points. A large number of sample points were randomly located with a condition that 

limited the minimum distance between points. This threshold of the minimum distance 

reduces the issue of clustering. 1OOm was used as the minimum separation distance; this 

distance was chosen as a trade off between having too few samples and too much overlap 

between buffers. Classes from the vegetation classification were then extracted to the 

points. The classified image does not differentiate between full size trees and shrubby 

form trees. However the difference between the two classes can be visually detected in 

the higher resolution panchromatic satellite imagery. The points in the forest or 
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coniferous shrub class were then visually inspected and assigned to either the forest class 

or coniferous shrub class. The resulting data set is summarised in Table 3.4. The data set 

contains a total of 1387 sample points; as with the ad-hoc data the heath class dominates. 

Table 3.4 Cover class frequencies in the random point-based data set. 

3.5. Area-based data 

Field observations and preliminary investigations suggested that the high degree of 

local variability in vegetation type would cause the point-based data to be of little use. 

The point-based data records what occurs in a very small area, but what occurs at that 

location is likely to be as much a result of stochastic processes as the influence of 

topoclimatic variables. To overcome this potential issue an area-based data set was 

developed. The aim of the area-based data set is to summarise the vegetation that occurs 

in a larger area, and reduce the influence of random processes. The area-based data set 

was created by buffering randomly located points. The points were randomly located with 

a condition so that points did not occur closer than a specified threshold. To facilitate an 

investigation of the relationship between spatial scales and predictability, buffers were 

created with different diameters. Every random point generated was buffered to produce 

circles with diameters starting at 50m and increasing in 50m increments to the largest 

buffer of 500m. The vegetation cover, from the classified image, and the topoclimatic 
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variables were then summarised for each buffer. The summary for the vegetation cover 

provides the number of cells of each vegetation type found in the buffer which can be 

used to calculate percentage cover. The summaries of the topoclimatic conditions produce 

a mean value of the variable within each buffer. The summaries were then integrated and 

simplified. 

3.6. Vector land cover data 

There is little land cover data available at a suitable resolution for this project, the 

East-Central Labrador Ecological Land Inventory covers the study area but is based on 

1:125,000 maps and surveys dating back to the 1970s (GeoGratis, 2003). The National 

Topographic Data Base (NTDB) provides information at the 1:50,000 scale for the whole 

of the study area but the data is very generalised (spatially and ecologically) and 

comparison with satellite imagery suggested the data would not suit this project 

(Geomatics Canada, 1997). 
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4. EXPLORATORY ANALYSIS AND DATA PREPARATION 

Model creation cannot logically start without some idea of how the data behaves in 

statistical analysis. Without knowledge of the behaviour of the data, important decisions 

such as what modelling methods to use cannot be made (Sibley, 1987). Exploratory 

analysis is also required to discover if there is any predictability that can be modelled or if 

vegetation distribution is apparently random. Analysis should also not be conducted on 

data that have not been prepared to resolve issues that may cause incorrect results. There 

are eight main questions that must be addressed in the exploratory analysis before 

modelling can begin (Tabachnick and Fidell, 1996): 

1. Are all the values within the acceptable ranges of the chosen variables? 

2. Are there any univariate or multivariate outliers in the data? 

3. Are there any correlations between vegetation distribution and topoclimatic 
variables? 

4. If correlations do exist what is their nature Oinear or nonlinear)? 

5. What is the spatial nature of the correlations, are all relationships strongest at the 
same scale? 

6. Are there significant correlations between the topoclimatic variables (IVs)? 

7. Do conditions such as heteroscedasticity exist? 

8. Are there neighbourhood effects and if so what is their nature? 
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The data sets of primary interest for exploratory analysis are the area-based data set 

and the randomly generated point samples. These data sets were checked for the above 

tssues. 

The majority of data sets in this study have a large number of cases, which is 

desirable for multivariate analysis but does have one major draw back. With large 

numbers of cases, the confirmatory style of analysis, performing statistical test to validate 

hypotheses, is limited as most tests will appear statistically significant regardless of their 

actual importance (Tabachnick and Fidell, 1996). The use of hypothesis testing is also 

complicated by issues of spatial autocorrelation in the data sets (Griffith, 1987). These 

issues increase the importance of exploratory analysis as assessments of significance will 

be more subjective and should be based on a sound understanding of the data. 

4.1. Screening for errors 

Because the data sets of interest were created through automated processes and did 

not require any manual input the chances of data errors are reduced. The data sets created 

using manual input (ad-hoc and planned) were screened for errors and corrected at an 

earlier stage as correctness was required for operations such as image classification. All 

variables were checked to ensure that the values of each case fitted within the range of the 

variable. No cases were found with values beyond the limits of the variable. In both 

random point-based and buffer based data sets there were a small number of cases with 

no data in some variables, the number of cases were less than five percent of each data 

set. These missing values are caused by flat areas which result in a division by zero (0° 

slope) in some variables. These cases were removed from the data set as they represented 

only a small proportion of the sample. In the point data set the "no data" cases accounted 
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for less than one percent of the initial data, after their removal there were 1180 cases left. 

Because the creation of the area-based data set involves an averaging process there was 

only one point with division by zero problems created by a slope of zero degrees. 

4.2. Outliers 

All data sets were checked for both univariate and multivariate outliers using methods 

in Tabachnick and Fidell (1996). Univariate outliers were defined as cases with Z scores 

above three or below negative 3. There were not a large number of univariate outliers in 

either data set (less than 10%) and because the values represent true environmental 

conditions that will have to be predicted for in the later analysis the outliers were retained. 

Multivariate outliers were identified using Mahalanobis distance as described in 

Tabachnick and Fidell (1996). In the area data, the effect of each variable in creating 

multivariate outliers was assessed by calculating Mahalanobis distance with each variable 

removed. None of the variables appeared to have a particularly high impact on 

Mahalanobis distance so the measurement calculated using all variables was used to 

define multivariate outliers. In both data sets, cases identified as multivariate outliers 

were removed. The complete removal of multivariate outliers is not of great concern 

since they account for only two percent of the point data set and just below four percent 

of the area-based data. 

4.3. Spatial nature of correlations 
Before the correlations were investigated in detail, it was necessary to assess how they 

changed with different spatial scales and choose a spatial scale at which to work. The 

number of different buffer sizes in the area-based data makes a provision for this 

investigation. Curve fitting was performed for each variable at each buffer size for every 
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vegetation class. In order to fit the full range of curves available some variables were 

altered to remove negative values, this was done by adding constant value to the values of 

variables with negative numbers. 

The aim of the curve fitting is to fit a relationship between the percentage cover of a 

cover class and an independent variable. The curve fitting process generates a large 

amount of information as there were ten buffer sizes, 12 variables, four ground cover 

classes, and 11 different potential curve types; the number of potential curves that results 

is 5280. The number can be greatly reduced as only the best fitting curve for each 

relationship is of interest. Additionally many of the relationships cannot be fitted to a 

curve. The R2 value for the curve estimations was used to assess how strong the 

relationships were and find those that were of interest. To investigate the differences 

between buffer sizes the relationships between the cover classes and elevation was chosen 

as it is the main variable that shows strong relationships. The change in R2 for predictions 

of cover classes using elevation and curve fitting at the different buffer sizes was graphed 

(Figure 4.1). For each relationship the curve type that fitted the relationship best 

throughout the range of buffer sizes was selected. The resulting graph summarizes how 

the relationships change with increasing buffer size. The most dominant trend is the 

increase in the strength of relationships with increasing buffer size. This trend most likely 

occurs because in small areas vegetation is quite random but over a broader area it is 

more controlled by topoclimatic factors. Another useful trend is that the shapes of 

relationships generally stay the same over the different buffer sizes. This means that if the 

parameters of a curve created for a 500m buffer was used to predict percentage cover in a 

smaller buffer they would predict reasonably well. This aspect of the data was tested by 
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assessing the differences in the predictions for 200m buffers with curve parameters from 

both the 200m data and 500m data. This investigation showed little difference between 

the predictions and so further affirms the hypothesis that relationships do not change 

significantly within the range of the buffer sizes. There is a noticeable decline in the rate 

of increase in the strength of relationships with increasing buffer size. This decline in the 

rate of increase suggests that there is an optimum size of area with which to work; this is 

the point where most of the increases in the strength of relationship have occurred. 200m 

was chosen as the optimum size area and much of the analysis in the following section is 

carried out using only the data from the 200m buffers. The 250 or 300m buffer sizes 

could also be reasonably justified, however it is desirable to minimise the buffer size due 

to the small size of the study area. 
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Figure 4.1 Spatial changes in relationships between IVs and elevation. The increase in the 
strength of relationships starts to level off around 200m. 

4.4. Correlations between independent variables 

As many of the independent variables (IVs) are produced using similar methods there 

is a high probability that multicolinearity, variables with high bivariate correlations with 

other variables, will occur. This is not of great concern at the exploratory stage but in 

further analysis knowledge of how the variables are interrelated will be important to 

avoid the issue ofmulticolinearity. Since the IVs in the two data sets are the same the 

interrelationships are likely to be similar in both the point and area data sets. The 200m 

buffer subset of the area data set was chosen to assess interrelationships and any issues 

found are assumed to be similar in the point data. The simplest way to assess correlations 

that might be an issue is through a bivariate correlation matrix (Appendix I). The 
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downside to this method is that the matrix is very large due to the high number of inputs. 

From investigation of the correlation matrix a number of conclusions can be drawn: 

1. Many of the topoclimatic variables are highly correlated but few relationships 
(six) have bivariate correlations above 0.9 (Appendix I). 

2. Variables that include some measure of aspect, such as the measures of wind 
exposure, are all interrelated. 

3. Topoclimatic variables generally have high correlations with the topographic 
variables used to derive them. 

4. Slope and elevation have a high positive correlation. This is due to the shape of 
the landscape, steeper slopes are only found at higher elevations. 

