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Abstract 

Abstract 

Offshore energy exploration has been moving into ever increasing water depths. For 

floating offshore drilling structures, the riser system is a crucial element. Vortex-induced 

vibration (VIV) is a major concern for deepwater riser developments, as vortex-induced 

vibration is a major cause of riser fatigue damage. For deepwater risers, current is the 

dominant factor causing VIV responses. Due to the increased water depth, deep-water 

risers have long and flexible structures, so that they have the potential to be subject to 

very high modes of vibration, i.e. multi-modal VIV. The frequencies, amplitudes and 

modes of VIV responses are usually the focus of deepwater riser design, as they, along 

with riser material properties, directly determine the riser fatigue life. In recent years, 

much effort has been devoted into the investigation of riser VIV response, but there are 

still many uncertainties, especially for the risers with multi-mode VIV responses in 

currents. For example, frequency lock-in phenomena and modal resonances are still not 

fully understood for multi-modal VIV responses; the vibration shapes over riser length 

and the motion trajectories in the cross-sectional plane for a flexible riser with multi

modal VIV can not be found in the literature. The frequency and mode components 

contained in the multi-modal VIV responses in both in-line and cross-flow directions 

have not been published in previous work. 

This research aims to improve the understanding of multi-modal VIV in currents. The 

research objectives include i) frequency characteristics for multi-modal VIV responses, 

such as frequency versus current velocity and frequency lock-in phenomenon; ii) 

amplitude characteristics for multi-modal VIV responses, such as amplitude versus 
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current velocity, amplitude range and amplitude resonance; iii) spectral characteristics for 

multi-modal VIV responses, such as dominant frequencies, power spectrum versus 

current velocity and power spectrum versus location on the riser; iv) modal 

characteristics for multi-modal VIV responses, such as modal distribution, dominant 

mode and mode versus current velocity; v) modal system parameters for a flexible riser in 

calm water, including modal mass, modal damping, modal stiffness and non-linear 

damping; and vi) the correlation between the modal parameters and the VIV responses. 

After a review of the state-of-the-art literature involving VIV investigation, an 

experimental method was proposed for this research. Based on a prototype riser, a length

distorted model riser was designed with similarity of the mass, the bending stiffness and 

the frequency ratio. Two model riser tests were designed and conducted. The first one 

was a shaker-excitation test, which was designed to investigate the modal system 

parameters. A shaker was used to generate an excitation to the riser, and the riser 

responses were measured. The modal system parameters were estimated from the 

frequency response functions based on a simplified governing equation for the 

shaker/riser system. Modal analysis was used to estimate the linear modal system 

parameters, and Bendat's technique was used to estimate the non-linear damping for the 

flexible riser. 

Another model riser test was a current-excitation test. This test was designed to 

investigate the VIV responses in currents. The uniform currents were generated by 

towing carriage. Sixteen pairs of accelerometers were used to measure the VIV responses 

at sixteen locations on the riser. Spectral analysis and modal analysis are two major tools 

to analyze the measured data. 
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It was found that the frequencies of the multi-modal VIV responses in both the cross

flow and in-line directions follow the Strouhal frequencies for a flexible riser. The 

measured Strouhal number was about 0.12. The frequency lock-in phenomena occurred 

in both the in-line and cross-flow directions at some modal natural frequencies. The 

vibration amplitudes fluctuate from 0.3 to 0.9D (D denotes the riser diameter) in both the 

in-line and cross-flow directions for the flexible riser tested, and no increasing trend 

existed as the current velocity increases. The resonances are not strong as the vibration 

energy is shared by several modes. The VIV responses for a flexible riser contained a 

number of modal components, but one or two were the dominant modes. 

It was also found that flexible risers have a variety of natural frequencies, which 

correspond to a variety of mode shapes. The modal natural frequencies depend on the 

tension. The estimated added mass coefficients Ca depend on the tensions and mode 

shapes for a flexible riser, ranging from 1.0 to 3.7, and the estimated damping 

coefficients Cd have a relatively big scatter, ranging from 0.5 to 2.5. There is a degree of 

correlation between the estimated modal parameters and the VIV responses. 
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CHAPTER 1 

INTRODUCTION 

1. Introduction 

Introduction 

The development of the offshore oil industry commenced with the use of fixed 

structures. In 1887, the first offshore structure appeared off the California coast, which 

was a wooden wharf used to aid in oil drilling (Wilson, 1984). The offshore operations 

then made a gradual move from the swamps and marsh lands of Louisiana into the Gulf 

of Mexico in the United States (Patel and Witz, 1991), and the first oil platform was built 

in Louisiana in 1947 (Chakrabarti, 1987). The water depth capability of drilling 

equipment was gradually increased by the use of jack up rigs, which can operate in severe 

weather at water depth of up to 107m (Morgan, 1990). For water depths of more than 

800m, fixed structures lose their technological and economic advantages and a floating 

facility may be the only technological and economic alternative (Olson, 1985). 

For a floating platform, the maximum drilling water depth is usually governed by three 

factors: i) its mooring system; ii) the amount of drill pipe and riser pipe that it can carry 
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and iii) heave compensator limits imposed by the vessel's motion responses. A catenary 

line mooring system is impractical above water depths of about 457m. For deeper waters, 

a dynamically positioned platform may be required (Wilson, 1984). The maximum water 

depth to which a dynamically positioned platform can work is theoretically unlimited, but 

in practice there are two limitations: i) the length of the marine riser and ii) tensioner and 

heave compensator performance. 

Presently, offshore energy exploration has been moving into ever increasing water 

depths. Some studies have considered water depths approaching more than 3,000m (e.g. 

Ward et al. 1999). In fact, deepwater offshore activity commands a growing share of the 

global offshore exploration and development industry, with work in the deep-water zones 

of 56 countries, adjacent to every continent. The principal deep-water areas worldwide 

include: a) Brazil, b) US Gulf of Mexico, c) West of Shetland, d) Northern Norway, e) 

West Africa, f) Asia-Pacific and g) Australia's Northwest. 

1. 1 Marine Risers 

For floating offshore drilling structures, the riser system is a crucial element. Marine 

risers are used to transport oil, gas, water and mud from producing field to a surface 

platform and back down for export through a subsea pipeline or a tanker loading system. 

Some risers may also be used to re-inject water or gas into the field. In terms of function, 

marine risers can be classified into three types of drilling riser, production riser and 

export riser (Olson, 1985). 

a) Drilling riser: The drilling riser usually has a diameter of about 20 inches, which is 

used only on a temporary basis for well drilling. A drilling riser is often used: i) to protect 
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the drilling pipe from environmental loads, such as wave and current loads; ii) to provide 

a return path for drilling mud and cuttings; iii) to give a path to the well bore for control 

of formation pressure and iv) to support the control lines to the blow out proventer. 

b) Production riser: The production riser usually has a diameter of from 4 to 10 inches, 

which is used to transport the gas, oil or water produced by the wells to the surface vessel 

for processing. Production risers are usually designed as a structure with a long lifetime 

experiencing higher pressures. 

c) Export riser: The export riser usually has a diameter of from 6 to 15 inches, which is 

used to ship the produced oil and gas to market, or re-inject produced water and gas back 

into the formation. Export risers are also designed as a structure with long lifetime 

experiencing fairly high pressures. 

Usually, for a fixed platform, marine risers can be clamped at intervals to structural 

members of the platform along their vertical run up to the surface, while for a floating 

platform, marine risers can be freely strung from the surface platform to seabed with a 

sufficiently high tension at their top to prevent buckling resulting from their self weight. 

As these marine risers are connected vertically from the surface platform to seabed, they 

are called vertical risers (Morgan, 1990). A rigid steel marine riser can be used for a 

vertical riser. In recent years, the pipes of composite steel and elastomer construction 

have been used as marine risers. These risers are strung in non-vertical catenary shapes 

from surface platform to seabed and they are, therefore, called flexible risers (Morgan, 

1990). In deep or ultra-deep waters, it is popular to use the flexible risers. Serta et al. 

(2001) reviewed two types of the most often used flexible riser systems for deep and 

ultra-deep waters. The first is the catenary riser system. The riser in a catenary riser 
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system is directly connected to the seabed with a riser anchor and there is, therefore, a 

"touch-down" between the riser and seabed near the lower end of the riser. The "touch

down" often complicates the structural performance of the riser. Another is the so-called 

hybrid riser system. The hybrid riser system can avoid the "touch-down" from the riser, 

as the riser in a hybrid riser system is connected to seabed through a structure standing on 

seabed. This structure may be a riser tower or a subsurface buoy. Also, some special 

devices may be attached to risers. For example, the distributed buoyancy may be 

mounted on the riser to withstand the over-weight of the riser, which often appears for a 

deepwater riser due to its long structure. Another device may be the "helical strakes", 

which are employed to suppress the responses of vortex-induced vibrations (VIV) for a 

riser (Williamson and Govardhan, 2004). 

1. 2 Single-Modal Vortex-Induced Vibrations 

The dynamic responses of risers to environmental loads are major concerns in deep

water riser development. These responses mainly include deformations, tension forces 

and vortex-induced vibrations, and directly dominate some dangerous riser behaviors, 

such as stress damage, fatigue damage and clashing between two risers. 

One of the causes of fatigue damage is vortex-induced vibrations. The vortex-induced 

vibrations result from the vortex shedding from the surface of the risers due to a flow past 

the structure. When a flow with enough high velocity passes a cylinder, vortices will be 

generated at the boundaries and transported in the fluid, and a vortex wake is formed 

behind the cylinder. The wake is defined as a low-pressure region near the boundary of a 

submerged body (Chakrabarti, 2002). The vortices in the wake will finally separate from 
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the surface of the cylinder, and this separation process is referred to as vortex-shedding. 

The vortex formation-shedding process behind the cylinder causes a varying 

hydrodynamic force on the cylinder in the flow direction (in-line direction). As the vortex 

formation and shedding behind a cylinder do not occur at the same time and the vortex

shedding are not symmetric with respect to the direction of flow, this leads to an 

alternating hydrodynamic force transverse to the flow (cross-flow direction) acting on the 

cylinder. The varying in-line and cross-flow hydrodynamic forces are referred to as 

vortex-shedding forces. 

The vortex formation and shedding behind a cylinder is a most complicated problem in 

fluid dynamics. This process is influenced by many factors. For a fixed rigid cylinder, the 

Reynolds number, defined as Re= UD/v, where: v is the kinematic viscosity of water, D is 

the riser diameter and U is the current velocity, is a major factor affecting the vortex 

formation-shedding process. Table 1-1 summarizes the major regimes of vortex shedding 

across a fixed cylinder versus the Reynolds number (Morgan, 1990). 

Another parameter affecting the vortex shedding is the roughness on the surface of the 

cylinder. The flow on a rough surface separates from the surface earlier than the flow 

around a smooth surface, namely the vortices and turbulence behind a cylinder with 

rough surface appear at a lower current velocity than behind a cylinder with smooth 

surface. 

For a fixed cylinder, the frequency of vortex shedding force is a function of flow 

velocity, cylinder diameter and the Strouhal number Sr, namely f v=S,UID. This frequency 

is referred to as the Strouhal frequency. The amplitude of vortex-shedding force in the 

cross-flow direction can be represented by a lift force coefficient CL, namely 
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F =_!_pC DU 2 
L 

2 
L 

where: pis the water density. 

Table 1-1 Wake pattern versus Reynolds number for a fixed cylinder 

Reynolds number Wake pattern 

Re<5 Regime of un-separated flow 

5<Re<40 A fixed pair of vortices in wake 

40<Re<150 Laminar vortex street 

150<Re<300 Transition range to turbulent vortex 

300<Re<3x 105 Fully turbulent vortex 

3x 1 0:> <Re<3 .Sx 106 Wake is narrower and disorganized 

3.5x106<Re Re-establishment of turbulent vortex street 

Both the Strouhal number and lift force coefficient are a function of the Reynolds 

number. Figure 1-1 gives a general picture of the Strouhal number versus Reynolds 

number for a stationary circular cylinder. As seen in Figure 1-1, the Strouhal number is 

approximately a constant of 0.18 over a wide range of Re varying from 2x102 to 2x105 for 

a rigid cylinder. In the region of Re ranging from 3x105 to 3.5x106
, which is called the 

critical region where laminar boundary layer undergoes turbulent transition, the Strouhal 

number demonstrates a big scatter varying from 0.16 to 0.42. 
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Introduction 

Figure 1-1 Strouhal number versus Reynolds number for a stationary rigid 
circular cylinder 

The lift force coefficients have been measured by numerous experiments from 

circular cylinders transverse to steady flow . Figure 1-2 gives the general behavior of the 

lift force coefficients versus Reynolds number for a smooth elastically-mounted rigid 

cylinder under 2D flow conditions. The low and high curves in Figure 1-2 cover all the 

values from different experiments. Obviously, the measured lift force coefficients have a 

considerable scatter, and most of this scatter may be attributed to the free stream 

turbulence in the flow, flow over the ends of the cylinder, lack of rigidity in the mounting 

system and other physical sources (Chakrabarti, 2002). The highest values appear in the 

Reynolds number range of 2x104 to 8x104
• 

For an elastically mounted rigid cylinder, the vortex-shedding forces will result in 

cylinder vibrations in both the in-line and cross-flow directions. The cross-flow VIV 

frequencies of an elastically mounted cylinder also follow the Strouhal frequencies 

except in the frequency region close to the natural frequency of the cylinder. In the 

frequency region close to the natural frequency, a frequency "lock-in" may occur. The 
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frequency "lock-in" is a phenomenon that the VIV response frequencies almost remain a 

constant, which is usually equal to or close to the natural frequency of the cylinder, so 

that the linear relation between the response frequency and the flow velocity is violated. 

Figure 1-3 shows the typical experimental results for an elastically mounted cylinder 

(Khalak and Williamson, 1997 & 1999). In this figure, u* is the reduced velocity, defined 

as u* =U!fnD, where: U is the current velocity, fn is the natural frequency of the cylinder, 

and D is the diameter of the riser; and I is the frequency ratio, defined as I =f!fn, where: f 

is the vibration frequency. As seen in Figure 1-3, the frequency "lock-in" ranges over a 

region from u*-;::::.3 to 13. 
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Figure 1-2 Lift coefficient versus Reynolds number for a stationary rigid circular 
cylinder under 2D flow conditions 

The mass ratio m *,defined as m * =4mfn:pD2
, where: m is the mass per unit length of the 

riser and p is the water density, is an important parameter affecting the "lock-in" 

behavior. A cylinder with small mass ratio will experience a wider reduced velocity 

region of "lock-in" than a cylinder with large mass ratio. There is a "critical mass" of 
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m *=0.54±0.02, and the width of reduced velocity region of "lock-in" will become infinite 

as the mass ratio becomes equal to or less than this "critical mass" (Williamson and 

Govardhan, 2004). The previous experiments showed that the cylinders with very small 

mass ratios have a "lock-in" frequency equal to its natural frequency, while the cylinders 

with relatively big mass ratios have a "lock-in" frequency slightly larger than its natural 

frequency. 
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Figure 1-3 Frequency "lock-in" phenomena for an elastically mounted cylinder 

under 2D flow conditions 

Figure 1-4 shows the general behavior of the cross-flow VIV response amplitudes of 

an elastically mounted cylinder for two different mass-ratios. A * is the amplitude ratio, 

defined as A * =zr/D, where: zo is the vibration amplitude. As seen in Figure 1-4, three 

different regions can be found. The first covers the relatively low current velocities, 

which is called the initial excitation region. At the higher current velocity boundary of the 

initial excitation region, a "jump" of vibration amplitude occurs, and then the vibration 
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responses come to the second region, which is called the upper branch region. In the 

upper branch region the cylinder vibrations reach to a maximum. As the current velocity 

increases further, the response amplitude decreases, and the cylinder vibrations come to 

the third region, which is called the lower branch region. It is noted that increased mass 

ratio results in shrunk size of upper branch region. The upper branch region may 

completely disappear if the mass ratio becomes big enough. 
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Figure 1-4 General behavior of VIV for an elastically mounted cylinder 
under 2D flow conditions 

In recent years, the highly effective Particle-Image Velocimetry (PIV) technique has 

been employed to observe the vortex wake modes behind freely vibrating or forced 

oscillating cylinders, and it is found that the different characteristics of cylinder vibration 

responses in the three regions result from different vortex wake modes. These 

observations showed that the vortex wake pattern behind a freely vibrating or a forced 

oscillating cylinder may comprise single vortices (S) and vortex pairs (P), giving patterns 
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such as the 2S, 2P, P+S and 2P+2S modes (Williamson and Govardhan, 2004). The 2S 

mode means two single vortices exist per half cycle, the 2P mode means two vortex pairs 

exist per half cycle, and so on. Figure 1-5 presents two vortex wake patterns of 2S and 2P 

modes. The previous experiments showed that a freely vibrating cylinder only encounters 

the 2S and 2P modes. The 2S mode always appears in the initial branch region, while the 

2P mode always appears in the upper branch region and the lower branch regions, but in 

the upper branch region the second vortex of each pair is much weaker than the first one 

(Govardhan and Wiliamson, 2000). For a forced oscillating cylinder, more complicated 

modes may appear. At a low current velocity, a P+S mode may be caused by the cylinder, 

while at a high current velocity a 2P+2S mode may be found behind the cylinder. 

Figure 1-5 Two vortex wake patterns (left: 2S mode and right: 2P mode) 

Most of previous work was dedicated to the investigation of cross-flow vibrations for 

a cylinder which was not allowed to vibrate in the in-line direction, but in the last decade 

some effort was devoted to the coupled vibrations in the cross-flow and in-line directions. 

These studies demonstrated a broad region of "lock-in" in the in-line VIV, but no new 

response branches were found. An interesting finding is that the in-line vibrations have 

little effect on the transverse responses and the vortex wake dynamics (Jauvtis and 

Williamson, 2003). 
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The VIV behavior for a long and rigid cylinder may have significant differences from 

those for a short and rigid cylinder. It is well known that for a long and rigid cylinder, 

vortex shedding in the turbulent wake regime (Re> 200) occurs in cells along the cylinder 

length (Sumer and Fredsoe, 1997), and this means that the vortex shedding characteristics 

behind a long and rigid cylinder may have significant variations over its length. The 

average length of these cells may be termed the correlation length, and the correlation 

between the VIV responses on different cells may be measured by the correlation 

coefficient. For a long cylinder, the correlation length is usually not equal to the cylinder 

length while the correlation coefficient is usually not equal to 1. Another cause of the 

vortex shedding variation in span is the flexibility of the cylinder. A flexible cylinder 

often has vibrations that vary over its length, and this will lead to the vortex shedding 

variation over span. Presently, the VIV behavior for a long and flexible cylinder is still 

not fully understood due to insufficient effort devoted into research in this area. 

1. 3 Currents in Deep Waters 

A deep-water riser will face more technological challenges than a shallow-water riser. 

The first challenge is the complex environment for deep-water risers. In addition to 

waves, currents become a significant factor causing VIV responses in deep waters. The 

flow of water in the ocean is very complicated and is often highly variable both in time 

and space. Surface currents, deep-ocean currents and tidal currents are three major types 

of currents in the ocean. Surface currents are created by the winds. The patterns of 

surface currents are similar in all of the major ocean basins, and the velocities depend on 

the patterns of surface winds, the influences of the land masses and the Coriolis effect of 

12 



Introduction 

the earth's rotation. The maximum surface current speed can reach up to 1.4m/s (Clayton 

and Bishop, 1982). Deep-ocean currents are driven by temperature and density 

differences between waters at different latitudes. The horizontal currents in the deep 

ocean are driven by large scale sinking of dense water masses formed primarily in high 

latitudes and flow with a relatively small speed of 1-2cm/s (Morgan, 1990) along the 

continental shelf, down the continental slope and on to the bottom of the ocean basins. 

Tidal currents are caused by the gravitational forces of the sun and the moon. The normal 

tidal movement is usually between 0.5 and 2m/s (Morgan, 1990), but local geographical 

features can often produce larger variations. For example, the tidal currents in the Bristol 

Channel in the UK are up to 15m/s, and in the Bay of Fundy in Canada are up to 21m/s. 

In contrast, almost land locked seas, such as the Mediterranean, have little or no tidal 

movement. 

Figure 1-6 presents three examples of current profile in three waters. The first is the 

current profile in the deepwater Gulf of Mexico (DiMarco et al. 2001). The currents 

decrease rapidly with depth from 1.8m/s near the surface to 0.6m/s at the depth of 1,000m 

and then again increase to another peak (1.3m/s) at the depth of 2,000m. After this peak 

the currents again decline rapidly to 0.3m/s at the depth of 2,500m, and then this speed 

remains relatively steady from this depth to the seabed of 3,500m. The second example is 

the current profile in the Faroes Gap (Robinson, 2002). In the Faroes Gap, the water 

depth approaches 1 ,OOOm. The maximum current speed of 1.5m/s appears near the 

surface, and the currents then decrease with depth to 0.4m/s at the half water depth. At 

depths larger than the half water depth, the currents remain relatively steady at values of 

about 0.4m/s. The third example is the current profile in the West of Africa (Robinson, 
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2002). In offshore Angola (West of Africa), the water depths approach 1,500 to 2,500m. 

The currents in this water also have the features similar to those in the Faroes Gap, but 

the largest current speed is l.Ornls, and the current speed has declined to 0.4rnls at one-

tenth of water depth. 
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Figure 1-6 Current velocity distribution over water depth on three waters 

1. 4 Multi-Modal Vortex-Induced Vibrations 

Due to the increased water depth, deep-water risers become very long and highly 

flexible, and this means that they have the potential to be subject to very high modes of 

vibration. Usually while only the first mode of vibration is excited on shallow-water 

risers, more than one mode of vibration is excited on deep-water risers (Allen and 
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Henning, 2001), and normally several modes are excited simultaneously, i.e. multi-modal 

VIV. The multi-modal VIV responses depend on the modal parameters of the riser 

vibration system, such as modal natural frequencies, modal mass, modal damping and 

modal stiffness. A flexible riser has a number of modal natural frequencies, modal mass, 

modal damping and modal stiffness values, which respectively correspond to a number of 

modal shapes. The natural frequencies mainly depend on three factors: i) the structural 

and hydrodynamic masses (added mass) of the riser; ii) the stiffness of the riser and iii) 

the tensions acting on the riser. The modal mass is influenced by the structural and 

hydrodynamic mass, and the modal damping is influenced by the structural damping and 

hydrodynamic damping. The modal stiffness is affected by both the structural stiffness 

and the tensions acting on the riser. The tensions depend on the pretensions, the structural 

weight of the riser, the hydrostatic forces and the drag forces acting on the riser. 

The multi-modal VIV responses depend also on the characteristics of vortex-shedding 

forces. The amplitudes, frequencies and span-wise distributions of vortex-shedding forces 

are three major factors affecting the multi-modal VIV responses. In fact, there is an 

obvious interaction between modal parameters and vortex-shedding forces. For example, 

vibrations resulting from vortex-shedding forces may increase the drag forces acting on 

the riser, and the increased drag force will change the modal parameters, such as modal 

stiffness and modal natural frequencies. On the other hand, the change of modal stiffness 

and natural frequencies may influence the vibration responses of the riser and the wake 

patterns behind the riser, and finally leads to the change of the characteristics of the 

vortex -shedding forces. 
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In recent years, much effort has been devoted into the investigation of riser VIV 

responses and many valuable results have been obtained. However, due to the complexity 

of multi-modal VIV responses, multi-modal VIV responses are still not fully understood 

and many uncertainties still exist, especially for highly flexible deep-water risers. For 

example, modal parameters such as modal natural frequencies, modal mass, modal 

damping and modal stiffness play an important role in understanding the multi-modal 

VIV responses for highly flexible deep-water risers in currents, but so far little effort has 

been devoted to this field, and this obviously hinders the understanding of the multi

modal VIV phenomenon. 

1. 5 System Identification Technique 

System identification techniques can be used to determine the modal parameters of 

risers. The aim of system identification is to identify the coefficients in an assumed 

governing equation for the analyzed system. These coefficients are usually called system 

parameters. For a mass-spring vibration system, such as a riser vibration system, the 

system parameters are usually the mass, damping and stiffness. The assumed governing 

equation is either a linear equation or a non-linear equation. 

For riser vibration systems, several types of governing equations have been suggested. 

According to different arrangements of the riser structural dynamics, these governing 

equations can be classified into two categories: i) the discrete models and ii) the 

continuous models. The finite element method (FEM) (Bai, 2001) and the lumped mass 

model (Thomas and Hearn, 1994; Raman-Nair and Baddour 2001) are two well-known 

discrete models for the dynamic analysis of riser structures. As risers have the relatively 
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simple structure of a cylinder, it is possible to directly employ a continuous model for the 

dynamic analysis of risers. An often used continuous model is beam theory combined 

with corresponding hydrodynamic loads acting on the riser, and then a modal analysis is 

applied to the continuous model (Vandiver and Chung, 1988; Fumes, 2000). Since the 

continuous model followed by a modal analysis can explicitly reveal the modal 

characteristics of riser vibrations, the continuous models are more effective to analyze the 

multi-modal VIV responses for a flexible riser than the discrete models. Usually, the 

hydrodynamic loads acting on risers are determined in two ways: numerical methods and 

empirical methods. In the numerical methods, the hydrodynamic loads acting on risers 

are obtained through solving the basic equations in two dimensions. These basic 

equations include the flow continuity equation and the momentum equation, which are 

written in the vorticity and stream function form (Sarpkaya and Dalton 1992; Sampaio 

and Coutinho, 2000). In the empirical models, the hydrodynamic loads are determined 

from an extensive database of hydrodynamic data on sectional force coefficients and 

correlation length (Triantafyllou et al.,1999). 

The analytical models can also be classified into two categories: linear models and non

linear models. In essence, all physical and engineering systems including riser vibration 

systems are nonlinear systems, as no system can completely follow the linear 

assumptions without any conditions, but it is possible to regard a system as a linear 

system, or to linearize a non-linear system to a linear system, under some special 

conditions. For example, a beam vibrating in air with small amplitude can be considered 

as a linear system because the damping loads and elastic loads approximately follow the 

linear assumptions. However, if its vibration amplitude is large, the beam vibration 
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system must be regarded as a non-linear system, as the damping loads and elastic loads 

may no longer follow the linear assumptions. For a riser vibrating in currents, strong 

nonlinear effects mainly exist in its damping loads and tension forces. In the linear 

models, these nonlinear loads are often linearized, so that the riser vibration system can 

be handled as a linear system. 

The system identification technique is used to determine the system parameters based 

on the inputs and outputs of an identified system. The inputs and outputs can be obtained 

by experimental methods. An often used experiment is the so-called excitation test. In 

such a test, one or more excitations (inputs) are given to the tested system, and then the 

responses (outputs) from the system are measured. The system identification technique is 

used to extract system parameters from the relationship between the inputs and outputs. 

Recently, the system identification technique has been applied to a variety of physical 

and engineering systems (Bendat, 1998), including ocean engineering structure systems 

(Liagre and Niedzwecki, 2003). This technique was also used to analyze the nonlinear 

responses of marine risers in waves (Niedzwecki and Liagre, 2003). 

1. 6 Experimental Techniques for Risers 

Due to their long and thin structures, the experiments in a laboratory for deep-water 

risers will experience many challenges. The first challenge is the modeling of riser 

length. Usually, the dimensions of current tanks are too small to model the lengths of 

deep-water risers, and this often results in difficulty when we design a realistic model 

riser. Models used for deep-water risers are therefore normally only partially similar to 

prototype risers, and these models are called distorted models. Figure 1-7 shows two 
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typical distorted riser models. The first is the truncated riser model. In such a model, the 

model riser only represents a segment of its prototype riser, and the dynamic and static 

characteristics of other segments are modeled by additional springs. Another one is the 

length-distorted riser model. In such a model, the scale for riser length takes a smaller 

value than the scale for riser diameter, so that the model riser can be placed in a basin 

with a limited dimension. As the length-distorted models can more realistically model the 

full span-wise characteristics of riser responses, which are important for a multi-modal 

VIV test, these models are more suitable for multi-modal VIV tests than truncated riser 

models. 

Figure 1-7 Two distorted deep-water riser models due to limited basin depth 

The second difficulty for the tests of a deep-water riser in a laboratory is the 

instrumentation. As discussed earlier, deep-water risers have long and thin structures and 

this means that the diameter of a model riser may be too small to provide enough space 

19 



Introduction 

inside the model riser to mount instrumentation. This is especially true for cases 

involving the measurement of high-modal VIV responses, as high-modal vibrations 

normally require more measurement points over the riser length than low-modal 

vibrations, so that the vibration components with high modes can be analyzed from the 

measurement. Accelerometers and strain gauges are the sensors often used to measure 

VIV responses for model risers (e.g. Allen and Henning, 2001; Vandiver et al., 1996; Lie 

et al. , 1998; Hong et al., 2002). Riser vibration displacements can be obtained by double

integration of the accelerations measured by accelerometers, or by analyzing the strain 

measured by strain gauges based on beam theory. 

So far much effort has been devoted into experimental investigations of VIV responses, 

and some have involved the VIV responses containing multi-modal components. Lie et 

al. (1998) conducted a model test to investigate cross-flow multi-modal VIVs using a 

rotating rig, and the vibration amplitudes, frequencies and power spectra were obtained. 

Their work showed that the Strouhal number for multi-modal cross-flow VIV is about 

0.15, and the riser shifted between a lock-in behavior and a non-lock-in behavior. In both 

uniform and shear currents, mainly one peak was observed in the cross-flow 

displacement spectra. However, their work did not analyze the modal components, as a 

small number of accelerometers (9 accelerometers) were used. 

Allen and Henning (2001) performed a test to investigate both cross-flow and in-line 

VIV responses using two 100 ft long flexible cylinders. In their tests, the rotating arm 

could potentially excite mode numbers as high as 15 and 25, but the span-wise 

characteristics of the multi-modal VIV could hardly be analyzed as only four biaxial 

accelerometers were used to measure the VIV responses over cylinder length. 
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Vandiver and Chung (1987) conducted a shear flow experiment in a mill canal using a 

cable. A dam diverts the water from a river into the canal, and the flow is controlled by 

four submerged gates on the dam. By controlling the various gate openings a shear flow 

was created. The cable is 58ft in length and 1.125in in diameter. Six biaxial pairs of 

accelerometers were used to measure the VIV responses, and the acceleration spectra 

were analyzed. 

Vandiver (1993) reviewed the case studies involving the lock-in phenomenon for 

flexible cylinders. He pointed out that there are three reasons causing non-lock-in 

phenomenon for a flexible cylinder: i) the damping is sufficiently large; ii) the vortex

shedding frequency does not correspond to any natural frequency; and iii) the vortex

shedding excitation bandwidth includes the natural frequencies of more than one mode, 

resulting in a multi-moded responses with random vibration characteristics. 

Vandiver and Marcollo (2003) further explained the lock-in phenomenon. They found 

that added mass also plays an important role in lock-in phenomena. In uniform currents, 

added mass of a cylinder decreases dramatically as the reduced velocity is increased 

through the lock-in range, and this causes an increase in the natural frequency of the 

cylinder. They pointed out that the natural frequency change is responsible for the lock-in 

phenomenon, namely the bigger the natural frequency change is, the wider the lock-in 

region is. Their findings explain why a low mass ratio cylinder has a wider lock-in range 

than a high mass ratio cylinder. The added mass of a high mass ratio cylinder is a lower 

percentage of the total mass per unit length than that of a low mass ratio cylinder; a high 

mass ratio cylinders is, therefore, less affected by change in the added mass than a low 

mass ratio cylinder and, as a result, the total mass change of the high mass ratio cylinder 
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is smaller than that of the low mass ratio cylinder. This means that a low mass ratio 

cylinder has a wider lock-in range than a high mass ratio cylinder. 

1. 7 Problem Discussion 

As addressed earlier, the multi-mode VIV behavior for a flexible riser is still not fully 

understood. In particular: i) a direct observation of the multi-modal vibration shape over 

riser length has still not been made in previous work; ii) the motion trajectories of the 

multi-modal vibration in the cross-section plane of risers are still unclear; iii) the modal 

components in multi-modal VIV responses were still not presented in the literature; iv) 

the investigation of frequency lock-in for flexible risers is still insufficient; v) the modal 

parameters, such as modal natural frequencies, modal mass, modal damping and modal 

stiffness, have not been directly measured in previous studies; and vi) the correlation 

between the modal parameters and VIV responses is still unclear. These problems are the 

objectives of this research. 

1. 8 Objectives and Methodology 

This research aims to improve the understanding of multi-modal VIV responses of 

deepwater risers in currents based on model tests. The objectives of this research also 

include the development of an applicable model test method and corresponding data 

analysis procedure. In this research, a length-distorted model riser is designed and two 

model tests are conducted. The first is a shaker-excitation test, which is designed to 

investigate the modal parameters of the model riser. The other is a current-excitation test 

(VIV test), which is designed to investigate the multi-modal VIV responses of the model 
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riser. A data analysis procedure is developed based on three techniques: i) the spectral 

analysis technique; ii) the modal analysis technique and iii) Bendat's nonlinear analysis 

technique (Bendat, 1998). 

Figure 1-8 gives an overview of the research. As seen m Figure 1-8, the research 

mainly contains three activities: 

i) the design of the test apparatus, including a length-distorted model riser, a supporting 

steel frame and a shaker system; 

ii) the performance of the model tests, including a shaker-excitation test in calm water 

and a VIV test in uniform currents; 

iii) the analysis of the measured data, including analysis in the time-domain, analysis in 

the space-domain, analysis in the frequency-domain and non-linear analysis. 

Research methodology 

I a distorted model riser I 
1 rd Ice Tank carriage 

shaker system b- shaker-excitation current-excitation 

in calm water tests tests uniform currents 
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~ analysis in 
space-domain vibration frequencies time-domain 
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analysis in non-linear components vibration spectra analysis in 

frequency-domain modal parameters dominant modes space-domain 
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vibration trajectories 
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non-linear I 
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analysis (spectral analysis) the correlation between the modal 

parameters and the VIV responses 

Figure 1-8 The investigation overview 
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1. 9 Outline of the Thesis 

This thesis consists of six chapters and four appendices. Chapter one provides an 

introduction to the research. Some background knowledge on currents on deep waters, 

marine risers, vortex-induced vibrations and experimental methods for model risers is 

reviewed, and an overview of this research is presented. 

Chapter two exhibits the test apparatus for both the shaker-excitation test and current

excitation test, including the model riser, the supporting steel frame, the shaker system 

and the instrumentation. In this chapter, a design approach for length-distorted model 

risers is developed based on similarity theory and the modal governing equations for 

risers vibrating in currents. The governing differential equations for risers vibrating in 

water are obtained by applying beam theory to a hollow pipe submerged in water. The 

external loads acting on the hollow pipe include hydrostatic pressure, hydrodynamic 

forces and shaker-excitation forces. This chapter also discusses the fundamental 

principles for the design and calibration of the instrumentation used for the research. 

Chapter three presents the research methods used for the shaker-excitation tests and the 

research results from these tests. An analysis procedure to extract linear and nonlinear 

modal parameters, such as modal masses, modal damping, modal stiffness, modal natural 

frequencies and nonlinear damping, from the shaker-excitation test data is developed. 

This procedure is based on the modal governing equations for risers, frequency response 

functions and Bendat's nonlinear system parameter identification technique (1998). This 

procedure was applied to analyze the modal parameters of the model riser in calm water, 

but it can also be used to analyze the modal parameters of the model riser in currents in 
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future work. In this chapter, the test results are discussed, and some of these results are 

compared with the values estimated from the formulas presented by other researchers. 

Chapter four involves the methods used for the current-excitation tests and the results 

from these tests. For the first time, multi-modal vibration shapes over riser length and 

motion trajectories on the cross-section plane are presented. The results from the time

domain analysis show that the frequency lock-in phenomenon may occur in the cross

flow or in-line direction for multi-modal VIV responses. The number and values of 

dominant frequencies in multi-modal VIV responses are investigated, and the modal 

components in multi-modal VIV responses are analyzed based on space-domain analysis. 

Chapter five discusses the correlation between the estimated modal parameters and the 

measured VIV responses. The modal parameters were estimated from the shaker

excitation tests in calm water, and these estimated modal parameters only correspond to 

modal parameters in calm water. Although in theory the VIV responses only have 

correlations with the modal parameters in currents, the discussions presented in chapter 

five still find a degree of correlation between the VIV responses and the modal 

parameters in calm water, such as the correlation between the modal natural frequencies 

and the frequency lock-in of the VIV responses, the correlation between the modal added 

mass coefficients and the upper limit values, and the correlation between the modal 

natural frequencies and the resonance of VIV responses. 

Chapter six extracts the conclusions from the research work. The main conclusions 

include that: 

i) flexible risers have a variety of natural frequencies, which correspond to a variety of 

mode shapes, and these modal natural frequencies depend strongly on tensions; 
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ii) modal mass for a flexible riser depends weakly on tensions and mode shapes, and the 

estimated added mass coefficient Ca ranges from 1.0 to 3.7 for the model riser tested in 

calm water; 

iii) modal damping depends on mode shapes, and the estimated damping coefficient Cd 

ranges from 0.5 to 2.5 for the model riser tested in calm water; 

iv) non-linear effects are relatively large in the low frequency and modal resonance 

regions; 

v) the frequencies of multi-modal VIV responses in both cross-flow and in-line directions 

follow the Strouhal frequencies for a flexible riser in the frequency un-lock-in regions 

and the measured Strouhal number is about 0.12 for the model riser tested. Frequency 

lock-in may take place in both in-line and cross-flow directions at some modal natural 

frequencies; 

vi) the vibration amplitudes fluctuate from 0.3 to 0.9D, where Dis the riser diameter, in 

both the in-line and cross-flow directions for the flexible riser tested, and no increasing 

trend exists as the current velocity increases; 

vii) there are three types of power spectra in multi-modal VIV responses for a flexible 

riser: vibrations with single dominant frequency, vibrations with double dominant 

frequencies and vibrations with multi-dominant frequencies; 

viii) the dominant modes for in-line VIV and cross-flow VIV are usually different, and 

modal responses may experience a resonance region; 

ix) at lower current velocities, the vibration shapes over riser length often exhibit a clear 

dominant mode with clear nodes, while at higher current velocities, there are several 

dominant modes in multi-modal VIV responses and the dominant modes become vague; 
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x) the motion trajectories on the cross-section plane contain two fundamental motions. 

