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Abstract

In this thesis, we study several related problems concerning the unit group U(ZG)
of the integral group ring ZG of a periodic group G. Although Chapter 1 involves a
lengthy calculation, the most important results appear in Chapter 2 through Chapter
2.

Chapter 1 describes constructively U(Z(G x C,)), where U(ZG) has been de-
scribed in some way. We are also interested in the following question: If G has a
normal complement generated by bicyclic units, does G x C, also have a normal
complement generated by bicyclic units? We show that none of the normal com-
plements of Dg x C2 x C; is generated by bicyclic units by explicitly constructing
a set of generators for a normal complement of Dg x C, x C,, although a normal
complement of Dg x C, is indeed generated by bicyclic units.

In chapter 2, we first study the subgroup of all unitary units U;(ZG). We prove
that if G has a normal complement generated by unitary units , then it is also true
for G x C;. Then we investigate generalized unitary units and prove that all of
these units form a subgroup U, ;(ZG) of the unit group. Furthermore, we show that
this subgroup is exactly the normalizer of the subgroup of unitary units. One of
our main results is that the normalizer of U, ;(ZG) is equal to itself when G is a
periodic group. We also obtain some other interesting results on U, ;(ZG) .

Chapter 3 investigates central units of ZAs. We show that the centre C(U(ZAs)) =
4+ < u >, where < u > is an infinite cyclic group and we explicitly find the generator
u.

In chapter 4, we study the hypercentral units in the integral group ring of a
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periodic group G. We prove that the central height is at most 2. We also discuss

the relationship between hypercentral units and generalized unitary units.
Chapter 5 characterizes the n-centre of the unit group of the integral group ring

of a periodic group. It is proved that the n-centre is either the centre or the second

centre of the unit group for all n > 2.
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Introduction

The group ring RG of the group G over a commutative unital ring R, a ring
with the elements of G as a basis and with multiplication defined distributively
using the group multiplication in G, reflects properties of the group G and the
ring of coefficients R. Since this fascinating object is at the cross roads of several
mathematical topics such as group theory, representation theory, number theory, and
ring theory, it can be studied not ouly for its own sake but also as a tool for tackling
other mathematical problems. The theory of group rings as an independent area of
study has developed only in relatively recent times, following the fundamental work
of Higman [21, 22], and it gained great impetus after the inclusion of questions on
group rings in Kaplansky’s famous lists of problems [31, 32]. The area was further
stimulated by the inclusion of sections on group rings in the books on ring theory
by Lambek [38] and Ribenboim [51]. Since then several books devoted entirely to
the subject have appeared (e.g. Passi [47], Passman [48, 49] and Sehgal [57, 58] ).

The unit group U(RG), consisting of all invertible elements in RG, plays a very
important role in studying the relation between the group-theoretic structure of G
and its group ring RG. Early significant results about the unit group were proved by
Higman [21, 22}, and since then considerable work has been done on this subject. In
the important case where R = Z, the ring of rational integers, the most important
reference is the comprehensive book by Sehgal [58].

In the study of group rings, one very fundamental problem is describing U(ZG)
in some concrete way. A complete description (including generators) has been car-

ried out for only a relatively small number of groups. The unit group U(ZSs3) was
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first described by Hughes and Pearson [24] and a different description was given by
Allen and Hobby [2]. Most recently, Jespers and Parmenter [28] gave another char-
acterization of U(ZSs), which allows us to obtain additional information about the
structure of this unit group. The structure of Z{(ZDs) was first obtained by Polcino
Milies [40]. A more recent result of Jespers and Leal [27] (see also Parmenter{44] )
shows the freeness of a normal complement and also the important role played by
the bicyclic units. Most recently Jespers and Parmenter [29] extended the descrip-
tion of U(ZG) for groups of order 16 and highlighted the important role played by
the bicyclic units and Bass cyclic units. Some other examples of concrete descrip-
tions of U(ZQG) include Allen-Hobby (1] for Sy and A4, Passman-Smith [50] for D,
Galovitch-Reiner-Ullom [56] for G = C, x C, where q is a prime dividing p — 1,
Ritter-Sehgal [52] for |G| = p®, Kleinert [35, 36] for G = D, where n is an odd
number which is a product of distinct primes, and for Q,, the generalized quaternion
group.

We will shed further light on this subject in Chapter 1. We give matrix presenta-
tions of a normal complement for the following groups: DgxC,, DgxC3 xCa, Dgx (s,
D\o and D,4. We are mainly interested in describing constructively U(Z(G x C,)),
where U(ZG) has been described in some way. For example, we consider the follow-
ing question: If G has a normal complement generated by bicyclic units, does G x C,
also have a normal complement generated by bicyclic units? We give a negative an-
swer to this question, showing that none of the normal complements of Dg x C; x C,
is generated by bicyclic units, although a normal complement of Dg x C; is indeed
generated by bicyclic units.

In Chapter 2, we first study the subgroup of all unitary units U;(ZG) (section



2.1). The study of unitary units was proposed by Novikov [43] and this subgroup
was first described by Bovdi [10]. Since then a number of interesting results on
this subject have appeared [11, 12, 13, 14, 15, 16, 23, 45]. Continuing on with the
investigation initiated in Chapter 1, we establish a relationship between unitary
units in ZG and Z(G x C;) and we also characterize when U (ZG) is a subgroup of
finite index in U(ZG) . Then we introduce and investigate generalized unitary units
in the rest of the chapter. We show that all of these units form a subgroup U, ;(ZG)
of the unit group which is exactly the normalizer of the subgroup of unitary units.
One of our main results is that the normalizer of U, ((ZG) is equal to itself when G
is a periodic group. Among other results, we give necessary and sufficient conditions
for the unit group to be generalized unitary when G is periodic and also characterize
when all bicyclic units are nontrivial and generalized unitary.

Central units of integral group rings play a very important role in the study of
generalized unitary units in Chapter 2. However, there are very few cases known of
nonabelian groups G where the group of central units of ZG, denoted C(U(ZG)),
is nontrivial and where the structure of C(U(ZG)), including a complete set of gen-
erators, has been determined. In Chapter 3, we show that the central units of
augmentation 1 in the integral group ring ZAs form au infinite cyclic group (), and
we explicitly find the generator u.

After studying central units, it is natural to consider the hypercentral units. In
Chapter 4, we study the hypercentral units in the integral group ring of a periodic
group G. We prove that the central height is at most 2. This extends work of Arora,
Hales and Passi [3], who proved the same result for finite groups. We also discuss

the relationship between hypercentral units and generalized unitary units.



Another extension of the centre C(U(ZG)) is the n-centre, introduced by Baer
[5]. It shares many properties with the centre, for example it follows from Corollary
1 in Baer [6] that a group is n-abelian if the quotient modulo its n-centre is (locally)
cyclic. In [33], Kappe and Newell shed further light on these similarities by inves-
tigating various characterizations and embedding properties of the n-centre. Our
main result in Chapter 5 is a complete characterization of the n-centre of the unit
group of the integral group ring of a periodic group. To be specific, we prove that

the n-centre is either the centre or the second centre of the unit group for all n > 2.



Chapter 1

Units of
Z(Dg X 02) and Z(Dg X Cg X CQ)

Let G be a finite group, U(ZG) the group of units of the integral group ring ZG
and U\ (ZG) the subgroup of units of augmentation 1. Higman has a very famous
theorem [22]:

Theorem 1.0.1. For a finite group G,U(ZG) = £G if and only if G is abelian of
ezponent 1,2, 3, 4, 6 or G = E x Qg where Qg is the quaternion group of order 8

and E is an elementary abelian 2-group.

One way of proving this is to first show that 4(ZQs) is trivial - i.e. U(ZQs) =
+Q)s, and to next prove that if Y(ZG) is trivial, then U(Z(G x C;)) is also trivial.
Motivatived by the latter result, in this chapter we are primarily concerned with the
problem of describing constructively U{Z(G x C3)) for particular groups G , where
U(ZG) has been described in some way. We are also interested in the following
question: If G has a normal complement generated by bicyclic units, does G x C;
also have a normal complement generated by bicyclic units?

Section 1.1 introduces preliminaries and notations, while section 1.2 theoretically
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gives a general method of going from generators of U(ZG) to generators of U(Z(G x
C,)). Sections 1.3 and 1.4 describe all units of the integral group rings of groups
Dg x C; and Dg x C; x C, respectively. Section 1.4 also gives a negative answer

to the question proposed earlier, and section 1.5 deals with units of other integral

group rings.
1.1 Preliminaries and Notations

Describing the unit group U(ZG) of the integral group ring ZG of a finite group is a
fascinating and fundamental part of the study of group rings. A complete description
(including generators) has been carried out for only a relatively small number of
groups (see Sehgal [57, 58] for an excellent survey, as well as the introduction).

In [26], Jespers studied U(Z(Ds x C3)) and U(Z(S3 xC,)) and proved that DgxC>
as well as 53 x C; has a torsion-free normal complement which is generated by bicyclic
units. This torsion-free normal complement of Dg x C, was described as a semi-
direct product of free groups. We will give a matrix presentation of such a normal
complement and construct fewer bicyclic generators for it ( in section 1.3). Our
description of U(Z(Dsg x C3)) is required in studying the group U(Z(Ds x C, x C3))
whose generators have not been constructed before ( in section 1.4).

Let us recall some basic definitions and fundamental results which will be needed

later in Chapter 1.

(1) Bicyclic Units;

Let a,b € G, where o(b) is finite. We write b for the sum of all powers of b:



Then (1—b)b = 0 and for any a € G, ((1—b)ab)? = 0. Hence uy, = 1 +(1—b)ab
has inverse 1 ~ (1 — b)ab. The units Usq, a,b € G are called bicyclic units of
ZG.

(i1) Normal Complement;

If H is a subgroup of a group G, then H has a normal complement N if
N aG, HN =G and HN N = 1. In subsequent sections, we will be primarily
interested in a particular torsion-free normal complement of G in U/, (ZG). We

will need the following theorem about normal complements:

Theorem 1.1.1. (See Sehgal [58], p.160, Theorem(81.1)) Let G be a finite
group having an abelian normal subgroup A, such that either

(a) G/A is abelian of ezponent dividing 4 or 6 or

(b) G/A is abelian of odd order.

Then G has a normal torsion-free complement in U;(ZG).

In case (2), a normal complement to G in U;(ZG) is always given by U(1 +
A(G)A(A)). Case (b) is more difficult (recall that if H is a group, A(H) is
the augmentation ideal of ZH, namely {} anh| 3 an = 0}).

(iii) Schreier Method;



Theorem 1.1.2. (See Passman [{9], p.117, Lemma 1.7) Let G be a finitely
generated group, and let H be a subgroup of finite index. Then H is finitely

generated.

The proof of this theorem provides a method, called the Schreier method,
of finding generators of the subgroup from those of the group. We describe
it briefly: let G = (zy,z4, - , ), and let {y;,y2,° - ,yn} be a complete set
of right coset representatives for H in G. Let h;; = yiz;y;", where y;' is
chosen such that h;; € H. Then H is generated by the finitely many elements

hij, wherei=1,2,--- ,nand j =1,2,--- ¢t
(iv) PSL

e Definition of GL(n,Z),SL(n,Z)
The group of all invertible matrices M, x,(Z) is called “ the general linear
group” and denoted by GL(n,Z). The subgroup of GL(n,Z) consisting
of all matrices of determinant 1 is called “ the special linear group” and

denoted by SL(n,Z).

e Definition of PGL(n,Z),PSL(n,Z)

PGL(n,Z) = GL(n,Z)/{%L.},
PSL(n,Z) = SL(n,Z)/{xI.}.

where [, is the n x n identity matrix.

e Definition of ['(n)



We write ' for PSL(2,Z). Letting [2%] be a typical element of [, we
define the principal congruence subgroup of I of level of n, denoted by
['(n), as the subset of [' such that

a =d=1mod(n), b = ¢ = 0 mod(n).

We have the following important results:

Lemma 1.1.3. ( See Newman [{1], p.146-147) ['(n) is a subgroup of fi-

nite indez of [ for all n and the indez is shown as follows:

n>2
n=2

g(n) =([:T(n)) = { gn:’ l—Lnln(1 - p'l?)

The first few values of u(n) are as follows:
1 2 3 4 5
1 6 12 24 60

® 3

e Generators for ['(2)

['(2) is a free group of rank 2 and has A = [} %], B = [19] as free
generators(Newman [41], p.144, Theorem VIIL.7, and p.149).

(v) Dihedral Group D,,

The finite group D, = {a,b]a™ = b* =1, ba = a™"'b) is called the dihedral
group of order 2n. Recall that Dg was mentioned earlier and that Dg is

isomorphic to S.



1.2  Units of Z(G x C)

In this section, we describe U(Z(G x C3)) in terms of U(ZG) . Theoretically, this
section gives a general method of finding generators of U(Z(G x C3)) from those of
U(ZG).

Let G be a group and C; = (¢) be a cyclic group of order 2.

Define f, : Z(G x C3) = ZG by fi(3] a:gi+)_ Bigic) = Y (c: + B:)gi, where o,
B: € Z,g; € G for all :. Then f; is 2 homomorphism.

Define f, : Z(G x C3) = ZG by f2(3_ aigi + Y Bigic) = Y (: — Bi)g:- Then f,
is a homomorphism.

Define f : Z(G x C3) = ZG x ZG by f =(f1, f2)- Then Ker(f) = 0, so that f

is a monomorphism. [t is easy to see

Im(f) = {Q_ %g »_ €:g:) | % = e: mod(2) for all i}.

Certainly, if u € U(Z(GxC,)), then f(x) € V = Im(f)N(U(ZG) xU(ZG)). But
conversely, assume v = (). ¥:0:,_€:g:) € V, ie. Y vigi € U(ZG), 3 eig: € U(ZG)
and v; = &; mod(2) for all ;. Mapping into Z,G, we obtain . %:g; = Y. é&g: €
U(Z2G), thus (3 %g:) ™' = (L &g:) ™ € U(ZG).

If (3 %)™ = 3 0igi and (3 e:ig:)™" = D wigs, then 6; = y; mod(2) for all 7.
Therefore, v=! = (3 6:9:,3_yig:) € Im(f) and the preimage of it is exactly the
inverse of the preimage of v. This shows that fU(Z(G x Cs))) = Im(f) N(U(ZG) x
U(ZG).

We have proved that
Theorem 1.2.1. U(Z(G x C,)) = {v = (3] 190 2 €:i9:) € U(ZG) x U(ZG)|v: =
e: mod(2) for all i)} C U(ZG) x U(ZG).
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Corollary 1.2.2. If U(ZG) is trivial, then U(Z(G x C,)) is trivial.
Remark 1.2.3. V is a subgroup of finite indez of U(ZG) x U(ZG) when G is finite.

Proof. Let A, B € U(ZG)xU(ZG), where A = (3" aig:, Y. B:g:), B = (3 wigi, 3 vigi)
and a; = w; mod(2),5; = y; mod(2). Mapping A, B into Z,G x Z,G, we obtain
A = B, thus AB~! = 1. Therefore, AB~' = 1+2(Y_ alg;, 3 8l9;) € V and A, B are

in the same coset of V. We point out that an upper bound of the index is 22/¢l. O

If a complete set of coset representatives could be found, the Schreier method
would now give us a way of going from generators of U(ZG) to generators of U(Z(G x
C5)). In practice, however, it seems very difficult even to decide the index, which may
be very large, and still more difficult to find a complete set of coset representatives
for the subgroup.

Instead we will use an alternative method to describe unit groups for the following
examples. Our main goal is to compute generators for U(Z(Ds x C, x C3)). For this

purpose, we need first deal with U(Z(Dg x C3)).

1.3 Description of U(Z(Dg x Cs))

In this section, we give a new description of U(Z(Ds x C,)), which allows us to
obtain additional information about the structure of this unit group. Furthermore,
we construct a set of bicyclic generators for a torsion-free normal complement of
Dg x C, in Uy (Z(Dg x C3)). The techniques and results developed here will be used
in subsequent sections.

Our main result is as follows:

11



Theorem 1.3.1. In U (Z(Ds xC,)), Dg x C; has a torsion-free normal complement
W= {u=1+a(l —a?)|la € A(Ds x C3),u a unit }, which is generated by bicyclic

units. More explicitly,

w

i

1 + 4'(Uu 4wl2 1 + 42[1 42’12 2[1012 + 212 2'1.021 + 2921
2ws; 144wy || 229 1+ 429, wij, 2i; €4 det = 1
where “det = 1" means that the matriz in each component has determinant [ and

this will be used throughout Chapter!.

Let Dg x C; = (a,b,cla® = b* = ¢ = 1,ba = a®bh,ac = ca, and bc = cb).

Note that if we let A = (1,a?) , then (Dg x C;)/A = C; x C x C, ; therefore, by
Theorem 1.1.1, Dg x C, has a torsion-free normal complement W = U(1 + A(Dg x
Ca) A(A)) = {u =1+ afl —a?)|la € A(Dg x C,) and u a unit }, so that the first
statement holds. Next notice that a typical element in Z(Dg x C3)(1 — a*) can be

written as

(8 +70)(1 ~ @) = (B~ 7)1 ~ &) (55) + (B +7)(1 = ¥) (1)

where 8,7 € ZDs.

As a consequence,

l14+c¢
5 )
l+c¢
2

1—-¢

5—) ® ZDg(1 —~ a*)(

l—c¢ 2
> ) ® QDs(1 — a®)(

a(l ~ a?) € Z(Dg x C2)(1 — a®) C ZDg(1 — a?)(

C QDg(1 —a”)(

).

Therefore, we only need to deal with QDs(1 — a?}(15=) and QDg(1 — a?)(4=).

12



1.3.1 Machinery

We first examine carefully the Wedderburn decomposition of the rational group
algebra Q(Ds x C;). Consider the idempotents f; = 3:1-,9-2-3-'5‘-‘5 and f, = %ﬁ%—

Then
Q(Ds x C2) fL = QD fi = Max2(Q)
and

Q(Dg x C2)f2 = QDs fr = Max2(Q)

and elementary matrix bases for Q(Dg x C,)f1 and Q(Ds x C5) f, over @ are given

as follows:
L+b
€ = 9 fl
ab—a
€z = ) f1
ab+a
€21 = ) f1
1-b
ey = “‘é""fl
and
1+5b
S = ) fz
ab—a
S12 = 5 fz
ab+a
821 = 2 fz
1-b
S22 = ) fa

As we pointed out before, a(l —a?) € Z(Ds x C3) C QDs(1 —a?)55 o QDs(1 -
a?) e 2 M, 2(Q) ©@ Ma2x2(Q). We wish to see exactly what this embedding looks

like with regard to the given elementary matrix bases.
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-y p—— .

Let us consider a typical element of Z(Dg x C;)(1 — a?), say, v = (a0 + aya +
azb + azab + Gyc + Brac + Babe + faabe)(l — a?), where all o’s and G’s are in Z. It

can be rewritten in the form

l—¢

v = (ap + a1a 4 azb + azab + Boc + Brac + Brbe + Prabe)(l — a?)

+(ao + 1@ + b + azab + Poc + Prac + Brbc + Baabe)(1 — a?) - ;‘ .

