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Abstract 

Along with the success of Synthetic Aperture Radar (SAR) imaging systems 

and the large amount of data which they routinely produce, SAR image 

compression has begun to attract the attention of researchers seeking solu­

tions for efficient image transmission and storage. In this thesis, two key 

characteristics of SAR images~ namely their speckle noise and varied image 

contents are addressed. We develop a selective soft-thresholding method and 

a multi-rate compression scheme to compress SA.R images more efficiently, 

using the wavelet transform to accomplish both the noise smoothing and 

image compression tasks. 

\Ve initially approach the SAR image compression problem by studying 

the effects of SAR image characteristics using standard compression tech­

niques, such as Joint Photographic Expert Group (JPEG) method, the Effi­

cient Pyramidal Image Coder (EPIC) and the Embedded Zerotree Wavelet 

(EZW) coder. We find that speckle noise tends to break the inter-pixel corre­

lation in SAR images and thus has negative effects on compression. In order 

to compress SAR images more efficiently, we need to smooth speckle noise 
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and to enhance inter-pixel correlation prior to image compression. To this 

end, we develop a selective soft-thresholding method which refines Donoho ·s 

overall soft-thresholding method. The proposed method makes use of the 

correlation structure of wavelet coefficients to select edge coefficients in the 

wavelet domain and then protects them from soft-thresholding. Test results 

show that this method can smooth speckle noise and preserve edges and 

hence enable more efficient compression . 

.1-\.nother issue in SAR image compression is concerned with the varied 

scene contents within large-size SAR images. We propose a multi-rate com­

pression scheme on top of the EZW algorithm. This scheme partitions an 

image into several regions in the wavelet domain. Each region is assigned a 

different bit budget according to the relative importance of the information 

each region contains. A highlighted region can be encoded with higher accu­

racy and only the major structures in the background regions transmitted. 

This scheme, when combined with the selective soft-thresholding method. can 

provide better visual quality for the highlighted regions; major structures in 

the background can be easily picked up while finer details and speckle noise 

corrupted coefficients are eliminated at low hit-per-pixel rates. 

This work demonstrates applications of the wavelet transform in SA.R 

image processing and compression. Many issues for future work are also 

recommended. 
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Chapter 1 

Introduction 

1.1 General 

Image compression is important for the storage and transmission of Synthetic 

Aperture Radar (SAR) images. The success of the operating SAR systems. 

such as the Seasat-A SAR~ the Shuttle Imaging Radar (SIR-A and SIR-B) 

missions, together with the recent launch of the Canadian Radarsat satellite. 

and numerous airborne SAR systems, has stimulated considerable interests in 

both airborne and space-borne SAR as a remote sensing tool. However. the 

large amount of data collection planned for current and future SAR missions 

poses a severe problem for existing data handling, archiving, and distribution 

systems. Thus, there is a necessity of SAR image compression for effective 

storage and transmission of these images. 

To alleviate the conflict between the increasing demands of SAR data 

transmission and a need for viable high rate data transmission channels, 

many techniques have been proposed to meet the anticipated data flow re-
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quirements. Compression of image data could reduce the data volume and 

significantly decrease both the transmission and archive costs. and thus pro­

vides a solution to this problem. 

1.2 Motivation 

The goal of this thesis is to study how SAR images can be efficiently com­

pressed for data storage and transmission purposes. SAR images can be 

used in a myriad of earth observation applications covering areas in global 

en\ironment monitoring, mapping, charting, and land use planning. There 

is also the area of natural resource management, including forestry! agricul­

ture, water quality monitoring and wildlife habitat management. With such 

a diverse set of applications comes a wide variety of system requirements: 

the challenge of including SAR image compression in a system is to preserve 

sufficient information content of the imagery, while providing compression 

ratios large enough to allow high data transmission rates and archival ratios. 

Various image data compression algorithms have been proposed exploit­

ing the spatial and/ or spectral correlation existing in images which achieve 

the compression goal by decorrelation. But these algorithms are less suitable 

for use with the images of coherent image systems, such as SAR, due to the 

special characteristics of these images, since most of these algorithms only 

work successfully for noise-free images. 

Although the nature and characteristics of SA.R images have been well 
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studied~ the problem of compressing SAR images has not been studied in 

depth by many researchers. Moreover. the effect ofSAR image characteristics 

on SAR image compression has not been explicitly investigated. 

1.3 Problem definition 

In order to attain good compression results for SAR images! SAR image 

data characteristics must be taken into account. This thesis will address the 

effects of two key characteristics of SAR images, namely their speckle noise 

and their wide dynamic range, on SAR image compression. 

Speckle noise contamination of SAR images is an important data char­

acteristic that needs to be considered in SAR image compression. Speckle 

is an inherent phenomenon in coherent imaging systems [21]. As we will see 

later in Chapter 4, speckle noise not only obscures image scene contents. but 

also reduces image compression performance by weakening or breaking the 

inter-pixel correlation. Consequently, in order to compress SAR images more 

efficiently, it is desirable to reduce speckle noise prior to compression. 

Another consideration in designing SAR image compression algorithms is 

that SAR images are usually of large size; as such these different regions may 

exhibit a variety of information content which are of differing levels of interest 

for different users. Therefore, a multiresolution or multirate compression 

scheme may be preferred in these situations. Certain user-defined regions 

could be compressed with significant image detail while other regions may 
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be represented more frugally, simply providing basic background information. 

This scheme can make full use of available transmission resources and reduce 

response time as well. 

In this research, a two-step approach to SAR image compression is taken. 

First, the effect of speckle noise on image compression is investigated. :\. 

wavelet domain speckle noise reduction algorithm is then proposed to produce 

less noisy SAR images which are more compressible. Second, a multi-rate 

compression scheme is implemented to cope with the wide dynamic range of 

SAR images and to enhance progressive transmission capability. 

1.4 Approach to the solution 

The goal of compression of SAR images can be achieved by two approaches: 

• lossless compression: no information is lost due to compression, 1.e .. 

the recovered image is identical to the original image; 

• lossy compression: some information is lost due to compression, i.e., 

the image can only be recovered with some degradation. 

Many SAR image compression algorithms are designed for lossless com­

pression (43, 51]. However, as we will discuss later, for typical SAR images, 

lossless compression algorithms usually achieve compression ratios no greater 

than 3:1 (40]. The maximum compression ratio is bounded by the instrument 

noise introduced during image generation. While this compression ratio is 
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tolerable for data storage. it is far from sufficient for transmission purposes. 

Lossy algorithms are more likely to be required for higher compression. 

Some researchers have adopted algorithms successfully used for optical im­

ages to compress SAR images (10, 36J. But these algorithms perform less 

effectively for SAR image compression. ··v·ie conclude that this is because of 

the peculiar characteristics possessed by SAR images. In order to cope with 

these characteristics, especially the speckle noise phenomena, two different 

approaches can be followed: 

• direct approach: compress speckled SAR images directly; 

• indirect approach: compress pre-processed SAR images. 

The direct approach operates on S . .\R images without any prior processing 

such as edge enhancement or speckle smoothing. These direct compression 

methods must be deliberately designed to account for the effects of speckle 

noise. Since speckle noise tends to weaken the inter-pixel correlation in SAR 

images, effective compression methods need to re-build the inter-pixel cor­

relation by reference to a model of speckle and its statistical distribution. 

No compression algorithm belonging to this category has been reported in 

the literature to date. In fact, we are convinced that if such a method were 

to succeed in re-building the inter-pixel correlation, it would also be a good 

speckle filter itself. 

The indirect approach, on the other hand, operates by compressing pre­

processed images. These pre-processed images, which may be the results 
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of speckle smoothing, are easier to compress as we will demonstrate in this 

thesis. Or they may be pre-segmented according to intensity. texture or scene 

contents. The purpose of this pre-processing is to assist in dealing with the 

large size of SAR images and the variety of SA.R image contents. The major 

disadvantage of methods following this approach is the computational cost 

for the pre-processing operations. But we consider the indirect approach to 

be practical because: 

• Speckle reduction is usually required before many other image analysis 

operations; 

• Nlany speckle filters have been designed which can be used; 

• There are many successful image compression algorithms available for 

optical or noise-free images. 

Thus~ the indirect compression approach will be a combination of the 

pre-processing of SAR images, such as speckle smoothing, and a conventional 

compression algorithm with some SAR-specific modifications. We will follow 

this approach in this thesis. 

Speckle noise reduction is usually performed in the spatial domain. In 

this thesis, we attempt to smooth speckle noise in the wavelet domain. The 

frequently-used multiplicative speckle model is assumed. After a logarithmic 

operation, speckle noise is converted into additive noise which remains un­

correlated in the wavelet domain. Because intra-correlation exists between 
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neighbor coefficients at the same scale and inter-band correlation between 

coefficients in adjacent scales, we can make use of this short term correlation 

to distinguish edge coefficients from noise coefficients. Thus wavelet coeffi­

cient soft-thresholding can be performed on noise coefficients in such a \vay 

that the speckle noise is removed while major structures are preserved. 

In addition, a multirate SAR image compression scheme is implemented 

based on the embedded zerotree wavelet coding algorithm [44] to facilitate 

efficient transmission of large SAR images with user-emphasized regions. The 

selection of these regions and the setting of appropriate parameters for each 

of these regions is beyond the scope of this thesis. Here we assume these 

regions have already been specified. Using wavelet domain image partition. 

the highlighted regions are encoded with high bit rates to retain adequate 

image details, and only large structures are selected from the other regions 

and are encoded with low bit rates to provide background information. The 

various data streams which correspond to different regions are recombined 

at the receiver and used to provide the viewer with a multiresolution SAR 

1m age. 

In this thesis, we utilize the wavelet transform to accomplish the noise 

reduction and image compression tasks. A hi-orthogonal wavelet transform 

transform is used throughout this thesis. 
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1.5 Outline of thesis 

This thesis is organized into 8 chapters. The literature review spans two chap­

ters. Chapter 2 is the first part of the literature review, mainly addressing 

several topics related to SAR imaging systems, including the SA.R imaging 

mechanism, speckle models and spatial domain speckle filters. Chapter 3 is 

the second part of literature review, covering the fundamental theory of the 

wavelet transform and its applications in image compression and processing, 

including the embedded zerotree wavelet coefficient compression algorithm 

and the wavelet coefficient soft-thresholding method. A brief review of the 

available image compression algorithms for remotely sensed images is also 

provided in this chapter. In Chapter 4. SAR image compression using con­

ventional algorithms is evaluated and the effect of speckle noise on SAR 

image compression is studied. A speckle noise reduction method using selec­

tive wavelet coefficient soft-thresholding is presented in Chapter 5, together 

with test results on simulated speckled images. Chapter 6 describes the im­

plementation of the modified multirate EZW algorithm on a trial basis. The 

results of Chapter 5 and Chapter 6 are corroborated in Chapter 7 by test 

results of both methods on real airborne SAR images together with discus­

sion of the methods and results. The speckle smoothing performance of the 

proposed method, the effect of speckle smoothing on image compression and 

the effectiveness of the multirate compression scheme are evaluated using 

both quantitative and qualitative measures. Finally, conclusions and recom-
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mendations for future work are given in Chapter 8. 
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Chapter 2 

Synthetic Aperture Radar 
Images and Speckle Filters 

2.1 Introduction 

As the first part of the literature review, this chapter reviews several topics 

related to Synthetic Aperture Radar (SAR) imaging systems. the nature and 

characteristics of speckle noise, and speckle filters. SAR is an active imaging 

system widely used in remote sensing applications. SAR systems are char-

acterized by their high image resolution and all-weather operating ability~ 

but SAR images also suffer from the notorious speckle noise, a chaotic phe­

nomenon that results from coherent imaging [21]. Speckle noise can obscure 

scene content and strongly reduce capabilities for object detection and recog­

nition. In addition, as we will see later, speckle noise is also an obstacle to 

image compression. Thus speckle smoothing is usually the first step in SAR 

image processing. This chapter briefly describes the multiplicative speckle 

model and several speckle filters based on this model. 
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2.2 Fundamental Theory of Synthetic Aper­
ture Radar (SAR) 

2.2.1 What is SAR 

A radar system illuminates an area with microwave pulses and records the 

strength and travel-time of the returned signals. This allows the distance (or 

range) of the reflecting objects to be determined. As in an optical instrument. 

the resolution of such a system is affected by the size of the aperture: a 

larger aperture gives a finer resolution. However, the aperture size can not 

be increased beyond some practical limits. Therefore, we should search for 

other solutions in order to generate high resolution images. 

A synthetic aperture radar (SAR) is a coherent system in that it retains 

both the phase and magnitude of the backscattered echo signal. It can be 

attached to a moving platform, either a satellite or an aircraft. As the radar 

moves, pulses are transmitted at a fixed repetition rate. the return echoes 

pass through the receiver and are recorded in an 'echo store'. Because the 

radar is moving relative to the ground, the returned echoes are Doppler­

shifted (negatively as the radar approaches a target; positively as it moves 

away). Comparing the Doppler-shifted frequencies to a reference frequency 

allows many returned signals to be "focused'' on a single point, effectively 

increasing the length of the antenna that is imaging that particular point. 

This is typically performed digitally in a ground computer by compensating 

for the quadratic phase characteristic associated with what is effectively near 
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field imaging by the long synthetic array. The net effect is that the SAR 

system is capable of achieving a resolution independent of the sensor altitude. 

This characteristic makes the SAR an extremely valuable instrument for 

space observation. For a more comprehensive explanation of the theory of 

SAR systems, the reader is directed to [13, 53). 

