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ABSTRACT

Before developing an information system, the business and organizational domain

in which the information system is to be used must be examined and understood.

Creating conceptual models in the system analysis phase to faithfully represent the

domain is critical for successful information system development. Although it is widely

accepted that UML could be used both for modeling software, and for modeling the

problem domain that is supported by a system, i.e. conceptual modeling, its suitability for

the latter in the early development phase has been questioned. In fact, the semantics of its

constructs (such as object, class, attribute, link, association, and association class) are

clear with respect to software design and coding, but vague with respect to conceptual

mode1ing.

To endow UML with semantics for conceptual modeling, in this thesis, an

ontological framework of UML based on Bunge's ontology is proposed, focusing on

static aspects (class/object diagrams and links in collaborations). The framework assigns

precise ontological semantics for a core set of UML constructs (object, attribute,

class/type, link, association, state, state transition, operation, and role) in class, object,

and collaboration diagrams and is used to resolve a number of confusions in the UML

literature.
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Furthermore, in the thesis, a novel ontological metamode1' of classifiers based on

Bunge's ontology, OntoClean methodology, and Guizzardi et al.'s ontological profile is

proposed, focusing on discussing the definition, properties, and representation of the

notion of role in the object-oriented literature."· The metamodeA conforms to the
~

fundamental role features identified in the literature and handles t~e counting problem

and related role identity problem.

The study also compares conceptual models created using the metamodel to those

created using ER approach with respect to conceptual database modeling and describes

how to map a conceptual model based on the metamodel into relational database schema.

Using examples, the study demonstrates that relational database schemata generated

using our approach are more stable with respect to requirements change, and moreover a

number of real world semantics and rules can be implemented as integrity constraints of a

relational database schema.

Keywords: UML, Conceptual Modeling, Ontology, Role Modeling, ER,

Conceptual Database Modeling
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Chapter 1

Introduction

1.1 Background and Motivation

The Unified Modeling Language (UML) [1] is a language for modeling object systems

based on a unification of Booch, Rumbaugh and Jacobson's popular object-oriented

modeling methods [75]. It has been rapidly adopted as the de facto standard for modeling

such systems, primarily through the standardization efforts undertaken by the Object

Management Group (OMG).

Conceptual modeling is an essential aspect of information system development

[24]. It "is the activity of formally describing some aspects of the physical and social

world around us for the purposes of understanding and communication" [24]. It is a

fundamental discipline in computer science, playing an essential role in areas such as

database and information systems design, software and domain engineering, design of

knowledge-based systems, requirements engineering, information integration, semantic

interoperability, natural language processing, enterprise modeling, among many others.



Before developing an infonnation system, the business and organizational domain

in which the infonnation system is to be used must be examined and understood. How to

represent this domain is the focus of the system ~alysis phase of an infonnation system

development. Such a description is tenned a conceptual model. Developing a conceptual

model faithfully representing the domain it is intended to r~p'resent is critical for

successful infonnation system development. It is widely held that one important

advantage of UML is that it could be used both for modeling software, and for modeling

the problem domain that is supported by a system, i.e., conceptual modeling. However,

since UML was developed based on ideas from the implementation domains such as

databases and programming languages, the suitability of UML for modeling real world

domains in the early development phases has been questioned [3]. More generally, UML

lacks theoretical foundations for conceptual modeling. Indeed, the semantics of its

constructs (such as object, class, attribute, link, and association) are clear with respect to

software design and coding, but vague with respect to application domain modeling.

As indicated by various researchers [4][5][6][7], the UML suffers from some

deficiencies such as inconsistency, ambiguity, inadequacy, and complexity. In view of

UML's weaknesses, some researchers try to address these issues by fonnalizing the UML

through various means [8][9][10]. Fonnalization may add mathematical rigour to the

modeling language and software development process by specification, reasoning and

refmement. However, as indicated by Evennann in [11][12], all these works relate to the

internal consistency of the UML, not to its relationship to the real world domains. By not

relating UML to real world entities, they fail to endow UML constructs with the real

world meaning necessary for conceptual modeling of real-world domains.

2



An infonnation system is an artificial representation of a real-world system as

perceived by humans. Infonnation systems development is a transfonnation from some

perceptions of the real world into an imple~entation of a representation of these

perceptions. Therefore, to develop a conceptual model that faith.fully represents a real

I

world domain, we must understand in advance what exists iJ:}. the real world. In

philosophy, ontology is the study of the nature and structure of the real world. It is a

mature discipline that has been systematically developed since Aristotle. A number of

pioneering researchers (e.g., Wand [14], Wand and Weber [17][18][19][20], Wand, et al.

[15], Parsons and Wand [13], Wand, Storey, and Weber [16], Shanks, et al. [27],

Evennann and Wand [11][12][2][25], Evennann [26], Weber and Zhang [21], Opdahl and

Henderson-Sellers [28][3], Guizzardi, Herre, and Wagner [22][23]) have argued that

ontology is an appropriate foundation for identifying the fundamental constructs and the

relationships among them that need to be supported by a conceptual modeling language.

Therefore, the question our research tries to address is: Can we define an ontological

static core ofUML that has a formal ontological semantics and is suitable for conceptual

modeling? This question is answered throughout this thesis.

1.2 Objectives

In this thesis, we aim at developing an ontological core of UML for conceptual modeling

based on Bunge's ontology [30][31], focusing on static aspects. We use Bunge's ontology

because it provides a comprehensive framework for representing real-world phenomena

as well as their relationships, and it has been successfully employed to evaluate a number



of modeling languages. By mapping ontological concepts to UML constructs and vice

versa, we provide UML constructs with ontological semantics needed for modeling real

world domains. Meanwhile, the mapping can be ~sed to identify deficiencies in UML for

conceptual modeling and moreover provide corresponding solutions. The mapping can

also be used to transfer ontological assumptions about the I r,eal world to UML.

Furthermore, we employ UML notations for our ontological core and create our own

whenever necessary. However, Bunge's ontology lacks details with respect to some

important real world phenomena. Accordingly, we investigate other ontological theories

(e.g., OntoClean) and extend Bunge's ontology to incorporate additional considerations.

We conclude by evaluating the impact of our ontological core on the design of relational

database schemata in order to prescribe domain semantics.

Note that in this thesis, we do not consider all UML constructs (constructs

considered in the thesis are object, attribute, class/type, link, association, state, state

transition, operation, and role). In fact, many of them are implementation oriented

constructs (e.g., package and component) which do not have counterpart in Bunge's

ontology. Instead, the choice of the constructs in our ontological UML core is driven by

Bunge's ontology.

1.3 Thesis Organization

The remainder of this thesis proceeds as follows. Chapter 2 describes UML and its

weaknesses for the purpose of conceptual modeling. Chapter 3 presents our ontological

core based on which the deficiencies of UML are identified and corresponding solutions

4



and modeling guidelines proposed. In Chapter 4, an ontological metamodel of classifiers

based on OntoClean methodology and Guizzardi et al.'s ontological profile is proposed

and incorporated into our ontological framework Then we explore its implications for

object-oriented and conceptual modeling as well as informatidn system design and

I

implementation, focusing on discussing the definition, properties, and representation of

the notion of role in the literature. In Chapter 5, we compare conceptual models created

using our metamodel to those created using ER approach with respect to conceptual

database modeling in order to demonstrate its conceptual and practical usefulness. Finally,

the thesis is concluded in Chapter 6 by summarizing the contributions of the thesis and

listing some future works.



Chapter 2

UML and Its Weaknesses For The
Purpose of Conceptual Modeling

2.1 UML

The Unified Modeling Language (UML) [1] is an object modeling and specification

language officially defined by the Object Management Group (OMG). It includes a

standardized graphical notation that may be used to create an abstract model of a system.

While UML was designed to specify, visualize, construct, and document software­

intensive systems, it is not restricted to modeling software, has been used for modeling

hardware, and is commonly used for business process modeling, systems engineering

modeling, and representing organizational structure, among many other domains.

Object-oriented modeling languages emerged sometime between the mid 1970s

and the late 1980s for supporting analysis and design of increasingly complex application

systems using object-oriented programming languages. Up to 1994, more than 50 object-



oriented methods were developed by methodologists such that many users had trouble

finding an appropriate method that met their needs completely, leading to the so-called

method wars [76]. Aiming at developing a unify~ng modeling language, the first version

of UML (UML 1.1) was approved by OMG in 1997, based on a unification of Booch,

Rumbaugh, and Jacobson's prominent object-oriented modeling ,methods. Since then

UML has been revised with several releases (the major being UML 1.3, 1.5, and 2.0),

fixing some problems and adding new notational capabilities. The current standard is

UML 2.0, a major rewrite. However, since the development work on UML 2.0 was not

complete when this research was done and it is very similar to UML 1.5 with respect to

the parts of our concern, in this thesis, we focus on UML 1.5.

A system can be visualized from different perspectives by drawing different UML

diagrams. There are nine diagram types in UML: Class diagram, Object diagram, Use

Case diagram, Sequence diagram, Collaboration diagram, Statechart diagram, Activity

diagram, Component diagram, and Deployment diagram. A class diagram shows a set of

classifier! elements and their various static relationships, thus it is a graphic view of the

static structural model of a system. An object diagram shows a set of objects and their

relationships. It represents a static snapshot of instances of the classifiers in the

corresponding class diagram at a point in time. In contrast, a collaboration diagram shows

an interaction consisting of a set of objects and their relationships, thus it addresses the

dynamic view of a system. In Chapter 3, we will focus on discussing these three UML

diagrams.

1 In UML, a classifier is a classification of instances describing a set of instances that have structural and behavioral
features in common.



2.2 Weaknesses of UML

The interest in the object-oriented paradigm derives from some well-known claims: "the

mapping established between real-world entities and modeled objects, the capacity to

represent both entity structure and behavior, the possibility to classify them into a

taxonomy: in short, a more natural view of the world" [32, p. 891]. However, as argued

by Bonfatti and Pazzi, in spite of these expectations, only a generic idea of the object­

oriented paradigm is available based on integrating heterogeneous assumptions made in

the fields of programming languages, databases, and knowledge representation,

intermingled with a number of implementation oriented considerations. A well-founded,

complete model is still missing.

Recently, quite a few papers discussing UML deficiencies and corresponding

possible remedies or extensions have been published (e.g., [4][6][7][5]). These papers

address weaknesses of the UML from different points of view. Some of them are

concerned with system design and implementation issues of UML, whereas others more

conceptual aspects. According to them, the UML suffers from some deficiencies such as

inconsistency, ambiguity, inadequacy, and complexity. For example, [4][6][7] are

basically enumerations of the problems experienced by real developers in modeling real

software systems using UML. In [6], Simons and Graham offer a catalogue of problems

associated with using UML 1.1. Causes of these problems are various, including

ambiguous semantics in the modeling notations, cognitive misdirection during the



development process, inadequate capture of salient system properties, lack of appropriate

supporting tools and developer inexperience.

By analyzing these problems in detail, .the authors claim that some of these

problems can be addressed by increased guidance on the con&istent interpretation of
,

diagrams and the most helpful sequencing of modeling techniques; others are claimed to

require a revision of the UML and its supporting tools. Moreover, they believe that most

of these problems can be traced to the awkward transition between analysis and design.

Later in [7], Simons and Graham point out that in UML 1.3, although a number of

semantic inconsistencies in the notation were fixed, the biggest problems by far is

cognitive misdirection, or the apparent ease with which the rush to build UML models

may distract the developer from important perspectives on a system. They believe that it

is not a problem which can be fixed simply by trying to clarify the semantics of UML as

it stands; instead, large chunks of UML need to be reconstructed to take into account the

ways in which developers' minds operate.

In [5], Dori observes that the problems of UML can be classified into model

multiplicity resulting from excess diagram types and symbols, confused behavior

modeling, and the obscuring influence of programming languages. He argues that "Since

UML has evolved bottom up from 00 programming concepts, it lacks a system-

theoretical ontological foundation encompassing observations about common features

characterizing systems regardless of domain".

Without adding to the ever-expanding list of weaknesses of UML, we maintain in

this thesis that some of UML's unsuitability to be used in the early stages of information

systems development are rooted in its foundation. An ontological framework can be used



as the much-needed foundation of the object-oriented paradigm, providing principles and

criteria for effective knowledge organization from domain analysis to system design.

2.3 Formalization of UML

In view of UML's weaknesses, some researchers try to address these issues by

formalizing the UML through various means (e.g., [33][8][9][10]) in an attempt to base

the UML on a formal, mathematical foundation, such that the syntax and semantics of

UML constructs can be precisely defined. Though the UML standard provides a rich set

of syntactically well-defined modeling notations, the semantics are described informally

using a mixture of diagrams and natural language text. The informal descriptions can lead

to confusion over the appropriate use and interpretation of the notations.

Formalization may add mathematical rigour to the modeling language and

software development process by specification, reasoning and refinement. However, as

indicated by Evermann in [11][12], most of these works relate to the internal consistency

of the UML, not to its relationship to real world domains. Their aim is to achieve meaning

by translating the UML to more formal languages such as Z, rather than by determining

their relations to real world entities. By not relating UML to real world entities, they fail

to endow UML constructs with the real world meaning necessary for conceptual

modeling of real-world domains.

2.4 Conceptual Modeling Using UML

10



Conceptual modeling is an essential aspect of information system development.

According to Wand et al. [15], an information system is an artificial representation of a

real-world system as perceived by humans. They then argue that information systems

development is a transformation from some perceptions of tke real world into an

implementation of a representation of these perceptions. C~nceptual modeling is

especially important in the analysis stage of information system development, when

abstract models of the represented system and its organizational environment are created.

Such models are termed conceptual models. A conceptual model should reflect

knowledge about the application domain rather than about the implementation of the

information system.

Understanding and describing the real world is the first step in the information

system analysis and design (ISAD) process. The result, a conceptual model, serves as a

medium for communicating and reasoning about the real world domain as well as input

for the next step in the ISAD process - system design. System design is the process of

designing and describing the information system, as opposed to the real world. The

resulting design models differ from conceptual models in reflecting implementation

considerations.

It is widely held that one important advantage of UML is that it can be used both

for modeling software, and for modeling the problem domain that is supported by a

system, i.e., conceptual modeling. However, since 00 techniques were originally

motivated to address the issues of coding and software design [28], the suitability of the

UML for conceptual modeling of real world domains in the early development phases has

been called into question. For example, in [28], Opdahl and Henderson-Sellers indicate

11



that within requirements engineering (RE), 00 constructs and their use appear less well

understood and well defined and their value is controversial. In fact, in [38], Woodfield

argues using eight examples that significant i?Ipedance mismatches 2 exist between

conceptual modeling concepts and the concepts of object-oriented programming. For

example, there are significant differences between the notions ~f class in conceptual

modeling and class/type in object-oriented programming languages. In a conceptual

model, to be considered members of a class, all objects of the class must share common

properties. Besides, each object can have additional properties that are not common to

others. Moreover, objects can migrate between classes, i.e., they may become and cease

to be members of different classes. In a typical object-oriented programming language

(such as C++) however, an object is an instance of a class. It has only those properties

defined for the class, and objects cannot move from class to class.

These situations must be taken seriously since many authors have argued that RE

is critical for successful information system development [34][35][36] - the cost of

repairing requirements errors during maintenance may be two orders of magnitude greater

than that of correcting them during RE [37].

Moreover, in [25], Evermann and Wand regard UML as an object-oriented

information system design language whose meaning of constructs is well defmed with

respect to software concepts, as opposed to a conceptual modeling language whose

meaning of constructs should be defined in terms of application domain concepts. As a

result, one of the detrimental consequences of using UML for conceptual modeling would

2 Originally developed for electrical power, impedance matching is the practice of attempting to make the output
impedance of a source equal to the input impedance of the load to which it is ultimately connected, usually in order to
maximize the power transfer and minimize reflections from the load. Here impedance mismatch is used to describe
the conceptual mismatches between conceptual modeling concepts and object-oriented programming concepts.

12



be "IS development projects might begin without explicitly modelling the application

domain and instead must rely on implicit assumptions of developers." [25, p. 147]

To sum up, although it is desirable for U¥L to be used as a conceptual modeling

language, this expectation is problematic because ofUML's implementation based origin.
,

To enable the use of UML for conceptual modeling, at least a ~ore set of its model

constructs must be endowed with real world semantics, leading to an ontological core of

UML.

13



Chapter 3

An Ontological Core of UML For
Conceptual Modeling

3.1 Ontology and Ontological Evaluation of
Conceptual Modeling Languages

"Any representation of knowledge and meaning inside a computer must embody some

philosophical assumptions. Yet philosophers have been debating such issues for centuries

without reaching fmal agreement. To avoid the controversy, many people working with

computers try to ignore it. But to write a program without analyzing the issues is to make

a blind choice instead of a reasoned commitment" [39, p. 1].

In philosophy, ontology is the most fundamental branch of metaphysics. It is a

mature discipline that has been systematically developed since Aristotle. The purpose of

ontology "is to study the most general features of reality" [44]. It aims to answer

questions such as what kinds of entities exist in the world? What are the properties of a

14



thing and how they are related to the thing itself? Are there properties of properties? Can

change occur without a changing thing? There are a number of ontological theories, each

with specific assumptions about what is perceived. to exist in reality.

Until recently, research in ontologies related to the compliter science community

was limited to Artificial Intelligence and Knowledge Engineering fi~lds (e.g., [77]). Over

the last few years, however, ontologies have become influential in the Information

Systems discipline, transferring the research focus to topics related with system analysis

and design, enterprise systems and web services. Such research is oriented to two well­

differentiated lines: ontologies as technologies of information systems (covering the

ontology-driven information systems that use domain, task and application ontologies)

and the ontological models of information systems (ontologies as abstract models

supporting the core of the information system discipline and contributing to the

improvement of reality-modeling techniques). The research presented in this thesis

follows the second line.

A number of researchers (e.g., Evermann and Wand [11][12][2][25], Parsons and

Wand [13], Wand [14], Wand, et al. [15], Wand, Storey, and Weber [16], Wand and

Weber [17][18][19][20], Weber and Zhang [21], Guizzardi, Herre, and Wagner [22][23],

Guizzardi [45]) have argued that ontology is an appropriate theoretical foundation for

identifying the fundamental constructs and the relationships among them that need to be

supported by a conceptual modeling language. Many of them base their work on Wand

and Weber's adaptation of Mario Bunge's ontology [30][31] (i.e., BWW model) to the

Information Systems field. The idea of ontological evaluation of modeling languages

developed by Wand and Weber is to find a mapping from ontological concepts into
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language constructs and vice versa [19]. The first mapping shows how ontological

concepts can be represented by the language and is therefore called representation

mapping. The latter shows how language eleme~ts are interpreted ontologically and is

called interpretation mapping. Based on these mappings, Wand aJld Weber identify four

ontological discrepancies that may undermine the ontologiJa completeness and

ontological clarity of constructs in a conceptual modeling language:

- Construct deficit: an ontological concept is not represented by any modeling

construct - usually a problematic situation.

- Construct overload: a modeling construct corresponds to several ontological

concepts - usually a problematic situation.

- Construct redundancy: several modeling constructs represent the same ontological

concept - not necessarily problematic.

- Construct excess: a modeling construct does not represent any ontological concept

- only problematic if this construct represents phenomena in the real world.

