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Abstract 

The Autonomous Surface Craft (ASC) features fast development in the past few years; 

however , among publications about ASCs, few discussions are about ASC robustness 

and especially the reliable operation of t he ASC in the harsh ocean environment. 

Therefore, in this thesis project , a robust ASC that is mainly used for reliable opera­

tion in the harsh ocean environment offshore Newfoundland is designed . As the first 

ASC prototype developed in the Autonomous Ocean Systems Laboratory (AOSL), 

the main concentration is on reliable ASC electrical and communication system de­

sign and the ASC system testing and modelling. 

The ASC on-board communication and control system implements the Controller Area 

Network (CAN) protocol. External communication with the dock-side computer is 

built on 900 MHz wireless modems. Four CAN modules are developed to work on the 

on-board communication network, and many off-the-shelf electrical components were 

chosen to build t he electrical system, which include t he Global Positioning System 

(GPS) , Attitude and Heading Reference System (AHRS), Weather Station (\ iVS) and 

t he mbedTM microcontroller. Time synchronization of separate CAN modules inside 

this CA network is addressed using t he presented t ime reference message (TRM) 

based synchronization mechanism, and t he achieved characteristics are validated using 

a DP04034 oscilloscope. The wireless communication link plays an important role in 

ASC testing, and it can be used to transmit t he supervisory command and ASC sensor 
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data between the ASC and the dock-side computer. To support this feature, a Matlab 

based Graphic User Interface (GUI) is designed to work on the dock computer as the 

control terminal and the display monitor of the ASC status data. A hand controller 

is integrated into this GUI for intuitive control of the vehicle, and the ASC position 

can be shown in quasi-real- time in Google Earth software. 

A hydrodynamic 3 Degrees of Freedom (DOF) nonlinear model for describing the 

motion of t he ASC is generated. Two methods, including the Taylor series expansion 

method and the system identification (SI) method, are used for model linearization. 

The designed ASC system was validated by some initial tests, and following t hat, 

the tow tank tests were performed to determine the vehicle hull resistance and self­

propulsion points . Based on t he tow tank test data, a propulsion system model was 

built , and these results were validated by sea t rials performed in Holyrood , Conception 

Bay South, NL. Using the sea trials ' data, a state-space steering model for the ASC 

was identified based on the SI method. 
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Chapter 1 

Introduction 

1.1 Past ASC Developments and Applications 

An Autonomous Surface Craft (ASC) or Unmanned Surface Vehicle (USV) is a type 

of marine robot ic device that can operate autonomously or be remotely controlled 

in lakes , rivers and the oceans. With increasing interest in the ocean environment 

exploration and inland water area monitoring, various ASC prototypes have been 

proposed in the past 20 years. As an example, Figure 1.1 shows a catamaran-type 

ASC t hat the aut hor worked on for the past two years in the Autonomous Ocean 

Systems Laboratory (AOSL) at Memorial University [1]. 

In the United States, the ASC prototype ARTEMIS was firstly introduced by the 

MIT1 Sea Grant College Program in 1993, and in this design a scaled model (1/ 17) 

trawler boat, was produced mainly for the validation of the navigation and control 

systems [2] [3] . However, owing to its small size, ARTEMIS had limited endurance 

and could only perform a simple bathymetric survey within the Charles River in 

Boston. Subsequently, to increase the size and endurance, a kayak hull based ASC 

1 Massachusetts Institute of Technology 

1 
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Figure 1.1: A catamaran-type ASC under development at Memorial University [1] 

was proposed. Equipped wit h an acoustic tracking syst m , this kayak ASC could 

complete the task of tracking t agged fish in an open sea environment [4] . In 1996, a 

cat amaran-shaped ASC, ACES [3] , was developed to provide better roll st ability and 

longer endurance compared with former designs. ACES used a gasoline engine for 

propulsion and batteries to power the on-board electronic systems. T he mechanical 

structure t ha t linked t he two hulls was also the support for the sensors that were 

suitable for t he hydrographic survey. T hough the gasoline engine could give the 

vehicle satisfactory speed, pitch oscillations at high speeds affected the bathymetric 

measurements, which led to the modification of the ent ire mechanical system after the 

init ial sea trials. During this overhaul, the vehicle was stabilized and outfitted with 

an electric propulsion system to enable better controllability [5]. Inspired by t he MIT 
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projects, many academic institutions in Europe began to develop their own ASCs 

in the late 1990's, and almost all the institutions preferred to use the cat amaran­

type ASC prototype for better roll stability and more payload capacity. Starting 

from 1998, the ASC MESSIN [6], designed using the Small Waterplane Area Twin 

Hull (SWATH) principle, was developed in Germany for ocean survey and human 

rescue. The MESSIN proposed an accurate navigation system in its operation, and 

the model based control algorithm allowed for the desired path-following in ocean 

exploration. Initiated in 1998, the project ASIMOV [7] was int roduced to research the 

method for coordination between the ASC and an Autonomous Underwater Vehicle 

(AUV) in ocean data acquisition. In this project, a catamaran-type ASC Delfim [7], 

developed by Lisbon IST, was capable of building a fast data communication link 

with the AUV, and the Delfim could collect the ocean data independently based 

on its own onboard sensors. Following up this trend, the Charlie ASC sponsored 

by t he Institute of Intelligent Systems for Automation , from the National Research 

Council of Italy (CNR-ISSIA) was specifically developed for Antarctica sea surface 

microlayer sampling [8]. Furthermore, the Springer ASC supported by the University 

of Plymouth UK, was used for environmental monitoring and pollutants t racking [9]. 

These early explorations formed an excellent basis for the accelerating improvement 

of t he ASC in the past few years . In 2004, t he kayak model based ASC SCOUTs 

were developed by t he MIT Sea Grant to serve as a test platform for various re­

search purposes [10]. These applications include the validation of multi-vehicle coor­

dination between the ASCs or the ASC and AUV and target tracking cont rol using 

multiple vehicles (Figure 1.2). In addition, equipped with a winch system and a 

Conductivity-Temperature Depth Sensor (CTD), SCOUTs could perform more so­

phisticated ocean monitoring tasks. Based on the Charlie ASC design, CNR-ISSIA 

proposed the SESAMO project with a new sea surface microlayer sampling mecha-
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nism for service in Antarctic coastal areas used to determine the interaction between 

t he ocean and low atmosphere [11]. In Portugal, t he catamaran-type ASC ROAZII 

was developed to perform basic bathymetric surveys and was mainly used for coast line 

shallow water land interface zones risk assessment [12] . 

Figure 1.2: Multi-ASC cooperations [10] 

T he annual International RoboBoat Competition hosted by AUVSI1 [13] in the United 

States attracts students from all over t he world to become involved in intelligent ASC 

development. Different from academic designs, t he compet ing ASCs ' hull types are 

more flexible and the developed system mainly focuses on the competition events; 

however, out fitted wit h the navigation, control and propulsion system, t he ASCs 

gained excellent performance in water. T he highlight of t he competing ASCs is the 

successful integration of a vision system, enabling color identification funct ionality. 

1T he Association for Unmanned Vehicle Systems Internat ional 
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These designs validate t hat vision system based ASC prototypes are possible to be 

constructed in support of obstacle avoidance. Figure 1.3 shows a vision-based ASC 

example from Florida Atlantic University [13]. 

Figure 1.3: GUSS ASC wit h vision system from Florida At lant ic University [13] 

In t he military, ASCs were mainly used for coastal and harbor security and mme 

sweeping purposes. In 2007, the US Navy announced "The Navy Unmanned Surface 

Vehicle Master P lan ", which detailed how t he US Navy would catch up in t he research 

of ASC in the following few years. In this report, the ASC's unique position in the 

construct ion of the naval network is indicated , since it serves as the communication 

interface between the land , the air and the underwater vehicles. Following this trend, 
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some US companies began to develop conceptual ASCs for both commercial and 

military implementations. T he semi-submersible ASC 6300C (or C-Hunter) from 

ASV Ltd. , as shown in Figure 1.4, was produced for various ocean applications [14]. 

Its single hull small waterline feature provides excellent stability in the ocean , and 

equipped with side-scan sonar, CTD1 and other sensors, guaranteed the use of the 

vehicle for various scient ific tasks. The catamaran-type ASC C-CAT proposed by 

the same company was supposed to have the long-range communication capability as 

far as 8 km [15]. To further increase the endurance, developers started to look into 

the usage of renewable energies in the ocean, such as wind, waves and solar energy. 

Unmanned Ocean Vehicles Inc. proposed a single hull ASC with rigid sails and solar 

cells for onboard power; Emergent Space Technologies produced a mono hull solar 

powered ASC OASIS [16]; Liquid Robot ics, on the other hand, provided a creative 

design t hat took advantage of wave energy. Though all t hese designs still remain 

at the level of system testing, they illustrate the potential use of renewable ocean 

energies as a primary or secondary energy source in future design for long range and 

long endurance ASCs [17]. 

In Australia, a solar powered catamaran-type ASC was developed in 2009 [18], and 

this vehicle was used for inland water quality and greenhouse gas monitoring. In 2011 , 

McGill University introduced the catamaran-type ASC MARE [19], and the highlight 

of t his vehicle is its usage of the air propeller as the propulsion system, which could 

perform the ocean surveying tasks with the minimum disturbance to the sea surface. 

The AOSL at Memorial University started to develop a SWATH-type ASC concept 

in 2010 for t he task of underwater glider recovery [20]. Based on previous system 

design experience, a new multi-purpose catamaran-type ASC is designed (Figure 1.1). 

Special emphasis is given to robustness and operational capabilities in the coastal 

1 CTD is an essential instrument in physical oceanography to measure Conductivity, Tempera ture, 
and Depth. 
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Figure 1.4: C-HUNTER semi-submersible ASC from ASV Ltd. [14] 

waters offshore Newfoundland, and since this ASC is a first prototype, it is used to 

develop the communication, control and power system archit ecture, and provide us 

with operational experience in the coastal waters of Newfoundland. 

1.2 The ASC System Design Methods Comparison 

T hough various methods have been used in developing the communication and control 

system for previous ASCs, from a high-level view, all these systems can be generally 

divided into two categories: centralized and decentralized systems. Figure 1.5 shows a 

simplified structure of these two topologies. Each node is represented by a black box 

and each solid line represents the physical and information connection between the 

nodes. In the real world , the nodes are computers, microcontrollers or sensor units, 
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and the information is exchanged by using different communication protocols. T he left 

centralized system consists of 5 nodes, and node 1, as t he main processing unit , has 

to handle all the information and functions transferred from different modules. In the 

right decentralized system, each node plays a relatively equal role in the information 

exchange and data processing [21]. 

1 

2 3 4 5 5 

Figure 1.5: Cent ralized and decentralized system topology 

Based on t he proposed categorization and the simplified topology expression, it is pos­

sible to evaluate t he two ASC system design methods [22] . T he centralized topology 

is the most straightforward structure; all the accessory equipment is connected wit h 

t he one core processing unit. Since all the data are gathered into one place, the main 

processing unit is capable of managing the whole system. A cent ralized structure is 

easy to implement and by designing robust and int elligent software for the main pro­

cessing unit, it is possible to guarantee system security. This syst em design technique 

is widely used in t he development of an ASC system; however , as not considering the 

fault-tolerance and extensibility of a system, the whole system is shut down even if a 

small fault occurs, since almost all data is cent ralized on t he central processing unit. 
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An argument for centralized structure is that more reliable software can be designed 

to avoid the whole system shut-down; however , development will take more t ime, and 

an increase in software complexity can lead to difficulties maintaining and modifying 

the system. Regarding system extensibility, the centralized structure is limited by the 

main processing unit resources. 

System fault-tolerance and extensibility can be acquired by implementing the decen­

tralized system. In a decentralized system, each node has its own assigned task and 

is playing a relatively equal role for data processing and exchange, so when one or 

even a few nodes do not work properly, t he rest of the system can still operate. The 

decentralized system extensibility is not restricted to the central processing unit , and 

additional node can join the original system wit hout changing the existed programs 

and system structure. With multiple nodes working together, a decentralized system 

also tends to accomplish more sophisticated tasks than a centralized system. However, 

a decentralized system is hard to manage, because different nodes work separately. 

1.3 Problem Statement 

T he size and weight of most existing ASCs are relatively small, so these ASCs are 

sensitive to environmental interferences including wind, current and wave. According 

to the literature review, many existing ASCs were designed for the inland water 

applications such as lakes, rivers and reservoirs [3]- [19], where weather is predictable 

and has little effect on the ASCs' proper operation. However, for the implementation 

of an ASC system in harsh ocean environment , especially offshore Newfoundland , the 

environmental situation has to be considered. Low temperature, strong wind and 

large currents and waves have a big effect on t he working status of the ASC; for 

reliable ocean exploration , a robust ASC system design is needed . 
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The ASC system is required to carry different sensors in support of the environmental 

monitoring and measurement tasks, therefore a system structure that supports fast 

integration and flexible connection with the potential sensors is preferred . For reli­

able operation in the ocean , ASC system fault-tolerance is also necessary. Compared 

with t he centralized system, it is more difficult to build a decentralized system, be­

cause each node inside the decentralized system has to be designed and programmed 

independently. However , to deploy an ASC for ocean exploration offshore Newfound­

land, the ASC system reliability, fault-tolerance, extensibility and design difficulty 

are comprehensively considered. Eventually, a decentralized ASC system structure is 

chosen. 

To tackle t he downside of a decent ralized system, a Controller Area etwork (CAN) 

protocol based bus architecture is used. The proposed CAN-bus system can increase 

the decentralized system manageability, because all the nodes share the same physical 

transmission media for information transmission. The CAN network robustness is 

guaranteed by t he CAN protocol defined error detection mechanism. 

1.4 Thesis Outline 

Chapter 1 

Past development of the ASC is discussed , and based on the literatur review, two 

ASC system design methods are compared . The challenge of developing a robust ASC 

for deployment in the harsh ocean environment , especially offshore Newfoundland , is 

introduced . 

Chapter 2 

An overview of the design considerations of the developed ASC system is provided . 

A general introduction of the CAN, NMEA 2000 standard and Time-Triggered CAN 
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protocol is presented. The details of how the on-board communication system is built 

are introduced , and the d tailed program design methods for different CAN nodes 

and a software Graphic User Interface (CUI) are provided. 

Chapter 3 

Generation of a simplified 3 Degrees of Freedom (DOF) nonlinear model for describing 

the dynamic motion of the ASC. Two linearization methods are applied to achieve 

the linearized ASC model. 

Chapter 4 

Evaluation of the proper functionality of t he ASC system by some init ial tests . Tow 

tank tests have been performed to get the ASC hull resistance coefficient and self­

propulsion points. Based on the tow tank test results, a propulsion model is generat d. 

To validate this model, sea trials have been carried out in Holyrood , Conception Bay, 

Newfoundland. The comparison of these results are presented. Based on the sea t rails 

data, a linear ASC steering model is identified. 

Chapter 5 

Conclusions and a description of future works. 



Chapter 2 

The Autonomous Surface Craft 

System Design 

2.1 The ASC System Design Overview 

In [20], a 8\iVATH-type ASC development concept was developed in the AOSL at 

Memorial University for the task of underwater gliders recovery. Based on this pre­

vious system design experience, the AOSL started to develop a new catamaran-type 

multi-purpose ASC in 2010. T his multi-purpose ASC is designed to be robust enough 

for operation in the coastal waters of Newfoundland and Labrador , wit h the principal 

tasks to collect oceanographic data and serve as a surface gateway for underwater 

vehicles assisting them with communication, navigation and control. 

In t his part, an overview of this developed ASC system is provided. Figure 2.1 shows 

an original design of the AOSL ASC. In this design a twin hull catamaran-type ASC is 

built. Two round through-holes from top to bottom of the hull are located on the front 

and rear part of the vehicle. The aft through-holes are used for holding t he propulsion 

system, while the front ones are used for connecting the bottom sensors to t he main 

12 
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communication system. Inside each hull , there is space for storage of batteries and 

other electrical components, and each hull is sealed with t he transparent plastic hatch 

cover. The two hulls are ruggedly connected by two aluminum beams. On top of the 

ASC hulls is superstructure tubing, used for mounting antennas and necessary electric 

components. 

Components 

Figure 2. 1: The AOSL ASC original design 

F igure 2.2 shows t he final realization of the AOSL ASC system. This catamaran-type 

ASC is driven by two independently controlled electric motors installed at the rear part 

of each hull. Though there is no rudder in this ASC design , the vehicle can be steered 
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by applying differential thrust from the propulsion system. This ASC measures 1.5 m 

in length and 1 min width , and the draft of the vehicle is around 0.37 m under testing 

and working conditions. With six batteries and the superstructure mounted on the 

vehicle, the total weight is 146 kg. The on-board communication system is built using 

the Controller Area Network (CAN) protocol, and based on the designed decentralized 

system structure, four CAN modules were developed independently (labeled from 1 

to 4 in Figure 2.2) to work on this CA network which will be described in more 

detail in t he electrical system design section. A weather station (WS) is installed to 

measure the wind data, temperature and barometric pressure, and a CAN node that 

integrates t he Global Positioning System (GPS) and Attitude and Heading Reference 

System (AHRS) is used to provide accurate ASC navigation information. In addition, 

a 900 MHz wireless modem is integrated to t he system to enable on-board sensor data 

and supervisory commands exchange between the ASC and t he dock-side computer. 

As shown in Figure 2.2, the ASC features the distributed communication system 

structure and in total four separate CAN modules were developed. Since each CAN 

module has its own assigned task, t hey have to be developed with their own programs. 

At the same time, in order to increase system manageability and make all nodes 

work in an orderly way, the Time Reference Message (TRM) t ime synchronization 

mechanism is introduced. Moreover, a GUI software package is developed on the 

dock-side computer to work with t he wireless communication system for sensor data 

display and ASC control. A discussion of programs and software realization details is 

provided in the program development section. 

A summary of the main specifications of the developed ASC system is provided in 

Table 2.1. 
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Figure 2.2: The AOSL ASC final realization 

2.2 Electrical Syste m D esign 

The proposed on-board distributed communication and control network is based on 

the classic CAN protocol. However , since the NMEA 20001 standard is used for 

the communication with the WS and the Time Reference Message (TRM) based 

system synchronizat ion method is inspired by the Time-Triggered CAN (TTCAN) , 

introductory sections of t hese protocols are provided. The electrical components used 

to build t he on-board electrical system are introduced , and t he concent ration is on how 

to use these off-the-shelf components to build separate CAN nodes. T he schematics 

1 T he NMEA 2000 protocol is based on t he extended mode CAN messages. 
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and the final realization of these developed CAN nodes are shown. 

