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Abstract 

This Master thesis consists of four chapters, mainly considering the stability and bifurca

tion in the systems of delay differential equations representing the neural network models 

containing tri-neurons with time-delayed connections. 

In Chapter 1, some background of neural networks and the motivation of this work are 

briefly addressed. 

In Chapter 2, we mainly show the stability analysis. By constructing Liapunov func

tional, we obtain the global stability condition. Then we show the delay-independent and 

delay-dependent conditions for local stability respectively. 

In Chapter 3, we discuss the bifurcations. By using the center manifold theory and 

normal form method, we propose the transcritical, pitchfork and Hopfbifurcation analysis. 

In the last chapter, by using the global Hopf bifurcation result and high-dimensional 

Bendixson's criterion, we show that the local Hopf bifurcation can be extended globally 

after certain critical values of delay. 
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Chapter 1 

INTRODUCTION 

A neural network, which is a system of neurons, could be a piece of hardware, a computer, 

an algorithm and so on [27]. In this thesis, we only consider the artificial neural network 

(ANN) which is designed to model the way in which the brain performs a particular task or 

function. Such a network is usually implemented by electronic components or simulated in 

software on a digital computer. Mathematically, ANN is usually described by a system of 

differential equations (continuous time) or difference equations (discrete time). For each 

single neuron, the simple structure results in a simple mathematical equation. However, 

when many simple neurons are connected to form a neural network, which results in a 

system of coupled differential equations, the whole network could have very rich dynamics 

and thus admit various applications [11, 16, 19, 22, 25, 30, 41, 42]. 

The first mathematical model of neural network was presented by McCulloch and Pitts 

in 1943 [36], in which the network is described by the system of difference equations 

Xi(t + 1) = S (t WijXj(t)- (}i) , i = 1, 2, ... , n, 
J=l 

(1.1) 
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where xi is the state variable associated with neuron i, wij represents the synaptic coupling 

strengths between neurons j and i, ()i is a threshold and the transfer function s(x) is the unit 

step function. McCulloch and Pitts showed that such a network can carry out any logical 

calculation and thus can be viewed as a kind of computer performing in parallel manner. 

The theory and applications of neural networks have been greatly developed since Co-

hen and Grossberg's paper [10] and Hopfield's paper [28] were published in 1980s. In 

[10], the well-known Cohen-Grossberg neural network model was described by a system 

of ordinary differential equations 

±; ( t) = a; (x;( t)) ( b; (x;(t)) - t, tiJ.<;(x; ( t))) , i = 1, 2, ... , n. (1.2) 

In [28], Hopfield proposed the network by the following system 

Cd:i(t) =- x~~) + t wijsj(xj(t)) + Ji, i = 1, 2, ... , n, (1.3) 
l j=l 

which was implemented by electric circuits to fulfill various tasks such as linear program-

ming. Due to the promising potential for the tasks of classification, associative memory, 

parallel computations, and their ability to solve difficult optimization problems, (1.2) and 

(1.3) have attracted great attention from the scientific world. Various generalizations and 

modifications of (1.2) and (1.3) have been proposed and studied. For the Hopfield neural 

networks, see Belair [2], Cao and Wu [7], Guan et al. [18], Hirsch [26], Lu [33], Matsuoka 

[35], and van den Driessche and Zou [43]. While, for the Cohen-Grossberg type neural 

networks, see Wang and Zou [45, 46, 47], and Ye et al. [56]. 

Since the finite speeds of the switching and transmission of signals in the network, 

time delays do exist in the neural network and thus should be incorporated. More details 

about introducing the time delay into the equations of neural network models can be found 
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in Marcus and Westervelt [34], Myers [37] and Wu [52]. More details about how delay 

affects the dynamics can be found in [1, 3, 8, 9, 15, 21, 32, 38, 39, 44, 49, 54, 58]. 

Marcus and Westervelt [34] first introduced a single delay into (1.3) and considered the 

following system of delay differential equations 

Ci±i(t) = - x~) + t Wijsj(Xj(t- 7)) + Ji, i = 1, 2, ... , n. (1.4) 
j=l 

They discussed the model experimentally and numerically and presented that delay could 

destroy stability and cause sustained oscillations. Eq. (1.3) has also been studied by Wu 

[51], Wu and Zou [55]. Gopalsamy and He [17], van den Driessche and Zou [43] consid-

ered the generalized model with multiple delays 

n 

Xi(t) = -bixi(t) + 2:= WijSj(Xj(t- 1"ij)) + Ji, i = 1, 2, ... , n. 
j=l 

For system (1.2), Ye et al. [56] introduced delays by considering the following system of 

delay differential equations 

In [1] Baldi and Atiya considered a cyclical ring of neurons with delay interaction. 

Later Campbell [4] generalized the model into a ring network where each element has two 

time delays and investigated both the stability of the equilibrium and the bifurcation when 

the stability is lost. In [ 40], Shayer and Campbell considered a network of a pair of neurons 

with time-delayed connections between the neurons and time delayed feedback from each 

neuron itself, and showed how time delays affect not only the stability of equilibrium but 

also the bifurcation when the stability is lost. In [53], Wu et al. studied the symmetric 

network of tri-neurons with one time delay. In [5], Campbell et al. proposed the symmetric 
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network of tri-neurons with two different delays. In [6], Campbell et al. considered the 

cyclical ring of neurons with n = 4 when the delays in the communications between each 

pair of adjacent neurons are identical. In [57], Yuan and Campbell generalized a ring of 

identical elements with time delayed nearest neighbor coupling. 

The global existence of the periodic solution to the mathematical models of population 

dynamics has attracted much attention due to its theoretical and practical significance. We 

know that periodic solutions can arise from the Hopf bifurcation in delay differential equa

tions. However, these periodic solutions are generally local. Therefore, it is important to 

extent the non-constant periodic solutions from local Hopf bifurcation globally. In [13], 

Erbe et al. proposed the global Hopf bifurcation theorem with a purely topological argu

ment. Later Krawcewicz [29] et al. first applied this global Hopf bifurcation theorem to 

a neural functional differential equation. Thereafter, a lot of researchers have investigated 

the global existence of periodic solutions for retarded functional differential equations, for 

instance: Li and Muldowney [31], Wei and Li [48], Wei and Yuan [50], and Wu [51], etc. 

In this thesis, we consider a Hopfield-type network of tri-neurons coupled in any possi

ble way with identified connection strength. An architecture of such network can be shown 

in Fig 1.1: 

Mathematically, we have the following functional differential equations: 

±1(t) = -x1(t) + aj(x1(t- rs)) + alzf3g(xz(t- Tn)) + a13f3g(x3(t- Tn)) 

±z(t) = -xz(t) + az1f3g(x1(t- Tn)) + af(xz(t- Ts)) + az3f3g(x3(t- Tn)), (1.5) 

X3(t) = -x3(t) + a31f3g(x1(t- Tn)) + a3zf3g(xz(t- Tn)) + aj(x3(t- Ts)) 

where aij, ( i i= j, i, j = 1, 2, 3) has the value 1 or 0, depending whether the neurons i and 

j are connected or not; a, j3 E lR denote the strength in self-connection and neighboring-
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Figure 1.1: The architecture of a network of tri-neurons 

connection respectively; T8 , Tn 2: 0 denote the delay in self-connection and neighboring

connection respectively; Furthermore J, g are assumed adequately smooth, e.g. j, g E C 3, 

and satisfy the following condition: 

(C1) f(O) = g(O) = 0, J'(O) = g'(O) = 1, and -oo < limx->±oo f(x), g(x) < oo. 

(C2) f'(x) > 0, g'(x) > 0 for all x E JR; xf"(x) < 0, xg"(x) < 0 for all x # 0. 

The goal of this thesis is to investigate how time delays affect the dynamics of solutions 

by studying the stability and the bifurcation of the model, and the existence of periodic 

solutions. Accordingly, this thesis is organized as follows: 

The next chapter is about the stability analysis. We show the global stability condition 

with Liapunov functional. Then we obtain the delay-independent and delay-dependent 

local stability condition. In Chapter 3, after using the center manifold theory and normal 

form method, we have the transcritical, pitchfork and Hopf bifurcation analysis. In Chapter 

4, the local Hopf bifurcation implies the global Hopf bifurcation after certain critical values 

of delay. 
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Chapter 2 

STABILITY ANALYSIS 

2.1 Global Stability 

We usually use the Liapunov second method to analyse the global stability. Following the 

method in [57], we have the following theorem: 

Theorem 2.1.1 If maxl:Sk9 'l:~=l,J# (ajk;akj) 1.81 < 1- Ia I, then the trivial solution in 

system ( 1.5) is globally asymptotically stable. 

