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ABSTRACT 

Parkinson disease (PO) is a progressive neurodegenerati ve disorder characterized 

by the loss of dopaminergic neurons in the substantia nigra pars compacta. As a result, 

affected individuals have impaired motor function typically coupled with several non­

motor symptoms that ari se from extra-nigra ) damage. Mutations in the human a­

synuc/ein (SNCA ) gene have been linked to heritable autosomal dominant PO and 

duplications o f its gene locus result in a more severe early onset form o f the di sease. 

Post-mortem analysis of patient brains revea ls increased levels of ox idati ve stress 

biomarkers in individuals with PD. I investigated the potentia l therapeutic e ffects of a 

diet high in antioxidants both in a Drosophila me/anogaster model of PO and on a­

.synuc/ein- induced developmental defects of the neuron-rich eye. Longev ity assays, 

climbing tria ls, and biometric analyses were performed to test the effects of blueberry 

extract (BBE) on several a-synuc/ein-induced phenotypes. My results suggest that a diet 

supplemented with BBE rescues a-sy nuc/ein-induced degeneration in D. me/anogas/er. 

Both reduced lifespan and disruption to the extem al morphology of the eye induced by a­

synuc/ein were improved in individuals fed a die t supplemented w ith BB E. These 

findings demonstrate that BBE counteracts PD-like phenotypes in an animal model o f 

prote in tox ic ity and suggest that dietary antiox idants may a lleviate some of the cellular 

stress caused by excess a-synuc/ein. Diets rich in sources of antiox idants, li ke 

blueberries, could become a useful tool in treating PO and other similar 

neurodegenerative d isorders if this re lationship is conserved in humans. 
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INTRODUCTION 

Parkinson disease: frequency and symptoms 

Parkinson disease (PO) is the second most common progressive 

neurodegenerative di sorder surpassed in frequency by Alzheimer disease a lone 

(Weintraub e/ a/. , 2008; de Moura eta/. , 20 10). Incidence and prevalence rates of 

affected individuals increase with age from 0.3% of the genera l population to I - 2% of 

individuals over the age of 65 years, with rates reaching as high as 4% in the 80-plus age 

category (de Rijk et a/. , 2000; Van Den Eeden et a/., 2003; McNaught and Olanow, 

2006). In Canada, PO affects close to I 00,000 individuals and is the 13111 leading cause of 

death, accounting for over 13,000 deaths in the years 2000 - 2007 (Tables I and 2). Wi th 

more people survi ving well into old age, the burden to both families and society caused 

by late-onset disorders such as PO is likely to increase in the future. 

First described in 18 17 by James Parkinson, PO is a slowly progressive 

neurodegenerative disorder that is characterized clinically by bradykinesia (i.e. slowed 

movements), resting tremor, muscular rigidi ty, and gait abnormalities (Parkinson, 18 17). 

There are also several non-motor symptoms that are exhibi ted by PO patients, including 

depression, dementia, obsessional behaviour, and olfactory dysfunction (Weintraub et a/., 

2008). The ha llmark pathological event in PO is the loss of dopaminergic (DA), or 

dopamine producing, neurons in the substantia nigra pars compacta (SNc), however, 
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Table I - Annual deaths from Parkinson disease for both sexes 1 and all age groups 
in Canada for the years 2000 - 20072 

Cause of death -
Year Parkinson disease Secondary parkinsonism 

2000 1471 

2001 1600 

2002 165 1 

2003 1662 

2004 1642 

2005 1866 

2006 1664 

2007 1869 

I Missing data on sex of the deceased were imputed based on death registration number. 
'2 Source: Statistics Canada, Canadian Vita l Statistics, Death Database 

9 

9 

13 

17 

15 

24 

22 

2 1 

3 World Health Organization (WHO), Inte rnational Statistica l C lassification of Diseases and Related ll ea lth 
Problems. Tenth Revision ( IC D-10) 

4 The cause of death tabulated is the underly ing cause of death. This is de lined as (a) the disease or injury 
which initiated the train o f events leading directly to death, or (b) the circumstances o r the accident or 
violence wh ich produced the fata l injury. T his underly ing cause is selected from a number of conditions 
li sted on the death registration form. 

5 Counts in thi s table exclude deaths of non- residents of Canada. 
6 To reduce the s ize o r the table, only causes of death w ith a frequency o r one or more in Canada are 

reported. 

Modified from : Stati stics Canada. Table 102-0526- Deaths, by cause, Chapter VI : Diseases o f the nervous 
system (GOO to G99), age group and sex, Canada, annua l (number) (table), CA NSIM (database), 
htt ): 1111 w.statcut. l!c.~:a (accessed: January 7, '20 II). 
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Table 2- Annual ranking of Parkinson disease among the leading causes of death I-J 

4 II . 5 6 fi h 0 7 X for both sexes and a age groups 111 Canada · or t e years 2000 - 20 7 · 

Year 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

Rank of leading causes of 
death9 

13 

13 

13 

13 

13 

13 

14 

13 

Number of deaths 

1480 

1609 

1664 

1679 

165 7 

1890 

1686 

1890 

I The cause of death tabulated is the underly ing cause of death . This is de lined as (a) the disease or inj ury 
which initiated the tra in of events leading di rectly to death , or (b) the ci rcumstances of the accident or 
violence which produced the fatal injury . T he underlying cause is selected from the condit ions listed on 
the medica l certificate of cause of death. 

2 World Hea lth Organization (WHO), International Statistica l C lassification of Diseases and Re lated Health 
Problems, I Oth Revision ( lC D-I 0). 

3 T he list for ranking leading causes of death that is used in this table is based on the list that was developed 
and that is been used by the National Cente r for Health Statistics of the United States in their ann ual 
report on lead ing causes of death. 

4 Missing data on sex of the deceased were imputed based on the death registration number. 
5 Counts in this table exclude deaths of non-residents of Canada. 
6 The category 'Canada' includes deaths with unknown province or territory of residence in Canada. 
7 Death refe rs to the permanent disappearance of all evidence of life at any time after a li ve birth has taken 

place. Sti llbirths are excluded. 
8 Sources: Statistics Canada, Canadian Vital Stati st ics, Death Database and population estimates 
9 The ranking of the leading causes of dea th is based on the number of deaths. 

Modified from: Stati stics Canada. Table 102-0563- Leading causes of death, total population, by sex, 
Canada, provinces and territories, annual (table), CANS I M (database), htt [l : 1!1\" 1\ .s t atcan.~.c;~ (accessed 
January 7, 20 II) 

3 



considerable extranigral damage a lso occurs (Je llinger, 199 1; Braak and Braak, 2000). 

Addi tionally, prote inaceous intraneuronal inclusions known as Lewy bodies (LB) and 

Lewy neurites (LN) are found in the perikarya (cell body) and processes, respectively, of 

surviving neurons in PO patient brains (Lewy, 19 12; Forno, 1996). Secondary forms of 

parkinsonism with similar symptoms can be caused by medications, tox ins, infections to 

the central nervous system, and vascular/metabolic disorders (Weintraub eta/., 2008). 

The multi-symptom etiology of PO, caused by irreparable damage to neurons, highlights 

the importance of cell survival in neurodegenerati ve disorders. 

Parkinson disease: genetics and a-synuclein 

The occurrence of PO was ini tially believed to be enti re ly sporadic in nature. 

Though the majority o f cases seem to be idiopathic, I 0 - 30% of affected subjects 

reported a positi ve family history in recent epidemiological studies (Shulman et a/. , 

20 I I). Eighteen Parkinson-associated (PA RK) loci have been identi ti ed to-date through a 

combination of linkage, segregation, and sequence ana lyses; though several require 

validation by independent studies (Table 3). In addi tion to the eighteen PARK loci, the 

Gaucher's locus has been linked to PD. This locus contains the g/ucocerebrosidase 

( GBA) gene whose product catalyzes the breakdown of glucocerebroside to glucose and 

ceramide. Loss of function mutations in GBA were fi rst associated with Gaucher's 

disease, an autosomal recessive lysosomal storage di sorder. Despite not being classi tied 

4 



Table 3 -Genetic loci linked to Parkinson disease susceptibility in humans 

Locus Chromosome Gene Inheritance Clinical 
phenotype 

PARK/14 4q21 S NCA AD EOPD 
PARK2 6q25.2-q27 Parkin AR Juvenile and 

EOPD 
PARK3 2pl3 Unknown AD LOPD 
PARKS 4pl4 UCH-LI AD LOPD 
PARK6 lp35-p36 PINK/ AR EOPD 
PARK7 lp36 DJ-1 AR EOPD 
PARK8 12ql 2 LRRK2 AD LOPD 
PARK9 lp36 ATP/3A2 AR Kufor-Rakeb 

syndrome 
PARK/0 lp32 Unknown Unknown Unclear 
PARK/I 2q36-q37 GIGYF2 AD LOPD 
PARK/2 Xq Unknown X-linked Unclear 
PARK/3 2p l3 HTRA2 AD Unclear 
PARK/4 22q 13. 1 PLA2G6 AR Parkinsonism 

with additional 
features 

PARK/5 22q 12-q 13 FBX07 AR EOPD 
PARK/6 lq32 Unknown Susceptibility LOPD 

locus 
PARK/7 4p16 GAK Susceptibility LOPD 

locus 
PARK/8 6p21.3 HLA-DRA Susceptibi li ty LOPD 

locus 
Gaucher's locus lq2 1 GBA N/A N/A 

AD: autosomal dominant; AR: autosomal recessive; EOPD: early-onse t Parkinson disease; LOPD: late-
onset Parkinson disease; N/A: information not available 
Bold text indicates monogenic form s that a re we ll validated 
Table adapted li·om (Kumar el a/., 20 I I) 
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as a PARK locus, Gaucher's disease patients can develop parkinsonian features and 

mutations in GBA are frequently found in clinical populations with sporadic PO 

(Neudorfer et a/. , 1996; Tayebi et a/. , 200 I; C lark et a/. , 2007; Gan-Or et a/., 2008). 

Familial cases occur less frequently than idiopathic PO, however the numerous genetic 

linkages and increased disease susceptibility caused by gene mutations makes the genetic 

study o f PO worthwhile. 

Less than two decades have passed since the discovery of the first gene associated 

with PD. Studies of an inherited form o f autosomal dominant PO (ADPD) in an Ita lian 

kindred and three unrelated famili es of Greek origin identified SNCA (PARK 1/4), herein 

refetTed to as a.-synuclein (a.-syn), as the first gene linked to PO (Polymeropoulos et a/. , 

1997). Both point mutations and multiplications of its gene locus result in ADPD, the 

latter causing a more severe early-onset fonn of the disease (Kruger et a/. , 1998; 

Singleton et a/. , 2003; Chartier-Harlin et a/. , 2004; Farrer et a/. , 2004; Zarranz et a/. , 

2004 ). One of the major protein components of LBs and LNs in the SNc of patients with 

idiopathic PO was discovered to be a -Syn (Spillantini et a/. , 1997). This di scovery 

implicated a.-syn in sporadic disease cases and suggested that two distinct mechanisms 

may exist for a.-syn-induced PO pathology. Although famili al cases associated with this 

gene are re latively rare, it is evident that a.-sy n plays a cri tica l role in PO etiology. 
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a-synuclein structure, function, and toxicity in Parkinson disease 

Human a-Syn, along with ~- and y-Syn, belongs to the synucle in family of 

proteins that are abundantly expressed in the brain. The a-syn gene consists of a I 14 kbp 

sequence and encodes a 140 aa peripheral membrane protein that localizes to the pre­

synaptic region of neurons (Maroteaux et a/. , 1988). The protein structure of a -Syn 

contains three distinct regions: i) an amino terminus with apolipoprotein lipid-binding 

motifs, ii ) a central hydrophobic region known as the non-A~ component (NAC) that is 

involved in aggregate formation, and iii ) a highly negati ve and often unstructured 

carboxyl terminus (Figure I). Although an exact physio logical function is unknown, 

mice overexpressing a-syn have impaired neurotransmitter release and recycling (Nemani 

et a/. , 20 I 0). Additionally, increased amounts o f a -Syn impa ired dopamine release in 

neurons isolated from mice that typically express a-syn at low levels (Larsen et a/., 2006). 

Taken together, these results suggest that a-Syn acts at the pre-synapse and controls 

neurotransmitter release. 

The toxicity of a -Syn appears to depend on its conformation and solubili ty in 

cell s. Conway et a/. discovered that both wild type (WT) and disease-re lated mutants of 

a-Synform amyloid-like fibrils after prolonged incubation in solution (Conway eta/., 

2000). Aggregation consists of a series of events beginning with the nati vely un folded 

protein and culminating in mature fibril form ation and is be lieved to be the main 

pathogenic mechanism o f a-Syn (Stefan is, 20 12). In support of this view, WT a-Syn 

with a disrupted NAC domai n were neither found to aggregate nor affect the survival of 

Drosophila DA neurons (Periquet et a/. , 2007). It was a lso discovered that Heat Shock 
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Figure I -Schematic of a-Synuclein protein structure. ApiBM : apolipoprote in lipid­
binding motif; NAC: non-A~ component; AT: acidic tail ; N : amino terminus: C: carboxyl 
terminus. Arrows indicate location ofmutations linked to ADPD. 
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Protein 70 (HSP70), a molecular chaperone that prevents prote in misfolding and 

aggregation, protects DA neurons against a-Syn toxicity and reduces aggregation (A uluck 

eta/. , 2002; Klucken eta/., 2004). Conversely, other studies question the proposed 

protective effects of HSP70 (Shimshek et a/., 20 I 0). Some speculate that the final 

aggregated form of a-Syn is less toxic than premature, soluble oligomers. Protein 

accumulation is wide ly implicated in both idiopathic and familial PO pathogenesis and 

the formation of LBs and LNs is believed to confer protection during neurodegeneration 

(McNaught and Olanow, 2006). Additionally, preventing phosphorylation of a-Syn at 

Ser 129 promotes aggregate formation and reduces toxicity (Chen and Feany, 2005). 

Understanding the pathogenic mechanisms involved with a-Syn toxicity could unvei l 

severa l new therapeutic targets in the treatment of PD. 

Oxidative stress and its consequences 

Highly reactive endogenous atoms or molecules can cause cellular damage. 

