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Abstract

Shrinkage crack patterns which develop in a layer of a drying slurry of
Al O3 powder and water are studied. The ways in which the pattern changes
with the depth of the layer, with friction between the layer and the container,
and with added impurities are described. A statistical analysis is given of how
changes in these experimental conditions affect the lengthscale of the pattern,
the junction angles between cracks, the nucleation sites of the cracks, and
the number of sides of the polygons formed by the cracking process. The
lengthscale of the pattern increases linearly with depth. Longer lengthscales
are observed in patterns where the friction between the layer and its substrate
is reduced which shows that friction is the main source of stress for fracture.
Most crack junctions are perpendicular showing that crack junctions are
formed primarily through intersections of new cracks with pre-existing ones.

These results are compared with the recent results of Groisman and Kaplan.
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Chapter 1

Introduction

Shrinkage crack patterns are commonly observed in many naturally occur-
ring systems [1]. The patterns are complicated arrays of polygons formed by
many intersecting cracks. Some two-dimensional examples include cracks in
the glaze on a ceramic mug, dried mud, or dried paint. Fig. 1.1 is a picture of
cracks in a layer of dried mud of approximate area 20 cm by 20 cm. In some
cases the crack pattern propagates in the third direction. Examples are the
long hexagonal columns which form in cooling basalt flows, like the Giant’s
Causeway shown in Fig. 1.2, and ice-wedge polygons in permafrost [2] in the
Arctic. The lengthscales of these patterns range from a few millimetres in
the glaze in ceramics to 30 metres in the ice-wedge polygons. The cracks
in two-dimensional patterns may be classified as diffuse or brittle. Diffuse
cracks are rough and jagged, like the cracks in Fig. 1.1, while brittle cracks
have smooth faces and are found in substances like ceramics.

The study of fracture has been subject to a renewed interest since the
landmark paper by Griffith in 1920 [3]. Geologists have long been interested
in fracture patterns because understanding their formation may give infor-
mation on the environmental conditions, like temperatures and salinity of
water, of previous eras [4]. Fracture is important in industrial applications
concerning coatings and the changes in strengths of materials which have
surface scratches. Crack patterns are also of interest in the field of nonlin-

ear dynamics because the dynamics of fracture are not well understood, and
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crack patterns are an example of irreversible pattern formation.

Figure 1.1: Cracks in a dried mud layer in Chile. The area shown is ap-
proximately 20 cm by 20 cm. Photograph by Stephen Short, June, 1996.

1.1 Review of Previous Work

Shrinkage crack patterns arise in materials which contract while cooling or
drying. This work considers two-dimensional shrinkage crack patterns formed
as a result of drying. As a layer of a material dries, its volume decreases as
the water evaporates, and the layer contracts. Due to adhesion to the sub-
strate, stress builds in the layer, and when the stress exceeds the local tensile
strength, the material fractures. When the resulting crack opens, the stress

is relieved locally along the sides of the crack, but becomes concentrated at
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Figure 1.2: The Giant’s Causeway in Northern Ireland. Copyright 1995,
interKnowledge Corp.

the crack tip. As a result the crack propagates lengthwise until the stress at
the tip is reduced to below the local strength of the material [5]. In a homo-
geneous medium the crack will form and grow perpendicular to the direction
of maximum stress so as to relieve the stress most efficiently.

A crack pattern forms as multiple cracks grow and intersect. The stress
in the vicinity of a crack face is parallel to the face since a free surface can
support no stress. Thus any crack nucleating at or growing to meet the
edge of a preexisting crack will meet that crack perpendicularly. Although
two independent cracks will meet at a 90° junction angle, 120° junction
angles have also been observed. Non-perpendicular junctions are formed
by other methods of crack junction formation which include the splitting of
a crack tip into two or more cracks, the joining of two initially parallel cracks
propagating together to form a single crack, or the nucleation of multiple

cracks at some nucleation site. Nucleation sites are impurities in the material
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such as air bubbles, sand grains, dust, or microscopic inhomogeneities such
as microscopic defects in the material.

It has been p d that in a h material under uniform con-

traction, 120° junction angles give the largest ratio of elastic energy relief to
the energy of new surfaces being created by cracking [6]. While the presence
of 120° junction angles has been noted in thin layers of various materials
[4, 7, 9] and in computer models of fracture [9], it has been noticed by sev-
eral authors that most crack junctions in two-dimensional patterns are at 90°
1,7, 10, 11].

Two-dimensional shrinkage crack patterns in mud in ancient geological
formations have been discussed [6, 10, 11, 12]. Crack patterns in mud in
containers left in the sun to dry were studied qualitatively [4, 10, 12] and
it was observed that larger polygons were found in thicker layers and in
more rapidly dried layers. Most crack junctions were found to be orthogonal
[10, 11] but a number of 120° junction angles were found in the thinnest
layers [4].

Lachenbruch studied contraction crack patterns in the ice-wedge polygons
in the permafrost in the Arctic, which are similar to mud crack patterns [2].
Ice-wedge polygons formed, over the course of hundreds of years, after frac-
tures opened in the layer of permafrost due to thermal tension. In the spring
thaws, the top layer of ice melted and water ran into the cracks. During
the winter months, the water froze and expanded, making the cracks wider.

Many fractures formed and interacted, creating the ice-wedge polygonal pat-
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tern observed in the Arctic. Lachenbruch provides a model of a stress relief
zone in the vicinity of a single fracture. The stress at a crack wall is zero. Far
away from the crack the stress in the bulk is equal to the pre-cracking stress,
so there exists a zone of stress relief near a crack. The width of the zone
depends strongly on depth of the crack as well as on the stress distribution
in the layer at a given crack depth. The model indicates that the spacing
between the cracks is the same order of magnitude as the crack depth.

Skjeltorp and Meakin [9] studied crack patterns which formed in a mono-
layer of polystyrene microspheres dried between two glass plates. At early
stages of growth, they observed the cracks to be linear with rapid growth.
Most crack junction angles were 120° due to the hexagonal packing of the
microspheres. At later stages, the growth slowed and the shapes of the cracks
became irregular. They presented a two-dimensional computer model of frac-
ture where the layer was represented by a triangular network of nodes and
bonds which initially formed a triangular lattice. Each node was bonded to
its six nearest neighbours and more weakly to an underlying substrate, with
the total system energy given by the harmonic approximation. The lattice
was initially stretched isotropically, then a bond was selected at random, and
broken with a probability which depended on the energy between nodes. The
lattice was then allowed to relax, and the process repeated. The resulting
pattern of cracks was similar to the experimental pattern.

Hornig et al. [13] presented a similar spring-block model with a triangular

lattice and harmonic bonds between nodes and the substrate. The stress



Introduction 6

in the layer was increased by isotropically stretching the substrate. The
forces acting on the springs were calculated and where the force exceeded
the breakdown threshold, chosen by a given probability distribution in the
range [fmin, fmin + W], the springs were removed. The parameter W/ f.in
characterized the disorder in the system. They found a transition from irreg-
ular to regular cracks as the the strength of disorder decreased, and found
a power law dependence of the mean fragment size of the polygons on the
strain.

Leung and Andersen [14] used a spring-block model of blocks in a square
array connected to nearest neighbours with springs and in contact with an
underlying substrate with lattice constant a. The drying process was simu-
lated by fixing a and the relaxed spring length to impose an initial tensile
strain s while increasing the spring constant to increase stiffness. Force on
the blocks was calculated and the stress was relieved through spring breaks
or block slips with threshold dynamics: If the force on a block exceeded the
slipping threshold Fj, the block slipped to a force-free position, if the force
exceeded the breaking threshold F. = xF; the spring broke. The parameter
& defined the characteristics of the system: larger & represented a stronger
material or weaker substrate coupling. For a large enough s, they found a
phase transition in the crack morphology from small and randomly located
for smaller & to larger and more ordered for larger . They found a transi-
tion in the probability density of fragment area, from log-normal to a possible

power law dependence, as £ increased. This implies that as the friction is
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reduced or the material made stronger, the distribution of fragment sizes
changes from random to more ordered.