Proof For system (1.5), we construct a liapunov function 

3 3 t 

V(x)(t) = L x](t) + Ia I L 1 f 2(xJ(v)) dv 
j=l j=l t--r. 

+I.BI1~7}(a21 +a31)l(x1 ( v)) + (a12+a32)l(x2( v)) + (a13+a23)l(x3( v) )] dv. 
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dV 3 3 

dtlo.s) = 2 L [xj(t)±j(t)] + lal L[f2(xj(t))- j 2(xj(t- 7 8 ))] 

Rewrite 

where 

j=l j=l 
+I,BI[(a21 + a31)(l(x1(t))- g2(x1(t- Tn))) 

+(a1z+a32) (g2(x2(t))-g2(x2(t-Tn))) + (a13 +az3)(g2(x3(t))- g2(x3(t-Tn)) )] 

= 2x1(t)[-x1(t) + aj(x1(t- T8 )) + a12,8g(x2(t- Tn)) + a13,8g(x3(t- Tn))] 

+2x2(t)[-x2(t) + az1,8g(x1(t- Tn)) + aj(x2(t- Ts)) + a23,8g(x3(t- Tn))] 

+2x3(t)[-x3(t) + a31,8g(x1(t- Tn)) + a3z,Bg(xz(t- Tn)) + aj(x3(t- Ts))] 
3 

-fial L[f2(xj(t))- f 2(xj(t-Ts) )] + I,BI[(a21 +aal)(g2(xl (t))- g2(xl (t-Tn))) 
j==l 

+(a12 +aaz)(g2(xz(t))-g2(xz(t-Tn))) + (a13 +az3) (g2(x3(t))- g2(x3(t-Tn)) )] 
3 3 

< -2 l:x](t) + lal L[x](t) + f 2(xj(t- Ts))] + I,BI[alz(xi(t) + g2(x2(t- Tn))) 
j=l j==l 

+a13(xi(t) + g2(x3(t-Tn)) )+azl (x~(t) + g2(x1 (t-Tn) )) +a23(x~(t) + g2(x3(t-Tn))) 

+a31(x~(t) + l(xl(t- Tn))) + aaz(x~(t) + g2(xz(t- Tn)))] 
3 

+ial L[f2(xj(t))- f 2(xj(t- Ts))] + I,BI[(azl + aal)(g2(xl(t))- g2(x1(t- Tn))) 
j==l 

+(a12 +aaz) (g2(xz(t)) -l(x2(t-Tn))) + (a13 +a23) (l(xa(t))- g2(xa(t-Tn)) )] 
3 

< -2 L x](t) + I,BI (a1zxi(t) +a13xi(t) +az1x~(t) +az3x~(t) +a31x~(t) +a32x~(t)) 
j=l 

3 3 

+Ia I L x](t) + Ia I L f 2(xj(t)) + I,BI(azl + a31)l(x1 (t)) 
j==l j==l 

+i,BI(a12 + a3z)g2(x2(t)) + I,BI(a13 + az3)g2(xa(t)) 

Pj(t) = 11 

J'(vxj(t))dv, qj(t) = 11 

g'(vxj(t))dv. 
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From the conditions (Cl) and (C2), there exist p*, q* E (0, 1] such that Pi(t) :s; p*, 

qj(t) :s; q*, (j = 1, 2, ... , n). Thus we have 

dV 3 

dt :S -2 I::X](t) + I,BI(a12xr(t) + a13xr(t) + a21x~(t) + a23x~(t) + a31x~(t) + a32x~(t)) 
j:=l 

3 3 

+JaJl:x](t) + Jajp* l:x](t) + j,Bjq*(a21 + a3I)xi(t) 
j:=l j:=l 

+J,Bjq*(al2 + a32)x~(t) + j,Bjq*(a13 + a23)x~(t) 

:S -(2-2Jal- (a12+a13 +a21 +a31) j,BI)xi(t)- (2- 2Jal- (a12+a21 +a23 +a32) J,BI)x~(t) 

-(2- 2Jal- (a13 + a23 + a31 + a32)j,BI)x~(t) 

If the given condition max199 I:;=l,j# (aik;aki) J,BI < 1 - Jal holds, then we have 

~~ 1(1.5) < 0. 

According to the liapunov second method, the trivial solution is globally asymptotically 

stable. 0 

2.2 Absolutely Stable Condition for Local Stability 

For a delay differential equation, the linearization of the system at its equilibrium point 

gives us an exponential polynomial equation (a transcendental characteristic equation). We 

know that the equilibrium point is stable if and only if all the eigenvalues of the exponential 

polynomial equation have negative real parts, and unstable if and only if at least one root 

has a positive real part. Thus, the bifurcation may take place when the real part of a certain 

eigenvalue changes from negative to zero or to positive. 

There is a possibility that if the coefficients of the exponential polynomial satisfy certain 

conditions, the real parts of all eigenvalues remain negative for all values of the delay, 
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then the corresponding delay differential system is said to be absolutely stable. A general 

result in Hale et al. [21] states that a delay system is absolutely stable if and only if the 

corresponding ODE system is asymptotically stable and the characteristic equation has no 

purely imaginary roots. 

At the trivial equilibrium, the linearization of system (1.5) is 

U1(t) -u1(t) + au1(t- Ts) + a12fJu2(t- Tn) + a13{Ju3(t- Tn) 

U2(t) = -u2(t) + a21fJu1(t- Tn) + au2(t- Ts) + a23{Ju3(t- Tn), (2.1) 

and the corresponding characteristic equation is 

A + 1 - ae-ATs {3 -ATn -al2 e f3 -AT -al3 e n 

det f3 -AT -a21 e n >. + 1 - ae-.xr .• f3 -.>.T -a23 e n =0, 

{J -AT -a31 e n f3 -ATn -a32 e A + 1 - ae-ATs 

i.e. 

To see the different connections among the three neurons more clearly, we separate Fig. 

1.1 into several cases which are shown in Fig. 2.1 by the 'form' of characteristic equation 

Case 1: a12 = a13 = a21 = a23 = a31 = a32 = 1, which is studied in [5]. 
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Case I Case2 Case 3 Case 4(1) Case 4(2) 

0 
-b 2 

Case4(3) Case 4(4) Case 5 Case6 Case? 

Figure 2.1: Tri-neurons with different connection about all cases 

Case 3: a13 = a23 = a31 = a32 = 1, a12 = a21 = 0, which is a chain. 

Case 4 (1): a12 = a13 = a23 = a32 = 1, a21 = a31 = 0. 

Case 4 (2): a21 = a23 = a31 = a32 = 1, a12 = a13 = 0. 

Case 4 (3): a13 = a 23 = a32 = 1, a12 = a21 = a31 = 0. 

Case 4 (4): a23 = a31 = a32 = 1, a12 = a13 = a21 = 0. 

10 



Case 6: a13 = a 21 = a32 = 1, a 12 = a23 = a31 = 0, which is studied in [4]. 

?7(>.) ~).3 - (3ae->.r.- 3)>.2 - (6ae->.r.- 3a2e-2>-r. + (32e-2>-rn- 3)>. 

-a3e-3>.rs + 3a2e-2>.rs _ 3ae->-r. _ (33e-3>.rn _ (32e-2>.rn +a(32e->.(rs+2rn) + 1 = 0. 

2.2.1 Delay T's =/= Tn 

First of all, let us consider the characteristic equation 

(2.3) 

Using the method in [40], we have the following lemma: 

Lemma 2.2.1 If the parameters a and (3 satisfy Ia I+ 1!31 < 1, all the roots in Eq (2.3) have 

negative real parts. 

Proof Let). = 1-'· + iw, p, w E R, and separate .6.1 into real and imaginary parts to yield 

.6.1 (>.) = R1 (p., w) + ih (p., w ), where 

R1(p.,w) = p + 1- ae-1-'·rs cos(wr8 )- (Je-1-'rn cos(wrn), 

I1(p,w) w + ae-1-'·rs sin(wr8 ) + (Je-1-'·rn sin(wrn)· 

11 



Since 

Ro1(0) = 1 -lal-1,81 > 0, 

and 

R~ (!-") = 1 + laiTse-J.ITs + I.Birne-Jl·Tn > 0, 

we have R01 (!-") > 0 for 1-" ~ 0 and R 1 (JJ., w.) > 0 for all JJ· ~ 0, w E R. 