Reacti ve oxygen species (ROS) are chemically reactive cellular by-products that contain 

oxygen. Due to their unpaired electrons, ROS are highly electrophilic and attack nitrogen 

containing compounds (e.g. nucle ic acids, proteins, and amino acids) and carbon-carbon 

double bonds, like those found in polyunsaturated fatty acids and phospholipids in the 

lipid bilayer of the cel l membrane, as they are sites of increased electron density. Though 

they are potentially harmful , ROS mediate cell growth, migration, and di fferentiation 

when present in low to moderate amounts (Palmer and Paulson, 1997; Valko eta/., 2007). 
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Cells are equipped with endogenous antioxidant enzyme defenses that keep ROS levels in 

check. However, excess generation of ROS can exhaust this system causing the cell to 

experience oxidative stress whereupon de leterious effects occur and pathways leading to 

apoptosis and senescence are triggered (Chandra et a/. , 2000). The majority of 

endogenous ROS seem to be generated from four sources: i) normal aerobic respiration, 

which sequentially reduces molecular oxygen and re leases ROS by-products; ii) 

phagocytic cells that fend off bacteria and viruses with a mixture of nitric oxide (NO), 

superoxide (0 2• -), hydrogen peroxide (H20 2), and hypochlorite (OCr ); iii) peroxisomes, 

organe lles that produce H20 2 as a by-product during the degradation o f fa tty acids; and 

iv) cytochrome p450 enzymes in animals that protect against ingested tox ic plant 

chemicals but produce DNA-damaging ROS during the process (Ames e/ a/. , 1993). 

External stimuli can contribute to the amount o f ROS in a cell as pollution, radiation, and 

xenobiotics can induce ROS-mediated damage (Ziech el a/. , 20 I 0; Gros icka-Maciag, 

20 II ). Oxidative stress is a complex process and can be triggered from many di fferent 

angles. 

Oxidative stress has long been implicated in ageing and chronic pathologies. 

Harman first addressed the issue when he proposed the Free Radical/Oxidative Stress 

T heory of Ageing in the 1950's (Harman, 1956). T his theory states that ageing is a 

consequence of the accumulation of free radical- induced damage to cellular 

macromolecules that occurs over an organism's lifespan. Since that time, evidence o f 

ox idative stress has been found in many common human di seases including hypertension, 

cancer, and neurodegenerative disorders (Calabrese el a/. , 2005; Sonora e/ a/. , 2006; 

Culmsee and Landshamer, 2006; Manrique el a/. , 2009; Schapira and Jenner, 20 I I). 
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Antioxidant therapies may have a future in modern medicine given the ubiquity of ROS 

and oxidative stress in disease etiology. 

Evidence of oxidative stress in Parkinson disease 

Whether it is a causative factor or the result of other cellular insults, oxidative 

stress is consistently associated with PO pathogenesis. Both expression and activity of 

mitochondrial complex I, a member of the electron transport chain, were found to be 

reduced in PO patient brains (Schapira et a/. , 1989). Other oxidative stress biomarkers 

such as decreased levels of reduced glutathione, as well as increased levels of Mn 

superoxide dismutase (SOD2) and iron have been detected in the SNc of PO individuals 

(Dexter et a/., 1987; Saggu eta/. , 1989; Sofie eta/. , 1992). Long before any genetic 

linkages were discovered for PO, oxidative stress was known to be involved in its 

etiology. 

A relationship appears to exist between a-Syn toxicity and oxidative stress. 

Recent studies suggest that a-Syn localizes to the mitochondria and may be involved in 

organelle maintenance (Parihar eta/. , 2008; Shavali eta/., 2008; Parihar eta/., 2009). 

Human DA neuroblastoma cells overexpressing a-syn show signs of increased oxidative 

stress, including increased ROS production and lipid peroxidation, believed to be the 

result of mitochondrial dysfunction. Increased expression of oxidative stress biomarkers 

was also evident in pluripotent stem cell (iPSC)-derived DA neurons ti·om PO patients 

with an a-syn triplication (Byers eta/., 20 II). Studies in Drosophila have revealed that 
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mutant a-syn-induced toxicity is enhanced under conditions ofhyperoxia (Botella el a/., 

2008). The combination of excess a-Syn and oxidative stress appears to play an 

important role in the progression of PO, although, the pathogenic mechanism remains 

unclear. 

The Drosophila a-sy nuclein model of Parkinson disease 

Drosophila melanogaster has been used extensively as a model organism over the 

past century due in large part to its short generation time (roughly I 0 days from egg 

deposition to adult) and low cost. Many genetic tools have been developed for this tiny 

insect. One such tool used frequently in Drosophila disease models is the UAS/Ga/4 

directed expression system (Brand and Perrimon, 1993). Gal4 is a potent activator of 

transcription in yeast whose DNA binding and transcriptional activation have been well 

characterized (Ptashne, 1988). Endogenous binding sites for Gal4 are not found in the 

Drosophila genome, however it can be used to activate transcription in flies when Gal4 

binding sites are inserted within their transcription control regions (Fischer e / a/., 1988). 

Gene expression can be manipulated spatially and temporally when Ga/4 fused to a 

Drosoph i Ia promoter and its target upstream activating sequence ( UA S) are both present 

in the fly genome. The first step towards achieving directed expression is to construct 

two stable lines: one containing Ga/4 fused to a tissue-specific promoter, and a second 

with VAS e lements inserted upstream of a gene of interest. Crosses are designed with the 

goal of collecting progeny with at least one copy of each gene construct. When 
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combined, Ga14 produced in the designated tissue can bind to the UAS and activate 

transcription of the gene under study (Figure 2). The UAS/Ga/4 system functions at 

standard temperatures (i.e. does not require a heat shock) and fac ilitates the study o f toxic 

gene products as stable lines can be created prior to Ga/4 introduction. The same cannot 

be said for prev iously used Drosophila expression systems making the UAS/Ga/4 system 

a superior choice. 

The first Drosophila model o f PD was developed in 2000, 3 years after the 

characterization of a-syn as a disease risk factor. Feany and Bender made use o f the 

UAS/Ga/4 system to overexpress both WT and mutant human a-sy n in Drosophila 

neurons (Feany and Bender, 2000). Their a-sy n model recapitulated several key PD 

symptoms in fli es, including progressive loss of DA neurons, locomotor dysfunction, and 

the presence of LB-Iike inclus ions containing a-Syn. Additionally, enhanced a-sy n 

expression in the eye, another Drosophila tissue rich in neurons, caused retinal 

degeneration. Studies using this model from our laboratory have demonstrated that a-syn 

overexpression at e levated temperatures disrupts the external morphology of Drosophila 

eyes (Todd and Staveley, 2008). Such Drosophila overexpression mode ls provide a 

versati le framework for the study of diseases involving increased gene copy number or 

protein aggregation. When investigating neurodegenerative d isorders like PD, a 

researcher can easily quantify cell survival and rapidly evaluate the therapeutic value of 

new treatments w ith a Drosophila mode l. 
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Protein 

Figure 2- Directed gene expression in Drosophila via the UA S/Ga/4 system. VA S­
contro lled transcription remains inactive when the two transgenes are isolated in the 
parental generation (P 1 ) . The Ga l4 transcription factor binds to the UAS responsive DNA 
elements in progeny wi th at least one copy of each transgene (F 1) activating tissue­
specific transcription of the gene under study. TSP: tissue specific promoter, UA S: 
upstream activating sequence, GO/: gene of interest. Blue ova ls represent Ga l4 protein. 
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Antioxidants prolong l[fespan and improve Parkinson disease-related phenotypes in 

Drosophila 

Studies using Drosophila as a model organism have revealed a great deal 

concerning the effects of antioxidants upon lifespan. Both intrinsic and upplemented 

antioxidants have been found to prolong lifespan in flies. SOD and catalase (CAT) are 

examples of endogenous antioxidant enzymes in Drosophila that functi on together to 

convert 0 2• - into water via an H20 2 intern1ediate (Figure 3). Increased expression of both 

Sod/ and Sod2, typically located in the cytoplasm and mitochondria, respectively, in 

Drosophila motor neurons dramatica lly increased li fespan (Parkes eta/., 1998; Phillips et 

a/. , 2000). In striking contrast to Sod, a similar result was not found for targeted 

expression of Cat in the same cells. In addition to revealing that intrinsic antioxidant 

enzymes protect against ageing, these results suggested that enzymes like SOD and CAT 

are of varyi ng importance in neurons despite functioning in the same pathway. 

Exposing Drosophila to a supplemented diet is re latively easy considering they 

li ve and breed on their food source in the laboratory setting. xtracts of many common 

dietary sources of antiox idants have prolonged survival in Drosophila including: i) whole 

food extracts from apple, nectarine, and cocoa (Bahadoran i and Hilliker, 2008; Boyd et 

a/. , 20 II ; Peng et a/. , 20 II ), ii ) tea extracts including green tea catechins and black tea 

(Li eta/. , 2007; Peng el a/. , 2009), iii) the traditional herbal medicines Stachys 

lavandulifolia and Aloe vera (A I tun et a/. , 20 I 0; C handrashekara and Shakarad, 20 II ), 

and iv) individual chemical compounds such as ascorbic acid and resveratrol (Bahadorani 

et a/. , 2008). Thanks to its rapid generation time, establi shed genetic tools, 

15 



SOD CAT 

Figure 3 - Schematic of the superoxide dismutaselcatalase antiox idant pathway. 
Superoxide (0 2· -) is converted to water (H20 ) via a hydrogen perox ide (H20 2) 
intermediate. SOD: superoxide di smutase, CAT: cata lase. Red text denotes reactive 
oxygen species. 
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and simple food delivery, Drosophila has played an instrumenta l role in uncovering the 

effects of antioxidants on lifespan. 

Increased antioxidant protection has been found to improve PD-related 

phenotypes in Drosophila. Co-expression of antioxidant enzymes like 111ethionine 

sulfoxide reductase A (MSRA) and human Sod I improve DA neuron survival and protect 

against premature decreases in climbing ability induced by excess a-Syn in Drosophila 

DA neurons (Wassef eta/. , 2007; Botella eta/., 2008). The protective e ffect of 

mitochondrial chaperone tumor necrosis factor receptor-associated protein I (TRAP I) 

against oxidative stress is dependent on phosphory lation by PTEN-induced putative 

kinase I, or PfNK I (Pridgeon eta/. , 2007). Coincidentally, directed co-expression of the 

two aforementioned genes with o.-syn in Drosophila improves DA neuron survival , eye 

degeneration, and locomotor de ficienci es (Todd and Staveley, 2008; Butler eta/. , 20 12). 

Supplementing Drosophila food medium with dietary antioxidants has shown promise as 

well. Medi um supplemented with grape extract improved both early mortality and the 

premature decline in locomotion in a Drosophila model of PO (Long et a/. , 2009). 

Though the literature is relatively new, the interest in potential antioxidant therapies for 

treating PO has increased thanks in large part to studies using Drosophila as a model 

orgamsm. 

In this study, I hypothesized that increased protection against oxidative stress in 

Drosophila DA neurons could both prolong lifespan and protect against a.-.syn-induced 

degenerati ve phenotypes. I used a combination of longevity assays, locomotion assays, 

and biometric ana lyses to obtain the results. First, I produced additional evidence that 

directed expression of intrinsic antioxidant enzymes in Drosophila neurons extends 

17 



lifespan. Secondly, I investigated the protective properties of blueberry extract (BBE) 

supplementation in the Drosophila a.-syn model of PD. Blueberries are an excellent 

source of dietary antiox idants. High-performance liquid chromatography analysis has 

identifi ed 18 phenolic compounds in blueberries, which combined had the second highest 

total antioxidant activity in a cohort o f tested berries including cranberries, raspberries, 

black currants, and red currants (Borges et a/. , 20 I 0). Here I report that supplementation 

with Webber Natura ls' 36: I concentrate BB E improves severe cases o f early mortal ity 

and eye degeneration caused by directed expression of a.-syn in the DA neurons and 

developing eye, respectively, of D. melanogaster. 

MATERIALS AND METHODS 

Drosophila stocks and culture 

The VAS-a.-synuclein (Feany and Bender, 2000) and Ddc-Gal4 (Li eta/., 2000) 

fl ies were generously provided by Dr. M. Feany (Harvard Medical School) and Dr. J. 

Hirsh (U niversity of Virginia), respecti vely. Each of the VAS-Sod/ (Parkes e/ a/. , 1998), 

VAS-Sod2 (Anderson et a/. , 2005), and VAS-Cat (Anderson et a/., 2005) stocks were kind 

gifts from Dr. John P. Phillips (Uni versity of Guelph). T he GMR-Gal4 (Freeman, 1996), 

VAS-IacZ (Brand and Perrimon, 1993), VAS-GFP (Dickson, 1996), and w1118 tl ies were 
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obtained from the Bloomington Drosophila Stock Center at Indiana University. Directed 

expression of the transgenes in DA neurons and during early eye development was 

accomplished by crossing homozygous Ddc-Gal4 and GMR-Gal4 females, respectively, 

to males homozygous for a VAS-controlled transgene. For the antioxidant enzyme 

overexpression experiments, homozygous Ddc-Gal4 Ill (on the third chromosome) 

females were crossed to homozygous UAS-a.-synuclein (PO mode l), UAS-IacZ (control ), 

UAS-GFP (control), UAS-Sodl , UAS-Sod2, and UAS-Cat males. For the BB E-

supplementation experiments, homozygous UAS-a.-synuclein (PO mode l) and UAS-IacZ 

(control) males were crossed to fema les homozygous for Ddc-Ga/4 II (on the second 

chromosome), Ddc-Ga/4 Ill, or GMR-Ga/4. Two additional control lines lacking a UAS-

regulated transgene were generated by crossing homozygous Ddc-Ga/4 or GMR-Ga/4 

females to 1V
1 118 males. All crosses were performed as per standard methods. The 

resulting genotypes were: I) IV
1118

; UAS-a.-sy nuclein/Ddc-Gal4, 2) IV
1118

: UAS-a.-

synucleinl+: Ddc-Gal41+, 3) w1118
; UAS-/acZIDdc-Ga/4, 4) IV

11 18
: UAS-IacZI+ : Ddc-

G I 111s I d G I ) 111s d I ) ' ' ' s S a/4 + , 5) IV ; + D c- a 4, 6 1v : +: D c-Ga/4 + , 7 w : UA -a.-

sy nuc/einiGMR-Ga/4, 8) 1V
1118

; UAS-/acZIGMR-Ga/4, 9) w1118
; UAS-GFPI : Ddc-

Ga/41 I, I 0) IV
1118

: UAS-Sodl/+; Ddc-Ga/41+, II ) 1v
1118

: UAS-Sod21+: Ddc-Ga/41+, and 

1118 C I I 12) IV : UAS- at +; Ddc-Ga/4 + . 

Flies were fed either a standard cornmeal-yeast-molasses-agar medium (65 g/ L 

commeal, 15 g/L nutritiona l yeast extract, 5.5 g/L agar, 50 ml/L fancy grade molasses in 

water supplemented with 0.1 g/ml methy l paraben in ethanol and 2.5 ml proprionic acid) 

or standard medium supplemented with Webber Naturals' 36: I concentrate BBE (WN 
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Pharmaceuticals® Ltd., Coquitlam, B.C., V3K 785, www. webbernaturals.com). BBE­

supplemented media was produced by adding I or 5 g/L BBE to the above recipe during 

media preparation. 