The first motion is a basic figure of 8-, L- and 0-shaped or other complicated vibration 

motion, and another is a shifted motion of the basic figure motion. The basic figures of 8-

and L-shaped correspond to the vibrations at lower current velocities, while other basic 

figures correspond to the vibrations at higher current velocities; and 

xi) there is a degree of correlation between the VIV responses and the modal parameters 

in calm water, although in theory the VIV responses only have correlations with the 

modal parameters in currents. 

1.10 Contributions of the Thesis 

This thesis presents new contributions to the understanding of multi-modal VIV 

responses. The following results are presented for the first time: 

i) the multi-modal vibration shapes over riser length and motion trajectories in the cross

sectional plane are measured for a flexible riser; 

ii) the frequency lock-in in both in-line and cross-flow directions are directly observed 

for a flexible riser with multi-modal vibrations; 

iii) the modal components of multi-modal VIV responses are analyzed in both in-line and 

cross-flow directions; 

iv) the modal parameters of a flexible riser are measured, and the correlations between 

the multi-modal VIV responses and modal parameters are analyzed. 

The new contributions to the test technique for deepwater risers include that: 
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i) a method to design a length-distorted model riser is presented. For the first time, the 

theoretical correlation between a short model riser and a long deepwater riser is 

established; 

ii) a shaker-excitation test is presented to measure the modal parameters of a flexible 

riser, and an applicable data analysis procedure is developed. 
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CHAPTER2 

TEST APPARATUS 

2. Test Apparatus 

The test apparatus includes a model riser, a supporting steel frame, a shaker system and 

the instrumentation. A sketch of the apparatus is shown in Figure 2-1. 

0.04M sho.l-<er rod 

iserr'lOdel 
~---------------8 .5M--------------~~ 

Figure 2-1 Sketch of the test apparatus 
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2.1 ~odelEtiser 

2. 1. 1 Analytical Model for Design of Model Riser 

A length-distorted model riser with uniform geometrical and structural properties was 

designed based on a linear analytical model and similarity theory. An analytical model 

for the structural dynamics of a riser in water is shown in Appendix A, which assumes 

that the vibrations in the in-line and the cross-flow directions are uncoupled. If different 

patterns of hydrodynamic loads are assumed, this analytical model can be used 

respectively for the model riser design, linear modal parameter determination and 

nonlinear system parameter determination. 

In order to design the length-distorted model nser, it was assumed that: i) the 

hydrodynamic loads acting on the riser are frequency-independent; ii) the hydrodynamic 

and structural loads acting on the riser are location-independent; and iii) the 

hydrodynamic damping can be linearized. 

The hydrodynamic loads acting on the riser include the following components: i) the 

hydrodynamic inertial force, which is represented by an added mass coefficient Ca; ii) the 

hydrodynamic damping force, which is represented by a damping coefficient Cd; and the 

vortex shedding force, which is represented by a lift coefficient Ct. Usually, the added 

mass ma, the linearized damping Ca and the vortex -shedding force fv can be respectively 

written as 

1l 2 
ma=-pCaD 

4 
1 

ca =- pCdOJZo 
1l 

fv = / 0 sin(OX) 
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where p is the water density; D is the riser diameter; Ca is the added mass coefficient; Cd 

is the drag coefficient; zo is the amplitude of riser vibration. The terms fo and w are 

respectively the amplitude and frequency of the vortex-shedding force, and they can be 

written as 

1 2 
fo =-pCIDU 

2 
u 

W=21ZS,D 

(2-2) 

where Ct is the lift coefficient; Sr is the Strouhal number; and U is the current velocity. 

Substituting equation (2-1) into equation (A-18) in Appendix A and considering the 

boundary condition represented by equation (A-20), a simplified governing equation for 

the dynamics of the model riser in the cross-flow direction can be described as 

1l 2 a 2 z 1 az a 2 z a 4 z . 
[ms +-pCaD ]-2-+(cs +-pCdDOJZ0 )--T--

2 
+kb--

4 
= f 0 sm(ax) 

4 ~ 1l ~ ~ ~ 

z(t,O) = 0 

a2
z(t,O) = O 

ax2 
(2-3) 

z(t,L)=O 

a
2
z(t,L) = O 
ax2 

where z denotes the vibration displacement in the cross-flow direction; ms is the riser 

structural mass per unit length; Cs is the riser structural damping per unit length; Tis the 

riser tension; kb is the bending stiffness of the riser; and L is the riser length. 

The solutions to equation (2-3) can be written in modal form as: 

00 kn 
z(t, x) = L, zk (t) sin(-x) 

k=I L 
(2-4) 
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where Zk denotes the modal vibration responses, which are defined as: 

2lL kn zk (t) =- z(t,x)sin(-x)dx 
L 0 L 

(2-5) 

Substitution of equation (2-4) into equation (2-3) and integration of both sides of 

equation (2-3), which are multiplied by sin(kn:x/L), over riser length gives the following 

modal governing equations: 

Akzk (t) + Bki.k (t) + Ckzk (t) = fko sin(mt) 

k = 1,2,3, ... 

(2-6) 

where Ak , Bk and Ck respectively denotes the modal mass, damping and stiffness of the 

riser, and fko is the amplitude of modal vortex shedding force. These parameters can be 

calculated by 

(2-7) 

The modal responses are the solutions to equation (2-6). The time-domain solutions 

have the following forms: 

where 
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(2-8) 

The modal natural frequencies Wnk can be estimated based on modal mass Ak and modal 

stiffness Ck. From equation (2-7), a formula for the estimation of modal natural 

frequencies can be obtained as: 

{1) =~k = 
nk A 

k 

(2-9) 

Vandiver and Marcollo (2003) also suggested a formula to estimate modal natural 

frequencies for a long flexible cylinder as follows: 

where fnk is the natural frequencies with the unit of Hz, and mT is the total mass per unit 

length including structural mass and added mass. Obviously, this formula is a 

simplification of equation (2-9) under an assumption of a zero bending stiffness kb. 

2. 1. 2 Design of Model Riser 

Equations (2-7), (2-8) and (2-9) were used to design the distorted model riser through 

similarity theory. In order to design the distorted model riser, a nominal prototype marine 

riser was chosen as a basis for the design. The geometric and physical properties of the 

riser are shown in Table 2-1. 
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Table 2-1 Nominal prototype riser properties 

item unit value 

length m 1000.0 

outside diameter m 0.292 

air weight, empty kN/m 0.895 

wet weight, empty kN/m 0.238 

bending stiffness kN.m.l 36.3 

From equation (2-8), it is known that the riser modal responses depend on five 

parameters: i) the amplitudes of modal vortex-shedding force, Jko; ii) the frequency of 

vortex-shedding, cv; iii) the modal natural frequencies, CVnk; iv) the modal mass, Ah and v) 

the modal damping Bk. The dimensional analysis (Sharp et al. 1992) can produce five 

non-dimensional parameter groups related to the modal response amplitudes, and the 

relationship between these non-dimensional parameter groups can be written as 

where g is the gravitational acceleration. According to similarity theory, the model riser 

will be completely similar to the prototype riser if all non-dimensional parameter groups 

are equal between the two systems; thus, from equations (2-7) and (2-9), the conditions 

for complete similarity can be established as: 
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(2 -10) 

(2 -11) 

(2-12) 

(2 -13) 

where the superscripts (m) and {p) respectively indicate the values of the model riser 

system and the prototype riser system. 

Note that only equation (2-11) contains the parameter of riser length. This implies that 

a distorted riser length only influences the modeling of the frequency ratio, and not the 

modeling of other parameters. Equations (2-10), (2-11), (2-12) and (2-13) contain the 

hydrodynamic coefficients, such as Ca, Cd, Ct and S,. These hydrodynamic coefficients 

usually depend on the Reynolds numbers, Re, and they can be approximately considered 

as the same values if the Reynolds number Re is similar between the model riser system 

and the prototype riser system. In other words, as the similarity of the Reynolds number 

Re is the prerequisite for the similarity of the hydrodynamic coefficients Ca, Cd, C1 and S, 

the requirement of the Reynolds number Re similarity is implicitly contained in the 

similarity of the hydrodynamic coefficients Ca, Cd, Ct and S,. Based on the similarity of 

the hydrodynamic coefficients Ca, Cd, C1 and S, equations (2-10), (2-11), (2-12) and (2-

13) can be simplified to: 
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(2 -14) 

(2 -15) 

[
_s_](m) = [_s_](p) 
Uz0 Uz0 

(2-16) 

(2-17) 

For a small scale factor theRe similarity requires a bigger model current velocity than 

the prototype current velocity, while equation (2-17) requires a smaller model current 

velocity, and this makes it impossible to design a model riser with complete similarity. 

An option is to remove the similarity condition of equation (2-17) so that a model riser 

with partial similarity is designed. Obviously, the elimination of the similarity condition 

represented by equation (2-17) will cause the model riser to experience a bigger lift force 

than the lift force required by similarity theory, and this means that the lift force and lift 

coefficient are no longer similar between the designed model riser and the prototype riser. 

The process of the model riser design in this research is described as follows: first two 

different scale factors were used to determine the length and diameter of the model riser 

such that the model riser can be placed in the tank used and the instrumentation can be 

placed inside the model riser. The structural mass of the model riser was designed based 

on equation (2-14). Equation (2-15) provides a way to determine the equivalent tension T 

of the model riser if the bending stiffness kb is determined by other means. The 

dimensional analysis can also produce a non-dimensional parameter group about kb, and 
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the required value of kb can be determined based on the equality of this non-dimensional 

parameter group as follows: 

The structural damping of the model riser can be designed through equation (2-16). 

Assume that the ratio of the riser vibration amplitude zo to the riser diameter D is the 

same between the model riser system and the prototype riser system, and from equation 

(2-16) the required structural damping of the model riser can be calculated by 

(2 -18) 

Although equation (2-18) provides a way to design the structural damping of the model 

riser, it is often difficult to achieve the required structural damping in construction of 

model riser, as so far no appropriate methods have been found to model the designed 

structural damping for model risers. Fortunately, the structural damping is usually much 

smaller than the hydrodynamic damping and, as a result, it is taken to be acceptable that 

the modeling of the structural damping is ignored, as we did in the present work. 

2. 1. 3 Construction of Model Riser 

The model riser was made of two continuous rubber hoses with different diameters. 

The designed riser bending stiffness kb was satisfied through selecting the appropriate 

hose materials and wall thickness, and the designed riser structural mass, m5 , through 

placing an appropriate amount of lead weights into the hoses. The outer hose was split 

along its length and the instrumented inner hose was then placed into it. Silicone sealant 
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in the space between the inner and outer hoses made the model riser waterproof. A steel 

cable was placed inside the inner hose to withstand the riser tensions. The cable was 

connected to two aluminum connection ends, and the outer hose was clamped onto the 

two aluminum ends. There was a hole in one of the aluminum connection ends, and the 

signal and power wires went out through this hole. The model riser was wrapped in latex 

tape to make the riser surface smooth. 

Figure 2-2 demonstrates a sketch of the model riser. In the figure, 1 indicates the 

power and signal wires; 2 the aluminum connection end; 3 the steel cable end bolt; 4 the 

inner hose; 5 the steel cable; 6 the supporting wood block; 7 the connecting bolt; 8 the 

clamp; 9 the outer hose; and 10 the lead weight. The actual model riser is shown in 

Figure 2-3, and the actually measured properties of the model riser are listed in Table 2-2. 

Figure 2-2 Sketch of model riser 
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Table 2-2 Model riser properties 

item unit model riser 

length m 8.5 

outside diameter m 0.040 

weight per unit length in air N/m 16.8 

bending stiffness N.mL 1.52 

2. 2 Supporting Steel Frame 

The model riser was mounted horizontally on a supporting steel frame which was fixed 

on the tank carriage. The requirements for the frame included that: i) it had enough 

strength to withstand the static and dynamic loads acting on it, including the drag load 

acting on the model riser and the inertial load of the frame structure when the frame 

moves with an acceleration of the carriage, and this was ensured through a stress check 

and a deflection check; ii) it had a mechanism to adjust the pre-tensions acting on the 

model riser, and this was achieved through a vertical lever mechanism; and iii) it had a 

structure symmetrical with respect to its middle point, and this ensured the identical 

deflections at the connection points for two ends of the model riser when the carriage 

moved. 

Figure 2-3 is a picture of the supporting steel frame with the model riser, and Figure 2-

4 is a sketch of the pre-tension adjustment vertical lever mechanism. In Figure 2-4, !

denotes the horizontal beam; 2- the vertical supporting rod; 3- the vertical bar; 4- the 

enforcing rod; 5- the pre-tension adjustment steel cable with tum-buckle. The pre-
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tensions acting on the riser were changed when the turn-buckle was adjusted; and 6- the 

vertical lever. 

Figure 2-3 The length-distorted model riser and the supporting frame 
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Figure 2-4 Pretension adjust vertical lever mechanism 

2. 3 Shaker System 

A shaker system was used to conduct the shaker excitation tests. This system consists 

of three major parts: a control computer, a shaker and a shaker motion transmission rod. 

Control computer: The control computer was provided by NRC Institute for Ocean 

Technology. The computer generated the voltage control signals based on the digital 

control signals previously stored in the data files on the computer; 

Shaker: The shaker was provided by Oceanic Consultant Corporation. It was driven 

by an electrical motor. The motor moved based on the voltage control signals from the 

control computer. The shaker could generate two patterns of shaker motion, namely the 

harmonic vibration and the random vibration. The limit of frequency and amplitude of the 

shaker motion was 10Hz and lOcm. 

Shaker motion transmission rod: This rod was used to transmit the shaker motion to 

the model riser. The rod was connected onto the middle of the riser through a clamp. The 
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requirements for the transmission rod included that: i) the rod had enough strength to 

withstand the excitation forces acting on it; ii) it could remain stable when a compression 

force of lOON was experienced; and iii) the rod was as light as possible so that its inertial 

force did not severely influence the shaker motion. In order to reduce the mass, aluminum 

was selected as the material of the rod. Figure 2-5 shows a picture of the shaker and the 

connection rod. 

Figure 2-5 The shaker and connection rod 
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2. 4. 1 Sensors 

Test Apparatus 

The sensors used were forty uniaxial ADXL150JQC accelerometers, two load cells and 

a displacement transducer. These accelerometers were mounted inside the model riser to 

measure the vibration accelerations over the riser length. One of two load cells was 

mounted on the tensioned steel cable to measure the pretensions, and another was 

mounted on the shaker motion transmission rod to measure the shaker-excitation forces. 

The displacement transducer was mounted on the shaker motion transmission rod to 

measure the shaker motion displacement. 

Forty accelerometers were glued into twenty pairs. The directions of two 

accelerometers in each pair were approximately equal to 90°. The twenty pairs of 

accelerometers were evenly distributed over the riser length, but only sixteen pairs could 

work. The locations of the sixteen pairs of accelerometers which worked are shown in 

Table 2-3. 

Table 2-3 Accelerometer pair locations on the model riser 

pair No. 1 2 3 4 5 6 7 8 

location(m) 0.810 1.214 1.619 2.024 2.429 2.833 3.238 3.643 

pair No. 9 10 11 12 13 14 15 16 

location(m) 4.048 4.452 4.857 5.262 6.476 6.881 7.286 7.691 
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2. 4. 2 Calibration of Accelerometers 

The accelerometers were calibrated by a rotating test. In the rotating test, the model 

riser was horizontally mounted on the supporting steel frame, and then turned around its 

longitudinal axis with thirteen rotating angles ranging from zero to 360°. Thirty-two 

records of the accelerometer voltage output versus the rotating angle were obtained. The 

fits with sinusoidal curve were then applied to the records of voltage output versus 

rotating angle for each accelerometer. The calibration factors and the orientation of the 

accelerometers inside the model riser were estimated from the amplitudes and phases of 

the fitted sinusoidal curves based on the following relationships: 

/Lj = Ajg 

pj = aj 

where Aj is the calibration factor of the jth accelerometer, pj is the orientation angle of the 

jth accelerometer, g is the gravitational acceleration, and Aj and a.j are respectively the 

amplitude and phase of the fitted sinusoidal curve for the jth accelerometer. 

Figure 2-6 shows six examples of the data measured in the rotating tests and the 

corresponding fitted sinusoidal curves. Table 2-4 and Table 2-5 give the calibration 

factors and the orientation angles of the thirty-two accelerometers based on the fitted 

sinusoidal curves. 
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Figure 2-6 Calibration of accelerometers 
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Table 2-4 Calibration factors of accelerometer 

accel. No. 1 2 3 4 5 6 7 8 

factor(V I g) 0.0352 0.0345 0.0385 0.0342 0.0344 0.0336 0.0340 0.0334 

accel. No. 9 10 11 12 13 14 15 16 

factor(V/g) 0.0335 0.0330 0.0339 0.0332 0.0331 0.0333 0.0337 0.0332 

accel. No. 17 18 19 20 21 22 23 24 

factor(V I g) 0.0336 0.0327 0.0330 0.0327 0.0330 0.0326 0.0331 0.0333 

accel. No. 25 26 27 28 29 30 31 32 

factor(V /g) 0.0329 0.0323 0.0326 0.0325 0.0326 0.0324 0.0326 0.0320 

Table 2-5 Orientation angles of accelerometer 

accel. No. 1 2 3 4 5 6 7 8 

angle(rad.) 1.6834 6.4446 1.7904 6.2320 1.5699 6.2918 1.2321 6.0335 

accel. No. 9 10 11 12 13 14 15 16 

angle(rad.) 1.0238 5.7549 0.5077 5.4232 1.3050 6.0893 1.7432 6.4945 

accel. No. 17 18 19 20 21 22 23 24 

angle(rad.) 0.8895 5.6228 1.0940 5.7338 0.6078 5.4336 1.3050 6.0893 

accel. No. 25 26 27 28 29 30 31 32 

angle(rad.) 6.1857 4.7241 6.1905 4.7213 6.2292 4.8244 0.0461 4.7737 
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2. 4. 3 Accelerations in the In-line and the Cross-flow Directions 

As each pair of accelerometers was not placed in the exact in-line and cross-flow 

directions, the accelerations measured by each pair of accelerometers were a little 

different from the accelerations in the in-line and cross-flow directions. The riser 

vibration accelerations in the in-line and cross-flow directions could be obtained through 

combining the accelerations measured by each pair of accelerometers based on the 

orientation angles. Figure 2-7 demonstrates the relationship between the acceleration A of 

the riser vibration and the accelerations AI and A 2 measured by the accelerometers. 

z 
--- A 

I 
I 
I 
I 
I 

X 

Figure 2-7 Relationship between the total riser accelerations and 
the accelerations measured by the accelerometers 

Obviously, the magnitudes of AI and A 2 are equal to the projection values of the total 

riser acceleration A in the directions of the accelerometers, namely 

Equation (2-19) leads to 

IA11 = lA! cos(8- 81)} 

1~1 = IA!cos(82 -8) 
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I AI( cos B cos 81 + sin B sin 81 ) = IA11 } 

IAI(cos 82 cos B +sin 82 sin B)= IAz I 

From equation (2-20), we have: 

cos 81 + tan B sin 81 _ IA1 1 

cos 81 +tan B sin 81 - IA 2 1 

Test Apparatus 

(2- 20) 

(2- 21) 

Equations (2-19) and (2-21) give the magnitude and angle of the riser acceleration vector 

A as follows: 

(2-22) 

where 1A1I and 1A2I are the magnitudes of the accelerations measured by the 

accelerometers, and fh and 02 are the orientation angles of the accelerometers. 

The magnitudes of the in-line and cross-flow components of the riser vibration 

acceleration are equal to the projection values of the total acceleration in the directions of 

y-axis and z-axis, namely the in-line and cross-flow accelerations can be written as 

follows: 

(2- 23) 

where IAI and e are respectively the magnitude and angle of the riser acceleration vector 

A, which can be obtained from equation (2-22). 
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2. 4. 4 Vibration Velocities and Displacements 

Equation (2-23) gives the in-line and cross-flow vibration accelerations of the riser, 

and the in-line and cross-flow riser vibration velocities and displacements can then be 

obtained through single- and double-integration of these accelerations. The equations 

used for these integration processes are presented here: 

V y (tn+l) = V y (tn) + ~ [ay (tn) + ay (tn+IJ~t 

V z (t n+J) = V z (t n) + _!_ [az (t n) + az (t n+l) ~t 
2 

y(tn+J) = y(tn) + _!_ [vy (tn) + V y (tn+J) ~t 
2 

z(tn+l) = z(tn) + .!.[v z (tn) + vz (tn+J) ~t 
2 

n = 1,2,3, ... , N 

(2-24) 

where L1t is the sampling time interval, N is the sampling size, tn is the time instant of 

sampling, and ay, az, vy, Vz, y and z are respectively the riser vibration accelerations, 

velocities and displacements in the in-line and the cross-flow directions. 

In order to check the accuracy of the displacements measured by the sensors, a 

comparison test was conducted. As addressed earlier, there was a displacement 

transducer on the shaker motion transmission rod. In the comparison test, the shaker 

provided a displacement time series to the middle of the model riser, which was 

measured by the displacement transducer. At the same time, the accelerations near the 

middle of the riser were measured by four pairs of accelerometers at those locations, and 

then the displacements at the middle of the riser were estimated based on these measured 

accelerations through equation (2-24); thus, two groups of displacement values were 

obtained, which respectively come from two independent measurement systems. If the 
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two groups of results have almost the same values, it can be said that the two independent 

measurement systems are reliable. Table 2-6 presents the two groups of data at seven 

shaker frequencies. As seen in Table 2-6, the values of the two groups are close, and this 

means that the accelerometers and the integration processes are applicable. 

Table 2-6 Comparison of the results measured from two independent 
measuremen t t sys ems 

test No. 1 2 3 4 5 6 7 

shaker freq. (Hz) 0.4 1.6 2.32 3.04 5.44 6.64 9.28 

by displacement 0.0393 0.0194 0.0145 0.0091 0.0038 0.0029 0.0014 
transducer(m) 
by accelerometer 0.0382 0.0193 0.0143 0.0101 0.0027 0.0031 0.0012 
(m) 
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CHAPTER3 

SHAKER-EXCITATION TESTS 

3. Shaker-Excitation Tests 

Shaker-excitation tests 

The model tests started with the current-excitation tests and ended with the shaker

excitation tests. However, in this thesis, the results of the shaker-excitation tests will be 

discussed first. The shaker-excitation tests were designed to determine the properties of 

the model riser, such as the added mass, the linear and nonlinear hydrodynamic damping, 

the structural stiffness and the natural frequencies, and these properties can help 

understand the complicated multi-modal VIV responses for the flexible model riser. 

The shaker-excitation tests were performed in the Ice Tank at the Institute for Ocean 

Technology, the National Research Council of Canada. This tank is 90m in length, 12m 

in width and 4m in depth, which is the longest ice-towing tank in the world. The model 

riser was mounted horizontally on the steel frame, and then was placed at a water depth 

of 1.0m. The shaker was placed on a horizontal beam of the supporting steel frame and 

gave the excitations to the riser. 
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3. 1 Experimental Design 

As discussed earlier, multi-modal VIV responses depend on the modal parameters of a 

riser vibration system, such as modal natural frequencies, modal mass, modal damping 

and modal stiffness, and the modal parameters are influenced by both the structural and 

hydrodynamic properties of the riser vibration system. For a riser with uniform 

geometrical and physical properties over its length, the structural and hydrodynamic 

properties may be thought of as space-independent parameters, namely they do not vary 

over riser length, so that the continuous governing equations over riser length for riser 

vibrations, which are shown in Appendix A, can be simplified to an infinite number of 

uncoupled modal governing equations. 

An excitation test can be used to determine the modal parameters of a riser. In such a 

test, a known excitation (input) is applied to the tested riser, and the riser response 

(output) is measured by a sensor. Similar to the systems described by Bendat (1998), the 

frequency response functions (FRF) of the riser vibration system may be obtained based 

on the relationship between the input and the output, which contain the characteristics of 

the riser vibration system. The relationship between these FRFs and the modal 

parameters of the riser can be established through the modal governing equations, and the 

modal parameters were then estimated based on this relationship. Usually, both of 

harmonic and random excitations can be used to obtain FRFs for a linear or weakly non

linear system, but the two different excitations may lead to a significant difference in the 

estimated FRF results if the system is a strongly non-linear system. 

In this research, a shaker-excitation test was designed to investigate the modal 

parameters for the highly flexible model riser. A shaker system was used to generate the 
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excitation at the middle of the riser. The shaker displacements were regarded as the 

inputs to the riser vibration system, which were measured by a displacement transducer 

on the shaker, and the shaker forces were regarded as the outputs from the riser vibration 

system, which were measured by a load cell mounted on the shaker. The shaker was 

placed on a horizontal steel beam on the steel frame. Both harmonic and random 

excitations were applied to the riser, and then the results respectively from the two types 

of excitations were compared. Three different pretensions were designed for the tests, and 

the effects of pretension on the modal parameters were investigated. Sixteen pairs of 

accelerometers inside the riser were used to measure the vibration shapes over riser 

length. A picture of the apparatus used for the shaker-excitation tests is shown in Figure 

3-1. 

3. 2 Excitation Design 

Harmonic excitation is the most traditional method for a vibration excitation test. The 

excitation contains one single frequency at a time and the excitation sweeps from one 

frequency to another with a given step. This excitation is effective for exciting vibration 

modes, although it may be very time-consuming. When the excitation frequency is tuned 

to near a modal natural frequency, the response is dominated by that vibration mode, so 

that the direct modal parameter identification can be made. Random excitation is a 

stationary random signal, and it contains all frequencies within a frequency range. The 

random excitation is usually time-saving, but this type of excitation has two major 

disadvantages: i) as the riser vibration system is actually a nonlinear system with 

nonlinear hydrodynamic loads, the random excitation has the tendency to linearize the 

behavior from the measurement data, namely the frequency response function derived 
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from random excitation measurement is the linearized FRF and it is best only for the 

particular random excitation used (He and Fu, 2001). In other words, we may have a 

series of linearized FRFs for varying excitation levels; and ii) the fact that either the 

excitations or the responses are periodic within an infinite time history gives rise to an 

leakage error, although this error can be reduced through the application of time window 

functions in digital signal processing (Heylen et al. 1998). 

Figure 3-1 Shaker-excitation test 
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In this research, shaker displacements were considered as the excitation applied to the 

riser vibration system. The excitation frequencies and amplitudes were designed based on 

three considerations: i) the resulting riser vibrations must contain the expected modes, 

namely the excitation frequencies must cover all modal natural frequencies corresponding 

to all modes of interest; ii) the resulting riser vibrations have amplitudes close to the most 

often encountered VIV amplitude, i.e. 0.25 to l.OD, where: Dis the riser diameter; and 

iii) the shaker motions do not exceed the capacity of the existing shaker provided by 

Oceanic Consulting Corporation. The reason for the second consideration is that the 

characteristics of the riser vibration system may depend on the vibration amplitudes, and 

the use of the shake motion amplitudes close to the most often encountered VIV 

amplitude may produce more applicable test results than the use of other shaker motion 

amplitudes. 

Eighty harmonic time histories of shaker motion were generated for the harmonic 

excitation tests. The amplitude versus frequency for these harmonic time histories is 

shown in Figure 3-2. As shown in Figure 3-2, due to the limit of acceleration of the 

existing shaker, the time histories with low frequencies were designed to have the 

amplitudes larger than those with high frequencies. 

The time series of the random displacement excitation was obtained from composition 

of a large amount of harmonic components with random phases, namely the time series 

was obtained by the following equation: 

n 

Ys(t) = 'L:a1 sin(W/+a1) 
j=l 

where n is the total amount of the harmonic components, and ai , Wj and ai are 

respectively the amplitudes, frequencies and phases of these harmonic components. In the 
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present tests, n took a value of 1601, Wj ranged from 1.0 to 63 rad/s, O.j took random 

values ranging from 0 to 21r. The total amount of the harmonic components, n, was 

selected based on consideration of un-repeatability of the time series of the random 

displacement excitation during the sampling period. An actual random signal does not 

repeat itself forever, but the random signal generated by composition of a large amount of 

harmonic components is a periodic function. The period can be calculated from 
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Figure 3-2 Amplitudes and frequencies for harmonic excitations 

For a frequency increment of 0.03875(rad/s), which was used in the present tests, the 

maximum sampling time is 162s, which is longer than actual sampling time of 100s; and 

this means that an unrepeated time series can be obtained. Figure 3-3 shows the aj values 
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used to generate the random excitation, and Figure 3-4 is the time series of random 

excitation used for the shaker-excitation tests. 
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Figure 3-4 Time series of the random excitation used for the tests 
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3. 3 Data Analysis 

3. 3. 1 Modal Governing Equation for Shaker/Riser System 

The continuous governing equations over riser length for the structural dynamics of 

risers are shown in Appendix A. These equations can be employed to describe the shaker 

excitation/riser response system in calm water. In this case, only the forces and motion in 

the vertical direction are considered, namely only equations (A-18) and (A-21) will be 

used for analysis of the data measured from the shaker-excitation tests. As the shaker-

excitation tests conducted in calm water, it can be assumed that the vortex-shedding 

forces do not exist, and the shaker excitation forces can be written as 

where p(t) is the time series of shaker excitation force, Xs is the shaker position, and the 

symbol b() denotes a unit impulse function. Substitute this equation into equation (A-18), 

and a simplified linear governing equation for the riser vibration response to the shaker 

excitation can be established as 

= p(t)O(X
5

) (3 -1) 

where z(t,x) is the riser vibration displacement, ms the structural mass, rna the added mass, 

Cs the structural damping, Ca the linear hydrodynamic damping, kb the bending stiffness of 

the riser, and T the tension acting on the riser. 

The added mass and hydrodynamic damping in equation (3-1) is space-dependent, and 

they can be written in the Fourier series form as 
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~ j71X 
ma (x) =mao+ L...Jmaj cos(--) 

j=t L 
(3-2) 

~ j71X 
C

0
(X) = C

00 
+ L...Jcaj COS(--) 

j=t L 

where L is the riser length, and maj and Caj are defined by 

Consider the boundary conditions represented by equation (A-21) in Appendix A, and 

the vibration displacement can be written in the Fourier series form as 

co k71X 
z(t,x) = L zk (t)sin(-) 

k=t L 
(3-3) 

where zk(t) are the modal components of the riser vibration responses, which are defined 

by 

2 !L j71X zk(t) =- z(t,x)sin(-)dx 
L 0 L 

(3-4) 

Substituting equations (3-2) and (3-3) into equation (3-1) leads to 

Multiplying the two sides of the equation above with the expression sin(mrx/L), 

n=1,2,3, ... , and integrating over the riser length yields the modal governing equations in 

the time-domain as 
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(3-5) 

where 

Letting n and k be equal to 1,2,3, ... ,r, and taking Fourier transform of two sides of 

equation (3-5) leads to the modal governing equations in the frequency domain in matrix 

form as 

(3-6) 

where i is the imaginary unit, { Z( m)} is the vector of Fourier transform of the modal 

response components zk.(t), P( m) is Fourier transform of the shaker force, and [A], [B] and 

[C] are respectively the matrices of the modal mass, modal damping and modal stiffness. 

The vector { S} and the elements of these matrices have the forms as follows: 

n, k = 1,2,3, ... , r 

where the symbol bnk denotes an impulse function, which is equal to 1 when n is equal to 

k and is equal to 0 when n is not equal to k, and Anh Bnk and Cnk are the elements of 

matrices [A], [B] and [C]. 

60 



Shaker-excitation tests 

3. 3. 2 Relationship between Shaker Displacement and Shaker Force 

The modal governing equations give the relationship between the shaker force and the 

modal responses. In fact, the shaker displacement zs(t) is equal to the riser vibration 

displacement at the shaker location. Equation (3-3) gives the riser vibration displacement 

at the shaker location Xs in the form as 

Letting k=l ,2,3, ... , r, Fourier transform of this equation leads to 

(3-7) 

where Zs(w) is Fourier transform of the shaker displacement zs(t), and {Z(w)} is the 

vector of Fourier transform of the modal response components zk(t). 

From equations (3-6) and (3-7), we have the relationship between the shaker force and 

the shaker displacement as follows: 

zs (m) = {s Y [G Ks }P(m) (3-8) 

where [ G] is a matrix with the form: 

[G] = (- m2 [A]+ [c ]+ im[B ])-
1 

3. 3. 3 Frequency Response Function for Shaker/Riser System 

Frequency response functions (FRF) reveal the fundamental characteristics of a linear 

input/output system in the frequency-domain. The inverse of FRF is called dynamic 

stiffness (DS) (He and Fu, 2001). The FRF or DS can be obtained by the relationship 

between inputs and outputs. For the shaker excitation/riser response system used for this 

research, the input is the shaker motion displacement, or the riser vibration displacement 

61 



Shaker-excitation tests 

at the middle of the riser, and the output is the shaker force. For harmonic excitations, the 

FRF can be conveniently calculated from the amplitudes and phases of the harmonic 

input and output. Specifically, the DS function can be estimated based on the following 

equation: 

a (m) 
H(m) = q [cosz(w) + isinz(m)] 

av(m) 

where aq( w) is the amplitude of the harmonic output, av( w) is the amplitude of the 

harmonic input and x( w) is the phase difference between the input and the output. 

For random excitations, the DS function can be estimated based on the auto- and cross-

spectral functions of the random input and the random output. Generally, the dynamic 

characteristics of a linear input v(t)loutput q(t) system can be described by a weighting 

function h(r), and the time-domain relationship between the input v(t) and the output q(t) 

can be established as 

q(t) = Ioo h( z)v(t- T)dT (3-9) 

From equation (3-9), two expressions of DS function can be obtained. Fourier 

transform of equation (3-9) gives the first expression as follows: 

Q(m) = H (m)V (m) (3 -10) 

where H(w), Q(w) and V(w) respectively denote Fourier transforms of h(r), q(t) and v(t). 

According to equation (3-9), the product v(t)q(t+r) is given by 

v(t)q(t + T) = J+oo h(~)v(t)v(t + T- ~)d~ (3 -11) 

Fourier transform of two sides of equation (3-11) yields the second expression of the DS 

function as follows: 

(3 -12) 
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where the symbols Svv(w) and Svq(w) respectively denote Fourier transforms of the auto-

correlation function of v(t) and the cross-correlation function of v(t) and q(t), namely the 

auto-spectral density function of v(t) and the cross-spectral density function of v(t) and 

q(t). 

For the shaker excitation/riser response system used for the present tests, equations (3-

10) and (3-12) can be written as 

{
P(m) = H(m)Zs (m) 

S zp (m) = H (m)S zz (m) 
(3 -13) 

where H(w) is the DS function of the riser, P(w) and Zs(w) are respectively Fourier 

transforms of the shaker force and the shaker displacement zs( t ), and Szz( w) and Szp( w) are 

respectively the auto-correlation function of zs(t) and the cross-correlation functions of 

zs(t) and p(t). 

3. 3. 4 Estimate of Modal Parameters 

Assume that the structural and hydrodynamic properties are constant in space, and the 

matrices [A], [B] and [C] in equation (3-6) become diagonal matrices. This means that the 

modal responses Zk(t) are no longer coupled to each other. In this case, as the shaker was 

placed at the middle of the riser, i.e. xs=0.5L, equation (3-6) can be written as 

c-1r+l P(m) 
zn (m) = 2 • 

- m Ann+ Cnn + zmBnn 
(3 -14) 

n = 1,2,3, ... , r 

where Zn( w) is Fourier transform of the modal response Zn( t ). 

Consider the resonance region for the n-th mode. In this region, we assume that the 

responses of the n-th mode are much bigger than the responses of other modes (this 
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assumption can be verified by the test results of the vibration modes addressed later in 

this thesis), so that the responses of other modes can be ignored, namely equation (3-7) 

becomes 

(3 -15) 

Thus, from equations (3-13), (3-14) and (3-15), we have the relationship between the 

modal parameters and the DS function as 

(3 -16) 

Note that there is a linear relationship between the real part of H( w) and w 2 in equation 

(3-16), namely 

Obviously, the slope is related to the modal mass Ann, and the intercept is related to the 

modal stiffness Cnn· This linear relationship provides a way to estimate the modal 

parameters Ann and Cnn using a linear fit based on H( w ). The modal natural frequency Wn 

and the modal damping can then be estimated using the following formulae: 

3. 4 Test Results 

Three pretensions of 500, 700 and 900N were designed for the shaker-excitation tests, 

and the vibration shapes at different excitation frequencies, the frequency response 
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functions, and the modal parameters were investigated. The results at the three 

pretensions can be used to determine a function between the modal parameters and the 

tensions acting on the riser, and this function, along with the function between the tension 

and the current velocity, is expected to provide a picture of the modal parameters over a 

wide current velocity region. 