The mappings between ontological concepts and conceptual modeling language

constructs can be used to transfer principles and rules from ontology to the modeling

language. If there are ontological rules or constraints that relate two or more concepts,

then by virtue of the mapping, these same rules or constraints must also apply to the

modeling language. Thus, the ontological mappings can lead to modeling rules and

guidelines on how to use the conceptual modeling language to model real world domains

[11][12].
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Wand [14] and Parsons and Wand [13] apply the main concepts of Bunge's

ontology to examine principles of object-oriented concepts. They distinguish

representation related constructs from implemen.tation related ones. Parsons and Wand

derive guidelines for using them in systems analysis. They argue tklat "the key to applying

object concepts in systems analysis successfully is viewing obje,cts as representation,

rather than implementation, constructs. While many object concepts may be common to

representation and implementation, applying them with an implementation focus during

analysis may have undesirable consequences" [13, p. 105].

In [16], Wand et al. employ Bunge's ontology to analyze the semantics of the

relationship construct used in Entity Relationship (ER) diagrams. They derive rules for

using relationships in real-world modeling and suggest ways in which to resolve

ambiguities found in the ER language.

More recently, Opdahl and Henderson-Sellers analyze and evaluate OML (Open

Modeling Language) and UML as languages for representing concrete problem domains

using Bunge's ontology and BWW model [28][3]. Their analysis and evaluation show

that "many of the central UML constructs are well matched with the BWW models" [3, p.

43], and at the same time, they also suggest several concrete improvements to the UML

metamodel.

In [46], Rosemann and Green argue that although Bunge's ontology and BWW

models have been applied successfully to evaluate a number of modeling techniques, the

usefulness of BWW ontological models suffers from three shortcomings, Le., lack of

understandability, lack of comparability, and lack of applicability. They therefore
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propose to develop a metamodel as a semi-fonnal description of the BWW constructs by

selecting an extended Entity-Relationship model as the metalanguage.

Moreover, in [2], using UML as an ex,!mple, Evennann and Wand propose a

method based on Bunge's ontology to restrict the syntax of a modeling language such that

impossible domain configurations cannot be modeled.

In [15], Wand et al. explain why they choose Bunge's ontological works as (one

of) the base for conceptual modeling: "First, it is oriented towards systems. Second, it is

intended to deal with a wide range of systems, from physical to social. Third, it is well

fonnalized, both in defming the concepts and outlining the premises and in providing a

consistent notation. Finally, it draws upon an extensive body of prior work related to

ontology". We believe Bunge's ontology a good candidate for the purpose because it

provides an ontological semantic framework for a conceptual modeling language, which

can be used to represent static and dynamic aspects of real-world systems.

Besides Bunge's ontology, other researchers also employ other ontologies to

analyze and evaluate UML. In [22], Guizzardi, Herre, and Wagner use the General

Ontological Language (GaL) and its underlying upper level ontology to evaluate the

ontological correctness of a UML conceptual model and develop guidelines for how

UML constructs should be used in conceptual modeling. They focus on evaluating class,

object, powertype, association, aggregation/composition, and suggest some proposals to

extend UML for more satisfactory treatment of aggregation.

As indicated above, for conceptual modeling, Bunge's ontology is an appropriate

theoretical framework for identifying the fundamental constructs, as well as their

relationships, that need to be supported by a modeling language. It should be pointed out
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that identifying relationships among modeling constructs is as important as identifying

those constructs. However, most of the work above based on Bunge's ontology focuses

on evaluating aspects of a modeling language by J?lapping only ontological constructs into

those of the modeling language and vice versa, ignoring the equal~ important mapping of

relationships among constructs.

In this Chapter, we set the foundation for our approach by adopting the ontology

of Mario Bunge [30][31] to establish the semantic framework of our ontological UML

core. Our research is based on the assumption that endowing core constructs of UML

with precise ontological semantics and rules for modeling static and dynamic aspects of

real world domains will mitigate to some extent the shortcomings of the UML's

capability of real world modeling. The choice of the constructs in our ontological UML

core is driven by Bunge's ontology, which is discussed in detail in the next section.

3.2 Bunge's Ontology

Bunge's Treatise on Basic Philosophy devotes two volumes to ontology, in which he

articulates a set of high-level abstract constructs that are intended to be a means of

representing all real-world phenomena [30][31] [40]. In this thesis, we focus on discussing

static issues of Bunge's ontology. In particular, we summarize and discuss in this section

Bunge's notions of thing and construct, property and attribute, kind and natural kind, law

and law statement, functional schema, state and event, history and coupling, as well as

aggregate and system.
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3.2.1 Thing and Construct

In Bunge's ontology, there are two kinds of objects: concrete things or simply things, and

conceptual things or constructs. The world is viewed as composed of things. Constructs
4

(e.g., mathematical concepts such as numbers, sets, and function~) are only creations of

the human mind which take part in our representations of the real world. The totality of

things is denoted e. Note that, no matter whether a thing perceived as a specific object

by a modeler exists in reality or only in hislher mind, we say that it is a concrete thing.

For example, we consider a person as a thing, as well as a unicorn.

All objects have properties. If the objects are concrete things, their properties are

called substantial properties (or simply properties). If the objects are conceptual things,

the words "attribute" and "property" are exchangeable because a conceptual thing has all

the properties we consistently attribute to it. A substantial property is a feature that some

things possess even if we are ignorant of this fact. On the other hand, an attribute is a

feature we assign or attribute to a conceptual thing modeling some concrete things. An

attribute mayor may not represent a substantial property. It may also do it well or poorly.

The totality of all the substantial properties is denoted JP> , and that of all the attributes is

denoted A.

3.2.2 Property and Attribute

All things possess properties. Properties cannot have properties. Properties do not exist

independent of things, i.e., every property is possessed by some thing or other. Some

20



properties, such as Height and Age of a person (which is a concrete thing), are inherent

properties of things, called intrinsic properties. Other properties, such as Solubility and

Being Enrolled In A University, are properties o~ pairs or, in general, n-tuples of things,

called mutual properties. In essence, a mutual property of a thing is a property that has

meaning only in terms of some other thing or things in the world. ote that, throughout

this thesis, definitions and postulates taken directly from Bunge's ontology are indicated

by "*".

Definition 3.1*: For a thing x e e, the set ofall the properties ofthing x is denoted as:

p(x)={PIPeJP> /\ x possesses P}.

Humans conceive of things in terms of models of things (which Bunge calls

functional schemata). Such models are conceptual things, thus constructs. Attributes are

characteristics assigned to models of things according to human perceptions. We may use

different models for the same thing, and therefore assign different sets of attributes to the

same thing. Thus humans conceive of properties of things in terms of the attributes of

their conceptual models, and properties are known to humans only as attributes. In a

given model of a thing, usually not every property of the thing will be represented as an

attribute. Therefore, every functional schema only reflects partial aspects of a thing.

Likewise, an attribute in a given model mayor may not reflect a substantial property. For

example, the Height of a person (which is a model of a concrete thing) is an attribute that

reflects a substantial property of the concrete thing. The Name of a person (which is a
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model of a concrete thing) does not represent any specific substantial property of the

concrete thing. It is an attribute that stands for the individual as a whole. Sometimes an

attribute is used to represent one or more properti.es that we do not fully understand, e.g.,

Intelligence Quotient (IQ).
,

The representation ofproperties by attributes can be formalized as follows:

Postulate 3.1*: Let JP> be the set of all properties and A the set of all attributes. The

representation of properties by attributes is via a function p: JP> ~ 2A that for each P E JP> ,

pep) is a set of attributes A E 2A such that for any a EA, a represents P .

From postulate 3.1, it is clear that different attributes may be used to represent the

same property. In Bunge's ontology, attributes can be formalized in a predicate form or in

a functional form. The functional form is

A :~ x ... x 1'" x ~ x ... X Vm ~ V

where T;(i = l, ... ,n) represents a set of things similar in some respect and VjU = l, ... ,m)

as well as V represents a set of values such as time instances, currency, etc. Since an

intrinsic property of a thing depends only on the thing itself whereas a mutual property

depends on other thing or things, therefore if n = 1 , then A represents an intrinsic

property; otherwise, if n ~ 2, then A represents a mutual property. For example, the

intrinsic property Age of persons can be represented as Age: P ~ I , where P is the set

of persons and I the set of positive real numbers. The mutual property StartDate held

between employees and employers can be represented as StartDate: E) x E2 ~ D , where

22



El is the set of employees (or employers), E2 the set of employers (or employees), and

D the set of dates. Here, attribute function Age represents a general intrinsic property, or

intrinsic property of a set of things, and each-value of Age for a particular person

represents an individual intrinsic property of that person. Simil~rly, attribute function

StartDate represents a general mutual property shared by the sets of employees and

employers, and each value of StartDate for a particular pair of employee and employer

represents an individual mutual property shared by the employee and employer. In this

thesis, we only consider functional form of attributes. Any general property must be

representable as (at least) a functional form attribute.

We now define the notion of scope of a property:

Definition 3.2*: The scope of a property P denoted by fjJ(P) is the collection of things

possessing it:

fjJ(P)={XIXE8 /\ PEp(X)}.

3.2.3 Composition, Emergent Property, and Hereditary
Property

A thing may be composed of other things. We denote x C z and y C z if things x and y

are parts of thing z , z is thus a composite thing. Here, the part of relation C is a strict

partial ordering, i.e., an asymmetric, irreflexive, and transitive relation, therefore nothing

counts as part of itself.
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V'x:-.(xCx)

V'x,y: (x C y) --+ -,(y C x)

V'x,y,Z: (x C y) 1\ (y C z) --+ (x C z)

Now we introduce the notion of composition:

Definition 3.3*: Let x E a be a composite thing, then the composition of x is the set of

its parts, i.e.,

C(x) = {yly Ea 1\ yCx}.

Properties of a composite thing are of two kinds: hereditary properties that also

belong to some component thing(s) of the composite thing, and emergent properties that

characterize the composite thing as a whole. A fundamental ontological assumption is

that the set ofproperties of a composite thing is not equal to that of all the properties of its

parts, i.e., p(z) * p(x)u p(y) . Instead, a composite thing must have at least one

emergent property that characterizes the composite thing as a whole. An emergent

property can be either intrinsic or mutual.

Definition 3.4*: Let x E a be a composite thing. V'P E p(x), P is a hereditary property

of x iff ::3y: yE C(x) , such that PE p(y). Otherwise, P is an emergent property of x.

3.2.4 Kind
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An arbitrary collection of things need not share a given set of properties. When they do,

however, and no thing outside the collection has the properties of interest, the collection

is called a kind.

Defmition 3.5*: Let k: i' ~ 2° be the function assigning to each.nonempty set IR. E 2lP

of properties the set k(IR.) = n g;(P) of things sharing the properties in IR.. This value
PeR

k(IR.) is called the IR. - kind of things.

3.2.5 Law, Law Statement, and Natural Kind

A law is any condition or restriction on properties of a thing. A law statement is any

restriction on the possible values of attributes of models of things and any relation among

two or more attributes. The relation between laws and law statements is similar to that of

properties and attributes discussed above: laws restrict and interrelate properties, whereas

law statements restrict and interrelate attributes representing these properties, law

statements of models of things represent laws of things. Laws are also properties in a

broad sense. The totality of laws obeyed by things is denoted by lL, and we denote the

totality of laws possessed by a thing x lL(x). Since a law is also a property, according to

definition 3.2, the scope of a law L E lL is the collection of things obeying it:

g;(L)={xlxE0 /\ LElL(x)}.

A kind of things is determined by a set of properties. A natural kind, however, is

determined by the laws the things obey. Indeed, the deepest method of grouping things is

25



(.'

by the laws they obey. As Bunge states, "When laws are made the fundamental divisions

of a set of things, the resulting kinds are maximally natural - or, in Aristotelian jargon,

accident is then unlikely to prevail over essence..The outcome is a set of natural kinds or

species" [30, p. 145].

Definition 3.6*: Let kL : 2L
~ 2° be the function assigning to each IL' c IL of laws the

set kL (IL ') =LtJ.. 97(L) of things sharing the laws in IL'. This value kL (IL ') is called the

IL '- natural kind.

Note that, since a law restricts and interrelates a set of properties and a natural

kind of things is determined by a set of laws, then every thing in the natural kind must

also obey all the properties restricted and interrelated by the laws. In this sense, a natural

kind K also determines a set ofproperties, denoted P(K).

3.2.6 State, Conceivable State Space, and Lawful State Space

We do not handle directly concrete things but their models. The attributes of a model (or

functional schema, see below) of things represent properties of the things. They are also

called state functions because their values contribute to characterizing or identifying the

states of the things of interest can be in. The number of attributes of every functional

schema of things is finite.
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Dermition 3.7: For a natural kind Kc e, if the sequence of state functions of its

functional schema is IF =< F; , F2 , • •• , Fn >: K x M ~ V; x~ x ... X Vn , then the state of a

thing xEK at tEM is IF(x,t) =<F;,F2 ,· .. ,Fn >.(x,t) =<F;(x,t),F2 (x,t), ... ,F',,(x,t».

Here, set M and codomains V; (1 ~ i ~ n) are unspecified. In the simplest cases,

M is the set of all possible time instances. IF is called the total state function for K and

each component of IF (F;, 1~ i ~ n) is called the i th state function for K . Each

component F; :K x M ~ V; (1 ~ i ~ n) of IF is supposed (not necessarily) to represent a

general property, or property of things of K. Each value of F; at a particular point (x, t)

(x E K and t EM) is supposed to represent an individual property, or property of thing

x at t.

For example, consider natural kind Person. A simple total state function for

Person that has only one state function can be defined as IF =< Status >: Person x M ~

{Unborn, Alive, Dead, BecomeGod} , where M is the set of all possible time instances

and V; = {Unborn, Alive, Dead, BecomeGod} . For any person x E Person and any time

instance t EM, the state of x at t is IF(x, t) =< Status(x, t) > . In another example, a total

state function for natural kind Employee can be defined as

IF =< Salary, StartDate >: Employee x Employer x T ~ R x D , where T the set of all

possible time instances, M = Employer x T, V; = R the set of real numbers, ~ = D the

set of dates. For any employee x E Employee and (one of) its employer(s) yE Employer,
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the state of x at any time instance t E T is IF(x,y,t)

StartDate(x,y,t) >.

< Salary(x,y,t),

An ontological hypothesis is that, every thing is - at a giv1n time - in some state

~

or other. "Every theoretical model of a thing is concerned with representing the really
I

possible (i.e., lawful) states, and perhaps also the really possible (lawful) changes of state,

of the thing" [30, p. 131]. Therefore, we can identify two kinds of law statements: state

law statements, which specify lawful states that a thing could actually stay in, and

transformation law statements, which specify lawful transfonnations of a thing from a

lawful state to another lawful state. While state law statements reflect the static

characteristics of a thing, transfonnation law statements reflect its dynamic ones.

More fonnally, a state law statement can be viewed as a mapping Ls from the

possible states of things in a given functional schema into the set {lawful, unlawful}; a

transfonnation law statement can be viewed as a mapping LT from a set of tuples

< s, S ' >, where sand s' are lawful states of the things in a given functional schema, into

the set {lawful, unlawful}.

For a natural kind Kc E>, the conceivable state space of things of K (denoted

S(K) ) in a given functional schema can be represented as S(K) =

{< vi' v2 "'" vn >E ~ X V2 x ... x Vn } • However, not every state in a conceivable state space

is really possible. Let ILs be the set of state law statements shared by things of K , we can

use SL (K) to denote the lawful state space of things of K determined by ILs : SL (K) =
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SL (K) s;;;;; S(K). Note that, given a functional schema of K, every thing in K has the

same conceivable state space as S(K) and the same lawful state space as SL (K) .

3.2.7 Functional Schemata

In Bunge's ontology, models of things are called functional schemata. Any natural kind

of things can be modeled by some functional schema.

Defmition 3.8: Let K be a natural kind. A functional schema X K of K is a certain

nonempty set M , together with a fmite sequence IF of state functions on K x M each of

which is supposed to represent a property of P(K) , a finite set IL s of state law

statements of K on S(K), and a finite set IL T of transformation law statements of K on

X K =df<l M,IF,ILs,ILT 1>, where

IF=<F;,F2 ,···,Fn >:KxM~ V; xV2 x ... xVn

ILs = {Ls :S(K) ~ {lawful, unlawful} }

ILT = {LT: SL(K)xSL(K) ~ {lawful, unlawful} }.

As discussed in section 3.2.6, in a natural kind K with a given functional schema

X K' all things have the same conceivable state space and the same lawful state space.

Moreover, they obey the same sets of state law statements and transformation law
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statements. Nonetheless, every thing has its unique state history. Vx E K , its state history

is detennined by the function IF(x) = <F;,F2 , ... ,Fn > (x) = <F;(x),F2 (x), ... ,Fn (x) >

~

A thing may have multiple functional schemata, reflectin!i different views of the

same thing. Functional schema in Bunge's ontology is a cruciall notion because the

definitions of other notions ofBunge's ontology like state, state space, event, event space,

etc. ofthing(s) depend on the functional schema used to model the thing(s). Since a thing

may have different functional schemata, it thus may have different sets of definitions of

state, state space, event, event space, etc.

For example, consider natural kind Person in section 3.2.6 again. A simple

functional schema Xperson of Person can be defmed as <l M,IF,lLs,lLT t> where M is the

set of all possible time instances, IF =< Status >: Person x M ~ {Unborn, Alive, Dead,

BecomeGod} , lLs = {{ « Unborn >, lawful), « Alive>, lawful), « Dead>, lawful),

« BecomeGod >, unlawful) }}, and lLT = {{ ((<Unborn >, < Alive», lawful),

((< Unborn >,< Dead »,unlawful), ((< Alive >,< Dead »,lawful), ((< Alive >,

< Unborn», unlawful), ((<Dead >, < Unborn», unlawful), ((<Dead >, < Alive»,

unlawful)}}. From lLs ' it can be detennined that, for a person x E Person and a time

instance t EM, it may happen that IF(x,t) =< Alive>, but for any x E Person and t EM,

it cannot happen that x be in state < BecomeGod > at t. Moreover, from lLT , it can be

detennined that, for a person x E Person and a time instance t EM, it may happen that

x changes his/her state from < Alive> to < Dead> at t, but for any x E Person and
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t EM, it cannot happen that x changes hislher state from < Dead> to < Alive> at t in

hislher state history.

3.2.8 Event and Transformation

So far we have considered static aspects of thing(s). In the real world, all things are

changeable. Change may be qualitative (things acquiring or losing general properties) or

quantitative (one or more individual properties of things are changed). Every qualitative

change is accompanied by a quantitative change. We may conceive quantitative change of

a thing simply as a transition from one state to another state. The net change of a thing

from state s to state s' is representable by the ordered tuple < S, Si> called event:

Defmition 3.9*: Let K be a natural kind with functional schema X K • An ordered pair

< s,s' > where s, S' E S(K) represents a conceivable event of things in K.

