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Abstract 

This PhD research project consisted of two parts . In the first part a new pharmacoki­

netic model was introduced to improve t he accuracy of kidney function estimation 

based on a sampling schedule of 2 and 4 blood sample measurements. Previous models 

such SETJ and SET2 have been shown t o be unreliable with respect to the choice of 

sampling schedule and in some cases provide physiologically impossible values of the 

glomerular filtration rate ( G F R). The new model called Tk-GV uses a T ikhonov reg­

ularized gamma variate function to fit the plasma clearance data. Based on a group of 

46 patients, a comparison of four pharmacokinetics models (SETJ , SET2, OLS-GV, 

and Tk-GV) revealed that the Tk-GV model was the most robust with respect to 

sample size and sampling schedule and provided no physiologically impossible values 

of G FR. When compared to constant infusion results in t he literatures, the Tk-GV 

model was shown to eliminate the proportional overestimation of G F R produced 

by the SETJ model given by Chantler 's correction and the const ant overestimation 

produced by the SET2 model. 

Application of the Tk-GV model for estimating a patient 's GF R requires the 

collection of 4 blood samples. In cases where it is not possible to collect four blood 

samples, two blood samples are collected and the patient 's GFR is calculated using 

the SETJ model. A criterion called the renal sufficient index (RSI) was developed 

by others using a group of children to correct the overestimation of G F R as obt ained 
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from the SET1 model. In this work the R SI was applied to a mixed group of 26 

pat ients (adults, children , males, and females) and shown, based on addit ional medical 

information, to be able to accurately distinguish between patients with normal and 

abnormal G FR. 

Bone mineral density (BMD) is important for evaluating bone health , especially 

for elderly people such as post-menopause women and men with prost ate disease. 

However , analyzing a patient 's BMD change is difficult because of naturally occur­

ring short-term and long-t erm fluctuations in a patient 's BMD, and also the short­

term and long-term errors provided by the equipment used to measure BMD. The 

World Healt h Organization has provided a least significant change (LSC) criterion 

for distinguishing between normal and abnormal changes in a patient's BMD value. 

Unfortunately the LSC criterion only accounts for short -term machine error. In t he 

second part of this t hesis a new criterion called the tot al detectable difference (TDD) 

is introduced for analyzing changes in BMD in consideration of naturally occurring 

changes in the patient's BMD, and instrumentation error occurring on both short and 

long time scales. Based on the analysis of a group of 8,800 patients, a T DD value of 

approximately 0.045 g/cm2 is obtained for the hip and 0.060 gj cm2 for the lumbar 

spine. Based on the study of 9,379 patients, it is shown that t he LSC criterion has 

a potential of over-diagnozing BMD change by approximately 30% compared to t he 

TDD criterion. 
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Structure 

This thesis includes two research projects. 60% of this thesis focuses on the plasma 

clearance model which includes an introduction, literature review, data and analysis 

methods, results and discussion and possible applications. The remaining 40% of 

this t hesis introduces a new criterion for analyzing bone mineral density change as 

described above. The outline of the t hesis is listed as follows: 

1. Chapter 1 gives a general introduction of Nuclear Medicine. The topics include 

radioisotopes, radiation detection, instrumentations, and tracer kinetics. 

2. Chapters 2 to 7 present the first project of this thesis. Chapters 8 t o 10 present 

the second project of this thesis. 

3. Chapter 2 provides a t heoretical background and motivation of the plasma clear­

ance project. This chapter provides a brief overview of the clinical assessment 

of kidney function and a literature review of the major pharmacokinetic models 

along with a description of their performance. 

4. Chapter 3 outlines the data and analysis methods used to investigate t he pro­

posed model. The uncertainty of the measurement and numerical methods such 

as the Nelder Mead minimization method are discussed . 
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5. Chapter 4 presents the results of the calculations applied to 46 patients using the 

SET1, SET2, OLS-GV and Tk-GV models using the full samples and subsets. 

6. Chapter 5 compares t he performance of t he SET1 , SET2, OLS-GV and Tk-GV 

models including the estimated glomerular filtraltion rate ( G F R) , the effects of 

subset, case study and a cross comparison with other plasma clearance methods. 

7. Chapter 6 applies t he Tk-GV model to 24 h data. 

8. Chapter 7 presents a validation study of a kidney function correction method 

to compensate for the inaccuracy of the two-sample SET1 method. 

9. Chapter 8 introduces the concept of bone mineral density (BMD). The proposed 

method of analyzing time-based BMD results is introduced after a literature 

review. The motivation and the theory of the new criterion, total detectable 

difference (TD D), are provided. 

10. Chapter 9 lists the data and analysis methods used for investigating the new 

TDD criterion. 

11. Chapter 10 presents the results and discussion of the TDD criterion based on 

8,800 patients dataset. Details about the patient selection, data analysis and 

clinical impact are listed. 

12. Chapter 11 summarizes the major results and implications of both research 

projects and describes future research projects. 

13. Appendix A shows the clinical protocol implemented for collecting 4 blood sam­

ples at the General Hospital in St . John's, NL and the mathematical formulae 

for t he t heory of the Tk-GV model. 
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Chapter 1 

Introduction 

This chapter presents a brief introduction of Nuclear Medicine , basic nuclear physics, 

radiopharmaceuticals, and radiation detectors. 

1.1 Nuclear M edicine 

Nuclear medicine is a branch of medicine and medical imaging that uses the nuclear 

properties of matter in diagnosis and therapy. Nuclear medicine is unique (differ­

ent from other medical imaging modalities) in that it provides both anatomical and 

functional information. Clinical information can be derived from observing the radi­

ation emitted from radiopharmaceuticals (or radionuclide alone) administered orally, 

or int ravenously. Radiopharmaceuticals are radioactive pharmaceuticals made up of 

a radionuclide and a carrier molecule. T he carrier molecule delivers the radionuclide 

to the specific physiological area to be examinated or treated [ 1]. Measurements in 

nuclear medicine can be performed either in vitro or in vivo. In vitro measurements 

are based on samples (e.g. blood, urine) taken from patients after administering the 

radiopharmaceuticals. The radioactivity in t hese samples can help determine the 

1 
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physiological functions of the body or organs. In vivo measurements are performed 

on patients directly with an external detector (e.g. gamma camera) for measuring 

the radiation emitted from the radiopharmaceuticals inside the body. In general, in 

vivo measurements are more commonly used than in vitro measurements. 

Although natural radioisotopes were discovered before 1900 [2], the first nuclear 

medicine study was not performed until the late 1940s using radioactive iodine for 

thyroid cancer treatment. With the development of pharmacology and biochemistry, 

more radiopharmaceuticals were designed and used for detecting various diseases. By 

the 1970s, most organs could be visualized using nuclear medicine techniques. Con­

currently, radiation detection technology improved the quality of the nuclear medicine 

images. The first gamma camera for recording radiation counts and producing pla­

nar images was invented by Hal Anger in the 1950s [3]. In 1963, the first Single 

Photon Emission Computed Tomography (SPECT) study was performed by Kuhl 

and Edwards [2]. SPECT is a tomographic technique of nuclear medicine which uses 

gamma rays to scan the body at different angles and combines the acquired two­

dimensional (2D) images to reconstruct a t hree-dimensional (3D) representation of 

the body [4] . By the 1990s, Positron Emission Tomography (PET) was invented [5]. 

PET has an advantage over other imaging modalities such as Magnetic Resonance 

Imaging (MRI) [6] or ultrasonography [7] in that it can detect metabolic abnormal­

ities. Recent developments in imaging techniques consist of the fusion of several 

existing imaging techniques such as SPECT / CT, PET / CT, PET / MRI, etc. 

1. 2 Radioisotopes 

A radioisotope is an atom with an unstable nucleus that can release energy when 

it undergoes radioactive decay. Commonly used radioisotopes in nuclear medicine 
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are fluorine 18 (18 F)t , Phosphorus 32 (32P ), Gallium 67 (67Ga), Rubidium 82 (82Rb), 

Stront ium 89 (89Sr), Technetium 99 (99Tc), Indium 111 (min), Iodine 123 (123I), 

Iodine 131 e31 I), Thallium 201 e01T l), etc [8]. Besides their use in medical diagnosis, 

radioisotopes are also used for t reating certain diseases by delivering high radiation 

dosage to regions of interest . For example, hyperthyroidism and thyroid cancer can 

be treated using 131 I, and palliative bone pain can be managed using 89Sr [9]. 

1.2.1 D ecay and Half-life 

Most radioisotopes decay by one or several of the following ways: 1) alpha decay, 2) 

beta-minus decay, 3) beta-plus decay, or 4) gamma decay. The following list shows 

some examples of t hese decay processes [10]: 

a decay: 

(3- decay: 

(3+ decay: 

I' decay: 

A X --tA-4 y +4 He 
Z Z-2 2 

n -t p + e- +"De 

energy+ p -t n + e+ + V e 

~X -+~ X + /'-

Alpha (a) decay occurs when an atomic nucleus (e.g. ~~8U) emits an alpha (a) 

particle (a ~He helium nucleus) yielding another nucleus (e.g. ~54Th) in the process. 

Because of t heir mass, alpha part icles lose most of their energy within a relatively 

short distance (short penetrat ion depth) making it difficult to detect them with an 

external detection camera [10]. Therefore, alpha decay is not commonly used in 

nuclear medicine. 

T here are two types of beta ((3 ) decay: beta-minus decay and beta-plus decay 

[10]. Beta-minus ((3- ) decay occurs wit h the conversion of a neutron (n) into a 

tThe full notation is §8 F where 18 is the mass number and 9 is the atomic number . 
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proton (p) along with the ejection of a negatively charged beta part icle (e-, electron) 

and an antineutrino (ve) - On the other hand , beta-plus (,8+) decay results in the 

conversion of a proton (p) into a neutron ( n) accompanied by t he ejection of a positron 

(e+) as well as an electron neutrino (ve) · There is a relevant decay mode called 

electron capture, also known as inverse bet a decay, which occurs when the nucleus 

captures an orbital (e.g. K -shell or £-shell) electron, with t he conversion of a proton 

(p) into a neut ron (n) accompanied by t he ejection of a neutrino (ve) described as 

p + e- -+ n + V e . 

Gamma ( 1) decay occurs when an atomic nucleus decays to a lower energy state 

from an excited state. The energy difference between the two st at es is released by 

the emission of a gamma ray photon (t) [10]. Gamma rays are very important 

in nuclear medicine because of their relatively long penetration range that allows 

information (e.g. location and amount) from t he administ ered radiopharmaceut icals 

to be collected . 

Other useful transit ion processes include: isomeric transition where t he decay pro­

cess yields gamma radiation without emitting or capturing a part icle from t he nucleus, 

and electron/ positron annihilation (the basis of PET scanning) where an electron (e- ) 

and a positron ( e+) collide (annihilate) resulting in a photon pair (gamma rays, 1) 

e- + e+ -+ 1 + 1, etc. 

Radioactive decay is a random process where the probability of a single event 

(such as whether a specific atom will decay or not) cannot be determined precisely. 

However , probability theory enables the radioactive decay process to be described 

using the decay equation: 

(1. 1) 

where A(t) is t he radioactivity at t ime t (t ~ 0), A0 is the initial radioactivity at 
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time t= 0, and ). is the decay const ant given by ). = (In 2)/T1; 2 = 0.693/ T1; 2 where 

T1; 2 is t he half-life. Half-life is defined as the time for a radioactive sample to decay 

to half of its initial radioactivity [1] . The half-lives of the radiopharmaceut icals used 

in nuclear medicine range from seconds to years. T hose radiopharmaceut icals with 

relat ively short half-lives ensure that medical scanning can be performed in a t imely 

fashion and that patient s are not exposed to prolonged radiation. 

1.2.2 Interactions with Matt er 

Gamma radiation ionizes matter through three major processes: t he photoelectr ic 

effect , Compton scattering, and pair production [10]. 

The photoelectric effect transfers an incident photon's energy to an electron caus­

ing it to be ejected from the atom as a photoelectron. The photoelectron's kinetic 

energy is the difference between the incident photon's energy hv (where h is the 

P lanck constant and v is the frequency of the photon) and t he electron's binding 

energy. This photoelectron usually t ravels in a different direction from t he incident 

gamma photon [10]. 

Compton scattering occurs when an incident photon (with energy hv) interacts 

wit h matter , causing the ejection of an orbital electron (known as a Compton electron) 

and t he scattering of the photon at a reduced energy hv' . T he difference between the 

photoelectric effect and Compton scattering is that in t he latter case the electron is 

ejected via a scattering process while in the former case the electron is emitted after 

absorbing energy from the gamma photon. 

Pair production can occur when the energy of a gamma photon exceeds 1.022 

MeV [10] . A gamma photon (with energy of hv ) can be converted into an elect ron­

positron pair ( e+ and e- ) by interacting with a nucleus. Since each of the part icles 
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has a rest mass energy of 0.511 MeV, t he remaining gamma photon energy (greater 

than 1.022 MeV) appears as the kinetic energy of the electron-positron pair. Other 

pairs can also be produced including a tau and anti-tau or muon and ant i-muon pair. 

When photons pass through matter , the gradual loss in the intensity of the photons 

is called attenuation. Attenuation reduces the intensity of the incident beam due to 

absorption or scattering. The intensity, I , of a beam of photons going through an 

absorber is given by: 

(1.2) 

where ! 0 is the original intensity of the beam, l is the distance traveled in the absorber 

material and 1-Lt is the attenuation coefficient (also called the linear attenuation coef­

ficient) [10] . The minus sign (-) in the argument of the exponential indicates that 

the intensity decreases with increasing distance l. The quantity 1-Lt can be expressed 

as /-Ll = 1-LmP where p is the density of the absorber and /-Lm is t he mass attenuation 

coefficient of the absorber. 1-Lm depends on the atomic number of the absorber and 

the photon energy. The mass attenuation coefficient 1-Lm includes three parameters as 

follows /-Lm = T + O" + K, where T is the part due to the photoelectric effect, O" is the 

part due to Compton scattering and K, is the part due to pair production. 

1.3 Radiopharmaceuticals 

Our study of kidney function (Chapters 2 to 7) involved the use of the metastable 

(m) isotope technetium 99 (99mT c) as a tracer for measuring plasma clearance. 99mTc 

is the metastable isomer of 99Tc. Technetium 99 has an atomic number of 43 and 

a mass number of 99. Its half-life is approximately 2.12 x 105 years. On the other 

hand, 99mTc has a half-life of approximately 6.02 hours which is suitable for medical 
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imaging and blood sample collection techniques. Moreover , the relatively short half­

life of 99mTc limits the radiation exposure to patients. 99mT c has many advantages 

for kidney function tests such as: 1) Its half-life (6.02 hours) is comparable to t he du­

rat ion of many diagnostic studies; 2) It emits gamma rays within the detectable range 

of diagnostic equipment; 3) It is chemically suitable for chelating with certain phar­

maceuticals [11]. In clinical nuclear medicine applications, 99mT c-labeled compounds 

occupy approximately 85% of all radiopharmaceutical usage. 

~ -decay (87.5%) 

~-decay (12.5%) 
....,..,.-Tc-99m,6.02 hours 

~' 

~-decay 

Figure 1.1: Schematic representation of the transition from 99Mo to 99Ru. 

Molybdenum 99 (99Mo) is a radiopharmaceutical with a half-life of 66.02 hours. 

The beta-minus decay from 99Mo to 99Tc has a probability of 12.5% as shown in 

Figure 1.1. The second bet a-minus decay (wit h a probability of 87.5%) results in 

the formation of 99mT c through 99Mo ----t 99mT c + e- + 'De where 'De is the emitted 

antineutrino. 99mTc undergoes an isomeric transit ion to 99Tc through t he emission 

of a gamma photon . It is the gamma photon from this t ransition that is detected 
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during measurements . 

A generator is a system which holds a parent/ daughter (herein 99Moj99mTc) mix­

ture in a transient equilibrium. The generator is used for transporting radioisotopes 

whose parents' half-lives are relatively long compared with the transportation time. 

Because of t heir relatively short half- lives, certain radioisotopes cannot be shipped 

by commercial carriers and hence must be made locally or on-site. 99Mo can easily 

be stored and transported between medical institutions. 

A 99Mo to 99mTc generator is based on an ion-exchange column [1] . The working 

process of a generator can be described by t he following. Firstly, 99Mo exists as 

99Mo sodium molybdate (Na2Mo04 ) and is initially bounded to an alumina (Alz03 ) 

column. When 99Mo in the molybdate ion decays, it is transformed into 99mTc as 

a pertechnetate ion 99mTc04 . Passing a saline eluant solution through the alumina 

column removes the 99mTc04 and leaves 99Moo~- on the alumina column. The 

99mTc04 reacts with the saline solution forming sodium pertechnetate (Na99mTc0 4 ). 

After the 99mTc isotope is extracted from the sodium pertechnetate in one elution, 

the 99mTc's activity in the generator will regenerate from zero. The total amount of 

99mTc extracted depends on the time interval between the elutions, the quantity of 

99Mo and the efficiency of the elution. 

There are several types of chemical impurities produced by a 99Moj 99mTc gen­

erator eluate such as: 1) 99Mo impurities contained within the product 99mTc, 2) 

the radiochemical impurity introduce by hydrolyzed technetium, and 3) the chemical 

impurity of free Al3+ ions [1]. Therefore, quality control is required. 
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1.3.1 Chelation 

Chelation is the formation of chemical bonds between a ligand and a single atom [1 2]. 

The ligands used in radiopharmaceuticals are usually organic compounds. Chelants 

react with metal atoms therefore preventing the latter from reacting with other ele­

ments. Chelants are used in chelation therapy for heavy metal detoxification. 

One of the most commonly used chelants of 99mT c is diethylenetriamine penta­

acetate (DTPA). 99mTc-DTPA is used for kidney function tests because it is mostly 

eliminated from the kidneys after an intravenous administration [13]. 99mTc-DTPA 

was the radiopharmaceut ical used in this study. Other commonly used chelants for 

99mTc for performing kidney function tests are Mercapto Acetyl Tri Glycine (MAG3) 

and Dimercaptosuccinic acid (DMSA) [14]. 99mTc-MAG3 is used to detect scarring or 

necrosis of the renal cortex, as well as pyelonephritis (an infection in the kidneys) [1 5]. 

99mTc-DMSA is usually used for renal cortical imaging. 

Besides 99mTc, there are several other radioisotopes used for kidney function tests. 

One of the alternative radiopharmaceuticals is 51Chromium-ethylenediaminetetra­

acetic acid (51 Cr-EDTA) which is freely filtrated by t he glomerulus (see definition 

in Chapter 2) in the kidneys [16]. However , 51 Cr-EDTA is less often used than 

99mT c-DTPA in Canada. Another radiopharmaceutical is 1231 ortho-iodohippurate 

(1231-0IH) which is cleared by t ubular secretion in the kidneys. 

One thing to be considered while using 99mTc-labeled radiopharmaceut icals is t he 

possibility of protein binding of the radiopharmaceuticals with the plasma after the 

administration. Protein binding affects kidney function test results because it is t he 

unbounded fraction of 99mTc-DTPA in the body that produces the pharmacological 

effect. The normal range of protein-binding of the 99mTc-DTPA is between 3.7% and 

13.5% [17]. Dual injections (inject the same tracer twice over a certain t ime period) 
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of 99mTc-DTPA introduces a larger protein binding rate compared to using a single 

injection [18]. To reduce the inaccuracy of the kidney function test due to protein 

binding, one can use an ultrafiltrated solut ion of plasma (centrifuge the plasma for 

an additional 10 to 20 minutes) rather than a standard filtrated plasma (centrifuge 

the blood for 10 to 15 minutes until t he plasma is separated from the blood) and use 

chromatography (a laboratory technique for separating mixtures) to determine t he 

binding fraction [12]. 

1.4 Gamma Counter 

The convent ional instrument for count ing gamma rays is the Geiger Counter [19] . 

The Geiger counter is composed of a tube filled with an inert gas and two electrodes 

(anode and cathode). When radiation enters the tube, the gas is ionized resulting in 

the formation of positively charged ions (moving towards the cathode) and electrons 

(moving towards the anode) . During this process, addit ional ion pairs are also gen­

erated. The net effect is t he generat ion of a measurable electrical current . A more 

precise device for counting radioactivity is the scint illation detector. 

Scintillation is a physical phenomenon whereby certain materials can emit light 

(luminescence) when struck by radiation [10] . Radiation emitted from the body 

enters the device through a window and travels to the scintillator crystals. In the 

scint illator crystal, t he incident radiation produces photoelectrons which move around 

the crystal exciting orbital electrons. The excitation of these orbital electrons results 

in orbital vacancies, which are then filled by higher energy electrons. The excess 

energy of the decaying electrons is released as photons . Some of t he photons strike t he 

photocathode and produces electrons. T his process is repeated in a photomultiplier 

tube (PMT) where the signals are magnified to a measurable electric signal. 
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The inorganic scintillator , thallium-activated sodium iodine (Nai(Tl)) , is the most 

widely used scintillator in nuclear medicine. Nai (Tl) has several advantages such as : 

1) Its dense structure (p = 3.67 gjcm3 ) which makes it a good absorber, 2) Nai is 

transparent to light, 3) The output signal is approximately linear over a wide range 

of energy (for a relatively thick crystal, e.g. 25 mm) which is suitable for counting, 

and 4) It has a high light output because its emission spectrum matches well wit h t he 

sensitivity of photomultiplier tubes. A maximum efficiency (> 90%) can be achieved 

for incident wavelengt hs between 400 and 450 nanometers (nm); and 5) T he cost is 

relatively low [1] . 

The Nai (Tl) counters used in this work were commercial well counters where t he 

radioactive materials were placed inside a container consisting of wells of various shape 

such as 1.6 em diameter x 3.8 em deep or 13 em diameter x 25 em deep. Nai (Tl) 

counters are very suitable for count ing samples with relatively small radioactivity (on 

the order of microcuries) due to their high geometric efficiency. 

Figure 1.2 shows the single-well gamma counter used in the department of nuclear 

medicine at the General Hospital in St. John's, NL. T he cylinder at the bottom is 

the single well, surrounded by a shielding lid. T hat is where the test sample, plasma 

containing a radiopharmaceutical, was located when measuring the activity. The 

single-well gamma counter is connected to a computer for displaying and analyzing 

the dat a. The accuracy of the single-well counter can be affected by factors such 

as dead time correction, detector efficiency or geomet ric efficiency [1 , 20]. A rout ine 

quality cont rol for ensuring the performance of t he single-well counter should include 

steps such as daily tests for the calibration of peaking and sensit ivity, monthly test 

using the Chi-square t ests, occasionally (quarterly) test for the energy resolut ion and 

an annual test for the detector efficiency [21]. T here is also an adjustable probe for 
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Figure 1.2: The single-well gamma counter and thyroid uptake camera (manufac­
tured by Laboratory Technologies, Inc.) used at the General Hospital in St . John's, 
Newfoundland and Labrador. 



CHAPTER 1. INTRODUCTION 13 

performing a thyroid uptake test using 1231 or 131 I. To perform such measurements, 

the patient sits in a chair facing the st ationary probe positioned over their thyroid 

gland in the neck. 

1.5 Theory of SPECT 

The vast majority of nuclear medicine investigations are based on the usage of SPECT 

imaging. SPECT imaging is used to provide a three-dimensional (3D) image of regions 

of interest in the body. In order to construct the image t he patient is inject ed with a 

solution containing a radioactive tracer that moves throughout the patient t hrough 

the bloodstream. Gamma cameras are used to measure the gamma rays emitted 

from the tracer to form two-dimensional (2D) images. Using a computer assisted 

tomographic technique, the two-dimensional images are combined to form a three­

dimensional representation of the regions of interest under study. SPECT imaging is 

commonly used for performing kidney function tests. By providing dynamic images 

during a live scan, SPECT images can show how the kidneys are clearing t he t racer 

out in real t ime. At the heart of a SPECT machine are gamma cameras. The most 

commonly used gamma cameras are scint illation cameras which were first developed 

by Hal 0. Anger in 1950s [22] . 

Figure 1.3 shows a schematic representation of a gamma camera and how it is 

used to convert captured gamma rays into an image [23] . Gamma rays emitted from 

the radiopharmaceutical in the patient exit the body (labeled as subject shown in 

Figure 1.3) and reach t he collimators. The collimators which are usually made of 

tungsten or lead are used for refining the direction of the gamma rays by blocking 

or absorbing gamma rays which arrive at an unwanted angle. Once t he photons 

pass the collimat ors, they strike the Nai (Tl) scintillation cryst al which converts the 
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Nai(TI) 

Collimator 

y-rays 
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Figure 1.3: Diagram of a typical gamma camera. This diagram was adapted with 
permission from t he Journal of RadioGraphies [23]. 



CHAPTER 1. I NTRODUCTION 15 

energy of an incident gamma-ray photon to a lower energy photon (light) usually in 

the visual range. The light enters a photomultiplier t ubes (PMTs) which converts t he 

incident photon into an electron via the photoelectric effect which is t hen amplified 

into a measurable signal. This signal is split to produce information regarding t he 

X and Y positions of t he initial gamma ray along with a signal evaluated by a pulse 

height analyzer (PHA) which selectively counts pulses from the PMTs that fall within 

certain voltage amplit ude intervals, known as channels . The combined information 

is used to produce a 2D image as shown on top of Figure 1.3. The 2D images can 

be acquired eit her by a single-head rotating gamma camera (such as an arc with 180 

degree rotation or a multi-head gamma camera where multiple gamma cameras rotate 

at the same t ime capturing gamma rays). The multi-head SPECT is more commonly 

used at t he present because it takes less examination time and less radiation dose. 

The 2D image, also known as a planar image, has no information on the depth 

and structure at different depths. In order to obtain a 3D image using a gamma 

camera, multiple 2D projections are required taken from different directions, which 

is the principle behind SPECT. Using sophisticated tomographic reconstruction al­

gorithms such as an analytical algorit hm or iterative algorithm [24], 2D images taken 

from multiple angles are then reconstructed to 3D images of the patient . Image re-

construction methods used in SPECT also help improve the quality of the 3D images 

by reducing the effect of noise factors. 

When analyzing the quality of the images, there are, in general, three aspects to 

be considered. The first one is the unsharpnesst, seen as blurring or fuzziness. Factors 

such as the geometric distance between the detector and subject, the subject's indis-

tinguishable boundaries , involuntary or voluntary motions and receptor limitations 

tunsharpness is a term used in medical imaging processing, which refers to the loss of edge detail 
of t he geometric properties of the object or image. 
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in displaying the images, can contribute to the unsharpness. T he second aspect is the 

contrast of an image which allows subtle features to be distinguished. The distinction 

can be a difference in physical density or chemical composition (atomic number). To 

improve this, some substances can be used as contrast agents to enhance the intrinsic 

contrast . This technique is usually used in x-ray imaging, medical ult rasonography 

and MRI imaging. The third aspect is image noise. Any irrelevant information in 

the image can be defined as noise. These could be structure noise (e.g. unimportant 

structures), radiation noise (e.g. nonuniform intensity of the beam or scattered radi­

ation) , receptor noise (e.g. unbalance detectors in the gamma camera) and quantum 

noise (e.g. fluctuations of electric power supply or the thermal noise due to Brownian 

motion t) 

1.6 Tracer Kinetic Modeling 

Nuclear medicine diagnosis based on gamma counter measurements can be performed 

by pharmacokinetic analysis. One of the most important theories in pharmacokinetics 

is t racer kinetic modeling. 

The object of the tracer kinetic model is called the tracer (herein a radioisotope 

or radiopharmaceutical) which is the substance that follows a physiological or bio­

chemical process [ 1]. The kinetic process of how the body handles the tracer can be 

mathematically described using parameters such as: volume of distribution Vol (e.g. 

in ml or liter) , transit time T (e.g. in min or sec), and clearance C L (e.g. in ml/ min). 

Vol is calculated at t ransient equilibrium by Vol = D / C where D is the amount 

of tracer administered (e.g. in mg or Bq (for describing radioact ivity)) and C is t he 

tBrownian motion is the random movement of particles suspended in a medium. 
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concentration of t he tracer at transient equilibrium (e.g. in mg/ ml or Bq/ ml) [25]. Vol 

indicates the volume of the fluid for distributing the tracer in a transient equilibrium 

state between the plasma and the rest of the body. 

The timeT can be obtained from the equation T = Vol / Q where Q is t he flow of 

the tracer in units of ml/ min [25] . When a measurement is taken over a period of 

time, the average T and average Q are used instead. 

Clearance, CL, (or plasma clearance) is defined as the volume of a substance 

(tracer) cleared out from the body per unit time [25] . The definition is expressed as 

l l 
amount of tracer injected 

p asma c earance = 
total area under the concentration-time curve 

(1.3) 

The unit of the injected Dose is usually in mg or Bq, and the unit for the area under 

the curve is usually in mg/ min or Bq/ min. Therefore, the calculated plasma clearance 

is in units of Bq/ min or mg/min. In this study, plasma clearance is measured as the 

glomerular filtration rate. However, t he tracer can be cleared from urine as well . The 

difference between the plasma and urine clearance is due to the redist ribut ion of t he 

tracer inside the body. In the following, the term plasma clearance is used merely for 

the renal clearance. More details of plasma clearance and the mathematical models 

used to estimate it are shown in Chapter 2. 

1. 7 Bone Densitometer 

This PhD research project includes two projects. The first project is based on data 

collected using gamma counters while the second project is based on data collected 

using bone densitometers. 

A bone densitometer is used to measure the bone mineral density (BMD) of pa-
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tients. Bone density mainly refers to the inorganic components formed of carbonate 

hydroxyapatite [26]. BMD is a medical term used to define the bone mineral content 

(BMC) per area (being measured) given by BMD = BMC / Area, in units of g/ cm2
. 

The reason why BMD is not defined in terms of mass per volume is that the clinical 

measurement of BMD is mostly conducted using an X-ray technique which is based 

on projected 2D images. There are t echniques such as quantitative computed tomog­

raphy (QCT) for obtaining 3D information; however , QCT was not used in this work. 

Although QCT is more accurate for measuring volumetric bone density, it requires 

a relatively higher radiation dose t han conventional CT imaging [27]. In this study, 

BMD was measured using absorptiometry. 

Absorptiometry BMD measurements are based on the fact that cort ical bone 

(also known as compact bone) has a higher linear at tenuation coefficient than soft 

t issue under the same X-ray energy. The linear attenuation coefficient is the mass 

attenuation coefficient mult iplied by the density of the material. For a given amount 

of incident X-ray radiation, bone absorbs more X-rays compared with soft tissue. 

Therefore, there will be less X-ray energy detected through the bone compared with 

regions of soft tissue. In single energy X-ray absorptiometry the attenuation equation 

of an incident X-ray beam going through an area containing both bone and soft tissue 

is written as: 

(1.4) 

where ! 0 is the intensity of the incident X-ray, I is the intensity of the X-ray going 

through the material, /-Lsoft and /-Lbone are the mass attenuation coefficients (e.g. in 

units of g/cm2
) of soft tissue and bone and Msoft, and Mbone are the corresponding 

area densities (e.g. in units of cm2/g). There are two unknown variables Jll[soft and 

Mbone in Eq 1.4. The solut ion to Mbone is obtained by surrounding the area being 
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measured with a soft t issue equivalent material (such as water), and measuring t he 

beam intensity, I soft, by letting the X-rays go through t he area containing no bone 

material. In this way, the term 1-lsoftMsoft can be calculated as 

1 loe-J.LsoftMsoft 
soft 

1-lsoft Msoft 
- ln I soft 

Io ' 

from which it is possible to calculate the bone density as 

1 I 
--- (ln l + 1-lsoftMsoft ) · 

/-Lbone 0 

(1.5) 

(1.6) 

Because of the requirement of surrounding the area under study in water , single-

energy X-ray absorptiometry is limited to the usage of certain body parts, such as 

the forearm [28]. 

At the present , dual energy X-ray absorpt iometry (DEXA or DXA) developed 

from single energy X-ray absorptiometry (SXA) is more commonly used to distinguish 

the density of soft tissue from that of bone. The two X-ray energy levels can be 

generated by either using a K-absorpt ion filter to separate a cont inuous energy X-ray 

spectrum into a high and low energy beam, or using a switch to change the voltage 

applied to the X-ray tube [29]. Given an incident X-ray beam with two energy levels, 

the measured intensities I0 and Ib are given by: 

I' (1 . 7) 

where the prime notation 1s used to indicate parameters that are affected by the 
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different X-ray energy. Equations 1.7 can be manipulated to solved for the density of 

both soft t issue and bone to give: 

1 Io Ib 
1-lsort ln I - 1-lsort ln r 

I I 
f-lsoftf-lbone - 1-lsoft f-lbone 

M soft 

1 Io Ib 
1-lbone ln I - 1-lbone ln r 

I I . 

f1bone f-lsoft - /-lbone f-lsoft 
( 1.8) 

DXA not only improves the accuracy of t he calculat ed bone density but also allows 

more sites such as spine and hip to be measured since it does not require the measure-

ment site to be surrounded by water (as required by SXA) [29]. This is an important 

advant age of DXA since most BMD measurements focus on the lumbar spine or t he 

upper part of t he hip because of t he high incident rate of fractures occurring around 

these areas. The radiation of a whole body bone density scan using a bone densito-

meter is approximately 1/ 10 that of a chest X-ray [30]. 