3. 4. 1 Test Results at Pretension of SOON 

The first pretension was SOON. It was the lowest pretension for the shaker-excitation 

tests. Fifty three harmonic excitations with different frequencies and a random excitation 

were used. The shaker control signals were created prior to the tests using a Matlab 

program based on the methods described in Section 3. 2. These excitations were given to 

the mid-point of the model riser. 

3. 4. 1. 1 Frequency Response Functions 

A magnitude plot of the frequency response function clearly exhibits the resonances 

with peaks and the anti-resonances with minima. In this research, both harmonic and 

random excitations were used to obtain the frequency response functions. Fifty three 

frequencies ranging from 0.5 to 10Hz, which are shown in Figure 3-2, were used for the 

harmonic excitation tests, while the time series of random excitations, which is shown in 

Figure 3-4, was used for the random excitation tests. 

The measured time histories of the random shaker force and displacement are shown 

in Figure 3-5. It is noted that the measured shaker displacements are a little smaller than 

the expected shaker displacements shown in Figure 3-4. 
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Time series of random shaker force and motion (pretension=500N) 

z 50 

(i) 
e 
0 0 -._ 
(!) 
~ 
<U 
..c 
rJ) -50 

0 20 40 60 80 100 120 

0.01 
E 
1§' 
(!) 0.005 
E 
(!) 

~ 0 
Ci 
rJ) 

'5 
(i3 -0.005 
~ 
<U 
..c 
rJ) -0.01 

0 20 40 60 80 100 120 
time(s) 

Figure 3-5 The measured shaker force and shaker motion at a pretension of SOON 

The auto-spectral density functions of the shaker displacement and the cross-spectral 

density function of the shaker displacement and shaker excitation force were estimated 

based on the methods shown in Appendix B. Figure 3-6 shows the estimated auto-

spectral density function of the shaker displacement, and Figure 3-7 shows the estimated 

cross-spectral density function of the shaker displacement and shaker force. The Parzen 

window function was used to reduce the leakage errors. As seen in Figure 3-6, the values 

of auto-spectral function of the shaker displacement are close to zero at the frequencies 

higher than 7 .8Hz, and this indicates that these frequencies may exceed the capability of 

the shaker, so that the shaker could not generate the components with these frequencies , 

even though the digital signals contain these components. 
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Figure 3-6 The estimated auto-spectral density function of 
the shaker motion at a pretension of SOON 

12 

There are several peaks and minima in Figure 3-7. The peaks correspond to the 

resonances and the minima to the anti-resonances. It is noted that, in similarity to Figure 

3-6, the values of cross-spectral function of the shaker displacement and shaker force are 

close to zero at the frequency higher than 7 .8Hz. Figure 3-8 presents the results of 

frequency response function between the shaker force and the shaker displacement using 

fifty three harmonic excitations and a random excitation. A major feature for the dynamic 

characteristics of a flexible riser is that there are a number of modal natural frequencies, 

which corresponding to a number of mode shapes, and these modal natural frequencies 

are represented by the peaks in the frequency response function, as seen in Figure 3-8. 
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x 1 o·3 Cross-spectral density of motion and force(pretension=500N) 
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Figure 3-7 The estimated cross-spectral density function of the 
shaker motion and the shaker force at a pretension of SOON 

According to the basic theory of vibration, the maximum displacement responses occur 

when the excitation frequencies are equal to the damped natural frequencies Wdn 

(Chakrabarti, 2002), defined as 

where Cn is the damping factor. For a flexible riser, the damping factor (n is defined as 

where Wn, Ann and Bnn are respectively the modal natural frequency, modal mass and 

modal damping for the n-th mode. Obviously, the damped natural frequencies are 

approximately equal to the undamped natural frequencies for a small-damping system, 

while the damped natural frequencies may have considerable difference from the 

undamped natural frequency for a big-damping system. This means that the frequencies 

at the peaks of FRF are approximately equal to the natural frequencies for a riser with 

small-damping. 
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Figure 3-8 Amplitude of frequency response function of the riser 
in calm water at a pretension of SOON 

In this research, as the riser had a symmetric structure over its length and the shaker 

was placed at the middle of the model riser, the riser vibration had a shape approximately 

symmetrical with respect to the mid-point of the riser. This causes the even vibration 

modes, such as mode 2, 4, 6 and so on, not to appear and the peaks only correspond to the 

natural frequencies for the odd vibration modes. In other words, the first peak in the FRF 

function corresponds to the natural frequency for the first mode; the second peak 

corresponds to the natural frequency for the third mode; the third peak corresponds to the 

natural frequency for the fifth mode; and so on. 

The test results exhibit, as expected, that the lower mode shapes have lower natural 

frequencies, while the higher mode shapes have higher natural frequencies. It is noted 
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that the peaks corresponding to the low mode shapes are greater than those corresponding 

to the high mode shapes. 

Figure 3-8 also gives a comparison of the frequency response functions respectively 

obtained from the harmonic and random excitation tests. As seen in Figure 3-8, there are 

considerable differences between the results from the two types of excitations in the peak 

regions and in the low frequency region from 0.25 to 0.8Hz. In these regions, the values 

of the frequency response function estimated from the random excitation tests are much 

larger than those estimated from the harmonic excitation tests. A possible explanation for 

these differences is that the vibration amplitudes in the resonance regions and the low 

frequency region were relatively large, and the relatively large amplitudes may cause the 

relatively large non-linear effects. It is well known that the damping force acting on a 

cylinder vibrating in water is proportional to the square of vibration velocity, and this 

induces a nonlinear effect on the vibration of the cylinder. For a relatively strong non

linear system, the different excitation patterns would result in a big difference in the 

estimated frequency response functions. The fact that relatively large nonlinear effects 

exist in the low frequency region and the resonance regions will also be verified by the 

nonlinear analysis results later. 

It is noted that the difference between the two estimated frequency response functions 

demonstrates a decreasing trend as the excitation frequencies become higher, and this 

means that the non-linear effects decreased as the excitation frequencies become higher. 

This resulted from the excitation amplitudes which were designed to decrease with the 

frequency, as shown in Figures 3-2 and 3-3. 
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A sharp peak implies small damping. The peaks in the frequency response function 

estimated from the random excitation tests are sharper that those in the frequency 

response function estimated from the harmonic excitation tests, and this implies that the 

modal damping in the random excitation tests may be smaller than that in the harmonic 

excitation tests. It is also noted that the difference in sharpness of the peaks exhibits a 

decreased trend as the excitation frequency increases. In fact, it is easy to understand 

these results. In the low frequency region, the shaker vibration amplitudes for the 

harmonic excitation tests were designed to be greater than those for the random excitation 

tests, and the damping forces in the harmonic excitation tests were of course greater than 

those in the random excitation tests. In high frequency region, the amplitudes of the 

harmonic shaker vibration were designed to be close to the average amplitude of the 

random shaker vibration and, as a result, the difference in sharpness of the peaks becomes 

small. 

The peak frequencies in the FRFs, however, seem to be less dependent on the excitation 

patterns than the peak magnitude values, and this means that different excitation patterns 

have smaller effects on the estimated modal natural frequencies than on the estimated 

modal damping. 

3. 4. 1. 2 Vibration Modes 

Through the use of the accelerometers at sixteen locations inside the model riser, a 

clear vibration shape over the riser length can be observed. The vibration shapes depend 

on the shaker excitation frequencies, and it is expected that the vibration shapes with 

single dominant mode are excited at the frequencies close to the modal natural 
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frequencies, while the vibration shapes with mixed dominant modes are excited at the 

frequencies far away from the modal natural frequencies. The indication of a vibration 

shape with single dominant mode is relatively clear nodes of vibration over riser length. 

Ten excitation frequencies of 0.88, 1.48, 2.20, 3.04, 4.00, 4.72, 5.68, 6.16, 7.60 and 

8.20Hz were chosen to check the vibration shapes. From Figure 3-8, it is known that the 

frequencies of 0.88, 2.20, 4.00, 5.68 and 7 .60Hz are close to the modal natural 

frequencies of mode 1, 3, 5, 7 and 9, and the frequencies of 0.48, 3.04, 4.72, 6.16 and 

8.20Hz are far away from these modal natural frequencies. Figures 3-9 to 3-18 show the 

vibration shapes at the ten excitation frequencies. Note that the vibration shape at the 

locations from .x=5.27m to .x=6.47m may have been skewed due to the lack of the 

measurement at these locations. Also, as these vibration shapes are snapshots over a short 

time period, they are only representatives of the vibrations during the whole vibration 

period. The corresponding time series of the harmonic displacement excitation are also 

shown in these figures, but the cut-offs (unsmooth at the peaks) in the plots of these time 

series are not true. The actual sampling frequency was 50Hz in the model tests, but 

smaller than 50Hz sampling frequencies were chosen to plot these figures so that the 

clear snapshots could be obtained. These smaller sampling frequencies produced the cut

offs; these cut-offs are, therefore, not true. 
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As seen in Figures 3-9, 3-11, 3-13, 3-15 and 3-17, the excitation frequencies close to 

the modal natural frequencies excite the nearly single dominant mode vibrations with 

relatively clear nodes. These dominant modes are respectively mode 1, 3, 5, 7 and 9, and 

they are close to the sinusoidal mode shapes, especially for the low modes. These results 

endorse the assumption that in the resonance regions the modal responses corresponding 

to the resonance mode is much larger than the modal responses corresponding to other 

modes, which was addressed earlier to establish the method to estimate the modal 

parameters based on FRFs. 

It is also noted that these vibration shapes are not exact sinusoidal mode shapes, 

especially for the higher modes. The vibration amplitudes at the locations close to the 

riser ends are smaller that those at the locations near the middle of the riser, and this 

resulted from the damping of the riser (Vandiver and Chung, 1988). Vandiver and Chung 

analyzed the Green's function of a finite cable with tension and uniformly distributed 

mass. The vibration shape of the cable is called the Green's function when a unit 

harmonic force acts at a single point on the cable. For the special case that a unit 

harmonic force acts at the mid-point of the cable, the Green's function is an exact 

sinusoidal shape if the value of n(n is equal to zero, while the values of the Green's 

function at the locations near the ends of the cable trend to zeros if the value of n(n is 

much larger than 1, where n is the mode number and (n is the damping factor, meaning 

that the waves are damped out traveling from the middle to the ends of the riser. For other 

values of n(n, the vibration amplitudes at the locations close to the cable ends are smaller 

that those at the locations near the middle of the cable, as observed in this research. 
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As seen in Figures 3-5, 3-7, 3-9, 3-11 and 3-13, the mixed dominant mode vibration 

shapes appeared as the excitation frequencies were far away from the modal natural 

frequencies. 

3. 4. 1. 3 Modal Parameters 

As discussed earlier, the modal parameters including modal mass, modal damping, 

modal stiffness and modal natural frequency can be estimated by dynamic stiffness (DS) 

functions. Over resonance regions, the real part of DS function is approximately a linear 

function of the square of excitation frequency, if the modal mass is weakly dependent on 

the excitation frequency. The modal mass can be estimated from the slope of the linear 

function, and the modal stiffness can be estimated from the intercept of the linear 

function. In this research, in order to estimate the modal mass and the modal stiffness, a 

plot of the real part of DS function versus frequency-squared was first made, and the 

linear fits were then conducted in the resonance regions. 

Figure 3-19 shows the real part of the DS function versus the frequency-squared at a 

pretension of 500N, which was obtained from the harmonic excitation tests. As seen in 

Figure 3-19, the real part of the dynamic stiffness starts with a positive value at the 

lowest frequency, and then it decreases with the excitation frequency. It changes its sign 

in the resonance region for the first mode. In the resonance region, the value of the real 

part of the dynamic stiffness function exhibits a relatively good linear relationship with 

the excitation frequency-squared. At the excitation frequency of 1.8Hz, the value of the 

real part of the dynamic stiffness function jumps from the first mode-dominant region to 

the third mode-dominant region and its sign becomes positive again. These phenomena 
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repeat in the third mode-dominant region and other mode-dominant regions. The good 

linearity in the resonance regions verifies that the added mass of the riser is weakly 

dependent of the excitation frequency, so that the assumption that the hydrodynamic 

properties do not depend on the frequency is applicable over a small frequency range, 

such as a modal resonance region. The good linear characteristics of the real part of DS 

function also ensure that a good linear fit can be achieved. 
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Figure 3-19 Real part of DS estimated from the harmonic 
excitation tests at a pretension of SOON 

Figure 3-20 presents the real part of the dynamic stiffness function versus the 

frequency-squared at a pretension of SOON, which were obtained from the random 

excitation tests. The results estimated from the random excitation tests have 

characteristics similar to the results estimated from the harmonic excitation tests shown in 

Figure 3-19, but the linearity in the modal resonance regions seems to become worse 
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compared to the results from the harmonic excitation tests, especially in the resonance 

regions of the first mode and the ninth mode. 
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The estimated modal parameters are listed in Table 3-1. As seen in Table 3-1, the 

modal masses depend on the mode number and the tension. From equation (3-6), we 

know that for a riser with uniform structural and hydrodynamic properties over its length, 

if assume that the mode shapes are exact sinusoidal shapes, the modal mass is 

independent of mode number, and there is a relation between the modal masses, the 

structural mass and the hydrodynamic masses (added masses) as follows: 

(3 -17) 

where mi is the modal mass, rna is the added mass, ms is the structural mass per unit 

length, and L is the riser length. It is noted that the estimated modal mass is dependent of 
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mode numbers, and this may have resulted from the fact that the vibration shapes in the 

modal resonance regions are not exact sinusoidal shapes due to the existence of damping 

for the riser. 

Table 3-1 Modal parameters estimated from the harmonic and random 
excitation tests at a pretensiOn o fSOON 

Pattern Item Mode 1 Mode3 ModeS 

Harmonic Modal mass(kg) 12.6 19.2 17.2 

Modal stiffness(N/m) 317 3519 8948 

Natural frequency(Hz) 0.80 2.16 3.63 

Random Modal mass(kg) 21.0 23.9 20.9 

Modal stiffness(N/m) 288 4308 10601 

Natural frequency(Hz) 0.59 2.14 3.59 

The added mass coefficient Ca for a cylinder is usually defined as 

c = ma 
a 1 

-npD 2 

4 

Mode7 Mode9 

18.4 13.7 

19350 25264 

5.16 6.83 

16.7 9.9 

17271 18163 

5.12 6.83 

(3 -18) 

where pis the water density and Dis the cylinder diameter. Equations (3-17) and (3-18) 

provides an approximate method to estimate the added mass coefficient Ca based on the 

estimated modal masses, although equation (3-17) requires the assumption that the 

structural and hydrodynamic properties over riser length are uniform and the mode 

shapes are exact sinusoidal shapes, namely we have 

C = 4 ( 2Ann - m J 
a npDz L s 

(3 -19) 
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The estimated added mass coefficients of the tested model riser at a pretension of SOON 

are shown in Table 3-2. As seen in Table 3-2, the estimated added mass coefficients have 

a big scatter ranging from 1.0 to 2.6. Chakrabarti (200S) provided the experimental 

results for a pivoted rigid cylinder of diameter D oscillating harmonically in calm water. 

It was found that the added mass coefficients depended on Keulegan-Carpenter number 

KC, defined as KC=uo/fD, where: uo is the cylinder oscillating velocity amplitude;fis the 

cylinder oscillating frequency, or defined as KC=27I:zo/D, where: zo is the oscillating 

displacement amplitude of a cylinder of diameter D (Chaplin & Subbiah, 1998). These 

added mass coefficient values ranged from 1.0 to l.S in the KC number region from 0 to 

7. For a flexible riser, KC number values are different over riser length, due to the 

variation of vibration amplitude over riser length. In this research, the KC number value 

at the mid-point of the riser was chosen as a representative of the KC number values over 

the riser length, which ranged from 0.32 to 6.28 for the harmonic excitations and from 0 

to 4.40 for the random excitations. The added mass coefficients found in the above 

references for a rigid cylinder are smaller than the values estimated from the flexible 

cylinder used for this research over the same KC value region. 

Table 3-2 Added mass coefficients estimated from the harmonic 
and random excitation tests 

Pretension Excitation pattern Mode 1 Mode3 ModeS Mode7 

SOO(N) Harmonic 1.00 2.23 1.86 2.08 

Random 2.S6 3.11 2.SS 1.76 

Mode9 

1.20 

0.49 

As expected, the high modes produce larger modal stiffness and natural frequencies 

than the low modes, as seen in Table 3-1. For a flexible riser vibration system, both of the 
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tension and the bending stiffness provides the spring force to the vibration system, i.e. 

both of the tension and the bending stiffness has contribution to the modal stiffness, but 

usually the bending stiffness has less contribution to the modal stiffness than the tension, 

especially for low modes. 

Comparing modal parameter values respectively estimated from the harmonic and the 

random excitation tests, two points are found: i) the different excitation patterns produce 

significant differences in the estimated modal mass and stiffness, i.e. the estimated modal 

mass and stiffness are sensitive to the excitation patterns used; and ii) although the 

different excitation patterns produce significant differences in the estimated modal mass 

and stiffness, the different excitation patterns do not produce significant differences in the 

estimated modal natural frequencies, or the ratio of the estimated modal stiffness to the 

estimated modal mass, except for the estimated modal natural frequencies for the first 

mode. The relatively large differences in the estimated modal natural frequencies for the 

first mode may result from the poor linear fits in the real part of the DS functions. As 

seen in Figure 3-19 and 3-20, the first mode shows poor linearity in the real part of DS 

functions, and this causes a relatively big error in the result of a linear fit. 

Figure 3-21 shows the imaginary part of the dynamic stiffness functions versus 

frequency at a pretension of SOON, which were obtained from the harmonic and the 

random excitations. The minimum values appear in the modal resonance regions, while 

the maximum values appear in the regions where the dominant modes transit. It is noted 

that there are significant differences between the results respectively from the harmonic 

and the random excitations, but fortunately the values at the modal natural frequencies 

have relatively small differences, which will be used to estimate the modal damping. The 
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estimated modal damping values are shown in Table 3-3. The estimated damping values 

seem to have an increasing trend with the mode number. 

The hydrodynamic damping coefficient cd for a cylinder is defined as 

C - ca 
d- 1 , 

-pDz 2 0 

(3- 20) 

where Ca is the linear hydrodynamic damping coefficient, and z'o is the maximum 

amplitude of vibration velocity. For a harmonic vibration, the amplitude of vibration 

velocity can be calculated by 

, 
Zo = lOZo (3- 21) 

where m is the vibration frequency, and zo is the vibration amplitude. Assume that the 

riser has uniform structural and hydrodynamic properties over its length and the structural 

damping is much less than the hydrodynamic damping so that the structural damping can 

be ignored; thus from equation (3-6), we have 

L 
Bnn::::: 2Ca (3-22) 

where Bnn is the modal damping. Combination of equations (3-20), (3-21) and (3-22) 

leads to 

C - 4Bnn 
d-

pDLtoz0 

(3- 23) 

Assuming zo=0.5D, the estimated damping coefficients of the model riser at a 

pretension of SOON are shown in Table 3-4. As seen in Table 3-4, the estimated damping 

coefficient ranges in the region from 0.56 to 1.78. Sarpkaya (1976) conducted an 

experiment of a rigid cylinder in oscillating water, and it was found that the damping 
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coefficients for that rigid cylinder ranged from 0.5 to 2.0, which are similar to the values 

for the flexible cylinder used for this research. 
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Table 3-3 Modal damping estimated from the harmonic 
and random excitation tests(N.s/m) 

Excitation pattern Mode 1 Mode3 Mode5 Mode7 

Harmonic 16.2 18.1 25 .7 40.1 

Random 6.8 15.7 26.7 50.3 

Table 3-4 Damping coefficients estimated from the harmonic 
and random excitation tests 

Excitation pattern Mode 1 Mode3 Mode5 Mode7 

Harmonic 1.78 0.66 0.56 0 .63 

Random 0.80 0.68 0.69 0 .91 
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3. 4. 2 Test Results for Pretension of 700N 

The second pretension tested was 700N. Except for the pretension, all test conditions 

were identical to the test conditions at the pretension of 500N. Fifty harmonic frequencies 

were tested, but no random excitation tests were conducted for this pretension. 

3. 4. 2. 1 Frequency Response Functions 

For the pretension of 700N, only the harmonic excitation tests were conducted. Figure 

3-22 presents the results of frequency response function between the shaker force and the 

shaker displacement from the harmonic excitation tests. Similarly in the case of the 

pretension of 500N, several peaks and minima are found in the frequency response 

function, which respectively correspond to the resonance frequencies and the anti-

resonance frequencies. As seen in Figure 3-22, the low mode shapes have relatively large 

peak magnitude values, while the high mode shapes have relatively small peak magnitude 

values. 
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3. 4. 2. 2 Vibration Modes 

Nine excitation frequencies of 0.88, 1.96, 2.80, 4.00, 4.60, 5.44, 6.28, 7.48 and 8.44Hz 

were selected to check the vibration shapes over the riser length. Figures 3-23 to 3-31 

give the vibration shapes and the corresponding time series of the shaker motion for these 

frequencies. Also, the cut-offs in the time series of the shaker motion are not true, as 

these cut-offs result from the smaller sampling frequencies for plotting than the sampling 

frequency for data acquisition. The vibration shape at the locations from .x=5.27m to 

.x=6.47m may have been skewed due to the lack of the measurement at these locations. It 

is noted that in the test the pair of accelerometers at the location of x=2.429m started to 

work unstably, so that the vibration shapes at the locations from x=2.0m to 2.8m may 

also be skewed in some figures, such as Figures 3-23, 3-24 and 3-25. The malfunction of 

this pair of accelerometers also affected the measured results of vibration shapes for the 

pretension of 900N, which will be presented and discussed later. 
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Figure 3-24 Vibration shape at an excitation frequency of 1.96Hz 
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Figure 3-25 Vibration shape at an excitation frequency of 2.80Hz 
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Figure 3-26 Vibration shape at an excitation frequency of 4.00Hz 
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Figure 3-27 Vibration shape at an excitation frequency of 4.60Hz 
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Figure 3-28 Vibration shape at an excitation frequency of 5.44Hz 
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Figure 3-30 Vibration shape at an excitation frequency of 7 .48Hz 
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Vibration shape at an excitation frequency of 8.44Hz 
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From the frequency responses function shown in Figure 3-22, we know that the 

excitation frequencies of 0.88, 2.80, 4.60, 6.28 and 8.44Hz are close to the natural 

frequencies of mode 1, 3, S, 7 and 9. Figures 3-23, 3-2S, 3-27, 3-29 and 3-31 respectively 

exhibit the vibration shapes for these frequencies. From these figures, it is observed that 

the pretension of 700N results in vibration shapes more different from a sinusoidal shape 

than the pretension of SOON. The nodes become more unclear at some excitation 

frequencies compared to the vibration shapes for the pretension of SOON. Figures 3-24, 3-

26, 3-28 and 3-30 respectively show the vibration shapes for the excitation frequencies of 

1.96, 4.00, S.44 and 7.48Hz. As these frequencies are far away from the modal natural 

frequencies, the vibrations with mixed dominant mode shapes are observed. Similarly in 

the case of the low pretension of SOON, the low excitation frequencies result in low mode 

shapes, while the high excitation frequencies result in the high mode shapes. 

3. 4. 2. 3 Modal Parameters 

Figure 3-32 presents the real part of dynamic stiffness functions versus the frequency

squared at a pretension of 700N, which were estimated from the harmonic excitation 

tests. The linear fit lines are also shown in this figure. Similar to the results in the case of 

the pretension of SOON, the real part of the dynamic stiffness starts with a positive value 

at the lowest frequency, and then it decreases with the excitation frequency. Over the 

excitation frequency range tested, five resonance regions were found. In each resonance 

region, the real part of the dynamic stiffness function changes its sign at the 

corresponding modal natural frequency, and the values of the real part of the dynamic 

stiffness function exhibit a good linear characteristic. 
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The estimated modal masses, modal stiffness and modal natural frequencies are listed 

in Table 3-S. Similarly in the case of the pretension of SOON, the modal masses, modal 

stiffness and modal natural frequencies depend on the mode number. The mass 

coefficients estimated from equation (3-19) are shown in Table 3-6. As seen in Table 3-6, 

the estimated mass coefficients have a big scatter ranging from 1.2 to 3.3. Also, these 

estimated mass coefficients for the flexible riser are bigger than those for the rigid 

cylinder provided by Chakrabarti (200S). 
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Figure 3-32 Real part of DS function estimated from the harmonic 
excitations at a pretension of 700N 

Table 3-5 Modal parameters estimated from the harmonic and random 
·tar t ts t t f700N exc1 IOD es a a]!_re ens10n o 

Pattern Item Mode 1 Mode3 ModeS Mode? Mode9 

Harmonic Modal mass(kg) 18.0 24.1 2S.O 18.7 13.9 

Modal stiffness(N/m) SS4 6900 21393 2882S 37614 

Natural frequency(Hz) 0.88 2.70 4.S7 6.26 8.27 
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Table 3-6 Added mass coefficients estimated from the harmonic excitation tests 
t t f700N a a p_re ens10n o 

Pretension Excitation pattern Mode 1 Mode3 ModeS Mode7 Mode9 

700(N) Harmonic 2.01 3.1S 3.32 2.14 1.24 

Figure 3-33 shows the imaginary part of the dynamic stiffness functions versus the 

frequency at a pretension of 700N, which were obtained from the harmonic excitation 

tests. Similar to the results in the case of the pretension of SOON, the minimum values 

appear in the modal resonance regions, while the maximum values appear in the regions 

where the dominant mode transits. 
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Figure 3-33 Imaginary part of DS function between the excitation force 
and the displacement at the middle of the riser 

The estimated modal damping is shown in Table 3-7. The estimated modal damping 

has an increasing trend with the mode number, except for mode 1. The damping 
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coefficients can be estimated based on equation (3-23) and the results are shown in Table 

3-8. The estimated damping coefficient ranges from 0.4S to 0.6S, except for the value of 

mode 1. These values are similar to the values for a rigid cylinder, which were found by 

Sarpkaya (1976). 

Pretension 

700(N) 

Pretension 

700(N) 

Table 3-7 Modal damping estimated from the harmonic 
and random excitation tests(N.s/m) 

Excitation pattern Mode 1 Mode3 ModeS Mode7 

Harmonic 2S.S 13.S 2S.3 4S.S 

Table 3-8 Damping coefficients estimated from the harmonic 
and random excitation tests(N.s/m) 

Excitation pattern Mode 1 Mode3 ModeS Mode7 

Harmonic 2.S1 0.44 O.SO 0.64 

3. 4. 3 Test Results at Pretension of 900N 

Mode9 

S2.1 

Mode9 

O.S7 

The third pretension tested was 900N. It was the biggest pretension for the shaker-

excitation tests. Both harmonic and random excitations were applied to the riser at this 

pretension. Fifty excitation frequencies were used for the harmonic excitation tests, and 

one random excitation was used for the random excitation tests. 

3. 4. 3. 1 Frequency Response Functions 

The measured time histories of the random shaker force and motion are shown in 

Figure 3-34. As seen in Figure 3-34, the shaker displacement is approximately equal to 

that in the case of the pretension of SOON, but the shaker force is greater than that in the 
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case of the pretension of SOON due to the increased pretension. Figures 3-3S and 3-36 

respectively present the auto-spectral density function of the shaker displacement and the 

cross-spectral density function of the shaker force and shaker displacement. Both the 

auto- and cross-spectral density functions were estimated using the methods shown in 

Appendix B. The Parzen window function was used to reduce the leakage errors. Also, 

the auto-spectral function of the shaker motion are close to zero when the frequency 

exceeds 7 .8Hz, and this means that the shaker could not generate the random vibration 

components with the frequencies beyond 7.8Hz even though the digital signals contained 

these components. Four peaks are found in Figure 3-36, meaning that only modes 1, 3, S 

and 7 experienced the resonances and the resonance for mode 9 was not excited by the 

shaker motions. This is because the increased pretension gave rise to higher natural 

frequencies than in the case of a pretension of SOON and, as a result, the maximum 

excitation frequency did not reach the resonance region of the highest mode in the case of 

the pretension of SOON. 
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lime series of random shaker and riser motion (pretension=900N) 
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Figure 3-34 The measured shaker force and shaker motion 
at a pretension of 900N 
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Figure 3-35 The estimated auto-spectral density function of the 
shaker motion at a pretension of 900N 
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Figure 3-36 The estimated cross-spectral density function of the 
shaker motion and the shaker force at a pretension of 900N 

Figure 3-37 presents the frequency response functions estimated from the harmonic 

and random excitation tests. In Figure 3-37, there are several peaks meaning resonances 

and several minima meaning anti-resonances. The low mode shapes result in relatively 

great peaks, while the high mode shapes result in relatively small peaks. This means 

relatively small damping for the low modes and relatively large damping for the high 

modes. 

Figure 3-37 also gives a comparison between the results respectively from the 

harmonic and the random excitation tests. Similar to the results in the case of the 

pretension of SOON, there are considerable differences in the peak regions between the 

results estimated from the harmonic and random excitation tests. 
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Figure 3-37 Amplitude of frequency response function of the riser 
in calm water at a pretension of 900N 

3. 4. 3. 2 Vibration Modes 

In the case of a pretension of 900N, eight excitation frequencies of 0.40, 2.20, 3.16, 

4.48, 5.44, 6.88, 7.48 and 8.56Hz were selected to check the vibration shapes over the 

riser length. The frequencies of 3.16, 5.44 and 7.48Hz are close to the natural 

frequencies, and the other frequencies are far away from the natural frequencies. Figures 

3-38 to 3-45 exhibit the vibration shapes for these excitation frequencies . The 

corresponding shaker displacements are also shown in these figures. The vibration shapes 

at the locations from .x=5.27m to .x=6.47m may have been skewed due to the lack of the 

measurement at these locations, and as the pair of accelerometers at the location of 

x:;;2.429m worked unstably, the vibration shapes at the locations from x=2.0m to 2.8m 
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may also be skewed in some figures such as Figures 3-38, 3-39 and 3-40. Similar to the 

results in the cases of pretensions of SOON and 700N, the low excitation frequencies 

result in low mode shapes, while the high excitation frequencies result in the high mode 

shapes. It is noted that the vibration shapes have considerable differences from the 

sinusoidal shapes. 

Time series of displacement at middle of riser 
(frequency=0.40Hz, pretension=900N) 
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Figure 3-38 Vibration shape at an excitation frequency of 0.40Hz 
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Figure 3-39 Vibration shape at an excitation frequency of 2.20Hz 
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Figure 3-40 Vibration shape at an excitation frequency of 3.16Hz 
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Figure 3-41 Vibration shape at an excitation frequency of 4.48Hz 
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Figure 3-42 Vibration shape at an excitation frequency of S.44Hz 
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Figure 3-43 Vibration shape at an excitation frequency of 6.88Hz 
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Figure 3-44 Vibration shape at an excitation frequency of 7.48Hz 
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Figure 3-45 Vibration shape at an excitation frequency of 8.56Hz 

3. 4. 3. 3 Modal Parameters 

Figure 3-46 shows the real part of the dynamic stiffness functions versus the frequency-

squared at the pretension of 900N, which were obtained from the harmonic excitation 

tests. The linear fit lines for estimation of the modal mass and modal stiffness are also 

presented in Figure 3-46. In the resonance regions, the values still follow a linear line 

well so that good fitted results can be obtained. Since the resonance at the natural 

frequency for mode 9 was not excited, only the modal parameters for mode 1, 3, 5 and 7 

could be estimated for this pretension. 

Figure 3-47 shows the real part of the dynamic stiffness functions versus the frequency-

squared at the pretension of 900N, which were obtained from the random excitation tests. 

In the case of random excitation, the maximum excitation frequency also did not reach 
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the natural frequency of the ninth mode such that the modal parameters for the ninth 

mode could not be estimated. Comparing the results respectively from the harmonic and 

random excitation tests, the different patterns of excitations do not produce big 

differences in the estimated values of the real part of DS functions, but the linearity in the 

high mode resonance regions seems to become worse in the results from the random 

excitation tests than in those from the harmonic excitation tests. 

The estimated modal parameters are listed in Table 3-9, and the corresponding mass 

coefficients are shown in Table 3-10. The estimated mass coefficients have a big scatter 

ranging from 1.9 to 3.9. These values are larger than those provided by Chakrabarti 

(2005). 
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Figure 3-46 Real part of DS estimated from the harmonic excitation tests 
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Figure 3-47 Real part of DS estimated from the random excitation tests 

Table 3-9 Modal parameters estimated from the harmonic and random 
"tat· t ts t t f 900N exc1 Ion es a a pre ens10n o 

Pattern Item Mode 1 Mode3 ModeS Mode7 Mode9 

Harmonic Modal mass(kg) 21.1 27.0 25.6 22.0 -

Modal stiffness(N/m) 976 11931 30860 49077 -

Natural frequency 1.08 3.34 5.52 7.52 -
(Hz) 

Random Modal mass(kg) 26.1 28.1 23.1 17.3 -

Modal stiffness(N/m) 944 12250 28213 39112 -

Natural 0.96 3.32 5.56 7.57 -

frequency(Hz) 
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Table 3-10 Added mass coefficients estimated from the harmonic 
and random excitation tests 

Pretension Excitation pattern Mode 1 Mode3 ModeS Mode7 

900(N) Harmonic 2.S9 3.69 3.43 2.76 

Random 3.S2 3.90 2.96 1.88 

Mode9 

-

-

Figure 3-48 shows the imaginary part of the dynamic stiffness versus the frequency at 

a pretension of 900N, which were estimated from the harmonic and the random excitation 

tests. Similar to the results in the cases of the pretensions of SOON and 700N, the 

minimum values appear in the modal resonance regions, while the maximum values 

appear in the modal anti-resonance regions. The estimated values of the imaginary part of 

the dynamic stiffness are sensitive to the excitation patterns, as there are considerable 

differences between the results respectively from the harmonic and the random excitation 

tests. However, the differences occurring in the resonance regions are smaller than those 

occurring in the anti-resonance regions. 

The estimated values of modal damping are shown in Table 3-11. Also, the different 

excitation patterns may result in significant differences in the estimated damping values. 

Assuming zo=0.5D, the estimated damping coefficients based on equation (3-23) are 

shown in Table 3-12, which ranges from 1.8 to 3.9. Sarpkaya (1976) conducted an 

experiment of a rigid cylinder in oscillating water and found that damping coefficients for 

that cylinder ranged from O.S to 2.0, which are smaller than the values found in this case. 
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Figure 3-48 Imaginary part of DS function between the excitation force 
and the displacement at the middle of the riser 
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Table 3-11 Modal damping estimated from the harmonic 
and random excitation tests(N.s/m) 

Excitation pattern Mode 1 Mode3 ModeS Mode? 

Harmonic 14.0 1S.3 28.6 86.3 

Random 6.3 19.0 34.2 64.2 

Table 3-12 Damping coefficients estimated from the harmonic 
and random excitation tests 

Excitation pattern Mode 1 Mode3 ModeS Mode? 

Harmonic 1.27 0.47 O.S2 1.13 

Random O.S7 O.S7 0.62 0.84 
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3. 4. 4 Non-linear Component Analysis 

The governing equation (3-1) is a linear model for the shaker-excitation/riser response 

system tested, but in reality the shaker-excitation/riser response system is a non-linear 

system, as at least the hydrodynamic damping is usually considered to be proportional to 

vibration velocity-squared; thus equation (3-1) is modified as a non-linear governing 

equation with a non-linear damping term as 

= p(t)b(X
5

) (3-24) 

where Ca denotes the linear damping coefficient of the riser, and cb denotes the non-linear 

damping coefficient of the riser. Manipulating in the manner similar to Section 3.3.1, the 

following equation can be obtained: 

(ms +mao)L zn(t)+ CaoL zn(t)+ L[kb(n7rJ4 +T(n7rJ2]zn(t)+ ffJnjkmajzk(t) 
2 2 2 L L k=l i=I 

+ ff1 njkcajZk (t) + Cb SoL[ f Zk (t) sin(knt) f Zk (t)sin(knt)]sin(nnt)dx 
k=l 1=1 k=l L k=l L L 

= p(t) sin(nnts) (3- 25) 
L 

Assume that the structural and hydrodynamic properties are constant over the riser 

length, and the coefficients ma1 and ca1, j=1,2,3, ... , in equation (3-25) are then equal to 

zero, and mao and Cao are respectively equal to ma and Ca. Thus, equation (3-25) becomes 

= p(t)sin(nnts ) 
L 
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where 

J _ lL . (n1lX) . 2 (n1lX\_,~..,. 
- Sill -- Sill --JUA 

n o L L 

Consider the resonance region for the n-th mode. In this region, we assume that the 

responses of the n-th mode are much larger than the responses of other modes, so that the 

responses of other modes can be ignored, namely equation (3-3) becomes 

z(t,x)::::: Zn (t)sin(n1lX) 
L 

(3- 27) 

As the shaker motion displacement zs(t) is equal to the riser vibration displacement at 

the shaker location, equation (3-27) gives the shaker motion displacements in the form as 

(3- 28) 

For the odd modes, letting X 5=0.5L and substituting equation (3-28) into equation (3-26) 

yields 

(m, +
2
m.)L Z,(t)+ c;L Z,(t)+ ~[k,( n:r +T( n:)'},(t)+c,LjZ,(t)iZ,(t) 

= p(t) (3- 29) 

It is noted that equation (3-29) defines a single-input/single-output non-linear system, 

which is described in Appendix D. The input for the linear subsystem is the shaker 

displacement zs(t), and the input for the nonlinear subsystem is 

Thus, the methods presented in Appendix D can be employed to estimate the nonlinear 

damping cb based on the measured random shaker forces and motions. 
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Figures 3-49 to 3-53 present the auto- and cross-spectral density functions of the input 

zs(t) for the linear subsystem, the input q[zs(t)] for the nonlinear subsystem and the total 

output p(t), which were obtained from the random excitation tests at a pretension of 

SOON. Figure 3-54 shows the frequency response function for the nonlinear subsystem. 