Because slope and elevation were highly correlated a new variable was created by 

normalising slope with elevation. This variable is referred to as normalised slope and 

produces a measure of slope that is independent from elevation so that the influence of 

slope may still be investigated. 

It is also useful to assess how many variables can actually be used. Because of the 

high levels of interrelationships clearly not all variables can be used, otherwise problems 

with multicolinearity will arise (Tabachnick and Fidell, 1996). The number of dimensions 

that the data actually varies on can be assessed through principal components analysis 

(PC A). The number and make up of components produced by PCA can help decide how 

many variables should be used. As with the bivariate correlations PCA was performed 

only on the area-based data. PCA was performed in SPSS 13 using the factor module 

with principal component extraction, Varimax rotation and Kaiser Normalisation. PCA 

was carried out on standardised scores of a restricted set oftopoclimatic variables. 

Variables were not included if they were in some way directly replicated. For variables 
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that had, for example, an exposure and shelter variant only one variant was included. 

PCA was repeated a number of times in order to find a set of inputs that performed as 

required. The Kaiser-Meyer measure of sampling adequacy was used to confirm that the 

variables were related; a value of 0.843 in the final PCA indicated that a high proportion 

of the variance in the data is shared. Variables were assessed for fitness within the group 

by looking at the measurement of sampling adequacy (MSA). The majority of variables 

fitted well within the group, with MSA values greater than 0.5. Curvature and 

topographic moisture index had very low values and were therefore excluded from the 

final PCA. Curvature and the topographic moisture index both represent very different 

factors to the other variables so it is not surprising that they do not fit with the other 

variables. The rotated component matrix from the final PCA (Table 4.1) was interpreted 

to assess the number and nature of reliable variables in the data. Two stable components 

are present in the final rotated matrix. The first component contains variables that have a 

strong aspect element and the second contains slope. From the PCA and inspection of the 

correlation matrix it appears that there are only three strong variables in the data; aspect, 

slope (which is related to elevation) and curvature (which was not included in the PCA). 

This does not mean that only those variables can be used but that it would, for example, 

be unwise to try to make a model that included two variables with dominant aspect 

elements. 

59 



Table 4 I Rotated component matri' used to investigate ho" many dimensions the data is 
•ariable on 

4.5. Correlations betwee-n the IOJ)Oclimatic variablet and vegtfAtion variablf'J 
In order for any modelling methods to be worthwhile ~tcrc must be relationships 

bet"een the topoclimatic variable• (IVs) and the vegetation variables (OVs) CUJve 

fitting. where a variety of funcbons such as exponenuaJ and logarithmiC cun.·es are fitted 

to correlations between an IV and a DV was used to achte.c thJS wk Cane fitting also 

allow an in,estigation of the sJtape of the relarionsJtips. be they linear, or nonlinear The 

investigation or correlations between topoclimatic variables was completed somewhat 

~imuhaneously with investigations of the spatial namre of correhuions, which is described 

in the previous seccioo These rwo issues are described separately for purposes of clarity 

4.6. Cune Fining 

Curre fining -..as perfonrted on thetrea-based data ""hall but the 200m buffer siu 

~eluded The firsa variable that "'as in\'estigated was eJevatJon as 11 is alre-ady kn~11 to 

have the strongest relationships -..ith most of the cover classes Tite relationship between 

elevation and percenta~;e cover by heath is represented reasonably well by a linear 

function (figutt. 4 '2) with an R' value of 0 630. The relationship is more accurately 



modelled with a quadratic function. The quadratic function also matches the nature of the 

distribution, which increases from the lower elevations upwards and the decreases again 

higher up. A further benefit of a quadratic function is that it would not result in 

percentage coverage predictions above 100%. 
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Figure 4.2 The relationship between percentage cover by heath and elevation. The 
quadratic model provides a good fit for the distribution. 

Elevation has a strong correlation with the percentage cover of coniferous shrub. 

Cover by CSH appears to decreases exponentially with increasing elevation (Figure 4.3). 

It is worth noting that this relationship is slightly heteroscedastic with more variation at 

lower elevations. 
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Figure 4.3 The relationship with coniferous shrub and elevation. The quadratic and 
exponential models both provide good fits but the exponential model is more logical for 
the cover class 

The relationship between elevation and percentage cover by the rock class is modelled 

well by a linear function (R2 
= 0.71). This correlation is also heteroscedastic (Figure 4.4). 
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Figure 4.4 The relationship between rock and elevation. A linear model explains a 
reasonable amount of variance in the distribution (R2 

= 0. 71) but does not perform well 
at the higher elevations. 

Correlations with other variables are not as strong as those with elevation but some 

are still of interest. The correlation between fens and NE wind exposure is not clear at the 

200m buffer size but at 500m a useful correlation appears. As with many of the other 

correlations the relationship is heteroscedastic. The measure of alignment with northern 

aspects (northness) has a strong correlation with percentage cover by fens, which is 

modelled well with an exponential function. This relationship is only clear with the 500m 

buffer size. Fens also correlate with solar radiation at the 500m buffer size, an exponential 
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functions fits this relationship with an R2 value of 0.452. The correlation is negative and 

heteroscedastic with more variance at lower solar radiation values. 

4.7. Differences between groups 

The randomly sampled point-based data only contain the vegetation class at a point as 

opposed to the percentage cover by each cover class. From analysis that has already been 

conducted it is expected that results from categorical data will be of limited use due to the 

high degree oflocal variability. The big advantage of point-based data is that trees are 

distinguished from shrubs. The point-based data can therefore be used to investigate if 

trees can be separated from shrubs using the topoclimatic data. Two main types of 

analysis were performed on the point-based data. The first technique was an investigation 

of values of Wilks' lambda from discriminant functions analysis. Wilks' lambda is a 

measure of the proportion of the total variance in discriminant scores not explained by 

differences among the groups. Wilks' lambda values close to one indicate very little of the 

variance is explained by differences between groups (Tabachnick and Fidell, 1996). The 

second technique used was examination of box and whisker plots, which can be used as 

the graphical equivalent of a difference of means test. These plots were used to determine 

if there were significant differences between the distributions oftopoclimatic variables 

for each cover class. 

4.7.1. Wilks' Lambda: discriminant function analysis 

The values ofWilks' Lambda for each of the variables and at each of the spatial filter 

sizes are shown in Table 4.2. This investigation helped to confirm that the point-based 

data are less useful than the area-based data. All of the values in the table are close to one 

indicating that the topoclimatic variables have little power to divide the data into the 
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CO\ er duses Even cl.-atioo l'llich has been shown to ha•c some predl<tmg power 

previously bas a Wills' LambdA score nevto one Thetncreas>ng Site ofr.lters fa< the 

topoclimatic variables does generally decrease the values of Wilks' lambda, meaning 

tho! the variables become more useful, but they are still not powerful enough. Because of 

the low values of Wilks' Lambda discriminant function analysi5 was not taken any 

funher 

Table 4 2 Wilks' LambdA scores The m&Jonty oftbe scores are close to ooe indicating 
the variables have linle po,.er to dtvide tbe classes. 

4 7 2 BQ!S and whisker plou di[erc·nees jn distributions 
lnspec:tioo of box aod "h1<ker plou reconfinned tbe pre,ious r.ndings, that tbere is 

hnlc poteotial to di.,de the potnt data tnto tbc eategones using topocltmalic ,..,;lbles. 

The plot fa< elevation (Figure 4 5) tllustrates tbe son of distributions that are desirable. 

Even with elevation (the strongest predictor) the distributions are not ideal. It would be 

J)I'C:.fcmblc if there wete no overlaps between lhc djstributions of the values ror each 

vegetation class. The figure shows thai elevation could be used 10 divide the data into nvo 
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or three classes. The first classes would be at the lower elevations, Woodland, CSH, 

DSH, and fens. Woodland could possibly be separated from the other classes at lower 

elevations. Rock and heath could be aggregated as a group at higher elevations. In 

multivariate analysis other variables could be used to refine these divisions. 
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Figure 4.5 Box and whisker plot for elevation and cover classes. There are some 
differences between the distributions of the vegetation classes with respect to 
elevation but they are limited and likely to be of little use. 

The results with the other variables indicate less useful relationships than were found 

with elevation. Taking the example of eastness (using the 1OOm filter results) the 

distribution of values for each class overlap considerably and there is very little difference 
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in the median values (Figure 4.6). Most of the other variables show similar distributions. 

Some showed a certain amount of discriminating power in separating a small number of 

classes but nothing of particular interest was found; however this does not mean that 

useful multivariate relationships do not exist. 
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Figure 4.6 Box and whisker plot for Eastness and cover classes. There is little 
difference between the distributions of the vegetation classes with respect to 
eastness. 

4.8. Spatial autocorrelation- DVs 
Four methods were used to investigate spatial autocorrelation in the percentage cover 

by cover classes. All methods used the 200m buffer area data. Two of the methods were 

completed using tools in ArcToolbox and two other methods used the geostatistics 

analysis program GS+ from gamma design software. The first of the two methods, 
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completed using ArcToolbox, used Moran's Index of spatial autocorrelation (Moran's I) 

to assess how similarity in values is related to separation between their locations. The 

second method also used Moran's I but in a local sense so that spatial variation in how 

similar or different close events are could be investigated. The analysis performed in 

GS+ allows a more detailed investigation of how the degree of similarity between cases 

changes with separation distance. 

Moran's I was calculated using ArcToolbox, with inverse distance as the type of 

relationship and Euclidean distance as the distance method. The search radius used was 

one Kilometre, based on prior knowledge of the spatial relationships, and Morans's I was 

calculated separately for each cover class. The results from this investigation are shown in 

Table 4.3. All of the results show significant clustering, meaning cases that are close are 

likely to have similar values. Comparing the values of Moran's I for each cover class 

provides some useful information about the different spatial behaviour of the classes. 