The conceivable event space of things in K (denoted E(K)) in functional schema

X K can be represented as E(K) = {< s,s' >1 s,s' E S(K)}. However, not all events in

definition 3.9 are really possible (lawful) because (1) S(K) is itself conceivable state

space of K, and (2) even if sand s' are lawful, the transition from s to s I might not be

lawful. In the example of section 3.2.7, both < Dead> and < Alive> are lawful states of

natural kind Person, but the transition from < Dead> to < Alive> is not possible. To
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define the notion of lawful event, we need the notion of a lawful transformation, Le.,

transformation of the lawful state space Sn.,(K) compatible with the law statements of K:

Defmition 3.10: Let K be a natural kind with functional schema
4

X K. The set of lawful

transformations of SL(K) into itself is the set of functions GL(K): j

We can now define the notion of lawful event:

Defmition 3.11*: Let SL (K) and GL (K) be the lawful state space and the set of lawful

transformations of natural kind K with functional schema X K respectively. A lawful

event of things in K is represented by the ordered pair < s, S ' >, where s, S' E Sn., (K)

and 3g E GL(K) , such that s' = g(s).

From defmition 3.11, the lawful event space of things in K (denoted EL (K» in

functional schema X K can be represented as En.,(K) = u {< S,S' >E Sn.,(K)21
geGL(K)

s'=g(s) }.

3.2.9 History and Coupling
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Every thing is changeable. Changes of states manifest a history of a thing:

Defmition 3.12*: Let K be a natural kind with functional schema X K. 'ix E K , the

history of x is the set of ordered pairs: hex) ={< t,IF(x,t) >1 t E Mt.

The notion of history allows us to determine when two things are interacting with

each other thus bonded or coupled to each other. Intuitively, if two things interact, then at

least one of them will not be traversing the same states as it would if the other did not

exist. Let hey Ix) denote the history of y acted on by x, we have:

Defmition 3.13*: A thing x acts on a thing y, denoted x [> y, if hey Ix):#; h(y).

Postulate 3.2*: Every thing acts on, and is acted upon by other things.

Defmition 3.14*: Two different things x and y are coupled (or bonded), denoted Bxy,

iff (x [> y) or (y [> x) . They interact iff each acts upon the other, i.e.,

(x [> y) and (y [> x) .

For example, consider a husband and a wife who are married to each other, their

histories are not independent. I.e., the state history of the husband is not the same as that

he would traverse if he were single (and vice versa). As a result, they are coupled.
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Couplings are also mutual properties. Different from the mutual properties we

discussed in section 3.2.2 that do not affect their relata (e.g., "being greater than"), two

things x, y are coupled iff some changes in x a~e accompanied or preceded or followed

by some changes in y. We call couplings binding mutual properties and the mutual

properties discussed in section 3.2.2 nonbinding mutual properties. Note that, only a

general nonbinding mutual property can be represented by an attribute function in a

functional schema.

The interaction between two or more things may give rise to a number of

semantically related nonbinding mutual properties. For example, the interaction between

an employee and an employer may incur a set of nonbinding mutual properties such as

Salary, StartDate, and OfficePhone etc. Moreover, the effects of an interaction between

two things may be lasting. Thus if two things interact for a while and then cease to do so,

they are still coupled.

The collection of couplings among members of a set of things can be defined as:

Defmition 3.15*: The bondage of a set T of things is the set IBr of all couplings among

members of T .

3.2.10 Aggregate and System

A composite thing is a thing composed of component things. A composite thing can be

either an aggregate, or a system:
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Deimition 3.16*: Let x be a thing composed of parts Xi' 1~ i ~ n . Then X is an

aggregate iff its history h(x) equals the union of the partial histories h(Xi)' Otherwise x

is a system.

Corollary 3.1*: Let x be a composite thing with composition C(x). Then x is a system

iffthe bondage of C(x) is not empty, i.e., IffiC(x) "# <1>.

3.3 Ontological Foundation of UML For Conceptual
Modeling

In this section, we assign ontological semantics for conceptual modeling to UML by

mapping ontological constructs discussed in section 3.2 to a core set of UML model

elements and vice versa, focusing on static aspects. We refer to the OMG UML

specification 1.5 through the mapping. We defend that, within current Bunge's

ontological framework, our mapping is the most straightforward. If we want to achieve a

more consistent mapping, then a lot of modifications to Bunge's ontology, especially the

internal structure of Bunge's constructs, will be needed, which is out of the scope of the

thesis.

Moreover, in UML, a classifier is a classification of instances describing a set of

instances that have structural and behavioral features in common. There are several kinds

of classifiers, including class, interface and data type, etc. In this thesis, we only consider

classes.
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3.3.1 UML Object

In UML, "An object represents a particular instance of a class. It hps identity and attribute

values." [1, p. 3-64] "An object is an instance that originates from a class, it is structured

and behaves according to its class. All objects originating from the same class are

structured in the same way, ... An object may have multiple classes (i.e., it may originate

from several classes). In this case, the object will have all the features declared in all of

these classes, both the structural and the behavioral ones." [1, p. 2-109] Since real world

things are represented in UML conceptual models as objects, we propose that Bunge­

thing is modeled as UML-object and UML-object models only Bunge-thing. Note that, in

software design, not every UML-object corresponds to a Bunge-thing. For example, in

Figure 3.1, as argued in [25], instead of being a Bunge-thing, Job is a collection of mutual

properties (Salary, StartDate etc.) shared by an employee and an employer. Therefore it

should not be modeled as a UML-object.

Principle 1: In a UML conceptual model, every object models a Bunge-thing. Conversely,

every Bunge-thing in the domain is modeled as a UML object.

It is clear from the UML specification quoted above that, in UML, class is a more

fundamental notion than object: an object is only a particular instance that originates from

a class, and all objects originating from the same class are structured and behave in the

same way. This view reflects UML's implementation-oriented origin from object-oriented
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programming languages. In a c++ program, we first have classes. Objects are then

created from classes at run-time and behave exactly as specified by classes. Objects

cannot move from class to class. In contrast, i.n Bunge's ontology, things are more

fundamental than their classification: they exist in the real world. ~hings can be classified

I

(into kinds and natural kinds, which are sets) according to some properties or laws they

share. Therefore, in any classification of things, every thing has commonalities (the set of

shared properties or laws) and idiosyncrasies (the set of unshared properties or laws).

Moreover, things can migrate between natural kinds. These differences demonstrate the

impedance mismatches [38] between UML and Bunge's ontology.

3.3.2 UML Attribute

In UML, "An attribute is a named slot within a classifier that describes a range of values

that instances of the classifier may hold." [1, p. 2-24] Since in Bunge's ontology, general

(intrinsic and nonbinding mutual) properties are represented by attribute functions,

therefore we propose that Bunge-attribute function is modeled as UML-attribute and

UML-attribute models Bunge-attribute function.

Principle 2: In a UML conceptual model, every attribute of a class/type models a Bunge-

attribute function representing a general (intrinsic or nonbinding mutual) property.

Conversely, every Bunge-attribute function representing a general (intrinsic or

nonbinding mutual) property in the domain is modeled as an attribute of a class/type.
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Note that, in Principle 2, if attributes of a class/type model Bunge-attribute

functions which represent general intrinsic properties, then that class/type is an "ordinary"

class/type, instances of which are objects wh!ch models things in the real world;

otherwise, if the attributes model Bunge-attribute functions which represent general

I

nonbinding mutual properties shared by things, then that class/type is an association class,

instances of which are links connecting objects modeling those things.

3.3.3 UML Class/Type

In UML, "A class is a description of a set of objects that share the same attributes,

operations, methods, relationships, and semantics." [1, p. 2-26] "A Type is used to

specify a domain of objects together with operations applicable to the objects without

defining the physical implementation of those objects. A Type may not include any

methods, but it may provide behavioral specifications for its operations. It may also have

attributes and associations that are defined solely for the purpose of specifying the

behavior of the type's operations." [1, p. 3-49] Since a Bunge-functional schema models

things of a natural kind using a set of attribute functions and law statements, therefore we

propose that Bunge-functional schema is modeled as UML-class/type.

Principle 3: In a UML conceptual model, every Bunge-functional schema in the domain

is modeled as a UML class/type. However, not every UML class/type models a Bunge-

functional schema.

38



Person

For example, Figure 3.1 is a UML conceptual model adapted from [42, p. 159]. In

Figure 3.1, classes Company and Person model two functional schemata whose natural

kinds are sets of companies and persons respectiv~ly. However, association class Job does

not model any functional schema because its instances are links,4not objects. In fact, in

I

Chapter 4, we will see that the attributes of Job (Salary and StartDat~) models two Bunge-

attribute functions representing two general nonbinding mutual properties shared between

employees and employers. Salary and StartDate are in fact the only attribute functions

owned by functional schemata Employee and Employer which, in Figure 3.1, are

represented as named places.

Company �I-·--------·~I
1....- ..... employer employee 1....- .....

Fig. 3.1. Attributes of an association class

3.3.4 UML Link and Association

In UML, "A link is a connection between instances. Each link is an instance of an

association, i.e., a link connects instances of (specializations of) the associated

classifiers." [1, p. 2-110] "A link is a tuple (list) of object references. Most commonly, it

is a pair of object references." [1, p. 3-84] "An association defines a semantic relationship
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between classifiers. The instances of an association are a set of tuples relating instances of

the classifiers. Each tuple value may appear at most once." [1, p. 2-19] "An association

declares a connection (link) between instances of the associated classifiers (e.g., classes)."

[1,p.2-64]

I

Since Bunge-individual nonbinding mutual property conn~cts things which are

modeled as objects in UML, we have the following principle:

Principle 4: In a UML class or object diagram, every link between two or more objects

models a tuple of values representing semantically related Bunge-individual nonbinding

mutual properties shared between things modeled by these objects. Conversely, every

tuple of values representing semantically related Bunge-individual nonbinding mutual

properties shared between two or more things in the domain is modeled in a UML class or

object diagram as a link between objects modeling these things.

As a result, instances of an association (i.e., links) in a UML class diagram are

more than "a tuple (list) of object references" [1, p. 3-84]. Moreover, from Principle 2,

each Bunge-attribute function representing a general nonbinding mutual property is

modeled as an attribute of a UML association (or association class), thus we have

Principle 5:

Principle 5: In a UML class diagram, every association between two or more

classes/types models a tuple of Bunge-attribute functions representing semantically

related Bunge-general nonbinding mutual properties shared by things that are modeled as
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instances of these classes/types. Every association must have at least one attribute.

Conversely, every tuple of Bunge-attribute functions representing semantically related

Bunge-general nonbinding mutual properties sha~ed by things in the domain is modeled

in a UML class diagram as an association between two or mote classes/types whose

instances models these things.

In a UML class diagram, syntactically, attributes of an association can be

illustrated using an association class attached to this association, thus in UML class

diagrams, association and association class are semantically equivalent.

For example, in Figure 3.1, association (or association class) Job models a pair of

Bunge-attribute functions Salary: 1; x T2 ~ Rand StartDate :1; x 1; ~ D, each of which

represents a semantically related Bunge-general nonbinding mutual property, where 1; is

the set of employees, 1; the set of employers, R the set of real numbers, and D the set

of dates. Therefore, given a specific pair of employee and employer (tl't2 ) , the instance

(link) of association Job is a pair of values (Salary(tl't2 ), StartDate(tl't2 )) that model

Bunge-individual nonbinding mutual properties of Salary and StartDate shared by the pair

of employee and employer.

So far, the mutual properties we considered in a real world domain are nonbinding

mutual properties as discussed in section 3.2.9. We suggest that, in a UML class diagram,

every attribute of an association/association class models a Bunge-attribute function

representing a Bunge-general nonbinding mutual property. Every association/association

class in a UML class diagram must have at least one attribute shared by two or more
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classes/types because, otherwise, this association/association class is not needed at all. On

the other hand, links between two or more objects in a UML collaboration model only

Bunge-couplings or Bunge-binding mutual prope~ies holding between things modeled by

these objects. Therefore, links and their corresponding associations in UML class

diagrams and collaborations are of fundamentally different ont6lpgical nature in that,

while links and associations in UML class diagrams reflect static characteristics of a real

world domain, those in UML collaborations reflect dynamic ones. Consequently, we may

call associations and their links in UML class and object diagrams nonbinding

associations and nonbinding links, and associations and their links in UML collaborations

binding associations and binding links.

In UML, "A collaboration describes how an operation or a classifier, like a use

case, is realized by a set of classifiers and associations used in a specific way." [1, p. 2­

117] "A collaboration defines an ensemble of participants that are needed for a given set

of purposes. The participants define roles that instances and links play when interacting

with each other. The roles to be played by the instances are modeled as classifier roles,

and by the links as association roles. Classifier roles and association roles define a usage

of instances and links, while the classifiers and associations specify all required properties

of these instances and links. This means that the structure of an ensemble of interlinked

instances conforms to the roles in a collaboration as they collaborate to achieve a given

task. Reasoning about the behavior of an ensemble of instances can therefore be done in

the context of the collaboration as well as in the context of the instances." [1, p. 2-124]

From the UML specification, it seems that each link in a collaboration is supposed to be

an instance of an association in the corresponding class diagram. However, we deem this
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view an unpleasant consequence of UML's implementation oriented origin from object-

oriented programming in which links in class diagrams are merely communication

passages for sending messages to linked objects. .

In fact, this view has given rise to a considerable amount of confusion in the UML

t

literature when considering the relationship between class diagrams and collaborations.

For example, in [41], in order to remedy the so-called Baseless Link Problem, namely a

link in a UML collaboration may not have a corresponding association in class diagram,

Stevens proposes to classify associations in UML into static associations and dynamic

associations. An association is static if there is a structural relationship between the

classifiers P and Q, i.e., one of the class definitions of P and Q includes an attribute

that contains a reference to an object of the other class. An association is dynamic if there

is a behavioral relationship between the classifiers, i.e., instances of P and Q may

exchange a message. Although Stevens' classification of associations into static and

dynamic associations is somewhat similar to our classification of associations into

nonbinding and binding associations (both dynamic and binding associations imply

interaction between instances of classifiers), instead of focusing on the correspondence

between real world domain and UML conceptual model, her proposal focuses on the

correspondence between UML conceptual model and program code, therefore is not

suitable for conceptual modeling.

Based on the above discussion, we have Principle 6:
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Principle 6: In a UML collaboration, every (binding) link between two or more objects

models a Bunge-coupling or binding mutual property shared between things modeled by

these objects.

I

As a result, in a UML collaboration, a (binding) link is completely determined by

the objects it links. Note that, usually, not every coupling or binding mutual property

shared between two or more things in the domain is modeled as a (binding) link in a

UML collaboration. For example, consider a husband and a wife and the husband's

employer. It is reasonable that the state history of the wife is not the same as that she

would traverse if her husband's employer has not existed. As a result, the wife and the

employer are coupled. However, in a UML collaboration, this (indirect) coupling is

usually ignored and not modeled as a (binding) link.

Similarly we have Principle 7:

Principle 7: In a UML collaboration, every (binding) association between two or more

classes/types models a set of Bunge-couplings or binding mutual properties shared

between things modeled by instances of these classes/types.

Also note that, as we discussed in section 3.2.9, the interaction between two or

more things (thus they are coupled) will most likely give rise to a number of nonbinding

mutual properties. Consequently, in a UML collaboration, whenever a binding link

(representing a Bunge-coupling or binding mutual property) exists between two or more

objects, there will be a corresponding nonbinding link (representing a tuple of Bunge-
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individual nonbinding mutual properties) between these objects in the corresponding class

or object diagram. Furthermore, in a UML collaboration, whenever a binding association

exists between two or more classes/types, there will be a corr~sponding nonbinding

association between these classes/types in the corresponding class diagram. For example,
t

the interaction between employees and employers may incur a binding association

between classes Employee and Employer in a UML collaboration, as well as a

nonbinding association (with a tuple of attributes Salary, StartDate, and OfficePhone etc.)

between classes Employee and Employer in the corresponding class diagram.

On the other hand, although rare, not every nonbinding association/link in a UML

class or object diagram corresponds to a binding association/link in the corresponding

collaboration. Examples are all spatiotemporal relations like "Thing A is five kilometers

away from thing B". Here, thing A does not act on or is acted upon by thing B , thus

they are not coupled.

3.3.5 UML Association Class

In UML, "An association class is an association that is also a class. It not only connects a

set of classifiers but also defines a set of features that belong to the relationship itself and

not any of the classifiers" [1, p. 2-21]. "An association class is useful when each link

must have its own attribute values, operations, or references to objects" [42, p. 157].

From Principles 2 and 5, we know that an attribute of an association/association

class models a Bunge-attribute function representing a Bunge-general nonbinding mutual

property. Furthermore, we argue in section 3.3.3 that an association class does not model
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any functional schema because its instances are links, not objects that model things in the

real world domains. Therefore, as suggested by Evermann and Wand in [25], an

association class cannot have operations or metho.ds. Instead, operations and methods that

change attribute values of an association/association class must be placed in participating

I

role classes/types of the association. Moreover, an associatiol}. class cannot be a

composite class.

For example, in Figure 3.2 (adapted from [25, p. 152]), operations RaiseSalary

and Terminate must be placed in either Employee or Employer, both are role types

participating in the association Job. Note that, attributes of Employee and Employer

(Salary and StartDate) model only Bunge-attribute functions representing Bunge-general

nonbinding mutual properties shared by employees and employers, thus all of these

attributes (at least one) are placed in association/association class Job.

Fig. 3.2. Operations and methods of an association class (adapted from [25])

Moreover, in Figure 3.3 [42, p. 159], association class Job is associated with itself

via an association Manages. However, as argued by Evermann and Wand in [25], since

instances of Job are links that model values representing Bunge-individual nonbinding
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mutual property Salary, and recall that in Bunge's ontology, a property cannot further

have properties, Figure 3.3 is not an ontologically correct conceptual model. In fact,

Figure 3.3 suggests that instances of Job which. are not objects modeling persons in a

domain can play role types Boss and Worker, which does not comply with our intuition.

Company 11-*--------0-··*-1 Person
l-- o-I employer employee l-- _

Fig. 3.3. OntologicaUy incorrect conceptual model using UML [42, p. 159]

Based on the above discussion, we have the following principle:

Principle 8: In a UML class diagram, an association class cannot have operations or

methods, cannot be a composite class, and cannot be associated with other class(es).

3.3.6 UML Composition and Aggregation

In UML, "An association may represent an aggregation (i.e., a whole/part relationship).

In this case, the association-end attached to the whole element is designated, and the other

association-end of the association represents the parts of the aggregation. Only binary
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associations may be aggregations. Composite aggregation is a strong form of aggregation,

which requires that a part instance be included in at most one composite at a time and that

the composite object has sole responsibility for the disposition of its parts. This means

that the composite object is responsible for the creation and desriuction of the parts. In
,

implementation terms, it is responsible for their memory allocation..lf a composite object

is destroyed, it must destroy all of its parts." [1, p. 2-66] "A shareable aggregation

denotes weak ownership (i.e., the part may be included in several aggregates) and its

owner may also change over time. However, the semantics of a shareable aggregation

does not imply deletion of the parts when an aggregate referencing it is deleted. Both

kinds of aggregations define a transitive, antisymmetric relationship (i.e., the instances

form a directed, non-cyclic graph). Composition instances form a strict tree (or rather a

forest)." [1, p. 2-66]

It is clear that the distinction between UML-compositionJaggregation and between

Bunge-aggregate/system is along different dimensions. For UML-aggregation,

components are existentially independent of the composite and moreover, they are

sharable by other composites. For UML-composition, components are existentially

dependent of the composite and they are owned by the composite exclusively. In contrast,

for Bunge-aggregate, no couplings among components of the composite, which is not the

case for Bunge-system. There are also various kinds of mereology, or formal ontological

theory of part, whole, and related concepts [43]. One of our major future works is to

analyze characteristics of different whole-part relationships and further investigate how to

incorporate them into our ontological core.
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In section 3.2.3, we indicate that a composite thing must have at least one

emergent property that characterizes the composite thing as a whole. Therefore we have

the following principle:

I

Principle 9: In a UML conceptual model, every composite class/type must own at least

one attribute that models a Bunge-attribute function representing a Bunge-emergent

property.