As seen in Figure 3-54, relatively big values appear in the regions of low frequency and 

resonance, and this means that in these regions the non-linear components are relatively 

large, i.e. the non-linear effect in the responses is relatively strong. In the regions of the 

low frequency and resonance, the vibration amplitudes are relatively large; therefore, 

relatively strong non-linear effects exist in these regions. This conclusion agrees with that 

extracted from the linear model analysis, which was addressed earlier. 

Figure 3-55 illustrates the line fit plot for estimation of non-linear damping coefficient. 

The resonance region of mode 1 was used. As seen in Figure 3-55, the intercept value is 

20.2(N.s2/m), and the estimated non-linear damping is 8.5(N.s2/m2
). 
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Figure 3-49 Auto-spectral density function of random shaker displacement 
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Figure 3-50 Auto-spectral density function of random shaker velocity-squared 
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3. 4. 5 Summary of Shaker-Excitation Test Results 

Frequency Response Functions 

Frequency response functions reveal the basic characteristics of nser structural 

responses to vortex-shedding loads, including the resonances and anti-resonances. A 

flexible riser has a number of natural frequencies and a number of resonance and anti-

resonance regions, which correspond to a number of mode shapes. The low modes have 

low natural frequencies, while the high modes have high natural frequencies. 

Figure 3-56 summarizes the frequency response functions at the three pretensions 

tested. As seen in Figure 3-56, the increased tensions cause peaks and troughs to move 

towards higher frequency regions for the same mode of vibration. Increased tensions also 

cause peak magnitude to reduce. 

X 10-3 Frequency response function 
9 
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Figure 3-56 Tension effects on the frequency response functions 
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Modal Stiffness and Modal Masses 

Table 3-13 summarizes the modal stiffness at the three pretensions tested. As seen in 

Table 3-13, the modal stiffness strongly depends on the pretensions. The modal stiffness 

increases rapidly as the tensions increase. The modal stiffness also depends on the mode 

shapes. 

T bl 3 13 S a e - ummary o f h d I "ff t emo a sb ness (N/ ) m 
Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

SOO(N) 317 3S19 8948 193SO 2S264 

700(N) SS4 6900 21393 2882S 37614 

900(N) 976 11931 30860 49077 -

Table 3-14 summarizes the modal mass at the three pretensions tested. As seen in 

Table 3-14, the modal masses depend weakly on the tensions. The modal masses increase 

slowly as the tensions increase. The modal masses also depend on the mode shapes. A 

maximum of modal mass appears in mode 3 or mode S, and the modal mass decreases for 

higher or lower modes than the two modes. Table 3-1S summarizes the estimated added 

mass coefficients. The added mass coefficients range from 1.0 to 3.7 and exhibit the same 

characteristics as the modal mass. 

a e -T bl 3 14 S ummaryo fth emo d I a mass (k ) ., 
Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

SOO(N) 12.6 19.2 17.2 18.4 13.7 

700(N) 18.0 24.1 2S.O 18.7 13.9 

900(N) 21.1 27.0 2S.6 22.0 -
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T bl 3 15 S a e - ummaryo f dd d a e m· ts mass coe ICien 
Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

500(N) 1.00 2.23 1.86 2.08 1.20 

700(N) 2.01 3.15 3.32 2.14 1.24 

900(N) 2.59 3.69 3.43 2.76 -

Modal Natural Frequencies 

Modal natural frequencies play an important role in understanding the frequency 

"lock-in" and amplitude resonance phenomena for a flexible riser. Table 3-16 

summarizes the modal natural frequencies at the three pretensions tested. As seen in 

Table 3-16, the modal natural frequencies depend on the pretensions. The increased 

pretensions result in increased modal natural frequencies for all modes. The high modes 

have high natural frequencies, while the low modes have low natural frequencies. 

Equation (2-9) provides a way to estimate the modal natural frequencies, and the 

results estimated from this equation are shown in Table 3-17. The measured bending 

stiffness value of 1.52 N. m2 was used. It is noted that the measured modal natural 

frequencies are similar to the estimated modal natural frequencies. 

As addressed in Section 2. 1. 1, Vandiver (2003) provided a simplified formula to 

estimate the modal natural frequencies, which ignores bending stiffness. The results 

estimated from Vandiver's formula are shown in Table 3-18. The differences between the 

values in Table 3-17 and 3-18 are small, and this means that bending stiffness only has a 

slight effect on the natural frequencies for the flexible riser tested. 
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Table 3-16 Summary of the modal natural frequency (Hz) 

Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

SOO(N) 0.80 2.16 3.63 S.16 6.83 

700(N) 0.88 2.70 4.S7 6.26 8.27 

900(N) 1.08 3.34 S.S2 7.S2 -

Table 3-17 Modal natural frequency (Hz) estimated 
f t• (2 9) rom e4 ua Ion -

Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

SOO(N) 0.8S 2.S6 4.28 6.02 7.80 

700(N) 0.9S 2.87 4.79 6.73 8.69 

900(N) 1.03 3.08 S.14 7.22 -

Table 3-18 Modal natural frequency (Hz) estimated 
f v d" f rom an 1ver s equa 100 

Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

SOO(N) 0.8S 2.SS 4.26 S.97 7.67 

700(N) 0.9S 2.86 4.77 6.68 8.S9 

900(N) 1.03 3.08 S.13 7.18 -

Modal Damping 

Damping has a crucial role in the vibration responses over a modal resonance region 

for a flexible riser. Damping also has a role in understanding the frequency "lock-in" and 

amplitude resonance phenomena for a flexible riser. One of the conditions for the 

occurrence of the frequency "lock-in" and the amplitude resonance is that risers have 
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small damping. Table 3-19 summarizes the modal damping at the three pretensions 

tested. As seen in Table 3-19, the modal damping does not show a regular change with 

respect to the pretensions, and this can be interpreted as there being no correlation 

between pretensions and damping. The modal damping depends on the mode shapes. 

Increased mode number results in increased modal damping. This may mean that high 

mode resonances are weaker than their low mode counterparts. Table 3-20 summarizes 

the corresponding damping coefficients. These coefficients range from O.S to 2.S, and 

have a same characteristic as the modal damping. 

Table 3-19 Summary of the modal damping (N.s/m) 

Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

SOO(N) 16.2 18.1 2S.7 40.1 S1.6 

700(N) 2S.S 13.S 2S.3 4S.S S2.1 

900(N) 14.0 1S.3 28.6 86.3 -

Table 3-20 Summary of damping coefficients 

Pretension Mode 1 Mode3 ModeS Mode7 Mode9 

SOO(N) 1.78 0.66 O.S6 0.63 0.63 

700(N) 2.S1 0.44 O.SO 0.64 O.S7 

900(N) 1.27 0.47 O.S2 1.13 -
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Non-linear Effects 

The results from the nonlinear analysis show that the nonlinear effects mainly exist in 

the low frequency and the modal resonance regions. The reason for this is that in these 

regions the riser vibrations have relatively big amplitudes. The conclusions from the 

nonlinear analysis agree with the conclusions from the linear analysis. 
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CHAPTER4 

VORTEX-INDUCED VIBRATION TESTS 

4. Vortex-Induced Vibration Tests 

The structural and hydrodynamic properties of the model riser in calm water have been 

investigated through the shaker-excitation tests described in Chapter 3. This Chapter will 

present and discuss the results of the current-excitation tests (vortex-induced vibration 

tests). 

4. 1 Experimental Design and Performance 

The model riser design was presented in Section 2. In this section, the current and 

pretension designs will be discussed. 

As addressed earlier, when a flexible riser experiences a flow with enough current 

velocity, the vortex-shedding phenomenon occurs. The vortex-shedding forces will cause 
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the riser to vibrate in the in-line and the cross-flow directions, namely vortex-induced 

vibrations (VIV). As deep-water risers have long and flexible structures, the vibration 

may contain several modal components, namely the multi-modal vibrations. Multi-modal 

vibration responses depend on the structural parameters of the riser and the characteristics 

of vortex-shedding; these parameters and characteristics are, therefore, important for the 

design of a VIV test. Some structural parameters, such as mass and bending stiffness, 

have been discussed in the design of model risers, which were presented in Chapter 2. In 

this section, two of the other parameters important for VIV tests will be discussed. One is 

the current velocities and the other is the pretensions. 

In theory, the current velocities can be designed based on similarity of the Reynolds 

number, defined as Re=UD/v, where: v is the kinematic viscosity of water, D is riser 

diameter and U is current velocity, between the prototype and the model riser systems. 

The Re for typical real production risers, for example in the Gulf of Mexico (Allen and 

Henning, 2001), ranges from about 1.5x105 to 3.4x105
; however, these Re values are too 

big to be modeled in the laboratory due to limited current velocities. In the present work, 

uniform current velocities were generated by moving the tank carriage, the maximum 

current velocity was, therefore, designed based on the tank length and the required data 

acquisition time. Twenty-seven current velocities ranging from 0.1 to 1.5rnls were 

selected, and the maximum Reynolds number Re was 0.6x105
, which corresponds to a 

prototype current velocity of 0.2rnls for the selected nominal prototype riser shown in 

Section 2. 

The pretensions were then designed based on these selected current velocities and the 

required equivalent tension T, which was discussed in Chapter 2. On other words, the 
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pretensions were designed to satisfy the required equivalent tension Tat some typical 

currents, which will generate drag forces affecting the tension acting on the riser. In fact, 

the pretension design is to achieve the similarity of the frequency ratio OJ*, defined as 

OJ *= OJ! OJn, where: OJ is the vortex shedding frequency and OJn is the natural frequency, so 

that the expected modes can be obtained in the model riser tests. These modes must be 

similar between the prototype and model riser systems. In the present work, two 

pretensions of 200 and 600N were used. 

The number of the accelerometers used can be determined based on the maximum 

expected mode. Assume that the mode is approximately sinusoidal in shape, and a 

minimum of two measurement points per wavelength is suggested by a spatial Nyquist 

criterion (Vandiver and Marcollo, 2003). This means that the number of measurement 

points must be larger than the maximum mode number. Obviously, the minimum number 

of measurement points suggested by the spatial Nyquist criterion is only an acceptable 

solution, not the best solution, as this minimum number of measurement points only 

roughly describes the vibration shapes over riser length. In the present work, the goals 

were to measure multi-modal VIV responses with mode number up to 10, and initially 

double of the minimum number of measurement points (twenty pairs of accelerometers) 

were designed. However, four pairs of accelerometers were damaged in the model riser 

fabrication process, and finally only sixteen pairs of accelerometers could work. With the 

sixteen pairs of accelerometers, a clear multi-modal vibration shape over riser length was 

expected to be observed and a modal analysis with a sufficient accuracy was expected to 

be achieved. 
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The tests were performed in the Ice Tank at the Institute for Ocean Technology, the 

National Research Council of Canada. The riser was mounted horizontally on the steel 

frame, and then was placed at a water depth of 1.0m. The vertical lever mechanism on the 

supporting frame was used to adjust the pretensions applied to the riser. Figure 4-1 is a 

photo of the current-excitation test scene. 

Model riser VIV test apparatus 

Figure 4-1 Current-excitation tests 

The measured data were analyzed in the time-domain, the frequency-domain and the 

space-domain. The analysis in the time-domain produced the results: i) average peak

pick-up amplitude versus current velocity; and ii) average peak-pick-up frequency versus 
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current velocity. In this analysis, the peak was defined as a positive sampled value greater 

than twenty neighboring sampled values. As the data sampling frequency was 50Hz in 

the tests, this definition of peak ensured that a frequency component of 5Hz was not 

omitted. This frequency is larger than the Strouhal frequency of 0.45Hz at the maximum 

current velocity of 1.5rnls. The average peak-pick-up amplitude was defined as the 

average of all peaks, and the inverse of the average time interval of these peaks was 

defined as the average peak-pick-up frequency. 

The analysis in the time-domain revealed the amplitude and frequency characteristics 

of the VIV responses against the currents. In fact, the peak-pick-up frequencies were only 

a rough description of the frequency characteristics of the VIV responses, and they did 

not provide complete information about the frequency characteristics of the VIV 

responses. The analysis in the frequency-domain gave a more detailed picture of 

frequency components in the VIV responses than the results from the analysis in the 

time-domain. The tool for the frequency-domain analysis was the spectral analysis 

technique shown in Appendix B. 

The analysis in the space-domain produced the results: i) the vibration shapes over the 

riser length; ii) the vibration trajectories in the cross-section plane of the riser; iii) the 

modal responses versus the current velocity; and iv) the modal components in the VIV 

responses. In this analysis, the modal components were calculated through integration of 

the VIV displacements over riser length based on equation (2-5). 
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4. 2 Test Results 

4 . 2. 1 Tensions and Modal Natural Frequencies at Different Currents 

Multi-modal VIV responses contain some complicated phenomena, such as modal 

resonances and frequency lock-in, and the modal parameters estimated in Chapter 3 will 

be employed to understand these complicated phenomena. Of these modal parameters, 

the modal natural frequency is the most important parameter. Table (3-16) gives the 

modal natural frequencies in calm water at three tensions of 500, 700 and 900N, and the 

modal natural frequency versus tension can be obtained by fitting these values based on 

the second-order polynomials. The fitting results are shown in Figure 4-2. 
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Figure 4-2 Modal natural frequency versus tension 

Assume that the existence of currents does not affect the added mass of the riser, and 

the modal natural frequencies in currents can be estimated based on the modal natural 

frequencies in calm water and the tensions resulting from the drag forces in currents. In 

this research, the tensions resulting from the drag forces were measured at the pretension 
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of 600N, shown in Figure 4-3. Combination of the results respectively shown in Figure 4-

2 and Figure 4-3 yields the modal natural frequency versus the current velocity at the 

pretension of 600N, shown in Figure 4-4. The symbol/ denotes the ratio fn!lfnJ, where: 

/nk is the natural frequency of the k-th mode, and fn1 is the natural frequency of the first 

mode. From Figure 4-2, the value of fnJ is equal to 0.85Hz, and this value was used to 

plot the curves in Figure 4-4. The symbol v* denotes the reduced velocity, defined as 

V*=UI fnJD, where: U is the current velocity, D is the riser diameter. The Strouhal 

frequencies with Sr = 0.12 are also shown in Figure 4-4, which represent the vortex-

shedding frequencies. The natural frequencies for the even modes with number k ( =2, 4 

and 6) were not obtained from the shaker-excitation tests, and the natural frequencies for 

the even modes in Figure 4-4 were calculated by a simple average, namely 

1 
fnk = 2 (Jnk-1 + fnk+l ) 

k = 2,4,6 

where /nk denotes the natural frequency for an even mode (the k-th mode), andfnk-J and 

fnk+l denote the natural frequencies for its two adjacent odd modes. 

The relationship between the tension and the current velocity at a pretension of 200N 

was not measured in this research. The tension versus current velocity at the pretension of 

200N was simply deduced from the measured tensions at the pretension of 600N. 

Specifically, under the assumption that i) the tensions at currents contain two components 

of the pretension and the additional tension resulting from the drag force and ii) the 

pretension does not affect the additional tension, the tensions in currents at the pretension 

of 200N can be estimated by subtracting 400N, which is the difference between the two 

pretensions, from the tensions in currents at the pretension of 600N. The estimated modal 
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natural frequency versus the current velocity at the pretension of 200N is shown in Figure 

4-5. From Figure 4-2, the natural frequency fn1 is 0.376Hz in the case of the pretension of 

200N, and this value was used to plot the curves in Figure 4-5. The Strouhal frequencies 

with S1 = 0.12 are also shown in Figure 4-5. The natural frequencies shown in Figures 4-4 

and 4-5 will be used to analyze the results from the current-excitation tests. 
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Figure 4-3 The relationship between the tension and the current velocity 
at a pretension of 600N 
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Figure 4-4 The relationship between the modal natural frequency 
and the current velocity at a pretension of 600N 
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Figure 4-5 The relationship between the modal natural frequency 
and the current velocity at a pretension of 200N 

4. 2. 2 Test Results at Low Pretension of 200N 

The first pretension tested was 200N. The required pretension was achieved using the 

pretension adjustment lever mechanism prior to the tests. As the distributing weight of 

the riser in water was relatively small (about 38N) compared to the pretension, this 

weight did not produce the large sag on the riser. Twenty-eight current velocities ranging 

from 0.75 to 1.5m/s were tested for this pretension. 

4. 2. 2. 1 Amplitude and Frequency versus Current Velocity 

Figure 4-6 presents the average peak-pick-up amplitude and the average peak-pick-up 

frequency versus current velocity at the pretension of 200N. V* is the reduced velocity, 
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defined as V*=U/fnJD , where: U is the current velocity, D is the riser diameter, fn1 = 

0.376Hz, which is the natural frequency of the first mode in calm water. f* is the 

frequency ratio, defined as f*=f/fnJ. where: f is the riser vibration frequencies in currents. 

A * is the non-dimensional vibration amplitude, defined as A *=AID, where: A is the 

average peak-pick-up amplitude over the measured period and riser length. 
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Figure 4-6 The average peak-pick-up amplitude and frequency of in-line 
and cross-flow VIV at a pretension of 200N 

As seen in Figure 4-6, the average peak-pick-up frequencies of cross-flow VIV follow 

the Strouhal frequencies at the majority of current velocities. The fitted Strouhal number 

is about 0.12. However, in the reduced velocity region from v *=25 to 47, the average 

peak-pick-up frequencies of cross-flow VIV are smaller than the Strouhal frequencies, 

and this may represent a frequency lock-in phenomenon, although the frequency lock-in 
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seems to be weak, as the frequency still varies with the reduced velocity over whole lock-

in region and does not lock in at a constant frequency. The lock-in frequency is about 

I. 1Hz. There are four reasons for the judgment of the occurrence of a frequency lock-in 

in the reduced velocity region. The first is that the vibration frequencies start to depart 

from the Strouhal frequency at a reduced velocity of 25, which corresponds to the natural 

frequency for mode 2 according to Figure 4-5. The second is that the lock-in frequency 

(=1.1Hz) is close to the natural frequency lfn2=1.05Hz) for mode 2. The third is that 

according to Figure 4-5 the bandwidth of vortex-shedding frequency over the reduced 

velocity region from v*=25 to 47 may only cover a natural frequency of mode 2. In fact, 

one of the conditions for the occurrence of frequency lock-in for a rigid cylinder is that 

only one natural frequency is contained in the bandwidth of the vortex-shedding 

frequency (Vandiver, 1993), and the conclusion may be extended for a flexible riser. The 

fourth is that the reduced velocity (using fn2 ) at the end point of the lock-in region is 

smaller than the maximum upper limit value calculated from the formula provided by 

Govardhan and Wiliamson (2000). They gave a formula to estimate the maximum upper 

limit value of the reduced velocity for the lock-in region for a rigid cylinder as follows: 

where Ca is the added mass coefficient. The mass ratio, m *, is defined as 

• m 
m =---

1 
-npD 2 

4 

(4-1) 

where m is the structural mass per unit length of the cylinder, pis the water density, and 

D is the diameter of the cylinder. The mass ratio m * for the model riser tested is 1.36. At 
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the reduced velocity v *=2S, the estimated tension acting on the riser is SOON. Let the 

added mass coefficient Ca for mode 2 take the value of 1.7, which is an average of the 

added mass coefficients for mode 1 and mode 3 at the pretension of SOON shown in Table 

3-17, and from equation (4-1) the maximum upper limit value of the reduced velocity for 

the lock-in region is 17.8. According to Figure 4-6, the lock-in region ends at a reduced 

velocity (using/nJ) of 47. If we use the natural frequency fn2 to re-calculate the reduced 

velocity, the lock-in region ends at a reduced velocity of 16.83, which is a little smaller 

than the maximum upper limit value of 17.8 estimated from equation (4-1). 

As seen in Figure 4-6, in the reduced velocity region from v*=2S to 47, the in-line 

response frequencies show a trend of frequency lock-in at the natural frequency of mode 

3, so that the in-line response frequencies are larger than the cross-flow response 

frequencies. According to Figure 4-S, the natural frequencies for mode 2 and 3 are 

relatively close in this region and the vortex-shedding frequencies in the in-line direction 

may be bigger than the Strouhal frequencies, as discussed earlier, and this causes that 

there may be two alternative lock-in modes, i.e. mode 2 and 3, for the in-line VIV 

responses in this region. The test results showed that the in-line responses trended to 

lock-in in mode 3. 

It is noted that no frequency lock-in is found in both the cross-flow and the in-line 

directions near the reduced velocity of about 9 .0, which corresponds to the natural 

frequency of mode 1 according to Figure 4-S. The reason is that the reduced velocities of 

resonance for mode 1 and 2 are too close so that the resonance regions for the two modes 

may overlap in the region from v*=9 to 2S. In the unlock-in region, the in-line vibration 

frequencies are approximately equal to the cross-flow vibration frequencies. 
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In the region where the reduced velocities range from 45 to 90, the in-line vibration 

frequencies become smaller than the Strouhal frequencies and also demonstrate a 

characteristic of frequency lock-in. For example, according to Figure 4-5 the frequencies 

approximately remain a constant of 2.1Hz, and this frequency is close to the natural 

frequency fn3 of 2.44Hz for mode 3 at the reduced velocity v* of 45. The reduced velocity 

(usingfn3) at the end point of the lock-in region is also smaller than the maximum upper 

limit value estimated from equation (4-1). Use the natural frequency /n3 to re-calculate the 

reduced velocity, and the lock-in region ends at a reduced velocity of 13.87. As addressed 

earlier, the tension versus current velocity at the pretension of 200N can be simply 

deduced from the measured tensions at the pretension of 600N, and the deduced tension 

is approximately equal to 600N at the reduced velocity (using fnJ) of 90 for this case. 

Then the added mass coefficient for mode 3 at the tension of 600N can be estimated by 

taking an average of the added mass coefficient of mode 3 at the pretensions of SOON and 

700N, which is shown in Table 4-15, and the estimated average value of the added mass 

coefficient for mode 3 is 2.69. Use this value to calculate the maximum upper limit value 

of the reduced velocity based on equation (4-1), and the resultant reduced velocity is 

20.53, which is greater than the measured value of 13.87 at the end point of the lock-in 

region. 

Since the frequency lock-in for the in-line direction occurs in a relatively high current 

velocity region, the in-line response frequencies exhibit a big scatter. It is noted that in 

this region the cross-flow response frequencies still follow the Strouhal frequencies, and 

this means that the frequency lock-in occurs only in one direction. 
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As seen in Figure 4-6, both the average peak-pick-up amplitudes of the in-line and 

cross- flow VIV fluctuate in a regime ranging from 0.25D to 0.9D. An apparent feature is 

that the increased current velocities do not cause increased amplitudes although the 

vortex-shedding forces may increase as current velocities increase. It is also noted that no 

obvious peaks exist over the current velocity range tested, even though mode 2 

encounters a resonance. As energy is shared by several modes, the resonance for a single 

mode does not produce an obvious resonance in the total responses for multi-modal VIV. 

The single-modal VIV responses have very small amplitudes in the regions where vortex

shedding frequencies are far away from the natural frequency, as shown in Figure 1-4. 

However, the multi-modal VIV responses do not show such a characteristic, because 

there are many natural frequencies for a flexible cylinder so that no current velocity 

regions where vortex-shedding frequencies are far away from these natural frequencies 

exist, except for the very low current velocity region. 

According to Figure 4-6, three current velocity regions can be found: i) Region A: the 

region where no frequency lock-in occurs; ii) Region B: the region where the frequency 

lock-in occurs in one direction; and iii) Region C: the region where the frequency lock-in 

occurs in two directions. 

In Region A, the average peak-pick-up frequencies for in-line VIV responses are 

nearly identical to the average peak-pick-up frequencies for cross-flow VIV responses, 

and these frequencies match the Strouhal frequencies. In Region B, frequency lock-in 

only occurs at one of the in-line and the cross-flow directions, and the average peak-pick

up frequencies for the in-line VIV responses are different from the average peak-pick-up 

frequencies for the cross-flow VIV responses. In Region C, the frequency lock-in occurs 
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in both the in-line and the cross-flow directions, but the lock-in modes in the two 

directions may be different. If the lock-in modes in the two directions are different, the 

average peak-pick-up frequencies for the in-line VIV responses will be different from the 

average peak-pick-up frequencies for the cross-flow VIV responses. 

4. 2. 2. 2 Vibration Power Spectra 

A detailed analysis of the frequency components existing in VIV responses helps 

understand the complicated behaviors of multi-modal VIV responses for a flexible riser. 

The spectral analysis technique shown in Appendix B can be used to reveal the frequency 

components in a VIV response, and the result is a continuous power spectral function 

with respect to frequency. The frequencies corresponding to peaks in the power spectral 

function are the dominant or secondary-dominant frequencies of the VIV response. 

As discussed in Section 4.2.2.1, there are three regions, i.e. Region A, Region B and 

Region C, in the plots of average peak-pick-up frequency and amplitude versus reduced 

velocity for the VIV responses. In this section, the vibration power spectra of VIV 

responses in these regions will be examined. 

Vibration power spectra in Region A 

According to Figure 4-6, Region A ranges from v* =9 to 25. Let us check the power 

spectra of VIV responses at a reduced velocity of 13.30, which corresponds to a current 

velocity of 0.2m/s. Figure 4-7 gives the power spectrum of cross-flow VIV responses at 

the middle of the riser at this reduced velocity. This power spectrum demonstrates a 
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single dominant frequency of 0.4Hz, which is close to the corresponding average peak-

pick-up frequency of 0.5Hz, as shown in Figure 4-6. 

Figure 4-8 gives the power spectrum of in-line VIV responses at the middle of the riser 

at the reduced velocity of 13.30. This power spectrum demonstrates a single dominant 

frequency of 0.4 Hz, which is equal to its counterpart for the cross-flow VIV responses. 

This dominant frequency is also close to the average peak-pick-up frequency of 0.5Hz for 

the in-line VIV responses at the same reduced velocity, as shown in Figure 4-6. 
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Figure 4-7 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 0.2rnls and a pretension of 200N 
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Figure 4-8 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 0.2m/s and a pretension of 200N 
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Vibration power spectra in Region B 

According to Figure 4-6, the VIV responses at the reduced velocities from v *=45 to 90 

are the responses in Region B. Let us check the power spectra of VIV responses at three 

reduced velocities of 53.20, 73.15 and 86.44, which respectively correspond to the 

current velocities of 0.8, 1.1 and 1.3m/s. 

Figure 4-9 presents the power spectrum of cross-flow VIV responses at the reduced 

velocity of 53.20. This reduced velocity is close to the starting point of Region B. As 

seen in Figure 4-9, there is a strong dominant frequency of 2.5Hz and a weak secondary-

dominant frequency of 0.4Hz. As the secondary-dominant frequency contains a small 

amount of energy, it has little contribution to the VIV responses. According to Figure 4-

6, at this reduced velocity, the average peak-pick-up frequency and the Strouhal 

frequency are respectively 2.1 and 2.4 Hz, which are close to the dominant frequency. 
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Figure 4-9 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of O.Sm/s and a pretension of 200N 

Figure 4-10 presents the power spectrum of in-line VIV responses at the reduced 

velocity of 53.20. As seen in Figure 4-10, there are a strong dominant frequency of 0.4Hz 

and three weak secondary-dominant frequencies of 2.5, 5.0 and 5.8Hz. According to 
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Figure 4-6, at this reduced velocity, both the average peak-pick-up frequency and the 

Strouhal frequency is 2.4Hz, which is close to one of the secondary-dominant 

frequencies. 
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Figure 4-10 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of O.Sm/s and a pretension of 200N 

Figure 4-11 presents the power spectrum of cross-flow VIV responses at the reduced 

velocity of 73.15. As seen in Figure 4-11, there is a strong dominant frequency of 4.3Hz 

and a secondary-dominant frequency of 0.8Hz. According to Figure 4-6, at this reduced 

velocity, the average peak-pick-up frequency and the Strouhal frequency are respectively 

3.7 and 3.3Hz, and the two frequencies are smaller the dominant frequency and larger 

than the secondary-dominant frequency. 

Figure 4-12 presents the power spectrum of in-line VIV responses at the reduced 

velocity of 73.15. As seen in Figure 4-12, there are a strong dominant frequency of 0.8Hz 

and two weak secondary-dominant frequencies of 5.0 and 8.8Hz. Figure 4-6 shows that 

the corresponding average peak-pick-up frequency is 2.4Hz, which is close to the natural 

frequency of mode 3 (2.44Hz). Obviously, the low dominant frequency of 0.8Hz causes 

the average peak-pick-up frequency to depart from the Strouhal frequency, but the 
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average peak-pick-up frequency does not match any dominant or secondary-dominant 

frequencies. 
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Figure 4-11 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 1.1m/s and a pretension of 200N 
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Figure 4-12 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 1.1m/s and a pretension of 200N 

Figure 4-13 presents the power spectrum of cross-flow VIV responses at the reduced 

velocity of 86.44. This reduced velocity is close to high reduced velocity boundary of 

Region B. As seen in Figure 4-13, there are two strong dominant frequencies of 0.6 and 

5.6Hz. According to Figure 4-6, the average peak-pick-up frequency and the Strouhal 

frequency are respectively 4.5 and 3.9Hz, which do not match any dominant frequencies. 
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Figure 4-14 presents the power spectrum of in-line VN responses at the reduced 

velocity of 86.44. As seen in Figure 4-14, there is a strong dominant frequency of 0.6Hz 

and a weak secondary-dominant frequency of 11.2Hz. From Figure 4-6, the average 

peak-pick-up frequency is 2.4Hz. Also, at this reduced velocity the low dominant 

frequency of 0.6Hz causes the average peak-pick-up frequency to depart from the 

Strouhal frequency, but the average peak-pick-up frequency does not match any 

dominant or secondary-dominant frequencies. 
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Figure 4-14 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 1.3m/s and a pretension of 200N 
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According to the discussions above, we know that in Region B both the in-line and 

cross-flow VIV responses contain more than one dominant and secondary-dominant 

frequency. The average peak-pick-up frequency is close to an average of these dominant 

and secondary-dominant frequencies. The lock-in frequency only matches the modal 

natural frequency, and does not match any dominant or secondary-dominant frequencies. 

Vibration power spectra in Region C 

According to Figure 4-6, Region C ranges from v*=25 to 45. Let us examine the power 

spectra of VIV responses at two reduced velocities of 26.59 and 39.90, which 

respectively correspond to the current velocities of 0.4 and 0.6m/s. 

Figure 4-15 presents the power spectrum of cross-flow VIV responses at the reduced 

velocity of 26.59. This reduced velocity is close to the starting point of Region C. As 

seen in Figure 4-15, there is a strong dominant frequency of 1.3Hz and a weak 

secondary-dominant frequency of 3.9Hz. As the secondary-dominant frequency contains 

a small amount of energy, it has little contribution to the VIV responses, so that the VIV 

responses are dominated by the dominant frequency. The dominant frequency is close to 

the corresponding average peak-pick-up frequency of 1.1Hz and the Strouhal frequency 

of 1.2Hz at the corresponding reduced velocity, as shown in Figure 4-6. 

Figure 4-16 presents the power spectrum of in-line VIV responses at the reduced 

velocity of 26.59. It is noted that this power spectrum is obviously different from its 

counterpart in the cross-flow direction, which is shown in Figure 4-15. As seen in Figure 

4-16, there are a dominant frequency of 2.6Hz and two secondary-dominant frequencies 

of 0.3Hz and 1.3Hz. The average of these dominant and secondary dominant frequencies 
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is 1.4Hz. The average peak-pick-up frequency at the corresponding reduced velocity is 

1.3Hz, as shown in Figure 4-6, and this average peak-pick-up frequency is close to the 

average of the dominant and secondary dominant frequencies. 
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Figure 4-15 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 0.4m/s and a pretension of 200N 
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Figure 4-16 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 0.4m/s and a pretension of 200N 

Figure 4-17 presents the power spectra of cross-flow VIV responses at the reduced 

velocity of 39.90. This reduced velocity corresponds to the mid-point of Region C. This 

power spectrum shows a strong dominant frequency of 1.7Hz and a weak secondary-

dominant frequency of 5.24Hz. Compared to the dominant frequency of cross-flow VIV 
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responses at the reduced velocity of 26.59, the dominant frequency becomes larger as the 

current velocity increases, but it is smaller than the Strouhal frequency of 1.8Hz at this 

reduced velocity. The corresponding average peak-pick-up frequency is 1.5Hz, as shown 

in Figure 4-6, and the Strouhal frequency is larger than both the dominant frequency and 

average peak-pick-up frequency. 

Figure 4-18 presents the power spectrum of in-line VIV responses at the reduced 

velocity of 39.90. As seen in Figure 4-18, there is a strong dominant frequency of 3.5Hz 

and a weak secondary-dominant frequency of 0.4Hz. As the peak corresponding to the 

dominant frequency is much bigger than the peak corresponding to the secondary

dominant frequency, the average peak-pick-up frequency of 2.4Hz is closer to the 

dominant frequency than the secondary-dominant frequency, as shown in Figure 4-6. 

Compare the results in Figure 4-18 with those in Figure 4-16, and it is found that the 

second secondary-dominant frequency disappears. 

According to the discussion above, we can see that, in Region C, a strong dominant 

frequency and several secondary-dominant frequencies exist in the cross-flow VIV 

responses, but these secondary dominant frequencies often have small energy so that few 

effects contribute to the cross-flow responses. The spectra of in-line VIV responses in 

this region seem complicated. At the low reduced velocity boundary of this region, the 

frequency close to the dominant frequency of cross-flow responses becomes a secondary

dominant frequency, and a new dominant frequency higher than the dominant frequency 

cross-flow responses is developed. As the new dominant frequency appears, the in-line 

vibration frequency starts to become larger than the cross-flow vibration frequencies. At 
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the middle of the lock-in region, the secondary-dominant frequency disappears, and the 

new dominant frequency completely dominates the in-line VIV responses. 
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Figure 4-17 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 0.6m/s and a pretension of 200N 
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Figure 4-18 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 0.6m/s and a pretension of 200N 

Vibration power spectra over riser length 

Now examine the power spectra over the riser length. Four reduced velocities of 26.59, 

39.90, 59.85 and 86.44 and three locations of x=2.024, 4.452 and 6.881m were selected 

for this examination. The first location is at about one-quarter of the riser length, the 
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second location is at about half of the riser length, and the third location is at about three

quarters of the riser length. 

Figure 4-19 gives the power spectra of in-line VIV responses at the three locations at a 

reduced velocity of 26.59, which corresponds to a current velocity of 0.4m/s. As seen in 

Figure 4-19, at the low current velocities the spectral shapes are similar along the riser 

length, but the peak magnitude values vary over the riser length. 

Figure 4-20 shows the power spectra of in-line VIV responses at the three locations at 

a reduced velocity of 39.90, which corresponds to a current velocity of 0.6m/s. Compared 

to the power spectra at two of the other locations, a secondary-dominant frequency 

disappears at the location of x=4.452m. This means that the secondary-dominant 

frequency is more dependent on the locations than the dominant frequency. 

Figure 4-21 presents the power spectra of in-line VIV responses at the three locations 

at a reduced velocity of 59.85, which corresponds to a current velocity of 0.9m/s. At this 

current velocity, the patterns of power spectra have significant differences over the riser 

length. This means that the increased currents result in increased variations of VIV 

responses over the riser length. 

Figure 4-22 gives the power spectra of in-line VIV responses at the three locations at a 

reduced velocity of 86.44, which corresponds to a current velocity of 1.3m/s. As seen in 

Figure 4-22, the spectra over the riser length still have a similar pattern, but the 

secondary-dominant frequency disappears at some locations. 
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Figure 4-19 Power spectra of in-line VIV at different location on riser 
at a current velocity of 0.4m/s and a pretension of 200N 
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Figure 4-20 Power spectra of in-line VIV at different location on riser 
at a current velocity of 0.6m/s and a pretension of 200N 

148 



Vortex-Induced Vibration Tests 

x 10-5 Power spectrum of in-line VIV (.x=2.024, V*=59.85 , pretension=200N) 
3 ~------~---------.--------~--------~------~~-------. 

2.5 -

7ii' 2 -
~ 
'E 2 1.5 -

u 
Q) 
a. -
C/) 

o.5 ~A -

7ii' 
~ 
'E 
2 
u 
Q) 
a. 
C/) 

7ii' 
~ 
'E 
2 
~ 
a. 
C/) 

0 ~~--~=-~~~-~'--~------~------~------L-----~ 
0 5 10 15 

frequency(Hz) 
20 25 

x 10-5 Power spectrum of in-line VIV (.x=4.452m, V*=59.85, pretension=200N) 

30 

6 ~------~---------.--------~--------~------~~-------. 

5 

4 

3 

2 

1 

0~ J 
0 5 10 15 20 25 

frequency(Hz) 

X 10.6 Power spectrum of in-line VIV (.x=6.881 m, V*=59.85, pretension=200N) 

8 

6 

4 

2 

0 
0 5 10 15 

frequency( Hz) 
20 25 

-

-

-

-

-

30 

30 

Figure 4-21 Power spectra of in-line VIV at different location on riser 
at a current velocity of 0.9m/s and a pretension of 200N 
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Figure 4-22 Power spectra of in-line VIV at different location on riser 
at a current velocity of 1.3m/s and a pretension of 200N 
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Figure 4-23 shows the power spectra of cross-flow VIV responses at the three 

locations on the riser at a reduced velocity of 26.59, which corresponds to a current 

velocity of 0.4rn/s. As seen in Figure 4-23, at the low current velocity, the power spectra 

of the cross-flow VIV have a similar pattern over the riser length. 