Figure 1.4 illustrates two BMD images obtained from a General Electric (GE) 

Lunar Prodigy bone densitometer machine in the department of Nuclear Medicine at 

the General Hospital in St. John's, NL. The image in Figure 1.4 (a) is a BMD scan of 

the lumbar spine known as t he third major region of the spine. T he sections 11-1 4 

labeled with grids in Figure 1.4 (a) were used in the second project described in this 

t hesis (Chapters 8 to 10). T he image in Figure 1.4 (b) is of the hip region. T he 

region labeled femoral neck is the proximal part of the femur which surrounds t he hip 

joint. A femoral fracture can be ident ified as a hip fracture if t he fracture involves the 

femoral neck, head or the shaft of the femur. The BMD value of the femoral neck is 

important for t he diagnosis or prediction of hip fracture. The edges of the spine and 

hip can be drawn either automatically using software or manually for defining the Re-

gions of Interest (ROis) for performing the BMD calculations. T he brighter areas in 
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(a) Spine (b) Hip 

Figure 1.4: (a) Demonstration of a BMD image of the lumbar spine and (b) the hip, 
obtained using a GE Lunar Prodigy Dual-energy X-ray absorptiometry densitometer. 
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the image indicate bone because bone attenuates (absorbs) X-ray more than the tis­

sue. The BMD value of each examination site for the hip is given, such as the femoral 

neck, trochanter , and wards, etc. The calculation of BMD values in the spine is the av­

eraged bone density. For example, BMDLl-L4 = (BMCL1 + BMCL2+BMCL3 +BMCL4) 

/ (AreaL1 +AreaL2+AreaL3+AreaL4) where BMC is the bone mineral content . Simi­

larly, the BMD calculation of the total hip is the mean BMD value of all BMD values 

of each examination site involved in the hip region. 

The DXA densitometer used at the General Hospital in St. John's, NL is the Lunar 

Prodigy manufactured by General Electric (GE) and the DXA densitometer used at 

the St. Clare's Mercy hospital in St. John's , NL is the QDR 4500 manufactured by 

Hologic. The GE densitometer operates at photon energies of 40 and 70 keV while 

the Hologic densitometer has an X-ray tube of 70 and 140 keV. A bone density test 

normally takes 5 to 10 minutes. 

DXA densitometers from different manufacturers perform differently in obtaining 

BMD measurements. The second project discussed in this thesis uses data from 

both the GE and Hologic densitometers. Both densitometers use fan-beam design 

instead of pencil beam. In general, the BMD values from the GE densitometer are 

larger by approximately 11.7% than t hose from the Hologic densitometer for t he 

same patient [31]. The main reason for the difference is due to t he fan beam design 

and the method used for calculating the BMD value [32]. T he GE Lunar Prodigy 

densitometer has a smaller X-ray aperture and fewer detectors, therefore providing 

a smaller X-ray flux. As a result , the GE Lunar prodigy densitometer interrogates 

a narrower anatomical region, requiring multiple scans to be collected to complete a 

single measurement . The scan dimension for t he GE Lunar Prodigy densitometer is 

197.5 x 60 em while for the Hologic QDR densitometer is 195.6 x 67 em [33]. As 
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a result, the examination t ime of the GE Lunar Prodigy densitometer is longer than 

that of the Hologic QDR 4500 densitometer. Under the same scan speed, the GE 

Lunar Prodigy densitometer has less precision and image quality than the Hologic 

QDR 4500 densitometer. However, the Hologic QDR 4500 densitometer suffers from 

magnification problems due to the wide angle X-ray beam which means that objects 

scanned at a closer distance have less magnification than those scanned at a further 

distance. 

1.8 My Contributions 

In this section, I explain my role in both the GF R and BMD projects with respect 

to the theory, programming, data analysis, and physics (quality control of the instru­

ments). 

I started my PhD and became involved in the GF R project at the stage of de­

veloping the theory of the Tikhonov regularization. At this stage, the idea of using 

Tikhonov regularization for solving the gamma variate function had already been 

conceived , however, the implementation of the idea with regard to the mathematical 

equations and the programming was not done. I contributed to the derivation of 

the theory, such as finding the error propagation terms for G F R and Vol, which are 

introduced as ERG and ERV in Section 2.6.4. I also contributed to finding t he best 

minimization method, the Neider Mead method, after trying various minimization 

methods. 

I contributed significantly to t he computer programming. The initial code for 

t he Tk-GV model with the Neider Mead minimization was created by me in 2008. I 

did the programming for all the subsets (Leave-one-out , Leave-two-out , Leave-three­

out, Leave-four-out , Bootstrapping, Jackknife, and the hump subsets) for all four 
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models between 2008 and 2009 on my own. I performed 90% of the calculations 

for the results and also verified the results from Mathematica with those from other 

software packages such as Matlab and Visual Basic 6, in 2009. I created the code 

for the patients' data from Dr. Burniston in 2010, including defining the scaling 

factor for the concent ration values, performing all t he calculations using the full 

samples and subsets, and analyzing the results. Between 2010 and 2011, I created 

the final software which enabled the clinical application of t he Tk-GV method for t he 

technologists at the General Hospital. This software provided a user-friendly interface 

that the technologist could use under the Microsoft Excel environment (I implanted 

the required linkage between Excel and Mathematica) without t he need to learn how 

to use Mathematica. This software was also adopted and used by researchers from 

other institutions. I calculated approximately 90% of all the results and analyzed 

them in collaboration. 

In addition, I worked on developing a website (www. renalfunction .org) for the ap­

plication of the Tk-GV model. The goal of this website was to attract users t o use t he 

Tk-GV method for estimating the G F R values by inputting the initial information, 

including the concentration of t he radioactivity and the collection t ime. Although I 

built the website at the request of my supervisor, he has since decided to discontinue 

it by allowing the domain of the website to expired in 2010. In 2009, I developed 

a program for calculating the dosage for thyroid function examination using Visual 

Basic 6, which has since been used by the technologists in t he department of Nuclear 

Medicine at the General Hospital. 

Moreover , I have improved the application of the Tk-GV method from a medical 

physics perspective by implement ing quality cont rol and quality assurance of t he 

instruments used for t he plasma clearance method , as well as modifying the laboratory 
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protocol and educating the technologists. The scintillation well counter was calibrated 

and tested on a regular basis using a linearity test, count ing statistics, and Chi-square 

tests. To perform these tests, one needs to understand the basic physics principles 

of the instruments and how to analyze the results from the instruments. In 2010, I 

spotted the problem of t he multi-well counter in counting and repaired it by taking 

the counter apart and tuning the mechanical parts inside the instrument under t he 

instructions of the technical service of the manufacturer . Moreover, the appropriate 

use of t he air displacement pipetting made a significant difference to t he accuracy of 

the samples. The sampling time was recorded using a stop-watch, which was initiated 

by me. All the radioactivity counting was considered for decay correction. 

Between 2010 and 2011, I participated in the application of the Tk-GV model 

to 10 local patients ' studies, during which I performed t he quality control of t he 

gamma counter the day before the study and the day during the test, int roduced t he 

use of an electronic balance for better controlling the pi petting error , recorded the 

sampling t imes, counted all the samples, calculated the results and reported t hem to 

the physicians. All the results of the 10 patients' G F R values and data analysis based 

on these 10 patients were performed on my own. A paper written by me outlining 

the results of these 10 patients was presented to my supervisor in 2011 . 

The idea of the BMD project was proposed in 2009 by my supervisor. In order 

to initiate this work I wrote and applied for a research grant and the human ethical 

approvals on my own. I collected all the BMD data from both the General Hospi­

tal and St. Clare's Mercy Hospital in 2009 and completed all the data processing, 

programming, and analysis on my own. My supervisor provided advice on what dis­

tribution function to use for fitt ing t he histogram. I performed multiple tests on 

different distribut ion functions using Mathematica in order to obtain the final distri-
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bution function. I also wrote the code for performing Monte Carlo simulations for 

the BMD project, however , t hese results could not be included in my t hesis. After 

present ing these findings at a conference, I realized t here was a need to expand t he 

investigation of the BMD study from the local dataset to a national dataset , in order 

to determine t he general range of the calculated criterion. I wrote an application to 

the Canadian multi-center osteoporosis study (CaMas) for sharing their data, and this 

request was permitted in 2010. I performed a t horough calculation and data analysis 

on the CaMas dataset on my own. I have independently completed two paper drafts 

based on my findings for t his BMD project . 



Chapter 2 

Glomerular Filtration Rate ( GFR) 

Determination 

This chapter introduces the concept of glomerular filtration rate ( G F R) along with 

the methods commonly used for measuring G FR. The plasma clearance method is 

discussed in detail due to its importance to this work. A literature review of plasma 

clearance methods is given and the motivation of this study is also presented. 

2.1 Glomerular Filtration Rate 

The kidneys are important for regulating body fluid , osmolarity, electrolyte and pH 

balance, excreting metabolic and foreign substances and secreting hormones [34]. 

Urine is the major waste product from the kidneys [35] . The volume of urine is 

controlled by the balance between fluid intake and output . 

Figure 2.1 shows a schematic representation of the anatomy of t he kidney. This 

figure is a general demonstration of the kidney and some of the concepts discussed 

in the following are not shown in this figure. The kidney is composed of two major 

27 
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renal artery 

cortex 

Figure 2.1: Schemat ic representation of the anatomy of a human kidney. 
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regions: t he cortex (the outer region) and the medulla (the inner region). Inside 

the medulla there are multiple cone-shaped masses called renal pyramids [35]. Blood 

enters the kidney via the renal artery, going through smaller arteries and eventually 

coming out from t he afferent arteriole. This is where t he blood ent ers t he glomerulus. 

The solution t hat comes out of t he glomerulus contains the waste product being 

excreted from the ureter . 

The smallest functional unit of the kidney is the nephron. For a healthy adult, 

there are approximately 1.5 million nephrons in one kidney. Each nephron is com­

posed of a glomerulus t hrough which fluid is filtered, and a long tubule in which 

fluid is converted to urine [35]. The filtered fluid first enters t he proximal tubule 

and t hen the loop of henle. Coming out t he loop of henle, the fluid enters the distal 

convoluted t ubule and then the collecting duct that collects the urine. The blood 

flow to both kidneys is approximately 21% to 25% of the cardiac output. There 

are four mechanisms involved in the nephron: fil tration, excret ion, reabsorption, and 

secretion. 

T he total function of all the nephrons in t he kidneys is called the glomerular filt ra­

t ion rate ( G F R) . G F R is defined as the volume of fluid filtered from the glomerular 

capillaries into the Bowman's capsule per unit t ime [35]. GFR is typically expressed 

in milliliter per minute (ml/ min) . GF R indicates how fast the kidneys filter blood 

and is proportional to the clearance of wastes from the body. G F R is usually used 

to indicate t he level of kidney function. The normal range of GFR for a healthy 

adult is between 100 and 130 ml/ min/ 1.73 m2 which represents approximately 170 

liters (L) of fluid processed by the kidneys per day [35] . This is equivalent to re­

freshing all t he fluid in t he body three t imes per day. The unit ml/ min/ 1.73 m2 is 

commonly used for describing estimated kidney function because it is realized that 



CHAPTER 2 . GLOMERULAR FILT RATION R ATE ( GFR) D ET ER M I NATION 30 

the absolute value of the calculated GF R values (in units of ml/min) is insufficient to 

reflect the kidney function for different body habitus. For example, t he normal range 

of G F R values for obese people is higher t han that for the non-obese people [36]. 

T herefore, in order to better compare t he estimated GF R results for these patients, 

one recommendation is t o calibrate the G F R using the ratio of the patient's body 

surface area (BSA) to the standard BSA value 1.73 m2 . BSA is also commonly used 

to indicate t he patient's metabolism. A commonly used formula for calculating BSA 

is the Haycock formula [37], BSA(m 2 ) = 0.02425 x height(cm)03964 x mass(kg) 0
·
5378

. 

The BSA correction for G F R is writ ten as G F R corrected = G F R X 1. 73 / BSA [38] . 

The standard BSA for healthy adults is 1.73 m2 and less for children. As an exam­

ple, if the patient's calculated GFR is 100 ml/ min and his/her BSA is 1.95 m2
, t he 

corrected GFR = 100 x 1.73 / 1.95 = 88.72 ml/min/1.73 m2
. There have been stud-

ies questioning how well the BSA can calibrate the G F R difference among different 

people [39], however, t his is not t he focus of this study. We used the BSA corrected 

GFR mainly for the purpose of comparing our results with the GFR values used in 

the guidelines for determining kidney diseases. 

GF R is closely related to t he renal blood supply. If renal blood flow (REF) 

is defined as the volume of blood delivered to the kidneys per unit time, another 

measurement called the filt ration fraction (%) = ( G F R/ RB F) is used to describe t he 

kidney function. T his fil t ration fraction is approximately 20% for a healthy adult [35]. 

2.1.1 Impact of Kidney Function 

Kidney function varies wit h different factors such as age, gender, race, body habitus, 

diet, etc. For example, women generally have lower GF R values than men at t he 

same age and Asians tend to have lower G F R values than Caucasians. T he peak 
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value of GFR is achieved after puberty. After t he age of 40, the amount of funct ion­

ing nephrons starts to decrease by approximately 10% per decade [35]. This grad­

ual reduction is not life-threatening since the human body adapts to these changes 

correspondingly [40]. However , acute loss or abnormal loss of nephrons should be 

monitored for further investigations. 

Accurate early diagnosis of kidney function decrease can effectively prevent the 

onset of more severe kidney diseases. Kidney diseases include acute renal failure 

(over hours or days) and chronic renal failure (over 3 mont hs) [35] . With respect 

to pathology, kidney diseases can occur at t he renal blood vessels, t he glomeruli , the 

tubules, or parts of t he urinary tract and bladder , etc . Kidney diseases can also result 

in complications such as cardiovascular disease, anemia, malnutrition , and so on [35]. 

As a result , a precise quant itative measurement of GF R is necessary for evaluating 

kidney function. 

Chronic kidney disease ( CKD) is defined as the progressive loss of kidney function 

over t ime. In Canada, t here are nearly 3 million people wit h CKDs [41]. GFR is 

used to ident ify the different stages of CKDs. Table 2.1 shows t he five stages of 

CKDs (CKD1 , . . . , CKD5) classified by the ational Kidney Foundation in 2002 [42]. 

When t he patient's GF R loss is greater t han 90% of his/ her expected GF R (hence, 

the remaining GF R is approximately less t han 15 ml/min/ 1.73 m2 ), the patient is 

diagnosed as being at the end stage of renal disease or kidney failure. At this stage 

(CKD5), dialysis or kidney t ransplant is required. 

T he accuracy of the G F R measurement is important for monitoring kidney func­

tion changes, especially for patients at the boundaries of different CKD stages or 

at the end stage. Some acute kidney failure can be reversible if early diagnosis is 

made available, however , miscalculations of GF R might lead to inappropriate treat-
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Table 2.1: The stages of chronic kidney disease ( CKD). All G F R values are in units 
of ml/ min/ 1.73 m2 (1.73 m2 represents the standard body surface area (BSA) of a 
healt hy young adult ). 

Symbol Stage G F R cr-corrected 

CKD1 Early Stage 2:: 90 and evidence of kidney damage 

CKD2 Mild (60, 89) and evidence of kidney damage 

CKD3 Moderate (30, 59) 

CKD4 Severe (15, 29) 

CKD5 Kidney Failure < 15 

ment plans and cause potential damage to t he kidneys. For example, overestimation 

of G F R may misdiagnose the disease stage and delay treatment while underestima­

tion of GF R may lead to unnecessary treatment or over-medication. Precise GF R 

measurements are important for CKD pre-screening programs such as the Kidney 

Early Evaluation Program (KEEP) in the United States and the Kidney Founda­

tion of Canada [43, 44] . P reliminary results from KEEP have shown t hat there is an 

approximate 50% delay in the early diagnosis of CKD which significant ly increases 

the potential burden for treating later stage kidney diseases [ 45]. Moreover , because 

kidney diseases are correlated wit h many other disorders, accurate diagnosis of CKD 

can benefit the detection of other relative health issues such as hypertension and 

diabetes [35]. 

2.2 GFR M easurem ents 

2.2. 1 B iomarkers 

In situ biomarkers for G F R measurements include blood urea nitrogen (BUN) and 

serum creatinine ( Scr ) [46] . A BUN test measures the amount of urea nitrogen in 
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the blood whereas Scr measures the level of serum creatinine in the blood. BUN is 

a natural waste product from protein metabolism. Serum creatinine (Scr) is a waste 

product of creatine phosphate in muscle and t herefore the Scr level depends on the 

muscle mass of the body. Both biomarkers are produced internally and eliminated 

mainly through filtration by the kidneys. Normal human blood contains 7 to 21 

mg/dL of BUN and a Scr level of 0.5 to 1.0 mg/dL for women and 0.7 to 1.2 mg/ dL 

for men. An increase in either BUN or Scr indicates a potential decrease in GFH. 

However, t he level of BUN or Scr can be affected by many other factors besides kidney 

diseases. For example, diabetes and hypertension can result in elevated BUN. High 

muscle content , meat digestion or certain medications can increase the Scr level. The 

major drawback of using BUN or Scr for G F H calculation is that their concentrat ions 

will not change significantly until two thirds of the kidney funct ion is lost . As a result , 

Scr or BUN is insufficient for detecting early stage kidney diseases. 

A more accurate G F R measurement is based on the creatinine concentration 

which involves the collection of both blood samples and 24-hour urine samples. T he 

collection of the 24-hour urine samples is performed by collecting all the urine from 

the patient during a 24-h period [47] . From this, the GFH can be calculated as: 

GFHcr (2.1 ) 

where t he Ucr (mg/ ml) is the urine creatinine concent ration, V (ml/ min) is the flow 

rate of urine (determined by the volume of urine divided by the period of time used 

for the urine collection) and S cr (mg/ ml) is the serum creatnine concent ration. This 

calculated G F Her can be further corrected using BSA as G F H er-corrected [38], 

G F H er-correct ed 
GFHcr X 1.73 

BSA 
(2.2) 
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Besides the In situ biomarkers, there are external biomarkers available which 

are administered int ravenously or orally for estimating G F R values. One example is 

inulin , a natural polysaccharide found in many types of plants. Inulin is known as the 

ideal GF R biomarker because it is neither reabsorbed nor excreted by the glomerulus 

in the kidneys. Studies have shown that more than 98% of inulin is filtered by t he 

kidneys [46] . Another study has indicated that inulin can also be reabsorbed by the 

tubules in the kidneys besides the glomerulus which leads to an overestimation of t he 

G F R value by approximately 15% [48]. Inulin can also cause allergic reactions such 

as anaphylaxis [49]. Moreover, the inulin method sometimes requires the collection of 

urine samples which adds to the length in t ime and uncertainty of the examination 

procedure. In some cases, patients need to be catheterized to ensure the accuracy and 

completeness of the urine collection [50]. The inaccuracy in the 24 h urine collection 

can be as much as 20% [ 4 7]. Inulin based G F R measurements also suffer the same 

limitation as BUN or Scr where the inulin clearance will remain normal until 30% of 

the kidney function is lost, due to hyperfiltration (body is adapting to the early loss 

of nephrons) of the remaining nephrons. 

The gold standard for measuring G F R uses a constant infusion (injection) of 

inulin [51]. Constant infusion techniques require a system to deliver the solution 

(herein inulin) at a constant rate (e.g. 0.5 ml/ min) to the body. T he injection 

process normally takes approximately 15 to 30 minutes but in some cases can take 

hours [51 , 52]. During the infusion , blood samples, with or without t imed urine 

samples, are collected for estimating the G F R values. If urine samples are included 

in the method, the G F R is estimated using 

(2.3) 
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where the Urn (mgjml) is the urine inulin concentration, V (ml/ min) is the flow rate 

of urine and Srn (mg/ml) is t he serum inulin concentration. If the method does not 

require urine samples, the G F R is estimated using 

G F Rnon-urine 
In 

Irn X Rrn 
Srn 

(2.4) 

where Irn is t he concentration of inulin in the infusion injection and Rrn is the infusion 

rate [53]. 

The advantage of using constant infusion of inulin is that it can avoid t he acute 

side effects of inulin in certain patients. It also allows for a transient equilibrium of t he 

tracer to be reached in order to calculate the plasma clearance. The disadvantage of 

using constant infusion of inulin method (regardless of whether or not urine samples 

are used) is t hat for patients with impaired kidney functions, their G F R values cannot 

be accurately measured because the concentration of the tracer cont inuously increases 

for a long period of time, hence making it difficult to assess the elimination stage 

[53,54]. Studies have shown that inulin-based GFR measurements can overestimate 

the real GF R by approximately 8.1 ml/ min [51]. Therefore, despite being an excellent 

tracer, inulin is not commonly used for estimating kidney function. We did not use 

inulin in our study, but used 99mTc-DTPA instead as the tracer for estimating GF R 

values. 

Another external biomarker iohexol is known as a radiocontrast agent for med-

ical imaging. The clearance of iohexol is recorded using time-based blood samples 

collected after the injection [55]. The iohexol based G F R is calculated as 
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1 Dose 
GF Rrohexol = 0.0016 + t j Volln Ct X Vol ' (2.5) 

where Dose is the injected dose of iohexol (in units of mg) , t is t he time after the 

injection (in units of min), Ct is the iohexol concentration (in units of mg/ ml) obtained 

at time t, and Vol is the volume of distribution expressed as Vol(ml) = 187 x 

mass (kg) + 732, and the calculated G F Rrohexol is in ml/ min [55]. The estimated 

G F Rrohexol can also be corrected using BSA or other body scaling methods. 

2.2.2 Estimated GFR ( eGFR) 

Biomarker-based GF R estimations are usually inaccurate, especially for detecting low 

G F R values or mild G F R changes at early stages of CKD [34, 56]. One important 

limitation of the current G F R estimation is the inappropriate consideration for t he 

various body habitus between individuals. For example, females and males differ in 

their lean body mass, therefore, Scr based G F R needs to be corrected for gender. 

The BSA correction can compensate for some of the inaccuracies, however BSA itself 

is a biased estimation of body habitus (see Chapter 7). More variables besides BSA 

(BSA considers two parameters: body mass and height) should be considered to 

describe the expected metabolism or kidney function appropriately [51 ,57]. Moreover, 

the criterion for determining the CKD stage has been obtained from a study group 

involving mainly Caucasians without the consideration of African Americans (with 

relatively higher metabolic rate) or Asians [42] . 

In order to take into account more parameters for estimating G F R, a method 

called estimated GFR (eGFR) was produced [57,58]. The two formulae most com­

monly used for estimating eGF R are the Cockcroft-Gault (CG) formula, and t he 

Modification of Diet in Renal Disease (MDRD) formula [57, 58]. T he CG formula 
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developed in 1976 is given by: 

G R _ (140- Age) x Mass x (0.85 if Female) 
e F CG - 72 x Sc:r ' (2.6) 

where t he resulting eGF ReG value is in mg/dL, Age is in years, Mass is in kg and Scr 

is in mg/ml. The MDRD formula uses four variables: Scr , Age, ethnicity and gender 

and is given by: 

eGFRMDRD = 186 X s~l.l54 X Age-0203 
X (1.212 if Black) X (0.742 if Female) . (2.7) 

The eG F R formulae have been shown to improve the accuracy of conventional Scr 

based G F R measurements [59] . At this point in t ime, there is not yet a generally 

accepted eGF R formula part ly due to the relatively small study group used for ob-

taining each equation. As a result, new formulae for calculating eG F R have been 

reported [60- 62] . 

The latest development of an eG F R equation is the Schwartz formula [62], which 

was derived for evaluating t he G F R values of children . T he formula contains five 

variables: height , Scr , Cystain C, BUN and gender, and is given by: 

eG F Rschwartz 39.1 X (Height/ Scr)0
·
516 

X (1.8/ Cys)0
·
294 

x (30/ BUN)0
·
169 x (1.099( if Male)) x (Height / 1.4)0

·
188

, (2 .8) 

where Cys is the serum level of Cystatin C . T he limitation of this formula is that it 

is only applicable to children. 
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2.2.3 Renography 

Renography is a type of kidney imaging technique based on the renal excretion of a 

radiopharmaceutical. Renographs are typically acquired using gamma cameras de-

pending on the uptake sites of the radiopharmaceutical in t he kidney [1]. SPECT 

and PET can bot h be used for renography study [63] . However, SPECT is the most 

commonly used imaging modality for collecting renographs. Various radiopharmaceu-

ticals such as 99mTc-DTPA 99mTc-DMSA 99mTc-MAG3 51Cr-EDTA and 123I-OIH 
' ' ' ' 

can be used for renography using SPECT. A standard renography analysis includes 

a series of digital images taken with a 10 second interval exposure collected over a 

period of approximately 30 minutes. G F R can be estimated from the contrast differ-

ence between t he kidneys and the surrounding tissues in t he renographs. However , t he 

renograph only gives a relative GF R value instead of the absolute GF R value because 

the estimation is not based on t he actual clearance of plasma but the characteristics 

of the obtained images as an indirect representation. The renographs are analyzed 

using computer software to obtain t he distribution of radioactive counts over t ime 

in the kidneys and surrounding tissues of interest (e.g. aorta and bladder). These 

numerical data can be plotted as a t ime-activity curve (radioactivity as a function of 

time) known as a renogram. 

A renograph directly shows the location and relative sizes of both kidneys [64]. 

A renogram is plotted as the radioactive counts (a measure of the concentration of 

the injected radiopharmaceut ical) versus t ime (min), see Figure 2.2 in the following 

section. A renogram has t hree phases, shown in Figure 2.2 [65] . The first , phase I, 

represents t he perfusion stage, appearing as a steep posit ive slope in the curve which 

occurs wit hin the first few minutes. T he second, phase II, extends from the perfusion 

to the peak value of the concentration value in the renogram. Phase III is the concave 
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negative slope part of the renogram indicating t he elimination of the radiopharma­

ceuticals from the kidneys. Renograms are usually composed of time-activity curves 

for the left and right kidney, as well as the bladder. Normal kidneys are symmetric on 

both sides, leading to an approximately 50/50 split in kidney functions. Malfunction­

ing kidneys may have a different ratio between the two sides. There are cases where 

both kidneys are equivalent ly malfunctioning but still maintaining a 50/ 50 ratio. An 

abnormal renogram may indicate obstructions or insufficiencies in the kidneys. How­

ever, renograms cannot be used alone as the criterion for diagnosing kidney diseases. 

Other factors should be considered such as the total and individual kidney function, 

pathology findings and other quantitative measurements . A limitation of the time­

activity curve method is that the time range of the renogram does not usually extend 

beyond 30 minutes, which may omit some characteristics of the later elimination stage 

of the kidneys. A detail description of renographs and renogram analysis were not 

given since t hey were not used in this study for estimating GF R values. 

2.3 Plasma Clearance 

As mentioned in Section 2.2 , Scr based G F R estimation is obtained from plasma 

clearance data. In t his study, the plasma clearance of radiopharmaceuticals was t he 

method of choice for estimating G FR. The plasma clearance method measures t he 

filtration rate of kidneys and other organs (e.g. liver or bladder) . Plasma clearance 

results indicate how fast plasma is filtered from the kidneys. The use of radiophar­

maceuticals for estimating G F R in nuclear medicine dates back to the 1960s. At t he 

present, the choice of radiopharmaceuticals includes 51 Cr-EDTA, 99mT c-DTPA, and 

1251-iothalamate, etc. The mathematical tools for estimating the G F R value from 

observed plasma data are usually called pharmacokinetic models. 
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General Theory of Plasma Clearance 

There are two essent ial parameters used in t he study of plasma clearance: G F R 

( G F R is used to represent C L described in Section 1.6 since G F R describes t he 

clearance through the kidneys specifically) and the volume of distribut ion (Vol). 

GF R is obtained from t he measured radioactivity of a tracer in t he plasma per 

unit volume using t he following equation: 

Dose 
GF R = fooo C(t)dt' (2.9) 

where Dose is the amount of administered radiopharmaceuticals measured in units 

of MBq in t his study, and C(t) is the concentration of t he plasma (radioactivity 

measured from the blood samples collect ed from a patient) in units of MBq/ ml at a 

given time t [66]. 

The volume of distribution (Vol) is very important for the investigation of kidney 

function and interpreting G F R results because Vol can help determine whether or 

not the estimated GF R is physiological or physical. Vol is t he apparent volume used 

to quantify the distribut ion of a drug between the plasma and t he rest of the body 

after its administration . In this case, Vol is defined as t he theoretical volume in 

which the total amount of the tracer needs to be uniformly distributed to achieve 

the expected plasma concent ration [35]. The Vol value is related to the estimated 

G F R value such t hat decreasing G F R usually causes Vol to increase due to the slower 

plasma clearance rate and fluid retent ion in t he body. T he Vol value is also compared 

wit h the total body fluid volume in order to determine whether or not the patient is 

dehydrated. Vol is calculated from the G F R as: 

(Vol)= MRT x (GFR), (2.10) 
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where the symbol () indicates a t ime integrated average and !vf RT is the mean res-

idence t ime defined as t he average t ime a given tracer stays in the body, which is 

expressed ast [67]. 

MRT 
J0

00 t · C(t )dt 
fooo C( t)dt . 

(2.11) 

Both GF R and Vol estimations are highly dependent on the observed concentra­

tion C(t) values. However, in practice, C(t) is obtained by taking a finite number of 

measurements at different time intervals. Therefore, in order to be able to perform 

the integration in Eq 2.9, it is necessary to represent the set of collected clearance 

data (t , C(t )) by a mathematical equation. Because the clearance data is sometimes 

provided with as few as two data points, it is imperative t hat the model used to 

describe the kidney function be as accurate as possible. Due to its importance, differ-

ent models have been used to provide a mathematical description of C(t) [51 ,68- 74] . 

The validity of t hese models introduces variations in the accuracy and precision in 

the estimated GFR results . Various models used to present the clearance data are 

the subject of the next section. 

2.3.1 Pharmacokinetic Models 

The theoretical basis of plasma clearance calculations relies on the pharmacokinetic 

model analysis that uses mathematical models to simulate how the kidneys eliminate 

substances. T here are two commonly used pharmacokinetic models: t he compart­

mental model and t he non-compartmental model [75]. 

tThere is a similar concept called mean transit time ]Yf'TT which is t he average time a given 
t racer spends in t he kinetic system. M RT =/= MTT for non-instantaneous administration of the 
tracer. However , in most cases, M RT = MTT 
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The compartmental model is the most commonly used pharmacokinetic model in 

the study of plasma clearance as well as in other research fields such as biomedicine 

and epidemiology [67] . The compartmental model is a key topic of this thesis because 

of its limitations in describing the mechanisms of the kidneys. The compartment 

model treats the body or organs of interest as a combination of several compart­

ments, each having a fixed volume of fluid . T he compartments can be either closed to 

the external environment (entities only allow exchange between the compartments) 

or open (ent it ies undergo dynamic interactions wit h the outside). Under the com­

partmental models in the plasma clearance study, each compartment is assumed to 

be homogeneous; t he entit ies inside each compartment are exchanged at constant 

rates; ent it ies can reach transient equilibrium instant ly; and no chemical reactions 

occur between the entities and t he carriers. Among all t he assumptions, the instan­

taneous mixing and instantaneous transient equilibrium of the contents inside t he 

compartments are t he most inaccurate (see Chapter 3 for more details). 