Fens and DSH both have comparatively low levels of clustering which indicates that there 

is less spatial similarity in the values for this class. On the ground this translates to fens 

and DSH being more patchy and fragmented than the other classes. The heath and rock 

classes have much higher values indicating more homogenous and extensive areas with 

similar levels of these cover classes. 
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Table 4.3 Moran's I scores by cover class for one kilometre distance. The fens and DSH 
classes appear 10 be more hererogeneoos !han !he healh C'SH and rocl classes 

The calculation orlocal \loran' s I was perl"onned usmg 1he Anselin Local \loran's I 

tool in ArcToolbox 9.1. TI1e values for local autocorrelation were saved as n set of 

fearures for each cover class The values oflocal spalial autocorrelation 11 each poinl 

\\ere then mapped 10 io"estlgAle spatial differences in the: amount of aurocorrclation 

Figure 4 7 shows the patterns for lhe healh elas.< !hey are similar 10 tho.e found wilh rhe 

other cover classes. The most interesting pattern, which is shown in all mn1>s, is an area 

wilh lo"er spalialautOCOITdalion allhe middle clevar•ons and IWO more aurocorrdated 

areas at the I<)Y•tr and higher elevations The area 111he mJCSdle ele\'alions Is therefore 

more patchy and variable and could be thought of as a transition zone 
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Loc•l Mora.n·a I 
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Figure 4 7 Variation in local spatial autocol'relation for the heath cover class 
Positive 11utocorrelation is shown in green and negative autocorrelation is shown 
in red MOSI of the sitos are autocorrelate<~ but there are patches that are 
negath ely autocorrelated 
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The geosaatistieal analy.,s performed in GS- used both vanOj!Jams and oorrelograms 

for each of the cover classes Thtre art tv.-o main aspects of the plots that were of use in 

gaining information abootthe nat\lre of the data. The nugge~ the predicted amount of 

semjvariance with no separation between pairs, provides some infom1ation about how 

locally random distributions are The results from this analySis should provide similar 

conclusions as the ealculauon of global Moran's I performed urlter The second source 

of Information is the shapes of both the variograms and ccrrelograms, "bich sb<m 110\0 

lhe s1milarity between cases changes with increasing separation d1stance To investigate 

the size of the nugget for each clftSS and how it varies between classes the nugget values 

arc expressed both as the semivariance ( y) and as a proportion of the total semi variance 

('•1) (Table 4.4). The results from in•estigarion of this aable lead to sinular conclusions 

as the global measure of Moran's I The nugget is largest for the two classes that bad the 

10\\er Moran ·s I values, the.e are the patchy classes Conv~ly the nugget (random 

error) is lowest for the heath, rock and CSH classes that have high values for global 

Moran's l These results dterefore help to confirm the earlier nndings 

Table 4 4 Local randomness in diStributions Nugget values are expressed both as the 
~mivariance ( y) and as a propcmioo of the total semivariance Agatn tl1e fens and DSH 
classes appear more heterogentous 
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Inspection of the shapes of the variograms and correlograms reveals a number of 

interesting trends. First, from the correlograms (Figure 4.8 and Figure 4.9) it appears that 

pairs of values become unrelated (zero autocorrelation) at around 3km (Figure 4.8 as an 

example). In some cases there is a notable difference between the anisotropic 

correlograms at 90° and at 135° (Figure 4.9). In the anisotropic correlograms at 90° the 

autocorrelation tends to decrease at a slower rate than at 135°. A possible explanation for 

this is that 90° approximately aligns perpendicular with most of the valleys (Figure 1.4) 

and is therefore perpendicular to the increase in elevation. However 135° aligns with the 

valleys and so there is a greater change in elevation between pairs of values than at 90° . 
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Figure 4.8 Isotropic correlogram for the CSH cover class (non-stratified 200m buffer 
data). Values become unrelated around 4.5 km. 
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Figure 4.9 Correlograms for CSH cover class at 90 o and 135 o (non-stratified 200m buffer 
data). The autocorrelation tends to decrease at a slower rate in the correlogram at 90° than 
at 135°. 

4.9. Summary of important findings from exploratory analysis 
The large sample sizes used in this analysis increase the importance of the exploratory 

analysis. The significance of a test becomes misleading as the sample size increases. 

Subjective assessment of significance is therefore more important and these assessments 

are better educated with information from exploratory analysis. Spatial autocorrelation 

and neighbourhood effects also complicate the issue of statistical testing. From the 

exploratory analysis it was decided that the main data to be used for model calibration 

were the 200m buffer data. The buffer data were chosen because point-based information 

is too random and unpredictable, while the summaries within a buffer follow trends that 

can be generalised and used for prediction. The 200m size was chosen because it 
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optimises the trade off between predictability and spatial resolution. The only strong 

bivariate relationships useful for predicting cover class included elevation and many of 

these relationships were nonlinear. Other variables may be of more use in multivariate 

situations where interactions can occur. 
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5. METHODS 

This section details the analysis and modelling that was performed using the data 

discussed in section three. The exploratory work in section two was used to aid decision 

making regarding the selection of techniques used in this section. Some additional data 

sets were also generated for use in this section based on discoveries in the exploratory 

analysis. This section includes details of the processes used to develop models and make 

predictions using those models. In the final part of this section the sensitivity of the 

models to some of the subjective decisions made throughout the process is examined. 

5 .1.1. Additional data sets 

Three additional data sets were created to aid the investigation of a number of 

potential problems. The first additional data set was created using Voronoi polygons and 

the second is very similar to the main buffers, except that the cases were stratified by 

elevation. Both of these data sets were processed and cleaned in the same way as the main 

data set (the non-stratified buffers). Climate data were also required to enable the models 

to be built based on temperature rather than elevation, which is required to facilitate 

predictions based on alternative climate regimes. 

5.1.2. Voronoi zones 

The first of these additional data sets was designed to allow an investigation of the 

effect of the overlap between the circular buffers. A vector based regular grid could have 

been used for this purpose but it would not have produced a random sample and the area 

of cloud would have caused significant problems. Voronoi polygons, also know as 
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Thiessen or Dirichlet polygons (Burrough, 1998) were used to avoid potential issues of a 

regular grid. The Voronoi polygons were created from a distribution of random points 

that were designed to result in Voronoi polygons with areas similar to the 200m radius 

buffers. The mean area of the Voronoi polygons is within 0.25% of the 200m buffers 

area. The variation in the size of the Voronoi zones is significant with a coefficient of 

variation close to 30%. After data cleaning there were 412 cases in the Voronoi polygons 

data set, which is significantly fewer than the main circular buffers data set (n= 1702). 

The spatial distribution of the Voronoi polygons is shown in relation to elevation in 

Figure 5.1. As with the non stratified buffers the distribution of cases is significantly 

skewed in relation to elevation because there is more ground at lower elevations 

(Skewness= 1.437). 
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Figure 5.1 Voronoi pol)· sons c:cnstructed 10 fillhe s1udy area and exclude 1he area of 
cloud 
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5 .1.3. Stratified buffers 

The purpose of the stratified buffers data set is to enable analysis of how the skewness 

of elevation values affects the data and modelling process. Because elevation is the prime 

predictor it is worthwhile to investigate what effect the skewness of values has on model 

construction and robustness. The stratified buffers were created in much the same way as 

the main buffers data set except an attempt was made to make the distribution of 

elevation values as close to normal as possible in contrast to the skewed distribution of an 

unstratified sample. This stratification by elevation was performed by classifying the 

range of elevation values into discrete classes and calculating how many cases should 

occur in each class to achieve a normal distribution. When the points were randomly 

located the stratification scheme was used to determine the number of points located in 

each elevation class. The resulting data set has 1166 cases and a very low level of 

skewness of elevation values (skewness = 0 .117) compared to the non-stratified buffers 

(skewness = 1.549). The spatial distribution of the stratified buffers does of course suffer 

as a result of the stratification (Figure 5.2). Because of the skewness in the landscape 

(more ground at lower elevations) and the area of cloud that occupies an area of higher 

ground the distribution is very dense at high elevations and very sparse lower down. 
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Figure S 2 Stratified buffers spatial distribution The diStribution is much denser at 
hogher el.- auons (nonhwest) because there is less ground 11 hogher et.-.. nons 
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5 .1. 4. Climate data 

The generation of suitable climate information was completed by Jacobs (2006t and 

is summarized here to illustrate the nature of the data. To make predictions of how the 

vegetation classes might respond to climate change the models need to be calibrated with 

current climate variables. Future versions of the same variables need to be available to 

make the future predictions. Temperature is the only climate variable that had a long 

enough history of records on the site to make links with other sources of climate 

information. The mean summer (April to October) temperature is used as it is generally 

considered to have the largest impact on vegetation growth (Sirois, 2000, Kirdyanov et 

al., 2003). Temperature has been recorded at two climate stations in the study area since 

January 2001. The climate stations are set up at different elevations to allow the 

calculation oflapse rate which is used to predict the temperature at any given elevation in 

the study area. The records from the climate stations are useful but not extensive enough 

to be equivalent to the normals predicted by general circulation models which were used 

for future scenarios. Current normals (1971- 2000) were generated using the short 

history of records from the two stations in the study area and more extensive data from 

climate stations in Goose Bay (Goose Bay A) and Cartwright. A statistical model was 

built to represent the relationships between the study area climate stations and the Goose 

Bay and Cartwright stations. This model was then used to generate synthetic normals for 

the study area. The future time periods, 2010-2039, 2040-2069, and 2070-2099 were 

based on published scenarios (grid based data) from the Canadian Centre for Modelling 

6 Personal communication, Dr. John Jacobs, Department of Geography, Memorial University of 
Newfoundland (2006) 
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and Analysis (2006) (CGC\12 model) The results of this proceu are summarized in 

TableS I 

Table 5_1 Estimated current normal r~nd future scenario normal summer temperature for 
the u(>per climate station in the study arta. 