2.2.2 Characteristics of SAR Systems and SAR Appli­
cations 

Synthetic aperture radar is now a mature technology used to generate radar 

images in which fine detail can be resolved. Besides high image resolution. 

SARs provide unique capabilities as an imaging tool. Because they provide 

their own illumination (the radar pulses}, they can image at any time of day 

or night, regardless of optical illumination. And because the radar wave­

lengths are much longer than those of visible or infra-red light. SAR.s can 

also "see" through cloudy and dusty conditions that visible and infra-red 

instruments cannot. 

The disadvantage of SARis the high noise to signal ratio- typically 1:1 as 

compared to 1:1000 for optical images[56]. This speckle noise is an intrinsic 

part of any image formation process which uses coherent imaging. It implies 

that standard techniques for processing optical data may not work when 

applied to SAR images. 

SAR is an increasingly important technique for remote sensing. The radar 

can by carried on an aircraft or a satellite achieving resolutions of up to 3m 
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per pixel from aircraft and 10m per pixel from space [53]. This is easily good 

enough to monitor large scale features like changes in agriculture or forestry. 

or ice in the oceans. A.s a result! SA.R has become an important tool for 

geophysical monitoring. Applications of SAR include classification of land 

use, crop monitoring, tropical deforestation monitoringr ice floe detection or 

tracking, oil slick detection, and other change detection tasks. 

2.3 Speckle Properties and Speckle Models 

2.3.1 Speckle Formation 

\Vhen a radar illuminates a surface that is rough on the scale of a radar 

wavelength, the return signal consists of waves reflected from many elemen­

tary scatterers within a resolution celL The distance between the elementary 

scatterers and the receiver vary due to the surface roughness. Therefore! the 

received waves, although coherent in frequency, are no longer coherent in 

phase. If the waves add relatively constructively, a strong signal is received: 

otherwise a weak signal may be received due to destructive combination of 

out of phase waves. A SAR image is formed by coherently processing the 

returns from successive radar pulses. The result is pixel to pixel variation 

in intensity, and this variation manifests itself as a granular pattern, called 

speckle (see a typical example of a SAR image in Fig. 2.1). We see that a 

zone that is homogeneous on the ground can have a granular aspect in a SAR 

image with large variation in pixel intensities; moreover in heterogeneous re-
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Figure 2.1: A typical SAR image. 

gions of such an image, speckle noise can obscure image details by randomly 

modifying the pixel intensities. These effects may prohibit the abilities of 

human or computer vision systems to extract information from SAR images. 

Thus although speckle noise carries information about the microstructure 

of an imaged area, speckle is usually treated as noise in image processing 

applications. 

2.3.2 Speckle Statistics for One-look and Multi-look 
SAR Images 

A common approach to speckle reduction is to average several independent 

looks of the image. In SAR practice, this is accomplished by dividing the 

synthetic aperture length (or equivalently, the Doppler frequency spectrum} 

into N segments. Each segment is processed independently to form either an 

intensity or an amplitude SAR image, and the N images are summed together 

to generate an N -look SAR image. The averaging process corresponds to 
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the averaging of 1V independent samples. The .N' -look processing reduces the 

standard deviation of speckle. For intensity SAR images. the reduction factor 

is ~ while for amplitude SAR images. the reduction factor is 1V. However. 

this is accomplished at the expense of resolution which deteriorates by a 

factor of N in each spatial dimension. 

SAR images formed without averaging are called one-look or single-look 

images. The Rayleigh speckle model serves as a good model for one-look am­

plitude SAR images (47]. For N-look amplitude SAR images, however. the 

speckle has a x distribution with 2N degrees of freedom. Most commonly. 

four-look amplitude images are generated. In this case, the speckle has a 

much narrower distribution than the one-look amplitude Rayleigh distribu­

tion. 

2.3.3 Speckle Models 

The multiplicative nature of speckle noise has been verified by scatter plots of 

sample standard deviation versus sample mean produced in many homoge­

neous areas in SAR images (26]. Thus the multiplicative speckle noise model 

is mostly adopted in many SAR image processing algorithms: 

y(i, j) = x(i, j) · n(i, j) (2.1) 

where y(i, j) is the (i,j)th intensity or amplitude of a SAR image pixel, x(i,j) 

is the noise-free quantity at ( i, j) and n( i, j) is the speckle noise characterized 

by a distribution with a unity mean (E[nJ = 1) and a standard deviation av. 
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It can be easily verified that in featureless image regions, 

Jvar(y) 
av = E[y] (2.2) 

is relatively constant as E[y] changes. In other words, av is the ratio of the 

variance to the mean. av can be used as a measure of speckle strength. 

Tur et al [46] argued against the validity of the multiplicative model of 

speckle noise, and proposed a model that takes into account the correlation 

of the speckle: 

y(i,j) = [x(i,j) · n(i,j)] * h(i,j) (2.3) 

where h( i, j) is the point spread function of a SAR system and * denotes 

the convolution operation. Some filters have been developed based on this 

multiplicative-convolutional modeL But many speckle filters are designed 

using the simple multiplicative modeL It should be mentioned that the mul­

tiplicative speckle model breaks down in the presence of some image features 

such as a point scatterer, lines, comer features, etc. But this simple model 

covers most images most of the time. 

2.4 Speckle Noise Filters 

Since speckle noise contaminates image content and thus detracts from image 

interpretation, speckle noise reduction is usually employed prior to further 

image analysis. The primary goal of speckle filtering is to reduce speckle 

noise without sacrificing information content. The ideal speckle filter should 
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adaptively smooth speckle noise, retain edges and features. and also preserve 

subtle but distinguishable details, such as thin linear features and point tar­

gets. Various speckle filters have been devised. However none of them can 

satisfy all of the requirements, and moreover, it is also difficult to deter­

mine which one is the best filter for speckle reduction due to their different 

processing purposes and their different capacities in handling different image 

content. Therefore, in this part we will not rank these filters according to the 

criteria which may favor some certain filters. We will only briefly describe 

some of the most popular techniques in order to give the reader an in trod uc­

tion to the different perspectives in this area. More detailed descriptions of 

these filters are best found in the specific references. 

The mean filter 

The mean filter is a simple averaging filter that replaces a center pixel of 

a sliding window by the mean value of the pixels in its neighbour window. 

This filter has a good noise smoothing capability. but this indiscriminate 

averaging causes a resolution loss, i.e, blurring in the vicinity of sharp edges. 

The median filter 

With a median filter and its variations the central pixel of a sliding window is 

replaced by the median intensity of all pixels within this window. Although 

this simple filter is effective in removing impulse or short duration noise, it is 

not well suited to speckle noise. Blurring of edges, erasing thin linear features 
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and object shape distortion are the common problems of this filter [37}. 

The Lee Multiplicative Filter 

The Lee multiplicative filter[25] is designed to overcome the difficulties of 

indiscriminate averaging of the mean filter, and is based on the multiplicative 

speckle model, adopted and verified by Lee, 

y(i,j) = x(i,j) · n{i,j) 

Lee assumed that the mean and variance of the noise-free original image r 

can be estimated from local mean and local variance of the observed image 

y. Thus, 

y(i,j) = x(i,j) ··n(i,j) 

var(x) = var(y )(i, j) +. jj~(i, j) 
a; + ii2 (z, J) 

(2.4} 

(2.5) 

where ii and var(y)(i,j) are approximated by the sliding window mean and 

variance, respectively, with the assumption that n = L E((.X - x) 2J can be 

minimized to yield the estimated noise free image x, i.e., 

x(i,j) = x(i,j) + k(i,j)[y(i,j)- x(i,j)J (2.6) 

where 

k(i .) = var(x)(i, j) 
,J x(i,j)a~ + var(x)(i,j) 

(2.7) 

This implies that in homogeneous areas, the local variance is close to 0, 

thus the filtered pixel is set to the average of pixels in the window. For 
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high contrast regions or edge areas where the local variance is usually larger. 

the pixel value is unchanged in order to preserve the feature. Although 

the assumption that ii(i, j) = 1 is made in this algorithm, this restriction 

is not severe since any other value of ft can be factored into the equation 

above. The value of a v can be supplied by the user based on prior knowledge 

of the image or can be estimated from the image directly using Equ. 2.2. 

The Lee multiplicative filter can effectively reduce speckle in homogeneous 

areas. However, a common characteristic of this filter is that the noise in 

the edge areas in not smoothed. This problem is reported to be eliminated 

by using an edge directed refined filter also proposed by Lee [27]. There 

have been many variations to this filter reported in literature with different 

degrees of improvements (5, 23, 24, 31]. As the Lee multiplicative filter is the 

most famous speckle filter, we will compare the performance of the proposed 

wavelet domain filter with this filter, using appropriate chosen parameters. 

The Sigma filter 

The Sigma filter[28J is based on the sigma probability of a Gaussian distribu­

tion. It filters the image noise by averaging only those pixels within the two 

standrad deviation (2a-) range of the center pixel within a sliding window. 

Pixels outside the two sigma range are considered as outliers and ignored. 

Thus, the estimated pixel intensity x( i, j) can be expressed as 

1 n+i m+j 

x(i, j) = N. L E &(k, l) . y(k, l) 
e k=i-n l=i-m 

(2.8) 
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where y(i~i) is the noise degraded image intensity. 1Ve is the total number of 

pixels summed, and o(k, l) is defined as 

o(k.l) = { 1 if y(k~ ~) is within 2cr of y( i, j) 
· 0 othe~se 

(2.9) 

Consequently, high contrast features are preserved. However~ dark spot noise 

is not removed from the SAR image. This is due to the relatively small 

variation range associated with dark pixels corrupted by speckle noise. and 

as a result no filtering action is taken for such pixels. 

The Frost filter 

Frost et al [17] proposed a spatial domain adaptive Wiener filter using a 

(n x n) sliding window. Like the Lee !viultiplicative filter and the Sigma 

filter, it is also based on the multiplicative model. The Frost filter assumes 

that the useful information has an e.xponential autocorrelation function, i.e .. 

that the image is stationary in a significant neighborhood of the filtered pLxel. 

In this case, the estimate of the image can be obtained by 

i{i,j) = y(i,j) * f(i,j) (2.10) 

where /(i, j) denotes the impulse response of the filter, and can be repre­

sented by 

(2.11) 
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where k is a normalizing constant, of is the decay constant which depends 

on the local statistics of the image 

(2.12) 

where x, cr; are the local mean and local standard deviation of the image. u; 
is the noise standard deviation, and L is the number of looks used in forming 

this image. Therefore, the pixel value at ( i, j) is replaced by a weighted 

sum of the sliding window centered on this pixel with weights exponentially 

decreasing with the distance. In addition, the relative weights are controlled 

according to the window homogeneity. In uniform regions (small variance) or 

brighter regions (high mean), the speckle noise may appear more prominent. 

and hence the weights are more evenly distributed than they are in darker 

or heterogeneous regions. Compared with the Lee multiplicative filter. the 

Frost filter does more averaging in the edge areas. thus the noise in the edge 

areas is less prominent than with the Lee multiplicative filter, but the edges 

are somewhat blurred. 

Other Filters Other spatial domain speckle filters include the geometri-

cal filter [12], the morphological filter [41), the 2-D block Kalman filter (6] 

and the rational filter [38]. There are other approaches to speckle noise re­

duction. Some researchers tried the wavelet transform domain median filter 

and reported good results[8]. Another group used oversampled wavelet rep­

resentations of SAR images to detect edge pixels and smooth noise [18]. The 
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research at Rice University is quite active in this area; Odegard et al reported 

the wavelet coefficient soft-thresholding approach to speckle suppression[36}. 

This approach will be detailed in the next chapter. 

Summary 

In this chapter, we have reviewed topics concerning SAR imaging systems 

and speckle noise. Speckle corruption is an important characteristic of SAR 

images and must be taken into account in SAR image processing and appli­

cations. In subsequent chapters of the thesis, we will present a new speckle 

smoothing method to enhance the compressibility of SAR images. The pro­

posed method is based on the simplified multiplicative speckle model. Test 

results obtained from the proposed filter, compared with those of the Lee 

multiplicative filter~ are found in Chapter 5 and Chapter 7. 
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Chapter 3 

Wavelet Transform and 
Applications 

The wavelet transform is emerging as an important mathematical represen­

tation. It is the combination of a nice theoretical foundation and many 

promising applications. It has particular abilities in handling non-stationary 

signals by offering good localization in both the spatial and frequency do­

mains. The wavelet transform can find applications in many areas. In this 

thesis. we use it as an image processing and compression tool to accomplish 

noise smoothing and image compression tasks simultaneously. 

In this chapter, we repeat some basic theory of wavelets~ as required for 

further use in this thesis. vVe begin with one-dimensional signals for nota­

tional simplicity, and then extend our discussion to two-dimensional image 

signals realized in a separable way. For a more comprehensive overview, the 

reader is referred to [14, 32, 48]. As the second part of literature review, this 

chapter also outlines several image compression algorithms, especially those 
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reported for SA.R image compression. 

3.1 Introduction to Wavelet Transform 

Wavelets are functions of a real variable generated from one single function. 

the mother wavelet 1./J by dilations and translations. 