Figure 4-24 presents the power spectra of cross-flow VIV responses at the three 

locations at a reduced velocity of 59.85, which corresponds to a current velocity of 

0.9rn/s. At this current velocity, the power spectra of cross-flow VIV still have a similar 

pattern over riser length. 

Figure 4-25 gives the power spectra of cross-flow VIV responses at the three locations 

at a reduced velocity of 86.44, which corresponds to a relatively high current velocity of 

1.3rn/s. At this current velocity, the power spectrum of cross-flow VIV at the location of 

6.881m is different from the power spectra at two of the other locations. This means that 

the power spectra of cross-flow vibration at relatively high currents become more 

dependent of locations on the riser than those at relatively low currents. 

Figure 4-26 shows three power spectra at a reduced velocity of 99.74. At the location of 

x=2.024m, the cross-flow VIV response contain a dominant frequency of 0.8Hz and two 

secondary-dominant frequencies of 6.0Hz and 9.8Hz. The two secondary-dominant 

frequencies are not close to each other. At the location of x=4.452m, the cross-flow VIV 

response contain a dominant frequency of 0.8Hz and two secondary-dominant 

frequencies of 4.8Hz and 6.0Hz. The two secondary-dominant frequencies are very close. 

At the location of x=6.881m, the cross-flow VIV response contain a dominant frequency 

and two secondary-dominant frequencies, but the dominant frequency moves to the 

frequency of 4.8Hz, and the peak at the frequency of 0.8Hz becomes very small. 
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Figure 4-23 Power spectra of cross-flow VIV at different location on riser 
at a current velocity of 0.4m/s and a pretension of 200N 
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Figure 4-24 Power spectra of cross-flow VIV at different location on riser 
at a current velocity of 0.9m/s and a pretension of 200N 
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Figure 4-25 Power spectra of cross-flow VIV at different location on riser 
at a current velocity of 1.3m/s and a pretension of 200N 
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Summary of the results of vibration power spectra at the low pretension 

As discussed above, the following points can be summarized: 

i) at the low currents, both the in-line and cross-flow vibration only contains one 

dominant frequency, and the two dominant frequencies are identical. No secondary

dominant frequencies exist. 

ii) in the low current velocity lock-in region, a strong dominant frequency and several 

secondary-dominant frequencies exist in the responses in the cross-flow direction, but 

these secondary-dominant frequencies have little energy to affect the cross-flow VIV 

responses. 

iii) in the low current velocity lock-in region, a strong dominant frequency and several 

secondary-dominant frequencies exist in the responses in the in-line direction. The energy 

of the lower dominant frequency become small and the energy of the higher dominant 

frequency become big as current velocity increases. This causes the amplitude of the in

line lock-in mode to be higher than for the cross-flow lock-in mode. 

iv) in the high current velocity lock-in region, the number of dominant frequency in 

cross-flow responses changes from one to two, while the number of dominant frequencies 

in in-line responses may be more than two. The lock-in frequency does not match any 

dominant and secondary-dominant frequencies. 

v) in low currents, both the in-line and cross-flow VIV responses have the same power 

spectral patterns over riser length. 

vi) high current velocities may complicate the characteristics of power spectra of VIV 

responses and cause power spectra different over riser length. 
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4. 2. 2. 3 Modal Components of VIV Response 

The modal components contained in VIV responses can be revealed based on the modal 

analysis. The prerequisite of the modal analysis is that there is the sufficient number of 

measurement points over riser length. In the previous work, little involved the modal 

analysis of the measured data, as the insufficient number of the measurement points was 

used. In this research, the vibrations at sixteen locations on the riser were measured 

successfully so that the components of up to mode 10 could be analyzed. The results from 

the modal analysis help understand the characteristics of multi-modal VIV responses, 

such as lock-in modes, dominant modes and modal resonances. 

Equation (2-5) gives the definition of modal responses, and this equation can be used 

to estimate the modal components in VIV responses. In this research, the tenth mode was 

the highest mode analyzed, and the results from the modal analysis were presented by 

two types of plots. The first is the modal components contained in the VIV responses at a 

current velocity, and another is the modal response versus current velocity for each mode. 

Figure 4-27 shows the modal components in the VIV responses at four reduced 

velocities of 39.90, 59.85, 86.44 and 99.74, which correspond to the current velocities of 

0.6, 0.9, 1.3 and 1.5m/s. The first is a current in Region A; the second and third are the 

currents in Region C; and the fourth is the highest current in Region B. B* is the non

dimensional modal VIV response. It is defined as zk01'2D for the cross-flow VIV 

responses, where: Dis the riser diameter, and Zko is the average peak-pick-up amplitudes 

of the modal response components zlc(t), defined by equation (2-5). The function z(t,x) in 

equation (2-5) is the vibration displacements in the cross-flow directions, which were 

measured in the tests. The non-dimensional modal VIV response B* is also defined as 
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Ykoi2D for the in-line VIV responses, where: Yko is the average peak-pick-up amplitudes 

of the modal response components yk(t) in the in-line direction. 

As seen in Figure 4-27, both the in-line and cross-flow VIV responses contain all of the 

modal components from the first mode to the tenth mode, but some modal components 

have larger contributions to the VIV responses than the others. The modal component 

with the largest contribution to the VIV responses is called the dominant modal 

component, and the corresponding mode called the dominant mode. At lower current 

velocities, there is a clear dominant mode, while at higher current velocities, the 

dominant mode become vague. For example, for the cross-flow VIV responses, at the 

reduced velocity of 39.90, the VIV responses contain a clear dominant component of 

mode 2, which matches the lock-in mode discussed earlier. Since the value of the 

dominant modal component is much larger that the values of the other modal 

components, the VIV response is close to a single modal vibration. At the reduced 

velocities of 59.85 and 86.44, the VIV responses contain a relatively large modal 

components of mode 2 and 4, and this means that in the reduced velocity region the 

dominant cross-flow vibration mode changes from mode 2 to mode 4. At the highest 

current tested, the dominant mode becomes unclear. 

For the in-line VIV responses, at the reduced velocity of 39.90, the VIV responses 

contain a clear dominant component of mode 3, which matches the lock-in mode in this 

direction. This dominant mode is higher than the dominant mode in the cross-flow 

direction, and this causes the fact that in the current velocity region the in-line average 

peak-pick-up frequencies are larger than the cross-flow peak-pick-up frequencies, as seen 

in Figure 4-6. Since the dominant modal component has much larger energy than the 
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energy of other modal components, the VIV response is close to a single modal vibration. 

In the highest current tested, the dominant mode in the in-line VIV responses is also 

unclear. 
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Figure 4-27 The modal component distribution of the in-line and 
cross-flow VIV responses at a pretension of 200N 

Figures 4-28 to 4-31 show the modal components versus current velocity from mode 1 

to mode 9 in the in-line and cross-flow directions. Figure 4-28 presents the modal 

components of the in-line and cross-flow responses for mode 1. As seen in Figure 4-28, 

in both the in-line and the cross-flow direction the largest modal response appears at 

v *=16, and this implies that a modal resonance for mode 1 occurs near v*=16. According 

to Figure 4-5, at v*=10 the Strouhal frequency matches the natural frequency of mode 1. 
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The maximum value of the modal responses for mode 1 appears at the reduced velocity a 

little larger than the reduced velocity corresponding to the natural frequency of mode 1. It 

is noted that this modal resonance is not reflected in the total VIV response, shown in 

Figure 4-6. This means that the modal resonance contains relatively small energy so that 

the total VIV responses may not be influenced. 
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Figure 4-28 The component of mode 1 in VIV responses 
at a pretension of 200N 

Figure 4-29 gives the modal responses for mode 2 in the in-line and cross-flow 

directions. As seen in Figure 4-29, the modal responses in the cross-flow direction for 

mode 2 have a relatively big response region from v *=21 to 45. This region corresponds 

to the lock-in region for the cross-flow VIV responses, shown in Figure 4-6. This clarifies 

that for the cross-flow VIV responses the lock-in mode is mode 2 in this region. The 

modal responses in the in-line direction for mode 2 do not exhibit relatively large values 

over the whole reduced velocity range tested, and this means that no modal resonance 

occurs in the in-line responses for mode 2. 
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Figure 4-29 The component of mode 2 in VIV responses 
at a pretension of 200N 

Figure 4-30 presents the modal responses for mode 3 in the in-line and cross-flow 

directions. As seen in Figure 4-30, there is a relatively large modal response region from 

v *=60 to 75 for the cross-flow VIV responses. According to Figure 4-5, in this region the 

Strouhal frequencies. are close to the natural frequencies of mode 3 and, as a result, the 

modal responses for mode 3 have relatively large values in the cross-flow direction over 

the region. However, in the region v *=60 to 75, no relatively large modal responses for 

mode 3 are found in the in-line direction, and this implies that the frequency lock-in at 

the natural frequency of mode 3 in the in-line direction does not causes big modal 

response for mode 3. This is a characteristic completely different from the lock-in 

phenomenon occurring in the region from v *=21 to 45, where relatively large modal 

responses for mode 3 appear in the in-line direction, and this verifies that in the region 

mode 3 is the lock-in mode for the in-line VIV responses. 
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Figure 4-30 The component of mode 3 in VIV responses 
at a pretension of 200N 

Figure 4-31 presents the modal responses for mode 4 in the in-line and cross-flow 

directions. As seen in Figure 4-31 , there is relatively large modal response region from 

v *=68 to 89 for the cross-flow VIV responses, while there is a relatively big modal 

response region near the reduced velocity of 90 for the in-line VIV responses. This may 

imply that a modal resonance of mode 4 in the cross-flow direction exists in the region 

from v *=76 to 90 and a modal resonance for mode 4 in the in-line direction exists in the 

region from v *=88 to 95. These resonances were not predicted by the natural frequencies 

of mode 4 shown in Figure 4-5, and this may reflect the difference between the natural 

frequencies measured in calm water and the natural frequencies at relatively high 

currents. 

Figures 4-32 to 4-36 are respectively the in-line and cross-flow modal responses for 

mode 5, mode 6, mode 7, mode 8 and mode 9. As seen in these figures, no relatively big 

modal responses exist over the entire reduced velocity region tested. 
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Figure 4-31 The component of mode 4 in VIV responses 
at a pretension of 200N 

Summarizing the results above, we know that: 

i) both the in-line and cross-flow VIV responses contain all of the modal components 

from the first mode to the tenth mode, but there may be a dominant mode, especially for 

relatively low currents. 

ii) in the low current velocity lock-in region, in both the in-line and cross-flow VIV 

directions the lock-in modes are identical to the dominant modes. 

iii) the modal analysis found a modal resonance for mode 1 in the in-line and cross-flow 

responses at the reduced velocity of about 16, but this modal resonance had relatively 

small energy so that it did not obviously affect the total VIV response. 

vi) the modal analysis results clearly reveal that in the low current velocity lock-in 

region, the resonance mode in the cross-flow direction is mode 2, while the resonance 

mode in the in-line direction is mode 3. 

v) in the high current velocity lock-in region, the in-line VIV responses lock in at the 

modal natural frequency of mode 3, but this does not cause a large modal response for 

mode 3. 
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Figure 4-32 The component of mode 5 in VIV responses 
at a pretension of 200N 
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Figure 4-33 The component of mode 6 in VIV responses 
at a pretension of 200N 
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Figure 4-34 The component of mode 7 in VIV responses 
at a pretension of 200N 
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Figure 4-35 The component of mode 8 in VIV responses 
at a pretension of 200N 
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Figure 4-36 The component of mode 9 in VIV responses 
at a pretension of 200N 

4. 2. 2. 4 Vibration Time Histories 

Time histories of VIV responses directly provide the wave shapes of vibrations. In this 

research, the time histories of VIV acceleration in the in-line and cross-flow directions 

were measured by the accelerometers based on the calibration factors and the orientation 

angles shown in Table 2-4 and Table 2-5. The time histories of the VIV displacement in 
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the in-line and cross-flow directions were obtained by double-integration of the 

acceleration data. 

Figures 4-37 to 4-41 present the time histories of cross-flow VIV responses at five 

reduced velocities of 26.59, 39.90, 53.20, 86.44 and 99.74, which respectively correspond 

to five current velocities of 0.4, 0.6, 0.8, 1.3 and 1.5rnls. These time histories were 

measured at the location of .x=4.452m. 

As seen in these figures, the patterns of time history of cross-flow VIV response depend 

on current velocities. At the reduced velocity of 26.59, the response is a relatively regular 

vibration, namely the vibration amplitudes have a relatively small variation in the time 

domain. This is a typical vibration with a single-dominant frequency. At the reduced 

velocity of 39.90, the vibration is still dominated by a frequency, as the vibration pattern 

still looks relatively regular. However, the variation of vibration amplitude in the time

domain becomes larger than in the case of reduced velocity of 26.59. The vibrations at 

the reduced velocities of 26.59 and 39.90 have the same pattern, i.e. the vibrations with a 

strong dominant frequency and several weak non-dominant frequencies. This vibration 

pattern is called the single-frequency type (SF type) in this thesis. 

At the higher reduced velocity of 53.20, the pattern of the vibration changes. As seen 

in Figure 4-39, the time history exhibits a vibration with two very close frequencies. This 

vibration pattern is called the close-double frequency type (CD type) in this thesis. 

At the reduced velocity of 86.44, the pattern of the vibration changes again. As seen in 

Figure 4-40, there are still two dominant frequencies, but the two dominant frequencies 

are separate. This vibration pattern is called the far-double frequency type (FD type). 
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At the highest reduced velocity of 99.74, the vibrations have a pattern similar to that in 

the case of the reduced velocity of 86.44, but more secondary-dominant frequencies exist 

in the vibrations, as seen in Figure 4-41. This vibration pattern is called the multi-

frequency type (MF type) in this thesis. 
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Figure 4-39 Time history of cross-flow VIV at a current velocity of 0.8m/s 
and a pretension of 200N 
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Figure 4-40 Time history of cross-flow VIV at a current velocity of 1.3m/s 
and a pretension of 200N 
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Figure 4-41 Time history of cross-flow VIV at a current velocity of l.Sm/s 
and a pretension of 200N 
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Figure 4-42 to 4-46 present the time histories of in-line VIV responses at five reduced 

velocities of 26.59, 53.20, 86.44 and 99.74, which were also measured at the location of 

x=4.452m. 

As seen in these figures, the patterns of time history of in-line VIV response also 

depend on current velocities. At the reduced velocity of 26.59, the responses contain a 

dominant frequency, but the amplitudes have a big variation. The pattern of this time 

history is still the SF type. At the higher reduced velocity of 39.90, the pattern of time 

history also shows a SF type, and no high frequency components exist. As the reduced 

velocity increased to 53.20, the pattern of time history becomes the MF type. At the 

higher reduced velocities of 86.44 and 99.74, the patterns of time history are still the MF 

type. 

Summarizing these results, we know that there may be four time history patterns in the 

multi-modal VIV responses. They are respectively the SF, CD, FD and MF types. The SF 

type corresponds to lower current velocities, the CD and FD types correspond to 

moderate current velocities, and the MF type corresponds to higher current velocities. In 

the case of a pretension of 200N, the cross-flow VIV responses cover all of the four 

types, but the in-line VIV responses do not exhibit the CD and the FD types. 
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Figure 4-44 Time history of in-line VIV at a current velocity of 0.8m/s 
and a pretension of 200N 
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Figure 4-46 Time history of in-line VIV at a current velocity of l.Sm/s 
and a pretension of 200N 

Figure 4-47 shows the time histories of cross-flow VIV responses at a current velocity 

of 0.4rnls (V*=26.59) at three different locations on the riser. As seen in Figure 4-47, at 

the locations of x=2.024, 4.452 and 6.880m, the vibration patterns are all the SF type, and 

this means that at a low current velocity, the vibration types of cross-flow VIV are 

independent of the locations over the riser length. 

Figure 4-48 shows the time histories of in-line VIV responses at a current velocity of 

0.4rnls (V*=26.59) at three different locations on the riser. As seen in Figure 4-48, at the 

locations of x=2.024, 4.452 and 6.880m, the vibration patterns are all the SF type, and 
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this means that at a low current velocity, the vibration types of in-line VIV are also 

independent of the locations over riser length. 

Figures 4-49 presents the time histories of cross-flow VIV responses at three different 

locations on the riser at another current velocity. This current velocity is 1.5m/s 

(V*=99.74), which was the highest current velocity tested. At the locations of x=2.024m 

and x=4.452m, the time history patterns are respectively the MF type and the FD type, 

while at the location of x=6.881m, the time history patterns seem to be a mixture of the 

MF type and the CD type. It is apparent that the increased current velocity causes 

vibration patterns to contain more variations over riser length than the lower current 

velocities. 

Figures 4-50 shows the time histories of in-line VIV responses at three different 

locations on the riser at the current velocity of 1.5m/s (V*=99.74). As seen in Figure 4-50, 

at the locations of x=2.024m and x=6.881m, the time history patterns are the MF type, 

while at the location of x=4.452m, the time history pattern becomes a mixture of the MF 

type and the CD type. 
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Figure 4-47 Time history of cross-flow VIV at different locations 
at a current velocity of 0.4m/s and a pretension of 200N 
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Figure 4-48 Time history of in-line VIV at different locations 
at a current velocity of 0.4m/s and a pretension of 200N 
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Figure 4-50 Time history of in-line VIV at different locations 
at a current velocity of 1.3m/s and a pretension of 200N 
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Summarizing the results above, we know that at low current velocities, it is most likely 

that the in-line and cross-flow VIV responses contain the SF type, and the vibration type 

is independent of the locations over the riser length. At high current velocities, it is most 

possible that the in-line and cross-flow VIV responses contain the MF type. Sometimes, 

there may be a mixture of MF and CD types in the VIV responses at high current 

velocities. At high current velocities, the vibration type may depend on the locations over 

the riser length. 

4. 2. 2. 5 Vibration Shapes 

Combining the vibration displacements measured by the sixteen pairs of 

accelerometers at a time instant can give the vibration shapes over the riser length. If 

several vibration shapes at different time instants are plotted on a picture, a snapshot can 

be made. Figures 4-51 to 4-55 present the snapshots of the in-line and cross-flow VIV 

responses at five current velocities of 0.4, 0.6, 0.8, 1.3 and 1.5rn/s. Note that the vibration 

shapes in these figures may be skewed at the locations from 5.27 to 6.47m on the riser, as 

no measurement of the VIV displacements was made at those locations in the tests. 

As seen in these figures, these snapshots directly verify that the VIV responses for a 

flexible riser are the multi-modal vibrations; that is, both the vibration shapes of the in

line and the cross-flow VIVs over the riser length contain several modal components. It is 

noted that the vibration shapes over the riser length were not symmetrical about the 

middle point of the riser, although the structure of the model riser and the current profiles 

tested were. The odd mode shapes, such as mode 1, 3, 4, ... , are symmetrical about the 

middle point of the riser, and a mixture of these mode shapes are also symmetrical about 
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the middle point of the riser. A vibration shape asymmetrical with respect to the middle 

point of the riser means that in addition to these odd modes the even modes also exist in 

the VIV responses. As the riser structure and the current profile tested were symmetrical 

about the middle point of the riser, the cause of asymmetry of vibration shapes should be 

the hydrodynamic loads acting on the riser. This implies that for a flexible riser, the 

hydrodynamic loads may be asymmetrical with respect to its middle point. A possible 

interpretation for this is that a slightly asymmetrical structure of the riser results in a 

slightly asymmetrical vibration shape, and the slight asymmetrical motion results in the 

slight asymmetrical hydrodynamic loads on the riser. The slightly asymmetrical 

hydrodynamic loads then intensify the asymmetry of the riser vibrations, and the 

intensified asymmetry of the riser vibration will cause bigger asymmetry of the 

hydrodynamic loads again. Finally, the VIVs become completely asymmetrical. This 

discovery would mean that the riser vibration motion have a significant effect on the 

hydrodynamic loads acting on the riser and have an important role for the multi-modal 

VIV process. 
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Figure 4-51 Vibration shapes at a current velocity of 0.4m/s 
and a pretension of 200N 
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Figure 4-54 Vibration shapes at a current velocity of 1.3m/s 
and a pretension of 200N 
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Figure 4-55 Vibration shapes at a current velocity of 1.5m/s 
and a pretension of 200N 

It was found that the increased current velocity gives rise to more dominant modal 

components in the VIV responses. For example, in the currents with velocities smaller 

than l.OOrn/s, the snapshots contain a clear dominant mode with relatively clear vibration 

nodes, while in the currents with velocities greater than l.OOrn/s, the dominant modes and 

the vibration nodes become relatively unclear, and this means that the vibrations were 

dominated by several modes. Compared to the results from the time history analysis, we 

know that the vibrations with a relatively clear mode correspond to the SF type, while the 

vibrations without a relatively clear mode correspond to the MF type. 

4. 2. 2. 6 Vibration Trajectories 

Combining the vibration displacements in the in-line and the cross-flow directions 

measured by each pair of accelerometers at several time instants, a vibration trajectory in 

a cross-sectional plane of the riser can be plotted. These vibration trajectories exhibit the 

patterns of the riser motion in the cross-section plane and have an important effect on the 

vortex formation-shedding process behind the riser. 
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Figures 4-56 to 4-60 present the VIV motion trajectories on four cross-sectional planes 

along the riser at five reduced velocities of 26.59, 39.90, 61.22, 79.77 and 99.74, which 

correspond to five current velocities of 0.4, 0.6, 1.0, 1.2 and 1.5rnls. In these figures, the 

y-direction is defined as the in-line direction, and the z-direction is defined as the cross

flow direction. These trajectories are the records during about three or four cyclic 

periods. As the recording periods are relatively short, these trajectories are only the 

representatives of the entire VIV responses. 

As shown in these figures, the trajectories are quite complicated and strongly depend 

on the current velocity and the location on the riser. These trajectories mainly contain two 

fundamental motions. The first is a basic figure of 8-, L- and 0-shaped or other 

complicated vibration motion. Another is a shifted motion of the basic figure motion. 

The low current velocities cause the basic figures of the 8- or L-shaped vibration 

motion. For example, at the current velocity of 0.4rnls, as seen in Figure 4-56, the basic 

figure is the 8-shaped vibration motion at the locations of x=0.810, 3.624 and 4.857m, 

while the basic figure is the L-shaped vibration motion at the location of x=6.881m. At 

the current velocity of 0.6m/s, as seen in Figure 4-57, the basic figure is 8-shaped 

vibration motion at the locations of x=3.624 and 6.881m, while the basic figure is L

shaped vibration motions at the location of x=0.810 and 4.857m. The high current 

velocities may cause the basic figures of 0-shaped or other complicated vibration motion. 

For example, in Figure 4-60, at the location of x=0.810m, a basic figure of 0-shaped 

vibration motion is found, while the more complicated basic figures exist in the 

vibrations at the other locations. 
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It is noted that the shifted motions of the basic figure occur not only in the in-line 

direction but also in the cross-flow direction. The shifted motion may be an indication of 

multi-modal VIV, because such a shifted motion does not usually exist for single-modal 

VIV. 

The complicated motion trajectories mean a complicated vortex formation-shedding 

process. The strong dependence of the motion trajectories on the locations along riser 

length may cause non-uniform vortex-shedding loads acting on a uniform riser. This may 

be one of the causes of the even mode components contained in VIV responses for a 

uniform riser. 
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Figure 4-56 Trajectory of VIV at a current velocity of 0.4m/s 
and a pretension of 200N 
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Figure 4-57 Trajectory of VIV at a current velocity of 0.6m/s 
and a pretension of 200N 

'E 
'j::;j'0.02 

0 

-0.02 

'E o.o4 
r:::l 

0.02 

0 

-0.02 

x=0.810m 

-0.02 0 0.02 

x=4.857m 
y(m) 

r§ 

'E -0.05 
N 

0 

-0.05 

'E 0.1 
r:::l 

0 .05 

0 

-0.05 

-0.1 

x=3.624m 

-0.02 0 

x=6.881m 

0.02 
y(m) 

'---~--~--~---' 

-0.02 -0.01 0 O.Q1 0.02 -0.02 0 0.02 
y(m) y(m) 

Figure 4-58 Trajectory of VIV at a current velocity of l.OOm/s 
and a pretension of 200N 
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Figure 4-59 Trajectory of VIV at a current velocity of 1.20m/s 
and a pretension of 200N 
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Figure 4-60 Trajectory of VIV at a current velocity of 1.50m/s 
and a pretension of 200N 
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4. 2. 3 Test Results at High Pretension of 600N 

The second pretension tested was 600N. After adjusting the pretension to satisfy the 

required pretension value, twenty-nine current velocities ranging from 0.75 to 1.5m/s 

were tested. The test results will be presented and discussed in this section. 

4. 2. 3. 1 Amplitude and Frequency versus Current Velocity 

Figure 4-61 shows the average peak-pick-up amplitude and the average peak-pick-up 

frequency versus current velocity at the pretension of 600N. The peak definition and the 

analysis methods are the same as those in the case of a pretension of 200N. V* is the 

reduced velocity, defined as V*=U/fn1D, where: U is the current velocity, D is the riser 

diameter, fnJ = 0.85Hz, which is the natural frequency of the first mode in calm water at 

the pretension of 600N. j* is the frequency ratio, defined as J*=f/fnJ, where: f is the 

average peak-pick-up frequencies in currents. A* is the non-dimensional vibration 

amplitude, defined as A *=AID, where: A is the average peak-pick-up amplitude. 

As seen in Figure 4-61, both the average peak-pick-up frequencies of the cross-flow 

VIV and the in-line VIV follow the Strouhal frequencies at the majority of current 

velocities. In the region from v*=9 to 16.5, the average peak-pick-up frequencies of the 

cross-flow and in-line vibrations are a little smaller than those represented by a Strouhal 

number of 0.12, and this indicates a frequency lock-in phenomenon occurring in both the 

cross-flow and in-line directions. This lock-in phenomenon is very weak, because the 

average peak-pick-up frequencies still vary with the current velocities and are just a little 

smaller than the Strouhal frequencies. The lock-in region starts at the reduced velocity of 

9 at which the Strouhal frequency matches the natural frequency of mode 1, as seen in 
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Figure 4-4. This implies that both the lock-in mode of the cross-flow and in-line 

vibrations is mode 1, and this lock-in region can be categorized to Region C. 
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Figure 4-61 The average peak-pick-up amplitude and frequency of in-line 
and cross-flow VIV at a pretension of 600N 

Comparing the results in Figure 4-61 with the results in Figure 4-6, we can find a 

different characteristic for the pretensions of 200 and 600N in the in-line vibration 

frequencies in this lock-in region. In the case of the pretension of 200N, the lock-in mode 

in the in-line direction is different from the lock-in mode in the cross-flow direction, 

while in the case of the pretension of 600N, the lock-in mode in the in-line direction is 

identical to the lock-in mode in the cross-flow direction. As opposed to the natural 

frequencies in the case of the pretension of 200N, in the case of the pretension of 600N 

the natural frequencies of mode 1 and 2 are relatively separate and, as a result, both the 
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vortex shedding frequencies in the cross-flow and in-line directions are close to the 

natural frequency of mode 1, as seen in Figure 4-4, so that both lock-in mode for the 

cross-flow and in-line vibrations is mode 1. According to Figure 4-3, at the reduced 

velocity of 9, which corresponds to a current velocity of 0.3m/s, the tension acting on the 

riser is 700N, and the added mass coefficient for mode 1 is 2.01 at this tension, as shown 

in Table (3-15). The maximum upper limit value of the reduced velocity estimated from 

equation (4-1) is 18.74 for this lock-in region, which is larger than the measured reduced 

velocity value of 16.5 at the higher boundary of this lock-in region. 

According to Figure 4-4, a lock-in region for mode 2 is expected to start from v*=20, 

but as seen in Figure 4-61, the vibration frequencies still follow the Strouhal frequencies 

in the region beyond v*=20, i.e. the expected lock-in rgion disappears. This is because the 

Strouhal frequencies are almost equal to the natural frequencies of mode 2 in the region 

and this causes the frequency lock-in phenomenon to "disappear". Therefore, this lock-in 

region may still exist implicitly. In this region, the in-line vibration frequencies are a little 

larger than the cross-flow vibration frequencies at some current velocities. 

Both of the average peak-pick-up amplitudes of the in-line and cross-flow VIV 

responses fluctuate over a range from 0.34D to 0.89D, which lie with in the same level as 

in the case of the low pretension of 200N. This implies that the amplitudes of multi

modal VIV response for the flexible riser is not sensitive to the pretension over the 

current velocity range tested. Similar to the results for the lower pretension case, 

increased current velocities result in a trend of reducing amplitudes although the vortex

shedding forces are usually expected to have bigger values in high current velocities 

compared to those in low current velocities. Also, no obvious peak exists over the current 
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velocity range tested, but a region of relatively big response amplitude is found from 

v *=6 to 19. It is noted that, as opposed to the amplitudes of the in-line VIV in the case of 

a pretension of 200N, the amplitudes of the in-line VIV responses also have relatively big 

values in this region. The cause is that in the lower pretension case the lock-in mode for 

the in-line vibrations is different from the lock-in mode in the cross-flow responses, while 

in the higher pretension case the lock-in mode for the in-line vibrations is identical to the 

lock-in mode in the cross-flow responses. A region of medium response amplitude is 

found from v *=20 to 28, and a region of small response amplitudes is found from v *=30 

to 45. In the small response amplitude region, the response amplitudes seem to have 

larger fluctuations than in the other regions. 

Although the amplitudes of multi-modal VIV response for the flexible riser is not 

sensitive to the pretension over the current velocity range tested, the lock-in modes of 

vibrations depend strongly on the pretensions, as the modal natural frequencies depend 

strongly on the pretensions. The different characteristics of riser vibrations at different 

pretensions may change the so-called vortex wake modes, because the vortex wake 

modes usually depend on the current velocities and the cylinder motion patterns. Previous 

experimental work has showed that for a rigid cylinder with free vibrations the vortex 

wake modes may include 2S, 2P and S+P types in three regions of the "initial branch", 

"upper branch" and "lower branch", but more complicated modes may exist if the 

cylinder motions are complicated (Williamson and Govardhan, 2004). For a flexible riser 

with three-dimensional multi-modal vibrations, it is still unclear what vortex wake modes 

such motions will produce. The complexity of vortex wake modes for a flexible riser will 

cause complexity in the characteristics of the VIV responses. 
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Two reduced velocity regions i.e. Region A and Region C, could be found in the VIV 

responses in the case of pretension of 600N. As seen in Figure 4-61, Region A ranges 

from v *=3 to 9, where no frequency lock-in occurs, and Region C ranges from v*=9 to 

20, where the frequency lock-in appears in both the in-line and cross-flow directions. The 

lock-in frequency corresponds to the natural frequency of mode 2. In the region from 

v *=20 to 44, as the Strouhal frequencies are almost equal to the natural frequencies of 

mode 2, it is difficult to clearly judge whether a frequency lock-in occurs. This region is 

called Region D in this thesis. 

4. 2. 3. 2 Vibration Power Spectra 

The spectral analysis technique shown in Appendix B is used to analyze the frequency 

components in the measured VIV responses. As discussed in Section 4.2.3.1, three 

regions of Region A, Region C and Region D can be found from the plots of the average 

peak-pick-up amplitude and frequency versus reduced velocity. In this section, the power 

spectra of the VIV responses in the three regions will respectively be examined. 

Vibration power spectra in Region A 

According to Figure 4-61, Region A ranges from v*=3 to 9. Select the VIV responses 

at a reduced velocity of 5.88, which corresponds to a low current velocity of 0.2m/s, to 

check power spectra. Figure 4-62 presents the power spectrum of the cross-flow VIV 

responses at this reduced velocity. As seen in Figure 4-62, a strong dominant frequency 

of 1.34Hz and a weak secondary-dominant frequency of 0.3Hz are found. Figure 4-61 

shows an average peak-pick-up frequency is 0.5Hz with a Strouhal frequency of 0.6Hz at 

this reduced velocity. The dominant frequency is greater than the average peak-pick-up 
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frequency, while the secondary-dominant ts smaller than the average peak-pick-up 

frequency. 

(jj' 

~ 
'E 
2 

-4 
x 10 Power spectrum of cross-flow VIV (x:=4.452m, V*=5.88, pretension=600N) 

t5 
g. 05 ~ -

O L-~~--~--------._------~--------~--------~------_J 
0 5 10 15 

frequency(Hz) 
20 25 30 

Figure 4-62 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 0.2m/s and a pretension of 600N 

Figure 4-63 is the power spectrum of in-line VIV responses at the reduced velocity of 

5.88. The in-line VIV responses contain a dominant frequency of 0.7Hz. The average 

peak-pick-up frequency of the in-line VIV responses at this reduced velocity is 0.6Hz, as 

seen in Figure 4-61. The dominant frequency is close to the average peak-pick-up 

frequency. 
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Figure 4-63 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 0.2m/s and a pretension of 600N 
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Vibration power spectra in Region C 

According to Figure 4-61, Region C ranges from v *=9 to 20. Now examine the power 

spectra at two reduced velocities of 11.76 and 17 .65, which correspond to two current 

velocities of 0.4 and 0.6rnls. 

Figure 4-64 shows the power spectrum of the cross-flow VIV responses at the reduced 

velocity of 11.76. At this reduced velocity, the cross-flow VIV responses contain two 

dominant frequencies of 0.3 and 2.2Hz and a secondary-dominant frequency of 1.1Hz. 

The corresponding average peak-pick-up frequency and Strouhal frequency are 

respectively 1.0 and 1.2, as seen in Figure 4-61, which is close to the average of the 

dominant and the secondary-dominant frequencies. 

Figure 4-65 gives the power spectrum of the in-line VIV responses at the reduced 

velocity of 11.76. As seen in Figure 4-65, the in-line VIV responses only contain a 

dominant frequency of 1.1Hz. Figure 4-61 shows that the average peak-pick-up 

frequency of the in-line VIV responses shown is l.OHz at this reduced velocity, which is 

close to the dominant frequency. 
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Figure 4-64 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 0.4m/s and a pretension of 600N 
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Figure 4-65 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 0.4m/s and a pretension of 600N 

Figure 4-66 shows the power spectrum of the cross-flow VIV responses at a reduced 

velocity of 17.65. As seen in Figure 4-66, a dominant frequency of 4.0Hz and two 

secondary-dominant frequencies of 0.4 and 2.0Hz are found. According to Figure 4-61, 

the average peak-pick-up frequency and the Strouhal frequency are respectively 1.7 and 

1.8Hz, which are close to one of two secondary-dominant frequencies. The increased 

current velocity causes the vibration energy at the low dominant frequencies to decrease 

and the vibration energy at the high dominant frequency to increase. 

Figure 4-67 presents the power spectrum of the in-line VIV responses at the reduced 

velocity of 17.65. At this reduced velocity, the in-line VIV responses contain a dominant 

frequency of 2.0Hz. As shown in Figure 4-61, the average peak-pick-up frequency of the 

in-line VIV responses is 1.7Hz, which is close to the dominant frequency. The increased 

current velocity pushes the dominant frequency to higher frequency region. 

Summarize the results of spectral analysis in Region C at two pretensions of 200 and 

600N, and we know that in Region C, the VIV responses contain the different number of 

the dominant and secondary-dominant frequencies in the in-line and cross-flow 
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directions. In a direction there is a dominant frequency, while in the other direction there 

are several dominant and secondary-dominant frequencies. 
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Figure 4-66 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 0.6m/s and a pretension of 600N 
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Figure 4-67 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 0.6m/s and a pretension of 600N 

Vibration power spectra in Region D 

According to Figure 4-61, Region D ranges from v*=20 to 44. Now examine the power 

spectra at three reduced velocities of 23.53, 35.29 and 44.12, which corresponding to 

three current velocities of 0.8, 1.2 and 1.5m/s. 
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Figure 4-68 presents the power spectrum of the cross-flow VIV responses at the 

reduced velocity of 23.53. As seen in Figure 4-68, there is a dominant frequency of 2.8Hz 

and two secondary-dominant frequencies of 0.4Hz and 5.5Hz. According to Figure 4-61, 

the corresponding average peak-pick-up frequency and Strouhal frequency are 

respectively 2.3 and 2.4Hz, which is close to the dominant frequency. 

Figure 4-69 shows the power spectrum of the in-line VIV responses at the reduced 

velocity of 23.53. At this reduced velocity, the in-line VIV responses contain a dominant 

frequency of 2.8Hz, and the average peak-pick-up frequency of the in-line VIV responses 

is 2.4Hz, as shown in Figure 4-61. The dominant frequency is a little bigger than the 

average peak-pick-up frequency. 

Compared to the spectra of the VIV responses at the lower pretension of 200N at the 

current velocity of 0.8rnls, shown in Figures 4-9 and 4-10, the different pretensions cause 

obvious differences for the patterns of spectra of the VIV responses. 
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Figure 4-68 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of O.Sm/s and a pretension of 600N 
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Figure 4-69 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of O.Sm/s and a pretension of 600N 

Figure 4-70 presents the power spectrum of the cross-flow VIV responses at the 

reduced velocity of 35.29. As seen in Figure 4-70, there is a dominant frequency of 4.6Hz 

and a secondary-dominant frequency of 0.7Hz. Figure 4-61 shows an average peak-pick-

up frequency is 3.5Hz and a Strouhal frequency of 3.6Hz at this reduced velocity. 

Compared to the power spectrum shown in Figure 4-68, the second peak moves to higher 

frequency region, and the third peak disappears. 