Using the informalioo from 1he downscaling analysis de1ailed obove ourren1 and 

future temperatures were estimated based on elevation. This opemtion was perfonued 

using the lapse ra1e (ra1e of ohange wi1h elevation) caloula1ed using the diiTerenoe 

between the two stations m the study area A simple linear cquauon wa.s constructed to 

predict temperature based on elevaaion. this model was then used "''th the predicted 

future temperatures to estimate 1he dastrlbution of future lemptratures mer the study area 

This method assumes the lapse rate remains the same in the future 

l'he predicted future tcmpemturcs should not be viewed as what the fl11ure 

temperature will be or even tho be~tt possible estimate~ they should rather be seen as one 

of many possible scenari~ The ampaet of the estimated error in this sunario was 

'"'"'ugated through sensitivity analysis onoe the predictions of future vegetatioo rover 

\It ere complete. 
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5.2. Model building 

In this section the processes used to develop the models to predict current and future 

vegetation cover are described. Before the processes are described in detail an overview 

of the methods used is provided. The model building will then be discussed in detail one 

cover class at a time. 

5.2.1. Overview ofthe model building process 

All three of the data sets (non-stratified, stratified and Voronoi) were treated for 

outliers and out of range values before this stage of the process. The issue of skewed 

dependent variables, however, remains in all three data sets and was addressed at this 

stage to allow a full investigation of the impact of this skewness. Table 5.2 details how 

skewed each of the dependent variables (DVs) is and the effect of square root and log 

base ten transforms. Additionally this table highlights the relationship between skewness 

in the DVs and the stratification of the sampling scheme. Because the vegetation classes 

have a different distribution their response to a sampling scheme stratified by elevation 

varies. Stratification increases the skewness in the CSH class DV but decreases skewness 

in the Rock class DV. This occurs because there is more rock at higher elevations and 

more CSH at lower elevations. The effect of transforming the skewed DVs was 

investigated by repeating the modelling process with the transforms applied and 

comparing the power and robustness of the resulting models with the models based on 

untransformed (skewed) data. 
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Table 5 2 Transforms for sl""ed dependent variables The response to a sompling 
scheme stratified by elevation varies b<(:ause !he vegetation clasoes have differe.ll 
distributions with regard to eleva1ion 

All of the models were built and tested uSing the same basic methodology outlined in 

Figure S J The process swu wnh one of the four DVs being in><stogated and was 

repeated for each of the classes Slowness transforms were then apphed and if they 

resulted in a significam reduction in skewness the rest of the process was completed with 

the best transformed data set and the original data In doe ne>1 stage the DVs were tested 

for lineanty with temperature This was only carried out for temperature because 

prehntJn&l)' analysis suggested that the only sigru6cant nonlineanty "IS bet.-een DVs 

and temperature Where signoflcant nonlinearil) between the DV and temperature was 

foo.md, curve estimation was used to correct the temperature independent variable (IV) to 

belinenrly related to the DV This correction of the temperature IV is only used at this 

83 



preliminary stage, if the correction was found useful nonlinear modelling was used in 

later stages. 

The next set of processes aimed to find those variables that had a significant 

relationship with the DV. At first, all of the variables were used in a non-sequential linear 

regression. The squared semi partial correlations were then used to order the variables 

entry into a series of non-sequential linear regressions where one more variable was 

entered at each stage. The change in coefficient of correlation (R2
) at each of these stages 

was then attributed to the addition of the variable added at that stage and used as a 

measure of the usefulness of that IV. The R2s were then used to choose which IVs were 

included in the further stages of the modelling. In the next stage modelling was repeated 

with one of each of the IVs that were found to be useful omitted in each repetition to 

further test their importance. At this stage nonlinear parameter estimation was used if 

there was a nonlinear relationship between the DV and temperature. 

Once the important predictors and the form of the model were identified the models 

were tested using a number of methods to determine their robustness. In some cases it 

was not clear how many predictors should be used, so two or three models were put 

through the testing process. The first test was bootstrapping, the sample data sets were 

randomly split into two sets, 70% was used for training the model and the remaining 30% 

was used to test the model. The difference between the R2 for the test and training data 

was then used to interpret how well the model generalised the trends in the data. The 

other two tests were based on the model residuals. The residuals were tested for 

correlations with the IV and spatial clustering, both of which would indicate a model was 

not robust. In the final stage all the possible models for predicting a cover class were 
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compared and the model that was found to have the best perfonnance and robustness was 

ch~ and used tn later saagc~ to make pmhcbon.s 
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5.2.2. The Heath model 

The level of skewness of the DV in the non-stratified and Voronoi data sets is very 

low (skewness= 0.178), whereas in the stratified data the skewness is much greater 

(skewness= -0.806) but the absolute value is still below one which would be considered 

significantly skewed. No further investigation of skewness was performed for this cover 

class as the DVs do not appear to be significantly skewed. 

The percentage cover by heath shows a clear nonlinear relationship with temperature 
(Figure 5.4) 

~ 3 

Cunnt Tem,.rature ('C) 

Figure 5.4 Relationship between temperature and heath percentage cover in the non
stratified data. This relationship is clearly nonlinear. 

This nonlinear relationship can be represented well by a quadratic function, which 

accounts for over 63% of the variance in the heath variable (Table 5.3). The quadratic 

function has the advantage that it matches the nature of the distribution in the real world. 
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An <'<pooenrial fun<rioo f« O'<ample v.ould imply thai the co•er by heath kept on 

mcreasing with increasing eltv111on (lo\\er temperatures) when 1n reaJ1ty cooler 

temperatures limit grow1h 

Table 5.3 Model fits for the nonlinear relationship between heath and temperature. A 
quadratic function fits this relation~hi p weJI accounting for over 63°/o of the variance in 
the heath variable 

With the newly transformed temperah.tre variable created the squared semi partial 

correlotions were calculated (Table 5 4) and then used to c1·eate the order that variables 

were entered into the sequence of linear regressions. 

Table ~ 4 Squared semi pantal corrdwons from the initial Heath model 

0012 

0.000 
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From the R' change$ (Table~ S) tcmpenoture is clearly a wong pmloctOI' while a f"" 

other variables (nonnalized slope, NE angle e-<posure, solar radoation, snow potential 

mdex) can explain a small anlOlllll of 1he variance The variables that explam sma11 

amounts of variance do not appear 10 be significam at this sta.,ge, however their full power 

was tested in the next stage where nCK\hnear parameter estimation wu used and the 

onOuence of each \'ariable was tosted by removing it from the modd 

Table 55 R1 change$ for heath models Temperature is strong predoctor wlule some Other 
.,.·ariables e.~plain a small amount of \'ariance 

curviiW'e o ooo 

The nonhnear moddling" <Ummarioed separately for each data set due to the 

dolferenecs on which variables musu~ly cmtribute to the eq>lamed •ariancc FOI' the 

non-straufied buff.., data set the addouon of time linear pmlicton. normalized slope, NE 

angle exposure and moisture potential index were tested and the increase in R2 was used 

to examine the contribution of each linen.r prediCior. The resulting models are presented in 
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Table 5.6. An R2 increase of0.087 can be gained by adding all three linear predictors, 

though this is probably not the best model since the added power of the model is probably 

not justified by the increase in complexity. The model that includes NE angle exposure 

and Normalized slope adds 0.069 to the quadratic function and probably achieves the best 

balance between prediction power and simplicity. This model was then used in testing of 

robustness. Residuals from the model have a weak correlation (R2 = 0.29%) with the DV, 

which is a slight concern but not a strong indication of weakness in the model. The 

bootstrapping test also indicates the model is robust with a R2 difference of only 0.03 

between the test and training data. This suggests the model generalizes well and does not 

over fit to the training data. 
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Table 5.6 Influence of predictors in nonlinear modelling using the non-stratified buffers 
data set. The model that includes NE angle exposure and Normalized slope adds 6.9% to 
the quadratic function and probably achieves the best balance between prediction power 
and simplicity. 

" , l~elit~lig~s Rz R! inc~~ars~ 
Current temperature (quadratic) .632 0% 
Current temperature (quadratic) 
Normalized slope (linear) .701 6.9% 
NE angle exposure (linear) 
Current temperature (quadratic) 
Normalized slope (linear) .675 4.3% 
Moisture potential index (linear) 
Current temperature (quadratic) 
NE angle exposure (linear) .655 2.3% 
Moisture potential index (linear) 
Current temperature (quadratic) 

.668 3.6% 
Normalized slope (linear) 
Current temperature (quadratic) 

.638 0.6% 
Moisture potential index (linear) 
Current temperature (quadratic) 

.651 1.9% 
NE angle exposure (linear) 
Current temperature (quadratic) 
NE angle exposure (linear) .701 6.9% 
Normalized slope (linear) 
Current temperature (quadratic) 
NE angle exposure (linear) 

.719 8.7% 
Normalized slope (linear) 
Moisture potential index (linear) 

In the nonlinear model testing for the stratified data two linear predictors were tested, 

NE angle exposure and Normalized slope. The R2 increase due to the linear predictors is 

not large (Solar radiation= 1.7% and Normalized slope 1.6%) and the most significant 

gain is achieved through adding both variables (4.2%) (Table 5.7). Because of the 

questionable value of adding both variables further testing was performed on the basic 

model (only the quadratic function) and an extended model (solar radiation and 

normalized slope included as linear predictors). 
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When the model residuals were tested for correlation with the IV, both models had R2 

values slightly higher than the non-stratified zones model. Both models also performed 

well in the bootstrapping test, which showed little difference between the two models. 