Longevity assay 

Flies were collected under gaseous carbon dioxide (C02) every 24 hours until a 

minimum of two hundred adult males of each genotype were obtained. They were then 

transferred to upright standard plastic shell vials containing standard cornmeal-yeast­

molasses-agar medium (control), or standard medium supplemented with either I mg/ml 

BBE or 5 mg/ml BBE. Each group was maintained at 25 oc and kept in non-crowded 

conditions (:S20 individuals initially per vial). Flies were scored for viability every 2 days 

and transfen·ed to fresh medium without anesthesia according to established protocol 

(Staveley el a/., 1990). Survival fractions were calculated in Prism version 5.0b for Mac 

OS X (GraphPad Software, San Diego California USA, IVWiv.graphpad.com) using the 

product limit (Kaplan-Meier) method. 
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Locomotion assay 

Fifty adult ma les of each genotype were assayed for cl imbing ability as described 

previously (Todd and Staveley, 2004). Flies were collected every 24 hours under gaseous 

C0 2 and transferred to upright standard plastic shell via ls containing standard cornmea l­

yeast-molasses-agar medium (control), or standard medium supplemented with either I 

mg/ml BB E or 5 mg/ml BB E. Flies were maintained and assayed in groups of I 0 

individuals. Flies were g iven 48 hours to recover from the anesthesia be fore first be ing 

assayed. C limbing ability was measured again when fli es reached 8 days o ld and 

repeated every 7 days foll owing this po int. C limbing abili ty was determined using an 

apparatus consisting of a 30 em long clear glass tube with a diameter of 1.5 em (F igure 

4). T he bottom ofthe tube was marked off into five 2 em sections with the remaining 20 

em of the tube acting as a buffer zone that limits interference between individuals during 

climbing. A funnel was used to transfer tlies to the apparatus and also doubled as a base. 

Sponges were inserted into both ends of the g lass tube to both prevent tlies from escaping 

and a llow gas exchange to occur. During ana lysis, tlies were gently tapped to the bottom 

o f the apparatus and g iven I 0 seconds to climb. Each individual was g iven a score based 

on the highest section they reached. Flies were scored I 0 times per trial and a climbing 

index was calculated with the fo llowing formula: 

C limbing index = L: (nm) I N 
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Base/Funnel 

Figure 4- Schematic representation of the graded climbing apparatus. The structure 
consists of a 30 x 1.5 em glass tube sea led at both ends by sponges. The bottom of the 
tube is di vided into five 2 em sections with an ascending score ( 1-5) and the rema inder of 
the upper portion serves as a buffer zone. A funne l acts as both a base for the tube and a 
means of transferring fli es to and from the apparatus (modified from Todd and Staveley, 
2004). 
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where n is the total number of flies at a g iven leve l, m is the score for that level (I - 5), 

and N is the total number of flies assayed for that trial. Data were analyzed in Prism 

version 5.0b for Mac OS X (GraphPad Software, San Diego California USA, 

www.graphpad.com). To compare climbing ability, climbing indices were subtracted 

from 5, to compensate for inverting they-axes of the graphs, followed by a non-linear 

curve regression analysis. The slopes of curves with non-overlapping 95% confidence 

intervals (C l) were deemed significantly different. 

Scanning electron microscopy and biometric analyses 

Flies were reared and aged 3 to 5 days post-eclosion on either standard or BBE 

supplemented medium at 25 or 29 °C. Surviving flies were preserved at -80 oc before 

being mounted on metal studs under a dissecting microscope. Prepared fl ies were 

desiccated overnight and gold coated prior to photography at 170 ti mes magn ification 

with a Hitachi S-570 scanning electron microscope. 

All biometric measurements were conducted with the aid of the software package 

lmageJ64 version 1.42q (Abramoff eta/. , 2004). The area ofa single ommatidium was 

determined by measuring the average area of a "floret" of ommatidia, consisting of a 

central unit surrounded by s ix others, then dividing by 7. These numbers were used to 

distinguish between normal and atypical ommatidia when measuring percent disruption. 

A disrupted or atypical ommatidium was defined as having an area 50% smaller or 150% 

larger than a typical ommatidium for that condition. An oval with an area between 

23 



35000-40000 flm2 was overlaid on the apex ( flattest portion) of each analyzed eye with 

Paintbrush version 2. 1. 1 for Mac OS X (Copyright © 2007-20 I 0 Soggy Waffles). 

Individual areas of disruption within the oval were measured in triplicate and a percent 

value was obtained by dividing the summed average values into the average area of the 

oval (also measured in triplicate). This protocol was modified from similar measures 

previously performed in our lab (Todd and Staveley, 2008). Ten individuals were 

evaluated in the percent disruption analysis, whereas 15 individuals from each condition 

were analyzed for ommatidium counts, bristle counts, and measurements of ommatidium 

area. Bar graphs were produced using Prism version 5.0b for Mac OS X (GraphPad 

Software, San Diego California USA, w1v1v.graphpad.com). 

RESULTS 

Directed expression ofcatalase in D. melanogasler dopaminergic neurons slight~v 

prolongs lifespan 

The damage caused by excess ROS is implicated in senescence and chronic 

pathologies. Previous findings have shown that directed expression of both Sod I and 

Sod2 in Drosophila motorneurons prolongs adult li fespan, whereas Cat has been 

demonstrated to have no effect (Parkes eta/., 1998; Phillips et a/. , 2000). As both 

ox idative stress and DA neuron survival have strong connections with PO pathology, I 
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investigated the effect of increasing intrinsic antioxidant defenses in DA neurons on D. 

melanogaster lifespan. Enhanced expression of Cat in the DA neurons slightly prolonged 

lifespan in flies as compared to both control lines (Figure 5A). Flies expressing Cat had a 

median survival of 80 days whereas lacZ- and GFP-expressing flies had values of 76 and 

74 days, respectively. In contrast to the results found in motorneurons, ne ither Sod I nor 

Sod2 were found to significantly extend lifespan when their expression was enhanced in 

DA neurons (Figure 5C & D). Additionally, increased a-syn expression in D. 

melanogaster DA neurons resulted in a median survival of 70 days and did not differ 

s ignificantly from either control line (Figure 58). Median survival times for each 

genotype are presented in Table 4. The effect of Cat, Sod I, and Sod2 expression on 

Drosophila lifespan appears to be cell-specific as results differ between varying groups of 

neurons. 
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Figure 5 - Directed expression of catalase in the dopaminergic neurons s lightly extends 
lifespan in D. melanogaster. A The longevity of flies expressing Cat is significantly 
longer than both the lacZ- and GFP-expressing controls (p < 0 .05). B- 0 Flies 
expressing o..-synuclein, Sod/, or Sod2 in their DA neurons have a median survival time 
comparable to the contro l lines when expression is driven by Ddc-Ga/4 on the third 

11/H //IN chromosome. Genotypes are w : UAS-Catl+: Ddc-Ga/41+ (CAT, n = 240), H ' : 

UAS-o..-synucleinl+: Ddc-Ga/41+ (aSYN, n = 257), w1118
: UAS-Sod/1+: Ddc-Ga/41+ 

So 9 1118 S d I d G I O 1118 ( Dl , n = 26 ), w : UA -So 2 +: D c- a/4 + (S 02, n = 225), w : UAS-IacZI+ : 
Ddc-Ga/41+ (LACZ, n = 241), and w1118

: UAS-GFPI+: Ddc-Ga/41+ (GFP, n = 303). 
Error bars represent standard error of the mean. p-values were ca lculated by the log-rank 
(Mantel-Cox) test and multiple comparisons were conected fo r using the BonferToni 
method. 
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Table 4 - Median survival values of D. melanogaster w ith elevated neuronal levels of 
enzymatic antioxidants or a-sy nuclein 

Genot e Median survival ( da s) 

I V 
1118 : UA S-/acZI+: Ddc-Ga/4/+ 76 

w1118
: UAS-GFPI+; Ddc-Ga/4/ 74 

IV
1118

: UAS-a-syn/+; Ddc-Ga/4/+ 70 

1/ /8 : UA S-Sod/1+; Ddc-Ga/41+ 78 I V 

11 18 ; UAS-Sod2/+; Ddc-Ga/4/ 70 I V 

IV 
1118 : UA S-Catl+: Ddc-Ga/4/+ so· 

* ind icates a va lue found to be s ig nificantly diffe re nt (p < 0 .05) than both the /acZ and GFP control 
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The severity of a-synuclein-induced reductions in lifespan depends on Ddc-Ga/4 

Differing results have been documented concerning the e ffect of increased 

neuronal amounts of a-Syn on Drosophila lifespan. Initially, pan-neural expression of a­

syn was reported to not alter lifespan in flies, whereas a later study described an a-syn­

induced decrease in lifespan in a similar PD model (Feany and Bender, 2000; Wassef et 

a/. , 2007). The results presented herein agree with the latter study as enhanced 

expression of a-syn in Drosophila DA neurons produced a reduction in survival times 

(Figure 6). The severity of the aforementioned effect appears to be dependent on the 

genomic location of the Ddc-Gal4 transgene. Flies expressing a-syn with the Ddc-Ga/4 

transgene located on the second chromosome (Ddc-Gal4 If) had a severely reduced 

lifespan compared to control lines; their median survival time being 52 days as compared 

to 82 in flies without a responsive transgene (1V
1118

) and 74 days in controllacZ­

expressing fli es (Figure 6A). A less pronounced reduction in survival time was observed 

when Ddc-Gal4 on the third chromosome (Ddc-Gal4 Iff) was used to drive a-syn 

expression (Figure 6B). Flies containing Ddc-Gal4 Ill combined with e ither UAS-a-syn, 

UAS-IacZ, or no UAS transgene ( 1V
11 18 control) had median survival times of 70, 82, and 

78 days, respectively. Table 5 contains the median surviva l time values for both 

categories of Ddc-Gal4 fli es. Positioning appears to have a more signiticant effect on 

transgene expression than initia lly believed as a-syn-induced mortality differs greatly 

between Ddc-Gal4 II- and Ddc-Gal4 ///-containing flies. 
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Figure 6 - o..-.\ynuclein reduces lifespan in D. melanogaster when expressed in the 
dopaminergic neurons. A Flies have a severely reduced li fespan when o..-.synuclein 
expression in the OA neurons is driven by Ddc-Ga/4 II (p < 0.05). n = 227, 2 18, and 229 
for aSYN/Odc II , LACZ/Odc II and w 111

R; Ode II , respectively. B o.-synuclein expression 
in the OA neurons driven by Ddc-Ga/4 Il l produces a less severe, yet significant, 
reduction in D. melanogaster li fespan (p < 0.05). n = 229, 254, and 240 for aSYN; Ode 
Ill , LACZ; Ode Ill , and w 111 x;+; Ode Ill , respectively. Genotypes are v. ./

118
: UAS-a­

::,ynuc/ein/Ddc-Ga/4 (aSYN/Odc II) , w1118
; UA S-/acZ/Ddc-Ga/4 (LACZ/Odc II), w11 18

: 

+/Ddc-Ga/4 (w 111 x; Ode II ), w1118
; UAS-a-synucleinl+; Ddc-Ga/41+ (aSYN ; Ode Ill), 

1118 ~; I d 1118 ..J G I IIIX d w ; UAS-IacZ +: Ddc-Ga/4 + (LACZ; Ode Il l), an w :+:Due- a/4 + (w ; 0 c 
Ill ). Error bars represent standard error of the mean. p-values were calculated by the log­
rank (Mantel-Cox) test and multiple comparisons were corrected for using the BonferToni 
method. 
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Table 5 - Median survival values for D. melanogaster with a-synuclein expression 
directed to their dopaminergic neurons 

Genotype Median survival (days) 

'''s I d G I w : + D c- a 4 74 

w 1118
; UAS-IacZ/Ddc-Gal4 82 

1118 S I d G I I V ; UA -a-sy n D c- a 4 

'''s d G l I 1v : +: D c- a 4 + 78 

w1118
: UAS-IacZ/+; Ddc-Gal4/+ 82 

w1118
; UAS-a-sy nl+: Ddc-Gal4/+ 

* indicates a va lue that was deemed s ignificantly different (p < 0.05) from both the /acl and 11 ,1
118 control 
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Pre-eclosion exposure to a blueberry extract-supplemented diet partial~v rescues severe 

a.-synuclein-induced decreases in D. melanogaster lifespan 

The relationship between oxidative stress and several neurodegenerative disorders 

has invoked interest in the potential therapeutic benefits of dietary antioxidants. Studies 

of both individual polyphenolic compounds and plant extracts have shown promise in 

several PO models (Long eta/. , 2009; Caruana eta/., 20 I I; Kim eta/., 20 I I) and 

blueberries are known to be a rich dietary source ofpolyphenols (Borges eta/., 2010). 

Figure 7 A shows that a.-syn-expressing tlies with a severely reduced lifespan (aSYN/Odc 

II) exposed to food medium supplemented with BBE survived longer than those fed 

control medium. A diet containing 5 mg/ml BBE significantly extended the median 

survival time of aSYN/Odc II fli es from 52 (control) to 60 days. Similar results were not 

observed when D. melanogaster food medium was supplemented with I mg/ml BB E. 