1—a®l—c¢

= 2((ao — o) + (a1 — Br)a + (a2 — B2)b + (a3 — (3)ab)

2 2
1—a?l+c¢
+2((ag + Bo) + (a1 + Bi)a + (az + B2)b + (a3 + B3)ab) 5 5
We have
fi = euten
afy, = ey —ep
bfx = €11 —€22
abfy, = enn+ey
Similarly,
o = su+tsn
afy = Sz —Sn2
5f2 = 811 — 822

abf = s;2+sn

14



Hence the corresponding pair of matrices is

({ 2ap +a; — o — B2) 2(—ay + az+ B — B) ]
2 +oaz—Py—B3) 2Aag—az—Fo+062) |’

[ 2(a0 + az + By + 52) 2(—0oy + a3 - G + ) ])
2o +as+Bi+6) 2(a0— o+ 6o — B)

Conjugating both by [} }], we obtain

2ag— a1+ oz —a3)  4[(—a1 + az) — (=B + 52)]
—(Bo — By + B2 ~ B5)]
a4+ a; —as 4 a3) |’

2[(a1 + a3) — (B + B3)] ~(Bo + B1 — B2 + Ba)]

2[(ap — oy + @z —a3z)  4(—ay + ) + (=1 + B2)]
+(Bo — P + B2 — F5)]
2[(a0 + a1 —az + a3)

2[(a1 + a3) + (B + Bs)] +(Bo + By — B2 + B3)]

This is a pair of matrices of the form

([2.’[[1 43212 2y11 49‘12
2z 2z9; | 7] 2ynr 2y22

and all z;; and y;; are in Z, and where

Tt aqgn 1 -1 1 -1 —~1 1 -1 1 Qp
T2 (2 31 0 -1 1 0 0 1 -1 0 (23]
Z21 (44] 0 1 0 1 0 -1 0 -1 Qg
22 = A (44 — 1 1 -1 I -1 -1 1 -1 Qg3
Y1z ﬂ[ 0 -1 1 O 0 -1 1 0 ,51
Y2 ﬂg 0 1 0 1 O 1 0 1 ﬁg
_yggﬁ ’,63_| '1 1 -1 1 1 1 -1 ].‘ _,@3_]

o
W\



Next, we try to find necessary and sufficient conditions which such a pair of

matrices should satisfy.

Consider

1 0 0 1 1 00 1]

1 -2 2 =1 1 =2 2 —1

1 0 2 -1 1 02 -1

A“.—:-l- -1 2 0 1 -1 20 1

41 -1 0 0 -1 1 00 1

-1 2 -2 1 1 -2 2 -1

-1 0 -2 1 1 02 -1

| 1 -2 0 -1 -1 20 1|

Simplifying it through elementary row reductions, we obtain an equivalent ma-

trix :

1
-]

r3 —7T2
Tq+ T2
Te —T
A7l ~ g stn
rT —7T¢

ONtNNO O NN

{

NONONONCOC

ONMNOONNO

rg +Te
re+T1

MO NONONO

(== == R o B = I == P = I
COoONOOCO NN+
DOV O OO~
QOO NOCON—~

f
[ —

or
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(1 001100 1]
02000200
00200020
AL ~ 1100022000
47100002002
00O0O0OCOTOCA4
0 000O0O0CM40D0
(0000040 0]
We deduce the following conditions:
4lzyy + 222 + yu + Y22, 20y + a2, 2y + 722,
2|z12 + Y12, and 2|zg; + yar. (1.3.1)

This is to say that such a pair of matrices with the property (1.3.1) will corre-
spond to an element in Z(Dg x Cz)(1 —a?). Conversely, it is easy to see any element
in Z(Ds x C,)(1 — a?) will correspond to such a pair of matrices with the property

(1.3.1). As a consequence, we obtain that

Z(Ds x Cy)(1 — a?) =

2z 4z 2y 4y )
2x9y 2252 || 2ya 2yn

4|zyy + T+ Yy + Y22, 2|y + Y2,
2|yl + z22,2|z12 + 12, 2|72 Y2

In addition, notice that such an element v is in A(Dg x C3)(1 — a?) if and only

if 2|30, (e + 8:) 5 e 2|(yus +2y21), or 2lyu.
(= Yo € A(Dg x C3)(1 —a?),v = r(1 — a?) where r € A(Dg x C,), and we can

write r = ry + ro(1 + a?), where aug(ry) = St (a: + 8:), r1,72 € Z(Dg x C3).

17
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0 = aug(r) = aug(ry) + 2aug(r2) = 2 | aug(r) = S, (e + B5).
= If T4, (:+ ;) = 2n, then v = v —n(l +a?)(1 - a®) € A(Ds x G;)(1 — a?)).

Now the condition (1.3.1) reduces to

4lzry + 22 + yu + Y22, 2 Y11, 2| y2o,
2|zi1, 2[z, 2|wi2 + Y12, and 2Ty +ya. (1.3.2)

Rewrite the above pair of matrices in the form

4wu 4wl2 4211 4Z12
2w21 411}22 ’ 222[ 4222

where z;; = 2wy, ya = 22, Ty = Wij, ¥ij = %;t 1, 4,7 = 1,2. (1.3.2) becomes

2 l‘UJu + Wa2 + 211 + 222, 2 lwlz + 212, a.nd 2 “ng[ + 221. (1‘3.3)
fu=1+veW,then

1 + 4wy, 4wya and 1 + 4z 4z
2wy 1 4 4woyq ’ 221 1+ 429,

are invertible with inverses of the same type. Note that both determinants of the
above pair of matrices are 1 since they cannot be —1,s02 | z;;+223 and 2| wy; +wa,.
Thus the first condition in (1.3.3) is redundant.

Conversely we note that if the above pair of matrices are invertible and satisfy
(1.3.3), then the inverses are of the same type and also satisfy the same parity
conditions. Therefore, the corresponding element is indeed in W.

Now we have proved that

W = {u € L+ A(Ds x Co)(1 — a®)|u € U(Z(Ds x C2))}

18
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1 + 4wy, 4wy, 144z, 4z, 2wz + z12 2Jwa + 21
2woy 144wy, | '] 229 1 44z Wii, 2ij € Z det =1

1.3.2 Generators of the Normal Complement W

In this subsection, we construct a set of generators for the normal complement W
of Dg x Cy in Uy(Z(Ds x C,)). Moreover, we prove that bicyclic units generate W.
Recall that

W 1 + 4w, 4w, 1+4z, 4z 2lwis + 212 2wz + 2
- 29y 1 +4wqe | 7] 229 1 +42z5 Wi, 2i; € Z det=1

which we denote by H,;. Let

H, = 1+ 4wy, 4wy, 1 +4zy, 4z
2= 2'1021 1+ 4’UJ22 ! 22’21 1+ 4222 det =1

Then H; is a subgroup of index 4 in H, with a set of coset representatives as

Wi, Zi; € Z }

follows:

[T
-
D
—

[ 11 0] [ 11 4]
a=([o ] lat])  ==(lot]:[01])
' I ] | 0 1] 2 L 1’10 ]

1 0] [1 0] [ 1171 4]
o=([s 0] 1])  x=(2 110 1))

f—

£

NG -
-
)—0
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( It is easy to verify that X;X; " is not in H,, for i # j, and Vh € Hy, hX' €
H, for some i, wherei,7 =1,2,3.4.)

Let’s first compute a set of generators for H.

| 1+2a 2b || a,b,c,d €Z,
Recall that [(2) = {M“ [2«; 1+2d] det M =1, M € PSL(2,Z) }

is the principal congruence subgroup of level 2 in PSL(2,Z) , so it is free of rank 2

with generators Vi = [} ] and V; = [} 9]. Moreover, I'(2) is of index 6 in PSL(2,Z)

and
_ | 1+4a 4b a,b,c,d € Z,
F(4)—{M‘[4c 1+4d] det M =1, M € PSL(2,Z) }

is of index 24 in PSL(2,Z)(Lemma 1.1.3), so ['(4) is of index 4 in ['(2). Let

1 +4a 4b
N*{M“[% 1+u]

a,be,d € Z,
detM =1, M € PSL(2,Z) |~

Since I'(4) C N C I'(2), N is a subgroup of index 2 in ['(2) and a set of coset

representatives is as follows:

10 1 2
a=lot] weo ]

Using the Schreier method, we find that N is generated by

10 1 4 5 -8
hl,2,1 = [ 2 1 ] hz,l.l = [ 0 1 ] h2.2,2 = [ 9 3 ]

20



where h;jx = Y,-VJ'Y}:',i, J»k = 1,2. Note that we have expanded the notation
introduced in Theorem 1.1.2, as it will be useful to keep track of all 3 subscripts.

As a consequence, a set of generators for H, = N x N is as follows:

a2 52w
w132 A= e
S B IS (HE AEH)

Applying the Schreier method again, we find that H, is generated by seven

elements as follows:

S PN J (R 1R
weman (39 [32]) e (395 0)

e (L[ 1]) mmaen (4 103 1)
oenn=((4 82 2]

where g; jx = X,-ZjX,:l.
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1.3.3 Bicyclic Units in U(Z(Ds x C»))

Next we observe that, up to inverses, Z(Dg x C;) has only 16 bicyclic units, namely:
up =up, =1L+ (1 —b)a(l +b) =1+ (a+ ab)(1 - a?)
Uy = Ugpy = 1 + (1 — ab)a(l + ab) =1 + (a — b)(1 — a?)
Uz = Ug2p, = L + (1 — a?b)a(l + a?b) =1 + (a — ab)(1 — a?)
Ug = Ugape = 1 + (1 —a®b)a(l + a®b) =1 + (a +b)(1 — a?)
s = Upe, = 1 + (1L — bc)a(l + bc) = 1+ (a + abe)(l — a?)
Ug = Ugpea = L + (1 —abe)a(l + abe) =1 + (a — be)(1 — a?)
Uz = Ug2zpeq = | + (1 — @®bc)a(l + a®bc) = 1 + (a ~ abe)(1 — a?)
Ug = Uyspeo = 1 + (1 — a®bc)a(l + a®bc) = 1 + (a + be)(1 — a?)
Ug = Upqe = 1 + (1 — b)ac(l + b) = 1 + (ac + abc)(1 — a?)
Up = Ugbae = 1 + (1 — ab)ac(l + ab) =1 + (ac — bc)(1 — a?)
Uy = Ugzpge = 1 + (1 — a?b)ac(l + a?b) = 1 + (ac — abc)(1 — a?)
U1z = Ugspae = 1 + (1 ~ a®b)ac(l + a®b) = 1 + (ac + bc)(1 — a?)
U13 = Upege = 1 + (1 — be)ac(l + be) = 1 + (ab + ac)(1l — a?)
Upy = Ugpege = L + (1 — abe)ac(l + abe) = 1 4+ (ac — b)(1 ~ a?)
Uls = Ug2peac = 1 + (1 — a?bc)ac(l + a®bc) = 1 + (ac — ab)(1 — a?)
Ug = Ugdpeae = 1 + (1 — a3bc)ac(l + a®be) =1 + (ac + b)(1 — a?)

Matrices corresponding to these bicyclic units are respectively,

a-((2 1) (G )
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But g1 = (u3) ™ (ws) 7 (ul) H(ul) ™t g2 = uy(ur) TMunp(ul) 7 g = uf, ga =
(ui2)™" g5 = (u5)™", g6 = uj, and g7 = w(ufy) " un(uf,) " (uh) uguy . We con-
clude that the seven bicyclic units u3, u4, uz, us, vy, ¥12 and u;3, generate W. This

completes the proof of Theorem 1.3.1.

1.4 Description of U(Z(Dg x Cy x C5))

This section continues the study of the unit group of the integral group ring of the
group G x C,. In particular, it describes the unit group U(Z(Dg x C; x C,)) of the
integral group ring Z(Dg x C; x C,). Techniques developed in the previous section
and the result regarding U(Z(Ds x C)) are used to give a matrix representation
of a torsion- free normal complement of Dg x C, x C2 in Uy(Dg x C, x C,). More
significantly, a set of generators for this normal complement is also constructed, and
it turns out that none of the normal complements of Dg x C; x C; can be generated
by bicyclic units.

Let Dg x C; x C; = (a,b,c1,c3la* =02 =& =& = 1,ab = ba~!,ac; = ¢;a, and
be; = ;b1 =1, 2).

Qur main result is as follows:

Theorem 1.4.1. In U;(Z(Ds x C, x C;)), Dg x C2 x C; has a torsion-free normal
complement V = {u = 1 + a1l — a?)|la € A(Dsg x C; x C3),u a unit }. V can be
represented as a set of four copies of 2 x 2 matrices with certain parity conditions.

Moreover, a set of generators for this torsion-free normal complement is constructed.
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As before, if A = (1,a?), then Dg x C; x C3/A = C; x Cy x Ca x Cy, so the first
statement is a consequence of Theorem 1.1.1.
1.4.1 A Matrix Presentation of the Normal Complement

. — 1—a?1—¢ 1- — 1—a? l4c; L— . l—a?l—c; I+
[f we choose idempotents f; = =53 52, f, = S22 fy = ISt ma g,

and f, = %%—‘ly—éﬂ in the rational group algebra Q(Dg x C, x C,), then we obtain

that

Q(Dg X Cg X Cg)_f, = 1W2x2(Q), where 1 < T <A14.

Elementary matrix bases for the above are given respectively as follows:

€1 = l_;éfl €2 = ab;afl
€21 = n—b;iﬁ €2 = 1_;qu
e'u = l_;éfz e,12 = abz—af2
€31 = Ebjﬂfz €y = %ﬁfZ
S = 1%bf:s S12 = “T—afs
S21 = “—”;‘ifs S22 = lg—bfs
s = %Q’f.; Sz = 95_2—9.f4
sy = abziﬂ Sy = l;—bf‘i

Notice that A(Dg X Cg X Cg)(l —(12) C Z(Dg X Cg X Cg)(l - az)
C Q(Ds x C; x C3)(1 —a®) = QDs fi D QDs f, D QDs f5 P QD3 f4.
A typical element in Z(Dg x Cz x C;)(1 — a?) can be written in the form

(a0 + a1a + azb + azab + (o + Bra + B2b + Baab)ey)(1 — a?)+
(af + ofa + ahb + ahab + (85 + Bia + B3b + Biab)e; )co(1 — @?)
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or

2{[(a0 ~ ag) — (Bo — Bp)] + [(e1 — &) ~ (By — B})la+
[(a2 — a}) — (B2 — Bp)lb + [(@3 — a3) ~ (Bs — B3)]ab} fi+
2{[(a0 — ag) + (Bo — Bo)] + (a1 — 1) + (81 — B)]a+
[(az2 — @3) + (B2 — B3)b + [(as — a3) + (Bs — B3)]ab} fot
2{[(a0 + ag) — (Bo + Bo)l + (@1 + @) — (B1 + B})]a+
[(a2 + a3) = (B2 + B)]b + (@3 + o) — (Bs + B3)]ab} fa+
2{[(a0 + ag) + (Bo + Bo)] + (e + @) + (B1 + B))]a+
[(az + 03) + (B2 + B3)1b + [(o3 + o3) + (B3 + B3)]ab} f

Since

such a typical element corresponds to the four copies of 2 x 2 matrices:

fi=ey+exn

bfl = €11 — €2
fa=su+s22
bfy = 511 — s22
[ 4 r
fr=¢€} +ex
— '
bfs = ey —ep
P /
fa=s}, + s,

— al ’
bfs = s — 59,

af, =ey — €12

abfy = e, + ey

afz = 821 — S12

abfy = 513 + sa1

—_ o 4
afs = ey — €12

-_— ! r

— o o
afy = sy S12

’ r
abf4 = 312 + 521



2[(@0 —ag) — (fo — By)  2[(es —af) — (Bs — B3)
+Hay —ay) = (B2 — B3)] ~(ay — a}) + (By — B1)]
2(az — o) ~ (B3~ B5)  2[(a0 — af) — (Bo — Bp)
+Han — o) = (B~ B1)] —(ez ~ 0f) + (B2 — B3)]

(o — o) + (o —B5)  Ulas — ab) + (Bs — A5) |
+(ar —h) + (B — B)] —(en — ) — (By — B)] |

20z — ) + (B — ) 2(ao—ab)+(Bo—Bb) |
o — ) + (B~ B)] —(ez ~ o) — (B2 — B2)]

2f(ao + o) = (Bo+ By)  2[(es + a3) — (Bs + B3)
oz + @) = (B2 + B3)] —(cn + af) + (B + B

[ 2(as +ah) — (Bs+05)  2ao+ah)—(Go+8y) |
+Ha + o)) = (B + 8)] —(az +a) + (B + 53)]

2{( a0 + 0g) + (Bo + B;)  2[(as + a5) + (Bs + B3)
Hoa + ag) + (B2 + B)] —(en + 1) — (81 +B)]

2[(az + a5) + (B +B5)  2[(a0 + og) + (Bo + Fo)
+Har +ay) + (B +B81)] ~(a2+a3) — (B2 + 53)]

Conjugating each by [} !], we reduce to
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—(B2 — B3) + (B — B3)]
2[(o1 — 01) + (a3 — aj)
| — (61 = B1) — (B — B3)]

[ 2[(c0 ~ ) — (a1 — @) + (az — @)
~(az ~— a3) + (Bo — Bg) — (6L — B7)
+(B2 — ﬂ;) — (G “ﬂ:’a)]

2[(cr — af) + (a3 —~ af)
| +(6y — B1) + (Bs — B3))
[ 2[(c0 + o) — (a1 + @) + (a2 + af)
—(as + of) — (Bo + Bp) + (B1 + BY)
—(B2 + B3) + (Bs + B3)]

2[(ay + o)) + (as + aj)
| — (B + B7) — (B3 + B3)]
[ 2[(a0 + af) — (e + 2]) + (@ + af)

~(as + af) + (Bo + Bg) — (B + BY)
+(B2 + B) — (Bs + B3)]

2[(en + o) + (@3 + af)
| +(B1 +8) + (B + B3)]

denoted by

(Lo ] |

where z;;, z};, yi; and y/; are in Z and

2y 4yie
2y21 2y

2zy; 4z
2$21 22:22

[ 2[(00 ~ ag) — (a1 — &) + (a2 — 0})

—(as — a3) — (Bo — Bg) + (B — By)

|

4[~(on — o) + (az — a3) ]
+(B = B1) ~ (B2 — B2)]

2(co — af) + (a1 — &)
—(az — ) + (az — ay) — (Bo — Bg)
~(By — B)) + (B2 — BY) — (Bs ~ B5)] |

4[~(on — a}) +(az — a3) ]
—(8y = B1) + (B2 — B3)]

2[(co — ag) + (o — @})
~(az — a}) + (a3 — 3) + (6o ~ Bo)
+(Br — By) — (B2 — B5) + (B — B5)] |

4—(o + &) + (a2 + a5) |
+(By + BY) — (B2 + B3)]

2((a0 + @) + (an + )
—(02 + a}) + (a3 + a3) ~ (Bo + Bg)
—(B1 + 8)) + (B2 + B) — (B + 53)] |

A—(en +ay) + (a2 +5) ]
—(B1 + B1) + (B2 + 53)]