3.3.7 UML State

In UML, "A state is a condition during the life of an object or an interaction during which

it satisfies some condition, performs some action, or waits for some event. ...

Conceptually, an object remains in a state for an interval of time. However, the semantics

allow for modeling "flow-through" states that are instantaneous, as well as transitions that

are not instantaneous. A state may be used to model an ongoing activity. Such an activity

is specified either by a nested state machine or by a computational expression." [1, p. 3-

137] "A state describes a period of time during the life of an object of a class. It can be

characterized in three complementary ways: as a set of object values that are qualitatively

similar in some respect; as a period of time during which an object waits for some event

or events to occur; or as a period of time during which an object performs some ongoing

activity." [42, p. 70] Therefore, in UML, there is no precise definition even for such

fundamental notion as state. We propose that a UML-state models a Bunge-Iawful state

and a Bunge-Iawful state is modeled as a UML-state.
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Principle 10: In a UML conceptual model, every state of an object models a Bunge­

lawful state of a thing modeled by the object. COijversely, a Bunge-Iawful state of a thing

in the domain is modeled as a state of an object modeling this thin~.

From Principles 3 and 9, we may conclude that a state of an object in a UML

conceptual model is a tuple of values of the attributes of its class/type.

3.3.8 UML State Transition

In UML, "A transition is a directed relationship between a source state vertex and a target

state vertex. It may be part of a compound transition, which takes the state machine from

one state configuration to another, representing the complete response of the state

machine to a particular event instance." [1, p. 149] "A simple transition is a relationship

between two states indicating that an instance in the first state will enter the second state

and perform specific actions when a specified event occurs provided that certain specified

conditions are satisfied. On such a change of state, the transition is said to "fire"." [1, p.

3-145] We propose that a UML-simple state transition models a Bunge-Iawful event and

a Bunge-Iawful event is modeled as a UML-simple state transition.

Principle 11: In a UML conceptual model, every simple state transition of an object

models a Bunge-Iawful event of a thing modeled by the object. Conversely, a Bunge-
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lawful event of a thing in the domain is modeled as a simple state transition of an object

modeling this thing.

In UML, "An event is a specification of a type of obsetvable occurrence. The

t
occurrence that generates an event instance is assumed to take plac~ at an instant in time

with no duration," [1, p. 2-144] "Event instances are generated as a result of some action

either within the system or in the environment surrounding the system. An event is then

conveyed to one or more targets." [1, p. 2-155] "An event is received when it is placed on

the event queue of its target. An event is dispatched when it is dequeued from the event

queue and delivered to the state machine for processing. At this point, it is referred to as

the current event. Finally, it is consumed when event processing is completed." [1, p. 2-

155] It is obvious that the notion of UML-event is quite different from that of Bunge-

event which is simply a state transition. One of our future works is to investigate and

develop ontological foundation for UML dynamic aspects.

3.3.9 UML Operation and Method

In UML, "An operation is a service that can be requested from an object to effect

behavior." [1, p. 2-44] "Operation is a conceptual construct, while Method is the

implementation construct." [1, p. 2-71] "A method is the implementation of an operation.

It specifies the algorithm or procedure that effects the results of an operation." [1, p. 2-40]

Since UML-method is merely an implementation construct of UML-operation, it is clear

that UML-method does not have any counterpart in Bunge's ontology. On the other hand,
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since UML-operation can be requested to effect object behavior thus change its state, we

propose that a UML-operation models a Bunge-Iawful transformation and a Bunge-Iawful

transformation is modeled as a UML- operation. _.

I

Principle 12: In a UML conceptual model, every operation of '" class/type models a

Bunge-Iawful transformation of a functional schema modeled by the class/type.

Conversely, a Bunge-Iawful transformation of a functional schema in the domain is

modeled as an operation of a class/type modeling this functional schema.

3.3.10 Comparisons of Ontological Matches

The following table compares the proposed ontological semantics with those of

Evermann & Wand [25] and Opdahl & Henderson-Sellers [3].

From table 3.1, it is clear that, compared with our approach, Evermann and Wand

did not distinguish Bunge's individual property from general property. Thus they could

not distinguish ontological counterparts ofUML-link and association in Bunge's ontology.

Similarly, they also did not distinguish binding and nonbinding mutual properties. In the

approach of Opdahl and Henderson-Sellers, they map Bunge-mutual property directly to

UML-link. This is problematic because a UML-link may actually represent a bundle of

Bunge-mutual properties.
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Table 3.1. Comparisons of ontological matches between UML and Bunge's ontology

UMLElement Proposed Approach Evermann & Wand Opdahl & Henderson-

Sellers

Object Bunge-thing \Junge-thing BWW-thing
I

Attributes Bunge-attribute function Bunge-property BWW-intrinsic property

Classrrype Bunge-functional schema Bunge-functional schemr BWW-naturalkind

Link in Class/Object A tuple of values representing A bundle of mutua" BWW-mutual property

diagram

Association

semantically related Bunge-individual properties

nonbinding mutual properties

A tuple of Bunge-attribute functions

representing semantically related

Bunge-general nonbinding mutual

properties

that is not a law or whole-

partreation

BWW-characteristic

mutual property that is not

a law or whole-part reation

Link in collaboration Bunge-coupling or binding mutual BWW-coupling or binding

diagram

State

property

Bunge-Iawful state Bunge-Iawfulstate

mutual property

BWW-state

Simple state transition Bunge-Iawful event

Operation Bunge-Iawful transformation

3.4 Conclusion

BWW-transformation law

BWW-transformation

In this chapter, we assign ontological semantics based on Bunge's ontology to a core set

of UML constructs, namely UML object, attribute, class/type, association, link,

association class, state, state transition, and operation. The choice of these UML

constructs is driven by Bunge's ontology (In the future, more UML constructs will be

considered). We also analyze consequences for conceptual modeling using UML based

on this semantic mapping. In particular, we have focused on UML association and link

and indicate that links and their corresponding associations in UML class diagrams are of
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fundamentally different ontological nature from those in UML collaborations. As a result,

the so-called Baseless Link Problem disappears naturally. Consequently, our result

suggests that Bunge's ontology is an appropriate foundation for identifying the

fundamental constructs and the relationships among them that ne~d to be supported by a

conceptual modeling language.
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Chapter 4

An Ontological Metamodel of Classifiers
For Conceptual Modeling

4.1 Introduction

In Chapter 3 Principle 3, we proposed that Bunge-functional schema is modeled by UML-

class/type. Moreover, in Bunge's ontology, a thing may have multiple functional

schemata, reflecting different views of the same thing. However, Bunge does not give

guidelines as to how to differentiate different "kinds" of functional schemata. In this

Chapter, we employ OntoClean methodology [47][48][49][50] and Guizzardi et al.'s

ontological profile [51][52] to further distinguish different "kinds" of classes/types. We

fIrst introduce OntoClean methodology and Guizzardi et al.' s ontological profile, based

on which we propose an ontological metamodel of classifIers and incorporate it into our

ontological framework built on Bunge's ontology. Then, we explore the implications of

this ontological metamodel for object-oriented and conceptual modeling as well as
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information system design and implementation focusing on discussing the notion of role

and its representation in object-oriented and conceptual modeling literature.

4.2 Related Work

4.2.1 OntoClean Methodology

OntoClean is a methodology proposed by Guarino and Welty in [47][48][49][50] with the

purpose of validating taxonomies by exposing inappropriate and inconsistent modeling

choices. It introduces a set of highly general ontological notions (rigidity, identity, unity,

and dependence) to analyze ontological semantics of various types as well as their

relationship. These meta-properties impose several constraints on taxonomic relationships

which help to reveal modeling problems in taxonomies. "Properly structured taxonomies

help bring substantial order to elements of a model, are particularly useful in presenting

limited views of a model for human interpretation, and play a critical role in reuse and

integration tasks. Improperly structured taxonomies have the opposite effect, making

models confusing and difficult to reuse or integrate" [48]. Therefore, insights into how to

properly construct a taxonomy are very useful for conceptual modeling and information

system development.

In an ontology, every property (type) can be labeled using these metaproperties or

their variants. Given a particular possible world, a property is associated with a set of

entities that exhibit that property in that particular world (i.e., its extension) in OntoClean

terminology. These entities are instances of that property. The meaning of subsumption is
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defined as "A property p subsumes q if and only if, for every possible state of affairs,

all instances of q are also instances of p" [47, p. 2]. It should be emphasized that instead

of discussing the ontological nature of properties, the purpose of OntoClean is to make

clear the logical consequences of the modeling choice made by the4model designer.

4.2.1.1 Rigidity

In order to define rigidity, Guarino and Welty first define essentiality: "A property of an

entity is essential to that entity if it must be true of it in every possible world, i.e. it

necessarily holds for that entity" [47, p. 3]. For example, being a person is essential to

persons, whereas being heavy is not essential to laptops. Then "a property is rigid if it is

essential to all its possible instances". An instance of a rigid property (labeled +R)

cannot stop being an instance of that property in a different world. For example, being a

person is rigid, whereas being a customer is not. Of non-rigid properties, Guarino and

Welty further distinguish properties that are not essential to some of their instances and

essential to others (semi-rigid, labeled -R) from properties that are not essential to all of

their instances (anti-rigid, labeled ~ R). For example, being a customer is anti-rigid,

whereas being seatable is semi-rigid (be essential to Chair but accidental to Paper Box).

4.2.1.2 Identity

"Identity refers to the problem of being able to recognize individual entities in the world

as being the same (or different)" [47, p. 4]. Identity criteria are conditions used to
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determine equality (sufficient conditions) and that are entailed by equality (necessary

conditions). If a property carries an identity criterion (labeled +1), then it is called a

sortal; otherwise, it is labeled with -1. Moreov:,er, identity criteria are inherited along

property subsumption hierarchies. If instead of inheriting from the subsuming properties,

a property supplies its own identity criteria, then instead of +1: jt is labeled +0. For

example, being a person supplies its identity criteria whereas being a student only carries

(or inherits) it.

4.2.1.3 Unity

"Unity refers to the problem of describing the parts and boundaries of objects, such that

we know in general what is the part of the object, what is not, and under what conditions

the object is whole" [47, p. 5]. For some properties, all their instances are wholes (e.g.,

being an ocean), whereas for other properties, their instances are not (e.g., being an

amount 0/ water). If all the instances of a property carry a common unity criterion - a

specific condition that must hold among the parts of each instance of the property in order

to consider the instance a whole, then this property is labeled with metaproperty +U (e.g.,

being an ocean); if all the instances of the property are wholes, but with different unity

criteria, then this property is labeled -U (semi-unity, e.g., being legal agent, with both

people and companies with different unity criteria among its instances); otherwise, if all

the instances of the property are not necessarily wholes, the property is labeled - U (anti­

unity, e.g., being an amount o/water).
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4.2.1.4 Dependence

The final metaproperty is dependence. A property p is externally dependent on a

property q if for any of its instances x, necessarily some instan~e of q exists, which is

not a part nor a constituent of x [48]. If P is externally dependent, ,then it is labeled with

+D, otherwise -D. For example, being a student is externally dependent on being a

university, whereas being a person is independent.

4.2.1.5 Ontological Constraints on Taxonomic Relationships

These four meta-properties impose several constraints on taxonomic relationships which

help to reveal modeling problems in taxonomies. Given two properties p and q, q

subsumes p, then the constraints below hold [47][48]:

1. If q is anti-rigid, then p must be anti-rigid;

2. If q carries an identity criterion, then p must carry the same criterion;

3. If q carries a unity criterion, then p must carry the same criterion;

4. If q has anti-unity, then p must also have anti-unity;

5. If q is externally dependent, then p must be externally dependent.

Guarino and Welty further make two assumptions (Sortallndividuation and Sortal

Expandability) regarding identity, which imply that every domain element must

instantiate a unique most general property carrying a criterion for its identity [47, p. 6].
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The above constraints can be used to analyze and evaluate a taxonomy after assigning

each property in it corresponding metaproperties discussed above. When a violation is

encountered, the assigned metaproperties and(or the subsumption link should be

reconsidered and some corrective modification to the taxonomy tbade. For example, the
I

property being a customer (- R) cannot subsume property being a person (+R )

according to constraint 1. Intuitively, not every person is a customer. Another example is

the property being an amount of water ( - U) cannot subsume property being an ocean

(+U). Oceans are not an amount of water, they are composed ofwater.

Moreover, Guarino and Welty distinguish eight different kinds of properties based

on different combinations of these metaproperties, which they think valid and most useful

(table 4.1). In [50], a more detailed discussion of these property kinds as well as where

they should appear in a taxonomy is given.

Table 4.1. Different combinations of the metaproperties [48]

+0 +1 +R +D
Type

-D

-0 +1 +R +D
Quasi-type

-D -;
t:

-0 +1 -R +D Material role 0
00.

-0 +1 -R -D Phased sortal

-0 +1 -,R +D
Mixin

-D

-0 -I +R +D
Category -;

-D t:
-0 -I -R +D Formal role ~

==-R -D 0

-0 -I +D Attribution Z
-,R

-D
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Guarino and Welty then propose an idealized view of how ontologies should be

structured taxonomically as shown in Figure 4.1 ,~'While strict adherence to this idealized

structure may not always be possible, we believe that following it to the degree possible
t

will grow to be an important design principle for conceptual modeling, with payoffs in

understandability and ease of integration" [48].

Non-sortsls Backbone Taxonomy

Fig. 4.1. Ideal taxonomy structure [48]

4.2.2 Representing Roles With Multiple Disjoint Allowed Types

In object-oriented and conceptual modeling, role is a powerful modeling concept.

However, a lot of confusion exists on the definition, properties, and representation of role.

Among them, the problem of representing roles with multiple disjoint allowed natural
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types3 is discussed in a series of papers by different authors. In [54][55][56], Steimann

argues using an example illustrated in Figure 4.2 that "viewing role types as subtypes of

natural types is a consequence of an inadmissible. intermingling of the dynamic nature of

the role concept with the static properties of type hierarchies". In~Figure 4.2, Person and
t

Organization are natural types; role types Customer and Supplier are their subtypes

(Figure 4.2(a)). However, since the intersection of the extensions of Person and

Organization is empty, the extensions of Customer and Supplier have to be empty, which

is clearly not the case. As a result, Steimann argues to separate natural types and role

types into different type hierarchy and use role-filler relationship to relate them, as

demonstrated in Figure 4.2(b).

(b)

Fig. 4.2. Relating role types and natural types through role-filler relationship [48]

3 In [56], Sowa distinguishes natural types that relate to the essence of its instances from role types whose instances
depend on an accidental relationship to some other entity. Here, role types include formal role and material role in
table 4.1 and natural types include type, quasi-type, and category.
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For a deeper analysis on this issue, we can now employ the ontological constraints

of OntoClean on taxonomic relationships to analyze the admissible relationship between

natural types and role types. According to OntoClean, role types (e.g., Customer and

Supplier) cannot be supertypes of natural types (e.g., Person and drganization) in a type

hierarchy because a concept which is anti-rigid cannot subsume anbther which is rigid.

For example, usually, not all persons are customers. The type hierarchy in Figure 4.2(a)

(role types are italicized) does not have this problem. On the other hand, can role types be

subtypes of natural types? Employing OntoClean, we can see that the taxonomy in Figure

4.2(a) is not ontologically correct because natural type Person, which has a common

identity criterion (+1), cannot subsume role type Customer or Supplier which does not

have a common identity criterion ( -1) (because a customer or supplier can be a person or

an organization). Therefore, it seems that Steimann's solution of separating natural type

hierarchy from role type hierarchy is correct. However, in [51], Guizzardi et al. argue

using an ontological profile for UML conceptual models that Steimann's solution is not

warranted.

4.2.3 Guizzardi et al.'s Ontological Profile For UML
Conceptual Models

In [51], Guizzardi et al. propose a UML profile for ontology representation and

conceptual modeling based on a theory of classifiers. Basically, their proposal is similar

to OntoClean, but also with some important differences detailed in [52]. In [51],
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Guizzardi et al. postulate four ontological principles for ontology representation and

conceptual modeling.

First, in a conceptual model of a domain, every object must be an instance ofa

class representing a sortal. This is because only sortal universals provide a principle of
I

individuation and identity to their instances. As a result, we can only make identity and

quantification statements in relation to a sortal. Moreover, if an individual is an instance

of two sortals in the course of its history, then there must be exactly one ultimate sortal of

which both sortals are specializations. A sortal F is ultimate if there is no other sortal F'

distinct from F which F specializes. For example, Person is the ultimate sortal of

sortals Child and Adult. This amounts to the Restriction and Uniqueness principles [51, p.

115]: if an individual is an instance of two distinct sortals F and F' in the course of its

history, then a) there is at least one sortal of which F and F' are both specializations; b)

there is only one ultimate sortal of which F and F' are both specializations.

Second, in a conceptual model of a domain, an object cannot instantiate more

than one class representing an ultimate substance sortal (A substance sortal is the unique

ultimate sortal that supplies the principle of identity for its instances). For example, sortal

Person is the ultimate substance sortal of sortals Child and Adult.

The third principle postulated by Guizzardi et al. is, in a conceptual model of a

domain, a class representing a rigid classifier cannot be a subclass of a class

representing an anti-rigid classifier. It is actually a constraint of OntoClean. Note that,

the notion of phased-sortal in [51] is different from that in [48] in that it also includes

material role type in [48], i.e., instead of +1 ~ R - D , the metaproperties of phased-sortal

in [51] are +1 ~ R. Guizzardi et al. distinguish two important types of phased-sortals
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according to specialization conditions (jJ: phase types ((jJ is a condition that depends

solely on intrinsic properties) and role types ((jJ depends on extrinsic properties). It is the

phase type in Guizzardi et al.' s ontological profile that corresponds to phased-sortal in

OntoClean. Classes representing phase types constitute a partition of the substance sortal
t

they specialize. Examples of phase types include Caterpillar and Butterfly of

Lepidopteron, Town and Metropolis of City.

Furthermore, Guizzardi et al. distinguish sortals from dispersive types (such as

Thing, Customer, Supplier) which cover many concepts with different principles of

identity. Based on this, the fourth principle is, in a conceptual model ofa domain, a class

representing a dispersive universal cannot be a subclass ofa class representing a sortal.

In fact, a dispersive type has no common identity criterion for its instances (-1) whereas

a sortal has ( +1 ), so this principle is actually a constraint in OntoClean.

Based on these principles, Guizzardi et al. propose a UML profile for ontology

representation and conceptual modeling. In the profile, a UML class stereotyped as a

« kind» represents a substance sortal. Subtypes that specialize kinds and inherit their

principle of identity are stereotyped as «subkind». For example, Person is a kind and

its subkinds could be Man and Woman. Moreover, stereotypes «phase» and «role»

represent phase type and role type respectively. Guizzardi et al. further distinguish

dispersive types into category (which is rigid, stereotyped as «category»), rolemixin

(which is anti-rigid, stereotyped as «rolemixin»), and mixin (which is semi-rigid,

stereotyped as «mixin»). A summary of different types of classifiers and the
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restrictions on their specialization relationships can be illustrated in table 4.2 (taken from

[51,p.122]).