Now let A = J1· + iw be an arbitrary root of the characteristic equation .0. 1 (A) = 0. Then 

1-" and w must satisfy R1 (J-l, w) = 0 and ! 1 (J-l, w) = 0. But from the discussion above this 

implies 11· < 0. Thus all the roots in Eq (2.3) have negative real parts. 0 

Apply the above lemma to each cases, then we have the following theorem: 

Theorem 2.2.2 If the parameters a, (3 satisfy the condition for certain case in the following 

table, the trivial equilibrium in the corresponding case is stable: 

Case Condition 

1 lal + 21!31 < 1 

2 Ia I + 1+/5 1!31 < 1 

3 Ia\ + J2if31 < 1 

4 ial + 1!31 < 1 

5 lal < 1 

Proof We take Case 3 as an example: 

12 



Consider the characteristic equation P3 = 0 for Case 3. From Lemma 2.2.1, we know 

that if the parameters a, j3 satisfy 

i.e. 

iod < 1, 

iai + J2if31 < 1, 

iai + J2if31 < 1, 

ial + hl/31 < 1, 

then all the roots in P3 = 0 have negative real part, which implies that the trivial equilibrium 

is stable. 

Similarly, we can get the other conditions for the other cases.O 

2.2.2 Delay 7 8 = Tn = T 

For the characteristic equation 

,6.2(>.) = >. + 1- (a+ f3i)e->.r = 0, (2.4) 

we have: 

Lemma 2.2.3 If the parameters a and f3 satisfy a2 + /32 < 1, all the roots in Eq. (2.4) 

must have negative real parts. 

Proof Let>. = J1 + iw, f.-L, w E R, and separate ,6.2 into real and imaginary parts to yield 

,6.2(>.) = R2(f.-L,w) + il2(f.-L,w), where 

13 



Since 

and 

= p, + 1- Ja2 + f32 e-~-'r sin(wr- <p), (<p =arctan fj_) 
ex 

R02 (0) = 1- Ja2 + (32 > 0, 

we have R02 (p,) > 0 for p ~ 0 and R2 (p, w) > 0 for all p ~ 0, w E R. 

The rest of the proof follows from that in Lemma 2.2.1. D 

By applying Lemma 2.2.1 and the lemma above to each case, we have the following 

theorem: 

Theorem 2.2.4 If the parameters ex, (3 satisfy the condition for certain case in the following 

table, then the trivial equilibrium in the corresponding case is stable: 

Case I Condition 

1 Ia- /31 < 1, Ia + 2/31 < 1 

2 Ia + 1
- 2v'5/31 < 1, Ia + 1+/5!31 < 1 

3 Ia- v'2/31 < 1, Ia + v'2/31 < 1 

4 Ia- /31 < 1, Ia + /31 < 1 

5 Ia! < 1 

6 Ia + !31 < 1, a2 
- cx/3 + (3 2 < 1 

7 Ia +(~+~)PI< 1, (a-(~+~) P] 2 + [ f (~- ~) Pr < 1, 

where K, = (108 + 12v'69)113 
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Proof: For Case 6, the corresponding characteristic equation P6 is 

i.e. 

From Lemma 2.2.3, we know the stability condition we need is: 

i.e. 

la+,BI < 1, 

(a- ~)2 + (4,8)2 < 1, 

(a- ~)2 + (- v{,B)2 < 1, 

So we get the result for Case 6. 

For Case 7, the corresponding characteristic equation is 

which can be factored as 

where 

Pn = 

p72 = 

Pn 

K, = 

K, 2 >. 
A+1-(a+(-+-),B)e- r, 

6 K, 

( ( 
K, 1 ) yl3 ( K, 2 ) ') >.r A+ 1 - a- - + - f3- - - - - (3z e- , 
12 K, 2 6 K, 

( ( 
K, 1) y3("' 2) . >.r A+ 1- a- - +- ,B +- --- ,Bz)e- , 
12 K, 2 6 K, 

(108 + 12v'69)113
. 
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Apply Lemma 2.2.3, we can obtain the stability condition for P71 = 0, P72 = 0 and 

P73 = 0 respectively, as: 

Ia+ (~ + ~)131 < 1, 

[a- (f2 + ~) ;3J2 + [ -1 (~- ~) ;Jr < 1, 

[a- u2 + ~) ;3J2 + [~ (~- ~) ;Jr < 1, 

Therefore, with the common conditions, all the roots of P3 = 0 have negative real parts. 

Similarly, we can get the results for the other cases. D 

2.3 Stable Condition for Local Stability 

2.3.1 Delay Ts = Tn = T 

If there exist v > 0, M > 0, such that lxt(<P)I S Me-vti<PI for all t 2: 0, ¢ E C, we say 

that the trivial solution of the system is exponentially asymptotically stable. 

Now let us consider the system 

x(t) = -x(t) + ax(t- r), (2.5) 

we have the following lemma: 

Lemma 2.3.1 The trivial equilibrium in system (2.5) is exponentially asymptotically stable 

if and only if the parameter a satisfy a* < a < 1, where a* is the negative root of 

1. arccos l- v'a2 - 1 = 0. 
T Q 

Proof: The corresponding characteristic equation for (2.5) is 

(2.6) 
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In order to apply the Theorem 2.19 given by Stepan in [42], assume>.= iw is a root of 

(2.6), i.e. 

Ll3(iw) = R(w) + iS(w) = iw + 1- acosw7 + aisinw7 = 0, 

where 

R(w) = 1- acosw7, S(w) = w + asinw7. 

Therefore, 

R(O) = 1- a> 0 

If the numbers of the zeros of Sis odd, then S'(O) > 0, which means 

Then 

1 
a>--. 

7 

. 1 . W7- sin(w7) 
S(w) = w + asm(w7) > w-- sm(w7) = > 0 

7 7 

(2.7) 

(2.8) 

for w > 0, implying that S has only one zero root, hence s = 1. The stability condition is 

satisfied trivially: 
s-1 

:L)-1)ksgnR(ak) = 0. 
k=1 

If the number s of the non-negative zeros of Sis even, since S ( 0) = 0, S ( +oo) = +oo, 

we have 

i.e. 

S'(O) = 1 + a7 < 0, 

1 
a<--. 

7 
(2.9) 

And the stability condition with m = 0 in the Theorem 2.19 in [42] has the actual form 

s-1 

L(-1)ksgnR(ak) = -1, (2.10) 
k=l 
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where a 8 _ 1 2: · · · 2: a0 = 0 denote the non-negative real zeros of S. 

Consider P( o:) = ~ arccos~ - v' o:2 - 1 with o: < -1. Since 

-1 0: 
P'(o:)= - >0 

O:Tv'o:2 -1 . v'o:2 -1 

andP(-1) = ~ > O,P(-oo)-+ -oo,P(o:) hasonlyonezero, thatisonlyoneo:*. From 

the condition 

o:>o:*, (2.11) 

we have 

P(o:) = 5((1) > 0, 

where ( 1 is the smallest positive roots of R(w) = 0, i.e. ( 1 = ~arccos~. 

Now let us consider the value of sgnR(ak)· 

Firstly, we know S(O) = 0, S'(O) < 0, so there exist c > 0 such that S(c) < 0. From 

S((I) > 0, we have a 1 < (1 and 

(2.12) 

since R(x) > 0 for any x E (0, (t). 

Secondly, let us consider a2k (k E z+). We know S'(a2k) < 0, i.e. o:cos(a2kT) < -~. 

So we can obtain 

1 
R(a2k) = 1- o: cos(a2k7) > 1 + - > 0. 

T 
(2.13) 

Finally, let us consider a2k_ 1 (k E z+). We will prove a 2 - a 1 < 2;. Suppose 

a2 - a 1 2: 2;, then S' ( w) = 1 + o:T cos( WT) will have more than one zero between a 2 and 

a 1 , since the period of S'(w) is 2;. It is a contradiction. So we know that a 1 + 2; is not in 

(a1 , a 2). Since S(a1 + 2;) = (a1 + 2
;) + o:sin [(a1 + 2;)7] = 2

; > 0 and S(x) < 0 for 
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any x E ( o-2, o-3), we can obtain 0"3 - o-1 < 2;. Then we have 0"3 < 2; + o-1 < 2; +(I = (3, 

since (2k+l = 2~11" + (1. By mathematical induction, we have 

(2.14) 

We know R'((2k) = etTsin(wT) > 0, where (i is the positive zeros of R(w) and (I< (2 < 

... , i.e. asin((2k7) > 0, so we have S((2k) = (2k + asin((2k7) > 0. Since R((2k-1) = 0, 

R'((2k_1) < 0, there exists E > 0 such that R((2k-1 +c) < 0. From R(o-2k) > 0, we have 

(2k < 0"2k· Since (2k < 0"2k < 0"2k+l and inequality (2.14), we can obtain 

So we have 

R(a2k-1) > 0. (2.15) 

From (2.12), (2.13) and (2.15), obviously they satisfy the condition (2.10). 