BBE supplementation did not improve a.-syn-induced early mortality in flies with 

a moderate decrease in lifespan (aSYN; Ode III). Neither I mg/ml nor 5 mg/ml ofBBE 

extended median survival time in aSYN; Ode Ill flies (Figure 78). Median survival time 

values for a ll a.-syn-expressing fli es can be found in Table 6. Extrins ic antioxidants 

provided via BBE supplementation appear to only benefit individuals with severe a.-S.1'17-

induced increases in mortality. 
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Figure 7 - Pre-eclosion blueberry extract supplementation benefits a -.synuc/ein-expressing 
D. melanogaster with severely reduced lifespans. A Fl ies expressing a-svnuclein in their 
DA neurons via Ddc-Ga/4 II that were reared on a diet containing 5 mg/ml BBE survived 
significantly longer than those given a standard diet (p < 0.05). A simi lar effect was not 
found with flies reared on medium containing I mg/ml BBE. n = 227, 267, and 283 for 
control, I mg/ml BBE, and 5 mg/ml BBE medium, respectively. 8 BBE supplementation 
had no effect on lifespan in D. melanogaster expressing a-synuc/ein via Ddc-Ga/4 Ill. n 
= 229, 238, and 265 for control, I mg/ml BBE, and 5 mg/m l BBE medium, respectively . 
X denotes mg/ml. Genotypes are w11 18

: UA S-a-sy nuc/ein/Ddc-Ga/4 ( aSYN/Ddc II) and 
w 1118

: UAS-a-synuc/einl +: Ddc-Ga/4/+ (aSYN ; Ddc Ill ). Error bars represent standard 
eJTor of the mean. p-values were calculated by the log-rank (Mantel-Cox) test and 
multiple comparisons were COJTected for using the Bonferroni method. 
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Table 6 - Median survival values for a-synuclein-expressing D. me/anogaster fed either a 
standard or blueberry extract-supplemented medium pre-eclosion 

Genot e (food medium) Median survival (da s) 

w1118
: UAS-a-sy niDdc-Ga/4 (control) 52" 

w 1118
: UAS-a-sy niDdc-Ga/4 (I mg/ml BBE) 54" 

w1118
: UAS-a-sy niDdc-Ga/4 (5 mg/ml BB E) 

ttt8 I G I IV ; UAS-a-syn +: Ddc- a/4 + (control) 70' 

w1118
: UAS-a-sy nl+ ; Ddc-Ga/41+ ( I mg/ml BB E) 66" 

1118 I d G I I w : UAS-a-sy n +: D c- a/4 + (5 mg ml BBE) 

Diffe rent superscripted leners indicate a s ignificant diffe rence (p < 0.05) between vn lues lorn particular 
genotype; comparisons were not made between eli ffe rent genotypes 
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Pre-eclosion blueberry extract supplementation decreases lifespan in D. melanogaster 

with enhanced lacZ expression in their dopaminergic neurons 

The lacZ gene encodes the enzyme ~-galactosidase and is a portion of the lac 

operon found in Escherichia coli. The ~-galactosidase protein hydrolyses lactose to 

galactose and glucose and is perce ived as a harmless reporter gene when inserted into 

other organisms. In this experiment, D. melanogaster with enhanced lacZ expression in 

their DA neurons were used as a control line to compare against results from flies 

expressing a-syn in the same region. Unexpectedly, lacZ-expressing fli es fed SSE­

supplemented medium prior to eclosion had significantly reduced lifespans compared to 

those fed a control diet (Figure 8). D. melanogaster containing Ddc-Gal4 II (LACZ/Ddc 

II) and Ddc-Ga/4 Ill (LACZ; Ode Ill ) both experienced a similar reduction in survival. 

Median survival time for LACZ/Ddc II fli es dropped from 82 days for those fed control 

medium to 72 and 70 days when fed I mg/ml and 5 mg/ml SSE-supplemented medium, 

respectively (Figure 8A). The median lifespan for LACZ; Ode Ill flies was also 82 days, 

however the median survival times produced by I mg/ml and 5 mg/ml SSE 

supplementation for this genotype were 74 and 76 days, respectively (Figure 8S). 

The effect of SSE supplementation on lifespan was further tested with D. 

melanogaster lacking a VAS-controlled transgene. Flies administered either 

concentration of SSE supplementation produced survival curves similar to those of the 

same genotype fed a control medium (Figure 8C & D). The median survival times for 

transgene-Iess D. melanogaster with Ddc-Gal4 II (w 111 8
; Ode II ) fed either control , I 

mg/ml SSE, or 5 mg/ml SSE were 74, 76, and 76 days; whereas those for Ddc-Ga/4 Ill 
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(w 111 8
; Ode Ill) were 78, 76, and 76 days, respectively. The median survival values for 

lacZ and 1v
1118 flies are found in Table 7. The detrimental effects of BBE 

supplementation on lifespan are contined to flies with enhanced expression of lacZ in 

their DA neurons. Exposure to a dietary source rich in polyphenol antioxidants early in 

development combined with excess ~-galactosidase in the DA neurons may harm 

Drosophila. 
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Figure 8 - Pre-eclosion blueberTy extract supplementation shortens lifespan in D. 
melanogaster expressing lacZ in their dopaminergic neurons. A, B Both lines of /acZ­
expressing flies had shorter median survival times when reared on a diet containing BBE 
as compared to those reared on a standard diet (p < 0.05). n = 218, 228, and 225 for 
LACZ/Odc II flies and 254, 272, and 255 for LACZ; Ode Ill fl ies fed control, I mg/ml 
BBE, or 5 mg/m l BBE medium, respectively. C, D BBE supplementation d id not affect 
the longevity of w 1118 control flies . n = 229, 282, and 298 for w 111 x; Ode II fli es and 240, 
260, and 249 for w 111 x; Ode Ill flies fed control, I mg/ml BBE, or 5 mg/ml BBE medium, 
respectively. X denotes mg/ml. Genotypes are w1118

; UAS- /acZ/Ddc-Ga/4 (LACZ/Odc 
II), w 1118

: UAS-IacZI+: Ddc-Ga/4/ + (LACZ; Ode lll), y, / 118
: +/Ddc-Ga/4 (w 111 x; Ode II), 

and w1118
: +: Ddc-Ga/4/+ ( w 111 x; Ode I I I). Error bars represent standard erTor of the 

mean. p-values were calculated by the log-rank (Mantel-Cox) test and multiple 
comparisons were corrected for using the Bonferroni method. 
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Table 7- Median survival values of /acZ-expressing and responsive transgene-lacking 
control lines fed either standard or blueberry extract-supplemented food 
medium pre-eclosion 

Genot e (food medium) 

w1118
: UAS-/acZ/Ddc-Ga/4 (control) 

Ill~ 
1v ' : UAS-/acZ/Ddc-Ga/4 ( I mg/ml BBE) 
1v

1118
: UAS-/acZ/Ddc-Ga/4 (5 mg/ml BB E) 

1118 I d G I I w : + D c- a 4 (contra ) 
w 1118

: +/Ddc-Ga/4 ( I mg/ml BBE) 
w

1118
: +/Ddc-Ga/4 (5 mg/ml BB E) 

w
1118

: UAS-IacZI : Ddc-Ga/4/+ (control ) 
w1118

; UAS-IacZI+; Ddc-Ga/4/+ ( I mg/ml BBE) 
w1118

: UAS-IacZI+; Ddc-Ga/4/+ (5 mg/ml BBE) 

w1118
: +: Ddc-Ga/41+ (control) 

w1118
; +: Ddc-Ga/4/+ ( I mg/ml BB E) 

1v
1118

: +: Ddc-Ga/4/+ (5 mg/ml BB E) 

Median survival (da s) 

82" 
7i' 
70" 

78r 
76g, 
761!;, 

Diffe rent superscripted le tters indicate a s ig nificant difference (p < 0.05) between va lues fo r a particular 
genotype; comparisons were not made between different genotypes 
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Post-eclosion blueberry extract supplementation does not ameliorate a-synuclein-induced 

early mortality in D. melanogaster 

As PO is a progressive disorder that typically manifests in older individuals, 

transfening D. melanogaster to BBE-supplemented food after they had eclosed as adults 

was used to mimic a treatment plan that could be implemented later in li fe. Flies were 

bred on control food and were first exposed to a BBE-supplemented diet within 24 hours 

of reaching adulthood. BBE supplementation later in D. melanogaster development did 

not improve the shortened lifespan caused by excess a -Syn in OA neurons. The median 

survival time of aSYN/Odc II flies was 46 days for each food medium (Figure 9A), 

whereas aSYN; Ode Ill flies fed control, I mg/ml BBE, or 5 mg/ml BBE medium had 

median survival times of 54, 54, and 52 days, respectively (Figure 9B). Contrary to the 

results discovered for pre-eclosion supplementation, BBE does not seem to counteract a ­

.syn-induced declines in lifespan when administered following eclosion. 

Post-eclosion BBE supplementation inlacZ-expressing flies produced the 

opposite results to those found for pre-eclosion supplementation. Flies expressing lacZ 

first exposed to BB E supplementation in adulthood survived slightly longer than those fed 

a control medium. Only 5 mg/ml BBE s ignificantly prolonged the median survival time 

of LACZ/Odc II flies (Figure I OA). Those fed a high concentration of BB E had a 

survival time of 60 days compared to 58 for individuals fed control medium. In the case 

of LACZ; Ode Ill flies, both concentrations of BB E-supplemented medium prolonged 

lifespan (Figure I OB). The median survival time increased from 52 days for fli es fed 

control medium to 56 days for individua ls that received either I mg/ml or 5 mg/ml BBE-
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supplemented medium. Table 8 contains median surviva l values generated from the post­

eclosion BBE supplementation experiment. Contrary to pre-eclosion supplementation, 

de layed exposure to a BBE-supplemented diet improved the longevity of /acZ-expressing 

D. melanogasler. This data supports the a forementioned hypothesis that the combination 

of excess ~-ga lactosidase with a die tary source rich in polyphenolic antiox idants is only 

detrimental to individuals early in development. 

Please note that the median survival times obtained during this particular run of 

the experiment are atypical and may re flect a response to an unknown environmental 

condi tion (e.g. temperature change) that is di scussed in Appendix 2. 
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Figure 9 - Post-eclosion blueberry extract supplementation does not affect lifespan in a­
-~ynuclein-expres ing D. melanogaster. A Longevity curves of fli es expressing a-
S.\ nuclein in their OA neurons via Ddc-Ga/4 II fed control (n = 208), I mg/ml BBE (n = 

22 I), or 5 mg/ml BBE (n = I 97) medium. B Longevity curves of fli es expressing a­
synuclein in their DA neurons via Ddc-Ga/4 Ill fed control (n = 233), I mg/ml BBE (n = 

226), or 5 mg/ml BBE (n = 242) medium. X denotes mg/ml. Genotypes are w 11 18
: UAS­

a-synuc/ein/Ddc-Ga/4 (aSYN/Ddc II) and w 11 18
: UAS-a-synuclein/+: Ddc-Ga/4/ + 

(aSY ; Ode II I). En·or bars represent standard error of the mean. p-values were 
calculated by the log-rank (Mantel-Cox) test and multiple compari ons were corrected for 
using the Bonferroni method. 
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Figure I 0 - Blueberry extract fed post-eclosion s lightly extends lifespan in /acZ­
express ing D. melanogasler. A Flies expressing lacZ fed 5 mg/ml BBE (n = 129) 
survived significantly longer (p < 0.05) than those fed either a control diet (n = 145) or 
one supplemented with I mg/ml BBE (n = 136) when expression was driven by Ddc­
Ga/4 II. B Diets supplemented with both I mg/ml (n = 297) and 5 mg/ml (n = 33 1) BBE 
significantly extended lifespan (p < 0.05) in flies with lacZ expression in their DA 
neurons driven by Ddc-Ga/4 III as compared to a contro l diet (n = 274). X denotes 
mg/ml. Genotypes are w11111

: UAS-/acZ/Ddc-Ga/4 (LACZ/Ddc II ) and w1118
: UAS­

IacZI+; Ddc-Ga/4/ + (LACZ; Ode Ill). En·or bars represent standard eJTOr of the mean. 
p-values were calculated by the log-rank (Mantel-Cox) test and multiple comparisons 
were COJTected for using the Bonferroni method. 
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Table 8 - Median survival values for a-synuclein- and /a cZ-expressing D. melanogas/er 
fed either a standard or blueberry extract-supplemented diet post-eclosion 

Genot e (food medium) 

'''s I w ; UA S-a-syn Ddc-Ga/4 (control) 
1v

1118
; UA S-a-syniDdc-Ga/4 ( I mg/ml BBE) 

'' 's S I G I I V ; UA -a-syn Ddc- a/4 (5 mg ml BBE) 

w1118
; UAS-a-synl+: Ddc-Ga/41+ (contro l) 

1118 S I G I 1v ; UA -a-syn +: Ddc- a/4 + (I mg/ml BBE) 
'' 's S I d I w : UA -a-sy n +: D c-Ga/4 + (5 mg/ml BBE) 

w1118
; UAS-/acZIDdc-Ga/4 (contro l) 

'''8 I 1v ; UA S-IacZ Ddc-Ga/4 (I mg/ml BB E) 
'''8 I I V : UAS-IacZ Ddc-Ga/4 (5 mg/ml BBE) 

111s I w : UAS-IacZ + ; Ddc-Ga/41+ (control) 
w

1118
; UAS-IacZI+; Ddc-Ga/41+ ( I mg/ml BBE) 

w11 18
: UAS-/acZI+: Ddc-Ga/41+ (5 mg/ml BBE) 

Median survival (da s) 

Different superscripted letters indicate a s ig nifi cant diffe rence (p < 0 .05) between va lues for a particular 
genotype; comparisons were not made between different genotypes 
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D. melanogasler with enhanced a-synuclein expression in their dopaminergic neurons do 

not prematurely lose climbing ability 

One of the hallmark phenotypes of the Drosophila a-syn PO model is the 

premature loss of c limbing ability in older individuals. Though several labs have 

reproduced thi s result, their protocols and control lines often differ (Haywood and 

Staveley, 2004; Todd and Staveley, 2008; Butler e/ a/. , 20 12; Hillman e/ a/., 20 12). Two 

types of control lines were used in this experiment: one with enhanced ex pression of a 

non-detrimental gene (lacZ) in the DA neurons regulated by VAS, and one lacking a VAS­

contro lled transgene (no upregulated expression). In this experiment, the progressive loss 

of climbing ability in the a-syn PO mode l was similar to the two control lines for both 

aSYN/Odc II and aSYN; Ode Ill fli es (Figure II). The 95% C I of the slopes overlapped 

in each of the three genotypes indicating that any observed differences are likely due to 

chance. A ll statistica l values associated w ith the climbing curves in Figure II are found 

in Table 9. Despite repeated efforts, I was not able to duplicate the premature loss in 

climbing ability observed in the Drosophila a-syn PO model. 
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Figure I I - Targeted a-synuclein expression in the dopaminergic neurons of D. 
melanogaster does not affect locomotion. A Climbing curves for flies containing Ddc­
Ga/4 II. 8 The climbing abili ty of flies expressing a-synuclein was similar to both the 
lacZ and w 1118 controls containing Ddc-Ga/4 Ill. Genotypes are w1118

; UAS-a­
synuc/ein/Ddc-Ga/4 ( aSYN/Odc II), w1118

; UAS-/acZ/Ddc-Ga/4 (LACZ/Odc II), w11 18
; 

I d G Ill R 1118 . I +1D c- a/4 (w ; Ode II), w : UAS-a-synuclem +; Ddc-Ga/4/+ (aSYN; Ode Ill), 
w1118

; UAS-IacZ/+ ; Ddc-Ga/4/+ (LACZ; Ode Il l), and w 11 18
: +; Ddc-Ga/4/+ (w 111 x; Ode 

III ). Error bars represent standard error of the mean. C limbing ability was detem1ined 
via non linear curve fit (C I = 95% ). 
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Table 9- Locomotion assay statistics used to compare the climbing abili ty of a-synuclein­
expressing D. melanogaster to a lacZ and responsive transgene- lacking control 

Genotype Slope (k) 
Standard 95°/o confidence 
error (SE) interval (CI) 