A similar spring-block model was used by Andersen et al. [15]. Blocks on
a square array were connected by springs to their nearest neighbours and
also connected to a substrate. The same threshold dynamics as above were
used. They noticed that for large £ the crack junctions were perpendicular,
while for smaller & a wider range of junction angles was present, where large
& represented a stronger material or reduced bottom friction.

Groisman and Kaplan [7] studied shrinkage crack patterns in experiments
similar to this work. They allowed coffee-water mixtures to dry on circular
glass plates, 14 cm in diameter, or on square boxes ranging from 20 cm
x 20 cm to 48 cm x 48 cm. They found a linear relationship between
the scale of the pattern and the thickness of the dried layers, which ranged
from 2 mm to 16 mm. They examined the effect of bottom friction by
drying layers of similar thickness on an untreated glass plate, a plate coated
with 2 mm of grease, and a plated coated with 6 mm of vaseline. They
observed the most cracks in the untreated plate and the fewest in the vaseline
coated plate, which showed that reducing the bottom friction increases the
lengthscale of the pattern. They measured the percentage of 120° junction
angles as a function of depth and observed a transition from almost zero in
thicker layers to about 30% in layers thinner than 4 mm. They also noticed a
transition in the pattern morphology at this thickness. Above this thickness

the cracks formed a polygonal network and the crack edges were smoother,
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while for layers less than 4 mm thick there was no definite polygonal network
and the cracks were diffuse. The transition in morphology was attributed
to facilitated nucleation from inherent inhomogeneities which caused many
cracks to form at the same time and screen each other. They suggested that
120° junction angles occur when a crack tip splits. For thinner layers, this
occurs at defects in the material. The transition to an increased number of
120° junctions shows that another lengthscale associated with the texture
of the material is important during cracking. A similar transition was also
observed in drying cornflour-water mixtures by Webb and Beddoe [8].

A three-dimensional crack pattern is created when a two-dimensional crack
pattern propagates in the third dimension as a result of a cooling or drying
gradient. The gradient causes tension in the material since the cooler or
drier portion will be contracted relative to the warmer or wetter portion.
Examples occur in basaltic lava flows, like the Giant’s Causeway shown in
Fig. 1.2, in which a cooling front propagated from top to bottom as the hot
rock cooled. The stress was relieved by cracking in the form of long, thin
hexagonal columns. The cracking in the third dimension has been modeled
in experiments by subjecting a thin layer of a material to a drying or cooling
front in the plane of the layer.

Yuse and Sano [16] examined the morphology of single cracks which formed
in glass plates with a moving thermal gradient. The crack motion exhibited a
transition from straight to oscillatory to branched as the speed of the cooling

front increased. The transition was a result of an instability in the crack tip.
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Marder [17] observed that the crack motion in these experiments could be
studied with the methods of nonlinear dynamics.

Fracture patterns in thin layers of a directionally dried colloidal suspen-
sion between two glass plates have been studied by Allain and Limat [18].
The suspension was allowed to dry through one open edge and the resultant
pattern of cracks was regularly spaced. In an analysis of this work, Komatsu
and Sasa [19], explained the regular spacing of the cracks in terms of maxi-
mum stress relief: The first crack formed where there was maximum stress,
i.e., the middle of the sample, the next cracks were in the middle of the two
segments, and this process repeated until all the water was evaporated.

Morris et al. [20] observed patterns which formed in directionally dried
layers of Aluminum Oxide (Al;03) and water in a 12 cm by 8 cm cell. The
layer cracked in long thin strips perpendicular to the drying front. They
studied the effects of bottom friction by drying layers on various substrates,

Tudi d lished stainless steel, and mercury. They found that

paper, p

the lengthscale of the pattern depended on layer thickness only when there

was sufficiently large friction between the layer and its substrate.

1.2 Outline of This Project

In this project we provide a quantitative analysis of two-dimensional shrink-
age crack patterns formed under various experimental conditions. The ex-
perimental parameters are layer depth, friction between the layer and the
substrate, and added impurities. We determine the mean lengthscale of the

pattern as a function of depth, and examine how the lengthscale changes
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when friction between the layer and its substrate is reduced and when im-
purities are added to the layer before drying. The results of Groisman and
Kaplan [7] indicate that there is a linear relationship between the length-
scale of the pattern and the thickness of the dried layer, but do not show
quantitatively how the slope depends on friction between the layer and its
substrate or with the level of impurities in the layer. We find the average
area per polygon and expect it to scale linearly with depth squared as shown
in the results of Groisman and Kaplan. By measuring the crack junction
angles and counting the number of sides per polygon we obtain quantitative
information about the distribution of crack junction angles. The distribution
is expected to have a strong peak at 90° in thick layers and for thinner lay-
ers, a transition to increased numbers of 120° is expected [7, 8]. We examine
the distribution of crack junction angles and changes in the distribution as
a function of the experimental parameters. With Fourier analysis, we study
the statistical properties of the crack patterns which give information about

the spatial structure of the pattern and are useful in classifying the patterns.
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Chapter 2

Experimental

2.1 Apparatus

A schematic illustration of the apparatus used is shown in Figure 2.1. To
maintain a stable environment and constant drying rate, the experiments
were conducted inside an insulated enclosure. The enclosure was made from
1.1 em plywood and had outside dimensions of 76 cm x 76 cm x 244 cm. It
was insulated with 5.1 cm styrofoam insulation lining the inside. Four fifteen
watt light bulbs installed at the top of the insulated enclosure were used
as the heat source for the experiments, and also illuminated the mud layer
for video recordings made during the cracking process. The temperature
at the layer was maintained between 25°C and 28°C for all runs, and was
constant to within 1°C during a given run. A thin sheet of translucent
plastic was placed below the bulbs to diffuse the light, producing more even
illumination. A charge-coupled device video camera was positioned near the
top of the housing and was used with a GYYR time lapse video recorder,
model number TLC1800R, to record the cracking process.

Individual frames from the video record were digitized for analysis using
an Imaging Technology Inc. PC/vision-plus frame grabber card in a personal
computer. The frame grabber captured images of 480 x 512 pixels where
the intensity of each pixel was stored as an 8-bit binary number, i.c., the

digitized intensity range was from 0 to 255. A light table beneath the mud
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Lights
Light diffusing screen

Insulation Video camera

Layer of Alumina

Light table

Figure 2.1: The experimental apparatus.
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layer provided illumination from below for photographs taken at the end
of each run. The photographs and digitized images were used for the data

analysis.
2.2 Experimental Conditions

The “mud” used was a slurry of water and Aluminum Oxide C (chemical
formula Al;03) powder supplied by Degussa Canada Ltd. The Al,O3 or
alumina particles are 130 A in size and insoluble in water. The slurry was
poured into a 62.2 cm x 62.2 cm Plexiglas pan with a sturdy 2.5 cm thick
base and allowed to dry for 5 — 17 days depending on the thickness of the
layer. Between 60.1 g to over 500 g of alumina was mixed with 1 - 3 [ of
water using a hand blender.