T he non-compartmental model is simply viewed as a model that is independent 

of using compartments [67] . The non-compartmental model reduces the assumptions 

required for estimating G FR. For example, the non-compartmental model does not 

require the exchange rate between the system and input (or output) to be constant, 

nor that t he exchange rate be uni- or bi-directional. Whereas the compartmental 

model is based on a linear or nonlinear mathematical description of t he concentration 

C(t) , the non-compartmental model relies on a numerical integration of the concen­

trations to estimate the total drug (radiopharmaceuticals) exposure. Although t he 

amount of injected dose is known, how the drug is distributed and eliminated from 

the body is critical for evaluating the effect of the drug. Therefore, t he total drug 

exposure is related to both the injected dose and the distributing process of the drug 
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inside the body. Knowing the total drug exposure from the non-compartmental model 

can help determine t he kidney function as well . T he essent ial parameters for the non­

compartmental models are the mean residence t ime (MRT ), volume of distribution 

( Vol ), area under the curve (AUC) and glomerular filt ration rate (GFR) . The 
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Figure 2.2: Schematic representation (light ly shaded area) of t he Area Under t he 
Curve (AUC) used for calculating the elimination rate of a t racer. T he plasma con­
centration of t he tracer is plotted as a function of the t ime (with t ime=O set at t he 
finishing point of t he injection) after t he administration. The three phases in t he 
renograph are labeled as I , II and III. 

denominator in Eq 2.9 represents the area under the curve and is a key parameter 

for both t he compartmental and non-compartmental models. Figure 2.2 shows a 

schematic representation of the plasma concentration of a tracer versus t ime used to 
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calculate the AUG= J
0
00 

C(t)dt (the shaded area). The timet = 0 indicates when 

the t racer is administered . The t ime interval from the starting time to the peak 

concentration (maximal concentration) of the t racer is the perfusion stage. After t he 

perfusion the concentration starts to decline gradually with time, which is called t he 

clearance (or elimination) stage. How quickly the t racer is cleared from the body is 

obtained from the curve analysis of the AUC, which is used to estimate the plasma 

clearance. As stated above, the concentrat ion-time curve is not produced from contin­

uous data points but from finite individual measurements of t he radioactivity of t he 

blood samples. Therefore, the concentration-time curve is highly dependent on t he 

sampling t ime schedule used to measure the concentration C(t). The sampling sched­

ule includes the sampling start time (beginning of the curve), t he interval between 

each sampling and t he range of the ent ire sampling time. Since t he AUC calculation 

is based on the concentration-time curve, t he longer the sampling time and the closer 

the time points (or the more time points), t he more accurate the AUC calculation 

becomes. 

The compartmental model has the advantage over t he non-compartmental model 

to predict the concentration C(t) at any timet provided t he appropriate compart men­

tal model is used [67]. However, in most cases, the compartmental model is inaccurate 

and imprecise for describing the kidney system because not all t he required assump­

tions can be met [68]. On the other hand, t he non-compartmental model is less 

dependent on the model used for estimating the AUC and clearance. 

The non-compartmental model is t heoretically more precise than t he compart­

mental models assuming that the time-activity curve can be plotted accurately, thus 

allowing the better estimation of GFR values. However, the drawback of the non­

compartment model is that the estimation of the AUC is highly dependent on t he 
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sampling schedule. For example, Tma:x and C max values are determined directly from 

the plotted activity-time curve. If there are missing samples at t he crit ical point (the 

maximum concentration at Tma:x ), inaccuracy can be introduced into the results. Sec­

ondly, for patients wit h very low GF R, it is difficult to decide the sampling schedule 

in order to have sufficient dat a points for plot t ing the time-activity curve. That is why 

one usually needs to collect several blood samples for plotting t he t ime-activity curve 

using the non-compartmental model (for example between 6 and 10 samples) [76~78]. 

Lastly, the non-compart mental model cannot predict the concent ration at certain 

t ime points because it does not adopt t he use of a model expression , t herefore there 

are no parameters for predicting the concent ration values at a certain time. For t he 

purpose of better cont rol of sampling schedule and accuracy in estimating GFR, t he 

non-compartmental method was not used in this study. 

In t he following, an introduction of how t he compartmental models are applied to 

t his study and the limitations of the models are presented . 

2.3.2 One-compartment Model 

T he one-compart ment model treats t he plasma as a single compartment, as illustrated 

by the circle in F igure 2.3. The two arrows indicate the flow of the radiopharmaceu­

t icals in and out of the compart ment. A key variable in the one-compartment model 

is the concentration of the tracer (radiopharmaceutical) C(t ) in t he plasma [67]. In 

the one-compartment model, the rate of change of the concent ration dC(t) jdt is as­

sumed to be proport ional to the concentration dC(t) jdt = -aC(t) where a is the 

constant elimination rate of t he t racer. T he concentration is therefore expressed as 

C(t) = Ae- at where A is the concentration at the init ial injection timet= 0. 

T he one-compartment model is denoted as the sum of one exponential term C(t) = 
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Input 
C(t) 

output 

Figure 2.3: Schematic representation of t he one-compartment model used to model 
the plasma clearance . The circle represents the plasma as the compartment. The two 
arrows indicate the flow of the radiopharmaceuticals in and out of the compartment. 

Ae-at and is abbreviated as SET1. The SET1 model has two unknown parameters 

A and a. Using t he definition of SET1 in Eq 2.9 , the GF R can be calculat ed as: 

GFR 
Dose 

J0

00 
C(t)dt 
Dose 

A(- l) e-atl t~oo 
a t - 0 

Dose 

A(-~)(e-axoo - e-axO) 

Dose 

A(-~)( -1) 
Dose 

A/ a 

Dose x ajA. (2.12) 

where Dose is the administ ered radiopharmaceutical. In order to determine t he values 

of parameters A and a, at least two blood samples are required. If the concentrations 

of the two blood samples collected at time T1 and T2 are denoted as C 1 and C2 (e.g. 
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in units of counts/min) respectively, the two equations to be solved are: 

(2.13) 

where the two parameters A and a are given by 

A C (ln (C1 / C2) T) 
1 exp T2- T1 1 

ln (Cl/C2) 
T2 -T1 

(2.14) 

Therefore, GF R from Eq 2.12 can be writ ten as 

GFR 

The injected dose of the tracer cannot be measured using a gamma counter due to 

its high radioactivity. It is t herefore measured using a dose calibrator . In order 

to compare t he radioactivity of the injected dose and the collected plasma samples 

without the detector difference, and also to standardize t he injected dose used between 

different tests , it is necessary to introduce a conversion factor. The term Dose in Eq 
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2.15 is scaled using the standard dilution of the same radiopharmaceutical: 

( D - R) x ADS x D S Dose = ...:...._ __ :.....__ ____ _ 
AS 

(2.16) 

where Dis the radioactivity of the injected dose (measured using a dose calibrator), R 

is the radioactivity of the residue of t he injected dose (mostly in the syringe used for 

the injection) after injection, ADS is the radioactivity of 1 ml of the standard solution, 

DS is the volume of the standard solution (e.g. 500 ml) and AS is the radioact ivity 

of the standard solution [69] . The reason for scaling the radioactivity of the plasma 

samples using a standard solution is to make the injected dose measurement from the 

gamma counter comparable with the plasma radioactivity measurement using the 

same gamma counter. The standard solution is prepared and measured in the same 

fashion as the injected dose, and the radioactivity of the injected dose is approximately 

10 times that of the standard. In some institutions, a weighting technique (e.g. using 

a electrical balance) is used instead of measuring the volumes of the blood sample 

and the standard solution. 

2.3.3 Two-compartment Model 

T he two-compartment model is shown schematically in Figure 2.4. Different from t he 

one-compartment model that uses one compartment to describe the plasma clearance, 

the two-compartment model uses two compartments ( C1 and C2 ) to represent a more 

complicated mechanism for the plasma clearance [67]. cl is the compartment that 

includes the plasma where the glomerular filtration occurs (similar to that used in 

the one-compartment model). C2 represents the less accessible portion of the plasma 

distribution space. c2 is assumed to exchange the tracer with cl at a rate proportional 

to the amount of tracer in each compart ment ( C1 or C2 ) [79]. Each compartment has 
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Input 

output 

Figure 2.4: The two-compartment model used to describe plasma clearance. The two 
circles C1 and C2 represent compartments for the plasma and secondary volume of 
distribution of the tracer respectively. The flow in and out of the two compart ments 
is indicated with arrows showing the rate of exchange Kin, K out, K 12 and K21 . 
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a volume of distribut ion and four exchange rates: Kin , K out, K21 , K12 · Therefore, 

the two-compartment model describes the concentration C(t) of the whole plasma 

system as the sum of two exponent ial terms, denoted as SET2 given by C (t ) = 

K (ae- >. 1t + e->.2 t). The parameters K , a, .-\1 , and .-\2 are related to the rates Kin, 

Kout, K 12 , K 21 in Figure 2.4. The parameters .-\1 , .-\2 and K are independent of 

one another. The ratio a of t he two exponential terms e->.1 t and e- >.2 t shows t he 

percent age of t he fast elimination rate to t he slower elimination rate. This parameter 

a is unrelated to the parameter a used for the SETJ model (e .g. Eq 2. 13). As a 

result of having four parameters (K, a, .-\1 , and .-\2 ), at least four blood samples are 

required to use the two-compartment model. 

Only the one-compartment and two-compartment models are introduced and used 

in this work. Other models with more compartments such as the three-compartment 

model or the four-compartment model are not used because of their requirement of 

more blood samples. In addit ion, using more compartments (more than 2) does not 

necessarily provide physiological meaning for each compartment. One of the goals of 

this work is to find the best model to calculate the plasma clearance based on four 

blood samples. 

2.4 Limitations of the Compartment Models 

The SETJ and SET2 models both belong to t he general model called the sum of 

exponential terms, denoted as SETs, where scan be any positive integer s = 1, 2, 3, . . .. 

The SETs models have been used for over 50 years for estimating plasma clearance 

rate [80] . As a result of numerous clinical applications of the SETs models, there 

have been increasing reports of their limitations in estimating G F R values [68]. For 

example, t he SETJ model occasionally gives negative GF R values for patients with 
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very low kidney function while the SET2 model has been reported to have difficulty 

in converging during the fitt ing of the t ime-activity curve. Also t he repeatability 

of the SETs models is very poor if different sampling times are used for the same 

patient [81] . 

There have been several debat es on the choice of sampling times [71,81]. Different 

laboratory protocols use different sampling times. For example, there are suggestions 

indicating that the following sampling times should be used for the SETl model: (1 

h, 3 h) , (1 h, 4 h) , (2 h , 4 h) or (3 h, 4 h) [71 , 82, 83] . In order to ensure t hat t he 

samples are collected during t he elimination st age instead of the perfusion stage, t he 

earliest collection time is recommended to be 1 hour post-injection [71] . If t he first 

sample was collected during the perfusion stage and the second sample was collected 

during t he elimination stage, the SETl model would have difficulty fitting the time­

activity curve. As a result , the estimated GF R would likely be underestimated if not 

non-physical. If the patient is undergoing a redist ribut ion of t he tracer , this could 

result in C(t1) being smaller than C(t2 ) (where C(tl) should be larger than C(t2 )). 

Therefore, this would indicate that the concentration C(t) is increasing with time 

due to an accumulation process instead of an elimination process, also leading to a 

negative GF R. A negative GF R is physiologically impossible. Because t he SETl 

model is dependent on t he sampling time, estimations using different combinations 

of sampling times can vary largely, leading to the major source of instability of t he 

SETJ model [71] . 

Monte Carlo simulations have been used to investigate the error introduced by 

the different sampling schedules while using the SETs models. For example, Sadeler 

et al. showed that the errors in estimated GF R results using the SETl model due 

to the uncertainty of sampling schedule cannot be reduced t hrough Monte Carlo 
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simulations [84] . Dr. Russell pointed out, in his study using Monte Carlo simulations, 

that the overall sampling time is more important than the number of samples used 

for estimating GFR values [85]. Murray et al. used 20,000 Monte Carlo simulations 

for finding the best sampling schedule using the SET2 model and suggested using a 

minimum of 5 blood samples to obtain an accurate estimation of G F R values [86]. 

Results using Mote Carlo simulations have shown that thorough consideration should 

be given to the sampling schedule while using the SETs models for estimating GF R 

values. 

The description of the elimination rate of the tracer using the SETs models is 

also problematic. Neither the elimination factor a in the SET1 model C(t) = Ae-at, 

nor the factors .-\1 and .-\2 in the SET2 model C(t) = K(ae->qt + e->-2t) , are time­

dependent. The fact that the rate of clearance declines with time and with the tracer 

concentration requires a more sophisticated model to describe the elimination rate. 

Although adding more exponential terms might better approximate the changing 

elimination rate, a better solut ion is to replace the constant elimination rate by a 

time-dependent variable. 

The injection method used to administer the tracer conflicts with the assump­

tions of t he SETs models. During a bolus injection , the dose is injected within a 

few seconds, however , the SETs models assume that the plasma concentrations in 

t he compartment achieve instant equilibrium. This is an over simplification of t he 

perfusion st age because if patients have any obstructions in t heir plasma flow or ex­

perience radiopharmaceutical adhesion with the tubules in the kidneys, the perfusion 

would be delayed by minutes or hours. This clearly affects GF R results. A possible 

solution is to use a constant infusion technique for injecting t he radiopharmaceuti­

cals which allows a slow mixing of the radiopharmaceut icals into the blood stream. 
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After a constant infusion , a transient equilibrium st atus can more easily be achieved. 

However, performing constant infusion requires special equipment and is more time 

consuming and as a consequence is less convenient for the pat ients. 

Because of the limitations of the SETs models, several attempts have been pro­

posed to improve their performance. The first attempt was to increase the num­

ber of compartments in the SETs models. The difference between the observed 

concentration-t ime curve and the fitted curve using the SETs models appear to de­

crease with an increasing number of compartments. One explanation is that increas­

ing the number of compartments increases the number of exponential functions used 

to fit the data. However, t he drawback of having more compartments in the SETs 

model is the requirement for more blood samples to be taken. For example, the three­

compart ment model treats the plasma clearance with three compartments: plasma, 

interstit ial fluid and site of degradation [87] . The required number of blood samples 

is at least 6 for the three-compartment model. 

A common at tempt to modify t he estimated GF R has been to introduce a correc­

tion factor by comparing the SETs models (mostly the SET1 model) with other 

models. There are several types of corrections. The first is to use a factor of 

0.87 (known as the "Chantler" correction factor) for correcting the difference be­

tween the two-sample SET1 model and the urinary clearance met hod , given by 

GFRcorrected = 0.87 X GFRsETl [60]. The second is to subtract a constant of 8.1 

ml/ min to the estimated GFR obtained from the SET1 model given by GFRcorrected = 

GFRsETl- 8.1(ml/ min) [88] . The t hird is to use a power function as a correction . 

For example, a correction for the results obtained from the SET1 model using the 

tracer 51Cr-EDTA has been proposed by using GFRcorrected = GFR~1~~ [71] . This 

power function index 0.964 varies with different radiopharmaceuticals, such as 0.979 
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for 99mTc-DTP. The fourth is to apply the BSA correction to the estimated GF R 

by using GF R corrected = GF R X 1.73/ BSA. However , BSA has been questioned as 

a poor indication of body metabolism or expected kidney function despite its wide 

use [39]. Although various body scaling factors have been used to calibrate the esti­

mated GF R values, such as age, gender , race, height , body mass, and the extracellular 

fluid volume [38,89- 91], none of the GFR correction formulae have been accepted as 

a standard. Moreover, all these GFR correction formulae were obtained from rela­

tively non-representative (small sample size) study groups and therefore cannot be 

used for general applications [92, 93] . In Chapter 7, an alternative GF R correction is 

discussed. 

As discussed in Section 2.3.1, the most important parameter for estimating GF R 

is the calculation of the AUC value. Attempts have also been made to apply more 

complicated mathematical regression methods for the AUC curve fitting. The con­

ventional regression method is based on OLS algorit hm. The principle of an OLS 

method is t o minimize the sum of the squares of all distances between the observed 

values and the fitted values [94]. The OLS method has limitations in assuming that 

there is no collinearity within t he variables. Unfortunately, this assumption cannot 

always be met . Moreover , an OLS based regression cannot always find a solution. 

There have been attempts to try to use different regression methods to replace the use 

of the OLS method. For example, Dr. Russell used the Bayesian nonlinear regression 

for both the SET2 and the SET3 models [73, 95]. Suitable estimated parameters of 

the plasma clearance models were found using statistical analysis such as the Chi­

square test . The employment of the Bayesian regression indeed improved the curve 

fitting, however , the Bayesian method still suffers from all the disadvantages of the 

compartmental model such as that the instant equilibrium assumption is not satisfied. 
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2.5 Motivation 

The motivation of this study is to develop a more precise and accurate model for 

estimating G FR. One of the biggest problems of the current methods (the SETs 

models) is that they occasionally give negative GF R values (physiologically impos­

sible) for patients with poor renal function. Even in the extreme cases where t he 

patient has no kidneys, he/she should still have a GFR value greater or equal to 

0 ml/ min (never negative). Studies performed on dogs strongly indicated that t he 

lowest value of G F R can reach 0 provided there is no elimination of the t racer, which 

indicates the possibility of having 0 kidney function [96] . 

In most cases, G F R is overestimated by the SETs models, causing under-diagnosis 

or in some cases false-negative results [68]. In addition , the kidney function results 

are highly dependent on the blood sampling times, which means the estimated GF R 

can be altered if the blood samples are collected using different time schedules com­

pared with the previous tests, indicating poor prediction and repeatability. Moreover, 

t he current methods are incapable of estimating G F R for children since most G F R 

calculat ion formulae were obtained from an adult population [69]. To solve t hese 

problems a new pharmacokinetic model is proposed. 

2.6 Theory 

2.6. 1 Gamm a Variate ( GV) M ode l 

The first approach for improving the compartmental models was to adopt a dynamic 

mixing mechanism for describing the kidney function. The description of dynamic 

perfusion and dilution (or elimination) of t he tracer in time is accomplished by the 
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proposed Gamma Variate (GV) model [97]. 

The GV model is derived from fractal t heory. A fractal is a fragmented shape 

that can be split into parts, each of which is (or approximately is) a reduced-size copy 

of the original shape. Fractal theory has been used in different areas in medicine for 

decades such as for studying the structure of lungs , blood vessels, etc [98, 99]. T he 

key to fractal theory is the self-similarity between the sub-branches and the "parent" 

branch from which the sub-branches emanate. 

In t his study, there are two ways of applying fractal theory to plasma clearance 

study. One way is to treat the anatomy of the kidneys as a fractal structure where 

the finer structures in t he fractal approximate the renal structures (to the level of 

nephrons) . Another way to describe the flow in and out of the kidneys is by using 

the image of a "parent" branch and sub-branches. The similarity in the dynamic 

properties of the inflow and outflow of the tracer is described as a time-based power 

function. A power function (or power law function) is a typical mathematical ex­

pression for a fractal system. The most commonly used power function is f (t) = kta 

where k (scaling exponent) and a (power index) are constants. The main property 

of a power function is the scaling invariance which means t hat if the variable t of 

function f ( t) is mult iplied by a constant c, t he result ing function is simply mult iplied 

by the constant ca, shown as f ( ct) = k( ct )a = ca f ( t ) ex f ( t) . This property is consis­

tent with the self-similarity of fractal theory in t he way that scaling a function with 

a constant will not alter the property of the original function. The other property 

of power functions is the universality, where t he whole system with the same char­

acteristic exponents (e.g. power index a) can represent identical (or similar) basic 

behaviours. This property allows t he simplification from a complicated system (with 

a nested "parent" branch and sub-branches) down to a critical basic system (the 
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"parent" branch alone). On t he other hand , the propert ies of t his critical point can 

be expanded back to investigate t he whole system. 

Different from the expression of the concentration C(t) in the SETl model ( C(t) = 

Ae-o:t), the GV model describes the concentration as 

(2.17) 

where a time-dependent power function ta-l is multiplied by the conventional expo­

nential term e-f3t to allow for the description of dynamic exchange between t he plasma 

and t he rest of the body. There are three parameters in t he GV model: the constant 

K , t he shape factor a used to describe the mixing rate (mixing the tracer with t he 

plasma or the rest of t he body to achieve a transient equilibrium distribut ion of t he 

tracer) and t he rate constant (3 for describing the renal elimination. This parameter 

a is unrelated to the parameter a used for the SETs models. The GV model esti­

mates plasma clearance using the t ime integration of the concentration C ( t) from t he 

area under the curve (AUC) analysis given by Eq 2.9. The physical (or physiological) 

range of the two parameters a and (3 is: 0 < a ::::; 1 and 0 ::::; (3 . The reason for t he 

boundaries of the two parameters is given in the next section. 

The history of using the gamma variate function ( GV model) for biomedical re­

search dates back to 1963 when the GV model was used to describe t he peripheral 

dilution curve of a cardiac output [100, 101]. The peak value of the concentration 

of the tracer Cma.x(t) and the time to peak value can provide the first-order kinet­

ics values (e.g. perfusion rate) indirectly. The GV model was also used to study 

extravascular lung water [102], hepatic function [103] , and pharmacokinetics of drug 

disposition [100, 104]. Notably, t he GV model has been applied to model tracer kinet­

ics in medical imaging studies such as PET and MRT perfusion [105, 106]. However, 
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although t he GV model has been proposed , it has not yet, to our knowledge, been 

applied successfully for plasma clearance analysis [68, 74]. 

2.6.2 Rate of Exchange, GFR and Vol 

The main property that makes the GV model at tract ive for investigating the kidney 

function is t he dynamic exchange rat e of t he concentrat ion . Taking the derivative of 

C(t) with respect tot gives 

dC(t ) d(Kta-le-f3t) 

dt dt 

- K /3ta-le -f3t +(a- 1)K ta-2e- f3t, (2.18) 

which can be rewritten as a differential equation using t he concentration C(t) as : 

dC (t ) = (a-1 _ /3 ) C(t) . 
dt t 

(2.19) 

The calculations of GF R and Vol (volume of distribution) are based on the t ime 

integration of t he concentrat ion C(t) from t = 0 tot = oo given by 

GFR 
Dose Dose 

J
0
00 C(t )dt J

0
00 K ta- le-f3tdt 

Dose x /3a 
Kr(cx) · 

(2.20) 

In Eq 2.20 Dose is the administered radiopharmaceut icals scaled by a standard so­

lut ion of the same tracer (see Eq 2.16) and r(cr) is t he gamma function of cr . T he 

mean residence t ime M RT is calculated according to Eq 2.9 and is given by: 

(2.21) 
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The volume of distribution Vol is then calculated from GFR and MRT as 

D 13a- l 
V l = ~ · G F R = ose . a . 0 

f3 Kr(a) 
(2.22) 

Recall that the physical range for the two parameters a and f3 is: 0 < a ::::; 1 and 

0 ::::; f3. The reason t hat a cannot be 0 is that a = 0 will result in Jvf RT = 0 

and Vol = 0 (see Eq 2.11 and Eq 2.10). When a < 0, the estimated M RT and 

Vol are also negative. The term (a - 1)/ t in Eq 2.19 is assumed to represent the 

loss of the tracer into the interstitium. When a > 1, (a - 1)/t is posit ive which 

means that the kidneys are not solely responsible for eliminating the tracer from the 

body. Therefore, the result from a > 1 would represent the plasma clearance for 

the whole body instead of the renal clearance. When f3 < 0, the exponential term 

e- f3t is associated with a negative elimination rate, indicating that the concentration 

of the tracer is increasing with time (which is non-physical for the plasma clearance 

study). However, for patients with extremely low G F R value (e.g. kidney failure) , 

their expected elimination rate are very close to 0. It is, therefore, allowed to have 

f3 = 0, which is associated with the condition when t he patients have no kidneys. 

When f3 = 0, the !vf RT and Vol should be close to infinity, indicating that the t racer 

will take an infinite time to be cleared out of the body. 

In order to obtain the concentration C (t) = Kta- l e-f3t , at least three blood sam-

ples are required. A nonlinear regression using an OLS algorithm was used to t ry 

to solve the GV model (see Section 3.4). However , the OLS algorit hm sometimes 

has difficulty in finding a solution and occasionally gives non-physical GF R results. 

Therefore, a more advanced mathematical method is required for solving t he GV 

model, as introduced in the following. 
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2.6.3 Ill-posed Problem 

The nature of the plasma clearance study is ill-posed because the estimation of t he 

plasma clearance is obtained by approximating the concentration-time curve using 

finite samples within a limited time period. 

Ill-posed problems are problems that are highly sensitive to changes (or fluctua­

tions) in the initial input data or the conditions of these dat a (e.g. herein, sampling 

schedule) [107] . For example, if the blood collection time for the kidney function test 

has a small deviation (e.g. one of the sampling t imes is 5 min away from the sup­

posed or recorded collecting time) , the estimated G F R value from the compartmental 

models may differ by a factor of 2 or more. 

The plasma clearance studies are also inverse problems. An inverse problem is 

defined as the process of obtaining the parameters of a model from t he original ex­

perimental data while a non-inverse (or classical) problem deals with t he original 

experimental data using a known model with known parameters. Inverse problems 

are usually difficult to solve because: t here may be no known model that fi ts t he 

dat a well (or appropriately ) because the exist ing model sometimes is insufficient for 

describing the data from the system, and there may be more than one solution. This 

occurs especially in models with multiple parameters. Therefore, the problem be­

comes finding the best solution not only for the current input data but also for t he 

other sets of input data (e .g. from repeated studies) to be fitted in t he future. Since 

the input data usually originate from a finite sample size with unknown noise level, 

inverse problems are usually ill-posed. 

The plasma clearance problem is an ill-posed inverse problem because of the com­

plexities involved during the perfusion, dilution, mixing and elimination procedures of 

the t racers in the body. Besides the uncertainty intrinsic to t he plasma clearance, t he 
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laboratory measurements might add to the complexity, such as the injection method, 

sampling times, number of samples, etc. The limited sampling schedule (either the 

length of t he sampling in time or the number of the samples being collected) does not 

provide sufficient information to solve the problem. As a result, during our calcula­

tion of the patients' data (see description of the data in Chapter 3), the estimated 

GF R can vary by up to approximately 40 ml/ min if there is a slight change or error 

in any of the above factors. 

The first principle for solving ill-posed problems is to introduce more information 

than what the original input data alone can provide. The supplemental information is 

usually in the form of penalty functions which reduce t he complexities of the problem 

and restricts the occurrence of non-physical results. The penalty function method 

attempts to replace a constrained regression (either linear or nonlinear) by a series of 

unconstrained regressions. The process of using penalty functions for solving ill-posed 

problems is called regularization. Depending on the characteristics of the ill-posed 

problem, regularization can be linear or nonlinear , mono-variable or multivariable, 

etc. 

2.6.4 Tikhonov Regularization 

Because the GV model is ill-posed, it is important to choose a regression method 

to ensure that a solution can be found and that the solution is physically realistic. 

The OLS linear regression was initially used for solving the GV model, which is 

named as OLS-GV model in this study. However, it is observed that physiologically 

impossible GF R results were occasionally obtained using the OLS-GV model, shown 

in Sect ions 4.3 and 5.1. This has limited the usage of the GV model in the study 

of plasma clearance. Therefore, t here is a need for improving the OLS regression 
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method and that is why Tikhonov regularization has been chosen , denoted as t he 

TiKhonov regularization adapted G amma V ariate (Tk-GV) model. 

Tikhonov regularization was invented by A. N. T ikhonov and it is one of the most 

commonly used regularization methods for solving ill-posed problems [108-110] . T he 

original Tikhonov method has been modified by A. E. Hoer and renamed as the ridge 

regression , which is known as the generalized Tikhonov regularization [111]. T he 

principle of Tikhonov regularization is to apply constrains or penalty functions to 

the regression algorithm in order to lead the ill-posed problem to a solution. In this 

study, a damping factor or shrinkage factor A is used for controlling the minimizat ion 

procedure even when the init ial guess of the solution is far from t he final solution. 

This shrinkage factor A is unrelated to the symbols A1 and A2 used in the SET2 model. 

How to apply t he Tikhonov regularization to the GV model is described below. 

The GV model describes t he concent ration as C(t) = Kta.- le- f3t . Taking the loga­

rit hm of t his equation gives 

ln C(t) ln K + (a - 1) ln t - f3t, (2.23) 

which is now a linear regression equation of the form: 

(2.24) 

where the values obtained from the measurements of the radioactivity of the plasma 

samples (ln C(t), ln t , t) are replaced with the variables (y, x1 , x2 ) and the parameters 

needed to be determined (ln K , (a- 1), - /3) are replaced with (d, m , c) respectively. 

Because several samples were taken for each patient , the variables y, x1 , x2 are in fact 

single column matrices instead of single numbers. It is therefore more appropriate 
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to use a matrix notation for the following description. The matrix for the dependent 

variable ln C(t) is written as Y with dimension n x 1. In order to remove the constant 

term din Eq 2.24, X must be written as a n x3 matrix of the form: 

X= 

The Y and b matrices are then written as follows: 

Y= b = ( d,m,c ) · 
Yn 

Eq 2.24 is then rewritten as 

Y = bX, (2.25) 

If the residuals of Eq 2.25 are given as (Y - bX), the OLS approach for solving Eq 

2.25 is to minimize the sum of squares of residuals, which is equal to minimizing 

(Y - bXf (Y - bX) with respect to the variable b. In this last equation, the symbol 

T represents transpose of the vector (Y - bX). The minimum is obtained by taking 

the derivative of this equation with respect to b and setting it equal to zero as follows: 

8((Y - bXf(Y- bX)) = _ 2Xr(Y _ bX) = O 
8b . (2.26) 

Rearranging Eq 2.26 and solving for the estimated coefficients gives: 

(2.27) 
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where b oLs indicates the use of OLS method. The term xrx usually contains 

collinearity between the variables, which leads to the case where the solut ion is highly 

sensit ive to very small changes in the values of the variables (known as ill-posed). 

Details of ill-posed problems are described in Section 2.6.3. The OLS algorithm is in­

sufficient in solving ill-posed problems, which may lead to very poor results [109, 111]. 

Therefore, Tikhonov regularization was used for solving this equation by adding a 

term containing a shrinkage factor (with value between 0 and 1) giving: 

bridge (2.28) 

where I is the identity matrix. When >.. = 0, b oLs = bridge · 

Solving the linear regression equation Eq 2.25 now becomes a question of choos­

ing the proper shrinkage factor since t he coefficient b ridge is a function of >... T he 

characteristics of >.. include: 1) it controls the size of the coefficients, 2) it controls 

the amounts of regularization, 3) when >.. ----t 0, t he regression becomes OLS, and 4) 

when >.. ----t oo, t he estimated bridge is zero [111] . Since the solution is determined 

using >.., different choices of >.. may lead to different solutions. One way to find t he 

shrinkage factor >.. is by plotting the estimated coefficient b as a function of different 

choices of >.. values unt il a >.. is found that gives a stable value of b. However, this 

is not the best way to find the shrinkage factor because a slight change (e.g. 10- 4 ) 

in>.. can lead to a 10 ml/ min (approximately 10% of the normal GFR value) fluctu­

ation in the estimated GF R value. It is necessary to have a more accurate formula 

to determine t he best value of >.. . In t his study, the shrinkage factor >.. was found 

by minimizing the relative error of the estimated G F R using the error propagation 

function, as introduced below. 

Since the uncertainty of the estimated G F R depends on the uncertainties of its 
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variables a, {3 , and K , it is possible to describe the relative error of the estimated G F R 

using the relative errors of these variables. This is the principle of error propagation, 

which uses a second-order differential of a function to magnify the effect of a parameter 

or variable on the final result [112]. For example, a function f ( u , v, . . . ) with variables 

u , v , .. . has a propagation of errors given by 

(2.29) 

where 5j is the standard deviation of f ( u , v , . . . ) . More details on how to calculate 

the 5j are given in Appendix A.2. Using the definition above, the standard deviation 

of GF R (5bFR) is expressed as, 

52 (8GFR )2 

52 (8GFR)2 

52 (8GFR )2 

a 8a + (3 8{3 + K 8K 

25 (8GFR) (8GFR ) 25 (8GFR ) (8GFR ) 
+ af3 8a 8{3 + aK 8a 8K 

25 (8GFR ) (8GFR ) + f3K 8{3 8K . (2.30) 

When the GF R is calculated using the GV model in Eq 2.20, Eq 2.30 becomes: 

52 (Dose· {3a ln {3 _ Dose· {3ar' (a ) 
2) 

2 

a Kf(a) Kr(a) 

52 (Dose · a {3a ln {3 )
2 

52 ( - Dose . {3a )
2 

+ f3 Kr(a) + K K 2f (a) 

25 (Dose · {3a ln (3 _ Dose · (3ar' (a ) 
2

) (Dose · a{3a ln {3 ) 
+ af3 Kf(a) Kf(a ) Kf(a) 

25 (Dose · (3a ln (3 _ Dose · {3ar' (a) 
2

) ( - Dose . {3a ) 
+ aK Kf(a) Kf(a ) K 2r(a ) 

5 (Dose · a{3a ln {3 ) ( - Dose. {3a ) 
+2 f3K Kr(a ) K 2r(a ) . (2.31) 
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The symbol f'( a ) in Eq 2.31 is the derivative of the gamma function f (a) with 

respect to a . In this study, the relative error of the estimated GF R , labeled as ERG, 

is expressed as the ratio of S~ F R to G F R2
, and is expressed as 

ERG S~FR 2 ( r'(a )) 2 ( a ) 
2 

Si< 
GFR2 = Sa ln f3- r(a ) + Sf3 73 + !{2 

2Saf3 (l f3 _ f'(a )) _ 2SaK (l f3 _ f'(a) ) _ 2Sf3K 
+ f3 n r (a) K n f (a) Kf3 ' (2.32) 

r '(a) 
where f(a ) is a diagamma funct ion denoted as 'lj; (a). Hence, Eq 2.32 becomes 

E RG s~FR 2 ) 2(a 2 Si< 
GFR2 =Sa (ln /3 - 'lj; (a) + Sf3 73) + !{2 

+2 ( Saf3 _ 2SaK ) (ln f3 _ 'lj; (a) ) _ 2Sf3K . 
f3 J{ J{ f3 

(2.33) 

Since the parameters a, (3, and K are all functions of>., E RG is also a function of 

A. ERG is then minimized (using the Nelder Mead or Simulated Annealing method, 

see Sect ion 3.3) to find the convergence, hence, the best value of A. For patients with 

normal or high G F R , the scale of A is very small (e.g. 10- 4 ) while patients with very 

low G F R usually require more regularization for the regression, hence, a larger value 

of A (e.g. close to 1) is needed. 