Table 4.2. Different types of classifiers and the restrictions on their specialiiation relationships [51, p.
122]

«kind»
Supertype is not a member of {« subkind»,
« phase» ,« role» ,« rolemixin» }

« subkind»
Supertype is not a member of
{«phase» ,«role» ,«rolemixin» }

«phase» Always defined as part ofpartition
Let X be a class stereotyped as «role» and r be an

«role» association representing X's restriction condition, then
#X.r~1

« category»
Supertype is not a member of
{« kind» ,« subkind» ,« phase» ,« role» ,« rolemixin» }
Supertype is not a member of

« rolemixin»
{« kind» ,« subkind» ,« phase» ,« role» }. Let X be a
class stereotyped as «rolemixin» and r be an association
representing X's restriction condition, then #X.r ~ 1

«mixin»
Supertype is not a member of
{« kind» ,« subkind» ,« phase» ,« role» ,« rolemixin» }

4.2.4 Representing Roles With Multiple Disjoint Allowed Types
Revisited

Based on the profile described in section 4.2.3, Guizzardi et al. propose a design pattern

to represent the problem of role modeling discussed in section 4.2.2, i.e., role type

Customer cannot be represented as subtype of natural types Person and Organization.

They argue that Steimann's claim that the solution to this problem lies in the separation of

role type and natural type hierarchies (which leads to a radical revision of the UML

metamodel) is not warranted. According to their theory, the difficulty arises because
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Customer (with metaproperties - R +D) is a non-sortal (or a dispersive type, -1) that

has in its extension individuals that belong to different kinds Person and Organization that

obey different principles of identities. Therefore, they propose that an ontologically

correct solution to this problem is to, for example, defme the sortal~ PrivateCustomer and
t

CorporateCustomer as subtypes of Customer, and these sortalsl in turn carry the

(incompatible) principles of identity inherited from kind Person and subkind Organization,

respectively. This could be illustrated in Figure 4.3.

Fig. 4.3. A design pattern for the problem of representing role types with multiple disjoint allowed
natural types [51, p. 123]

4.2.5 Roles and Their Representation in Object-Oriented and
Conceptual Modeling

Roles represent a fundamental notion for our conceptualization of reality. As manifested

by the recent AAAI symposium on role [60], the notion of role is ubiquitous in many

areas of computer science ranging from conceptual modeling, artificial intelligence,

programming languages, software engineering, database, coordination, multiagent
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systems, computational linguistics, and also in other scientific fields like formal ontology,

sociology, cognitive science, organizational science, and linguistics.

In object-oriented and conceptual modeling, role is a powerful modeling concept.

However, a lot of confusion exists on the definition, properties, and representation of role.
,

Up to now, most role models proposed have been primarily based on implementation

considerations. In contrast, in a comprehensive study on this topic [54][55][56], Steimann

argues that the role concept naturally complements those of object and relationship,

standing on the same level of importance. However, he also recognizes that "although

there appears to be a general awareness that roles are an important modeling concept,

until now no consensus has been reached as to how roles should be represented or

integrated into the established modeling frameworks" [54, p. 84].

In this section, we first present the notion of roles and some of its fundamental

features in the literature, then we discuss three different ways of representing roles,

highlighting existing difficulties with each approach.

4.2.5.1 On The Notion of Role in Object-Oriented and Conceptual
Modeling

Two main definitions of role given by Merriam-Webster online dictionary are: (1) a

character assigned or assumed; (2) a socially expected behavior pattern usually

determined by an individual's status in a particular society. In sociology, a role or social

role is a set of connected behaviors, as conceptualized by actors in a social situation. It is

mostly defined as an expected behavior in a given individual social status.
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In [39] and [61], Sowa introduces the notion of role as capturing a particular

pattern a/relationships: "Subtypes of Entity are of two kinds: natural types, which have

no required set of linguistic associations; and role types, which are subtypes of natural

types in some particular pattern of relationships". An example lte uses to illustrate his
t

idea is: Person is a natural type, and Teacher is a subtype of Person in the role of teaching.

Sowa further proposes a test for distinguishing role types from natural types: (1) T is a

natural type if something can be identified as type T in isolation; (2) T is a role type if

something can only be identified as type T by considering some other entity, action, or

state.

Although intuitively appealing, in [63], Guarino argues against Sowa's view

towards role by indicating that Sowa's test for distinguishing role types from natural

types is "too vague to capture intended meaning". For example, Car is a natural type since

it is essentially independent. However, it is also a role type according to (2) above

because the existence of a car implies the existence of its engine, which is a part of the car.

Guarino therefore proposes a criterion for distinguishing role types from natural types. To

do that, he first introduces the notion of/oundation (dependence in OntoClean) among

concepts: in order for concept a to be founded on another concept f3 , any instance x of

a has to be necessarily associated to an instance y of f3 which is not related to x by a

part-a/relation. For example, Son is founded since sons are associated to their parents.

On the other hand, Car is essentially independent since although the existence of a car

implies the existence of its engine, this engine is part of the car. The second notion he

introduces is rigidity, which gives a more adequate characterization of the meaning of
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roles: a concept a is rigid if it contributes to the very identity of its instances in such a

way that, if x is an instance of a in a particular world, it must be an instance of a in

any possible world in order to keep its identity. I:or example, a person can cease to be a

customer or supplier while still being a person: Person is rigid, while Customer and

I

Supplier are not. Based on these two notions, Guarino proposes I that, a concept a is

called a role concept if it is founded but not rigid; it is called a natural concept if it is

essentially independent and rigid.

Moreover, by characterizing different approaches on the basis of the ontological

nature of the contexts that determine roles, Loebe differentiates three kinds of role:

relational roles, processual roles, and social roles [64]. And more recently, Masolo and

his colleagues propose a general formal framework for developing a foundational

ontology of socially constructed entities [65], maintaining four key features of social roles:

(1) Roles are 'properties'; (2) Roles are anti-rigid; (3) Roles have a relational nature; and

(4) Roles are linked to contexts.

In object-oriented and conceptual modeling, the first role model (role data model)

is introduced by Bachman and Daya in [62] as an extension of the network model in the

late 1970s. Up to now, most role models proposed in the literature have primarily focused

on implementation considerations. In a comprehensive study by Steimann in [54][55][56],

he individuates 15 fundamental features of roles identified in the literature, some conflict

with others. The following is a subset of the list of features of particular interest to us (the

rest are mostly implementation-oriented) [54, p. 86]:
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1. A role comes with its own properties and behavior. For example, a student has

hislher role specific properties (such as StartDate, StudentID, CoursesTaken,

etc.) and behavior (such as Register, A.ttendClass, etc.). This feature suggests

that role is type.

2. Roles depend on relationships. This indicates that a rol~ ~s meaningful only in

the context of a relationship. For example, a person is a student only when he is

enrolled in a school. After he graduates from the school (thus the enrollment

relationship between this person and the school no longer exists), he ceases to

be a student.

3. An object may play different roles simultaneously. For example, a person can be

a student and an employee at the same time.

4. An object may play the same role several times, simultaneously. For example, a

person can be a student in several universities at the same time, each with

different StudentID, StartDate, etc. This is a difficult issue in the literature of

role modeling as will be discussed later in detail.

5. An object may acquire and abandon roles dynamically.

6. Objects ofunrelated types can play the same role. For example, both a person

and an organization can be a customer. This feature amounts to the

polymorphism inherent to roles.

7. Roles can play roles.

8. Different roles may share structure and behavior. This implies that role types

may be organized in a generalization/specialization hierarchy. For example, role
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type TeamLeader may inherit structure and behavior from its super role type

Employee.

9. An object and its roles share identity. Le:, an object and its roles are the same.

10. An object and its roles have different identities. The motivation for this view
,

lies in the so-called Counting Problem. It refers to the situations in which

instances counted in their roles yield a greater number than the same instances

counted by the objects playing the roles. The counting may be done at the same

time or in a certain period of time. The former situation is described in feature 4.

The latter can be shown by the example below: if we count the number of

persons served by Air Canada in 2005, we may count 1000, but if we count

passengers, we may count 3000.

Clearly, feature 9 above conflicts with feature 10, so there is not one ideal

approach of defining the role concept.

4.2.5.2 Three Different Ways of Representing Roles

As indicated by Steimann [54], there are three different viewpoints on the representation

of roles, Le., roles as named places in relationships, roles as a form of

generalization/specialization, and roles as separate instances adjoined to the entities

playing the roles.

4.2.5.2.1 Roles as Named Places in Relationships
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This view is taken by ER (and many of its extensions) and UML by assigning role names

to the entity types participating in relationshi~s. This practice is useful when, in a

conceptual model, more than one place of a relationship is played \>y the same entity type.

In this case, role names could be used to differentiate different p{ayes of the same entity

type.

However, Steimann argues that the main problem with viewing roles as named

places in relationships is that, since roles are not modeled as explicit types, "it fails to

account for the fact that roles come with their own properties and behavior" [54, p. 88].

Furthermore, since roles are mere labels of types, it is thus impossible to construct role

type generalization/specialization hierarchies leading to better-organized conceptual

models.

4.2.5.2.2 Roles as a Form of Generalization/Specialization

As discussed in section 4.2.5.1, Sowa views role types as subtypes of natural types in

some particular pattern of relationships [39][61]. This view is quite nature considering,

for example, the fact that a student is also a person who is enrolled in a university.

However, in [66], AI-Jadir and Leonard argue using a number of implementation level

examples that inheritance is not flexible enough with respect to object dynamics and

schema evolution. Additionally, Dahchour et al. acknowledge in [57] that it is "heavy"

and "impractical" to deal with object dynamics using generalization/specialization.
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More interestingly, as discussed in section 4.2.2 and 4.2.4, a more inherent

conceptual obstacle with this view is the difficulty of representing roles allowing multiple

disjoint types. As a consequence, in [54], Steimann argues to separate natural types and

role types into different type hierarchy and use role-filler relatioriship to relate them.

However, Guizzardi et al. further indicate using their ontological profile that this problem

can be resolved by classifying dispersive role types into a number of role subtypes which

are sortals. Therefore, Steimann's claim which leads to a radical revision of the UML

metamodel is not warranted. Although Guizzardi et al.' s solution provides some useful

insight into the problem, we still believe that using generalization/specialization hierarchy

alone is cumbersome thus not suitable for dealing with role modeling.

4.2.5.2.3 Roles as Separate Instances Adjoined to The Entities Playing The
Roles

In this view, role types are treated as independent types whose instances are existentially

dependent on its players (instances of natural types), have role specific state and behavior

with separate identity different from their players. A player and its roles are related by a

played-by relation, thus role instances act as bridges between relationships and its related

players. Examples of the approaches that adopt this view are [57][58][59] and [64].

As argued by Steimann in [67] and Masolo et al. in [68], this view is mostly

motivated to model some real world situations such as a person plays exactly three

employee roles simultaneously, with different salary and office number, i.e., the counting

problem described in section 4.2.5.1. In this case, each employee role instance of a person
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object is a quasi-object in that it describes a state of the corresponding object playing the

role in a particular context.

Although it looks appealing, this approach. is problematic because, as we proposed

in Chapter 3, an object in a conceptual model should correspond tb a distinct thing in the

t

real world. Moreover, the requirement that each role instance has a unique identity (e.g.,

EmployeeID) different from its player is quite artificial which may lead to some problems

in information systems development such as database modeling. Detailed discussion on

this issue will be given in Chapter 5.

Indeed, as stated by Steimann [67], "as far as I can see there is no practical need to

do this, nor do good theoretical arguments exist".

4.3 An Ontological Metamodel of Classifiers For
Object-Oriented and Conceptual Modeling

In this section, we propose an ontological metamodel of classifiers based on OntoClean

methodology and Guizzardi et al.' s ontological profile and incorporate it into our

ontological framework built o·n Bunge's ontology. Then we explore the implications of

this ontological metamodel for object-oriented conceptual modeling as well as

information system design and implementation focusing on discussing the notion of role

and its representation in object-oriented and conceptual modeling literature.

4.3.1 Conceptual Modeling vs. Ontological Modeling
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In [51], Guizzardi et al. indicate that "Conceptual modeling is concerned with identifying,

analyzing and describing the essential concepts and constraints of a domain with the help

of a (diagrammatic) modeling language that is based on a smaV set of basic meta­

concepts (forming a metamodel). Ontological modeling, on the other hand, is concerned
t

with capturing the relevant entities of a domain in an ontology of that domain using an

ontology specification language that is based on a small set of basic, domain-independent

ontological categories (forming an upper level ontology)". They then indicate that "While

conceptual modeling languages are evaluated on the basis of their successful use in (the

early phases of) information systems development, ontology specification languages and

their underlying upper level ontologies have to be rooted in principled philosophical

theories about what kinds of things exist and what their basic relationships with each

other are".

It is clear that Guizzardi et al. try to clarify or emphasize the distinction between

conceptual modeling and ontological modeling. It seems from [51] that the most

important difference between conceptual modeling and ontological modeling is their

purposes and thus their evaluation criteria: the purpose of conceptual modeling languages

is to support (the early phases of) information systems development, therefore their

evaluation criterion is whether they could be successfully useful in information system

development; the purpose of ontology specification languages, on the other hand, is to

model reality, therefore their evaluation criterion is whether or not they conform to

philosophical theories.

One of our main research objectives is to use ontology to improve UML's ability

of conceptual modeling, Le., we focus on the similarity between ontological modeling and
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conceptual modeling. Indeed, as argued by Marcos and Cavero in [53], one of the most

important objectives in conceptual modeling consists in narrowing the gap between the

real world and its representation. To make this possible, conceptual models have

improved their expressiveness through new primitives that are closer to the real world.
I

Therefore, ontological theories are useful sources of inspiration for conceptual modeling

language designers.

In contrast with our objective, Guizzardi et al. focus on using UML as an ontology

representation language. As a result, they use their theory to propose a UML profile for

ontological representation which requires no changes to be made to the UML metamodel.

However, we believe that although their profile is good for constructing

conceptual models organized in taxonomies conforming to some ontological

commitments, using generalization/specialization hierarchy alone is not suitable for

dealing with information system development because usually it does not seem

reasonable to have to differentiate what kind of Customer (PrivateCustomer or

CorporateCustomer) the information system is dealing with. Modelers should have the

freedom of not having to specify this clearly in a conceptual model. In fact, one of the

most important advantages of introducing the notion of role into conceptual modeling

languages is that instances of different natural types can play the same role type (in this

case, this role type is always dispersive. Please refer to feature 6 in section 4.2.5.1), which

amounts to the polymorphism inherent to roles. Due to this reason, we should avoid

modeling roles as generalization/specialization.
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4.3.2 An Ontological Metamodel of Classifiers

In Figure 4.4, the ontological metamodel based on OntoClean and Guizzardi et al.'s

profile (using the terms of the latter) is shown. Note that we do p.ot consider mixin in

Guizzardi et al.'s profile (e.g., being seatable or being red) becalise in OntoClean, it is

actually attribution and according to Guarino and Welty, "in general, it is not useful to

represent attributions explicitly in a taxonomy, and that the proper way to model

attributions is with a simple attribute" [47, p.18].

Fig. 4.4. The ontological metamodel based on OntoClean and Guizzardi et al.'s proflle

Moreover, in contrast to rigidity and dependence, we assume that in most cases,

object modelers do not need to differentiate whether a type in a conceptual model

supplies or carries a common principle of identity or not. Then based on this assumption,
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we may combine rolemixin (which includes formal role in OntoClean) and role (material

role in OntoClean) (their only difference is -1/+1) into one type called role type.

Similarly, we combine category, kind, and. subkind (their only difference is

-0-1/+0+1/-0+1) into one type called natural type. Thus irt. Figure 4.4, there are
,

only three metatypes: natural type (+R -D), phase type (~R -rD), and role type

( ~ R +D). Based on the discussion in section 4.3.1, we still propose to separate

natural/phase type hierarchy from role type hierarchy and connect them using a

relationship called plays. In this way, our ontological metamodel complies with the

proposed ontological principles in [51][47] and at the same time is suited for information

system development. The simplified metamodel is illustrated in Figure 4.5.

Fig. 4.5. The simplified metamodel of Figure 4.4

It should be emphasized that in a phase type partition of a natural type or phase

type, the subtypes should be constructed such that they are mutually disjoint and

constitute a total partition of this supertype, i.e." any instance of the supertype should

have a corresponding instance in exactly one phase subtype.
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Also note that, different from natural types and phase types, there are relationships

among role types (because role types are externally dependent). Each role type must

associate to at least one other role type (could be the same role ~e), therefore has the

cardinality constraint 1.. *. For example, role type Student must b6 related to at least a

role type UniversityEnrolled. In OntoClean, natural types may be externally dependent,

which is disallowed in Guizzardi et al.'s profile. In our model, we adopt the latter view.

That is to say, we consider that instances of natural types and phase types exist in

isolation from any external entities. For an instance of a natural type or phase type to be

able to interact with other entity(-ies) in a particular context, it must become an instance

of a role type. On the other hand, at implementation level, in order for instances of role

types to access features of natural/phase types, delegation from roles to their players can

be used [71].

The cardinality constraints on plays relationship in the metamodel indicate that a

natural type or phase type can play zero to many role types and a role type can be played

by zero to many natural types or phase types simultaneously. For clarity, we call instances

of a natural type objects, instances of a role type roles, and instances of a phase type

phases.

Note that, like Steimann's role model in [54][55][56], in our model, instances of

role types are directly recruited from natural/phase types. In fact, natural type, phase type,

and role type are just different kinds of functional schemata of the same real world things

viewed from different perspectives. In contrast, in some role models such as [57][58][59],

a role type has its own instances with separate global unique identity different from other

roles as well as from instances of natural types and phase types, i.e., roles as adjunct
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instances representation. Although intuitively appealing, as we discussed in section

4.2.5.2.3, this approach is conceptually problematic. In Chapter 5, we will compare this

approach with ours with respect to conceptual database modeling in order to highlight its

drawbacks.

Also note that, different from [54][55][56], in our model,' since instances of role

types are also instances of naturaVphase types, roles can also play roles. Although a more

technical consideration, this is desirable in some cases such as we want to model that

Instructor is a subset of the union of Faculty and GraduateStudent. Here, Faculty and

GraduateStudent are disjoint. Since not every graduate student is an instructor, we cannot

model Instructor as supertype of Faculty and GraduateStudent, nor can it be subtype of

Faculty and GraduateStudent (because they are disjoint). Thus the only way to model it is

to let Faculty and GraduateStudent play role type Instructor.

As to the combination of generalization/specialization and role relationships,

informally, we say that a naturaVphase type N can play role type R if there is a

supertype N I of N that can play R ; On the other hand, we say that a naturaVphase type

N can play role type R if there is a supertype R I of R that can be played by N .