2[(c0 + b)) + (a1 + &)
—(az + ay) + (a3 + of) + (Bo + Go)
By +B) ~ (B + B) + (Bs + B5)] |

2yil 49’12
2.1!51 2%2

! !
2z}, 4z,

J !
2z3, 2z5,

| 13 8]) oo
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(a4}
(23]
(45]

Ip2
I
I22

Iy

I -1 -1

~1

l1 -1 -1 1 -1 -1 -1
I -1 -1

~1

1 -1 -1 1 -1 -1 -1
~1 1 -1 -1

-1

I -1 -1

-1

1 -1 -1

-1

1 -1 —1

-1
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Pt Pt [ b
ONMNOONNOONMNODONNO
09_.02040204020402
ok gt et wmd ped d ged ped e gl ed pd ped sed ] pd

| ] ! |
vk g g gd pd oyl o] el g pd ed el gl pod el ed
P } | (I [ ]
0220044002200440
0402020404020204
b pd ] g ped ] g d e wad ped g el e et ]
bt | A
ol pd pmed pd eed gt gl e e gt pd pd e —d
[ b J b |
02200220049,.00440
09_.02040202040204
d  pd guid gind prd gt o o o pnd pd  ped ] gl o o]
! I T L
d g pd pod qped el gl v vd qd ool -t o] gt ] ]
I 1 I | I
0220044004400220
09..02020402040402
v pd pd  qued g g pred powd pond pd ped e peed eed e e
| A t {
[}
—i {oo

Simplifying by elementary row deductions, we obtain an equivalent matrix:

SO0 NNODOCOIFTOOTOOOO
SO NOD OO RO OIFTOOOCOO
N O OoCOLODOCoCOoOFTOoOOOOOO
- O OO MNMODOOFTOODODOOOO
S OO NQCOODOoOOOQoCOTTNDO <
CONOCOCOOODOOIFTOOOIRO
COCN O OO0 OQO OO
HO OO OOCOOOOOOoONOOD O
CONOOWOOCODOOOCOO O
0200040800000400
- O OO MNOODOODOOONO OO
- OO NODOJTOoOOOOD QOO O
CONOODOOOOOOOOoOOC OO
CNOODOCOOoOOCODOOCOoOOOO
LBl i == R i e B e T e i e T s i e e Qe Y e [ e Y e e |
L -

- } 00

2
T
<
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R el aa 2l

This gives the following 14 conditions:

8 | zu1 + Za2 + Y1 + Y22 + 24 + 25 + 1y + Yoo,

4| zia+ Y+ +u 4] za +yn+ 35 + Yo,

4] z2tyzt2n+yn 4|yn+ynty, +y,

4|y tye+z) + T 2| Tntyn 2|3 +Yh (14:2)
2|tz 2|z tuyps 2 2y,

2| 25 +ya1, 2|25 +yn, 2|2p+a).
Similar to the situation of Dg x C,, such a typical element is in A(Dg x C; x
Cy)(1—a?) if and only if 2 | Y7 o(ai+af +B:+ ). Since i y(ou+ ol +8:+6) =
Y1, + 245, the above condition reduces to 2 | yj,. Together with (1.4.2), we obtain

the following conditions:

20z, 202l 2y, 2 | vk 2 ) 2y, 210 2+ 0, 2] T+ v
4|zl +zh +yu + Y22, 4|y +yn+y + Y5,
4| za2 + yo2 + Th + Y2, 4| Tij + Tl + yi + vl

8lzu+ztyutyntry +Tntyn tyn L,i=12,1#]
Rewrite (1.4.1) as
42[1 42[2 411)11 4W12 42’11 42;2 4w;1 4w',2
22y 4299 |7 | 2wy 4wy |7 | 225, 42, |7 | 2w, 4w,

— 4
= 2z,

'}

— .o ! — / .o — .o 4 — 4 .. — .- I. ==
where z;; = 2z, T{; T = Zij, Ty = 24, Yi = 2Wi, Y = 2wy, Yij = Wi, Yi =

w};. The above conditions reduce to
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2| ziz+wiz, 2|z +wyy, 2|z twn, 2] 2 4wy,

2wtz 2| wa+z, 2|2+ 2w+ we,

2 | wiy + wap + Wiy + Wy, 2| 202 + Wi + 25 + W, (1.4.3)
4| ziatwiz + 21, Hwly, 4| 2z Hwa + 2 +wyy,

4 | wiy + waz + 211 + 222 + wyy + why + 21y + 255-

Now we claim that in U (Z(Ds x C2 x C2)), Dg x C2 x C; has a torsion-free normal

complement V and

V 2 {(M,, My, M3, My)| det(M;) =1, with the parity conditions (1.4.3%) }

where
_ 1+ 4211 4212 _ 1+ 41.Uu 4w12
l‘/[l - [ 2221 1+4222 ] ’ M, = [ 21!!21 1 +4UJ22
| 1442, 4z1, | 1+ 4wy, 4w,
M = [ 231 L + 423 and M, = Wy 1+ 4w),
and

2| ziztwiz, 2|z +wiy, 2|20 twa, 2|2 +wy,
2wzt 213, 2| wa+23, 2|22+ we+ 25+ wy, (1.4.3%).

' 4 ’ I
4| 212 +wiz + 219 F Wiy, 4]z +wa + 25 +why,

Proof. Let 1 +r € V. Then as we showed earlier, it corresponds to a four copies
of 2 x 2 invertible matrices (M;, My, M3, M;) with the conditions (1.4.3). We will

show that in (1.4.3), the following conditions:
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2| 2§, + 25 + wyy + woa, 2 | wip + wae + wi, + why, and
4| wy +wyp + 211 + 22 Fwly Fwpy + 21, + 2,
are redundant. Therefore, (1.4.3) reduces to (1.4.3*).
_ . . 4 +1 4m
We note that all det(M;) =1 forz = 1, 2,3, 4 since det [ in 4s +1 ] # —1

for any [,m,n,s € Z. It follows that

_ ' ’ ' ro_

21y + 222 + 4211292 — 221229 = 0, 2y + 29y +42{ 25 ~ 221,23, = 0,
—_ ’ ’ ror o

wy1 + Waz + 4wy Wop — 2wiaWwa = 0, wi; + wy, + 4wy, wh, — 2wi,wy, = 0.

Therefore 2 | z{; + 25, + wy; + wyp and 2 | wy; + woy + w}, + wh,. Furthermore, we
have
(win +wap + 211 + 202 + W, +Why + 27, + 255) — 2( 212201 + 2]5 25, +Wrawe, + W ,WY,)
= 0 mod(4) (1.4.4)
Case 1: If 2 | z3,, then 2 | wyy, 2| z;, and 2 | w}, since 2 | zo; + way, 2 | 25, +
wyy and 2 | 2§, + wj;. Therefore the second term in (1.4.4) is divisible by 4. As a

consequence,

wyp + Wag + 21y + 22 + Wiy + Why + 2], + 25, = 0 mod(4) (1.4.5)

Case 2: If z3; # 0 mod(2), then neither are we;, 2, and wj,. Therefore (1.4.4)
reduces to

(w1 +waa + 211+ 222 Wi, Fwhy + 21, +255) —2(z12 Fwiz+ 2], +wl,) = 0 mod(4)

Since both 212 + w2 and z}, + w}, are divisible by 2, we obtain (1.4.5) again and
this finishes the proof of one direction.

Conversely, copy the second part of proof of Theorem 1.3.1 and we are done.

a
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1.4.2

Generators for the Normal Complement

In this subsection, we proceed to compute generators for the normal complement V

of Dg X Cg X Cg in ul(Z(Ds X Cg X 02)).

Recall that Dg x C, has a torsion-free normal complement W in U;(Z( Ds x C,))

(Section 1.3.2), where

(]

1 + 4wy,
2'UJ2[

4wz
1+ 4:'!1]22

I

1 +4z,
2z

421
[ + 42,

)

2wiz + z1iz  2|war + 22

Wi, Zi € Z

is generated by seven bicyclic units (Section 1.3.3) as follows:

. _([1 -4 1
a=(lo 1] s
, _([-3 —4 1
4=( 5]
, (1 4 1
=(lo 1] Lo
, _([1 4 -3
T\[01]]4

, [ 1
Yzz(-2

[ —3
!
Y“"<L2
, (1
i=(] 5 )

!

0

-8

[21])
e

10
2 1

HE)

b

det =1

)

Therefore W x W is generated by 14 elements , namely; Y),Y3,--- , Yi4, where

Y:=(Y/,I'), and Y7 = (I',Y/),2 = 1,2,--- ,7, and [’ is the pair of 2 x 2 identity

matrices. Qur normal complement V of Dg x C; x C; is the subgroup of W x W

with additional conditions:

’
2 l Wy + 2123

’
2 | wyy + 2215

r !
4 | wiz +wi, + 212 + 212

2 l Wo2 + w;2 + Z97 + Z;z

’ ’
4 I w21 +w21 + z2 + 29

First we compute the index of this subgroup. Let
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H={A|AcWxW}=WxW,

Hy={A| A€ H, and 2| wy + 2 },

Hs={A| A€ Hyand 2 | wiz + 2},},

Hy={A| A€ Hzand 4 | wiy +wj, + 212 + 215},

H5=’-{A l Ac H, a.nd4|w21+w;1 +2-'21+Z£1},

® H(;:{AIAGHs a.nd2|w22+w§2+zzg+z;2}=v.

It is easy to check that each H;y, is a subgroup of H; of index 2 for: = 1,2, 3,4, 5.
Therefore, V = Hg is a subgroup of H; of index 32.

Next we use the Schreier method to compute generators step by step. In each
step, we compute those for a subgroup and try to reduce the number of them as

much as possible.

(i) Step 1. Calculate Generators for H, .

As we mentioned before, W x W = (Y}, Y,,- -~ ,Y4). A set of coset represen-
tatives for H, is X, = (I, [,1,1); X, = (B, B,I,I) where B =[19].

Applying the Schreier method, we obtain a set of generators for H; which can

be reduced to the following 14:

_ {1 -4 1 —4 10 107,
NEGL=le 1) o 1f{e ) o))
_ (1 4 1 —4 10 10 .
92—91,5.1"’ 0 1 ] 0 1 b] 01 ] 0 1 ?




g3=0131 = (

94 = 91_,;.2 = (

g0 = 01,121
g11 = 41,101 = (

g12 = g1,14,1 = (

913 =95 ‘G2 = ( [

l
~—

[y
L

1
0

— 0
L 2

1
L0
1 [1
b4 LO
[ 1

b) |.0

-l

—
¢

1 0
01
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(i)

1 10 1 0 1 0 10
914 = §8G1,132 = o1l 011’ 4 11 0 1 Y

where g; ;& = X,V X' 1<,k <2, 1< < 14

(10 14 [-3 -4] . [-3 -8
LetB"[21]’C*[0 1]’0‘[ 4 5}’E"[ 2 5]

=D"'B7'C,and I = [ (1) (1) ] . We rewrite g; as follows:

a=(CLCN LI g =(C,.C7, L I);

93 =(D,C7Y L, I); g = (B L1, 1);
gs=(B'E,L,[,I); ge = (B%* B I,1);
gr=(C,D, 1, I); gs =(B~',B™', B, B);
9o = (I,[,C™',C™"); gio=([,[,C,C™");
gu=(,1,D,C™); g12 = ([, 1,C, D);
gus=(,[,B'E,I); que=(I,I[,B% ).

Step 2. Calculate Generators for H; .

From now on, we confuse notations. We denote generators for a group by
{Y:}, those for its subgroup by {gx} and a set of coset representatives for the
subgroup by {Xj}.

H; = (11,Y2,--- ,Y14) and a set of coset representatives for H; is given by
X, =, 1,I);X; = (I,[,C,C). Similar to Step 1, we obtain a set of 13

generators for Hj as follows:
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(iii) Step 3. Calculate Generators for H; .

a1 =g112=(C,C,C,C);

93 = gi9; ‘qi92 = (I,C* I, I);
95 = g1.819¢97 = (B, B, B, B);
97 = qieads ' = (I, B% L, 1);

9o = Q1320197 = (DC' [, I, I);

gu = gi,0,29895 '95 97 = (I, 1,DC1, I);

gis=aq5.=(B'E,I[,I,I);

gis = g796g282 = (B, B,CBC~',CBC).

A set of 16 generators for Hy is as follows:

g =g111 =(C,C,C,C);

93 = gagiaz = (C*, I,C%, I);

gs = g151 = (B, B, B, B);
gr=gua=,B% L)

90 = q1929¢ = (DC, I, I, I);

gu = gu2gs = (1,1, DC, I);

913 = gra3204 = (BT'EC?, I, I, I);

gis = 150 = (B, B,CBC~',CBC™");
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g2 = qigr22 = (C*, [, 1. I);

94 = gaa01 = (I, 1,C%I);

96 = giaa = (B [, [, 1);

g8 =gy = (I, I, B% I);

g0 = g1.726195 ‘93 = ([,DC~. [.1):
g1z =giz2 = ([, [,1,DC);

g1a =graza = ([, [, B~ 'E. [);

A set of coset representatives is given by X, = ([, [, [,I); X, = (C?, [, [,I). =

92 = G13204 = (C*,C*, I, I);

g4 =Ga21 = (C4 L LI);

96 = g161 = (B% [, 1, 1);

98 = 180 = (I, I, B%I);

g0 = 110292 = ([, DC, I, I);

912 = g1,1229795 g5 94 = ([, I, I, DC);
G1a = qr14293 = ([,[, B EC?, I);

916 = @252 = (C*BC~%, B, B, B).



(iv) Step 4. Calculate Generators for H; .
A set of coset representatives for Hs : Xy = ([,[,[,[); X, = (B%,L,1,I).

We obtain the following set of 17 generators for Hj :

9 = g111=(C,C,C,C); 92 = gagrangs ' = (I,C*,C%,1);

g3 = qr21 = (C*,C*, 1, I); 94=9g141 = (C*, L1, I);

95 = g151 = (B, B, B, B); 96 = gus297 = (I, B%, B, I);

gr = g1,7298 = (B*, B%, I, I); 98 = G261 = (B [, [, I);

9o = Ju929s = (DCB* I, I, 1); 910 = gr10297 = ([, DC B>, I, I);
gu = 9g1,11.2989697 ' = ([,I,DCB%I); g1z =g5'gui229% = (I, 1,1, DCB?):
913 = gr1a1 = (BTEC*, L L T); g1a = g1 = (L, 1, BT EC?.T);

gis =931 291 = (B*C~'B2C, I, L, I); 916 = g1161 = (C*BC~%,B, B, B):
qi7 = guis1 = (B, B,CBC~',CBC™).

Remark 1.4.2. [t turns out to be convenient if we replace g9, 10, g11,912 by
gé = (CD821 [7 ['l I) = 919998-191591—198 ] gio = ([100327 [1 [)a
gu=(,I,CDB%I), gi,=(I,I,1,CDB?).
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(v) Step 5. Calculate Generators for Hs(=2 V), the Normal Complement.
A set of coset representativesis given by X; = (I, I, I, 1), X, = (I,1,1,CDB?).

A set of 19 generators for our normal complement is as follows:

g1 =gu11 =(C,C,C,C); 9 =g131 = (C%C% L.1);

g3 = g2, = (I, C?,C?, I); 91 =graa = (C4 L, 1);

gs = q151 = (B, B, B, B); % = gi7a = (B B% [, I);

g7 = G161 = ([, B%, B, I); 98 = gisa = (BLLLI);

9o = quo2g12 = (D', [, I, D'); g1e = gr10291z = ([, D', [, D');
gu = giu2q2 = (1,1, D', D’); 912 = g2a24 = (I, [, 1,(D')?);
913 = grzzgiz = (F, [, [, D"); 914 = Gru42912 = (I, [, F, D");

- = - — — — — = = —gi5=dgris1 = (B*C-'B-*C, L I,I); ~ g = gi161 = (CQBC'{ B,B,B);
97 = g7 'GL1719195 =(C-'BCB-',C-'BCB-\,I,I);
gqi18 = G252 = (B3 B, B, D'B(D’)“lk gis = @212~ (C’ C, C, D'C(D')’l)‘

where D' = CDB? and F = B~'D"'B-1C?% = B-'EC?.

With a little modification, we reduce to the following set of generators for the

normal complement:
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s1 = (C,C,C,C); s, = (C%,C% 1, I);

sa = (I,C? C* I); se=(CY1,1,1);

ss = (B, B, B, B); ss = (B, B2, I, 1);

sz = (I, B%, B2, I); se = (BY 1,1 I);

se = (D,C,C, D); s10=(C,D,C,D);

s1 = (C,C, D, D); siz=(L,1,1,(CD)?);
sis=(F,I,I,D'; sw=(I1,F,D);

s1s = (B2, C~'BC, I, I); sie = (C?, BC?B~, I, I);
sir=((CB)?,(CBY, I, I); sis = (B, B, B,CDBD~'C-");

s19 = (C,C,C,DB*CB~*(D)™").
This completes the proof of Theorem 1.4.1.

1.4.3 Bicyclic Units in U(Z(Ds x Cy x C3))

In this subsection, we will calculate all bicyclic units in U (Z(Dg x C; x C;)) and
prove that bicyclic units do not generate the normal complement. There are 64
bicyclic units up to inverses in U(Z(Dg x C; x C3)). The first 16 bicyclic units are
the same as those in U(Z(Dg x C;)) shown on page 22; in this case, we write ¢,
instead of c. The next 16 bicyclic units are obtained by replacing the first subscript
« of each u, g by ac;. The remaining 32 bicyclic units are produced by replacing
the second subscript 8 of the first 32 bicyclic units obtained by Gc;.

Matrices corresponding to these bicyclic units are respectively,
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= (D
,D
, D
,D
);

u'
3
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,C1
,C
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3
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C
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We note that each of the following generators: sy, sz, -

some bicyclic units. Explicitly, s; =

= (u5) "0y (w3)

sg = ug(uyy)

~luf(use)”

uy = (DY, D™, D, D);
uhs = (C,C,C~L,C™1);

uy, = (C, D', C~1, D);
uhe = (DY, C,D,C™");
uy, =(D,D7t, D!, DY;
uhy = (C~1,C,C,C™Y);

uys =(C~', DL, C, D);
w4, =(D,C, D', C~");
uy = (C,C, D, D);

ug = (D7, D', CLC™YY;

uty = (D1, C,C', D);
uss =(C,D7',D,CY);
us; = (C74,C,D~Y, D);
use = (D,D71,C,C1);
ug = (D,C,C, D);

ug = (C, D=4, D,CY;

“ué.s(ufaa)

Pujg(ug) ™

ul, = (E-L, E-\, E, E);
i = (B, B\, B, B);
g = (B~Y, E-', B, E);
uh = (E~', B~ E, B);
uy, = (E,E~' E~'E);
uhy = (B,B7', B, B);
uie = (B, E~',B~' E);
uyg = (E,B"',E~',B);
ufy, = (B, B~ E,E);
ul, = (E-', E~', B, B);
ul, = (E', B\, B, E);
use = (B™, E7', E, B);
iy = (B, B, B, E);
ugo = (E,E~', B™", B);
ug, = (E, B™', B~ E);
uhy = (B,E~',EL, B).