ERG can be simplified with known variables before performing the minimiza-

tion. T he first step is to exclude the terms that contribute little (ignorable) to 

ERG. SK is found to be approximately 10- 14 t imes less than eit her Sa or s f3 , 

making it possible to truncate the t erms containing SaK, S f3K , and S'f<. However , 

t he truncations might omit important information and introduce a bias in the esti-

mation. T herefore, an alternative way is used by replacing the parameter K wit h 

an equation containing the known variables t and C(t) along with a and f3 as 
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K = exp (ln C (t) - (a - l )ln t + f3t) , where ln C(t) , ln t and t indicate the mean value 

of ln C (t) , lnt and t respectively. GFR is then rewritten from Eq 2.20 as 

GFR 
Dose x f3a. 

(2.34) 
exp (ln C(t) - (a - l)ln t + f3t)f(a ) 

Taking the derivative with regard to parameter a and f3 according to t he definition 

of error propagation in Eq 2.29, ERG is t hen rewrit t en from Eq 2.33 as 

ERG S~FR 
GFR2 

s; (ln t + ln f3 - 1/J (a) ) + s~ (~- t) 2 

+2S(/ (ln t + ln f3 - 1/J(a)) (~ - t). (2.35) 

ERG is used t o calculate the shrinkage factor A and hence t he GF R and Vol values. 

However, during the results and discussion sections, only the GF R and Vol values 

are presented. An example on how to use the expressions for a, (3, ln K , ERG and 

ERV as functions of A are shown in Appendix A.2. The numerical methods used to 

minimize ERG are int roduced in the next chapter . 



Chapter 3 

Data and Analysis Methods 

This chapter will discuss the data and methods used in the GF R project while Chap­

ter 9 will give details of the data and methods used in the BMD project. The nu­

merical methods used to investigate the pharmacokinet ic models are introduced. The 

statistical analysis used to compare the performances of different models is also pre­

sented. 

3.1 Data 

The study of plasma clearance is usually performed using the two-blood sample SET1 

method [113]. By 2008, t here were 42 GF R patients ' data analyzed using the two 

blood sample SET1 method at the General Hospital in St. John's, NL. There is no 

database from the General Hospital with 4 or more blood samples. Over and above 

the limited sample size (two samples per patient), t he G F R measurements obtained 

at the General Hospital from 2004 to 2008 were not performed under appropriate 

laboratory quality control. For example, t he multi-well gamma counter was used 

without routine calibration or quality control. The minimum requirement for assuring 

68 



CHAPT ER 3. DATA AND A NALYSIS M ETHODS 69 

quality control of t he gamma counter includes checking t he background count rate, 

testing the energy resolution and energy response of t he counter (by viewing t he 

output spectrum), testing t he sensitivity using a calibration material such as Cesium-

137 or Cobalt-57, and performing a linearity test for assessing t he count ing range of 

the radioact ivity. Calibration of the counter should be performed at least yearly. If 

there are concerns during t he usage of t he counter , a thorough calibration should be 

performed to avoid possible loss of precision in t he measurements. 

In t he following Chapters 4 and 5, an analysis of a new G F R model will be pre­

sented based on a group of 46 patients. Because these 46 patients' data were provided 

by others, there was no need for ethics approval for using these data according to t he 

human investigation committee at Memorial University of Newfoundland . Of the 46 

GF R patients, 41 patients' dat a were collected and provided by Dr. Charles Russell 

from the University of Alabama in t he United States. Each of these 41 patients was 

injected with 99mTc-DTPA [71] . Eight blood samples were drawn with standard ant i­

coagulated t ubes at 10, 20, 30, 45, 60, 120, 180, and 240 min after the injection from 

the opposite arm where the init ial injection was given. A standard solution using t he 

same radiopharmaceut ical was prepared and diluted to scale the radioactivity of t he 

plasma measured using the well counter. T he remaining 5 of the 46 patients' data 

were collected and provided by Dr. Barbara Y. Croft formally from t he National Can­

cer Institute of t he United States (present location Duke University) . Each of these 

5 patients had 9 blood samples drawn at 5, 10, 15, 20, 60, 70, 80, 90 and 180 min 

after the injection of 99mTc-DTPA. T hese 46 patients were the primary dataset used 

for the GF R part of t his t hesis for investigating t he advantages of the new Tk-GV 

model compared wit h the SETs models. Despite the fact t hat early samples, such as 

5 min or 10 min, were included in t he patients' results, no concentration-time curve 
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from the obtained data indicated an observed perfusion st age. 

3.2 Measurement Uncertainty 

There are many factors t hat contribute to the uncertainty of estimated GF R values 

which are calculated from quantities obtained from clinical procedures. The purity 

of the radiopharmaceutical 99mTc-DTPA can affect t he uncertainty of the value of 

the injected dose administered to patients [114]. The radioactivity of t he syringe and 

gloves used during the injection of t he radiopharmaceut ical are measured and sub­

t racted from t he injected dose which introduces an uncertainty. The uncertainty due 

to the dose calibration using a dose calibrator can be as high as 5% [115]. Although 

t he sampling time can be recorded to the fraction of a second using a stop watch, the 

actually blood collection can last from seconds to minutes depending on the patients' 

condition. From our own experience in the department of Nuclear Medicine at t he 

General Hospital, we know that for patients with ideal vein conditions, the collection 

can be done within 5 to 10 seconds. However if there is difficulty in drawing blood 

from patients such as children or cancer patients , it can take much longer. Given t he 

half-life of 99mTc-DTPA of approximately 6 hours, a 1 min difference in the blood 

extraction time introduces an error of approximately 0.3%. The protein binding rate 

of 99mTc-DTPA can also induce an error in the estimated GF R values. Protein bind­

ing effect raises more concern for patients with diabetes or for patients consuming 

an abnormally high-protein diet such as athletes [116]. Pipetting is used to extract 

a fix volume of plasma for performing count ing measurements. An air displacement 

pipette can induce an uncertainty approximately less than or equal to 6% of the vol­

ume depending on the temperature, humidity and handling of the instrument [117]. 

T he single-well counter can also introduce a measurement uncertainty due to the po-
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sition of the sample in the well, the background noise and the detector efficiency. In 

general, the uncertainty during the radioactivity counting using the gamma counter 

is approximately the square root of the counts [1, 20]. The uncertainty due to t he 

mathematical modelling and calculat ions also contribute to the uncertainty of the es­

timated GF R value. For calculations that require patient information such as body 

mass and body height, uncertainties can be introduced by factors such as what the 

pat ient is wearing, food intake before t he test and so on. For pediatric patients, the 

uncertainty of the body mass and body height can also be caused by the positioning 

of the patient. 

For this study, where data (the 46 patients from Dr. Russell and Dr. Croft) were 

provided by others, it is difficult to determine the specific error for each of t he factors 

listed above, a general pipetting error of 3% is used for the measurements [118] . 

3.3 Numerical Methods 

The software used in this study was Mathematica 6.0.2. Mathematica is a powerful 

software package used for performing complex mathematical calculations. T he soft­

ware is written in C language and its built-in functions are comparable with t hose 

of other numerical software packages such as Matlab and SPSS. The gamma variate 

function , t he digamma function and all the minimization and regression algorithms 

used in this work are available in Mathematica. The calculation time for all t he 

models using Mathematica was on the order of seconds. 

The parameters a, {3, K , ERG and ERV are all expressed as functions of the 

shrinkage factor A using the Tikhonov regularization (see Section 2.6.4). After t he 

minimization of ERG with respect to A, the obtained value of A was used to calculate 

the GF Rand Vol values. 
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Several methods were tested for finding the global minimum of ERG such as 

Simulated Annealing algorithm [119, 120], the Neider Mead method [121], the Differ­

ential Evolution method, the random search method, and the maximum likelihood 

estimat ion method [122, 123]. Among all these methods, the Neider Mead algorithm 

gave the smallest residual sum of squares value and therefore was chosen as t he best 

approach for finding the global minimum. 

3.4 Regression Methods 

Four models for calculating GF R were tested in this study: SET1, SET2, OLS-GV 

and Tk-GV models. For the SET1, SET2 and OLS-GV models, an ordinary least 

squares (OLS) method was used to find the solutions. For the Tk-GV model, the 

Tikhonov regularization was used. 

The OLS method is the most commonly used regression algorithm. T he OLS 

method is applied to both linear and nonlinear regressions. Depending on the format 

of the independent variables, t he OLS linear regression was used for solving the SET1 

model with two data points of the form (t, ln C(t)). 

The OLS nonlinear regression was also used for solving the SET2 and OLS-GV 

models using 3 and 4 data points of the form (t , C(t)). As will be discussed in greater 

detail in Chapter 5, the OLS regression used for the OLS-GV model occasionally gave 

non-physical results. The reason is the limitation of the OLS algorithm in converging 

during the regression. The parameters of the curve to be fitted were obtained from 

the minimization of the sum of squares of t he residuals, instead of minimizing the 

absolute residuals. The assumptions required for using the OLS algorithm could 

not always be satisfied in this study. For example, one assumption for using the 

OLS method required that there be no collinearity among the independent variables. 
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The variables used in the OLS-GV model are of the form (t , ln t, lnC(t)) where t he 

variables t and ln t are correlated . Because the plasma clearance study in this work 

does not satisfy all the assumptions of the OLS algorithm, the ridge regression method 

was used to solve the GV model. T he Tk-GV method was performed in the way that 

the shrinkage factor A was found by minimizing the relative error of t he GF R values, 

which in return minimizes the difference between the observed and predicted values 

of concentration of t he radiopharmaceut ical as well. 

T he coefficient of determination (R2
) was used to describe t he performance of the 

linear regression [124] . R2 is defined as 

(3.1) 

where Yest is the estimated value and y is the mean value of the observed y values. 

Regression was used not only for finding the shrinkage factor, but also for com­

paring different methods. If two methods provided the same or similar test results , 

their R2 values should be high (e.g. 0.99). However, R2 alone cannot detect whether 

or not there is a constant or proportional difference between the methods. During 

t he GF R project, R2 values were used for comparing the performance of difference 

models while in t he BMD study, R2 was used for showing the performance of specific 

distribution functions in fitting the histogram. 



Chapter 4 

Results 

In this chapter, the results of the SET1 , SET2, OLS-GV and Tk-GV models from t he 

46 patients are presented. The calculated results include the G F R and Vol values 

as well as the estimated parameter values of each model. When we refer to the full 

samples, it implies that the data from all 46 patients were used in the calculations. 

Subsets consist only of data from the 41 patients provided from Dr. Charles Russell 

because of their uniform sampling t imes. During this Chapter, some minor discussions 

are included along with the results of each model; however, the major discussion 

regarding all of the models is given in Chapter 5. 

4 .1 SE T 1 R esults 

The SET1 model is expressed as C(t) = Ae- at with two estimated parameters A 

(scaling coefficient) and o: (elimination factor). The G F R calculations were performed 

using a linear regression on the logarithm of the concentration ln C(t) as a function of 

t imet. Table 4.l list s the mean, minimum and maximum values of the estimated GF R 

and Vol values for the 46 patients from the full samples and two subsets. Two-sample 

74 
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subsets were chosen because t he minimum requirement of the number of samples for 

using the SET1 model is 2. In many instit ut ions, it has become common pract ice 

to calculate G F R from t he p lasma clearance method using the SET1 model with 2 

blood samples [71 , 125]. There are 28 different combinations of two-sample subsets 

from patients with 8 samples each ( (~) = 28) and 36 different combinations from 

patients with 9 samples ( (~) = 36). Table 4.1 only lists the results using t he (60, 

180)min and (10 , 180)min subsets because these two subsets were contained within 

all 46 patients , and (60, 180)min has been recommended as good sampling times for 

using the SET1 model [71]. The calculations using the 2-sample subsets were based 

on the absolute solution (see Eq 2.15). 

Table 4.1: GF R (ml/ min) and Vol (L) values calculated from the SET1 model for 
t he 46 patients using the full samples (denoted as "full") and subsets: (60, 180)min 
and (10, 180)min. 

GF R full (60,180) 

mm 4.5 53.3 

mean 103.0 326.0 

max 208.4 3041.9 

(10 ,180) 

66.5 

189.9 

1209.0 

Vol 

min 

mean 

max 

full (60,180) (10,180) 

6.0 7.8 5.9 

25.8 15.9 11.4 

242.8 27.4 23.2 

In Table 4. 1, t he estimated GFR values from the full samples ranged from 4.5 

ml/ min to 208.4 ml/ min. There were 6 out of 46 pat ients wit h estimated GF R 

values less t han 30 ml/ min. There were, however , no negative GFR values observed. 

Alt hough the t ime interval between t he two sample collect ion times (120 min for t he 

(60, 180)min subset and 170 min for t he (10, 180)min subset ) were relatively long, t he 

2-sample subsets significant ly increased t he minimum GFR value from 4.5 ml/ min 

to larger than 50 ml/ min. T he maximum GFR values calculated from bot h subsets 

were beyond t he expected range of normal G F R reported as between 100 and 130 

ml/ min/ 1.73 m2 [66]. T he percentage of GFR values larger than 130 ml/ min was 
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approximately 40% indicating there were at least 16 patients from 46 with potentially 

overestimated G F R values. 

There are two reasons why GF R values may be larger than 130 ml/ min. For 

estimated G F R values between 130 and 200 ml/ min, one common explanation is 

that the patients have hyperfiltration in their kidneys which is a phenomena common 

among patients with diabetes [116, 126]. Other causes for hyperfiltrat ion include t he 

consumption of a high protein diet and other underlying kidney diseases that alter 

the glomerular pressure [116, 127] . Unfortunately, there was no additional informa­

tion provided such as family history for t he 46 patients from Dr. Russell making it 

difficult to determine the causes of abnormally high G F R values . It is observed that 

hyperfiltration can rarely lead to G F R values exceeding 200 ml/min [116, 126- 128] . 

Therefore, GF R values larger than 200 ml/ min could be considered as physiologically 

impossible. However, t he G F R values discussed in the literature were calculated us­

ing either the creatinine method or the SETs models with limited sample size, and 

are not reliable. Therefore, it is difficult to set an upper limit on the estimated G F R 

and hence for the purpose of this analysis only negative G F R values were defined as 

non-physical. 

The mean G F R values from the two subsets in Table 4.1 were approximately 1.8 

to 3.2 t imes larger t han those from the full samples indicating the degree of overes­

timation obtained from using SET1 with a limited sample size. In addit ion , there 

were variations observed in the results from using the different 2-sample subsets. The 

(60, 180)min sampling schedule has been chosen as a reference sampling schedule by 

most health institutions since 1985 [71 , 125]. However , when compared with the full 

samples, the (10 , 180)min subset was found to perform better than the (60, 180)min 

subset in estimating the G F R values because of the longer t ime interval ( 170 min 
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versus 120 min) between the samples. When the SETJ model was used to fit t he 

concentration-time curve from two samples, the closer the time difference between 

the two collected samples, the more likely the SETJ model risked being affected by 

unexpected fluid redistribution or slow mixing occurring within a short t ime interval. 

As a result , the SETJ model applied during a non-elimination process might misrep-

resent the concentration time curve. In an extreme case such as redistribution, the 

mono-exponential fitting might lead to negative elimination. 

When patients have kidney diseases, t heir Vol values are expected to be higher 

than normal indicating a longer time is required for eliminating the tracer from the 

body. For example, the Vol value for Patient 19 (Pt19) was 242.8 L and t he corre­

sponding GF R value of Pt19 was 4.5 ml/ min. In Table 4.1 , the relative fluctuation 

of the Vol values from the full samples and t he two subsets was less than that of the 

GF R values. The mean Vol value from the full samples was 25.8 L with a range from 

6.0 L to 242.8 L, and the mean Vol value from the (60, 180)min subset was approxi­

mately 10 L less than t hat from the full samples. For the same reason that estimated 

GF R values larger than 200 ml/min/1.73 m2 were not considered as non-physical, 

the upper limit of t he estimated Vol values was not discussed either, and hence only 

negative Vol values were considered non-physical in this study. 

Table 4.1 listed the results from only two 2-sample subsets. It is useful to inves-

tigate how the overall choice of the 2-sample subsets affects the performance of t he 

SETJ model. Table 4.2 gives a summary of the average value of the GF R , indi­

cated as GF R, and the average value of t he Vol, indicated as Vol , from all possible 

41 x (~) = 1, 148 subsets chosen from the 41 patients in order to keep the choice of 

sampling times consistent. The data in Table 4.2 is presented in quartiles. Quartiles 

are used to divide data (displayed in an increasing order) into 4 equal groups. T he 
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1st quartile is the cut-off value for the lowest 25% of the data. The 2nd quartile is the 

cut-off value for the lowest 50% (equal to the median value) while the 3rd quart ile is 

the cut-off value for the lowest 75% of the data [97]. In the following, quartiles will be 

presented for all models with different sampling schedules to demonstrate the range 

of estimated GF R values and to determine whether or not there are outliers during 

the curve fitting. 

Table 4.2: The effects of the 1,148 2-sample subsets on the values of A, a, GF R 
(ml/min) and Vol (L) using the SET1 model. GF R (ml/ min) is t he mean GF R , and 
SDcFR (ml/ min) is the standard deviation of the GF R values. Vol (L) is the mean 
Vol, and SDvol (L) is the standard deviation of the Vol values. 

Quartile A SDA a SDa GFR SDcFR Vol SDvol 

mm 0.004 0.0002 0.003 0.002 52.1 5.8 7.0 0.9 

1st quartile 0.007 0.001 0.007 0.003 70.1 13.0 11.4 1.9 

2nd quartile 0.008 0.001 0.010 0.004 94.2 18.6 13.9 2.8 

3rd quartile 0.009 0.002 0.011 0.006 136.3 31.5 15.5 3.5 

max 0.014 0.005 0.014 0.012 883.2 1101.4 25.3 6.6 

The first 4 columns in Table 4.2 list the minimum, maximum and quartile values 

of the mean and standard deviations of the parameters A and a from C(t) = Ae- at. 

The SDA values were less t han the S Da values indicating that the sensitivity of t he 

constant elimination rate a was greater than that of the scaling coefficient A. T he 

dispersion of the estimated GFR and Vol values using the overall 1,148 2-sample 

subsets was better than that from the subsets (60 , 180)min or (10 , 180)min alone. 

For example, the maximum GF R values were 883.2 ml/ min from the 1,148 2-sample 

subset (Table 4.2), 3041.9 ml/min from the (60, 180)min and 1209.0 ml/ min from 

t he (10, 180)min (Table 4.1). However, the maximum GFR, 883.2 ml/ min, from 

the 1,148 subsets is still beyond the expected range of GF R values. T he range of 
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estimated S DcFR is larger than t hat of the estimated S Dvat values. 

Table 4.3: The effects of the 3-sample subsets (2,296 for all 41 patients) on the values 
of A , a, GF R (ml/ min), and V ol (L) using SET1 . GF R (ml/ min) is t he mean GF R 
and S D cFR (ml/ min) is the standard deviation of the GF R values. Vol (L) is the 
mean V ol and S D vat (L) is t he standard deviation of the Vol values . 

Quart ile A a GFR S DcFR Vol S Dv ot 

mm 0.71 0.10 6.3 3.0 4.5 2.8 

1st quart ile 19.24 0.11 62.2 28.2 6.2 3.9 

2nd quartile 23.86 0.14 86.3 51.6 8.2 5.3 

3rd quart ile 34.82 0.19 119.2 67.6 12.2 8.8 

max 64. 10 0.21 203.4 129.0 153.0 295.1 

Table 4.3 and Table 4.4 list t he quartile values of t he mean estimated parameters 

and mean GF R and Vol values using 3-sample subsets and 4-sample subsets from t he 

41 patients, respectively. T here were 2,296 subsets generated by taking 3 samples out 

of 8 samples from the 41 patients and 2,870 different 4-sample subsets. T he estimated 

GF R values ranged from 6.3 ml/ min to 203.4 ml/ min using the 3-sample subsets 

(Table 4.3) and 5.8 ml/ min to 169.2 ml/min using the 4-sample subsets (Table 4.4). 

The estimated Vol values ranged from 4.5 L to 153.0 L using the 3-sample subsets 

(Table 4.3) and 3.9 L to 220.6 L using t he 4-sample subsets (Table 4.4) . Notice here 

that the maximum GF R values estimated using 3-sample or 4-sample subsets were 

less than that obtained using t he 2-sample subsets, due to the increased number of 

samples which improved the performance of the SET1 model. 

The 4-sample subset is the sample size of interest in this study because it meets 

the minimum requirement for using t he SET2 and Tk-GV models and it can also be 

used by the SET1 and OLS-GV models. In order to compare the results to other 

models, Table 4.5 lists the G F R values from the 41 patients using four different 



CHAPTER 4. R ESULTS 80 

Table 4.4: The effects of the 4-sample subsets (2,870 for all 41 patients) on values of 
A , a, GF R (ml/ min) and Vol (L) using SETl. GF R (ml/ min) is the mean GF R 
and SDcFR (ml/ min) is the standard deviation of the GF R values. Vol (L) is the 
mean Vol and SDvol (L) is the standard deviation of the Vol values. 

Quartile A a GFR SDcFR Vol SDvol 

min 20.05 0.17 5.8 5.47 3.9 3.4 

1st quartile 55.19 0.18 51.8 38.7 5.2 4.8 

2nd quartile 70.52 0.21 76.7 62.2 6.9 5.8 

3rd quartile 84.78 0.25 99.2 82.9 10.2 9.6 

max 140.79 0.27 169.2 146.5 220.6 927.8 

Table 4.5: The GF R results of the SETl model for t he 41 patients using the full 8 
samples and four subsets: (10, 20, 60, 180)min, (10, 30, 120, 240)min, (10, 20, 30, 
45)min and (60, 120, 180, 240)min. Q st ands for quartile. 

GF R full (10,20,60,180) (10,30,120,240) (10,20,30,45) (60,120,180,240) 

mm 4.5 7.2 7.8 34.4 

1st Q 68.3 69.6 50.8 109.6 

2nd Q 100.9 104.7 95 .6 146.3 

3rd Q 146.6 148.0 

max 208.3 213.3 

182.7 

483.6 

201.1 

271.4 

0.011 

0.017 

0.021 

0.026 

0.044 
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subsets and the full samples. These four 4-sample subsets were chose because they 

were representative for the use of earliest four samples, latest four samples and the two 

subsets that used a mixture of early and late samples. The G F R values obtained using 

the (60, 120, 180, 240)min subset were significantly lower than those obtained from 

the others. For example, a minimum GF R of 0.01 ml/ min was observed using the (60, 

120, 180, 240)min subset compared with 4.5 ml/ min using the full samples. On the 

other hand, the minimum GFR value obtained using the (10, 20, 30, 45)min subset 

was much higher than that obtained from others because the SET1 model has t he 

tendency of overestimating the GFR (compared with GFR1uu) using early samples, 

while underestimating the GFR (compared with GFR1uu ) using late samples [68]. 

However, the maximum est imat ed GFR, 483.6 ml/ min was obtained using t he (10, 

30, 120, 240) subset instead of from the (10, 20, 30, 45) subset because of outliers in 

the data as will be shown in Figure 5.1 c) of Chapter 5. 

Another type of subset used in this study was hump subsets, which were not 

generated from a data resampling method but instead generated by continuously 

excluding data points from the original dataset. For example, for a dataset consisting 

of 8 data points, the hump subsets can be 1 to 4 (the first 4 data points), 1 to 5, 

and 1 to 8 or 2 to 8, 3 to 8, 4 to 8, and 5 to 8, etc. Using hump subsets can help 

investigate the stability of the models with respect to the sampling schedule [118]. 

For 41 patients with 8 samples each, the choices of hump subsets for performing a 

linear regression were 1 to 3, . . . , 1 to 8, 2 to 8, . . . and 6 to 8. Figure 4.1 shows the 

mean estimated error in GFR given by (GFRhump- GFR1uu) for each hump subset. 

When the earliest three samples were used (1 to 3), the mean G F R difference was 

a maximum (74.9 ml/ min) . This overestimation is reduced when more samples were 

used, such as 1 to 4, 1 to 5, up to 1 to 7. On the other hand, when only the last three 
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Figure 4.1: Results of the mean of the difference (GFRhump- GFR1uu) between t he 
GFRhump and GFRfull using the SET1 model from the 41 patients. The hump 
subsets are 1 to 3, 1 to 4, ... , 5 to 8 and 6 to 8. 
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samples were used, the mean difference (GFRhump - GFRfull) became negative, -

104.0 ml/ min. As stated previously, this indicates that t he SET1 model tends to 

underestimate the GF R value when late samples are used. Even when t he 2 to 8 

subset (with sampling t ime from 20 min to 240 min) was used, t he SET1 model 

still gave a mean difference (GFRhump - GFRfull) = -7.8 ml/ min. In addit ion, t he 

starting sampling time for the SET1 model also affects the performance of the model. 

It is of interest to note that t he 5 to 8 subset gave a larger difference than t he 4 to 

8 subset indicating the necessarity of including samples collected before 1 h post­

injection. In summary, the SET1 model is found to overestimate the G F R value 

when early samples are used and underestimate the GF R value when late samples 

are used. 

As a specific example, the GF R values for Pt1 were 260. 1, 204.6, 180.7, 146.4, 

111.5 ml/ min using the subsets 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7 and 1 to 8 

respect ively. The GFR values for Ptl were 99.4, 95.2, 94.1, 0.02 and 0.3 ml/ min for 

the later subsets 2 to 8, 3 to 8, 4 to 8, 5 to 8 and 6 to 8 respectively. The largest 

G F R value was given using the 1 to 3 hump subset while the smallest G F R value 

was obtained using 6 to 8. The estimated volume of distribut ion Vol from these hump 

subsets ranged from 0.3 L to 20.3 L. The fluctuations in the estimated GF Rand Vol 

values were much larger when the GFR was expected to be very low (e.g. less than 

5 ml/ min). Table 4.1 and Table 4.4 clearly show the sensitivity of the SET1 model 

to the number of blood samples and sampling times. 

4.2 SET2 Results 

The SET2 model was expected to improve the concentration-time curve fitting from 

the SET1 model [129] . The SET2 model is expressed as C(t) = K (ae->. 1 t + e->.2t) 
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with parameters K , a, ),1 , and ),2 . Two constraints were included in the nonlinear 

regressions: 0 ::; a ::; 5 and 0 ::; ),2 ::; ),1 < 2. These constraints ensured that t he 

two exponential terms had different elimination rates (therefore SET2 =I SETJ) with 

one contributing to a slower elimination process and the other one contributing to a 

faster elimination process. 

Table 4.6: Estimated GFR (ml/ min) and Vol (L) values of the SET2 model for the 
46 patients using the full samples and t he (10, 20, 60, 180)min subset . 

GFR full (10 ,20,60,180) Vol full (10,20,60,180) 

mm 2.6 0.9 mm 0.5 4.5 

mean 80.4 82.8 mean 14.1 14.3 

max 166.5 165.4 max 26.5 28.8 

Table 4.6 shows the results of the SET2 model using the full samples (8 samples 

for the 41 patients and 9 samples for the 5 patients) and the (10, 20, 60, 180)min 

subset. The (10, 20, 60, 180)min subset is the only 4-sample subset contained within 

all 46 patients. All estimated G F R and Vol values were within physically acceptable 

ranges. The minimum GF R value obtained from the 46 patients with the full samples 

was 2.6 ml/ min and the maximum Vol value was 26.5 L. The results from the (10, 

20, 60, 180)min subset were very close to those from the full samples. The minimum 

GF R value using the (10, 20, 60, 180)min subset was 0.9 ml/ min and the maximum 

est imated Vol value was 28.8 L. The mean value of GF R using the (10, 20, 60, 

180)min subset was slightly larger (2.4 ml/ min) than that using the full samples. 

The R2 values from the regression analysis using the SET2 model (between 0.98 and 

0.99) were significantly improved from t hose using the SET1 model. 

Table 4. 7 further investigates t he effects of the subsets using t he SET2 model, 

calculations were performed using the 4-sample subsets (10, 20, 60, 180)min, (10, 30, 
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Table 4.7: Estimated GF R (ml/ min) calculated with the SET2 model using the 4-
sample subsets: (10, 20, 60, 180)min, (10, 30, 120, 240)min, (10, 20 , 30, 45)min and 
(60, 120, 180, 240)min from the 41 patients. Q stands for quartile. 

GFR full (10,20,60,180) (10,30,120,240) (10,20,30,45) (60,120,180,240) 

mm 2.6 0.9 -6.6 -474.2 0.008 

1st Q 60.2 59.3 27.5 44.2 0.011 

2nd Q 81.2 87.6 54.1 95.4 0.014 

3rd Q 110.6 114.5 86.0 151.1 0.017 

max 166.5 165.4 343.0 3838.2 0.032 

120, 240)min, (10, 20, 30, 45)min and (60, 120, 180, 240)min from the 41 patients. 

The (10, 20, 60, 180)min subset gave the closest results to those from the full samples. 

T he (10, 30, 120, 240)min subset is the second best subset that gave close results, 

although t he minimum G F R value using this subset was negative, indicating a non-

physical result. The (10, 20, 30, 45)min subset gave the worst estimations of GF R 

results with non-physical minimum GF R and the maximum GF R value, 3,838.2 

ml/ min, way beyond the normal range of GF R values. The (60, 120, 180, 240)min 

subset still underestimated all t he G F R values using the SET2 model, similar to that 

using t he SETJ model in Table 4.5. This is probably due to the inaccuracy of t he 

SET2 model in fitting late samples with a relatively flat concent ration-t ime curve. 

In summary, the (10, 20, 60, 180)min subset gave the best results in estimating GF R 

values compared to those using the full samples. Also there were more non-physical 

results observed using the SET2 model than with the SETJ model. 

In order to investigate how the SET2 model was affected by t he choice of sampling 

time, we expand its use to a larger number of 4-sample subsets. There are ( : ) = 

8! 
1 

( ) 
1 

= 70 different combinations for taking 4 samples out of 8. The results 
4. X 8 - 4 . 
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Table 4.8: The effects of 4-sample subsets (2 ,870 subsets) using the SET2 model 
on values of >.1 and >.2 , GF R (ml/ min) and Vol (L) from the 41 patients. S DoFR 
(ml/ min) is the standard deviation of t he GF R values. S D vol (L) is t he standard 
deviation of the V ol values. 

Quartile ),1 SD>-. 1 ),2 S D>-.2 GFR S DoFR Vol S Dvol 

mm 0.19 0.23 0.18 0.24 1.9 18.8 3.3 3.6 

1st quart ile 0.24 0.26 0.23 0.26 41.3 39.4 7.8 8.6 

2nd quartile 0.28 0.27 0.27 0.27 57.1 60.1 9.8 11.0 

3rd quart ile 0.30 0.29 0.29 0.29 77.3 81.2 15.6 21.4 

max 0.33 0.31 0.31 0.31 139.1 455.0 458.5 517.3 

shown in Table 4.8 were obtained using a total number of 41 x (~) = 41 x 70 = 2, 870 

subsets . The mean and standard deviation values of the two elimination rates >.1 and 

>.2 were very close to each ot her. However, this does not mean that t he two elimination 

rates are approximately t he same because the mean of the >.1 or >.2 does not represent 

the ratio of >.1 to >.2 for each patient. The average ratio of >.I/ >.2 was approximately 7, 

indicating that one compartment in the two-compart ment model, on average, had a 

faster elimination rate than the other . The estimated G F R and Vol values contained 

no non-physical results using the SET2 model due to the averaging of all t he results 

of 70 subsets for each of the 41 patients, however , the estimated SDoFR value, 455.0 

ml/ min , indicates t he unstableness of t he SET2 model with respect to the choice of 

subsets. 