4.3.3 Incorporating The Metamodel Into Our Ontological
Framework Based On Bunge's Ontology

In this section, we incorporate the metamodel into our ontological framework based on

Bunge's ontology. In Bunge's ontology, a general intrinsic or nonbinding mutual property
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is represented by an attribute function. An attribute function can be formalized in a

functional form as follows:

A :~ x ... x 1'" x V; x ....x Vm ~ V

~

where T;(i =1, .. .,n) represents a set of things similar in some resp~ct and Vj(J =1, . .. ,m)

as well as V represents a set of values (may be multivalued). If n ='1, then A represents

a general intrinsic property. Otherwise, if n ~ 2, then A represents a general nonbinding

mutual property. For example, the mutual property Salary held between an employee and

an employer in year 2005 can be represented as Salary: ~ x r; x D ~ R , where ~ is the

set of employees, r; the set of employers, D the set of dates, and R the set of real

numbers. Moreover, in Bunge's ontology, a natural kind can be modeled by a functional

schema. Recall that in Chapter 3, we propose that Bunge-functional schema is modeled

by UML-class/type, and it is defined as follows:

Defmition 3.8: Let K be a natural kind. A functional schema X K of K is a certain

nonempty set M together with a finite sequence IF of state functions on K x M , each of

which is supposed to represent a property of P(K), a finite set JL s of state law

statements of K on S(K), and a fmite set JL T of transformation law statements of Kon

IF=<F;,F2 , ••• ,F'" >:KxM~ V;x~x ... xv"

JLs = {Ls :S(K) ~ {lawful, unlawful} }
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ILT ={LT: SL(K)xSL(K) ~ {lawful,unlawful}}

Here, domain M and codomains V; (1 ~:i ~ n) are unspeyified. In the simplest

4

cases, M is the set of time instances T . If X K is the functional ~chema of natural kind

K , then for any thing x E K , XK(x) is a functional schema of x, in which each

F; (1 ~ i ~ n) is evaluated at a fixed thing x .

Since natural types and phase types are independent ( -D), while role types are

dependent (+D), we propose that all the properties represented by functional schemata

modeled by natural types and phase types are general intrinsic properties of things, and all

the properties represented by functional schemata modeled by role types are semantically

related general nonbinding mutual properties of things.

As a result, in the definition of the functional schema corresponding to natural

type and phase type, M does not contain any component which is a set of things. For

example, the IF component of functional schema Xperson (which is modeled as a natural

type) can be defined as:

IF=< SSN, Name, BirthDate >:PxT~ NxSxD

where P is the set of persons, T the set of time instances, N the set of numbers, S the

set of strings, and D the set of dates. It is clear that in this simple example, M = T , i.e.,

the set of time instances.

On the other hand, since functional schemata that correspond to role types

represent only general nonbinding mutual properties between two or more sets of things,

in its definition, M contains one (for binary nonbinding mutual properties) or more (for
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higher-order nonbinding mutual properties) components which are a set of things. Note

that M may also contain K as its component. In this case, a thing in K has a nonbinding

mutual property with other thing(s) in K .

For example, the IF component of functional schema XEmployee (which is modeled

as a role type) can be defined as:

IF=< Salary,StartDate,OfjicePhone >: ExE'xT~ RxDxPN

where E is the set of employees, E I the set of employers, T the set of time instances, R

the set of real numbers, D the set of dates, and PN the set of phone numbers. In this

example, M = ElxT where El is a set of things. State functions Salary, StartDate and

OfficePhone represent three general nonbinding mutual properties shared by employees

and employers.

Moreover, the extension of a concept such as Person is the natural kind including

all persons and its intension is the functional schema representing this natural kind. Since

natural type is rigid (+R), any instance (thing) of the functional schema corresponding to

a natural type cannot cease to be so without ceasing to exist. In contrast, since phase type

and role type are anti-rigid (~R), any instance (thing) of the functional schema

corresponding to a phase type or a role type is the instance of the functional schema only

during a certain phase of its existence. We may provide formal definitions on rigidity

based on [51]:

Let W be the set of all possible worlds and let W E W be a specific world. Let K

be a natural kind defined by a set of laws. K is the set of things satisfying these laws in

all possible worlds. Let Kw denotes the set of things satisfying these laws in world w,
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thus K = u Kw. We say that the functional schema X K of K is rigid if and only if K is
weW

world invariant:

~

Defmition 4.1: A functional schema X K of natural kind K is ri?id iff, for any W E W ,

If functional schema X K is rigid, then we have, for any W E W , K = Kw. In

contrast, we say that a functional schema X K is anti-rigid if and only if it applies to its

instances contingently:

Defmition 4.2: A functional schema X K of natural kind K is anti-rigid iff, for any

WE W and x E Kw, there exists a w' E W such that x ~ Kw'.

In Figure 4.5, all natural types are rigid and independent (+R - D), all phase types

are anti-rigid and independent ( - R - D), and all role types are anti-rigid and dependent

( - R +D). These different kinds of types can be defined formally in our ontological

framework based on Bunge's ontology as follows:

Definition 4.3: A functional schema X K of natural kind K corresponds to a natural type

iff it is rigid and its attribute functions represent only general intrinsic properties.
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Definition 4.4: A functional schema X K of natural kind K corresponds to a phase type

iff it is anti-rigid and its attribute functions represent only general intrinsic properties.

~

Definition 4.5: A functional schema X K of natural kind K corresponds to a role type iff
I

it is anti-rigid and its attribute functions represent a set of gener~l nonbinding mutual

properties.

Moreover, for two types T and T' such that T is a specialization of T', if

functional schema X K of natural kind K corresponds to T and functional schema X K'

of natural kind K' corresponds to T', then for all W E W , Kw ~ K 'w .

Definition 4.6: A functional schema X K of natural kind K is a sub-functional schema of

functional schema X K' of natural kind K' iff for all WE W , Kw ~ K 'w .

4.3.4 Implications of The Ontological Metamodel For Object­
Oriented and Conceptual Modeling

4.3.4.1 Representing Intrinsic and Mutual Property in UML Class
Diagrams

In Bunge's ontology, a value property of a thing is either an intrinsic property, or a

nonbinding mutual property. Usually intrinsic properties are relatively stable properties of

things over their lifetime. In contrast, nonbinding mutual properties are less stable
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properties in that they can be acquired/dropped by things entering/leaving a particular

context. In [26] and [25], Evermann proposes to use attributes of association classes to

represent mutual properties. Following his idea, since an individu,al intrinsic propertY is

~ .
owned by a thing exclusively, in a UML class diagram, Bunge-attribute functIons,
representing general intrinsic properties are modeled as attributes of an ordinary

class/type placed in the attribute compartment of the class/type. That is to say, the

attribute compartment of an ordinary class/type in a UML class diagram contains a list of

attributes each of which models a Bunge-attribute function representing a general

intrinsic property of the things modeled by the functional schemata corresponding to this

class/type. We may call these UML attributes intrinsic attributes.

On the other hand, by definition, an individual nonbinding mutual propertY is

shared by multiple things, say, for example, A and B . I.e., neither A nor B ownS this

individual nonbinding mutual property exclusively. As a result, in a UML class diagram,

Bunge-attribute functions representing general nonbinding mutual properties shared

between things are modeled as attributes placed in the attribute compartment of an

association class connecting classes/types whose instances model these things. That is to

say, the attribute compartment of an association class between two or more classes/types

in a UML class diagram contains a list of attributes each of which models a BtUlge-

attribute function representing a general nonbinding mutual property shared by things

modeled by the functional schemata corresponding to these interconnecting classes/tYPes.

We may call these UML attributes mutual attributes.
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4.3.4.2 Representing Natural, Phase, and Role Types in UML Class
Diagrams

Furthermore, we already know that natural/phase type has only intrinsic attributes owned

by itself exclusively whereas role type has only mutual attributes~ shared with other role

type(s) (Definitions 4.3, 4.4, and 4.5). Thus the attribute compartment of a role type in a

UML class diagram should be empty. All the (mutual) attributes of the role type are

placed in the association class of the association connecting this role type to other role

type(s) with which it shares these attributes. Consequently, in a UML conceptual model, a

role type cannot occur without being related to other role type(s). Actually this rule

conforms to the observation in the literature that roles imply patterns ofrelationships, i.e.,

the existence of roles depends on additional external entity(-ies) [39][61].

An example UML diagram illustrating natural types and their role types is shown

in Figure 4.6 (rectangle for natural/phase type and oval for role type). In this figure,

Person, Company, and Team are natural types, Employee, Employer, TeamLeader, and

SupervisedTeam are role types. A team leader which is a person is also an employee

working for an employer which is a company, thus in addition to hislher own mutual

attribute (Goal of association class Supervision), he/she also inherits mutual attributes

Salary, StartDate and OfficePhone of association class Employment from Employee.
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Fmployment

Salary
StartDate
OfficePhone

Person

SSN
Narre
BirthDate

Fig. 4.6. An UML diagram illustrating natural types and their role types

Note that as argued by Wand, Storey, and Weber in [16], in our approach, it is not

possible for a role type to have optional associations with other role type(s). This is

because for an instance of a naturaVphase type to be an instance of a role type, it must

have some mutual attributes shared with other entities. For example, a person cannot be

an employee without working for an employer. Moreover, an optional association

between two role types means that a equivalent conceptual model exists that may better

express the same real world semantics. For example, an optional association Manage

between role type Employee and itself could be better expressed by a mandatory

association Manage between role types Manager and ManagedEmployee.
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In Figure 4.6, let P be the set of persons, C the set of companies, T the set of

time instances, T' the set of teams, E the set of employees, E' the set of employers, TL

the set of team leaders, ST the set of supervised teams, R the set of real numbers, D the

set of dates, I the set of integers, and S the set of strings. In our~ntological framework,

I

the IF components of functional schemata corresponding to natural types Person,

Company, and Team can be defined as:

IFperson =< SSN, Name, BirthDate >: P x T ~ I x S x D

IFCompany =< CName, CAddress >: C x T ~ S x S

IFTeam =< Team #, TeamMember >: T 'x T ~ I x 2P

In addition, the IF components of functional schemata corresponding to role types

Employee, Employer, TeamLeader and SupervisedTeam can be defined as:

IFEmp/oyee =< Salary, StartDate, OfficePhone >: Ex E IX T ~ R x D x S

IFEmp/oyer =< Salary, StartDate, OfficePhone >: E 'x Ex T ~ R x D x S

IFTeamLeader =< Goal >: TL x ST x T ~ S

IFsupervisedTeam =< Goal >: ST x TL x T ~ S

Note that as indicated in definition 3.8, in the IF component of a functional

schema, the order of sets in the Cartesian product is important. For example, in IFTeamLeader

above, the first set of the Cartesian product is the set of team leaders TL whereas in

IFSupervisedTeam , the first set is the set of supervised teams ST . A team leader may supervise
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one to many supervised teams whereas a supervised team may only be supervised by a

team leader.

In addition to natural types and role typ~s, phase types are also very useful in

object-oriented and conceptual modeling. Examples of phase4 types include Child,

I
Teenager, and Adult of Person, Town and Metropolis of City, ActiveCar and WreckedCar

of Car, Caterpillar and Butterfly of Lepidopteran. In a phase type partition of a natural

type or phase type, the subtypes should be constructed such that they are mutually disjoint

and constitute a total partition of this supertype, i.e., an instance of the supertype should

have a corresponding instance in exactly one phase subtype. Figure 4.7 shows a

conceptual model including a phase type partition Child, Teenager, and Adult of natural

type Person. It indicates that only adult persons can be employees.

Person

SSN
Narre
BirthDate Employment

Salary
StartDate
OfficePhone

Fig. 4.7. A conceptual model with a phase type partition
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Note that, in UML, an is-a partition of a classifier is a generalization set which

"defines a particular set of Generalization relation.ships that describe the way in which a

general Classifier (or superclass) may be divided using specific subtypes" [72, p. 71]. It is

I

represented by connecting all subclasses to one single hollow auowhead symbol. A

generalization set constitutes a partition of the class pointed to by the symbol.

For convenience, since the attribute compartment of a role type is empty,

whenever the intended meaning is clear (especially when the role type does not have role

subtypes or role supertypes) it is more convenient to represent role types as named places

in relationships. For example, in Figure 4.8, role types Employee and Employer are

represented as named places and phase type Adult is related to natural type Company

directly.

Person

SSN
Name
BirthDate Employment

Salary
StartDate
OfficePhone

Fig. 4.8. The simplified conceptual model of Figure 4.7

4.3.4.3 The Counting Problem
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Compared with our approach discussed above, as far as we know, none of the existing

conceptual modeling languages in the literature. differentiates intrinsic attribute from

mutual attribute and furthermore realizes that all the attributes ora role type should be
I

mutual attributes which are shared by all entities participating in the relationship.

Consequently in their approaches, intrinsic attributes which actually are attributes of

naturaVphase type can occur in a role type, and moreover a role type does not have to be

related to other role type(s). This practice may cause unstable conceptual models in the

situations that a naturaVphase type instance can play two or more roles of the same role

type simultaneously, i.e., the counting problem.

For example, in Entity-Relationship approach (ER), there is only entity type, no

explicit role type. Role types are represented as named places in relationships. As a result,

all intrinsic and mutual attributes are placed by modelers in entity types or relationship

types arbitrarily. Figure 4.9 illustrates an ER conceptual model adapted from [69].

Fig. 4.9. An ER conceptual model extracted from (69)
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In Figure 4.9, the entity type (Employee) is role type in our model. However, for

entity type Employee, unlike attributes OfficePhone, Salary and StartDate which model

Bunge-attribute functions representing general Ilonbinding mutual properties between,

say, employees and employers, the attributes Name and SSN model Bunge-attribute

I

functions representing actually general intrinsic properties of persons that play role type

Employee. These intrinsic attributes are still valid even after a person ceases to be an

employee thus loses all mutual attributes valid only in the employment relationship.

Therefore instead of being placed in role type Employee, they should be placed in an

additional natural type Person. Figure 4.10 shows the corresponding model segment using

our metamodel.

Frnployment

Salary
StartDate
OfficePhone

Person

Name:FName
M Init

LName
SSN

Fig. 4.10. The corresponding model of Figure 4.9 using our metamodel

In the situations that a person cannot have more than one job at the same time (e.g.,

a person cannot be a secretary and a technician simultaneously), when mapping

conceptual models in Figure 4.9 and Figure 4.10 to a relational database schema, we get

one relation Employee and two relations Person and Employment respectively. It is
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usually not necessary to map also Employee and Employer in Figure 4.10 to two relations

in a relational database schema because they have no intrinsic attributes.

However, in the situations that, for example, a person can be a secretary and

technician simultaneously with different office phones, salarid, and start dates, the

I

corresponding relational database schema of the conceptual model in Figure 4.9 must be

modified accordingly. Now attributes OfficePhone, Salary, and StartDate of Employee

are multivalued and when mapping this conceptual model to a relational database schema,

we need to create a new relation R which includes the three attributes OfficePhone,

Salary and StartDate, plus the primary key SSN of Employee as a foreign key in R . The

primary key of R is the combination of all four attributes. Thus, unlike in the previous

situations, the resulting relational database schema has two relations. Like Person relation

in the corresponding relational database schema of Figure 4.10, now the Employee

relation includes only attributes Name and SSN. It is thus clear that using ER approach, it

is possible that the resulting relational database schema has to evolve after it has already

been in existence for some time.

In contrast, for the conceptual model in Figure 4.10, when a person can be a

secretary and a technician at the same time, this fact has no impact on the resulting

relational database schema at all. In this case, one may simply insert into Employment

relation two different records of a person with different employers in order to differentiate

different jobs held by the same person. Thus the relational database schema resulting

from the conceptual model in Figure 4.10 is more stable with respect to requirements

change and thus more suited to capture dynamic and evolutionary aspects of real world
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applications. More details on how to map various conceptual models based on our

metamodel to relational database schemata will be discussed in Chapter 5.

Our approach described here bears some resemblance ~o the Object Role

Modeling (aRM) approach proposed by Halpin in [70]. Unlike Ek modeling (and our

approach), aRM does not use attributes. As argued by Halpin [70], "The first problem

with using attributes in the initial models is that they are often unstable. ... So do not

agonize over whether to model a particular feature as an attribute or relationship. Just

model it as a relationship". An example he uses to illustrate this point is the attributes

"country-Represented" and "birthplace" of entity type Athlete, both of which are based

on the domain Country. He then argues that later on when we add the fact that Country

has population, we would have to model Country as an entity type. However, different

from our approach that has an ontological foundation, aRM is mainly focused on

implementation considerations. As a result, it does not distinguish intrinsic attributes from

mutual ones. In fact, in our approach, intrinsic attributes are owned by a class/type

exclusively, thus should not be modeled as relationships.

4.3.4.4 Object Migration

Since a natural type is rigid, its instances cannot migrate to other natural types in a natural

type hierarchy. For phase types however, since they are anti-rigid, their instances may

migrate to other phase types in the partition of a phase/natural type hierarchy during their

lifetime when the distinguishing intrinsic attribute(-s) is changed. An instance of a

naturaVphase type may become an instance of a role type when it participates in a
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relationship thus acquires some mutual attribute(-s) (It still remains an instance of the

natural/phase type). It may further acquire more mutual attributes thus become an

instance of a sub role type or a new role type, or it may lose some, mutual attributes thus

migrate to a super role type or not be an instance of a role type any more.

For example, in Figure 4.11, Person, Man, and Woman are natural types; Child,

Teenager, and Adult are phase types. Usually an instance of Man cannot migrate to

Woman in his lifetime. But an instance of Child may possibly migrate to Teenager and

Adult at some point in time. For role types, in Figure 4.6, a person may acquire mutual

properties Salary, StartDate and OfficePhone shared with an employer thus become an

employee. An employee may acquire mutual property Goal shared with a supervised team

thus become a team leader.

Fig. 4.11. An example of natural type and phase type partitions

Different from our approach presented here, in [53], Marcos and Cavero propose a

classification of taxonomic hierarchies with different constraints on object migration for

conceptual modeling based on Aristotle's definition of essence vs. accident and change
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vs. motion. They identify three taxonomic hierarchies as constructors for conceptual

modeling: IS-A (which is similar to natural type hierarchy), ROLE (which is similar to

role type hierarchy), and STATE (which is similar-to phase type hierarchy).

Similarly, Wieringa et al. propose to use dynamic classes and role classes as two

ways to model object migration between classes [58]. In [58], a static partition is a

partition whose subclasses are disjoint and their instances cannot migrate between each

other (which is similar to natural type partition). A dynamic partition is a partition whose

subclasses are disjoint at any particular point in time but their instances can migrate

between each other (which is similar to phase type partition). A static class is an element

of a static partition or an intersection of static classes; a dynamic class is an element of a

dynamic partition of a (dynamic or static) class. Each intersection of a dynamic class with

another (static or dynamic) class is also a dynamic class. In a static partition, classes are

not necessarily rigid. For example, a partition with Boy and Girl as subclasses and Child

as superclass is static, but classes Child, Boy and Girl are not rigid.

The problem with [53] and [58] is that, when discussing object migration, without

paying attention to the ontological nature of different "kinds" of types (natural type, phase

type, and role type), the authors focus on different types of class partitions. Consequently,

their argument "we cannot have a static partition of a dynamic class" [58, p. 66] is not

guaranteed, nor is the argument "So if we descend in the taxonomic structure, once we

meet a dynamic partition, we will not meet a static partition anymore" [58, p. 66].