The conditions (2.7) and (2.11) are just the conditions in the theorem, while (2.8) and 

(2.9) show that the result in the theorem is independent of s. 0 

Remark 2.3.1 The Theorem 2.19 given by Stepan in [42] is as following: 

Consider the n-dimensionallinear autonomous RFDE 

±(t) = 1: [dry(O)]x(t + 0) 

and suppose that there exists a scalar v > 0 such that 

1: e-v/Jid'/]jk((})i < +oo, j, k = 1, ... , n. 

The characteristic function assumes the form 

D(>.) = det(>.J- I: e>.0dry(O)). 
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Let P1 ~ ... Pr ~ 0 and a1 ~ ... ~ O"s = 0 denotes the non-negative real zeros of Rand 

S respectively, where 

R(w) = ~D(iw), S(w) = ~D(iw). 

The trivial solution x = 0 of the RFDE is exponentially asymptotically stable if and 

only if 

n=2m, 

S(pk) # 0, k = 1, ... , r, 
T 

2)-1)ksgnS(pk) = (-1)mm; 
k=l 

or 

n =2m+ 1, 

R(ak) # 0, k = 1, ... , s- 1, 

R(O) > 0, 
s-1 

1 
:L)-1)ksgnS(ak) + 2((-1) 8 + (-1)m) + (-l)mm = 0, 
k=l 

where m is integer. 

Remark 2.3.2 If the parameters satisfy exponentially asymptotically stable condition ( C j) 

(j = 1, 2, 3) for the equations Ej = 0 respectively, the solution of the equation E 1 * E 2 * 

E 3 = 0 is exponentially asymptotically stable under the common condition of each ( Cj ). 

Proof: There exist vi > 0, i = 1, 2, 3, Mi > 0, such that jxit(¢)\ S Mie-v;tl¢1 for 

the equations Ei = 0 for all t ~ 0, </> E C, since the trivial solution of the equations is 

exponentially asymptotically stable. 

Let v = min(vi), Xt = Xit· there exists M = max{Mi} > 0, such that \xt(<P)\ < 

Me-vt\</>\for the equation E1 * E2 * E3 = Oforall t ~ 0, ¢ E C. 0 
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Consequently, we have the following theorem: 

Theorem 2.3.2 The trivial equilibrium in the following case is exponentially asymptoti

cally stable if and only if the parameters a, f3 satisfy the corresponding condition in the 

following table, where a* is defined in Lemma 2.3.1: 

Case Condition 

1 a* < a - f3 < 1, a* < a + 2(3 < 1 

2 a* < a+ 1
-

2
-15(3 < 1, a* <a+ 1+

2
-15 f3 < 1 

3 a* < a - -/2(3 < 1, a* < a + -/2(3 < 1 

4 a* < a - f3 < 1, a* < a + f3 < 1 

5 a*< a< 1 

Now we have obtain the delay-independent stable condition of local stability for Case 

1 to Case 5, next we will consider the following equation in order to obtain the result for 

Case 6 and Case 7. 

Let us consider 

(2.16) 

we have the following lemma: 

Lemma 2.3.3 If the parameters a1, a2, a3, a4 and as satisfy a3 + a4 + as > 0 and one of 

four conditions below, then the trivial equilibrium in system (2.16) is exponentially asymp-
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totically stable: 

(1) a3 > 0, a4 > 0, a1- la2l- 2a3T- a4T > 0, 

(2) a3 < 0, a4 > 0, a1 - la2l - 2a3T cos (o- a4T > 0, 

(3) a3 > 0, a4 < 0, a1 - la2l- 2a3T- a4T cos (o > 0, 

(4) a3 < 0, a4 < 0, a1 - la2l - 2a3T cos (o- a4T cos (0 > 0, 

where 

(o =tan (o, (o E [1r, 27r]. 

Proof The corresponding characteristic equation for system (2.16) is 

Let us substitute >. = iw into Ll4 ( >.) = 0 and separate 

into real and imaginary parts, then we have 

-w2 + a2w sin(wT) + a3 cos(2wT) + a4 cos(wT) +as, 

It is easy to check 

and 

lim R4(w) = -oo. 
W--400 

22 



So the number r of the positive zeros Pk of R4 is odd, i.e. 

k 

I)-l)ksgnS4(Pk) = -1. 
k=l 

If a3 > 0, a4 > 0, we can get 

To estimate the lower bound for S4 (w) when a3 or a4 is negative, we need to get the 

maximum ~ such that sin x :2:: ~x for x :2:: 0 except the point x = 0, which means x E 

[1r, ~7r], i.e. to find the minimum of h(x) = si~x. From h'(x) = xcos~;-sinx = 0, we denote 

the root of x cos x - sin x = 0 as ~0 , i.e. ~0 = tan ~0 . Since 

therefore, the minimum value of h(x) is cos ~0 and si~"' 2:: si~fo = cos ~0 , i.e. sin x > 

X COS~o, if X :2:: 0. 

Similarly, we have 

if a3 < 0, a4 > 0, 

Apply Lemma 2.3.3 to Case 6 and Case 7, we have the following theorems: 
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Theorem 2.3.4 The trivial equilibrium in Case 6 is exponentially asymptotically stable if 

the parameters a and (3 satisfy a* < a + (3 < 1 and one of two conditions below, and a* 

is defined in Lemma 2.3.1: 

(1) -2a + (3 > 0, 

2 + 2a- (3- 2(a2 + (32 - a(3)T + (2a- (3)T > 0, 

(2) -2a + (3 < 0, a2 + (32 - a(3 - 2a + (3 + 1 > 0, 

2 + 2a- (3 - 2(a2 + (32 
- a(3)T + (2a- (3)T cos ( 0 > 0, 

where ( 0 is defined in Lemma 2.3.3. 

Theorem 2.3.5 The trivial equilibrium in Case 7 is exponentially asymptotically stable if 

the parameters a and (3 satisfy a* < a + ( ~ + ~) (3 < 1 and one of two conditions below, 

where a* is defined in Lemma 2.3.1: 

(1) 

(2) 

a-(~+l)f3>0 
12 K ' 

2-2la- (t2 +~) f31-2 [(a- U2 +~) f3)
2 +~ (~-~) 2 

+a- (t2 +~) f3] T > 0, 

a - (~ + l) (3 < 0 
12 K ' 

2-2la- CK2 +~) f31-2 [(a- u2 + ~) f3)
2 
+ ~ ( ~- ~) 2 

+a- ( fi+~) (3 cos Co] T > 0, 

where ( 0 is defined in Lemma 2.3.3, K, = (108 + 12J6§) 113
. 

From the definition of ( 0 which is defined in Lemma 2.3.3, we can get cos ( 0 ~ -0.217. 

LetT = 1, we obtain the exponentially asymptotical stability region on a- (3 plane as Fig. 

(2.2), from Theorem 2.3.4 for Case 6. 
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beta 
0.5 

-0.6 -0.4 -0.2 0.2 0.4 

alpha 

-0.5 

-1 

Figure 2.2: The stability region from Theorem 2.3.4 for Case 6 when T = 1 

2.3.2 Delay T8 =I Tn 

Lemma 2.3.6 All roots in Eq (2.3) have negative real parts, if the parameters satisfy-~ < 

ar8 < 0 and one of the two conditions below: 

1) a< -1, 1.81 <-a; 
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2) 0 < l/31 < 11 + al. 

Proof: 1) Let A = 11 + iw in 6.1 = A + 1 - ae->.r. - j3e->.rn = 0. Separating it into real 

and imaginary parts, we obtain 

(2.17) 

and 

(2.18) 

From condition 0 ~ Ts < - 2~, we have 0 ~ WT8 < 1, i.e. ~ < cos(1) < cos(wT8 ) ~ 1 and 

0 ~ sin(wT8 ) < sin(1) < 1. 

Eliminating the last term in (2.17) and (2.18) results in 

So 

Since a < 0, sin ( WT8 ) < WTs and Ts < - 2~, then 

Meanwhile, a< 0, cos(wT8 ) > 0 and ;32 < a2
, so we have M(O) > 0. 

Taking the derivative of M (JJ.) with respect to JJ., we obtain 

oM 
OJJ. = 2{Tnf32e-2JLTn- awT8 e-JLTs sin(wT8 ) + (p + 1)[1 + aT8 e-JLTs cos(wT8 )](2.19) 

-ae-11'7 " [cos(WT8 ) + aT8 e-11'7"]}. 

Since a < 0, w ~ 0, T8 ~ 0, Tn ~ 0, p ~ 0, sin(wT8 ) ~ 0 and cos(wT8 ) > 0, we obtain 

the first two terms in (2.19) are nonnegative. 