Table 5. 7 Influence of predictors in nonlinear modelling using the stratified buffers data 
set. The R2 increase due to the linear predictors is not large. 

Current temperature (quadratic) 
Solar radiation (linear) .690 4.2% 
Normalized sl 

1.7% 
Current temperature (quadratic) 
Solar radiation 

.665 

Current temperature (quadratic) 
Normalized sl 

.664 1.6% 

The nonlinear modelling for the Voronoi data results in models with similar power 

and robustness. The only important difference with the Voronoi zones is that none of the 

linear predictors were found to add enough explanation of variance to warrant their 

inclusion. When comparing models generated from all three data sets the differences are 

not large and choosing the best model is not straight forward. It appears that the non-

stratified zones model is the best and the inclusion oflinear predictors may be warranted 

but the effects should be monitored. 

5.2.3. The CSH model 

As with the heath cover class the CSH DV is not significantly skewed in the non-

stratified or Voronoi data sets but is more skewed in the stratified data (skewness= 1.64). 

Square root and log10 transforms were both tested but neither resulted in better models 

and so the following discussion includes untransformed models only. 
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The relationship betv.een CSH and temperature is nonlinear on all three data sets. the 

<hape of this relationship is illuwated usong the non-stratified data as an e.ample (Figure 

S S) A quadratic function provides the closest fit though the diiTeoence between the 

quadratic and exponential functions is only significant in the stratified data set. A 

quadratic function may perfonn best for predicting current conditions but could give very 

unreal prediCllons for future condouons Using the quadraue funcuon the percentage cover 

by CSH "ould begin to rise "ith temperatute> decreasing bela.. t"o degrees Celsous and 

this does not match the real world behaviour of the cover class The .-ponential function 

provides a good fit that matches the real world behaviour of the cover class and so was 

used in the rest of the model construction process. 
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Figure S 5 Relationship betw""n tronperature and CSH pe=nuge cover (non-stratified 
<111.1) A quadratic function provodes the closest fit (R' = 0 742) 
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Once the squared semipartiol coodat&ons for prediction of the C'SH DV were 

calculated and used to create the order of variables entry into the series of linear 

regressions the R2 change &Uiibuted 10 each variable could chen be investi~ated to find 

those potentially useful variables The prediction power of the transformed temperature 

variable is very bigb (Table S 8) but only one odla variable, solar rad&alioo. sbo>vs 

SliP"IiCIIlt potential as a pred•ctor Thougb solar radiauon does 1101 add a large amount of 

txplanatioo it is sigmlicant for all three da1.1 sets. "'bich suggests there is a real 

relationship with the DV and not just an artefact of the regression model 

Table 5.8 R2 changes for C'SH models Temperature is a very useful predictO< but ~~e only 
other variable tha1 has potential to be of use is solar radiation 

OS49 07S6 0785 

0.002 

0 .000 
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The importance of solar radiation was then tested in nonlinear modelling. Because there is 

only one linear predictor under investigation only two nonlinear models were required, 

with and without solar radiation included. This stage of testing produces very similar 

results to the linear modelling with transformed temperature variables, this is not a 

surprise as both methods result in essentially the same type of model. In the non-stratified 

data sets the added explanation provided by solar radiation appears to be significant and 

justified. In the stratified data set the variables' inclusion is questionable due to its limited 

addition to the level of prediction. Further testing of the models was performed with solar 

radiation included. 

Testing of the residuals from the three models suggested all models were robust with 

very low correlations (R2 < 0.17) between the DV and the residuals. The maximum 

variation between the parameter estimates from each model are shown in Table 5.9 where 

the difference is represented as a percentage of the parameter average. All but parameter 

b2 show variation above 50%, this is mainly due to the difference between the stratified 

and non-stratified data sets. The variation between the non-stratified zones and Voronoi 

zones are less. This level of variation means that at the prediction stage it is worth 

investigating the variability between the models to check how much the difference in the 

parameters created by the alternative sampling schemes effects the final prediction. 

Table 5.9 Parameter differences from the CSH models. where the model takes the form 
CSH = bO + (b1 * (Exp (b2 *[TEMP])))+ (b3 *[SOLAR]) . 

. ,!laJiam~t~flc · Max ii'lilrt'~c~nc~ 
bO 60.1% 
bl 54.2% 

b2 7.5% 

b3 60.6% 
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The model derived from the stratified data appears to be the best model as all are 

robust and the stratified data model explains the most variance. However this model may 

not be ideal due to the relationship between the sampling scheme and the distribution of 

the cover class. The stratified data have a lower proportion of samples at lower elevations, 

which is where values for the cover class are higher. This means that the model could be 

appearing to perform better just by predicting lower values. To check that the increased 

performance was the result of a better model and not an artefact of the modelling process 

the model was tested against a new independent non-stratified data set. A non-stratified 

data set is used to better represent the actual prediction the model will be making later on. 

When the stratified model was compared to the validation data the R2 was slightly lower, 

reduced from 0.898 to 0.826, which is less than the R2 for the non-stratified model both 

from training and testing with the same validation data set. The differences are not great 

but they do suggest that the increased performance of the model made when using the 

stratified data comes at the cost of applicability to its end use of making predictors for the 

study area. Both of the models show a tendency to underestimate higher values leading to 

weak correlations between the model residuals (when tested against the validation data) 

and the DV. The mean value predicted by the stratified model is also slightly lower (1.5% 

lower) but this difference is not of real significance. It therefore appears that there are no 

real differences between the models and any perceived gains in using the stratified sample 

data are lost when the model is applied to the actual study area. It is therefore suggested 

that the non-stratified model is the best choice since the sample data are not weakened by 

the large amount of overlapping between buffers seen in the stratified data and the models 
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I'O"er OJ nor ov<RStillUitcd The ompect of the choice of samplong scheme -..ill be 

in' e>tigated later by comparing the resulung distributions from both models 

S 2 4 The rock cover class model 

Roc::k is included as a cove1· Cll'I.SS because areas of rock can both increase and decrease 

in the same way that areas of "'egeta1ion can Rock coverage can decrease due co 

colonisation by "'cgetation or increase due to death of,egetation and soil t:rosion The 

resulting model from the buolding p~ dod not explain enough variance in the 

dastnbution of the rock: cover class to warrant funher investigations The poor 

perfonnance of the models in predicting the rock cover class is illustrated in Table 510. 

1 he most noticeable weakness is the poor perfonnance of current tempera lUre. which is a 

strong predictor for other cover cla>;es (Heath and CSH) but for this elass doesn't 

account for more than so--. of tht \'lriance 

Table 5 10 Model performante> for the roc~ cover class Temperature. "hoch is normally 
a suong predictor explamslm than 50"• of the variance" hile 1 few other variables shO\\ 
a ~mall amount of predictive potent11l 

Some of t he problems with the data for this cover class are diset1ssed to illustrate why 

an tffecti\e model \\ras not devtlopcd One of the biggest issut:s with the rock cover class 
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is the high degree of skewness, the levels of skewness in the original data sets and after 

transforms were applied is detailed in Table 5.2. Three transforms, Square root, inverse 

and log10 were tested and removal of any cases with values below five percent was also 

tested. The stratification of the sampling and some of the transforms improve the level of 

skewness but the modelling process still failed to explain enough of the variance to make 

any of the models worthwhile. 

Table 5.11 Skewness and transforms for the rock cover class. 

A further problem with the rock cover class is that the relationship with the DV and 

the strongest predictor, temperature, is not easily modeled. This relationship is illustrated 

in Figure 5.6 using the stratified data set as an example. The relationship appears 

approximately linear for cases warmer than two degrees Celsius but cases colder than that 

appear to have a very different relationship. The change between the two sections is too 

sharp to be modeled by an exponential or quadratic function and there are not enough 

cases below two degrees Celsius to build two separate relationships. An R2 of .643 can be 

achieved by modelling the cases above two degrees Celsius with a linear function and 

representing cases below .643 with the mean value for those cases. This piecewise model 
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is adequate for modelling the current distribution but does not allow for predictions using 

alternate temperatures and so is not sufficient for the purposes of this study. The rock 

cover class is not of prime interest to this study so more complex methods of dealing with 

this difficult relationship are not warranted. 
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Figure 5.6 The relationship between the rock cover class and current temperature 
(stratified data). The relationship appears approximately linear for cases warmer than two 
degrees Celsius but cases colder than that appear to have a very different relationship. 

5.2.5. The DSH Model 

With untransformed data the modelling process did not result in any models that 

performed well enough to be developed any further. When a log10 transform was used to 

correct the high degree of skewness in the DSH DV (stratified data set,} a viable model 

was developed. A quadratic function using temperature as a predictor accounted for a 

large amount of the variance in the log10 transformed DSH DV and a few other IVs also 

added to the model. The set of nonlinear models is shown in Table 5 .12; on its own 
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!em perature accouniS for 73 S% of 1he 'ariance and an eX1TI ~ 2~ , can be gained by 

add•ng nonhness and normali.red slope as hnear pred1C1on The model also appears 

robu>t. 1hou(!ll1hen: ''a sligln correlation (R'-0 275) bel"eenlbe DV and the residuals 

Because only one usable DSH model was developed no oomparisons between lbe 

resulung models from the differ""' sample strarcgies were con1pleted 

TableS 12 Nonlinear models for lbe DSH DV using the s1ra1ified sample data. On its 
own cempcra1Ure accounts for 73.5% of the variance and an extrn S.2% can be gained by 
adding nonhncss and nonnalized slope as linear predic1ors 

normalized IOJ'C' .770 

mr.ar) 
letnpcr3tuTC ~onhness mar) 787 5.~. 