(ua)~ s = (us) Uzs, S3 = (u:;) Uga,
"lué, S5 = uy, S¢ = ug("gs)- , 57 = uy(ul,) ™,

p— E—— — !
§g = Ugiy S10 = U3, s = Uygy

S1a = (1) 0) ) () M) ()10,

— 7 4 7 '
817 = UygllgliagUy.
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Next we will prove that 5,3 is not a product of bicyclic units. Since

f1o0 1 4 [ -3 —4
o=[a i) o=l t]o-[7 )

are free generators for a subgroup K of index 2 in ['(2) (see [29]), we can define a
mapping as follows:
f: KxKxKxK — Dg x Dg x Dg x Dg,

where f = @L, fi fi : K = Ds, fi(B) =a, fi(C) = fi(D)=b,i=1,2,3,4. Note
that f;(D') = a*, fi(E) = a, f(F) = 1. So f(s13) = (1,1,1,a®) and images of all
the bicyclic units up to inverses are reduced to v, = f(u}) = (8,6,b,8); y2 = f(u}) =
(a,0,0,a); 75 = flul) = (e~ a,a™,a); 7 = f(uhy) = (a0, a,0); and 75 =
f(uh) = (a,a”t,a7t,a). Since vivi = 77 "1, and 42 = (1,1,1,1), we have that if
f(s13) is a product of yF!, then f(sy3) is a product of v* with ¢ > 1. Let

p : {(a) x (a) x (a) x (a) — (a) be defined by p(z;,z2,z3,z4) = z,Z22324. Then p
is a homomorphism. Since p(f(s13)) = a® and p([];5, 77) = [ P(v)™ =1, s13

cannot be a product of bicyclic units. We have proved the following proposition:

Proposition 1.4.3. The normal complement V of Dg x C; x Cy cannot be generated

by bicyclic units.

Since all of the bicyclic units are situated inside this normal complement V', we

even have a stronger result:

Corollary 1.4.4. None of the normal complements of Dg x Cy xC, can be generated

by bicyclic units.
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1.5 Units in Other Integral Group Rings

The procedure developed in previous sectiouns can be applied to other integral group

rings. We give two examples as follows:

Theorem 1.5.1. InUy(Z(Dg x C,)), D x C, has a torsion-free normal complement
W = {u=1+a(l —a?®)|a € A(De¢ x C2),u a unit } which is generated by 7 bicyclic

units. More explicitly,

W 1 + 3wy 3wy, 1+3zy, 3zy2 2| wi+z; 4,7=1,2
3wy, 143wy | '] 22 1+ 32z Wij, 2i; € Z det = 1
The 7 bicyclic units which generate the normal complement are u, oc, Zpa2c acs

Ubaca? s Uba? a2 3 Ube,a? s Uba,a2 ANd Upg2c 42, Where Cy = (c).

Theorem 1.5.2. In Ui(ZD\e), D10 has a torsion-free normal complement W =

{u=1+0a(l —a)la € A(Dw),u a unit }. More ezplicitly,

W l+wy + 20X w2+ zpX | [ 5| wy+22; 4,5=12
way + 221 X l+wy+20X || wij,z; €4 det =1

where X? + X =1.

We have also obtained a result similar to Theorem 1.5.2 for ZD,,.
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Chapter 2

Unitary and Generalized Unitary
Units in Integral Group Rings

In the first chapter, we showed that none of the normal complements of Dg x C, x C,
in Uy(Z(Dg x C, x C;)) is generated by bicyclic units (Corollary 1.4.4), although
Ds x C; has a torsion-free normal complement generated by bicyclic units (Theorem
1.3.1). Therefore, the transition of bicyclic generators of a normal complement of &
through the operation G x C; fails. In this chapter, we will discuss another kind of
units called unitary units and show that if in #y(ZG), G has a normal complement
generated by unitary units, then this is also true for GxC; . We also discuss when the
unitary units generate a subgroup of finite index in the unit group U(ZG) (Section
2.1). Then in section 2.2, we introduce and characterize generalized unitary units.
[t turns out that these units form a subgroup which is exactly the normalizer of the
subgroup of all unitary units. In subsection 2.2.1, we also show that the normalizer
of the subgroup of generalized unitary units is equal to itself when G is periodic
(Theorem 2.2.4). Subsection 2.2.2 discusses conditions for the unit group being
generalized unitary. This is first studied by Bovdi and Sehgal (Theorem 2.2.15) and

46



by showing their first condition is also sufficient, we obtain necessary and sufficient
conditions for the unit group being generalized unitary when G is periodic (Theorem
2.2.18). The characterization of all bicyclic units being nontrivial and generalized
unitary is also given. Subsection 2.2.3 discusses conditions for all generalized unitary
units being unitary. Subsection 2.2.4 studies an analog of the normalizer conjecture,
and also examines the relationship between generalized unitary units in ZG and

Z(G x Cp).

2.1 TUnitary Units in Integral Group Rings

Let ZG be the integral group ring of an arbitrary group G and let f : G — U(Z) =
{1} be any group homomorphism, called an orientation homomorphism of the
group G [10]. For each z =Y ;.9 € ZG, put =/ =3 0, f(g)g™". Then the
mapping z — z/ is an antiautomorphism of the ring ZG and is called the involution
generated by the homomorphism f. In particular, if f is trivial, z{ coincides with
the standard z* and the above mapping is just the standard involution.

Let U(ZG) be the group of units of ZG. Then u € U(ZG) is called f-unitary

ifu! =uf oru™!

= —uf i.e. uuf = £1. It is clear that all f-unitary elements of
U(ZG) form a subgroup U;(ZG)(or U) containing G xU(Z) and we refer to U;(ZG)
as the f-unitary subgroup of U(ZG). Interest in the group U;(ZG) arose in algebraic
topology and unitary K-theory [43]. Novikov posed the problem of investigation of
the structure of this group.

If f is trivial, then U (ZG) = G xU(Z) = £G, so in that case U(ZG) = U;(ZG)
if and only if all of the units are trivial. This is characterized by Higman’s Theorem

Theorem 1.0.1. Hence there is interest in the structure of this group when f is a
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nontrivial orientation homomorphism.

[n the 1980’s, Bovdi first described such a group ( see [10] for details ). When
G is Abelian, Bovdi [13] and also Hoechsmann and Sehgal [23] have given a linearly
independent set of generators for a torsion free subgroup of finite index in U;(ZG)
and computed the rank of U(ZG). If U(ZG) = U(ZG), then U(ZG) is said to
be f-unitary. Bovdi [10] obtained necessary conditions for U(ZG) = U;(ZG) and,
moreover, proved that most cases of these conditions are also sufficient. Later Bovdi
and Sehgal [15] discussed when all bicyclic units are unitary and generate a nontrivial
subgroup. Recently, in [14] they continued the study of the unitary subgroup and
characterized when such a subgroup is a normal subgroup of the unit group. Most
recently, Parmenter [45] discussed the unitary units in integral group rings of groups
of order 16.

In this section, we will continue the investigation initiated in Chapter ! and
establish a relationship between unitary units in ZG and Z(G x C3).

The following notations will be used throughout:

U;(ZG) = { all of the unitary units of ZG}. Sometimes we will shorten this as
Us.

Vs = { all of the unitary units such that v/ = u~'}. It is easy to check V; is a
normal subgroup of index < 2 in Uy and Vy is proper if f is not trivial.

C = { all of the central units }.

B1(ZG), the subgroup generated by all Bass cyclic units.

B2(ZG), the subgroup generated by all bicyclic units.

If f : G — U(Z) is an orientation homomorphism of G, we extend it to an

orientation homomorphism f; of G x C; by fi(gc') = f(g)- When we discuss unitary
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units in both group rings ZG and Z(G x C,), we always mean the f-unitary units
in ZG and the fi-unitary units in Z(G x C,).

We have the following theorem:

Theorem 2.1.1. For an arbitrary group G, U(ZG) = U(ZG) implies U(Z(G x
C2)) =Up(Z(G x C2))-

First we establish several preliminary results.

Proposition 2.1.2. If G is an arbitrary group, then U(Z(G x C3)) is a semi direct
product of K and D, i.e. U(Z(G x C3)) = K x D,

where K = {u=1+a(l —c) | a € ZG and u € U(Z(G x C3)} and D = U(ZG) C
U(Z(G x C3)). Moreover, 1 + a(l —c) is in U(Z(G x C3)) if and only if 1 +2a is
in U(ZG).

Proof. Recall that in section 1.2, we introduced a homomorphism f, : Z(G xC;) —

Z(G. This implies an exact sequence:
1 — K — U(Z(G x C3)) — U(ZG) — 1

which proves the first statement.

fu=1+4a(l —c)isaunit in K, then u™! =1+ B(1 ~ ¢) for some 8 € ZG.
(1+a(l —e))(1+8(1 —¢)) =1, if and only if (a + S+ 2aB)(1 —¢) = 0, if and only
if (a + 8+2a8) =0, if and only if (1 + 2a)(1 + 28) = 1. This finishes the proof of

the proposition. O

Proposition 2.1.3. K = {u =1+ a(l —¢) | @ € ZG and u € U(Z(G x C3)} is
isomorphic to H = {u =1 +2a | u € U(ZG)} via the map 1 + a(l —c) — 1 + 2.
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Proof. Using Proposition 2.1.2, it is easy to see that the map kA : K — H defined
by A(1 + a(l —¢)) = 1 + 2a is a bijection. We only need to show that A is a
homomorphism. To this end, let u; =14+ ay(l —¢), u3 =1+ az(l —c) € K. Then

h(uyuy) = A(1+ai(l —c)+ ax(l —c) + a1 —c)az(l —¢))

= 14+ 2(&[ + (5] + 2a1C!2)
On the other hand,

h(u)h(uz) = (1+204)(1 + 2az)

= 14 2(&1 + ap + 20:1052)
Therefore, h(u us) = h(uy)h(u,) and h is an isomorphism. O

Proposition 2.1.4. If1+2a is a unitary unit, then it must be one of the first class

unitary units, i.e. (1 +2a)f = (1 +2a)7".

Proof. Suppose (1+2a)! = —(1+2a)™!, then aug(2(1 +of +a)) = aug((1 +2a)’)+
aug(l + 2a) = aug(—(1 +2a)~') + aug(l + 2a) = 0, where aug is the augmentation
map. Therefore aug(a + af) = —1, but aug(a + of) = aug(3" a9 + a,f(g)g7") =

Y- a (1 + f(g)). Since f(g) = £1,2[(f(g)+1), hence 2| 3 ay(1 + f(g)) = aug(a +
af) = —1. This contradiction leads to (1 +2a)f = (1 + 2a)~!. O

Now we can prove that the isomorphism h in Proposition 2.1.3 induces an iso-

morphism between the f)-unitary units of K and the f-unitary units of H.

Proposition 2.1.5. 1 + 2« is a unitary unit in U(ZG) if and only if, 1 + a(l —c)

is a unitary unit in U(Z(G x Cy)).
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Proof. Suppose (1 + 2a) is 2 unitary unit. Then by Proposition 2.1.4, (1 + 2a)f =
(1 +2a)~'. Hence (1 + 2a)(1 + 2a)/ = 1, forcing a + of + 2aaf = 0. Now
(1+a(l—=c))ft = 1+(1—-c)alt = 1+af(1~c). Hence (14+a(l—c))t (1+a(l—c)) =
l+a/(1 -9l +a(l —c)] =1+ (a+af +2aaf)(1 —c) = 1. This finishes one
direction.

Conversely, by the above expressions we know that £1 = | +(a+af +2aaf)(1 -
¢). This forces (o + af +20af) =0, so (1 +2a)/ = (1 +2a)~L. a

The proof of Theorem 2.1.1 follows immediately by the above propositions.

Proof. By Proposition 2.1.2, U(Z(G x C;)) = K x D where D = U(ZG) = U;(ZG) C
U (Z(GxCy)). Since H = {u = 142alu € U(ZG)} CUH(ZG), K C U (Z(G xCy))
by Proposition 2.1.5. Therefore, U(Z(G x C)) = U}, (Z(G x C3)). 0

A natural question to ask now is whether Theorem 2.1.1 can be generalized to
a result concerning finite index. We prove next that such an investigation yields

nothing new.

Theorem 2.1.6. For an arbitrary group G, the following conditions are equivalent:
(1) [ - Us] < oo;
(2) Yu € U,3n,d u™ € Uy, where n depends on u;
(8) Yu € U,3n,d (vuf)* € Uy;
(4) U =U;.

Proof. (1) => (2) == (3) and (4) == (1) are obvious.
We only need to prove (3) = (4). Suppose Yu € U, there exists n such that

(vu/)* € U;. Thus (uuf)™ = (uuf)*((uu!)*)f =1 (since aug(uuf)** = 1). There-
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fore uu/ is a torsion unit. Let uuf = z5 + 3 i1 ZiGi- We will prove that z, # 0.
forcing uuf = zy (by Sehgal [57], p. 45, Corollary 1.3) and this finishes the proof.
Let v =) a:g;, so uf =3 a;f(g:)g97" . Then
uw/ = z+ Z a;ajg,-gj’lf(gj)
t£j
— .L: . -1 - g1
= zo+ Y _(0:;f(g;)0:9;" + aja:f(9:)9;97")

i<j
Therefore, +1 = aug(uu’) = 20 + 3 _;; a:0;(f(g:) + f(g;)) = 20mod(2), thus zo # 0

as desired. 0
Example 2.1.7. As an illustrative ezample, we study here U(ZD,¢).

We will show that B2(ZD,g) is a subgroup of infinite index in U(ZDg). To
see this, first let us consider an orientation homomorphism f, defined by f(a) =
1, f(b) = —1, on the group Dis. We claim U (ZDe) # U(ZD1s). In fact, let
u=1—(1+a®+b—ab)(l—a?), thus uf =14 (—1+a+b—ab)(l —a*). Therefore
uu/ =14+ (—2+a—~a*(1 —a*), so uis not an f-unitary unit (note that (uu/)~! =
1 — (2 +a—a®)(l —a*)). Then we note that By(ZD\6) C U;(ZD,¢) by Parmenter
([45], Corollary 5). If By(ZDg) is a subgroup of finite index in U(ZDg), so is
UHZD\g). Therefore U(ZD\g) = U(ZD\s) by Theorem 2.1.6. This contradiction
gives the result.

We note that there are two other nontrivial orientation homomorphisms in Die:
f1, defined by fi(e) = —1, fi(b) = 1; and f, defined by fo(a) = ~1, f2(b) = —1.
Furthermore, L(f, (ZD[G) % U(ZDle) and uh (ZD[G) # U(ZDlG).
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For completeness, we recall a result proved primarily by Bovdi [10] (see also

Bovdi and Sehgal [14]) describing when U = U;.

Theorem 2.1.8. Let f : G — U(Z) be a nontrivial homomorphism with kernel A
and let U(ZG) be f-unitary. Then G contains an element b such that G = (A,b)
and one of the following conditions is satisfied:

(1) A is an abelian group, the exponent of its torsion subgroup divides 4 or 6,
the order of the element b divides 4 and bab™! = a~! for alla € A;

(2) A is a Hamiltonian 2-group and G is the semidirect product of A and (b| b* =
1), and every subgroup of A is normal in G;

(3) A is a Hamiltonian 2-group and G is a semidirect product of a Hamiltonian
2-group and the cyclic group (b) of order 4;

(4) t(A) is a central subgroup of G,t(A) is the direct product of (b | 68 = 1) and a group o
and bab™' = a~'6* for all a € A;

(5) t(G) is a subgroup , every subgroup of t(G) is normal in G and t(G) satisfies
one of the following conditions:

(5.1) either t(G) is abelian with exponent a divisor of 4 or 6 or t(G) is ¢ Hamil-
tonian 2-group;

(5.2) t(G) is the direct product of a cyclic group of order 4 and an abelian group
whose ezxponent divides 6;

(5.3) t(G) is the direct product of a cyclic group of order 8 and an abelian group
whose exponent divides 4.

Conversely, let G satisfy one of the conditions (1) -(8) or (5) with the further
condition that G/t(G) is a right ordered group. If f : G — U(Z) is a homomor-

phism with kernel A | then U(ZG) is f-unitary.
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We note that the sufficiency of case (4) still remains open. However, when G is
periodic, case (4) becomes a special case of case (5.3), so the conditions of Theorem

2.1.8 become sufficient as well as necessary.

2.2 Generalized Unitary Units

In this section, we first introduce a new kind of units which generalize the unitary
units. We prove that these generalized unitary units form a subgroup U, ; which
happens to be the normalizer of U in /. Then we study the second normalizer
of U;. We also characterize when U, ; = U. Finally, we discuss the analog of the

normalizer conjecture and other related questions.

2.2.1 The Normalizers of U

In this subsection, we introduce the generalized unitary units and we prove that
they form a subgroup U, s of U which is exactly the normalizer of U;. We also study
the second normalizer and the main result is that for a periodic group, the second
normalizer is equal to the normalizer.

Let f be an orientation homomorphism(possibly trivial) and C be the centre
of U(ZG) . If u € U(ZG), satisfies uuf € C, we call u a generalized f-unitary
unit (or for short, generalized unitary unit). We denote the set of all such units

by U, ;(ZG)(sometimes just U, ;) and now show that &, ;(ZG) is the normalizer of

U (ZG).
Theorem 2.2.1. U, ((ZG) is the normalizer of U;(ZG) in U(ZG).

Proof. Let u € Us,v € Uy, ;. If w = v~ 'uv, then w/ = v/ulv~/. Hence ww! =
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v luvvlufv™f = vlvwfuufvf = tvtvefvf = £1. Therefore w € Uy and
Us aly 5.

Conversely, assume v € Ny(Uy), the normalizer of Us in U. For any u €
Uy, (v uv)(vfufv™f) = £1. Therefore uvv/uf = vv/. Let u = g € G. We obtain
that gvv/g/ = +vv/ and augmentation arguments tell us gvv/ = vofg Vg € G.

Hence vv/ € C ; therefore, v € U, ;. O

Corollary 2.2.2. (Sehgal and Bovdi [14] ). U;(ZG) is a normal subgroup of U(ZG)
if and only if, U, [(ZG) = U(ZG).

Proposition 2.2.3. Yv € Ny(G),vv! € C;therefore, Nu(G) C U, (ZG).

Proof. Vv € Nyu(G), Vg € G, we have v~'gv € G. Therefore, (v gv)(v~'gv)! =
+1. It follows that v~'guvv/gfv—/ = +1, thus gvv/ = +vvfg and augmentation

arguments tell us gvv’ = vvfg . Hence vvf € C. ad

Now we are going to study the second normalizer, Ny(U, ;(ZG)). Our main
result is that for any periodic group G, the second normalizer of the subgroup of

unitary units is equal to the first one.
Theorem 2.2.4. For any periodic group G, Nu(Uy [(ZG)) = U, ;(ZG).
First we prove several preliminary results.