1v
1118

: +/Ddc-Ga/4 0.03376 0.003540 0.02664 - 0.04089 

w 1118
; UAS-/acZ/Ddc-Ga/4 0.04015 0.003221 0.03376 - 0.04653 

w 1118
: UAS-a-syn/Ddc-Ga/4 0.03365 0.003373 0.02704 - 0.04026 

'''s d G I I 1v : +; D c - a 4 + 0.03931 0.002493 0.03433 - 0.04429 

w1118
: UAS-IacZI+: Ddc-Ga/4/+ 0.03797 0.002566 0.03289 - 0.04305 

w 1118
: UAS-a-syn/+; Ddc-Ga/4/+ 0.03928 0.002859 0.03362 - 0.04495 

* indicates a value that was deemed s ignificant ly different (p < 0.05) from both the locZ and 11,1
118 contro l 
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Blueberry extract supplementation does not improve locomotion in D. melanogaster 1vith 

upregulated a-sy nuc/ein expression in their dopamine,.g ic neurons 

Treatment w ith both intrinsic antioxidant enzymes and antioxidants obtained via 

diet supplementation has improved the premature loss of climbing ability characteristic of 

the Drosophila a-sy n model of PO (Wasse f et a/. , 2007; Bote lla et a/. , 2008; Long et a/. , 

2009). Figure 12 and Table I 0 contain the climbing curves and their associated statistics 

discovered for a -syn-expressing fli es fed either control medium or a diet supplemented 

w ith one of two concentrations of BB E. Ne ither pre-eclosion (Figure 12A & B) nor post­

eclos ion (Figure 12C & D) BBE supplementation improved locomotion in either 

aS YN/Ddc II or aSYN; Ode Ill fli es. Unlike the results found for S-methyi-L-cysteine 

and grape extract supplementation, BBE supplementation up to a concentration of 5 

mg/ml did not a lter c limbing abili ty in the Drosophila a-sy n model of PD. 
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Figure 12 - Blueberry extract supplementation does not affect locomotion in rx-synuclein­
expressing D. melanogaster. A, B Cl imbing curves for a-synuc/ein-expressing flies fed 
BBE-supplemented medium pre-eclosion. C, D Climbing curves for o.-.\ymtclein­
expressing fli es fed BB E-supplemented medium post-eclosion. X denotes mg/ml. 
Genotypes are w1118

; UAS-a-sy nuc/ein/Ddc-Ga/4 (aSYN/Ddc II) and H ·
1118

: UAS-rx­
·\1'111tcleinl +: Ddc-Ga/4/+ (aSYN; Ode Ill ). Error bars represent standard etTor of the 
mean. Climbing abili ty was determined via non linear curve fit (CI = 95% ). 

47 



Table I 0- Locomotion assay statistics generated from the non-linear curve tit mode l for 
a-synuclein-expressing D. melanogaster fed either control or blueberry 
extract-supplemented medium 

Genotype 
(food medium) 

Pre-eclosion 

w 11 18
; UAS-a-sy niDdc-Ga/4 

(control) 
1118 S I d G I 1v : UA -a-sy n D c- a 4 

( I mg/ml BBE) 
'''s S I d G w : UA -a-sy n D c- al4 

(5 mg/ml BBE) 

w 11 18
: UAS-a-sy nl+: Ddc-Gal41+ 

(control ) 
1118 S I d G I 1v : UA -a-sy n +: D c- a/4 + 

(I mg/ml BBE) 
w1118

: UAS-a-sy nl+: Ddc-Ga/41+ 
(5 mg/ml BBE) 

Post -eclosion 

1118 S I d G I 1v : UA -a-sy n D c- a 4 
(control) 

1118 S I d G I 1v : UA -a-sy n D c- a 4 
( I mg/ml BBE) 

1118 S I d G I 1v : UA -a-sy n D c- a 4 
(5 mg/ml BBE) 

w 1118
; UAS-a-sy nl+: Ddc-Gal41+ 

(control ) 
w 11 18

: UAS-a-sy nl+: Ddc-Ga/41+ 
(I mg/ml BBE) 

1118 S I d G I 1v : UA -a-syn + ; D c- a/4 + 
(5 mg/ml BBE) 

Slope (k) 

0.03365 

0.04359 

0.03902 

0.03928 

0.03703 

0.04209 

0.03365 

0.03948 

0.03199 

0.03928 

0.05054 

0.05742 

Standard 
error (SE) 

0.003373 

0.005264 

0.004376 

0.002859 

0.002955 

0.003584 

0.003373 

0.003183 

0.004823 

0.002859 

0.005597 

0.006762 

95°/o confidence 
interval (CI) 

0.02704- 0.04026;1 

0.03299 - 0.05418;1 

0.030 19 - 0.04 785;1 

0.03362 - 0.04495 11 

0.031 I I - 0.0429411 

0.03492 - 0.04927 11 

0.02704 - 0.04026c 

0.033 15 - 0.04580c 

0.02238 - 0.04160c 

0.03362 - 0.04495d 

0.03932 - 0.06176d 

0.04382 - 0.071 02d 

Diffe rent superscripted letters indicate a s ig nificant difference (p < 0.05) between va lues lor a particu lar 
genotype; comparisons were not made between different genotypes 
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Post-eclosion blueberry extract supplementation improves locomotion in D. melanogasler 

with upregulated lacZ expression in their dopaminergic neurons 

I have previously described how a diet supplemented with BBE fed post-eclosion 

can extend lifespan in D. melanogaster with enhanced expression of lacZ in their OA 

neurons (Figure 10 and Table 8). LACZ; Ode Ill tlies first exposed to aBBE­

supplemented diet in adulthood also had significantly improved climbing ability 

compared to those fed a control diet (Figure 13 and Table II). A similar result was not 

found for LACZ/Odc II tlies fed post-eclosion or either lacZ genotype fed pre-eclosion. 

The locomotion of tlies fed control medium was also similar to those fed BBE­

supplemented medium for both w1118 control genotypes, though tlies fed 5 mg/ml BBE 

climbed significantly better than those given I mg/ml BB E (Figure 14 and Table 12). 

Post-eclosion exposure to a BBE-supplemented medium appears to improve both survival 

and locomotion in D. melanogaster with upregulated lacZ expression in their OA 

neurons. A beneficial interaction like ly ex ists between increased neuronal amounts of P­

galactosidase and dietary antioxidants ingested during adulthood as evidenced by the 

prolonged lifespan and improved climbing ability during old age in LACZ; Ode Ill flies. 
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Figure 13 - Post-eclosion blueberry extract supplementati on improves mobility in /acZ­
expressing D. me/anogaster. A, B C limbing curves for /acZ-expressing fli es fed SSE­
supplemented medium pre-eclosion. C, D C limbing curves for /acZ-expressing fli es fed 
SSE-supplemented medium post-eclosion. D BB E supplementation post-eclosion 
signi ficantly improved mobility in fli es with lacZ expression directed to the DA neurons 
via Ddc-Ga/4 Ill (p < 0.05). No significant effect was found with any of the other 
categories of fli es (A, B, C ). Genotypes are w

1118
; UAS- /acZ/Ddc-Ga/4 (LACZ/Ddc II) 

and \,,.1
118

: UAS-/acZI+: Ddc-Ga/4/ + (LACZ; Ode Ill). Error bars represent standard 
en or of the mean. C limbing ability was detetmined via nonlinear curve fi t (CI = 95%). 
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Table II - Locomotion assay statistics generated from the non-linear curve fi t mode l for 
/acZ-expressing D. melanogaster fed e ither contro l or bluebetTy extract­
supplemented medium 

Genotype 
(food medium) 

Pre-eclosion 

1v
1118

; UAS-/acZIDdc-Ga/4 
(control) 
IV

1118
: UAS-/acZIDdc-Ga/4 

( I mg/ml BBE) 
IV

1118
: UAS-/acZIDdc-Ga/4 

(5 mg/ml BBE) 

1118 S I G I 1v ; UA -lacZ +: Ddc- a/4 + 
(control) 

1118 S I G I I V : UA -lacZ +: Ddc- a/4 + 
( I mg/ml BBE) 
IV

1118
; UAS-IacZI+; Ddc-Ga/41+ 

(5 mg/ml BBE) 

Post-eclosion 

IV
1118

; UAS-/acZIDdc-Ga/4 
(control) 
IV

1118
; UAS-/acZIDdc-Ga/4 

( I mg/ml BBE) 
IV

1118
: UAS-/acZIDdc-Ga/4 

(5 mg/ml BBE) 

IV
1118

: UAS-IacZI+: Ddc-Ga/41+ 
(control) 
11/ 118

; UAS-IacZI+: Ddc-Ga/41+ 
( I mg/ml BBE) 
IV

1118
: UAS-IacZI+ : Ddc-Ga/41+ 

(5 mg/ml BBE) 

Slope (k) 

0.040 15 

0.03506 

0.03570 

0.03797 

0.03570 

0.04309 

0.040 15 

0.05240 

0.05404 

0.03797 

0.05459 

0.06078 

Standard 
error (SE) 

0.00322 1 

0.003090 

0.003278 

0.002566 

0.002854 

0.00340 1 

0.00322 1 

0.005646 

0.006958 

0.002566 

0.0036 11 

0.007640 

95°/o confidence 
interval (CI) 

0.03376- 0.04653:1 

0.02885 - 0.04 126a 

0.029 1 I - 0.04228a 

0.03289 - 0.04305b 

0.02999 - 0.04 14 1 h 

0.03625 - 0.04993h 

0.03376- 0.04653c 

0.04 107- 0.06372(; 

0.04004 - 0.06804c 

0.03289 - 0.04305<1 

0.04 736 - 0.06 183c 

0.0454 1 - 0.076 15c 

Different superscripted letters indicate a s ignificant diffe rence (p < 0.05) between values for a particular 
genotype; comparisons were not made between different genotypes 
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Figure 14- Blueberry extract supplementation does not affect locomotion in D. 
melanogaster that lack a responsive transgene. A, B C limbing curves for flies fed a BBE­
supplemented diet pre-eclosion. X denotes mg/ml. Genotypes are w1 118

: +/Ddc-Ga/4 
III X ///8 I IIIR d (w ; Ode II) and w ; +: Ddc-Ga/4 + (w ; D c Il l). EJTor bars represent standard 

error of the mean. Climbing abi li ty was determi ned via non linear curve fit (CI = 95%). 
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Table 12- Locomotion assay statistics generated from the non-linear curve fit model for 
D. melanogaster that lack a responsive transgene fed e ither control or 
blueben·y extract-supplemented medium pre-eclosion 

Genotype 
Slope (k) 

Standard 95°/o confidence 
(food medium) error (SE) interval (CI) 

IV
11 18

: +1Ddc-Gal4 0.03376 0.00354 0.02664 - 0.04089" 
(control) 

II 
18 I G I 111 : + Ddc- a 4 0.03009 0.002380 0.02533 - 0.03485" 

( I mg/ml BBE) 
1v

1118
: +1Ddc-Gal4 0.042 10 0.003804 0.03444- 0.04975'1 

(5 mg/ml BBE) 

II 
18 d G I I 111 : +: D c- a 4 + 0.0393 1 0.002493 0.03433 - 0.04429bc 

(control) 
Ill s d G I 111 : +; D c- al4 + 0.03 197 0.002442 0.02709 - 0.03685h 

( I mg/ml BBE) 
IV

1118
; +: Ddc-Gal41 0.04956 0.003346 0.04286 - 0.05625c 

(5 mg/ml BBE) 

Different superscripted letters indicate a s ign ificant di fference (p < 0 .05) between val ues lor a particular 
genotype; comparisons were not made between diffe rent genotypes 
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A blueberry extract-supplemented diet does not affect subtle a-synuclein-induced 

phenotypes in D. mefanogaster eyes raised at 25 °C 

The adult Drosophila eye comprises a repeating aiTay of roughly 750 to 800 multi­

cellular subunits known as ommatidia. Each ommatidium is a cluster of20 cells and 

contains 8 photoreceptor neurons, pigment cells, and lens secreting cone cells. 

Mechanosensory bristles are located at alternating vertices of the ommatidia and are 

composed of 4 cells, including a sensory neuron (Kumar, 20 12). Thus, the developing 

eye is another neuron-rich tissue in which a -syn-induced cell death can be eva luated. 

The glass multiple reporter (G MR)-Gal4 construct (Freeman, 1996) causes high­

level expression in Drosophila eye imaginal discs. Flies heterozygous for GMR-Gal4 

have no observable phenotype at 25 °C (Kramer and Staveley, 2003). Though external 

eye morphology appears normal, a-syn expression at 25 oc via G MR-Gal4 causes retinal 

degeneration in flies (Feany and Bender, 2000; Haywood and Staveley, 2004). Figure 15 

displays SEM images of D. melanogaster eyes with increased expression of either lacZ or 

a-syn at 25 °C. Similar to previous results, the external morphology of the eye appears 

normal for both genotypes. Biometric analyses, however, revealed subtle phenotypes 

present at 25 °C that are induced by a-syn (Figure 16). Both the number of ommatidia 

and bristles are reduced in a-sy n-expressing fli es (aSYN). A significant decrease in 

ommatidium number was found for each food medium; however, the decreased amount 

of bristles in aSYN fli es fed control medium was not significant. Supplementation with 

either concentration of BBE was unable to improve these subtle phenotypes and the 

values for both counts are found in Table 13. 
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BBE extract supplementation also appears to affect cell growth in aS Y fli es. 

Individuals exposed to a diet containing 5 mg/ml BBE had significantly larger ommatidia 

than those fed either control or I mg/ml BB E medium (Figure 16C). LACZ flies given 5 

mg/ml BBE in their diet also had larger ommatidia than those fed I mg/ml BBE, however 

a difference was not observed between a control diet and both the aforementioned media. 

Despite the observed differences in ommatidia! area, BB E extract supplementation does 

not appear to affect subtle a -sy n-induced phenotypes in the Drosophila eye. 
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Figure 15 - Expression of a-synuclein during eye development does not produce a visible 
phenotype at 25 °C. A- F Scanning electron micrographs of D. melanogaster eyes with 
elevated amounts of either a-syn (D, E, F) or lacZ (A, B, C) transcript. Both genotypes 
were reared on control (A, D), I mg/ml BBE (B, E), or 5 mg/ml BB E (C, F) medium. X 
denotes mg/ml. Genotypes are w1118

; UAS-a-synuc/ein/GMR-Ga/4 (aSYN) and IV
11 18

: 

UAS-/acZ/GMR-Ga/4 (LACZ). 

56 



A 
soo-

~ ~ rr rr 
~ rr 11 soo- " " 

., 
~ 

"' " " " .. .. · 
E " " " .. .. 
E 

" " " 
.. .· ... 