5.3. \1akin3 predi<tioos 
This sectron discusses h<l" 1he regtession models dO\ eloped in lbe P""ious section 

are used 10 make spatially continuous pred•CI•ons for fu1ure time periods with differenl 

mean summer temperatures. 

The desired output format of the predicrions is a spatially continuous estimate of 

future percentage co'·er by each cover class The model~ were developed using point-

based data. the potnts represented the centre of zones used 10 J:lCnerate tl1e infonnation. 

bu11be models can be applied 10 olber da1a1ypes The dall format chosen for lbe 

pred1C110DS was rasler. because lbe da11 structure provide. 1he spalial continuny desired 

and lhe predictions can be made ea.sily u<ing me raster based inpuls (IOpOCiimalic 

variables) The ras1er calculator in Arcl>tap was chosen to make lhe ras1er based 

predictions because of it's simplicity for scripl1ng and ea!l.e of integration with the 
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existing data. Before the predictions could be completed the resolution of the outputs had 

to be chosen. The resolution had to be consistent with the model building process and the 

projects goals. Since the models were built using data derived from 200m radius circles it 

could be argued that the resolution should be 354.4m, which is the equivalent area for a 

square pixel. This resolution is however very coarse compared to the size of the study 

area and would hide a certain amount of spatial variation in the resulting predictions. The 

option preferred in this study is to treat the predictions in a similar way to the points used 

to build the models; that is that the value at the point is a summary for the area 

surrounding it. Therefore a finer resolution can be used which allows better visualisation 

of the spatial trends in the predictions. A 20m cell size was chosen based on the 

resolution ofthe original data and the extent of the study area (approx 63km2
). To ensure 

the inputs to the predictions were consistent with the model calibration, the topoclimatic 

layers were smoothed using a 200m radius mean filter. The result of the mean filter is that 

the value for each becomes equivalent to the mean value at the points in the data used to 

build the model. The final step before making the predictions was to generate the 

temperature layers in raster format to use in the predictions; this was done using the 

simple linear models of the relationship between temperature and elevation discussed 

earlier. The simple linear equations were applied to a digital elevation model in raster 

calculator. 

The predictions were calculated in ArcMap's raster calculator using a script to allow 

the process to be repeated with modified inputs. The processes used in the script are 

detailed in Figure 5.7. The process was repeated for each time period and for each cover 

class as well as for different version of the models (basic and extended). The initial stage 

100 



in the process is the application of the nonlinear model to the raster input DVs, this 

produces a prediction but the values are not limited to the possible values as the equation 

can predict values below zero percent and over 100%. In the following steps two masks 

are used to restrict the data values to the zero to 100 range. After the corrected 

predictions were created, the scripts performed calculations to compare the distributions 

in different years and to calculate predicted change. 

I DVn 

I DV2 

I ov, 

I 
f-

7 

"j 

Initial 
prediction 

Figure 5.7 Steps used in predictions scripting. 

When calculating the predicted changes there are a number of possible ways of 

generating the baseline (present) data. The options considered here are using the 

prediction based on the current temperature or an interpolation of point-based data. The 

interpolated baseline percentage cover raster layers were created from the non-stratified 

buffers data set because the sample coverage density is more even. Block kriging was 

used to perform the interpolation and the output was then tested against a validation data 

set. The performance of the interpolation in comparison to the predictive models is 

summarized in 
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which also serves as validation for the predictive models when applied to the actual 

study area as a whole. The validation is based on a new and independent data set (from 

the training data) containing 892 cases created in the same way as the non-stratified data 

set. The effect of smoothing the input topoclimatic variables on the predictive models is 

also tested through running the predictions with smoothed inputs and with unsmoothed 

inputs. Interpolation is clearly the best method of generating the baseline data as the 

validation R2 is above 90% for all three cover classes and is consistently higher than 

validation R2 for the predictive models. One of the most noticeable features of the 

validation table (Table 5 .13) is the very poor performance of the DSH predictive model, 

the maximum R2 reached is 0.325 which is not good enough to warrant use of the 

models'. The difference between the performance for the training data and the validation 

is probably due to an overestimation of the models' performance in the building stage. 

The overestimation of the models' performance is likely due to the manipulation of the 

data, stratified sampling, log10 transform and the quadratic function. From the residual 

statistics (Table 5.13) it can be seen that the mean residuals are further from zero than 

they should be, the negative numbers indicate the models tend to under predict. The 

estimated power of the model is therefore likely an artefact of the process used to create it 

and the model should not be use to make any predictions. The DSH model will therefore 

not be used any further. The use of smoothed or non smoothed inputs shows only a slight 

influence on the performance of the predictive models, the validation R2 are mostly lower 

by around two percent which indicates no real consequence. The lack of difference 

between the two treatments is likely due to the high level of spatial autocorrelation in the 
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landscape, the mean at a location for the surrounding 200m is not substantially different 

from the value for that location. The CSH and Heath models perform well with validation 

R2 high enough to use the models for prediction using future temperature scenarios. The 

drop in validation R2 when compared to the training R2 is small for all models, all 

differences were less than two percent, this reaffirms that the models are robust and not 

over-fitted. 
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All of the models were also tested at this stage to see if the residuals were spatially 

autocorrelated. The residuals from all of the models showed some autocorrelation with 

Moran's I scores (using a threshold distance of one kilometre) around 0.4 for the CSH 

and heath models, the DSH models were higher at around 0.5. The differences between 

the model variants for each cover class were very low, below 0.06, suggesting the 

addition of the linear predictors has little effect on the spatial clustering of residuals. The 

level of spatial autocorrelation in the residuals is acceptable since the values show some 

clustering but not a strong tendency towards clustering. A certain amount of clustering is 

to be expected as the models generalize the relationships in the data and should not fit to 

areas of unusual conditions. 

5.4. Sensitivity analysis 

5.4.1. Basic and extended models 

Up to this point some issues regarding which form of models to use remain partially 

unresolved. Because of the small differences between models choices between basic or 

extended models and stratified or non-stratified data are not clear cut. For this reason 

sensitivity analysis was performed to assess what influence these decisions have on the 

end results. To assess the difference between the basic and extended models, variables 

were constructed that represented the difference in predicted changes. In order to 

maintain the direction of the differences the predicted change value for the basic model 

was simply subtracted from the extended model, as opposed to using squared differences. 

These difference variables were then classified based on standard deviations (using the 

variable with the greatest range of values) to allow a comparison of the relative areas over 

which the different degrees of differences occur. The results of the analysis show very 
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little difference between the results from the basic and extended models. For the CSH 

cover class the standard deviation classes were based on the 2010-2039 time period, the 

resulting distribution of area within each of the classes is shown in Figure 5.8. The limits 

on the first standard deviation are very small (-3.26 to 2.11) showing that for most of the 

data there is very little difference between the predicted change from the basic or 

extended models. The distributions also become more peaked in the later time period as 

the area within the first classes (-3.26 to 2.11) increases, this means that not only are the 

differences very small but over time they become less important. The trends for the heath 

cover class are very similar though the range covered by the first standard deviation class 

is slightly smaller (-2.78 to 1.28). 
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Figure 5.8 Area occupied by mean difference classes for the CSH cover class. For most 
of the data there is very little difference between the predicted change from the basic or 
extended models. These changes decrease in the later time periods. 
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S 4 2 Sampling scheme! 

The scnsiti•ity to selection of the wnpling scheme. stniUfied or 001. was investigated 

thro..I.Hh the use of the standard dev1ation of the differences bern.een predjctions from 

equivalent models made with dirferent sample data (stratified and non-stratified). The 

values in Table 5 14 clearly show that the selection of the samplmg scheme has very li"Jo 

influence on the results and th~r interpretation_ As wlth the difTerenus bctv.cen basic and 

e-. tended models the smsorivity decruses in theta"" rime periods For the ma.tonty of' the 

study area(± ooe standard deviauoo of differences) in all time period> the dorferenees 

between the models was less chan the error in the models 

Table S. I 4 Standard deviation or diOerences between predicted change based on stratified 
and non~suatified data (units are percentage cover) The selection of the sampling scheme 
has very little influence on 1he resul ts and their interpretation 

S 4 J ClimaJ~nao:i.ll'l 

A further source of grcal uncc11ointy in the predictions is the error in the future 

climate scenarios The scenarios provided for this study do not include any estimation of 

the level of uncertainty so hypothetical uncertainty scenariO> were used instead. The 

~Sitl..,ty to three It\ els of ununaonty, five percent, 3~< and ~• was tested by 

analyzong the level of dofference> this uocenainl) would cw<e To perform this analysis 

the predictioos were repealed woth the temperature increased and decreased by the levels 

of uncertainty. The difference between the predictions with increased ternperattu·es and 

those with decreased temJ>eraturc were then calculated to provide the range of values 
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undet each uncertainly scenario. This method was used because of its simplicity Because 

the models are nonlinear a single range cannot be computed as tl1e levels of difference 

val)• across the site. The root mean squared differences (RMSD) betw<."Cn vah.1es 

generated by this analysis are detailed in Table 5. 15. The five percent error scenario has 

very little cffc..~ on the prediclions, all the RMSDs are below six percent which is small 

relative to the levels of change that occur in the predictions. In the 200/o e1·ror scenario the 

range generated is still low for che heath cover class but much higher for CSH. When the 

level of uncertainty in the 20% error scenario is combined with the ~her main error 

sources in the data the change in percentage cove1· has to be over 21% (20 I 0·2039) to be 

significant. this makes the change for nearly a quaner of the study area non-signiticanl 

(within the error of the modcl). The SO% etror scenario obviously has a large impact for 

example the change in cover percentage for nearly 400/o of the study area for I he 2010 co 

2039 time period is no longer significant with that level of error in the temperan1re 

estimates. 