26 



From 0 :::; T8 < - 2~ and f.l ;::: 0, i.e. 0 < e-J.Lr• :::; 1, and cos(wT8 ) :::; 1, we have 

From a< 0, ~ < cos(1) < cos(wT8 ), T8 < - 2~, and 0 < e-J.Lr• :::; 1, we have 

Thus, a:;, > 0 for f.l ;::: 0, therefore M(O) > 0 if f.l ;::: 0. Therefore if M(f.L) = 0, then 

f.l < 0, i.e. all roots of the characteristic equation have negative real part. 

2)We will use Rouche's theorem to prove it. 

Let .h(>.) = >. + 1- ae->.r. and ]2(>.) = -f3e->.rn. Consider the contour CR which 

consists of the semicircle z = Rei0 , - i :::; (} :::; ~ and the line z = iy, - R :::; y :::; R. 

On the semicircle, lh(J.)I = lf31e-Re(>.)rn :::; 1!31 and it(>.)= R + 0(1), so IJ1(J.)I can 

be made as large as we like (in particular larger than 1!31) by taking R large enough. Thus 

lft(>.)l > lh(J.)I on the semicircle. 

On the line, lh(J.)I = 1- f3e->.rn1 = 1!31 > 0 and 

lit(>.) I 11- acos(yT8 ) + i(y + asin(yT8 ))1 

= J1 - 2a cos(yT8 ) + a 2 + y2 + 2ay sin(yT8 ) 

> J(1 + a)2 + y2(1 + 2aT8 ) 

> 11 + al > 0, 

since-~ < aT8 < 0. So when \!3\ < \1 +a\, \.h(J.)\ > \h(>.)\ on CR for R sufficiently 

large. 

R ~ oo shows that it and h have the same number of zeros in the right half of the 

complex plane. But we have seen that j 1 (>.) has no zeros with nonnegative real part if 

27 



-~ < cus < 0 (we have proved it from the result 1) since here {3 = 0). Hence using 

Rouche's Theorem, we know that all zeros of .6. 1(>.) = f1(>.) + .f2(>.) have negative real 

parts under the given conditions. 0 

Remark 2.3.3 Fix Ts and show the stability condition in Lemma 2.3.6 as the shadow in 

Fig. (2.3). 

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 

Figure 2.3: The stable condition for local stability when Ts =/= Tn, r 8 = 0.25 

Based on the lemma above, we have the following theorem: 

Theorem 2.3.7 If the parameters a, {3 satisfy the condition for certain case in the following 

table, the trivial equilibrium in the corresponding case is stable: 
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Case Condition 

1 -~ < aTs < 0, 1) 0 < l/31 < ~11 + al, 2)a < -1, l/31 < -~a 

2 -~ < aTs < 0, 1) 0 < l/31 < ~-1 11 + al, 2)a < -1, l/31 < l-2V5a 

3 -~ < aT8 < 0, 1) 0 < I,BI < ~11 + al, 2)a < -1, I,BI < -:1{-a 

4 -~ < aTs < 0, 1) 0 < I,BI < j1 + al, 2)a < -1, l/31 < -a 

5 a* < a < 1, where a* is defined in Lemma 2.3.1 

6 -~ < aT8 < 0, 0 < I,BI < 11 + al 

7 -~ < aTs < 0, 0 < I,BI < '1-1 11 + al 

Proof We take Case 3 as an example: 

The stability condition for P3 = 0 is 

-~ < aT8 < 0, 1) 0 < I,BI < 11 + al, 2) a< -1, I,BI <-a, 

-~ < aTs < 0, 1) 0 < I,BI < '?11 + al, 2) a< -1, I,BI <-'?a, 

-~ < aTs < 0, 1) 0 < l/31 < :/{-11 + aj, 2) a< -1, l/31 < -:1{-a, 

i.e. 

Similarly, we can get the same results for the other cases except for Case 6 and Case 7. 

For Case 6, the corresponding characteristic equation is 

Let fi (>.) = ). + 1- ae-M• and h(.X) = -,Be-A.Tn. By Lemma??, if the parameters satisfy 

-~ < aTs < 0 and 0 < I,BI < 11 + al, then l.fi(.X)I > lh(.X)j, i.e. lff(.X)I > l.fJ(>-)1. All 

roots of .fi (.X) have negative real parts when -~ < aTs < 0. Therefore, the result is hold 

in the theorem obtained from Rouche Theorem. 
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For Case 7, the corresponding characteristic equation is 

Let fo1 (>.) = (>. + 1 - ae-.xr. )3 - (Pe- 3.\rn and fo2(>.) = (>. + 1 - ae-.xr. )(Pe-2.\rn. 

From the condition 0 < J,BJ < ~-1 \1 + aJ, we have 0 < J,BJ < \1 + aJ, then we get 

\h(>.)J > \h(.A)\ from Lemma 2.3.6. 

\f01(>.)\-lfo2(>.)j = \!~(>.)- fi(>.)\-\fl(>.)Ji(>.)\ 

> \ft(>.W -1!2(>.)\3 -Jft(>.)\·l.f2(>.)\2 

> lh(>.)J· (\!l(>.W -lh(>.W -l.f1(>.)l·l.f2(>.)1) 

= IJ,(A) I (lh (A) I + -I ; v'5IJ,(A) I) ( lh (A) 1- I +2 v'5IJ,(A) I) . 

From 0 < ¥1,8\ < \1 + aj, i.e. 0 < \,8\ < '1-1 \1 + aj, by Lemma 2.3.6, we have 

\.ft(.A)\- l+{'P\f2(.A)\ > 0. Therefore, \.foi(.A)\-\fo2(>.)\ > 0. 

According to Rouche Theorem, we obtain the final result. 0 

2.4 Unstability 

For 

we have the following lemma: 

Lemma 2.4.1 If a+ ,8 > 1, the characteristic equation .6..1 = 0 has a root with positive 

real part for all values of T 8 2:: 0 and Tn 2:: 0. 
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Proof: We know 

~1(0) = 1- a- f3 < 0 

and 

lim ~1 (A) = +oo 
.X-++oo 

for all Ts ~ 0 and Tn ~ 0. Since ~1 (A) is a continuous function of A, there exists A* > 0 

s.t. ~1 (A*) = 0 for any Ts ~ 0, Tn ~ 0 and a+ (3 > 1. Thus, the characteristic equation 

~1 (A) = 0 has a positive real root for these parameters values. D 

Since the characteristic equation of Case 1 to Case 5 can be transformed into the multi-

plication of three factors, apply Lemma 2.4.1 to each factor, we have the following theorem: 

Theorem 2.4.2 If the parameters a, f3 satisfy the condition for certain case in the following 

table, then the trivial equilibrium in the corresponding case is unstable: 

Case Condition 

1 a+ 2/3 > 1, a- (3 > 1. 

2 a+ l+t'5f3 > 1, a+ 1-2V5 f3 > 1. 

3 a+ v'2f3 > 1, a-v'2f3>1. 

4 a+ (3 > 1, a-(3>1. 

5 a>l. 

2.5 Curves of Characteristic Roots with Zero Real Part 

In the following we will take the characteristic equation 
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in Case 3 as an example to show the analysis. The approach in this section follows closely 

that of [5, 40, 57]. 

As the parameters vary, stability may be lost by the real root of the characteristic equa-

tion passing through zero or by the pair of complex conjugate roots passing through the 

imaginary axis. To determine the full region of stability of the trivial solution, we must 

describe the regions in parameter space where this occurs. 

If the characteristic equation in Case 3 has a simple zero root, we have P 3 (0) = 0 and 

P~(O) =f. 0, where P3 (0) = 0 yields (1- a)(1- a+ V213)(1- a- J2J3) = 0. So we can 

get the boundaries 13 = 131 ~~(a -1) and 13 = 132 ~ ~(1- a). Note that from theorem 

2.4.2, a = 1 cannot form part of the boundary of the stability region. 

From the characteristic equation of each case, we have the following result about the 

zero root of the characteristic equation: 

Lemma 2.5.1 When 13 satisfies the condition for certain case in the following table and 

Tn =f. T*, then for the corresponding case).= 0 is a simple zero root of the corresponding 

characteristic equation, where 

* 1 + aT8 
T ----- a-1 · 
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Case Condition 

1 (3- 1-Q !:e.. (3 --2-- 11 

2 f3 = a - 1 §: !321 

2 (3 = 1-2v'5(a -1) §: (322 

2 (3 = 1+2v'5 (a - 1) §: (323 

3 f3 = ~(1- a) §: /331 

3 (3 = ~(a- I) §: (332 

4 f3 = 1 - a §: /341 

4 f3 = a - 1 §: !321 

6 f3 = 1 - a §: (341 

The characteristic equation in Case 3 has a pair of pure imaginary roots ±iw when 

P3(±iw) = 0. From ~31 (iw) = 0, we have: 

1 -a sin(wTs) 0, 

w +a sin(wT8 ) 0, 

which yields the curve 

arccos a+ 2k7r + TsJ(a2 + 1) = 0. 