Table 2.1: The ASC main specifications 

Length 1.5 m 
Width 1.0 m 

Propeller offset from the 
longitudinal centreline of the ASC 0.5 m 

Hull height 0.5 m 
Superstructure height 0.66 m 

Total weight 146 kg 
Draft 0.37 m 
Speed 0.4 to 1.0 m/ s 

On-board Communication CAN-bus 
External Communication 900 MHz wireless 

Operating mode Manul/ Autonomous 

2.2.1 Controller Area Network (CAN) 

The Controller Area Network (CAN) was designed by the German company Bosch in 

1986, and it was originally used in the construct ion of the communication and control 

syst em for automobiles [24]. A typical system topology using the CA protocol is 

shown in Figure 2.3, and in this system a number of CAN nodes are connected to 

the two-wire CAN-bus syst em that is terminated by two 1200 resistors. As a mult i-

master communication protocol, all the CAN nodes can freely access the bus to send 

and receive the messages. As discussed in Chapter 1, the CAN-bus syst em can be 

regarded as a decentralized system. A general review of this protocol is provided in 

this section, and t he main focus is on the usage of this protocol to build the ASC 

distributed communicat ion and control syst em. However , interested readers can refer 

to the book [24] for more details of the CAN protocol. 

CAN-bus is based on a message-oriented communication mechanism where a CAN 

message is broad casted by one CAN node with a unique identifier (ID) number. All the 
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other connect ed CAN modules can hear the transmitted message but will only accept 

t he message wit h t he specific ID they define. The CAN message priority is determined 

by its ID , with a lower ID number having a higher priority. When multiple CAN 

modules try to access t he CAN-bus at t he same t ime, the higher priority message will 

be transmit t ed firstly, and t he ot her messages' transmission will be delayed. T his loss-

free bus arbit ra tion mechanism guarantees a robust CAN message t ransmission link 

where no messages are lost due to transmission conflicts, and high priority messages 

are transmitted with the shortest latency. As shown in Table 2.2, there are four kinds 

of CAN messages (or frames) defined in t he CA standard . Among t hese frames, the 

Data Frame and t he Remote Frame are used in t he construction of t his distributed 

CAN network. 

CANNodel CANNode2 CANNode n 

Processor 1 .4 ctu a tor 1 Set1sor11 

CAN CAN ... CAN 
Controller Controller Controller 

CAN CAN CAN 
Interface Interface Interface 

I I I 
Q'on CANH 

""Q CAN-Bus 

CANL 

I 
CAN 

Interface 
CAN 

Controller 

Actuator 2 

CANNode3 

Figure 2.3: A typical CAN-bus network 

T he classic CAN protocol defines two working modes for data transmission: the stan-

dard mode, or CAN 2.0A, and extended mode, or CAN 2.0B. T he standard CAN 
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mode is used to build the main on-board communication network, while the NMEA 

2000 standard , which implements t he CAN 2.0B as low level communication protocol 

is used for the communication with theWS. The main difference between the standard 

and extended CAN messages is ID number length. The standard data message imple-

ments an 11-bit length ID; while the extended message ID is 29-bits long. T he length 

of ID number determines the maximum number of messages that can be defined and 

used in designing a CAN network. 

Table 2.2: Four kinds of CAN frames 

Frame types Description 
Data Frame Frame for data transmission 

Remote Frame Frame for request of data frame 
Error Frame Frame for issuing t he error occured at one CAN node 

Overload Frame Frame for delay of the next transmitted message 

Remote Frame is used for inquiry about a specific ID Data Frame. In a remote frame 

transmission, no data field is included; however , the CAN node that successfully 

receives the remote message will respond with a data frame with t he same ID as the 

remote frame. 

On-board communication system robustness can be guaranteed by t he CAN protocol 

defined error detection mechanism. Each CAN node can use four error detection 

methods (Table 2.3). 

According to the previous analysis, the reliable CAN-bus based communication system 

structure implemented on the developed ASC is shown in Figure 2.4. The center line 

indicates the CAN-bus trunk line. Four CAN modules are designed separately to 

work on this system. T hese CA modules include two motor controller modules, and 

they are responsible for t he control of the propulsion system. The navigation module 

is used for gathering the information from the GPS and t he AHRS to assist with the 
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vehicle navigation, and the controller module is used for the wireless communication 

and the communication with theWS. Each CAN node implements a combination of 

CAN controller chip and transceiver chip together as the CAN interface. 

Table 2.3: CAN-bus error detection mechanisms 

Error detection method 
Bit check 

Frame check 

Cyclic redundancy check 

Acknowledgement check 

Power Supply 

Termiuating 
Resistor 

C ANNod e3 

Descript ion 
Each CAN node checks if the transmitted bus level 

and the actual bus level is different 
Each CAN node checks the fixed part of 

the transmitted frames 
Enable t he receivers to verify t he integrity of 

the whole transmitted data 
Check if there is response for the sending 

message in the ACK part of CAN message format 

Airmar 
Weather Station 

Terminating 
Resistor 

CANNode4 

Figure 2.4: CA -bus based decentralized ASC communication and control system 
structure 

F igure 2.5 provides a detailed layout of the proposed CAN network implemented on 

the ASC. As shown in the figure, the CAN-bus runs through the whole system with 
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four CA modules dist ributed at different locations on t he ASC. Two motor cont roller 

modules are fixed at the rear part of each hull, and both the controller module and the 

navigation module are installed on the superstructure. The main characteristics of 

t his developed ASC CAN-bus based communication system are summarized in Table 

2.4. 

Table 2.4: CAN-bus application characteristics 

Characteristics Descript ion 
Topology Bus topology 

Number of nodes Four 
Data transmission bit rate 1M bps 

Data format Standard and NMEA 2000 

2.2.2 NMEA 2000 

The NMEA 2000 standard was introduced by t he National Marine Electronics As-

sociation (NMEA) in 2001 [25]. NMEA 2000 implements CAN 2.0B as a low level 

communication protocol, and it is mainly used for building the control and commu-

nication system for marine vehicles. The NMEA 2000 standard provides much faster 

data transmission rate than the NMEA 01831 standard , and since it is based on 

CAN-bus, a reliable and extensible bus architecture can be achieved. As a high-level 

communication protocol, NMEA 2000 develops a more advanced message identifica-

t ion mechanism. The 29-bits ident ifier (ID) number is divided into several parts for 

representation of different characteristics of t he t ransmitted messages. In Table 2.5, 

the message types, priority and update rate are specified inside t he Parameter Group 

(PG) , which is the ID number of corresponding extended CAN messages. 

1 N 1EA 0183 is another widely implemented seria l protocol that is used for marine electronic 
devices communication 
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Figure 2.5: The ASC system schematic layout 
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Table 2.5: Parameter Group 

Name Description 
PGN Defined by the NMEA committee for identification of 

different type messages and t his part could also be used 
for company proprietary transmitting messages 

Destination Define if the message is global or addressed 
Default priority 0 to 7 priority range 

Update rate Define how often the message is t ransmitted 
Query support Define if the t ransmitted message 

will respond to request messages 
Single frame Define if the t ransmitted message 

is single-frame or multi-frame 
Acknowledgement Specify if the reply is needed after receiving this message 

In this ASC on-board communication system, the NMEA 2000 standard is used only 

for communication with t he WS. Based on the open source project, which was posted 

on the blogger [23] and developed by Keversoft B. V., the following useful information 

as shown in Table 2.6 has been successfully requested from the WS. 

Table 2.6: Used NMEA2000 messages 

PGN number Description 
PGN 127250 Vessel Heading 
PGN 127251 Rate of Turn 
PGN 129025 GPS Position 
PGN 129026 Course Over Ground 

Speed Over Ground 
PGN 129033 Time and Date 
PGN 130306 Wind Data 
PGN 130310 Environmental Parameters 

The classic CAN protocol does not define the physical layer cables or connectors, so 

commonly a twisted pair CAN wiring system is applied. However , in this application 

t he CAN-bus has to run t hrough the ASC including the superstructure, and the wiring 
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system is exposed to rain and water , therefore, a robust and waterproof wiring system 

is needed. The NMEA 2000 standard recommended Micro-type cables and connectors 

to help solve this problem. On the one hand, NMEA 2000 low level communication 

is based on CAN protocol, so CAN messages can be transmitted inside this wiring 

syst em; on the other hand, since the NMEA 2000 is designed for marine vehicles, the 

cables and connectors follow Ingress Protection Rating 67 (IP67) waterproof standard. 

Figure 2.6 shows the implemented NMEA 2000 Micro-type 5-pin cables and connectors 

on the designed ASC. The definition of each pin is provided in Table 2. 7. 

Figure 2.6: On-board communication system based on NMEA 2000 cables and con­
nectors 

A couple of advantages brought by the NMEA 2000 standard are: 

• The NMEA 2000 cable consists of two pairs of shielded-twisted wires, where 

one pair is for data transmission, and the other pair is for power transmission. 
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The remaining is one shield wire helps increase the internal signal resistance to 

interference as well as reduce the RF emission. 

• The NMEA 2000 cables and connectors are designed for marine usage, so the 

waterproofness and robustness in the ocean are guaranteed. 

• As shown in Figure 2.6, CAN nodes can be connected with the CAN trunk line 

through the use of three-port "T " connectors, and they can get access to CAN 

communication network and power at the same time which brings convenience 

for system extension. 

Table 2. 7: NMEA 2000 cables and connectors pin definition 

Pin number Defini tion 
Pin 1 Shield wire 
Pin 2 +V 
Pin 3 -V 
Pin 4 CANH 
Pin 5 CANL 

2.2.3 Time-Triggered CAN (TTCAN) 

Time-Triggered CAN (TTCAN) is developed based on the classic CAN protocol, 

and it is used to support t he t ime-deterministic data-transmission applications. In 

a classic CAN network, it is possible that diHerent nodes start to t ransmit t heir 

messages simultaneously and when this happens the message with higher priority will 

be transmitted first. Though this bus arbi tration mechanism ensures the high priority 

CAN messages are transmitted wit h the minimum latency, it is difficult to guarantee 

that low priority CAN messages can meet their transmission deadlines under different 

bus load conditions. TTCAN is introduced to solve this problem, and in this protocol, 
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to assist with the time scheduled behaviour of the CAN-bus application, a periodically 

transmitted reference message is used to trigger the whole system to work under the 

same time step. The reference message indicates the start of one cycle, and each 

cycle is divided into three parts for different messages' transmission. The definit ion 

of the divided t ime windows and the specific messages that are transmitted within 

each window are provided in Table 2.8. 

Table 2.8: TTCAN time windows 

TTCAN windows 
Exclusive window 

Description 
Time slot for t ransmitting the message without 

competit ion for t he usage of the CAN-bus 
Arbitrating window Time slot for general CAN messages, bus arbitration works 

Free window Time slot for future extension 

Inspired by t he TTCAN, a Time Reference Message (TRM) based mechanism is 

developed to add the time scheduled behaviour to the original CAN network. In this 

method, the TRM is a standard data frame that contains UTC time information from 

the GPS module (inside navigation module as shown in Figure 2.5) . The GPS data 

update rate is configured to be 1 Hz, so the TRM is transmitted on the CAN-bus 

every second. T he TRM is received by all t he connected CA nodes, and it indicates 

the start of one unit cycle. As shown in F igure 2. 7, node 1 and 2 only transmit t heir 

messages after the reception of t he TRM, and the remaining time window is free for 

other messages transmission. 

A couple of advantages have been brought by the introduced TRM mechanism. 

• Add the time deterministic feature to the classic CAN-bus. 

• TRM trigg rs the system to work under the UTC t ime, and it increases the 

system manageability. 
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• TRM can be regarded as a decentralized system t ime synchronization method , 

while no addit ional t ime line is needed which simplifies the system connection. 

TR.c'1 
Message :\1essage Free for 

TRM 
A(nodel) B (node2) arbitration 

... 

1 second 

Figure 2.7: TRM mechanism unit cycle organization 

2.2.4 Electrical Components 

A general introduction of the implemented electrical components on the ASC system 

is provided. 

2.2.4. 1 Airmar PB200 Weather Station 

\!\Then the ASC is operating in t he ocean , it is important t hat the vehicle has access 

to environmental information of the area around it. Environmental information can 

assist the vehicle for analysis of its operating status, and it can also help t he ASC to 

plan a safe moving path to avoid damaging environmental interferences. 

Figure 2.8 shows the Airmar PB200 weather station. This weather sensor has a 

waterproof housing and is resistant to sunlight and chemicals [27]. As a compact 

design, the sensor is 130 mm high and 72 mm diameter with a mass of 285 grams. 

The PB200 sensor can measure wind speed and wind direction using its four ult rasonic 

transducers, located on top of the wind channel. Two transducers work together to 

measure the wind speed in that direction. As depicted in Figure 2.8, each transducer 

takes turns to transmit and receive the signal. T he flowing air t hrough the wind 
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channel will affect t he signal transmission t ime between the two t ransducers, and by 

measuring this time changes in t he wind direction and wind speed can be calculated. 

Ultrasonic 
transducer 

Wind 
channel 

Metal 
plate 

Arrow indicates the direction 
from transmit to receive. 

Figure 2.8: Airmar PB200 Weather Station and ult rasonic transducers (PB200 User 
Manual) 

T he PB200 weather station also integrates a temperature sensor , a. barometric pres-

sure sensor, a three-axis solid-state compass, a t hree axis accelerometer , a yaw rat e 

gyro and a. GPS module. Therefore, all required vehicle data. can be requested from 

this sensor. The specific data. measurement accuracy and range are detailed in Ta.-

ble 2.9. Though two interfaces are available in this sensor (NMEA 0183 and NMEA 

2000), the NMEA 2000 standard is used as it provides faster data transmission rate. 

As shown in Figure 2.5, WS is connected with the controller CAN node. 

Airmar 's \1\Tea.therCaster software has been used for the initial test of the WS. After 

the basic funct ions are tested and every sensor is verified to work properly, the WS has 

been configured to transmit upon the reception of the NMEA 2000 st andard defined 

request message. 
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Table 2.9: PB200 weather station specifications (PB200 User Manual) 

Wind speed range 0 to 80 knots 
Wind speed resolution 0.1 knot 
Wind speed accuracy 1 to 2 knots (5 knots in wet condition) 
Wind direction range 0 to 360 o 

Wind direction resolution 0.1 ° 
Wind direction accuracy 2 to 5 o (8 o in wet condition) 

Compass accuracy 1 to 2 o 
Rate of turn range 0 to 70 o per second 

Rate of turn accuracy 1 o per second 
Pitch and roll range ±50 ° 

Pitch and roll accuracy < 1 0 

Air t emperature range -25 to +55 oc 
Air temperature resolut ion 0.1 oc 
Air temperature accuracy ±1 oc 
Barometric pressure range 850 to 1150 mbar 

Barometric pressure resolution 0.1 mbar 
Barometric pressure accuracy ±2 mbar 

GPS position accuracy 3m 

2.2.4.2 Attitude and H eading R efe rence System (AHRS) 

The attitude and heading reference system (AHRS) is widely used in unmanned sys-

tems to support vehicle navigation. In general, an AHRS can provide inertial mea-

surements including acceleration, angular rate and magnetic field , and combined with 

the GPS module, the AHRS can aid the GPS for better estimation of t he unmanned 

system location and orientation. In this design, though we already have the AHRS 

function in the PB200 WS, an additional AHRS sensor is integrated into the system. 

T here are two reasons for doing this: (1) redundant sensors can supply the measure-

ments for t he same physical variables, so the results can be used for data validation ; 

(2) when one sensor fails to work, the remaining AHRS module can still provide the 

system with the necessary information. 

The Microstrain 3DM-GX3-25 sensor (Figure 2.9) has been used. This lightweight 



29 

AHRS integrates a t riaxial accelerometer, a triaxial gyro, a triaxial magnetometer, a 

temperature sensor and a processing unit with a data fusion algorithm. Therefore, 

fully temperature compensated acceleration, angular rate and magnetic heading data 

are available in this small sensor unit . 

rrun 

Figure 2.9: The Microstrain 3DM-GX3-25 AHRS sensor (3DM-GX3-25 User Manual) 

Table 2.10: Acceleration and Angular Rate messages from the 3DM-GX3 (3DM-GX3-
25 User Manual) 

Command: 
Byte 1 OxC2 

Response: 
Byte 1 OxC2 

Bytes 2-5 Acceleration X (IEEE-754 Floating Point) 
Bytes 6-9 Acceleration Y (IEEE-754 Floating Point ) 

Bytes 10-13 Acceleration Z (IEEE-754 Floating Point) 
Bytes 14-17 Angular Rate X (IEEE-754 Floating Point) 
Bytes 18-21 Angular Rate Y (IEEE-754 Floating Point) 
Bytes 22-25 Angular Rate Z (IEEE-754 Floating Point) 
Bytes 26-29 Timer 
Bytes 30-31 Checksum 

Communication with the 3DM-GX3 is based on the RS-232 serial interface , and the 

default data transmission rate is 115200bps. Specific sensor data can be requested 

by a connected microcontroller by issuing the required command. Table 2. 10 shows 
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an example where the AHRS outputs acceleration and angular rate messages upon 

the reception of the OxC2 command. It is shown that the response messages from the 

AHRS include in the first byte a reproduction of the sending command, and after that 

are the three axis acceleration and angular rate data, which are represented using the 

IEEE-754 standard1
. Based on this data transmission mechanism , the dat a including 

the acceleration, angular rate, t he magnetometer data and the rotation matrix are 

requested and logged in the navigation module microcontroller (Figure 2.4). 

2.2.4.3 Global Positioning System (GPS) 

In order to acquire the accurate location of the ASC in the ocean, the Global Posi­

tioning System (CPS) is needed . There are many off-t he-shelf CPS receivers available 

in t he market, and some recently developed differential CPS modules can provide t he 

distance accuracy within centimetres; however, in this design , t he cost and desired 

accuracy balance is considered. Since the CPS and AHRS module will be sealed into 

a waterproof enclosure, an external antenna is desired for receiving the CPS signal 

from t he satellites . Therefore, as shown in Figure 2.10, t he SeeedSt udio Grove-CPS 

(originally equipped with a patch antenna) becomes our final choice. Grove-CPS in­

tegrates the cost-efficient NE0-6M C PS receiver chip from u-blox Inc., and the UFL 

receptacle connector on-board enables the external antenna connection. 

According to [29] , the implemented NE0 -6M stand-alone CP S receiver is supported 

by t he high performance u-blox 6 positioning engine. The implemented Grove-CPS 

board features the NE0-6M UART serial interface for communication with the mi­

crocontrollers, and the output message voltage is regulated by on-board regulator to 

be compatible wit h most processors ' voltage level. The cold start time for NE0-6M 

CPS is wit hin 27 seconds, and it has the horizontal position accuracy of 2.5 meters. 

1 Use four data bytes to represent a floating point number. 
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Figure 2.10: T he Grove-GPS module (SeeedStudio Inc.) 