(3.1) 

where a and bare parameters of dilation and translation, respectively. Here. 

we assume x E R is a one-dimensional variable. The mother wavelet tL· has 

to satisfy the following admissibility condition. 

roo jlll(w )12 

loo lwl dw < 00 (3.2) 

where w denotes the Fourier transform of 1/;. ~1oreover! if w has sufficient 

decay, then Equ.(3.2) is equivalent to 

r+OG 
l-oc w(x)dx = 0 (3.3) 

which means that the wavelet 1p exhibits at least a few oscillations. There 

is a large choice of possible functions 1/;, such as the Meyer wavelets, the 

Battle-Lemarie wavelets. the Haar wavelets and the Daubechies wavelets 

[14]. These wavelets can be chosen for different applications. Among these. 

the Daubechies wavelets are especially useful for signal/image processing 

purposes because wavelets belonging to this category have finite support and 

thus they can be implemented using finite impulse response filters. 
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The idea of the wavelet transform is to represent any arbitrary function 

f as a superposition of wavelets. This function f can then be decomposed at 

different scales or resolution levels. One way to achieve such a decomposition 

involves writing f as an integral of Wa.b over the parameters a and b using 

appropriate weighting coefficients. In practice, however, it is preferable to 

express f as a discrete sum rather than as an integral. The coefficients a and 

bare thus discretized such that: a= aef and b = nb0a(f with m, n E Z where 

a0 > 1, b0 > 0 are fixed. The wavelet is then defined as follows: 

(3.-l) 

and the wavelet decomposition off becomes 

J = 2: Cm,n (J )1/Jm,n (3.5) 
m.n 

where Cm,n (f) is given by 

Cm,n =< J, 1/Jm,n > (3.6) 

Depending on the scaling parameter a, the wavelet function Wm,n dilates 

or contracts in time, causing the corresponding contraction or dilation in the 

frequency domain. For large, positive values of m (a > 1), the Wm,n function 

is highly dilated and hence large values for the translation step b are well 

adapted to this dilation. This corresponds to low frequency or narrow-band 

wavelets. For large negative values of m (a< 1), the 1/Jm,n function is highly 

concentrated and the translation step b should take small values. These 
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functions correspond to high frequency or \\ide-band wavelets. Therefore. 

the wavelet transform achieves a -flexible- time-frequency resolution .. -\s a 

result. wavelets are better suited for representing both short bursts of high 

frequency and long duration slowly varying signals. 

3.2 Wavelet Transform and Multiresolution 

The concept of multiresolution analysis introduced by S. ~Iallat [32} is a 

mathematical tool particularly well adapted to the use of wavelet bases in 

image analysis. 

\Ve first focus on the algorithm for one-dimensional signals. In addition to 

the wavelet function w. another function (J). which is called a scaling function. 

is introduced. This([) is in fact a low-pass filter that complements the wavelet 

functions in representing a signal at the same scale. For notational simplicity. 

the wavelet coefficients Cm.n (/) will be \\Tit ten as Cm ( n) since we are working 

with sampled signal sm(n). 

Let s0 (n) E l 2 (Z) be a sampled signal to be decomposed into several 

resolution levels corresponding to different spatial-frequency bands. Let h(n) 

and g(n) be associated with the wavelet and scaling function by 

d>(t) = 2 L h(n)¢>(2t- n) (3.7) 
n 

tb(t) = 2 L g(n)ti>(2t- n} (3.8) 
n 
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where h( n) and g( n) satisfy 

l:h(n)=Vi 
n 

Lg(n) = 0 
n 

and are related by 

g(n) = ( -1)nh(-n + 1) 

Thus, this decomposition can be achieved using 

sm(n) = L h(2n- k)sm_r(k) 
lc 

emCn) = L9(2n- k)sm-1 Ck) 
lc 

(3.9) 

(3.10) 

(3.11} 

(3.12} 

(3.13) 

Since h(n) and g(n) are associated with an orthogonal wavelet basis. they 

ensure the exact reconstruction of the signal Sm-t ( n). The reconstruction 

formula is as follows: 

Sm-l (k) = L h(2n- k)sm(n) + L g(2n- k)em(n) (3.1-l) 
n n 

The signal sm(n) is an approximation of signal S171 _ 1(n) at resolution 2-m. 

The wavelet coefficients Cm ( n) represent the information lost when going 

from an approximation of the signal s with resolution 2-m+l to a coarser 

approximation of s with a resolution 2m. According to Shannon's theorem, 

these signals can be undersam pled by a factor 2. 

The implementation of multiresolution analysis involves decomposing a 

signal so(n) into two "subsignals" s1(n) and c1(n). This operation can be 
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Figure 3.1: Dyadic wavelet transform of a signals 

repeated on signal s1 (n) and so on up to resolution 2-J(Fig. 3.1). In this case. 

the signal set c1 U c2 U c3 U ... U c; U ci Us i provides a loss less representation of 

s0 , and hence enables the exact reconstruction of this signal. This orthogonal 

multiresolution analysis is characteristized by a resolution factor of 2 between 

two consecutive scale levels, and is thus called dyadic multiresolution analysis. 

In the above discussion, we used an orthogonal wavelet basis. However. 

such a basis is impractical in image processing because the associated filters 

have nonlinear phase. Since there is no orthogonal linear phase FIR filters en­

abling exact reconstruction, the orthonormality constraint has to be rela.xed 

by using biorthogonal bases [11]. It is worth noting that the development of 

the biorthogonal wavelet theory is of key interest for image coding because it 

enables the definition of different filter banks for analysis and synthesis. As in 

the orthonormal case, we associate the wavelet basis function and the scaling 

function with the filter bank h(n) and g(n). But we need two other filters 

h(n) and g(n) to deal with the biorthogonal basis. The following relationship 
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must hold between them: 

and 

g(n) = (-l)"h(-n + 1) 

g(n) = ( -1)"h( -n + 1) 

n 

(3.15) 

(3.16) 

(3.17) 

The decomposition (analysis) algorithm and the reconstruction (synthesis) 

algorithm have the same structure as the orthonormal case. The decompo­

sition algorithm is unchanged, and the reconstruction is expressed as 

Sm-t(k) = L h(2n- k)sm(n) + L9(2n- k)em(n) (3.18) 
n n 

B H 
v D H 

H 
v D 

v D 

Figure 3.2: Schematic illustration of a three level wavelet decomposition of 
an image. 

The above discussion can be easily extended to handle two-dimensional 

image signals. In practice, images to be processed are sampled signals. We 
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(a) (b) 

Figure 3.3: Three level wavelet decomposition of an image. (a) Original 
balloon image. (b) Three level decomposition of (a). 

call the original image at resolution 2°. s0 (nx, ny). Computation of the image 

sm(nz. ny) at lower resolution 2-rn and determination of the wavelet coeffi­

cients ~ ( nx, ny) which are interpreted as three inter-scale images can be 

achieved by convolution operations using separable two-dimensional filters. 

Filtering is applied independently on the image rows and columns. For a 

given resolution level lv!. the original image can be represented as a set of 

3JJ + 1 subimages (Fig. 3.2 and Fig. 3.3) 

(3.19) 

and this set of subimages is the dyadic two-dimensional wavelet represen­

tation of the original image. Because of subsampling, the total number of 

pixels of this set of subimages is the same as the initial image. This separa­

ble multiresolution analysis method enables us to distinguish the horizontal 
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(~), vertical (c:;J and diagonal (~) features of the image. 

3.3 Image Compression Using Wavelet Trans­
forms 

3.3.1 Overview 

The concentration of image energy is one characteristic of the wavelet trans­

form. The distribution of the wavelet coefficients can be well approximated 

by the Gamma function which is highly peaked at zero. This implies that 

the values of many coefficients are close to zero, and thus enables an image 

to be represented by only a few significant coefficients. Another important 

property is that the wavelet transform decomposes an image into different 

resolutions. Therefore, different bit allocation schemes can be applied to 

these coefficients according to their relative importance in image representa­

tion or possibly to the response of the human vision system. 

The application of wavelet transforms in image compression has been 

well investigated. Various algorithms have been proposed to cope with dif­

ferent image compression problems. These algorithms differ in the following 

perspectives: 

• quantization strategy: Scalar quantization and vector quantization 

are two general categories of quantization. Scalar quantization per­

forms quantization on each individual coefficient, while vector quan­

tization processes a group of coefficients at the same time. Usually 
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vector quantization can achieve higher information compaction at the 

expense of algorithm complexity and computational cost at the en­

coder. Scalar quantization is often exploited in wavelet based compres­

sion algorithms. The Efficient Pyramid Image Coder (EPIC) outlined 

later in this section uses scalar quantization. Another algorithm which 

is also outlined later. the Embedded Zerotree Wavelet (EZW) coding 

algorithm, uses an implicit scalar quantization scheme. 

• entropy coding method: Run length coding and Huffman coding 

are usually exploited to encode the quantized coefficients. Arithmetic 

coding is another entropy coding approach which can achieve better 

compression, but the algorithm itself is more complicated. 

• choice of filter banks: Antonini et al [4] suggested that the regular­

ity or differentiability, which describes how many times a wavelet can 

be differentiable! is an important measure and recommended using a 

filter bank with higher regularity in designing compression algorithms. 

But further studies by Villasenor et al [49] suggested that regularity is 

not the only measure of the filter banks, nor to say the best measure. 

They found that the most common and objectionable artifact in recon­

structed images is ringing near sharply defined features. To suppress 

ringing effect, filters with favorable peak to sidelobe ratio or with low 

undershoot of the second oscillation are preferred. They evaluate over 

4300 candidate filter banks, and concluded the Daubechies 9/7 wavelet 
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is "good overall". This conclusion is coincidently identical with that ob­

tained from regularity measure consideration; moreover this filter bank 

has been intuitively selected in many image compression algorithms. 

In the remainder of this section, two wavelet based compression algo­

rithms are outlined, namely the Efficient Pyramidal Image Coder (EPIC) 

and the Embedded Zetotree Wavelet Coder (EZW). Their performance on 

SAR image compression will be evaluated in Chapter 4. The EZW algorithm 

is also adopted in the multi-rate compression scheme presented in Chapter 

6. 

3.3.2 Efficient Pyramid Image Coder (EPIC) 

The EPIC [2] is an experimental image data compression algorithm designed 

by Edward H Adelson and Eero P Simoncelli. The compression algorithm 

is based on a hi-orthogonal critically-sampled dyadic wavelet decomposition 

and a combined run-length/Huffman entropy coder. The filters have been 

designed to allow extremely fast decoding on conventional (i.e. non-floating 

point) hardware, at the expense of slower encoding and a slight degradation 

in compression quality (as compared to a good orthogonal wavelet decompo­

sition). Because a wavelet transform is used instead of the Discrete Cosine 

Transform (DCT), blocking effects are alleviated. 

As an experimental compression algorithm, quantization bin sizes in this 

algorithm are chosen to be the same for each subband, and a very simple 
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scalar entropy coding scheme is adopted to compress the quantized subbands. 

After the quantization. run length coding is employed to encode the quan-

tized wavelet coefficients. Coefficients with continuous zero quantization 

value along the scan line are grouped together and the length of the zero 

runs can be encoded efficiently. The position and the value of the nonzero 

coefficients are encoded with more bits. 

3.3.3 Embedded Zerotree Wavelet Coefficient Compres­
sion Algorithm 

The EZW is another wavelet based compression algorithm designed by J. 

Shapiro [44]. In this algorithm, every coefficient (a parent) in a given scale 

except the finest scale is associated with a set of coefficients (children) at 

finer scales of a similar orientation. Shapiro assumed that given a threshold. 

if a parent coefficient is below this threshold (insignificant)~ its children are 

very likely to be insignificant too. He then divided coefficients into signif-

icant, zerotree and isolated zerotree. Coefficients whose values are above a 

threshold are significant in their information content and therefore need to 

be encoded with high fidelity. If a parent is insignificant and all its children 

are insignificant too, this set of coefficients is called a zerotree. If a parent is 

insignificant, but at least one of its children is significant, this set of coeffi­

cients is called an isolated zerotree. Because there can be a large percentage 

of coefficients which are "small" in the decomposition of an image, if the 

absence of significance can be well predicted, only the positions of zerotree 
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parents need to be encoded in order to represent the large amount of insignif­

icant coefficients: and hence more bit budget can be allotted to encode the 

significant and isolated zerotree coefficients. 

EZvV algorithms have some other features. In EZW, wavelet coefficients 

are re-ordered such that bigger coefficients are encoded first. This is to ensure 

that more important information is transmitted with higher priority. The 

detected significant wavelet coefficients are successively approximated with 

the most significant bit of these coefficients transmitted first followed by less 

significant bits. This provides a compact multi-precision representation of the 

significant coefficients and facilitates the embedded coding algorithm. The 

performance is further enhanced by using the adaptive arithmetic coding. 

S. Said and W.A. Pearlman improved the original EZW algorithm based 

on set partition [42] of wavelet coefficients. The improved algorithm has a 

similar structure as EZW, but has a slightly better performance. This algo­

rithm will be outlined in Chapter 6 and adopted in the multi-rate compression 

scheme. 

3.4 Image Processing in the Wavelet Domain 

3.4.1 Overview 

There are several reasons for using wavelet transforms for image processing 

purposes: 

• good spatial-frequency resolution; 
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• multiresolution notation; 

• link with digital filter banks: 

• fast implementation algorithms; 

• linear phase property for hi-orthogonal wavelet families. 

The multiresolution representation of a wavelet transform provides a nat­

ural way to approach adaptive processing. Unlike many spatial domain im­

age processing techniques which lack capabilities for treating large and small 

scale image content adaptively, the multiresolution property of the wavelet 

transform offers a means of handling both large and small scale image content 

separately and flexibly. The choice of sliding window size in many spatial 

domain median filters is a factor compromising noise reduction and structure 

preservation. In the wavelet transform domain, this issue can be handled with 

more flexibility. For example, a size-decreasing median filter in the wavelet 

domain has been designed by Boroczky et al [8}. At any level, because the 

noise energy of a certain decomposition level is decreased and the amount 

of structure information tends to increase relative to the previous level, they 

decreased the window size of the median filter accordingly and obtained good 

results. 

