

Design of a Robust Autonomous Surface Craft for

Deployment in Harsh Ocean Environment

by
(©Zhi Li

A Thesis submitted to the School of Graduate Studies in partial fulfillment of the

ST. JOHN'S

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

NMewmorial University of Newfoundland

March, 2013

NEWFOUNDLAND
|
\

Contents

Abstract

Acknowledgments

List of Tables

List of Figures

List of Abbreviations

1

Introduction

1.1 Past ASC Developments and Applications
1.2 The ASC System Design Methods Comparison

1.3 Problem Statement
1.4 Thesis Outline

The Autonomous Surface Craft System Design

2.1 The ASC System Design Overview

2.2 Electrical System Design 0oL
2.2.1 Controller Area Network (CAN)
222 NMEA 2000
2.2.3 Time-Triggered CAN (TTCAN)o ..
2.24 Electrical Components,

2.2.4.1
2.2.4.2
2243
2244
2.2.45
2.2.4.6

Airmar PB200 Weather Station
Attitude and Heading Reference System (AHRS) . .
Global Positioning System (GPS)
Wireless Modem
Microcontrollers
Propulsion System

2.25 CAN Nodes Development

2251
2.2.5.2
2.25.3

Controller CAN Node Development
Navigation CAN Node Development
Motor Controller CAN Nodes Development

2.3 Program and Software Development

il

iv

vi

viii

xi

2.3.1 CAN Nodes Program Development 44

2.3.1.1 The Controller CAN Node Program Development . . 46

2.3.1.2 The Navigation CAN Node Program Development 48

2.3.1.3 The Motor Controller CAN Node Program Development 51

2.3.1.4 System Time Synchronization and Evaluation 51

2.3.2 Matlab Based GUI Software Design 55

3 Mathematical Model for the Autonomous Surface Craft 29
3.1 Nonlinear Model for the ASC 59
3.2 Lincar Model for the ASC 66
3.2.1 Linear Model Generation using Taylor Series Expansion 66

3.2.2 Lincar Model Generation using the System Identification . . . 68

4 Evaluation of the Autonomous Surface Craft 78
4.1 The ASC Imitial Test 78
4.2 The ASC Tow Tank Tests and Validation 79
4.2.1 Resistance Test and Results 80

4.2.2 Sclf-propulsion Test aud Results 84

4.2.3 Propulsion Model L 88

4.2.4 Sca Trials and Results 90

4.3 The ASC Steering Model 94

5 Conclusion and Future Work 98
5.1 Conclusion 98
0.2 TFuture Works 100
Bibliography 101
Appendix 105
A.1 The controller CAN node program 105
A2 The navigation CAN node program 121
A.3 The motor controller CAN node program 129

1ii

Abstract

The Autonomous Surface Craft (ASC) features fast development in the past few years:
however, among publications about ASCs, few discussions arc about ASC robustness
and especially the reliable operation of the ASC in the harsh occan environment.
Therefore, in this thesis project. a robust ASC that is mainly used for reliable opera-
tion in the harsh ocean environment offshore Newfoundland is designed. As the first
ASC prototype developed in the Autonomous Ocean Systems Laboratory (AOSL),
the main concentration is on reliable ASC electrical and communication system de-
sign and the ASC system testing and niodelling.

The ASC on-board communication and control system implements the Controller Arca
Network (CAN) protocol. External commumnication with the dock-side computer is
built on 900 MHz wireless modems. Four CAN modules are developed to work on the
on-board communication network, and many off-the-shelf electrical components were
chosen to build the electrical system, which include the Global Positioning System
(GPS). Attitude and Heading Reference Systemn (AHRS), Weather Station (WS) and
the mbed™ microcontroller. Time synchronization of separate CAN modules inside
this CAN network is addressed using the presented time reference message (TRM)
based synchronization mechanism, and the achieved characteristics are validated using
a DPO4034 oscilloscope. The wireless communication link plays an important role in

ASC testing, and it can be used to transmit the supervisory command and ASC scnsor

v

data between the ASC and the dock-side computer. To support this feature, a Matlab

based Graphic User Interface (GUI) is designed to work on the dock computer as the
control terminal and the display monitor of the ASC status data. A hand coutroller
is integrated into this GUI for intuitive control of the veliicle, and the ASC position
can be shown in quasi-real-time in Google Earth software.

A hydrodynamic 3 Degrees of Freedom (DOF) nonlincar model for describing the
motion of the ASC is generated. Two methods, including the Taylor series expansion
method and the systeimn identification (SI) method, are used for model lincarization.
The designed ASC system was validated by some initial tests, and following that,
the tow tank tests were performed to determine the vehicle hull resistance and self-
propulsion points. Based on the tow tank test data, a propulsion system model was
built, and these results were validated by sea trials performed in Holyrood, Conception
Bay South, NL. Using the sca trials’ data. a state-spacc stecring model for the ASC

was identified based on the SI method.

Acknowledgements

I would like to express my sincere thanks to my supervisor Dr. Ralf Bachmayer for his
support through the whole process of this thesis project, his suggestions and ideas were
essential in the design of this first version ASC in the AOSL at Memorial University.
At the lab, we had a very friendly ambiance in discussing all the academic topics.
Brian Claus provided great suggestions in the commniunication system design part:
Haibing Wang gave me some good advice in developing the mechanical structure of
the systeni: Mingxi Zliou and Mohamud Hasan gave me a great assistance during the
vehicle tow tank tests and open water tests. Specially, I want to give thanks to flow
tank technician Trevor Clark for his cooperation in the resistance and self-propulsion
tests. Many thanks to the lab project manager Neil Riggs for his arrangement for the
transportation of the ASC, and Craig Legge. the technician at Holyrood, for his help
in the ASC open water tests. Finally, I would like to thank my parents’ love and my

rifriend’s support during my master degrec. I really enjoved my master study and

nilost importantly I learn a lot of knowledge through this process.

vi

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
2.1

2.1

2.1

2.1

0

1

2

3

2.14

2.1

3.1

9]

The ASC main specifications

Four kinds of CAN frames

CAN-bus error deteetion mechanisms

CAN-bus application characteristics

Parameter Group

Used NMEA2000 messages oo

NMEA 2000 cables and connectors pin definition

TTCAN time windows

PB200 weather station specifications (PB200 User Manual)

Acccleration and Angular Rate messages from the 3DN-GX3 (3DM-

GX3-25 User Manual)

GPRNMC message from the Ublox GPS module (Grove-GPS User Manual)

The messages used to control the Torgeedo nmiotors under the RS485

serial conmection

vii

16
18
19
20
22
22
24
25
28

29
32

4.1
4.2
4.3
4.4
4.5

4.6

The ASC resistance test results

Variable definition for Equation 4.3
Pitch angle in the resistance test
Self-propulsion points conclusion.
Variable definition for Equation 4.8

Seca trials results compared with the tow tank test results

viil

82
82
84
87
89

94

List of Figures

1.1
1.2
1.3
1.4

1.5

2.1
2.2
2.3
2.4

2.7
2.8

2.9

A catamaran-type ASC under development at Memorial University [1]
Multi-ASC cooperations [10] L
GUSS ASC with vision system from Florida Atlantic University [13] .

C-HUNTER scemi-submersible ASC from ASV Ltd. [14]

Centralized and decentralized system topology

The AOSL ASC original design
The AOSL ASC final realization
A typical CAN-bus networko
CAN-bus based decentralized ASC communication and control system

SETUCHUTE o o o o e e e e e e e e e e

On-board communication system based on NMEA 2000 cables and con-
nectors © . . Lo L e e e
TRM mechanism unit cycle organization
Airmar PB200 Weather Station and ultrasonic transducers (PB200

User Mammal) 0000

The Microstrain 3DM-GX3-25 AHRS sensor (3DM-GX3-25 User Manual)

2.10 The Grove-GPS module (SecedStudioInc.)

2.11 The mbed™™ microcoutroller (http://mbed.org)

X

13
15
17

19
21

23
26

27
29
31

2.12

2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

2.24

2.25

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

The PIC microcontroller based CAN to RS485 converter SBC28PC-1R4

(Modtronix Engineering)o
The controller CAN node schematic
The controller CAN node final realization
The navigation CAN node schematic
The navigation CAN node final realization
Motor controller CAN node final realization
The controller CAN node program flow chart
The navigation CAN node program flow chart
The motor controller CAN node program flow chart
The TRNM message organization
The time interval between TRM messages
Captured sensor and motor CAN messages
Cooperation of the dock-side software with the controller CAN node

PTOZTAIl o o o o e

Matlab based GUI for the ASC system

Notation for ASC'
SI for the ASC
Normalized cross-correlation check for the designed two input signals
Nounlincar model for SI
Surge velocity under the proposed PRBS input excitation signals . . .
Sway velocity under the proposed PRBS input excitation signals . . .
Yaw angular rate under the proposed PRBS input excitation signals .
Process tine delay analysis for input ul and u2 with output yl

Measured and simulated model output comparison.

35
38
39
41
42
43
47
49
50
52

54

o7
58

60
69
70
71
72
73
74

76

41
4.2
4.3
4.4

4.6

4.7

4.8

4.9

4.10

4.11

4.12

The ASC initial test performed outside the Engincering Building . . .

Experimental setup for tow tank test
Resistance test: drag speed curve 0000000 oL
Drag coefficient
Self-propulsion test results under different moving speed counditions

Self-propulsion points curve fitting
Thrust force under different speed conditions
Advance speed, propeller rotational speed and magnetic heading with
respeet to time (0.4 to 0.6 m/s)o
Advance speed, propeller rotational speed and magnetic heading with
respeet to time (0.7 to 0.9 m/s) Lo Lo
Advance speed, propeller rotational speced and magnetic heading with
respect to time (1.0my/s)o
Measured ASC system input and output signals

Mecasured data and simwulated mmodel output

X1

79
80
83
85
86
87
88

91

92

93

95
97

List of Abbreviations

AHRS

Attitude and Heaaing Reference System

~ AUST,

Autonomous Ocean Systems Laboratory

A.\\ .

AUV

Antonamong Surface Clraft

AUTONOMOous vnderwater venicle

CAN

Controller Area Network

CB

Center of Buoyancy

CG

Center of Gravity

CRC

Cyclic Redundancy Check

CTD

Conductivity-Temperaturc Depth Sensor

DIN

Deutsches Institut fiir Normung

DOF

vegrees of Freedom

GPIO

General Purpose Input Output

GUI

Graphic User Interface

MIMO

Multiple Input and Multiple Output

MISO

Multinle Tnnut and Single Outpnt

NMEA

Natonal marine rlectronics Association

PIC

Peripheral Interface Controller

PRBS

Pseudorandom Binary Sequence

RC

Remote Control

RF

Radio Frequency

SI

System [dentification

SNAME

Society of Naval Architects and Marine Engineers

SWATH

Small Waterplane Area Twin Hull

TTCAN

Time-Triggerea «aAN

USB

Universal Serial Bus

WS

Weather Station

Xil

Chapter 1

Introduction

1.1 Past ASC Developments and Applications

An Autonomous Surface Craft (ASC) or Unmanned Surface Vehicle (USV) is a type
of marine robotic device that can operate autonomously or be remotely controlled
in lakes, rivers and the oceans. With increasing interest in the ocean environment
exploration and inland water arca monitoring, various ASC prototypes have been
proposed in the past 20 years. As an example, Figure 1.1 shows a catamaran-type
ASC that the author worked on for the past two ycars in the Autonomous Ocean
Systems Laboratory (AOSL) at Memorial University [1].

In the United States, the ASC prototype ARTENMIS was firstly introduced by the
MIT! Sca Grant College Program in 1993, and in this design a scaled model (1/17)
trawler boat, was produced mainly for the validation of the navigation and control
systes [2] [3]. However, owing to its small size, ARTEMIS had limited endurance
and could only perform a ¢° Hle bathymetric survey within the Charles River in

Boston. Subscquently, to increase the size and endurance. a kayak hull based ASC

Massachusetts Institute of Techmology

Figure 1.1: A catamaran-type ASC under development at Memorial University [1]

was proposed. Equipped with an acoustic tracking system, this kayak ASC could
complete the task of tracking tagged fish in an open sea environment [4]. In 1996. a
catamaran-shaped ASC. ACES [3], was developed to provide better roll stability and
longer endurance compared with former designs. ACES used a gasoline engine for
propulsion and batteries to power the on-board eclectronic systems. The mechanical
structure that linked the two hulls was also the support for the sensors that were
suitable for the hydrographic survey. Though the gasoline engine could give the
vehicle satisfactory speed, pitch oscillations at high speeds affected the bathymetric
measureiments, which led to the modification of the entire mechanical system after the
mitial sea trials. During this overhaul, the vehicle was stabilized and outfitted with

an electric propulsion system to cnable better controllability [5]. Inspired by the MIT

projects, many academic institutions in Europe began to develop their own ASCs

in the late 1990’s, and almost all the institutions preferred to use the catamaran-
type ASC prototype for better roll stability and more payload capacity. Starting
from 1998, the ASC MESSIN [6], designed using the Small Waterplane Area Twin
Hull (SWATH) principle, was developed in Germany for ocean survey and human
rescue. The MESSIN proposed an accurate navigation system in its operation, and
the model based control algorithm allowed for the desired path-following in ocean
exploration. Initiated in 1998, the project ASIMOV [7] was introduced to research the
method for coordination between the ASC and an Autonomous Underwater Vehicle
(AUV) in ocean data acquisition. In this project, a catamaran-type ASC Delfim [7],
developed by Lisbon IST. was capable of building a fast data communication link
with the AUV, and the Delfim could collect the occan data independently based
on its own onboard sensors. Following up this trend, the Charlie ASC sponsored
by the Institute of Intelligent Systems for Automation, from the National Research
Council of Italy (CNR-ISSIA) was specifically developed for Antarctica sea surface
miicrolayer sampling [8]. Furthermore, the Springer ASC supported by the University
of Plymouth UK, was used for environmental monitoring and pollutants tracking [9)].
These carly explorations formed an excellent basis for the accelerating improvement
of the ASC in the past few years. In 2004, the kayak model based ASC SCOUTs
were developed by the MIT Sea Grant to serve as a test platform for various re-
scarch purposes {10]. These applications include the validation of multi-vehicle coor-
dination between the ASCs or the ASC and AUV and target tracking control using
multiple vehicles (Figure 1.2). In addition, equipped with a winch system and a
Conductivity-Temperature Depth Sensor (CTD), SCOUTs could perform more so-
phisticated occan monitoring tasks. Based on the Charlic ASC design, CNR-ISSIA

proposed the SESAMO project with a new sca surface microlayer sampling mecha-

some US companies began to develop conceptual ASCs for both commercial and
military implementations. The semi-submersible ASC 6300C (or C-Hunter) from
ASV Ltd., as shown in Figure 1.4, was produced for various occan applications [14].
Its single hull small waterline feature provides cxcellent stability in the ocean, and
equipped with side-scan sonar. CTD! and other sensors, guarantced the use of the
vehicle for various scientific tasks. The catamaran-type ASC C-CAT proposed by
the same company was supposed to have the long-range conununication capability as
far as 8 km [15]. To further increase the endurance, developers started to look into
the usage of renewable energies in the ocean, such as wind, waves and solar energy.
Unmanned Ocean Vehicles Inc. proposed a single hull ASC with rigid sails and solar
cells for onboard power: Emergent Space Technologies produced a mono hull solar
powered ASC OASIS [16]; Liquid Robotics, on the other hand. provided a creative
design that took advantage of wave energy. Though all these designs still remain
at the level of system testing. they illustrate the potential use of renewable ocean
energies as a primary or sccondary cnergy source in future design for long range and
long endurance ASCs [17].