The experimental conditions varied were the thickness of the layer, the
friction between the layer and its substrate, and impurities added to the
slurry. For the runs referred to as Type A experiments, the alumina was
used with no added impurities, and the Plexiglas substrate was untreated.
In the Tpye B experiments, the friction between the layer and the substrate
was reduced by spraying the pan with a thin, transparent coating of teflon
(Crown 66075 dry film lubricant). There were no impurities added to the
Type B experiments. The Type C experiments also had bottom friction
reduced by a teflon coating, but impurities were introduced by sprinkling 10
cm® of sand grains, 425 — 500 um in size, evenly over the top of the slurry
before the drying began. These particles are ~10* times the size of the Al,05

particles and on the same size scale as the layer thickness. The sand floated
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on top of the layers. We did four runs of each type of experiment; the type
of experiment, range of depths of the dried layer, mass M of Al,O3 used,
volume V of water used, and approximate drying times ¢ of each one is listed
in Table 1. The depths listed are the ranges of depths of 8 cm squares within
the container. The depth measurement is an average over 5 points within
the sample area and the error in depth is the standard deviation of those
five points. The squares were not physically divided, but distinguished by a
grid drawn on the bottom of the pan. Over any given run, the depth of the
sample areas varied by up to 2.2 mm which could be due to the supporting

light table not being perfectly level or to the bottom plate being warped.

Type layer depth (mm) M (g) V (1) | t (hr)
A [0.13+£0.02—0.63 +£0.06 | 60.5+ 1.0 1 95
A 0.40 +£0.02 — 1.16 £ 0.05 | 116.7+ 1.0 1 62
A 0.51 £0.02 — 1.41 £0.10 | 155.2+ 1.0 1 108
A 1.73 £0.02 — 3.35 £ 0.21 | 495+ 50 2.8 202
B [0.22+0.02—0.80 £0.05 | 69.8+ 1.0 1 120
B 0.32+£0.02 — 1.18 £0.09 | 116.1+ 1.0 1 54
B [0.45+0.02 — 1.51 +£0.06 | 154.6+ 1.0 1 122
B 1.914£0.04 —4.12£0.46 | 500% 50 3 379
C [0.15£0.02—0.62 £ 0.06 | 60.1% 1.0 I 100
C [0.32+0.03 —1.48£0.06 | 138.4% 1.0 1 107
C 0.76 £ 0.05 — 1.84 £ 0.05 | 266.1% 1.0 1 90
C 1.76 £0.05 — 3.02 £ 0.12 | 450.7+ 1.0 2 184

Table 1: Range of depths, mass M of Al;03 used, volume V of water used,
and approximate drying times ¢ for the experimental runs.
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Chapter 3
Results and Analysis

3.1 Qualitative Description of Patterns

The fracture patterns which form in all of the experimental runs have quali-
tative similarities. Fig. 3.1 is a picture of one of the patterns. The fractures
which form first in the drying slurry are referred to as primary cracks. These
cracks are typically an order of magnitude longer than the final lengthscale of
the pattern. The faces of the cracks are smooth and there are no sharp bends
except in the thinnest layers of Type C experiments. As the slurry dries
further, successive generations of cracks open between the primary cracks
forming a complicated pattern of polygons. The resulting pattern has a
characteristic length scale. The polygons formed by the primary cracks and
the following generations of cracks are predominantly four-sided. Most of the
junctions between cracks are at right angles, with a few non-perpendicular
junctions. Under all experimental conditions, the lengthscale of the pattern
and area of the polygons increases with increasing layer depth.

There are also qualitative differences in the fracture patterns depending on
the experimental conditions. For very thin layers in Type B experiments, the
edges of the polygons tend to curl downwards because they do not stick to the
surface. This curling does not occur for the other experimental conditions.
For similar layer depths, the polygons in the Type B experiments have greater

area than the polygons in Type A or Type C experiments.
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Figure 3.1: Pattern formed in a Type A experiment of approximately 16 cm
by 16 cm in real space. d = 0.57 £ 0.02 mm
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3.2 Wavelength of the Pattern

We define the wavelength A of the pattern as the average distance between
cracks, and approximate it by 1/\/N; where N, is the number of polygons in
the sample area and [? is the area of the sample. The approximation would
be an equality if all the polygons were equal sized squares. In this analysis
1% was taken as a sample region of area 64.0 cm?, well away from the edges
of the container. The total area of the container is 3700 cm?.

The wavelength as a function of depth d for each type of experiment is
plotted in Figure 3.2. In all experiments, the wavelength increases linearly
with depth. The error bars on X in Fig. 3.2 are the same size as the symbols
and are due to uncertainties in NV, and in the approximation itself. The scat-
ter in the data increases for depths greater than about 2.75 mm, particularly
in Fig. 3.2(b). This may be a result of the decreased effect of bottom friction
with thickening layers, or of three-dimensional effects.

Lachenbruch’s theory of ice wedge polygons [2] explains the effect of in-
creasing lengthscale with increasing depth with a theory of stress relief. No
normal stress can be maintained along the edge of a crack because it is a free
surface. In the vicinity of the crack, the stress is reduced below the strength
of the material. Further away, however, the stress builds until it exceeds the
material’s strength and another crack opens. The location of the new crack
will depend to some extent on the range of the zone of stress relief. Lachen-
bruch [2] shows that the width of the zone of stress relief increases with the

depth of the crack. Groisman and Kaplan [7] propose that since friction is
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Figure 3.2: X as a function of d with linear fits forced through the origin.
(a) Type A experiments; A = (3.60 £ 0.08)d, (b) Type B experiments; A =
(6.56 + 0.26)d, (c) Type C experiments; A = (3.43 £ 0.04)d. Except where
indicated otherwise, the error bars are approximately the same size as the
symbols.
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approximately proportional to the linear dimension of the polygon [, then
the stress o is approximately given by F//d « l/d so that [ o o .d where o,
is the critical stress required for cracking. This argument also indicates that
the lengthscale of the pattern should increase linearly with depth.

The friction between the layer and the substrate was the main source of
stress driving the fracture. The effects of reducing friction between the layer
and substrate and increasing the impurities in a sample are seen in Fig. 3.2.
Type A and Type B experiments had no added impurities so the layers had
the same strength for fixed depth. Type B experiments had reduced bottom
friction and so the layers were subject to less stress than the Type A layers.
Because of the reduced stress in the Type B layers there were fewer fractures
than in the Type A experiments at the same depths.

The largest impurities in all experiments were air bubbles which were
formed when the slurry was poured into the container. On average, the
air bubbles were 2 mm in diameter and there were estimated to be roughly
250 over the whole area in each experiment. Other impurities which were
smaller but may also be significant were dust and microscopic cracks in the
Al,O3. Impurities weakened the strength of the layer locally. The extent to
which the Al;O3 was weakened depended on the relative size of the impurity:
An impurity of the same size as the layer would have a greater effect than
an impurity many times smaller than the layer thickness.

The Type B and Type C experiments had the same bottom friction. The

added impurities in the Type C experiments reduced the strength of the
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layers and as a result there were more fractures in these runs than the Type
B experiments for the same depths.

The Type A and Type C experiments had similar lengthscales with depth
while the Type B experiments had longer lengthscales. This suggests that
the effects of reducing bottom friction and reducing strength with the intro-

duction of impurities roughly cancel in this particular case.

3.3 Average Area of the Polygons

Using the mathematical package, Matlab, we converted the greyscale digi-
tized images to black and white where a black pixel was part of a polygon
and a white pixel was not. The threshold was chosen by inspection of the in-
tensity values of the greyscale image. We divided the number of black pixels
by the total number of pixels to get the fraction of the image that was solid,
m. Figs. 3.3 - 3.11 are greyscale and black and white images from runs of
varying depths from each type of experiment. Each image is 8 cm square in
real space. In Fig. 3.12 we have plotted m as a function of depth for each set
of experiments. It is constant with depth and has the same value for all runs
within the experimental scatter. The average value of m over all experiments
is m = 0.557 & 0.015. This implies that the fractional shrinkage in the area
does not change with the varying experimental conditions.