The basis functions used in the wavelet transform are locally supported. 

Thus, sharp transitions (i.e. edges) in images are non-zero only over a short 

duration in the wavelet domain, i.e., they do not propagate to other far-
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neighbor coefficients as they do in the Fourier transform. Therefore. the pro­

cessing of the coefficients can be performed locally without influencing other 

coefficients. This locally supported property also distinguishes the \vavelet 

transform from many spatial domain sliding window approaches which pro­

cess pixels on a group basis; hence the wavelet approaches can consequently 

avoid the blurring of edges. 

The wavelet transform has been used effectively in many image processing 

applications, such as image enhancement, texture classification or segmenta­

tion and object recognition. In the next part of this section, we briefly outline 

the wavelet coefficient soft-thresholding method which has found applications 

in noise reduction. 

3.4.2 Wavelet Coefficient Soft-thresholding Method 

Soft-thresholding was proposed by Donoho [16] as a nonlinear technique for 

reconstructing an unknown function from noisy data. It attempts to reject 

noise by damping or thresholding in the wavelet domain. 

Suppose we wish to recover an unknown finite length function x from 

noisy data y, i.e. 

i = O,l,···,JV- 1 (3.20) 

where Xi is the true signal, and ni is white Gaussian noise with variance a. 

Let x be the estimate of x. 
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Our goal is to optimize the mean-square error 

1 1 N-1 

- E llx- xll~ = u 2: E(:ii- xd 2 

iV iv i=O 
(3.21) 

subject to the side condition that with high probability, i is at least as 

smooth as x. The soft-thresholding method has three steps: 

1. A.pply the wavelet transform to the measured data Yi, obtaining the 

wavelet coefficients vi. 

2. Compute the threshold t = a.j2log(N). 

3. Apply soft-thresholding, 

Vi> t 
- t $Vi$ t 

Vi< t 

4. Apply the inverse wavelet transform. recovering i 1 , i = 0, 1, · --. 1.V- 1. 

A detailed description of this method can be found in [16]. 

It has been shown that this method has three distinct features: 1) The 

estimate x achieves almost the minmax mean square error over a wide range 

of smoothness classes, including many classes where traditional linear esti­

mators do not achieve; 2) This procedure maintains the sharp features of 

x (i.e., the edges in images), and therefore provides better visual quality 

than procedures based on mean-squared error alone; 3) The estimate does 

not exhibit any noise-induced structures, unlike most minimum mean square 

methods. 
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The only parameter in this method is the threshold. The universal thresh­

old t = aJ21og(N) was designed for the purpose for suppressing noise­

induced spikes which spoil the smoothness of reconstructions. However. if 

we only want to minimize the mean-square-error, we can choose other thresh-

olds. 

Applications of this technique have been reported in [19, 36] with promis­

ing results. However, while speckle noise is reduced by soft-thresholding, the 

indiscriminate processing of every wavelet coefficient usually modifies the in­

tensity of the edge pixels as well as the noisy ones in homogeneous regions 

and gives the filtered image a blurred and dimmed appearance. 

To overcome this problem, in Chapter 5 we make use of the intra- and 

inter-band correlation among wavelet coefficients to distinguish edge pixels 

from noise. Only those coefficients that are not classified as edge are pro­

cessed by soft-thresholding and thus the prominent edge pi.xels are better 

preserved. 

3.5 Image Compression Methods for Remote 
Sensing Images 

Recent years have seen a tremendous increase in the generation, transmission. 

and storage of remotely sensed images. Although much work has been done 

towards developing algorithms for compressing optical image data! techniques 

that exploit the special nature of SAR and other remote sensing images have 
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only started to emerge recently. In this section, image data compression 

techniques used in SAR and other remote sensing applications will be briefly 

reviewed. 

As mentioned previously! compression schemes can be broadly classified 

into two categories; lossy compression and lossless compression. Lossless 

compression may be required for data archiving and other situations where 

the pixel values are used to compute other indicators of interests such as 

vegetation index or in other applications where high detail is a requirement. 

Lossless compression techniques typically provide compression ratios of up 

to 2 or 3 (43]. Lossy compression is usually used for image dissemination 

purposes where larger amount of information loss may actually be preferable 

to reduce the transmission delay. winch larger compression ratios can be 

achieved by lossy compression of SAR images. 

3.5.1 Lossless Compression 

The goal of lossless image compression is to represent a given image with a 

minimum number of bits. This is generally achieved in two steps. First. sta­

tistical redundancy in the image is removed and a residue image is obtained. 

This is called decorrelation. In the second step, the residual image is encoded 

into a binary string using entropy coders. This is the coding step. ~lost of 

the compression is normally attained in the decorrelation steps. Lossless pre­

dictive coding algorithms are most commonly used. In predictive coding, a 

combination of neighboring pixel values are used to predict the value of the 
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pi.xel being encoded. The prediction error is then encoded. This technique 

makes use of the correlation within images. For a single band image. only 

spatial redundancy within an image can be exploited while for multispec­

tral images~ increases in compression ratios can be obtained by removing 

spectral redundancy in addition to spatial redundancy. Successful lossless 

compression algorithms have been reported in [43. 51]. 

3.5.2 Lossy Compression 

Lossy compression techniques achieve higher compression ratios at the ex­

pense of information loss. Lossy predictive coding, transform coding, vector 

quantization and subband/wavelet compression are examples of this cate­

gory. As lossy compression is the focus of this thesis, we will discuss these 

techniques in more details. 

Lossy Predictive Coding 

As in lossless predictive coding, a pixel value being encoded is predicted from 

a combination of neighbouring pixel values, and only the prediction error is 

encoded. The lossy approach achieves more compression by using slightly 

poorer approximations of the prediction error. But still only a limited degree 

of compression can be achieved by this technique [10]. 
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Transform Coding 

The idea behind transform coding is to decorrelate the image pixels and 

concentrate the energy of an image onto only a few transform coefficients. 

The most commonly used transform is the discrete cosine transform (DCT}. 

and the current standard of still image compression algorithm JPEG [50] 

belongs to this category. The major drawback of this technique is its appar­

ent blocking effect in the reconstructed image due to the infinite duration of 

the sinusoidal basis function used in the DCT. This technique is also eval­

uated in [lOJ. We will further evaluate the JPEG algorithm for SAR image 

compression in Chapter 4. 

SubbandfWavelet Transform Coding 

Subband coding is based on dividing an image into its spatial frequency 

bands, then quantizing the coefficients describing the band images according 

to their relative importance. The wavelet transform can be considered as 

a special case of subband coding where the filter used in subband coding 

should satisfy some characteristics (4J. As already noted above in Section 

3.3.2, the wavelet based methods can avoid the blocking effect problem since 

the support of the base functions can be compact [1]. More discussion about 

the wavelet transform will be addressed in the following chapters. 
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Vector Quantization 

·vector quantization (VQ) [22] is a compression technique in which an image is 

divided into groups of pixels and then matching is performed in order to find a 

vector in a predefined codebook which is closest to this group of pixels. Only 

the label of the vector in the codebook is encoded and transmitted. Encoding 

with VQ is computationally expensive at the encoder since obtaining the 

code book is also part of VQ work, but the decoding procedure is very efficient 

as it can be implemented as a a table look-up. VQ is very attractive for image 

distribution applications because of its asymmetric characteristics at encoder 

and decoder. But it also has several disadvantages, such as large encoding 

complexity, strong scene dependence, and severe edge degradation. This 

evaluation of VQ techniques for SAR image compression applications is also 

reported in [10]. 

There are other data compression techniques for remote sensing image 

applications, such as fractal based image compression [7] and segmentation 

based image compression [54}. All these techniques lead to some degree of 

data reduction and provide more viable and efficient collection and distribu­

tion of information. 
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Summary 

In the chapter, we have reviewed the wavelet transform and its applications 

in image compression and processing. In particular, two wavelet transform 

based compression algorithms. EPIC and EZW, and the wavelet coefficient 

soft-thresholding technique are described. The following chapters present 

our work with SAR image compression using these methods. We begin with 

the evaluation of conventional compression algorithms to study the effect of 

speckle noise in SAR images on image compression. Then we refine the soft­

thresholding method to smooth speckle noise. We implement a multi-rate 

compression scheme based on the EZW algorithm to handle large size S:\.R 

images with a variety of image content. 
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Chapter 4 

Evaluation of Image 
Compression Methods for SAR 
Images 

4.1 Introduction 

As we discussed in Chapter 1. for many archiving purposes it is desirable 

that we compress SAR images without any loss of information. But there 

are many other situations where lossy compression is preferred. Compared 

with lossless compression, lossy compression for SAR images has not been 

fully investigated. In this chapter, we will report our experience with SAR 

image compression using three lossy compression methods which have been 

successfully used for optical image compression. The purpose of this pre­

liminary research is to reveal experimentally the difficulties of SAR image 

compression, and thus formulate our compression approach. Two wavelet 

based image compression algorithms, EPIC and EZW, are evaluated. The 
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Joint Picture Encoding Group (JPEG) algorithm is also included in our 

evaluation for comparison. We begin with a description of the test data set 

selected for use throughout the study. 

4.2 Test Data Set 

We use both airborne SAR images and simulated speckled images in our 

evaluations. The real SAR image data was collected by the Canadian Center 

of Remote Sensing ( CCRS). The original SAR data set was converted to real 

amplitude SAR images and then focused in order to obtain approximately 

square image pixels (roughly a 4-look averaging process in amplitude) (52]. 

The simulated images are created by the MATLAB image processing toolbox 

(45]. 

In obtaining the real SAR image data, the CCRS airborne SAR was 

flown over a region near Ottawa; Thus the images contain a variety of scene 

content. Several typical sub-images were extracted from the processed image 

data set and two of them are used in the evaluation. One is an area of 

countryside with fields and forest. We consider it as an easy image because 

it contains relatively simple image contents (mainly road and fields). We call 

this extraction extl (see Fig. 4.1-(a)). The other one is an area consisting 

of an industrial suburb. This image contains some large homogeneous areas, 

but there are also many man-made objects which have more details. We call 

this image industry (Fig. 4.1-{b)). These two extractions represent typical 
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(•) (b) 

f"lltm 4 I Two SAR im8i• extlllctions U5<'d on th~ 0\'llluauon.<: (a) eztl; 
(b) md ... r'l/. 

SCf'nt> ronttnt and ha\'e been used in the developmtnt and testmg of many 

other omagr pi'O<'<SSiog algorithms (20. 23, 34). 

In addotion to the real SAR images, we also generated .. v.ral simulated 

sp('('k)rcl in~agcs. The simple multiplicative specklt• modrl iN adopted in im­

age gencmtion. The speckle noise levels in the &ionulnl('(] spC'<'kl<"<l images 

are adjusted to be dose to those measured in the real SAR imagi.'S in ho­

mogtnrous areas. The ratio of local varianct" to local mran m homogeneous 

areas is IJ.>I'd as the speckle measure. For 4-look am ph tude SAR imagi.'S, this 

measure is approximately 0.26 [26). Se•-eral somulnted >J>Ocltled images are 

«••crated and l\\11 of them wiU be used on the followong r-llluatioo The)· are 

orrji<ld (Fig. 4 2-(a)) and .rtnpe (Fig. 4.2-(b)). The perfonnane<s oft he three 

comp"""ion algorithm• on t\\11 well-known optiCAlomagC!ll•no (Fig. 4.3-(a)) 
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(a) (h) 

Figure 4.2: Two simulated spt<:kled images used in tht evaluations: (a) 
otrjield; (b) •tri,.,. 

(a) (b) 

Figure 4.3: Two optical 1mag<"' u'><'<l in the evaluations: (a) lena; (b) barb 
(extraction). 
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and barb (Fig. -!.3-(b)) are provided for comparisons. All images used in our 

evaluations are of size 256 x 256 pi..xels. The external storage type of these 

images is one byte/pixel. However. they are stored and processed as floating 

point in our proposed methods. 

4.3 Evaluation Criterion 

\Ve evaluate the overall compression performance using the standard bit-per­

pixel (bpp) vs. Peak Signal to Noise ratio (PSNR) and peak error. Although 

it is still argued whether PSNR is a suitable measure for reconstructed image 

quality, it is used here because it provides a straightforward means for quan­

titative comparison. Since SAR images are usually processed automatically. 

it is critical that the reconstruction error of any pixels not exceed a given 

acceptable threshold. Thus, we include peak error as another measure in our 

evaluation. 

In order to highlight the differences between optical and speckled image 

compression, we introduce several other measures which are related to the 

specific compression algorithms. 

Measure for EPIC: 

In EPIC as in many other transform based compression algorithms, run 

length coding is often exploited to encode the quantized transform coeffi­

cients. Since the run length coding scheme is intended to take advantage 

of the many zero coefficients in the wavelet domain, a run length distribu-
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tion highly peaked at zero will correspond to a possible high compression 

ratio. If the same quantization strategy is used for all the images. the differ­

ences in run length distribution of the zero coefficients will reflect the final 

compression performance. 