In Australia, a solar powered catamaran-type ASC was developed in 2009 [18]. and
this vehicle was used for inland water quality and greenhouse gas monitoring. In 2011,
McGill University introduced the catamaran-type ASC MARE [19], and the highlight
of this vehicle is its usage of the air propeller as the propulsion system, which could
perform the ocean surveying tasks with the minimum disturbance to the sea surface.
The AOSL at Memorial University started to develop a SWATH-type ASC concept
in 2010 for the task of underwater glider recovery [20]. Based on previous system
design experience, a new multi-purpose catamaran-type ASC is designed (. .gure 1.1).

Special emphasis is given to robustness and operational capabilities in the coastal

CTD is an essential instrument in physical oceanography to measure Conductivity. Temperature,
and Depth.

and the information is exchanged by using different communication protocols. The left

centralized system consists of 5 nodes, and node 1, as the main processing unit, has
to handle all the inforination and functions transferred from different modules. In the
right decentralized system, each node plays a relatively equal role in the information

exchange and data processing [21].

Figure 1.5: Centralized and decentralized system topology

Based on the proposed categorization and the simplified topology expression, it is pos-
sible to evaluate the two ASC system design methods [22]. The centralized topology
is the most straightforward structure; all the accessory equipment is connected with
the ome core processing unit. Since all the data are gathered into one place, the main
processing unit is capable of managing the whole system. A centralized structure is
easy to implement and by designing robust and intelligent software for the main pro-
cessing unit. it is possible to guarantee system security. This system design technique
is widely used in the development of an ASC system; however, as not considering the
fault-tolerance and extensibility of a system, the whole system is shut down cven if a

small fault occurs. since almost all data is centralized on the central processing unit.

An argument for centralized structure is that more reliable software can be designed

to avoid the whole system shut-down; however, development will take more time, and
an increase in softwarc complexity can lead to difficulties maintaining and modifying
the system. Regarding system extensibility, the centralized structure is limited by the
main processing uiit resources.

System fault-tolerance and extensibility can be acquired by implementing the decen-
tralized system. In a decentralized system, cach node has its own assigned task and
is playing a rclatively equal role for data processing and cxchange, so when one or
cven a few nodes do not work properly, the rest of the system can still operate. The
decentralized system extensibility is not restricted to the central processing unit, and
additional node can join the original system without changing the existed programs
and system structure. With multiple nodes working together, a decentralized systeimn
also tends to accomplish more sophisticated tasks than a centralized system. However,

a decentralized system is hard to manage, because different nodes work separately.

1.3 Problem Statement

The size and weight of most cxisting ASCs are relatively small, so these ASCs arc
sensitive to environmental interferences including wind, current and wave. According
to the literature review, many existing ASCs were designed for the inland water
applications such as lakes, rivers and reservoirs [3]-[19], where weather is predictable
and has little effect on the ASCs™ proper operation. However, for the implementation
of an ASC system in harsh occan cuvironment, especially offshore Newfoundland, the
cnvironniental situation has to be considered. Low temiperature, strong wind and
large currents and waves have a big effect on the working status of the ASC; for

reliable occan exploration, a robust ASC system design is necded.

10

The ASC system is required to carry different sensors in support of the environmental
monitoring and measurcment tasks, therefore a system structure that supports fast
integration and flexible connection with the potential scensors is preferred. For reli-
able operation in the occan, ASC system fault-tolerance is also necessary. Compared
with the centralized system, it is more difficult to build a decentralized system, be-
cause each node inside the decentralized system has to be designed and programmed
independently. However. to deploy an ASC for ocean exploration offshore Newfound-
land, the ASC system reliability, fault-tolerance, extensibility and design difficulty
arc comprchensively considered. Eventually. a decentralized ASC system structure is
chosen.

To tackle the downside of a decentralized systemn, a Controller Arca Network (CAN)
protocol based bus architecture is used. The proposed CAN-bus system can increasc
the decentralized system manageability, because all the nodes share the same physical
transmission media for information transmission. The CAN network robustness is

guaranteed by the CAN protocol defined error detection niechanism.

1.4 Thesis Outline

Chapter 1
Past development of the ASC is discussed, and based on the literature review, two
ASC system design methods arc compared. The challenge of developing a robust ASC
for deployment in the harsh ocean environment, especially offshiore Newfoundland, is
introduced.
Chapter 2
An overview of the design considerations of the developed ASC system is provided.

A general introduction of the CAN, NMEA 2000 standard and Time-Triggered CAN

11

protocol is presented. The details of how the on-board communication system is built
are introduced, and the detailed program design methods for different CAN nodes
and a softwarc Grapliic User Interface (GUI) are provided.

Chapter 3

Genceration of a simplified 3 Degrees of Freedom (DOF) nonlinear model for describing
the dynamic motion of the ASC. Two linearization niethods arc applied to achieve
the lincarized ASC model.

Chapter 4

Evaluation of the proper functionality of the ASC system by some initial tests. Tow
tank tests have been performed to get the ASC hull resistance coefficient and self-
propulsion points. Based on the tow tank test results, a propulsion model is generated.
To validate this model, sea trials have been carried out in Holyrood, Conception Bay,
Newfoundland. The comparison of these results are presented. Based on the sca trails
data. a linear ASC steering model is identified.

Chapter 5

Conclusions and a description of future works.

Chapter 2

The Autonomous Surface Craft

System Design

2.1 The ASC System Design Overview

In [20], a SWATH-type ASC development concept was developed in the AOSL at
Memiorial University for the task of underwater gliders recovery. Based on this pre-
vious system design expericnce, the AOSL started to develop a new catamaran-type
multi-purpose ASC in 2010. This multi-purpose ASC is designed to be robust enough
for opcration in the coastal waters of Newfoundland and Labrador, with the principal
tasks to collect oceanographic data and scrve as a surface gateway for underwater
vchicles assisting them with communication, navigation and control.

In this part. an overview of this developed ASC system is provided. Figure 2.1 shows
an original design of the AOSL ASC. In this design a twin hull catamaran-type ASC is
built. Two round through-holes from top to bottom of the hull are located on the front
and rear part of the veliicle. The aft through-holes are used for holding the propulsion

system, while the front ones arc used for connecting the bottom sensors to the niain

12

14

by applying differential thrust from the propulsion system. This ASC mecasures 1.5 m
in length and 1 m in width, and the draft of the vehicle is around 0.37 m under testing
and working conditions. With six batteries and the superstructure mounted on the
vehicle, the total weight is 146 kg. The on-board communication system is built using
the Controller Area Network (CAN) protocol, and based on the designed deceutralized
system structure, four CAN modules were developed indepeudently (labeled from 1
to 4 in Figure 2.2) to work on this CAN network which will be described in more
detail in the clectrical systeni design section. A weather station (WS) is installed to
measure the wind data, temperature and barometric pressure, and a CAN node that
integrates the Global Positioning System (GPS) and Attitude and Heading Reference
System (AHRS) is used to provide accurate ASC navigation information. In addition,
a 900 MHz wireless modem is integrated to the system to enable on-board scusor data
and supervisory commarnds exchange between the ASC and the dock-side computer.
As shown in Figure 2.2, the ASC features the distributed conmmmunication systemn
structure and in total four separate CAN modules were developed. Since each CAN
module has its own assigned task, they have to be developed with their own programs.
At the same time, in order to increase system manageability and make all nodes
work in an orderly way, the Time Reference Message (TRM) time synchronization
mechanism is introduced. Morcover, a GUI software package is developed on the
dock-side computer to work with the wireless communication systeni for sensor data
display and ASC control. A discussion of programs and software realization details is
provided in the program development section.

A summary of the main specifications of the developed ASC system is provided in

Table 2.1.

and the final realization of these developed CAN nodes are shown.

Table 2.1: The ASC main specifications

Length 1.bm
Width 10m
Propeller offset from the |
longitudinal centreline of the ASC 0.5 m
Hull height 0.5 m
Supcrstructure heioht N 66 m
Total weighu 140 Kg
Draft 0.37 m
B Speea 0.4 to 1.0 m/s
On-board Communication CAN-bus
External Communication 900 MHz wireless
Operating mode Manul/Autonomous

2.2.1 Controller Area Network (CAN)

The Controller Areca Network (CAN) was designed by the German company Bosch in
1986, and it was originally used in the construction of the communication and control
system for automobiles [24]. A typical system topology using the CAN protocol is
shown in Figure 2.3, and in this system a number of CAN nodes are connected to
the two-wirc CAN-bus system that is terminated by two 120€2 resistors. As a multi-
master communication protocol, all the CAN nodes can freely access the bus to send
and receive the messages. As discussed in Chapter 1. the CAN-bus system can be
regarded as a decentralized system. A geueral review of this protocol is provided in
this section, and the main focus is on the usage of this protocol to build the ASC
distributed communication and control system. However, interested readers can refer
to the book [24] for more details of the CAN protocol.

C'AN-bus is based on a message-oriented communication mechanism where a CAN

message is broadcasted by one CAN node with a unique identifier (ID) number. All the

18

mode is used to build the main on-board communication network, while the NMEA
2000 standard, which iniplements the CAN 2.0B as low level conununication protocol
is used for the communication with the WS. The main difference between the standard
and extended CAN messages is ID number length. The standard data message imple-
ments an 11-bit length ID: while the extended message 1D is 29-bits long. The length
of ID number determines the maximum number of messages that can be defined and

used in designing a CAN network.

Table 2.2: Four kinds of CAN frames

Frame types | Description

Data ..ame | Frame for data transmission
Remote Frame | Frame for recuest of data frame

Error Frame 1 rrame tor wssuiug uie error occured at one CAN node
Overioad Frame | Frame for delay of the next transmitted message

Remote Frame is used for inquiry about a specific ID Data Frame. In a remote frame
transmission, no data field is included; however, the CAN node that successfully
reccives the remote message will respond with a data frame with the same 1D as the
remote frame.

On-board conununication system robustness can be guaranteed by the CAN protocol
defined crror detection mechanism. Each CAN node can use four crror detection
methods (Table 2.3).

According to the previous analysis. the reliable CAN-bus based communication system
structure implemented on the developed ASC is shown in Figure 2.4. The center line
indicates the CAN-bus trunk line. Four CAN modules are designed separately to
work on this system. These CAN modules include two motor controller modules, and
they are responsible for the control of the propulsion system. The navigation module

is used for gathering the information fromn the GPS and the AHRS to assist with the

20

four CAN modules distributed at different locations on the ASC. Two motor controller
modules are fixed at the rear part of cach hull, and both the controller module and the
navigation module arc installed on the superstructure. The main characteristics of

this developed ASC CAN-bus based communication system are suunnmiarized in Table

2.4.

Table 2.4: CAN-bus application characteristics

Characteristics Description
Tonnlooy Bus tOpOlOgy
INUIIDer oI noaes Four
Data transmission bit rate 1Mbps
Data format Standard and NMEA 2000

2.2.2 NMEA 2000

The NMEA 2000 standard was introduced by the National Marine Electronics As-
sociation (NMEA) in 2001 [25]. NMEA 2000 implements CAN 2.0B as a low level
communication protocol. and it is mainly used for building the control and conumu-
nication system for marine vehicles. The NMEA 2000 standard provides much faster
data transniission rate than the NMEA 0183! standard, and siunce it is based on
C'AN-bus, a reliable and extensible bus architecture can be achieved. As a high-level
communication protocol, NMEA 2000 develops a more advanced message identifica-
tion mechanism. The 29-bits identifier (ID) number is divided into several parts for
representation of different characteristics of the transmitted messages. In Table 2.5,
the message types, priority and update rate are specified inside the Parameter Group

(PG). which is the ID number of corresponding extended CAN messages.

'NMEA 0183 is another widely imnplemented serial protocol that is used for marine clectronic
devices conmnunication

Table 2.5: Parameter Group

Name

Description

PGN

Defined by the NMEA committec for identification of
different type messages and this part conld also be used
for company proprietary transmitting messages

1 1ESTIT|AT1011

Define if the message is global or addressed

perauty priority

() to 7 priority range

Tpdate rate

Define how often the message is transmitted

wuery support

Define if the transmitted message
will respond to request messages

DLIIgIe Iralne

Denne if the transmitrea message
is single-frame or multi-frame

Acknowledgewent | Specify if the reply is needea arter receiving this message

In this ASC on-board comnmnication system, the NMEA 2000 standard is used only

for communication with the WS. Based on the open source project, which was posted

on the blogger [23] and developed by Keversoft B. V., the following useful information

as shown in Table 2.6 has been successfully requested from the WS.

Table 2.6: Used NMEA2000 messages

PGN number Description

PGN 127250 Vessel Heading
PGN 127251 Rate or 1urn
PGN 129025 GPS Position

ralN 129026 Course Over Ground
Sneed Over Ground

rGN 129000 | Lite ana Date

PCGN 130306 Wind Data

FGIN 1OUSIY | ravironmental Parameters

The classic CAN protocol does not define the physical layer cables or conuectors, so

conmmonly a twisted pair CAN wiring system is applied. However. in this application

the CAN-bus has to run through the ASC including the superstructure, and the wiring

24

The remaining is one shield wire helps increase the interunal sigual resistance to

interference as well as reduce the RF emission.

e The NMEA 2000 cables and connectors are designed for marine usage, so the

waterproofuess and robustness in the ocean are guaranteed.

e As shown in Figure 2.6, CAN nodes can be connected with the CAN trunk line
through the use of three-port "T" connectors, and they can get access to CAN
communication network and power at the same time which brings conveunience

for system extension.