Consider Figure 4.12. Here, Child, Teenager, and Adult constitute a dynamic partition of

Person. Therefore they are dynamic classes. But Boy and Girl constitute a static partition

of Child.
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Person

Fig. 4.12. A static partition of a dynamic class

In a phase type partition of a natural/phase type, object migration between these

phase types is subject to some dynamic integrity constraints. For example, in the partition

Child, Teenager, and Adult of Person, a person who is a child may migrate from Child to

Teenager and further from Teenager to Adult during hislher lifetime, but the reverse

direction of migration is forbidden (An adult cannot migrate to Teenager, and a teenager

cannot migrate to Child). In practice, a migration diagram [58] can be used to describe the

way in which instances of a natural/phase type can move through its phase type partition.

An example is shown in Figure 4.13.

Person

Fig. 4.13. The migration diagram of a phase type partition of Person
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Similarly, in some role type partitions of role types (such as

UndergraduateStudent and GraduateStudent of Student), instances of a role subtype may

migrate to other role subtypes subject to some constraints (e.g., an ~dergraduate student

can migrate to GraduateStudent, but not vice versa). In this case, migration diagram can

also be employed to describe these constraints.

4.3.5 Discussion on Steimann's Features of Roles

In this section, we reconsider those features ascribed to roles by Steimann as discussed in

section 4.2.5.1.

1. A role comes with its own properties and behavior. Indeed, in our model, roles

are types, and they recruit their instances from natural/phase types playing them.

However, in contrast with natural/phase types which have only intrinsic

attributes owned by themselves exclusively, role types have only mutual

attributes shared with other role type(s). Moreover, as discussed in section 3.3.5,

an association class cannot have operations or methods. Instead, operations and

methods that change mutual attribute values of an association class must be

placed in participating role classes/types of the association.

2. Roles depend on relationships. Yes. In our model, since role types have only

mutual attributes, they cannot occur without being related by their mutual

attributes to other role type(s). Moreover, since a relationship type is actually a

tuple of mutual attributes, we may also say that relationships depend on roles.
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In this sense, Entity-Relationship (ER) modeling is actually Entity-Role

modeling.

3. An object may play different roles simultaneously. Yes. A~ indicated in Figure

4.5, a naturaVphase type can play zero to many role types simultaneously.
I

Similarly, an instance of a naturaVphase type can play different roles of

different role types simultaneously.

4. An object may play the same role several times, simultaneously. Yes. In our

model, an instance of a naturaVphase type can play the same role type or

participate in the same relationship type several times simultaneously. Each

participation can be uniquely identified by a combination of the identities of the

instance and the other instances it is related to in that particular participation.

5. An object may acquire and abandon roles dynamically. Yes. An instance of a

naturaVphase type may acquire some mutual attribute(-s) thus a role by

participating in some relationship. At the same time, it remains an instance of

the naturaVphase type. It may later on cease to be involved in the relationship

thus lose those mutual attribute(-s) and abandon the role.

6. Objects ofunrelated types can play the same role. Yes. As indicated in Figure

4.5, a role type can be played by zero to many naturaVphase types

simultaneously. Therefore, instances of unrelated naturaVphase types can play

the same role type.

7. Roles can play roles. Yes.

8. Different roles may share structure and behavior. Yes. As indicated in Figure

4.5 and exemplified in Figure 4.6, different role types can be organized in
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generalization/specialization hierarchies to enable sharing of structure and

behavior.

9. An object and its roles share identity. -·Yes. In our model, an instance of a

natural/phase type and its roles are the same object corresponding to the same

real world thing, thus have the same identity.

10. An object and its roles have different identities. No. This view is contradictory

to feature 9 above. In fact, since an object and its roles model the same thing in

the real world, they should not have different identity.

4.4 Conclusion

In this chapter, we propose an ontological metamodel of classifiers based on OntoClean

methodology and Guizzardi et al.' s ontological profile. Then, after incorporating this

metamodel into our ontological framework built on Bunge's ontology, we explore its

implications for object-oriented and conceptual modeling as well as information system

design and implementation. In particular, we focus on discussing the definition, properties,

and representation of the notion of roles in the literature. Indeed, because most role

modeling approaches treat attributes of a role type as intrinsic attributes owned by the role

type exclusively, therefore they cannot handle satisfactorily the counting problem and the

related role identity problem. In contrast, our approach is founded on Bunge's ontology

and conforms to the fundamental features identified in the literature, thus provides an

ontological semantics for the notion of roles suitable for conceptual modeling. In the next
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chapter, we further demonstrate the usefulness of our metamodel by applying it to

conceptual database modeling.
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Chapter 5

Application: Conceptual Database
Modeling

5.1 Introduction

Conceptual modeling is an important phase in designing a successful database application.

The Entity-Relationship (ER) model [73][74] is a popular high-level conceptual data

model. It was developed by Peter Chen in 1976 and has undergone substantial

modification and refinement through the years. Frequently, this model and its variations

are used for the conceptual design of a database application. In this chapter, we elaborate

on our model proposed in Chapter 4, comparing it with ER model with respect to

conceptual database modeling in order to demonstrate conceptual and practical usefulness

of our model. Then we describe the process of mapping a conceptual database model

based on our metamodel into a relational database schema. Note that, since no uniformly

104



accepted set of notation exists for the elements of the ER model, we will use the notation

employed by Elmasri and Navathe in [69].

5.2 Conceptual Database Modeling Using Our
Proposed Metamodel '

The ER model describes data in terms of entities, relationships, and attributes. The basic

object represented is an entity, which represents a "thing" in the real world. A relationship

captures how two or more entities are related to one another. An entity type defmes a

collection of entities that have the same attributes. Each entity type has attributes, which

represent particular properties of the entities of this entity type. Each entity has its own

value(s) for each attribute. Similarly, a relationship type among n entity types defines a

collection of relationships among entities from these entity types. A relationship type can

have attribute(s), each relationship of the relationship type has its own value(s) for each

attribute.

Moreover, in ER, role is a named place in a relationship. Role names are assigned

to entity types participating in relationships. Role names are useful when the same entity

type participates in a relationship type more than once in different roles. In these cases,

role names are essential for distinguishing the meaning of each participation [69].

However, as we argued in Chapter 4, viewing roles as named places fails to acknowledge

the fact that roles come with their own properties and behavior, and this weakness can be

resolved by regarding roles as types in their own right. Moreover, we argue that since
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roles are mere labels of types, it is thus impossible to construct role type

generalization/specialization hierarchies leading to better-organized conceptual models.

Furthermore, different from our model, ER does not differentiate natural types,

phase types, and role types. Thus it cannot be used to represent different "kinds" of types

with different ontological nature as well as their relationships.

In Chapter 4, we proposed that natural/phase type has only intrinsic attributes

owned by itself exclusively whereas role type has only mutual attributes shared with other

role type(s). All the (mutual) attributes of the role type are placed in the association class

of the association connecting this role type to other role type(s), thus in a UML

conceptual model, a role type cannot occur without being related to other role type(s). In

this section, we compare our model with ER diagrams with respect to conceptual database

modeling in order to demonstrate the advantages and usefulness of our model.

5.2.1 The Counting Problem and Multivalued Attribute

In section 4.3.4.3, we described the Counting Problem, namely the situations in which

instances counted in their roles yield a greater number than the same instances counted by

the objects or phases playing the roles. We then demonstrated using an example that since

there is no explicit role type in ER and all intrinsic and mutual attributes are placed by

modelers in entity types or relationship types arbitrarily, the ER approach has a serious

flaw in dealing with dynamic and evolutionary aspects of real world applications, namely,

relational database schemata resulted from ER models may have to be modified after

having been put into use for some time. For a detailed example, refer to section 4.3.4.3.
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In conceptual database modeling, a multivalued attribute in ER is an attribute that

can have a set of values for the same entity. For example, a CollegeDegrees attribute of a

person is a multivalued attribute. A person may have zero, one, two, or more degrees

issued by the same or different college(s). Thus instead of modelmg a Bunge-attribute

function representing an intrinsic property of a person, CollegeDegrees models a Bunge­

attribute function representing a general nonbinding mutual property. In fact, intuitively,

in order to differentiate each value of a multivalued attribute, an external entity is

required (we may have as many external entities as its values). Therefore we suggest that

multivalued attributes in an ER schema always reflect mutual properties in our model. As

a result, in our model, a natural/phase type cannot have a multivalued attribute as its

component. Contrarily, any attribute of a role type may be a multivalued attribute.

5.2.2 A More Complicated Example

In Chapter 4, we gave several example conceptual models using our metamodel. In this

section, we present a more complicated example with multiple inheritance. Figure 5.1 is

an ER diagram with a generalization/specialization lattice adapted from [69, p. 84] for a

university database. Attributes SSN, Name, Sex, Address, and BirthDate are intrinsic

attributes of natural type Person. Attributes Salary, MajorDept, and PercentTime are

mutual attributes of role types Employee, Student, and StudentAssistant respectively. As

discussed in sections 4.3.4.3 and 5.2.1, these mutual attributes cannot be owned

exclusively by the role types. A corresponding conceptual model of Figure 5.1 based on

our metamodel is illustrated in Figure 5.2.
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Fig. 5.1. A generalization/specialization lattice for a university database

In Figure 5.2, Person and University are natural types (We add to University a key

attribute Name). Student, Employee, StudentAssistant, Employer, StudentEmployer, and

UniversityEnrolled are all role types. Mutual attribute Salary is shared by Employee

(which is played by Person) and Employer (which is played by University). Similarly,

mutual attribute MajorDept is shared by Student (which is played by Person) and

UniversityEnrolled (which is played by University). Also, mutual attribute PercentTime is

shared by StudentAssistant (which is a subtype of role types Employee and Student) and

StudentEmployer (which is a subtype of role types Employer and UniversityEnrolled).
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Fig. 5.2. The corresponding model of Figure 5.1 using our metamodel

It is clear that the conceptual model in Figure 5.2 expresses more real world

semantics than Figure 5.1. In fact, these real world semantics are implicit in Figure 5.1

and exist only in modelers' mind. But in Figure 5.2, they are represented explicitly. We

deem it a positive aspect of our approach because, as argued by Evermann and Wand [25,

p 147], one of the detrimental effects of the lack of rich, formal languages specific to

conceptual modeling is that information system "development projects might begin

without explicitly modelling the application domain and instead must rely on implicit

assumptions of developers". Moreover, in Figure 5.2, the identifier attribute Name of the

newly created natural type University is important because it will be used later as part of a
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combined key attribute to identify each relationship instance of relationship types

Employment, Enrollment, and StudentEmployment associated to the role types played by

University.

5.2.3 Union Type (Category) vs. Role Type

In conceptual database modeling, a union type or category is a subclass (in a single

superclass/subclass relationship with more than one superclass, each of which represents

a different entity type) which represents a collection of objects that is (a subset of) the

union of distinct entity types [69]. For example, Figure 5.3 (adapted from [69, p. 86])

illustrates two union types Owner and Registered_Vehicle. An owner may own a number

of registered vehicles, and a registered vehicle may be owned by a number of owners. An

owner of a vehicle can be a person, a bank, or a company. Similarly, a registered vehicle

can be a car or a truck.

In UML, a subclass may have multiple superclasses. The extension of the subclass

is the intersection of the extensions of all superclasses. I.e., each instance of the subclass

is also an instance of every superclass. For example, an engineering manager in the

subclass Engineering_Manager is also a member of superclasses Engineer and Manager.

On the other hand, the extension of a category is (a subset of) the union of the extensions

of all superclasses. Each instance of the category must belong to only one superclass.
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Fig. 5.3. Two union types: Owner and Registered_Vehicle

However, we suggest that, instead of being a new modeling concept, a union type

or category is actually a role type in our metamodel (which is anti-rigid and dependent).

To be more precise, it is formal role in OntoClean or rolemixin in Guizzardi et al.'s

ontological profile. Consequently, we may model Owner and Registered_Vehicle as role

types in our metamodel. Figure 5.4 illustrates the corresponding model based on our

metamodel. In Figure 5.4, Person, Bank, and Company are natural types that can play role

type Owner. Similarly, Car and Truck are natural types that can play role type

Registered_Vehicle. Since a role type recruits its instances from naturaVphase types, an
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owner can be a person, bank, or coIlJllany. Similarly, a registered vehicle can be a car or a

truck. All attributes of the relatio hip Owns (PurchaseDate and LienOrRegular) are

placed in association class Owners '.

Person

SSN
Name
BirthDate

Car

VehicleID
CModel
CYear
CStyle

Truck

VehicleID
t------1-.Jp~la~y~ed~b~y~CModel

CYear
Tonnage

Fig. 5.4. The corresponding model of Figure 5.3 using our metamodel

Also note that, different from Figure 5.3, in Figure 5.4, the cardinality constraint

of Owner and Registered_Vehicle in relationship Owns is 1.. *. This is because, as we

discussed in section 4.3.4.2, a role type cannot have optional associations with other role

type(s).

5.2.4 Role Identity
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The notion of object identity is a crucial issue in many areas of computer science,

including programming languages, database systems, computer networks, and operating

systems. In [29] and [58], Wieringa and his colleague compare object identity with role

identity. In their model, a role type has its own instances (roles) with separate global
,

unique identity different from other roles as well as instances of natural types (objects)

and phase types (phases). This view is motivated to model some real world situations

such as a person plays exactly three employee roles simultaneously, with different salary

and office number, i.e., the counting problem described in sections 4.2.5.1 and 5.2.1. In

this case, each employee role instance of a person object is a quasi-object in that it

describes a state of the corresponding object playing the role in a particular context. This

view is also shared by [59][57] and [64].

Although it looks appealing, this approach is problematic because a conceptual

model should be a faithful representation of someone's perception of a real world domain.

According to Shanks, Tansley, and Weber [27], a conceptual model is faithful if it is

accurate, complete, conflict free, and non-redundant. Thus an object with a unique

identity in a conceptual model should correspond to a distinct thing in the real world.

Furthermore, the requirement that each role instance has a global unique identity different

from other roles as well as instances of natural types and phase types is quite artificial.

In ER, there is no role type. Entity types that are actually role types (e.g.,

Employee and Student) usually inherit object identity from their superclasses. For

example, in Figure 5.1, Employee, Student, and StudentAssistant inherit key attribute

SSN from Person. This practice is not feasible when, for example, a person can be student

in two different universities. Here, a Person entity corresponds to two Student entities,
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therefore a single key attribute SSN of the person is not adequate to distinguish these two

studentships.

As Steimann's role model in [54][55][56],. in our model, instances of role types

are directly recruited from natural/phase types. Moreover, we sugg~st that, role instances
I

in [29][58][59][57][64] are actually relationship instances, or instances of association

classes that do not have counterpart in the real world. These relationship instances can be

naturally distinguished from each other as well as from instances of natural types, phase

types, and role types by a combination of the identities of participating objects. For

example, in Figure 5.2, natural type Person plays role type Student, natural type

University plays role type UniversityEnrolled. An instance of Enrollment of a student in

an enrolled university can be uniquely identified by the combination of key attributes

SSN of the person and Name of the university. Similarly, an instance of Employment of

an employee by an employer can be uniquely identified also by the combination of key

attributes SSN of the person and Name of the university.

Note that the situation becomes more complicated when a role type can be played

by more than one natural/phase types. If these natural/phase types have the same key

attribute, role instances can inherit this key attribute directly. For example, in Figure 5.4,

natural types Car and Truck have the same key attribute VehicleID. Therefore instances

of role type Registered_Vehicle can inherit this key attribute directly. If however the

natural/phase types playing the role type have different key attributes, we cannot use any

of them exclusively to identify all instances of the role type. For convenience, a new key

attribute may be specified for the role type. For example, also in Figure 5.4, natural types

Person, Bank, and Company have different key attributes SSN, BName, and CName.
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Therefore, a new key attribute OwnerID can be used to identify instances of role type

Owner. Consequently, instances of relationship type Ownership can be uniquely

identified by the combination of key attributes O~erID and VehicleID.

5.2.5 Integrity Constraints

In ER, relationship types usually have certain constraints that limit the possible

combinations of entities that may participate in the corresponding relationship set. Among

them, the participation constraint "specifies whether the existence of an entity depends

on its being related to another entity via the relationship type" [69, p. 57]. There are two

types of participation constraints - total and partial. An example for total participation

constraint is every employee must work for an employer. An example for partial

participation constraint is not every employee manages a department. Total participation

is also called existence dependency. However, as indicated before, in our model, a role

type cannot have optional associations (or partial participation) with other role type(s). In

fact, in the example for partial participation constraint, instead of role type Employee, it is

role type Manager that has a management relationship with role type

ManagedDepartment. In this case, the relationship type management is total participation

for both Manager and ManagedDepartment.

In a phase type partition of a natural or phase type, the phase subtypes should be

constructed such that they are mutually disjoint and constitute a total partition of this

supertype, i.e., any instance of the supertype should have a corresponding instance in

exactly one phase subtype. For example, in Figure 5.5, phase subtypes Child, Teenager,
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and Adult are mutually disjoint and constitute a total partition of natural type Person. The

disjointness integrity constraint can be implemented in SQL2 using three CREATE

ASSERTION statements as illustrated below (supJ?ose relations Person, Child, Teenager,

and Adult have the same key attribute SSN):

CREATE ASSERTION PHASETYPEPARTITION CONSTRAINTl
CHECK( NOT EXISTS (SELECT * FROM CHILD-C, TEENAGER T

WHERE C.SSN=T.SSN»;

CREATE ASSERTION PHASETYPEPARTITION CONSTRAINT2
CHECK( NOT EXISTS (SELECT * FROM TEENAGER T, ADULT A

WHERE T.SSN=A.SSN»;

CREATE ASSERTION PHASETYPEPARTITION CONSTRAINT3
CHECK( NOT EXISTS (SELECT * FROM CHILD-C, ADULT A

WHERE C.SSN=A.SSN»;

Because a phase type partition is a total partition, in a relational database schema,

if we insert an entity into a relation that represents the supertype of a phase type partition,

this entity must also be inserted into exactly one relation that represents an appropriate

phase subtype. For example, in Figure 5.5, if we insert a person entity that is a child into

relation Person, this entity is mandatorily inserted into relation Child. On the other hand,

if we delete an entity from a set ofrelations that represent a phase type partition (i.e., this

entity does not belong to any phase subtype of the partition any more), this entity must

also be deleted from the relation representing the supertype of the phase type partition. In

Figure 5.5, if an adult becomes deceased thus deleted from relation Adult, he or she
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cannot belong to any phase subtype of partition Person any more, thus is mandatorily

deleted from relation Person. We may use CREATE TRIGGER statement to implement

this integrity constraint as illustrated below:

CREATE TRIGGER DELETEPHASE
AFTER DELETE ON ADULT
FOR EACH ROW

DELETE * FROM PERSON WHERE SSN=OLD.SSN;

Person

Fig. 5.5. An example of a phase type partition of a natural type Person

Moreover, it is argued by Wieringa et al. that to construct taxonomic structures,

three classification principles should be followed [58, p. 69]. Among them, the first

principle states that, for each is-a partition of a class, the classification principle that

governs the division in its subtypes should be clear, unambiguous, singular, and uniform

for all subtypes. An example of non-uniform classification principle is "a division of

animals into domestic animals, poisonous snakes and others". Here, one subtype is

defined along the dimension domestic-wild animals and another along the dimension

poisonous-nonpoisonous snake. Following the above principles, in natural type

hierarchies, partitions should be constructed such that its subtypes are mutually disjoint.
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For example, in Figure 5.6, natural subtypes Car and Truck are mutually disjoint, so are

natural subtypes Man and Woman. The corresponding assertion implementation for

Figure 5.6 (b) can be illustrated below (suppose retations Person, Man, and Woman have

the same key attribute SSN):

CREATE ASSERTION NATURALTYPEPARTITION CONSTRAINT
CHECK( NOT EXISTS (SELECT * FROM MAN M, WOMAN W

WHERE M.SSN=W.SSN»;

Vehicle I

(a)

Person

(b)

Fig. 5.6. An example of (a) a partial natural type partition, and (b) a total natural type partition

Note that a natural type partition does not necessarily exhaust its supertype. Figure

5.6 (a) illustrates a partial natural type partition Truck and Car ofVehic1e, Figure 5.6 (b)

illustrates a total natural type partition Man and Woman of Person. Consequently, in a

relational database schema, if we insert an entity into a relation that represents the

supertype of a natural type partition, this entity does not necessarily have to be inserted

into a relation that represents a natural subtype. For example, in Figure 5.6 (a), if we
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insert an entity that is a motorcycle into relation Vehicle, this entity does not have to be

inserted into either Car or Truck.