Measures for EZW: 

The number of isolated zero trees (IZs) will be used as a measure of EZ\Y. As 

we described previously, an IZ is introduced when the across scale prediction 

of insignificance of wavelet coefficients is incorrect. Thus more bit budget 

is needed to encode the significance map. For an image without many de­

tails. the number of IZs can be expected to be small. In addition. pages and 

times are two other measures for EZ\V: pages counts the number of detected 

significant coefficients and times depicts how accurately these significant co­

efficients are successively approximated. Thus for a given bit-per-pi.xel rate. 

a smaller IZ value. together with a smaller pages value and a larger times 

value corresponds to better reconstruction quality. 

4.4 Evaluation Results and Analysis 

Fig. 4.4, 4.5 and 4.6 provide a graphical illustration of the compression 

performance of these three algorithms. Table 4.L 4.3 and 4.2 show the 

results using these algorithms with some specific parameters. For EPIC. all 

images are 4-level decomposed and a bin size=20 is used to quantize the 

finest scale coefficients. For JPEG, the quality parameter is chosen such that 
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Figure 4.4: Compression using the EPIC algorithm 

the reconstruction image quality is approximately 65% of the original one. 

A moderate bit-per-pixel rate bpp= 1.5 is used for EZW. We also use these 

parameters in the comparisons of the EPIC and EZvV measures. 

For the EPIC algorithm with the fixed parameters. we see that the opti­

cal images are more compressible than both the simulated and real speckle 

images. In other words, these optical images can be represented as well as 

the speckled images but with smaller bit-per-pLxel rates. The reconstruction 

errors in the EPIC algorithm are introduced mainly by quantization. Since 

we use the same quantization strategy for all these images, the peak errors 

for them are on the same level. 
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Figure 4.6: Compression using the EZ\V algorithm 

Table 4.1: EPIC algorithm: decomposition level=4. bin size=20 

I image II lena I barb II extl j industry II airfield I stripe I 
bpp 1.06 1.19 1.77 1. 72 2.05 1.84 

PSNR 35.14 33.96 31.65 31.86 30.83 30.84 
peak 27 28 28 28 30 30 

Table 4.2: Comparison results using JPEG algorithm: quality=65% 

I image II lena I barb II extl I industry II airfield l stripe l 
bpp 1.14 1.20 1.65 1.62 1.94 1. 74 

PSNR 35.77 35.28 30.32 30.70 27.14 28.06 
peak 31 31 45 47 57 59 
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Table 4.3: Comparison results using EZ\V algorithm: bpp=l.5 

For JPEG~ similar results are obtained as those for EPIC. Again. the 

optical images are reconstructed with better quality. The differences in peak 

error is due to the quantization table used in JPEG, which is designed for the 

efficient compression of natural photographic images. As the characteristics 

of the real and simulated speckled images are quite different from those of 

optical images, the performance of JPEG is deteriorated. 

The difference in the reconstructed image quality from the EZ\\. algo­

rithm is quite significant. Given a bit-per-pixel rate, we find the speckled 

images are reconstructed much more poorly than the optical images. The er­

rors are introduced by the successive approximation. an implicit quantization 

strategy used in EZW. where some of the less significant bits of the coeffi­

cients are not encoded when the bpp is small. Since in EZ\V the significant 

and non-significant coefficients are approximated with different accuracies. 

the reconstruction error is not evenly distributed across every coefficient. As 

a result, we can expect that images reconstructed from EZW may highlight 

the major structures in images and provide better visual qualities. 

From Fig. 4.4, Fig. 4.5 and Fig. 4.6, we may observe a pattern that 

the simulated speckled images are even more difficult to compress than the 
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real SAR images. This is because that the mean values of these two images 

are higher than those of the SA.R images. Therefore, the simulated images 

have higher variances than the real SAR images, and hence they are less 

compressible from an image compression point of view. 

Now. we use the EPIC and EZW measures to show how speckle noise 

influences SAR image compression. Table 4.4 shows the run length distribu­

tions of these six images using EPIC. We find that there are many more short 

runs in the decomposed SAR and simulated speckled images than those in the 

decomposed optical images. It is obvious that even for the simulated speck­

led image stripe which only contains simple image content that the numbers 

of short runs are substantial. These short runs reflect the large variance of 

speckled images. They are caused by speckle noise \vhich may split potential 

long runs into many short runs. 

Table 4.5 shows the EZ\\'. measures when these images are compressed 

using the EZW algorithn1 with bpp=l.5. vVe can see that there are more 

isolated zero trees (IZs) in the decomposed speckled images than in the op­

tical images. This is again the result of speckle noise because the construc­

tive or destructive effect of speckle noise may weaken or totally destroy the 

across scale correlation. IZs are introduced when the across scale predic­

tion of the coefficients' insignificance is incorrect. For bpp=l.5, we find the 

number of detected significant coefficients are quite similar for these images. 

Thus the EZW algorithm spends more bit budget to encode the significance 
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Table 4.4: Comparison of Run-length Distributions of Test Images C sing 
EPIC (level=4. bin=20). 

I run length II lena I barb II extl I industry II airfield I stripe i 
I 

0-10 2697 3008 8652 8007 10461 13733 
11-20 405 414 666 735 958 319 
21-30 177 180 232 229 33 27 
31-40 89 103 127 111 1 6 
41-50 55 164 36 61 1 6 
51-60 70 48 18 27 0 0 
61-70 29 43 4 12 0 0 
71-80 21 29 3 3 0 0 
81-90 23 18 0 1 0 0 
91-100 31 7 0 0 0 0 
>100 169 119 0 2 0 0 

map of speckled images which have more IZs. Accordingly~ the informativP 

coefficients will be scanned fewer times. resulting in poorer approximation 

accuracy. This explains the higher peak errors in the EZvV reconstructed 

speckled images. 

Table 4.5: Comparison of EZvV performances with test images (bpp= 1.5). 

I measure II lena I barb II ext1 I industry II airfield I stripe I 
IZ number 6720 6193 8311 7777 9546 9545 

pages 18 18 18 18 18 17 
times 9 9 6 6 5 5 

From the above evaluation, we understand that speckle noise contami­

nation of SAR imagery is an important data characteristic that needs to be 

considered in designing a SAR image data compression algorithm. As are-
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suit of speckle noise~ there is a weakened inter-pixel correlation among the 

adjacent resolution cells in the SAR images as compared to the optical im­

ages. Hence. image data compression techniques that are primarily based on 

inter-pi.xel correlation do not perform as effectively for SAR images. \Ve find 

the inter-band correlation among coefficients is also weakened in speckled 

images, but the effect of speckle noise is comparatively less prominent with 

the EZW algorithm (see Fig.4. 7). This conclusion suggests that we devise 

compression algorithms that basically exploit inter-band correlation. In the 

light of the above discussion. and due to other properties of the EZ\\. algo­

rithms, such as its embedded nature. we consider EZW to be one of the best 

candidates for future development in SAR image compression. 

lVIoreover, because speckle noise is manifest as one obstacle to SA.R image 

compression~ we need to adopt a technique to remove or reduce speckle noise 

prior to SAR image compression. This will be the topic of the next chapter 

and the study of compression will resume in Chapter 6. 
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Chapter 5 

Speckle Noise Reduction Using 
Selective Wavelet Coefficient 
Soft-thresholding 

5.1 Introduction 

vVe have shown in the previous chapter that speckle noise tends to weaken 

or break the intra- and inter-band correlation in S.-\R images. As a result. it 

prohibits the effective compression of SAR images. Therefore. it is desirable 

that speckle noise be eliminated or at least reduced prior to image compres­

sion. While many researchers have worked on the smoothing of speckle noise 

using spatial domain techniques. we will follow a different approach in which 

speckle noise reduction is performed in the wavelet domain. 

\Vavelet domain noise reduction is a relatively new research concern. Pi-

oneer work in this area includes Nlallat and Hwang [33J, and Xu et al (55], in 

which continuous wavelet transforms were used. Another approach, named 
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wavelet coefficient soft-thresholding~ was proposed by Donoho [16]. As pre\·i­

ously discussed. this method performs soft-thresholding on discrete wa\"elet 

transform coefficients and has obtained promising denoising results for one 

dimensional signals with additive noise. But. in our experience. when applied 

to two dimensional signals. this method has the tendency to oversmooth both 

noise and signals~ as will be discussed later. 

In this chapter! we present a refined soft-thresholding approach. This 

approach makes use of the correlation structure of the wavelet coefficients to 

select edge coefficients in the wavelet domain and then protects them from 

soft-thresholding. Consequently. noise smoothing and edge preserving goals 

can be achieved simultaneously. 

5.2 Correlation Structure of Wavelet Coeffi­
cients 

An orthogonal wavelet transform projects a signal onto a set of orthogonal 

basis functions. The energy of a signal is concentrated onto only a few wavelet 

coefficients. Coefficients with larger values usually indicate the positions of 

rapid changes (edges) in the signal. and small coefficients usually correspond 

to detail information. While this is always the case for clean images, wavelet 

coefficients for noisy images are inevitably contaminated by noise and can 

hardly be used to identify edges directly. Thus. alternative ways should be 

investigated. 
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Figure 5.1: Correlation between adjacent pL""<els within the same resolution 
band: (a) A. segment of wavelet coefficients from the decomposed stripe im­
age: (b) The autocorrelation of (a). 

Compared with many other transforms, such as the discrete cosine trans-

form or discrete Fourier transform. an orthogonal wavelet transform does a 

better job in decorrelation. But the resulting wavelet coefficients are not 

totally uncorrelated. As proved by Dijkerman and Nlazumdar, the correla-

tion between orthogonal wavelet coefficients decreases exponentially rapidly 

across scales and hyperbolically along time (space) [15]. From an intage 

processing point of view. we can make use of this short term correlation to 

select informative image features even in the presence of the uncorrelated 

noise which, after an orthogonal or hi-orthogonal transform, remains uncor-

related. 

Fig. 5.1 shows (a) a segment of wavelet coefficients from the decomposed 
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Figure 5.3: Illustration of inter-band correlation in quad trees of balloon image 
with a total of 20 3-level quadtree given. 
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Figure 5.4: Contour maps of the coefficients from the decomposed balloon 
image shown in Fig. 3.3-(b): (a) contour map of subimage 2H (expanded 
to the same size as (b), (c) and (d)); (b) contour map of subimage lH: (c) 
contour map of subimage l'V; and (d) contour map of subimage lD. 

stripe image at the same scale. and (b) the autocorrelation of (a). Coefficients 

corresponding to edge pixels possess large values in the wavelet domain. For 

an edge with a certain duration, it generates a large correlation value along 

the edge orientation. But this intra-band correlation becomes faint as the 

distance between the time (space} locations of the coefficients increases. For 

other isolated large coefficients induced by noise, due to the random nature 

of noise, they may not have significant correlation values. To illustrate the 

inter-band correlation, we group together the coefficients along quadtrees as 
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shown in Fig.5.2. For a particular decomposition level. say 3. each quadtreP 

consists of 21 coefficients which correspond to the same spatial location. Fig 

5.3 depicts 20 quadtrees taken from the balloon image in a 2-D graph. Each 

cross-section along the x-axis is one quad tree starting from the large scale root 

towards the finest scale leaves. As large coefficients in the wavelet domain 

correspond to edges in the spatial domain. we see that large coefficients 

appear over many scales, indicating that strong inter-band correlation exists 

among coefficients at different scales. 

Fig. 5.4 shows the contour maps of the coefficients from the decomposed 

balloon image. They are generated by lVL~TLAB in order to highlight the 

different edge extraction capabilities of each subimage. It should be noted 

that while large structures can be found in many scales. small image de­

tails can only be revealed in several fine scales (see Fig. 5...1-(a) and (b)). 

Thus calculating inter-band correlation involving only partial instead of en­

tire quadtree elements is more reasonable. Fig. 5.5 shows the definition of 

partial quadtrees. Here! each quad tree is composed of coefficients from two 

adjacent scales. Besides, we see that when an orthogonal or hi-orthogonal 

wavelet transform is adopted, horizontal, vertical and diagonal subimages are 

generated which are quite different in their edge extraction abilities, i.e., ori­

ented edges can only become visible in certain subimages (see Fig. 5.4-(b) ,(c) 

and (d)). This suggests that subimages of different orientations should be 

treated separately. Therefore, in the following context, the same procedure 
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is applied to the horizontal (H)~ vertical(V) and diagonal (D) subimages sep-

arately. 

5.3 Definition of Hierarchical Correlation 

From the above discussions, we can introduce the concept of hierarchical 

correlation which takes into account both the near neighbor intra-band cor­

relation and the adjacent inter-band correlation along partial quadtrees(see 

Fig.5.5) which is a group of five wavelet coefficients corresponding to the 

same spatial location. For any two levels in the wavelet decomposition. the 

hierarchical correlation is defined as 

correlation = )r1 • intra 

{ 

max(~' ~) H -orient 
intra = max(~' ~) t · - orient 

max(~ . .Jt2 · t 3 ) D - orient 

( 5.1) 

(- •)) 0.-

where r 1 is one coefficient in the coarser scale and tL. t2 , t3 and t4 are four 

coefficients in the next finer scale. Notice that the intra-band correlation is 

computed differently according to the orientation of the subimages involved. 

Oriented edges will generate larger correlation values and will be detected by 

this definition. A correlation map whose size is a quarter of the original image 

is then obtained because coefficients in the finest scale have no descendants. 

Large coefficients in this map indicate the position of edges in the original 

image, and zero coefficients correspond to smooth areas. The left-top part 

of the correlation map which corresponds to the lowpass subimage in the 
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wavelet decomposition will not be computed since we consider the coarsest 

resolution subimages are clean enough and as such. could be left unprocessed. 