Knowing the number of polygons N, in the sample area, we calculated

the average area per polygon A, which is related to the wavelength of the
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Figure 3.3: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type A experiment with d = 0.54 £ 0.02 mm.

Figure 3.4: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type A experiment with d = 0.66 £ 0.02 mm.
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Figure 3.5: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type A experiment with d = 1.78 £ 0.03 mm.

Figure 3.6: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type B experiment with d = 0.26 & 0.02 mm.
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Figure 3.7: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type B experiment with d = 0.58 & 0.02 mm.

Figure 3.8: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type B experiment with d = 2.64 + 0.09 mm.
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Figure 3.9: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type C experiment with d = 0.60 % 0.02 mm.

Figure 3.10: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type C experiment with d = 1.23 + 0.03 mm.
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Figure 3.11: Greyscale and black and white images of an 8 cm x 8 cm region
of the crack pattern for a Type C experiment with d = 2.13 + 0.06 mm.

pattern:

A4, B 5

i T MDY 3.1
m N, il

where [ = 8.0 cm is the length of the sample side. In Fig. 3.13, A, is plotted
as a function of depth squared, for each type of experiment, with linear fits
to the data. A, is linear with depth squared as expected since \ is linear
with depth. We may compare the results of this section with the results of

Sec. 3.2. We have, from Eq. 3.1,

Ay =mI? = kyd? (:

where ky is the slope of the line fit to the data. From Sec. 3.2, A is proportional

to depth so we have A\ = k,d. We therefore expect that

k

k. (3.3)
m

The results are summarized in Table 2, and show that Eq. 3.3 is satisfied

within the experimental uncertainties.
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Figure 3.12: The fraction of area which is solid, m as a function of d. The
straight line is the mean of the data and the error bars on the lines are the
standard deviation of that mean. (a) Type A experiments; iy = 0.541 £
0.080, (b) Type B experiments; g = 0.560+0.021, (c) Type C experiments;
e = 0.570 £ 0.028.
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Figure 3.13: A, as a function of d* with linear fits forced through the origin.
The error bars are the same size as the symbols. (a) Type A experiments;
A, = (9.02+0.26)d?, (b) Type B experiments; A, = (19.5+ 1.7)d?, (c) Type
C experiments; A, = (6.89 + 0.88)d?.
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k2

A [ 4.08+£0.61 | 3.60 £ 0.08
B [5.90 +0.43 | 6.56 £ 0.26
C |3.48+£0.36 | 3.43 £0.04

Table 2: Comparison of the slopes of the linear fits from Figs. 3.2 and 3.13.

3.4 Fourier Transform Analysis

The pattern of cracks has a regularity which lends itself to Fourier analysis.
Fourier transform analysis can be used to give information about the spatial
structure of a pattern, including its lengthscale. The wavelength of the pat-
tern was calculated in Sec. 3.2 under the approximation that the polygons
in the pattern were equal size squares. Fourier analysis reveals the mean
lengthscale of the pattern with no prior assumptions about individual frag-
ment size, shape, or orientation. We also analyze the results to extract the
correlation length of the pattern and the skewness and kurtosis of the distri-
bution of length scales. The analysis also indicates any preferred orientation
of the pattern.

With the mathematical package Matlab, we performed two-dimensional
fast Fourier transforms of the images captured with the framegrabber. The
Matlab program written for this analysis is given in Appendix A. The Fourier
transform of the pattern is complex, and is a function of the wavevector k.

We found the power spectrum of the pattern by multiplying the Fourier
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transform by its complex conjugate:
P(F) = F(k)F*(F). (3.4)

The power spectrum is a real function of E. We chose the maximum value
of k to be 0.5 in units of inverse pixels so that the image was sampled at the
Nyquist frequency.

The power spectrum had the form of a central peak with a surrounding
ring. The central peak was due to large scale nonuniformities of illumination.
Figs. 3.14 — 3.16 are images of typical patterns with their power spectra.
The patterns in these figures have a larger area than the patterns in Figs. 3.3
- 3.11. In each of the figures, (a) and (b) are for a thin layer and (c) and
(d) are for a thick layer. The rings in the power spectra for the thick layers
in the Type A and Type B experiments, Fig. 3.14 (d) and Fig. 3.15 (d), are
anisotropic which implies an overall orientation of the pattern in real space
as observed in Fig. 3.14 (c) and Fig. 3.15 (c). A layer of similar thickness
of Type C experiment, Fig. 3.16 (c) and (d), has a more isotropic power
spectrum and the pattern has less directional orientation. The thinner layers
of all experiments have approximately isotropic power spectra.

The central peak was removed and the azimuthal average of the power
spectrum was taken to obtain a smoother profile and eliminate anisotropic
effects. Figs. 3.17 - 3.19 show kP(k), where P(k) is the averaged power
spectra as a function of wavenumber k for the runs in Figs. 3.14 - 3.16. The
data are peaked about some wavenumber k. which was determined by fitting

a parabola to the peak of the distribution. The fit of the the average power
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Figure 3.14: Images and power spectra of Type A experiments. (a) Image of
sample area with d = 0.49 £ 0.07 mm, (b) power spectrum of (a), (c) image
of sample area with d = 1.93 £ 0.21 mm, (d) power spectrum of (c)
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Figure 3.15: Images and power spectra with Type B experiments. (a) Image
of sample area of d = 0.28 & 0.06 mm, (b) power spectrum of (a), (c) image
of sample area with d = 2.53 £ 0.22 mm, (d) power spectrum of (c).
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Figure 3.16: Images and power spectra of Type C experiments. (a) Image of
sample area with d = 0.23 + 0.02 mm, (b) power spectrum of (a), (c) image
of sample area with d = 2.13 £ 0.06 mm, (d) power spectrum of (c).
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spectrum shown in Fig. 3.14(b) is shown in Fig. 3.20. The error in k. was
taken as the greatest amount by which the maximum of the parabola could

be shifted and still be a reasonable fit to the data.
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Figure 3.17: Azimuthally averaged power spectra of Type A experiments,
(a) d = 0.49 £ 0.07mm, (b) = 1.93 £ 0.21mm.

The lengthscale or wavelength of the pattern is the inverse of k., A = 1/k..
The wavelength for each type of experiment is plotted as a function of depth
in Fig. 3.21. The wavelength is linear with depth with slopes that agree
reasonably well with Sec. 3.2. Fig. 3.22 is a plot of the wavelengths found
by Fourier analysis along with the values of A as found in Sec. 3.2. The two

methods of finding the lengthscale of the pattern are consistent.
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Figure 3.18: Azimuthally averaged power spectra of Type B experiments, (a)
d=0.28 + 0.06mm, (b) d = 2.53 % 0.22mm.
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Figure 3.19: Azimuthally averaged power spectra of Type C experiments, (a)
d = 0.23 £ 0.02mm, (b) d = 2.13 % 0.06mm.
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Figure 3.20: Parabola fit to the tip of kP(k) distribution of Type A experi-
ment with d = 0.49 + 0.07 mm.



Results and Analysis 37

(@

o o

(b)

=)

wavelength (mm)
o

o

o

=

L L L L .