While from ~32 (iw) = 0, we have: 

1 - a cos(wT8 ) + -/2(3 cos(wTn) 

w +a sin(wT8 ) - .../2(3 sin(wTn) 
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Since the parameter space is four dimensional, it is difficult to visualize these regions. Thus 

we will focus on fixing the parameters a and 7 8 , and describing curves in the (3, Tn plane 

where the characteristic equation has a zero root or a pair of pure imaginary roots. 

This occurs along curves given by 

where 

T~ = { 

r~= { 

12k, acos(wr8 ) -1 > 0, 

12k+l, acos(wr8 )- 1 < 0, 

12k+l, acos(wrs) -1 > 0, 

12k, a cos(wrs) - 1 < 0, 

1 { [w + asin(wr8 )] } Ti(w) =- arctan ( ) + l1r , 
w acos WTs - 1 

(2.25) 

(2.26) 

and arctan(x) is the principle branch of the inverse tangent function. Clearly, equations 

(2.25) and (2.26) represent an infinite family of curves. 

Similarly, from ~33 ( iw) = 0, we have: 

1 -a cos(wr8 ) - v2f3 cos(wrn) 

w +a sin(wrs) + v2f3 sin(wrn) 

This occurs along curves given by 

0, 

0. 

(2.27) 

(2.28) 

f3 = f3i = ± v; Jt - 2a cos(wr8 ) + a 2 + w2 + 2aw sin(wr8 ), (2.29) 

a cos(wr8 ) - 1 > 0; 

a cos(wrs) - 1 < 0, 
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a cos(w78 ) - 1 > 0; 

acos(w78)- 1 < 0. 

We define the following for the theorem later: 

F11 = max{O, 1 -lal}, 

F12 min{O, Ia!- 1}, 

F 21 max{-.;; /3, 1 - !a!} as 7n is varied on the curves (/31, 71~), 
F22 min{-.;; /3, Ia! - 1} as 7n is varied on the curves ((3{, 7~), 

F31 max{.;; /3, 1- !al} as 7n is varied on the curves (/32, 7~), 

F32 min{ v:; /3, Ia I- 1} as 7n is varied on the curves (f3t, 7~). 

(2.31) 

Now we describe the geometry of the curves defined above and how this geometry 

changes as a and 7 8 vary. 

Lemma2.5.2 

lim f3t 
w-+O+ 

lim 7~ = 
w-+O+ 

l . + 
1m 710 

w-+O+ 

lim 7io 
w-+O+ 

. 13± v'21 I hm 2 = ±-
2 

1 - a , 
w-+O+ 

lim 7ik = oo, k > 0, 
w-+0+ 

{ 

l+aT, 
a-1 ' lim 72Q = 

w-+O+ 
oo, 

1+aTa 
a-1 ' 

1' + Im 720 = -oo, 
w-+O+ 

oo, 
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a> 1, 

a:::; 1, 

a< 1, 

a= 1, 

a> 1, 

(2.32) 

(2.33) 



and 

lim f3t 
W-400 

1. ± 
liD T10 = 

W-400 

lim f3i = ±oo, 
w--too 

lim T~ = 0. 
W--tOO 

Proof The proof follows from straightforward calculations. 0 

All points in parameter space where the characteristic equation has roots with zero real 

part have been determined. By varying one or more parameters in the parameter space, 

passing through such a point may cause a qualitative change in the type of solutions ad

mitted by the DDE. Such bifurcation points are important, especially when they lie on the 

boundary of the stability region of the trivial solution, because they determine the observ-

able behavior of the system. 

Lemma 2.5.3 Ifiai::; 1, then 

1) the curves (f3t, rit,) and ((3:j, r2~) are bounded on the left by the line (3 = 1(1-!al),· 

2) the curves (f31,T1k) and (f32,r2Jc) are bounded on the right by the line (3= 1(ial-1). 

Proof From equations (2.22) and (2.23), which holds along (3 = f3t, we have 

Since f3t = - f31, we have 

The rest of the results can be shown in an analogous manner. 0 
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Now we consider the boundary of the stability region when 78 # 7n· Generally, for 

If .6.1(iw) = 0, we have 

1- a cos(w78 ) = ,B cos(w7n), 

w + asin(w78 ) -,Bsin(w7n), 

which yields 

,8± ± y'1 + a 2 + w2 + 2aw sin(w78 ) - 2a cos(w78 ), 

r+ - arctan + w 
1 -w - a sin(w7s) { 

2
k1r 1 -a cos(w7s) < 0, 

n w 1 - a cos(w78 ) (2k~l)?r 1 _a cos(w7s) > O, 

1 -w - a sin(w7
8

) { (
2k+l)1r 1 -a cos(w7s) < 0, 

7;; = - arctan ( + w 
w 1 - a cos W78 ) 2~1r 1 _a cos(w7s) > O. 

So we know that on the ,B- 7n plane the curves (,B+,7;t) and (,B-,7;;) establish the 

boundary of the stability region, i.e. the area around the equilibrium (0, 0, 0) decided by 

these curves is the full stability region. 

Let 

F1 ( 7n) max{,B, 1 ~ Ia I} as 7n is varied on the curves (,8-, 7;;) , 

F2(7n) = min{,B, lal-1} as 7n is varied on the curves (,B+, 7;;), 

then the parameter ,B satisfy F1 ( 7n) < ,B < F2( 7n) if and only if the equilibrium point in 

the corresponding system is stable. 

Then for Case 3,we have the following theorem: 
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Theorem 2.5.4 The parameter f3 satisfies maxl:<;i9 Fi1 < f3 < min1 9 9 Fi2 if and only if 

the equilibrium point in Case 3 is stable. 

Similarly, we can obtain the results for other cases. 

Now we consider the boundary of the stability region when 78 = 7n· For 

.A+ 1- (a+ f3)e->.r = 0, 

let .A = iw be the imaginary root, we have: 

(3± ±J1 + w2 - a, 

7 = ~ (arccos a! f3 + 2k1f) . 

Let 

F11 ( 7) max{/3, 1} as 7n is varied on the curves ((3-, 7) , 

F12 (7) = min{/3, -1} as 7n is varied on the curves ((3+, 7), 

then the parameter f3 satisfies F11 ( 7) < f3 < F12 ( 7) if and only if the equilibrium point in 

the corresponding system is stable. 

Until now, we can obtain the boundary of the stability region when 78 = 7n for Case 1 

to Case 5. Next we will prove the result for Case 6 and Case 7. 

For 

.A+ 1- (a+ f3i)e->.r = 0, 

let .A = iw be the imaginary root, we have 

±J1 + a 2 + w2 + 2aw sin(w78 ) - 2a cos(w78 ), 

1 ( . 1 
- arcsin ---r=~=;:;===;:;===::====:'==;==7======;= 
w Jl + 2a2 + w2 + 2aw sin(w78 ) - 2a cos(w75 ) 

a 
- arctan + k1r). 

±J1 + a 2 + w2 + 2aw sin(w78 ) - 2a cos(w78 ) 
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Let 

Fl (r) max{,B} for every T where ,B, Tin ur, 7-) curves, 

F2(r) = min{,B} for every T where ,B, Tin (,B+, r+) curves, 

then the parameter (3 satisfies F1 ( T) < ,B < F 2 ( T) if and only if the equilibrium point is 

stable. 

For Case 6, when we consider 

let >. = iw be the imaginary root of the above equation, then we can get the expression 

for the parameters (3 and T. After the definition of F 21 ( >.) and F22 ( >.), we know that the 

parameters (3 satisfy F 1 ( T) < (3 < F2 ( T) if and only if the equilibrium point is stable. 

Similarly, we can define F 31 (>.)and F32 (>.) for>.+ 1- (a-~- :/ff3i)e->.r = 0. 

Apply this result to Case 6, since 

we have the following theorem: 

Theorem 2.5.5 The parameter (3 satisfies maxlO::::i9 Fi1 < (3 < min1o::;io::;J Fi2 if and only if 

the equilibrium point in Case 6 is stable. 

Similarly, we can obtain the result for Case 7. 