On the other hand, if we delete an entity. from any relation that represents a

subtype of a natural type partition, this entity must also be deleted from the relation
,

representing the supertype of the partition. For example, in Figure 5.6 (b), if a

man/woman entity is deleted from relation ManIWoman, he/she is mandatorily deleted

from relation Person. The corresponding trigger implementation for Figure 5.6 (b) can be

illustrated below:

CREATE TRIGGER DELETEOBJECTl
AFTER DELETE ON MAN
FOR EACH ROW

DELETE * FROM PERSON WHERE SSN=OLD.SSN;

CREATE TRIGGER DELETEOBJECT2
AFTER DELETE ON WOMAN
FOR EACH ROW

DELETE * FROM PERSON WHERE SSN=OLD.SSN;

Fig. 5.7. An example of a total role partition of role type Student
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Compared with natural/phase type partition, usually a role type partition can be

overlapping. This is because an object or phase may play multiple roles simultaneously.

For example, in Figure 5.7, if a person can be an lJlldergraduate student in one university

and a graduate student in another, then this partition is overlappiIfg. Furthermore, a role
,

type partition can be partial or total. Figure 5.7 illustrates a total partition: every student

is either an undergraduate student or a graduate student.

Moreover, as discussed in section 4.3.4.4, instances of a natural type cannot

migrate to other natural types in a natural type hierarchy. However, this is not the case for

phase and role types. In a phase type partition of a natural/phase type, object migration

between these phase types is subject to some dynamic integrity constraints. A migration

diagram can be used to describe the way in which instances of a natural/phase supertype

can move through its phase type partition. For example, Figure 5.8 illustrates a phase type

partition Caterpillar and Butterfly of Lepidopteron along with its migration diagram. A

caterpillar can migrate to Butterfly, but not vice versa.

(a)

Lepidopteron

(b)

Fig. 5.8. A phase type partition and its corresponding migration diagram
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Similarly, migration diagrams can also be employed to describe dynamic integrity

constraints of role type partitions of role types. Figure 5.9 shows the corresponding

migration diagram of Figure 5.7.

Studen UndergraduateStudent

Fig. 5.9. The corresponding migration diagram of Figure 5.8

5.2.6 Converting An ER Model Into A Conceptual Model
Based On Our Metamodel

Given an ER model, we may convert it into a conceptual model based on our metamodel

by following the steps described below. Note that we do not consider weak entity types in

this chapter.

Step 1: For each entity type in the ER model, decide whether it is a naturaVphase type or

a role type, and then use appropriate notation (rectangle for naturaVphase type and

oval for role type) to represent it. Typical natural types are Person, University, and

Department, etc. Typical phase types are Man, Woman, and Adult, etc. Typical

role types are Employee, Student, and Customer, etc. For example, in Figure 5.1,

entity type Person is natural type, entity types Employee, Student, and

StudentAssistant are role types. Note that, all union types in ER models are

converted into role types in our models.
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Also note that, in our model, natural/phase types contain attributes

modeling Bunge-attribute functions representing only general intrinsic properties

of things whereas role types contain attributes modeling Bunge-attribute functions

representing only general nonbinding mutual propertieis shared by things.
I

However, in some ER models, intrinsic and mutual attributes are placed by

modelers in entity types arbitrarily. For example, in Figure 4.9 (section 4.3.4.3),

attributes Name and SSN are intrinsic attributes of Person, but they are placed in

entity type Employee, which is a role type. In this case, we remove from the role

type all the intrinsic attributes and put them into a newly created natural/phase

type playing this role type. For example, in Figure 4.10 (section 4.3.4.3), a new

natural type Person is created with attributes Name and SSN, which plays role

type Employee.

In the case that a natural/phase type participates in a relationship with other

type(s) in the ER model (which is not allowed in our model), we may need to

create a new role type that participates in the relationship and is played by the

natural/phase type. For example, if in the original ER model, natural type

University participates in relationship Enrollment with role type Student, then we

may create a new role type UniversityEnrolled to replace University in

relationship Enrollment, and let University play UniversityEnrolled.

Moreover, as demonstrated in Figures 5.1 and 5.2, sometimes we need to

create new natural/phase types with at least an identifier attribute (e.g., University

with the identifier attribute Name) and role types (Employer, UniversityEnrolled,

and StudentEmployer) in order for our model to be considered complete. Here, the
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identifier attribute of the created naturaVphase type is important because, as we

discussed in section 5.2.4, it can be used later (as part ofa combined key attribute)

to identify each relationship instance associated to the role types played by this

naturaVphase type. Also note that, in Figure 5.2, the creation of additional role
t

types Employer, UniversityEnrolled, and StudentEmployer is necessary because

they share mutual attributes with role types Employee, Student, and

StudentAssistant respectively.

Step 2: Remove all generalization/specialization relationships between naturaVphase

types and role types in the original ER model. Relate using plays relationship each

role type to the corresponding naturaVphase type(s) playing it. Keep intact the

generalization/specialization relationships between naturaVphase types and

between role types. For example, in Figure 5.2, whereas the two

generalization/specialization relationships between Employee and

StudentAssistant and between Student and StudentAssistant are kept intact, those

between natural type Person and role types Employee and Student are replaced by

two plays relationships.

For newly created naturaVphase types in step 1, relate them using

generalization/specialization relationship if appropriate. Repeat this for newly

created role types as well. For example, in Figure 5.2, two

generalization/specialization relationships are created between newly created role

types Employer and StudentEmployer and between UniversityEnrolled and

StudentEmployer.
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Step 3: For each naturaVphase type, place its attributes in the attribute compartment of the

type. Relate using an association each role type to other role type(s) with which it

shares its attributes. These attributes are placed in the attribute compartment of an

association class (with a proper name) attached to the association.

5.3 Mapping Conceptual Models Based On Our
Metamodel Into Corresponding Relational
Database Schema

In this section, we describe the process of mapping a conceptual database model based on

our metamodel into a relational database schema.

Step 1: For each naturaVphase type N / P in the conceptual database model, create a

relation R that includes all the attributes of N / P . These attributes model Bunge-

attribute functions representing general intrinsic properties of the things

represented by instances of the naturaVphase type. Choose one of the key

attributes of N / P as primary key for R .

For example, from Figure 5.2, we create the relations Person and

University for natural types Person and University, as shown in Figure 5.10. We

choose SSN and Name as primary keys for the relations Person and University,

respectively.
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In another example, from Figure 5.4, we create the relations Person, Bank,

Company, Car, and Truck for the corresponding natural types, as shown in Figure

5.11. We choose SSN, BName, and CName as primary keys for the relations

Person, Bank, and Company, choose VehicleID as primary key for the relations

Car and Truck.

Person

~ Name Sex Address BirthDate

University

~

Fmployment

~ ~ Salary

Fnrollment

~ ~ MajorDept

StudentFmployment

~ ~ PercentTime I

Roles

~ ~ RelatjooshjpName ID

Employee Person Employment SSN

Student Person Enrollment SSN

StudentAssistant Person Employment SSN

StudentAssistant Person Enrollment SSN

StudentAssistant Person StudentEmployment SSN

Employer University Employment Name

UniversityEnrolled University Enrollment Name

StudentEmployer University Employment Name

StudentEmployer University Enro11ment Name

StudentEmployer University StudentEmployment Name

Fig. 5.10. Relational database schema diagram for the conceptual model in Figure 5.2
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Step 2: For each natural/phase type generalization/specialization with m subtypes

{Sl'S2, ... ,Sm} and supertype S , create a relation R for S and m relations

{RI'R2 , ••• ,Rm } for the subtypes. R contains the key attribute k of S as primary

key and all common attributes. Each Ri contains k as primary key and the

attributes specific to that subtype.

Person

SStl Name BirthDate OlM1erlD

Bank

~ BAddress OlM1erlD

Company

~ CAddress OlM1erlD

Car

~ CModel CYear CStyle

Truck

~ CModel CYear Tonnage

Ownership

.Qwne.r.lQ ~ IPurchaseDate ILienOrRegularl

Roles

~ ~ RelatjooshjpNarne ID

OlM1er Person OlM1ership OlM1erlD

OlM1er Bank OlM1ership OlM1erlD

OlM1er Company OlM1ership OlM1erlD

Registered_Vehicle Car OlM1ership VehiclelD

Registered Vehicle Truck OlM1ership VehiclelD

Fig. 5.11. Relational database schema diagram for the conceptual model in Figure 5.4
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Step 3: For each role type T, since it has no intrinsic attributes of its own, we may create

a relation R that includes only a primary key attribute. If the role type is played

by only one natural/phase type, include as the primary key attribute of R the

primary key attribute of the relation that corresponds to the natural/phase type

playing this role type. If, however, the role type is played by more than one

natural/phase types, if these natural/phase types have the same key attribute,

include as the primary key attribute of R this key attribute; otherwise, if these

natural/phase types have different key _attributes, a new key attribute must be

specified for the role type and included as the primary key attribute of R .

Moreover, we also add this key attribute as foreign key to each relation

corresponding to a natural/phase type playing the role type.

Note that, since R contains only a primary key and does not provide

additional information, usually we do not need to include R in a relational

database schema. In practice, in order to reverse-engineer high-level conceptual

models such as that in Figure 5.2 from existing relational database schema, we

may store structure information on role types (metadata) into a relation called

Roles which has four attributes RoleName, PlayerName, RelationshipName, and

ID. For each role type in a conceptual model based on our metamodel, attribute

RoleName contains the name of the role type, PlayerName contains the name of

(one of) its player (a natural or phase type), RelationshipName contains the name

of (one of) the relationship type this role type participates in, and ID contains the

name of the primary key of the relation corresponding to the role type. Because
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the values of attributes RoleName, PlayerName, and RelationshipName can

uniquely identify a tuple in relation Roles, the combination of the three attributes

can be used as the primary key of Roles.

For example, from Figure 5.2, relation Roles can be created as shown in

Figure 5.10. Relations corresponding to role types Employee, Student, and

StudentAssistant get their primary key SSN from relation Person. Relations

corresponding to role types Employer, UniversityEnrolled, and StudentEmployer

get their primary key Name from relation University.

In another example, from Figure 5.4, relation Roles can be created as

shown in Figure 5.11. Whereas relation corresponding to role type

Registered_Vehicle gets its primary key VehicleID from relations Car and Truck,

a new key attribute OwnerID is included as the primary key of the relation

corresponding to role type Owner and also added as foreign key to relations

Person, Bank, and Company.

Step 4: For each association class A in the conceptual model, create a relation R that

includes all the attributes of A. Include as foreign key attributes in R the primary

keys of the relations that represent the participating role types. If the association is

a binary 1: 1 relationship type, any primary key of the relations representing the

two participating role types can be used as primary key of R . If the association is

a binary 1:N relationship type, the primary key of the relation representing the

participating role type on the N -side can be used as primary key of R. If the
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association is a binary M: N relationship type, the combination of the primary

keys of the relations representing the participating role types will be used as

primary key of R . If the association is a n-ary relationship type, where n > 2, the

primary key of R will be the combination of the primary keys of the relations

representing the participating role types whose cardinality constraints are not 1.

Because each instance of the association class has an existence

dependency on each role instance (Actually, this role instance is a naturaVphase

type instance) it relates, the propagate (CASCADE) option for the referential

triggered action should be specified on the foreign keys in the relation

corresponding to the association class.

For example, from Figure 5.2, we create the relations Employment,

Enrollment, and StudentEmployment for the corresponding association classes, as

shown in Figure 5.10. The primary key of relation Employment/EnrollmentJ

StudentEmployment is the combination of SSN from (the implicit) relation

Employee/StudentJStudentAssistant and Name from (the implicit) relation

EmployerlUniversityEnrolled/StudentEmployer.

In another example, from Figure 5.4, we create the relation Ownership for

the corresponding association class, as shown in Figure 5.11. Similarly, the

primary key of relation Ownership is the combination of OwnerID from (the

implicit) relation Owner and VehicleID from (the implicit) relation

Registered_Vehicle.
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5.4 Conclusion

In this chapter, we compare conceptual models created using our metamodel to those

created using ER approach with respect to conceptual database modeling. Then we

describe how to map a conceptual model based on our metamodel into relational database

schema. We demonstrate using examples that relational database schemata generated

using our approach are more stable with respect to a kind of requirements change, Le., a

change in multiplicity of roles. However, an experimental assessment of our claim is

needed in the future. Moreover, by distinguishing among natural types, phase types, and

role types, a number of real world semantics and rules can be implemented as integrity

constraints of a relational database schema. In Appendix, an even more complex example

is given illustrating a university conceptual schema.
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Chapter 6

Conclusions

6.1 Review of The Research

Developing a conceptual model that faithfully represents the domain it is intended to

represent is of critical importance for successful information system development.

Although it is widely held that UML could be used both for modeling software, and for

modeling the problem domain that is supported by a system, this expectation is

problematic because of UML's implementation oriented origin. In this thesis, our

research objective is to develop an ontological core of UML for conceptual modeling

based on Bunge's ontology, focusing on static aspects. In Chapter 3, we developed an

ontological semantic framework for a core set of UML's model constructs (object,

attribute, class/type, association, link, association class, state, state transition, and

operation). The choice of these constructs in our ontological UML core is driven by

Bunge's ontology. We also analyze consequences for conceptual modeling using UML
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based on this semantic mapping. In particular, we focused on UML association and link

and indicate that links and their corresponding associations in UML class diagrams are of

fundamentally different ontological nature from those in UML collaborations. Thus we

deem the so-called Baseless Link Problem discussed in the UML literature as an

unpleasant consequence of UML's implementation oriented origin from object-oriented

programming, which disappears naturally in our approach.

In Chapter 3, we proposed that Bunge-functional schema is modeled by UML­

class/type. However, Bunge does not give guidelines as to how to differentiate different

"kinds" of functional schemata thus different "kinds" of UML-classes/types. Accordingly,

in Chapter 4, we investigate other ontological theories (OntoClean and Guizzardi et al. 's

ontological profile), based on which we propose an ontological metamodel of classifiers

and incorporate it into our framework built on Bunge's ontology. Moreover, in Chapter 4,

we focus on the definition, properties, and representation of the notion of roles in the

literature. In object-oriented and conceptual modeling, role is a powerful modeling

concept. However, a lot of confusion exists on its definition, properties, and

representation. Most role models proposed up to now have been primarily based on

implementation considerations. In our metamodel, instead of viewing attributes of a role

type as intrinsic attributes owned by the role type exclusively, our approach regards

attributes of a role type as mutual attributes shared by participating role types, thus

handles the counting problem and the related role identity problem and conforms to the

fundamental features identified in the literature.

To demonstrate the conceptual and practical usefulness of our metamodel, in

Chapter 5, conceptual models created using our metamodel are compared to those created
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using ER approach with respect to conceptual database modeling. Then we describe how

to map a conceptual model based on our metamodel into relational database schema. We

demonstrate using examples that relational database schemata generated using our

approach are more stable with respect to a kind of requirements change, i.e., a change in

multiplicity of roles. However, an experimental assessment of our claim is needed in the

future. Indeed, since in ER, there is only entity type, no explicit role type, all intrinsic and

mutual attributes are placed by modelers in entity types or relationship types arbitrarily.

Therefore, using the ER approach, it is possible that the resulting relational database

schema has to evolve after it has already been in existence for some time. This situation

must be taken seriously since, as many authors have argued, the cost of repairing

requirements errors during maintenance may be two orders of magnitude greater than that

of correcting them during RE. Moreover, in our approach, by distinguishing among

natural types, phase types, and role types, a number of real world semantics and rules can

be implemented as integrity constraints of a relational database schema.

6.2 Future Research

There are a lot of potential future research directions for the research. In this section,

some interesting problems that need further investigation are given:

• In conceptual modeling, notions of Part and Whole are of significant importance.

In Chapter 3, we argue that the distinction between UML-composition/aggregation

and between Bunge-aggregate/system is along different dimensions. In fact, there
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are various kinds of mereologies, or formal ontological theories of part, whole,

and related concepts. One potentially fruitful area of research is to analyze

characteristics of different part-whole relationships and further investigate how to

incorporate them into our ontological core.

• In this thesis, we focus on discussing static aspects of UML. As argued in Chapter

3, the dynamic aspects ofUML are quite confusing - there is no precise definition

even for such fundamental notion as state. Consequently, research is needed to

investigate and develop an ontological foundation for UML dynamic aspects, and

we believe that Bunge's ontology is the appropriate candidate.

134



Appendix

An Example

In this section, we present a more substantial realistic example as illustrated in

Figure a.l (adapted from [69, p. 91]). The university database is used to keep track of

faculty and their research projects, as well as students and their majors, transcripts, and

registration. The corresponding model of Figure a.l using our metamodel is shown in

Figure a.2.

In Figure a.2, relationships in Figure a.l like Chairs and Belongs between Faculty

and Department are replaced by relationships Chair between DepartmentHead (subclass

of Faculty) and DepartmentEnrolled and Employment between Faculty and

DepartmentEnrolled. Similarly relationships Advisor and Committee between Faculty

and Grad_Student are replaced by relationships Supervision between Advisor and

Grad_Student and Co_Supervision between Committee_Member and Grad_Student. Both

Advisor and Committee_Member are subclasses of Faculty. Meanwhile, two mutual

135



attributes StartDate and ResearchTopic are added to Supervision and one mutual attribute

StartDate is added to Co_Supervision. Similarly, a mutual property Prerequisite is also

added to the relationship between role types CourseOffered and DepartmentEnrolled and

a mutual property StartDate is added to the relationship Chairs between DepartmentHead

and DepartmentEnrolled.
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Fig. a.1. An EER conceptual schema for a university database [69, p. 91]

Fig. a.2. The corresponding model of Figure a.l using our metamodel

As discussed in section 4.3.2, role can play role. In Figure a.2, role types Faculty

and Student also play role type Instructor_Researcher. Moreover, there is no relationship

between Grant and Instructor_Researcher. Instead, a new role type FacultyWithGrant is

created. Entity type Grant and relationship type Support in Figure a.I are represented as
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relationships between Agency and FacultyWithGrant as well as between

FacultyWithGrant and Instructor_Researcher.
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