Figure 4-71 shows the power spectrum of the in-line VIV responses at the reduced 

velocity of 35.29. The in-line VIV responses contain a dominant frequency of 0.6Hz and 

a secondary-dominant frequency of 9.2Hz. The corresponding average peak-pick-up 

frequency of the in-line VIV responses is 3.8Hz, as shown in Figure 4-61. Compared to 

the spectrum shown in Figure 4-69, at this current velocity the VIV responses in the in-

line direction contain a dominant frequency and a secondary-dominant frequency, and the 

increased current velocity results in more dominant frequencies in the in-line VIV 

responses than at lower current velocities. 
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Figure 4-70 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 1.2m/s and a pretension of 600N 
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Figure 4-71 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of 1.2m/s and a pretension of 600N 

Figure 4-72 shows the power spectrum of the cross-flow VIV responses at the reduced 

velocity of 44.12. This is the highest current velocity in the VIV tests. As seen in Figure 

4-72, there is a dominant frequency of 0.9Hz and a secondary-dominant frequency of 

6.4Hz. The average peak-pick-up frequency of the cross-flow VIV responses is 4.4Hz 

and the Strouhal frequency is 4.5Hz, as shown in Figure 4-61. Compared to the power 

spectrum shown in Figure 4-70, the second peak moves to higher frequency region, while 

a number of frequency components with small energy appear between the dominant and 

secondary-dominant frequencies. This implies that higher current velocities may cause 
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the vibration energy to be shared by more frequency components than at lower current 

velocities. 

Figure 4-73 presents the power spectrum of the in-line VIV responses at the reduced 

velocity of 44.12. The in-line VIV responses contain a dominant frequency of 0.8Hz and 

a secondary-dominant frequency of 6.4Hz. The average peak-pick-up frequency of the in-

line VIV responses is 5.1Hz, as shown in Figure 4-61. It is noted that the vibration 

responses contain a number of frequency components with small energy ranging from 0 

to 5.8Hz, and this is similar to the spectrum of the cross-flow VIV responses shown in 

Figure 4-72. 

According to the discussions above, in Region D the responses contain several 

dominant and secondary-dominant frequencies in both the in-line and cross-flow 

directions. At the highest current velocity, many frequency components with small 

energy exist in the in-line and cross-flow VIV responses, meaning that vibration energy 

to be shared by a large number of frequency components. 
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Figure 4-72 Power spectrum of cross-flow VIV at the middle of riser 
at a current velocity of 1.5m/s and a pretension of 600N 
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Figure 4-73 Power spectrum of in-line VIV at the middle of riser 
at a current velocity of l.Sm/s and a pretension of 600N 

Vibration power spectra over riser length 

Now examine the power spectra of the VIV responses at different locations over the 

riser length. Firstly, check the power spectra of the in-line VIV response. Figures 4-74 to 

4-76 give spectra at three locations of .x=2.024, 4.452 and 6.881m and at three reduced 

velocities of 1 1.76, 35.29 and 44.12, which corresponding to three current velocities of 

0.4, 0.8 and L5m/s. 

Figure 4-74 presents the power spectra of the in-line VIV responses at the three 

locations at the low reduced velocity of 11.76. As seen in Figure 4-74, the difference in 

location does not produce a big difference in power spectrum. This means that for small 

current velocities, the spectral characteristics of VIV responses over riser length are 

nearly identical in the present case. 

Figure 4-75 gives the power spectra of the in-line VIV responses at the three locations 

at a moderate reduced velocity of 35.29. As seen in Figure 4-75, the three spectra are also 

similar to each other, and this means that for moderate current velocities, the 
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characteristics of power spectra over the riser length are still nearly identical m the 

present case. 

Figure 4-76 shows the power spectra of the in-line VIV responses at the three locations 

at the highest reduced velocity of 44.12. As seen in Figure 4-76, there are obvious 

differences in the three spectra. At the location of x=2.024m, only one peak exists at the 

frequency of 7 .5Hz in the power spectrum. At the location of x=4.452m, two peaks exist 

at the frequency of 1.0Hz and 7 .5Hz in the power spectrum. At the location of 

x=6.881m, only one peak exists at the frequency of l.OHz in the power spectrum. This 

means that at high current velocities the spectral characteristics of the in-line VIV 

responses over the riser length are different. 
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Figure 4-7 4 Power spectra of in-line VIV at different location on riser 
at a current velocity of 0.4m/s and a pretension of 600N 
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Figure 4-75 Power spectra of in-line VIV at different location on riser 
at a current velocity of O.Sm/s and a pretension of 600N 

201 



2.5 

en 2 
~ 
'E 2 1.5 
t> 
Q) 
c. 
en 

Ui' 
~ 
'E 
2 
g 
c. 
en 

1 

0.8 

0.6 

0.4 

0.2 

0 

8 

en 6 
~ 
'E 
2 4 
t> 
Q) 
c. 
en 

2 

0 

Vortex-Induced Vibration Tests 

x 10-
4 

Power spetrum of in-line VIV (X=2.024m , V*=44.12, pretension=600N) 

X 10-4 

0 

X 10.5 

"'-
0 

10 15 
frequency(Hz) 

20 25 

Power spectrum of in-line (X=4.452m, V*=44.12, pretension=600N) 

5 10 15 
frequency(Hz) 

20 25 

Power spectrum of in-line VIV (X=6.881 m, V*=44.12, pretension=600N) 

5 10 15 
frequency( Hz) 

20 25 

30 

30 

30 

Figure 4-76 Power spectra of in-line VIV at different location on riser 
at a current velocity of 1.5m/s and a pretension of 600N 
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Now check the power spectra of the cross-flow VIV response over the riser length. 

Figures 4-77 to 4-78 give the results of spectral analysis at three locations of .x=2.024, 

4.452 and 6.881m and at three reduced velocities of 11.76, 35.29 and 44.12, which 

corresponding to three current velocities of 0.4, 0.8 and 1.5m/s. 

Figure 4-77 presents the power spectra at the three locations at the lowest reduced 

velocity of 11.76. It is noted that the low current velocity also leads to significant 

differences of the power spectra over the riser length, as seen in Figure 4-77. Only one 

dominant frequency exists in the power spectrum of cross-flow VIV responses at the 

location of x=2.024m, while three dominant frequencies exist in the power spectra of 

cross-flow VIV response at the locations of x=4.452 and 6.881m. This result is different 

either from that in the case of the in-line VIV response at the same pretension, or from 

that in the case of the cross-flow VIV responses at the lower pretension of 200N. 

The power spectra at the three locations at the moderate reduced velocity of 35.29 are 

shown in Figure 4-78. As seen in Figure 4-78, the spectra at this particular reduced 

velocity are somewhat similar to the results at the reduced velocity of 11.76, namely the 

spectra contain significant differences at the different locations over the riser length. This 

finding is also different either from that in the case of the in-line VIV response at the 

same pretension, or in the case of the cross-flow VIV responses from that at the lower 

pretension of 200N. 

Figure 4-79 shows the power spectra at the three locations at the highest reduced 

velocity of 44.12. At this reduced velocity, the power spectra at the locations of x=2.024 

and 4.452m have the same characteristics, while the power spectrum at the location of 

6.881m is different from the spectra at the other locations. 
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Figure 4-77 Power spectra of cross-flow VIV at different location on riser 
at a current velocity of 0.4m/s and a pretension of 600N 
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Figure 4-78 Power spectra of cross-flow VIV at different location on riser 
at a current velocity of 0.8m/s and a pretension of 600N 
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Figure 4-79 Power spectra of cross-flow VIV at different location on riser 
at a current velocity of l.Srn!s and a pretension of 600N 
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Summary of the results of vibration power spectra at the high pretension 

As discussed above, the following points can be summarized: 

i) at the high pretension the patterns of power spectra in the in-line and cross-flow VIV 

responses are different over entire current velocity range tested. 

ii) in the low current velocity lock-in region (Region C), a strong dominant frequency 

and several secondary-dominant frequencies exist in the responses in the in-line direction, 

but these secondary-dominant frequencies have small energy to affect the cross-flow VIV 

responses. 

iii) in the low current velocity lock-in region (Region C), a strong dominant frequency 

and several secondary-dominant frequencies exist in the responses in the cross-flow 

direction. The energy of the lower dominant or secondary-dominant frequency becomes 

small and the energy of the higher dominant or secondary-dominant frequency becomes 

large as current velocities increase. 

iv) at high current velocities, many frequency components with small energy exist in the 

in-line and cross-flow VIV responses, and vibration energy is shared by a large number 

of frequency components. 

v) at low current velocities, the in-line responses have nearly identical power spectral 

patterns over the riser length, but the cross-flow responses have different power spectral 

patterns over the riser length. 

vi) at high current velocities both the in-line and cross-flow responses have different 

power spectral patterns over the riser length. 
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4. 2. 3. 3 Modal Components of VIV Response 

The modal components of the VIV responses were analyzed based on equation (2-5) for 

the case of the high pretension. Figure 4-80 shows the modal components of the VIV 

responses at four reduced velocities of 13.23, 23.53, 32.34 and 44.12, which correspond 

to four current velocities of 0.55, 0.80, 1.15 and 1.50m/s. B* is the non-dimensional 

modal VIV response, defined as Zkr/2D for the cross-flow VIV responses, where: D is the 

riser diameter, and Zko is the average peak-pick-up amplitudes of the modal response 

components zk(t), defined by equation (2-5). The function z(t,x) in equation (2-5) is the 

vibration displacements in the cross-flow directions, which were measured from the VIV 

tests. The non-dimensional modal VIV response B* is also defined as Ykr/2D for the in

line VIV responses, where: YkO is the average peak-pick-up amplitudes of the modal 

response components Yk(t) in the in-line direction. 

As seen in Figure 4-80, at this high pretension the VIV responses contain all modal 

components from mode 1 to 10, but the higher modes, such as mode 9 and 10, have less 

contribution to the responses than the lower modes, such as mode 1 and 2 at all reduced 

velocities. For both the in-line and cross-flow VIV responses, a dominant mode exists in 

the VIV responses at the lower currents, while the dominant mode becomes unclear at the 

higher currents. For example, for the in-line responses, at the lower reduced velocity of 

13.23, mode 2 and 3 are respectively the dominant modes, while at the highest reduced 

velocity of 44.12, the dominant mode becomes unclear, as five modes, i.e. mode 1, 2, 3, 4 

and 5, have relatively big contributions to the VIV responses. Similarly, for the cross

flow VIV responses, at the reduced velocities of 13.23, the dominant mode is mode 1, 

while at the reduced velocities of 32.34 and 44.12, the dominant mode become unclear. 
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It is noted that the increased pretension does not change the fundamental 

characteristics of the VIV responses. For example, the in-line and cross-flow VIV 

responses still contain all of the modal components from the first mode to the tenth mode; 

the increased current velocities cause increased dominant mode numbers; and the number 

of dominant modes for the in-line VIV responses are different from the number of 

dominant modes for the cross-flow VIV responses. 
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cross-flow VIV at a pretension of 600N 

Figures 4-81 to 4-89 show the modal components in the in-line and cross-flow 

responses versus current velocity from mode 1 to mode 9. Figure 4-81 gives the in-line 

and cross-flow modal responses for mode 1. As seen in Figure 4-81, the relatively large 

modal responses in both of the in-line and cross-flow directions occur in the region from 
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v *=6 to 14, which corresponds to the low current velocity lock-in region (Region C), and 

the modal responses in the in-line direction are larger than those in the cross-flow 

direction. The results of the modal analysis again clarify that in this region there is a 

resonance for mode 1 in both the in-line and cross-flow directions. In the region from 

v*=28 to 44, the modal responses for mode 1 in both the in-line and cross-flow directions 

are small, and this means that the vortex-shedding frequencies are far away from the 

natural frequencies of mode 1. In the region from v *=14 to 28, the cross-flow responses 

of mode 1 also have small values, but the in-line responses of mode 1 have moderate 

values compared to the responses in other regions. This means that the vortex-shedding 

frequencies in the in-line direction may be smaller than the vortex-shedding frequencies 

in the cross-flow direction, so that the vortex-shedding frequencies in the cross-flow 

direction are closer to the natural frequencies of mode 2 than the vortex-shedding 

frequencies in the cross-flow direction. 

Figure 4-82 presents the modal responses in the in-line and cross-flow directions for 

mode 2. As seen in Figure 4-82, the relatively big modal response region for mode 2 in 

the cross-flow direction is still the region from v*=6 to 14. This implies that in this region 

the cross-flow responses contain two dominant modes, i.e. mode 1 and mode 2, as both 

the modal responses for mode 1 and 2 are relatively large in this region. The relatively 

big in-line modal responses for mode 2 appear in the region from v*=14 to 28. As the in

line modal responses for mode 1 also have the relatively large values in this region, the 

in-line responses may contain a dominant mode, i.e. mode 2, and a secondary-dominant 

mode, name I y mode 1. 
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Figure 4-83 shows the modal responses in the in-line and cross-flow directions for 

mode 3. As seen in Figure 4-83, the relatively big modal responses for mode 3 in the 

cross-flow direction move to the region from v*=14 to 28, while the relatively big modal 

responses in the in-line direction move to the region from v*=22 to 35. Obviously, the 

higher mode resonates at the higher current velocities. 

Figure 4-84 shows the modal responses in the in-line and cross-flow directions for 

mode 4. As seen in Figure 4-84, the relatively big modal response in cross-flow direction 

still appear in the region from v*=22 to 35, where the cross-flow responses for mode 3 

also have relatively large values, and this means that in this region the cross-flow 

responses have two dominant modes, namely mode 3 and 4. The relatively big in-line 

response for mode 4 exist in the region from v* =35 to 40. The resonance for mode 4 

obviously occurs at the higher currents compared to the resonance for mode 3. 

Figures 4-85 to 4-89 show the modal responses in the in-line and cross-flow directions 

for modes 5 to 9. As seen in these figures, the modal responses over the whole current 

velocity range have relatively small value&, and this means that the vortex-shedding 

frequencies in both the in-line and cross-flow directions are far away from the natural 

frequencies of these modes. 

Based on the discussions above, the following points can be extracted: 

i) The VIV responses contain all modes from 1 to 10, but the higher modes have less 

contribution to the responses than the lower modes; 

ii) one or two dominant modes exist in the VIV responses at lower currents, while the 

dominant mode becomes unclear at higher currents; 

iii) High modes resonate in higher currents than low modes. 

211 



.. 
co 

.. 
co 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 

0.8 

0.4 

0.2 

Vortex-Induced Vibration Tests 

Modal component \ersus current \elocity(mode 1, pretension=600N) 

I 

I I I I ----r-----r-----r-----r----- 0 in-line 

1<- cross-flow 

5 10 15 20 25 30 35 40 45 
V* 

Figure 4-81 The component of mode 1 in VIV responses 
at a pretension of 600N 

Modal componebt \ersus current \elocity(mode 2, pretension=600N) 

0 in-line -----~-----~-----~-----~-----~-----L----
1 I I 

I 
I -----r-----r-----r-----r-----r-----r----
I cross-flow 

I I I I I I 
_____ L _____ L _____ L __ L _____ L _____ L _____ L _____ L _____ L _ 

I I I I I I I 

O L---~L---~----~----~----_J----~----_J----~----~~ 

0 

0.8 

0.6 

0.4 

0.2 

5 10 15 20 25 30 35 40 
V* 

Figure 4-82 The component of mode 2 in VIV responses 
at a pretension of 600N 

45 

Modal component \ersus current \elocity(mode 3, pretension=600N) 

_____ L _____ L __________ L _____ L _____ L ____ _ 0 in-line 
I I 

I 

I I I I I -----r-----r----- -----r-----r-----r---- cross-flow 
1 I 

I 

-----r-----r----~ 

O L---~L---~----~----_J ____ _J ____ _J ____ _J ____ ~----~~ 

0 5 10 15 20 25 30 35 40 
V* 

Figure 4-83 The component of mode 3 in VIV responses 
at a pretension of 600N 

212 

45 



" co 

" co 

" co 

0.8 

0.6 

0.4 

0.2 

0 
0 

0.4 

Vortex-Induced Vibration Tests 

Modal component \ersus current \elocity(mode 4, pretension=600N) 

0 in-line 
I I I 1 I I I 

---~-----~-----~-----------------~-----~-

cross-flow I 

I I I 
----- r----- r----- r---- -r---- -,.__-li<----JtC 

5 10 15 20 25 30 35 40 45 
V* 

Figure 4-84 The component of mode 4 in VIV responses 
at a pretension of 600N 

Modal component \ersus current \elocity(mode 5, pretension=600N) 

0 in-line 

---L-----L-----L-----L-----L-----L-----L-
1 I 
I I 

eros-flow 

0.2 --

O L---~L---~----~----~-----L-----L-----L----~----~~ 

0 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

5 10 15 20 25 30 35 40 45 
V* 

Figure 4-85 The component of mode 5 in VIV responses 
at a pretension of 600N 

Modal component \ersus current \elocity(mode 6, pretension=600N) 

I I I I I I 

0 in-line __ I ______ I ______ I ______ I ______ I ______ I ______ I_ 

I I I I I I 
I I 

cross-flow I I I I I I 
--~------------------------------------

5 10 15 20 25 30 35 40 45 
V* 

Figure 4-86 The component of mode 6 in VIV responses 
at a pretension of 600N 

213 



" a:l 

" Ill 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

Vortex-Induced Vibration Tests 

Modal component \ersus current \elocity(mode 7, pretension=600N) 

0 in-line 

cross-flow 

I 

I 
___ L _____ L _____ L _____ L _____ L _____ L _____ L_ 

I I I I I I 

I 

I I I I I I I ---r-----r-----r-----r-----r-----r-----r-
IL------r------.-~ I 

0 5 10 15 20 25 30 35 40 
V* 

Figure 4-87 The component of mode 7 in VIV responses 
at a pretension of 600N 

45 

Modal component \ersus current \elocity(mode 8, pretension=600N) 

0.3 -----L-----L-----L-----L-----L-----L-----
0 in-line 1 I I I I I 

I 

0.2 cross-flow 

0.1 

0~--~----~----~----~----L-----L---~-----L-----L~ 

0 

0.2 

0.1 

5 10 15 20 25 30 35 40 
V* 

Figure 4-88 The component of mode 8 in VIV responses 
at a pretension of 600N 

45 

Modal component \ersus current \elocity(mode 9, pretension=600N) 

I 
0 in-line 

I I I I I I 
_____ L _____ L _____ L _____ L _____ L _____ L ____ _ 

I I I I cross-flow 

O L---~~--~----~----~-----L ____ _L ____ _L ____ _L ____ _L~ 

0 5 10 15 20 25 30 35 40 
V* 

Figure 4-89 The component of mode 9 in VIV responses 
at a pretension of 600N 

214 

45 



Vortex-Induced Vibration Tests 

4. 2. 3. 4 Vibration Time Histories 

Similarly in the case of pretension=200N, the time histories of VIV displacement were 

obtained by double-integration of the acceleration data. Figures 4-90 to 4-94 present the 

time histories of the in-line VIV responses at five reduced velocities of 11.76, 17.65, 

23.53, 35.29 and 44.12, which correspond to five current velocities of 0.4, 0.6, 0.8, 1.2 

and 1.5m/s. These time histories were measured at the location of x=4.452m. 

As seen in these figures, the patterns of the time history of the in-line VIV response 

depend on the current velocities. At the lower reduced velocities of 11.76, 17.65 and 

23.53, the patterns of the time history are the SF type, which contain a dominant 

frequency, while at the higher reduced velocities of 35.29 and 44.12, the patterns are the 

MF type, which contain more than two dominant frequencies. 

Compared to the patterns of the time history of the in-line VIV responses at the lower 

pretension of 200N, it can be seen that at some current velocities the higher pretension 

causes the patterns to contain less frequency components. For example, at the current 

velocity of 0.8m/s, the pattern of the time history of the in-line VIV at the pretension of 

600N is the SF type, while the pattern of the time history of the in-line VIV at the 

pretension of 200N is the MF. 

Figure 4-95 to 4-98 show the time histories of the cross-flow VIV responses at four 

reduced velocities of 17.65, 23.53, 35.29 and 44.12, which were measured at the location 

of x=4.452m. 
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Similarly in the case of in-line VIV responses at the pretension of 600N, the patterns of 

time history of cross-flow VIV response depend on current velocities. At the low reduced 

velocities, such as 17.65 and 23.53, the patterns of the time history are the SF type, 

containing a dominant frequency, while at the high reduced velocities, such as 35.29 and 

44.12, the patterns of the time history are the MF type, containing more than two 

dominant frequencies. The higher pretension also causes the patterns of time history of 

in-line VIV responses to contain less frequency components than those in the case of a 

lower pretension. 

Now check the time histories of the VIV responses at different locations on the riser. 

Chose three locations of .x=2.024, 4.452 and 6.881m and two reduced velocities of 11.76 

and 35.29. 

Figure 4-99 presents the time histories of the in-line VIV response at the three 

locations. As seen in Figure 4-99, at the reduced velocity of 11.76, the patterns of time 

history at the three locations are all the SF types. It is noted that at this high pretension 

the patterns of the time history does not change over the riser length, but the amplitude 

variations become large at the locations of .x=2.04m and .x=6.881m. 

Figure 4-100 shows the time histories of the cross-flow VIV responses at the three 

locations at the reduced velocity is 11.76. As seen in Figure 4-100, at this reduced 

velocity, the patterns of the time history at the three locations are all the MF types. 
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Figure 4-101 gives the time histories of the in-line VIV response at the three locations 

at the reduced velocity is 35.29. As seen in Figure 4-101, at this reduced velocity, the 

vibration patterns at the three locations are different. At the locations of x=2.024 and 

6.881m, the patterns of the time history are close to a SF type, although the amplitudes 

exhibit a relatively large variation. At the location of x=4.452m, the pattern of the time 

history is close to a MF type. It is noted that the increased pretension complicates the 

patterns of the time history of the cross-flow VN responses while simplifies the patterns 

of the time history of the in-line VIV responses. 

Figure 4-102 presents the time histories of the cross-flow VIV responses at the three 

locations at the reduced velocity is 35.29. It is seen that the vibration patterns at the three 

locations are all the FD types. 

4. 2. 3. 5 Vibration Shapes 

Similarly in the case of the lower pretension of 200N, the vibration shape was obtained 

through the combination of the VN displacements at sixteen locations on the riser at the 

a time instant, and then a snapshot was obtained through plotting several vibration shapes 

on a picture. Figures 4-103 to 4-107 present the snapshots of the in-line VIV and cross

flow VIV at five reduced velocities of 5.88, 17.65, 23.53, 29.41 and 35.29, which 

correspond to five current velocities of 0.2, 0.6, 0.8, 1.0 and 1.2m/s. As the displacements 

at the locations from x=5.27 to 6.47m on the riser were not measured, the vibration 

shapes may be skewed at those locations. 

As seen in these figures, both the vibration shapes of the in-line VIV and the cross-flow 

VIV over the riser length are a mixture of several modal components, meaning that the 
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VIV responses at the high pretension are also the multi-modal vibrations. The vibration 

shapes over the riser length are also asymmetrical about the mid-point of the riser and 

contained the components of even modes, although the riser structure and the current 

profile were uniform over the riser length. The increased current gives rise to higher 

dominant modal components in the VIV responses. At the lower current velocities, the 

dominant modes are clearer than at the higher current velocities. For example, at the 

lower current velocity of 0.2m/s, mode 1 and mode 2 are clearly shown in the snapshot 

plots of the cross-flow and in-line VIV responses, as seen in Figure 4-103. At the higher 

current velocity of l.Om/s, the dominant modes become vague, as seen in Figure 4-106. 

This means that there is more than one dominant mode in the VIV responses at the higher 

current velocities. 
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Snapshot of riser Vrv (V*=23.53, pretension=600N) 
0.1 

0 

-0.1 
0 2 3 4 5 6 7 8 

0.1 

0 

-0.1 
0 2 3 4 5 6 7 8 

riser length(m) 

Figure 4-105 Vibration shapes at a current velocity of O.Sm/s and 
a pretension of 600N 
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Figure 4-106 Vibration shapes at a current velocity of 1.0m/s and 
a pretension of 600N 
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Snapshot of riser Vrl/ (V*=35.29, pretension=600N) 
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Figure 4-107 Vibration shapes at a current velocity of 1.2m/s and 
a pretension of 600N 

It is noted that at this high pretension the vibration shapes in the in-line VIV responses 

exhibit higher dominant mode shape than in the cross-flow VIV responses. For example, 

as seen in Figure 4-103, at the current velocity of 0.2m/s, the dominant mode the in-line 

VIV responses is mode 2, while the dominant mode in the cross-flow VIV responses is 

mode 1. At the current velocity of 0.6m/s, the dominant mode in the in-line VIV 

responses is mode 3, while the dominant mode in the cross-flow VIV responses is mode 

2. 

4. 2. 3. 6 Vibration Trajectories 

The combination of the VIV displacements in the in-line direction and the cross-flow 

direction at several time instants produces the vibration trajectory on a cross-section 

plane of the riser. Figure 4-108 to 4-112 show the VIV motion trajectories on the cross-

section planes at four locations of .x=0.810, 3.624, 4.857 and 6.881m along the riser for 

five current velocities of 0.4, 0.6, 0.8 1.2 and 1.5m/s. In these figures, they-direction is 

defined as the in-line direction and the z-direction as the cross-flow direction. These 
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trajectories are the records during about three or four cyclic periods and they are only the 

representatives of the VIV responses during the whole vibration period. 

Similar to the results in the case of pretension=200N, the trajectories depend on current 

velocities and locations on the riser. Low current velocities always cause the basic figures 

of 8- or L-shaped vibration motion. For example, in Figure 4-108, at all of the locations 

the basic figures are the 8-shaped vibration motion. In Figure 4-109, at the locations of 

.x=0.810, 4.857 and 6.881m the basic figures are 8-shaped vibration motion, while at the 

location of .x=3.624m the basic figure is L-shaped vibration motions. In Figure 4-110, at 

the locations of .x=0.810 and 3.624m the basic figures are 8-shaped vibration motion, 

while at the location of .x=4.857 and 6.881m the basic figures are L-shaped vibration 

motions. High current velocities may cause the basic figures of 0-shaped or other 

complicated vibration motion. For example, in Figure 4-111, at the location of .x=0.810m, 

there is a basic figure of 0-shaped vibration motion. In Figure 4-112 other complicated 

figures exist. Usually, if a vibration exhibits a clear dominant mode, its trajectory shows 

the 8-shaped or L-shaped basic figures, while if the vibration contains more than one 

dominant mode, the trajectory may contain other complicated basic figures. Similar to the 

results in the case of pretension=200N, the shifted motions of the basic figure occur not 

only in the in-line direction but also in the cross-flow direction. 
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and a pretension of 600N 
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Figure 4-112 Trajectory of VIV at a current velocity of l.Sm/s 
and a pretension of 600N 

4. 3 Summary of VIV Test Results 

The time histories of multi-modal VIV have four types, namely the single-dominant-

frequency type (SF), the close-double-dominant-frequency type (CD), the far-double-

dominant-frequency type (FD) and the multi-frequency type (MF). The SF and CD types 

often appear in the VIV responses at the current velocities lower than 0.8m/s, while the 

FD and MF types often appear in the VIV responses at the current velocities higher than 

0.8rnls in the current velocity range tested. 

The motion trajectories on the cross-section plane contain two fundamental motions. 

The first is a basic figure of 8-, L- and 0-shaped or other complicated vibration motion. 

Another motion is a shifted motion of the basic figure motion. The basic figures of 8- and 

L-shaped correspond to the vibrations at lower current velocities with a strong single 
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dominant frequency, while other basic figures correspond to the vibrations at higher 

current velocities with multi-dominant frequencies. 

The snapshots of the VIV responses over the riser length clearly demonstrate that the 

VIV responses for a flexible riser are the multi-modal vibrations. In the multi-modal 

vibrations, there are a dominant mode and several secondary-dominant modes. At lower 

current velocities, the vibration shapes over the riser length often exhibit a clear dominant 

mode with clear nodes, while at higher current velocities, the dominant modes become 

vague. 

In the un-lock-in regions, the average peak-pick-up frequencies of the cross-flow 

multi-modal VIV follow the Strouhal frequency for the lower and higher pretensions, 

which correspond to a Strouhal number of about 0.12. When a current velocity at which a 

natural frequency matches the Strouhal frequency is not close to another current velocity 

at which the next natural frequency matches the Strouhal frequency, a frequency lock-in 

will occur at the first current velocity. The lock-in frequency in the cross-flow direction is 

approximately equal to the first natural frequency, and the vibration amplitudes are 

relatively large in the lock-in region. The lock-in frequency in the in-line direction is 

approximately equal to either the first natural frequency or the next natural frequency 

depending on which natural frequency the in-line vortex-shedding frequency is close to. 

If the in-line responses lock in the first natural frequency, the vibration amplitudes will be 

relatively big. Otherwise, the vibration amplitudes are relatively small. The reduced 

velocity corresponding to the end points of the lock-in region are smaller than the 

maximum upper limit values estimated from equation (4-1) provided by previous studies 

(Govardhan and Wiliamson, 2000). 
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The average peak-pick-up amplitude versus current velocity shows that the vibration 

amplitudes fluctuates from 0.3 to 0.9D, and no increasing trend exists as the current 

velocity increases. No sharp peaks exist in the average peak-pick-up amplitude versus 

current velocity. The average peak-pick-up amplitudes are not sensitive to the pretensions 

tested. 

The results from the spectral analysis verify that there are three types of VIV responses 

can be found: i) the vibrations with single dominant frequency; ii) the vibrations with 

double dominant frequencies; and iii) the vibrations with multi-dominant frequencies. In 

the third type, the power spectra have broad bandwidth, which usually appear at the high 

current velocities. The power spectra may vary over riser length or not, depending on the 

current velocities and the pretensions. At high currents, there is more than one dominant 

or secondary-dominant frequency in the VIV responses in the frequency lock-in regions, 

and the lock-in frequency does not match any of these dominant or secondary-dominant 

frequencies. 

The in-line and cross-flow VIVs for a flexible riser contain a number of modal 

components. The higher modes have less contribution to the responses than the lower 

modes. A dominant mode exists in the VIV responses at lower currents, while the 

dominant mode becomes unclear at higher currents. The dominant modes for the in-line 

and cross-flow VIV responses are usually different. 
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CHAPTERS 

CORRELATION BETWEEN MODAL 
PARAMETER AND VIV RESPONSE 

5. Correlation between Modal Parameter and VIV 
Response 

This section discusses the correlation between the estimated modal parameters and the 

VIV responses. In this research, the modal parameters were estimated by the shaker-

excitation tests, which were conducted in calm water. Strictly, VIV responses depend on 

the modal parameters in currents, not on the modal parameters in calm water, because 

currents can change the hydrodynamic loads on the riser, so that the added mass and 

damping in currents are different from those in calm water. Vandiver (1993) reviewed 

two experimental results about the effective added mass coefficient versus reduced 

velocity, which were respectively conducted by Sarpkaya (1977) and Chung (1989). 

They found that the measured effective added mass coefficients decreased as the reduced 
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velocities increased. At high reduced velocities, the effective added mass coefficients 

may even be negative. The hydrodynamic damping also depends on current velocities. In 

lock-in regions, VIV response amplitudes depend on so-called "reduced damping" 

(Griffin and Ramberg, 1982). However, there may still be some correlations between the 

VIV responses and the modal parameters in calm water if the currents are not too high. 

Now the correlations between results from the shaker-excitation and VIV tests 

conducted in this research are examined, namely the correlation between the modal 

natural frequencies and the frequency lock-in of the VIV responses, the correlation 

between the modal added mass coefficients and the maximum upper limit values, and the 

correlation between the modal natural frequencies and the resonance of the modal VIV 

responses. 

5. 1 Correlation between Modal Natural Frequencies and Frequency 

Lock-in of VIV Responses 

The correlations between the modal natural frequencies and the frequency lock-in of 

the VIV responses were discussed earlier in Chapter 4, and now these correlations are 

summarized. For the case of the pretension of 200N, according to Figure 4-5 and 4-6, in 

the region from v *=25 to 45 the cross-flow VIV responses lock in at the second modal 

natural frequency of 1.05Hz, which is the value estimated from the shaker-excitation 

tests. In the region from v *=45 to 90, the in-line VIV responses lock in at the third modal 

natural frequency of 2.44Hz, which is also the value estimated from the shaker-excitation 

tests. The shaker-excitation test results show that the resonance reduced velocities for 

mode 1 and 2 are very close so that lock-in in the region from v *=9 to 25 is difficult to 
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occur. The VIV test results showed that this prediction is correct, as no lock-in was 

observed in that region. 

For the case of the pretension of 600N, according to Figure 4-4 and 4-61, in the region 

from v *=9 to 16.5, the in-line VIV and cross-flow responses lock-in in the first modal 

natural frequency of 0.57Hz, which is the value estimated from the shaker-excitation 

tests. In the region from v *=20 to 44, the shaker-excitation test results predict that no 

lock-in characteristics appear in the VIV response frequencies as the Strouhal frequencies 

are almost equal to the natural frequencies of mode 2 in the region, and the VIV test 

results showed that the prediction is correct. 

5. 2 Correlation between Modal Added Mass Coefficients and Upper 

Limit Values 

The correlations between the modal added mass coefficients and the upper limit values 

were also discussed earlier in Chapter 4, and now these correlations are summarized. For 

the case of the pretension of 200N, in the lock-in region from v *=25 to 45, the reduced 

velocity at the end point of the lock-in region is 16.83 if the natural frequency of 

fn 2=1.05Hz for mode 2 is used, while the maximum upper limit value of the reduced 

velocity for the lock-in region calculated from equation (4-1) is 17.8 if the added mass 

coefficient measured from the shaker-excitation tests is used. The measured value of 

16.83 is a little smaller than the maximum upper limit value of 17 .8. In the lock-in region 

from v *=45 to 90, the reduced velocity at the end point of the lock-in region is 13.87 if 

the natural frequency of /n3=2.44Hz for mode 3 is used, while the maximum upper limit 

value of the reduced velocity for the lock-in region calculated from equation (4-1) is 

236 



Correlation between Modal Parameter and VIV Response 

20.53 if the added mass coefficient measured from the shaker-excitation tests is used. The 

measured value of 13.76 is smaller than the maximum upper limit value of 20.53. 

For the case of the pretension of 600N, in the region from v *=9 to 16.5, the reduced 

velocity at the end point of the lock-in region is 16.5 if the natural frequency of 

fn1=0.57Hz for mode 1 is used, while the maximum upper limit value of the reduced 

velocity for the lock-in region calculated from equation (4-1) is 18.74 if the added mass 

coefficient measured from the shaker-excitation tests is used. The measured value of 16.5 

is smaller than the maximum upper limit value of 18.74. 

5. 3 Correlation between Modal Natural Frequencies and Resonance of 

VIV Responses 

The resonance of riser vibration can be predicted by the natural frequencies and the 

vortex shedding frequencies. For the case of the pretension of 200N, according to Figure 

4-5, two resonance regions can be predicted. The first resonance is expected to occur at 

v*=10 for mode 1, and the second resonance is expected to occur in the region from 

v *=25 to 40 for mode 2. Figure 4-28 shows a maximum response for mode 1 at v *=16 in 

both the in-line and cross-flow directions, and this means that the prediction is correct, 

even though the reduced velocity for the maximum response for mode 1 is a little bigger 

than the predicted value. Figure 4-29 shows a resonance occurring in the region from 

v *=21 to 45 for mode 2 in the cross-flow direction, but not in the in-line direction. 

According to Figure 4-30, the in-line VIV responses resonate in this region for mode 3. 

This means that the expected resonance of mode 2 only occurs in the cross-flow 

direction, and the results from the shaker-excitation tests fail to predict the resonance for 
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the in-line VIV responses. The reason for the failure is that the frequencies of the in-line 

vortex-shedding do not follow the Strouhal frequencies well in this reduced velocity 

region, as seen in Figure 4-6. 

For the case of the pretension of 600N, according to Figure 4-4, two resonance regions 

can be predicted. The first resonance is expected to occur in the region from v*=9 to 16.5 

for mode 1, and the second resonance is expected to occur in the region from v*=22 to 44 

for mode 2. Figure 4-81 shows that the responses for mode 1 have relatively big values in 

the region from v*=8 to 15, and the measured resonance region matches the predicted 

resonance region. Figure 4-82 shows that the in-line response resonance region is from 

v*=22 to 35, which matches the expected resonance region for the in-line responses. 

However, Figure 4-82 shows that the cross-flow response resonance region is from v*=15 

to 28, which does not match the expected resonance region for the in-line responses. The 

failure may imply that the correlations between the VIV responses and the modal 

parameters estimated from the shaker-excitation tests in calm water are worse at the high 

current velocity region than at the low current velocity region. 
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6. Conclusions 

Conclusions 

Multi-modal vortex-induced vibration for a flexible riser is a complicated process, and 

so far it has not been fully understood. The questions include: 

i) It is well known that the frequencies of single-modal VIV responses in currents follow 

the Strouhal frequencies in un-lock-in regions for a rigid cylinder. Do the frequencies of 

the multi-modal VIV responses in currents still follow the Strouhal frequencies for a 

flexible cylinder? If so, what value is the Strouhal number? 

ii) What are the characteristics of the amplitudes of the multi-modal VIV responses? Are 

the resonances near the modal natural frequencies? If so, how strong are those 

resonances? 
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iii) It is well known that there is a frequency lock-in region near the natural frequency in 

single-modal VIV responses for a rigid cylinder vibrating in currents, and the maximum 

reduced velocity at the end point of the lock-in region is smaller than the maximum upper 

limit value of the reduced velocity estimated from equation (4-1). Does the frequency 

lock-in occur near a modal natural frequency in the multi-modal VIV responses for a 

flexible riser vibrating in currents? If so, does the frequency lock in at the modal natural 

frequency? Is the maximum reduced velocity at the end point of the lock-in region 

smaller than the maximum upper limit value of the reduced velocity estimated from 

equation (4-1)? 

iv) How many frequency components do the multi-modal VIV responses contain for a 

flexible riser? What is the relationship between these frequency components and the 

current velocities? Are the frequency components contained in the multi-modal VIV 

responses identical over riser length? 

v) How many modal components do the multi-modal VIV responses contain for a 

flexible riser? What is the relationship between these modal components and the current 

velocities? 

vi) What is the vibration shape over riser length for multi-modal VIV responses? 

vii) What are the motion trajectories in the cross-section plane for a flexible riser? 