0
0.0 05 1.0 15 2.0 25 3.0
d (mm)

Figure 3.21: The wavelength of the pattern (A = 1/k.) as a function of d
with linear fits forced through the origin. (a) Type A experiments; A =
(3.14 £ 0.33)d, (b) Type B experiments; A = (4.86 & 0.18)d, (c) Type C
experiments; A = (3.11 £ 0.13)d.
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Figure 3.22: The wavelength of the pattern from the Fourier analysis (solid
symbols) and the wavelength as found in Sec. 3.2 (open symbols) as a func-
tion of d, (a) Type A experiments, (b) Type B experiments, (c) Type
experiments.
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The mean spatial frequency of the data is defined by

JIRPEPE _ 52 k2 P(k)dk
[P(E)EE [ kP(k)dk’

The moments p,, of P(k) about (k) are defined by

_ [JORL = R)"PEYER] _ [ J™(k = (k)" kP(k)dk @6)
[ P(F)d2k ™ Is° kP(k)dk ' )

(k) = (3.5)

The p, were calculated numerically by quadrature with Matlab. Quadrature
is a method by which the data are fitted to a polynomial and a remainder
term. The integral is approximated by summing the fitting function over the
range of data.

The standard deviation o was calculated from the second moment with
o = /2. The standard deviation as a function of depth is plotted in
Fig. 3.23. The error in ¢ is taken to be the scatter in the data. The correlation
length ¢ which characterizes the range over which the pattern is ordered is
given by ¢ = 1/0. In Fig. 3.23 we see that standard deviation is constant
with depth which implies that the range of order is constant with depth.
Except in thin layers, £ < A, which means that while for thin layers, the
pattern is correlated over several wavelengths, for thick layers the correlation
length is smaller than a wavelength. The average correlation length, £ = 1/&,
changes with the type of experiment. For Type A, 4 = 5.1 + 0.1 mm, for
Type B, {g = 4.8+0.5 mm, and for Type C, ¢ = 3.4£0.4 mm. The average
spacing between the impurities in Type C experiments is about 4 mm. This
suggests that the shorter range of order in the Type C experiments, is due

to the impurities. The smaller correlation length for Type C indicates that
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experiments with added impurities had a lower range of order, consistent
with expectations.

The skewness S was calculated from the second and third moments as
S= u;u;"’l‘ Skewness is a measure of the deviation from symmetry about
the mean of the distribution and is dimensionless. The error in skewness was
taken to be the difference in skewness between an outer and inner envelope
drawn around the data. Positive skewness means that the distribution is
asymmetric with a tail extending out toward more positive k. A skewness
of zero indicates a symmetrical distribution and a negative value signifies an
asymmetric distribution with the tail extending out toward more negative
k. In all experiments the skewness is positive and increases approximately
linearly as a function of depth as shown in Fig. 3.24. It is close to zero only
for the thinnest Type C layer (d = 0.23 £ 0.02 mm).

The excess kurtosis £ was calculated from the fourth and second moments
as k = pap;? — 3, where the excess kurtosis has been defined to be zero for
a gaussian. Kurtosis is the degree of peaking relative to a gaussian and is
dimensionless. A sharp peak has positive excess kurtosis and a flatter peak
has a negative value. The excess kurtosis is plotted as a function of depth
in Fig. 3.25. For all three sets of experiments, the excess kurtosis is close to
zero for thin layers and increases approximately linearly with depth.

These results imply that for the thinnest layers the Fourier power spec-
trum is close to gaussian, but becomes more asymmetrical and more sharply

peaked with depth. The skewness and excess kurtosis do not have a direct,
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Figure 3.23: The standard deviation o as a function of d. The lines are the
mean value, & and the error bars on the lines are the standard deviation.
(a) Type A experiments; & = 0.197 & 0.003 mm~', (b) Type B experiments;
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simple relationship to the pattern in real space, but these values may be use-
ful in classifying the patterns or for comparisons between experimental and
numerical results.

The data were also fit to a gaussian form,

kP(k) = ‘/% = <—<k2;2kc)) (3.7)

where N is a fitting parameter, o is the standard deviation calculated numer-

ically, and k. is the mode, determined by fitting a parabola to the peak of the
kP(k) distribution. The fit is adequate only for the thinnest layer of Type
C (d = 0.23 £ 0.02 mm) as seen in Fig. 3.26. Even for this experiment, the
fit fails for k > 0.4 inverse pixels. There is a high-k tail in the distribution
which is also indicated by the nonzero skewness from Fig. 3.24.

In the Type C experiment of depth 0.23 & 0.02 mm, which has the kP (k)
distribution closest to a gaussian, the location of the cracks is probably pri-
marily determined by the location of the impurities which is approximately
random. In the other runs, the nongaussian power spectrum that the loca-
tion of cracks is not random, but has some distribution which depends on

the stress field surrounding the crack.

3.5 Number of Sides Per Polygon as a Function of
Depth

For depths of from 0.5 mm to several millimetres we counted the number

of sides per polygon for each different type of experiment. Fig. 3.27 is a

histogram showing the number of polygons with n sides as a function of n
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Figure 3.24: The skewness, S as a function of d for Type A experiments
(circles), Type B experiments (squares), and Type C experiments (triangles).
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Figure 3.25: The kurtosis, & as a function of d for Type A experiments
(circles), Type B experiments (squares), and Type C experiments (triangles).
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Figure 3.26: kP(k) as a function of k for a Type C experiment with d = 0.23+

0.02 mm with a gaussian fit.
kP(k) = (81.4 £0.6)/v/27 o exp [—(k — k.)?/20?]



Results and Analysis 46

for a typical run of each type of experiment. In each subplot the depth of the
layers are approximately equal. The histogram shows that there were similar
numbers of polygons with n sides for Type A and Type C experiments and
consistently fewer for the Type B experiments with the same depths since
the Type B polygons were larger. In all cases, the distributions of polygons
are similar. The plot indicates that the polygons were primarily four sided
with approximately equal numbers of three and five sided polygons and few
six sided polygons.

Figs. 3.28 and 3.29 show the unbinned data of percentage of three and
four sided polygons as a function of depth for each type of experiment. To
reduce the scatter, the data were then divided into bins 0.5 mm wide and the
average value of NN, for each depth bin was calculated. On average, there are
5 points in each bin. Figs. 3.30 — 3.33 show the binned data as histograms
showing the percentage of polygons with n sides, where n ranges from 3 to
6, as a function of d. The error bars are the standard deviation of the points
in the bin.

The data in Figs. 3.28 and 3.29(a) and (b) indicate a transition at a depth
of 1.5 mm in Types A and B experiments. For layers thicker than this depth,
there is a greater amount of scatter in the data, and the percentage of 3 sided
polygons is decreased while the percentage of 4 sided polygons is increased.
The percentages do not change in the Type C runs. At greater depths, there
is a wider scatter about the mean lengthscale, as can be seen in Figs. 3.2(a)

and (b), which show a scatter in the number of polygons in the sample area
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Figure 3.27: Number of sides n per polygon as a function of n. (a) Type A
experiment, d = 1.11 & 0.10 mm, (b) Type B experiment, d = 1.18 £ 0.09
mm, (c) Type C experiment, d = 1.08 + 0.05 mm.
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Figure 3.28: Percentage of three sided polygons as a function of d. (a) Type
A experiments, (b) Type B experiments, and (c) Type C experiments.
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Figure 3.29: Percentage of four sided polygons as a function of d. (a) Type
A experiments, (b) Type B experiments, and (c) Type C experiments.
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for Types A and B experiments. For thicker depths the sample areas have
fewer polygons and statistical fluctuations may lead to more scatter in the
data. Despite this the histograms in Figs. 3.30 and 3.31 (a) and (b) do
seem to indicate a transition at a depth of about 1.5 mm to more 4 sided
polygons and fewer 3 sided polygons. The histogram in Fig. 3.32(b) shows
that there may be a transition to a decreased number of 5 sided polygons in
Type B experiments at depths greater than 1.5 mm. The number of 6 sided
polygons stays approximately constant, within the scatter, with depth for all
experiments as seen in Fig. 3.33.