Now we have done enough to describe the full stability region of the trivial solution in 

the ,B, T plane, as a and Ts are varied. See Fig 2.4 as an example. Detailed analysis about 

the full stability region of Case 1 can be seen in [5]. For similar analysis see [40]. 
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Figure 2.4: Region of local stability of the trivial solution for Case 3 
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Chapter 3 

BIFURCATION ANALYSIS 

3.1 Center Manifold Reduction and Normal Form 

We consider a general functional differential delay equation: 

i: = L(JL)Xt + f(xt, JL), 

with Xt = x(t + fJ), -h ::;; fJ ::;; 0, C = C([-h, 0], R), L : C -1 R a linear operator, and 

j E cr(C,R),r 2::1. Weassumethatthelinearpartoftheequation 

i:(t) = L(JL)Xt (3.1) 

has m eigenvalues with zero real parts and all the other eigenvalues have negative real parts. 

In such a situation, Hale [20] proved that there exists an m-dimensional invariant manifold 

in the state space C, which is called the center manifold, and that long term behavior of 

solutions to the nonlinear equation is well approximated by the flow on this manifold. Then 

we can decompose C as C = P E9 Q. P is an m-dimensional subspace spanned by the 

solutions to (3.1) corresponding to them zero real part eigenvalues; Q is the corresponding 
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complementary space of P; P and Q are invariant under the flow associated with equation 

(3.1). Further, the flow on the center manifold is 

Xt = <I>z(t) + h(z(t), f), 

where <I> is a basis for P, hE Q, and x satisfies the ordinary differential equation 

x = Bx + w(O)R(<I>x + h(z(t), f), Jl), 

where B is the (m x m) matrix of eigenvalues with null real part of (3.1), w is the basis for 

the invariant subspace of the adjoint problem corresponding to P, which is normalized by 

< W, <I> >=I, where I is them x m identity matrix. For¢ E C[-h, 0] and '1/J E C[O, h], 

we introduce the bilinear operator associated with (3.1) 

< '1/J, ¢ >= 'l/J(0)¢(0)- I: 1() '1/J(~- O)dry(O)¢(~)d~, 

where 

-Oo + aOTs a12(30Tn a13(30Tn 

dry(O) = a21(30Tn -Oo + aOT, a23(30Tn dO, 

a31(30Tn a32(30Tn -Oo + aOTs 

and c5T = o(() + r) is the Dirac distribution at the pointe= -r, h = max(rs, rn)· 

When (3 = (3*(a), >. = 0 is a single zero root of the characteristic equation, the lin

earization system becomes 

xl(t) = -xl(t) + axl(t- rs) + a12(3*(a)x2(t- rn) + al3(3*(a)x3(x- rn) 

±2(t) = -x2(t) + a21,B*(a)x1(t- rn) + ax2(t- r .• ) + a23,B*(a)x3(t- rn). (3.2) 

X3(t) = -x3(t) + a31,B*(a)x1(t- rn) + a32(3*(a)x2(t- rn) + axa(t- rs) 
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<1>1 

Suppose <P ~ 4>2 is a solution of (3.2) corresponding to ). = 0. From 

3xl 

then the base in the complementary space is 

Until now the problem of describing the long term behavior of solutions to the delay 

differential equation has been reduced locally to the problem of describing the behavior of 

solutions to the !-dimensional system of ordinary differential equation (3 .1). 

The following shows the rest of the details of the process: 

By introducing a bifurcation parameter /1> E 1R in (3, i.e. (3 = ,B*(a) + fl>, then the system 

(1.5) becomes 

±1 (t) = -XI (t) +af(xl (t-T8 )) +a12((3*(a) + J.l>)g(x2(t-Tn)) +a13(f3*(a) + J.l>)g(x3(X-Tn)) 

±2(t) = -x2(t) +a21 (,B*(a) + J.l>)g(xl (t-Tn)) +af(x2(i-T8 )) +a23((3*( a)+ Jl.)g(x3(t-Tn)). 

X3(t) = -x3(t) +a31 (,B*(a) + J.l>)g(xl (t-Tn)) +a32(f3*(a) + J.l>)g(x2(t -Tn) )+af(x3(t-Ts)) 

Rewriting the system as 

'Pl 

for cp1, cp2 , cp3 E C, <p = cp2 
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-rpl (0) + arp1 ( -Ts) + a12(,B*(a) + ft)rp2( -Tn) + a13(,B*(a) + ft)rp3( -Tn) 

L(ft )rp = a21 (,8*( a) + ft )rpl ( -Tn) - rp2(0) + arp2( -Ts) + a23 (,B* (a) + ft )rp3 ( -Tn) 

a31(,B*(a) + ft)rpl(-Tn) + a32(,B*(a) + ft)rp2(-Tn)- rp3(0) + arp3(-Ts) 

1 1 
F(rp) = a[2j"(O)rp2( -T8 ) + (/111 (0)rp3( -T8 ) + ... ], 

(,B* (a)+ {t)[~g" (O)[a12Ct?~( -Tn) +a13rp~( -Tn)] + ~g111 (O)[a12Ct?~ ( -Tn) +a13tp~ ( -Tn)Jl 

G( rp) = (,B* (a)+ Ji,) [~g'' (0) [a21 Ct?I( -Tn) + a23rp~( -Tn)] + ~g'" (0) [a21 rpi( -Tn) +a23Ct?~ ( -Tn)Jl 

(,B* (a)+ Ji,) [~g'' (0) [a31 rpi( -Tn) +aa2rp~( -Tn)] + ~g111 (O)[aal rp~ ( -Tn) +aa2Ct?~ ( -Tn)]] 

Let L(J1,) = L0 + Ll(ft) + o(lftl), where 

-rpl (0) + arp1 ( -Ts) + a12.8*(a)rp2( -Tn) + ala,B*(a)rpa( -Tn) 

Lorp = -rp2(0) + a21,B*(a)rp1 ( -Tn) + arp2( -Ts) + a2a.B*(a)rp3( -Tn) 

-rpa(O) + a31,8*(a)rp1( -Tn) + aa2,8*(a)rp2( -Tn) + arpa( -T8 ) 

a12Ct?2( -Tn) + a13rp3( -Tn) 

L1 (Jl,)rp = P a21 (j?1 ( -Tn) + a23rp3( -Tn) 

a31Ct?l(-Tn) + a32Ct?2(-Tn) 

Since we only need the lowest order terms in Taylor series for the nonlinearity, let h = 0 

here, then 

R(ct>z, ft) = [L(ft)- Lo]cl>z + F(ct>z, ft) + G(ct>z, Jl,) 

= Ll(ft)cl>z + F(cl>z, ft) + G(ct>z, ft) 

Combining the previous processes, we obtain the following results: 

For Case 1, ,B = .Bn: 
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It is easy to check <J; = ( : ) , so 'I' = '+'=•+j(J-a)•• (1, 1, 1), then the normal form 

up to the third order is: 

. 1 1 1 
u(t) = 

1 
(
1 

) [2tw+-
2

(aj"(0)+(1-a)g"(O))u2+-(af"'(0)+(1-a)g"'(O))u3
]. + ar8 + -a Tn 6 

For Case 2, f3 = !321: 

We have <J; = ( i 
1 

) , so 'I' = '+""· +~(l-•)•. ( 0, 1, ~ 1), then the normal form up to 

the third order is: 

1 1 
u(t) = 

1 
( ) [-f-lU+ -

6 
(af"'(O) + (1- a)g111(0))u3

]. + aTs + 1- a Tn 

For Case 2, f3 = f]22: 

We have <I> = ( ~ ) , so W = (7-v'5)(I+a!.+(l-a)Tn) (1, 1, ~-1 
), then the normal 

¥5-1 
2 

form up to the third order is: 

u(t) = ( 7-V5)(l+a~.+( 1 -a)Tn) [(3J5 + 1)f-lu + ( JSaJ"(O) + 7-~v'5(a- 1)g"(O))u2 

+i((ll- 3v's)af"'(O) + (5v's- 15)(a- 1)g"'(O))u3
]. 

For Case 2, f3 = (323: 

We have <I> = ( ~ ) , soW = (7+v'5)(l+a~.+(l-a)Tn) (1, 1,- '1+1 ), then the nor
-~ 

2 

mal form up to the third order is: 

u(t) = ( 7+V5)(l+a~.+(l-a)Tn)[(1- 3J5)f.lU + (-J5af"(0) + 7+~V5(a -1)g"(O))u2 

+i((ll + 3J5)aj111 (0) + (5v's + 15)(1- a)g111 (0))u3
]. 
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For Case 3, (3 = (331: 

We have <I>~ ( ~ ) , so 'I' = 4+4.,-.+~(1-a),. (I, I, y'2), then the normal form up to 

the third order is: 

u(t) = 4+4or,+~(l-o)rn [4vl2,.tu + (1 + \1'2)(af"(O) + (1- a)g"(O))u2 

+(af"'(O) + (1- a)g111(0))u3
]. 