Table 2.7: NMEA 2000 cables and connectors pin definition

Pin number | Definition
Pin 1 Shield wire

Pin 2 +V
Pin 3 -V
Pin 4 CANH
Pin 5 CANL

2.2.3 Time-Triggered CAN (TTCAN)

Time-Triggered CAN (TTCAN) is developed based on the classic CAN protocol,
and it is used to support the time-deterministic data-transmission applications. In
a classic CAN network, it is possible that different nodes start to transmit their
messages simultaneously and when this happens the message with higher priority will
be transmiitted first. Though this bus arbitration mechanism ensures the high priority
CAN messages arc transimitted with the minimum latency, it is difficult to guarantec
that low priority CAN miessages can meet their transmission deadlines under different

bus load conditions. TTCAN is introduced to solve this problemn, and in this protocol,

26

e TRM can be regarded as a decentralized system time synchronization method,

while no additional time line is needed which simplifies the system connection.

’ssa or

TRM 4 0d ration

secCda

A
\ 4

Figurc 2.7: TRM mechanism unit cycle organization

2.2.4 Electrical Components

A general introduction of the implemented electrical components on the ASC system

is provided.

2.2.4.1 Airmar PB200 Weather Station

When the ASC is operating in the ocean, it is important that the vehicle has access
to environmental information of the area around it. Environmental information can
assist the vehicle for analysis of its operating status, and it can also help the ASC to
plan a safe moving path to avoid damaging environmental interferences.

Figure 2.8 shows the Airmar PB200 weather station. This weather sensor has a
waterproof housing and is resistant to sunlight and chemicals [27]. As a compact
design, the sensor is 130 mm high and 72 mm diameter with a mass of 285 grams.
The PB200 sensor can measure wind speed and wind direction using its four ultrasonic
transducers, located on top of the wind channel. Two transducers work together to
measure the wind speed in that direction. As depicted in Figure 2.8, cach transducer

takes turns to transmit and receive the signal. The flowing air through the wind

27

channel will affect the signal transmission time between the two transducers, and by

measuring this time changes in the wind direction and wind speed can be calculated.

Ultrasonic TN

transducer

Wind
channe| ==

Metal /
plate

_'/

Arrow indicates the direction
from transmit to receive.

Figure 2.8: Airmar PB200 Weather Station and ultrasonic transducers (PB200 Uscr
Manual)

The PB200 weather station also integrates a temperature sensor, a barometric pres-
sure sensor, a three-axis solid-state compass, a three axis acceleronmeter, a yaw rate
gyro and a GPS module. Therefore, all required vehicle data can be requested from
this sensor. The specific data measurement accuracy and range are detailed in Ta-
ble 2.9. Though two interfaces are available in this sensor (NMEA 0183 and NMEA
2000), the NMEA 2000 standard is used as it provides faster data transmission rate.
As shown in Figure 2.5, WS is connected with the controller CAN node.

Airmar’s WeatherCaster software has been used for the initial test of the WS. After
the basic functions are tested and every sensor is verified to work properly. the WS has
been configured to transmit upon the reception of the NMEA 2000 standard defined

request message.

29

AHRS integrates a triaxial acceleromcter, a triaxial gyro, a triaxial maguectometer, a
temperature sensor and a processing unit with a data fusion algorithm. Therefore,
fully temperature compensated acceleration, angular rate and magnetic heading data

arc available in this small sensor unit.

RS232'USH 7

#B223.4120. DOOTS
L 2

Figure 2.9: The Microstrain 3DM-GX3-25 AHRS sensor (3DM-GX3-25 User Manual)

Table 2.10: Acceleration and Angular Rate messages from the 3DM-GX3 (3DM-GX3-
25 User Manual)

Command:

Byte 1 0xC2
Reannnan:

Byte 1 OxC2

Rvtes 925 Arceleration X (IEEE-754 Floating Point)
RVTES n-y Acceleration Y (TERFE-754 Floatine Paint)

sytes 10-13 | Acceleration 4 (1r.rr-(o4 Floating rom)
Bytes 14-17 | Angular Rate X (Iere-754 Floating Point)
Bytes 18-21 | Anoular Rate Y (IEEE-754 Floating Point)
Bytes 22-25 | Anowar Rate Z (TEEE-754 Floatine Point)
" Ruvtes 26-99 _ Limer -

DYLs 0U-a1 | Checksum

Comnimnication with the 3DM-GX3 is based on the RS-232 serial interface, and the
default data transmission rate is 115200bps. Specific sensor data can be requested

by a counected microcontroller by issuing the required command. Table 2.10 shows

30

an cxanple where the AHRS outputs acceleration and angular rate messages upon
the reception of the 0xC2 commmand. It is shown that tlic response messages from the
AHRS include in the first byte a reproduction of the sending command, and after that
are the three axis acceleration and angular rate data, which are represented using the
[EEE-754 standard!. Based on this data transinission mechanisin, the data including
the acceleration, angular rate, the magnetometer data and the rotation matrix are

requested and logged in the navigation module microcontroller (Figure 2.4).

2.2.4.3 Global Positioning System (GPS)

In order to acquire the accurate location of the ASC in the ocean, the Global Posi-
tioning System (GPS) is needed. There are many off-the-shelf GPS reccivers available
in the market, and some recently developed differential GPS modules can provide the
distance accuracy within centimetres; however, in this design, the cost and desired
accuracy balance is considered. Since the GPS and AHRS module will be sealed into
a waterproof enclosure, an external antenna is desired for receiving the GPS signal
from the satellites. Therefore, as shown in Figure 2.10. the SeeedStudio Grove-GPS
(originally equipped with a patch antenna) beconies our final choice. Grove-GPS in-
tegrates the cost-cfficient NEO-6M GPS receiver chip from u-blox Inc., and the UFL
receptacle connector on-hoard enables the external antenna connection.

According to [29]. the implemented NEO-6M stand-alone GPS receiver is supported
by the high performance u-blox 6 positioning engine. The implemented Grove-GPS
board features the NEO-6M UART serial interface for communication with the mi-
crocontrollers, and the output message voltage is regulated by on-board regulator to
be compatible with most processors’ voltage level. The cold start time for NEO-6MN

GPS is within 27 scconds, and it has the horizontal position accuracy of 2.5 meters.

1Use four data bytes to represent a foating point number.

31

Figurce 2.10: The Grove-GPS module (SecedStudio Inc.)

The GPS data update rate is configurable from 1 to 5 Hz, which is good for fast
update applications. The time-pulse signal is available on the "TINEPULSE" pin of
the NEO-GM chip, and its frequency is configurable from 0.25 to 1 kHz. The velocity
accuracy is within 0.1 m/s, and the heading accuracy is less than 0.5 degrees.

The GAA-005 Marine GPS antenna has been chosen as the external GPS antenna.
This antenna has a waterproof enclosure, and its working voltage range is from 2.2
to 5.0 V. The connected coaxial cable length is 30 m maximum, and this waterproof
cable connects the GPS signal to the navigation CAN module (Figure 2.5).

The messages from the Grove-GPS are transmitted according to the NMEA 0183
standard, so the GPS data are included in the transmitted string. As shown in Table
2.11, the implemented GPRNMNC message string is provided, and inside this string
the GPS data including UTC time, location, speed and course arc provided. In this

application, the GPS module is configured to update at 1 Hz.

32

Table 2.11: GPRMC message from the Ublox GPS module (Grove-GPS User Manual)

rield number | Example Description

N 0 $GPRMC RMC message heaacr
1 083559.00 UTC time,hhmmss.ss
2 A Status, V=data not vana, A=Data valid
3 4(1¢.11437 | Latitude desrees=47, minutes=17.11437
4 N Henuspnere iv=north, S=south
b} 00833.91522 | Lougitude, degrees=8, minutes=33.91522
6 E E=cast, W=west
7 0.004 Speed over ground, knots
8 1.0z Course over ground, degrees
9 091202 Date in day, month and year, ddimmyy
10 - Reserved
11 - Reserved
12 - Roesorved
13 *57 U LECKS UL
14 - Carriage return and line feed

2.2.4.4 Wireless Modem

To build a long range wireless communication link, the Digi International Inc. XTend-
PKG 900 MHz RF modem has been used. Through this wircless communication link,
the vehicle supervisory conunands and important ASC operation status information
can be exchanged between the ASC and the dock-side computer.

The XTend-PKG wireless modem features a long range signal transmission. The data
transmission range is dependant on a couple of factors, such as the data transmission
rate and the signal output power. The specific modem settings can be configured
using the X-CTU software through the RS232 interface. In this application, to con-
struct a reliable wireless link, both wircless modeins are configured to work at "Multi-
Transmit" mode. In "NMulti-Transmit" mode, messages are retransuniitted to guarantee
the successful data transmission. To acquire the acceptable communication range as

well as RF data rate, the two wireless modems are sct to work at a one Watt power

33

level, and the RF transmission rate is configured to be 115,200 bps. The modem was
tested to work as far as 200 metres. However, according to the manual, when the
transmission power is set to one Watt together with a high gain antenna, the outdoor
RF linc-of-sight communication range is up to 32 km (115,200 bps throughput data

rate).

2.2.4.5 Microcontrollers

The mbed”" microcontroller The mbed”™™ microcontroller is designed for fast
and reliable prototyping tasks. Its on-board processing unit implements the powerful
32-bit ARM! Cortex-M3 Core microprocessor NXP LPC1768, and it has the maxinmum
processing speed of 96 MHz. As shown in Figure 2.11, the mbed??! development board
includes many useful resources including the Ethernet, USB, SPI, 12C, UART, CAN,
PWNM and ADCs.

The mbed ™™

microcontroller can be powered by the Universal Serial Bus (USB), and
the nominal current consumption is less than 100 mA. Each General Purpose Input
Output (GPIO) pin is capable of driving up to 40 mA peripheral circuits with the
total driving capability of 400 mA. The mbed??! microcontroller uses 3.3 V logic but
it can handle 5 V input signals. The mbed”* microcontroller program development
environment is based on an online compiler tool [28]. This online tool supplies the
necessary libraries and functions for code development. Each mbed?™ microcontroller
user has his own code development workspace, and all the developed code can be saved
¢ "me for further adjustiment.

As shown in Figure 2.5, since the mbed”™ integrates two CAN interfaces, it can be
used to connect with the main CAN network on the one side, while it can also be
JrM

connected to WS on the other side. This feature enables the mbec microcontroller

TAdvanced RISC Machine

36

direction. A PID control algorithm in this thruster coutroller guarantees the propeller
rotates at the defined rotational speed. The two electric motors’ thruster controllers
can be interfaced using the RS485 serial interface, and by issuing different commands,
differential thrust can be acquired.

Since the tiller is not installed in the ASC system. a motor controller module that
substitutes the role of the tiller has been developed (Figure 2.5). This controller
module can issuce the control commands for the thrusters as well as log the responding
information from the motors. As discussed in the previous section, this module can
also be regarded as the protocol converter, because it connects the Torgeedo niotors
(R5485) to the main communication system (CAN).

A message example used for communication with the Torgeedo motor under the RS485
protocol is shown in Table 2.12. As shown in the table, the information including the
message source and destination are included in the first two bytes of the transmitted
message. In addition to that, the most important information including the propeller
rotational speed, direction and power information arc also provided. Upon reception
of the motor control command, the motor will respond with its confirmation message,

and the corresponding niotor specification is configured.

2.2.5 CAN Nodes Development

The details of how different CAN nodes (Figure 2.4 and 2.5) are built using the
introduced electrical components arc provided.

2.2.5.1 Controller CAN Node Development

The controller CAN node developed for the ASC acts as the command distributor
as well as a system information gatherer. This CAN nodc is designed to receive the

cominands from the dock-side computer through the wireless modem, and according to

37

Table 2.12: The messages used to control the Torgeedo motors under the RS485 serial
connection

Field definition Example Description
pestnauon address 0x80 Proneller addregs
Souree address Ox1u 1111er aqqaress
- rCB 0x01 Protocol control byte
INS 0x10 Instruction (Set conmmand)
1D1 0x00 Paramecter ID higher byte
N 1n 19 Parameter 1D lower hvte
Ly UXU4 Data leugun -
partal Nx01 Rotational speed higher hvte
Dataz 1100 Rotational speed lower byte
Data3 uxul Direction
Datad Nx32 Power 0 to 100% =0x00 to 0x64
CHK1 i - Checksum higher hvte
CHKO | - Checksum lower vyue

the commands, package the CAN messages for inquiry about specific ASC information
frow different CAN nodes, or send the desired motor configuration commands.

As discussed in the cleetrical components section, the XTend 900 MHz wireless mo-
dent is included to support the wireless communication. The CAN transceiver chip
MCP2551 is used to perform the voltage level conversion for the CAN messages. The
PB200 WS is also integrated in this CAN node. A 12V to 5 V DC-DC voltage con-
verter is also used. Figure 2.13 shows the electrical system schematic. As shown, the
XTend wireless modem connects to the mbed?* microcontroller through a MAX232
logic level converter. and two CAN driver chips are included. The mbed™ microcon-
troller has two CAN interfaces. One interface was set to work under the CAN 2.0A
standard, and it was used to build the main comunication network. The second was
sct to work under the CAN 2.0B standard, and due to the compliance of the NNMEA
2000 with CAN 2.0B, the second CAN interface was used for the weather station

NMEA 2000 communication. To protect the WS, a 3 A fuse is also included.

40

Figure 2.14 shows the final realization of the controller CAN node. All the components
arc soldered onto the prototype board. To make surc the implemented clectrical
componcents arc water resistant, they are sealed into an aluminum alloy waterproof
enclosure that complics with the P67 standard, and all the cables and connectors

hnplenient the same waterproof standard.

2.2.5.2 Navigation CAN Node Development

The navigation CAN node implements an integration of the GPS module and the
AHRS module with the microcontroller. The reason to have this CAN node is to
automatically log the GPS, heading, acceleration and angular rate information, and
after the reception of the request command from the main CAN network, this node
will package the corresponding information and send it back to the CAN node that
starts the request. Another reason to have this node is to have the sensor data fusion
algorithm implemented on-board, and by fusing the information from the GPS and
AHRS. a better estimation of location and orientation information can be derived.
Figure 2.15 shows the planned schematic for the navigation CAN node. As shown
in the figure, the AHRS is connected with the core processor through the MAX232
logic level converter. and the Grove-GPS is directly interfaced with the mbed™™
microcontroller. The connected external antenna is extended to the outside of the
navigation box. To connect this CAN node to the main CAN network. the MCP2551
CAN driver chip is used.

According to the planned schematics, the final realization on the prototype board
has been completed as shown in Figure 2.16. This CAN node features some similar
characteristics as the controller CAN node, such as it also integrates the DC-DC
voltage converter for connection to the main CAN-bus, and this CAN node implements

the same CAN driver chip NCP2551 for voltage level conversion.

44

task of the CAN nodes will be conversion of the protocol between the RS485 and
the CAN standard, and deliver the power to the propulsion system as well as the 8V
voltage required for RS485 message transniission.