0 40()-
" " 

.. .. . .. 
§ " " " " .· .. 

" " " .· .. .. 
0 20()- " " 

.. .· .. · c: " .. " " " 

.. .. 
" " 

.,. . · .. '·~ 
.. .. 

~CJ ,g><v ,g><v ~~ rb<v rb<v 
cP .~ ~ cl' ~'<j ~'<j 

'<S-0, ""<S-0, 'IS'<:; ., ,f> 

Food med1um 

c 
2 so-

1 
2 oo- r-

" 
"' • 
~ 

"' so- " " E • ::> 
ii 

~ 
8 

oo- " " 
so- • • 

" " 

B 
E:3 LACZ 

D u SYN 

~ r-;- . '7 "'7 
• • .. .· 
" " .. .. 
" " .. .. 
• • .· 
• " .• .. 
• • .. .• 

" 
.. .. . . 

" • .. .. 
• • .· .. 

' " .. 

Fooo med1um 

-.· .· .. · .. 
.· . .· .· .· .· 

.. .. .. 

.· .· .. 

.· 

Food med1um 

E:3 LACZ 
D uSYN 

.· 

.. .. 

.· .· .. 

.. .. .. .. 

.. 

.· .· .· .· 

[!] LACZ 

[Z) uSYN 

Figure 16 - Blueberry extract supplementation has no effect on moderate o..-.\ynuclein­
induced phenotypes in D. melanogaster eyes at 25 oc. A Enhanced o..-!:>ynuclein 
expression significantly reduces the mean number of ommatidia in D. melanogaster eyes. 
B Increased levels of o..-synuclein reduces the mean number of bristles present in D. 
melanogaster eyes. BBE-supplemented media did not rescue either of the 
aforementioned phenotypes. C o..-synuclein-expressing fli es fed medium supplemented 
with 5 mg/ml BBE had significantly larger ommatidia than those fed either a control diet 
or one supplemented with I mg/ml BBE (p < 0.05). Genotypes are v..l 

118
: UAS-o..­

!:>ynuc/ein/GMR-Ga/4 (aSYN) and w1118
: UAS- /acZ/GMR-Ga/4 (LACZ). n = 15 for each 

analysis. Error bars represent standard error of the mean. p-values were calculated via 
one-way ANOVA followed by Tukey's Multiple Comparison test. 
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Table 13 - Biometric analyses of the eyes of D. melanogas/er expressing a-synuc/ein or 
lacZ raised at 25 °C 

Genotype 
(food medium) 

1118 s IG G 111 : UA -a-sy nt' MR- a/4 
(contro l) 

1118 
I ll : UAS-a-sy n/GMR-Ga/4 
( I mg/ml BBE) 

1118 S 1G G I ll : UA -a-sy n; MR- a/4 
(5 mg/ml BBE) 

1v
1118

: UAS-/acZIG MR-Ga/4 
(control) 
1/ 118

: UAS-/acZ/GMR-Ga/4 
( I mg/ml BBE) 
1v

1118
: UAS-IacZ/G MR-Ga/4 

(5 mg/ml BBE) 

#normal 
ommatidia 

65 1.8 

644.0 

632.8 

695.3 

704.4 

708.9 

58 

#bristles 

505.4 

493.8 

49 1.7 

539.7 

543.4 

548.9 

Ommatidium 
area (J.1m2

) 

208.5 

2 12.7 

228.6 

2 14. 1 

207.2 

2 19.6 



Blueberry extract supplementation improves severe a-synuclein-induced degeneration in 

D. melanogaster eyes raised at 29 °C 

Degeneration caused by overexpressing a-syn early in eye development is 

pronounced at higher temperatures. Flies heterozygous for GMR-Gal4 have 

developmental de fects and increased leve ls of apoptosis when raised at 29 uc (Kramer 

and Staveley, 2003). This rough eye phenotype worsens when GMR-Gal4 is used to 

dri ve expression of a-syn in the developing eye (Figure 17D)(Todd and Staveley, 2008). 

Scann ing e lectron micrographs for both aSYN and LACZ fli es fed control, I mg/ml BBE, 

or 5 mg/ml BB E are found in Figure 17. Targeted expression of a-syn at 29 °C increased 

the amount of atypical ommatidia in D. melanogaster eyes (Figure 18A). BBE 

supplementation complete ly rescued this phenotype as the results for aS YN tlies fed 

either concentration o f BBE were comparable to those fo und for LACZ individuals fed 

control medium (Table 14 ). Biometric analyses also revealed an a-~~ 1m-induced decrease 

in bristle number at 29 °C (Figure 18B). Both concentrations o f BB E supplementation 

were suffi c ient to partially rescue the reduced bristle number, increasing the mean bristle 

number from 372.9 in aSYN tlies fed control medium to 4 14.6 and 437.7 fo r those fed I 

mg/ml and 5 mg/ml BBE, respectively. BBE supplementation had no effect on bristle 

number in LACZ fli es, as the mean values for individua ls fed control, I mg/ml BBE, and 

5 mg/ml BBE medium were 541 .3, 543 .6, and 538. 1, respectively. The mean number of 

bristles fo r both genotypes are found in Table 14. These resul ts further support that early 

exposure to a diet supplemented with BB E improves severe a -syn-induced phenotypes in 

a Drosophila model of PD. 
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Figure 17 - a-synuc/ein expression during eye development produces a rough extemal eye 
morphology at 29 oc. A - F Scanning e lectron micrographs of D. melanogaster eyes with 
elevated amounts of either a-synuclein (D, E, F) or lacZ (A, 8, C) transcript. Both 
genotypes were reared on control (A, D), I mg/ml BBE (8 , E), or 5 mg/ml BBE (C, F) 
medium. D Rough extemal eye phenoty pe produced by enhanced expression of a­
synuclein in the developing D. melano~aster eye. Genotypes are w 11 18

: UAS-a­
synuc/ein/GMR-Ga/4 (aSYN) and w11 8

: UAS-/acZ/GMR-Ga/4 (LACZ). 
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Figure 18 - Severe degenerative phenotypes in D. melanogaster eyes caused by a­
,\YI1liclein expression at 29 °C are suppressed by a blueberry extract-supplemented diet. A 
Both concentrations of BBE supplementation completely rescued the amount of atypical 
ommatidia caused by enhanced a-synuclein expression (p < 0.05, n = I 0). B BBE 
supplementation partia lly rescues the reduced bristle number in a-synuc/ein-expressing 
eyes (p < 0.05, n = 15). Genotypes are 1v

1118
: UAS-a-synuc/ein/GMR-Ga/4 (aSYN) and 

w11 18
: UAS-/acZ/GMR-Ga/4 (LACZ). Error bars represent standard error of the mean. p­

values were ca lculated via one-way ANOV A followed by Tukey's Multiple Comparison 
test. 
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Table 14- Biometric analyses of the eyes of D. melanogaster expressing a-::,ynuclein or 
lacZ raised at 29 oc 

Genotype 
(food medium) 

1118 S /G G I 1v : UA -a-sy n MR- a 4 
(control) ,, ,8 G 
IV ; UAS-a-sy n/ MR-Gal4 
( I mg/ml BBE) 
'''8 S /G G I 111 : UA -a-sy n MR- a 4 

(5 mg/ml BBE) 

111
1118

; UA S-IacZIGMR-Gal4 
(control) 
w11 18

: UAS-IacZIGMR-Gal4 
( I mg/ml BBE) 

111s .,c c 
111 : UAS-IacZt MR- al4 
(5 mg/ml BBE) 

Atypical ommatidia 
(

0/o area) 

73.5 

40.3 

29.2 

28.9 

N/A 

N/A 

62 

#bristles 

372.9 

4 14.6 

437.7 

54 1.3 

543 .6 

538. 1 



DISCUSSION 

The longevity-promoting effects of antioxidant enzymes VOfJl between groups of neurons 

Antioxidant enzymes may not provide the same protection in all neurons. I have 

reported that targeted expression of Cat in the DA neurons extends lifespan in D. 

melanogaster (Figure SA). A similar effect, however, was not found for either Sod I or 

Sod2 despite these enzymes participating in the same pathway as Cat. Studies have 

shown that both Sod I and Sod2, but not Cat, extend Drosophila lifespan when their 

expression is directed to motor neurons (Parkes et a/. , 1998; Phillips et a/. , 2000). The 

importance of SOD and CAT acti vity appears to vary between different types of neurons. 

Both PO and motor neuron diseases (MNDs) share ox idati ve stress as a common feature 

of disease etiology. The first genetic linkage associated with amyotrophic lateral 

sclerosis (ALS), the most common adult-onset MND, was determined to be a mutation in 

Sod I, suggesting its activity is essential for the survival of motor neurons. Though a 

mutation in Sod has not been associated w ith PO, ROS are produced during DA neuron 

metaboli sm as the breakdown of dopamine by monoamine oxidase (MAO) produces 

H20 2 (Coyle and Puttfarcken, 1993). Excess CAT may be particularly benefic ial to DA 

neurons since this enzyme converts reactive H20 2 into water and could help protect cells 

against H20 2-induced oxidative damage. Motor neurons and DA neurons vary in the ir 

function, neurotransmitter production, and metabolism. I can, therefore, speculate that 
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the discrepancies between my results and those previously reported for Sod and Cat are 

due to the type of cell in which expression was targeted. 

Dietmy antioxidants can prolong lifespan in Drosophila 

Several recent studies have suggested that Drosophila food medium supplemented 

with a dietary source of antioxidants can prolong lifespan. Adult Drosophila fed extracts 

of nectarine, green tea, black tea, and apple survive longer than those exposed to a 

standard food medium ( Li et a/., 2007; Peng el a/., 2009; Boyd et a/. , 20 I I ; Peng et a/. , 

20 II). I have demonstrated that post-eclosion BB E supplementation extends the li fespan 

of LACZ fli es (Figure I 0). According to the Free Radical/Oxidative Stress Theory of 

Ageing, senescence is a consequence of the accumulation of free radicai/ROS-induced 

damage to cellular macromolecules that occurs over an organism's lifespan (Harman, 

1956). Ageing is inevitable and associated with a time-dependent decline in the 

biochemica l and physiolog ical function of major systems (Doria eta/. , 20 12). For 

example, an age-dependent increase in ROS was associated with functional decline or the 

mitochondria in rat brains ( Benzi et a/. , 1992). Moderate amounts of dietary antioxidants 

are like ly most beneficial late in Drosophila lifespan when intrinsic antioxidant defense 

no longer provide suffic ient protection against the age-dependent accumulation of ROS. 

My results are the first to demonstrate the effects of antioxidant supplementation 

at different time points during D. melanogaster development. The control used in this 

study closest to WT D. melanogasler was the responsive transgene-lacking ( IV
1118

) 
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control. As shown in Figures 8 and 14, pre-eclosion BBE supplementation did not affect 

the longevity or climbing ability of these tlies. Unfortunately, post-eclosion BBE 

supplementation experiments were not performed on this genotype; however, I can 

hypothesize that BBE extract would prolong lifespan based on my post-eclosion BB E 

supplementation results with LACZ tlies. Additionally, Peng eta/. have already 

documented that post-eclosion BB E supplementation extends lifespan in WT Drosophila 

(Peng et a/. , 20 12). Despite the detrimental effects observed in LACZ tlies, neither pre­

eclosion nor post-eclosion supplementation of BBE up to concentrations of 5 mg/ml 

appears to be harmful. My results support a role for BB E in promoting Drosophila 

longevity. 

Excessive disruption to biological pathiVays early in development may shorten lifespan in 

Drosophila 

I have found that tlies with targeted expression of lacZ in their DA neurons 

respond negati vely to BBE supplementation early in development. LACZ tlies exposed 

to BBE prior to eclosion had significantly reduced lifespans compared to individuals fed a 

control diet (Figure 8A & B). ROS present at appropriate amounts are regulators of 

severa l important cellular processes and it may be that the excess antioxidants provided 

by BBE are di srupting these pathways during development. For example, nitric oxide 

(NO) di rectly regulates gene expression and promotes ecdysteroidogenesis and 

metamorphosis during Drosophila development (Yamanaka and O'Connor, 20 11 ). 
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Excess antioxidants available during development could decrease the amount of ROS 

involved in signaling pathways below what is considered physiologically normal. This is 

not likely the case, however, as pre-eclosion supplementation of BBE was not found to be 

detrimental to responsive transgene-lacking control flies (Figure 8C & D). T hus, it 

appears that the combined presence of excess p-galactosidase and BBE supplementation 

early in development is likely responsible for shortening lifespan in LACZ tlies. 

As mentioned, lacZ is often used in Drosophila studies and its gene product, P­

galactosidase, is not associated with detrimental effects in fli es. Another possible 

scenario for LACZ/BBE supplementation toxicity involves the interaction between 

prote in accumulation and ROS. Despite p-ga lactosidase's benign nature in flies and its 

lack of substrate, I introduced a large quantity of exogenous and unnecessary protein into 

a sensitive D. melanogaster tissue. The ubiquitin proteasome system (UPS) is involved 

in maintaining cellular homeostasis via protein degradation. Degradation by the 

proteasome is signaled when at least four ubiquitin monomers are attached to an 

unwanted or unnecessary protein (Thrower eta/., 2000). The UPS is responsible for 

degrading up to 60% of unwanted or unnecessary proteins and is expected to be important 

to neuronal functioning and synaptic plasticity (Dennissen eta/. , 20 12). Thus, it is 

possible that the excess P-galactosidase present in DA neurons increases the acti vity of 

the UPS. Ubiquitin carboxyl-terminal hydrolase L I (UCH-L I) belongs to the famil y of 

deubiquitinating enzymes and is involved in regulating protein turnover via the UPS. The 

primary function of UCH-L I is to remove ubiquitin from protein substrates by 

hydrolysing carboxyl termina l esters and am ides of ubiquitin (Fang et a/. , 20 I 0). The 

methionine residues of this protein can be reversibly oxidized and this modi fica tion has 
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been suggested to be involved in regulating protein function (Hoshi and Heinemann, 

200 I). Excess antioxidant protection conferred by BBE supplementation may reduce 

ROS to a level below what is considered normal, thereby affecting the regulation of 

UCH-L I. Drosophila development prior to eclosion is a precisely coordinated and 

sensitive period involving many tightly regulated pathways. The combination of 

increased UPS activity alongside reduced regulation of the system may alter development 

in a manner that results in adults with decreased lifespans. This effect appears to be 

confined to occurring early in development since post-eclosion BB E supplementation did 

not harm LACZ flies (Figure I 0). Future studies should aim at evaluating differences in 

the expression and activity of enzymes like UCH-L I between LACZ fli es fed either a 

control or aBBE-supplemented medium. 