Figure 4.2 shows the mean difference of GF R estimated from the hump subsets and 

the full samples. The smallest mean difference ( G F Rhump - G F R full) was obtained 

using t he 1 to 7 hump subset while the largest ( G F Rhump - G F R f ull ) was obtained 

using t he 3 to 8 hump subset. However, unlike the SET1 model, there was no 

significant t rend indicating that the SET2 model will over- or under-estimate the 
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Figure 4.2: Results of the mean of the difference ( G F Rhump - G F Rtull ) between t he 
GFRhump and GFRfull using the SET2 model from the 41 patients. The hump 
subsets are 1 to 5, 1 to 6, 1 to 7, 2 to 8, 3 to 8 and 4 to 8. 
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GF R results using the early or late samples. Despite that , t he overall curve fitting 

using the SET2 model has been improved from the SET1 model because the scale 

of the G F Rhum p - G F R full was much smaller using the SET2 model than that the 

SET1 model. However, t he SET2 model still gave non-physical results when different 

4-sample subsets were used . 

4.3 OLS-GV Results 

Although the minimum sample size required to solve the OLS-GV model is 3, results 

of the OLS-GV model are presented using 4-sample subsets. The principle reason 

for this is that the results of the OLS-GV model using 3-sample subsets contained 

a large number of non-physical results because the OLS regression cannot be used 

to solve ill-posed problems. Also, the results of the OLS-GV model using 4-sample 

subsets were used here predominantly to compare with those of the Tk-GV and the 

SET2 models using 4-sample subsets . Although t he OLS-GV model was used with 4 

samples, the model still provided non-physical results, however , much less t han when 

using 3-sample subsets. 

Table 4.9 shows the quartiles and average results of the three estimated parameters 

K , a and 7J, and the values of GFR and Vol using 2,870 4-sample subsets from the 

41 patients. The estimated GF R values using the OLS-GV model ranged from 8.3 

to 89.3 ml/min and the estimated Vol values ranged from 6.5 to 12.4 L, which was a 

much smaller range than those using the SET1 or SET2 models. 

In order to compare the results from t he 4-sample subsets using the OLS-GV model 

with those from the other models, Table 4.10 shows the quart ile results of estimated 

GFR and Vol values from subsets ((10, 20, 60, 180)min, (10, 30, 120, 240)min, (10, 

20, 30, 45)min , and (60 , 120, 180, 240)min) from the 41 patients. The (10, 20, 60, 
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Table 4.9: Quartiles of the mean estimated parameters K , a, and fj, and the values 
of GF R (ml/ min) , and Vol (L) for the OLS-GV model from the 41 patients using t he 
2,870 4-sample subsets. G F R is the mean G F R and S DcF R is the standard deviation 
of the GF R values. Vol (L) is the mean Vol and SDvol (L) is the standard deviation 
of the Vol values. 

Quartile K a fj GFR SDcFR Vol SDvol 

min 35348 0.28 0.26 8.3 8.3 6.5 3.3 

1st quartile 64592 0.79 0.32 30.8 32.3 7.6 4.0 

2nd quartile 84513 0.85 0.34 43.8 45.8 8.2 4.6 

3rd quartile 112758 0.89 0.40 61.8 63.1 9.3 5.7 

max 415197 1.09 0.45 89.3 164.0 12.4 42.5 

Table 4.10: The G F R and Vol results of the OLS-GV model for the 41 pat ients 
using the full 8 samples and four chosen subsets: (10, 20, 60, 180)min, (10 , 30, 120, 
240)min, (10, 20, 30, 45)min and (60, 120, 180, 240)min. Q stands for quartile. 

GFR full (10,20,60,180) (10,30,120,240) (10,20,30,45) (60,120,180,240) 

min 1.4 0.2 0.4 -410.1 4.6E-09 

1st Q 49.8 53.5 51.2 35.9 2.0E-08 

2nd Q 78.4 82.8 75.3 81.9 2.4E-08 

3rd Q 112.5 113.8 124.5 128.1 3.4E-08 

max 153.0 148.2 382.0 291.9 6.3E-08 

Vol full (10,20,60,180) (10,30,120,240) (10,20,30,45) (60,120,180,240) 

mm 10.4 10.4 6.0 -126.5 1.67 

1st Q 12.0 12. 1 7.5 11.7 1.74 

2nd Q 13.5 13.2 9.9 13.8 1.75 

3rd Q 15.5 15.6 12.7 15.7 1.77 

max 23.8 33.9 25.1 44. 1 1.79 
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180)min subset consistently gave the best agreement with the results using the full 

samples. The estimated GFR values using the (10, 20, 60, 180)min subset ranged 

from 0.2 ml/ min to 148.2 ml/ min while the range using the full samples was from 1.4 

ml/ min to 153.0 ml/ min. The results using the (10 , 30, 120, 240)min subset showed 

large differences when compared to those from t he full samples with a maximum GF R 

value of 382.0 ml/ min which is well beyond the expected GF R range. The (10 , 20, 

30, 45)min subset gave non-physical results with a minimum GF R value of -410.1 

ml/min and a minimum Vol value of -126.5 ml/ min. The corresponding estimated 

parameter a using t he (10, 20, 30, 45)min subset ranged from -0.484 to 1.091 which 

was beyond its expected range (0 < a ::::; 1). The OLS-GV model did not perform 

well using the earliest samples (such as the (10, 20, 30, 45)min subset). Although 

early samples can contain more noise due to factors such as redistribution or delayed 

perfusion, the early subsets do not provide sufficient information for the OLS-GV 

model to properly represent the clearance curve which was consistent with both t he 

SET1 and SET2 models. T he OLS-GV model did not perform well using the latest 

sample times either. For example, the (60, 120, 180, 240)min subset significantly 

underestimated the GF Rand Vol values (also giving non-physical results) compared 

with those from t he full samples. This is probably due to the limitation of the OLS 

algorithm used for finding the fit for the concentration-time curve. 

Figure 4.3 shows the mean difference of G F R estimated from t he hump subsets and 

the full samples. The smallest mean difference (GFRhump - GFRfull) was obtained 

using the 2 to 8 hump subset while the largest (GFRhump- GFRfull) was obtained 

using the 5 to 8 hump subset (approximately -78 ml/min) . Despite t he fact that the 

OLS-GV model has small (GFRhump - GFRfull ) (between -3 ml/ min to 5 ml/ min) 

using the hump subsets 1 to 4 to 4 to 8, the large difference obtained using t he 5 to 
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Figure 4.3: Results of the mean of the difference (GFRhump- GFRJutt ) between t he 
GFRhump and GFRJull using the OLS-GV model from the 41 patients. The hump 
subsets are 1 to 5, 1 to 6, 1 to 7, 2 to 8, 3 to 8 and 4 to 8. 
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8 hump subset indicated that the OLS-GV model can give non-physical results when 

later samples are used. Table 4.10 also indicates that t he the OLS-GV model can give 

non-physical results using the earliest 4 samples . As observed for the SET1 and SET2 

models, increasing the number of samples improved the performance of the model. 

This was also observed for the OLS-GV model using the hump subsets. In order to 

overcome the occurrence of non-physical results, it is beneficial to include samples 

from both early and late samples or t o improve the performance of the OLS-GV 

model by using T ikhonov regularization, see the results below. 

4 .4 Tk-GV Results 

Table 4.11: The GF R and Vol results of the Tk-GV model for the 41 patients using 
the full 8 samples and four different subsets: (10 , 20, 60, 180)min, (10, 30, 120, 
240)min, (10, 20, 30, 45)min and (60, 120, 180, 240)min. Q stands for quartile. 

GFR full (10,20,60,180) (10,30,120,240) (10,20,30,45) (60,120,180,240) 

mm 1.2 2.9 2.41 13.7 2.1 

1st Q 44.4 49.2 48.5 71.8 44.7 

2nd Q 74.3 76.2 76.3 107.8 67.2 

3rd Q 105.5 108.0 111.9 130.0 98.4 

max 157.6 154.9 161.1 205.8 159.5 

Vol full (10,20,60,180) ( 10,30, 120,240) (10,20,30,45) (60,120,180,240) 

mm 7.4 7.3 6.9 6.3 6.5 

1st Q 13.1 12.8 13.7 11.2 13.9 

2nd Q 16.3 15.8 16.1 13.5 17.8 

3rd Q 18.5 18.8 19.2 16.0 19.7 

max 31.1 30.5 33.3 27.9 27.3 

Table 4.11 shows t he estimated GFR and Vol values from the 41 patients using 

the full samples and the same four 4-sample subsets used for the analysis of t he 
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previous models. Excluding the (10 , 20, 30, 45)min subset, the difference between 

the estimated GF R values using the full samples and the 4-sample subsets in Table 

4.11 were much smaller than t hose from the SETs and OLS-GV models. When 

considering all 4 subsets and the full samples, the minimum estimated G F R ranged 

from 1.2 ml/ min to 13.7 ml/ min and the maximum GF R ranged from 154.9 ml/ min 

to 205.8 ml/ min, which shows great improvement in the agreement among the results. 

Similarly, the estimat ed Vol values did not differ significant ly when comparing the 

results from each subset to t hose obtained using the full samples. T he (10, 20, 30, 

45)min subset gave the worst agreement wit h t he full samples and overestimated t he 

minimum and maximum GF R values by 12.5 ml/ min and 48.2 ml/ min, respectively. 

The (10, 20, 60, 180)min subset gave results that were t he closest to those obtained 

using the full samples. The results from the (10, 30, 120, 240)min subset and (60, 120, 

180, 240)min subset were not significantly different from each other. This indicates 

that the Tk-GV model is still affected by the choice of sampling schedule, however, 

the deviation between the full samples and subsets was much smaller than t hose from 

the SETs and OLS-GV models. Lastly, there were no non-physical results observed 

using t he subsets in Table 4.11 , even when t he earliest 4 samples were used . 

--- --- -
Table 4.12: Estimated values of A, lnK, a, /3, GFR , Vol and the standard deviations 
SDcFR (ml/ min) and S Dvol (L) values using t he 2,870 4-sample subsets from the 41 
patients using the T k-GV model. 

Quart ile A lnK a f3 GFR Vol SDcFR SDvol 

mm 0 -5.364 0.595 0.0001 3.7 7.4 0.2 0.1 

1st quart ile 0.012 -4.537 0.714 0.0022 50.3 13.3 1.4 0.3 

2nd quartile 0.093 -4.280 0.775 0.0035 75.6 17.1 2.5 0.5 

3rd quart ile 0.261 -3.991 0.865 0.0046 113.2 18.5 3.7 0.7 

max 2.197 -3.386 0.990 0.0091 161.1 30.2 6.2 1.3 
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Table 4.12 lists the estimated m1mmum, max1mum and quartile values of the 

mean parameters and the standard deviation of the G F R and Vol values from t he 

2,870 4-sample subsets. The mean shrinkage factor ,\ was mostly between 0 and 1. 

However the maximum":\ was 2.2 (for Pt19). This is due to the requirement of more 

regularization for patients whose GF R values are expected to be very low (less than 

5 ml/ min or almost 0 ml/ min) and those patients would have very small plasma 

clearance value, and hence a very flat concentration-time curve.In those cases, t he 

smallest degree of noise (such as redistribution) would greatly influence the shape of 

t he clearance curve. The estimated parameters ln K , a and 7J values were all within 

physical ranges. There was no incidence of a = 0, a > 1 or f3 < 0 in the 2,870 

subsets . The GF Rand Vol values were quite close to those using the full samples. In 

addition, the SDcFR and SDval values were very small, indicating that the Tk-GV 

model is stable in performing the study of plasma clearance using different 4-sample 

subsets. The maximum SDcFR was 6.2 ml/ min and the maximum SDval was 1.3 L. 

Figure 4.4 shows the mean difference of GF R estimated from the hump subsets 

and the full samples. The difference ( G F Rhump - G F R f ull ) ranged from approxi­

mately -5 ml/min to 22 ml/min. The smallest difference was obtained using the 1 

to 7 hump subset. The 4 to 8 and 5 to 8 subsets gave very similar results for the 

G F Rhump - G F Rfull value indicating that the Tk-GV model is more robust than t he 

other three models with respect to using the later samples. There is also a trend in­

dicating that the Tk-GV model is likely to overestimate the GF R results using early 

samples, while underestimating the G F R results using late samples, as observed with 

the SET1 and OLS-GV models . A optimal sampling schedule is recommended to in­

clude both early and late samples (see Section 5.5). In the next chapter, a comparison 

of all the models discussed in this chapter will be presented. 
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Figure 4.4: Results of the mean of the difference ( G F Rhump - G F Rtuu ) between t he 
GF Rhump and GF Rfull using t he Tk-GV model from the 41 patients. The hump 
subsets are 1 to 5, 1 to 6, 1 to 1, 2 to 8, 3 to 8 and 4 to 8. 



Chapter 5 

Discussion 

In this chapter , the performance of the SET1 , SET2, OLS-GV and Tk-GV models are 

compared using 1) the GFR estimation, 2) the effects of subsets, 3) the case study, 

and 4) a cross comparison. The best sampling schedule for applying the Tk-GV model 

and the clinical impact of using the Tk-GV model are also presented. 

5.1 GFR Estimation 

5.1.1 Non-physical Results 

The most important outcome from the plasma clearance study is the estimated GF R 

value. If a model has a high frequency of giving non-physical (or physiologically 

impossible) GFR results (GFR < 0), it should not be used for clinical applications. 

In this work, when t he full samples were used, none of t he models gave non-physical 

results due to t he large sample size. The comparison among the four models (SET1, 

SE T2, OLS-GV and Tk-GV) with respect to the frequency of giving non-physical 

results was performed using subsets (1,148 2-sample subsets for the SET1 model and 

96 
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2,870 4-sample subsets for all the models) . 

When the 1,148 2-sample subsets were used for the SETJ model for the 41 pa­

tients, t here were 8 out of 1,148 subsets that gave negative GF RsET l results (0.7%) . 

When the 2,870 4-sample subsets were used for all the models, t he number of non­

physical results for each model was: the SETJ model gave 2 out of 2,870 (0.07%), 

the SET2 model gave 49 (1.7%), the OLS-GV gave 5 (0.17%) and the Tk-GV gave 0. 

It is reasonable that t he SETJ model had a higher frequency of giving non-physical 

results using 2-sample subsets compared with using 4-sample subsets because each 

model is expected to perform better when fitted to more samples (see Tables 4.1 to 

4.5) . However , using the 4-sample subsets, the SETJ model gave fewer non-physical 

results (0.07%) compared with the SET2 model (1.7%) because the SETJ model has 

a higher probability in finding a convergence during the regression compared with 

the SET2 model. Evidence of this is shown in Tables 4.5 and 4.7 where the (10 , 20 

30, 45)min subset from the SET2 model gave non-physical GFR values while there 

were no non-physical results obtained with the SETJ model. In Table 4.10 there 

was a non-physical GF R result obtained using the (10, 20 30, 45)min subset with 

the OLS-GV model. In Table 4.11 , there was no non-physical results observed using 

t he Tk-GV model, with all the GF R values being close to each other, irrespective 

of the use of different subsets. In summary of the results from the 2,870 4-sample 

subsets , the Tk-GV model was the only model which did not give any non-physical 

results. On the other hand, as discussed in Sect ion 4.1 , if we considered estimated 

GF R values larger than 200 ml/ min as physiologically impossible, the SE TJ , SE T2 

and OLS-GV models gave a higher incidence of estimated GFR values larger than 

200 ml/ min compared to the Tk-GV model. Because of the uncertainty in defining 

an upper limit for the estimated G F R results , such values are not discussed in this 
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chapter . 

5.1.2 Variations within the Model 

Another interesting aspect of the estimated GF R results is the degree of overesti­

mat ion or underest imat ion caused by different subsets. Since the real GF R value is 

unknown, all the estimated GF R results using different models cannot be compared 

wit h an absolute value. Therefore, the alternative comparison was performed within 

each model. If the GF R result s from different subsets using the same model gave a 

large range of values, it may indicate the potential of this model to overestimate (or 

underestimate) the G F R values compared with the results using t he full samples. 

The comparisons in t his section focus only on the overestimation (or underesti­

mation) of the GF R values within each model using different subsets. When overes­

timation or underestimation is mentioned in the following, it refers to the comparison 

of the results from using the subset to t hose obtained from the full samples from t he 

same model. 

SET1 

For the SET1 model, the data in Table 4.1 shows an average overestimation of GFR 

value of 223 ml/ min using the (60, 180)min subset and 87 ml/ min using t he (10, 

180)min subset. The (60, 180)min subset gave an average underestimation of t he Vol 

value of approximately 10 L while the (10, 180)min subset gave an underestimation 

of 14 L. Table 4.5 shows that the maximum GF R value obtained wit h the SET1 

model was the largest (overestimated the GFR value by approximately 275 ml/ min) 

using the (10, 30, 120, 240)min subset and smallest (underestimated the GFR value 

by approximately 200 ml/ min) using the (60, 120, 180, 240)min subset . Tables 4.2, 
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4.3 and 4.4 summarize the effects of the 2-sample, 3-sample and 4-sample subsets in 

affect ing t he GF R values using t he SET1 model. The range of the SDcFR values de­

creased from 1,095 ml/ min using the 2-sample subset to between 130 and 140 ml/min 

using the 3-sample and 4-sample subsets, indicating the improvement of model per­

formance by using more samples. In summary, the SET1 model has been shown to 

produce a large difference in the estimated G F R values using 2-sample subsets (e.g. 

(60, 180)min as recommended by the guidelines [41 ,42]) when compared with the full 

samples, ranging from approximately 50 to 2,800 ml/min. 

SET2 

The data in Table 4. 7 shows an overestimation of t he maximum G F R value and 

underestimation of the minimum G F R value (in fact , non-physical) using both t he 

(10, 20, 30, 45)min and (10, 30, 120, 240)min subsets. The (10, 20, 60, 180)min 

subset gave the best agreement with the results using the full samples, however, 

this is the only subset that provided all GF R values within the expected range. 

The agreement between the range of estimated GF R values using the full samples 

and the (10, 20, 60, 180)min subset does not necessarily mean that there is similar 

agreement for individual patient. In fact , the SET2 model gave large differences in 

the estimated G F R values using different subsets. For example, Table 4.8 shows that 

the estimated GF R values ranged from 1.9 ml/ min to 139.1 ml/ min while the SDc FR 

values ranging from 18.8 ml/ min to 455.0 ml/ min for the SET2 model applied to t he 

4-sample subsets. The SDcFR values were generally larger than those using the SET1 

model (ranging from 5.5 ml/min to 146.5 ml/ min shown in Table 4.4), indicating that 

the SET2 model was more unstable in giving reliable G F R values than the SET1 

model, not to mention providing a larger number of non-physical G F R results. 
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OLS-GV 

The OLS-GV model delivered a similar performance as that of the SET2 model in 

regards to the range of the estimated GF R values from using different subsets. Table 

4. 10 shows that the (10, 20, 30, 45)min still gave non-physical result for the minimum 

GF R value and t he (60, 120, 180, 240)min subset significantly underestimated t he 

GF R values compared with t hose using t he full samples. The (10, 20, 60, 180)min 

subset consistently gave the best agreement in estimated G F R values compared to 

t he full samples. The (10, 30, 120, 240)min subset , however, did not give any non­

physical results as in the SET2 model. Although, as shown in Table 4.9, t he OLS-GV 

model had a relatively smaller range of SDcFR , between 8.3 to 164.0 ml/ min than 

that of the SET2 model (SDcFR ranging between 18.8 to 455.0 ml/ min in Table 

4.8). The fact that the OLS-GV model still gave large variations of GF R values 

using the earliest 4 samples or the latest 4 samples does not make it a good candidate 

for clinical applications. 

Tk-GV 

Table 4.11 shows that the T k-GV model had the smallest variation between the es­

timated G F R values obtained from all four subsets and full samples among all four 

models. The Tk-GV model gave the largest variation in the minimum (12.5 ml/ min) 

and maximum (48.2 ml/ min) GF R values using the (10, 20, 30, 45)min subset com­

pared with those using the other subsets. T he most important improvement from t he 

other three models is t hat there was no non-physical result using the Tk-GV model, 

and t he (60, 120, 180, 240)min subset gave very close estimation of GF R results to 

those from the full samples. Because of the agreement in the estimated G F R values, 

all the Vol values using the Tk-GV model from the subsets were very close to those 



CHAPTER 5. DISCUSSION 101 

using the full samples. For example, the minimum Vol values ranged from 6.3 to 7.4 

L for the full samples and four subsets, and t he maximum Vol values ranges from 

27.3 to 33.3 L. A further proof of the improvement in the performance of t his model 

is that the SDcFR value ranged from only 0.2 to 6.2 ml/ min in Table 4.12, while 

the other three models all gave ranges of estimated SDcFR values on the order of 

hundreds of ml/ min. Similarly, the range of the estimated S Dvol values was much 

smaller using t he Tk-GV model than those obtained using t he ot her three models. 

With respect to the differences in the estimated G F R values, t he Tk-GV model 

performed the best among all the models in that it had the most stable performance 

from using different sampling schedules by introducing the least variations in t he 

estimated G F R values. 

5.2 Effect of Subsets 

This section discusses the stability of each model with respect to the different subsets. 

Two types of subsets were used in t his work. One type of subset was the minimum-size 

sample subset such as the 2-sample subset for using the SET1 model or the 4-sample 

subset for using the SET2 and Tk-GV models. The other type of subset was the 

hump subsets which contain more samples t han the minimum requirement for each 

model, such as 1 to 6 hump subset, 1 to 7 hump subset, etc. All the comparisons in 

the following sections were based on the results obtained from t he 41 patients. 

5.2.1 4-sample Subsets 

For the purpose of comparison, the 4-sample subsets introduced in Chapter 4 are the 

primary subsets used in this section. Figures 5.1 to 5.4 show the effects of t he four 
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different subsets (10, 20, 30, 45)min, (10 , 20, 60, 180)min, (10, 30, 120, 240)min and 

(60, 120, 180, 240)min in estimating t he GF R values from t he SET1 , SET2, OLS-GV 

and Tk-GV models, respectively. Each graph shows the estimated GF Rsubset values 

versus GF Rfull values. The solid line indicates the best fi t line to the GF Rsubset 

(using a linear regression) while the dashed line indicates the ident ity line Y = X. 

Figure 5.1 b) shows that the (10, 20, 60, 180)min subset gave good agreements 

with the full samples using the SET1 model. The (10 , 30, 120, 240)min subset in 

Figure 5.1 c) had several outliers in the estimated GF R results which increased t he 

scale of the difference between the G F R full and G F Rsubset from approximately 200 

ml/ min to 500 ml/ min. The (10 , 20, 30, 45)min subset gave a poor agreement in that 

the GF Rsubset values consistently overestimated the GF R full values by an average 

of 70 ml/ min. In addition , the intercept in Figure 5.1 a) was not zero, indicating 

that when the estimated G F R using the fulls samples was very close to 0 ml/ min, 

the estimated G F R value using the (10, 20, 30, 45)min subset was approximately 

50 ml/ min, which was highly inaccurate for estimating t he G F R value when the 

expected GFR was very low. The last subset (60, 120, 180, 240)min in F igure 5.1 d) 

was unable to provide reliable GFR results due to the difficulty in fitting the later 

part of the concentration-t ime curve (a much flatter portion of the clearance curve) . 

Figure 5.2 shows that t he SET2 model is able to improve the agreement of the 

GF Rsubset values with the GF Rfull values when compared wit h the SET1 model using 

t he same subset. Alt hough the fi ts with the SET2 model are generally good, there are 

outliers using all four subsets, particularly in Figure 5.2 a) where the G F Rsubset results 

from the (10 , 20, 30, 45)min subset forced the scale of the ordinate from approximately 

200 ml/ min to 4,000 ml/ min while in Figure 5.2 d) many of the estimated GF R values 

were close to 0 ml/ min. The (10, 20, 60, 180)min subset consistently gave the best 
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Figure 5. 1: Comparison of the GF R sETl values obtained using the 4-sample subsets 
to the GFRfull obtained using the full samples. a) (10 , 20, 30, 45)min, b) (10, 20, 
60, 180)min, c) (10, 30, 120, 240)min and d) (60 , 120, 180, 240)min. The solid line 
indicates a fit of t he G F R values and the dashed line is the identity line Y = X . 
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Figure 5.2: Comparison of the GF R sEr2 values obtained using the 4-sample subsets 
to the GFRfull obtained using the full samples. a) (10, 20, 30, 45)min, b) (10, 20, 
60, 180)min , c) (10, 30, 120, 240)min and d) (60, 120, 180, 240)min. The solid line 
indicates a fit of the G F R values and the dashed line is the identity line Y = X . 
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Figure 5.3: Comparison of the G F RoLs-Gv values obtained using t he 4-sample subsets 
to the GFRfull obtained using the full samples. a) (10, 20, 30, 45)min, b) (10 , 20, 
60, 180)min, c) (10, 30, 120, 240)min and d) (60, 120, 180, 240)min. T he solid line 
indicates a fit of t he G F R values and the dashed line is the identity line Y = X. 



CHAPTER 5. D ISCUSSION 106 

20 40 60 80 100 120 140 160 180 

GFR full samples (mllmin) 

Figure 5.4: Comparison of the G F R Tk-GV values obtained using the 4-sample subsets 
to the GFR1uu obtained using the full samples. a) (10 , 20, 30, 45)min, b) (10, 20, 
60, 180)min, c) (10, 30, 120, 240)min and d) (60, 120, 180, 240)min. The solid line 
indicates a fit of the G F R values and the dashed line is the identity line Y = X . 
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agreement with the results using the full samples among all four models. 

Figure 5.3 shows that the estimated GF Rsubset values from the two subsets, (10, 

20, 60, 180)min and (10 , 30, 120, 240)min gave good agreements with the GFRfull 

using the OLS-GV model. The (10, 20, 30, 45)min subset shown in Figure 5.3 a) had 

a few outliers which shifted the scale of the ordinate (see det ail of values in Table 

4.10) . The OLS-GV model was still not able to provide reliable GFR results using 

the (60 , 120, 180, 240)min subset partially due to the limitation of the OLS algorithm 

in solving an ill-posed GV problem. 

Table 5.1: The slope and R2 values obtained from the correlation between the re-
sults from the SET1 , SET2, OLS-GV and Tk-GV models using the 4-sample subsets 
(shown from Figures 5.1 to Figure 5.4) and the full samples from OLS linear regres-
SlOn. 

models SET1 SET2 OLS-GV Tk-GV 

4-sample subsets slope R2 slope R2 slope R2 slope R2 

(10 ,20,30,45) 1.365 0.716 2.731 0.074 0.894 -0.043 1.186 0.590 

(10,20,60,180) 1.023 0.994 1.003 0.960 0.997 0.957 0.999 0.976 

(10,30,120,240) 1.143 0.034 0.678 -0.283 1.039 -0.195 0.999 0.997 

(60 , 120, 180,240) 0.0002 -1.379 0.0001 -1.115 3E-10 0.071 0.935 0.968 

All four graphs in Figure 5.4 gave good agreement (in some case excellent agree-

ment) between the GF Rsubset and GF R full values using the Tk-GV model. The fit ted 

lines were all very close to the identity lines, and the scales of the estimated GF R 

values were all within expected ranges. 

In order to better compare Figures 5.1 to 5.4, Table 5.1 lists the slope and R2 

results from the linear regressions of the fit between the results using t he 4-sample 

subsets and the full samples from all four models. The results of the slopes for the 

(10, 20, 30, 45)min subset range from 0.894 to 2.731 while the Tk-GV model gave a 

slope closer to 1. Using the last four samples, which is the (60, 120, 180, 240)min 
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subset , gave the worst results for all four models, however, the Tk-GV model showed 

the best agreement (with a slope= 0.935 and R2 = 0.968) between the results using 

subsets and full samples (see Figure 5.4 d) ), compared to the other three models which 

gave slopes much less than 1 (SETJ , SET2 and OLS-GV). The results from the (10, 

30, 120, 240)min subset using all four models improved t he correlation with those 

estimated from the full samples, with t he SET2 model giving t he worst correlation, 

with slope = 0.678. In addition, the results from the (10, 20, 60, 180)min subset 

showed the best agreements for all four models giving slopes value very close to 1 and 

R2 very close to 1. However , the other three subsets gave negative R2 values using 

the SE Ts and OLS-GV models due to outliers (e.g. non-physical results or very large 

GF R values) of the estimated GF R results. In summary, the Tk-GV model gave t he 

best values of slope and R2 for all four 4-sample subsets among all four models. 

A weakness in this comparison is that although 4-sample subsets were used for 

all models, not all four models require 4 samples as their minimum sample size. 

Considering that the SETJ model requires 2, the SET2 model requires 4, t he OLS­

GV model requires 3 and the Tk-GV model requires 4 minimum samples, it can 

be argued that this places the SETJ , and OLS-GV models at an unfair advantage 

compared to the Tk-GV model. However , despite the extra advantage given to these 

two models by using samples more than the minimum requirement , the Tk-GV model 

was still found to give the best results in terms of frequency of giving non-physical 

results and curve fitting. 

In summary from the results shown in Figures 5.1 to 5.4 and Table 5.1 , the Tk-GV 

model gave the best agreement in the estimated G F R values between the full samples 

and subsets, indicating that the Tk-GV model is the model that is least affected in 

estimating the GF R values by the choice of sampling schedule. 
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5.2.2 Hump Subsets 

The comparison of the results using the hump subsets in t his study is mainly based 

on the four figures shown in Chapter 4 (Figure 4.1 for t he SETJ model, Figure 4.2 for 

the SET2 model, Figure 4.3 for the OLS-GV model, and Figure 4.4 for the Tk-GV 

model). Additional discussion based on the results from the hump subsets shown in 

our paper is also presented below [118]. 

Figure 4.1 shows how the mean difference of the estimated GF R values using t he 

SETJ model between the hump subsets and the full samples (GFRhump- GFRfull ) 

ranges from approximately -100 ml/min to 75 ml/ min. The trend from the results 

clearly indicates that the early samples (e.g. 1 to 3 hump subset) overestimated the 

GFRfull values while t he later samples (e.g. 5 to 8 hump subset) underestimated the 

GFRfull values using the SETJ model. This finding agrees with the GFR results 

using the four 4-sample subsets with the SETJ model shown in Tables 4.4 and 4.5. 

As shown in Figure 4.2, the SET2 model is much less sensitive to t he choice of t he 

hump subsets. T he mean difference (GFRhump- GFRfull ) values ranged from ap­

proximately -18 ml/ min to 12 ml/ min which is much lower than those obtained from 

the SETJ model. The (GFRhump - GFRfull ) value with the SET2 model decreases 

when more samples were used . The OLS-GV model greatly reduced the value of 

(GFRhump - GFRfull) (to less than 10 ml/ min) for all the subsets with t he excep­

t ion of the 5 to 8 hump subset which gave an underestimated value of approximatly 

-78 ml/ min (Figure 5.3 d)). This agrees wit h the finding t hat the OLS-GV model gave 

a 0.17% frequency of non-physical results from the 2,870 4-sample subsets. T here­

fore, the OLS-GV model has improved over the SETJ and SET2 model, however, 

it still has limitations during t he curve fitting. T he Tk-GV model gave estimated 

(GFRhv.mp- GFRfull) values ranging from approximately -5 ml/ min to 22 ml/ min 
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(see Figure 4.4). The largest difference came from the 1 to 4 hump subset (equivalent 

to the (10, 20, 30, 45)min subset shown in Figure 5.4 a)) which provided a few data 

points with significant overestimation of t he GF R value. 

In summary, with respect to the effects of subsets, the T k-GV model is the least 

sensit ive to the choice of subsets, indicating t hat the Tk-GV model can perform well 

in the study of the plasma clearance regardless of the choice of the sampling schedule. 

5.3 Case Study 

This section presents the case studies of 3 patients: Ptl chosen randomly, Pt15 had 

the largest estimated GF R value, and Pt19 had the smallest estimated GF R value 

among all the 46 patients. For P t 1, the concentration t ime curve fit t ings using the four 

models is presented in Figure 5.5 and for Pt15 and Pt19, Table 5.2 lists the estimated 

GF R results using 4-sample subsets and full samples using the four models. 