Table 5.15 Root mean squared differences for the range of values generated by each error 
scenario. TI1e 500/o error scenario has a very large effect on the pl'ediclions and at this 
level of uncertainly the results of the models are of little value. 
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5.5. Neighbourhood effects 
The problem of neighbourhood effects in regression analysis is best explained through 

the requirement for random independent samples by most regression models. Depending 

on the sampling scheme geographic data sets can be random but the requirement for 

independence will not be fulfilled if neighbourhood effects are present (Odland, 1988). If 

neighbourhood effects are present each case will have some dependence on near cases 

and the assumption of independence will be violated. 

In this study each sample is not independent since processes such as seed spread and 

insect infestation mean that what grows in one location will have an influence on what 

grows nearby. Additionally the fact that the 200m buffer zones included some overlap 

will mean that sites within 400m of one another will have some interdependence due to 

shared ground. 

The issues that need to be resolved in this study are not whether there are any 

neighbourhood effects but rather if they are important in the models being used and if so 

how to improve the models to account for them. The first basic test for problems with 

missed neighbourhood effects is to check the residuals for spatial autocorrelation 

(Odland, 1988). If the residuals are spatially autocorrelated then the model is not 

performing properly, this could be due to a missing variable or incorrect functional form 

of the model. This basic test was performed for the two main models in this analysis. The 

two models predict percentage cover for the CSH and heath classes. The residuals were 

calculated using a validation data set that was sampled separately from the data used to 

build the models. Each model has two forms, a basic and extended form. All of the four 

models were tested to see if the residuals were autocorrelated using global Moran's I as a 
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measure of spatial autocorrelation. The Moran's J scores were all low and the scores for 

the extended models were below 0.37 (Table 5. 16). 

Table S.L6 Moran's I for residuals from the main models using a threshold distance of 
one kilometre The values all show some autocorrelation in the residuals but not enough 
to cause concern. 

A funher way of examining rhe autocorrelation ofresiduaJs is rhrough corrclograms. 

which allow the visualisation of how the level of autocorrelation changes depending on 

separation distances. Figure 5 9 and Figure 5.10 show corre1ograms of the residu.aJs from 

the extended models for CSH and heath respectively. With bod> models the level of 

autocon·elation drops to near zero by I 125m to 1500m separation distance IJ> the CSH 

model the drop is quicker and the decrease in autocorrelation nauens around 400m. The 

drop to near wo by 400m is intetesling since this is lhe minimum separation distance 

where rhe 200m buffer zones no longer overlap. It is possible that autocorrelation of 

residuals wi1hin lhat 400m is at least partly due to tl1e samples sharing some of the same 

data This suggests the overlap of the buffers should be fUI'ther investigated. This 

investigation was done through the use of the Voronoi zones data sec To test if 

perfonnance of the models was over estimated the R2 values from the non stratified buffer 

zones were compared to equivaJcnt models made using the Voronoi data. In aJI cases the 

difference in R.l was less than five percent indicating the perfonnance of the models was 

not overestimated and the overlap issue is not serious. l11e parameters from the models 
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were also compared to test if the models found similar relationships. In most cases the 

parameters were close to within ten percent of each other with the exception of one 

parameter in the CSH extended model, which showed a difference of31.5%. This test is 

less relevant to overlapping causing problems with neighbourhood effects but it does 

reinforce the idea that the overlapping zones do not generate problems. 
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Figure 5.9 CSH extended model residuals correlogram. 
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Figure 5.10 Heath extended model residuals correlogram. 
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The second test for problems with neighbourhood effects was based on comparing the 

level of autocorrelation in the dependent variables and the predictors. The predictors are 

topographic variables and since the landscape does not change rapidly it is clear that the 

IVs will be spatially autocorrelated. It is also logical that if the predictors are 

autocorrelated the dependent variables should be also. The question that needs to be 

resolved therefore is not "are the DVs spatially autocorrelated ?"but "are there significant 

neighbourhood effects that make the DVs more spatially autocorrelated than the IV?". A 

simple way to answer this question is to compare the level of spatial autocorrelation in the 

DVs with the predicted values. The predicted values can be used because they are simply 

a multivariate nonlinear combination oflandscape variables found to be good predictors 

of percentage cover. Correlograms provide a clear and detailed way to visualise the 

relationship between spatial autocorrelation in the IVs and DVs. Figure 5.11 and Figure 

5.12 compare the spatial autocorrelation in the CSH and heath percentage cover variables 

with the predictors. The figures show there is very little difference between the spatial 

autocorrelation in the DVs and predictors. Bivariate correlations for the relationships are 

all above 0.95 indicating there is no real difference in the level of spatial autocorrelation 

in the DVs and IVs. From this analysis it can be concluded that there are no 

neighbourhood effects making the DVs more spatially autocorrelated than the predictors. 
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Figure 5.11 Spatial autocorrelation in the CSH DV compared to the predictors. There is 
very little difference between the autocorrelation in the dependent variable and the 
predictors. 
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Figure 5.12 Spatial autocorrelation in the heath DV compared to the predictors. There is 
very little difference between the autocorrelation in the dependent variable and the 
predictors. 

Though the data, both IVs and DVs, in this analysis are autocorrelated no evidence 

was found for significant neighbourhood effects. This study suggests no further treatment 

of neighbourhood effects or spatial autocorrelation is required. 

5.6. Final models 
The final models that were used for predictions are for the two cover classes that are 

of primary importance, CSH and Heath. The models developed from the non-stratified 

data were used in both cases and the inputs were smoothed. The extended versions of the 

models were used in both cases as the validation R2s indicate the linear predictors make a 
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justifiable addition to the models. The resulting nonlinear models are detailed in 

Equation 5.1 (CSH) and Equation 5.2 (Heath) where they are shown as raster calculator 

expressions, the parameter values are shortened to three significant figures for display 

only. In the next chapter the resulting predictions from these models will be investigated. 

CSH = 165 + (0.0540 * (Exp (1.60 *[TEMP]))) + (-200 *[SOLAR]) 

Equation 5.1 CSH predictive model. 

Heath= 38.2 + (44.4 *[TEMP])+ (-10.2 * Pow([TEMP], 2)) + (-1.01 * [SLOPE_E]) + (-191 * 

[NEANGEX]) 

Equation 5.2 Heath predictive model. 

Where: 

[TEMP] = Smoothed temperature 

[SOLAR] = Smoothed solar radiation 

[SLOPE_E] =Smoothed normalized slope 

[NEANGEX] = Smoothed NE angle exposure 

5.7. Summary of Methods 
Models were successfully built for two of the cover classes, CSH and heath. The other 

cover classes could not be modelled reliably by the methods used here. The two models 

developed use nonlinear functions to include the relationship with elevation and one or 

more linear predictors to explain further variance. The models trained with data sampled 

randomly and not stratified by elevation appear the most robust when tested against the 
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study area as a whole. The sensitivity analysis suggests that although the models are 

affected by choices in their calibration and errors in climate scenarios these differences 

are not likely to affect conclusions derived from the resulting modelled predictions of 

change. 
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6. RESULTS AND DISCUSSION 

The previous chapter discussed how the model predictions of vegetation change were 

created. In this section the predictions will be presented and interpreted. The results for 

the CSH and Heath cover classes are the only ones examined because they are the only 

classes for which useful models could be constructed. These two classes were both 

classified from the satellite imagery with a good level of accuracy. The consumer's 

accuracy was 81.7% for the Heath class and 75.2% for the CSH class. There was some 

misclassification between the two classes seen in a cross tabulation between the ground 

truth and classified image, 8.12% of the CSH class was misclassified as Heath and 6.76% 

of the CSH was misclassified as Heath. 

Figure 6.1 to Figure 6.3 represent the predicted change in percentage cover (not 

percentage change) in each of the three time periods for the CSH cover class, and Figure 

6.4 to Figure 6.6 contain equivalent predictions for the heath cover class. In the figures 

values within the root mean squared error (RMSE) are shown in grey as these values do 

not represent significant change as the predicted changes are less than the standard error 

in the model. The RMSE used is based on a combination of the RMSEs from the 

predictive models and the interpolations according to error propagation formulas from 

Eastman (1993). The resulting RMSE for CSH is ±11.52% and ±12.15% for the heath 

cover class, the errors were calculated using the validation data set discussed previously. 

Due to the nature of the predictive formulas the CSH cover class can only increase in 

abundance with the increased temperature scenarios. Reduced abundances are possible, 

but only due to differences between the baseline data and the training data. The heath 
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class can both increase and decrease due to the quadratic function used to model it. In the 

study area, increases only occur in small areas at high elevations. It is therefore possible 

for both classes to increase in the same cell. This does occur at high elevations which is 

consistent with colonization by both heath and CSH of previously sparsely vegetated 