[t has been decided that a couple of compounents have to be included in this CAN
node design. As shown in Figure 2.17. the SBC28PC board has been used as the
main microcontroller for protocol conversion. The voltage converter board that comes
with the Torgeedo propellers is used for gencrating the proper voltage for RS485
counnunication. The DIN rails are used to connect the power lines to the propellers.
All the components are enclosed inside a rugged aluninum alloy box. and all the cables
running out are scaled with the specially chosen cable glands. The proposed design

is validated to provide the proper functionality and the satisfactory waterproofness.

2.3 Program and Software Development

In order to build tlic decentralized communication system for the ASC. cach connected
CAN node has to be developed with its own program. The details of these separately
developed programs are introduced. To make it possible to display the ASC on-
board scnsor information on the dock-side computer as well as issue the supervisory
command. a Matlab based Graphic User Interface (GUI) that runs on the dock-side

computer is designed.

2.3.1 CAN Nodes Program Development

There are a total of four CAN nodes developed to work on the main CAN network.
Among these four nodes, the controller CAN node and navigation CAN node are
programmicd with the ARM processor, while the motor controller CAN nodes are

programmied with the PIC microcontroller.

46

arc essential for propulsion. so the motor control and status information is assigned
the next higher priority level. Following that is the information about GPS position,
speed, heading, acceleration. and other sensor data. Since some of the CAN messages
from Table 2.13 are requested using the remote frame. an ID allocation of the remote

frame CAN messages is also provided and shown in Table 2.14.

2.3.1.1 The Controller CAN Node Program Development

The controller CAN node is desigued to complete the following tasks.

e Scud the request CAN message to the navigation CAN node to get the vehicle

related navigation information

e Acquire the motor information and send configuration commands to change the

speed, direction and power
e Obtain the information from the Airmar weather station and log the data

e Conmmunicate with the dock-side computer through the wireless connection and

transmit sensor data and receive supervisory conmands.

In order to show a clear picture of the working process of the controller CAN node,
the program flow chart is provided in Figure 2.18 and the main function C++ codes
are provided in Appendix A.1.

In the CAN interface initialization part. two CAN interfaces are defined. One CAN
interface is configured to work in the standard mode with the communication baud
rate of 1 Mbps, and the other is configured to work in " - extended mode with
the baud rate of 250 kbps to commuuicate with the WS. After that. the controller
CAN node waits for the TRM from the navigation CAN node. and after successful

reception of the TRM. it will package a TRM wireless message to be transmitted

Controller CAN module
prearam flow chart

1
CAN’ M—I
Rl
1
CAN
CANZ
I
RF B
< T
CAN1
RF F
P B
.~

Figure 2.18: The controller CAN node program flow chart

13

to the dock-side computer for time synchronization purposes. Following that. the
motor and navigation information arc requested from the other CAN nodes by the
controller CAN node, and then the supervisory commands will be received from the
dock-side computer. Based on the supervisory commands. the motor status will be
reconfigured. and required sensor data will be send hack to the dock-side computer.
As shown in the flow chart. to make sure this CAN node is not locked with any wait

function, two 1.5 sccond timeout functions arc attached.

2.3.1.2 The Navigation CAN Node Program Development

The navigation CAN node is responsible for collecting data from the GPS and AHRS
modules. Normally a sensor fusion algorithm (Kalman filter) is imiplemented on the
microprocessor to fuse the information for better estimation of the vehicle status:
however, in this design. the concentration is on the construction of the CAN-bus
based communication and control system structure. so no navigation algorithm is
implemented vet.

The flow chart in Figure 2.19 shows a clear working process for this CAN node.
and the main function C++ codes are provided in Appendix A.2. The mbed”
microcontroller in the navigation CAN node works under the trigger from the GPS
GPRMC message which has been configured to be updated every 1 second. After the

M microcontroller starts inquiring about the RMC niessage. it keeps waiting

mbec
until there is a response. and then it packages the TRM CAN message using the UTC
time information and sends it onto the main CAN network to indicate the beginning of
this time period. After this, the navigation CAN node continues to get the information

from the AHRS and packages it with the GPS data for further navigation algorithm

usage. The navigation information is requested in the interrupt routine.

Navigation CAN module
program flow chart

)

Figure 2.19: The navigation CAN node program flow chart

Interrupt routine

UART

-AN

49

50

Motor controller CAN

module program interrupt routine
flav: rhart

r L
RS485

A - | J

RS485
Il I N
i
—
o n g
R

Figure 2.20: The motor controller CAN node program flow chart

o1

2.3.1.3 The Motor Controller CAN Node Program Development

Since comnunication with the Torgeedo motors is restricted to RS485 communication,
the main task for the motor controller CAN node is to convert the messages between
the CAN protocol and the RS485 format. In addition to the protocol conversion,
this CAN node is designed to be capable of diagnosing the motor working status and
logging the required motor information for transmission to other inquiry CAN nodes.
Figure 2.20 shows the flow chart of the developed program for the left motor con-
troller, and the C code is provided in Appendix A.3. As shown, the motor configu-
ration keeps updating. and after setting the motor each time, the motor will respond
with the confirmation message. Taking advantage of this feature, the motor core
microcontroller can decide the RS485 communication status. The motor speed mod-
ification is completed by using the interrupt routine, which can guarantee that the
motor configuration is updated with the minimum delay. The preprocessors are used
for conditional compilation. For example, if the user wants to compile the code for
the right side motor controller (refer to Appendix A.3 Page 130 Line 15), it is only
necessary to set the global variable "L_or_R" to be 0, or define it to be 1 for the left

motor.

2.3.1.4 System Time Synchronization and Evaluation

As introduced in the Time-Triggered CAN (TTCAN) section, the TRM based system
time synchronization method is implemented in the development of the main com-
munication and control system. The TRM is a standard CAN message that includes
UTC tinme information from the navigation CAN node. When the TRM is accepted by
the other CAN nodes on the main CAN network, they will know the start of this data
transmission cycle begins, and all the connected CAN modules will be synchronized

to the same time signal.

02

In order to show the achieved characteristics of the TRM based system time synchro-
nization method, an evaluation test has been performed using the DPO4000 scries
digital phosplior oscilloscope. The DPO4000 series oscilloscope is capable of display-
ing the CAN-bus information, and with its built-in functions, CAN messages can be

identified.

Figure 2.21: The TRM message organization

In the evaluation test, the DP04034 is connected to the CANH line and the ground to
display the transmitted CAN messages within the designed CAN network. The first
step of the test is to identify the TRM message. To do this, the main communication
network is assigned to work only with the TRM message. Figure 2.21 shows the
captured TRM message from this test, and the square waves indicates the transmitted
TRM. The decoding of the square waves is automatically done by the oscilloscope, and
the interpreted hex number is shown underneath cach transmitted data byte. Inside

these hex numbers. the first number, 001, is TRM ID number, and following that arc

56

In Figure 2.24, the TRM will first be transmitted to the dock-side computer using the
wireless link, and then based on the user’s configuration, a supervisory command will
be sent back to the ASC. This command is interpreted into the concrete operation
inside the ASC. such as the navigation data arc requested and motor speed is changed.
After this operation, the desired information is sent back to dock-side computer to be
displayed or logged.

A Matlab based GUI is developed to work on the dock-side computer as a control
terminal for the ASC. Figure 2.25 shows the final realized Matlab GUI. The sensor
and motor data from the ASC can be shown on the GUI in quasi-realtime, and it is
convenicnt to control the ASC two motors by using the motor control function. A
Bluctooth hand controller is integrated for more intuitive control of ASC, and the

GUI can directly log the ASC location into the Google Earth software.

Chapter 3

Mathematical Model for the

Autonomous Surface Craft

3.1 Nonlinear Model for the ASC

The notation used for describing the general motion of the developed ASC is provided
in Figure 3.1. The origin of the body-fixed frame (point 0) is chosen to be inside the
ASC’s xz plane (the designed ASC has xz plane symmetry), and then the body fixed

coordinate system is defined as:
e or axis is directed from aft to fore
e oy is directed to starboard
e oz is directed from top to bottom.

In addition to that, the oprgyepzg defines a coordinate frame that is fixed on the
Earth. and since the Earth rotation will not affect the ASC motion, this frame can
be regarded as an inertial frame. Taking advantage of these two frames, the vehicle

status information including velocity and angular rate expressed in the body-fixed

39

61

Table 3.1: SNAME notations

a | Forces & | Lincar velocity & | Position &
Momients | Anonjar Velocity | Euler Augle
Motion along)
ox axis (surge) X u X
Motion along
nv axis (sway) Y v y
nlotion along
o7 axis (heave) 7 W z
~ nowation around
ox axis (roll) K p 0]
_—ﬂ,()lr'd‘bl()ll H‘I'ULE _
oy axis (pitch) M q 0
Rotation around
oz avia [vraw) N T L/'

e v = [uwvr]?: surge and sway velocity, and yaw angular velocity expressed in

body-fixed frame

/]T

o n=[ry Y] : xand y location and yaw angle expressed in the inertial frame

e oG [rq yo 2¢]’ : vector pointing from the body-fixed frame origin to the

center of gravity (CQG)

Based on this vector definition, a compact 3 DOF kinematic and dynamic model

expression can be achieved as shown in Equation 3.1 [30].

n = Ruv
(3.1)

Mo+ Co)v+De 7

In this model. R defines the rotation matrix that converts the speed vector from the

body-fixed frame to the inertial frame, and therefore the kinematic model can be

62
rewritten as follows:
T cos() —sin(yp) 0 |u
y| = |sin(y¥) cos(y) Of v (3.2)
i 0 0 1/ \r

In the dynamic model, M is the mass matrix, and C is the Coriolis and centripetal
matrix, D is the damping matrix and 7 is external force and torque (for the purpose
of this model the restoring forces in heave, roll and pitch are neglected since the ASC
motions in heave, roll and pitch are small). A detailed description of these terms are

provided as:

e M\ is a combination of vchicle inertia (Alrp) and added mass (A4) duc to the

inertia of the surrounding fluid, namecly, Al = Alrp + M4

o C(v) includes the Coriolis and centripetal force contributed from the wvehicle

itself and the added mass effect, namely, C'(v) = C(v)rp + C(v)a

e D, the damping matrix of the vehicle, comes from effects including the radiation-
induced potential damping due to the energy carricd away by generated surface

waves, skin friction, wave drift damping and damping due to vortex shedding

e 7 consists of environmental forces (currents, waves and wind) and propulsion

and rudder forces

To further simplify the terms M, C(v) and D inside the dynamic model of Equation

3.1, the following conditions are assumed [32]:

e Motion in heave, roll and pitch is neglected

o Environmental forces duc to wind, currents and waves are excluded

63

e The ship has homogencous mass distribution and xz-plane symmetry

e Center of gravity (CG) and center of buoyancy (CB) are located vertically on

the same z-axis

e Assumc the inertia added mass and damping matrices are diagonal

As a result of these asswunptions, the simplified dynamic model terms M, C(v) and D

arc given in Equations 3.3 to 3.5.

m— X, 0 0
M = 0 m—Y; 0 (3.3)
0 0 I. — N,
0 0 (Y, —m)v
C(v) = 0 0 (m — X,)u (3.4)
(m—Y v (Xy—mu 0
X, 0 0

D=1 0 -v. o0 (3.5)

0 0 -N,

A redcfinition of the coefficients in Equations 3.3 to 3.5 is shown in Equation 3.6 for
a compact formula expression. Using the newly defined coefficients in Equation 3.6, a
compact model describing the dynamic motion of the ASC is shown in Equation 3.7.
In Equation 3.7, u; and wuy stand for the applied external forces along the surge
and sway direction. and ug defines the steering torques around the z axis which is
given by the product of the thrust produced by each propeller and the distance that
cach propeller is offset from the longitudinal centreline (0.5 m as stated in Table

2.1). The statc variables [u v T}T follow the SNAME definition, and among the

64

constants, m;; (1 = 1,2,3) are determined by ASC inertia and added mass effects,

and d;; (i = 1,2,3) arc determined by the hydrodynamic effects.

Equations 3.2 and 3.7 together are the simiplified

mn =m— X,

Moo = M — Y,

mg3 = 1. — Ny

(3.6)

dll - _Xu

da2 = —Y,

d33 = —N,
12: :71]2? T %'U—FN}U "Uq
i":—%-u-r—%-zwLmlﬂ " Ug (3.7)

ASC 3 DOF nonlinear model. How-

ever, since in this ASC design no rudder is installed on the vehicle, there is no direct

control of the sway motion. Therefore, a proper model that can describe the kine-

matic and dynamic motion of the designed ASC

will neglect the sway control input

uy. The complete 3 DOF model for the designed ASC is summarized in Equation 3.8.

—L oy er -
ni9Y 2

T'-: 'm‘)?.u.p_;ﬁ_d” .'r—|——1 - U3z

33 ma3s 33 (3 .8)
1 = ucos(Y) — vsin(1))
y = usin(v) + vcos(y)

i

Y=r

As shown in Equation 3.8, this generated model can be divided into two groups. The
first three equations consist of the first group which describes the dynamic motion
of the ASC. By using this model, when a proper system input is applied, the ASC
dynamic and steady state motion can be calculated.

Using the first group of equations, ASC status vector v = [u v r]¥

can bhe generated.
By implementing the last three equations, the ASC position and orientation can be
expressed in the Earth-fixed frame. The second group of equations can be regarded
as the coordinates transformation matrix. It is reasonable to design a controller only
for the dynamic model, and then use the second group of equations for the coordinate
transformation.

To design the linear control algorithm for the designed ASC, a linear ASC model has

to be used. Subscquently, two methods for generating the linear dynamic model are

introduced.

66

3.2 Linear Model for the ASC

3.2.1 Linear Model Generation using Taylor Series Expan-
sion

Based on the nonlinear model in Equation 3.8, the Taylor serics expansion is used to
generate the corresponding linear model. First, an equilibrium point for the nonlinear
model has to be defined. This equilibrium point is quite important, because the
linearized model is only valid within a small range of this point.

The cquilibrium point has been defined as ASC moving in a straight line with a
constant forward speed. Under this assumption, the vehicle surge velocity will be
constant value uy = ug, while the sway velocity (vg) and vaw angular velocity (rg)
will be zero. The propulsion force from two propellers will be equal and constant

value u;o = uj, and the steering torque (uzg) is zero.

ey = |Ug, Uy, o, Uno, Urzso]T = [u3.0,0,uj, O]T (3.9)

Then the dynamic model can be linearized around ey by using the Taylor series expan-
sion form as stated in Equation 3.10. In this cquation, a; to ay define the equilibrivun

points.

= - (1: — oo d — Qg g ny+...4ng £
flrrmay = 3 3 oy et Z) S ayas) (3.10)

. ng! Or}'...0r,"

The following steps are used to obtain the final lincarized model.