F igure 5.5 shows the concentration curve fitting using the full 8 samples for Pt1 

using the SET1 , SET2, OLS-GV and Tk-GV models. T his figure provides an excellent 

example of how each of the four models performs in estimating the area under t he 

curve (AUC) of the concent ration-time curve. Error bars are not included in t his plot 

because the original counts obtained from the gamma counter were unknown from t he 

data provided by Dr. Russell and Dr. Croft. However, the pipetting error is reported 

to be within 3% [95] . The estimated G F R values using the full samples from t he 

SET1, SET2, OLS-GV and Tk-GV models were: 111.5, 86.7, 55.4 and 67.1 ml/ min 

respectively. T he original data from the 8 samples are shown as solid circles. The 

SET1 model (shown with a fine dashed line) failed t o represent the general trend of 

data. In addition, the fi t given by t he SET1 model gave the largest slope, resulting 

in the largest estimated GFR = 111.5 ml/ min. T he other t hree models (SET2, OLS-
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Figure 5.5: Comparison of performance of the concentration time (wit h time= O set 
at the finishing point of the injection) curve fitting using the SET1 (fine dashed line), 
SET2 (solid line), OLS-GV (dash-dot-dash line) and Tk-GV (dashed line) models for 
Ptl using the full samples. The original 8 samples are represented with dark circles. 
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GV and Tk-GV) all gave curves that represent the data, indicating that these three 

models are not significantly different in fit t ing the concentration-time curve when 

the patient's expected GFR value was not critically low. However, when less than 8 

samples were used, the difference in t he curve fitt ing among the SET2, OLS-GV and 

Tk-GV models became more concerning because the SET2 and OLS-GV models are 

more prone to giving non-physical results compared to the Tk-GV model. 

Table 5.2: Estimated GFR values for Pt15 and Pt19 using the 4-sample subsets 
(70 subsets) using the SET1 , SET2, OLS-GV and Tk-GV models. The GF R8 (in 
ml/min) and Vol8 (in L) are the estimated results using 8 samples. The GF R4 and 
V ol4 are t he mean estimated results of G F R and Vol using 4 samples. 

Pt15 GFR8 GFR4 Vol8 Vol4 
SET1 208.3 123.7 6.0 3.9 

SET2 166.5 87.0 14.3 7.5 

OLS-GV 153.0 71.9 15.5 8.6 

Tk-GV 157.6 161.1 16.0 17.0 

Pt19 GFR8 GFR4 Vol8 Vol4 
SET1 4.5 48.8 242.8 220.5 

SET2 2.6 -60.6 11.2 11.6 

OLS-GV 2.5 15.2 10.5 7.5 

Tk-GV 1.2 2.9 11 .6 11.3 

Table 5.2 shows the GF R and Vol results for Pt15 and Pt19 using t he SET1 , 

SET2, OLS-GV and Tk-GV models. The GF R 8 and Vol8 values were obtained using 

the full 8 samples. The G F R4 and V ol4 values are the mean of the estimated results 

of G F R and Vol. When the expected G F R value was high, as is the case for Pt15, 

the SET1, SET2 and OLS-GV models consistently gave larger GF R 8 values than 

t hose from the 4-sample subset. In all but one case, the ratio of G F R8 to G F R4 

was approximately 2. T he same observation was obtained for the ratio of V ol8 to 

Vol4 , indicating the poor agreement between the estimations using 8 samples and 4 
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samples. However , the Tk-GV model gave an estimated GF R8 value of 157.6 ml/ min, 

while 161.1 ml/ min was obtained for GFR4 , indicating a very small difference in the 

GF R results using different sampling schedules. Similarly, t he Tk-GV model gave an 

estimated Vol8 value of 16.0 L while a value of 17.0 L was obtained for V ol4 . When 

the expected GF R value was very low, as for the case of Pt19, the difference between 

t he performance of all four models in estimating GF R and Vol values using 8 and 4 

samples became larger. The SET1 model gave t he GFR4 10 times larger t han t he 

GF R 8 value. The SET2 model gave a negative GF R4 value of -60.6 ml/ min. The 

OLS-GV model gave a slightly better agreement between the est imated GF R8 and 

GF R4 values, however, still with a difference of 12.7 ml/ min. T he Tk-GV model 

showed that it can perform well in estimating GFR values when they were expected 

to be less than 15 ml/ min. The GF R8 and GF R4 values were 1.2 ml/ min and 

2.9 ml/ min using the Tk-GV model, while 11.6 L and 11.3 L for V ol8 and V ol4 , 

respectively. It should be made clear that the fits obtained using SET2 and OLS-GV 

for the 8 samples were very close to the fits obtained using Tk-GV for both the 8 and 

4 sample subsets, indicating the inherent difficulty in estimating low GFR values. 

The case studies based on t he results from patients Pt1, Pt15 and Pt19 have 

shown that t he T k-GV model consistently gives the best performance in fit t ing the 

concentration-time curve, as well as estimating the GF R and Vol values compared 

with other models. 

5.4 Cross Comparison 

Figure 5.6 shows the correlation of the estimated GF R values using the SET1 and 

SET2 models compared with the Tk-GV model using the full samples from the 46 

patients. The correlation between the SET1 and Tk-GV models gave a slope of 
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1.18. The reciprocal of the slope is 1/ 1.18 = 0.85 which is very close to Chantler 's 

correction factor of 0.87 used to modify the overestimation of the SET1 model using 

GFRcorrected = 0.87 X GFRsETl (see Section 2.4). This shows t hat t he Tk-GV model 

has corrected the overestimation of the GF R values from the SET1 model compared 

with the results using the standard clearance technique (which was calculated as 

UV / P using the urinary clearance, urine flow rate and plasma act ivity, see Section 

2.2 .1) [60]. 
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Figure 5.6: Comparison of the 46 estimated GFR values using SET1 (dark circles) 
and SET2 (gray rhombus) compared with Tk-GV, using the full samples. The dashed 
line is the identity line Y = X. 

Florijn 's study showed that there is a constant difference of 5. 1 ml/ min in t he 

G F R values obtained using t he SET2 model compared wit h those from the constant 

infusion of inulin (known as gold standard for estimating G F R values) [80]. The 

correlation of the GF R results in Figure 5.6 gave a slope of 0.99 ~ 1 and an intercept of 
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6.4 ml/ min (between the SET2 and Tk-GV models) which is very close to 5.1 ml/min. 

This indicates that the Tk-GV model has corrected the inaccuracy in estimating the 

GF R value from the SET2 model compared with the gold standard. T his agreement 

with the correction factor is further validated by scaling the results of the SET2 

and Tk-GV models by the mean values of GFR and the parameter /3 , which gives a 

correlation coefficient of approximately 1.106. T his value agrees with the finding from 

Moore et al. where an overest imation of approximately 10% obtained by the SET2 

model was observed based on 24 h plasma clearance study [61 , 118] . T his shows that 

the Tk-GV model can consistently perform well without the requirement for further 

corrections. 

The cross-comparison of the Tk-GV model with the SET1 and SET2 models has 

shown that the Tk-GV model reduces the overestimation of the SET1 and SET2 

models by t he same amount predicted by the Chant ler's correction factor and by 

Moore's study. In addit ion, the cross-comparison with F lorijn's observation shows 

that the Tk-GV model gave results that are close to those obtained using the gold 

standard. 

5.5 B est Sampling Schedule 

It is a useful exercise to attempt to determine the best sampling schedule (using 4 

samples) in consideration of 1) estimating the GF R value accurately, 2) being the least 

invasive for the patients to follow during the kidney function test, and 3) providing 

the most convenience for the technologists to perform. T he minimum number for 

samples required to use the Tk-GV model is 4. 

There are (!) = 70 different combinations of choosing 4 samples out of 8 samples. 

T he 70 estimated GF R4 values were compared with t he GF R8 values using the full S 
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samples. The results from the 41 patients were used to find t he best sampling schedule 

using t he residuals calculated from t he GF R8 and GF R4 values. Five subsets (10, 

30, 180, 240)min , (10, 30, 120, 240)min, (10, 45, 120, 240)min, (10, 20, 45, 240)min, 

and (10, 45, 180, 240)min were identified from the 70 subsets with residual values 

< 2 ml/ min. Given t hat the normal range of GF R values is between 100 to 130 

ml/ min/ 1.73 m2
, a residual < 2 ml/ min indicates a relative error < 2%. Residuals 

were calculated as the difference in estimated G F R values between the chosen 4-

sample subset and full samples. Among all t hese 5 subsets, the residuals ranged from 

1.35 ml/ min to 1.86 ml/ min, indicating no significant difference in t he relative error. 

In consideration of the clinical practise for collecting blood samples, the (10, 30, 120, 

240)min subset is of most interest . Since patients who undergo kidney function tests 

using t he plasma clearance method, are also required to undergo renal scans (a renal 

scan usually lasts 30 min) , it is convenient to collect the two blood samples during 

the renal scan ( 10 min and 30 min). The collection t ime of 45 min was not chosen 

because it would require the patient to return to the depart ment of Nuclear Medicine 

15 min after the renal scan. It is interesting that the best sampling schedule includes 

early samples before 1 h after the injection. Remember t hat for the SETJ model, t he 

recommended start ing sampling t ime was after 1 h [72]. Although there are concerns 

about how including early samples can affect the curve fitting of the concent ration­

t ime curve, studies have shown the need of including early samples using t he SETs 

models . For example, a Monte Carlo study performed in 2012 recommended that the 

sampling schedule include 3 early samples before 1h post-injection for using the SET2 

model [86]. Another study by Dr. Russell recommended that the sampling started 

by 5 min while additional samples are collected within t he following 90 min using 

the SETJ model [85]. F leming et al. also pointed out the importance of including 

early samples while using the SETs models [130]. T he debate on whether or not to 
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include early samples for the SETs models, again , shows t he robustness of t he Tk-GV 

model in that it can perform well using both early and late samples. The 120 min 

collection time is more attractive because the concentration-t ime curve between 120 

min and 240 min has a larger elimination rate than that between 180 min and 240 

min. Because t he Tk-GV model is very robust with respect to t he choice of subsets, 

different health institutions can choose a sampling schedule from these 5 subsets that 

best meet their needs without compromising t heir expected G F R results. 

5.6 Clinical Impact 

It is interesting to investigate how the difference in estimating t he GF R values using 

the SETJ model and SET2 model compared to t he Tk-GV model can affect t he 

determination of the stage of chronic kidney disease ( CKD) (see Table 2.1). F igure 

5.7 shows the difference in the estimated GFR values using the SETJ and SET2 

models compared with those using the Tk-GV model with respect to the 5 stages of 

CKD. F igure 5.7 a) gives the relative difference (GF R sETl - GF RTk-GV )/GF RTK-GV 

as a function of t he GF RTk-GV values for the 46 patients. T he division of the 5 CKD 

stages was discussed in Section 2.1.1. Because the CKD stages are described based on 

body surface area (BSA) corrected G F R values, the estimated G F R values from t he 

SETl , SET2 and T k-GV models were also corrected with t heir corresponding BSA 

values. From t he previous discussion, the SETJ model is known to overest imate t he 

G F R values. F igure 5. 7 a) shows that the SET 1 model overestimates the G F R results 

more when t he expected GF R value is < 30 ml/ min/ 1.73 m2 (CKD4 and CKD5). 

There were 6 patients falling into the category of G F R < 15 ml/ min/ 1. 73 m2
. The 

estimated GF R values from these 6 patients have been significantly overestimated 

(from 137% to 344%) with the SETJ model compared with that from the Tk-GV 
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model. This means that if the patient had a GFR value of 15 ml/ min/ 1.73 m2
, 

the SETJ model would overestimate the GF R value between 21 to 51 ml/min/1.73 

m2
. As a result , the patient 's estimated G F R values from the SETJ model would be 

between 36 and 67 ml/ min/ 1.73 m2 which could alter the staging from CKD5 to CKD3 

or CKD2. There were 3 patients with GFR values between 15 and 30 ml/ min/ 1.73 

m2 which were overestimated using the SETJ model by a factor of approximately 2 

compared with the Tk-GV model. The relative ratios of overestimation were between 

86% and 95%, which would increase the expected GF R values from 30 ml/ min/ 1.73 

m2 to 60 ml/ min/ 1.73 m2 using the SETJ model. 

Figure 5.7 b) shows the relative error between the SET2 and Tk-GV model, 

( G F RsET2 - G F RTk-GV) / G F RTk-GV after the BSA correction indicating that the 

SET2 and Tk-GV models were closer in the analysis of the CKD stages than between 

the SETJ and Tk-GV models. For GFR < 15 ml/ min/ 1.73 m2
, 5 out of the 6 patients 

in category CKD5 were overestimated by 25% to 109%. However, Pt36 had a slightly 

lower G F R value using the SET2 model (98%) compared with that from the Tk-GV 

model. For the rest of the CKD stages, SET2 had 5 patients being underestimated 

and 41 patients being overestimated compared with that from the Tk-GV model. 

Using the SETJ or SET2 models can introduce significant differences in t he esti­

mated kidney function compared with the Tk-GV model. The importance of estimat­

ing GFR accurately at low ranges (e.g. < 15 ml/ min/ 1.73 m2 ) can affect the clinical 

management of patients. Therefore, it is crucial to improve the accuracy and preci­

sion of the GF R measurement for patients with different ranges of expected kidney 

function. 
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5.7 Summary 

From the above discussion, with respect to the number of non-physical results, t he 

variation of the G F R values using different subsets within the model, the effects of 

different types of subsets, and a cross comparison of the results to t he gold standard 

(constant infusion of inulin method) , the Tk-GV model was consistently better than 

the SET1 , SET2 and OLS-GV models. T he results from this study have been pub­

lished in the Journal of Pharmacokinetics and Pharmacodynamics in 2010 [118] . A 

clinical protocol of how to collect blood samples for using the Tk-GV model developed 

at the General Hospital in St. John's, Lin 2010 is given in Appendix A.l. 



Chapter 6 

Applications to 24 h D ata 

In this chapter, the results of the Tk-GV model applied to a study sample of 10 

patients with a 24 h sampling schedule are shown and discussed. These results were 

not discussed together wit h the 46 patients in Chapters 4 and 5 because: 1) all 10 

patients had liver dysfunction and their kidney function was, according to guidelines, 

difficult to estimate accurately using t he SET1 model [130] , and 2) these patients 

had a 24 h sampling schedule with more t han 4 samples, which allows the comparison 

of the Tk-GV model and the SET1 model over a longer t ime scale. As a result, 

this chapter is shown as an ext ension of Chapters 4 and 5, and hence is presented 

separately. 

6 .1 D ata 

The preliminary study based on the 4 h sampling schedule showed that the Tk-GV 

model performed the best among all four models. How t he T k-GV model performs 

on a plasma clearance study with a sampling schedule longer than 4 h is unknown. 

In 2010, 13 patients' data processed with a 24 h sampling schedule were collected 

121 
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and provided by Dr. Maria Burniston in the department of medical physics, Royal 

Free Hampstead NHS Trust in London, England. The median body mass of these 

13 patients was 78.4 kg (range from 51.1 kg to 105.8 kg) and median body height 

was 167.8 em (range from 150.0 em to 188.0 em) . These 13 patients who were under 

assessment for liver transplantation were studied using a 51Cr-EDTA bolus injection. 

The uncertainty of the timing and activity of the samples were not provided by 

Dr. Burniston, however , one can follow the general estimat ion of t he uncertainty 

introduced in Section 3.2. A comparison of the results based on this dataset using 

the Tk-GV model and SETl model has been presented and published in the European 

Journal of Nuclear Medicine and Molecular Imaging in 2011 [131] . 

These 13 patients had multiple blood samples (varying from 7 to 16 samples) 

drawn between 5 min and 24 h after the injection of the t racer. Among all 13 pa­

tients, Pt7 had the fewest samples (7 samples) and the shortest sampling time (12 h). 

Patients Pt1 and Pt2 also had a limited sample size (8 and 10 samples, respectively). 

Therefore , in order to perform a comparative investigation of the behavior of the 

Tk-GV model and the SETl model with a uniform sampling schedule, patients Pt1 , 

Pt2 and Pt7 were not included in the results and discussion of this analysis. The 10 

patients used in this work had 12 or more samples taken within 24 h. As a result of 

the conclusion of Chapters 4 and 5, which showed that t he Tk-GV model is a better 

model than the SETs models for estimating GF R values, it is not necessary to again 

compare the GFR results using the SETl , SET2, OLS-GV and Tk-GV models. T he 

application of the Tk-GV model to these 10 patients should allow us to investigate: 1) 

if the Tk-GV model performs consistent ly better than the SETl model in estimating 

the GF R values, and 2) the effects of using late sample times (later than 4 h) on t he 

performance of the Tk-GV model and the SETl model. For completeness, a brief 
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discussion of the GF R values obtained using the SET2 model is given in Sect ion 6.3. 

6.2 SET1 versus Tk-GV 

6.2.1 GFR R esults 

Table 6.1: Estimated GFR (ml/ min) values from the 10 patients with 4 h, 12 h and 
24 h sampling schedules, using t he SETJ and Tk-GV models. 

GFRsETl GFRTk-GV 
Pt 24 h 12 h 4h 24 h 12 h 4h 

3 75.1 81.0 117.8 79.7 79.6 74.4 

4 43.2 48.6 85.6 45.8 43.8 43.7 

5 71.7 86.9 173.5 76.5 82.7 89.6 

6 52.3 58.7 83.5 56.5 57.6 60.0 

8 41.7 57.9 154.8 29.9 36.7 64.4 

9 42.7 48.9 74.6 46.5 47.6 49.1 

10 15.6 22.1 36.4 11.4 15.9 19.5 

11 21.9 25.4 45.5 21.2 19.3 24.5 

12 42.1 52.5 78.4 42.5 49.1 53.3 

13 43.9 58.9 92.7 36.4 45.1 54.2 

This section will focus primarily on the comparison of how the SE TJ model and 

the Tk-GV model perform in fitting clearance data obtained within a 24 h sampling 

schedule. 

Table 6.1 lists the estimated G F R results using the 4 h, 12 h and 24 h sampling 

schedules for t he 10 patients using the SETJ model and the Tk-GV model. The 

difference in GF R values between the SETJ model and t he Tk-GV model is the 

largest when considering the 4 h sampling schedule (see Table 6.1) . T he minimum 

difference in the 10 G F R results using a 4 h sampling schedule is 39% while the 
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maximum difference is 140%. The range of differences for the 12 h sampling schedule 

indicates that the SETl model is less deviated from the Tk-GV model in estimating 

the GF R values. However, the results from the 4 h and 12 h sampling schedule 

show that the SETl model consistently overestimated the GF R values compared 

with those from the Tk-GV model. When the 24 h sampling schedule was used, 

both models gave similar GF R values. However, the 24 h sampling schedule is much 

more time-consuming than the 4 h sampling schedule and is more inconvenient to t he 

patients and the technologists. 

6.2.2 Curve Fit 

A straightforward demonstration of the advantage of the Tk-GV model over t he 

SETl model is to compare the concentration time curve fit ting. Figure 6.1 shows 

the logarithm of the concentration as a function of t ime using t he SETl model and 

the Tk-GV model for Pt3. The hollow circles indicat e the original dat a as collected. 

The solid line and dashed line indicate the best fit curve using the Tk-GV model and 

the SETl model respectively. Figure 6.1 shows that the Tk-GV model gave a much 

better fit to the original data points than the SETl model. The difference between 

the two fits became more significant after 6 h. However, despite t he poor fit given by 

the SETl model, the estimated GFR results from these two models using the dat a 

from the 24 h sampling schedule were very close (75.1 ml/ min using t he SETl model 

and 79.7 ml/ min using the Tk-GV model). 

The fact that the SETl model is able t o provide a G F R value similar to t hat of 

the Tk-GV model is surprising but not inexplicable. Figure 6.2 shows the fi ts obtained 

using the SETl model from the 4 h, 6 h , 8 h and 24 h sampling schedules for Pt3. 

Error bars are not included in t his plot because neither the pipetting error nor t he 
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Figure 6.1: Logarithm of the concentration versus t ime (with time=O set at t he 
finishing point of the injection) using the SETl and Tk-GV models for Pt3. The 
original data is shown with hollow circles, the Tk-GV fit is indicated by a solid line 
while the SETl fit is indicated by a dashed line. 
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Figure 6.2: Logarithm of the concentration versus t ime (with time=O set at t he 
finishing point of the injection) using the SET1 model for Pt3. T he original data are 
shown as crosses ( + ). The straight lines indicate the fi ts obtained using the SET1 
model with different sampling times as shown in the legend. The insert on the bottom 
left shows how the SET1 model overestimates t he concentration data for earlier time. 
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counting error were provided by Dr. Burniston. From Chapter 2, GF R was defined 

as the Dose divided by the area under the clearance curve (AUC). Although the fit 

from the SETJ model using t he 24 h dat a may seem to completely misrepresent t he 

clearance data, the AUC is only slightly smaller than that obtained using the Tk-GV 

model. This is part ially because the SE T1 fi t overcompensates the clearance data 

for the first 2 to 3 h (see insert in Figure 6.2) . Hence, since the injected dose is 

constant , t he GF RssTl value is approximately equal to t he GF R Tk-GV value. As t he 

SET1 model is fitted to fewer samples (smaller sampling schedule), the slope of the 

fi t decreases (become more negative) and , as a result, t he AUC decreases, causing t he 

GF Rssr1 to increases. For example, when only a 4 h sampling schedule was used, 

the est imated GFR value from the SE T1 model is 117.8 ml/ min while the Tk-GV 

model gave 74.4 ml/ min, see Table 6.1. However , since the Tk-GV model is able to 

more consistent ly represent the clearance data, the G F RTk-GV remains approximately 

constant. As a result , t he GF RssTl overestimates t he expected value of t he GF R 

where a small sampling schedule is used. 

6.2.3 4 h versus 24 h 

Figure 6.3 shows that t he results from t he 10 patients using the SET1 model wit h 

a 4 h sampling schedule are significant ly overestimated compared to t hose using t he 

Tk-GV model with a 24 h sampling schedule. The reason t he results of the SETJ 

model wit h 4 h samples are compared with those of t he Tk-GV model using the 24 

h samples is because the 4 h SET1 results can be used as reference values according 

to the recommendation from the national guidelines [41, 42, 69, 130]. This figure can 

effectively show t he overestimation and relative errors in the estimated GF R values 

using t he SET1 model compared with those using the Tk-GV model. T he range of t he 
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overestimation spanned from approximately 32% to 81%. The level of overestimation 

using the SET1 model might alter the diagnosis of a patient 's kidney function, and 

hence influence t he required treatment. 

Figure 6.4 a) shows that for the 4 h sampling schedule, the estimated GF R values 

using t he SET1 model were on average 1.78 t imes t hose using the Tk-GV model. 

On t he other hand , Figure 6.4 b) shows t hat the estimated G F R values from the 24 

h sampling schedule using the SET1 model and t he T k-GV model were very close 

together wit h a slope of 0.98. The two opposite correlations show t he instability of 

the performance of the SET1 model in fitting t he concentration time curve. As shown 

in Figure 6. 2 and discussed above, t he SET1 model overestimates the GF R values 

using early samples, while underestimating t he GF R values using the later samples. 

This 24 h data has validated the findings in Chapters 4 and 5 that the Tk-GV 

model performs better t han the SET1 model. In addit ion, t he fact that these 10 

patients were studied using 51Cr-EDTA (a difference tracer than 99mTc-DT PA) indi­

cates that the T k-GV model can be used for the study of plasma clearance with a 

different choice of t racer. 

6.3 Effect of Subsets 

T his section investigates the effect of subsets on t he GF R values estimated with each 

model. T he GF R results from the 4 h, 6 h, 8 hand 12 h subsets were compared with 

those obtained from t he 24 h sampling schedule. 

Figures 6.5 and 6.6 show that the estimated G F R values from the different sam­

pling schedules have different agreement with those obtained using the full samples 

(24 h) using the Tk-GV model and the SET1 model respectively. The Tk-GV model 
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Figure 6.4: Correlation between the estimated GF R values using the SETJ model 
and the Tk-GV model from a) the 4 h and b) the 24 h samples. The dashed line 
indicates the identity line Y = X while the solid line is the fit . 



CHAPTER 6 . APPLI CATIONS TO 24 H DATA 

90 

-c 80 .E 
......... 

E 70 --J: 60 -.::1' 
" J: 

co 50 
" J: 

00 
" 40 J: 

N 
"l""" -
~ 

30 
~ 

r:t 20 
LL 
(!) 

10 

0 
0 10 20 

+ 

+ a a 

30 40 50 

• • a 
+ 

-----

---
---

60 

GFRrK-Gv (24h) (ml/min) 

131 

GFR 12h 

GFR8h 
GFR6h 
GFR4h 
GFR 24h Fit 
GFR 12h Fit 
GFR 8h Fit 
GFR 6h Fit 

70 80 

Figure 6.5: Comparison of the 10 estimated G F R values from the Tk-GV model using 
4 h , 6 h , 8 h , and 12 h samples with those using the full 24 h samples. The symbols 
for each subset are shown in t he legend. 



CHAPTER 6 . APPLICATIONS TO 24 H DATA 132 

180 

• GFR 12h + 

160 • GFR Sh i - 1:1 GFR6h + / c + GFR4h .E 
140 GFR 24h Fit , 

._ 
GFR 12h Fit 1:1 /' / .(-E -----

• .1' - - GFR Sh Fit , / .;/-' -- 120 --- GFR 6h Fit • , ',/.'/" + .c • --- GFR 4h Fit oqo / / ,." 1:1 
~ -~ • .c 100 ' / ,. 

CD 4, 'f/ 
.c 

-/~/~ 00 80 
~ 

.c ~-/ N 
~ 60 ./.-' - ·-? .... , / 

1- /I' w 

r:l 40 /;:--~-LL 
(!) 

20 ~ 

,/' ,. 
0 

0 10 20 30 40 50 60 70 80 

GFRsEr1 (24h) (ml/min) 

Figure 6.6: Comparison of the 10 estimated GF R values from the SET1 model using 
4 h , 6 h, 8 h , and 12 h samples with those using the full 24 h samples. The symbols 
for each subset are shown in the legend. 



CHAPTER 6 . APPLlCATlONS TO 24 H D ATA 133 

had t he least difference between the results from the 4 subsets ( 4 h , 6 h, 8 h and 12 h) 

and the 24 h samples while the SET1 model showed large variation in GF R results, 

indicating its dependence on the choice of sampling schedule. 
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Figure 6.7: Comparison of the 10 estimated GF R values from the SET2 model using 
4 h, 6 h , 8 h , and 12 h samples with those using the fu ll 24 h samples. The symbols 
for each subset are shown in the legend. 

In addition to the comparison between the SET1 model and the Tk-GV model, 

the GFR results obtained from using the SET2 model with the subsets are shown 

in Figure 6.7. T he SET2 model performed better than the SET1 model but poorer 
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than the Tk-GV model. 

Table 6.2: The values of the slope and R2 from the linear regression of the estimated 
GF R values obtained from the SETl, SET2 and Tk-GV models using 4 h, 6 h, 8 h 
and 12 h sampling schedules to those under the same models using the 24 h sampling 
schedule for the 10 patients. 

models SETl SET2 Tk-GV 

subset slope R2 slope R2 slope R2 

4h 2.052 0.552 1.163 0.813 1.127 0.619 

6h 1.893 0.617 1.114 0.890 1.087 0.791 

8 h 1.796 0.663 1.059 0.944 1.067 0.878 

12 h 1.756 0.685 1.025 0.977 1.054 0.961 

Table 6.2 lists the slopes calculated from different subset s (4 h , 6 h , 8 h or 12 h) 

compared with those calculated using the 24 h sampling schedule. Figures 6.5 to 6.7 

show that all three models (SETl , SET2 and Tk-GV) gave better GF R results when 

more later samples were used. For example, the Tk-GV model gave a slope of 1.127 

for the 4 h samples, 1.087 for the 6 h samples, 1.067 for the 8 h samples and 1.054 for 

the 12 h samples. However , when the 4 h samples were used, the SETl model gave 

the largest slope of 2.052 compared with t hat using the SET2 model (with a slope of 

1.163) and the Tk-GV model (wit h a slope of 1.127) . This indicates that the SETl 

model introduced the largest difference in estimating the GF R values between the 4 

h and 24 h sampling schedules, while the Tk-GV model had the smallest difference. 

Therefore, using the 4 h sampling schedule would overestimate the GFR values from 

the 24 h samples by 12.7% using the Tk-GV model, 16.3% using the SET2 model 

and 105.2% using the SETl model. Considering that the 4 h sampling schedule is 

the most commonly used in clinic, the Tk-GV model remains t he best choice for 

estimating G F R values. 
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6.4 Exploring the G V Function 

It is interesting to observe the contribution of the power and exponent ial functions 

in the GV model. The GV model is expressed as C (t) = K ta-lcf3t (Section 2.6.1), 

where t he power function ta- l is used to describe the mixing process of the tracer 

into t he plasma, and t he exponential function e-f3t is used to describe t he elimination 

process. 

Figure 6.8 shows t he percentages of the two funct ions (power function and expo­

nential function) as a function of sampling time in minutes for (a) P t3 whose estimated 

GFR was 79.7 ml/ min and (b) Pt13 whose estimated GF R was 6.4 ml/ min (from t he 

Tk-GV model). In both cases, t he exponential function (black circles) dominated t he 

early stages of the concent ration-time curve. As time increased, t he power function 

slowly contributed more to t he overall clearance rate. When t he patient 's expected 

GF R was not very low, the two functions met before t = 24 h. For patient Pt3, t he 

exponent ial function reduced its cont ribution from the init ial level of approximately 

60% to 50% in 8 h to eventually less t han 20% within 24 h period . However , it is 

not necessary that t he two functions exchange their roles before 24 h. For Pt13, the 

clearance rate was very slow in t he init ial 24 h period and hence the power func­

t ion remained the dominant contributor for t hat period. Figure 6.8 indicates that 

the clearance curve involves t he cont ribut ions from both t he power function and t he 

exponent ial function regardless the level of the patients' GF R values. This figure 

shows that the Tk-GV model can effectively simulate the two components (power 

function and exponential function) included in the plasma clearance process, and 

it requires longer t ime for the exponential function to become dominate during t he 

plasma clearance process for patients with low expected GF R values. 
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(solid circles) in the whole GV model as a funct ion of sampling t imet (with t ime=O 
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6.5 Summary 

In summary, the Tk-GV model consistently gave the best estimated G F R results 

compared to those from the SETJ and SET2 models, irrespective of t he sampling 

schedules. 



Chapter 7 

GFR Correction 

Although the Tk-GV model has been shown to perform better than the SET1 model, 

it is not always possible to collect 4 blood samples, primarily due to the difficulty 

in drawing multiple blood samples from some patients within 4 hours. In this case, 

the two-sample SET1 method is used with a body surface area (BSA) correction for 

adjusting the estimated GFR with respect to different body habitus. In this chapter, 

a G F R correction method init ially developed for children is investigated to show 

whether it can be equally applied to adults. 

7.1 Introduction 

The body surface area (BSA) is used to adjust the estimated GFR values for patients 

with different body habitus. For example, the correction for the GF R value obtained 

from the SET1 model is expressed as GFRcorrected = GFRsen x 1.73 / BSA where 

1.73 is in units of m2 (see Section 2.1.1) [38]. However, current BSA corrections are 

insufficient for adjusting the overestimation of the G F R value caused by the SET1 

model and t he G F R corrected can not accurately indicate the level of patients' kidney 

138 
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function [38, 92, 93]. 

Wesolowski et al. developed a method to assess the estimated G F R values from 

children using the 2-sample SETJ model [132, 133] . T he aut hors introduced a rat io 

called the renal sufficient index ( R S I) for analyzing t he level of t he patient 's kidney 

function instead of using the observed G F R sETl value or the BSA corrected G F R sETl 

value. R S I is defined as: 

R S I = estimated G F R 
f (Vol, W) ' 

(7.1) 

where !(Vol, W) estimates t he expected GF R value for the same patient if he/she is ex-

periencing normal kidney function. T he estimated G F R refers to t he result obtained 

from the 2-sample SETJ method. The formula f (Vol, W) obtained by Wesolowski et 

al, is given by 

!(Vol, W) = 10.998Volo.64717wo.2ols5 ' (7.2) 

where Vol (in units of L) is the volume of distribut ion obtained from t he 2-sample 

SETJ model and W is the patient 's mass (in units of kg). T he coefficients 10.998, 

0.64717 and 0.20185 were obtained from a study sample of 133 children [132]. This 

equation is used in this study as a reference equation . The two factors Vol and W were 

chosen over other factors such as height, age, gender or race, etc because t he power 

function !(Vol, W) gave the best agreement wit h t he expect ed G F R results [132]. 

The init ial study performed in 2006 defined the cut-off value for normal G F R as 

RSI 2 85.89% based on the Receiver Operat ing Characterist ic (ROC) analysis [132]. 

If a pat ient's calculated RSI value was larger t han or equal to 85.89%, he/ she is likely 

to have normal kidney function. T he goal of this st udy is to assess whether t he G F R 

correction method using RS I and !(Vol, W) can be applied to adults. 
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7.2 Data and Analysis M ethods 

The 46 patients discussed in Chapters 3 to 5 could not be used here because their 

healt h information were incomplete in that only t he plasma clearance study data and 

t he patients' height and weight were known; unfortunately other information such 

as medical history, age, gender, race or family history were unknown. T herefore, 

data from 26 patients, including all relevant health information , were collected from 

January 2009 to December 2010 in the department of nuclear medicine at the General 

Hospital in St . John's, NL and used in this study. 