Lemma 2.2.5. Vz; € ZG, if Y -, 0{1.‘,':3{ = +g, whereg € G, 0; = %1, then

g=1.
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Proof. Let z; =Y a;,q;,, z{ = Za;jg{;. Then

:z:,-:z:{ = Z :i:a,?, + Z a;, aijzyi,-lgifn
Ii1#i2
—_ 2 S
- Z :tai, + Z (afu aizzgiilgsz + aiJzaing‘-ng"le)
n<jz

Therefore,

Y(owwia]) = T(o: ek ) + Lo(o: T, o, 04y, 04,y (95, 9L, + 95,97 ) = %9

Taking the augmentations of both sides , we obtain
2tz ==+1

where zo = 3 (0: 3_ta}), z1 = Yo(0: 325 o5, @iy, a0, (f(g:,, ) + f(g5,,))). Note that
f(9i,, )+ f(gi,,) is either £2 or 0. It follows that z, is an even number. Hence z, # 0,

and this forces ¢ = 1. O

Corollary 2.2.6. Yu € ZG, ifuuf = +g, then g = 1; therefore, u is a unitary

unit.

Proposition 2.2.7. For any group G, T(U, ;) = T(Uy), where T denotes the subset

of all torsion elements.

Proof. We only need to prove that T'(U,,;) C T(Us). Yu € T(Uyp), uu! = c € C.
Since uuf = ufu, we conclude that o(c) < o0, so ¢ = +g ([57], p-46, Corollary 1.7).
By Corollary 2.2.6, uu/ = +g implies that g = 1. This leads to u € T(Uy) and

finishes the proof. O

Recall that if f is trivial, then U;(ZG) = £G ; therefore, Ny (£G) = U, [(ZG)

by Theorem 2.2.1. As a consequence we obtain the following Corollary.
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Corollary 2.2.8. T(Nu(G)) = £T(G).
Remark 2.2.9. Generally speaking, T(Uy) is not necessarily equal to £T(G). We

will illustrate this in an ezample later.

Now we are ready to prove our main result (Theorem 2.2.4).

Proof. Let v € N(U, ) and g € G C T(U,.)- Since v~'gv € T(U,, ), we conclude
that v='gv € T(Us) by Proposition 2.2.7. It follows that %1 = v-lgv(v=!gv)/ =
vtguvfgfv—f. Augmentation arguments tell us that gvv/ = vv/g. Hence vo/ € C
and therefore v € U, ;. This completes the proof. a
Corollary 2.2.10. For any periodic group G, U, ;(ZG) is e normal subgroup U(ZG)
if and only if
Uy f(ZG) = U(ZG).

We close this subsection by indicating some results for N(U, ;) when G is arbi-
trary.
Proposition 2.2.11. For an arbitrary group G, we have v € N(Uy 5) if and only if
Yu € Uy f,3c € C, such that u(vv’) = c(vvf)u , and c = ¢f.
Proof.

vE NU; ) Yu el s, v'uv € Uy g

v uu(v uw)! = v tu(ve! )ulv e C
uvv! = equvfu’, for some ¢, €C

uvv! = cvv’u, for some ¢ € C (¥)

rrii11

fov! Uy 1] C C.
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Up to (*), we have proved the first part. Next we will prove that ¢ = c¢/.
Taking f of both sides of (*), we arrive at

vwiu = ufvlf
Multiplying by (*), we obtain
u(vv!)2uf = cef (vvf)2un’.
On the other hand,
u(vo! )uf = covfuvviuf = cvvf cvvfun! = A(vvf)2uuf( by (*) )
Therefore, we obtain ce/ = ¢?; i.e. ¢ = ¢/. This finishes the proof. O

Corollary 2.2.12. For an arbitrary group G, if v € N(U, s), then either o(vv!) =
00, or (vvf)? = 1.
Proof. Let v € N(U, ;). If o(vv!) < oo, then o(vv/)? < co. We first prove that
(vwf)? eC.

Recall from Proposition 2.2.11 that uwvv/ = covfu if u € Uy, and c = /.

Suppose (vv/)* = 1. We obtain
u = u(vv!)* = covfu(vr! )"t = .- = (v "u = u

It follows that ¢ =1 and ¢ = +g. Since ¢ = ¢, &2 = cc¢/ = gg~' = 1. It turns out
that
u(vv’)? = E(vvf)?u = (vof)2u,Yu € U, ;
Therefore (vv/)? € C. Now we will prove that (vof)? = 1.
Since o((vv/)?) < oo and (vv/)? € C, (vv/)? = go. By Lemma 2.2.5, go = 1, and

this completes the proof. a
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Remark 2.2.13. If v € N(U, ), then either o(vv/) = oo, or vof € U; and

o(vvf) < 2.
2.2.2 Conditions for U = U, ¢

In this subsection, we discuss some necessary and sufficient conditions for 2 = U, ;.
We also characterize when B,, the subgroup generated by all the bicyclic units, is

f-generalized unitary.

Proposition 2.2.14. For any periodic group, the following conditions are equiva-
lent:

(1) U =Uyy;

(2) U, ¢ is a normal subgroup of U;

(3) Vv € U,Yu €Uy, 5,3 c €C 3 u(vv!) = c(vvf)u and ¢ = ¢f;

(4) Uy is a normal subgroup of U.

Proof. (1) <= (2) (by Corollary 2.2.10), (2) < (3) (by Proposition 2.2.11), (1)
<=5 (4) (by Corollary 2.2.2). O

We note that when f is trivial, the question of when U = ¥, s reduces to when
G is normal in U(ZG) which is settled by Cliff and Sehgal [17]. We are interested
in the question with nontrivial f and let us first state a result proved by Bovdi and
Sehgal [14] describing when U(ZG) = U, [(ZG).

Theorem 2.2.15. Let f : G —> U(Z) be a nontrivial homomorphism with kernel
A and let U(ZG) be generalized f— unitary. Then G contains an element b such
that G = (A, b) and one of the following conditions is fulfilled:
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(1) A is an abelian group, the order of the element b divides { and bab™" = a™"
forallac A;

(2) A is a Hamiltonian 2-group and G is the semidirect product of A and (b |
b* = 1), and every subgroup of A is normal in G;

(3) A is Hamiltonian 2-group and G is a semidirect product of e Hamiltonian
2-group and the cyclic group (b) of order 4;

(4) t(A) is a central subgroup of G,t(A) is the direct product of (b* | b = 1) and
a group of exponent 2 and bab~' = a~'b6% for all a € A, where i depends on a;

(5) t(GQ) is a subgroup , every subgroup of t(G) is normal in G and t(G) satisfies
one of the following conditions:

(5.1) t(G) is a Hamiltonian 2-group;

(5.2) t(G) is abelian, the centralizer of Cq(t(A)) of t(A) is a subgroup of index
2 in G, and gag™' = a~! for all a € t(A) and g € G\Cs(t(A));

(5.3) t(G) is abelian and t(A) is a subgroup of the center of G.

Conversely, let G satisfy one of the conditions (1) -(8) or (5) . Further suppose
that in case (1) b* =1 and in case (5) G/t(G) is a right ordered group. If f : G —»

U(Z) is a homomorphism with kernel A , then U{ZG) is generalized f—unitary.
We will extend Theorem 2.2.15 by proving the sufficiency of case (1) in general.

Proposition 2.2.16. Let f : G — U(Z) be a nontrivial homomorphism with ker-
nel A. Then G contains an element b such that G = (A,b). Suppose that A is an
abelian group, the order of the element b divides 4 and bab™! = a~! for all a € A.

Then U(ZG) is generalized f-unitary.

Proof. First note that f(b) = —1 and 4% € A. Say u = a; + a;b € U(ZG) where
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a; € ZA, so u/ = aj — azb™!. Let us consider
v = un! = a,a] — 6,0 + a1a,b(1 — b7%)
If o(b) = 2, then uu’/ € C; therefore, u € U, ;. Next we suppose that o(b) = 4.

v* = (uwuf)” =q1a] ~ aya; — ajazb(1 — b?)

w* = (a1a])? + (a205)? ~ 2(a1a]a2a5)b?

= (a@1a] — aza3b?)? = &

where ¢ = (a,a] — a2a50?) = c* = ¢/ €C.

Let v, = vc™!, thus
vy = vc“(c")'v' =we ) =1

We conclude that v; = +g for some g € G and v = *cg.

Let g =ab', a € A, =0,1. I[f i = |, then g = ab and v = cab; therefore,
+c=a"'vb’ = a7 (a1a] ~ a2a3)b* + a"'(a1a2(l — b*)) €C

Since ¢ € ZA (by the definition above), we have a~!(a,a] —aza3)b° = 0. However,
this is a contradiction to aug(a,a] —aza3) = +1. As a consequence, i =0 and g = a.

Now since
a~}a1a] — az2a}) + a"(a1az(1 ~ 6*)b) = @~ 'v = £c € ZA,

we conclude that a~!(a1a(1 — b%)b) = 0, so(a1a,(1 — b%)b = 0. Hence it follows that

v = uu/ = a,a] — aza} € C. Finally, we have proved that u € U, ;. (|

Remark 2.2.17. The sufficiency of case ({) of Theorem 2.2.15 still remains open.
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For any periodic group G, we have now obtained the following necessary and

sufficient conditions for #(ZG) being generalized f-unitary.

Theorem 2.2.18. Let G be a periodic group and assumptions be the same as those
in Theorem 2.2.15. Then U(ZQG) is generalized f— unitary if and only if one of the
following conditions is satisfied:

(1) A is an abelian group, the order of the element b divides {4 and bab™' = a™!
for alla € A;

(2) A is e Hamiltonian 2-group and G is the semidirect product of A and (b |
b* = 1), and every subgroup of A is normal in G;

(3) A is a Hamiltonian 2-group and G is a semidirect product of a Hamiltonian
2-group and the cyclic group (b) of order 4;

(4) G is an abelian group.

We will now investigate when B3(ZG), the subgroup generated by all bicyclic
units of {(ZG), is nontrivial and f-generalized unitary. Qur main result is that this

reduces to the unitary case.
Proposition 2.2.19. If B, CU,y, then B, CU;.

Proof. Suppose that B, C U, s. First we prove that Ya € A, where A = ker(f).
with o(a) = n < 00, (a) is a normal subgroup of G. Let us consider a bicyclic unit
Uag =1 + (1 —a)ga. Then v} =1~ (1—a)ga,and uf =1+ agf(1 —a™'). Now

uggul, =c€C,souf, =cu;,. We have

1+ég/(1 —a™') =c—~¢(l —a)ga.
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Multiplying by a from the right we obtain
ca —nc(l — a)ga = a. (2.1)

Multiplying by a from the left we have nca = na. Therefore cé = a. Substituting
this into (2.1) we obtain (1 — a)ga = 0. As a cousequence, u,, is trivial and this
finishes the first part.

Now we consider any d of finite order in G\A. We note that the order of d is
always even and d? € t(A) because f(d)°*@ = (—1)°® = [. Since (d?) is normal, d2
is central in ZG. Let ug, =1+ (1 —d)gd =1 + (1 — d)g(1 +d)¢i2, thus

uf =1-d'(1—d)g/(1 +d)d"'d?
Since uqy € Uy g, ud,guig =c €C . We have
c—c(l —d)g(l +d)d? =1 —d'(1 ~d)g’(1 + d)d"'d?.

Multiplying by 1 + d from the left we obtain ¢(1 +d) =1 +d. Multiplying by [ —d
from the right we obtain ¢(1 —d) =1 — d. Combining these two equations we have

¢ = 1. Therefore uy, € U;. We are done. O

Combining Proposition 2.2.19 with Theorem 2 in Bovdi and Sehgal [15], we

obtain the following theorem :

Theorem 2.2.20. Let f : G — U(Z) be a nontrivial orientation homomorphism
with kernel A, then G = (A,b) where b € G. The subgroup B,(ZG) is nontrivial and
generalized f— unitary if and only if, G is a non Hamiltonian group which contains

an element b # 1 such that one of the following conditions is satisfied:
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(1) A is an abelian group, the order of the element b divides 4 and bab™' = a™}
foralla € A;

(2) A is a Hamiltonian 2-group and G is the semidirect product of A and (b |
b% = 1), and every subgroup of A is normal in G;

(3) A is a Hamiltonian 2-group and G is the direct product of a Hamiltonian
2-subgroup of A and cyclic group (b) of order 4;

(4) t(A) is an abelian group, every subgroup of t(A) is normal in G and bab™" =

a~'b* for all a € A, where the integer i depends on a.
Finally we make the following observation (compare with Proposition 2.1.4).

Proposition 2.2.21. For any bicyclic unit u, if u is a unitary unit, then it must

be one of the first class unitary units, i.e. uuf = 1.

Proof. Let u = 14 (1 —a)ba € U;. Thus uu/ = 1. If a € Ker(f), then aug(u’) =
1 + aug[afb/(1 — a7')] = 1. Therefore, aug(uuf) = 1, thus uuf = 1.

Now suppose that a ¢ Ker(f). It follows from the proof of Proposition 2.2.19
that o{a) = 2/. Note that &/ = L —a=!+ (a2)~! — (a®)~! 4 -- -+ (a?=2)~! — (a¥-1)"1.
We have aug(a’) = 0. Therefore, aug(uf) = 1 + aug[a’b/(1 +a" )] = 1. Asa

consequence aug(uuf) = 1 and wuf = 1. O

2.2.3 Conditions for U, f = Uf

Theorem 2.2.22. The following conditions are equivalent;
(1) Up,s =Uy;

(2) Us.s - Us] < o0;

(3) Yu €Uy 5, 3n 5 u™ € Uy, where n depends on u;
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(4) Vu €U, 5, In > (wud)" € Uy;
(5) Ve € C,cef = +1.

The proof is similar to that of Theorem 2.1.6

As we mentioned before, if C(U(ZG)) is trivial, then U, ; = U; ( by Lemma
2.2.5). For finite groups, necessary and sufficient conditions for C(U(ZG)) to be
trivial were obtained by Ritter and Sehgal (see Theorem 3.1.1 in the next chapter).
However, the following Example tells us that U, ; = Uy is not sufficient to guarantee

that the center of the unit group is trivial.

Example 2.2.23. Let G = Cg x Cy where Cs = (c1), Ca = (c2), and A = (¢1) x
(c2). Then U(ZG) = U; by (5.2) of Theorem 2.1.8, but there exists a nontrivial

central unit ( a Bass cyclic unit constructed by a group element of order 12).
However, we have the following sufficient conditions for C(U(ZG)) being trivial.

Proposition 2.2.24. Let G = (A,b), where A = kerf and f(b) = —1. IfU; =
U, ; and one of following conditions holds:

(1) b =1 and A is abelian ;

(2) b* = land for all a € A, ab = ba;

(3) for alla € A bab™! = a™! (so A is abelian);

then C(U(ZG)) is trivial.

Proof. (1) Let u = a; +a3b € C where a;,a, € ZA. Since ub = bu, we conclude that
a:b = ba; for : = 1,2. Hence it also follows that ajb = ba;. Now uf = a} — ba; =
aj — a3b. Hence uu/ = a1a] — a2a3 + (az2a] — a1a3)b. Since u € C C Uy = Uy, we

have uu/ = £1. Thus a,e] — a;a3 = 1 and ayba] — a,baj = 0.
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Let v = ay + a2,v; = a] — a3. Then the above tells us that vv; = a1a] — a2a] +
(aza] —a,a3) = *1. Since v commutes with b , we have that v is a central unit in ZG
and hence is contained in U, ; = Uy, so vu/ = £1. But also v € ZA, so v/ =v". We
conclude that vv" = vvf = 1. This means that v is trivial, and also that v* = +v,.
We conclude that either a; = 0, a; = +g or a; = +g, a; = 0 for some g € G. The
result follows.

(2)Copying the proof of the first part of (1), we obtain that vv; = +1. We only
need to prove that v = @, + a, is a central unit. By the assumption, ba; = a;b so
that we only need to verify for all a in A, aa; = a;a. Notice that au = ua where
u = a; + azb is a central unit, and this gives that aa; + ae,b = a,a + azab, thus
aa; = a;a. Copying the rest of proof of (1), we finish the proof.

(3) By the proposition in Bovdi and Sehgal [15], for all u in C, v € U(ZA), thus
u* = uf. Since C C U,y = Uy, uu™ = uuf = 1. This implies that u is a trivial

unit. ]

Corollary 2.2.25. Let G = (A,b) be a finite group, where A = kerf and f(b) =
—1. IfUy =U, s and one of following conditions holds:

(1) b =1 and A is abelian ;

(2) b> =1 and Va € A,ab = ba;

(3) Va € A,bab™! =a™! (so0 A is abelian );

then Vg € G, n relatively prime to the order of G,g" is conjugate to either g or g~'.

Proof. The result follows from Proposition 2.2.24 and Theorem 3.1.1. a
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2.2.4 Other Results

We begin this subsection by studying an analog of the normalizer conjecture. Then
we continue the investigation initiated in Subsection 2.1 and establish relationships
between generalized unitary units in ZG and Z(G x C3).

A well-known open problem in group rings is the normalizer conjecture:
Conjecture 2.2.26. (Sehgal [58], Problem {3 ) Let G be finite. Then Ny(G) =CG.

This conjecture was first proved by Coleman [18] for nilpotent groups and then
proved by Jackowski and Marciniak for groups of odd order. In fact, Jackowski and
Marciniak [25] have proved this result for groups having a normal Sylow 2-group,
simultaneously extending the above results. In general, the problem remains open.

Note that G C Uy and if f is trivial, then Uy = +G. Also recall that the
normalizer of the subgroup of unitary units in #(ZG) is just the subgroup of the
geueralized unitary units by Theorem 2.2.1. So a natural analog of the normalizer
conjecture is that if G is a finite group, then U, (ZG) = ClU;.

For our needs, we first let H =U, s, and H, = ClUy, the subgroup generated by
all central and unitary units.

Recalling Theorem 2.2.1 we derive the following corollary:
Corollary 2.2.27. H, is a normal subgroup of H.
Proposition 2.2.28. H/H, is a group of ezponent dividing 2.

Proof. Let u € H. Then if uu/ = ¢, ¢/ = (uuf)! = (uf/)/u/ = uuf = c. Considering

[ —

!, then wiu; =

u?, we have u?(u?)! = vuu/u/ = (uuf)(uuf) = 2. Let u; = v’c”
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ulc e ) (u?) = u?(u?)e? = ?c™? = 1. Therefore u; € Uy, thus u? € Hy. Asa

consequence, H/H, is a 2-group or a trivial group. |

Corollary 2.2.29. LetG be a finite group. H is a subgroup of finite indez in U(ZG)
if and only if H, is a subgroup of finite indez in U(ZG).

Proof. By Krempa ([37] Theorem 2.9), U(ZG) is finitely generated. We assume that
H is a subgroup of finite index in U (ZG). So H is finitely generated (by the Schreier
Method). This means that H/H, is finite, so H; is a subgroup of finite index in H
and in U(ZG) as well. |

The analog of the normalizer conjecture states that for any finite group G, H =

H,. We give the following necessary and sufficient conditions for H = H,.

Proposition 2.2.30. For any integral group ring, H = H, if end only if, for all

v € H, there ezists ¢, € C such that vvf = :i:clc{ .

Proof. Suppose that H = H,.Yv € H,v = uc where u € U;(ZG),c € C. Thus
vof = uc(uc) = uec/uf = (ccf)(uuf) = *ecf.
Conversely, assume that Yo € H,vv/ = +ccf. Let v = wvc™!, then uu/ =

ve~lefvf =clefvvf = £ lcfecf = +1. Therefore v = uc € H;. a

Unfortunately, the analog of the normalizer conjecture fails in general. The

following example will show that H # H, for the integral group ring ZD¢.