67

= filu,v,r,u)|e0 = (%ff cuer — % SUu A+ n%l up)eo
0= fQ('u.’ . 'r')|()0 = (_gl“ cuer = % . 'l’)ltﬂ(] (311)

P= fs(u,v,r ug)leo = (M v — %’i T U)o

The partial differentiation of Equation 3.11 is shown in Equation 3.12. To get a linear

model, only the first derivatives of Taylor series expansion are kept.

fl‘r() = (u—ug) + % (v — vy) + % (r = ro) + ;’vﬁi : (Ul — u1p)
foleo = %2 - (u—ug) + (v —vg) + (g—ff S(r—rg) (3.12)
f3’(’0 - %‘%‘ . (U — '110) -+ % . ('U — ’U(]) “+ % . (T _ 7,0) + dfs

Therefore, Equation 3.13 is obtained.

o (]11 y 1 .
U= = +)|
o= — gy gy (3.13)
moy mo2
P Tk, d3z r -+ 1 U
- m3az 0 ™mag may 3

Finally. the 3 DOF lincar model is expressed in state space form.

u — 4 0 0 U - 0 0 Uy
ma el
ol=1 o —d _mugs g+ 0 0 0 0 (3.14)
ma2 a2
7 0 M& (*] __dss r 0 0 1 us
mas mas3 mag

Equation 3.14 shows the lincar model generated using a Taylor series expansion. In

68

order to implement this model for controller design or ASC systenn simulation, all the
coefficients (m;; and d;; (1 = 1,2,3)) have to be identified using the experiments or
simulation. Some of the experiments are time-consuming, and the accuracy of the
coeflicients depends on the experimental measurements. Therefore, another conve-
nient method for generating the linear model from the nonlinear dynamic equations

is introduced.

3.2.2 Linear Model Generation using the System Identifica-
tion

The system identification (SI) technique is widely used for identification of a relatively
complicated system process (e.g. ; chemical process). In the identification process, a
well planned input signal is injected into an identified object, and the output signals
arc recorded. Based on the input and output signals and the proper SI algorithimns,
an identified lincar or nonlinear modecl can be generated to describe the behaviour of
the identified object.

Figure 3.2 shows a block diagram of the SI process for generating the linear model
from the nonlinear 3 DOF dynamic modet. The whole sinlation process is completed
using Matlab. In the block diagrani, the nonlinear model for the ASC system directly
implements the nonlinear dynamic model in Equation 3.8. The variable u stands for
the input signal that is applied to both the ASC nonlinear model and the desired linear
mathematic model. By minimizing the difference between the two output signals (i
and y) using the proper SI algorithm (i.c. ; least squares method), the coefficients in
the mathematic model will be adjusted to best represent the ASC system process.
The cocflicients of the nonlinear model (m;; and d;(i=1.2.3)) implements a set of
parameters of a monohull ship which has the length of 32 metres and mass of 118000

kg from book [32] (page 104):

69

Figure 3.2: SI for the ASC

my; = 120 x 10%kg
mas = 177.9 x 103kg
mas = 636 % 10°kgm?
(3.15)
d’ll = 215 % 102kg/8

dyy = 117 % 10%kg /s

d33 = 802 * 104]1(]”?2/5

The model used in the SI actually includes two control inputs: the surge force and
yaw moment. To get enough inforniation from this nonlincar model, two proper in-
put signals are chosen to excite the system dynamic characteristics. Here the pseudo
random binary sequence (PRBS) signals are chosen, and these two signals’ range has
to be determined according to their physical meanings. The following Matlab codes

were used. In this code, ul stands for the surge force in Newton, while u2 stands for

uz
Cor——
In2

]

Constant

scope

ﬂ‘;x

,EI<
.

d11

Figure 3.4: Nonlinear model for SI

]

Fomeard
Welocity

| -
Ll
/
"“\5 Angular
) i
433 felooity
it p
- — r —_—
+}—">< J" z — 3)
ES Out r
mEs Divia Integrator2
g wide
s Produstz
o
K- *
T o
m11-m22
Product
[
r
!
|]
udnot ~—
" | I X K1y % 2
“ ‘ - + Out v
v Praductt m11
Dividaz Intagrator
ivideZ
| .

Velocity in the
lateral direction

1L

76

Measured and simulated model autput

1 T T T T T T T T

e { I

0E

0.4

02

os oy /

-2IZIDIZI 2100 2200 2300 2400 2800 26800 2700 2800 2900 3000
Tirme

Figure 3.9: Measured and simulated model output comparison

A(s) = 5 +0.2817
B(s) = [By(s) Ba(s)] (3.16)

By(s) = 8.757¢ — 006

Ba(s) = —1.649¢ — 010

Until the simulation stage, since the hydrodynamic coefficients of the ASC were not
available, the monohull ship hydrodynamic coefficients were chosen to perform the

initial System Identification tests. Through thie simulation, it was validated that

77

a proper order linear model that described the straight-line moving behaviour of a
monohull ship was generated. The SI used here is a black box identification method,
so there is no need to identify all the hydrodynamic coefficients to obtain the linear
model as indicated in Section 3.2.1.

Though the simulation was performied on a large ship model, the SI procedure is the
same when we perform the SI tests on the ASC. In Chapter 4, a lincar second order
model for the ASC will be generated using the introduced SI procedures in Section

3.2.2.

81

where U is the vehicle advance moving speed in m/s, L represents the length of the
submerged portion of the vchicle and g stands for the gravitational constant.
The surface vessel performance with respect to its Froude number is given by Equation

4.2.

< 0.4 — 0.5 (displacement mode)
ko= 0.5 — 1.0 (displacement and planing mode) (4.2)

> 1.0 — 1.2 (planing mode)

To maintain the ASC in displacement mode, the Froude nuuber has to be less than
0.5 (dimensiontess). The length of the ASC submerged portion is measured as 1.5 m,
and it is assumied that g is 9.81 m/s?. The speed range of the vchicle is calculated
to be less than 1.53 m/s. Therefore, during the resistance test. the maintained speed
range is defined to be from 0.3 m/s to 1.3 m/s at a step of 0.1 m/s, so a total of 11
cxperiments were required to be performed. In each experinient, the towing force.
licave movement and pitch angle were recorded. Since the sampling period for cach
variable is 0.00062 s, a moving average filter was implemented to remove the noise
issue fromn the measured data. A conclusion of the filtered towing force and calculated
drag with respect to the ASC moving speed is provided in Table 4.1.

Figure 4.3 shows the drag speed curve from the resistance test, and as shown, the
x axis represcnts the ASC advance speed, while the y axis is the mecasured towing
force that is equal to the vehicle drag. Error bars are added to cach measured point
to indicate the measurcment deviation. It can be scen that the plot is close to a
quadratic curve.

The drag of the ASC is mainly contributed by the form drag. The form drag formula

83

increased, there is an additional pitch angle and heave movement, which will affect the
reference arca A. Therefore, the reference area has to be calibrated using the pitch
and heave measurement before calculating the Cp value. Equation 4.4 is used for
calculating the new reference area A*, and the unit used in this equation is metres.
In this equation, 0.75 m is the half height of one hull, and 0.37 m is the measured
draft of the vehicle under the tow tank test conditions. In addition to that, the width

of each hull is measured as 1.7 m.

Figure 4.3: Resistance test: drag speed curve

A* = (sin(Pitch) x 0.75 + Heave + 0.37) * Width (4.4)

The calibrated reference area under each moving speed has been calculated and shown

84

in Table 4.3. and ('p is generated. Figurc 4.4 shows the plot of the drag coefficient.

where the x axis is vehicle advance moving speed and the y axis is C'p.

Table 4.3: Pitch angle in the resistance test

| Specd(my/sy 1 Fiten(acgree) Heave(m) Reference Area(im?) Cp
: 03 0.9193 1.3875x10 3 0.064448382 0.205763
‘ 0.4 1.3661 2.0238x107* 0.065549707 0.227432
| 0.5 1 11Rq 2.4213x1073 0 NRRNATTL6 0.217318
B 0.6 Loy 3.7385x107 0.Ubb313962 0.209123
0.7 1.3748 3.8858x1073 0.065885324 0.205437
08 1.9036 4.7542x1077 0.067208112 0.208343
Do 10994 6.6601x10~" 0.067300285 0 925593
1w 2.3851 8.00uyx10~" 0.068829441 v.229252
1.1 2.5521 9.786x10" 0.0695030652 0.273098
1.2 3.6456 13.0193x10~* 0.072480604 0.349274
1.3 4.2284 16.102x107° 0.074297001 0.372034

As shown in Figure 4.4, ('p stays almost constant within the speed range of 0.3 m/s
to 1.0 m/s. but features a rapid increases after 1.0 m/s moving speed. The reason
for this big change is because when the advance moving speed of the vehicle is over
1.0 m/s. the pitch angle and heave movement of the vehicle becomes larger, and the
water starts to overflow the bow of the vehicle.

From this resistance test, the ASC drag cocflicient is gencrated and it stays around
0.23 within the speed range of 0.4 m/s to 1.0 m/s. In the following self-propulsion

test. the same vehicle moving speed range is chosen.

2.2 Self-propulsion Test and Results

For the sclf-propulsion test. the propellers were installed on the vehicle. The two pro-

pellers were configured to maintain the samie constant rotational speed. but different

B e -
R R Tepe——_—
b e e e = e
[KPR (UG
i
T

e e e A m - - =
cmmmd e

emmeedee e

1

1

[

]

1

'

[

'

[l
e
e

1

1

1

1
o

1

]

1

1

]

I

1

1

]

'
———— e qe -

'

I

1

1
e e e A ——-—
R [,

Figure 4.4: Drag coefficient

rotational speeds were used for each test when the vehicle was towed to the predefined
moving speed with the towing force recorded.

Since the speed range chosen for this test is from 0.4 m/s to 1.0 m/s at the step
of 0.1 m/s. seven groups of experiments, among which each group corresponds to a
maintained moving speed, have been performed. To find the self-propulsion point for
cach speed coundition, inside one experimental group, the propeller rotational speed
is varied from low to high to change the vehicle status from under-propelled to over-
propelled.

The results of this test are shown in Figure 4.5. In Figure 4.5, x axis stands for the

two propellers rotational speed, while y axis is the recorded tow force. Each speed

87

compared with the measured data. The generated Equation 4.5 can also be used to

estimate the self-propulsion points beyond the self-propulsion test speed range.

Table 4.4: Self-propulsion points conclusion

speed (m/s) | Propeller (rpm)

0.4 99
0.5 122
0.6 142
0.7 166
0.8 188
0.9 210

1 237

Self-propulsion point curve fiting
[T T T T T T T T T T T 'l

B0
0

4]

o £ i (1w (=19} oy [V} =) [Relv] [Reln} pauivy LL Ll

OUE—T—T_ T T T T T T T T

1004 - . _
ook : : -
oozk 5 .
001k - : . 4

sidual

=

001F - : :
002F ‘ : q
003F : : : .
HyavER s : -

005) I I | 1 I I I I I i
0 20 40 60 80 100 200 140 160 180 200 2200 240

Rotational speed (RPM)

=4

Figurc 4.6: Self-propulsion points curve fitting

88

y =0.0043 x 2 — 0.021 (4.5)

4.2.3 Propulsion Model

By combining the results from the resistance and self-propulsion tests, a propulsion
system model can be gencrated.

In the sclf-propulsion tests, Equation 4.6 is established. In this equation, towing
force is directly measured by the tow post and ASC drag can be achieved from the

resistance test, so the propulsion system thrust valuc can be calculated.

Tow Force = Thrust — Drag (4.6)

Thrust value (two propellers) is obtained and replotted in Figure 4.7. In Figure 4.7,
the x axis is the two propellers rotational speed squared, while the y axis is the
calculated propulsion system thrust value. Each speed condition features a specific
line marker. Although the ASC advance moving speed is changed, cach line features
almost the same slope.

From Figure 4.7, it can be concluded that when the ASC moves, the thrust from
the propulsion system will be affected hy two factors: ASC moving speed and two

propellers rotational speed squared. If this relationship is defined as in Equation 4.7:

T = f(22.V,) (4.7)

where T is the thrust, € is the propeller rotational speed and V, is the advance velocity
of the vehicle.
It is possible to generate a model that can properly describe the relationship between

the thrust and the two factors Q and V,. Equation 4.8 shows the model for parameter

90

Least square curve fitting has been used to identify the coefficients C'r, by and b,
for this thrust model under the spced range from 0.4 m/s to 1.0 m/s. Finally, the

identified propulsion system model is shown in Equation 4.9.

T = 0.0010Q% 4 17.7853 — 58.7623V, (V, > 0) (4.9)

4.2.4 Sea Trials and Results

Sea trials have been performed in Holyrood Arm, Conception Bay, NL, to validate the
tow tank test results. When performing the sea trials, it was found that in the real sea
conditions, vehicle operation status would be affected by wind, currents and waves. In
particularly, the heading of the vehicle is easy to be changed by these environinental
factors.

In order to validate the tow tank test results, the vehicle has to move in a straight
line regardless of the environmental interferences, tlierefore a heading PI controller
has to be immplemented. Figures 4.8 to 4.10 show the validation test results with the
ASC moving speed range from 0.4 m/s to 1.0 m/s. In cach figure, the x axis indicates
time. while the y axis includes the information of ASC moving speed, two propellers
rotational speed and the ASC heading.

In1 each test, the propellers rotational speed is assigned according to the self-propulsion
points (Table 4.4) from the tow tank test, and by changing to different self-propulsion
points, the ASC will reach different final steady moving speed. As shown in Figure 4.8
toF are 4.10, the difference between the two propellers rotational speed is introduced
by the PI controller to change the ASC heading. The seca trail results are compared

with the self-propulsion points as shown in Table 4.6.

94

It can be concluded that the difference from the two tests is quite small (within 4.7%),
and the ASC self-propulsion points are validated. Since the forward spced is measured
using the GPS and the uncertainty is 0.1 m/s, the differences scem to be the result

of the environmental influences.

Table 4.6: Sea trials results compared with the tow tank test results

- Tow Tank Dea IT1al8 -

Propeller(rom) | Speed(m/s) | Speed(m/s) | Difference(%)
99 u.40 0.4187 4.68

N 122 0.50 0.4946 1.08
142 0.60 0.6065 1.08
166 0.70 0.7162 2.31
188 0.80 0.7978 0.28
216 0.90 0.9201 2.23
237 1.00 1.0195 1.95

4.3 The ASC Steering Model

The ASC steering model has been generated using the system identification (SI)
technique as discussed in Chapter 3. The steering of the vehicle is realized by applying
different rotational speeds to both of the independently controlled propellers. In
this modelling process, it is cxpected to find a relationship between the input, the
differential rotational speed. and the heading of the ASC.