The modal parameters estimated from the shaker-excitation tests play an important role 

in giving the answers to the questions mentioned above. These modal parameters include 

the modal mass, the modal stiffness, the modal damping and the modal natural 

frequencies. This research aims to improve the understanding of multi-modal vortex-
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induced vibrations for highly flexible deepwater risers in currents, and the objectives are 

to answer these equations. 

6. 1 Modal Parameters in Calm Water 

The results from the shaker-excitation tests showed the characteristic traits of the 

modal parameters. It was found that flexible risers have a variety of natural frequencies, 

which correspond to a variety of mode shapes. The modal natural frequencies depended 

on the tensions, i.e. increased tensions resulted in increased modal natural frequencies. 

The shaker-excitation tests in calm water could give the estimated values of the modal 

natural frequencies in calm water for all modes through using harmonic and random 

excitations, but the different excitation patterns produced considerable differences in the 

estimated modal parameters. 

The modal stiffness depended on the tensions. The modal stiffness increased rapidly as 

tensions increased. The stiffness also depended on the mode shapes. Tension is a 

dominant factor affecting the resonance regions for a flexible riser. 

The modal mass depended weakly on the tensions. The modal mass increased slowly as 

the tensions increased. The modal masses were influenced by mode shapes. A maximum 

value of modal mass appeared in mode 3 or mode 5 for the riser tested. The estimated 

added mass coefficients Ca depended on the tensions and mode shapes for the flexible 

riser tested, ranging from 1.0 to 3.7. These estimated values of added mass coefficients 

are larger than those for a rigid cylinder ranging from 0.8 to 1.5, which were provided by 

Chakrabarti (2005). 
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The modal damping did not show a regular change with respect to the tensions. The 

modal damping also depended on the mode shapes, i.e. increased mode number resulted 

in increased modal damping. The estimated damping coefficients Cd have a relatively big 

scatter, ranging from 0.5 to 2.5. These values are similar to those for a rigid cylinder in 

oscillating water ranging from 0.5 to 2.0, which were found by Sarpkaya (1976). 

The vibration shapes measured at the resonance frequency were not exact sinusoidal 

shapes, even though the model riser had a uniform structure over its length. The 

estimated modal mass and damping depended on the mode number, and this implies that 

the hydrodynamic loads acting on a flexible riser are not uniform over the riser length 

and the hydrodynamic loads vary with mode number. 

The added mass of the flexible model riser appeared to be weakly dependent on the 

frequency in the resonance regions, as the real parts of the dynamic stiffness function 

have an approximately linear relationship with the frequency-squared over these modal 

resonance regions, and this ensures that a linear fit for the estimate of modal parameters 

works well. 

The results from non-linear analysis show that in the low frequency and the modal 

resonance regions non-linear effects are relatively big, as in these regions the riser 

vibrations have relatively big amplitudes. 

6. 2 Multi-Modal Vortex-Induced Vibration in Currents 

The results from the current-excitation tests showed the characteristic traits of the 

multi-modal VIV responses. It was found that the time histories of multi-modal VIV have 

four types. They are the single-dominant-frequency type (SF), the close-double-
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dominant-frequency type (CD), the far-double-dominant-frequency type (FD) and the 

multi-frequency type (MF). The SF and CD types often appeared in the VIV responses at 

lower current velocities, while the FD and :MF type often appeared in the VIV responses 

at higher current velocities. 

The motion trajectories on the cross-section plane contain two fundamental motions. 

The first motion is a basic figure of 8-, L-, 0-shaped or other complicated vibration 

motion. Another motion is a shifted motion of the basic figure motion. The basic figures 

of 8- and L-shapes corresponded to the vibrations at lower current velocities with a strong 

dominant frequency, while other basic figures corresponded to the vibrations at higher 

current velocities with multi-dominant frequencies. 

The snapshots of the VIV responses over the riser length verify that the VIV responses 

for a flexible riser are multi-modal vibrations. At lower current velocities, the vibration 

shapes over riser length often exhibit a clear dominant mode with clear nodes, while at 

higher current velocities, the dominant modes become vague. The snapshot with vague 

modes represents aVIV response with several dominant modes. 

The frequencies of multi-modal VIV responses in both the cross-flow and in-line 

directions follow the Strouhal frequencies for a flexible riser. The measured Strouhal 

number was about 0.12. The frequency lock-in occurred in both the in-line and cross

flow directions at some of the modal natural frequencies, but not if the reduced velocities 

corresponding to the resonances for two neighboring modes were too close so that the 

resonance regions for the two modes overlap. 

In the frequency lock-in regions with lower current velocities, the VIV responses 

contained a strong dominant frequency in one direction (in-line or cross-flow direction), 
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while they contained more than one dominant frequency in the other direction. In the 

frequency lock-in regions with higher current velocities, the VIV responses contained 

more than one dominant frequency in both the in-line and cross-flow directions. If the 

VIV responses contained a single dominant frequency in a frequency lock-in region, the 

dominant frequency was close to the corresponding modal natural frequency. Otherwise, 

no dominant frequencies were close to the corresponding modal natural frequency. The 

maximum reduced velocity at the end point of the lock-in region was still smaller than 

the maximum upper limit value of the reduced velocity estimated from Govardhan's 

formula for a flexible riser, but the reduced velocity must be calculated using the modal 

natural frequency of the corresponding mode. 

The vibration amplitudes fluctuated from 0.3 to 0.9D in both the in-line and cross-flow 

directions for the flexible riser tested, and no increasing trend exists as the current 

velocity increases. Modal response regions can be found, but in these regions resonances 

are not strong as the vibration energy is shared by several modes. 

Three types of power spectra can be found in the VIV responses: i) power spectra with 

single dominant frequency; ii) power spectra with double dominant frequencies; and iii) 

power spectra with multi-dominant frequencies. The third type of power spectra had a 

broad frequency bandwidth, namely the VIV responses contained a number of frequency 

components with small energy, which covered a broad frequency range. The third type of 

power spectra appeared at the high current velocities. Whether the power spectra varied 

over riser length or not depended on the current velocities and pretensions. 

The dominant modes for the in-line VIV and the cross-flow VIV are usually different. 

The modal responses may experience a resonance region. 
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6. 3 Correlation between Modal Parameters and VIV Responses 

Although the modal parameters were estimated from the shaker-excitation tests in calm 

water in this research and the modal parameters in calm water were different from those 

in currents, some correlations between the estimated modal parameters and the VIV 

responses can still be found. The first is the correlation between the estimated modal 

natural frequencies and the frequency lock-in of the VIV responses. Most frequency lock

in regions could be predicted successfully based on analyzing the modal natural 

frequencies and the Strouhal frequencies, but some frequency lock-in regions in the 

relatively high currents could not be predicted. This reflects the fact that at higher 

currents the modal parameters estimated from the tests in calm water have more errors 

than at lower currents. 

The second is the correlation between the estimated modal added mass coefficients and 

the upper limit values of the reduced velocity. The maximum upper limit values of the 

reduced velocity calculated from equation (4-1) based on the added mass coefficients 

estimated from the shaker-excitation tests are larger than the values of the reduced 

velocity at the ends for all frequency lock-in regions, and this demonstrates the 

correlations between the estimated modal added mass coefficients and the actual upper 

limit values of the reduced velocity. 

The third is the correlation between the estimated modal natural frequencies and the 

modal resonance of VIV responses. The modal natural frequencies estimated from the 

shaker tests lie with in the modal resonance regions found in VIV tests in currents and 

this shows the correlations between the estimated modal natural frequencies and the 

modal resonance of VIV responses. 
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6. 4 Recommendations for Future Work 

Although detailed experimental work was done in this research, and good results were 

obtained, it is still necessary to investigate some further work in future. One is to 

investigate multi-modal VN responses using other model risers. The results from one 

model riser may be insufficient to reflect a full picture of multi-modal VIV behavior. A 

model riser with a relatively large scale may be important for investigation of the multi

modal VN responses for a marine riser in reality. The Reynolds number used in this 

research is relatively small (Re=0.6x105
), and it is necessary to test a model riser with 

higher Reynolds number in future. 

In this research, the uniform currents were used. In real deep waters, currents are 

sheared. In a sheared current, the multi-modal VN responses may have characteristics 

different from those in a uniform current; it is, therefore, important to test a riser in 

sheared currents in future. 

The modal parameters estimated from the shaker-excitation tests play an important role 

in understanding the complicated multi-modal VIV responses, but there were two 

shortages in the shaker-excitation tests in this research. The first is that the modal 

parameters with even modes could not be measured from the tests, as the shaker was 

located at the middle of the riser. The measurement of the modal parameters with even 

modes can be achieved through placing the shaker at other locations on the riser. The 

second is that the shaker-excitation tests were conducted in calm water, and only the 

modal parameters in calm water were obtained. In fact, the multi-modal VIV responses 

depend on the modal parameters in currents, and the modal parameters in currents are 
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different from the modal parameters in calm water. In order to improve the understanding 

of modal parameters in currents, a shaker excitation test in currents is necessary in future. 
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Appendix A 

Governing equation for model riser motions 

Patel and Witz (1991) presented a method to analyze the structure of a vertical marine 

riser. In the case of this research, the model riser was horizontally placed on a supporting 

frame, and the governing equations for the horizontal riser may be derived through a 

modification of the model presented by Patel and Witz. 

The model riser may be regarded as a hollow beam column subjected to external 

hydrostatic and hydrodynamic pressure as well as axial and lateral loadings. Similar to 

the analysis presented by Patel and Witz, the analysis presented in this Appendix is 

restricted to two dimensions for simplicity. Firstly, consider a differential element of the 

riser on the x-z plane (x denotes the axial direction of riser, and z denotes the cross-flow 

direction), as shown in Figure A-1. The static forces acting on the element include: 

a) an axial tension at the ends of the element Ts; 

b) a shear force at the ends of the element Q; 

c) a bending moment at the ends of the element M; 

d) a horizontal force due to the resultant external hydrostatic pressure dFx0 ; 

e) a vertical force due to the resultant external hydrostatic pressure dFzo; 

f) the weight of the element dW. 

The dynamic forces acting on the element include: 

a) the horizontal component of the inertial force dFxa; 

b) the vertical component of the inertial force dF za; 
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c) the horizontal component of the damping force dFxb; 

d) the vertical component of the damping force dFzb; 

e) the horizontal component of the vortex-shedding force dF xv; 

d) the vertical component of the vortex-shedding force dFzv; 

e) a vertical shaker-excitation force dFs. 

\ 
\ 

z 

\ 
\ 

X 

clx 

clz 

Figure A -1 Forces acting on a differential riser element 

Appendix A 

For a horizontal model riser, only the vertical motions are considered; thus summing 

components of force in the z direction and summing components of moment around the 

mid-point of the element yield the equations as follows: 

(Ts + dTJsin(O +dO)- Ts sin 0- (Q + dQ)cos(O +dO)+ QcosO 

+ ( dFzo + dF w + dFzb + dF zy + dFs ) - dW = 0 

ds ds 
(M +dM)-M -(Q+dQ)--Q-=0 

2 2 
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where (} is the angle between the x-axis and the centre line of the element, and ds is the 

length of the element on its centre line. The differentials ds and dW may be written as 

ds = ~(dx) 2 + (dz)2 

dW = PsgAds 

where Ps is the structural mass density of the riser, g is the gravitational acceleration , and 

A is the area of cross-section of the riser. 

For a small d(}, the trigonometric functions of d(} can be approximated by their first 

series term, and the equations above can be simplified to 

(Ts cos(}+ Q sin B)()(} - dQ cos(}+ dTs sin(} 
ds ds ds 

dF,0 dF w dF zb dFzv dFs A O +--+--+--+--+--p g = 
ds ds ds ds ds s 

(A-1) 

dM -Q=O 
ds 

The force acting on a cylindrical element due to external hydrostatic pressure, Fzo, can 

be determined by finding the force on an arbitrary section of the element and resolving it 

into components before integrating to obtain the total force on the element. Figure A-2 

shows an element of the cylinder to conduct this analysis. In the analysis, the hydrostatic 

pressure is assumed to vary linearly along the centre line. 

As shown in Figure A-2, the length of any strip on the cylinder circumference parallel 

to its centre line is given by 

ds' = (r+.!_DsinqJ)dB 
2 

(A-2) 

where r is the radius of curvature of the element; Dis the diameter of the element; rp and 

(}are defined in Figure A-2. The pressure at the lower end of the strip can be written as 
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I e . P1 = p+-pgDcos smtp 
2 

(A-3) 

where p is the water density, g is the acceleration of the gravity and p is the fluid pressure 

at the lower end of the center line of the element. The pressure at the higher end of the 

strip can be written as 

\ 

z 

\ 
\ 
\ 

ph = p1- pg sin fJds' 

X 

Figure A-2 Pressure integration variables 

The area of the strip can be calculated by the following equation: 

dA =.!. Ddr;xls' 
2 

and the force acting on the strip is then 
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Substituting equations (A-2), (A-3), (A-4) and (A-5) into equation (A-6) leads to 

Expanding the individual terms gives 

dF = _!_rD[p- _!_ pgrsin (}dB]d(}drp + _!_ D 2 [p + pgrcos B- pgrsin (}dB ]dB sin qxlrp 
2 2 4 

(A-7) 

The forces, Fz0 , in the z direction can be obtained the following equations: 

I
tp=21r 

dFzo = dF cos 8 sin rp 
tp=O 

(A-8) 

Substituting equation (A-7) into equation (A-8) yields 

dFzo = A(p + pgrcosB- pgrsin (}dB)cos(}dB (A-9) 

where A is the area of cross-section of the element, namely 

Substituting equation (A-9) into equation (A-1) and applying the relation ds=rd() gives 

( aTs + Q a B J sin 8 + (- aQ + Ts a B + pA a BJ cos 8 + Apg cos 2 8 as as as as as 
aF za aF w aFzv aFs A O (A -10) +--+--+--+--p g = as as as as s 

aM -Q=O 
as 

The inertial force dFza and damping force dFzb can respectively be represented by the 

structural mass, added mass, structural damping and hydrodynamic damping of the 

element, namely 
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a2 
dF = -(ms + ma)-

2 
z(t,x)ds 

w at 

a 
dFzb = -(cs +c

0
)-z(t,x)ds 

at 

Appendix A 

(A -11) 

where z(t,x) denotes the vibration displacement of the element in the vertical direction; ms 

and ma are respectively the structural and added mass per unit length; Cs and Ca are 

respectively the structural and hydrodynamic damping per unit length. It is a linear 

damping model if Ca is independent of z(t,x); otherwise, it is a nonlinear damping model. 

For a horizontal riser, we have: 

. (} (} az Sill :::::: ::::::-

cos(}:::::: 1 

ds ::::::dx 

ax 
(A-12) 

Beam theory is applied to the element, and the following equation is obtained: 

M = EI ae 
as (A -13) 

where E is the modulus and I is the second moment of the cross-section of the element. 

Substituting equations (A-11), (A-12) and (A-13) into equation (A-10) leads to 

(
aTs a2z) az aQ a 2 z a 2 z az 
--;-+Q-2 -a --a +(Ts + pA)-2 -mT -;--2 -cT--;
ox ax X X ax ut ut 

+ fv + fs - (Ps - P) gA = 0 

Ela3z -Q =0 
ax3 

(A -14) 

where mT, cT, fv and Is are respectively the total mass per unit length, the total damping 

coefficient, the vortex-shedding force per unit length and the shaker-excitation force per 

unit length. They have the forms as follows: 
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!, = aFzv 
v as 

!, = aFs 
s as 
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Since a horizontal riser has almost identical water depths over its length, the static fluid 

pressure p is almost a constant over the riser length; thus we have the relation as follows: 

(A-15) 

Substitute equations (A-15) into equation (A-14), and equation (A-14) can be rewritten as 

a az aQ a2z a2z az 
-(T +pA)---+(T +pA)--m --c -+!, +f ax s ax ax s ax2 T at 2 T at v s 

a2z az 
+Q---(Ps -p)gA=O (A-16) ax2 ax 
EI a3z -Q =0 

ax3 

For a small z(t,x), equation (A-16) can be simplified to 

a [ az ] a 4 
z a 2 

z az - (T +pA)- -El--m --c -+!, +f -(p -p)gA=O (A-17) ax s ax ax4 T at2 T at v s s 

It is noted that the last term of the left side of equation (A-17) is independent of the timet, 

which represents the weight of the element in water. This means that this term only has 

the static effects, not the dynamic effects; thus it can be removed when only the dynamic 

responses are analyzed, namely equation (A-17) is further simplified to 

a2z(t,x) az(t,x)_..i_[T( )az(t,x)] Ela
4
z(t,x)=!,( ) f( )(A-18) mT 2 + Cr t, X + 4 v t, X + s t, X 

at at ax ax ax . 

where Tis the equivalent tension, and it has the forms as follows: 

T(t,x) = Ts (t,x) + Ap(x) 
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Similarly, the governing equation of the riser motion in the x-y plane can be derived as 

follows: 

The boundary conditions for equations (A-18) and (A-19) depend on the end 

connections of the riser. In this research, the end connections for the model riser were 

close to a pinned connection; that is, the displacement motions at the ends of the riser 

were strictly constrained, while the rotation motions were almost free. Thus, the 

corresponding boundary conditions for equation (A-18) can be written as 

z(t,O) = 0 

z(t,L)=O 

M y(t,O) = 0 

My(t,L)=O 

where L is the riser length, and My is the bending moment of the riser. 

(A-20) 

Substituting equations (A-12) and (A-13) into equation (A-20) gives the boundary 

conditions as follows 

z(t,O) = 0 

z(t,L)=O 

o2 
-

2 
z(t,O) = 0 ox 

.. o2 
-

2 
z(t,L)=O ox 

(A- 21) 

Similarly, the boundary conditions for equation (A-19) can be written as 
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y(t,O) = 0 

y(t,L)=O 

a2 
-

2 
y(t,O)=O ax 

a2 
-

2 
y(t,L) =0 ax 

Appendix A 

(A-22) 

The initial conditions for equations (A-18) and (A-19) is not important when the steady 

vibration responses are analyzed. According to the basic theory of linear vibration ( 

Chakrabarti, 2002), for a damped vibration system, the initial conditions only affect the 

unsteady vibration responses during the initial period of the vibration process, and the 

steady vibration responses are independent of the initial conditions. This research only 

focuses on the steady vibration responses of the riser, so that the initial conditions may 

not be considered. 
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Validation of the program to estimate the spectral density functions 

Method of Estimation 

Spectral analysis is an important tool for the data analysis in this research, and it is 

crucial to develop a reliable program for the data analysis. A method for the validation of 

this program is to apply the program to some typical examples with known spectral 

density functions and then to compare the estimated spectral density functions with the 

known spectral density functions. If the estimated spectral density functions match the 

known spectral density functions pretty well, the program is validated. 

The cross-spectral density function of any two time series, x1(t) and x2(t) in the 

frequency-domain is normally a complex function, i.e. it can be written in the form as 

(Bendat and Piersol, 1971) 

If x1(t)=x2(t), the cross-spectral density function becomes the auto-spectral density 

function of xJ(t) or x2(t), and the imaginary part of the function will become zero. The 

standard method to estimate the spectral density functions is based on the Fourier 

transform relation between spectral density functions and autocorrelation functions. 

In theory, Fourier transform is used to handle the time series with infinite sampling 

time period, but in practice, the time series always have finite sampling time period, as it 

is impossible for one to acquire a time series with infinite sampling time period. It is well 

known that a finite sampling time period will result in the so-called leakage errors for the 
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estimate of spectral density function, but an appropriate window function can reduce the 

leakage errors. 

For the digital data of x1(t) and x2(t) with sample size N, at an arbitrary value of the 

frequency fin the range 0 ::; f::; fc, estimates of the cross-spectral density functions are 

(Bendat and Piersol,l971) 

(B-1) 

(B-2) 

where h is the sampling interval, fc=ll2h is the cutoff frequency, m is the number of 

correlation lag value, Dr, r=O, 1, 2, 3, ... , m, are the window functions, and 

Several window functions have been developed, and in this research three window 

functions are used to investigate their effects on the estimated values of spectral d~nsity 

function. These window functions are 

1. Boxcar window function in the form as 

r = 0,1,2, ... ,m 
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2. Hanning window function in the form as 

r = 0,1,2, ... , m 

3. Parzen window function in the form as 

D = r 

Case Studies 

m 
when r = 0,1,2, ... ,-

2 

m 
when r =-+1, ... ,m 

2 

Appendix B 

A program has been developed based on equations (B-1) and (B-2). In the case studies, 

this program was used to analyze some typical samples, and the numerical results of 

these case studies demonstrate the validation of this program. 

Case study 1 Auto-spectral density function of single sine wave 

In this case study, the simplest case of a single sine wave is selected. The amplitude, 

frequency and phase of this sine wave are respectively 0.9m, 0.02Hz and n/4, namely 

x(t) = a sin(21d1 +a) 

a= 0.9(m) 

f = 0.02(Hz) 

1l 
a=-

4 
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Assuming the sampling interval h=0.5s, the correlation lag value m=500 and the 

sample size N=1000, 2000, 3000 and 4000 and using Parzen window function, the 

estimated auto-spectral density function of this single sine wave is shown in Figure B-1 . 

As seen in Figure B-1, a spectral function with single peak and very narrow bandwidth 

is obtained. The peak appears at a frequency of 0.02Hz, which matches the frequency of 

the sine wave. 

Auto-spectral density function of a single sine wave 

8 0 N=1000 
~ t * N=2000 
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Figure B-1 Estimated auto-spectral density function of a single sine wave 
using Parzen window function 

The estimated auto-spectral function exhibits a bandwidth ranging from 0.015 to 

0.025Hz near the peak frequency and this is not true, as in principle the spectral density 

function of a single sine wave is a Delta function and does not have such a bandwidth. 

However, the bandwidth of the estimated spectral density function is very narrow so that 

the estimated spectral density function can be regarded as an approximation of the Delta 

function. 

Figure B-1 shows that the sampling size does not produce a significant effect on the . 

estimated results if the sampling size is greater than 1000, and this means that the effects 
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of sample size on the estimates of spectral density function can be ignored when the 

sample sizes are large enough. 

Now examine the effects of window function on the estimated spectral functions. 

Assuming that h=0.5s, m=500 and the sample size N= 1000 and using the different 

window functions, the estimated spectral density functions are shown in Figure B-2. 

Auto-spectral density function using different window functions 
250 ~--,----,----,---,----,---,,---,-~========~ 

200 
u; 
g150 

E 
2 
- 100 
~ 
en 

50 

--- Boxcar 

- -- - -- Hanning 

-- Parzen 

o L-~~~~~~L_~L_~~~~~~~~~~~~~ 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 
frequency(Hz) 

Figure B-2 Estimated auto-spectral density functions using 
different window functions 

As seen in Figure B-2, Boxcar window function can not reduce the leakage errors, as 

the spectral density function estimated based on this window function contains an infinite 

number of peaks. This will cause a misunderstanding of having the infinite number of 

frequency components in the estimated spectral function. Both Hanning and Parzen 

window functions can reduce the leakage errors, as the estimated spectral density 

functions contain only one peak. 

It is noted that all window functions do not change the dominant-peak frequency, and 

this means that the spectral analysis does not skew the frequency components. However, 

the window functions influence the dominant-peak height and the bandwidth, and this 
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means that the peak magnitude values of the estimated spectral function lose their direct 

physical meaning. For the case of estimating frequency response functions, the peak 

magnitude values is not important, as these frequency response functions are estimated 

from a ratio between two spectral functions. In other words, the ratio between two 

spectral functions is independent of window functions used. In fact, the important thing is 

the smoothness of estimated spectral functions. As Parzen window function can produce 

the smoothest results, this window function was, therefore, chosen for this research. 

The relationship between the amplitude of the sine wave and the peak magnitude values 

of the estimated spectral functions can be represented by a coefficient, l, defined as the 

ratio of the square of sine wave amplitude to the spectral peak value. For Parzen window 

function, from Figure B-1 we have 

A.= 0
·
92 

::::0.0107 
75.95 

Case study 2 Auto-spectral density functions of sum of two sine waves 

(B-3) 

As discussed earlier, there is a bandwidth in the estimated spectral function, and this 

means that the program presented may cause two very close frequencies to be merged to 

a frequency. Now examine the minimum frequency interval which can be separated by 

the program. Consider the sum of two sine waves in the form as 

where a1 and a2 are the amplitudes of the two sine waves, jj and /2 are the frequencies, 

and a1 and a2 are the phases. 

sample size N=1000, 2000, 3000 and 4000, and the estimated spectral density functions 
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are shown in Figure B-3. As seen in Figure B-3, as the frequencies of the two sine waves 

are far away, the dominant frequencies are clearly exhibited. The peak frequencies are 

0.02Hz and 0.0399Hz, which are equal to the frequencies of the two sine waves. The 

spectral values at two peaks are respectively 75.7m2 and 303.4m2
, and the values of A 

corresponding to the two peaks are 0.0107. This means that the ratio A is independent of 

the frequency and amplitude of sine waves. 

Auto-spectral density functions of the sum of two sine wa\es 
400r-----.------,------,------.------~==========~ 

0.1 0.15 0.2 0.25 
frequency(Hz) 

-- N=1000 
-+ N=2000 
<J N=3000 
0 N=4000 

0.3 0.35 

Figure B-3 Estimated auto-spectral density function of the sum 
of two sine waves with far frequencies 

Consider two sine waves with relatively close frequencies. Let a1=0.9m, a2=l.8m, 

Ji=0.02Hz, h=0.0271Hz, Ut=n/4, a2= n/3, h=0.5s, m=500 and the sample size N=lOOO, 

2000, 3000 and 4000 respectively, and the estimated spectral density function is shown in 

Figure B-4. As seen in Figure B-4, the values of the estimated spectral density functions 

at two peaks are 74.5(m2
) and 302.5(m2

), and the corresponding peak frequencies are 

0.02( 1/s) and 0.0269( 1/s). The results demonstrate that the two close frequencies can still 

be separated clearly in the frequency- domain, but the peak widths almost overlap 

together. This implies that the minimum frequency interval which can be separated is 

about 0.007Hz. 
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Auto-spectral density functions of the sum of two sine waws 

N=1000 

-+ N=2000 
~ <J N=3000 
~ ~ 0 N=4000 

~ ~ 
'{i ~ 

J~ ~ ~ 
~ ~l. 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 

frequency(Hz) 

Figure B-4 Estimated auto-spectral density functions of sum 
of two sine waves with close frequencies 

Case study 3 Cross-spectral density function of two sine waves 

In theory, the cross-spectral density function of two sine waves with different 

frequencies is equal to zero, and this provides a way to check the accuracy of the applied 

program. In other words, the smaller the values of estimated cross-spectral density 

function are, the better the accuracy of the estimated results is. Consider two sine waves 

as 

x(t) = a1 sin(27if1 +a,) 

y(t) = a 2 sin(2.7if2 + a 2 ) 

where a1 and az are the amplitudes of the two sine waves, /J and fz are the frequencies, 

and a1 and a2 are the phases. 

Let a1=0.9m, az=l.8m, /J=0.02Hz, fz=0.027Hz, al=n/4, az= n/3, h=0.5s, m=500 and 

N=lOOO, 2000, 3000 and 4000, and the estimated cross-spectral density functions are 

shown in Figure B-5. The results exhibit that the estimate error is a function of frequency. 

The errors at the frequencies of the sine waves are obviously larger than those at other 
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frequencies. The results also show that the sample sizes can improve the accuracy, 

namely the larger the sample sizes are, the more accurate the estimate is. 

6 c;; 
C\1 

g 
E 4 
:::3 ..... -(,) 
Q) 
0.. 
en 2 

Cross-spectral density functions of the sum of two sine wa-.es 

-- N=1000 
- - - - - · N=2000 
--- N=3000 

-- N=4000 

o~~~~~~~~L---~~~~~~~~~-=~ 
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

frequency(Hz) 

Figure B-5 Estimated cross-spectral density functions of 
the sum of two sine waves 

Figure B-6 presents the estimated cross-spectral density functions using the different 

window functions. As seen in Figure B-6, the window functions have an apparent effect 

on the accuracy of the estimated results. Boxcar window function generates the largest 

errors, while Parzen window function has the smallest errors. This means that the 

estimate accuracy can be improved by selecting a proper window function. 
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Cross-spectral density functions of the sum of two sine wa\es 

Boxcar 
- - - - - - Hanning 

- - - Parzen 

,, 
' \ 

\ 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 
frequency(Hz) 

Figure B-6 Estimated cross-spectral density function for the sum 
of two sine waves using different window functions 

Case study 4 Auto-spectral density function of single random wave 

In the shaker-excitation tests, the random excitations were used, and the random riser 

responses were obtained. It is important for this program to obtain a reliable result for 

random waves. In order to validate the program, a random wave was first designed by 

composition of a large amount of harmonic component waves, namely 

n 

x(t) =:La j sin(W/ + aj) 
j=l 

(B-4) 

where n is the amount of the component sine waves, and ai, Wj and ai are respectively the 

amplitudes, frequencies and random phases of the component sine waves. 

The values of auto-spectral density function of the random wave generated by equation 

(B-4) are proportional to the square of the amplitudes ai, i.e. if the values of the estimated 

auto-spectral density function are proportional to the square of the amplitude ai, the 

program is validated. 

Now let n=l401, w 1=lrad/s, wi= WJ+ jLJw, where: LJw =0.0457rad/s, and ai take the 

random values shown in Table B-1, which is generated by Matlab rand function with a 

270 



AppendixB 

seed of 123, ranging [0, 2n] with a uniform distribution, and the amplitude distribution 

over the frequency range is assumed as 

aj = 0.00105( n ~ j)' + 0.000112 (B-5) 

j = 1,2, ... ,n 

This equation was designed based on the capacity of an existing shaker provided by 

Oceanic Consulting Corporation. The generated random wave is shown in Figure B-7. 

Let h=0.01s, m=500 and the sample size N=12001, and the estimated auto-spectral 

density function, using Parzen window function, is shown in Figure B-8. The line in 

Figure B-8 was calculated by 

(B-6) 

where Wj= w 1+ jLJw, A. takes the value of 0.0107 from equation (B-3), and ai take the 

values from equation (B-5). 

z 
Q) 0 
~ 
0 -

20 

Shaker force(seed=123) 

40 60 
time(s) 

80 100 120 

Figure B-7 A random wave generated by Matlab rand function 
using a seed of 123 
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Auto-spectral density function of irregular wa\ies 

0 estimated 

----- calculated by equation (B-6) 

O L-----~------~-------L------~------~------L-----~ 
0 10 20 30 40 50 60 70 

frequency(rad/s) 

Figure B-8 Estimated auto-spectral density function of random waves 

As seen in Figure B-8, at the majority of the frequencies, the estimated spectral 

function can match the line pretty well, while at some frequencies, for example from m=4 

to 8rad/s, there are considerable errors. 

Case study 5 Cross-spectral density function of two random waves 

In addition to the random wave shown in Figure B-7, another random wave was 

designed. The new random wave was assumed to be a response of a SDOF (single degree 

of freedom) linear mass-damping-spring system to the old random wave. Assume M, C 

and K are respectively the mass, damping and stiffness of this system, and the new 

random wave can be obtained by 

n 

y(t) = Lbj sin(ml + P) 
j = l 

where 
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The natural frequency for the mass-damping-stiffness system is 

{J) = [K 
n VM 

and a peak is expected at the natural frequency for the cross-spectral density function. 

Let M=1kg, C=SN.s/m and K=900N/m, and the natural frequency is 30rad/s. The new 

random wave is shown in Figure B-9. Let h=O.Ols, m=500 and N=12001, and the 

estimated cross-spectral density function is shown in Figure B-10. As seen in Figure B-

10, a peak is found at the frequency of 30rad/s, which is equal to the natural frequency of 

the assumed system. This result validates the program for the estimate of cross-spectral 

density functions for random waves. 