The patient data collection was approved by the Human Investigation Committee 

as HIC 09-64 in 2008. Each patient was injected with 99mTc-DTPA via a bolus 

injection. The sampling schedule was 109±10 min and 152±10 min post-injection as 

recommended by the study in 2006 [132]. Here the error ±10 min is not an indication 

of the uncertainty in the timing but instead is meant to account for the difference in 

t he starting time when collecting t he samples. For example, due to t he vein condition 

of some patients or the t ime patients returned to the depart ment of Nuclear Medicine 

caused a delay in t he blood collection time. The uncertainty used in t he recorded 

body mass was approximately 2.0 kg to account for variations in clothing, items in 

pockets, and t he proximity of the mass measurement to the last meal consumed. 

Given the uncertainty of t he body mass and a typical uncertainty for Vol to be ± 

0.1 L, the uncertainty in f (Vol , W) is approximately 1%, which is quite small. The 

uncertainty in the height (used for the BSA calculations below) was taken to be 1 em 

to correct for posture and the variation in the spine length with the t ime of the day. 

The average age of the 26 patients was 33.34 years with a range from 0.22 to 87.58 

years old . 

T he G F R measurements were carried out under the modified laboratory protocol 
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for preparing and performing kidney function tests using 2 or 4 blood samples in t he 

department of nuclear medicine at the General Hospital in St. John's, NL. All the 

injections and blood collections were completed by the nuclear medicine technologists 

Tara Page and Kelly Godin. My contributions to this study were in processing t he 

blood samples, measuring the radioactivity and performing the calculations and data 

analysis. The injected dose was approximately 30 mCi for adults and 10 mCi for 

children. This study was not a randomized trial and most of the patients registered 

for t he G F R tests were suspected of having kidney diseases or insufficient kidney 

function. T he G F R study was performed using the two-sample SET1 method for 

each patient. The estimated GF R sETl values were corrected using the BSA Haycock 

equation (BSA(m2 ) = 0.02425 x height(cm)0
·
3964 x mass(kg)0

·
5378

, see Section 2.1.1). 

As outlined in the initial paper by Wesolowski et al, the RSI values based on the BSA 

Haycock corrected GF R value and the J(Vol, W) value were calculated and compared. 

7.3 R esults and Discuss ion 

Figure 7.1 shows the estimated results from the 26 patients. Figure 7.1 a) shows t he 

G F R results using the 2-sample SET1 model. Figure 7.1 b) shows the estimated 

GFRHaycock values (dark bars, left ordinate) and estimated RSIHaycock values (white 

bars, right ordinate) . Figure 7.1 c) shows the values of f (Vol , W) (dark bars, left 

ordinate) and the values of RSIJ(Vol,W) (while bars, right ordinat e). The dashed 

line in Figures 7.1 b) and c) represent the 85.89% RSI threshold identified in [132]. 

T he solid line in Figure 7.1 b) indicates the Haycock criterion for identifying normal 

kidney function given by GFRHaycock 2 100 ml/ min/ 1.73 m2
. 

Based on all relevant medical information, patients Pt6, Pt7, P12 and P21 were 

diagnosed as having normal kidney function . All other patients were diagnosed as 
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having abnormal (or insufficient) kidney function. The BSA Haycock corrected G F R 

values identified 15 out of 26 patients as having normal GFR results (Figure 7.1 b)). 

From the RSIHaycock analysis, 10 patients were estimat ed as having normal kidney 

function. The analysis based on the f (Vol, W) corrected R S I values, R S I J(Vol ,W ) , 

identified only four patients , Pt6, Pt7, Pt12 and P t 21, as having normal kidney 

functions. These four patients were also properly identified as having normal kidney 

function using the RSIHaycock criterion. 

After considering each patient 's health informat ion, the RSIJ(Vol ,W ) results were 

more reliable in that they agreed bet ter with the clinical findings from other medical 

examinations such as the blood serum level of creatinine or t he transplant history, 

etc. Although the RSIHaycock was more accurate than the B SAHaycock value, it still 

misidentified the level of kidney function for six patients Ptl , Pt9, Pt13, P t14, P t 23 

and Pt26. 

For example, Ptl had only one kidney and the kidney function observed from the 

renal scan (performed on the same day) clearly indicated a slower than normal plasma 

clearance. Two previous studies of this patient (one was approximately 5 years old and 

the other one was two months prior to the kidney function test) showed an obstruction 

at the ureterovesical junction. However, the GF RHaycock result for this patient was 

81.2 ml/ min/ 1.73 m2 and the RSIHaycock result was 96.1%. The R S I J(Vol,W) for 

this patient was 66.4% with t he estimated !(Vol, W) equal to 98.6 ml/min. Another 

example is patient P t9 who has been diagnozed with kidney failure (and has been 

on dialysis ever since, and was waiting for a kidney transplant). T he R S I Haycock 

result for this patient was 106.3% while the R S I J(Vol ,W ) gave 79.5%. Patient P t13 

was found to have renal cysts in t he left kidney with a size of 4.0 x 2.5 x 3.1 em, 

indicating slightly abnormal kidney function. Another example is Pt26 who had a 
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mild renal asymmetry to the right, which means that the right kidney was not at the 

same level with the left kidney. Pt26 had a slightly slower perfusion observed from 

the renograph. Although these six patients did not have severe kidney diseases, the 

fact that the RSit(Vol,W) results provide a better assessment of the patients' renal 

scans indicates the advantages of using RSit(Vol ,W) over RSIHaycock · In addition, if 

t he RS !Haycock results were used for these patients, it could have led to a potential 

delay in the early diagnosis of mild kidney diseases , therefore, under-diagnozing t he 

patients. Lastly, Pt14 and Pt23 were also reported as having insufficient kidney 

functions due to the findings from other medical examinations. 
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Figure 7.2: Correlation of RSIHaycock and RSi f(Vol,W) results using the linear regres­
sion. The solid line indicates the best fit using a second order polynomial from the 
26 patients, and the dashed line indicates the fit from the initial study by Wesolowski 
et al. based on study of 133 children. 
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The correlation between the R S I Haycock and R S I J(Vol,W ) obtained using the linear 

regression is shown in Figure 7.2. The dat a were fit t ed with a second-order polynomial 

g1vmg 

R S J f (V ol,W) = -0.32 X RSJ~aycock + 1.3 X R S IHaycock + 0.019 (7.3) 

with a R2 value of 0.91 indicated by the solid line. The coefficients in this equation 

had two significant figures according to my calculation . This regression result was 

very close to t hat obtained in t he initial st udy by Wesolowski et al. based on 133 

children, which gave 

R S Jf (Vol ,W) = - 0.4018 X RSJ~aycock + 1.3953 X RSJ Haycock (7.4) 

wit h R2 = 0.9337, shown as a dashed line in Figure 7.2 [132]. 

7.4 Conclusion 

Using the complete medical information of 26 patients it has been possible to validate 

the use of t he R S I J(Vol,W) criterion for adults. T he replacement of RSI J(Vol,W ) for 

the absolute G F Rser1 value or G F R Haycock can effectively improve the accuracy for 

differentiating between normal and abnormal kidney function . However, as promising 

as this study was, a larger sample study could furt her validate t he conclusion. The 

application of R S I J(Vol ,W) should be recommended to institut ions where 4 blood 

samples are not available for using t he Tk-GV model. 



Chapter 8 

Bone Mineral Density 

This chapter introduces a new criterion for analyzing the bone mineral density (BMD) 

changes from sequential BMD studies over time. The recommended criterion, called 

the total detectable difference (TDD) , is calculated from the mean value of a half­

normal distribution (HND) histogram of the standard deviations from t he linear re­

gressions of approximately 8,800 patients. The advantage of the TDD criterion is t he 

consideration of long-term machine error , short-term patients' BMD variations, and 

long-term patients' BMD variations compared with the conventional criterion which 

only considers the short-term machine error. 

8.1 Introduction 

The history of using bone densitometry for measuring BMD dates back to the 1990s 

[134] . At the present , bone mineral density scan results are mainly reported in terms 

of: 1) the bone mineral density (g/cm2
) in the L2-L4 and L1-L4 sections of the lumbar 

spine, femoral neck, and total hip, 2) T-score, and 3) Z-score. T-score is calculated 

as the number of st andard deviations (SDs) above or below the mean value of BMD 

146 
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for a healthy young adult of the same gender and ethnicity. T-score is used to predict 

osteoporosis by the World Health Organization (WHO) [135]. If t he T -score is higher 

t han or equal to -1.0 (1 st andard deviation below the reference BMD value of young 

adults , where t he reference value was obtained from a large group of people in t he 

United States in 1990 [135]) , the patient 's BMD is reported as normal with a 95% 

confidence interval. If the T-score is between -1.0 and -2.5, the patient is reported 

to have osteopenia (a precursor to osteoporosis) and if the T-score is below -2.5 , 

the patient is reported to have osteoporosis. Z-score is defined as the number of 

standard deviations by which a patient 's BMD differs from the reference BMD value 

for a comparable age, gender and ethnicity. The difference between t he T-score and 

Z-score is whether or not the reference BMD value is age adjusted. 

BMD results are important for evaluating the patients' bone healt h , especially 

for elderly people such as post-menopaused women, and men with prost ate disease. 

In general, women (due to their decreasing estrogen levels) experience more rapid 

bone mineral density loss than men. As a result, an annual or bi-annual BMD test is 

usually recommended for women over the age of 50 years old. From the repeated BMD 

examinations over t ime, patients have a series of their BMD results. The difference 

among t hese sequent ial BMD results for the same patient are calculated and analyzed 

in order to determine whether the BMD changes are normal or not . 

How to det ermine whether a BMD change is significant or not compared with 

t he baseline (or expected BMD change) is crit ical for predicting t he bone fracture 

risks of patients. The conventional criterion for analyzing BMD change, as provided 

by t he WHO, is called t he Least Significant Change (LSC). LSC is defined as 2.8 

times the site-specific (herein, site refers to the healt h instit ution) precision error 

obtained on the same day [136]. T he factor 2.8 is obtained from 1.96 x J2 where 1.96 
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indicates the 95% confidence level of LSC and -J2 indicates the conversion between 

standard error (SE ) and standard deviation (SD) with a sample size of n =3, given 

as SE = SD/~ where the sample size of 3 is recommended from the guidelines 

of the WHO on how to calculate the LSC [135]. LSC indicates the machine error of 

the bone densitometer. Precision error is related only to the machine error, which 

means that it contains no information of the patients' natural BMD changes over time. 

The machine error is generally understood as the error caused by limitations of t he 

instruments instead of an error caused by human operation (known as human error). 

In this study, the machine error is estimated using repeated studies of the same study 

group. The WHO recommends the machine error to be calculated as t he standard 

deviation of the standard deviations of repeated BMD measurements on the same 

group of patients. For example, in order to achieve a 95% CI level, the machine error 

can be calculated using 15 patients, each of which had 3 repeated BMD studies taken 

on the same day, or using 30 patients, each of which had 2 repeated BMD studies 

taken on the same day. For each patient, there is a standard deviation of repeated 

BMD values (2 or 3 depending on the number of patients used). The machine error 

is based on the standard deviation of these 15 or 30 standard deviations. If the LSC 

value is not calculated for the bone densitometer machine, reference LSC values can 

be used , which are 0.028 gjcm2 for the femur at the hip region, and between 0.033 

and 0.039 gjcm2 for the lumbar spine (these values were obtained from a reference 

group of age 20-40 from the United States .) [137, 138] . That means, for example, if 

the patient 's BMD change for the femur is more than 0.028 gj cm2 compared with t he 

previous BMD study, he/she is considered to have significant bone mineral density 

change. 

T here are two problems regarding the use of the LSC criterion. Firstly, the refer-
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ence LSC values do not include the patients' natural BMD variations. Bone mineral 

density varies due to many factors under normal conditions, such as genetic, hor­

monal, physical activity, and dietary factors [139, 140] . Despite all these factors, LSC 

accounts only for the same day machine error. Therefore using LSC t ends to over­

estimate BMD changes. For example, if a woman has been nursing during the t ime 

interval of her BMD tests, her bone mineral density loss is likely to exceed the LSC 

value despite the fact that she is experiencing normal BMD change wit h respect to 

her age and health condit ion. Therefore, unless t he BMD change is larger than what 

the normal range of this specific age group or gender allows, it cannot be labeled as 

a significant change. Secondly, despite that the LSC only accounts for the machine 

error, the LSC is calculated based on a relatively small study group (size 15 or 30 

patients) which is insufficient to represent t he criterion for the general population. 

The practice of using the LSC as a threshold for BMD change can lead t o a significant 

misdiagnosed patients with abnormal BMD changes [136]. 

8.2 Literature Review 

The development of the mathematical tools for analyzing t he BMD results has expe­

rienced several stages. In 1994, t he World Health Organization announced a protocol 

for assessing fracture risk of patients using the T-score to analyze individual BMD 

result . In 2004, t he International Society for Clinical Densitometry (ISCD) recom­

mended using serial BMD tests to assess a 10-year prediction of t he probability of 

fracture risk [135, 141] . In 2005, the national guidelines from the ISCD and t he WHO 

suggested interpreting BMD results by comparing with the previous BMD results 

from the same patient in addition to t he use ofT-score to predict t he patients' frac­

t ure risk. Ever since then , t he conventional T-score and Z-score analysis has been 
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gradually replaced by the fracture risk prediction based on BMD changes [142, 143]. 

The LSC calculated from the same-day machine error was recommended to define 

clinically significant BMD changes [136, 144]. The ISCD also recommended that each 

imaging center obtain their own LSC reference values for different biological sites for 

assessing BMD values. In the case where t his is not possible, imaging centers can 

use the benchmark LSC values calculated from the ISCD as t heir reference LSC val­

ues. For example, the reference LSC values from the ISCD are approximately 0.020 

g/ cm2 ( ~ 2% of the BMD value for the spine or hip) for both the spine and the hip. 

This means that if a patient has a BMD change over 0.020 g/cm2 compared with the 

previous BMD value, he/ she is likely experiencing a significant BMD change. Suspi­

cions of the validity of the clinical application of LSC have been reported since 2000. 

There have been studies showing the inaccuracy of the LSC values (mainly that the 

LSC values have been underestimated) and the statistical method used to calculate 

them [145]. Two major attempts for adjusting the LSC criterion are summarized 

below. 

One attempt focused on determining the proper sample size required for calcu­

lating the LSC values as mentioned previously. The WHO recommended a sample 

size of 15 patients (each having 3 BMD tests taken on the same day) or 30 patients 

(each having 2 BMD tests taken on the same day) [135]. In 2006 W. D. Leslie from 

the Manitoba Research group pointed out that a larger sample size should be used 

for assessing the LSC value [146]. The Leslie group studied 1,420 BMD cases and 

concluded that the estimated LSC values from these 1,420 cases were significantly 

larger (approximately 140.1% times the reference LSC) than t he reference LSC val­

ues. The same research group later showed that a long-term study (not the same 

day study as recommended by the WHO) of the GE DXA densitometer gave LSC 
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values for the lumbar spine and femur of at least 0.055 gjcm2
, which for t he lumbar 

spine, is approximately twice that of the reference LSC value. W. D. Leslie's group 

performed 10,000 Monte Carlo simulations on a phantom study in 2007 [147]. Their 

results showed that the small sample size (15 or 30) used for calculating the reference 

LSC value resulted in an up to 12.5% over detection of the BMD change for the spine 

or hip. 

The second attempt aimed to modify the statistical method used for calculating 

the LSC. A bone-phantom study performed with 21 repeat ed BMD studies during 

one year (instead of doing repeated studies within one day as recommended by the 

WHO) showed that the obtained LSC value in consideration of long-term patient 's 

BMD variation was on the order of 0.050 gj cm2 . In 2008, W . D. Leslie's group 

employed a heteroscedastic regression to study the BMD changes, and determined 

that it was impossible to separate t he long-term changes in the pat ients from the 

errors due to the equipment from their measurements [148] . They also proposed to 

use a larger sample size for improving the accuracy of the estimated LSC value. 

Some studies have proposed different mathematical models for calculating the 

LSC value. For example, one study recommended using a 90% or 80% confidence 

interval (see definition in Section 3.4) for calculating the LSC value instead of t he 95% 

confidence interval recommended by the WHO [149]. Some groups have recommended 

standardizing t he LSC value wit h a correction factor from the cross-calibration of t he 

BMD values obtained from different bone densitometers. For example, Ying Lu et 

al. derived a criterion called the Generalized Least Significant Change (GLSC) by 

cross-calibrating the BMD results obtained from bone densitometers manufactured by 

GE and Hologic [150]. The obtained GLSC value was approximately 2.6 times larger 

than the reference LSC value for the spine, and 3.6 times larger than t he reference 
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value for t he femur. There have been different attempts to analyze the sequent ial 

BMD results in order to obtain a LSC estimation. For example, in 2008 W. D. Leslie 

developed an "optimal decision criterion" using a Bayesian approach multi-variable 

regression analysis and obtained an LSC value of 0.041 g/ cm2 for the spine and 0.035 

g/cm2 for the femur [148]. 

In 2008, the WHO released the latest development for predicting the fracture risk 

from BMD studies, the fracture risk assessment tool (FRAX) . FRAX became available 

in Canada in 2010 [151- 153]. FRAX was developed in order to account for the many 

factors affecting bone health. The FRAX result , which is personalized to each patient , 

is obtained from a mathematical model integrating all possible risk factors associated 

wit h bone health at t he femoral neck at the hip region. The FRAX tool predicts 

the 10-year fracture risk by assessing the patients health informat ion such as gender, 

race, height , weight, previous fracture, smoking and alcohol history, the femoral neck 

BMD value, etc. The limitations of the FRAX tool is that it is recommended only 

for people aged 50 years old or more for estimating the probability of hip fracture 

and it does not predict the fracture risk for the other biological sites of the body such 

as the lumbar spine or forearm. Therefore, while using FRAX might improve the 

accuracy of predicting the fracture risk for the femoral neck at the hip region, it has 

not appropriately solved the following problem: how to compare two or more BMD 

studies obtained from the same patient over t ime. 

8.3 Motivation 

Despite the different approaches for adjusting the LSC, the definition of LSC crite­

rion has never been questioned since its recommendation by the WHO [142, 154]. T he 

motivation of this study is to find a more appropriate criterion for analyzing BMD 
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changes. The proposed criterion, Total Detectable Difference (TDD), has been cal­

culated by considering both short-term and long-term BMD changes with respect to 

the machine error and the patient 's natural BMD variations using a patient database 

spanning 11 years. The hypothesis is that T DD is a more appropriate criterion for 

analyzing the BMD change compared with LSC. The findings from t his study might 

lead to the modification of the BMD guidelines for interpreting BMD changes used 

worldwide. 

8.4 Total Detectable Difference 

It is necessary to clarify the difference between the statistical significance and t he 

clinical significance before introducing the TDD criterion. Statist ical significance can 

identify what is theoretically significant , however , the clinical significance has t he 

difficulty of defining what is t he smallest significant change that matters in clinical 

practice, for example, from the point of view of physicians in diagnosing certain dis­

eases . LSC is calculated based on t he statistical significance from the performance 

of the bone densitometer machine, while a more appropriate criterion should be in­

vented for the clinical significance which accounts for overall factors that affect t he 

clinical outcomes. 

The Total Detectable Difference (TDD) criterion proposed was based on the his­

togram analysis of a group of patients' BMD results. Each patient had t hree sequent ial 

BMD results over t he period of 10 years. An OLS regression was performed for each 

patient to obtain the st andard deviation of the regression residual. All these stan­

dard deviations were plotted together as a histogram and then fitted by a half-normal 

distribution. The dispersion of t he half-normal distribut ion is used to calculated t he 

TDD value, which accounts for all the BMD variations from the machine and patients 
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over short- and long-term study (see more details in Section 9.3). 

Figure 8.1 demonstrates the distribution of machine errors and patient 's BMD 

variations for both the short-term and long-term based on the data obtained from 

local study and literatures. The numerical values for each category in Figure 8.1 were 

approximations. The short-term machine error is obtained from the study completed 

in 2006 based on a sample of 15 patients, each of which had 3 repeated studies of their 

femoral neck BMD over t ime performed in the department of nuclear medicine at the 

General Hospital in St. John's, NL. The value of the short-term machine error is 

approximately 0.010 g/cm2 (shown as 20% in the gray bar in Figure 8.1). The long­

term machine error was calculated as 0.010 g/cm2 (shown as 19.9% in t he darker 

bar in Figure 8.1) from a 10-year phantom study on the same densitometer machine 

(GE Lunar Prodigy) . The long-term patients ' BMD variation is approximately 0.020 

g/cm2 per year (shown as 60% in the lighter bar in Figure 8.1) from t he reference 

[155]. Based on the long-term patients ' BMD variation, the short-term patients' BMD 

variation was then estimated as 0.020/ 365 ~ 0.00006 g/ cm2 (shown as 0.1% in t he 

white bar in Figure 8.1) from the same reference [155]. The consideration of all four 

variations gives a value of 0.010 + 0.010 + 0.00006 + 0.020 ~ 0.042 g/ cm2
. 

According to the WHO recommendation, the LSC values is determined as 2.8 

times the short-term machine error , herein , 2.8 x 0.010 = 0.028 g/ cm2 . Based on 

Figure 8.1, using the LSC to represent the BMD expected change has a tendency of 

underestimating the total BMD detectable difference (0.042 g/ cm2
) by approximately 

(0 .042 - 0.028) / 0.042 ~ 30%. Therefore, it is important to understand the limitation 

of the LSC criterion. In t he next chapter, the new TDD criterion is investigated with 

a study group of 8,800 patients. 
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Figure 8.1: Demonstrat ion of the composition of total BMD changes including short­
term and long-term machine errors, as well as patients' BMD variat ions. The short­
term and long-term machine errors were estimated from local study while the short­
term and long-t erm pat ients' BMD variat ions were estimated from the reference [155]. 



Chapter 9 

Data and Analysis Methods 

This chapter introduces the study group and the analysis methods used to invest igate 

t he new TDD criterion. A discussion of how t he half-normal distribution (HND) is 

generated from the normal distribution is also presented. 

9.1 Data 

T his is a retrospective study which includes only secondary data usage without any 

clinical examinations. Therefore, since t here was no radiation exposure required, only 

an et hical approval for secondary data usage was required. This study was approved 

by the human investigation committee in 2009 with document number HIC 10-57 

(for t he secondary data usage). The data were obtained from t he department of nu­

clear medicine in both t he General Hospital and the St. Clare's Mercy Hospital in 

St. John's, Newfoundland and Labrador. The data were exported from t he GE Lu­

nar densitometer (General Hospit al) and the Hologic QDR 4500 mode densitometer 

(St. Clare's Mercy Hospital) . A total of 8,800 patients with three sequential BMD 

studies performed from 1998 to 2009 were studied . Among these patients, approx-

156 
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imately 5,500 were from the General Hospital and approximately 3,300 were from 

the St. Clare's Mercy Hospital. These 5,500 patients were the primary data used for 

investigating the TDD criterion while the 3,300 patients were used for performing a 

comparison analysis between the GE and Hologic densitometers. Daily quality assur­

ance and weekly calibration were performed on the GE Lunar Prodigy densitometer 

using an anthropomorphic spine phantom. An 11-year phantom study showed the 

precision of the GE Lunar Prodigy densitometer machine to be within an acceptable 

range wit h a coefficient of variance value less than or equal to 1.5%. Similarly, the 

Hologic QDR 4500 has been reported to have an error of less than 1.0%, also obtained 

through a phantom study. Calculations were performed using Mathematica version 

6 software. 

9. 2 Analysis Methods 

The patients studied in this work each had three BMD studies (taken in different 

years) within an 11-year period. A sample size of 3 BMD tests is the minimum re­

quirement for performing a linear regression using the OLS algorit hm. The residuals 

indicate the deviations between the observed BMD values and the predicted BMD 

values from the OLS linear regression. All the S D values were then used to create fre­

quency distribution histograms to be fitted with the half-normal distribution (HND) 

function. The Normal Distribution ( TD) has been used by other investigators for the 

study of BMD [97]. However, HND was used in this study instead of the ND because 

the observed distribution of non-negative S D values was heavily skewed from the ND 

indicating that an alternative distribution from t he ND should be used . 



CHAPTER 9. DATA AND A NALYSIS M ETHODS 158 

9.2.1 Half-normal Distribution 

For each patient , there was a st andard deviation SD of the residuals from the OLS 

regression of three BMD values. Because of the small samples, the OLS regression is 

highly biased. For the BMD data from the GE Lunar Prodigy densitomet er , there 

was a total of 5,500 calculated SD values (g/ cm2
) . A histogram was used to plot the 

probability density function of these SD values. Twenty successive bins ranging from 

SD=O to SD=1 g/cm2 wit h an interval of S D=0.005 gj cm2 were used to map t he 

SD values. The number of bins and the width of the bins were chosen to ensure the 

representation of the shape of t he frequency distribution of all the S D values [156]. 

The frequency was calculated as the portion of the number of S D values per bin to 

the total number of SD values. Plotting the SD values using this method allows the 

data to be fit to a known distribution function. Therefore, the st atistical propert ies 

of this distribution function can be used for describing the histogram. However , the 

obtained frequency distribution of the st andard deviations did not follow a normal 

distribution. The common assumption is that the frequency should be a maximum 

at the middle bin and a minimum at the two end bins S D=O and S D= 1 g/ cm2
. 

Instead , the maximum frequency was at (or near) the first few bins and the frequency 

decreased as the S D values of the bins increased. In other words, the hist ogram 

of all the calculated S D values from the residuals was heavily skewed to t he right . 

Therefore, non-normal distribut ions were used to fit the frequency histogram, such as 

the folded-normal distribut ion (FND) , half-normal distribution (HND), the Raleigh 

distribution, etc . From this it was found that the FND and HND gave the best fit to 

the frequency histogram. The following table lists the probability density functions 

of the ND, HND, and FND. 

F igure 9.1 shows a schematic representation of how a FND is generated from 
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0.3 
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Figure 9.1: Demonstration of the generation of the folded-normal distribut ion (FND) 
from the normal distribution (ND). 
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Table 9.1: T he probability density funct ion (PDF) of the folded-normal distribution 
(F D), half-normal distribution (HND), and normal distribution (ND), where f-t is 
t he mean value and CJ is the standard deviation. 

Function PDF 

ND ( (x- /-LNo )
2

) 
~~-- exp -----~--

~CJNo 2CJ~o 

1 

HND 
2 x 2 

--==-- exp (- 2 ) 
~CJHND 2 CJHND 

FND 1 ( ( (x - /-LFND)
2

) ( (x + /-LFND )
2 

) ) exp - + exp - ...:....____:_,,------'--
~CJFND 2CJ~ND 2CJ~ND 

folding a ND (bell-shape curve indicated by a solid line) and then adding t he folded 

area (shaded) to t he unfolded area of the ND. If the folding point is in the middle of 

the ND (e.g. approximately x = 3 in Figure 9.1), t he FND is equivalent to a HND. 

From the P DF expression in Table 9.1, t he HND is generated when t he mean value 

/-LFND = 0 in the FND. Using t he HND requires the use of a conversion fact or between 

t he SD~-:~ o and S DNo, giving S DNo = vfi/2 x S DHND· 

Another concept used here for indicating how much of t he ND is folded to generate 

the FND is called t he cumulative distribut ion function (CD F). CD F describes the 

area under the P DF curve from -oo to the folding point x, given by CDF (x) 
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9.2.2 Small Sample Correction 

A small sample bias is caused by an insufficient sample size that leads to non­

representat ional estimated parameters in the study group. In t his project, a minimum 

sample size of 3 was required for processing a linear regression. Therefore, it is neces­

sary to add a bias correction. The sample size correction is J ( n - 1) / ( n - p) = J2, 

where n = 3 is the number of samples and p = 2 is the number of parameters [157]. 

Considering both correction factors yfiJ2 (between the HND and ND) and J2, t he 

overall correction was yfiJ2 x J2 = fi. 

9.3 TDD Calculation 

A flow chart in Figure 9.2 lists the steps for calculating the TDD values from the 

patient 's original BMD data. At the onset, each patient is subjected to three BMD 

studies over time which are labeled as (BMD1 , BMD2, BMD3 ) taken at t ime (h, t 2, 

t 3 ) . An 0 LS regression is performed for each patient and the standard deviation of the 

regression residuals SDi is calculated as the difference between the estimated BMD 

values and the observed BMD values where the estimated BMD values are obtained 

from the OLS regression. Each patient in the study group will generate one value 

for SDi· The estimated SDi values ranged from 0 to 1. The frequency histogram is 

then fitted with a half-normal distribution (HND) and the dispersion of the HND is 

calculated using the standard deviation of the HND. Using the total correction factor 

derived above t he formula, for calculating TDD is given by: 

TDD = 2j1fSDHND (9.1) 



CHAPTER 9. DATA AND A NALYSIS METHODS 162 

/ 
Each patient Pti has 

3 BMD studies 
(BMD,, BMD2, BMDJ 

' J, 

Perform linear Regression on the data 
{(t,, BMD,), (t2, BMD2),(t3, BMD3)} i 

J, 
Obtain SDi of the residuals 

from the regression 

J, 

Make a histogram of 
all the SDi values 

J, 

( Fit histogram to a HND J 
J, 

Calculate the dispersion 
of the HND 

J, 
Apply small sample correction 

to the dispersion to get the TDD 

Figure 9.2: A flow chart indicating how the TDD value is calculated from the initial 
patient 's dataset . 
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where SDHND is the standard deviation of the half-normal distribution and the factor 

2 indicates that t he TDD value is estimated at a 95% CI. The analysis of the 8,800 

patients is presented in the next chapter. 



Chapter 10 

Results and Discussion 

This chapter lists the results and discussion of the performance of the TDD criterion 

compared with the LSC criterion. The investigation of the TDD values wit h respect 

to gender , age, examination time interval, different bone densitometer machine, and 

different database is given in t he following sections. 

In t he section below we will present dat a obtained using the GE Lunar Prodigy 

densitometer at the General Hospital in St. John's, Newfoundland and Labrador (NL) 

with a sample size of approximately 5,500 patients. In Section 10.5 t hese values will 

be compared to the TTD values obtained from t he 3,265 patients analyzed with the 

Hologic QDR 4500 densitometer. The TDD is calculated based on the dispersion of 

the half-normal distribution, and the 95% confidence interval (CI) is for the dispersion, 

instead of for all the SDs calculat ed for all patients. The presented TDD values were 

TDD ± 2 SE where the SE is the standard error, calculated as SE = SD / fo with 

SD being the standard deviation, and n t he sample size. Both the SD and SE are 

in units of gjcm2 . 

164 
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10.1 R esults 

This section gives the complete TDD results using both t he HND and FND for four 

examination sites. 

Table 10.1: TDD results (g/cm2 ) of approximately 5,500 patients analyzed using t he 
GE Lunar Prodigy densitometer at the General Hospital using the H D and FND. 
The R2* (see the definition below) value is for both t he HND and F ND. Area indicates 
the folded area of the FND from t he ND. 

Site Patients R2* TDDHND TDDFND area 

L2-L4 5,534 0.997 0.063 ± 0.002 0.063 ± 0.002 0.499 

L1-L4 5,495 0.998 0.059 ± 0.002 0.059 ± 0.002 0.499 

Femoral neck 5,483 0.995 0.047 ± 0.001 0.047 ± 0.001 0.499 

Total hip 5,359 0.997 0.042 ± 0.001 0.042 ± 0.001 0.499 

Table 10.1 shows t he TDD values calculated for t he lumbar spine L1-L4, lumbar 

spine L2-L4, femoral neck, and t otal hip, using the GE Lunar P rodigy densitometer. 

Both the HND and F ND achieved similar R2* values (R2* is the adjusted R2 for 

different sample sizes used for t he OLS regression of the BMD values as function of 

t he examination t ime) (> 0.99) from fitt ing the frequency histogramst In all cases, a 

folded area of the F ND (calculated from the CDF of t he FND) close to 0.5 (a half 

folding) of the ND was required , indicating the equivalence of the F ND to the HND. 

T he sample size used for each examination site was very similar to each other (e.g. 

5,483 for the femoral neck study and 5,534 for the lumbar spine L2-L4 study) . 