If the left and right propcller rotational speed is defined as n; and ng. in this ex-
periment, the input of the ASC system is defined to fulfil the conditions as shown in
Equation 4.10. By maintaining the summation of n; and ng as constant, the vehicle
advance moving speed can bhe regarded as constant. According to Equation 4.6. the

steady state moving speed of the vehicle is calculated to be around 0.72 m/s.

ny +np = 336rpm

ny —ngr = £100rpm

Input and output signals

(4.10)

1an M T T T T

Heading

0

0 10 20 30 40

200 T T

1
50

1
&l

i

10c

Differential rpm

i
) 10 20 30 40

Figure 4.11: Measured ASC system input and output signals

50

Time

18]

=0

[fa)
D

Figure 1.11 shows the imported control input (differential rotational speed ny — ng)

and thie measured output heading data from sea trials. In this figure. x axis represents

time. while v axis includes the ASC heading and two propellers differential rotational

speed. In this time range, the vehicle moving speed is validated to be constant around

0.72m/s.

A linear continuous-tinie state-space model is expected to be identified based on the

recorded data. This desired model is shown in Equation 4.11:

#(t) = Ax(t) + Bu(t)
(4.11)

y(t) = Cz(t) + Du(t)

where u(t) is control input of the differential rotational speed, x(t) is state variables
which is a vector including the heading and vchicle turn rate and y(t) is the heading
output. A, B, C and D stand for the parameters that are required to be identified. |
By implementing the SI to this group of data, the value for the parameters A, B, C

and D arc achicved and shown in Equation 4.12.

0.01882 0.03015 —0.0001254
A - B =

—0.04801 —0.3997 —0.000658 (4.12)

- (_291.5 2.414> b= <0>

Therefore, a transfer function form ASC steering model can be generated as shown

in Equation 4.13.

A(s)y(t) = B(s)u(t) + C(s)e(t)

A(s) = 8% + 0.3809s — 0.006075 (4.13)

B(s) = 0.03497s + 0.02044

|
The identified model was validated using the sca trail measured data. As shown in
Figure 4.12, a sct of sea trial data was extracted from Figure 4.11 (time range from

97

21 second to 51 second). Then the corresponding input signal was applied to the
identified ASC steering model, and the output ASC heading angle was recorded and
plotted in Figure 4.12. The best fit (coefficient of determination) was calculated as

88.29%.

Measured and simulated model output
70 T T T T T T

60 .

Phi (deg)
I N o
o o

w
o
T

1

N
o
T

1

%0 25 30 35 40 45 50 55
Time

Figure 4.12: Measured data and simulated model output

99

need to be identified using more experiments. The System Identification (SI) tech-
nique could be used to get a linear model for a complicated system process. However,
it was necessary to find a proper procedure to identify a marine vessel's model, and
to decide the required input and output signals and identification algorithms. There-
fore. Matlab-Simulink was used to perform this initial SI tests. The monohull ship
hyvdrodynamic coefficients were used in tlie 3 DOF nonlincar model as the testing
nodel. Tt was assumed that this nonlincar model can properly describe the monohull
ship’s motion in horizontal plane. By applying the Pscudo Random Binary Sequence
(PRBS) input signals, a linear ship model has eventually been generated. The same
Identification process has also been used on identifying the steering model of the ASC
as stated in Chapter 4.

The ASC hull drag cocfficient was generated from the resistance tests, and the vehicle
sclf-propulsion points were obtained and validated by the sca trials results. Based on
the tow tank tests data. an ASC propulsion system model was developed. Then the
SI was implemented to get the steering model of the ASC. and finally a state space
steering model was achieved.

The main contribution of this thesis project was that a CAN-bus based distributed
communication and control system was successfully built and used on the developed
ASC. In addition. a new weather sensor was successfully integrated into the ASC to
provide wind. temperature and barometric data. Moreover. the full-scale ASC resis-
tance test and self-propulsion tests were performed. and the ASC hull drag coefficients
and self-propulsion points were acquired. Finally. the proposed SI procedures from
simulation part in Chapter 3 were successfully used to obtain a lincar steering model
of the ASC based on the sca trials data. This lincar model will be used in the linecar

controller design in the future.

5.2 Future Works

A new CAN nodc is planned to be integrated into the developed CAN-bus based
commniunication system to enable more on-board autonomy of the ASC. More sensors
arc possible to be connected into the CAN network, so the ASC can perform more
sophisticated ocean survey or environmental monitoring tasks.

The ASC launch and recovery are inconvenient during the seca trials, so a plan to
desigu a specific ASC trailer cart especially for launch and retrieval of the ASC will
be carried out. This trailer cart is still under development, and minor modifications
are needed to comiplete the design.

The geunerated steering model has to be validated by the open water tests, and a more
complete system model that takes into account the environmental interferences will
be generated and evaluated.

A high level navigation and control algorithim will be developed and cxperimented

using the designed ASC.

Bibliography

1]

Z. Li, R. Bachmayer, "The Development of a Robust Autonomous Surface Craft

fro Deployment in Harsh Occan Environments', NECEC conference, 2012.

J. Manley, "Unmanned Surface Vehicles, 15 Years of Development”, Proceedings

Of Occan’08 MTS/IEEE, 2008.

J. Manley, "Development of the Autonomous Surface Craft ACES", Occans "97

MTS/IEEE Conference Proceedings, October, 1997.

C. Goudey, T. Consi, J. Manley, M. Graham, B. Donovan, L. Kiley. "A Robotic
Boat for Autonomous Fish Tracking', Marine Technology Society Journal Vol.

32 No. 1, Spring 1998.

J. Manley, A. Marsh, W. Cornforth, and C. Wiseman. "Evolution of the Au-
tonomous Surface Craft AutoCat'. Proccedings of Oceans 2000, MTS/IEEE
Providence, RI, October. 2000.

G.N. Roberts, R. Sutton, "Advanced in Uninanned Marine Vehicles'. Chapter 16

2006.

A. Pascoal, P. Oliveira, C. Silvestre, L. Sebastiao. M. Rufino, V. Barroso, J.
Gomes, G. Aycla, P. Coince, M. Cardew, A. Ryan, H. Braithwaitc. N. Cardew,

J. Trepte. N. Seube, J. Champeau, P. Dhaussy, V. Sauce, R. Moitic, R. Santos,

101

[12]

[13]

102

F. Cardigos, M. Brussicux, P. Dando, "Robotic ocean vehicles for marine sci-
ence applications: the European ASIMOV project’, OCEANS 2000 MTS/IEEE

Conference and Exhibition , vol.1, no., pp.409-415 vol.1, 2000.

M. Caccia, G. Bruzzone, R. Bono, "A Practical Approach to Modeling and Identi-
fication of Small Autonomous Surface Craft", Oceanic Engineering, IEEE Journal

of , vol.33, no.2, pp.133-145, April 2008.

W. Naeem, T. Xu, R. Sutton, A. Tiano, "The design of a navigation, guidance,
and control system for an unmanned surface vehicle for envirommental monitor-
ing." Proceedings of the Institution of Nechanical Engineers, Part M: Journal of

Engincering for the Maritime Environment June 1, 2008.

J. Curcio, J. Leonard, A. Patrikalakis, "SCOUT - A Low Cost Autonomous

Surface Craft for Researcli in Cooperative Autonomy”, in IEEE Oceans. 2005.

M. Caccia. R. Bouo, Ga. Bruzzoue., Gi. Bruzzone, E. Spirandelli, G. Veruggio.
A M. Stortini, "Design and Exploitation of an Autonomous Surface Vessel for
the Study of Sea-Air Interactions”, Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on |, vol., no., pp. 3582-

3587, 18-22 April 2005

H. Ferrcira, C. Almeida. A. Martins. J. Alneida, N. Dias, A. Dias, E. Silva.
"Autonomous bathymetry for risk assessment with ROAZ robotic surface vehicle”,

OCEANS 2009 - EUROPE |, vol., no., pp.1-6, 11-14 May 2009

http://www.auvsi.org/Home/

[14] http://www.asvglobal .com/commercial-unmanned-marine-vehicles/

asv-6300c

[15]

[16]

[17]

[18]

[19]

[20]

21]
[22]

23]

103

http://www.asvglobal.com/commercial-unmanned-marine-vehicles/c-cat

J.R. Higinbotham, P.G. Kitchener, J.R. Moisan, "Development of a New Long
Duration Solar Powered Autonomous Surface Vehicle," OCEANS 2006 , vol., no.,

pp.1-6, 18-21 Sept. 2006
http://liquidr.com/

M. Dunbabin, A. Grinham. and J. Udy, "An autonomous surface vehicle for
water quality monitoring," in Proc. Australasian Conference on Robotics and

Automation, December 2009.

Y. Girdhar, A. Xu, B.B. Dey, M. Meghjani, F. Shkurti, I. Rekleitis, G. Dudek,
"MARE: Marine Autonomous Robotic Explorer,” Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Confercnce on, vol., no., pp.5048-5053.
25-30 Sept. 2011

S. Howse, M. Goldring and M. Pitcher, "Underwater glider retrieval using an

autonomous surface vehicle", OCEANS 2010, vol., no., pp.1-8, 20-23 Sept. 2010.
http://openp2p.com/pub/a/p2p/2001/12/14/topologies one.html.
http://openp2p.com/pub/a/p2p/2002/01/08/p2p_topologies pt2.html.

L. A. Luft. L. Anderson and F. Cassidy, NMEA 2000 a digital interface for the
21st century. Institute of Navigation’s National Techuical Meeting. San Dicgo.

CA. Jan. 2002.

K. Etschberger. "Countroller Area Network: ™ asics. Protocols, Chips and Appli-

cations,” IXXAT Press, 88250 Weingarten, Germany, 2001.

104

[25] A. Pietak, M. Mikulski, "On the adaptation of CAN BUS network for use in the
ship eclectronic systems," POLISH MARITIME RESEARCH, vol., no., pp.62-69,

2009
[26] http://yachtelectronics.blogspot.ca/
[27] http://www.airmartechnology.com/uploads/brochures/pb200.pdf
[28] http://mbed.org/

29] http://www.u-blox.com/images/downloads/Product Docs/NE0-6_

DataSheet_(GPS.G6-HW-09005) . pdf
130] T. I. Fossen, Guidance and Control of Ocean Vehicles. New York: Wiley, 1994.

[31] E. Lefeber, K.Y. Pettersen, H. Nijmeijer, "Tracking control of an underactuated
ship,” Control Systems Technology, IEEE Transactions on . vol.11, no.1, pp. 52-
61. Jan 2003.

[32] K. D. Do. J. Pan. Control of Ships and Underwater Vehicles. London: Springer-
Verl: 2009.

Appendix

A.1 The controller CAN node program

The controller CAN node program is provided in the following part.

1 #include "mbed.h’

2 #include '"Functions.h’
3 #include "XTend.h'

4 //Initialize the LEDs
5 DigitalOut ledl (LED1) :
6 DigitalOut led2(LED2);
7 DigitalOut led3 (LED3) :
8 DigitalOut led4 (LED4) ;
9 CAN canpic(p30, p29);

10 CAN canairmar (p9,pl0);

11 XTend xtend (pl3.pld)://Serial 115200bps XTend(pl3.pl}) tx.

//CAN sent/received successfully
//XTend error indicator

//temp use

//UTC timeout (blink once every 1.5s)

12 Scrial pc(USBTX, USBRX); //USBtx, rz

13 Timer t: //Count the running time

14 Timeout tnioutl .tmout? ,tmout UTC:

15 char CAN msg[8]={0x01.0x00,0x00.0x32,0x01,0x00,0x00,0x32};:

16 unsigned char CAN_data[8]={0x00};

105

rr

17 unsigned char RTR id[8]={16,17,18.19.20,21.22,23};

18 unsigned char RTR NO[8]={1.2,2,2,3,5,2.5}:

19 unsigned char Nav CAN_msg[88]={0x00 }:

20 unsigned char *p msg=&Nav_CAN_msg[0];

21 unsigned char Airmar msg|[80]={0x00}:

22 unsigned char motor_ CAN_ msg[8]={0x00};

23 unsigned char motor fail msg[8]={0x55.0x00.0x00,0x00.0x56,0
x00.,0x00.0x00};

24 unsigned char *p motormsg=&moto- TAN_msg[0];

25 unsigned char xp_motorfail=&motor_ fail _msg[0];

26 unsigned char UTC wait=1:

27 unsigned char GPS_AHRS_on=1;//GPS and AHRS service flag

28 unsigned char wmotor on=1; //motor service flag

29 //timeout functions definition

30 void atmoutl ()

314

32 GPS AHRS on = 0;

33 1

34 void atmout2()

35 {

36 motor_on=0:

37 }

38 void atmout_UTC()

39 {

40 UTC wait=0;

41 tmout UTC. detach () :

12 }

107

43 //Main Function

44 int main ()

15 {
46
17
18

60
61
62
63
64

66
67

CANNMessage tmsg :
led1=0;led2=0;led3=0;led4 =0;
canpic. frequency (1000000); //CAN freq configured as IMHz
canairmar . frequency (250000) ;
init_ AF () ;
wait (0.5): //wait 0.5s for the power up of all devices
while (1)
{

if (xtend.runstart==1)

{

tmout. UTC. attach (&atmout_ UTC.1.5) ;

t.reset(): t.start();

while (! canpic.read (tmsg) && UTC wait) :
if (UTC wait==0) //UTC wait time arrives
{
UTC _wait=1;
led4=1;wait (0.2) ;:led4=0;//indicate timeout

}
else //CAN message received

{

tmout UTC. detach () ;

68

69
70
71
72
73

74

76
77
78
79
80
81
82
83
84

36
87
88
39
90

108

if (tmsg.data[0]==255 && tmsg.data[l]==255 &&
tmsg. data[2]==255 && tmsg.data[3]==255)

led3=!led3 ;wait (0.1):led3=!led3;
systemrun(&tmsg. data [0]) ;

}

else if (tmsg.data[0]==85 && tinsg.data[l]==85
&& tmsg.data[2]==85 && tmsg.data[3]==85)

{
led3=!lcd3 ;wait (0.1) :led3=!led3;wait (0.1)
led3=!led3 :wait (0.1) ;led3=!led3:
systemrun(&tmsg. data [0]) ;
}
else //GPS fized
{
systemrun(&tmsg. data [0]) :
}
}
}
else
{

tmout_ UTC. attach(&atmout UTC.1.5) ;
while (! canpic . rcad (tmsg) & UTC_wait) ;
if (UTC_ wait==0) //UTC wait time arrives
{

91
92
93
94
95
96

}

UTC_wait=1;

ledd=1;wait (0.2) ;led4=0;

97 void systemrun (unsigned char #p_ msg)

98

99
100
101
102
103
104

106
107
108
109
110
111

112

113
114

115

{

unsigned char XTend cmd=0,XTend nodata=0:

xtend . send (0x10,0x04 ,p_msg) :

wait (0.05);//wait 20ms for GPS and AHRS info ready

t.stop():pc.printf("%f \n\r"., t.rcad()):t.reset():

t.resct(): t.start()://Time logger

can_send (1 ,RTR_id[RTR cmd_1] .8 .CAN msg) :

car “cc(RTR NO[RTR cud 1] ,CAN_data) :

can_scend (1.RTR id[RTR_cmd_4] ,8 ,CAN_ msg) :

can_rec (RTR. NO[RTR_cand 4] ,CAN_data) :

can_send (1.RTR_id[RTR_cmd 6] .8 ,CAN_msg) :

can_rec (RTR NO[RTR cand_6] .CAN_data) ;

can_send (1.,4,8 CAN msg): can rec(1.CAN_data):

can_send (1.7.8 .CAN msg); can_ rec(1.CAN_data):

Airmar_inquire () ; //Added to inquire info from the Airmar
PB200

t.stop():pc.printf{("%f \n\r". t.read()):t.reset();

t.reset () t.start();

switch(xtend.rccceive (XTend cind. XTend nodata))

117
118
119
120

121

122
123
124
125
126

127
128
129
130
131
132

133

case 0: //checksum check fails

led2=!1ed?2;
XTend _emd=0x00:
pc.printf("00 %d %d \n\r" .XTend_cmd, XTend nodata)

pe.printf("%d %d %d %d %d %d %d %d %d %d\n\r",
xtend . XTend_rec[0] . xtend . XTend_rec[1] , xtend.
XTend rec[2],xtend.XTend rec[3] ., xtend .
XTend _rec[4] ,xtend.XTend_rec[5] . xtend .
XTend rec[6] .xtend.XTend_rec[7] ., xtend .
XTend rec[8] ,xtend.XTend rec[9]) ;
Run_ Command(0x33,0) ;
XTend emd=0;XTend nodata=0:
break:
case 250: //runstop command
pc.printf("250 %d %d \n\r" ,XTend cmd, XTend nodata
)
xtend . runstart =0;
xtend . interrupt (1)
break
case 255: //timeout—no respond within the timeout
led2=!1ed2;
XTend emd=0x00 ;
pe. printf ("%d %d %d %d %d %d %d %d %d Yd\n\r ",

xtend . XTend_rec [0] , xtend . XTend _rec[1] ., xtend.