The late stages of individual polygon formation may change with depth. In
the thinner layers of Type A and Type B experiments, as the initial pattern
of polygons is in the final stages of drying, the individual polygons contract
further and the adhesion to the substrate causes another fracture. These
fractures tend to form along corners of the polygons, as shown in Fig. 3.34,
creating pairs of 3 and 4 sided polygons or 3 and 5 sided polygons. This

fr: tation is not as in the thicker layers. Figs. 3.1 and 3.35 are

images of a thin and thick layer of Type A. Figs. 3.36 and 3.37 are images
of a thin and thick layer of Type B. These images are approximately 16 cm
by 16 cm in real space. The thin layers in Type A and Type B runs seem to
have more fragmented polygons.

There is no noticeable transition seen in the percentages of Type C ex-
periments, and the thin layer of a Type C pattern, shown in Fig. 3.38, does

not seem to have many fragmented polygons. In Type C experiments, the
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Figure 3.30: Percentage of three sided polygons as a function of d. The
straight line is the mean over depth of the percentages. (a) Type A experi-
ments, (b) Type B experiments, (c) Type C experiments.
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A experiments, (b) Type B experiments, (c) Type C experiments.
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Figure 3.33: Percentage of six sided polygons as a function of d. (a) Type A
experiments, (b) Type B experiments, (c) Type C experiments.
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Figure 3.34: Illustration of how polygons split

later stage polygon fragmentation probably does not occur because the frac-
tures, which have locations determined by the impurities, are spaced closely
enough that the polygons do not shrink sufficiently to increase the stress to
a breaking value.

In all experiments, most of the 4 sided polygons form with straight edges
and have 90° angles at the corners. Since all patterns have mostly 4 sided
polygons, we expect that most junction angles will be perpendicular. Many of

the polygons with other numbers of sides, particularly the 3 sided polygons,

" 1

are non perpendi G

have curved edges and while some of the i
many cracks meet at 90° as can be seen, for example, in Fig. 3.37. Decreased
numbers of 4 sided polygons lead us to expect that the scatter of junction
angles may be wider but these data cannot give quantitative information

about the distribution of junction angles in the pattern.
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Figure 3.35: Pattern formed in a Type A experiment. d = 2.27 £ 0.20 mm
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Figure 3.36: Pattern formed in a Type B experiment. d = 0.83 £ 0.18 mm
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Figure 3.37: Pattern formed in a Type B experiment. d = 2.51 £ 0.17 mm
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Figure 3.38: Pattern formed in a Type C experiment. d = 0.60 £ 0.03 mm

9
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3.6 Junction Angles as a Function of Depth

For several thicknesses in each different type of experiment, we measured
the junction angles © between cracks. The junctions were measured on both
sides of an intersection as shown in Fig. 3.39. The number of crack junctions
in a given sample area depended on the thickness of the layer and ranged
from 46 angles in the thickest layer to 513 in the thinnest layer. The error in

measuring these angles was about 2° and the data were binned in 5° bins.

Figure 3.39: Location of junction angles measured.

The percentage of angles P(0) is plotted as a function of © in histograms in
Figs. 3.40 - 3.43. In all cases the data have a strong central peak at 90° with
scatter about the peak. The scatter in Type A experiments does not seem
to change with depth. In Type B experiments, the scatter decreases with
depth, except in the thickest layer. The histogram of these data, Fig. 3.42,
has peaks at 35° and 145° . In this layer, there were only 46 junction angles,
which is significantly fewer than in the other experiments (between 62 and
126 in the intermediate depth layers and 389 in the thinnest layer). Since the
number of junctions in the sample area is low, these peaks are due to only

two data points and may not be statistically significant. The histogram in
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Fig. 3.43 shows that the distribution of angles is more narrow in the thicker
layer of Type C experiments.

The mean and standard deviation of the distribution of angles were calcu-
lated by numerical integration. The mean of the data for all experiments is
90° within the experimental scatter. The standard deviation for each type
of experiment as a function of depth is plotted in Fig. 3.44. The error in
o is taken to be 2.5° half the bin width. The results shown in Fig. 3.44
are in agreement with the qualitative observations. o is constant in Type A
runs, it decreases in type B runs, except in the thickest layer, and appears
to decrease in the Type C experiments.

In the previous section, the amount of scatter in the number of sides per
polygon increased with depth for Types A and B experiments and stayed
roughly the same in Type C experiments. The histograms in this section,
Figs. 3.40 — 3.43, show that the scatter in the data stays approximately the
same with depth in Type A runs and decreases with depth in the Type B and
Type C runs. The decrease in the width of the distribution in Type B runs
may be a result of more polygons with curved edges forming perpendicular
junctions in polygons which are not 4 sided. In Type C experiments, the
presence of the impurities may result in more non-perpendicular junctions in
runs where the layer thickness is about the same as the size of the impurities

which would give a wider distribution of junction angles in thinner layers.
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Figure 3.40: P(©) as a function of © of Type A experiments with (a) d =
0.50 + 0.02 mm, (b) d = 1.78 + 0.03 mm, (c) d = 2.76 % 0.18 mm, and (d)
d = 3.35%0.18 mm.
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Figure 3.41: P(©) as a function of © of Type B experiments with (a) d =
0.80 % 0.05 mm, (b) d = 2.20 £ 0.04 mm, (c) d = 2.60 + 0.07 mm, and (d)
d =2.70 £+ 0.08 mm.
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Figure 3.42: P(0) as a function of © of Type B experiment with d = 3.27 £+
0.30 mm.
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Figure 3.43: P(O) as a function of © of Type C experiments with (a) d =
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Chapter 4

Summary

We studied the shrinkage crack patterns that formed in a dried slurry of
Al,03 and water. The experimental parameters were the friction between the
layer and its substrate, impurities added to the slurry, and layer thickness. To
vary the parameters we did four individual runs for different layer thicknesses
for each of three types of experiment. In Type A runs, the alumina had no
added impurities and the substrate was untreated. The friction was reduced
in the Type B runs by spraying the Plexiglas pan with a teflon coating and
no impurities were added to the slurry. The Type C runs also had bottom
friction reduced with a teflon coating, and impurities were introduced by
sprinkling 10 cm® of sand grains evenly over the top of the slurry before the
drying began.

We approximated the wavelength of the pattern by A ~ l/m where N,
is the number of polygons in the sample area and [ is the length of the sample
side, by analysing images of the crack pattern. We found the wavelength to
be proportional to depth for all experimental conditions. In the Type A runs,
the slope was 3.60% 0.08. Under similar conditions, Groisman and Kaplan
[7] observed a linear relation with a slope of about 0.4. This slope is smaller
than our values but the grain size of the material used by Groisman and
Kaplan is several orders of magnitudes larger than the grain size of the Al,0;
used in our experiments. Groisman and Kaplan qualitatively illustrated that

reducing the friction between the layer and its substrate results in fewer
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cracks in the layer. We studied this effect quantitatively by comparing the
results of Type A and Type B experiments. The wavelength in Type B
experiments was proportional to depth with a slope of 6.56+ 0.26, which is
larger than the slope for Type A experiments. This implies that stress builds
up more slowly with distance away from an existing crack when friction is
smaller, and indicates that bottom friction is the main source of stress for
cracking. Type B experiments have a longer wavelength with fixed depth
than Type C experiments, with a slope of 3.43+ 0.04, which shows that
adding impurities weakens the layer, causing more fractures.