T he GPS data update rat e is configurable from 1 to 5 Hz, which is good for fast 

update applications. T he time-pulse signal is available on the "TIMEPULSE" pin of 

the E0-6M chip , and its frequency is configurable from 0.25 to 1 kHz. The velocity 

accuracy is within 0.1 m/ s, and the heading accuracy is less than 0.5 degrees . 

T he GAA-005 Marine GPS antenna has been chosen as the external GPS antenna. 

T his antenna has a waterproof enclosure, and its working voltage range is from 2.2 

to 5.0 V. The connected coaxial cable length is 30 m maximum, and this waterproof 

cable connects the GPS signal to t he navigation CAN module (Figure 2.5). 

T he messages from the Grove-GPS are t ransmitted according to the NMEA 0183 

standard, so the GPS data are included in t he transmitted string. As shown in Table 

2. 11 , the implemented GPRMC message string is provided, and inside this string 

t he GPS data including UTC time, location, speed and course are provided. In this 

application, t he GPS module is configured to update at 1 Hz. 
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Table 2.11: GPRMC message from the Ublox GPS module (Grove-CPS User Manual) 

Field number Example Description 
0 $GPRMC RM C message header 
1 083559.00 UTC time,hhmmss.ss 
2 A Status, V= data not valid , A= Data valid 
3 4717.11437 Latitude, degrees=47, minutes=17.11437 
4 N Hemisphere N=north, S=south 
5 00833.91522 Longitude, degrees= 8, minutes=33.91522 
6 E E=east, W= west 
7 0.004 Speed over ground, knots 
8 77.52 Course over ground, degrees 
9 091202 Date in day, month and year , ddmmyy 
10 - Reserved 
11 - Reserved 
12 - Reserved 
13 *57 Checksum 
14 - Carriage return and line feed 

2 .2.4.4 Wireless Modem 

To build a long range wireless communication link, the Digi International Inc. XTend­

PKG 900 MHz RF modem has been used. Through this wireless communication link, 

the vehicle supervisory commands and important ASC operation status information 

can be exchanged between the ASC and the dock-side computer. 

The XTend-PKG wireless modem features a long range signal transmission. The data 

transmission range is dependant on a couple of factors, such as the data t ransmission 

rate and the signal output power. The specific modem settings can be configured 

using the X-CTU software through the RS232 interface. In this application, to con-

struct a reliable wireless link, both wireless modems are configured to work at "Mult i-

Transmit" mode. In "Multi-Transmit" mode, messages are retransmit ted to guarantee 

the successful data transmission . To acquire the acceptable communication range as 

well as RF data rate, t he two wireless modems are set to -vvork at a one Watt power 
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level, and the RF transmission rate is configured to be 115,200 bps. The modem was 

tested to work as far as 200 metres. However, according t o the manual, when the 

transmission power is set to one Watt together with a high gain antenna, the outdoor 

RF line-of-sight communication range is up to 32 km (115,200 bps t hroughput data 

rate) . 

2.2 .4.5 Microcontrollers 

The mbed™ microcontroller The mbed™ microcontroller is designed for fast 

and reliable prototyping tasks. Its on-board processing unit implements the powerful 

32-bit ARrv11 Cortex-M3 Core microprocessor XP LPC1768, and it has the maximum 

processing speed of 96 MHz. As shown in Figure 2.11 , the mbed™ development board 

includes many useful resources including the Ethernet, USB, SPI, I2C, UART, CAN, 

P\iVM and ADCs. 

The mbedTM microcontroller can be powered by the Universal Serial Bus (USB), and 

the nominal current consumption is less t han 100 rnA. Each General Purpose Input 

Output (GPIO) pin is capable of driving up to 40 rnA peripheral circuits with the 

total driving capability of 400 rnA. The m bedTM microcontroller uses 3.3 V logic but 

it can handle 5 V input signals. The mbedTM microcont roller program development 

environment is based on an online compiler tool [28]. This online tool supplies the 

necessary libraries and functions for code development. Each mbed™ microcont roller 

user has his own code development workspace, and all the developed code can be saved 

online for further adjustment . 

As shown in Figure 2.5, since the mbed™ integrates two CAN interfaces, it can be 

used to connect with the main CAN network on the one side, while it can also be 

connected to V/S on the other side. T his feature enables t he mbed™ microcont roller 
1 Advanced RISC Machine 
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F igure 2.11: The mbed™ microcontroller (http:/ / mbed.org) 

to serve as the main processor unit in the CAN controller module. Owing to its rela­

t ively fast processing speed and low power consumption, the mbed™ microcontroller 

is also used with t he CAN navigation module (F igure 2.5) . 

The PIC microcontrolle r T he communication with the propulsion system is re­

stricted to the RS485 serial interfaces, so a CAN to RS485 converter is required. In 

this design , the 28-pin P IC microcontroller-based single-board computer SBC28PC, 

shown in F igure 2. 12, is implemented. This development board features a compact 

dimension of 58 mm x 54 mm, and it integrates the CAN and RS485 interfaces. The 

8-pin socket is where the CAN driver chip is inserted and when CAN functionality is 

enabled the CAN signals are available on the 5-pin terminal block connectors. 

T he CAN to RS485 message conversion is done by the program running in the 

SBC28PC development board (Appendix A.3). Using this program, t he SBC28PC 

board can inquire about the motor information, store the information, and when it 
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Figure 2.12: The PIC microcontroller based CAN to RS485 converter SBC28PC-IR4 
(Modtronix Engineering) 

receives the inquiry command from the main CAN-bus, package the required infor-

mation into specific CAN messages and send them to the inquiry node. When the 

SBC28PC can not communicate with the motor successfully, the responding CAN 

messages will be changed to indicate the failure of the motors. 

2.2.4.6 Propulsion System 

Two Torqeedo Inc. electric outboard motors have been chosen as the propulsion 

system for the developed ASC. The Torqeedo Inc. Travel 801 motors are lightweight 

at only 11.57 kg including t he weight of the integrated battery (3.5 kg). The maximum 

input power is 800 W with the supply voltage of 29.6 V, and the corresponding 

propulsive power is 350 W . 

T here is a thruster controller built into the enclosure of t he Torqeedo thruster which 

receives the commands from the t iller to control t he motor speed, power and the 
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direction. A PID control algorithm in this thrust er controller guarantees the propeller 

rotates at the defined rotational speed. T he two electric motors' t hrust er controllers 

can be interfaced using the RS485 serial interface, and by issuing different commands, 

differential thrust can be acquired. 

Since the t iller is not installed in the ASC system, a motor cont roller module that 

substitutes the role of the tiller has been developed (Figure 2.5). This controller 

module can issue the control commands for the thrusters as well as log the responding 

information from the motors . As discussed in the previous section, this module can 

also be regarded as the protocol converter , because it connects the Torqeedo motors 

(RS485) to the main communication system (CAN). 

A message example used for communication with the Torqeedo motor under the RS485 

protocol is shown in Table 2.12. As shown in the t able, the information including the 

message source and destination are included in the first two bytes of the transmit ted 

message. In addition to that , the most important information including the propeller 

rotational speed, direction and power information are also provided. Upon reception 

of the motor control command, t he motor will respond with its confirmat ion message, 

and the corresponding motor specification is configured . 

2.2.5 CAN Nodes Development 

The details of how different CA nodes (Figure 2.4 and 2.5) are built usmg the 

introduced electrical components are provided. 

2.2.5.1 Controller CAN Node Development 

The controller CAN node developed for the ASC acts as the command distributor 

as well as a system information gatherer. This CAN node is designed to receive the 

commands from the dock-side computer through the wireless modem, and according to 
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Table 2.12: T he messages used to control the Torqeedo motors under the RS485 serial 
connect ion 

Field definition Example Description 
Destination address Ox80 Propeller address 

Source address Ox10 Tiller address 
PCB OxOl Protocol control byte 
INS OxlO Instruction (Set command) 
ID1 OxOO Parameter ID higher byte 
IDO Ox12 Parameter ID lower byte 
LEN Ox04 Data length 

Datal Ox01 Rotational speed higher byte 
Data2 OxOO Rotational speed lower byte 
Data3 OxOl Direction 
Data4 Ox32 Power 0 to 100% =OxOO to Ox64 
CHK l - Checksum higher byte 
CHKO - Checksum lower byte 

the commands, package the CAN messages for inquiry about specific ASC information 

from different CAN nodes, or send t he desired motor configuration commands. 

As discussed in the electrical components section, the XTend 900 MHz wireless mo-

dem is included to support the wireless communication. T he CAN transceiver chip 

MCP2551 is used to perform t he voltage level conversion for t he CAN messages. The 

PB200 WS is also integrated in this CAN node. A 12 V to 5 V DC-DC voltage con-

verter is also used . Figure 2.13 shows the electrical system schematic. As shown, the 

XTend wireless modem connect s to t he mbed™ microcontroller through a MAX232 

logic level converter , and two CAN driver chips are included. The mbed™ microcon-

troller has two CAN interfaces. One interface was set to work under the CAN 2.0A 

standard , and it was used to build the main communication network. The second was 

set to work under the CAN 2.0B standard, and due to t he compliance of the NMEA 

2000 wit h CAN 2.0B , the second CAN interface was used for the weather station 

NMEA 2000 communication. To protect the WS, a 3 A fuse is also included . 
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Figure 2.14 shows the final realization of the controller CAN node. All t he components 

are soldered onto the prototype board. To make sure t he implemented electrical 

components are water resistant , they are sealed into an aluminum alloy waterproof 

enclosure that complies with the IP67 standard, and all the cables and connectors 

implement the same waterproof standard. 

2.2.5 .2 N avigation CAN Node D evelopment 

The navigation CAN node implements an integration of the GPS module and the 

AHRS module with t he microcontroller. The reason to have this CAN node is to 

automatically log the GPS , heading, acceleration and angular rate information, and 

after t he reception of the request command from t he main CAN network, this node 

will package the corresponding information and send it back to the CAN node that 

starts the request. Another reason to have this node is to have the sensor data fusion 

algorit hm implemented on-board, and by fusing the information from t he GPS and 

AHRS, a better estimation of location and orientation information can be derived. 

Figure 2.15 shows the planned schematic for the navigation CAN node. As shown 

in t he figure, t he AHRS is connected with the core processor through the MAX232 

logic level converter, and the Grove-CPS is directly interfaced with the mbed™ 

microcontroller. The connected external antenna is extended to the outside of the 

navigation box. To connect this CAN node to the main CAN network , the MCP2551 

CAN driver chip is used. 

According to the planned schematics, the final realization on the prototype board 

has been completed as shown in Figure 2. 16. This CAN node features some similar 

characteristics as the controller CAN node, such as it also integrates t he DC-DC 

voltage converter for connection to the main CAN-bus, and this CAN node implements 

the same CAN driver chip MCP2551 for voltage level conversion . 
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Figure 2.15: T he navigation CAN node schematic 
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2.2.5.3 Motor Controller CAN Nodes D evelopment 

RS485 Wires 

SBC28PC 

Figure 2. 17: Motor controller CAN node final realizat ion 

Since the communicat ion wit h t he Torq edo propellers is based on t he RS485 serial 

interface, t he CAN messages have to be convert ed to t he RS485 format . T he main 
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task of the CAN nodes will be conversion of the protocol between the RS485 and 

the CAN standard, and deliver t he power to the propulsion system as well as the 8V 

voltage required for RS485 message transmission. 

It has been decided that a couple of components have to be included in t his CA 

node design . As shown in Figure 2.17, the SBC28PC board has been used as the 

main microcontroller for protocol conversion. The voltage converter board that comes 

with the Torqeedo propellers is used for generating the proper voltage for RS485 

communication. The DIN rails are used to connect t he power lines to the propellers. 

All the components are enclosed inside a rugged aluninum alloy box, and all t he cables 

running out are sealed with the specially chosen cable glands. The proposed design 

is validated to provide th proper functionality and the satisfactory waterproofness. 

2.3 Program and Software Development 

In order to build the decentralized communication system for the ASC, each connected 

CAN node has to be developed with its own program. T he details of these separately 

developed programs are introduced. To make it possible to display t he ASC on­

board sensor information on the dock-side computer as well as issue the supervisory 

command , a Matlab based Graphic User Interface (GUI) that runs on the dock-side 

computer is designed. 

2.3.1 CAN Nodes Program D evelopment 

There are a total of four CAN nodes developed to work on th main CAN network. 

Among these four nodes, the controller CAN node and navigation CAN node ar 

programmed with the ARM processor, while the motor controller CA nodes are 

programmed with the PIC microcontroller. 
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Table 2.13: CAN data frame identifiers allocation 

ID Description Message Source 
1 Time Reference Message (TRM) Node 2 
2 Error Message from Left Motor Node 4 
3 Error Message from Right Motor Node 3 
4 Left Motor Set Node 1 
5 Right Motor Set Node 1 
6 Left Motor Speed, Direction and Power Node 4 
7 Right Motor Speed, Direction and Power Node 3 
16 GPS Data-Longitude and Latitude Node 2 
17 GPS Data-Speed Over Ground and Course Over Ground Node 2 
18 Acceleration in X and Y Axes Node 2 
19 Acceleration in Z Axis and Angular Rate Around X Axis Node 2 
20 Angular Rate Around Y and Z Axes Node 2 
21 Magnetometer in X and Y Axes Node 2 
22 Magnetometer in Z axis and Rotation Matrix M1,1 Node 2 
23 Rotation Matrix M1,2 - M3,3 Node 2 

Table 2.14: CAN remote frame ident ifiers allocation 

ID Descript ion 
4 Left motor status inquiry 
7 Right motor status inquiry 

16 GPS data-longitude and latit ude 
17 GPS data-longitude, latitude, speed and course over ground 
18 AHRS data-acceleration in x, y and z axes 
19 AHRS data-angular rate around x, y and z axes 
20 AHRS data-all acceleration and angular rate information 
21 GPS data, acceleration and angular rate information 
22 AHRS data-magnetometer in x , y and z axis 
23 AHRS data-rotational matrix 

To guarantee the whole system works properly, an allocation of the CAN message 

identifiers is performed. As shown in Table 2.13, t he highest priority ID is allocated 

to t he T RM since it triggers the whole system to work under the same t ime step and 

is needed to be t ransmitted even if a transmission conflict occurs. The two motors 
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are essential for propulsion, so the motor control and statu information is assigned 

the next higher priority level. Following that is the information about GPS position, 

speed, heading, acceleration, and other sensor data. Since some of the CAN messages 

from Table 2.13 arc requested using the remote frame, an ID allocation of the remote 

frame CA message is also provided and shown in Table 2.14. 

2.3.1.1 The Controller CAN Node Program D eve lopment 

The controller CAN node is designed to complete the following tasks. 

• Send the reque t CA message to the navigation CAN node to get the vehicle 

related navigation information 

• Acquire th motor information and end configuration commands to change the 

speed, direction and power 

• Obtain the information from the Airmar weather station and log the data 

• Communicate with the dock- ide computer through the wirelc · connection and 

transmit sensor data and receive supervisory command . 

In order to show a clear picture of t he working process of the controller CAN node, 

the program ftow chart is provided in Figure 2.18 and the main fun tion C+ + codes 

are provided in Appendix A.l. 

In the CA interface initialization part , two CAN interfaces arc defined. One CAN 

interface is configured to work in the tandard mode with the communication baud 

rate of 1 Mbps, and the other is configured to work in the extended mode with 

the baud rate of 250 kbps to communicate with the WS. After that, the controller 

CA node wait for t he T RM from the navigation CAN node, and after successful 

reception of the TR I. it will package a TR~I wireless mes age to be t ransmitted 
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Figure 2.18: T he controller CAN node program flow chart 
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to t he dock- ide computer for time synchronization purpo c . Following that, the 

motor and navigation information arc requested from the other CAN nodes by the 

controller CA node, and then the supervisory commands will be received from the 

dock-side com1 uter. Based on the supervisory commands, the motor status will be 

reconfigured , and required sensor data will be send back to the dock-side computer. 

As shown in th flow chart , to mak sure thi CA J node is not lock d with any wait 

function , two 1.5 ccond timeout functions arc attached. 

2.3.1.2 T he Navigation CAN Node Program D evelopment 

The navigation CA J node is respon ible for collecting data from the GPS and AHRS 

modules. ormally a sensor fusion algorithm (Kalman filter) is implemented on the 

microprocc sor to fuse the information for better estimation of the vehicle status; 

however, in this de ·ign, the concentration is on the construction of the CAN-bu 

based communication and control system structure, so no navigation algorithm i 

implemented yet. 

The flow chart in Figure 2.19 show a lear working procc for this CA node, 

and the main function C++ codes are provided in Appendix A.2. The mbedTM 

microcontrollcr in the navigation CAN node works under t he trigger from the GPS 

GPR~1C message which has been configured to be updated every 1 second. After t he 

mbedTAI microcontroller starts inquiring about the R 1C message, it keeps waiting 

until t here i a re ponse, and then it packages the TRM CAN message using the UTC 

time information and sends it onto the main CA J network to indicate t he beginning of 

this time period. After this, the navigation CAN node continues to get the information 

from the AHRS and packages it with the GPS data for further navigation algorithm 

usage. The navigation information is requested in the interrupt routine. 
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2.3.1.3 The Motor Controlle r CAN Node Program Development 

Since communicat ion with the Torqeedo motors is restricted to RS485 communication, 

the main task for the motor controller CAN node is to convert t he messages between 

the CAN protocol and the RS485 format. In addition to the protocol conversion, 

this CAN node is designed to be capable of diagnosing the motor working status and 

logging the required motor information for transmission to other inquiry CAN nodes. 

F igure 2.20 shows the flow chart of the developed program for the left motor con­

troller , and the C code is provided in Appendix A.3. As shown, the motor configu­

ration keeps updating, and after setting the motor each time, the motor will respond 

with the confirmation message. Taking advantage of this feature, the motor core 

microcontroller can decide the RS485 communication status. The motor speed mod­

ification is completed by using the interrupt routine, which can guarantee that the 

motor configuration is updated with the minimum delay. The preprocessors are used 

for conditional compilation. For example, if the user wants to compile the code for 

the right side motor controller (refer to Appendix A.3 Page 130 Line 15), it is only 

necessary to set the global variable "L_ or_ R" to be 0, or define it to be 1 for t he left 

motor. 