(rocky) areas. The predictions show that the areas most susceptible to change are the 

transition areas at the middle elevations. At lower elevations CSH is quite stable and 

heath will not increase, in the upper elevation CSH only starts to increase dramatically in 

the final time period (2070-2099) when heath also shows large declines. The sensitive 

areas are therefore the middle elevations and this is particularly so because these are the 

areas where there is already a significant abundance of CSH required for the spread of the 

species included in that cover class. The middle elevations are also where there is the 

greatest uncertainty in the predictive models because this is where the model fits are the 

weakest (Figure 5.4 and Figure 5.5). 
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The predictions can be summarized using charts to compare the proportion of the 

study area occupied by different abundance classes for each of the two cover classes. In 

the two charts that follow (Figure 6.7and Figure 6.8) the pixels from each cover class are 

assigned to abundance classes depending on the percentage cover in the 200m radius 

around that pixel. These abundance classes are then plotted against the proportion of the 

study area occupied by pixels in that class. The total of all the bars for CSH equals 100% 

because 100% of the study area has between zero and 100% coverage by CSH. For the 

present time period (Figure 6. 7) both cover classes have a reasonable spread of areas 

occupied by the range of cover classes. Low abundances of CSH are more common than 

high abundances but the spread of heath abundance is relatively even. In the predictions 

for the 2070-2099 time period very high abundances ofCSH (90% to 100%) occur in 

nearly 90% of the study area, conversely most of the study area has very low abundances 

of heath. The equivalent graph for the 2040-2069 time period {Appendix II) shows a very 

similar pattern to the 2070-2099 period though there are some areas containing higher 

abundances of heath. The difference between the two figures shows a vety dramatic 

change from a reasonably mixed landscape to a landscape dominated by coniferous forest 

and shrub (CSH). 
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These predictions include no restrictions on the speed at which vegetation can change 

and so should be interpreted as what the potential coverage might be under the future 

climate scenarios if the trees and shrubs can increase in abundance at a rate fast enough to 

maintain equilibrium with the changing climate. Otherwise the realized coverage will be 

less (Guisan and Zimmermann, 2000, Midgley eta!. 2006). 
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7. CONCLUSION 

The primary objective of this research was to create a spatially explicit model that 

could predict vegetation distributions for the current topoclimatic conditions and future 

conditions. These objectives were broken down into five tasks that had to be completed to 

mft the primary objective: 

1. Map the current distribution of vegetation types. 

2. Build a database of current topoclimatic conditions. 

3. Perform exploratory analysis to inform the model building process 

4. Create a model that predicts current vegetation distribution based on the 

topoclimatic variables. 

5. Apply the model to altered topoclimatic conditions that represent past or 

future scenarios. 

These tasks were completed successfully and predictions have been made that can be of 

use in understanding and managing the future vegetation cover of the Mealy Mountains 

under different growing-season temperature scenarios. 

7.1. Vegetation mapping 

The mapping of vegetation types was completed using orthorectified Quickbird 

imagery and ground truth data collected as part of the summer 2005 field season. Earlier 

work with Landsat imagery and field observation suggested that high resolution imagery 

was important because the landscape is too mixed for the resolution of Landsat pixels. 

The heterogeneous landscape results in mixed signatures and poor classification. The 

classification of the Quickbird imagery performed well and produced a raster based 
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vegetation map that was suitable for model building in later stages. The vegetation map is 

limited in that the form of coniferous trees cannot be separated; full trees, shrubs and 

krummholz remain grouped. There was also some misclassification between the two main 

classes (Heath and CSH) which could have limited the performance of the models. 

7 .2. Topoclimatic Variables 

The set of topoclimatic variables was constructed for the study area-based on the 

range of variables used by other researchers working towards similar aims. These 

variables are mostly surrogates since actual variations across the site were not available. 

The range of variables included measures of sheltering, exposure to solar radiation, 

potential for snow accumulation and potential for soil moisture. Results from the 

exploratory analysis suggested that the slope variable was too highly correlated with 

elevation to be used in its raw form. This correlation occurs because of the form of the 

landscape, slopes are steeper at higher elevations. Potential issues with collinearity were 

avoided through normalization of the slope variable by elevation. The resulting 

normalised slope variable was a useful predictor in one of the two final models. In the 

final models only a small number of the topoclimatic variables were useful in predicting 

vegetation distributions. Temperature, derived solely from elevation, was a strong 

predictor for most of the vegetation classes and could have been used without any other 

topoclimatic variables to make predictions with a reasonable amount of accuracy. 

7.3. Exploratory analysis 
Exploratory analysis provided a great deal of information for the model building 

process. The most important conclusions from the exploratory analysis were concerned 
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with the spatial scales appropriate for modelling. As was previously hypothesized, the 

landscape is too heterogeneous for models to be built on the information at single 

locations or very small areas. What occurs at a specific location, in a metre radius for 

example, is quite random but when larger areas are examined trends can be seen. From 

the investigation using a range of different sized areas it appears that the optimum sized 

area to work with is around 0.126km2 (a circle with a radius of 200m). The data sets used 

for model building were therefore based on 200m radius circles and the values used were 

average values of the topoclimatic variables and percentage cover by each class in the 

circular zone. The zone based data (opposed to point-based) contain continuous values 

for each cover class (percentage cover) and so allow a broader set of modelling 

techniques than the discrete classes in the point-based data. 

The exploratory analysis also showed the presence of a transition zone in the 

landscape. This zone occurs at the middle elevations and the vegetation coverage is more 

mixed and heterogeneous than at the higher and lower elevations. This area is at the 

greatest risk to change and is also the hardest to make predictions for because it is more 

randomized. 

There are only three true variables in the data, aspect, elevation (temperature) and 

curvature. There are a number of topoclimatic variables that are too highly correlated with 

each other to use together and these relate to a common one of the three true variables. In 

the final models there are no variables used from common true variables. The heath 

model only uses temperature, which is essentially elevation and solar radiation which is 

highly related to aspect. The CSH model uses temperature and NE angle exposure which 
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is an aspect variable. The CSH model also uses slope which in its raw form is highly 

related to elevation but in its normalised form collinearity is not an issue. 

7 .4. Model building 

The model building and validation process resulted in two models that predict 

percentage cover for their respective cover class, heath and CSH, with a good level of 

accuracy (R2 > 0.685). The DSH model appeared to work well but later stages of 

validation showed that it did not generalise well when applied to the actual study area. 

The apparent performance of the DSH model was assumed to be an artefact of the 

modelling process, caused by the combination of stratified sampling, log transform and 

non linear modelling. The successful models were quite basic using a nonlinear function 

for the temperature variable and one or two linear predictors that added a small but useful 

amount of prediction power. 

The use of stratified sampling schemes for model development showed no real gains 

over the non-stratified sampling. At the training stages some models trained with 

stratified data appeared slightly more powerful, CSH for example, these gains however 

did not hold up to full validation. The models based on non-stratified data performed best 

for the study area as a whole. The implication of the choice of sampling scheme was also 

investigated through sensitivity analysis. The interpretation of the results from models 

built with either data set would be identical or at least very similar, so the choice is almost 

of no consequence. 

The overall finding from the model building process was that nonlinear modelling 

performed well but any modifications such as altered sampling schemes and data 
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transforms did not add enough to the power of the models to warrant their use. As has 

held true throughout the analysis, temperature is the only strong predictor for the 

distribution of the cover classes. Other topoclimatic variables were less important than 

expected. The minor influence of the other topoclimatic variables could be due to scale 

effects. At the scales used here they may not appear to be of great importance but at other 

scales they could be more important. The topoclimatic variables that were used in the two 

final models were solar radiation, NE angle exposure and normalised slope. Both NE 

angle exposure and solar radiation show some aspect dependency. In the heath model the 

DV is negatively related to normalised slope indicating heath is less abundant on the steep 

areas. 

The inclusion of the variables in the models should not be confused with cause and 

effect, the temperature variable is a strong predictor but temperature is not necessarily the 

cause of the distribution. The distributions could be caused by variables not mentioned in 

this project that are highly correlated with the variables found to be useful. Another 

possibility is that temperature does have an actual influence on the distributions but other 

variables, highly correlated with elevation such as precipitation, also play some role. This 

issue is important because when the temperature variable is altered to make predictions it 

is altered based solely on temperature change, therefore assuming that temperature is the 

only cause of the correlations with elevation. 

The predictions of change in the future are best seen as representing how the potential 

for change varies across the site under a given climate scenario. The predicted future 

distributions may not be achievable within the time period of the temperature change as 

plant assemblages take time to spread and develop (Bennet et al., 1986, Ritchie and 
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MacDonald 1986, Malcolm et al. 2002, Midgley et al. 2006). The change should also not 

be seen as what the potential change will be in the future but what the potential for 

change would be given the climate scenario used. It is clear that the accuracy of the 

prediction will be heavily influenced by differences between the actual future climate and 

the scenario. From the sensitivity analysis it appears that with a level of difference of 30% 

in the temperature prediction there are still large areas of significant potential for change 

even at 50% there is some significant potential for change. The real value of the 

predictions is not in showing specific changes in single locations but rather in showing 

where the greatest potential for change is and how great that potential is. 

7.5. Predictions and implications 

The predictions suggest large potential for change in the middle elevations where the 

vegetation is currently quite heterogeneous. If the predictions are realized and the 

potential for change is achieved the landscape will be clearly dominated by coniferous 

forest and shrub after the 2040-2069 time period. The prediction for this time period 

indicates about 65% of the study area will have only ten percent or less local coverage 

(within a 200m radius zone) by the heath class. Conversely over 65% of the study area 

will be covered by a vegetation type consisting of90 to 100% coniferous forest and 

shrub. 

The findings of this study agree with the consensus of upward shifts of altitudinal 

tree-lines (Parmesan, 2006). Though tree-line is not included explicitly in this study the 

results could be modified to allow analysis in terms of tree-line. Tree-line could be 

defined by a threshold percentage cover beyond which each pixel would be classed as 
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forest. The resulting boundary between forest and nonforest could then be used to create a 

tree-line and predicted future tree-lines. This analysis was not completed because the 

choice of threshold would be arbitrary and the forest and no forest land cover classes 

dichotomy does not suit the patchy homogenous nature of vegetation found in the study 

area. 

Assuming that the climate scenarios used in this analysis or changes to a similar 

degree are unavoidable how can the findings of this study be of use? The key finding that 

can be of use in protecting these areas is that it is the middle elevations that are at the 

greatest risk. The middle elevations should therefore be afforded the greatest available 

protection. 
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Appendix I 
Pearson's Bivariate correlation matrix for the 200m buffer data created using a non-stratified sampling scheme. 
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Appendix II 

Predicted percentage of the study area occupied by CSH and Heath abundance classes for 
the 2040-2069 time period 
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