Shaker motion(seed=123) 

20 40 60 
time(s) 

80 100 

Figure B-9 Another random wave generated by an assumed 
mass-damping-spring system 
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Cross-spectral density function of two irregualr wa~,es 

10 20 30 40 50 60 
frequency(rad/s) 

Figure B-10 Estimated cross-spectral density function of two random waves 

Conclusions 

i). the program can produce the spectral density functions with enough accuracy for sine 

waves and random waves; 

ii). if the sample sizes are large enough, the sample size effects on the estimates of 

spectral density functions can be ignored; 

iii). window functions are important in estimating spectral density functions. Hanning 

and Parzen window functions can reduce the leakage errors of the estimated spectral 

density functions. 
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Table B-1 

0.5517 4.0181 0.6197 4.3393 2.1459 1.4824 1.6593 3.7977 2.6270 0.8563 3.9867 
6.1403 5.1868 1.8458 2.4558 0.7544 5.4179 3.2973 5.9992 2.9154 2.3946 2.4297 
1.9588 3.7232 2.3900 5.8889 2.2803 4.2281 5.4263 5.6303 4.2190 3.2650 4.3059 
0.1731 0.4634 2.9152 5.9424 2.9261 0.0634 4.5260 4.2099 0.7135 2.8846 0.9059 
2.0216 4.2039 6.1884 2.9187 2.5571 5.7763 1.3624 2.2683 3.7079 1.5481 0.8238 
3.4811 3.7398 4.3646 0.2788 4.2960 2.7791 4.5797 2.1734 3.5710 0.1680 3.0871 
4.4631 2.0914 2.3870 6.1912 5.2791 1.2376 2.7786 3.8011 3.7621 2.2295 4.1296 
2.4295 4.0115 2.4923 4.1124 1.6738 2.4975 3.8587 3.8660 1.0336 5.0371 5.5908 
0.0100 4.0028 0.7855 1.4156 4.0294 2.2498 0.1796 2.7984 2.6489 4.2465 0.8842 
0.5513 4.1542 1.3661 1.5540 4.9122 4.1935 1.7028 4.9773 5.8696 4.3296 2.1931 
1.8854 1.1430 2.9574 4.4245 0.9322 4.3330 3.1166 4.0403 3.7107 4.8205 3.4712 
1.8148 3.5647 1.0452 5.3099 3.9652 3.7809 4.5474 5.6328 2.1439 5.4301 0.7500 
0.5723 4.8519 3.4431 0.1654 3.0255 5.7636 0.5778 3.2012 0.1109 4.7788 6.1625 
0.4750 3.7047 5.5676 6.0733 3.7219 5.0890 3.8269 4.2808 4.5920 1.5916 2.5229 
3.9917 2.2784 3.7020 3.2689 0.7853 3.7607 3.5756 2.8993 3.0877 1.9725 1.8480 
0.9727 5.8982 1.9753 4.4943 5.2593 1.9263 4.7314 6.2487 5.3371 1.7711 3.8133 
1.1783 5.5924 1.9246 1.4774 6.0619 0.6202 0.4532 1.6359 5.8547 4.5662 0.9073 
5.4960 2.5441 0.9767 4.3952 5.5343 4.3793 1.5673 1.8346 3.1207 3.2618 0.6486 
0.5160 1.6163 3.3550 1.4871 5.0221 5.1069 3.1747 0.5186 1.2960 5.0549 2.8064 
4.9812 1.9485 0.9290 5.9705 3.2014 2.5381 2.1002 5.6793 3.6911 2.8130 3.0951 
0.2627 4.2469 1.2644 0.7271 6.0341 3.7922 5.4779 5.3177 2.8157 5.2431 5.3510 
3.1104 0.8676 5.4320 1.6292 5.5025 4.9608 4.5797 1.5435 5.2298 1.4689 0.6311 
0.1731 5.6775 5.2305 0.5407 2.5876 4.0863 3.4408 5.7810 3.7360 3.4887 5.7845 
6.1989 3.5006 5.0158 5.4466 0.9489 1.4899 2.6969 0.0154 0.8412 0.6041 6.1954 
0.7242 1.5268 0.0330 2.3635 1.5840 0.7890 3.3341 3.2665 4.3028 4.0959 1.9223 
6.1716 2.8547 6.0302 1.0887 1.7450 5.2339 1.8188 0.8938 6.1160 4.4712 0.1265 
2.7069 3.9247 1.2916 5.7537 4.6082 4.2902 0.1895 0.1182 1.7337 3.6788 2.6081 
3.6501 4.8414 1.4898 1.1161 2.8725 4.3328 5.4686 0.7392 1.4722 5.6531 3.4005 
0.2175 4.2699 4.2995 5.3566 2.9965 1.8546 0.1301 0.2125 3.4117 6.1622 1.8649 
2.4873 2.2375 0.9464 2.8735 2.5149 1.5479 3.3439 3.9257 5.6419 3.0995 0.1981 
5.2276 2.2182 3.8103 1.1840 1.2219 3.3317 0.9642 0.5479 4.4114 1.4343 4.2604 
0.8393 0.5860 3.5158 3.1588 3.0446 0.4588 1.3801 4.6113 4.5060 1.0804 0.2591 
0.7402 0.2935 0.0244 1.9713 6.0288 3.6841 4.1965 2.1072 3.2227 2.8816 5.7357 
3.1754 5.1289 2.3742 4.9306 5.2428 0.7577 4.2838 5.0300 5.1168 0.0277 0.7359 
2.5069 4.1126 5.3262 0.6511 4.3242 5.8844 2.4223 3.5018 0.2173 2.0150 0.1195 
3.5844 0.4719 1.5928 4.0666 5.0451 1.2654 5.3033 5.9945 5.7058 3.2570 1.4745 
0.9626 5.7616 5.3030 6.1399 3.9236 ' 2.3453 2.7804 1.3331 5.4618 5.2093 2.7706 
1.2923 5.5002 3.0172 4.3947 2.7439 3.8164 2.9317 0.5463 2.2089 3.8201 3.2970 
2.0251 5.2969 5.4675 1.2588 0.8115 4.7064 2.0645 2.8184 6.1952 4.1624 6.2375 
4.4217 4.4870 2.9582 0.1438 4.5071 0.7717 1.9601 0.3751 2.5745 3.9497 0.7745 
4.7482 0.6090 5.9272 5.1160 5.6750 1.5480 4.7054 4.0405 0.6163 3.7584 1.8271 
2.3496 5.8080 0.0798 3.4390 6.1033 5.8797 4.7373 5.3766 5.8729 2.9784 0.1069 
5.7662 1.5120 3.5946 1.4490 5.2542 2.7387 5.0576 4.1442 2.4254 4.8754 2.2942 
5.1902 1.4885 3.5755 1.7398 4.3909 2.4180 5.4372 6.0984 4.1605 6.0022 2.5535 
2.1897 1.9692 2.4538 4.0027 5.3759 0.2321 5.8313 2.0563 3.2449 4.8719 5.7220 
4.7625 2.2742 1.7894 3.7834 1.9403 1.6668 4.0017 1.5748 2.1479 2.9821 5.8064 
3.8032 1.9165 2.1702 0.1966 5.9674 2.6883 5.3606 1.0459 3.7992 3.0333 5.1064 
1.7656 4.7619 3.9039 3.9146 1.2596 1.4214 1.0546 0.1197 1.8395 2.7300 3.5027 
3.4595 5.1884 3.1842 3.1265 0.1323 5.1196 2.8673 5.4940 0.3226 0.2944 2.7327 
5.3066 3.7442 2.5612 5.6091 5.5025 3.8056 4.8676 2.0171 4.2857 6.2744 3.3313 
5.6703 4.3513 3.0196 1.3524 3.5470 0.2536 2.1405 4.9425 4.5700 2.3122 5.9718 
0.9330 4.6501 3.8157 4.4223 1.0885 3.6870 3.4277 4.3732 0.3139 4.7055 4.8737 
5.4938 3.6112 4.1383 3.6569 6.0873 0.8588 1.4520 6.0927 2.3387 5.1093 5.3201 
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5.0989 1.6579 5.4724 0.9915 1.2303 0.0639 5.1861 2.5830 1.9995 3.0271 1.7581 
4.4107 1.4309 4.0611 0.4973 1.5067 1.6472 1.5728 1.0995 0.4299 5.4593 1.3151 
5.2378 3.4935 5.2420 6.0807 2.8329 4.3289 2.9149 1.1790 4.9937 4.9597 4.1344 
0.6663 1.2192 2.4395 3.4913 5.7605 4.8526 1.8169 0.9979 1.8019 0.1426 3.4472 
5.6070 2.2792 3.4318 5.0722 4.6936 6.1658 0.5173 4.0458 0.5768 4.9896 4.5175 
6.1753 2.5146 2.6204 1.6463 4.1622 3.1124 2.1725 1.5099 5.0032 0.8305 4.0343 
2.4531 4.9030 0.5895 4.6591 4.3234 4.3568 0.4838 0.0297 2.5320 5.2606 4.3272 
0.1190 1.8904 4.7252 2.8081 3.1763 1.4839 1.2835 1.0827 1.0176 0.5439 4.8217 
4.7794 2.4536 0.3557 3.0604 2.0347 3.7680 1.1177 3.9417 4.7656 3.6934 2.6348 
5.0141 1.4874 3.8097 3.7378 1.6291 4.4497 3.5531 1.3756 3.4327 1.7957 1.9955 
5.4991 3.3549 1.0528 0.3616 1.9263 4.4441 4.2870 2.2540 1.9256 4.4828 1.5515 
0.6438 0.3613 2.9206 2.6614 0.3963 1.0122 3.7182 6.2587 2.8734 1.0403 4.3427 
2.7633 3.9247 1.7217 2.1691 1.6184 0.2316 3.8480 0 .2253 4.5751 5.8830 3.4021 
2.5447 5.5273 0.3312 5.0300 5.1827 1.6653 3.9474 6.2213 3.5352 1.5896 0.9011 
2.3056 1.2172 5.4916 2.8281 0.3300 5.1162 2.1717 1.3136 5.4875 3.7302 6.0494 
3.6438 4.8380 1.7295 1.4420 0.8596 1.9055 0.6177 1.4939 0.9421 0.5994 2.6159 
1.3814 1.2766 4.9504 5.6497 2.9639 1.1235 1.7268 5.9147 2.9244 2.9550 1.5913 
2.9456 1.4123 5.2247 3.6679 2.4281 0.0445 5.7508 5.2141 1.7240 4.1561 1.9060 
1.8204 2.3046 4.4218 5.4264 0.6638 3.7432 5.3542 0.2676 5.4685 4.4357 0.5251 
3.4467 3.9393 2.5911 6.2107 0.2726 1.3238 0.8002 3.6409 0.2791 4.3594 0.6525 
2.6300 0.6778 0.6679 3.4948 1.3234 0.1714 2.2927 4.0786 5.7427 1.7305 0.4865 
2.6549 3.2922 1.8524 5.7038 1.3085 1.0103 3.1300 2.4440 3.7767 2.2548 2.0283 
2.8370 3.9214 2.6967 3.4225 0.0930 4.7958 2.3525 4.3393 1.2316 3.4798 1.8494 
5.7963 4.2529 0.1768 5.8682 5.3129 4.1936 3.4479 5.8856 3.8419 4.5466 4.5586 
5.9227 4.7017 4.4021 1.5980 2.9189 4.9942 0.3999 4.8519 3.2685 0.4221 0.5192 
4.4569 4.8271 1.2842 0.0582 4.9689 3.0068 5.7543 0.9881 6.0193 0.2489 5.4121 
0.1328 1.0894 0.6346 2.5276 0.8027 0.7012 3.5191 2.0074 4.5371 2.9576 1.4610 
0.0086 0.5888 0.3087 4.3587 0.5487 4.1165 2.2102 1.4489 5.1230 3.9245 3.8048 
2.7625 3.1152 5.1007 5.6369 1.8462 3.4770 4.6691 2.9961 2.6099 1.2582 4.1565 
2.4404 5.9800 6.2824 5.4999 4.8944 0.2837 6.0032 0.0894 0.3449 3.5363 1.2628 
0.0517 1.5461 4.8601 2.7671 4.2893 3.3696 3.1581 4.0213 4.5299 0.8476 1.4842 
0.0224 6.2523 2.3745 3.5555 4.7287 5.2992 0.0635 5.2231 2.1973 3.6103 1.7805 
4.1000 1.8044 3.6037 3.5886 1.0705 3.8545 2.7947 2.9112 0.7902 4.3000 0.7448 
1.0119 4.8236 4.5534 6.2513 3.7694 6.0627 0.8311 0.3881 1.3424 5.2162 4.8324 
1.1663 4.1816 3.3913 2.8762 4.3571 4.7728 4.5905 1.8798 1.8960 4.0662 4.0160 
3.3445 2.0900 4.2691 2.6383 1.8056 4.3998 6.0935 3.4020 0.0651 1.3714 2.5757 
5.1918 3.5794 2.9345 2.8307 5.7533 4.5281 1.8750 2.7310 1.9842 3.7517 3.8322 
4.4022 2.8273 4.8866 1.0826 5.3928 2.6413 1.7650 0.8516 0.1362 2.7658 0.9800 
2.3425 5.6496 0.5876 4.6919 2.5336 0.8318 0.1348 3.0572 5.4615 0.0643 5.6879 
4.5995 1.4412 0.6892 2.7501 1.5871 2.1978 0.2654 0.2427 1.8610 0.7026 1.7750 
0.7007 1.6279 2.5029 1.1472 4.2935 4.6266 4.7686 4.5618 2.0775 1.3463 1.7791 
5.9962 1.3194 2.3136 4.9618 3.3717 5.9898 1.6594 5.0467 3.0029 3.2137 2.1856 
1.6656 2.4432 1.4264 3.4851 1.5631 0.3886 3.0005 0.8210 6.1813 3.2215 1.9618 
4.3773 4.9444 5.7447 4.3654 0.9787 5.1313 5.5953 5.6726 4.7654 0.9969 4.2491 
5.8797 3.8666 5.3258 1.1741 3.8629 5.2798 0.1657 1.6881 3.7286 3.8230 1.0292 
0.9305 0.1172 3.6892 1.5848 1.1576 3.1008 2.8591 5.8610 5.0991 4.8270 4.3491 
2.4328 2.7955 4.1595 2.7093 0.9698 0.4778 0.3730 3.9508 0.6903 3.1191 2.3694 
0.2780 3.2761 1.6426 5.0343 1.7398 5.6964 2.8276 4.2439 1.3464 3.5612 5.5528 
2.1795 5.3345 1.7240 3.8801 5.3420 2.0197 3.1727 4.7028 3.9381 6.2654 2.8226 
1.7726 4.2517 5.5900 4.4136 0.2772 2.8949 3.0998 4.2443 0.9790 5.1885 4.4939 
5.4980 5.1095 3.1568 1.1244 3.9796 0.2366 5.8416 5.1233 2.8598 4.9652 3.4135 
5.1757 4.2056 3.1597 5.0872 4.4845 4.4962 5.5986 5.0664 1.4068 1.2375 1.7875 
2.8956 2.3467 1.6426 4.6092 1.6604 2.8539 5.5185 2.7360 3.3369 5.7373 4.8830 
3.1965 2.2847 1.7746 4.9160 6.1936 3.0167 2.4038 0.1257 1.3288 2.8529 1.2840 
3.1279 5.8302 2.6788 3.6967 2.2057 1.2197 4.5301 4.5929 4.2745 5.8266 3.9190 
0.3882 2.3458 5.3956 5.6278 5.9160 4.9072 2.5255 2.5331 5.8308 5.0439 0.8743 
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4.1411 6.2381 3.1104 0.5220 2.6198 5.4355 3.0324 3.1503 5.5526 3.8711 4.8451 
0.8711 0.4949 4.8691 2.7981 5.0768 0.7117 4.2943 5.7642 4.4595 5.1347 5.9653 
4.9511 5.2100 2.1863 1.4407 4.3392 0.0373 5.6271 5.7044 4.3150 2.2555 1.0454 
2.2704 1.6223 3.7424 4 .1619 5.1634 3.4308 0.4288 0.4567 3.2666 5.7787 3.1135 
1.8126 2.8189 2.4971 3.6555 0.7750 0.2795 3.4937 1.4285 1.1945 1.3632 2.9816 
3.9766 6.1252 3.2455 2.5889 6.0406 1.1772 5.1452 0.2307 0.8057 1.4572 4.8758 
2.6514 1.8494 5.7352 1.9285 3.5583 1.8252 0.9341 4.5247 0.7499 4.9433 5.8140 
5.2467 2.6135 5.1993 4.3313 4.7881 5.3720 3.6249 1.4283 3.1573 3.5812 3.1551 
3.4532 0.6969 1.2588 1.0439 1.6657 3.5420 3.5842 1.9553 1.5370 1.7501 2.1333 
2.4483 5.6219 0.4411 6.0299 2.7274 4.1794 4.1841 1.5278 5.0860 3.1240 2.4797 
5.8213 3.5473 5.1227 5.1387 3.5111 5.5760 2.3973 3.9722 2.2950 5.5779 3.1385 
1.1957 2.5035 4.0069 1.5155 5.7974 4.1512 0.4583 6.1214 0.7896 1.5220 1.1087 
4.9684 0.8953 5.2586 1.6430 5.5083 1.7529 5.6596 5.9100 5.1512 0.3328 0.6825 
4.5308 3.1660 5.0512 2.7983 1.1276 1.8303 6.1504 5.2063 2.7718 1.7409 5.2027 
4.6750 1.7248 4.2530 2.4404 4.7116 0.7173 4.9741 2.2460 5.3221 0.7677 3.4268 
2.6288 4.9720 4.6020 6.0045 2.6400 5.3619 4.3189 4.3558 2.8243 5.5004 0.4587 
5.6402 0.0391 3.7887 2.4393 5.8532 4.3917 3.3747 0.9532 4.4046 5.1798 3.4172 
5.2748 4.7695 0.9245 5.9063 6.2047 0.4864 0.6127 5.5993 4.7839 3.9362 5.7658 
0.0298 4.9152 5.1280 0.6324 
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Appendix C 

Validation of the program to estimate system parameters 
for a linear system 

Method of Estimation 

Physical and engineering systems can be classified into linear and nonlinear systems. 

A system is a linear system if the following equality exists (Bendat, 1998): 

(C -1) 

where x1 and x2 represent any inputs to the system, p represents the corresponding outputs 

from the system, and c 1 and c2 represents any constants. 

The dynamic characteristics of a single-degree-of-freedom (SDOF) linear system can 

be described by weighting function h(r) and the time-domain relationship between the 

system input x(t) and the system output p(t) is established by 

p(t) = [~ h(r)x(t -r)dr (C-2) 

From equation (C-2), two expressions can be obtained. Fourier transform of both sides of 

equation (C-2) gives the first expression as follows: 

P(m) = H(m)X(m) (C-3) 

where P(w), X(w) and H(w) are respectively Fourier transforms of p(t), x(t) and h(r). 

H(w) are called Dynamic Stiffness (DS), which are generally complex functions, and the 

inverse of DS is known as Frequency Response Function (FRF). 

According to equation (C-2), the product z(t)q(t+r) is given by 

x(t) p(t + r) = J: h(~)x(t)x(t + r- ~)d~ (C-4) 
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Fourier transform of both sides of equation (C-4) yields the second expression for the DS 

as follows: 

(C-5) 

where the symbols Sxx(cv) and Sxp(cv) respectively denote Fourier transforms of the auto-

correlation function of x(t) and the cross-correlation function of x(t) and p(t), i.e. the auto-

spectral density function of x(t) and the cross-spectral density function of x(t) and p(t). 

On other hand, for a mass-damping-stiffness system, the input x(t) and output p(t) 

follow a linear differential equation, namely we have 

Mx(t) + Cx(t) + Kx(t) = p(t) (C-6) 

where M, C and K are the mass, damping and stiffness, which are called the system 

parameters. Fourier transform of both sides of equation (C-6) gives 

lc -m2 M + K) + imC Jx (f) = P(f) (C-7) 

where X(cv) is Fourier transform of x(t), and F(cv) is Fourier transform off(t). 

Combination of equations (C-3), (C-5) and (C-7) gives 

H (m) = ( -m2 M + K) + imC = S xp (m) 
S xx (m) 

i=H 

(C-8) 

Note that there is a linear relationship in equation (C-8~ between the real part of H( co) and 

cv2
, namely 

Re[H(m)]=Re xp =-m2 M+K (
s (m)J 
Sxx(m) 

and obviously the slope is related to the mass M, and the intercept is related to the 

stiffness K. This linear relationship provides a way to estimate the system parameters M 

and K using a linear fit based on the DS. Specifically, if the input and output are known, 
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the DS can be estimated based on the auto-spectral density function of the input and the 

cross-spectral density function between the input and output, and then the system 

parameters M and K can be obtained by the linear fit of Re[H(m)] versus m2
• The modal 

natural frequency mn and modal damping can then be estimated using the following 

formulae: 

Case Studies 

Case study C-1 System parameters of large-damping system 

For the system defined by equation (C-6), the major system characteristics depend on 

two dimensionless parameters, or undamped natural frequency fn and damping ratio c;, 

which are defined as 

~= 2.JKM 

A system is a large-damping system if c; is greater than 0.5 (He and Fu, 2001). It is well-

known that no peak exists in the FRF amplitude plot for a large-damping system. 

Case C-1-1 Assume M=lkg, C=SON.s/m, K=900N/m, and this system is a large-damping 

system, because c; =0.833. The random input x(t) is obtained by composition of a large 

amount of harmonic component waves, namely 
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Appendix C 

(C-9) 

where n is the amount of the harmonic components, and ai, Wj and ai are respectively the 

amplitudes, frequencies and random phases of the harmonic components. Let n=1401 , 

ro1=1rad/s, Wj= w1+ jl1w, where: L1w =0.0457rad/s, and ai take the random values shown 

in Table B-1, and the amplitude distribution over the frequency range is assumed as 

ai = 0.0010{ n: j)' +0.000112 

j = 0,1,2, ... ,n 

The resultant random input x( t) is shown in Figure B-7. 

The output p(t) can be calculated based on equations (C-6) and (C-9), namely we have 

p(t) = :t [(- wiM + K ~ j sin(wjt + aj )+ wj cos(w / + a j )] (C -10) 
j = ! 

The generated output contains the information of the system parameters M, C and K. 

Now apply the present technique to the input and output. If the estimated values of M, C 

and K are close to the actual values of 1kg, SON.s/m and 900N/m, the present technique is 

validated. 

The estimated FRF is shown in Figure C-1. From equation (C-8), the actual FRF can 

be calculated by 

(C -ll) 

and the actual FRF is also plotted in Figure C-1. As seen in Figure C-1, there is a good 

agreement between the two groups of values. 
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X 10.3 Arrplitude of frequency response function 

1.2 --- actual 

0 estirrated (use cross-spectral function) 

z 
+ estirrated (use auto-spectral function) 

E 
u:::- 0.8 a: 
u. 
0 0.6 Q) 
"0 ::s .... a. 0.4 E 
c:u 
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0 
0 10 20 30 40 50 60 

frequency ( rad/s) 

Figure C-1 The actual and estimated FRF amplitude for a large-damping system 
((=0.833) 

It is noted that the values at the frequencies beyond 65(rad/s) are useless, because the 

input does not contain these frequency components. 

The Matlab fit function was used to fit the real part of the DS function, and the fitting 

plot is shown in Figure C-2. 

Linear fit for rrass and stiffness 
910 
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90 --- fit 
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Cl 
0 870 
-e 
c:u c.. 860 
co 
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0 10 20 30 40 50 60 70 

frequency-squared[ ( rad/s )2j 

Figure C-2 Linear fit for mass and stiffness for a large-damping system 
((=0.833) 
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The slope and intercept of the fitting line in Figure C-2 are respectively 0.992 and 

900.09. These values represent respectively the estimates of M and K, which are close to 

the actual values of M and K. 

The imaginary part of the dynamic stiffness function is shown in Figure C-3. As seen 

in Figure C-3, as the damping used is independent of frequency, the imaginary part of the 

dynamic stiffness function is a linear function of frequency. The estimated damping is 

47.03 N.s/m, which is close to the actual value of 50 N.s/m. 

350 
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z 
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.~ 
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0 2 

rraginary part of dynarric stiffness function 
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frequency ( rad/s) 

-

-

-

-

-

-

7 8 9 

Figure C-3 Imaginary part of dynamic stiffness function for a large-damping 
system 

((=0.833) 

Case study C-2 System parameters of moderate-damping SDOF linear system 

A system is a moderate-damping system if (is greater than 0.05 and smaller than 0.5. 

It is well-known that an obtuse peak exists in the FRF amplitude plot for a moderate-

damping system (He and Fu, 2001). 

Case C-2-1 Assume M=lkg, C=5N.s/m, K=900N/m, and this system is obviously a 

moderate-damping system, because ( =0.0833. The input x(t) still takes the same time 
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series as in Case C-1-1 , and the output can be calculated using equation (C-10). The 

estimated and actual FRFs are shown in Figure C-4. As seen in Figure C-4, the estimated 

FRF matches the actual FRF well for the moderate-damping system. 

Figure C-5 shows the real part of the estimated dynamic stiffness function and the 

linear fit for estimate of the mass and stiffness. The estimated mass and stiffness are 

0.983kg and 898.89N/m, which are close to the actual values. 

Figure C-6 shows the imaginary part of the estimated dynamic stiffness function, and 

the estimated damping is 4.766N.s/m, which is close to the actual value of the damping. 

8 

7 z 
E 6 
LC 
fE 5 
0 
(J) 4 
"0 
;:, 

'6. 3 
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C1l 2 

10 

Arrplitude of frequency response function 

--- actual 
0 estirrated (use cross-spectral function) 
+ estirrated (use auto-spectral function) 

20 30 40 50 60 
frequency ( rad/s) 

Figure C-4 The actual and estimated FRFs for a moderate-damping system 
((=0.0833) 
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Linear fit for rrass and stiffness 
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Figure C-5 Linear fit for mass and stiffness for a moderate-damping system 

((=0.0833) 

35 

E z 30 
u:-a: 25 
0 
t::: 20 
res 
a. 

~ 15 
c::: 
.g> 10 
-~ 

~0 2 

lrraginary part of dynarric stiffness function 

3 4 5 6 7 8 9 
frequency ( rad/s) 

Figure C-6 Imaginary part of dynamic stiffness function for a moderate-damping 
system (( =0.0833) 

Case C-2-2 Assume M=0.25kg, C=5N.s/m, K=900Nim, and this system is also a 

moderate-damping system, because ( =0.167. The input x(t) still takes the same time 

series as in Case C-1-1, and the output can be calculated using equation (C-10). The 

estimated and actual FRFs are shown in Figure C-7. As seen in Figure C-7, the estimated 

FRF matches the actual FRF well for this moderate-damping system. 
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Figure C-8 shows the real part of the estimated dynamic stiffness function and the 

linear fit for estimate of the mass and stiffness. The estimated mass and stiffness are 

0.261kg and 900.35N/m, which are close to the actual values. 

Figure C-9 shows the imaginary part of the estimated dynamic stiffness function, and 

the estimated damping is 4.495N.s/m, which is close to the actual value of the damping. 
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Figure C-7 The actual and estimated FRFs for a moderate-damping system 
((=0.167) 
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Figure C-8 Linear fit for mass and stiffness for a moderate-damping system 

((=0.167) 
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lrraginary part of dynarric stiffness function 
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Figure C-9 Imaginary part of dynamic stiffness function for a moderate-damping 
system ((=0.167) 

Case C-2-3 Assume M=1kg, C=5N.s/m, K=225Nim, and this system is obviously a 

moderate-damping system, because (=0.167. The input x(t) takes the same time series as 

in Case C-1-1, and the output can be calculated using equation (C-10). The estimated and 

actual FRFs are shown in Figure C-10. As seen in Figure C-10, the estimated FRF 

matches the actual FRF well for this moderate-damping system. 

Figure C-8 shows the real part of the estimated dynamic stiffness function and the 

linear fit to estimate the mass and stiffness. The estimated mass and stiffness are 0.997 kg 

and 223.61N/m, which are close to the actual values. 

Figure C-9 shows the imaginary part of the estimated dynamic stiffness function, and 

the estimated damping is 5.065N.s/m, which is close to the actual value of the damping. 
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Arrplitude of frequency response function 
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Figure C-10 The actual and estimated FRFs for a moderate-damping system 
((=0.167) 

Linear fit for rrass and stiffness 
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Figure C-11 Linear fit for mass and stiffness for a moderate-damping system 
((=0.167) 
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Linear fit for darrping 
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Figure C-12 Imaginary part of dynamic stiffness function for a moderate-damping 
system ((=0.167) 

Case study C-3 System parameters of small-damping SDOF linear system 

A system is a small-damping system if (is smaller than 0.05 (He and Fu, 2001). It is 

well-known that a sharp peak exists in the FRF amplitude plot of a small-damping 

system. 

Case C-3-1 Assume M=1kg, C=2.5N.s/m, K=900Nim, and this system is a small-

damping system, because (=0.0417. The inputx(t) takes the same time series as in Case 

C-1-1, and the output can be calculated using equation (C-10). The estimated and actual 

FRFs are shown in Figure C-13. As seen in Figure C-13, the estimated FRF matches the 

actual FRF well for this small -damping system. 

Figure C-14 shows the real part of the estimated dynamic stiffness function and the 

linear fit to estimate the mass and stiffness. The estimated mass and stiffness are 0.946kg 

and 897.81N/m, which are close to the actual values. 
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Figure C-15 shows the imaginary part of the estimated dynamic stiffness function , and 

the estimated damping is 2.71N.s/m, which is close to the actual value of the damping. 
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Figure C-13 The actual and estimated FRFs for a small-damping system 
((=0.0417) 
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Figure C-14 Linear fit for mass and stiffness for a small-damping system 
((=0.0417) 
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Linear fit for darrping 
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Figure C-15 Imaginary part of dynamic stiffness function for a small-damping 
system ((=0.0417) 

Case C-3-2 Assume M=1kg, C=l.5N.s/m, K=900Nim, and this system is a small-

damping system, because ( =0.025. The input x(t) takes the same time series as in Case 

C-1-1, and the output can be calculated using equation (C-10). The estimated and actual 

FRFs are shown in Figure C-16. As seen in Figure C-16, the estimated FRF matches the 

actual FRF well for this small-damping system. 

Figure C-17 shows the real part of the estimated dynamic stiffness function and the 

linear fit to estimate the mass and stiffness. The estimated mass and stiffness are 0.916kg 

and 896.88N/m, which are close to the actual values. 

Figure C-18 shows the imaginary part of the estimated dynamic stiffness function, and 

the estimated damping is 2.067N.s/m, which is close to the actual value of the damping. 
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Arrplitude of frequency response function 
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Figure C-16 The actual and estimated FRFs for a small-damping system 
((=0.025) 

Linear fit for rrass and stiffness 

0 estirrated 

--- fit 

.§ 
z 
(j) 870 0 
0 
t: 860 co a. 
Iii 
~ 850 

840 

830 
0 10 20 30 40 50 60 70 

frequency-squared[( rad/s )~ 

Figure C-17 Linear fit for mass and stiffness for a small-damping system 
((=0.025) 
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Linear fit for darrping 
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Figure C-18 Imaginary part of dynamic stiffness function for a small-damping 
system(( =0.025) 

Case C-3-3 Assume M=4kg, C=5N.s/m, K=900Nim, and this system is obviously a 

small-damping system, because ( =0.0417. The input x( t) takes the same time series as in 

Case C-1-1 , and the output can be calculated using equation (C-10). The estimated and 

actual FRFs are shown in Figure C-19. As seen in Figure C-19, the estimated FRF 

matches the actual FRF well for this small-damping system. 

Figure C-20 shows the real part of the estimated dynamic stiffness function and the 

linear fit to estimate the mass and stiffness. The estimated mass and stiffness are 3.967kg 

and 893.29N/m, which are close to the actual values. 

Figure C-20 shows the imaginary part of the estimated dynamic stiffness function, and 

the estimated damping is 6.444N.s/m, which is close to the actual value of the damping. 

293 



Appendix C 

Arrplitude of frequency response function 
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Figure C-19 The actual and estimated FRFs for a small-damping system 
((=0.0417) 
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Figure C-20 Linear fit for mass and stiffness for a small-damping system 
((=0.0417) 
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Linear fit for darrving 
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Figure C-21 Imaginary part of dynamic stiffness function for a small-damping 
system(( =0.0417) 

Case C-3-3 Assume M=1kg, C=SN.s/m, K=3600Nim, and this system is obviously a 

small-damping system, because (=0.0417. The inputx(t) takes the same time series as in 

Case C-1-1, and the output can be calculated using equation (C-10). The estimated and 

actual FRFs are shown in Figure C-22. As seen in Figure C-22, the estimated FRF 

matches the actual FRF well for this small-damping system. 

Figure C-23 shows the real part of the estimated dynamic stiffness function and the 

linear fit to estimate the mass and stiffness. The estimated mass and stiffness are 1.1kg 

and 3604.8N/m, which are close to the actual values. 

Figure C-24 shows the imaginary part of the estimated dynamic stiffness function, and 

the estimated damping is 2.700N.s/m, which is close to the actual value of the damping. 
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X 10.3 Arrplitude of frequency response function 

4 --- actual 

3.5 0 estirrated (use cross-spectral function) 

z + 
"E 3 

estirrated (use auto-spectral function) 

(/) 2.5 0 
0 2 Q) 
"0 
::J 
.-.: 1.5 a. 
E 
<U 

0.51'------------.......-
0 ~------~------~--------~------~--------~------~--~ 

0 10 20 30 40 50 60 
frequency(rad/s) 

Figure C-22 The actual and estimated FRFs for a small-damping system 
((=0.0417) 
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Figure C-23 Linear fit for mass and stiffness for a small-damping system 
((=0.0417) 
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Linear fit for darrping 
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Figure C-24 Imaginary part of dynamic stiffness function for a small-damping 
system(( =0.0417) 

Conclusions 

Table C-1 summarizes the estimated results. 

Table C-1 The comparison of the actual and estimated values 

case actual estimated 
M c K fn M c K fn 
(kg) (N.s/m) (N/m) (rad/s) (kg) (N.s/m) (N/m) (rad/s) 

C-1-1 1 50 900 30 0.992 47.03 900.09 30.13 
C-2-1 1 5 900 30 0.983 4.766 898.89 30.25 
C-3-1 1 2.5 900 30 0.946 2.710 897.81 30.81 
C-3-2 1 1.5 900 30 0.916 2.067 896.88 31.29 
C-3-3 4 5 900 15 3.967 6.444 893.29 15.01 
C-2-2 0.25 5 900 60 0.261 4.495 900.35 58.68 
C-3-4 1 5 3600 60 1.100 2.700 3604.8 56.20 
C-2-3 1 5 225 15 0.997 5.065 223.61 14.97 

The following conclusions can be obtained: 

a. The frequency response functions can be estimated using the methods presented in this 

appendix, and the estimated frequency response functions match the actual frequency 

response functions; 
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b. The estimated values of mass and stiffness match the actual values of mass and 

stiffness, while the accuracy of the estimated damping depends on damping ratio (. If 

damping ratio (is too small, the accuracy of the estimated damping values becomes poor. 
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AppendixD 

Validation of the program to estimate system parameters 
for a nonlinear system 

Method of Estimation 

A system is a linear system if equation (C-1) is not satisfied. A single-input/single-

output nonlinear system can usually be regarded as sum of two subsystems (Bendat, 

1998). The first is a linear subsystem and another is a nonlinear subsystem, namely we 

have 

p(t) = p 1 (t) + p 2 (t) (D-1) 

where p(t) is the output of the nonlinear system, pJ(t) is the output of the linear 

subsystem, and p 2(t) is the output of the nonlinear subsystem. The linear subsystem can 

be described by a weighting function hJ(r), namely 

(D-2) 

where x(t) is the input of the nonlinear system. The nonlinear subsystem can be described 

by a nonlinear operation of the input x(t), which is followed by a linear system defined by 

another weighting function h2(r), namely 

(D-3) 

where q[] denotes a nonlinear operation. Substitution of equations (D-2) and (D-3) into 

equation (D-1) yields 

p(t) = {~ ~(T)x(t-T)dT+J.: h2 (T)q[x(t-T)]dT (D-4) 

From equation (D-2), the products x(t)p(t+r) and q(t)p(t+r) are respectively given by 
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- - (D- 5) 
x(t) p(t + z-) = J+<-> ~ (~)x(t)x(t + t"- ~)d~ + J+oo h2 (~)x(t)q[x(t + t"- ~)]d~ } 

q[x(t)]p(t + t") = r: h(~)q[x(t)]x(t + t"- ~)d~ + r: h2 (~)q[x(t)]q[x(t + t"- ~)]d~ 

Fourier transforms of both sides of equation (D-5) yields the expressions as follows: 

s XX (m)H I (m) + s xq (m)H 2 (m) = s xp (m)} 

Sqx(m)H 1 (m) + Sqq (m)H 2 (m) = Sqp (m) 
(D-6) 

where the symbols Sdcv), Sqq(cv), Sxq(cv), Sqx(cv), Sxp(cv) and Sqp(cv) respectively denote 

Fourier transforms of the auto- and cross-correlation functions of x(t), q[x(t)] and p(t), i.e. 

the auto- and cross-spectral density functions of x(t), q[x(t)J and p(t). 

Solving equation (D-6) gives the DS function for the nonlinear subsystem as 

where 

S xp (m)S xq (m) 1 - ___.:_ __ .:....____ 
S qp (m)S xx (m) 

~(m)=-~------
S qx (m)S xq (m) 1 - ___.:_ __ .:....____ 
S xx(m)Sqq (m) 

(D-7) 

For a given nonlinear operation q[], the nonlinear system parameters can be estimated 

based on the DS function for the nonlinear subsystem using equation (D-7). 

Case Study 

Assume a nonlinear mass-damping-spring system defined by the following governing 

equation: 

Mx(t) + Ci(t) + Kx(t) + K nx3 (t) = p(t) (D-8) 
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where M, C, K and Kn are respectively the mass, damping, linear stiffness and nonlinear 

stiffness. This nonlinear system can be regarded as sum of a linear subsystem and a 

nonlinear subsystem, namely 

p(t) = p 1 (t) + p 2 (t) 

p 1 (t) = Mx(t) + Cx(t) + Kx(t) 

P 2 (t) = Knq[x(t)] 

q[x(t)] = x 3 (t) (D-9) 

The random input x(t) can be obtained by composition of a large amount of harmonic 

components, namely 

n 

x(t)= :Lajsin(W/+aj) 
j=J 

(D -10) 

where n is the amount of the harmonic components, and ai, wi and o.i are respectively the 

amplitudes, frequencies and random phases of the harmonic components. Let n=1401, 

w 1=1radls, wi= w1+ jL1w, where: L1w =0.0457rad/s, and O.j take the random values shown 

in Table B-1, and the amplitude distribution over the frequency range is assumed as 

ai= O.OolOs(n:j)' +0.000112 

j = 0,1,2, ... , n 

The input for the nonlinear subsystem q[x(t)] can be calculated by equations (D-9) and 

(D-10), and the time series of x(t) and q[x(t)] are show in Figures D-1 and D-2. 
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Tirre series of linear input(seed=123) 

E 0 
X 

-1 

0 20 40 60 80 100 120 
tirre(s) 

Figure D-1 The linear input generated by equation (D-9) 

Tirre series of nonlinear rrotion 

1:: 0 
0" 

0 20 40 60 80 100 120 
tirre(s) 

Figure D-2 The nonlinear input generated by equations (D-9) and (D-10) 

The outputp(t) can be calculated based on equations (D-8) and (D-10), namely we have 

p(t) = i:[(- mJM + K ~j sin(m/ + aJ+ mj cos(mjt + aj )]+ 
j=l 

K.[tai sin(lil/ + ai)r (D -11) 

Assume that M=1kg, C=50N.s/m, K=900Nim and Kn=500N!m3
, and a time series of the 

output p(t) can be generated from equation (D-11), and the result is shown in Figure D-3. 

The generated output contains the information of the system parameters M, C, K and Kn. 

Now apply the present technique to the inputs and output. If the estimated values of M, C, 
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K and Kn are close to the actual values of 1kg, 50N.s/m, 900N/m and 500N/m3
, the 

present technique is then validated. 

300 

200 

100 

~ 0 
a. 

-100 

-200 

-300 

0 20 

lirre series of excitation force 

40 60 
tirre(s) 

80 100 

Figure D-3 The output generated by equation (D-11) 
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The auto- and cross-spectral density functions between x(t), q(t) and p(t) are shown in 

Figures D-4, D-5, D-6, D-7 and D-8. Figure D-9 gives the linear fit plot for estimation of 

the mass and linear stiffness. Figure D-1 0 presents the imaginary part of the estimated 

linear dynamic stiffness function, which was used to estimate the linear damping. Figure 

D-10 shows the linear fit plot for the estimation of the nonlinear stiffness. The estimated 

mass M, damping C, linear stiffness K and the nonlinear stiffness Kn are respectively 

1.003 kg, 50.0750N.s/m, 899.4 N/m and 556.4 N/m3
. The estimated values of the linear 

system parameters demonstrate a good agreement with their actual values, while the 

estimated value of the nonlinear stiffness contains a 10% error. This error contains two 

types of errors: random error and bias .error. The random error results from the 

performance over a finite number of sampling records for an infinite time series, and the 

bias error results from windowing operations in. Llt. In theory, Llt~O, but in practice Llt 

must be finite. 
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X 10
6 Auto-spectral density function of linear input 
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Figure D-4 The auto-spectral density function Sxx(m) of linear inputx(t) 
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Figure D-5 The auto-spectral density function Sqq(m) of nonlinear input q(t) 

304 



AppendixD 

X 10
4 Ooss-spectral density function of linear input and nonlinear input 
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Figure D-6 The cross-spectral density function Sxq( w) of linear input x(t) 
and nonlinear input q(t) 

X 10
9 Ooss-spectral density function of linear input and output 
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Figure D-7 The cross-spectral density function Sxp(w) of linear input x(t) 
and outputp(t) 
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X 10
7 Qoss-spectral density function of non-linear input and output 
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Figure D-8 The cross-spectral density function Sqp(w) of nonlinear input q(t) 
and output p(t) 
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Figure D-9 Linear fit for mass and linear stiffness 
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lrragiary part of linear DS fuction 
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Figure D-10 Linear fit for mass and linear stiffness 
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Figure D-11 Linear fit for nonlinear stiffness 
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