2.3.1.4 System Time Synchronization a nd E valua tion 

As introduced in the Time-Triggered CAN (TTCAN) section , the TR 1 based system 

time synchronization method is implemented in the development of the main com­

munication and cont rol system. The TRM is a standard CAN message that includes 

UTC time information from the navigation CAN node. When the TRM is accepted by 

the other CAN nodes on the main CAN network, they will know the start of this data 

transmission cycle begins, and all the connected CAN modules will be synchronized 

to the same time signal. 
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In order to show t he achieved characteristics of the TRM based system time synchro-

nization method, an evaluation test has been performed using the DP04000 series 

digital phosphor oscilloscope. The DP04000 series oscilloscope is capable of display-

ing the CAN-bus information, and with its built -in functions, CAN messages can be 

identified. 
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Figure 2.21: T he T RM message organizat ion 

In t he evaluation test, the DP04034 is connected to the CANH line and the ground to 

display t he transmitted CAN messages within the designed CAN network. The first 

step of t he test is to ident ify the TRM message. To do t his, t he main communicat ion 

network is assigned to work only with t he TRM message. Figure 2.21 shows the 

captured TRM message from t his test , and t he square waves indicates the t ransmitted 

TRM. T he decoding of the square waves is automatically done by the oscilloscope, and 

the interpreted hex number is shown underneath each transmitted data byte. Inside 

these hex numbers, t he first number, 001 , is TRM ID number, and following that are 
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the data length, which is 4 in this case. Since the ASC system was tested inside t he 

building, the G PS can not get fixed data, so the default four data bytes, FF FF FF 

FF, were transmitted instead of the UTC t ime data. The Cyclic Redundancy Check 

(CRC) number is 46DC. The data t ransmission rate is 1 Mbps, and the time for t he 

transmission of the TRM is 84 p,s. Another test is performed to validate that t he 

TRM message is transmitted exactly each second, and the result is shown in Figure 

2.22. 
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Figure 2.22: The time interval between TRM messages 

For the next step of the test, the main communication sy tem is configured to work 

normally with required information transmitted on the CAN-bus. In this normal 

working mode, navigation information including GPS location, speed and course over 

ground, acceleration in three axes, angular rate, magnetic field , and the motor infor-

mation including direction, speed and power are transmitted on the CAN network. 

Figure 2.23 ·hows one capture of the transmitted sensor and motor data on the CAN-
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bus. In order to use the CAN-bus more efficiently, the data are requested and trans­

mitted consecutively, and it can be seen from Figure 2.23 that the total time used for 

the transmission of all these messages takes up to 1,200 f.-LS (three grid squares and 

each grid square is 400 f.-LS as shown in Figure 2.23). 
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Figure 2.23: Capt ured sensor and motor CAN messages 

Using the DP04034 event table function , the transmitted data are extracted and 

shown in Table 2.15. T he sensor and motor data are requested by issuing the remote 

frame CA messages. For example, after the remote frame message with the iden-

tifier Oxll is sent onto the CAN-bus, the data frames with the identifier Ox10 (GPS 

longitude and latitude) and Oxll (speed and course) will be sent to the inquiry CAN 

node. 

T he CAN-bus load for each second is calculated as shown in Equation 2. 1. It can be 

concluded t hat , although all time critical CAN messages are transmitted , t here is still 

about 99% space left for other types of messages transmission. 
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Load = (1200J.LS + 84J.LS) / (1 * 106 J.LS) = 0.128% (2.1) 

Table 2.15: Captured sensor and motor CA messages list 

Time Identifier DLC Data CRC 
-1.49E-04 Oxll 8 Remote Frame 5C2E 
-9.60E-05 Ox10 8 00 00 00 00 00 00 00 00 6072 
3.10E-05 Oxll 8 00 00 00 00 00 00 00 00 6B69 
1.61E-04 Ox14 8 Remote Frame 3.30E+09 
2.15E-04 Ox12 8 BC 50 9B F7 BC 8F DF FD 1C6D 
3.31E-04 Ox13 8 BF 80 76 64 BB 91 CC 70 6.30E+03 
4.46E-04 Ox14 8 BA E2 59 AA 3C 36 AF A9 2B14 
5.66E-04 Ox16 8 Remote Frame 77CE 
6.21E-04 Ox15 8 Cl 94 A3 CE 43 4D 7F 6C 7AD4 
7.35E-04 Ox16 8 41 E4 02 84 BD 96 9D 1B 15C8 
8.56E-04 Ox04 8 Remote Frame 4A17 
9.48E-04 Ox02 8 20 E4 02 52 00 00 00 00 513A 
4.02E-03 Ox07 8 Remote Frame 2C22 

2 .3 .2 Matlab Based GUI Software D esign 

Through the wireless communication link, the vehicle supervisory commands and 

vital ASC operation status information can be exchanged between the ASC and the 

dock-side computer. This system is important during the ASC testing, which will be 

introduced in Chapter 4. Using the wireless system, all ASC sensor and motor data 

are synchronized to t he dock-side computer for on-line analysis, and it is also possible 

to send the commands to guide the ASC to work. 

In order to usc t his wireless link to t ransmit the ASC status information and control 

commands, a well planned program schedule is required. The flow charts in Figure 

2.24 show the software running on the dock-side computer and how it coordinates 

with t he controller CA node program. 
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In Figure 2.24, the TRM will first be transmitted to the dock-side computer using the 

wireless link, and then based on the user 's configuration, a supervisory command will 

be sent back to t he ASC. This command is interpreted into the concrete operation 

inside the ASC, such as t he navigation data are requested and motor speed is changed. 

After this operation, the desired information is sent back to dock-side computer to be 

displayed or logged . 

A Matlab based GUI is developed to work on the dock-side computer as a control 

terminal for the ASC. Figure 2.25 shows the final realized Matlab GUI. The sensor 

and motor data from t he ASC can be shown on the GUI in quasi-realtime, and it is 

convenient to control the ASC two motors by using the motor control function. A 

Bluetooth hand controller is integrated for more intuit ive control of ASC, and the 

GUI can directly log the ASC location into the Google Earth software. 
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Figure 2.24: Cooperation of the dock-side software with the controller CAN node 
program 
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Chapter 3 

Mathematical Model for the 

Autonomous Surface Craft 

3.1 Nonlinear Model for the ASC 

The notation used for describing the general motion of the developed ASC is provided 

in Figure 3.1. The origin of the body-fixed frame (point o) is chosen to be inside the 

ASC's xz plane (the designed ASC has xz plane symmetry), and then the body fixed 

coordinate system is defined as: 

• ox axis is directed from aft to fore 

• oy is directed to starboard 

• oz is directed from top to bot tom. 

In addition to that, the O£XEY E Z£ defines a coordinate frame that is fixed on the 

Earth, and since t he Earth rotation will not affect the ASC motion, this frame can 

be regarded as an inert ial frame. Taking advantage of these two frames , the vehicle 

status information including velocity and angular rate expressed in the body-fixed 

59 
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Earth-fixed Frame 

Figure 3.1: Notation for ASC 

frame can be converted to the inert ial frame. A summary of these terms and t heir 

definit ion from t he Society of Naval Architects and Marine Engineers (SNAME) is 

included in Table 3.1 [30]. 

By using t hese terms, the ASC motion can be described using the six degrees of 

freedom (DOF) motion equations (refer to [30] for details). However , since t he ASC 

motions in heave, roll and pitch is small in most cases, a 3 DOF model t hat only 

considers the ASC movement in t he horizontal plane (surge, sway and yaw) is provided 

in this model development process. 

Before t his 3 DOF model is generated , the following vectors are defined according to 

the S AME notation. 
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Table 3.1: SNAME notations 

Forces & Linear Velocity & Position & 
Moments Angular Velocity Euler Angle 

Motion along 
ox axis (surge) X u X 

Motion along 
oy axis (sway) y v y 
Motion along 

oz axis (heave) z w z 
Rotation around 

ox axis (roll) K p ¢ 
Rotation around 
oy axis (pitch) M q e 

Rotation around 
oz axis (yaw) N r 1/J 

• v = [u v r]T : surge and sway velocity, and yaw angular velocity expressed in 

body-fixed frame 

• 'rJ = [x y 1/J]T : x and y location and yaw angle expressed in the inertial frame 

• oc = [xc Yc zc]T : vector pointing from the body-fixed frame origin to the 

center of gravity (CG) 

Based on this vector definition, a compact 3 DOF kinematic and dynamic model 

expression can be achieved as shown in Equation 3.1 [30]. 

{

it = Rv 

Mv+C(v)v+Dv=T 

(3.1 ) 

In t his model, R defines the rotation matrix that converts the speed vector from t he 

body-fixed frame to the inertial frame, and therefore the kinematic model can be 
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rewritten as follows: 

X cos( '1/J ) -sin( '1/J ) 0 u 

y sin( '1/J ) cos( '1/J ) 0 v (3.2) 

'1/J 0 0 1 T 

In the dynamic model, M is the mass matrix , and C is t he Coriolis and centripetal 

matrix, D is the damping matrix and T is external force and torque (for the purpose 

of this model the restoring forces in heave, roll and pitch are neglected since the ASC 

motions in heave, roll and pitch are small) . A detailed description of these terms are 

provided as: 

• M is a combination of vehicle inertia (MRs ) and added mass (MA) due to the 

inertia of the surrounding fluid , namely, !VI = MRs + NIA 

• C(v) includes the Coriolis and centripetal force contributed from the vehicle 

itself and the added mass effect, namely, C(v) = C(v)RB + C(v )A 

• D, the damping matrix of the vehicle, comes from effects including the radiation­

induced potential damping due to the energy carried away by generated surface 

waves, skin friction , wave drift damping and damping due to vortex shedding 

• T consists of environmental forces (currents, waves and wind) and propulsion 

and rudder forces 

To further simplify the t erms M, C(v) and D inside the dynamic model of Equation 

3.1, the following conditions are assumed [32] : 

• Motion in heave, roll and pitch is neglected 

• Environmental forces due to wind , currents and waves are excluded 
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• The ship has homogeneous mass distribution and xz-plane symmetry 

• Center of gravity (CG) and center of buoyancy (CB) are located vertically on 

the same z-axis 

• Assume the inertia added mass and damping matrices are diagonal 

As a result of these assumptions, the simplified dynamic model terms M, C(v) and D 

are given in Equations 3.3 to 3.5. 

!VI= 

C(v) = 

m-X 1J, 

0 

0 

0 

0 

(m- Yv)v 

0 

m-Yv 

0 

0 

0 

(Xu - m)u 

- Xu 0 0 

D = 0 - Yv 0 

0 0 -NT 

0 

0 

(Yv - m)v 

(m- Xit.)u 

0 

(3.3) 

(3.4) 

(3.5) 

A redefinit ion of t he coefficients in Equations 3.3 to 3.5 is shown in Equation 3.6 for 

a compact formula expression. Using the newly defined coefficients in Equation 3.6, a 

compact model describing t he dynamic motion of the ASC is shown in Equation 3.7. 

In Equation 3. 7, u1 and u2 stand for t he applied external forces along t he surge 

and sway direction, and u3 defines t he steering torques around the z axis which is 

given by the product of the thrust produced by each propeller and the distance that 

each propeller is offset from the longitudinal centreline (0. 5 m as stated in Table 

2.1). The state variables [u v r]T follow t he SNAME definition, and among the 
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constants, m ii ( i = 1, 2, 3) are determined by ASC inertia and added mass effects, 

and d1i ( i = 1, 2, 3) are determined by t he hydrodynamic effects. 

mu = m- X u 

(3.6) 

. ffi00 dl' + 1 u = =...... · v · r - ~ · u - · u 1 1n11 m u n~J 1 

(3.7) 

r = mu - ffi22 . u . v - ~ . r + _ 1_ . u 
ffi33 ffi33 ffi33 3 

Equations 3.2 and 3. 7 together are the simplified ASC 3 DOF nonlinear model. How-

ever , since in this ASC design no rudder is installed on the vehicle, there is no direct 

control of t he sway motion. Therefore, a proper model t hat can describe the kine-

matic and dynamic motion of the designed ASC will neglect the sway control input 

u 2 . The complete 3 DOF model for the designed ASC is summarized in Equation 3.8. 
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V = - 7111 1 
• U · T - .!f::n_ · V 

71122 1Tl22 

r = 71111
-

71122 
• U · V - _Q;u_ · T + _l_ · U 

71133 7n33 71133 3 
(3.8) 

x = ucos('ljJ )- vsin ('ljJ ) 

y = usin('ljJ ) + vcos('ljJ ) 

'ljJ = T 

As shown in Equation 3.8, t his generated model can be divided into two groups. The 

first three equa tions consist of the first group which describes the dynamic motion 

of the ASC. By using this model, when a proper system input is applied , the ASC 

dynamic and steady state motion can be calculated. 

Using the first group of equations, ASC status vector v = [u v TjT can be generated . 

By implementing the last t hree equations, t he ASC posit ion and orientation can be 

expressed in the Earth-fixed frame. The second group of equations can be regarded 

as t he coordinates transformation matrix. It is reasonable to design a cont roller only 

for the dynamic model, and then use t he second group of equations for t he coordinate 

transformation. 

To design t he linear control algorit hm for the designed ASC, a linear ASC model has 

to be used. Subsequently, two methods for generating the linear dynamic model are 

introduced. 
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3.2 Linear Model for the ASC 

3.2.1 Linear Model Generation using Taylor Series Expan-

SlOn 

Based on t he nonlinear model in Equation 3.8, the Taylor series expansion is used to 

generate the corresponding linear model. First, an equilibrium point for the nonlinear 

model has to be defined. This equilibrium point is quite important , because the 

linearized model is only valid within a small range of this point . 

The equilibrium point has been defined as ASC moving in a straight line with a 

constant forward speed. Under this assumption, the vehicle surge velocity will be 

constant value u0 = u0, while the sway velocity (v0 ) and yaw angular velocity (r0 ) 

will be zero. T he propulsion force from two propellers will be equal and constant 

value u10 = u;' , and the steering torque (u30 ) is zero. 

(3.9) 

Then the dynamic model can be linearized around e0 by using the Taylor series expan-

sion form as stated in Equation 3.10. In t his equation , a 1 to ad define the equilibrium 

points. 

00 00 

f (xi> ... , xd) = L L 
n, = O n z =O 

T he following steps are used to obtain the final linearized model. 
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u = !1 (u v T u1) I o = ( :!2l22. · v · r - ..4u. · u + -1- · u1) I 0 ' ' ' e 1n11 mu m 11 e 

v = !2 (u v r) I o = (- !?!.li · u · T - !!:n. · v) I o 1 1 e m 2 2 1n22 e 
(3.11) 

r = j"3 (u v r u3)1 0 = ( mu-m22 . u. v - .!fill_ . r + - 1- . u3 )1 0 
' 1 ' e 1n33 m 33 m .33 e 

The partial differentiation of Equation 3.11 is shown in Equation 3.12. To get a linear 

model, only t he first derivatives of Taylor series expansion are kept. 

hleo = ~ · (u - uo) + ~ · (v - vo) + ~ · (r- ro ) (3.12) 

h I eO = ~ . ( u - Uo) + Wv- . ( v - Vo) + ~ . ( T - To ) + ~ . ( U3 - U3o) 

Therefore, Equation 3.13 is obtained. 

u = - Ifu. u + -1- u 
1n ll mu 1 

(3.13) 

Finally, the 3 DOF linear model is expressed in sta te space form. 

u _ .Qu. 0 0 u 1 0 0 U 1 1n 1 1 ffi ll 

v 0 _ .!!!n_ 
rl122 

_ m l l u * 
m 22 0 v + 0 0 0 0 (3 .14) 

r 0 m ll - m 22 u * _ .!fill_ 
T 0 0 1 U3 11133 0 ffi33 ffi33 

Equation 3.14 shows the linear model generated using a Taylor series expansion. In 
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order to implement t his model for controller design or ASC system simulation, all the 

coefficients (mii and d ii (i = 1, 2, 3) ) have to be identified using the experiments or 

simulation. Some of t he experiments are time-consuming, and the accuracy of the 

coefficients depends on t he experimental measurements. Therefore , another conve­

nient method for generating t he linear model from the nonlinear dynamic equations 

is introduced. 

3.2.2 Linear Mode l G eneration using the System Identifica­

tion 

The system identification (SI) technique is widely used for identification of a relatively 

complicated system process (e.g. ; chemical process). In t he identificat ion process, a 

well planned input signal is injected into an identified object, and the output signals 

are recorded. Based on t he input and output signals and the proper SI algorithms, 

an ident ified linear or nonlinear model can be generated to describe the behaviour of 

the ident ified object. 

Figure 3.2 shows a block diagram of the SI process for generating t he linear model 

from the nonlinear 3 DOF dynamic model. The whole simulation process is completed 

using Matlab. In the block diagram, the nonlinear model for the ASC system directly 

implements t he nonlinear dynamic model in Equation 3.8. The variable u stands for 

the input signal that is applied to both t he ASC nonlinear model and the desired linear 

mathematic model. By minimizing t he difference between the two output signals (y1 

and Y2) using the proper SI algorithm (i.e. ; least squares method), the coefficients in 

the mathematic model will be adjusted to best represent the ASC system process. 

T he coefficients of t he nonlinear model (mii and dii (i= 1,2,3)) implements a set of 

parameters of a monohull ship which has the length of 32 metres and mass of 118000 

kg from book [32] (page 104): 
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The ASC System Y1 
0"onlinear) 

u + e 

-
~!athematic :VIodel Y2 

"' 
(Linear) 

System 
Identification I+-

Algorithm 

Figure 3.2: SI for the ASC 

(3. 15) 

The model used in t he SI actually includes two control inputs: the surge force and 

yav,r moment. To get enough information from t his nonlinear model, two proper in-

put signals are chosen to excite the system dynamic characteristics. Here the pseudo 

random binary sequence (PRBS) signals are chosen , and these two signals ' range has 

to be determined according to their physical meanings. The following Matlab codes 

were used. In this code, ul stands for the surge force in Newton, while u2 stands for 



the steering torque in Newton metres. 

%M atlab codes for generating the two excitation signals 

num = 3000; 

%PRES input signal generater 

ul = idinput(num,' prbs' , [0, 0.02], [-20, 000, 20, 000]) ; 

u2 = idinput(num,' prbs' , [0, 0.008], [-2, 000, 000, 2, 000, 000]); 

Normalized cross·corrl?latiOn check for rnp u srgnal s 
0 5 r-----~------~------~------~-----.------~ 
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·0 2 

..()3 
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Figure 3.3: Normalized cross-correlation check for the designed two input signals 
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For each step input , it will take around 50 seconds for the output signal to achieve 

the steady state, so the minimum interval chosen for the designed PRBS signals is 50 

seconds. The cross-correlation analysis of the two input signals are shown in Figure 

3.3. 
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T he correlation between the two input signals are within the acceptable small range 

of [-0.2 , 0.2] in the normalized scale, so the two input signals are uncorrelated and 

they can be used for the SI simulat ion. 

The nonlinear ASC system model has been built using the Mat lab Simulink functions. 