Fig.5.6 shows an example of how correlation maps of the stripe image evoln~ 

along with the number of iterations. 

Figure 5.5: Definition of partial quadtrees. 

5.4 Correlation Based Selective Noise Reduc­
tion Algorithm 

~ow we use the correlation map to distinguish edges from noise and then per­

form selective soft-thresholding on the wavelet coefficients. Our correlation 

definition allows fine structures which do not appear as local ma..xima to be 

revealed in the correlation map. This correlation map can then be used as an 

edge position indicator in the wavelet domain; thus pixels within quadtrees 

which are not selected as edges for certain thresholds are smoothed as noise. 

The algorithm is designed as an iterative one starting with a relatively small 

threshold which is increased on each iteration to gradually eliminate noise. 

The horizontal, vertical and diagonal orientations are processed separately 
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because oriented edges will only emerge in certain orientations. The complete 

processing procedure is given as follows: 

Selective Soft-thresholding Algorithm 

1. Perform logarithmic operation on the original image to convert multi­

plicative noise into additive noise. 

2. Apply hi-orthogonal wavelet transform with maximum possible decom­

position level. 

3. (a) Compute correlation map. 

(b) Perform selective soft-thresholding on non-edge quadtrees. 

u1 > t 
- t s Vr ~ t 

L't < t 

(c) Stop if a stopping condition is reached. Else increase the threshold 

for edge detection and return to 3a and operate on rJt(vd. 

-1. Apply inverse wavelet transform. 

5. Perform exponential operation. 

Two thresholds are employed in the above algorithm. One is that used 

to determine edges from the correlation map. If the value of a coefficient is 

larger than the threshold, it is determined as edge, otherwise, it is treated 

as noise. A low threshold is initialized at the beginning to select many 
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coefficients as edge. and it is increased by a small value in each of the following 

iterations to eliminate noise gradually which is a conservative approach for 

the time being. Another threshold is used for the soft-thresholding. Fron1 our 

experience. the universal threshold obtained from Donoho~s formula tends to 

oversmooth images. Currently there is no other well defined criterion for 

threshold selection. In this algorithm! we use the empirically obtained values 

of 0.5 or 1 for the threshold parameter for the lowest scale we are processing. 

and increase it by a small value (e.g .. 0.5) to process smaller scale subimages. 

There are two ways to stop this algorithm. One is to specify the number 

of iteration times. We find 10-15 iterations with threshold increment 0.5 per 

iteration can yield good noise reduction results for most of the test images 

used in our study. Alternatively, the algorithm can be stopped when a certain 

percentage of image pixels within an image are determined as edges. Thus 

this algorithm trades off preserving image details and reducing noise. These 

two conditions should be adjusted for different images according to image 

type and complexity. 

vVe end by noting that Donoho's soft-thresholding idea has been imple­

mented by Odegard et al [36] in speckle noise reduction. In their approach 

all the wavelet coefficients are soft-threshold processed. vVhile speckle noise 

is reduced by this method, the subtle edges are also destroyed by this in­

discriminate processing. The algorithm proposed in this thesis attempts 

to overcome this problem by performing selective wavelet coefficients soft-
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thresholding, thus better preserving edge structures. The speckle smoothing 

results of these two approaches will be compared in the next setion. 

5.5 Test Results on Simulated Speckled Im­
ages 

In this part~ we apply the proposed noise reduction algorithm on simulated 

speckled images. The purpose of this investigation is to gain insight into the 

selection of appropriate parameters for processing S.AR images. Test results 

on real SA.R images are to found in Chapter 7. 

We start with the relatively simple image stripe. The noise-free version 

of this image (see Fig. 5. 7(a)) consists of several vertical bars of different 

widths. It is then corrupted by multiplicative Gaussian noise of standard 

deviation 0.26 (shown in Fig. 4.2(b) ). Fig. 5.6 shows the evolution of cor­

relation maps along with increasing numbers of iterations. In these images. 

black pixels represent low correlation coefficients while white pixels indicate 

the positions of high correlation coefficients. We see that edge coefficients 

emerge gradually from the noise coefficients. Therefore, we can keep these 

prominent coefficients from soft-thresholding .. -\s a result, image structures 

can be preserved while noise is smoothed. 

Fig. 5. 7 (b)-( d) shows the tests results on the simulated stripe image 

using Lee's multiplicative speckle filter, Donoho's overall soft-thresholding 

and the proposed selective soft-thresholding speckle filter. Because there are 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5.6: Correlation map. after (a) I, (b) ·I , (c) 8, (d) 12, (e) 16 and (f) 
20 iterationt-i of lh<- speckled .•lnp~>. image. The- fiiZf'! of these correlaupo maps 
is a qunrt(lr or the original ~tnpt. image. 
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(a) (b) 

(c) (d) 

Fi!!ul'f 5.7, ComJ>ariSOD ofspedde lilterul3 ....,ul~: (a) on~inal; (b) I.A'<' multi­
phcam" filter; (c) Donoho's soft-thresholc!Jng; (d) '<'1«11'" ooft·thresbolding. 
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Figure 5.8: Comparison of edge maps for images of Fig. 5.7 (generated by 
MSPRoA, mask size=3~ threshold=.55. correlation=!). 
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large homogeneous regions in this image. we use a large I x 7 n1ask for the 

Lee multiplicative filter. The mask size could be larger in order to better 

smooth the homogeneous regions. but then edges would start to go. The 

threshold used in Donoho~s overall soft-thresholding is 3 which is also a trade­

off between noise smoothing and detail preserving. The selective algorithn1 

is iterated 20 times with starting correlation threshold 2 and increment 1. 

The threshold for soft-thresholding is set to 1 for this algorithm based on our 

experience. 

\Ve can see that visually, both the overall soft-thresholding and selective 

soft thresholding techniques can reduce speckle noise (the MSE value is re­

duced from 605 to 334 and 244. respectively). However. Donoho's overall 

soft-thresholding smoothes both edge and noisy pixels. and the resulting im­

age looks blurred. The filtering result obtained from the proposed selective 

soft-thresholding has a much brighter appearance with enhanced edge sharp­

ness. and the thin edges are well preserved. The smoothed image produced 

by the well-known Lee multiplicative speckle filter is provided for compari­

son. While this filter works fairly well in homogeneous areas, it is not capable 

of removing the noise in the edge regions effectively; there is still substantial 

noise left on those thin bars. Fig.5.8 further shows the corresponding edge 

map of these images generated by the MSPRoA edge detector [20] which is 

an edge detector specially designed for speckled images. l\tlore details on the 

use of the MSPRoA edge detector, including the setting of parameters and 
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their robustness can be found in [20]. In Fig. 5.8. Fig. 5.9. etc. we han~ 

used appropriate sets of parameters. It is not surprising that the selective 

soft-thresholding method can produce the best edge map because it has the 

built-in feature to protect and enhance oriented edges. 

Fig. 5.9(a) shows another image airfield. vVe have reduced the contrast 

of this image in order to prevent saturation when corrupting it by multiplica­

tive noise (MSE=303.79). Fig. 5.9(b) and (c) are the processing results from 

the Lee multiplicative filter (NISE=44.33) and the selective soft-thresholding 

(lVISE=77.23), respectively. Visually, we may consider that the Lee multi­

plicative filter produces better result than the soft-thresholding approach. 

This may be due to the nature of soft-thresholding which shrinks the dy­

namic range of image intensity and therefore reduces image contrast. Thus 

quantitatively, the soft-thresholding methods produce filtering results with 

higher mean-square-error than the Lee multiplicative filter or other filters. 

But again, speckle noise near edge regions is not smoothed by the Lee multi­

plicative filter. We should also note that the proposed selective filter cannot 

handle strong impulse noise which may appear in homogeneous regions as 

effectively as the Lee multiplicative filter where a large mask size can be 

adopted for this situation. Thus from the filtered image, \Ve can observe 

some burst-like noise. In this case. we can use a median filter with a small 

3 x 3 mask to further eliminate residual noise and obtain an filtered image 

with better visual quality and slightly blurred edges (Fig. 5.9(d)). 
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Finally. it is worth noting that because the proposed correlation based 

algorithm enhances both the inter and intra band correlation. better com­

pression performance could be expected for speckle reduced images. \Ve leave 

the discussion related to this issue to Chapter 7. 
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(a) (b) 

(c) (d) 

F1gure 5.9· Compariso11 of filtenll~ result.'> (a) Original 11otse-frr.· •mage 
11arjield. (b) Lee ~lulupl"·ative fihrr, (c) Sel~tll\'e sofHhr<•sholdiug; (cl) (c) 
after 3 x 3 median fihrr. 

i6 



Chapter 6 

Multi-rate SAR Image 
Compression Using Zerotree 
Wavelet Coding 

6.1 Introduction 

Apart for speckle noise. another key characteristic of SAR images is the large 

variation in image contents. Because the resolution cell for SAR images are 

much larger than that for optical images. a SAR image can cover a large area 

of terrain and there can be a variety of scene contents within an image which 

convey information of different importance to different viewers. \Vhen a SAR 

image is requested, people may only want to get some large scale information, 

such as the course of a river or positions of some important objects. On the 

other hand, people may wish to focus on several small regions. Because the 

transmission of a large size SAR image in full resolution can be remarkably 

slow, compressing different regions with multiple bit rates and thus creating 
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an image with multiresolution is desirable. 

In this chapter. we implement a multi-rate compression scheme based on 

the EZvY algorithm. Although there are many issues related to this topic 

which require further investigation~ we believe that the multi-rate compres­

sion scheme will facilitate efficient transmission of large size SA.R images. 

6.2 The Multi-rate EZW Compression Scheme 

Progressive transmission is often desired for browsing purposes. A lowpass 

image is received at the beginning of transmission for quick reference and 

more details are added upon the viewer's request. Embedded coding algo­

rithms are natural suited for this purpose. In an embedding coding algorithm. 

at the beginning of the bit stream the embedded code contains the lower bit 

rate code. That is. decompressing this initial bit stream will generate a low 

resolution approximation image with a relatively few data. As the decoding 

continues~ more and more fine details will be received in the order of impor­

tance to produce a reconstructed image with increasingly higher and higher 

resolution. 

A multi-rate compression scheme is built on top of an embedded coding 

algorithm. It makes use of the embedding property of the embedded com­

pression algorithm in order to further enhance transmission efficiency. If the 

compression is based on a wavelet transform, then given the locations of re­

gions of interests, we can determine the locations of those wavelet coefficients 
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Figure 6.1: Region mask in the spatial domain. 

associated with these regions. Thus we can simply ignore the parts of the 

bit stream not related to the regions of interest and obtain a reconstructed 

image of these regions more rapidly. 

Assuming the locations of the regions of interests are pre-specified. the 

straightforward way to split and encode different region is to partition pixels 

of the raw image in the spatial domain. For the simplest case, an image 

is partitioned into two regions! labeled as the interior and exterior regions 

(see Fig. 6.1). In order to be processed by conventional algorithms. these 

two regions are overlaid onto two blank images of the same size as the raw 

image (see Fig 6.2). These two resulting images are then encoded separately. 

producing two data streams. At the reconstruction side, these two streams 

are decoded separately. The final image is obtained by summing the two 

decoded images (Fig. 6.3). 

This spatial domain partition scheme has two disadvantages. First, since 
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(a) 

(b) 

Figuw 6.2: Spatial domrun 1>nrt1tion for tho oolloort imago of rig. 3.3-(a): 
(a) interim region 1: (b) ext<rnal wgion 2. 
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flRtm• 6.3: Rf'OOmttructtd image from thP spatial donmm llilrlllion 
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F1~Urt' G. I: R~on mask of Fig. 6.1 in tbe wavel(>t domam (5lt>wl d('('(tm­
pc~1Uun). 
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(a) 

(b) 

figure 6.5: Wavelet domain partition: (a) interim region J: {b) external 
re-gion 2. 
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Figure 6.6: Reconstrurtrd amagt•s from the wavrlN domnm (WUtition. 

tht• two partitioned 1mages un• prorrl'isC'd wta11y indepeudeutl ~·. rlH'h of alt~m 

nffll!i a pass of both thf wavt•lrt 1 ransform and in\'t'I'Sf' w.wf•lt·t transform. 

and thtow respecth·e blank rt'RIOil~ aw unnecessaril~· procc..,...,._·d IC)u. St":oud. 

t tu-n• art' artifacts near th(* n>Jtum huunrlar)· in tb~ recou.struru~l amag,P dut• 

w thr boundary ~ffoct of tbe wawlrt transform (,..., ft~. 6 3). 

An a lternath•e is to partahon thr~r regions in thC' wawiN dumam (ser Fig. 

GA). B~ause a direct corrt~.,.,pond<'n<·l' l'xi'ltS between tht• rnw inm~t4' and ilH 

subbands, it is easy to pick up thr rl',~tion of interest in the wawlrt duma in I :o.t>t' 

Fig. 6.5). Thus only Oil~ P~"~ of thf.' forward and ioveN' wa\~lf't tran-.fonn is 

rttquart>d regardles.-; how many f€1tton~ are spt'CifiPd. Utdl rrgaon on du~·n bt· 

t·Jwudt"d separate)~· and rac-h data. M rt>am only comaart"i the mfurmat1on about 

tlw <J>OCific region. At thr drm<ler. •••th data stream is d('COdt>d mdn·tduallv. 

nnd 1 hey al'(' rused in the wnv(>I<"C domAin. This can avoid 11H' houu<lary dfecl 

(M'<' J>ig 6.6) and thr prorrsN will bo [aster. 
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It should be noted that for the multiple rate compression scheme. the 

region mask should be available at both the encoder and the decoder. The 

transmission of mask may add to the transmission load. but is relatively 

insignificant compared with the overall data reduction. It should also be 

pointed out that the spatial domain partition is more robust than the wavelet 

domain partition scheme because the latter may be more vulnerable to trans-

mission errors. 