Example 2.2.31. Let G = Dig and f(a) = 1, f(b) = ~1. Then U(ZD1s) = Uy ;(ZD 1)

H (by Theorem 2.2.15), but H # H,.
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Proof. Take u =1 — (1 + @¢® + b — ab)(1 — a*). Thus

ul

l

l+(~1+a+b—ab)(l—a*)
wu/ = 1+ (—2+a—-da®)(1—a%
= a'(l1+(1 —a+a®)(1 —d')) =a*y

Next we will prove that u ¢ H, since uu/ # *cc/, where c is a central unit.

According to the proposition in Bovdi and Sehgal [15], C(U(ZDs)) C U(ZA)
where A = (a) = Cs. By Karpilovsky ([34], p.154 , Example 2), U(ZA) = £(a) x
(a®ug') = +{a) x (up). Therefore C(ZDg) = F(a*) x (uo) with u, nonperiodic.
Assume there exists ¢; = F+a*uf such that a'uy = :i:c[c{ . But notice that c[c{ =

ci(e1)” = ¢ = u2¥ # ta*uo. This contradiction leads to the result. a

Remark 2.2.32. From Ezample 2.2.31, we know that there ezists u € U(ZD\g) =
Uy f(ZDyg), with u ¢ Uf(ZD\)C(ZD\g). Thus u ¢ Ny(Ds) which in fact is
D16C(ZD,g) since Dig is a 2-group ( Coleman [18]). Therefore, there ezists a
group element g such that u~'qu ¢ +D)s. Since o(u~'gu) < oo, we have that
u"lgu € T(U(ZD16)) = T(U, [(ZD16)) = T(U;(ZD\)) by Proposition 2.2.7. So we
conclude that T(U(ZD,g)) # £Dye.

Note that although H,(Z D) is a normal subgroup of finite index of H(ZD\¢) =
U(ZDrg), UF(ZDg) is still a normal subgroup of infinite index of U(Z D).

Now we are going to establish relationships between the generalized unitary units
in ZG and Z(G x C;). Recall that a similar study was carried out earlier for unitary

units. [n particular, the following is an immediate consequence of Proposition 2.1.2.
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Proposition 2.2.33. 1 + 2a is ¢ central unit in ZG if and only if 1 + a(l —c) is

a central unit in Z(G x C,).
Copying the proof of Proposition 2.1.5, we obtain:

Proposition 2.2.34. 1 + 2a is a generalized unitary unit in U(ZG) if and only if

1 + o1 —¢) is a generalized unitary unit in U(Z(G x C,)).

Lemma 2.2.35. Suppose that a group G is a semi-direct product of two subgroups
K and D, where K is normal, denoted by G = K x D. [f K|, D, are subgroups of
finite indez in K, D respectively, then (K, D,), the subgroup generated by K; and

D,, is a subgroup of finite indez in G.

Proof. Suppose K = |, kiK1 and D = |Ji_, d; D). Vg € G,g = kd, where k €
K,d € D. Now g = kd = kd;d' for some j and d' € D,. Since K is normal,
kd; = djw for some w € K, and w = k;k’ for some ¢ and k¥’ € K,. Therefore,
we obtain g = kd = kd;d’ = d;wd’ = d;k;k'd’ for some i,j. As a consequence,

G = Ut"m djk{(K[,D]_). D

i=1,7=1
Qur main result is as follows:

Theorem 2.2.36. I[fU(ZG) has a generalized unitary subgroup of finite indez, then

U(Z(G x C2)) has a generalized unitary subgroup of finite indez.

Proof. As we pointed out before, U(Z(G x C,)) is a semi-direct product of K by D
where K = {l+a(l—c)|l+a(l—c) EU(Z(GxC,))} = {1+2c(1+2a € U(ZG)} =T
and D = U(ZG). We need to show only that (K : KU, ;(Z(G x C;))] < oo and
[D : DU, ;(Z(G x C2))] < oo by Lemma 2.2.35.
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First, we note that since [U(ZG) : U, ((ZG)] < 00, [T : T Uy (ZG)] < oo. By
Proposition 2.2.34, K U, 1, (Z(GxC,)) = T U, ;(ZG) by the above isomorphism.
Thetefore [K = K (U ;,(Z(G x C2))] = [T : TNUs(ZG)] < oo. We also
notice that D (U, (Z(G x C,)) is just the preimage of U, ;(ZG) in D. Thus
[D : DNU, (Z(G x Cy))] = U(ZG) : U, ;(ZG)] < oo by the assumption. We are
done. O

Similarly, we obtain:
Corollary 2.2.37. [fU(ZG) = U, (ZG), then U(Z(G x C3)) = Uy 1, (Z(G x C3))

Corollary 2.2.38. For any finite group G, if U(ZG) : U;(ZG)C(ZG)] < oo then
the same result holds for Z(G x C,).

Proof. Note that U, 1, (Z(G x C;)) is a subgroup of finite index in U(Z(G x C,)) by
Theorem 2.2.36 and the fact that H, = UHZG)C(ZG) C U, ;(ZG). The proof is
finished by recalling Corollary 2.2.29. d

71



Chapter 3

Central Units

3.1 Introduction

There are very few cases known of nonabelian groups G where the group of central
units of ZG, denoted C(U(ZG)), is nontrivial and where the structure of C(U(ZG)),
including a complete set of generators, has been determined. In this chapter, we
show that the central units of augmentation 1 in the integral group ring ZAs form
an infinite cyclic group (u), and we explicitly find the generator u. This result has
appeared in [39].

First, we recall the following theorem of Ritter and Sehgal [53) giving necessary
and sufficient conditions for C(U(Z@G)) to be trivial when G is finite, and give a new

proof of one direction of this theorem.

Theorem 3.1.1. Let G be a finite group. All central units of ZG are trivial if and

only if for everyz € G and every natural number j relatively prime to |G|, =7 is

conjugate to = or z7t.

We will use the following equivalent version.
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Theorem 3.1.2. Let G be a finite group. All central units of ZG are trivial if and
only if for every z € G and every natural number j, relatively prime to |z|, 7 is

conjugate to x or z7!.

To see these are equivalent , first suppose that the condition in Theorem 3.1.2
bolds and let z € G. If (5,|G|) = 1, then (j,|z|) = 1. Therefore, z7 is conjugate to
z or z~}, and the condition in Theorem 3.1.1 also holds.

Conversely, suppose that the condition in Theorem 3.1.1 holds and let z € G
with j relatively prime to |z|. Let |G| = |z|k and let m = [] p; be the product of
all primes p; such that p;|k, but p; 47 (set m = 1 if no such p; ). Observe that
(7 + mlz|,|G]|) = ( + m|z|, k|z|) = 1, and hence we have z/ = z7+™I=l is conjugate
to z or z~!. We are done.

Next we will give a proof of Theorem 3.1.2 for one direction: “ <= ". We need
the following lemma proved in Bass [7] and a remark proved in Jespers, Parmenter
and Sehgal {30].

Lemma 3.1.3. Let G be any finite group. The images of the Bass cyclic units of

ZG under the natural map j : U(ZG) — K,(ZG) generate a subgroup of finite

indez.

Remark 3.1.4. Let L denote the kernel of this map j, and B, the subgroup of
U(ZG) generated by the Bass cyclic units. [t follows that there ezists an integer
m such that c™ € (By, L) for all c € C(U(ZG)). Since L is a normal subgroup of
U(ZG), we can write ¢™ = lbyby -+ - by for some | € L and Bass cyclic units b;. We
note that L(C(U(ZG)) is trivial.

Now we are ready to start our proof.
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Proof. Suppose that for every ¢ € G and every natural number i, relatively prime
to |g|, g° is conjugate to g or g~'. Let us consider an arbitrary Bass cyclic unit as

follows:

y 7L

. 1 -,
b=(1+g+g’+---+g‘“‘)"‘+-T§l——g,wherem= ¢(n),n = [g|.
Case 1: Suppose that g* = h~'gh, which we denote as g*. Then we have
h i o2 i-)ym , L=,
b = (I+g' +g"+--+g"")" + o9

1 — '2m‘
bo* = (1+9+g’+~~+9‘2"‘)”‘+———§|—)—~9

: 1 —im
th — (1+gx? +92{*+_”+g(2(1-l})m+ lg; §
. 1~ ;3\m
bbho = (1+g+g2+»u+g‘3"[)m+-——[§r~)—-§
Similarly,
m— mopvm L= (™)™
BEPBR BT = (1 ge gt deee 4 gy 4 L2

gl

Since i*") = 1mod(n), we have that ¢" = g and ¢" ~! = 1. It follows that
l+g+g*+--+g ' =kg+1, where k = Z=L. Now, with C™* = (*), we have

that

m— 1— (™ m‘
bbhbhz"‘bh l = (kg_{__l)m_‘_ (2 ) §

gl
Ay 1 —(@Em)™
= (K™(@)"+Cm_ k™M (@)™ " -+ 1) + - l(gl )”‘g
= (kmamig 4 O kmtam g e 1) 4 ":(;1 ",
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-t (k™™ +Cn_ k™ tn™ e+ DG~ + 1-— (i”‘)mg
n lgl
(kn+1)™ —1_ 1—(@™)™,
= 1+ - g+——"9¢
1 Ll [ ~ (™)™
o L VO T o
n n
= 1.
Case 2: Suppose that g~ = h~'gh. Then
b = (1+g+gz+'~-+gi“l)m+li;r g
~t ~21 ~t(i~L}\m 1___1171“
B = (g7 g g g
i—1lym - - —(i—1}\m 1~-m~
' = (¢ (L+g +g i+ +g N+ M‘ §)
- —2i —ii~)ym , LT
(L+g7 +g %+ +g7 ) ¢ FiRL
i _ _ 2 1 - ’2m‘
= (@) (1+g " +g 7+ +g7 ")’“+-—-—|§l—)—g
) [ —4™
th = (bh)h=(1+gi2 +g2i2 +‘”+giz(x—l))m+ : g
lgl
e 2(i~1)ym - - —(3~1)\ym 1 — 1’3111‘
B = (¢M(eTEIN (L + g g+ g7 EY) +--—-i~;-‘—)-g
t— - - (i3~ 1— i3m.
Similarly,

bbhbhz . b};m-l gsm(l + gwl + g-.z + - +g~(i"‘-—l))m +

1 — (™)™

H

As before, the sum in the brackets reduces to 1 and we have
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bbheR - BT = g € G
Therefore there exists s such that (66%6** -.-6*"7')* = 1.
Because K, is an abelian group, we have proved that for any central unit ¢ €

C(U(ZQ@)), there exists a large integer r such that

& = (lbrby---by)" (by Remark 3.1.4)
= [BBG .- b

-1

—~ lu(blbl:x . b’l‘t ' )l; - (bnbﬁ“ .. ,bﬁ,’-{‘“‘l)ln

= I"el.

Note that I"” € L [C(U(ZG)) is a trivial central unit by Remark 3.1.4. Therefore

c is also trivial and we are done. O

3.2 Main Results

When G is finite, Ritter and Sehgal [55] constructed a finite set of generators for
a subgroup of finite index in C(U(ZG)) (see also [54]) , while Jespers, Parmenter
and Sehgal [30] found a different set of generators which works for finitely generated
nilpotent groups (and some others as well). In the latter case, the generators were
constructed from Bass cyclic units in ZG and the construction depended on the
existence of a very well behaved finite normal series in G. In general, however,
there is no simple procedure known for constructing examples of central units in
ZG (even when Theorem 3.1.2 guarantees their existence). Also there are very few
cases of nonabelian groups where C(U(ZG)) is nontrivial and where a complete set

of generators has been obtained for C(U(ZG)).
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[n this chapter we make some progress on these questions. Since As, the alter-
nating group on 5 letters, is a simple group, the procedure in [30] cannot be used
to construct central units in ZAs. However, if a = (12345) then a and o' are
conjugate to each other but not to ® = a’, so Theorem 3.1.2 says that C(U/(ZAs))
is nontrivial. We will show that C(U(ZAs)) = +(u) where (u) is an infinite cyclic
group. More significantly, we will explicitly find the generator u, thus obtaining a
complete description of C(U(ZAs)).

Recall that whenever R is a commutative ring with 1, the centre of RG is a free
R-module with basis consisting of the finite conjugacy class sums in RG.

As has 5 distinct conjugacy classes, and we will denote the corresponding class
sums by Cq, Cy,C,,C3,Cy where Cq = 1,C) is the sum of elements conjugate to
(12345), C; is the sum of elements conjugate to (13524), Cj3 is the sum of all 3-cycles
and C, is the sum of all elements which are the product of 2 disjoint transpositions.

We will need to use the following identities:

C1Cz = Cl +Cz+3Cg+4C4

I

C\Cs 5C) +5C; +3C3+4C,
0104 = 502 + 363 -+ 404
C? = 12+C1+5C,+3Cs

0203 = 501 + 502 + 303 + 404
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CgC4 = 501 + 303 + 404
C? = 20+5C, +5C,+7C5+8C,
0304 - 501 + 502 + 603 + 404

C? = 15+5C, +5C; +3C5 +2C,

which are known, see for example, (Frobenius [19], pp. 1-37 ).

Supposeu € C(Ui(ZAs)). Let u = Xa;C; and u~t = Ib;C; where a;,b; € Z,0 <
i < 4. Since uu~! = 1, the identities just stated can be used to give 5 equations, one
for each C;. The augmentation map tells us that ag + 12a; + 12a; + 20az + 15a4 = 1
and similarly for the b;. Substituting for ag and by, we see that the equation arising
from Cj can be ignored as it is a linear combination of the rest. The other 4 equations

are:

(1 —19a; —~ 1lla; — 15a3 — 1564)b1 + (-—-lla[ + a2 + Hasz + 504)62

+(—15a; + 5a,; + 5a3 + 5a4)bs + (—15a; + 5a; + 5a3 + 5a4)bs = —a,

(a; - 11(!2 +5a3 + 5a4)b1 + (}. - 1161 - lgag — 15(13 - 15&4)62

+(5a; — 15az + 5a3 + 5a4)bs + (5a; — 15a2 + 5a3 + 5a4)by = —a,

(3&1 + 302 - 9(13 + 304)61 + (3&1 + 3(12 - 903 + 30.4)bz+

(1 -_ 90[ - 902 ol 33&3 - 984)&3 + (3&1 -+ 3(12 —_ 903 -+ 30.4)()4 = —d3

(402 -+ 403 - 8&4)b1 + (40[ + 4413 - 804)b2 + (4@1 -+ 462 -+ 8(13 - 1664)63

+(1 — 8a; — 8a; — 16a3 — 28a4)by = —ay
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Adding these together, we obtain

(1 —15(a1 + az + az + a4))(by +b; + bz + bg) = —(a; + a2 + a3z + a4)

Since we are dealing with integers, this means that a; + a; + a3 + a4 = 0 and
by + by + b3 + by = 0. Substituting for a; and b, and ignoring the first equation

which is then a linear combination of the others, we are reduced to

(1 +4a; — 8az — 8ay)b; + (—8az; — 4az — 4a4)bs

+(—8¢12 - 403 -_ 40.4)b4 + a = 0

(1 - ].203)!73 + asz = 0

(—802 —_ 4(13 - 404)62 + (—402 - 1204)b3

+(1 - 4a2 - l2a3 - 1204)64 + Qg4 = 1]

[t follows from the second equation that 1 — 12a3 divides a3, forcing a; = 0 and

by = 0. We are now reduced to

(1 + 4(12 - 804)b2 + (-—8(12 —_ 4!14)64 = -—Qq

(—8a; —4ag)by + (1 —4dap — 12a4)by = —ay
The determinant of the 2 x 2 matrix arising here is

D =1 —20(4a? + 4aza4 — 4a? + a4) = —20(2a;2 + a4)? + (10a4 — 1)%.
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We note that D # 0 and also

(2a; + a4)? — (5a2 + a,)

b
2 D
b = 10a2 — a4 — 2(2a; + a4)?
D

Since 2b, + by = 1225:91 is an integer, we have that D|(2a; + a4). The equation
for by then says that D|as(10as — 1). We conclude from the equation for D that
ged(D,a4) = 1, so D|(10aq — 1). Setting 2a; + a4 = Du and 10aq — 1 = Dv, we
obtain D = D?(v? — 20u?). Since D # 0 and D # —1, it follows that D = 1.

We then have that (10e4 — 1)% — 20(2a; + a4)? = 1, and this can be rewritten as
(2a2 + a4)? = (5a4 — 1)ay. It follows that a4 is an even number and that both a4
and 5a4 — 1 are + (perfect squares). Let aq = +4Y? and 5a4 — | = £ X2 Ifa, > 0,
we get X2 —20Y? = —1. Since the left hand side is 0 or 1 (mod 4), this equation
has no solution.

If a; < 0, we have the Pell’s equation X? —20Y? = 1. Working back through

the identities which have been developed, we have proved

Proposition 3.2.1. C(U(ZAs)) = {£u|u = (L + 12Y3)C, + (XY + 2Y3)C, +
(FXY +2Y?)C2—4Y?Cys where X,Y run through all solutions of the Pell’s equation
X? ~20Y? = 1}.

Note that if X,Y is any solution of the above Pell’s equation, then the solution
—~X,Y gives the same units, so we may assume X and Y are nonnegative. Also, if
X,Y is a particular solution of the equation, then the 2 units obtained from this
solution are inverse to each other - i.e., ifu = (1+12Y?)Co+(XY +2Y?)C1+(—XY +
2Y?)C,—4Y?Cy, then u~! = (14+12Y2)Co+(—XY +2Y?)C, +H(X Y +2Y?)C, —4Y?*C,.
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For example, the solution X = 9,Y = 2 gives the inverse pair v = 49 + 26C; ~
10C, - 16Cy, v~! = 49— 10C; +26C, — 16C,. In fact, our main theorem shows that

this particular v is more than just an isolated example.
Theorem 3.2.2. C(U(ZAs)) = +(v) where v is as defined above.

A careful discussion of solutions to Pell’s equation can be found in [42], but for

our purposes the crucial result is

Lemma 3.2.3. (Niven and Zuckerman [42], Theorem 7.26) Consider the
Pell’s equation z? — dy? = 1 where d is a positive integer which is not a perfect
square. Let X,,Y, be the least positive solution to the equation. Then all positive
solutions are given by X,,Y, forn =1,2,3 -+, where X,, and Y, are the integers

defined by X, + Y,Vd = (X, + Y;Vd)".

Proof of Theorem 3.2.2

Proof. By Proposition 3.2.1 and the subsequent remark, we are considering nonneg-
ative solutions to the equation X? —20Y2 = 1. When Y = 0 we get u = 1, while
there is no solution when X = 0, so we may assume X,Y > 0.