Final realizat ion of the 3 DOF dynamic model is shown in Figure 3.4. Aft er this, the 

designed input signals are applied to this model, and the corresponding out put dat a 

are recorded and shown in Figure 3.5, 3.6 and 3.7. 
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Figure 3.5: Surge velocity under the proposed P RBS input excitation signals 

T he t erms used in Figure 3.5, 3.6 and 3.7 are concluded as follows: ul stands for 

the surge force, u2 represents the steering t orque, yl is the surge velocity, y2 is sway 

velocity and y3 is yaw angular velocity. In each figure, two input signals are plotted 



wit h t he corresponding output signals. 
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Figure 3.6: Sway velocity under the proposed PRBS input excitation signals 
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In Figure 3.5, it can be concluded that surge velocity is more correlated with the surge 

force, because it generally follows the ul input, while in Figure 3. 7 the yaw angular 

rate follows t he st eering torque. It seems that the sway velocity follows both ul and 

u2 input , which makes sense because the model used does not have direct sway control 

input. However , F igure 3.6 also indicates that the influence of the two inputs on y2 

is smaller than on y l. 

After the data are acquired , SI can be performed using Matlab identification toolbox. 

Since this toolbox can only solve multiple input and single output (MISO) problem, 

each output signal is used to generate its own identified model. The process of gener-



Angular Velocity under u 1 
04r-----------------~ 

0 2 

<;2. 0 

-0_2 - L L 

-04 ~----~----~----~ 
0 

2 

'S 0 

-1 

-2 t­
o 

1000 

II r r 

1000 

2000 3000 

'-

2000 3000 
Time 

Angular Velocity under u2 
0 4 .--------------, 

-04~--~--~--~ 
0 1000 2000 3000 

2 ,-

l 
~ 0 

-1 

-2 f-- ~ 

0 1000 2000 3000 
Time 

Figure 3. 7: Yaw angular rate under the proposed PRBS input excitation signals 
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ating the three output signal models is similar, so subsequently only the procedures 

for getting the surge velocity linear model are introduced. 

The surge velocity data are imported into the SI toolbox, and then the data are de­

trended. In this SI process, the test and validation data range is defined as [0, 2000] 

and [2001 , 3000]. The process t ime delay is determined using the following Matlab 

codes, and the results are plotted in Figure 3.8. 

%M atlab codes for estimation of the process tim e delay 

u1 = u(: , 1) ; 

'U2 = u( :, 2); 



dati = iddata(y l , ul) ; cr a(datl ); 

dat2 = i ddata(yl , 'u2) ; cra(dat2 ); 
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From Figure 3.8, it can be determined the correlation between output yl and ul is 

more than that of y l and u2 , which complies with the analysis of Figure 3.5. This 

also implies t hat it might be possible to remove the u2 input in t he generated model. 

To find a proper model order for the system, the "Linear Parametric Models" function 

is used. The "Order Selection" feature can help to find a proper model order. After 

the SI process, an autoregresive model with external input (ARX) was generated as 

shown in Equation 3.16, this model has been validated using t he SI toolbox "1\llodel 

output" function and it can reach 90.18% best fits (the signal wit h spikes is t he original 

signal) as shown in Figure 3.9. 
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Figure 3.8: Process t ime delay analysis for input u l and u2 with output y l 

In t his ARX model, y(t) is output surge velocity, u(t) is input surge force and steering 

torque, and e(t) stands for noise. It is clear that in t his model B2 is much smaller t han 

B 1, which validates that the steering force has much less effect on t he surge velocity 

than the surge force. 
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Measured and simulated model output 
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Figure 3.9: Measured and simulated model output comparison 

A(s)y(t) = B(s )u(t ) + C(s) e(t ) 

A(s) = s + 0.2817 

(3.16) 

B 1(s ) = 8.757e- 006 

B2 (s) = - 1.649e- 010 

Until t he simulation stage, since the hydrodynamic coefficients of the ASC were not 

available, t he monohull ship hydrodynamic coefficients were chosen to perform the 

initial System Identification tests . T hrough the simulation, it was validat ed that 
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a proper order linear model that described the straight-line moving behaviour of a 

monohull ship was generated . The SI used here is a black box identification method , 

so there is no need to ident ify all the hydrodynamic coefficients to obtain t he linear 

model as indicated in Section 3.2.1. 

Though the simulation was performed on a large ship model, t he SI procedure is the 

same when we perform t he SI t ests on the ASC. In Chapter 4, a linear second order 

model for the ASC will be generated using the int roduced SI procedures in Section 

3.2.2. 



Chapter 4 

Evaluation of the Autonomous 

Surface Craft 

4.1 The ASC Initial Test 

An initial te t ha been set up as shown in Figure 4.1 to validate the proper func­

tionality of the de igned ASC under th supervisory commands from the dock-side 

computer. The tested functions include proper control from both dock-side computer 

GUI and the hand controller, proper display of sensor data and the quasi real-time 

display of the global position of the vehicle in Google Earth oftware. 

Although the ont rol, data display and data logging functions were working fine, 

when performing the endurance test it was found that the system would crash after 

5 minutes. When a ystem crash happened , the GUI indicated th required messages 

could not pass the hecksum check. It took some time to figure out this problem, but 

finally the problem was addressed by adding the wireless mod m serial port 'flush' 

function for both sides (the ASC-side and the dock-side comput r). The GUI running 

on the dock-. ide computer was modified to include the t imeout function, so when data 

78 



79 

Figure 4.1: The ASC initial test performed outside the Engineering Building 

were not received in the desired time, the GUI would move to the next mission. After 

this modification , the whole system functioned well with no wireless communication 

errors after a 30 minutes endurance test. 

4.2 The ASC Tow Tank Tests and Validation 

Tow tank tests were carried out to measure the ASC hull resistance and to qualify 

the propulsion system . Taking advantage of the size and weight of the designed 

ASC, it was possible to perform full-scale tests and the results are shown in the 

following sections. Figure 4.2 shows t he experimental setup for the resistance and 

self-propulsion test . In these tests, the vehicle superstructure is removed , and the 

tow post is fixed to an adapter plat e right in the center of the ASC. The tow post 

is mainly used for measurement of the towing force along the x axis; however, since 

it can also move along the z axis and rotate around the y axis, the heave and pitch 

motion of the vehicle can also be recorded during t he tow tank test. To validate the 
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Figure 4.2: Experimental setup for tow tank test 

tow tank test re ults, sea t rials have been carried out in Holyrood Arm, Conception 

Bay, NL. 

4 .2.1 R esistance Test and Results 

For the resistance test , the propellers were replaced by two blade-less nosecones to 

remove the propellers ' induced drag. When performing this test , the vehicle had an 

initial 0 m/ peed , and then it was towed to the predefined moving speed . Thi 

moving speed was maintained for a while for data recording before being reduced to 

a full stop. 

The ASC Froude number can be calculated using Equation 4.1. 

u 
~. =----;::::== 

V£*9 
( 4. 1) 
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where U is the vehicle advance moving speed in m/s, L represents t he length of the 

submerged portion of the vehicle and g stands for the gravit ational constant . 

The surface vessel performance with respect to its Froude number is given by Equation 

4.2. 

< 0.4 - 0.5 (displacement mode) 

Fr = 0.5- 1.0 (displacem ent and planing mode) (4 .2) 

> 1.0 - 1.2 (planing mode) 

To maintain the ASC in displacement mode, t he Froude number has to be less than 

0.5 (dimensionless). The length of the ASC submerged portion is measured as 1.5 m , 

and it is assumed that g is 9.81 m/ s2
. T he speed range of the vehicle is calculated 

to be less than 1.53 m/ s. Therefore, during the resistance test , the maintained speed 

range is defined to be from 0.3 m/ s to 1.3 m/ s at a step of 0.1 m/ s, so a total of 11 

experiments were required to be performed. In each experiment , the towing force, 

heave movement and pitch angle were recorded. Since the sampling period for each 

variable is 0.00062 s, a moving average filter was implemented to remove the noise 

issue from the measured data. A conclusion of t he filtered towing force and calculated 

drag with respect to the ASC moving speed is provided in Table 4.1. 

F igure 4.3 shows the drag speed curve from the resistance test , and as shown, the 

x axis represents the ASC advance speed , while t he y axis is the measured towing 

force t hat is equal to the vehicle drag. Error bars are added to each measured point 

to indicate the measurement deviation. It can be seen that the plot is close to a 

quadratic curve. 

T he drag of the ASC is mainly contributed by the form drag. The form drag formula 
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as shown in Equation 4.3 can be used to calculate the drag coefficient of the ASC. 

The variables used in this equation are defined in Table 4.2. 

Speed (m/ s) 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 

Variable 
Drag 

Table 4.1 : The ASC resistance test results 

Tow Force(N) Tow Force Offset(N) 
1.3555 
2.4348 
3.6728 
5.162 
6.77 

9.1244 
12.3455 
15.8575 
23.135 

36.6207 
46.8641 

0.162 
0.0495 
0.1377 
0.1696 
0.1377 
0.1629 
0.0477 
0.0782 
0.1676 
0.1662 
0.1508 

1 2 
Drag = 2 · 2pAv Cn 

Drag(N) 
1.1935 
2.3853 
3.5351 
4.9924 
6.6323 
8.9615 
12.2978 
15.7793 
22.9674 
36.4545 
46.7133 

Table 4.2: Variable definition for Equation 4.3 

Description 
The ASC resi tance force 

A The reference area for one hull (wetted surface area) 
v The ASC relative speed to water 
p Water density 

Cn Dimensionless drag coefficient 

Error bar 
0.4033 
0.5219 

0.55 
0.8185 
0.5135 
0.5721 
0.5341 
0.4784 
0.7932 
1.356 
1.1388 

(4.3) 

Unit 
N 

m2 

m/ s 
kg j m3 

-

To calculate the drag coefficient, the values for the remaining variables have to be 

determined. Drag and moving speed v are already provided in Table 4.1, and the 

water density p is 1000 kg j m 3 . However, it is found that when the vehicle speed is 
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increased , there is an addit ional pitch angle and heave movement, which will affect the 

reference area A. Therefore, the reference area has to be calibrated using t he pitch 

and heave measurement before calcula ting the CD value. Equat ion 4.4 is used for 

calculating t he new reference area A*, and the unit used in this equation is metres. 

In this equat ion, 0. 75 m is the half height of one hull, and 0.37 m is t he measured 

draft of t he vehicle under the tow t ank test condit ions. In addition to that, t he width 

of each hull is measured as 1.7 m. 

Resistance test result Drag Speed Curve 
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Figure 4.3: Resistance test: drag speed curve 

A* = (sin(Pitch) * 0.75 + Heave+ 0.37) *Width 

1.4 

(4.4) 

T he calibrated reference area under each moving speed has been calculated and shown 
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in Table 4.3, and CD is generated. Figure 4.4 shows the plot of the drag coefficient , 

where the x axis is vehicle advance moving speed and the y axis i CD. 

Table 4.3: Pitch angle in the resistance test 

Speed (m/ s) Pitch (degree) Heave(m) Reference Area(m2
) CD 

0.3 0.9193 1.3875x1o- 3 0.064448382 0.205763 
0.4 1.3661 2.0238x10 3 0.065549707 0.227432 
0.5 1.1189 2.4213x1o- 3 0.065067716 0.217318 
0.6 1.5789 3.7385x10 3 0.066313962 0.209123 
0.7 1.3748 3.8858x1o- 3 0.065885324 0.205437 
0.8 1.9036 4. 7542x1o- 3 0.067208112 0.208343 
0.9 1.7994 6.6601x10- 3 0.067300285 0.225593 
1.0 2.3851 8.0009x10- 3 0.068829441 0.229252 
1.1 2.5521 9.786x10- 3 0.069503632 0.273098 
1.2 3.6456 13.0193x1o- 3 0.072480604 0.349274 
1.3 4.2284 16.102x10 3 0.074297001 0.372034 

As shown in Figure 4.4, CD stays almost constant within the speed range of 0.3 m/ s 

to 1.0 m/s, but features a rapid increases after 1.0 m/ s moving peed. The reason 

for t his big change is because when the advance moving speed of the vehicle is over 

1.0 m/s, the pitch angle and heave movement of the vehicle becomes larger, and the 

water starts to overflow the bow of t he vehicle. 

From this resistance test , the ASC drag co fficient is generated and it stays around 

0.23 within the speed range of 0.4 m/s to 1.0 m/ s. In the following self-propulsion 

test, the same vehicle moving speed range is chosen. 

4.2.2 Self-propulsion Test and R esults 

For the self-propulsion test, the propellers were installed on the vehicle. The two pro-

pellers were configured to maintain t he same constant rotational speed, but different 
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Drag coeff icient f or each hull 
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Figure 4.4: Drag coefficient 

rotational speeds were used for each test when the vehicle was towed to the predefined 

moving speed with t he towing force recorded. 

Since the speed range chosen for this test is from 0.4 m / s to 1.0 m/ s at the step 

of 0.1 m/s , seven groups of experiments, among which each group corresponds to a 

maintained moving speed, have been performed. To find the self-propulsion point for 

each speed condition, inside one experimental group, the propeller rotational speed 

is varied from low to high to change the vehicle status from under-propelled to over-

propelled. 

T he results of t his test are shown in Figure 4.5. In Figure 4.5, x axis stands for the 

two propellers rotational speed , while y axis is the recorded tow force. Each speed 
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condition features a specific line marker , and it can be seen that 5 sets of tests are 

performed for each moving speed condit ions. The self-propulsion point under each 

speed is defined as the intersection of each curve with the line that indicates that 

the measured tow force is zero. The self-propulsion point implies that if the vehicle is 

propelled by the specified rotational speed, it will reach the corresponding final steady 

state moving speed. 
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Figure 4.5: Self-propulsion test results under different moving speed condit ions 

Table 4.4 shows a summary of the self-propulsion points. These points are plotted 

out as shown in Figure 4.6, and it indicates a linear relationship between the vehicle 

moving speed and the propeller rotational speed. T herefore, a least square curve 

fitt ing i performed, and the fitted curve plotted in dotted line has quite small residuals 
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compared with the measured data. The generated Equation 4.5 can also be used to 

estimate the self-propulsion points beyond the self-propulsion test speed range. 

Table 4.4: Self-propulsion points conclusion 

Speed (m/ s) Propeller (rpm) 
0.4 99 
0.5 122 
0.6 142 
0.7 166 
0.8 188 
0.9 216 
1 237 

Self-propulsion point curve f1tting 
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Figure 4.6: Self-propulsion points curve fitting 



88 

y = 0.0043 * X - 0.021 ( 4.5) 

4.2.3 Propulsion Model 

By combining the results from the resistance and self-propulsion tests, a propulsion 

system model can be generated. 

In t he self-propulsion tests, Equation 4.6 is established. In this equation, towing 

force is directly measured by the tow post and ASC drag can be achieved from the 

resistance test , so the propulsion system thrust value can be calculated. 

T ow Force= Thrust- Drag (4.6) 

Thrust value (two propellers) is obtained and replotted in Figure 4.7. In Figure 4.7, 

the x axis is the two propellers rotational speed squared , while the y axis is the 

calculated propulsion system thrust value. Each speed condition features a specific 

line marker. Although the ASC advance moving speed is changed, each line features 

almost the same slope. 

From Figure 4.7, it can be concluded that when the ASC moves, the thrust from 

t he propulsion system will be affected by two factors : ASC moving speed and two 

propellers rotational speed squared. If t his relationship is defined as in Equation 4.7: 

(4.7) 

where T is t he thrust , S1 is the propeller rotational speed and Va is the advance velocity 

of t he vehicle. 

It is possible to generate a model that can properly describe the relationship between 

the thrust and the two factors S1 and Va .. Equation 4.8 shows the model for parameter 
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Figure 4. 7: Thrust force under different speed conditions 

identification and the used variable definitions are summarized in Table 4.5. 

(4.8) 

Table 4.5: Variable definition for Equation 4.8 

Variable Description Unit 
T Thrust force Unit 
0 Propeller rotational speed rpm 

Cr Dimensionless propeller rotational speed squared coefficient -

Va Advance speed m/ s 
b0 and b1 Dimensionless velocity coefficient -
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Least square curve fitting has been used to identify the coefficients Cr, bo and b1 

for this thrust model under the speed range from 0.4 m/ s to 1.0 m/ s. Finally, the 

identified propulsion system model is shown in Equation 4.9. 

T = 0.0010D2 + 17.7853 - 58. 7623Va (Va > 0) (4.9) 

4.2.4 Sea Trials and R esults 

Sea trials have been performed in Holyrood Arm, Conception Bay, NL, to validate the 

tow tank test results. When performing the sea trials, it was found that in the real sea 

conditions, vehicle operation status would be affected by wind, currents and waves. In 

particularly, the heading of the vehicle is easy to be changed by these environmental 

factors. 

In order to validate the tow tank test results, the vehicle has to move in a straight 

line regardless of the environmental interferences, therefore a heading PI controller 

has to be implemented. Figures 4.8 to 4.10 show the validation t est results with the 

ASC moving speed range from 0.4 m/ s to 1.0 mjs. In each figure, the x axis indicates 

time, while the y axis includes the information of ASC moving speed, two propellers 

rotational speed and the ASC heading. 

In each t est, t he propellers rotational speed is assigned according to the self-propulsion 

points (Table 4.4) from the tow tank test, and by changing to different self-propulsion 

points, the ASC will reach different final steady moving speed. As shown in Figure 4.8 

to Figure 4.10, t he difference between the two propellers rotational speed is introduced 

by the PI controller to change the ASC heading. The sea trail results are compared 

with t he self-propulsion points as shown in Table 4.6. 
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Figure 4.8: Advance speed, propeller rotational speed and magnetic heading with respect to time (0.4 to 0.6 m/ s) 
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Figure 4.9: Advance speed, propeller rotational speed and magnetic heading with respect to t ime (0. 7 to 0.9 m/ s) 
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It can be concluded that the difference from the two tests is quite small (wit hin 4. 7%), 

and the ASC self-propulsion points are validated. Since the forward speed is measured 

using the GPS and the uncertainty is 0.1 mjs, the differences seem to be the result 

of the environmental influences. 

Table 4.6: Sea trials results compared with t he tow t ank test results 

- Tow Tank Sea Trials -

Propeller ( rpm) Speed (m/ s) Speed(m/ s) Difference(%) 
99 0.40 0.4187 4.68 
122 0.50 0.4946 1.08 
142 0.60 0.6065 1.08 
166 0.70 0.7162 2.31 
188 0.80 0.7978 0.28 
216 0.90 0.9201 2.23 
237 1.00 1.0195 1.95 

4.3 The ASC Steering Model 

The ASC steering model has been generated using the system identificat ion (SI) 

technique as discussed in Chapter 3. The steering of t he vehicle is realized by applying 

different rotational speeds to both of the independent ly controlled propellers. In 

this modelling process, it is expected to find a relat ionship between the input, the 

different ial rotational speed , and t he heading of the ASC. 