We did two-dimensional fast Fourier transforms of the images captured
from the video record of the cracks. From the azimuthally averaged power
spectrum, we obtained information about the spatial structure of the pattern.
The power spectra peaked about some wavenumber k.. The lengthscale 1/k.
is another measure of the wavelength of the crack pattern, and this quantity

was istent with the 1 hs as found by counting polygons.

The moments i, of P(k) about the mean wavenumber (k) were calculated
by numerical integration and the values of standard deviation, skewness, and
kurtosis were calculated with the p,. The standard deviation, or inverse
of the correlation length, was constant with depth which shows that the
lengthscale over which the pattern is correlated does not change with layer
depth. In the experiments, ¢ < A except in thin layers, so thicker patterns
have little long range order. The standard deviations for Type A and Type

B experiments were equal showing that changing the bottom friction did not
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change the correlation length of the pattern. For Type C experiments, the
standard deviation was larger indicating that the lengthscale over which the
pattern was correlated became smaller.

For experiments without added impurities, the formation of a crack relieves
stress locally. At some distance from the crack edge, depending on the stress
distribution with thickness and the depth of the crack, the stress builds to its
pre-cracking value and another fracture opens [2]. This leads to a lengthscale
which is proportional to layer depth. However the spacing between individual
cracks is probably influenced by three-dimensional effects in the stress relief
zone, such as how the friction changes with layer depth, the influence of
nearby cracks, and the stress distribution function with depth.

For experiments with added impurities, crack locations depend on this
stress relief zone but are also influenced by the impurities. Cracks are nu-
cleated more frequently at the nucleation sites provided by the impurities
which are approximately randomly distributed in the bulk. Impurities may
also cause crack tips to split during propagation or may change the direc-
tion of the crack motion during propagation, increasing the disorder of the
pattern.

The skewness and kurtosis of the patterns increased with depth for all ex-
periments. A skewness and kurtosis of zero would mean that the kP(k) dis-
tribution was gaussian and the location of cracks would also have a gaussian
distribution. The only run which had a near gaussian form was the thinnest

layer of Type C experiment. In this run, the layer depth was 0.2340.02 mm
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which is smaller than the impurity size of .425 — .500 mm, and the impurities
had a greater effect in this run than in the other runs where the layer depth
was thicker than the impurity size. Significantly more crack locations in this
run were determined by the impurities, which were approximately randomly
located. In the other experiments, the crack locations were more dependent
on the stress relief zone.

An increased orientation of the pattern with depth of Type A and Type
B runs is seen in Fig. 3.14 (d) and Fig. 3.15 (d) where the two-dimensional
power spectra are anisotropic. Fig. 3.16 (d) is the power spectrum of a
run of Type C of similar thickness and is more isotropic which implies less
directional orientation in this run. The thinner layers of all experiments have
more isotropic power spectra showing that the polygons in thinner layers are
more randomly oriented.

For depths of from 0.5 mm to several millimetres we determined the per-
centage of polygons with n sides (n = 3...6) for each of the different types
of experiment. We found an increase in the percentage of 4 sided polygons
and a decrease in the percentage of 3 sided polygons at a depth of about
1.5 mm in Type A and Type B experiments. This is a transition due to a
change in the polygon formation at late stages of drying. After the initial
pattern has formed, more water is lost through evaporation and the polygons
contract further. In the thinner layers, the polygons tend to fragment as a
result of stress caused by friction with the substrate. The fragments often

split 4 sided polygons into pairs of 3 and 4 sided polygons or 3 and 5 sided
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polygons. In thicker layers, the effects of friction are reduced and the stress
is not large enough to cause the polygons to fracture. The transition was not
observed in Type C runs because in these experiments, the impurities caused
the fractures formed initially to be sufficiently close so that the strength of
the smallest polygons exceeded the stress caused by further drying.

The analysis of the distribution of junction angles does not show a tran-
sition. The distribution of junction angles in all experiments was peaked at
90° with some scatter about the peak. In Type A runs, the scatter in the
distribution of angles is approximately constant with depth. Neglecting the
thickest point in the Type B runs, the distribution of junction angles becomes
more narrow with increasing depth. In thicker runs of Type B, the cracks
tend to curve, so that many of the 3 and 5 sided polygons are formed with
cracks that meet at perpendicular junctions. The curving is not as appar-
ent in Type A runs. The distribution also decreases with depth in Type C
experiments. Type C experiments have more non-perpendicular junctions in
thin layers because the size of the impurities is about the same as the layer
depth and cracks are more easily nucleated at the impurities.

Groisman and Kaplan (7] noted a transition below 4 mm in their experi-
ments which was marked by a change in the morphology to a pattern without
a definite polygonal network and an increase in the percentage of 120° junc-
tion from close to 0 to about 30%. We did not see any such transition in
our experiments. In all experiments, the patterns had a definite polygo-

nal network with primarily perpendicular junctions and in all runs except



=
~

Summary

the thinnest layer of the Type C runs, all of the cracks were straight with
smooth faces. The Al,03 used in our experiments formed a very brittle layer
when dry. Brittle fractures have high energy and are fast moving [5] and the
crack opens before the surrounding stress field has time to completely relax
to a new value. With slower moving cracks which form in less brittle sub-
stances, the stress field relaxes and changes as the crack propagates, making
the crack path complicated. Smooth, polygonal crack patterns with per-
pendicular junctions, like the patterns we observe in the dried Al,O3 slurry,
are typical of those formed by brittle fracture of the material. More diffuse
patterns of cracks with a greater percentage of 120° crack junctions, like the
patterns observed in the thin layers of Groisman and Kaplan’s experiment,
are also commonly observed in dried mud layers in nature, as in Fig. 1.1,
pavement, and in layers of dried cornstarch and water mixtures [1]. A de-
tailed study of the crack tip velocity and difference in the material properties
of the substances which produce the different crack patterns would give more
information.

In these experiments, we see linear relationships between lengthscale of
the pattern and layer thickness. Bottom friction provides the main source of
stress in fracture. The addition of impurities weakens a layer and results in
a shorter lengthscale. With the Fourier analysis, we find the patterns have
little long range order except in the thinnest layers, suggesting that three-
dimensional effects are important. We see that in the thickest layers the

pattern of polygons have increased spatial orientation. Most crack junctions
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are perpendicular so they were formed primarily by crack intersections rather

than nucleations or tip-bifurcations.
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Appendix A

The following code was written to do the Fourier analysis of the digitized
images of the crack patterns with the software Matlab as outlined in Sec.

3.4.
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%File last edited on February 24, 1997
Ymatlab code which reads in binary picture files of the shrinkage

%crack patterns and does a two dimensional fast fourier transform.

clear

format long;

%Read in data

filename = input(’Name of (binary) file to read: ’,’s’);
rows = input(’rows (512): ’);
columns = input(’columns (480): ’);

fid = fopen(filename,’r’);
a = fread(fid);

status = fclose(fid);

%The first 256 bytes are junk so we delete those.

%Put the column vector B into a matrix of appropriate dimensions.
YThis is actually the transpose (due to the way meatlab reads a
%binary file) of what we want so we need to take the transpose of

%A and keep track of rows and columns.
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B = a(257: (rows*columns+256)) ;
A = reshape(B,rows,columns);
A=A

temp = rows; rows = columns; columns = temp;

Yiclear the unecessary variables

clear a B temp;

%Taking the Power Spectrum of A will give a large peak at 0. We’re
%interested in the smaller peaks with lower intensity so to get this

%we subtract the average intemnsity of matrix A from each element.

mean_intensity = sum(sum(A))/(rows*columns);
B = A - mean_intensity;

clear mean_intensity A;

%B is a ’reduced’ image.

%We take the 480x512 fast fourier transform of B.