134

136
137
138
139
140
141

142
143

144

148
149 }

}

XTend rec[2],xtend.XTend_rec[3], xtend .

XTend_rec[4] ,xtend.XTend _rec[5] ., xtend.

XTend rec[6],xtend.XTend_rec|[7], xtend.
XTend rec[8],xtend.XTend rec[9]) ;

Run_ Command(0x40,0); //previous value 0zx45 changed

on Aug 9

pe.printf("255 %d %d \n\r" XTend_ cmd,XTend nodata
)

XTend emd=0:XTend nodata=0;

break:
default: //data received and checksum check passes
led3=!led3:

Run_ Command (XTend _cmd, XTend__nodata) ;

pe.printf("default %d % \n\r" .XTend cmd.
XTend_nodata) ;

XTend emd=0:;XTend nodata=0;:

break:

t.stop () :printf("%f \n\r", t.rcad()):t.reset():

xtend . flushserialbuffer ()

GPS_AHRS on—1:

motor on—1;

150 //XTend interrupt function XTend interrupt

151 void XTend interrupt(void)

152 {

153
154
155
156
157
158 }

112

unsigned char cmd=0,nodata=0;

if (xtend.receive (emd, nodata)==10)

{

xtend . runstart=1:

159 //CAN function can_receive

160 char can_ recc(unsigned char counter, unsigned char data[])

161 {
162
163
164

float templ . temp2;

CANNMessage msg;

char 1,11 ;

unsigned char *p=p_msg: //pointer initial value
unsigned char xpus=p motormsg: //pointer to motor message

while { counter)

while (! canpic.read (msg)) :
counter ——;

if (msg.id < 0x0A)

{

switch (msg. id)
{
case 2://FError message from the Left motor
pc.printf("eL\n\r");
led1=!ledl1:

for (ii=0;ii <4;ii++)

197
198
199
200
201
202
203

204

113

{

(pud-ii)=(p_motorfail+ii):
}
break;

case 3://Error message from the Right motor
pc.printf("eR\n\r"):
pi=p_ motormsg+4;
led1=!ledl :

for (ii=0;ii <4:;ii++)

{
(pn-ii) =(p_motorfail+ii+4);
}
break ;
case O:

pi=p__ motorusg ;
pce.printf("L\n\r");
ledl=!ledl ;

for (ii=0;ii <4:ii++)

{
«(pnr+ii)=msg.data | ii |;
}
break:
case 0:

p=p_ motormsg—+4;
pe. printf ("R\u\r"):
ledl=!led1;

222

223
224

226
227

228

for (ii=0;ii <4;ii++)

{

*(pnr-ii)=msg. data|ii |;
1
break:

case 9://reserved
pe.priuntf("%x" ,msg.data[0]) ;
break :

case 10://reserved

break ;
default:
break:
}
}
else if(msg.id < 0x20)
{

IEEE754 htof(msg.data[0] .msg.data[1].msg.data[2],

msg. data [3] , templ):

IEEE754 htof(msg.data[4] ,msg.data[5] .msg.data[6],

msg . data [7] , temp2) :
switch (msg. id)
{
case 16://Longitude+Latitude
break ;
case 17://50G+COG

p=p_ 1msg+8:;

break ;

case 18://Accelz+Accely

p=p_1msg+16;
break:

case 19://Accelz+Angx

p=p_msg+24;
break:

case 20://Angy+Angz
p=p_msg+32;
break;

case 21://MagX+MagY
p=p_msg+40;
break:

case 22://MagZ+Ml1. 1
p=p_msg+48;
break:

case 23://M1.2+MI1.3
p=p_msg+56:
break:

case 24://M2.1+M2.2
p=p_1nsg+64;
break:

case 25://M2,3+MS3. 1
pP=p_msg+72;
break :

case 26://M32+M3.3

115

260
261
262
263
264
265
266
267
268
269
270
271
272 }
273

p=p_1msg+80;

break:
case 27://
break ;
default:
break;
}
ledl = !ledl1:

for (i=0;i <8:i++)

*(p+i)=msg.data|i]; //Data

{
}
}
else
return 0:
}
return 1;

recorded

274 //CAN function can_send (RTR or normal message)

275 void can_send(char RTR choose,int id,

276 {
277
278

279

if (RTR_choose==1) //RTR message

{

int num, char *pointer)

if (canpic. write (CANMessage(id ,0 ,numn, CANRemote,

CANStandard)))

289
290
201 }

292 //

ledl = 'ledl ;

1
1
else //Data message
{
if (canpic. write (CANMessage(id . pointer ., num)))
{
ledl = !ledl
1
1

CAN acceptance filter configuration

293 void init _AF (void)

204 {
295
296
297
298
299
300

301

302

uint32 t address=0;

//Off mode

LPC_CANAF—>AFNR = 0x00000001 ;

//Set explicit standard Frame

LPC CANAF—>SFF sa = address;

//reserved msg and time reference message (id=0 and id=1)

*((volatile uint32_ t) (LPC_CANAF RAM BASE + address)) =
(0X001 << 29) | (0X000 << 16) | (0X001 << 13) | (0X001
<< 0); address-

//Error message from Left and Right motor(id=2 and id=23)

303

304

306
307

308

309

310

311

312

313
314

315

118

*((volatile uint32_t x)(LPC_CANAF RAM BASE + address)) =
(0X001 << 29) | (0X002 << 16) | (0X001 << 13) | (0X003
<< 0); address+=4;

//RTR Response Data frame from Left & Right motor(id=5
and id=6)

*((volatile uint32_t =) (LPC_CANAF RAM BASE + address)) =
(0X001 << 29) | (0X005 << 16) | (0X001 << 13) | (0X006
<< 0); address+=4;

//Reserved for other wsage(id=9 and id=10)

*((volatile uint32_t x)(LPC_CANAF RAM BASE + address)) =
(0X001 << 29) | (0X009 << 16) | (0X001 << 13) | (0X00A
<< 0); address+=4;

//Issue the problem when GPS or AHRS lose the connection(
id=26 and id=27)

*((volatile nint32 t «)(LPC_CANAF RAM BASE + address)) =
(0X001 << 29) | (0X0IA << 16) | (0X001 << 13) | (0X01B
<< 0); address+=4;

//Set group standard Frame(id=15~id=25)

LPC CANAF >SFF GRP sa 0x014;

*((volatile uint32 _t x)(LPC CANAF RAM_BASE + address)) =
(0X001 << 29) | (0X00f << 16) | (0X001 << 13) | (0X019
<< 0); address+=4;

//Set explicit extended Frame for CAN 1

LPC CANA >EFF sa = 0x018;

*((volatile uint32 t x)(LPC_CANAF RAM BASE + address)) =

(0X000 << 29) | (0X9f11223): address+=4: //127250

316

317

318

319

320

321

322

323

324

message

(0X000 << 29) |

message

(0X000 << 29) |

message

(0X000 << 29) |

message

(0X000 << 29) |

message

(0X000 << 29) |

message

(0X000 << 29) |

message

(0X000 << 29) |

message

(0X000 << 29) |

message

*((volatile uint32 t *)(LPC_CANAF RAM BASE +

(0X9f11323); address+=4;

*((volatile uint32 t x)(LPC CANAF_RAM BASE +

(0X9f80123); address+=4;

*((volatile uint32 t x)(LPC_CANAF_RAM BASE +

(0X9f80223); address+—4;

*((volatile uint32_t x)(LPC CANAF RAM BASE +

(0X9fd0223): address+=4;

*((volatile uint32 t *)(LPC CANAF_RAM BASE +

(0Xdf11923); address+=4;

*((volatile uint32 t *)(LPC CANAF RAM BASE +

(0Xdf80923): address+=4;

*((volatile uint32 t *)(LPC_CANAF RAM BASE +

(0X15fd0623) ;address+=4;

*((volatile uint32 t *)(LPC_CANAF RAM BASE +

(0X15fd0723) ;address+=4;

// Set group erxtended Frame

address))
//127251

address))

//129025

address))
// 129026

address))

// 130306

address))

/) 127257

address))
//129033

address))

//130310

address))

//130311

325 LPC_CANAF>EFF GRP sa = 0x03C;

326 // Set End of Table

327 LPC_CANAF—>ENDofTable = 0x03C:

328 //normal mode

329 LPC CANAF>AFNR = 0x00000000 ;

330 }

331 // Transform the information from byte to float

332 void IEEE754 htof(unsigned char a.unsigned char b,unsigned

char c,unsigned char d. float& val)

333 {

334 long temp=0:

335 temp|=a:temp<<=8temp|=b;temp<<=8:
336 temp|=c:temp<<=8temp|=d;:

337 float sp=(float x*)&temp:

338 val=x+p:

339)

340 //This function is used to transform the float data to byle
data for transmission on the CAN bus
341 void TEEE754 ftoh(float val .unsigned char& tl, unsigned char&

t2 .unsigned char& t3 . unsigned char& t4)

342 {

343 long *p=(long *)&val:
344 long temp=xp;

345 td=tempdOxff ;

346 temp>>=8: t3=temp&O0xff;

347 temp>>=8: t2=temp&Oxff:

348 temp>>=8; tl=temp&O0xff;

349 }

A.2 The navigation CAN node program

The navigation CAN node program is provided in the following part.

1 #4include "mbed.h"

2 #include "GPS.h'

3 #include "AHRS.h'

4 #include "math.h’

5 #include 'Func_init.h"

6 //Initialize the LEDs

7 DigitalOut ledl (LEDI1

8 DigitalOut led2 (LED2
(

LED3

)
) ;
9 DigitalOut led3)
)

10 DigitalOut led4 (LED4
11 //Interfaces defination

12 CAN navigator_can(p30, p29)://rd,

13 Serial pe(USBTX, USBRX) ; //tr .
14 GPS gps(pl3. pld): J/tr .
15 AHRS ahrs(p9, pl0): J/tr .

16 Timer t;

//CAN sent successfully(blink)
//GPS data invalid(blink)
//AHRS data invalid({blink)

//Program runs normally(blink)

td (connected with MCP2551)
rT
ri

rr

17 unsigned ct - msg send[88, {0x00.0x00,0x00.0x00.0x00.0x00,0

x00.,0x00 }: //Rows=11. Columns=8

18 char *p msg=(char =)&msg send [0];

message address

//pointer to the 1st CAN

122

19 char can_1msg[8]={0x00 };
20 //Main function

21 int main ()

22 {

23 int i;

24 led1=0:1led2=0:;led3=0:1lcd4 =0;

25 gps.iuitial ():

26 navigator can.frequency (1000000): //CAN freq configured as
IMHz (CAN frequency 125000bps)

27 init_ AF(): //CAN filter configuration

28 //Only accept the id=9 and id=10 message

29 navigator can.attach(&can__interrupt):

30 gps.sample () ;

31 while (1)

32 {

33 switch (gps.sample())

34 {

35 case 0://data not fized

36 led2=1;wait (0.1) :led2=0; //LED2 blink

37 for (i=0:i<gps.number+1:i++)

38 {

39 pe.printf ("% gps.msg[i]):

40 }

41 pe.printf("\r\n");

42 break ;

43 case 1://data wvalid

4

46
47

18

W |
D

pc.printf("1 \r\n"):

for (1=0;i<gps.number+1;i+-+)

{

pe. printf("Yc" .gps.msg[i]):

}

pc.printf("\r\n"):

IEEE754 ftoh(gps.longitude .msg send[0]
msg__send [1] ,msg_send [2] .msg send [3]) ;
J/longitude

IEEET54 ftoh{gps.latitude .msg_send[4].
msg_send [5] Jmsg send [6] cmsg_send [T]) -
//latitude

IEEE754 ftoh(gps.sog .msg scend[8] . msg send
9] .msg _send[10] .msg_send [11]) : //
speed over ground (SOG)

IEEE754 ftoh(gps.cog .msg send|12] .msg__send
[13].msg send[14] .msg send [15]) : //
course over ground (COG)

break:

case 2://No gps signal at all

for (i=0:i<gps.number+1:1++)
{
pe.printf ("' (gps.msg[i]);
1
pe.printf("\r\n"):
break:

123

82 }

case 255://Checksum fails

pe.printf("255 \r\n"):
break :
default:
pc.printf("default");
break :
}

if (ahrs.sample(0xcc,79))

{

for (i=0:1<72:1++4)

{

msg_send[16+i]=ahrs.rec[i+1];

else

ted3=1;wait (0.1) ;led3=0;

}

ledd=!ledd://indicate that the program is running

83 void can_interrupt (void)

84 {
85
86
87

CANNMessage msg:
//Check if CAN message received

if (navigator can.recad (wsg))

89
90
91
92
93
94
95
96

97
98
99
100
101
102
103

104

106
107

108

109
110

if (msg.type=CANRemote) //RTR message
{

switch (msg. id)

{

case 16://GPS data—longitude and latitude
can_send (0x010,8 ,p_msg) :
break :

case 17://GPS data—longitude latitude and SOG
and COG
can_send (0x010,8 ,p_msg) :
can_send (0x011.,8 ,p_msg+8);
break:

case 18://Accel z, y and z. and AngRate z

\
can_send (0x012 .8 .p_msg+16):
can_scend (0x013 .8 .p_msg+24); j
break:
case 19://Accel 2z and AngRate x. y and =z

can_send (0x013 .8 .p_msg+24):

can_send (0x014 ,8 .p msg+32);

break ;
case 20://Accel z. y and z: AngRate r, y and

z
can_send (0x012 .8 ,p_msg+16):
can_send (0x013 .8 .p_msg+24): /Swait (0.07)

/) ftime too long?