The a-svnuclein-induced premature loss of climbing ability was not reproduced in this 

study 

One of the characteristic features of the Drosophila a-syn model of PD is the 

premature loss of climbing ability. I was unable to reproduce this result and report that 

flies overexpressing a-sy n in their DA neurons do not lose thei r climbing ability earlier 

than control fli es. Several protocols ex ist for measuring locomotion (i.e. climbing ability) 

in Drosophila. A common method involves observing the movement of fli es through a 

clear vial or tube for a set amount of time. To obtain my results I used a graded analysis 

in which different zones were assessed a score that ascended with height. Previous 
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findings from our laboratory using the same protocol and the same Drosophi la o..-syn 

model of PD have reported a premature loss of climbing ability (Todd and Staveley, 

2008). Feany and Bender used a non-graded analysis and recorded how many fli es 

successfully passed a pre-determined height in a set period of time (Feany and Bender, 

2000). Both manual and automated methods were used by Wassef eta/. to measure 

locomotion in Drosophila (Wassef eta/. , 2007). Reactive locomotion was measured by 

vortexing tubes of flies at a low setting and measuring the number of fli es sti ll on the side 

of the tube. Spontaneous locomotion measurements were determined by computing how 

many times flies passed through an infrared laser over a set amount of time. Despite the 

varied protocols, both of the aforementioned groups reported a premature loss of climbing 

ability in Drosophila with increased neuronal expression of o..-syn. A consistent feature of 

these studies is the lack of a control I ine with directed expression of a non-detrimental 

protein in the same tissue. We used targeted expression of lacZ in D. melanogaster DA 

neurons to control for the effect of enhancing expression via the UAS/Ga/4 system. To 

my surprise, the progressive loss of climbing ability was similar in aSYN and LACZ fli es 

and neither differed from a responsive transgene- less control similar to those used by 

other groups (Figure II). Our graded method of measuring climbing ability is a sensiti ve 

and subjective assay that requires calculated and precise measurements of time and height 

over a long period of time. As such, it is possible that additional protocols may help to 

explain ambiguities between my results and those found by other groups. 
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A blueberry extract-supplemented diet only influences certain a-synuclein-induced 

phenotypes in D. rnelanogaster 

The severity of a-syn-induced phenotypes depends on both intrinsic and extrinsic 

factors. I have reported that D. melanogasler with targeted expression of a-syn in their 

DA neurons have a reduced lifespan (Figure 6 ). Unexpectedly, a signiticant difference 

was observed between aSYN/Ddc II and a SYN; Ode Ill flies with the former having a 

markedly reduced median surviva l time. Although both ofthe a forementioned aSYN 

lines model PO, it appears that the position o f Ddc-Gal4 in the D. melanogasler genome 

affects the severity of a-syn-induced phenotypes. Both lines of flies were maintained in 

the same condi tions and subjected to the same analyses with the only di fference between 

the two being the location of Ddc-Ga4. It is, there fore, possible that regulatory elements 

surrounding the chromosomal insertion site of Ddc-Gal4 affect its expression in D. 

melanogaster. Molecular analyses like qRT-PCR and Western blotting could be applied 

in future experiments to test for differential expression between a SYN/Ddc II and aS YN ; 

Ode Ill flies. Duplications and triplications of the a-syn gene locus resul t in a severe, 

early-onset version of PO in humans (S ingleton et a/. , 2003; C hartier-Harlin e/ a/. , 2004; 

Farrer e/ a/. , 2004). A similar expression-dependent effect may result from increased a­

syn transcript or prote in levels in D. melunugasler DA neurons. 

Temperature affects the amount of a -sy n-induced degeneration in Drosophila 

eyes. Directed expression of a-syn in D. melanogaster eyes at 25 oc produces subtle 

phenotypes. Conversely, flies raised at 29 oc have severely disrupted external eye 

morpho logies. In thi s case, the same genotype was ana lyzed and temperature a lone 
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appears to be responsible for the dramatic difference. The UAS/Ga/4 system used for 

targeted expression of a-syn in Drosophila eyes was isolated from yeast. The optimal 

temperature used to grow this microscopic eukaryote in most laboratories is 3 7 oc and 

this system functions better at temperatures approaching this point. Future experiments 

could not only analyze the amount of a-syn production at both 25 and 29 °C, but also the 

generation and binding capabili ty of Gal4 at these temperatures. 

A BBE-supplemented diet was only capable of suppressing the severe a-sy n­

induced phenotypes discussed above. Both the increased mortality and severe external 

eye disruption in aSYN flies were at least partially rescued by a BB E-supplemented diet. 

I have hypothesized that both genetic and environmental factors cause differential 

production of a-Syn in the lines that were tested. Recent studies have suggested that 

excess a-Syn increases oxidative stress by disrupting mitochondrial maintenance (Parihar 

eta/., 2009; Byers eta/. , 20 II). It is possible that secondary antioxidants obtained from 

food are only beneficial when a cell reaches a certain degree o f oxidative stress. A BBE­

supplemented diet was only beneficial when fed to aSYN flies pre-eclosion. Drosophila 

development is sens itive and precisely coordinated and the increased oxidative stress 

caused by excess neuronal a-Syn may di srupt this process. The increased antioxidant 

protection confetTed by BBE appears to protect against severe developmental damage 

caused by a-Syn-induced oxidative stress. 
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Possible mechanisms f or blueberry extract-induced protection in neurons 

My findings could be the result of a strengthened overall antiox idant defense 

system in a -sy n-expressing fli es. BBE extract increases the expression of intrinsic 

antioxidant defense enzymes like Cat, Sod/ , and Sod2 in Drosophila (Peng et a/. , 201 2). 

Additiona ll y, BB E extends lifespan and partially protects WT flies under conditions of 

increased ox idati ve stress; however, a similar e ffect was not found with e ither Cat or Sod 

knockout mutants. S imilar results have been documented for several other foods high in 

dietary antioxidants, including extracts of apple polyphenols, green tea catechins and 

black tea ( Li et a/. , 2007; Peng et a/. , 2009; Peng et a/. , 20 I I). A I though dietary 

antiox idants like ly provide an invaluable secondary support to cells undergoing oxidati ve 

stress it appears the ir protective e ffects are dependent on intrinsic enzymatic antiox idant 

defense systems. 

Directed expression of a-syn during eye development results in premature 

degeneration of the retina and abnormal development of the external eye morphology 

(Haywood and Staveley, 2004; Todd and Staveley, 2008). My resul ts suggest that a d iet 

conta ining BBE protects neurons in the eye against severe a -sy n-dependent de fects. Both 

the amount o f atypica l ommatidia and total number of bri stles were improved in tlies fed 

a BB E-supplemented diet. A lthough the protective mechani sm is not understood, a link 

exists between BB E supplementation and protein turnover via the UPS. Flies fed BB E 

have increased levels of Rpn/1 messenger RN A (Peng et a/. , 201 2), an essentia l lid 

component of the 26S proteasome structure. In humans, the parkin gene (PA RK2) 

encodes a 465 aa protein that functions as an E3 ubiquitin ligase (Shimura et a/. , 2000). 
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Expression of parkin in Drosophila eyes suppresses a-syn-induced retina l degeneration in 

older fli es (Haywood and Staveley, 2004). Additionally, overexpression of endoplasmic 

reticulum-associated degradation pathway prote ins suppress late onset retinal degradation 

in a Drosophila model of autosomal dominant retini tis pigmentosa, an age-related 

degenerative eye di sease (Kang and Ryoo, 2009). The authors hypothesized that thi s 

restoration is due to increased proteasomal degradation of mis folded proteins in the 

endoplasmic reticulum. Post-mortem ana lysis of PD patient bra ins reveals that ubiquitin 

is a major component o f LBs and LNs present in surviving DA neurons ( Bancher et a/. , 

I 989) and protein aggregation/ turnover is of particular interest in research pertaining to 

PD etio logy. The neuroprotective effects of BB E on a-syn-induced damage in the D. 

melanogaster eye may be due in part to increased activity of the UPS system. 

CONCLUSION 

Recent evidence suggests that a diet ri ch in blueberries may he lp slow the age­

related degeneration of neurons. In a human study, blueben-y j uice supplementation 

improved memory function in older adults w ith early memory decli ne (Kri korian eta/. , 

20 I 0). Other groups have demonstrated that short-term blueberry supplementation both 

increased HSP70-mediated protection against inflammation in aged hippocampal cells 

and improved object recognition memory in older rats (Goyarzu eta/., 2004; Gall i eta/., 
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2006). These studies suggest that the neuroprotective effects of blueberries or BBE are 

not confined to D. melanogaster and may extend to mammals. 

I have hypothesized that increased protein turnover and intrinsic antioxidant 

protection result from BBE supplementation in D. melanogaster. a-Syn appears to 

influence mitochondrial maintenance and its toxicity in cells depends on protein 

conformation. lfBBE supplementation does indeed increase UPS and antioxidant 

activity simultaneously, this would provide cells with a two-tiered protection system for 

e liminating both misfolded protein and excess ROS generated from mitochondrial 

dysfunction. If these results extend to humans, dietary antioxidants could potentially be 

used as a safe and natural component of future PO treatment plans. 

Here, I present the first demonstration of the neuroprotective effects of an extract 

of blueberries in a Drosophila mode l of an a-Synucleinpathic disease. Previous findings 

have demonstrated that grape extract improved both the early mortality and premature 

decline in locomotion in a similar Drosophila model of PO (Long eta/. , 2009). 

Additionally, grape seed extract restored external eye morphology and increased lifespan 

in Drosophila mode ls oftaupathy and Huntington disease, respectively (Pfleger et a/., 

20 I 0; Wang eta/. , 20 I 0). Taken together, these results demonstrate the value of using 

Drosophila to study neurodegenerati ve disorders. Though the literature is relati vely new, 

studies in this versatile organism have he lped develop interest in the potentia l 

neuroprotective effects of dietary antioxidants in medical research. Future studies should 

aim towards unrave ling the interaction of dietary antioxidants and the activity of cellular 

mechanisms, such as the UPS and enzymatic antioxidant pathways. 
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APPENDIX 1 

The following is a copy of a manuscript that was prepared for publication using the 

results of this study: 

Blueberry extract supplemented diet improves a-synuclein-induced phenotypes in a 

Drosophila melanogaster model of Parkinson disease 

ABSTRACT 

Oxidative stress is consistently associated with Parkinson disease (PO) etiology. 

We investigated the effects of blueberry extract (BBE) supplementation on a-synuclein 

induced phenotypes in a Drosophila melanogas/er model of PD. Enhanced a-::,ynuclein 

expression in Drosophila dopaminerg ic (DA) neurons reduces li fespan. We performed 

longevity assays to measure the effects of BBE on Drosophila lifespan. Flies expressing 

a-synuclein in their DA neurons fed BBE had a 9% longer median li fespan than those fed 

a contro l diet. BBE also improved a-synuclein-induced developmental defects in the 

Drosophila eye. Our biometric analyses revealed that individuals fed BB E had less 

atypica l ommatidia as well as an increased number of mechanosensory bristle cells than 

those fed a control diet. We propose that BBE, rich in naturally occurring antioxidants, 

promotes the survi val of neurons in tissues with increased levels of a-Synuclein through a 

protective mechanism involving other cell s igna ling pathways. 
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INTRODUCTION 

Parkinson disease (PO) is the second most common progressive 

neurodegenerative disorder behind Alzheimer's disease (de Moura et al., 20 I 0). The 

pathophysiological ha llmarks of PO include the loss of dopaminergic (OA) neurons in the 

substantia nigra pars compacta (SNc) and the presence of intraneuronal inc lusions known 

as Lewy bodies (LB) in surviving cells. Affected individuals have both motor and non­

motor symptoms rang ing from bradykinesia, resting tremor, and muscular rig idity to 

dementia, depression and olfactory dysfunction. Initially be lieved to be an entirely 

sporadic disease, linkage studies identified a-synuclein (PARK 1/4) as the first gene 

related to PO (Polymeropoulos eta/. , 1997). The human a-synuclein gene (SNCA) 

encodes a 140 aa peripheral membrane prote in that localizes to the pre-synaptic region of 

neurons (Stefan is, 20 12). Both point mutations and duplications of its gene locus result in 

autosomal-dominant PO (AOPO), the latter causing a more severe early-onset form of the 

disease. Additionally, both LBs and Lewy neurites, located in the perikarya and neuronal 

processes, respectively, stain positive ly for a-Synuclein. a-synuclein is associated with 

both sporadic and familial PO and seems to play a critical role in its etiology. 

Oxidati ve stress is consistently associated w ith the pathogenesis of PO however 

its role in di sease progression remains unclear. A cell undergoes oxidative stress when 

the net balance between the generated reactive oxygen species (ROS) and the ava ilable 

antiox idant defense mechanisms favours the former. Post-mortem ana lysis of PO patient 

brains reveals higher levels of oxidative stress biomarkers like dys functiona l 

mitochondria, decreased levels of reduced gluta thione, and de ficiencies in antioxidant 

enzymes in the SN of a ffected individuals (Schapira and Jenner, 20 I I). Recent evidence 
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suggests pluripotent stem cell-derived DA neurons from a PO patient w ith a SNCA 

triplication accumulate a-synuclein and are susceptible to oxidative stress (Byers et at. , 

20 II ). This data suggests that the combination of oxidative stress and excess a-Synucle in 

may play a pivotal role in the progression of PD. 

The toxicity of excess a -Synuclein appears to be enhanced under conditions o f 

oxidati ve stress. Studies in Drosophila melanogaster have been especia lly helpful in 

e lucidating this relationship. Neural expression of a-sy nuclein in Drosophila brains and 

DA neurons recapitulates the locomotor dys functions, age-dependent degeneration o f DA 

neurons, and formation of LBs characteri stic of human PO (Feany and Bender, 2000). 

Decreased lifespan and retinal degeneration have also been observed in Drosophila w ith 

increased neuronal levels of a-Synuclein (Wassef et a/. , 2007). Co-expression o f 

methionine su(foxide reductase A (MSRA) and ?TEN-induced putative kinase I (PINK/), 

involved in ROS neutralization and damaged mitochondrion turnover, respectively, with 

a-synuclein improves PD-related phenotypes (Todd and Stave ley, 2008). G iven their 

versatility, Drosophila can help unravel the role of oxidative stress in PO and unveil any 

potentia l antioxidant therapies. 

Blueberries are an exce llent source of dietary antioxidants. The therapeutic 

potential of blueberries in cancer and vascular disease has been described and recent 

studies in Drosophila suggest that plant extracts may be bene fi cial to individuals suffering 

from neurodegenerati ve diseases (Neto, 2007; Long et a/. , 2009). In this study we 

describe the restorative effects of Webber Naturals' 36: I concentrate blueberry extract 

(BB E) on a Drosophila model of PD. Enhanced morta lity and eye degeneration caused 
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by directed expression of a-synuclein in the DA neurons and developing eye, 

respectively, is improved by supplementing growth media with BBE. 