All positive solutions are given by X,,Y, as stated in Lemma 3.2.3. For each

such n, define
up = 1+ 12Y2 + (XY, + 2Y2)Cy + (= X..Y, +2Y2)C, — 4Y2C,

It is easy to see that X = 9,Y = 2 is the least positive solution of X?2—-20Y2 = 1,

SO U} = V.
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Using our earlier remarks on inverses, we will be finished if we can show that
u, = u} for all n > 1. This we will do by induction, the case n = 1 being obvious.
k+1
1

Assume the result is true when n = k for some k£ > 1. Since u;"" is a central unit,

Proposition 3.2.1 tells us that we only need prove that the identity coefficient of u%*!
equals 1 + 12Y2,, and that the coefficient of C; in uf*! equals Xiqi Yier + 2Y2,,-

The identity coefficient of uf¥' = wju; is 49(1 + 12Y;?) + 12(26)( X« Yz + 2Y2) +
12(—10)(— XYz +2Y2) + 15(—16)(—4Y;?) = 49 + 432X, Y; + 1932Y;2. On the other
hand, Lemma 3.2.3 says that 1 + 12Y%, = 1 + 12(9Y; + 2X;)? = L + 12(81YZ +
36X Ye + 4(20Y2 + 1)) = 49 + 432X Y; + 1932V, as desired.

The coefficient of C; in u¥*! equals 49( X, V;+2Y?) +26(1 4 12Y2) +5(26)( X, Vi +
2Y2)426(— X Ye+2Y2)+(—10)(Xe Ye+2Y2)+H(—10)(— X Yi+2Y2)+5(—10)( —4Y,2)+
5(—16)(— X Yr + 2Y2) + 5(—16)(—4Y;?) = 26 + 233X, Yi + 1042Y;2. Lemma 3.2.3
says that Xep: Yesr +2Y2,, = (9Xi+40Yi)(2X, +9Y;) +2(2Xe +9Y;)? = 26(20Y2 +
1) +233 X Y: + 522Y;2 = 26 + 233 X Y + 1042Y7, and this completes the proof. [

82



Chapter 4

Hypercentral Units in the Integral
Group Ring of a Periodic Group

4.1 Introduction

Let G be a finite group and U; = U,(ZG) be the group of units of augmentation 1 of
its integral group ring ZG. Arora, Hales and Passi studied hypercentral units in (3]
Their main result is that the central height of ¢ is at most 2, i.e. Z,(U;) = Z5(U,),

where

{1} = Zo(lh) < Zy(Uh) € - € Z,(Uy) < - --

denotes the upper central series of U;. The finiteness of the exponent of Z,(G) is
the key to their proof ( see [3], Proposition 2.3 ). However, this finiteness no longer
holds for the integral group ring of a periodic group. In this chapter , we use a
different approach to extend their result to the integral group ring of any periodic

group. In section 4.3, we establish the relationship between hypercentral units and

generalized unitary units.
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4.2 Main Results

Let G be an arbitrary group and let

{I}=2U) S Z(U) < --- < Zn(U) < ---

be the upper central series of the unit group U(ZG). Let Z(U) = Uz, Z.(U).
Then Z(U) is a normal subgroup of & and is called the hypercentre of &. Let G be
a periodic group and let T = T(Z(U)) denote the set of all torsion units in Z(U)
having augmentation 1. Since T' = (Joo, T(Z.(U)), and T, = {*ul|u € T(Z,(U))} is
a characteristic subgroup of Z,(U) for each n, it follows that T is a periodic normal
subgroup of U(ZG).

Now the results of Bovdi [8, 9] apply to give the following:

Theorem 4.2.1. Let G be a periodic group. Then ezactly one of the following
occurs:

(1) G is a Hamiltonian 2-group and T =G ;

(2) T = Z,(G);

(3) G has an Abelian normal subgroup H of index 2 containing an element a of
order 4 such that for each g € G\H,g* = a® and ghg™ = h~! for all h € H, and
T =<a>@ E = Z,(U)(\ Z2(G) where E is an elementary Abelian 2-group.

Recalling Theorem 12.5.4 in Hall [20], we have the following:

Remark 4.2.2. In case (1) of Theorem 4.2.1, G = Q @ E where Q is the quater-

nion group of order 8 and E is an elementary Abelian 2-group. Furthermore,

U(ZG) = +G.
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Now we give a proof of Theorem 4.2.1.

Proof. By Bovdi ([8], Theorem 1), T € G and if T is non-Abelian, then T is a
Hamiltonian 2-group and T « G. In this case, as a result of Bovdi ([9], Theorem
3), G = T(G) is also a Hamiltonian 2-group. Since for a Hamiltonian 2-group,
U(ZG) = £G and G = Z,(G), this gives G = T. It follows that possibility (1)
occurs whenever T is non-Abelian.

Next suppose that T is Abelian and T C Z,(G). Since Z;(G) CT(Z,(U)) C T,
we have T = Z,(G). Consequently (2) occurs.

Now suppose that T is Abelian and T € Z;(G). By Bovdi ([9], Theorem 11),
G must be of type (3), but not a Hamiltouian 2-group (since T is assumed to be
Abelian ). In this case, < a > is a normal subgroup of U(ZG), (see [9], proof of
Theorem 11) and hence for any v € U(ZG),u"'eu = a or a® (since o(u~'au) =
o(a) = 4 ). Therefore, [u,a] €< a® >C C(U). It follows that a € Z,(U) and hence
a € T. Since T is Abelian and for any g ¢ H,[a,g] # 1, we conclude g ¢ T.
Therefore we have a quaternion subgroup of order 8, Qs =< a,g >, such that
Qs T =< a >. As a result of Bovdi ([9], Theorem 10(3)), T =< a > G FE as in
case (3). Because £ C Z,(G), T = Z,(G) () Z2(U)-

For completeness, we include a proof that < a > is a normal subgroup of U(ZG),
where G =< H,b > is as in case (3).

Let z € U(ZG), z = z\ + z2b where z;,z2 € ZH. Then azz” = a[z\z] + T,z +
£1z2(1 +a?)b] = zz"a since b~'zb = z~ for any z € ZH. Further, (z~'az)(z laz)" =

1

z7laz(z"a*(z")"!) = z~'zz"ae*(z*)"' = 1. Consequently, z7'ax = g € G and

o(g) = 4. If g &€ H, then g = hb for some h € H. It follows from az = zg, that
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az| + azzb = (z| + 226)g = z,hb + z,h 'a®. Therefore az; = zA 'a® and an
augmentation argument gives aug(z;) = aug(z,). Observing that +1 = aug(z) =
aug(z,) + aug(z2) = 2aug(z,), we have a contradiction. Hence ¢ € H and ¢ = a?.
We claim that g €< ¢ > and therefore we are done. Otherwise, suppose g €< a >.
Then e = (1 + a + a? +a®)(1 — g)(# 0) is an element in the center of the group ring
ZG (since eh = he for all h € H and be = a(1 —g~')b = a(l —g%9)b = a(l —a%g)b =
a(l — g)b = eb). It follows that —~e = ge = z™'aze = zlaexr = z~'ex = e. Hence

e =0, which again leads to a contradiction. O
Corollary 4.2.3. Let G be a periodic group. Then T < Z,(G).

Corollary 4.2.4. Let G be a periodic group. If u is a nontrivial torsion unit, then
u ¢ Z(U(ZG)).

We first prove the following lemma which is needed for proving the main Theorem

4.2.6.
Lemma 4.2.5. Let G be any periodic group. Then Zo(U(ZG)) C Nyze)(G)-

Proof. Let v € Z;(U(ZG)), and g € G. Then [v,g] = vgv~lg~! = c € Z,(U(ZG)) =
C(U(ZG)). 1t follows that o(cg) = o(vgv~') < oo, and therefore ¢ is of finite order.
In view of Sehgal ([57], p.46), we conclude that ¢ is a trivial unit. Consequently,
vgu~! = ¢g € G and this leads to the desired result. O

If H and K are subsets of a group G, then we denote by [H, K] the subgroup of
G generated by the commutors [h,k] = hkh™'k~!, h € H, k € K. Now we prove
the main result of this chapter ~ the central height of the unit group of an integral

group ring of a periodic group is at most 2.
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Theorem 4.2.6. Let G be a periodic group. Then Zs(U(ZG)) = Z,(U(ZG)).

Proof. First we prove that [Z,(U(Z@Q)),U(ZG)] C Z\(G). (4.2.1)
Note that Z,(U(ZG))/Z,(U(ZG)) is periodic since

Z;(U(ZG))[Z:(U(ZG)) € Niaa)(G) Z\(U(ZG)) S GZi(U(ZG))/Z:(U(ZG))

by Lemma 4.2.5 and Sehgal ([58], Proposition 9.5). It follows that for any u, €
Z(U(ZG)), there exists a positive integer n(u;) such that (u,)"*2) € Z,(U(ZG)).

1 -1

! =¢s0 uuy'u! = uj'le,

Now for any u € U(ZG), we have that [u,, u] = wpuu;'u
where c is a central unit. By taking the n(u;)th power of both sides of the above
identity, we obtain that wu; ¥yt = u;™“I a2 This forces ¢*#2) = | since
u;(“z) is a central unit and therefore, ¢ € Z,(G) by Sehgal([57], p.46). Finally, we
conclude that [Z2(U(ZG)),U(ZG)] € Z,(G).

Next we prove that Z2 ,(U(ZG)) C Z,(U(ZG)) for all n > 1. (4.2.2)

We first prove that ZZ(U(ZG)) C Z,(U(ZG)) by contradiction. Assume that
Z3(U(ZG)) € Z,(U(ZG)). Since ZZ(U(ZG)) C Njyz6)(G) € GZ,(U(ZG)) as seen
earlier, there exists a group element g € Z,(U(ZG))\Z,(U(ZG)). Let u € U(ZG).
Then [u,g9] = go € Zi(G). Therefore, there exists a positive integer n = n(u)
such that u"gu™™ = g. It follows from Theorem 1.2 of Parmenter [46] that the
exponent of Z;(G) is 2. Therefore, for all u; € Z;(U(ZG)) and all ¢ € G, we
have [u2, '] = [uz,¢']*> = (g5)° = 1. This means that u? is a central unit, forcing
Z3(U(ZG)) € Z\(U(ZG)). This contradiction finishes the proof.

The proof continues by induction. We just proved that the result is true for

n = 1. Assume that the result is also true for n = &k — 1 > 1. Now consider the

case where n = k. Let u € U(ZG) and uryy € Zi41(U(ZG)). Then [upsr,u] =ur €
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Z(U(ZG)). It in turn yields that [u ,,u] = [uksr, uefu? € Zeo (U(ZG)) by the
inductive assumption, and therefore we conclude u},, € Z¢(U(ZG)). We are done.

Moreover, in view of the fact that for any uz € Z3(U(ZG)), v € U(ZG), [ua, u]* =
[ua, [us, u]] " [u3,u] € Z,(G) by (4.2.1) and (4.2.2), we conclude that

[Z:(U(2G)),U(ZG)] C T. (4.23)

Now we are ready to prove our main result: Z3(U(ZG)) = Z,(U(ZG)).

According to Theorem 4.2.1, we need to deal with the following three cases.

(a) Suppose that G is a Hamiltonian 2-group. Then U(ZG) = £G = £T =
Z,(U(ZG)) and we are done.

(b) Suppose that T is a central subgroup of #(ZG). Then T = Z,(G) . The
result follows immediately from (4.2.3).

(c) Suppose that T is abelian but not a central subgroup. Then G =< H,g >
is a group of the type (3) in Theorem 4.2.1 and therefore, T =< a > @G FE =
Zy(U(ZG)) (Y Z2(G). In this case, we first observe that Z,(G) = {z € G | z* = 1}
and the exponent of T is 4.

Next we prove the following result:

[Zs(U(ZG)), Bo] = 1. (4.2.4)

We first show that [Z;(U(ZG)),B;] = 1. Let u; € Z;(U(ZG)) and up, =
1+(1 - b)ai) be a bicyclic unit. Then [up,us,] = co € Z1(G) by (4.2.1). Therefore,
there exists a positive integer n such that [uz,us.|* = c§ = 1. It in turns yields that

[uz, uf,] = 1 since [uz,ul,] = [uz, s olusa [uz,upy Juss = [z, usalfu, v, '] (since
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[uz,up7'] € Z1(G) by (4.2.1)) = [uz,upa] [u2,us.]""" ( by inductive assumption)
= [uz,upq)"- Observing that uy, = 1+ n(1 — b)ab, we obtain that [z, upe] = 1
and this leads to the desired result. Next let us € Z3(U(ZG)) and b be a bicyclic
unit. Then [u3,b] € T by (4.2.3), and hence [u3,b]" = 1 for some positive inte-
ger n. Note that [us, "] = [uz, " 1)6" L[uz, b]b~C""Y = [us, 6" |[b™", [us, b]][us, b]
and, [b"~!,[ua,b]] = 1 since [u3,b] € Z2(U(ZG)). We conclude, by induction, that
[ua,6"] = [us, 6" [us, 8] = [u3,b]* '[us,b] = [us,b]* = 1. Therefore, [u3,b] = 1 as
seen before and we are done.

Now we claim that

[Z3(U(ZG)),G) C< a* > . (4.2.5)

Let z € Z3(U(ZG)). For any group element h € H for which h~'gh €< g >,
we observe that A~'gh = ¢' and o(g) = o(g'), forcing ¢ = 1 or 3. Also noticing
that h~'g = gh, we obtain that g' = gh?; therefore, either h? = 1 or (ah)? = |
(since a? = g?). It follows that either k or ah is in Z;(G). Since < a > is a normal

subgroup of U(ZG) (see proof of Theorem 4.2.1), we have (for & = 1 or 3)

[z,ah] = za(hz'h")a™! = zhz~'h"'a*a™" = [z, h]a* for some j.

Hence [z,h] €< a® >. On the other hand, suppose h € H and h~'gh g< g >.
Then we have a nontrivial bicyclic unit ugs = 1 +(1—g)h(1 +g+¢° +¢°). It follows
from (4.2.4), that

(1-~9h(l+9+¢*+6%) =31 —gh(l + g+ g* +¢°)z.
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Note that z'gz and z7'hz are in G by (4.2.3), but h~'gh €< g >. After
expanding the above identity, we observe that all the group elements on the left hand

side( respectively, on the right hand side) are different. Therefore, we conclude, by

augmentation arguments that

h(l+g+¢*+¢°)=z"'h(1 +g+g* +g%z. (4.2.6)

Consequently, z7'hz € h < g > which in turn shows that {h~!,z"1] € (9 T =

(a?) by (4.2.3) and Theorem 4.2.1(3). Thus [z~ A] =A[h~',z7 |~ € (a®). There-
fore, by setting y = z~!, we obtain that [y, h] €< a? > for any y € Z3(U(ZG)).

Note that, since G is not a Hamiltonian group, there must exist a group element

h € H such that A~'gh ¢< g >. Consequently, (4.2.6) yields that

(l+g+g°+4°) = (h7'z7 hz)z ' (1+9+9% +9°)z
= a¥z7 (l+g+g" +9')z
= z7'¥(l+g+4¢" +9')z

= 7 (l+g+¢*+4°)z

Thus g = z7'gz or g = z7!¢%z and hence [z,g] €< g >=< a® >. Thus (4.2.5)
is proved and hence [Z2(U(ZG)),G] = 1. It follows that

ZHU(ZG)) C Zo(U(ZG)). (4.2.7)
Suppose that there exists z € Z3(U(ZG))\Z(U(ZG)). Then, for some u €
U(ZG),[z,u] =t € T is an element of order 4. Mapping t into Z(G/G"), we obtain
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that £ = [Z,4] = 1 since Z(G/G') is a commutative group ring. Thus ¢ — | €
A(G')ZG. This implies t € G', the derived group of G. It is not hard to check
that, in this case, G' = {h%lh € H}. Note that [z,kh] €< a® >C C(U) for all
h € H by (4.2.5), so [z, h}> = 1. If follows that [z,t] = [z, h*](for some h € H) =
[z,h]h[z,hlh~" = [z,h]? = 1. Hence [z%,u] = z[z,u]z"'[z,u] = [z,t]t? = 2 # L
However, in view of (4.2.7), we have [z2,u] = 1, a contradiction. Thus we must have

Z{U(ZG)) = Z3(U(ZG)) always. O
We note that the next result follows immediately from (4.2.1).

Corollary 4.2.7. Let G be a periodic group. If Z,(G) = 1, then Z,(U(ZG)) =
Z,(U(ZG)) = Z(U(ZG)).

Corollary 4.2.8. Let G be a periodic group. If all central units are trivial, then all

hypercentral units are trivial too.

Proof. Let u € Z(U(ZG)). Then u € Ny(G) by Lemma 4.2.5 and Theorem 4.2.6.
It follows from Sehgal ([58], Proposition 9.4) that uu® = g € Z;(G) . Now Lemma

2.2.5 says uu™ = 1 and therefore, u is trivial. We are done. a

By recalling Theorem 3.1.1 of Ritter and Sehgal giving necessary and sufficient
conditions for all central units to be trivial when G is finite, we obtain the following

necessary and sufficient conditions for all hypercentral units to be trivial.

Corollary 4.2.9. Let G be a finite group. All hypercentral units of ZG are trivial if
and only if for every x € G and every natural number j relatively prime to o(g), =’

is conjugate to r or z7'.
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4.3 The Relationship Between Hypercentral Units
and Generalized Unitary Units

Recall that in Chapter 2, generalized unitary units were defined in terms of central
units. In this section, we first introduce, in terms of hypercentral units of U(ZG),
an equivalent definition of generalized umnitary units of an integral group ring ZG
when G is a periodic group. Then we discuss the relationship between hypercentral
units and generalized unitary units. Moreover, we obtain necessary and sufficient
conditions for U, ; = Z(U).

Let G be an arbitrary group , f be an orientation homomorphism, and

H = {u € U(ZG) |uu! € Z,(U(ZG))}.
Then we have the following:

Proposition 4.3.1. Let G be an arbitrary group and f be an orientation homomor-
phism. Then U, ; € H C Ny(U, ). In particular, if G is a periodic group, then
H =U, ;(ZG).

Proof. We need to prove only the second inclusion, i.e. H C Ny(U, ;). Let h € H
and © € U, ;. Then hh! € Zp(U) and uu/ = c € CU) = Z\(U), so w/ = cu™'. Let
v = h~'uh. We conclude that A~ fvv/hf = h~/h~uhhfuf = (hh)'u(hhf)cu™! =
[(RRY)t,u] c € C(U). It follows that vv/ € C(U). This means that v € U, ; and
therefore, h € Ny(U, ;). When G is periodic, Theorem 2.2.4 says that H = U, . O

Let

H, = {u e U(ZG) | v/ € ZU(ZG))}.
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Recalling Theorem 4.2.6, we obtain another equivalent definition of the gener-
alized unitary units of an integral group ring ZG when G is a periodic group as

follows:
Corollary 4.3.2. Let G be a periodic group. Then H, = U, ((ZG).
Since Z(U(ZG))} C H,, we obtain the following:

Corollary 4.3.3. Let G be a periodic group and f be any orientation homomor-
phism. Then Z(U(ZG)) C U, 1(ZG). In particular, Z(U(ZG)) C Nuza)(G)-

The question of when equality holds in Corollary 4.3.3 is settled by the following:

Theorem 4.3.4. Let G be a periodic group and f be an orientation homomorphism.
Then the following are equivalent:

(1)ZU(ZG)) = Uy y;

(2)G=T;

(3) G is either a Hamiltonian 2-group or a torsion Abelian group;

(4)Z(U(ZG)) = U(ZG).