If t he left and right propeller rot at ional speed is defined as n L and nR, in t his ex-

periment , t he input of the ASC system is defined to fulfil the condit ions as shown in 

Equation 4.10. By maintaining t he summation of n L and n R as constant , the vehicle 

advance moving speed can be regarded as constant . According to Equa tion 4.6, the 

steady state moving speed of the vehicle is calculated to be around 0. 72 m/ s. 
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(4.10) 

90 

90 

Figure 4. 11 hows the imported control input (differential rotational speed nL - nR) 

and the measured output heading data from sea trials. In t his figure, x axis represents 

time, while y axis includes the ASC heading and two propellers differential rotational 

speed. In t his t ime range, the vehicle moving speed is validated to be constant around 

0.72m/s. 

A linear continuous-time state-space model is expected to be identified based on t he 



recorded data. This desired model is shown in Equation 4.11: 

{

.i;(t) = Ax (t ) + Bu(t) 

y(t) = Cx(t) + Du(t) 
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(4. 11) 

where u ( t) is control input of the differential rotational speed, x( t) is state variables 

which is a vector including the heading and vehicle turn rate and y (t ) is the heading 

output. A, B , C and D stand for t he parameters that are required to be identified. 

By implementing the SI to this group of data, the value for the parameters A, B, C 

and D are achieved and shown in Equation 4.12. 

A = ( 0.01882 0.03015 ) B = ( -0.0001254) 

- 0.04801 - 0.3997 - 0.000658 (4.12) 

c = ( -291.5 2.414) D =(a) 
Therefore, a transfer function form ASC steering model can be generated as shown 

in Equation 4.13. 

A(s)y(t) = B(s)u(t ) + C(s )e(t ) 

A(s) = s2 + 0.3809s - 0.006075 (4.13) 

B(s) = 0.03497s + 0.02044 

The identified model was validated using the sea trail measured data. As shown in 

Figure 4.12, a set of sea trial data was extracted from Figure 4.11 (time range from 
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21 second to 51 second). Then the corresponding input signal was applied to the 

identified ASC steering model, and the output ASC heading angle was recorded and 

plotted in Figure 4.12. The best fit (coefficient of determination) was calculated as 

88.29%. 

Measured and simulated model output 
70 ~.===~=====c====~====c===~----~--~ 

--- Identified model output heading angle 

60 
--Sea trial measured ASC heading angle 

'&. 30 
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Time 

F igure 4. 12: Measured da ta and simulated model output 



Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

The CAN based communication system has been realized and implemented on the 

developed ASC. Four separate CAN nodes were developed, and they were successfully 

ynchronizcd using the TRM synchronization mechanism, which was evaluated using 

the DP04034 oscilloscope CA bus trigger function . 

The 900 MHz wireless communication link was successfully u eel in the ASC tests, and 

the hand controller feature was especially useful when launching and retrieving t he 

vehicle during the sea trials. The developed Matlab GUI was used for data display and 

data logging, and it was useful for adding more functions , i. e. PID control algorithm, 

to the system without changing the main program. 

A general nonlinear 3 DOF model ha been generated in order to describe the motion 

of a marine vessel in the horizontal plane. Two methods were di cussed to be used 

to get the corresponding linear model. The Taylor series expansion is a common way 

to linearize a non-linear model around an equilibrium point. However, t he generated 

model only worked ncar t he equilibrium point. In addit ion, the model coefficients 

98 
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need to be ident ified using more experiments. The System Identification (SI) tech­

nique could be u eel to get a linear model for a complicated sy tem process. However , 

it was necessary to find a proper procedure to identify a marine vessel's model, and 

to decide the required input and output ignals and identification algorithms. There­

fore, Matlab-Simulink was used to perform this initial SI tests. The monohull ship 

hydrodynami coefficients were used in the 3 DOF nonlinear model as the testing 

model. It was a ·umed that this nonlinear model can properly describe t he monohull 

ship 's motion in horizontal plane. By applying the Pseudo Random Binary Sequence 

(PRES) input signals, a linear ship model has eventually been generated. The same 

identification proces · has also been us d on ident ifying the teering model of the ASC 

as stated in Chapter 4. 

The ASC hull drag coefficient was generated from the resistance tests, and the vehicle 

self-propulsion points were obtained and validated by the sea trials results. Based on 

the tow tank te t · data, an ASC propulsion system model was developed. Th n the 

SI was implemented to get the steering model of the ASC, and finally a state space 

steering model wa achieved. 

The main contribution of this the i project was that a CA -bus based distributed 

communication and control system was su cessfully built and used on the developed 

ASC. In addition, a new weather sensor wa successfully integrated into t he ASC to 

provide wind , temperature and barometric data. I\ Ioreover, the full-scale ASC resis­

tance test and elf-propulsion tests were performed, and the ASC hull drag coefficients 

and self-propulsion points were acquired. Finally, the propo eel SI procedures from 

simulation part in Chapter 3 were succes fully used to obtain a linear steering model 

of the ASC based on the sea trials data . T his linear model will be used in the linear 

controller design in the future. 
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5.2 Future Works 

A new CAN node is planned to be integrated into the developed CAN-bus based 

communication system to enable more on-board autonomy of the ASC. More sensors 

are possible to be connected into the CAN network, so the ASC can perform more 

sophisticated ocean survey or environmental monitoring tasks. 

The ASC launch and recovery are inconvenient during the sea t rials, so a plan to 

design a specific ASC trailer cart especially for launch and retrieval of the ASC will 

be carried out. This trailer cart is still under development , and minor modifications 

are needed to complete t he design. 

The generated steering model has to be validated by the open water tests, and a more 

complete system model t hat takes into account the environmental interferences will 

be generated and evaluated. 

A high level navigation and control algorithm will be developed and experimented 

using the designed ASC. 
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Appendix 

A.l The controller CAN node program 

The controller CAN node program is provided in the following part. 

1 # incl ude n mbed. h n 

2 # incl u de "Funct ions. h " 

3 # incl u de "XTend . h" 

4 // I n i t i a l i z e th e LEDs 

5 D i g i t a l 0 u t l e d 1 (LED 1 ) ; //CAN s e n t / r e c e i v e d s u c c e s s f u ll y 

6 Di g i talO u t le d2 (LED2) ; //XTend error indi c ato r 

7 Di git a lOut l ed3 (LED3); jjt emp 'us e 

8 Di g i ta lOu t lc d 4( LED4) ; //UTC tim eout ( bl ink once eve ry 1 . 5s ) 

9 CAN canpi c ( p30 , p29) ; 

10 CAN can a irma r ( p9 , p10) ; 

11 XTend xtend (p13 , p14 ); //S erial 115200 bps XTend {p13, p1 4 ) t x , r x 

12 Seria l pc (USBTX, USBRX) ; // USBtx, r x 

13 Timer t ; //Count th e runn ing tim e 

14 Timeou t tmoutl , tmout2 , tmout_ UTC ; 

15 char CAN_ msg [8] = {0 x01 , OxOO , OxOO , Ox32 , Ox01 , OxOO , OxOO , Ox32} ; 

16 unsigned char CAN_ data [ 8] = { 0 xOO} ; 
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17 unsigned char RTR_ id [ 8] = { 16 , 1 7 , 18 , 19 , 2 0 , 2 1 , 2 2 , 2 3} ; 

18 unsigned char R1R_N0[8]= {1 , 2 , 2 , 2 ,3 ,5 , 2 ,5} ; 

19 unsigned char Nav_ CAN_ rnsg[88]={0x00} ; 

20 unsigned char *p_ msg=&Nav_ CAN_rnsg [ 0 ] ; 

21 unsigned char Airmar_ msg [8 0] = { 0 xOO}; 

22 unsigned char motor_ CAN_ msg[8]={0x00} ; 

23 unsigned char motor_ fa il_ msg [8]= {0x55 ,OxOO ,OxOO ,OxOO ,Ox56 , 0 

xOO , 0 xOO , 0 xOO } ; 

24 unsigned char *P_ motormsg=&notor_ CAN_ msg [ 0 ] ; 

25 unsigned char * p_ motorfail=&;motor_ fa i l_ msg [ 0 ] ; 

26 unsigned char UTC_ wait= 1; 

27 unsigned char GPS_ AHRS_ on=1 ;/ / CPS and AHRS servic e f l ag 

28 unsigned char motor_ on= 1; / / motor s e r vice f lag 

29 // tim eout fun c t ions d e f i n it i o n 

30 void atmout1 () 

31 { 

32 GPS_ AHRS_ on = 0 ; 

33 } 

34 void atmou t2 () 

35 { 

36 motor_ on = O; 

37 } 

38 void atmout_ UTC () 

39 { 

40 UTC_ wait = O; 

41 tmout_ UTC . d e t ach () ; 
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42 } 

43 //Main F u n c t ion 

44 in t main( ) 

45 { 

46 CANMessage t msg ; 

47 le d 1 =0 ; le d 2 = 0; le d 3 = 0; le d 4 = 0; 
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48 canpi c . fr equ e n cy ( 1000000 ) ; j / CAN fr e q con f i gu r e d as l MHz 

49 can a irma r . fr e qu e n cy ( 250000 ); 

50 init_ AF () ; 

51 wa i t ( 0 .5); // wait 0 . 5s fo r th e power up of all d evices 

52 while ( 1 ) 

53 { 

54 i f (xtend. runstart ==l ) 

55 { 

56 tmout_ UTC. attac h (&atmout_ UTC , 1 .5 ) ; 

57 t . reset(); t.start(); 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

w hile( ! canpi c . r ead ( t msg) && UTC_ wait) ; 

if (UTC_ wait==O) jjUTC wa it tim e arr ive s 

{ 

UT C_ wait = l ; 

l ed4 = 1;wai t ( 0. 2); l e cl 4 = 0 ;//i nd ic at e tim e ou t 

} 

e I s e //CAN m essage r e c e i v e d 

{ 

tmout_ UTC . d etach ( ) ; 



68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

} 

e l se 

{ 

} 
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if (tmsg. dat a[OJ==255 && tmsg.data [1J==255 && 

tmsg . data [2J==255 && tmsg. data [3J==255) 

{ 

} 

l e d3 = ! l ed3; wa it ( 0.1) ; l e d3 = ! led3; 

systemrun(&tmsg. d ata [OJ) ; 

e l se if ( tmsg . d ata[OJ==85 && tmsg . d ata[1J==85 

&& tmsg. d a ta [2J ==85 && t m sg . d ata [3J ==85 ) 

{ 

} 

l e d 3 = !l e d 3 ; wait ( 0 . 1) ; l e d 3 =!l e d 3 ; wait ( 0. 1) 

le d 3 = ! l e d 3 ; wait ( 0 . 1) ; l e d 3 = !l e d 3 ; 

systemrun(&tmsg. dat a [OJ ); 

e l se / / GPS fi xed 

{ 

systemrun(&tmsg. d ata [ 0 J ) ; 

} 

tmout_ UTC. at t ac h(&atmout_ UTC , 1 . 5 ) ; 

w hile (!can pic. r ead ( tmsg) && UT C_ wait) ; 

i f (UTC_ wait==O) //UTC wait tim e arriv es 

{ 



91 UTC_ wait= 1; 

92 l e d 4= 1;wait (0 .2 ); l ed4=0 ; 

93 } 

94 } 

95 } 

96 } 

97 void sys temrun ( unsigned char *P_ msg) 

98 { 

99 unsigned char XTend_ cmd= O,XTend_ nodata=O; 

100 xtend. send (Ox10 , Ox04 , p_ msg); 

101 wa it (0 . 05) ;// wait 20ms for CPS and AHRS i nfo ready 

102 t . stop(); pc. printf ( '%f \ n \ r' , t. r ead ()); t. r ese t (); 

103 t. r ese t() ; t. sta r t(); //Tim e logg er 

104 can_ send ( 1 , RTR_ id [RTR_ cmd_ 1] , 8 , CAN_ msg) ; 

105 can_ rec (R'IR__ O[RTR_ cmd_ 1] , CAN_ data); 

106 can_ send ( 1 , RTR_ id [RTR_ cmd_ 4] , 8 , CAN_ msg) ; 

107 can_ rec (RTI\_NO [RTR_ cmd_ 4] , CAN_ data); 

108 can_ send ( 1 , RTR_ id [RTR_ cmd_ 6] , 8 , CAN_ msg) ; 

109 can_ rec (RTI\_NO [RTR_ cmd_ 6] , CAN_ data); 

110 can_ send ( 1 , 4 , 8 , CAN_ msg) ; can _ rec ( 1 , CAN_ data) ; 

111 can_ send ( 1 , 7 , 8 , CAN_ msg) ; can_ r ec ( 1 , CAN_ data) ; 

109 

112 A irmar_ inqu ire() ; //Added t o in quir e info from th e A irmar 

PB200 

113 t.stop();pc.printf('%f \n\r' , t. r ead() );t.rese t (); 

114 t.reset() ; t. s tart(); 

115 switc h (xtend. r ece i ve (XTencl_ cmd , XTend_ nodata)) 



110 

116 { 

117 case 0 : / / checksum ch eck f ails 

118 l ed2=!l e d2 ; 

119 XTe11d_ cmd=OxOO ; 

120 p c. p r i 11 t f ( "00 o/cd o/cd \ 11 \ r" 1 XTe11d_ cmd 1 XTe11d_11odata) 

121 p c . p r i 11 t f ( n o/cd o/cd o/cd o/cd o/cd o/cd o/cd o/cd o/cd o/cd \ 11 \ r n 1 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

xt e11d. XTe11d_ rec [ 0 ] 1 xt e11 d . XTe11d_ rec [ 1 ] 1 xte11d . 

XTe11d_ rec [ 2] 1 xte11d . XTe11d_ rec [ 3 ] , x t e11d. 

XTe11d_ rec [ 4] , xte11d . XTe11d_ rec [ 5] , xte11 d. 

XTe11d_ rec [ 6] 1 xte11d . XTe11d_ rec [ 7] , x t e11d. 

XTe11d_ rec [ 8] , xte11d. XTe11d_ rec [ 9] ) ; 

Rw1_ Command (Ox33 , 0 ) ; 

XTe11d_ cmd=O ;XTe11d_ 11odata=O; 

break ; 

case 250 : / / runstop command 

p c . print f ( "250 o/cd o/cd \ n \ r " ,XTend_ cmd , XTend_ nodata 

) ; 

xtend . run s t a rt = O; 

x t e nd. int e rrupt ( 1 ) ; 

break ; 

case 255 : / / t im eout - no r espond w i th in t h e t im e ou t 

l e d 2 = !led2; 

XTend_ cmd= Ox OO ; 

p C . p r i 11 t f ( "o/cd o/cd o/cd o/cd o/cd o/cd o/cd o/cd o/cd o/cd \ 11 \ r " , 

xtend . XTend_ rec [ 0 ] , xt end . XTend_ rec [ 1 ] 1 xt end . 



134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 } 

} 

XTend_ rec [ 2 ] , xtend . XTend_ rec [ 3] , xten d. 

XTend_ rec [ 4] , xtend . XTend_ rec [ 5] , xtend . 

XTend_ rec [ 6] , xtend. XTend_ rec [ 7 ] , xte nd . 

XTend_rec [ 8] , xtend . XTend_ rec [ 9] ) ; 

111 

Rw1_ Corrnnand ( Ox40 , 0 ) ; / / p r e vious v alu e Ox4 5 ch ang ed 

on Aug 9 

pc . prin t f ( '25 5 o/cd o/cd \ n \ r ' ,XTend_ cmd , XTend_ nodata 

) ; 

XTend_ cmd=O;XTend_ nodata=O ; 

break ; 

default : // data r e c e iv e d and ch ecksum ch e ck pass es 

l ed3= !le d 3; 

Rw1_ Command ( XTend_ cmd , XTend_ nodata) ; 

pc. printf ( 'd e fa ult o/cd o/cd \ n \ r' ,XTend_ cmd , 

XTend_ nodata) ; 

XTend_ cmd= O; XTend_ nodata=O; 

break ; 

t.stop() ; pr i ntf ( '%f \ n \ r" , t.rea d ());t .r eset() ; 

xt end. flu s h se ri a l buff e r () ; 

GPS_ AHRS_ on= 1; 

motor on = 1· 
- ' 

150 / / XTend int errupt fun c t i on XTend_ int errupt 

151 void XTend_ in terru pt (void ) 

152 { 



153 unsigned char cmd=O,nodata=O ; 

154 if (xtend . r ece iv e (cmd , nod ata)==10) 

155 

156 

{ 

157 } 

158 } 

xtend. r un s tart = 1; 

159 //CAN f unction can recezv e 

160 char can_ rec ( unsigned char count er , uns igned char d a ta [ J) 

161 { 

162 float tcmp1 , temp2 ; 

163 CA Message msg; 

164 char i , i i ; 

165 unsigned char *p=p_ msg ; // pointer initia l value 
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166 unsigned char *PlTI=p_ motormsg; / ) po inter to motor m essage 

167 while (co unt er) 

168 { 

169 while (! canpi c . r ead (msg)); 

170 co u n t e r --; 

171 if ( msg . i d < OxOA) 

172 

173 

174 

175 

176 

177 

178 

{ 

switch (msg . id ) 

{ 

case 2 : //Error m essag e from t h e L ef t motor 

pc. printf( "eL\n\ r ") ; 

le d1 = !l ed1 ; 

for ( i i = 0; i i < 4; i i ++) 



179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

{ 

* ( pm+ i i ) = * ( p _ mo t o rf a i l + i i ) ; 

} 

break ; 

case 3: / / E rror m ess ag e fr om t h e Righ t mot or 

pc. pr in tf(" eR \ n \ r "); 

prn=p _ mot ormsg +4 ; 

le d1=!l ed 1 ; 

for ( i i = 0; i i < 4 ; i i + + ) 

{ 

* (pm+ i i ) = *( p _ mo t orfa il+ i i +4) ; 

} 

break ; 

case 5: 

pm=p_ motormsg; 

pc. pr in tf ( "1 \ n \ r n) ; 

le d1 = !led 1 ; 

for ( i i = 0 ; i i < 4 ; i i ++) 

{ 

*(pm-t- ii )= msg . d ata [ ii ] ; 

} 

break ; 

case 6 : 

pm= p_ motormsg -t- 4 ; 

pc . pr i nt f ( "R\ n \r' ); 

le d1 = !l e d1 ; 
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205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

} 

} 

for ( i i =0; i i < 4 ; i i ++) 

{ 

*(pm+ i i )=msg. d a t a [ ii]; 

} 

break ; 

case 9: /j r ese r ve d 

p c . pr i nt f ( "o/ox" , msg . d a t a [ 0 ] ) ; 

break ; 

c a se 10: // r eserve d 

break ; 

d e fa ult : 

break ; 
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e l se i f(msg. id < Ox20) 

{ 

IEEE754_ h tof( msg . d ata [0 ] , msg. d ata [1] , msg . d ata [2 ] , 

msg . d ata [3 ], tempi ); 

IEEE754_ htof(msg. d ata [4 ] , msg . d a t a [5 ] , msg. data [6 ], 

msg . d ata [7 ], temp2 ); 

switch ( msg . id ) 