T he TDD values from the HND and F ND are shown wit h a standard error of 

TDD ± 2SE, indicating a 95% CI for all four examination sites. T he T DD values 

using t he GE Lunar Prodigy densitometer were 0.063 ± 0.002 g/ cm2 for the lumbar 

tThe equation is given R2* = 1 - (1 - R2
) n-

1 
where n is the number of samples and p is 

n - p - 1 
the number of independent variables [158] . 
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spine L2-L4, 0.059 ± 0.002 gj cm2 for the lumbar spine L1-L4, 0.047 ± 0.001 gjcm2 

for t he femoral neck and 0.042 ± 0.001 gjcm2 for the total hip. The T DD values 

are different for different examination sites. Given that BMD values for the lumbar 

spine and hip are on the order of 1.000 gjcm2
, the TDD values are approximately 

5% of the absolute BMD values, indicating that a BMD change of over 5% should be 

considered detectable. 

The frequency histograms fit ted with t he HND are shown in Figure 10.1 a) for t he 

lumbar spine Ll-L4, Figure 10.1 b) for t he lumbar spine L2-L4, Figure 10.2 a) for t he 

femoral neck , and Figure 10.2 b) for t he total hip. T he solid dots in Figures 10.1 and 

10.2 represent the original data, and the solid line indicates the fit using the HND. 

All four figures show good agreement between the observed frequency histograms and 

the HND fit , with R2* values 2': 0.995. 

10.2 Gender 

This section compares the TDD results from females and males, in order to determine 

whether t he TDD values are gender specific. 

Table 10.2 shows the calculated TDDHND and TDDFND values from the 5,500 

patients using a GE Lunar Prodigy densitometer. The sample size of the male group 

was approximately 6.8% that of the female group. The TDDHND and TDDFND values 

consistently showed no difference for the same examination site (both having high 

R2* values, and the folded area for the FND calculated from the CDF was very close 

to 0.5), indicating that the FND is equivalent to the HND. 

The TDD values for the female group were generally smaller than t hose for t he 

male group . For example, t he TDDHND value for the lumbar spine L2-L4 from the 
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Figure 10.1: The HND fitting for pat ients with three sequential BMD studies at t he 
examination site of (a) the lumbar spine L1-L4 and (b) the lumbar spine L2-L4, using 
a GE densitometer. 
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Figure 10.2: T he HND fitting for pat ients with three sequential BMD studies at t he 
examinat ion sit e of (a) the femoral neck and (b) the total hip, using a GE densito­
meter. 
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Table 10.2: The TDD (g/cm2 ) values of the female and male groups, for HND and 
FND, using aGE Lunar Prodigy densitometer. 

Female Patients TDDHND TDDFND 

12-14 5,183 0.062 ± 0.002 0.062 ± 0.002 

11-14 5,146 0.059 ± 0.002 0.059 ± 0.002 

Femoral neck 5,138 0.047 ± 0.001 0.047 ± 0.001 

Total hip 5,020 0.042 ± 0.001 0.042 ± 0.001 

Male Patients TDDHND TDDFND 

12-14 350 0.066 ± 0.005 0.065 ± 0.005 

11-14 348 0.061 ± 0.005 0.061 ± 0.005 

Femoral neck 345 0.051 ± 0.003 0.050 ± 0.003 

Total hip 339 0.042 ± 0.003 0.042 ± 0.003 

female group was 0.062 ± 0.002 gj cm2 while it was 0.066 ± 0.005 gjcm2 for the male 

group. The TDDHND value for t he femoral neck from the female group was 0.047 ± 

0.001 g/cm2 while it was 0.051 ± 0.003 gj cm2 for the male group. The results from 

the female groups were slightly smaller than those from the male groups for the same 

examination sites because women are more prone to bone mineral density loss than 

men of the same age. Women and men have different patterns of bone development . 

For women, there are two unique stages of rapid BMD changes (BMD loss): nursing 

and menopause. As an example, the results in Table 10.2 indicate that if a woman's 

BMD change for the lumbar spine 12-14 over time is larger than 0.062 ± 0.002 gj cm2
, 

she is likely to have experienced detectable BMD change. If a man's BMD change 

for the same region is over 0.066 ± 0.005 gjcm2
, he is considered to have detect able 

BMD change. 

An investigation with a larger sample of male patients would be useful to further 

validate the findings from the above discussion. 
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10.3 Age 

This section aims to investigate whether the TDD values are affected by the patients' 

age. The age group of the 5,500 patients from the General Hospital involved in this 

study ranged from 20 to 103 years old. 

Table 10.3: The TDDHND results (g/cm2) of four age groups from the 5,500 patients, 
using a GE Lunar Prodigy densitometer. 

Age(year) TDDL2-L4 TDDL1-L4 TDDFemoral-neck TDDTotal-hip 

< 50 0.060 ± 0.004 0.057 ± 0.004 0.050 ± 0.004 0.044 ± 0.003 

(50, 59) 0.063 ± 0.003 0.059 ± 0.003 0.047 ± 0.002 0.041 ± 0.002 

(60, 69) 0.064 ± 0.003 0.061 ± 0.003 0.045 ± 0.002 0.042 ± 0.002 

70< 

All-age 

0.061 ± 0.004 

0.062 ± 0.002 

0.057 ± 0.004 

0.059 ± 0.002 

0.050 ± 0.003 

0.047 ± 0.001 

0.044 ± 0.003 

0.042 ± 0.001 

Table 10.3 lists the TDD values from patients divided into four different age 

groups , age less than 50 yrs (denoted as < 50) , age between 50 and 59 yrs (denoted 

as (50 , 59)), age between 60 and 69 yrs (denoted as ( 60, 69)) , age greater than 70 

yrs (denoted as 70 <) years old . Considering the 95 % CI, the TDD values from 

the d ifferent age groups were not significant ly different. For t he lumbar spine 12-

14, a minimum TDD value of 0.060 ± 0.004 gjcm2 was obtained for the age group 

(< 50) while a maximum TDD value of 0.064 ± 0.003 g/cm2 was obtained for t he age 

group (60, 69) . Figure 10.3 shows how t he TDD values changed for the four different 

age groups for each examination site. The fluctuations of each bar were less t han 

0.005 gjcm2, see Table 10.3. Considering the 95 % CI of each TDD value for each 

examination site, the difference of the T DD values between each age group was not 

significant . 

In order to avoid any potential averaging, t he age group (50, 59) and (60, 69) were 
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Figure 10.3: The TDD values (g/cm2
) for t he four examination sites of the four age 

groups (< 50, (50 , 59) , (60 , 69) and 70< ). T he color scheme indicating each examina­
tion site is shown in t he legend. 
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divided into 5 yrs groups (50, 54), (55, 59) , (60 , 64) , (65 , 69). The resulting TDD 

values with respect to t hese age groups were not significant ly different from each 

other at a 95% CI. Therefore, the TDD values from the four age groups were not 

significant ly different . 

10.4 Examination Time 

This section aims to investigate t he effect of the examination t ime interval on t he 

TDD values. The examination t ime interval, !:::. Time, was calculated as the time 

difference (years) between the first BMD study and the t hird BMD study for each 

patient . The 5,500 patients were categorized into 10 different groups, with !:::. Time 

ranging from 1 year to > 10 years. 

Table 10.4: The TDD results (g/cm2 ) using the HND for 10 examination t ime inter­
vals from the 5,500 patient dat a, using a GE Lunar Prodigy densitometer. 

Interval(year) TDDL2-L4 TDDL1-L4 TDDFemoraJ-neck TDDTotal-hip 

(1 , 2) 0.051 ± 0.018 0.052 ± 0.018 0.044 ± 0.015 0.037 ± 0.012 

(2, 3) 0.055 ± 0.008 0.056 ± 0.002 0.046 ± 0.007 0.037 ± 0.005 

(3, 4) 0.058 ± 0.006 0.057 ± 0.006 0.041 ± 0.005 0.038 ± 0.004 

(4, 5) 0.057 ± 0.005 0.054 ± 0.005 0.041 ± 0.004 0.038 ± 0.003 

(5, 6) 0.061 ± 0.005 0.059 ± 0.005 0.046 ± 0.004 0.043 ± 0.003 

(6, 7) 0.067 ± 0.005 0.062 ± 0.004 0.049 ± 0.003 0.043 ± 0.003 

(7, 8) 0.066 ± 0.004 0.062 ± 0.004 0.050 ± 0.003 0.042 ± 0.003 

(8, 9) 0.064 ± 0.004 0.060 ± 0.004 0.049 ± 0.003 0.043 ± 0.003 

(9, 10) 0.062 ± 0.005 0.058 ± 0.004 0.047 ± 0.003 0.044 ± 0.003 

10< 

All-time 

0.064 ± 0.008 0.061 ± 0.008 0.048 ± 0.006 0.044 ± 0.003 

0.062 ± 0.002 0.059 ± 0.002 0.047 ± 0.001 0.042 ± 0.001 

T he T DD values calculated from t he 10 t ime intervals are listed in Table 10.4 

and shown in Figure 10.4. T he T DD results from the 10 t ime intervals are more 
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Figure 10.4: The TDD values from the 10 time intervals for t he four examination 
sites: lumbar spine L2-L4, lumbar spine Ll-L4, total hip and femoral neck. The color 
scheme indicating each examination site is shown in the legend. 
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complicated than those of t he four age groups (see Figure 10.3) . All the TDD values 

varied homoscedastically for each examination site . A change of TDD value over 11 

years was between 0.009 g/ cm2 and 0.014 gj cm2 for the spine, and 0.007 g/ cm2 and 

0.009 g/cm2 for the hip. The results for each examination site indicated an overall 

increase in the TDD values with increasing 6.Time. However, for the lumbar spine 

and femoral neck, the TDD values were observed to increase to a maximum value 

before decreasing slightly. For example, the TDD values for the lumbar spine L2-L4 

increased from 0.051 gjcm2 for 6.Time = (1, 2) to 0.066 gj cm2 for 6.Time = (7, 8) , 

then decreased to 0.062 gjcm2 for 6.Time = (9, 10). A similar trend was found for 

the lumbar spine L1-L4, femoral neck and the total hip. T he T DD values from the 10 

time intervals were different , indicating that t he TDD values were time-dependent . 

The longer t he time interval between the BMD examinations, the larger the TDD 

values, indicating the larger the expect ed BMD changes. In order to determine t he 

TDD values within a given examination time interval, a rate of change (e.g. TDD / 

year) would need to be known for assessing the BMD change rate, therefore providing 

a recommendation of the t ime interval between t he BMD examinat ions for patients. 

10.5 GE and Hologic 

The 3,265 patient data collected using the Hologic QDR 4500 densitometer at the St . 

Clare's Mercy Hospital were used in this work for comparing with the TDD values 

using the GE Lunar Prodigy densitometer. The calculated TDD values from the GE 

and Hologic densitometers are shown in Table 10.5. The TDD values of the Hologic 

densitometer were approximately 19% less than those from the GE densitometer. 

T his value agrees with a previous report that indicated the BMD values for the spine 

obtained using the Hologic densitometer were typically 11.7% lower than from the GE 
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Lunar Prodigy densitometer [159]. The difference in the TDD values obtained from 

the GE and Hologic densitometers is largely due to t he different calibration standards 

and the mathematical algorithms used for choosing the regions of interest. 

Table 10.5: The TDD values (g/ cm2 ) from the GE and Hologic densitometers in St. 
John's, NL. 

Site Patients TDDcE Patients TDDHologic 

L2-L4 5,534 0.063 ± 0.002 3,265 0.049 ± 0.002 

L1-L4 5,459 0.059 ± 0.002 3,265 0.046 ± 0.002 

Femoral neck 5,483 0.047 ± 0.001 3,265 0.039 ± 0.001 

Total hip 5,359 0.042 ± 0.001 3,265 0.036 ± 0.001 

Figure 10.5 shows a comparison of t he TDD values obtained from t he GE (white 

bars) and Hologic (gray bars) densitometers in St. John's, NL. The TDD values for 

all four examination sites (the lumbar spine L2-L4, L1-L4, the femoral neck, and 

the total hip) from the GE densitometer were larger than those from the Hologic 

densitometer , see Table 10.5. These results are consistent with the statements made 

in Section 1. 7 describing how the GE densitometer gives larger BMD values than t he 

Hologic densitometer . 

In summary, t he TDD values obtained using t he GE densitometer (from t he Gen­

eral Hospital) were between 14% to 22% larger than those from the Hologic densito­

meter (from the St. Clare's Mercy Hospital), indicating the need for machine-specific 

TDD values to be calculated for each institution. 
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Figure 10.5: a) Comparison of the TDD values (g/cm2
) from the GE (white bar) 

and Hologic QDR 4500 densitometer (gray bar) for the lumbar spine L2-L4, L1-L4, 
femoral neck and total hip. b) Relative difference (TDDcE- TDDHologic)/TDDcE 
of the TDD values between the GE and Hologic densitometer. 
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10.6 CaMos data 

The BMD studies from NL might not be consistent with those from the national 

dataset . In order to investigate the TDD values from other provinces, 648 BMD stud­

ies have been obtained from the Canadian multi-center osteoporosis study (CaMos) . 

CaMos is an ongoing project for studying osteoporosis and bone health across Canada 

[160] . The CaMos program started in 1999 with 7 institutions in different provinces. 

Since the CaMos database contains patients ' data from different institut ions, it is 

interesting to compare the TDD values calculated from the CaMos BMD database to 

those calculated using the 8,800 patients from L. 

Table 10.6: TDD results (g/cm2
) from NL and the CaMos database using the GE 

Lunar densitometers, with number of patients in the parentheses. 

Site TDDGE-NL TDDGE-CaMos 

L1-L4 0.059 ± 0.002 (5,534) 0.047 ± 0.002 (389) 

Femoral neck 0.047 ± 0.001 (5,483) 0.041 ± 0.002 (389) 

Total hip 0.042 ± 0.001 (5,359) 0.041 ± 0.002 (389) 

Table 10.7: TDD results (g/cm2
) from NL and the CaMos dat abase using the Hologic 

QDR 4500 densitometers, with number of patients in the parentheses. 

Site TDDHologic-NL TDDHologic-CaMos 

L1-L4 0.049 ± 0.002 (3,265) 0.038 ± 0.002 (259) 

Femoral neck 0.039 ± 0.002 (3 ,265) 0.032 ± 0.002 (259) 

Total hip 0.036 ± 0.002 (3,265) 0.031 ± 0.002 (259) 

The CaMos database includes BMD studies conducted using several different bone 

densitometers . The BMD data of the lumbar spine L2-L4 were not available for this 

study, therefore, the examination sites of interest for comparison in the following 

only include the lumbar spine L1-L4, femoral neck and the total hip. Since the 
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TDD values are machine specific, it is necessary to compare the TDD results based 

on different densitometers. Table 10.6 lists the TDD values calculated from BMD 

studies conducted using GE Lunar densitometers from the TL and CaMos database. 

The sample size of the L database was approximately 1,400% times that of the 

CaMos database. The obtained TDD values from the GE Lunar densitometer in 

NL were significantly larger than those from the CaMos database, with an average 

difference of 20% for the lumbar spine L1-L4, and 13% for the femoral neck. The 

TDD values for the total hip were relatively close, with only a 2% difference between 

t he NL and CaMos results. 

Table 10.7 lists the TDD values calculated from BMD studies conducted using 

the Hologic QDR 4500 densitometers from the NL and CaMos database. The sample 

size of the NL database was approximately 1,200% that of t he CaMos databases. 

The TDD values calculated from the BMD values from the Hologic QDR 4500 den­

sitometer in L were also significantly larger than those from the CaMos database, 

by approximately 22% for the lumbar spine L2-L4, 18% for the femoral neck, and 

14% for the total hip. The TDD values of the lumbar spine L1-L4 from the CaMos 

database were consistently larger than those for the hip, which agrees with t he pre­

liminary findings from the NL database. Also, the TDD values from the GE Lunar 

densitometer were consistently larger t han those from the Hologic densitometer using 

both the NL and CaMos database. However, due to the limited sample size in the 

CaMos data, it is difficult to compare the effects of gender, age or examination time 

interval wit hin the CaMos database. 

In summary, the T DD values from the NL and CaMos database were significant 

different for all but one (the T DD values for the total hip using t he GE densitometer) 

of the examinat ion sites. 
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10.7 Impact on Diagnosis 

This study suggests a new criterion (TDD) for analyzing the BMD changes over time. 

In order to compare t he two criteria (TDD and LSC) with respect to their impact 

on clinical diagnosis, a study was performed from a group of 9,379 patients, each of 

whom had two repeated BMD studies over a 11 year period. 
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Figure 10.6: Percentages of the detectable BMD differences using the LSC (dark bars) 
and TDD (white bars) from t he local GE Lunar densitometer. 

Figure 10.6 lists the percentages of detectable BMD changes using the T DD and 

LSC based on these 9,379 patients. T he assessment was obtained by comparing t he 

two BMD studies for each patient using t he TDD and LSC criterion. The reference 
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1SC values were calculated by Dr. Peter Hollett from the department of nuclear 

medicine at t he General Hospital in 2006 using 15 patients (obtained t hrough private 

communication) , each of which had 3 repeated studies. For the lumbar spine 11-

14 and lumbar spine 1 2-14, approximately 60% of the patients were diagnozed as 

having significant BMD changes using the 1SC criterion, while 30% of the patients 

were assessed to have detectable BMD differences using t he TDD criterion . Similarly, 

the percentage was approximately 50% for t he femoral neck and total hip using t he 

1SC, and 20% using the TDD criterion. The difference in the frequency of diagnozing 

detectable BMD changes using these two criteria is significant. As a result , using t he 

1SC criterion might cause unnecessary medications or other health management to 

approximately 30% patients whose BMD changes were undetectable according to t he 

TDD criterion. 

10.8 Conclusion 

This st udy has shown that the half-normal distribution accurately describes the dis­

tribution of SD values from the 01S linear regressed residuals from three sequential 

BMD studies. The TDD values were calculated from the scaled SD values from 

t he HND. This TDD criterion can only be applied to patients with t hree sequent ial 

studies. For BMD studies with more than three sequential examinations, t he folded­

normal distribution should be used to find the TDD values. Females and males were 

found to have slight ly different TDD values. The TDD values ranged from 0.042 to 

0.063 g/cm2 for the four examination sites. T he 30% difference in detection frequency 

between using the 1SC and using the T DD criteria indicates that t here is a proba­

bility of 30% that t he 1SC misclassifies insignificant differences as significant. The 

TDD method has been reinforced as the method for detecting the total BMD differ-
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ences over time by accounting for both machine and patient time-based variations. 

The results shown here have been presented at the annual meeting of the American 

Society of Bone and Mineral Research and the annual meeting of t he Canadian As­

sociation of Nuclear Medicine. The abstract from this study was published in t he 

Annual congress of the European associate of nuclear medicine. Two papers based 

on the above findings are currently in progress. 
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Chapter 11 

Conclusions 

In this final chapter we provide a summary of the two research projects discussed in 

this thesis. Although both projects involved different topics, together they have shown 

how using the appropriate mathematical tools and methods of statistical analysis can 

be invaluable to assist in a scientific investigation of complex systems, solidifying the 

choice of title of this thesis as "Application of Physics and Mathematics in Clinical 

Nuclear Medicine" . 

11.1 Plasma Clearance 

Although others have proposed the use of the gamma variate function as a possible 

model for estimating GF R, it has never , to our knowledge, been used successfully 

for estimating plasma clearance [68] . Therefore our study of kidney function has 

made two significant contributions to the study of plasma clearance: 1) The T ikhonov 

regularization has been shown to provide a method of using the gamma variate model 

for estimating GF R by allowing a solution of the ill-posed inverse problem to be 

obtained, and 2) By performing a t horough comparison of the Tk-GV model with 

182 
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the SET1 , SET2, and OLS-GV models, it has been shown that the Tk-GV model 

best describes the plasma clearance in terms of: 1) the precision and accuracy, 2) t he 

fewest non-physical GF R results , 3) the robustness to the choice of sample size and 

sampling times, and 4) agreement with the GF R results from the const ant infusion of 

inulin without requiring further corrections. In the end, the application of the Tk-GV 

model in clinic has shown it to be the more feasible method for replacing the current 

two-sample SET1 method. As a result, the Tk-GV model developed based on t he 

findings from this work is already being used at t he Roswell Hospital in Buffalo, New 

York. 

In the case where four blood samples cannot be collected from the patient, t he 

SET1 model is often the method of choice for estimating GF R values. Unfortu­

nately the SET 1 model has been shown to overestimate G FR. We have analyzed a 

criterion, RSIJ(Vot,w), used to account for the overestimation of GFRsETl by differ­

entiat ing between patients with normal and abnormal GF R values [132] . Alt hough 

this RS I J(Vol, w ) correction criterion was initially developed for children, t he analysis 

conduct ed here has shown, by cross comparison with other available clinical dat a, 

that this correction criterion is also applicable to adults. The importance of this 

finding is that it allows for a less invasive GF R test to be conducted in order to 

det ermine whether the patient is in need of further medical examination. As a result, 

this correction method can not only reduce the burden on hospital work loads but 

also decrease the number of false positives. 

11.2 Bone Mineral Density 

The conventional LSC criterion used for analyzing bone mineral density (BMD) 

changes has been shown to be insufficient for discriminating between significant and 
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insignificant changes in BMD [145- 14 7] . This is because the LSC only considers 

changes in machine precision as a source of BMD variation. The Total Detect able 

Difference (TDD) has been proposed as a new criterion for determining significant 

changes in BMD by considering natural changes in a patients' short-term and long­

term BMD, and the short-term and long-t erm errors introduced by densitometers 

used to measure BMD. By performing a frequency histogram analysis on the stan­

dard deviations of 8,800 patients, values of TDD have been obtained for the lumbar 

spine and the hip for both General Electric and Hologic densitometers. The calculated 

TDD values were found to be indifferent of age, but dependent on gender and the 

time interval between BMD examinations. A comparison of detectable BMD changes 

indicated that the LSC criterion has the potent ial of over-diagnosing patients as hav­

ing detectable BMD change by approximately 30%. As a result, the replacement of 

the LSC by the TDD will significantly increase the accuracy of determining changes 

in BMD. 

11.3 Future Directions 

Similar to the kidney, the liver function can be estimat ed from a hepatic plasma clear­

ance study using the radiopharmaceutical 99mTc-HEPI-DA. Such a study is usually 

performed by taking several blood samples wit hin 90 min of the injection, and then 

calculating the liver function based on the concentration-time curve produced from 

radiation measurements of the blood samples. The estimation of the liver function is 

commonly based on a SETs model. Since the Tk-GV model has been shown to im­

prove t he analysis of plasma clearance over t he SETs models, it would be of interest 

to see if it could have the same impact on the study of liver funct ion. 

Besides the liver, kidneys are the second most important organ for eliminating 
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toxic chemotherapy agents from the body. Patients with kidney insufficiency have a 

higher risk of developing kidney dysfunction or acute kidney failure after chemother­

apy due to t he delayed secretion or metabolism of the chemo-agents. Therefore, it 

is important to evaluate the kidney function pre- and post- treatment. However, 

not every cancer center considers t he kidney function when calculating the dose used 

in chemotherapy. Part of the reason is t hat the conventional methods of estimat­

ing kidney function are not sufficiently accurate, especially for patients with very 

low kidney function, patients that are morbidly obese, or patients who suffer from 

malnourishment. 

Being able to perform animal studies has already been my passion in expending 

my research. It is interesting to apply the Tk-GV model and the constant infusion 

of inulin method to a group of animals with much better control of the injection and 

blood or urine collection. This will allow for a direct comparison of the results from 

t he T k-GV model and the gold standard for measuring kidney function. It will also 

be interesting to perform image studies on these animals now that the local General 

Hospital is planning to purchase MicroPET scan for performing small animal PET 

imaging. The applicat ion of the Tk-GV method can potent ially improve the curve 

fit t ing of t he renogram. 

I have been awarded a Canadian Institutes of Health Research (CIHR) post­

doctoral fellowship to start in April 2012 to investigate: 1) t he appropriateness of 

BSA scaling in calculating the chemotherapy dosage, and 2) the application of t he 

Tk-GV model to cancer patients for monitoring t heir kidney function before and af­

ter treatment . The initial phase of this research will compare the BSA and f( Vol, W) 

scaling methods with respect to treatment outcomes and side effects. T his work will 

focus on patient groups whose chemotherapy treatments can significantly influence 



CHAPTER 11. CONCLUSIONS 186 

their kidney function. In the case where f ( Vol, W) is found to be insufficient in provid­

ing an accurate GF R assessment for chemotherapy patients, the Tk-GV model will 

be used before and after the treatment, in the hope of allowing the early detection 

of side effects on the kidneys due to the treatment. The Tk-GV model has a poten­

tial of providing two significant contributions in this area: 1) t he early detection of 

patients experiencing insufficient kidney function so that the appropriate dosage can 

be determined for t hese patients, and 2) allow accurate monitoring of patients expe­

riencing mild kidney dysfunction or acute kidney dysfunction and allow for accurate 

treatment to be assigned. 

In a comparison of BMD studies conducted elsewhere in Canada it has been shown 

that the TDD values for Newfoundland and Labrador (NL) were, on average, 20% 

larger for the lumbar spine and 13% larger for the femoral neck than the national 

average. As a result , what would be considered as natural BMD changes in NL 

would be considered as significant BMD changes in rest of Canada. It would be of 

great interest to broaden our initial investigation of the TDD criterion by considering 

addit ional factors such as 1) geographic location, 2) nutrition level such as vitamin D 

intake, calcium level, diet , etc, and 3) sunshine exposure, exercise level, etc. It may 

also be of interest to investigate the effect of different seasons on BMD levels. For 

example, if patients experience greater BMD changes in summer than in winter, it 

may be necessary to have separate TDD criteria for each season. 

Once a sufficient understanding of the TDD is obtained based on all significant 

parameters, it would be of great use to develop a program which would accept all 

the relevant information of the patient and provide, as output , the TDD value. T his 

program would differ from FRAX developed by the WHO in that it would consider 

all examination sites, a larger age group than patients over the age of 50, and pro-



CHAPT ER 11 . CONCLUSIONS 187 

vide information on whether the observed changes in BMD are significant based on 

previous tests. 
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Appendix A 

A.l Clinical Protocol for Measuring G F R 

A detailed protocol is given for preparing the administered dose of radiopharmaceu­

t ical, collecting and processing t he blood samples from the patients. 

Collect the Samples 

1. Record patient 's height and mass. 

2. Prepare t he patient 's dose using the 99mTc from 99Moj99mTc generator and 

measure the activity with the dose calibrator. The required dose for a patient 

undergoing a kidney function test ( G F R) and renal scan on t he same day is 

twice that of a patient undergoing only a kidney function test. 

3. Prepare t he standard dose equal to approximately 1/ 10 of the patient's dose. 

4. Administer the dose to the patient using an angiocatheter and flush the bolus 

with at least 10 ml of a saline solution for children and 20 ml for adults. Record 

the starting t ime. 

5. Measure t he radioactivity of all materials/ objects (syringe used for t he injection, 

gloves and alcohol swabs, etc) that have been in contact with the injected dose 

and record it as the patient 's residual. 
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6. Four blood samples (6 ml each) to be drawn (by needle or angiocatheter) at 

10, 30, 120, and 240 min. Blood is drawn using a 21G needle and one dark 

green topped tube (6 mL, heparin coated) from the opposite arm from where 

the injection was given. The angiocatheter, if used , should be filled wit h an 

anticoagulant or preservative free saline and in each case the first 5 ml of blood 

(3 ml for children) is to be discarded before the true samples are collected to 

avoid dilution of the sample concentration. Record each sampling t ime to t he 

hour, minute, second. 

Process the Samples 

1. The standard solut ion is poured in a 500 ml volumetric flask and diluted by 

filling the remainder of the flask with water (tap water is sufficient) up to t he 

500 ml mark. Cover the flask and gently shake it until fully mixed. Measure 

and record the radioactivity left in the syringe used for dispensing the standard 

dose and record the time. 

2. All blood samples must be centrifuged for 10 min at 3,750 rpm until the plasma 

is separated from t he blood. If hemolysis occurs, cent rifuge t he plasma for an 

additional 5 minutes. 

3. Label 17 counting 5 ml tubes: 2 tubes for background (BKG) , 3 t ubes for t he 

st andard dose (STD) and 3 tubes for each of the 4 plasma samples. 

4. Deposit 200 pJ of the STD and plasma samples in the corresponding tubes using 

an air displacement pipette. The pipette tip should be changed every time a 

new sample is drawn. 

5. Add 1 ml (1000 pJ) of water to each tube using a larger pipette. (There is no 

need to change the tip between these samples). 
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6. T he radioactivity of each sample is then measured in the single-well counter 

for 1 minute. If a pediatric study is performed with a low injection dose and 

standard dose, the samples should each be measured for 2 minutes to obtain 

better counting st atistics. The measurement time for each sample should be 

recorded in order to perform a decay correction. 

7. The obtained values (radioactivity of 17 tubes, patient 's information and exam 

date) are entered into t he computer program for calculations. 

A.2 M athematical Formulae 

This section aims to supplement Section 2.6.4 by listing addit ional mathematical 

formulae which are too long to include within the text of this thesis. Equation 2.33 

lists a series of standard deviation terms which are part of the Tikhonov regularization. 

T hese standard deviations are listed below: 

n 

52 1 2:: 2 
Q N _ 1 . (ai - a ) 

n 

52 1 2:: - 2 
f3 N - 1 . (f3i - (3 ) 

5J< 1 2:: - 2 N _
1 

(Ki - K) 
n 

5;{3 1 2:: -N _ 
1 

. ( ai - a) ((3i - (3) 

n 

5;!( 1 2:: -N _ 
1 

(ai - a)(Ki- K) 
i 
n 

5~1< N ~ 1 L (f3i - /3)(Ki - K) , (A.1) 
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where a, f3 and K are the average values of a, f3 and K . The parameters a , (3, K , 

ERG and E RV are functions of the shrinkage factor >. used in the Tk-GV model 

and are obtained through a series of mathematical operations and as a result cannot 

be shown here in a simple analytical form. Instead I will show the equations for a, 

(3, K , E RG and E RV below after the patient information has been applied. For 

more specific information on the exact equations for a, (3, K , E RG and ERV or for 

the Mathematica code used to perform t he calculations in t his work, the reader is 

recommended to contact Dr. Wesolowski directly. 

K 

f3 

(0.062 + >.)(1.5 + >.) 

0.14 + 2.0>. + >.2 

0.00019 + 0.0056>. 

0.14 + 2.0>. + >.2 

ex ( - 5.6(0.068 + >.)(1.5 + >.) ) 
p 0.14 + 2.0>. + >.2 

(A.2) 

(A.3) 

(A.4) 
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ERG = ,\3 ((0.200(,\ + 0.0045)(,\ + 2.54)(,\ + 2.72)(,\2
- 0.080,\ + 0.054) 

(,\
2 + 0.54,\ + 0.089))/(0.95,\ + 0.0323)2 

/ (,\
2 + 2.00,\ + 0.14)4 

+ 0.16(,\ + 0.27)(,\ + 2.69)(,\2 + 0.15,\ + 0.096) 

log (0.0056,\ + 0.000191) /(,\2 + 2.00,\ + 0.14) 

+ 0.035(,\ + 0.0045)(,\2 + 0.21,\ + 0.130) (,\2 + 0.34,\ + 0.092) 

log (0 .0056,\ + 0.00019) / (,\2 + 2.00,\ + 0.143)
2 

+( -0.16,\2
( ,\ + 0.272)(,\ + 2.69) - 0.070(,\ + 0.0045) 

(,\
2 + 0.21,\ + 0.13)(,\2 + 0.34,\ + 0.092) ) 

log (0.0056,\ + 0.00019) / (,\2 + 2.00,\ + 0.14) 

'¢((,\ + 0.062)(,\ + 1.50)/(,\2 + 2.00,\ + 0.14)) 

+ 0.035(,\ + 0.0045)(,\2 + 0.21,\ + 0.13)(,\2 + 0.34,\ + 0.092) 
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'¢ ((,\ + 0.062)(,\ + 1.50)/(,\2 + 2.00,\ + 0.143)) 2 (A. 5) 
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ERV = 1/((0.034 + ,\)2 )(0.062 + ,\)2 (1.5 + ,\)2 ((0. 14 + 2.0,\ + ,\2
)

4
)) 

X (1.1,\3 (1.78(0.007 + ,\)(0.063 + ,\) (0.36 + ,\)(1.49 +A) 

(1.64 + ,\)(0.003 - 0.067,\ + ,\2 )(0.16 + 0.22,\ + ,\2
) 
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+( -8.8 X 10- 8 + 0.092,\4 + 0.43,\5 + 1.15,\6 + 2.22,\7 + 1.82,\8 + 0.50,\9
) 
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where the symbol '¢ stands for t he digamma function which is given as 

"''( ) = r'(x) 
'f' X f(x) (A.7) 

where f(x) is a gamma function of the variable X and f '(x) is the first derivative of 

the gamma function as [158], 

r' ( x) = dr ( x) . 
dx 

The minimization of the ERG value is used for finding the shrinkage factor ,\. 

(A.8) 