Proof. (1) == (2). Since U, (ZG) = Z(U(ZG)), we have G C Z(U(ZG)). There-
fore, G = T by Corollary 4.2.3.

(2) =% (3). If G(=T) is nonabelian, then we are in case (1) of Theorem 4.2.1.

(3) => (4). If G is a Hamiltonian 2-group, then U(ZG) = £G = Z(U(ZG). If
G is abelian, then U(ZG) = C(U(ZG)) = Z(U(ZG)).

(4) = (1). The result follows immediately from Corollary 4.3.3.
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Note that in both cases of (3) of Theorem 4.3.4, U(ZG) = U, ;(ZG) and we

obtain the following:

Corollary 4.3.5. Let G be a periodic group. If U(ZG) # U, ;,(ZG) for some ori-
entation homomorphism f,, then there exists u € U, s, such that u & Z(U(ZG)),
i.e. Z(U(ZG)) C U, ;,(ZG)- Furthermore, for all orientation homomorphisms f,
Z(U(ZG)) C U, (ZG). In particular, ZU(ZG)) C Nuze)(G)-

Remark 4.3.6. [t is possible that U(ZG) # U, 5, (ZG) for some f,, but U(ZG) =
Uy.1,(ZG) for another f,.

For example, let us take G = Dg =< a,bla* =b%> =1; bab=a"" >.

(1) We first consider the trivial orientation homomorphism. Let u be a central
unit. Then u € U(Z < a >) by Bovdi and Sehgal [15], so u is a trivial unit by
Higman’s Theorem. Therefore, Ny(zp,)(Ds) = +Ds # U(ZDs).

(2) Now we take f: Dg — +1, such that f(a) =1 and f(b) = —1. Theorem
2.2.18 (1) implies that U(ZDg) = U, ;(ZDs).
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Chapter 5

The N-Centre of the Unit Group
of an Integral Group Ring

5.1 Introduction

Let n be an integer. Two elements z,y in a group G n-commute if

(zy)* = z"y" and (yz)* = y"z",

see Baer [5]. A group is n-abelian if any two elements n-commute. In [6], Baer
introduced the n-centre Z(G,n) of a group G as the set of those elements which n-
commute with every element in the group. Later Kappe and Newell [33] proved that
(az)"* = a™z" for all z € G implies (za)™ = z"¢" for all z € G, and vice versa. Thus
only one of the n-commutativity conditions suffices to define the n-centre Z(G,n).

The n-centre, which can readily be seen to be a characteristic subgroup, shares
many properties with the centre, some of which already have been explored in Baer
[5]. For example, if the central quotient of a group is (locally) cyclic, then the group
is abelian. Similarly, it follows by Corollary 1 in Baer [6] that a group is n-abelian
if the quotient modulo its n-centre is (locally) cyclic. In [33], Kappe and Newell
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shed further light on these similarities by investigating various characterizations and
embedding properties of the n-centre. They characterized the n-centre as the margin
of the n-commutator word (zy)*y "z™™, and their result yields some interesting
connections with a conjecture of Hall on margins.

In this chapter, we investigate the n-centre of the unit group of an integral group
ring ZG for a periodic group G. It is well known that the 2-centre of a group is equal
to its centre. It turns out that the 3-centre of the unit group of an integral group
ring of a periodic group also coincides with the centre of that unit group (Theorem
5.2.2). Our main result is to give a complete characterization of the n-centre of the
unit group U(ZG) for any integer n. We prove that this n-centre (for all n > 2)
coincides with either the centre C(U(ZG)) of the unit group or the second centre
Z2(U(ZG)) of the unit group (Theorem 5.3.6). In view of Theorem 3.1 in [4], we
obtain that the n-centre (for all n > 2) is either the centre C(U(ZG)) or the product

of the centre and torsion hypercentral units, CT', when G is a finite group.

5.2 Basic Results and Notations

We first introduce some basic definitions and notations. Then we recall some fun-
damental results which will be needed later in this chapter. Other notations follow
Kappe and Newell [33].

Let

5,(G,n) = {a € G| (az)* = a"z" Vz € G}

and
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S2(G,n) = {a € G| (za)" = z"a"Vz € G}

Baer first defined the n-centre in [5] as

Z(G,n) = §1(G,n)[] S2(G,n).
However, Kappe and Newell proved that S;(G,n) = S3(G, n) ([33], Theorem 2.1).

Thus only one of the n-commutativity conditions suffices to define the n-centre.

The following proposition collects various facts about the elements in the n-

centre. Note that Z(G,1) = Z(G,0) =G.

Propaosition 5.2.1. (38, Lemma 2.2} Let a € Z(G,n). Then

(1) [a™'z"] =1 for all z € G;

(2) a € Z(G,1 — n)( Therefore always Z(G,n) = Z(G,1 ~n));

(3) [a™, z]| = [a,z]* = [a,z"] for all z € G;

(4) 1 = [a,z"(~™] = [a®Y), 2] = [a, z]*(*"™) = [a™, z'"] for all z € G;
(5) a® € Z(G,n — 1).

It can be easily seen by the definition that the 2-centre of a group coincides with
its centre. Even a better result can be obtained when we investigate the 3-centre
of the unit group U(ZG) of an integral group ring of a periodic group G. We will
show that the 3-centre Z(U(ZG),3) of the unit group also coincides with its centre
C(U(ZG))( sometimes denoted by Z,(U(ZG)). In the next section, a characterization
of Z(U(ZG),n) will be obtained for all n.

Theorem 5.2.2. Let G be a periodic group. Then

ZU(ZG),3) = ZU(ZG),2) = CU(ZG))
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The following proposition due to Kappe and Newell is needed in the proof of
Theorem 5.2.2.

Proposition 5.2.3. ([33], Theorem 4.3) Let G be a group. Then
Z(G,3) = {a € R2(G)|a® € C(G)} and Z(G,3) € Z5(G)

Here Z,(G) is the m-th centre of G and R,(G) = {a € Gl|lam z] = lVz € G}

denotes the set of right m- Engel elements, where

[Zm Y] = [[Tm-1 y],y] and [z,0 y] = [z, 9]
Now we are ready to prove Theorem 5.2.2.

Proof. Recall that Z(U(ZG),3) € Z3(U(ZG)) by Proposition 5.2.3 and also that
Z3(U(ZG)) = Z,(U(ZG)) and ZZ(U(ZG)) € C(U(ZG)) by Theorem 4.2.6 and
(4.2.2). It follows that for all u € Z(U(ZG),3),u* € C(U(ZG)). Also note that
u® € C(U(ZG)) by Proposition 5.2.3. Thus u € C(U(ZG)) and ZU(ZG),3) C
C(U(ZG)). We are done. O

5.3 The Characterization of the N-Centre of the
Unit Group of an Integral Group Ring

In this section, we investigate the n-centre of the unit group of an integral group
ring for n > 4. We first characterize periodic @*-groups as precisely those periodic
groups which contain a noncentral element lying in the 4-centre of U(ZG). Then we
turn our attention to studying the set of all torsion units in Z(U(ZG),n). Our main
result is Theorem 5.3.6, which gives a complete characterization of the n-centre of

the unit group of an integral group ring for any periodic group.
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A group G is said to be a Q*-group if G has an Abelian normal subgroup A
of index 2 which has an element a of order 4 such that for all A € A and all
g € G\A,g* = a® and g~ 'hg = h~'. We note that finite Q*-groups have played a
significant role in work by Arora and Passi [4] (see also[3]), where they are character-
ized as precisely those groups G with the property that U;(ZG) is of central height 2.
Such groups also appear in a paper by Williamson [59], who showed that @~ groups
are exactly those groups containing a noncentral element a which has finitely many
conjugates in U(ZG). Recently, Parmenter [46] showed that a weaker conjugation
condition also characterizes these groups. For our purpose, we characterize these

groups by means of the 4-centre of the unit group.

Theorem 5.3.1. Let G be a periodic group. Then the following are equivalent:
(1) G is a Q"-group;
(2) G contains a noncentral element a such that a € Z(U(ZG),4);

(3) G contains a noncentral element a such that a € Z(U(ZG),n) for some n > 4.

To prove Theorem 5.3.1, we need the following results. The first one is proved

by Parmenter in [46] (Theorem 1.2).

Proposition 5.3.2. Let G be a periodic group. Then the following are equivalent:
(1) G contains a noncentral element a with the property that given any unit u in
U(ZG), there ezists a positive integer n = n(u) such that u™au™" belongs to G.

(2) G is a Q-group.

The following proposition establishes a relationship between the 4-centre and the

second centre of the unit group of an integral group ring.
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Proposition 5.3.3. Let G be a periodic group. Then Z,(U(ZG)) C Z(U(ZG),4).

Proof. Let u € Z,(U(ZG)) and v € U(ZG). Then we have [u,v] € C(U(ZG)) (*)
and u? € Z}(U(ZG)) C C(U(ZG)) (**) by the proof of Theorem 4.2.6 and (4.2.2).

It follows that

[, v]? = [u, v]u(vue™"'v™ ) = ufu, vj(vulv™!) = out = 1.

Therefore,

uvuy = vou" v vuPe = [u, vjplu? since u? € C(U(ZQ)).

Consequently,

(uv)* = (vvuv)(uvuv) = ([u, vjv?u?)([u, v]v*e?) = [u,v]*utv* = u'vt.
This leads to u € Z(U(ZG), 4) and we are done. O
Now we are ready to prove Theorem 5.3.1.

Proof. (1) = (2) If G is a Q*-group, then G has an Abelian subgroup A of index
2 which has an element @ of order 4 such that forallh € Aand allge G\ A,¢* =
a’ and g~'hg = h~'. We claim that a is a noncentral element and belongs to
Z,(U(ZG)). Therefore, Proposition 5.3.3 implies that (2) is true.

It is obvious that a is noncentral. To see that ¢ € Z,(U(ZG)), let us recall
Theorem 2.2.18 (1) which guarantees that U(ZG) = U, ; where G = (A,b) and
f : G — *1 is the orientation homomorphism such that Ker(f) = Aand f(b) = —1.
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It follows that for any u = @; + azb,u/ = a} — a;a®b and u™! = ufc where c is a

central unit. Now we have

[a,u] = (aua™')u"" = (a; + a,a®b)(a] — aza%b)c = (a,a] — aa5a?)c € C(U(ZG))

Hence a € Z;(U(ZG)) and we are done.
(2)== (3)- Immediate.
(3)= (1) Suppose g € Z(U(ZG),n) \ C(U(ZG)). For u € U(ZG), Proposition

5.2.1(4) says that

[g’ un(l—n)] = [g’ u]n(l—n) - [g"(l_"),u] =1

Hence u**~gu—("-1) = g € G for all u € U(ZG) and Proposition 5.3.2 gives
the desired result. O

We can now obtain a different version of Proposition 5.3.2.

Corollary 5.3.4. Let G be a periodic group. Then the following are equivalent:

(1) G is a Q*-group;

(2) G contains a noncentral element a such that for any unit u € U(ZG),u*au™" = a.

Proof. We need to verify only (1) = (2). By Theorem 5.3.1, G contains a noncen-
tral element a such that a € Z(U(ZG), 4). It follows that for u € U(ZG), Proposition
5.2.1 (3) implies that

[a,u?] = [a,u]* = [a*,u] =1
for a* € Z(U(ZG),3) = C(U(ZG)) by Proposition 5.2.1(5) and Theorem 5.2.2.
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Hence u*eu™* = a € G for all u € U(ZG) O

Now we turn to characterizing the n-centre of the unit group. We first study the

set of all torsion elements of the n-centre.

Theorem 5.3.5. Let G be a periodic group and T, = T(Z(U(ZG),n)) = {z €
Z(U(ZG),n)| = is of finite order and aug(z) = 1}. Then for alln > 2,
(1) T, is a characteristic subgroup of Z(U(ZG),n). Moreover,

T. = ZU(ZG),n) ()G,

(2) If u € ZU(ZG),n), then [u,v] € T, for all v € U(ZG),
(3) ZU(ZG),n) C Nugc)(G) and ZXU(ZG),n) S T.CUZG)),

(4) T € T(Z2(U(ZG))). Moreover, Ty = T(Zy(U(ZG))),

(5) ZWU(ZG),n) C Zo(U(ZG)). Moreover, Z(U(ZG),4) = Z,(U(ZG)).

Proof. (1) Referring to Theorem 5.2.2, we need to consider only the situation for
n > 4 because central units of finite order are trivial (Sehgal [57], p46, Corollary
1.7). Note that if a € T,, then always a™' € T, since o(a™!) = ofa) < oo and
a”! € Z(IU(ZG),n). To prove T, is a subgroup, we only need to show that if
a,be T,, then ab € T,, i.e. o(ab) < co. We will do it by using induction.

Let n =4 and a, b € Ty. Suppose that o(a) ={,0(b) = m. Thus

(ab)i™ = (a%b*)'™ = a¥™b™ = 1( since a*,b* € Z(U(ZG),3) = C(U(ZQ))).

Therefore, ab € Ty. Consequently, Ty is a subgroup.
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Suppose that for n =k > 3,T% is a subgroup of Z(U(ZG), k).

Now consider that n = k + 1. For a,b € Tiy; € Z(U(ZG),k + 1), observe that
(ab)*+! = a**'6F+!. Since a*t!, b5+ € Z(U(ZG),k) by Proposition 5.2.1 (5) and
both have finite order, we conclude a*+!, 65! € Ti. It follows from the inductive
assumption on T that a**'6**! € T;. As a consequence, o((ab)**!) = o(a*+'bF!) <
00, so o(ab) < co. This means that Ti,, forms a subgroup. We have proved that
T, is a subgroup of Z(U(ZG),n) for every integer n > 2.

It can be easily seen that the subgroup 7, is a characteristic subgroup. Hence,
since Z(U(ZG),n) is a normal subgroup of the unit group U(ZG) so is T,. It follows
from Bovdi [9] that T, <« G. Therefore, T, = Z(U(ZG),n)G.

(2) Let u € Z(U(ZG),n) and v € U(ZG). Since Z(U(ZG),n) is a normal
subgroup of U(ZG), we observe that vu~'v™! € Z(U(ZG),n); therefore, [u,v] =
wvu~ v~ € Z(U(ZG),n). Moreover

[u, ]* V) = (fu,v]*'="H)~t = 1 by Proposition 5.2.1 (4) .

Hence, [u,v] € T, as desired.

(3) The first statement follows directly from (1) and (2). Observing that
Z*(U(ZG),n) C Njjzc)(G) € GC(U(ZG))(Sehgal [58], Propasition 9.5),

we easily obtain Z*(U(ZG),n) C T.C(U(ZG)).

(4) Suppose that for some n > 2 there exists a € T, such that a ¢ T(Z,(U(ZG))),
thus a is a noncentral group element. According to Theorem 5.3.1, G is a Q™-group.
Next we show that this a is a special element of order 4 in G, as given in the

definition of @Q*- groups. Observing the proof of Proposition 5.3.2, we find that if
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g € G, then either

(i){a,g) is Abelian

or

(ii) {a,9) = @s, the group of quaternions.

Setting A = Cg(a) € G and g ¢ A, we obtain that (a,g) = Qg, thus a®> = g%
(Since a is not central, such a g ¢ A does exist). It follows that ¢ has order 4.
For any h € A, g ¢ A, we have hg ¢ A. Therefore, {(a,hg) = Q- It follows
that g> = @ = hghg, and so ghg™' = h~'(*). We also note that if £ ¢ A, then
gag' = a! = kak™!. It follows that ag~'k = g~'ka and g~k € Cg(a) = A,
and so A is of index 2 in G. Condition (*) tells us that A is Abelian; therefore the
element a is a special element as we claimed. However we showed in the proof of
Theorem 5.3.1 that a € T(Z;(U(ZG))). This contradiction leads to the first result.
Moreover, recalling Proposition 5.3.3 which gives T(Z,(U(ZG))) C Ty, we obtain
that T(Z(U(ZG))) = Ts-

(5) Let v € Z(U(ZG),n) and v € U(ZG). Then [u,v] € T, by (2); there-
fore, [u,v] € T(Z2(U(ZG))) by (4). It follows that u € Z3(U(ZG)) and therefore,
Z(U(ZG)),n) € Z3(U(ZG)). Since Z3 = Zp(Theorem 4.2.6), we conclude that
Z(U(ZG),n) C Z,(U(ZG)). In particular, Z(U(ZG),4) € Z;(U(ZG)). Now Propo-
sition 5.3.3 finishes the proof. O

Now we give a complete characterization of the n-centre of the unit group.

Theorem 5.3.6. Let G be a periodic group. Then

ZU(ZG),n) = Z,(U(ZG)) forn=4kordk+1,k > 1

U(ZG) forn=0o0rl
CU(ZG)) forn=4k+2o0rdk+3,k>0
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Proof. The first equality is obvious.
Now we prove that Z,(U(ZG)) C Z(U(ZG),4k) and Z,(U(ZG)) C Z(U(ZG), 4k+
1) for all £ > 1. Combined with Theorem 5.3.5(5), we have done the second part.
Let v € Z,(U(ZG)) and v € U(ZG). Then u € Z(U(ZG),4) by Proposition
5.3.3, and therefore u* € C(U(ZG)) by Proposition 5.2.1 (5) and Theorem 5.2.2. It

follows that

(uv)4k — ((uv)4)k — (u4v4)k = u4kv4k’
This forces u € Z(U(ZG), 4k), thus Z,(U(ZG)) C Z(U(ZG),4k).
Similarly,

(uv)4k+l — (u,v)(uv)'tk — uvu4kv4k — u4k+lv4k+l

This means that Z,(U(ZG)) C Z(U(ZG), 4k + 1).

Next suppose that n = 4k + 2 or 4k + 3, kK > 1. First let us consider n =
4k + 2. Note that Z(U(ZG),4k + 2) & Z, by Theorem 5.3.5 (5) and therefore,
Z(U(ZG),4k +2) C Z(U(ZG),4k) (" Z(U(ZG),4k + 1) by the above. Recall that if
an element is contained in 3 consecutive n-centres, then it must be a central element
(see Kappe and Newell [33]). We are done. For completeness, we include a proof.
Let a € Z(U(ZG),4k + 2) N Z(U(ZG), 4k + 1) Z(U(ZG),4k) and v € U(ZG).
Then
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e —

N rten

( au )4k+2 - a4k+2 u4k+2

(au)%-{-z = (au)-lk-l-l(au) — a4k+lu4k+l (au)

(au)4k+2 — (au)‘“‘(au)z = a4ku4k(au)2
Combining the first two equations, we obtain

au“k“ — u4k+1 a

Combining the last two equations, we arrive at

au“‘ = u‘"‘a

Now we conclude au = ua and a € C(U(ZG)).

Similar arguments work for the case of n = 4k + 3. 0

In view of Arora and Passi ([4], Theorem 3.1), we obtain the following corollary:

Corollary 5.3.7. Let G be a finite group. Then

U(ZQ) forn=0or1l
ZU(ZG),n) = { T(Z:(U))CU(ZG)) forn=4kordk+1,k > 1
CU(ZR)) forn =4k +2 or 4k +3,k >0
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