MATERIALS AND METHODS 

Fly stocks and culture 

The UAS-a-synuclein (Feany and Bender, 2000) and Ddc-Gal4 (Li eta/., 2000) 

fli es were generously provided by Dr. M. Feany (Harvard Medical School) and Dr. .1. 

Hirsh (U ni versity of Virginia), respectively. GMR-Gal4 (Freeman, 1996) and UAS-IacZ 

(Brand and Perrimon, 1993) flies were obtained from the Bloomington Drosophila Stock 

Center at Indiana University. Directed expression of the transgenes in DA neurons and 

during early eye development was accomplished by crossing homozygous Ddc-Gal4 and 

GMR-Gal4 females, respectively, to homozygous UAS-a-synuclein (PD model) and UAS­

IacZ (control) ma les as per standard methods. Flies were fed either a standard cornmeal­

yeast-molasses-agar medium (65 g/L cornmeal, 15 g/L nutritional yeast extract, 5.5 g/L 

agar, 50 milL fancy grade molasses in water supplemented with 0. 1 g/ml methy l paraben 

in ethanol and 2.5 ml proprionic acid) or standard medium supplemented with either I 

mg/ml or 5 mg/ml Webber Naturals' 36: I concentrate BBE (WN Pharmaceuticals0
il Ltd. , 

Coquitlam, B.C., V3K 7B5, w1vw. webbernaturals.com) 

Longevity assay 

Flies were collected under gaseous C02 every 24 hours until a mini mum of200 

adult males of each genotype were obta ined. They were then transferred to upright 

standard plastic she ll vials containing standard (control), or standard medium 
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supplemented with either I mg/ml or 5 mg/ml BBE. Each group was maintained at 25 oc 

and kept in non-crowded conditions ( 1-20 individuals per vial). Flies were scored for 

viability every 2 days and transferred to fresh medium without anesthesia according to 

established protocol (Staveley et al., 1990). Survival fractions were calculated in Prism 

version 5.0b for Mac OS X (GraphPad Software, San Diego California USA, 

www.graphpad.com) using the product limit (Kaplan-Meier) method. 

Scanning electron microscopy and biometric analyses 

Flies were reared and aged 3 to 5 days post-eclosion on either standard or BBE 

supplemented medium at 29 oc. Surviving flies were preserved at -80 oc before being 

mounted on metal studs under a dissecting microscope. Prepared flies were desiccated 

overnight and gold coated prior to photography at 170 times magnification with a Hitachi 

S-570 scanning electron microscope as per standard methods. 

All biometric analyses were measured using lmageJ64 version 1.42q (Abramoff et 

al. , 2004). The area of a single ommatidium was determined by dividing the average area 

of a floret of ommatidia by 7 (data not shown). These numbers were used to di stinguish 

between normal and atypical ommatidia when measuring percent di sruption. A disrupted 

or atypical ommatidium had an area 50% smaller or 150% larger than a typical 

ommatidium for that condition. An oval with an area between 35000-40000 ~Lm2 was 

overlaid on the flattest portion of each analyzed eye with Paintbrush version 2.1.1 for 

Mac OS X (Copyright © 2007-20 I 0 Soggy Waffles). Individual disrupted areas within 

the oval were measured in triplicate and a percent value was obtained by di viding the 

summed average values into the average area of the oval (also measured in triplicate). n 
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= 15 for each analyzed condition for both bristle counts and ommatidium area 

measurements, whereas n = I 0 for percent disruption analysis. Bar graphs were produced 

using Pri sm version 5.0b for Mac OS X (GraphPad Software, San Diego Cal ifornia USA, 

1Vw1v.graphpad. com). 

RESULTS 

Increased concentrations of blueberry extract protects against a-Synuclein-induced earfv 

mortalitv 

Here we report a reduced lifespan in fli es when a-synuclein expression is 

enhanced in the DA neurons (Figure I A). The median survival time o f a-synuclein­

expressing flies was reduced by 37% compared to the lacZ cohort when both groups were 

fed a contro l diet. A diet rich in BB E partially rescued the reduced lifespan caused by 

increased neuronal amounts o f a-Synuclein in Drosophila (Figure I B). a-synuclein fli es 

fed a d iet containing 5 mg/ml BB E had a 9% longer median lifespan than those fed a 

contro l diet, whereas a similar result was not found with a concentration of I mg/ml BB E. 

The median survival values for each group are found in Table I. 

Blueberry extract suppresses a-Synuclein-induced degeneration in the developing ~ve 

A rough external eye phenotype occurs when GMR-Gal4 is used to drive 

expression of a-synuc/ein in the developing Drosophila eye (Figure 2B)(Todd and 

Staveley, 2008). BBE supplementation restores mean a-.sy nuc/ein-induced disruption 

back to control levels (Figure 2E). The mean disruption of lacZ fli es fed a control diet 

was 29% of the analyzed area. In a-synuc/ein fli es, the mean di sruption was reduced 
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from 73% in those fed a control diet to 40% and 29% in flies fed I and 5 mg/ml BB E, 

respectively. Increased a-Synuclein levels reduced the mean number of bristles per eye 

to 373 in fli es fed a control diet, whereas lacZ fli es on the same diet had 541 (Figure 2E). 

The number of bristles per eye was raised to 415 and 438 when the a-synuclein flies were 

fed a diet cons isting of I and 5 mg/ml BBE, respectively. Th is provides another example 

of BBE-induced protection against PD-related cell death in a Drosophila tissue that is rich 

111 neurons. 

DISCUSSION 

Recent evidence has suggested that a diet rich in blueben·ies may help slow the 

age-related degeneration of neurons. In a human study, blueberry juice supplementation 

improved memory function in older adults with early memory decline (Krikorian eta!., 

20 I 0). Furthermore, Galli et a!. have demonstrated that short-term blueberry 

supplementation increased heat shock protein 70 (HS P70)-mediated protection against 

inflammation in aged rat hippocampal cells (Galli eta!., 2006). These studies suggest 

that the neuroprotective effects of blueberries or BBE are not confined to Drosophila and 

may translate to mammals. 

The Free Radica l/Oxidative Stress theory of ageing orig inated in the 1950's and 

suggests that an organism ages due in part to the accumulation of free radical-induced 

damage to its cellular macromolecules. Previous studies have shown that BBE is capable 

of extending lifespan Drosophila rnelanogaster (Peng et a!., 20 12). O ur results are novel 

as we have shown that BBE supplementation can extend lifespan in a Drosophila model 

of a neurodegenerative disease. T he additional antiox idants provided by BB E 
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supplementation may alleviate some o f the excess ROS generated during the progression 

of PO-l ike cell death resulting in less cellular damage and a longer median survival time 

in affected fl ies. 

The Drosophila compound eye consists of multiple subuni ts, or ommatid ia, 

composed o f several neurons and peripheral mechanosensory bristle cells. Directed 

expression of a-synuclein during early eye development resul ts in premature degeneration 

of the retina and the abnormal development of the external morphology o f the eye 

(Haywood and Staveley, 2004; Todd and Staveley, 2008). Our resul ts suggest that a diet 

conta ining BBE protects neurons in the eye against a -synuc/ein-dependent de fects. Both 

the amount of atypical ommatidia and total number of bristles were improved in tlies fed 

a BB E-supplemented diet. A link exists between BBE supplementation and protein 

turnover via the ubiquitin proteasome system (UPS) as flies fed BBE have increased 

levels of Rpn II messenger RNA, an essential lid component of the 26S proteasome 

structure (Peng et a/. , 201 2). In humans, the parkin gene (PARK2) encodes an E3 

ubiquitin ligase and expression of parkin in Drosophila eyes suppresses a-svnuclein­

induced retinal degeneration in older tlies (Haywood and Staveley, 2004). Protein 

aggregation/tumover is a point of major interest in PO etio logy and the neuroprotective 

effects of BBE on a-synuclein-induced damage in the Drosophila eye may be due in part 

to increased activity of the UPS system. 

Our findings could be the result of a strengthened overall antiox idant de fense 

mechani sm in a-.synuc/ein-expressing tlies. BB E extract increases the expression of 

intrinsic antioxidant defense enzymes I ike catalase (Cat), Sod I, and Mn superoxide 

disnwtase (Sod2) in Drosophila (Peng et a/., 20 12). Additionally, BB E extends li fespan 
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and partially protects flies under conditions of increased oxidative stress, however no 

effect was seen with either Cat or Sod knockout mutants. Similar results have been 

documented for several other foods high in dietary antioxidants, including extracts of 

apple polyphenols, green tea catechins and black tea (Li eta/., 2007; Peng eta/., 2009; 

Peng eta/. , 20 II). Although dietary antioxidants likely provide an invaluable secondary 

support to cells undergoing oxidative stress it appears their protective effects are 

dependent on intrinsic enzymatic antioxidant defense systems. 

Here we present the first demonstration of the neuroprotective effects of BBE in a 

Drosophila model of a-Synucleinpathic di sease. Previous findings by Long el a/. 

demonstrated that grape extract improved both the early mortality and premature decline 

in locomotion in a similar Drosophila model of PO (Long et al., 2009). Taken together, 

these results epitomize the value of using Drosophila to study PO etiology. Though the 

literature is relatively new, studies in this versatile organism have helped develop interest 

in the potential neuroprotective effects of dietary antioxidants in medical research. Future 

studies could aim towards unraveling the interaction of dietary antioxidants and the 

activity of cellular mechanisms, such as the UPS and enzymatic antioxidant pathways. 
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TABLES 

Table I - Median surv ival times of Drosophila melanogaster reared on either a standard 
or blueberry extract (BBE)-supplemented diet 

Genotype (food medium) Median survival (days) 

1118 S I I G w : UA - acZ Ddc- al4 (control) 8t' 

'''8 S I d G w : UA -o..-syn D c- al4 (control) 

'''8 S I w : UA -o..-syn Ddc-Gal4 ( I mg/ml BBE) 

,,,8 S I 
1v : UA -o..-syn Ddc-Gal4 (5 mg/ml BBE) 

Groups w ith different superscripted letters were deemed s igni licantly diffe rent (p < 0.05) by the log-rank 
(Mantel-Cox) test followed by a Bonferroni multiple comparison correction 

FIGURE LEGENDS 

Figure I - Blueberry extract (BBE) partially protects Drosophila melanogaster 

against o..-synuclein-induced early mortality. A Directed expression of o..-synuclein (n 

= 2 18) in DA neurons shortens lifespan in Drosophila fed a standard diet, as compared to 

a lacZ (n = 227) control (p < 0.05). B Flies feel diets containing 5 mg/ml BBE (n = 283) 

were partially protected against the a -synuclein-incluced mortality (p < 0.05), whereas I 

mg/ml BBE (n = 267) had no significant effect. Genotypes are w1118
: UAS-IacZ/Ddc-

Gal4 (control) and w1118
; UAS-o..-sy nuclein/Ddc-Gal4 (aSYN). Errors bars represent 

standard error of the mean. p-values were calculated by the log-rank (Mantel-Cox) test 

and multiple comparisons were corrected for using the Bonferroni method. 
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Figure 2- Blueberry extract (BBE) supplementation counteracts a-synudein-

induced developmental defects of the eye. A-D Scanning electron micrographs of 

adult eyes. B Overexpression of rx-.\ynuclein during early eye development produces a 

rough external eye morphology. X denotes mg/ml. E Flies suppl emented w ith BBE 

have disruption levels comparable to the lacZ control (* represents p 0 .05). F BBE 

supplementation increases mean bri stle number and partia lly rescues the rx-.\~1"111/c/ein-

induced decrease(* represents p < 0.05). Genotypes are v. ./
118

: UAS-IacZIC MR-Ca/4 

(contro l) and w1118
: UAS-rx-synuc/ein/CMR-Ca/4 (aSY ). Error bars represent standard 

e1Tor of the mean. p-va lues were calcu lated via one-way A OVA fo llowed by Tukey's 

Multiple Comparison test. 
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Figure 1 - Blueberry extract (BBE) partially protects Drmwphila melanogaster 

against a-.\ynuclein-induced early mortality 
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Figure 2- Blueberry extract (BBE) supplementation counteracts a-.\ynuclein-

induced developmental defects of the eye 
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APPENDIX 2 

Possible explanation for the lifespan variability in a-synuclein- and lacZ­

expressing D. melanogaster fed control medium observed from two independent 

experiments 

Two separate experiments were performed when analyzing the effects of exposing 

D. melanogasler to a SSE-supplemented diet. The lifespans of flies fed a standard 

(control) medium di ffered greatly between the pre- and post-eclosion supplementation 

experiments as can be seen in Table A2.1. The genotypes tested in the two experiments 

were identical and crosses were executed with the same procedures and equipment. The 

only difference between the two experiments was the location in which the flies were 

maintained during testing. The pre-eclosion longevity assays were performed in our 

laboratory in the basement of the Biotechnology building, whereas the post-eclosion 

experiments were conducted in an equipment storage room on the first floor of the 

Science building due to space constraints in the laboratory incubator. The median 

surviva l times reported from the latter experiment are significantly shorter than those 

discovered during the pre-eclosion assays. This difference is likely due to an unknown 

environmental factor as the food media and tly lines used were the same in each 

experiment. The incubator in which the flies were maintained during the post-eclosion 

experi ment was checked regularly for temperature changes, however, the incubator was 

an older piece of equipment and any fluctuations outside of work hours might have gone 
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unnoticed. The variability reported between the pre- and post-eclosion supplementation 

experiments is unfortunate, however it does not change the results I have reported for the 

effects o f BBE supplementation on a -syn-induced phenotypes. 
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Table A2. 1 - Median survival times of o.-synuclein- and /acZ-expressing D. melanogaster 
fed control media from two independent experiments 

Genot e 

w1118
; UAS-o.-syn/Ddc-Ga/4 ( I) 

1//8 s 1 w ; UA -o.-sy ntDdc-Ga/4 (2) 

w11 18
: UAS-o.-synl+; Ddc-Ga/4/+ ( I ) 

w11 18
; UAS-o.-sy nl+: Ddc-Ga/4/+ (2) 

w1118
: UAS-/acZ/Ddc-Ga/4 (I) 

w
1118

; UAS-/acZ/Ddc-Ga/4 (2) 

1v
1118

: UAS-IacZI+: Ddc-Ga/4/+ ( I ) 

w 1118
: UAS-/acZI+; Ddc-Ga/4/+ (2) 

Median survival (da s) 

46" 

si' 

si' 

Different superscripted letters indicate a significant difference (p < 0.05) between values for a particu lar 
genotype; comparisons were not made between different genotypes 
I: post-eclosion supplementation experiment, 2: pre-eclosion supplementation experi ment 
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