{ 

case 16: / / Longitud e+Latitud e 

break ; 

case 1 7: / j SOG+COG 

p= p_ msg+8; 
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229 break ; 

230 case 18: I I A cc e lx+A cc ely 

231 p= p_ msg+ 16; 

232 break ; 

233 case 19 : I I A c c e lz+Angx 

234 p=p_ msg+24; 

235 break ; 

236 case 20 :IIAngy+Angz 

237 p=p_ msg+32 ; 

238 break ; 

239 case 2 1 : I I MagX+MagY 

240 p-p_ msg+40; 

241 break ; 

242 case 2 2: I I MagZ+M1, 1 

243 p=p_ msg+48 ; 

244 break ; 

245 case 23 : I I M1,2+M1, 3 

246 p=p_ msg+ 56 ; 

247 break ; 

248 case 24 : I 1M2, 1 +M2, 2 

249 p=p_ msg+ 64 ; 

250 break ; 

251 case 25 : IIM2,3+M3, 1 

252 p=p_ msg+ 72; 

253 break ; 

254 case 26: I I M3,2+M3, 3 



255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

} 

else 

} 

p-p_ msg+80; 

break ; 

case 27: / / 

break ; 

default: 

break ; 

l ed 1 = ! le d1 ; 

for ( i =0; i <8; i ++) 

{ 

*(p+i )= msg. data [ i]; //Data r e co r ded 

} 

269 return 0; 

270 } 

271 return 1; 

272 } 

273 

274 //CAN fun ction can_ send (RTR or normal m ess ag e ) 
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275 void can_ send (char RTR_ choose, int id , int num , c har * PO i nt e r) 

276 { 

277 i f ( R TR_ choose== 1) / / RTR m essag e 

278 { 

279 if ( canp ic . writ e ( CANMessage ( id , 0 , mun , CANRemotc , 

CAN Standard) ) ) 
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280 { 

281 l e d 1 ! l e d 1 

282 } 

283 } 

284 e l se //Data m ess ag e 

285 { 

286 i f ( can pi c . w r i t e ( CAN Message ( i d , p o int e r , num)) ) 

287 { 

288 l e d 1 ! le d 1 

289 } 

290 } 

291 } 

292 // CAN a cce p t an ce fil t e r c onfigurati o n 

293 v oid ini t _ AF ( void ) 

294 { 

295 uin t32 t a dd r e ss=O; 

296 // Off mode 

297 LPC_ CANAF->AFMR = Ox000000 01 ; 

298 // S e t ex p l ici t s tanda r d Fr-ame 

299 LPC_ CANAF->SFF _ sa = a ddress; 

300 // r ese r ve d msg and t im e re f e r ence message(id=O and id = l ) 

301 * ( ( vo lat il e ui nt32_ t *) (LPC_ CANAF_ RAM_ BASE + a d dr ess)) = 

( OX001 << 29) I ( OXOOO << 16) I (OX001 << 13 ) I (OX001 

<< 0) ; ad d r ess+= 4; 

302 //Error m essage fro m L ef t and R i ght motor( id=2 and id = 3) 
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303 * ( (vol at il e u int32 _ t *) (LPC_ CANAF_ RAM_ BASE + add r ess ) ) = 

(OX001 << 29) I (OX002 << 16 ) I (OX001 << 13 ) I (OX003 

<< 0 ); addr ess +=4; 

304 / / RTR R espons e Data f ram e from L eft 8 R ight motor ( i d=5 

and id=6) 

305 * ( (vo lati l e uint32_t *) (LPC_CANAF_ RAlvi_ BASE + a ddr ess)) = 

(OX001 << 29) I (OX005 << 16 ) I (OX001 << 13 ) I (O X006 

<< 0) ; add r ess +=4; 

306 //R ese r ve d for other us ag e ( i d=9 and i d=10) 

307 *(( vo lati l e uint32_ t *)(LPC_ CANAF_ RAM_ BASE + a ddr ess ) )= 

(OX001 << 29) I (OX009 << 16 ) I (OX001 << 13 ) I (OXOOA 

<< 0) ; add r ess +=4; 

308 // I ss u e th e pro blem when GPS or AHRS lo s e th e conn ection ( 

i d=26 and id=27) 

309 * ( ( vo lati l e uint32 _ t *) (LPC_ CANAF_ RANI_ BASE + a ddr ess)) = 

(OX001 << 29) I (OX01A << 16 ) I (OX001 << 13 ) I (OXOlB 

<< 0) ; address+= 4; 

310 // S e t group standard Frame ( i d =15- id =25) 

311 LPC_ CANAF->SFF _ GRP _ sa = Ox01 4; 

312 *(( vo lati l e uint32_ t *)(LPC_ CANAF_ RM1_ BASE + a ddr es s ) ) = 

(OX001 << 29) I (OXOOf << 16) I (OX001 << 13 ) I (OX019 

<< 0) ; a dd ress+= 4; 

313 // S e t e xp l ici t e.rt en ded Frame for CAN 1 

314 LPC_ CANAF->EFF _ sa = Ox01 8 ; 

315 * ( ( vo latile uint32 _ t *) (LPC_ CANAF_ RAM_ BASE + a ddress)) -

(OXOOO << 29) I (OX9f11 223); ad d ress + = 4; / / 127250 
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m ess ag e 

316 *(( volatile uint32 - t *) (LPC_ CANAF_ RANI_ BASE + a ddr ess ) ) 

( OXOOO << 29) I (OX9fl1323 ); a ddr ess +=4; 11127251 

m essag e 

317 * ( ( volatile uint32 t *) (LPC_ CANAF_ RMv1_ BASE + a ddr ess ) ) = -

( OXOOO << 29 ) I (OX9f80123 ); a ddr ess+=4; 11129025 

m ess ag e 

318 *(( volatile uint32 - t *) (LPC_ CANAF_ IWv1_ BASE + a ddr ess)) 

( OXOOO << 29) I ( 0 X9f80223 ) ; a d dr ess +=4; 11129026 

m essag e 

319 *(( volatile uint3 2 - t *) (LPC_ CANAF_ RANI_ BASE + a ddr ess ) ) -

( OXOOO << 29) I ( 0 X9fd0223 ) ; add r ess+=4; 11130306 

m essag e 

320 *(( volatile uint32 - t *) (LPC_ CANAF_ RANI_ BASE + a ddress)) 

( OXOOO << 29) I (0Xdfl1 923); a ddr ess+=4; 11127257 

m ess ag e 

321 *(( vo latil e uin t32 - t *) (LPC_ CANAF_ RANI_ BASE + a ddr ess)) 

( OXOOO << 29) I ( 0 X d f8 0 9 2 3 ) ; a ddr ess +=4; 11129033 

m ess ag e 

322 *(( vo lati l e uin t32 - t *) (LPC_ CANAF_ RANI_ BASE + a ddr ess)) 

(OXOOO << 29) I ( OX1 5fd0623); a ddr ess +=4; 11130310 

m essag e 

323 *(( volati l e uint32 - t *) (LPC_ CANAF_ RANI_ BASE + a ddr ess)) 

( OXOOO << 29) I ( OX1 5fd0723); ad dr ess+= 4; 11130311 

m essage 

324 I I S et group exten d e d Frame 



325 LPC_ CANAF->EFF _ GRP _ sa = Ox03C ; 

326 // Set End of T able 

327 LPC_ CANAF-> ENDofTa ble Ox03C ; 

328 //no rmal mode 

329 LPC_ CANAF->AFMR = Ox OOOOOOOO ; 

330 } 

331 // Tran sform th e in format ion from byt e t o float 

332 void IEEE754_ htof ( unsigned char a , unsigned char b , unsigned 

char c, unsigned char d , float & va l ) 

333 { 

334 long temp=O; 

335 tempJ=a; temp<<=8;tempJ=b ; t emp <<=8; 

336 tcmpJ=c; temp<<=8;temp J=d; 

337 float *P=( float *)&temp; 

338 va l=*P; 

339 } 

340 // Thi s fun cti on is us e d to transform th e float data to byte 

data for transmis sian on th e CAN bus 
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341 void I EEE754_ ftoh ( flo a t val , unsigned char& t 1 , unsigned char& 

t2 , unsigned char& t3 , unsigne d char& t4) 

342 { 

343 long *P= (long *)&val ; 

344 long temp= *P ; 

345 t4= t emp&Oxff; 

346 temp >>=8; t3= t emp&Oxff ; 

347 temp >>=8; t2= temp&Oxff; 



348 temp>>=8; t1=temp&Oxff; 

349 } 

A.2 The navigation CAN node program 

The navigation CAN node program is provided in the following part. 

1 # include n mbed . h n 

2 # include ' GPS. h ' 

3 # include "AHRS . h ' 

4 # include n math. h n 

5 # include ' Func ini t . h ' 

6 // I nitia l i ze th e LEDs 

7 D i g i t a l 0 u t l e d 1 (LED 1 ) ; 

8 D i g i ta l 0 u t l e d 2 ( LED2 ) ; 

9 D i g i t a l 0 u t le d 3 ( LED3) ; 

10 D i g i t a l 0 u t le d 4 ( LED4) ; 

11 // I nt e rfa ce s d ef i nation 

//CAN s ent s u c c e s sf u l l y ( bli n k ) 

//CPS data i n va l id ( bli n k ) 

// AHRS data i n v a l i d ( b l i n k ) 

//Program runs noTm all y ( bli n k) 

121 

12CAN n av iga tor_ ca n (p30 , p29 ); //r d , td ( c on n ecte d wi t h MCP2551 ) 

13 S e r i a l p c ( USBTX, USBRX) ; // tx , r x 

14 GPS gp s( p13 , p14 ); jj tx , r x 

15 AHRS a hr s ( p9 , p10) ; 

16 Timer t ; 

/ j tx , r x 

17 uns igned char msg_ send [88]= {0x00 ,OxOO ,OxOO ,OxOO ,OxOO , OxOO , 0 

xOO , 0 xOO} ; //Rows= 11 , Co lumns=8 

18 c har *p_ msg= ( ch ar * )&msg_ send [ 0] ; 

m essag e address 

// p o i n t e r t o t h e 1 s t CAN 



19 c har can_ msg[8]= {0x00} ; 

20 //Main f u n c t i o n 

21 int ma in () 

22 { 

23 in t i ; 

24 l e d 1 = 0 ; le d 2 = 0 ; l e d 3 = 0 ; le d 4 = 0 ; 

25 gp s . ini t i a l () ; 

122 

26 n a vi ga t or _ ca n . fr equ e n cy ( 1000000 ) ; //CAN f re q conf igur- e d as 

JMHz (CAN fr e qu ency 125000b ps ) 

27 init_ AF (); //CAN f i l te r- conf igur-ation 

28 // On ly acc ept t h e id=9 and id=JO message 

29 n a vi gato r _ ca n . at t ac h (& ca n_ in te rru pt) ; 

30 gp s. sampl e () ; 

31 while ( 1 ) 

32 { 

33 switch ( gps . sample () ) 

34 { 

case 0 :// data not fix e d 

l ed2 = 1;wa it ( 0. 1); l e d2 = 0; 

f or ( i = O; i < gps . number + 1; i++) 

{ 

//LED2 bl i nk 

35 

36 

37 

38 

39 

40 

41 

42 

43 

p c . pr in t f ( "%c " , gp s . msg [ i ] ) ; 

} 

pc . p r i n t f ( "\ r \11" ) ; 

break ; 

case 1 :// data v alid 



44 

45 

46 

47 

4 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

pc .printf( " l \ r \ n "); 

for ( i = 0 ; i <gp s . number+ l ; i ++) 

{ 

pc. pr i nt f ( "%c' , gps. msg [ i ] ) ; 

} 

pc. prin t f ( '\ r \ n "); 

IEEE754_ ftoh (gps . longitude , msg_ send [O] , 

msg_ send [ 1] , msg_ send [ 2 ] , msg_ ·end [ 3] ) ; 

// longitud e 

IEEE754_ ftoh (gp . l at i t ud e .111 ·g_ end [4], 

msg_ send [ 5] , 111sg_ send [ 6] . 111 g_ s nd [ 7 ] ) ; 

// latitud 

IEEE754_ ftoh ( g ps. sog , msg_ send [ 8] , 111sg_ send 

[ 9] , msg_ send [ 1 0] , msg_ send [ 11 ] ) ; // 

sp ee d ov T gr-ound (SOC) 

IEEE754_ ft oh ( g ps. cog , msg_ send [ 12 ] 1 msg_ send 

[ 13 ] 1 msg_ send [ 14 ] 1 111sg_ send [ 1 5] ) ; // 

cour-se ove r- gr-ound (COG) 

break ; 

case 2: //No gp s signal at all 

for ( i = 0 ; i <gps. number + !: i ++) 

{ 

p c . printf( '%c' ,gp s.msg [ i ] ) ; 

} 

pc . print f ( "\ r \ n ' ) ; 

break ; 
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62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 } 

82 } 

} 

case 255: //Checksum f ails 

pc.printf( "255 \ r \ n ") ; 

break ; 

default : 

pc. printf ( n d e fau l t n ); 

break ; 

if ( ahrs. sample (Oxcc, 79 )) 

{ 

for ( i =O; i < 72 ; i++) 

{ 

msg_ send[16+i]=ahrs. r ec [ i +1 ] ; 

} 

} 

e l se 

{ 

l ed3 = 1;wait ( 0 .1 ); l ed3 = 0; 

} 

l e d 4 = !led4 ; // in d ica t e t hat t h e pr-ogram zs runnzng 

83 void ca n _ in terr u pt ( void ) 

84 { 

85 CA Message msg ; 

86 //Check i f CAN m essag e r e c e i ve d 

87 if ( n a vigato r_ can . r ead (msg)) 
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88 { 

89 if ( msg . t yp e==CANRemote) / / RTR m essag e 

90 { 

91 switch ( msg. id) 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

{ 

case 16 ://GPS data-longitud e and lati t ud e 

can_ send (Ox010 , 8 , p_ msg ) ; 

break ; 

case 17: //GPS data-longitud e latitud e and SOG 

and COG 

ca n_ send (Ox010 , 8 , p_ msg ); 

ca n_ send ( 0 xO 11 , 8 , p_ msg+8) ; 

break ; 

case 18 :// Ac ce l x, y and z , and AngRat e x 

can_ send (Ox012 , 8 ,p_ msg+ 16) ; 

can_ send ( 0 xO 13 , 8 , p_ msg+ 24) ; 

break ; 

case 19: // A cc el z and AngRate x , y and z 

can_ scnd (Ox01 3 , 8 , p_ msg+ 24) ; 

can_ send (Ox014 , 8 , p_ msg+ 32); 

break ; 

case 20 :// A cce l x , y and z; A ngRate x, y and 

z 

can_ send (Ox012 ,8 , p_ msg+ 16) ; 

ca n_ send(O x013 ,8 , p_ msg+ 24); / / wait (0 . 07) 

;/ / ? t im e t oo l on g ? 



111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

can_ send (Ox014 ,8 , p_ msg+32); 

break ; 
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case 21: //GPS in fo ; Ac ce l x, y and z; AngRate 

x , y and z 

can_ send (Ox0 10 ,8 , p_ msg); 

can_ send ( 0 xO 11 , 8 , p_ msg+8) ; 

can_ send (Ox012 ,8 , p_ msg+ 16); wait ( 0 .07 ) ; 

can_ send ( 0 xO 13 , 8 , p_ msg+ 24) ; 

can_ send (Ox014 ,8 , p_ msg+32); 

break ; 

case 22: / / AHRS MagX MagY MagZ Ml , 1 

can_ send ( 0 xO 15 , 8 , p_ msg+40) ; 

can_ send ( 0 xO 16 , 8 , p_ msg+48) ; 

break ; 

case 23: //MagZ and R o t a t ion Matri x 

can_ send ( Ox016 , 8, p_ msg+48); 

can_ send (Ox017 ,8 , p_ msg+56); 

can_ send (Ox01 8 ,8 , p_ msg+64); wait ( 0.07 ); 

can_ send (Ox019 , 8 , p_ msg+ 72) ; 

can_ send (Ox01A , 8 , p_ msg+ 80); 

break ; 

case 26: 

le d 4 = 1;wait(0. 1 ) ;led4 = 0; 

break ; 

case 28: 

break ; 
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136 default : 

137 break ; 

138 } 

139 } 

140 else / / data m ess ag e 

141 { 

142 switch (msg. id ) 

143 { 

144 case 15 : 

145 break ; 

146 } 

147 } 

148 } 

149 } 

150 void ini t _ AF ( void ) 

151 { 

152 uint 32_ t ad d ress = 0; 

153 // Off mode 

154 LPC_ CANAF->AFMR = Ox000000 01 ; 

155 // S e t e xp l icit standard Frame 

156 LPC_ CANAF->SFF _ sa = add r ess; 

157 // R es erv ed for oth e r usag e( id =g an d id = lO) 

158 *(( vo latile uin t32 _ t *)(LPC_ CANAF_ RAM_ BASE + a ddress ) ) = 

(OX001 << 29) I (OX009 << 16) I (OX001 << 13 ) I (OXOOA 

<< 0) ; address+= 4; 

159 // S e t group s t andard Frame 
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160 LPC_ CANAF->SFF _ GRP _ sa = Ox004; 

161 11 ( i d = 1s- i d = 2 s) 

162 * ( ( volatile uint32_ t * ) (LPC_ CANAF_RAM_BASE + a ddr ess)) = 

( OX001 << 29) I (OXOOf << 16 ) I (OX001 << 13 ) I (OX01C 

<< 0) ; 

163 // S et ex pl ici t extend e d Frame 

164 LPC_ CANAF->EFF _ sa = Ox008; 

165 // S e t group ext end e d Frame 

166 IPC_ CANAF->EFF _ GRP _ sa = Ox008 ; 

167 

168 

// S e t End of Tabl e 

IPC_ CANAF-> EN DofTable 

169 //normal mode 

Ox008 ; 

170 IPC_ CANAF->AFMR = OxOOOOOOOO ; 

171 } 

172 // This fun c tion i f us ed for CAN m essag e sen d i ng 

173 void can _ send( int id, int num , char *PO i nt e r ) 

174 { 

175 if (nav igator_ can.writ e(CANMessage( id , point e r , nwn ))) 

176 { 

177 le d 1 = ! l e d 1 ; //CAN m ess ag e s en t s u c c e s sf u l l y 

178 } 

179 } 

180 / / Thi s fu nction is us e d to t ransform t h e f loat data to byt e 

data for tran smission on th e CAN bus 

181 void IEEE754_ ftoh ( flo a t v a l , unsig n e d char& t 1 , uns igned char& 

t 2 , unsigned char& t3 , uns ig ne d char& t4) 



182 { 

183 long *P=( long *)&val ; 

184 long temp=*P ; 

185 t4=temp&Oxff; 

186 temp >>=8; t3=temp&Oxff ; 

187 temp >>=8; t 2=temp&Oxff ; 

188 temp>>=8; t 1= t emp&Oxff ; 

189 } 

190 // This function is us ed to transform t h e inf or mat i on fro m 

by t e to float f o r c alculation 

191 void IEEE754_ htof ( uns igne d char a , unsigned char b , unsigned 

char c , uns igned char d , flo a t & va l ) 

192 { 

193 long temp=O; 

194 tempj=a ; temp <<=8; temp j=b; temp <<=8; 

195 tempj =c; temp<<=8;temp j=d ; 

196 flo at *P= ( flo at *)&temp ; 

197 v a l= *P; 

198 } 

A.3 The motor controller CAN node program 

T he motor controller CAN node program is provided in t he following part. 