6.3 Implementation of Multi-rate Compres­
sion Scheme Based on EZW 

6.3.1 Implementation of The Original EZW Algorithm 

The EZW is a state-of-the-art image compression algorithm. \Ve consider 

this algorithm to be a good candidate for SAR image compression because 

the embedded nature of this algorithm naturally facilitates progressive trans­

mission. In addition. as we have seen in Chapter 4, the EZvV and other al-

gorithms which make use of the inter-band correlation of wavelet coefficients 

suffer less from speckle noise than other run-length coding based compression 

algorithms. Thus we designed our multi-rate compression scheme based on 

the EZW algorithm. 

We have described the EZW algorithm in Chapter 3; more details can 

also be found in (42, 44}. We summarize the algorithm into the following 

procedure. First we note some of the notation used in the algorithm descrip-
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tion. 

Notations: 

• Ci.; - the wavelet coefficient at position ( i, j). 

• S11 (i.j) -significance indicator at position (i!j); if coefficient C1 ,1 has 

significant descendant(s) or itself is significant, Sn(i,j) = 1. otherwise. 

Sn(i, j) = 0. 

• LS P - list of detected significant coefficients. 

• Ll P - list of insignificant coefficients. 

• LIS - list of insignificant zero trees. 

• n - numbers of successive approximation operations needed. 

Said and Pearlman's EZW Algorithm 

L Initialization: Compute n = llog2 (max(iJ){It;Jl})j; set the LSP as 

an empty list: add all the roots of the quad trees toLl P and LIS. 

2. Sorting pass: 

(a) for each entry in Ll P: 

• encode Sn(i, j); 
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• if Sn ( i! j) = 1. move coefficient ( i. j) to LS P. 

{b) for each entry in LIS. 

• encode Sn(i,j): 

• if Sn(i,j) = 1! move the descendant(s) to LSP. 1 

3. Refinement pass: for each entry (i~i) in LSP. except those detected 

in the last sorting pass (i.e. with the same n)! encode the most signifi-

cant bit of lc;.J I; 

4. Quantization-step update: decrement n by 1 and goto step 2. 

To describe the decoding algorithm, we only need to replace the ·~encode .. 

with "'decode" in the above algorithm. Note that when the decoder decodes 

data. its three lists (LSP. LIP. and LIS) are identical to the ones used 

by the encoder at the moment it encoded that data. This means that the 

decoder indeed recovers the ordering information from the execution path. 

\Vith this highly symmetric scheme, the encoding and the decoding have the 

same computational complexity. 

6.3.2 Implementation of Multi-rate Scheme 

Currently, we assume that the regions are pre-defined. and the region mask 

is available at both the sender and the receiver. Making use of the relation 

between wavelet coefficients and their corresponding spatial positions, we can 

1 In fact, Said and Pearlman's algorithm further differentiates LIP into two types from 
the implementation point of view. We skip the discussion here. 
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generate masks in every subimage as shown in Fig. 6.-l. After the wavelet 

domain partitioning, we encode each region using EZvV into a separate data 

stream. At the receiver. we decode each of the data streams and recover the 

corresponding regions in the wavelet domain. Finally. we recover the image 

by the inverse wavelet transform. 

The complete multi-rate compression scheme can be implemented by the 

following procedure. First. we define some more notations. 

Notations: 

• N - number of regions 

• Rk - region k 

• bk - bit rate for Rk 

• Sk - bit stream corresponding to Rk 

Multi-rate EZW Encoding Algorithm 

1. Initialization: 

• read in the spatial_mask (which should be the same size as the 

the original image); 

• specify bit rate for each region, b1, ~' • • • and bN; 
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2. Mask generation in the wavelet domain: 

• compute the decomposition level~ 

• highlight the masked region in the wavelet domain and obtain the 

wavelet_mask for the partitioned regions R 1 • R2 ~ • • · and Rx. 

3. Wavelet transform The original image is converted to wavelet do­

main. 

4. Encoding: for each wavelet coefficient c;J, 

• if c;J E Rk, encode this coefficient with bit rate bk using EZ\Y. 

Append the encoded coefficient to bit stream Sk· 

• if the bit budget for region Rk has been exhausted. skip this coef­

ficient. 

;:>. Transmission of several data streams The encoded data streams 

can be transmitted sequentially or in parallel. 

Multi-rate EZW Decoding Algorithm 

1. Initialization: 

• read in the spatiaLmask (should be the same size as the original 

image); 
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• specify bit rate for each region. b1 ./rz. · · • and b1v: 

• decode stream header. 

2. Mask generation in the wavelet domain: 

• restore the decomposition level: 

• highlight the masked region in the wavelet domain and obtain the 

wavelet.mask with partitioned region R 1 ! R2, · ... and RN· 

3. Decoding: for each of the received wavelet coefficients Ci.; from data 

stream sk, 

• decode this coefficient with bit rate bk using EZvV. Assign the 

decoded coefficient to region sk . 

• if the bit budget for stream sk has been exhausted. skip this co­

efficient. 

4. Inverse wavelet transform. The image is recovered with specified 

bit-rates (resolution) for the different regions. 

It should be noted that because the EZW organizes the wavelet coeffi­

cients into a tree structure, if the large scale coefficients are skipped~ all their 

off-springs in smaller scales will not be processed. A~ a result, the processing 

time is reduced. 
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6.4 Discussion 

The parameters of the multi-rate compression scheme include shape. sizP 

and number of the regions. and the specification of the bit rate for each 

region. In the above discussion~ we use region masks to specify regions. An 

irregular region mask is used to demonstrate the multi-rate scheme. This 

is to simulate the regions generated by image segmentation where an imagE' 

is segmented into several irregular regions according to pi..xel intensity or 

texture. Although we use a two-region case as an example. the extension 

to more regions is straightforward. Because currently we use the same pixel 

intensity to represent a region, more regions can simply be represented by 

more intensity levels, but the algorithm itself is unchanged. 

\Ve are more likely to select rectangle regions when browsing an image. 

This results in a simplified version of the multi-rate compression scheme. In 

this situation, the transmission cost of mask information. such as mask size 

and shape can be greatly reduced. 

The bit budget for each region can be as low as 0, but no greater than 

hPPmax' where hPPmax can be calculated as 

b number of total pixels . b 
PPmax = number of pixels in this region x gtven pp (6.!) 

The multi-rate compression scheme is intended to provide efficient trans-

mission of SAR images. This scheme can be combined with the selective 

soft-thresholding proposed in the last chapter to achieve noise reduction and 
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image compression tasks simultaneously. Technically. noise reduction can be 

performed before the multi-rate EZ\V compression or inserted in the com­

pression algorithm just before the encoding operation. However. due to the 

difficulties in setting appropriate processing parameters for the selective soft­

thresholding method, presently we separate these two operations in two steps. 

i.e. first we use the selective soft-thresholding method to do the speckle sup­

pression~ then we compress the de-noised image with the multi-rate EZ\Y 

algorithm. We expect that after having gained enough experience with noise 

smoothing of SAR image, we can finally combine these two steps in one 

complete noise smoothing and image compression algorithm. 
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Chapter 7 

Test Results and Discussion 

7.1 Introduction 

Speckle noise and large dynamic range are two key characteristics of SAR 

images. In previous chapters. we developed the selective soft-thresholding 

technique and the multi-rate compression scheme to compress SAR in1ages 

effectively. We have tested these methods on simulated speckled images 

generated using the simple multiplicative speckle model. In this chapter. 

we test these methods on real SAR images. which can be modeled using 

a slightly more complete speckle model and have more complicated scene 

contents. Tests are designed for three purposes: performance of the selective 

soft-thresholding method for speckle noise reduction; effects of speckle noise 

reduction on SAR image compression; and the effectiveness of the multi­

rate compression scheme. In addition to the two SAR image extractions 

frequently used in previous chapters (see Fig. 4.1), we also introduce two 

larger SAR images with more complex image contents in our evaluations. 
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7.2 Tests on Speckle Smoothing of SAR Im­
ages 

.-\.s we have shown in Chapter -l, speckle noise has inverse effects on SA.R 

image compression. In order to compress SAR images more effectively. in 

Chapter 5 we proposed the selective soft-tluesholding method to smooth 

speckle noise and enhance inter-pixel correlation in SAR images. In this 

section, we will demonstrate the speckle smoothing effects of the proposed 

method on real SAR images. 

Fig. 7.1 shows the filtering results of SAR extraction extl and industry 

using the selective soft-thresholding method. The corresponding original 

images can be found in Chapter 4 (see Fig. 4.1). Clearly industry contains 

more details that extl. Thus. SST-extl (see Fig. 7.1-(a)) is obtained after 

15 iterations while SST-industry (Fig.7.1-(b)) is obtained after 12 iterations. 

(c) and {d) are the ~ISPRoA edge maps of (a) and (b). respectively. In (a) 

and (b), the threshold for detecting significant coefficient starts from 1. and 

is increased by 0.5 per iteration. The threshold used for soft-thresholding is 

1. The results obtained from the Lee multiplicative speckle filter (discussed 

in Section 2.4) are also shown for comparison (see Fig. 7.2). To trade off 

the noise smoothing and edge preservation, a moderate 5 x 5 mask size is 

used in the Lee filter, and since the test images are approximately 4-look. 

the noise standard deviation is chosen to be Uv=0.26 (25]. All the edge maps 

generated by the MSPRoA. detector [20} use mask size=5, threshold=0.6 and 
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correlation=l. 

vVe see that visually both the Lee filter and the selective soft-thresholding 

method can reduce speckle noise. but they differ in their noise smoothing ca­

pabilities. In order to prevent oversmoothing fine details. we use a moderate 

size processing mask (5 x 5) in the Lee filter. From Fig. 7.2-(b). we find 

that there is residual noise left in the homogeneous regions due to under­

smoothing. We also observe considerable speckle noise in edge regions which 

is not smoothed by the Lee filter. From Fig. 7.1-(b). we see that after a 

certain times of iterations, the speckle noise in homogeneous regions is sig­

nificantly removed. We also see that the fine details near the building are 

fairly well preserved even after so many iterations. while these are blurred 

in the image obtained from Lee filter. We are convinced that since the sP­

lective soft-thresholding method has the feature of enhancing line features. 

it can be used to detect and enhance man-made structures. The edge maps 

of the smoothed SAR images further illustrate the edge preserving ability of 

the proposed method; the fine details are preserved and the homogeneous 

regions are smoothed. 

Because there are no noise-free versions of the SAR images. we cannot use 

NISE or other similar objective measures to evaluate the noise smoothing per­

formance. Instead, we manually choose several small regions (11 x 11) from 

the images which appear to be homogeneous to evaluate the noise smoothing 

effect in these regions. The mean, standard deviation and av measures for 
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areal (dark) area2 (bright) 
image mean var Uv mean var u .. 

original 26.23 5.81 0.221 62.09 15.82 0.255 
Lee (mask=5) 25.71 1.84 0.071 62.45 3.7i 0.060 
selective 23.85 I.ii 0.074 57.52 3.66 0.064 

image 
II area3 (edge) 

mean I var I Uv 

II area4 (edge) 
mean I var I av 

original 35.80 21.61 0.604 48.88 28.63 0.586 
Lee (mask=5) 35.00 17.57 0.502 46.60 23.59 0.506 
selective 34.97 22.00 0.629 46.60 23.96 0.514 

Table 7.1: Quantitative measures for noise smoothing of extl image. 

areal (dark) area2 (bright) 
image mean var av mean var at. 

original 14.45 4.28 0.296 58.72 14.48 0.247 
Lee (mask=5) 13.88 1.61 0.116 57.76 4.12 0.071 
selective 12.93 1.09 0.084 53.87 3.05 0.057 

area3 (edge) area4 (edge} 
image mean var Uv mean var av 

original 50.95 20.01 0.393 22.06 13.29 0.602 
Lee (mask=5) 50.39 14.32 0.284 21.37 10.90 0.510 
selective 48.54 16.25 0.335 20.89 11.64 0.557 

Table 7.2: Quantitative measures for noise smoothing of industry image. 
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two of these regions are shown in Table 7.1 and Table 7.2. In addition to 

these homogeneous regions~ we also select two other regions which contain 

edge activity: the measures for these regions are also shown in Table 7.1 and 

Table 7.2. Thus for each smoothed image. we expect small variance and au 

values for the flat regions both dark and bright, and large variance and ar: 

values for edge regions. Again, we include those measures for the images 

obtained from the Lee filter for comparison. We see that for these two SAR 

image extractions~ the proposed filter performs better overall than the Lee 

filter in both noise smoothing and edge preservation. From the edge maps 

of the filtered images we see that the treatment by the proposed filter of the 

edge pixels in these images preserves and enhances the edge structures. Thus 

the edge detector can generate more accurate edge maps for the smoothed 

images. 

Fig. 7.3 shows one real SAR image which contains various image contents. 

The size of this image is 750 x 680. which is much bigger than extl and 

industry whose sizes are 256 x 256. The to~ left and the bottom-right regions 

are terrains and coast lines while the vast center region is a ice-covered river. 

We may notice there are some quite faint ice cracks in the ice region. Fig. 