%The fft is shifted (with the matlab function ’fftshift’ so that the
%peak occurs in the centre, shifted by exchanging first and third
quadrants and second and fourth quadrants.

%Then find the power spectrum of B to look at the peaks which should
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%show a lengthscale of the pattern.

JWith the software Transform we find the scale of the pixels.

%Input this data for scaling purposes of the final result.

row_scale = input(’Row scale (n rows = 80.0 mm) n = ’);

column_scale = input(’Column scale (n columns = 80.0 mm) n = ’);

b = f£ft2(B,rows,columns);
b_shift = fftshift(b);
Pbb = b.*conj(b)/(rows*columns) ;

Pbb_shift = b_shift.*conj(b_shift)/(rows*columns) ;

%plot the image and power spectra

X =1:512; Y = 1:480;

figure(1); clf; orient tall;

subplot(2,2,1);

imagesc(X,Y,B);

title(’Image of Reduced Data File’);

xlabel(’xaxis (pixels)’); ylabel(’yaxis (pixels)’);

subplot(2,2,2);
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imagesc(Pbb_shift);

title(’Shifted Power Spectrum of Reduced Data File’);
xlabel(’xaxis (inverse pixels)’);

ylabel(’yaxis (inverse pixels)’);

subplot(2,2,3);

imagesc(Pbb_shift (rows/2-3:rows/2+3,columns/2-3:columns/2+3)) ;
title(’ (Part of) Shifted Power Spectrum of Data’);
xlabel(’xaxis (inverse pixels))’);

ylabel(’yaxis (inverse pixels)’);

subplot(2,2,4);

surf (Pbb_shift (rows/2-3:rows/2+3,columns/2-3:columns/2+3)) ;
title(’ (Part of) Shifted Power Spectrum of Data’);
xlabel(’xaxis (inverse pixels)’);

ylabel(’yaxis (inverse pixels)’);

zlabel(’intensity (arbitrary units)’);

print -dps FIGURE1

%The shifted power spectrum has a large peak centred atzero with a
%smaller surrounding peak in a ring/elliptical shape.

%Now that we have the power spectrum we want to see where the peaks
Y (maximum intensity) occur.

%We look at each point, calculate the distance (radius) from the

Ycentre, and plot intensity as a function of radius.
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whos

YFind the centre of the pattern by looking at it

round(rows/2-3)
round (rows/2+3)
round(columns/2-3)

round (columns/2+3)

row_centre = input(’Centre row: ’);

col_centre = input(’Centre column: ’);

figure(2);
imagesc(Pbb_shift (row_centre-60:row_centre+60,col_centre-68:col_centre+68));
axis(’off’);

print -dps FIGURE2
%The power spectrum is a function of wavevector k.
%The framegrabber used to obtain the image scales the image so that

Ythe units of kx = 0.8 X the units of ky.

Y%The power spectrum is a 480 X 512 matrix.
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%We take the radial average inside of the matrix.

%The wavevector starts at the centre of the power sprectrum
%(row_centre, col_centre).

%The wavevector extends a length of only 240 elements so that it

Yremain inside the matrix.

%n is the maximum wavector from the midpoint to the edge

n = 240;

/The first column of the vector ’intensity’ must be scaled so that

Ythe maximum k vector is 0.5 (for critical sampling).

kmax = 0.5;

intensity = 0:1/(2%(n-1)) :kmax; Y%vector of length 240 elements
intensity = intensity’;
intensity(:,2) = zeros(n,1);

count = zeros(n,1);

for r = 1:rows
for ¢ = 1l:columns

ky = (r - row_centre)+*kmax/n;
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kx = 1.25%(c - col_centre)*kmax/n;

k = sqrt(kx"2 + ky~2);

if k < (kmax - 1/(2*(n-1)))

index = round(480%k);

intensity(index+1,2)= intensity(index+1,2) + Pbb_shift(r,c);

count (index+1) = count(index+1) + 1;

intensity(:,2) = intensity(:,2)./count;

intensity(1:30,:)

MINIMUM = input(’Index number of minimum radius: ’);

figure(3); orient tall;
subplot(3,1,1);
plot(intensity(:,1),intensity(:,2));
title(’Intensity vs Radius’);
ylabel(’intensity(:,2)’);
xlabel(’intensity(:,1)’);
subplot(3,1,2);

plot(intensity (MINIMUM:n,1),intensity(MINIMUM:n,2));
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ylabel(’intensity(:,2)’);
xlabel(’intensity(:,1)’);

subplot(3,1,3);
plot(intensity(:,1),log(intensity(:,2)));
xlabel(’intensity(:,1)’);

ylabel(’log (intensity)’);

print -dps FIGURE3

INTENSITY = intensity(MINIMUM:n,:);

save INTENSITY INTENSITY -ascii

upperlimit = n - MINIMUM;

YNumerically integrate the intensity

denominator = quad8(’d_moment’,0, upperlimit);
MEAN = quad8(’n_mean’,0,upperlimit)/denominator;
save MEAN MEAN -ascii;

for i = 0:4

exponent = i

save EXPONENT exponent -ascii

numerator(i+1) = quad8(’n_moment’,0,upperlimit);

moment(i+1,1) = i;

84
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moment (i+1,2) = numerator(i+1)/denominator;

end

XI = 1/sqrt(moment(3,2)); %correlation length
S = moment(4,2)*(moment(3,2)~(-3/2)); %Skewness

kappa = moment (5,2)*(moment (3,2)~(-2)) - 3; %Kurtosis

figure(4);clf;orient tall;

plot (INTENSITY(:,1),INTENSITY(:,1) .*INTENSITY(:,2));
xlabel(’wavevector k (inverse pixels)’);

ylabel (’k*intensity (k)’)

print -dps FIGURE4;

POWER(:,1) = INTENSITY(:,1); POWER(:,2) = INTENSITY(:,1).*INTENSITY(:,2);

save POWER POWER -ascii

scaled_mean = MEAN*row_scale/80.0;
scaled_wavelength = 1/scaled_mean;
scaled_xi = XI*80.0/row_scale;

scaled_inv_xi = 1/scaled_xi;

YWrite results to a file.

outfile = input(’Output filename: ’,’s’);
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fid = fopen(outfile,’a’);

fprintf(fid,’\n\nResults from binary image %s\n’,filename);
fprintf(fid,’File created on: %s in Matlab with angular.m\n’, date);
fprintf(fid,’mean = %g (inverse pixels)\n’,MEAN);

fprintf(fid, ’correlation length = %g (pixels)\n’,XI);

fprintf(fid, ’skewness = %g (unit free)\n’,S);

fprintf(fid, ’excess kurtosis = %g (unit free)\n\n’, kappa);

for i = 1:6

fprintf(fid, ’Moment %g = %g\n’,moment(i,1),moment(i,2));

end

fprintf(£fid, ’Input parameters\n’);

fprintf(fid, ’Scale of rows %g\n’,row_scale);

fprintf(fid,’Scale of columns %g\n’,column_scale);
fprintf(fid,’Centre row %g\n’,row_centre);

fprintf(fid,’Centre column %g\n’,col_centre);

fprintf (fid, ’Minimum radius %g\n’,MINIMUM);

fprintf(fid, ’Scaled results: ’);

fprintf(fid,’Mean (in inverse mm) = %g\n\t\t’,scaled_mean);
fprintf(fid,’Mean~(-1) (wavelength) = %g\n\t\t’,scaled_wavelength);
fprintf(fid, ’Correlation Length (in mm) = Y%g\n\t\t’,scaled_xi);
fprintf(fid,’Correlation Length~(-1) (in mm™-1) = %g\n’,scaled_inv_xi);

fclose(£id);
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