1 #include < p 18f2 58 . h> 

2 #include < u s art . h> 

3 # include < d e lays. h> 

/ / PI C Contro ll e r h ea der file 
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4 #include < tim ers. h> 

5 #include n d ataty p e . h n 

6 #include n f u n c t i 0 n s . h n 

7 / / Fun c t i on d ec laTation 

8 void rx_ h andler ( void ) ; 

9 / / Global va Tia bl e s d ec l aTation 

10 u in t8 rs485_ m sg [ 15]; 

11 uin t8 r s485_ r [13 ]={0x01 ,0x02 ,0 x03 , 0x04} ; 

12 uint 8 r s485_ updt [8]= {0x01 ,0xOO ,OxOO ,Ox32} ; 

13 uin t8 r s485 _ stat u s ; 

14 / / MacTo d ef ine 

15 #define L_ or_ R 0 

16 // Nec e ssaTy configuTati on jo T PIC 

17 #pragma co n fi g WDT=OFF // D isabl e wat chdog t i m eT 

18 #pragma co n fi g OSC=HS // O sci ll atoT s e l ec tion 

19 #pragma co n fi g OSCS=OFF 

20 #pragma co n fi g LVP=OFF 

21 #pragma co de r x _ in t e rrup t Ox8 

22 void r x in t ( void ) 

23 { 

24 asm goto r x h a ndler _ endasm 

25 } 

26 #pragma co d e 

27 #pragma int e rrup t rx hand le r 

28 void r x h a ndl er ( void ) 

29 { 
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30 INTCONbits. GIE=O ; 

31 if (RXBOCONbits .RXRTRRO) 

32 { 

33 # if L_ or_ R== l 

34 { 

35 i f ( RXBOSID L==Ox 9 0 ) 

36 { 

37 if (! rs485_ status) 

38 can _ send (Ox0040 ,8 , rs485 _ upd t); 

39 else 

40 can_ send (OxOO a O ,8 , r s485_ updt ); 

41 } 

42 } 

43 # e l se 

44 { 

45 if (RXBOSIDL==OxfO) 

46 { 

47 i f (! rs485 _ stat us) 

48 can_ send ( 0 x0060 , 8 , rs485_ upd t) ; 

49 e l se 

50 can_ send ( 0 xOOcO , 8 , rs485_ upd t) ; 

51 } 

52 } 

53 # e nd i f 

54 } 

55 e lse 



56 { 

57 # if L_ or_ R==1 

58 { 

59 r s485_ updt [OJ =RXBODO ; 

60 i f (rs485_ upd t[O] > Ox20) r s485_ updt [O]=Ox20 ; 

61 rs485_ updt [1] = RXBOD1 ; rs485_ updt [2] =RXBOD2 ; r s485_ updt 

[3] =RXBOD3 ; 

62 } 

63 # e lse 

64 { 

65 r s485_ updt [0] =RXBOD4 ; 

66 i f ( rs485_ upd t [0] > 0 x20) r s485_ updt [0 ] = 0 x20; 

67 r s485_ updt [1]=RXBOD5; rs485_ upd t [2 ]= RXBOD6 ; r s485_ updt 

[3]=RXBOD7 ; 

68 } 

69 #e ndi f 

70 } 

71 PIR3bits. RXBOIF = O; 

72 RXBOCONbits .RXFUL= O; 

73 I TCONbits. GIE= 1; 

74 } 

75 //main fun c tion 

76 void main ( void ) 

77 { 

78 uin t8 i ; 

79 INTCON = Ox OO ; // disabl e all inter rupt s 
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80 // I n i t i a l i z a t i o n of a ll 

81 pin _ init (); 

82 u sart _ ini t () ; 

83 can _ ini t (); 

84 t i m e r 0 _ i n i t () ; 

85 //motor initiali z ation command 

86 msg_ switch(O); 

87 r s485_ send ( 15 , rs485_ msg) ; 

88 //Enabl e g l o b a l in t e rr up t enabl e b it 

89 lNTCON=OxcO; //e nabl e int errupt 

90 while ( 1) 

91 { 

92 //c h ec k r eceive d data status of motor 

93 if (rs485 _ r ev (9 )) // if r ece ption data zs r eceive d 

succ es sfully 

94 { 

95 r s 485 _ s tat us = 1; // Ts4 85 conn ec t i on Tight 

96 } 

97 e l se 

98 { 

99 rs485 _ s tatus = 0; / / rs485 conn ec t i on f ail 

100 } 

101 //se t command far motor 

102 msg_ switch ( 1 ) ; 

103 rs485 _ sen d ( 15 , rs485_ msg) ; 

104 } 



105 } 

106 // In itia l ization of all modules f or PIC18f258 

107 void pin _ init (void ) 

108 { 

109 // Microcontroll eT P in In i tiali z ation 

110 PORTA= O;TRISA=O; 

111 PORTB= 0; TRISB = 0; 

112 PORTC= O;TRISC=O; 

113 } 

114 // In itia l ization of UART joT PIC18f258 

115 void u sa r t _ ini t( void ) 

116 { 

117 TRIS Cbits. T RISC6=0; / / D ef in e RX as input 

118 TRIS Cbits. T RISC7= 1;// D ef in e TX as output 

119 //Open USART conf igure d as 8- bit data , 9600 baud 

120 // I nclud e th e config of TXEN and SPEN enabl e 

121 //and USART pin RC6/ TX and RC7/ RX c onfig 

122 OpenUSART ( USART_ TX_ lNT_ OFF & 

123 USART_ RX_ INT_ OFF & 

124 USART_ ASYNai_ IvlODE & 

125 USART_ EIGHT_ BIT & 

126 USART_ CDNT_ RX & 

127 USART_ BRGH_ HIGH, 129); 

128 d elayms( 100 ) ; 

129 } 

130 // Initi a l i z ation of tim eTO module j oT PI C18f 258 

134 



131 void timerO _ init(void ) 

132 { 

133 // 1 :2 56 pr e s ca l e value , 16 bit tim er 

135 

134 TOCON = Ox07 ; // Configur e tim er , but don't start it 

yet 

135 Tiv'IROH = Ox67 ; / / R ese t T imerO to Ox6769-follo w 

th e s t eps fi rs t-H, th en-L 

136 Tiv'IROL = Ox69 ; / / 2 s tim er ( 1 s=OxB3B5) 

137 INTCONbits.TMROIF = 0 ; / / Cl ear Tim erO overflo w fla g 

138 } 

139 // Initial ization of CAN module for PIC18f258 

140 v oid ca n _ i nit (void ) 

141 { 

142 //Pin config-RB3/CANRX, RB2/CANTX 

143 TRISBbits. TRISB3=1; 

144 TRISBbits . TRISB2 = 0; 

145 //C onfiguration mode- wait 

146 CANCON= Ox80 ; 

147 w hile (- CANSTATbits .OPMODE2); 

148 BRGCON1= 0x00 ; / j SJW=hTQ; TQ= (2* 1) /2 0Mbps; TQ= 0.1 us ; 

149 BRGCON2=0x98; // Prop=1*TQ; Phas e1 =4*TQ 

150 BRGCON3=0x03 ; // Pha se2=4*TQ 

151 TXBOCON= OX03 ; // Tra nsmit p ri ority b i t s (buff e r pr i or i t y ) 

152 // high est prior i ty 

153 TXBOSIDH= OxOO ; / / i d=Ob - > 000001 00000 

154 TXBOSIDL= Ox 20; 
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155 TXBOSIDLbi ts .EXIDE=O;// stan dard i d entifi e r 11 bits 

156 TXBODLC=OX08 ; //Data l ength 

157 / / Data_ S end 

158 TXBODO= Oxff ; 

159 TXBOD1=0xff ; 

160 TXBOD2= 0 X f f ; 

161 TXBOD3= 0 X ff ; 

162 TXBOD4=0xff ; 

163 TXBOD5= 0 X f f ; 

164 TXBOD6= 0 X f f : 

165 TXBOD7=0xff; 

166 //R e ceiv e r e g i t o r 0 c on fig u r a t ion 

167 RXBOCON= OXOO ; // receive all va l i d m essages 

16 R.XBOSIDH= OXOO ; 

169 R.XBOSIDL= OXOO : 

170 RXBODL - oxo 
' 

171 R.XBODO=OXOO : 

172 R.XBOD1= 0XOO ; 

173 R.XBOD2=0XOO ; 

174 R.XBOD3= 0XOO : 

175 R.XBOD4=0XOO ; 

176 R.XBOD5= 0XOO ; 

177 R.XBOD6= 0XOO ; 

178 R.XBOD7= 0XOO ; 

179 / / Mask and F i l t e r c onjigu1·at i on 

1 0 RXJ..IOSIDH= O X ff ; 



181 RXMOSIDL= OXeO; 

182 # if L_ or_ R==1 

183 // F i lt e r conf ig -only a c c ep t id=Ox0080 

184 RXFOSIDH= OxOO ; 

185 RXFOSIDL=Ox80 ; 

186 RXFOSIDLbits .EXIDEN=O; 

187 # e l se 

188 // F i lt e r conf ig- on l y a cce p t id=Ox OO eO 

189 RXFOSIDH= OxOO ; 

190 RXFOSIDL= OxeO ; 

191 / / RXFOSIDL=Ox80 ; 

192 RXFOSIDLbits .EXIDE =0; 

193 #e ndif 

194 //Normal mode- wait 

195 CANOON= OxOO ; 

196 w hile (CANSTATbits. OPMODE2) ; 

197 // I nitia l i ze th e CAN i nt errupt 

198 PIR3= 0x00 ; // cl e ar all int errupt f l ag 

199 PIE3= 0x01 ; 

200 IPR3= 0x0 1 ; 

201 } 

202 void can_ send ( uin t16 id , uin t8 num , uin t8 msg[ ] ) 

203 { 

204 TXBOSIDH= (id >>8)&0xff ; //id_ H 

205 TXBOSIDL=id &Ox ff ; / / id_ L 

206 TXBOSIDLbit s. EXIDE = O;//s ta n dard id e ntifi e r 11 b i t s 
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207 //Data l e ngth 

208 TXBODLC=num ; 

209 // Data_ Send 

210 TXBODO=msg [ 0 ] ; 

211 TXBOD1=msg [ 1 ] ; 

212 TXBOD2=msg [ 2 ] ; 

213 TXBOD3=msg [ 3 ] ; 

214 TXBOD4=msg [ 4 ] ; 

215 TXBOD5=msg [ 5 ] ; 

216 TXBOD6=msg [ 6 ] ; 

217 TXBOD7=msg [ 7 ] ; 

218 TXBOCONbits . TXREQ= 1; 

219 while (- P I R 3 b it s . TXBOIF ) ; 

220 TXBOCO bits .TXREQ=O ; 

221 } 

222 void m sg_ switch ( uin t8 sw ) 

223 { 

224 swit c h ( sw) 

225 { 

226 case 0 :// i niti al i z e th e motor 

227 config_ msg_ m otor ( 0 x OO , 0 x OO , 0 xOO , 0 x OO ) ; 

228 break ; 

229 case 1 : //se t command 

138 

230 co n fig_ msg_ motor ( r s485_ upd t [ 0] , rs485_ upd t [ 1 ] , rs485_ u p d t 

[2] , r s485_ updt [3 ] ) ;//Ox02, 0 xOO, Ox01 , Ox 64 

231 break ; 



232 case 2:// qu ery command 

233 get_ msg_motor () ; 

234 break ; 

235 //c as e 3 :/ / CAN m ess ag e 

236 // config_ msg_ motor(rs485_ u p dt ( Oj , rs485_ updt ( 1}, 

rs485_ updt (2}, rs48 5_ updt ( 3} ); 

237 // break; 

238 default : 

239 break ; 

240 } 

241 } 

242 uint 8 co nfig_ msg_ motor ( uint 8 spd_ h , u int8 spd_ l , u int 8 

dir ec tion , uin t8 power) 

243 { 

uint8 i , stat u s ; 

uint16 e r e; 

244 

245 

246 

247 

248 

249 

250 

251 

r s485_ msg [ 0 ] Ox80; II D estination Address 

252 

253 

254 

rs485_ msg [ 1] 

r s485_ msg [ 2] 

rs485_ msg [ 3 ] 

r s485_ msg [ 4] 

rs485_ msg [ 5] 

UA V pr·oj e c t 

r s485_ msg [ 6 ] 

r s485_ msg [ 7] 

r s485_ msg [ 8] 

Ox10 ; 

Ox01 ; 

Ox 10 ; 

Ox OO ; 

Ox12 ; 

Ox04 ; 

spd_ h ; 

spd_ l ; 

II Sourc e A ddT es s 

II PCB 

II INS 

II ID MSB 

II ID LSB ?? Ox12 zn th e 

II L eng t h of Data 

II Sp ee d- RPM-MSB 

II Sp ee d-RPM-LSB 
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255 r s485_ msg [9 ] = d i r ec tion ; // D i r ec t ion 

256 rs485_msg [ 10 ] = p ower ; // P ower ( 0 - 100% - > Ox OO 

- Ox 64 ) 

257 c r c=ca l_ c r c ( 0 , rs485_ msg , 1 1 ) ; 

258 r s485_ msg [ 1 2 ] // er e low 

259 r s485_ msg [ 11 ] (e r e > >8)~0 x ff ; / / er e_ h i gh 

260 r s485_ msg [ 1 3 ] Oxff ; // dummy b y t e for r s 4 8 5- dr ive r 

d i r . 

261 r s485_ msg [ 14 ] Oxff ; / / dumm y by t e fo r r s4 85-dri ve r 

d i r· . 

262 re turn 1 ; 

263 } 

264 u in t 8 get_ msg_ motor ( void ) // l e n =7; 

265 { 

266 uin t 16 e r e; 

267 // Qu er y Software from T or qee do t h ru s t e r 

268 r s485_ msg [ 0 ] Ox80 ; II D estin a ti on A dd ress 

269 r s485_ msg [ 1 ] Ox 10 ; II Sou rce A ddress 

270 r s485_ msg [ 2] Ox 01 ; II PCB 

271 r s485_ msg [ 3 ] Ox20 ; II INS- g e t 

272 rs485_ msg [ 4] Ox OO ; II ID MSB 

273 r s485_ msg [ 5 ] Ox0 1 ; II ID LSB 

274 // rs4 85_ m sg {5} = Ox50 ; II ID LSB su p p l y vo lta g e 

ch ec k 

275 rs485_ msg [ 6] Ox OO ; / / L eng th of Data 



276 rs485_ msg [ 9] 0 xff; // dummy byt e f o r r s 4 8 5- dr i v er 

dir. 

277 rs485_ msg [ 1 0 ] Oxff ; // dummy byt e for rs485-dr i v er 

dir . 

278 

279 

280 

e r e=ea l_ ere (0, rs485_ msg , 7) ; 

r s485_ msg [8] e r e~Oxff ; // crc_ low-CHKO 

281 

282 } 

rs485_ msg [ 7 ] 

r eturn 1 ; 

283 / / rs485_ send 

(ere >>8)~0 xff ; // crc_ high-CHKl 

284 u int 8 r s485_ send ( u int 8 num , uint 8 msg [] ) 

285 { 

286 uin t8 i ; 

287 TRISAbits . TRISA0=1 ;/ / SP485_ TX_ EN 

288 d elay ms( 10) ;// n e cessary d elay 

289 // Th is d elay solv e th e problem of th e in f ormat i on 

initia l diff e 

290 // r ene e betw ee n th e two SBC28PCs 

291 for ( i = O; i <nw11 ;i + +) 

292 { 

293 while ( BusyUSART () ) ; 

294 \iVriteUSART ( msg [ i ] ) ; 

295 } 

296 // delayms ( lO); 

297 w hile (BusyUSART ()) ; / / delayms ( l) ; 

298 T RISAbits. TRISAO = O;/ / SP485_ RX_ EN 
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299 r e turn 1 ; 

300 } 

301 I I rs 4 8 5 _ r ec eiv e 

302 uint 8 r s 485 _ r ev ( uin t8 num) 

303 { 

304 uint 8 l . 
' 

305 TOCONbits .TMRCDN = 1 ;I I Start Tim er 0 

306 ll2 s idl e - > break out 

307 f o r ( i = O; i<num ; i++) 

308 { 

309 while ( ! PIR1 bits. RCIF ) 

310 { 

311 if (INTCONbits. TMROIF) 

312 { 

313 t im e rO _ ini t () ; 

314 return 0 · 
' 

315 } 

316 } 

317 r s485_ r [ i ]= RCREG ; 

318 } 

319 t im e rO _ ini t () ; 

320 return 1 · 
' 

321 } 

322 uin t 16 ea l_ e r e ( uin t 16 e r e , uin t8 *Ptr , uin t 16 le n ) 

323 { 



324 s tati c cons t ui nt 8 oddp a ri ty [16 ] { 0 , 1 , 1, 0 , 1 , 0 , 0 , 

1 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 } ; 

325 uint16 id ata; 

326 

327 for (; l e n ; -- l en ) 

328 { 

329 id a t a = ( * p tr ~ e r e ) & 0 x ff ; 

330 p t r ++; 

331 e r e >>= 8; 

332 if (o ddp a ri ty[ i d a t a & Ox Of ] ~ o dd pari ty [ id ata >> 4 ]) 

333 

334 

335 

336 

337 

338 } 

e r e ~= Oxe 001 ; 

i d ata <<= 6 ; 

e r e ~= idata ; 

i d ata <<= 1 ; 

e r e ~= idata; 

339 re t urn e r e; 

340 } 

341 I I d e l a y ( 1 - 6 55 3 5) ms 

342 void d elay ms( uint1 6 tm) 

343 { 

344 do 

345 { 

346 Delay 1 OOTCY x (5 0 ) ; I I 1 ms 

347 }while (--tm ); 

348 } 
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349 I I de lay ( 1-2 55) s 
350 void d e lays( uin t8 tm) 

351 { 

352 do 

353 { 

354 Delay10KTCYx ( 250 ) ; I l 500ms 

355 Delay10KTCYx (250) ; I l 500ms 

356 }while (--tm) ; 

357 } 
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