7.4 shows the output of the proposed filter after 12 iterations. Speckle noise 

in the terrain regions is effectively removed and the fine details such as the 

roads are preserved. For the ice region, we can see that although it may 

be over-smoothed after so many iterations, some major ice cracks are still 
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visible. Compared with the result of Lee filter (Fig. 7.5). the result obtained 

from the selective soft-thresholding filter is quite encouraging. 

Before we end the discussion of this section. we should note that although 

the proposed filter produces good results on the test images. it has some 

limitations. First. it is capable of detecting and enhancing line features 

in the images, but it does not perform equally well on features with short 

duration such as the point targets in the extl image (see Fig. 7.l(a)). Second. 

currently the proposed method stops after having finished a certain number 

of iterations. For images with much edge activity, we perform fewer iterations 

to preserve image details while for relatively simple images, we can do more 

iterations. But for images with spatially varying complexity such as that of 

Fig. 7.3, we have to trade off the noise smoothing and detail preservation by 

using a moderate number of iterations. The issue of adapting iteration times 

to image statistics deserves further study. 

7.3 Effect of Speckle Noise Reduction on Im­
age Compression 

In this part, we evaluate the effects of speckle smoothing using the selective 

soft-thresholding method on SAR image compression. JPEG. EPIC and the 

original EZW algorithms are used in the evaluation. We also use the EPIC 

and EZW measures defined in Chapter 4 in our evaluations. Some results 

obtained in Chapter 4 are referenced here for comparison. 
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Figure 7.4: Smoothed coast and river image using the selective• soft­
thresholding method after 12 iterations. 
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Figure 7.5 : Smoothed coast ond nt~r image u.Mng 1 hf' Lee muh iphtatl,'f' filter 
with mask Mzrc 5x5. 
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Fig. 7.6. 7.7 and 7.8 show the reconstructed image quality as a function 

of bit-per-pixel rate for S.AR images before and after speckle smoothing. \YP 

see that compared with the original speckled SAR images. the performance 

of all three compression algorithms on the speckle smoothed SAR images is 

significantly improved, indicating the effectiveness of speckle noise reduction 

on SAR image compression. We may notice that for high and moderate bit 

rates, the de-speckled SAR images can be better reconstructed at a given 

rate than can the speckled images. But when the bit rate becomes very low. 

the original and de-speckled image have comparable compressibility. This is 

because for such low bit rates. only the major structures in the images are 

encoded and both the noise and the fine details are eliminated~ i.e.. these 

compression algorithms also serve as a noise filter. ~ow we see that not only 

is speckle reduction profitable for image compression but compression itself 

is also a process of noise reduction. 

Table 7.3 and Fig. 7.9 show the cross comparison of the three algorithms 

with their respective parameters. Among these three algorithms, we find 

EZ\tV still has the best performance. At the same time, it may be interesting 

to find that for the de-speckled extl and industry images, EPIC outperforms 

JPEG. As we discussed in Chapter 4, speckle noise weakens the inter-pixel 

correlation in SAR images and thus makes run-length coding based compres­

sion algorithms perform less effectively. Because the proposed speckle noise 

smoothing method suppresses the noise and enhances the inter-pixel correla-
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Figure 7.8: Comparison of compression performance on original and de­
speckled SAR images using the EZW algorithm 

tion among the wavelet coefficients. the simple wavelet based EPIC algorithm 

takes advantage of the enhanced correlation and thus is competitive with the 

JPEG standard. We can expect that the de-speckled SA.R images can also be 

better compressed by other compression algorithms, especially those wavelet 

based algorithms. 

Table 7.4 shows the run-length distribution for extl and industry before 

and after speckle smoothing. The number of runs of length shorter than 10 

is significantly reduced. Table 7.5 gives the EZW measures on de-speckled 

extl and industry images. Because the selective soft-thresholding exploits 

both the inter and intra band correlation among the wavelet coefficients, the 

self-similarity of the image elements is enhanced. Thus we can find that 
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Figure 7.9: Comparison of three compression algorithms on the de-speckled 
extl image. 

ext1 
JPEG EPIC EZ\V 

measure original smoothed original smoothed original smoothed 
bpp 1.65 1.12 1.77 0.95 1.5 1.5 

PSNR 30.32 35.48 31.65 36.25 32.09 44.07 
peak 45 35 28 26 31 9 

industry 
JPEG EPIC EZW 

measure original smoothed original smoothed original smoothed 
bpp 1.62 1.18 1.72 1.04 1.5 1.5 

PSNR 30.70 34.81 31.86 35.61 32.58 42.48 
peak 47 46 28 26 35 11 

Table 7.3: Comparisons of compression performance on de-speckled SA.R 
images. 
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Table 7.4: Comparison of the EPIC measure with test Images. (bin=20. 
level=4) 

ext1 industry 
measure original smoothed original smoothed 

D-10 8652 2733 8007 3011 
11-20 666 441 735 407 
21-30 232 188 229 177 
31-40 127 125 Ill 123 
41-50 36 63 61 84 
51-60 18 53 27 51 
61-70 4 39 12 40 
71-80 3 18 3 32 
81-90 0 25 1 30 
91-100 0 21 0 22 
>100 0 138 2 148 

Table 7.5: Comparison of the EZvV measures with test images. (bpp=1.5) 

ext1 industry 
measure original smoothed original smoothed 

IZ number 8311 6716 7777 6139 
pages 18 15 18 16 
times 6 7 6 7 

the number of isolated zerotrees is decreased and accordingly the detected 

significant coefficients are scanned for more times. 

From the above observations, we see that the changes of all these measures 

are consistent with our previous discussion. Thus1 we can conclude that the 

proposed selective soft-thresholding method can smooth speckle noise and 

enhance inter-pixel correlation. As a result, we can compress the de-speckled 

SAR images more effectively. 
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7.4 Tests on Multiple Rate Image Compres­
sion 

The purpose of the multiple rate scheme is to assign more bit budget to en­

code highlighted regions with more accuracy and spend only a small amount 

of bits to represent the background. Basically, it is difficult to tell how much 

information is adequate to represent the background or what ratio between 

the bit budgets for the two regions is appropriate for a particular applica­

tion. Therefore, in this part. we will arbitrarily set some small bit rates and 

demonstrate how the multi-rate compression scheme works for SAR images. 

Since the highlighted region(s) will be encoded with more bits in the multi-

rate case than in the fiat rate case. the representation accuracy is definitely 

higher. Thus we will mainly evaluate this scheme by the visual quality of the 

reconstructed images rather than those quantitative measures. 

The mask shown in Fig. 6.1 is used to specify two different resolutions for 

the original industry image. Fig. 7.10-(a) and (b) shows the images which 

result from the flat rate scheme and the multi-rate scheme, respectively. The 

bit budgets used in these two schemes are approximately the same. Fig. 7.10 

is reconstructed with bpp=.43. We see it is highly distorted \Vith much loss 

of information. In Fig. 7.10-(b), we see the highlighted region is still well 

represented (bpp=l.5) with acceptable visual quality. Fig. 7.10-(c) and (d) 

shows the error images of (a) and (b) as compared with the source image 

(shown in Fig. 4.1-(b)). We conclude that the highlighted region is better 

108 



(a) (b) 

(r) (d) 

Figure 7.10: ~1ulti·ra~(' and tlat rnll• rt'C'OnSLruction ror original mdustry 
image. (a) multl·rate. intrrun bpp l.o, txternal bpp=.l3, (b) flat rate 
bpp=.43. (c) e<ror imag<• of (a) (off"'' mulupi<E'd by 3); (d) error image 
of (b) (offset multlphed bv 3) . 
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(a) (b) 

(<) (d) 

Figure 7.11 Multi·ratf' and flal rau• f!'ll·onMructlon for dC>-spt'('kled mdu.'i· 
try image. (a) rnulti-rate, imcrim bppa1.5, {'Xt{'rnal bpp=.13; (b) fln1 rAt.e 
bpp=A3. (c) error omngo of (a) (olf•et mult lplird by 3); (d) error image of 
(h) (offset multiplied by 3). 
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represented at the loss of blurred background. 

Fig. i.ll gives the images which result using the same parameters. but the 

source image is the de-speckled industry (shown in Fig. 7.1). Vie see that in 

this case both the highlighted and the background regions have better visual 

qualities due to the effect of speckle smoothing. This again demonstrates 

the effects of speckle reduction. But for the background regions. the two 

reconstructed images have similar visual qualities. This is because at very 

low bit rates. both speckle noise corrupted pixels and fine details are not 

encoded. Only major structures are encoded and transmitted. 

The application of the multi-rate compression scheme. together with 

many issues about its implementation. such as the generation of the region 

masks. the specifications of the region parameters and the bit budget as­

signment strategy, is recommended for future research. Currently we find 

it is useful for images, and especially for large image browsing purposes. It 

may have some other applications. such as the monitoring of a moving target 

where the target itself is the major focus, but for which people may hope to 

collect some information about the surrounding areas. Tests in this section 

have demonstrated the effectiveness of the multi-rate compression scheme 

supported by wavelet domain region partitioning. Clearly more effort is re­

quired to answer further questions. 

111 



Chapter 8 

Conclusions 

The purpose of this thesis was to develop methods for SAR image compres­

sion. A primary requirement of such methods is that they should take into 

account the characteristics of SAR images which are different from optical 

images. Therefore. we need to adopt approaches specifically for SAR images 

to achieve the goal of SAR compression. 

In this thesis! the problem of SAR speckle reduction and compression 

have been related and studied simultaneously. Although traditionally these 

two topics have been studied separately, we have placed these two topics in 

one framework in this thesis and have highlighted their inter-connection. In 

addition to its role in image compression, the wavelet transform also serves 

as an image processing tool and has produced promising speckle smoothing 

results. The main contributions of the thesis are listed below as results and 

observations. 

The main results of the thesis are summarized below: 
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1. In examining the effect of speckle noise on S_-\R image compression. we 

have found that speckle noise tends to break the inter-pL""{el correlation 

in SAR images. As a result. algorithms which are successfully used for 

optical image compression perform less effectively for SAR images. Per­

formance measures which characterize the run-length based and tree­

structured compression algorithms are defined and evaluated. It has 

been found that speckle noise has more direct influence on run-length 

based algorithms. Thus, tree-structured compression algorithms. such 

as EZW, are recommended for SAR image compression. 

2. A wavelet domain speckle smoothing method is proposed. The wavelet 

coefficient soft-thresholding method is an effective way to remove noise. 

In order to better preserve edge information. hierarchical correlation is 

introduced which exploits both the short term inter- band and intra­

band correlation among the wavelet coefficients. According to this defi­

nition, only edge positions will have large correlation values. Therefore. 

we can protect these edge coefficients and only process other non-edge 

coefficients with soft-thresholding. By this means, simultaneous noise 

smoothing and edge preservation can be achieved. 

3. A multi-rate compression scheme is implemented for browsing large 

SAR images. This scheme partitions an image into several regions in 

the wavelet domain. Each region is assigned a different bit budget 

according to the relative importance of the information each region 
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contains. :\. highlighted region can be encoded with higher accuracy 

and only the major structures in the background regions transmitted. 

Significant savings of communication resources can thus be expected. 

The proposed noise smoothing and multi-rate compression scheme are 

applied to both synthetic speckled and real SAR images. The following 

observations have been made: 

1. The proposed speckle smoothing method can effectively remove noise in 

homogeneous areas and at the same time preserve edges. This method 

is especially capable of detecting and enhancing oriented edges in noisy 

images, but it does not perform equally well on edges with short dura­

tions, such as point targets. This speckle smoothing method has been 

compared with the well-known Lee multiplicative speckle filter, and the 

results are competitive. 

2. The selective soft-thresholding processed S.-\R images are more com­

pressible than the speckled ones. This is because the speckle filter re­

moves the noise which breaks the inter-pixel correlation in the images. 

and due to the nature of the proposed speckle filter, both the inter­

and intra- band correlation among wavelet coefficients are enhanced by 

this processing. Thus compression performance is improved. 

3. The multi-rate compression scheme can be used to represent highlighted 

regions fairly well even at low flat bit rates. This scheme, when com-
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bined with the selective soft-thresholding method~ can provide better 

visual quality for the highlighted regions. Since the EZW algorithm re­

orders wavelet coefficients according to their importance. major struc­

tures in the background can be easily picked up while finer details and 

speckle noise corrupted coefficients are eliminated at low bpp. 

This thesis reported our work on SAR image compression and notse 

smoothing using the wavelet transform. Although we have answered several 

important questions, the thesis also raises many interesting issues. Some of 

the possible directions of the future work are mentioned as follows: 

1. The reported work demonstrates that the idea of the multi-rate com­

pression scheme is possible and practical. Significant further effort is 

required to achieve the final goal. The generation and transmission 

of the region mask and the specifications of the region parameters are 

problems which need to be solved and addressed. 

2. \Ve may use other wavelet families or continuous wavelet transforms 

to do the speckle smoothing. We may hope to specify some explicit 

conditions to stop the iterative algorithm instead of the trial and error 

approach. Some well-defined criterion may also help us select more 

appropriate processing parameters. 

3. The proposed speckle smoothing method makes use of the so-called hi­

erarchical correlation to identify edges from noise. If we totally elimi-
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nate the noisy coefficients as well as the lowest resolution approximation 

sub image. we may obtain an effective wavelet domain edge detector. 

Finally. while this work demonstrates some beauties of the wavelet trans­

form in SAR image compression and processing, we have reasons to believe 

that a vast world is behind it. 
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