111
112

113

can_send (0x014 ,8 ,p_msg+32):

break:

case 21://GPS info,; Accel . y and z: AngRate
r, y and z
can_send (0x010 .8 ,p_msg) :
can_ send (0x011,8 ,p_msg+8):
can_send (0x012 ,8 ,p_msg+16); wait (0.07) :
can_send (0x013,8 .p_msg+24);
can_send (0x014 .8 ,p_1msg+32);
break:

case 22://AHRS MagX MagY MagZ MI. 1
can_send (0x015,8 ,p_msg+40);
can_send (0x016 ,8 ,p_msg+48):
break :

case 23://MagZ and Rotation Matrir
can_send (0x016 ,8 ,p_nisg+48) ;
can_send (0x017 .8 .p_msg+56):
can_scnd (0x018,8 .p_msg+64): wait (0.07) :
can_send (0x019 .8 .p msg+72):
can_scend (0x0TA 8 .p_msg+80) ;
break :

case 20:
led4=1;wait (0.1):;led4=0;
break ;

case 28:

break :

160 LPC_CANAF—>SFF_GRP_sa = 0x004 ;

161 J/(id=15~id=28)

162 *((volatile uint32 t x)(LPC_CANAF RAM BASE + address)) =
(0X001 << 29) | (0X00f << 16) | (0X001 << 13) | (0X01C
<< 0):

163 J/Set explicit extended Frame

164 ILPC_CANA >EFF_sa = 0x008;

165 J// Set group extended Frame

166 LPC CANAF—>EFF_GRP_sa = 0x008:

167 // Set End of Table

168 IPC_CANAFE—>ENDofTable = 0x008:

169 //normal mode

170 LPC_CANA AFMR = 0x00000000;

171 }

172 //This function if used for CAN message sending

173 void can_send(int id, int nun, char *pointer)

174 {

175 if (navigator can.write (CANMessage(id, pointer, num)))
176 {

177 ledl=!ledl: //CAN message sent successfully

178 }

179 }

180 //This function is used to transform the float data to byte
data for transmission on the CAN bus
181 void IEEE754 ftoh(float val . unsigned char& tl ,unsigned char&

t2 .unsigned char& t3 . unsigned char& td)

182 {

183
184
185
186
187
188
189 }

long %1 long x)&val;
long temp=xp;
td=temp&Ox ff :

temp>>=8: t3=temp&O0xf{f ;
temp>>=8; t2=temp&Oxff ;

temp>> 8. t° emp&Oxff:

190 //This function is wused to transform the information from

byte to float for calculation

191 void IEEE754 htof(unsigned char a,unsigned char b.unsigned

192 {
193
194

197
198 }

char c,unsigned char d, float& val)

long temp=0;

temy =a;temp<<=8temp|=b;temp<<=8§;
temp|=c ;temp<<=8;temp|=d;

float *p=(float =x)&tcmnp;

val=x*p:

A.3 The motor controller CAN node program

The motor controller CAN node program is provided in the following part.

1 #include <p18f258 . h> // PIC Controller header file

2 #include <usart.h>

3 #include <delays.h>

130

4 #include <timers . h>

5 #include "datatype.h’

6 #include "functions.h’

7 //Function declaration

8 void rx handler (void);

9 //Global wvariables declaration

10 uint8 rs485 msg[15]:

11 uint8 rs485 1r[13]={0x01,0x02,0x03,0x04 }:
12 uint8 rs485 updt[8]={0x01,0x00.0x00.0x32};
13 uint& rgd85 status:

14 //Macro define

15 #define L or R 0

16 //Necessary configuration for PIC

17 #pragma config WDI=OFF //Disable watchdog timer
18 #pragma config OSC=HS //Oscillator selection
19 #pragma config OSCS=OFF

20 #pragma config LVP=OFF

21 #pragma code rx_interrupt = 0x8

22 void rx_int (void)

23 {

24 _asm goto rx_ handler _endasm

25 }

26 #pragma code

27 #pragma interrupt rx_ handler

28 void rx_ handler (void)

29 {

INTCONbits . GIE=0;
i f (RXBOCONbits .RXRTRRO)
{

#if L or I

{

i f (RXBOSIDL==0x90)
{

if ('rsd485_ status)

can_send (0x0040 ,8 ,rs485 _updt);

else

can_seud (0x00a0 ,8 ,rs485_updt):

}
#else

{
if (RXBOSIDL==0x{0)

{

if (!rs485_status)

can_send (0x0060 .8 ,rs485__updt):

else

can_send (0x00c0 .8 ,1s485 updt):

}
#endif

else

62
63
04

66
67

68
69
70
71
72
73
74}
7

(S5

#if L or R==l

{
rs485__updt [0]=RXB0ODO;

if (rs485_ updt[0] >0x20) rs485_updt[0]=0x20;
rs485 updt[1]=RXB0DI1:rs485 updt[2]=RXB0D2;rs485 updt
[3]=RXB0OD3;
}
#else
{
rs485__updt [0]=RXB0D4;
if (rs485_ updt[0] >0x20) rs485 _updt[0]=0x20;
15485 updt[1° RXBOD5;1rs485 updt[2]=RXB0D6; rs485_ updt
'3]=RXBODT;
}
#endif
}
PIR3bits . RXBOIF=0;:
RXBOCONbits . RXFUI)
INTCONDits. GIE=1:

//main function

76 void main{void)

77 {
78
79

uintg 1i:

INTCON = 0x00; //disable all interrupts

30
81
32
83
84

86
87
33
89
90
91
92
93

94

96
97
98
99
100
101
102
103

104

133

J/Initialization of all

pin_init();

usart init():

can_init():

timerO__init () ;

//motor initialization command

msg switch (0) :

rs485 send (15.rs485_msg) ;

//Enable global interrupt enable bit

INTCON=0xc0; //enable interrupt

while (1)

i
J//check received data status of motor
if(rsd85 rev(9)) //if reception data is received

successfully

rs485 status=1; //rs4{85 connection right

else

rs485 _status=0; //rs485 connection fail
//set command for motor
msg switch (1)

15485 send (15,rs485_ msg) :

105 }
106 //Initialization of all modules for PIC18f258

107 void pin_init (void)

108 {
109
110
111
112
113 }

J/Microcontroller Pin Initialization
PORT#):TRISA=0;
PORTB=0;TRISB=0:
PORTC=0:TRISC=0;

114 //Initialization of UART for PIC18f258

115 void usart_init(void)

116 {
117
118
119
120
121
122
123
124

127
128

129 }

TRISCbits. TRISC6=0;//Define RX as input
TRISCbhits . TRISCT7=1;//Define TX as output
//Open USART configured as 8—bit data, 9600 baud
//Include the config of TXEN and SPEN enable
//and USART pin RC6/TX and RC7/RX config
OpenUSART (USART _TX_INT OFF &

USART RX INT OFF &

USART ASYNCH MODE &

USART EIGHT BIT &

USART_CONT RX &

USART BRGH HIGH, 129):

delayms (100) .

130 //Initialization of timer(0 module for PIC18f258

131 void timer0O_ init(void)

132 {

133 //1:256 prescale wvalue, 16 bit timer

134 TOCON = 0x07; // Configure timer. but don 't start it
yet
135 TMROH = 0x67; // Reset Timer0 to 0x6769—follow

the steps first—H, then—L

136 TMROL = 0x69; // 2s timer(1s=0xB3BJ)
137 INTCONDits . TMROIF = 0; // Clear Timer0 overflow flag
138 }

139 //Initialization of CAN module for PIC18f258
140 void can_ init (void)

141 {

142 //Pin config—RB3/CANRX, RB2/CANTX

143 TRISBbits . TRISB3=1;

144 TRISBbits. TRISB2=0:

145 //Configuration mode—wait

]

146 CANCON=0x30:

147 while (~CANSTATbhits.OPNODE2) ;

148 BRGCON1=0x00 : //SIW=1xTQ: TQ= (2 1) /20 Mbps : TO=0. 1 ws :

149 BRGCON2=0x98: //Prop=1xTQ: Phase 1 =4xTQ

150 BRGCON3=0x03: //Phase2=4xTQ

151 TXBOCON=0X03: //Transmit priority bits (buffer priority)
152 //highest priority

153 TXBOSIDH=0x00: //id=00 >00000100000

154 TXBOSIDL=0x20:

187
188
189
190
191
192
193

194

196

RXMOSIDL=0Xe0;
#if [_or_R==1
J/Filter config—only accept id=0x0080
RXFOSIDH=0x00:
RXFOSIDI)x80:
RXFOSIDLbits . EXIDEN=0:
#else
J/Filter config—only accept id=0x00e0
RXFOSIDH=0x00:
RXFOSIDL=0xc0 ;
//RXFOSIDL=0280 ;
RXFOSIDLbits " IDEN=0;
#endif

//Normal mode—wait

CANCON=0x00 ;
while (CANSTAThits . OPNODE2) ;

197 //Initialize the CAN interrupt

198
199
200
201
202
203

204

}

PIR3=0x00: //clear all interrupt flag
PIE3=0x01 ;

IPR3=0x01 ;

void can_send(uintl6 id. uint8 num, uint8 msgl])

{

TXBOSIDH=(id >>8)&0xff; //id_H
TXBOSIDL=id &0 x ff : //id_L
TXBOSIDLbits . EXIDE=0: //standard identifier 11 bits

137

222
223

224

228
229

230

231

}

//Data length

TXBODLC=num;

//Data_ Send
TXBODO=msg [0];
TXBODl=wmsg [1];
TXBOD2=msg [2]:
TXBOD3=msg [3] :
TXBOD4=msg [4]:
TXBODS=msg [5] :
TXBODG=msg [6] ;
TXBODT=msg [7];
TXBOCONbDits . TXREQ—=1:
while (~PIR3bits . TXBOIF) ;
TXBOCONbDits . TXREQ=0:

void msg switch(uint8 sw)

{

switch (sw)
{
case 0://initialize the motor
config_msg _motor (0x00.0x00.0x00.0x00);
break:
case 1://set command
config msg motor(rs485_updt [0] .rs485_updt [1],rs485 updt
[2],rs485_updt [3])://0202.0z00.0x01 .06/

break

257
258

260

261

271
272
273

274

275

}

rs485 msg [9]
rs485 msg[10]
— 0264)

direction ;

power ;

// Direction

// Power (0 — 100% —> 0x00

cre=cal _cre(0,rs485 msg.,11);

rs485 msg[12]

rs485_ msg[11]

rs485_ msg[13]
dir.

rsd485 msg[14]
dir.

return 1;

cre Oxff;

// cre_low

(cre>>8)"0xft; // crc _high

Oxff:

Oxff;

uint8 get_msg_motor(void)

{

uintl6é crc;

// dummy byte for rs{85—driver

// dummy byte for rsf{85—driver

J/len="7:

//Query Software from Torgeedo thruster

rs485 msg [0]
rs485_msg [1]
rsd85_ misg [2]
rsd485_msg [3]
rs485 msg [4]

rs485 msg|[5]

//rs485 msg[5

check

rsd85_ msg [6]

/

0x80;
0x10:
0x01 :
0x20:
0x00:
0x01:

0x50:

0x00:

// Destination Address
// Source Address
// PCB
// INS—qget
// ID MSB
// ID LSB
// ID LSB supply wvoltage

// Length of Data

rsd8F wmsg[9] = 0xff; // dummy byte for rsf{85—driver

277

278
279
280
281
282 }

dir.

rs485_msg[10] = Oxff; // dummy byte for rsf{85—driver
dir.

cre=cal_crc (0,rs485 _msg.7) ;

rsd85_msg [8] = cre 0xff: //cre_low—CHKO

rsd85_ msg [7] = (cre>>8)"0xff: //erc_ high—CHK1

return 1;:

283 //rs487 send

281 uint8 rs485_send (uint8 nwm, uint8 msgl])

285 {
286
287
288

289

290
291
292
293

294

uint8 1
TRISAbits . TRISAO=1: //SP{85 TX EN
delayms (10); //necessary delay
//This delay solve the problem of the information
initial diffe
//rence between the two SBC28PCs
for (i=0:i<uum: i++)
{
while (BusyUSART ()) ;
WriteUSART (msg[1]) :
1
//delayms (10) ;
while (BusyUSART ()) ; //delayms (1) :
TRISAbits . TRISA0O=0; //SP485_RX_EN

142

299 return 1;

300 }

301 //rs485_receive

302 uint8 1sd85 rev(uint8 num)

303 {

304 uint8 i

305 TOCONDits IMROON = 1;//Start Timer 0
306 //2s idle—>break out

307 for (i=0;i<num;i++)

308 {

309 while (! PIR1bits . RCIF)
310 {

311 if (INTCONDbits. TMROIF)
312 {

313 timer0_init () :
314 return 0;

315 }

316 }

317 rs485 _r [i]|=RCREG:

318)

319 timerO__init ():

320 return 1:

321 }

322 uintl6 cal crc(uintl6 cre, uint8 xptr, uintl6é len)

323 {

324

339
340
341
342
343
344

H

static const uint8 oddparity[16] ={ 0, 1, 1, 0, 1, 0, 0,

1. 1. 0.0, 1,0, 1, 1,0 }:

uintl6 idata;

for (: len:; —Ilen)

{
idata = (xptr = crc) & Oxff;
ptr++;
cre >>= 8

if (oddparity[idata & 0x0f] = oddparity[idata >> 4])
crec ~= 0xc001;

idata <<= 6:

cre ~ idata:

idata <<= 1;

cre “= idata;

}

return crc:

//delay (1~65535)ms

void delayms(uintl6 tm)

{

do

Delayl00TCYx (50): //1ms

} while(——tm) :

349 //delay (1~255)s

350 void delays(uint8 tm)

351 {

352 do

353 {

354 Delayl0KTCYx(250) 1 //500ms
355 DelaylOKTCYx(250) ; //500ms

356 }while(——tm) ;
357 }