For Case 3, (3 = (332: 

We have<]) = ( ~ ) , soW = 4+4ors+~(l-o)rn (1, 1, -\1'2), then the normal form 

-\1'2 
up to the third order is: 

u(t) = 4+4ors+~(l-o)rn [-4\1'2J.Lu + (1- \1'2)(af"(0) + (1- a)g"(O))u2 

+(af111 (0) + (1- a)g111 (0))u3
]. 

For Case 4 (1), (3 = (341: 

We have <I> = ( : } so 'I' = 6+6=, +~11 _0),.( 2, I, I), then the normal form up to the 

third order is: 

u(t)= 
6 

1 
(
1 

) [6J.Lu+(5af"(0)+3(1-a)g"(O))u2+(3af"'(0)+(1-a)g111 (0))u3
]. 

6+ aT8 +6 -a Tn 

For Case 4 (1), (3 = fJ21: 

We have <I> = ( I 
1 

} so 'I' = '+"""• +~11_0),.( 0, I, -I), then the nonnal form up to 

the third order is: 

1 1 
u(t) = ( ) [-Jl.U + -

6
(af 111 (0) + (1- a)g111 (0))u3

]. 
1 + aT8 + 1 - a Tn 
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For Case 4 (2), (3 = (341: 

We have <I> ~ ( : } soW ~ '+"""•+~(!-*• (0, I, 1), then the nonnal fonn up to the 

third order is: 

For Case 4 (2), (3 = fJ21: 

We have <I> ~ ( J 
1 

) , so W ~ '+'"'•+ ~(>-o )'• ( 0, I, -I), then the nonnal fonn up to 

the third order is: 

u(t) = 
1 

\
1 

) [-pu + -
6
1 

(aj 111 (0) + (1- a)g111 (0))u3
]. + aT5 + -a Tn 

For Case 4 (3), (3 = (341: 

We have <I>~ ( : ) , soW = 3+3o,,+~(>-o),, (1, I, 1), then the nonnal form up to the 

third order is: 

u(t) = \ ) [pu+!(aj"(0)+(1-a)g"(O))u2+-
6
1 

(af111 (0)+(1-a)g111 (0))u3
]. 

1 + aTs + 1 - a Tn 2 

For Case 4 (3), (3 = fJ21: 

We have <I> ~ ( i 
1 

} so W = 3+'"'•;'(>-o),.(l, I, -I), then the normal form up to 

the third order is: 

1 1 1 
u(t) = ( ) [-~t'u+-6 (af"(O)+(a-l)g"(O))u

2+-(af111(0)+(1-a)g111 (0))u3]. 
1 + aTs + 1 - a Tn 6 

For Case 4 (4), (3 = (341: 
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We have 'I> ~ ( ~·),soW ~ '+'"'•+~(l-o)'" (0, 1, 1), then the normal form up to the 

third order is: 

u(t) = 
1 

\
1 

) [J.Lu+-
2
1 

(aj"(0)+(1-a)g"(O))u2+-
6
1 

(af111 (0)+(1-a)g111 (0))u3
]. + ar8 + -a Tn 

For Case 4 (4), (3 = (321: 

We have 'I> ~ ( J
1 

). so W ~ 2+2=, +~(l-o),J 0, 1, -1), then the normal form up to 

the third order is: 

u(t) = \ ) [-J.LU + ~(af111 (0) + (1- a)g111 (0))u3
]. 

1 + ar8 + 1 - a Tn 6 

For Case 6, (3 = (341: 

We have 'I>~ ( : ) , soW ~ 3+3m,+~(l-o)'" (1, 1, 1), then the normal form up to the 

third order is: 

u(t) = \ ) [J.Lu+~(aj"(0)+(1-a)g"(O))u2+~6 (aj111 (0)+(1-a)g111 (0))u3 ]. 
1 + ar8 + 1 - a Tn 2 

Remark 3.1.1 In general, there will be dependence on .f"(O), g"(O) in the third order 

terms. However, the normal forms above are correct, since the expressions we need in-

eluding the third order terms are for pitchfork bifurcation and it is assumed that f" ( 0) = 

g"(O) = 0. 

3.2 Bifurcation Analysis 

To study the different bifurcations from the trivial equilibrium, we introduce another as-

sumption, 
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(C3)f"(O) = g"(O) = 0. 

3.2.1 Transcritical Bifurcation 

If the functions f and g satisfy (Cl), but not (C3), the dynamical properties are determined 

by the normal form truncated at the second order for a certain case in the following, there-

fore, the system in the corresponding case undergoes a transcritical bifurcation: 

Case Normal form 

Case 1, (3 = f3n u(t) = 1 [2J.tu + l(af"(O) + (1- a)g"(O))u2] l+or.+(1-o)7n 2 

Case 2, (3 = /322 . ( t) 1 
U = {7--/5)(1+or.+(1-o)7n) 

[(3vfs + 1)J-Lu + ( vfsaf"(O) + 7-~-15(a- 1)g"(O))u2] 

Case 2, /3 = fJ23 u(t) - 1 
- (7+-/5)(1+or.+(1-o)rn) 

[(1- 3vfs)J-Lu- ( vfsaf"(O)- 7+~-l5(a- 1)g"(O))u2] 

Case 3, (3 = /331 u(t) = 4+4o,-.+~(1-o)rn [4J2J.tu + (1 + J2)(af"(O) + (1- a)g"(O))u2] 

Case 3, /3 = /332 iL(t) = 4+4a,-.+~(l-o)rn [-4J2J-Lu + (1- J2)(af"(O) + (1- a)g"(O))u2] 

Case 4(1), (3 = /341 iL(t) = 6+6o,-.+~( 1 -o)rn [6J.tu + (5af"(O) + 3(1- a)g"(O))u2] 

Case 4(2), (3 = /341 i.L(t) = l+or.+~ 1 -o)rn [J.tu + ~(af"(O) + (1- a)g"(O))u2] 

Case 4(3), (3 = /341 u(t) = l+or.+(1-o)rn [J-Lu + ~(af"(O) + (1- a)g"(O))u2] 

Case 4(3), (3 = (321 u(t) = l+or.+1(l-o)rn [-J-LU + ~(af"(O) +(a- 1)g"(O))u2] 

Case 4(4), (3 = (341 iL(t) = l+or.+(l-o)rn [J-Lu + ~(af"(O) + (1- a)g"(O))u2
] 
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3.2.2 Pitchfork Bifurcation 

Iff, g satisfy both the assumptions (Cl) and (C3), the second order terms in the normal 

form disappear, we have to consider the normal form up to the third order. 

If the parameter a satisfies the condition for a certain case in the following, the pitchfork 

bifurcation takes place in the system for the corresponding case: 

Case Condition 

1 f3 = f3n and An ~ afm(O) + (1- a)gm(O) #- 0 

2 f3 = f32t and An #- 0 

2 f3 = (322 and A22 ~ (11- 3VS)afm(o) + (5VS- 15)(a -1)gm(o) #- 0 

2 f3 = (323 and A2a ~ (11 + 3VS)af"'(O) + (5VS + 15)(1- a)gm(o) #- 0 

3 f3 = f3at and Au =/= 0 

3 f3 = f3a2 and An =I= 0 

4(1) f3 = (341 and A41 ~ 3afm(o) + (1- a)gm(O) #- 0 

4(1) f3 = !321 and An =I= 0 

4(2)(3)(4) f3 = (341 and An =/= 0 

4(2)(3)(4) f3 = !321 and An =I= 0 

Let A0 ~ 1 + aTs + (1 - a)Tn, then in Case 1, when f3 = (311 , it is supercritical when 

A0A11 < 0 and subcritical when A0A11 > 0. Similarly, we can obtain the similar results 

for the other cases in the above table. 

3.2.3 Hopf Bifurcation 

To begin, we verify that the characteristic equation has a simple pair of pure imaginary roots 

which cross the imaginary axis with nonzero speed, which means that a Hopf bifurcation 
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occurs [23]. Then, we follow with a center manifold analysis of the criticality of Hopf 

bifurcation and determine the stability of the bifurcating periodic orbits. 

We take Case 3 as an example to do the analysis. For Case 3 denote the characteristic 

equation P3 as 

We assume .6.31 ( iw) :f. 0, since the parameter space is about a, {3, 7 8 , Tn, however there 

is no {3 and Tn in .6.31· 

Consider ~32 (iw) = 0 when w, a, {3, 7 8 , Tn satisfy (2.22) (2.23). It is easy to see that 

under these conditions excluding some particular points, ~31 ( iw) :f. 0, ~33 ( iw) :f. 0. Thus 

we have 

(3.3) 

and to check these roots are simple, it is enough to check that 

This leads to the conditions 

(3.4) 

Now we fix all the parameters except the delay Tn and find the conditions to guarantee 

that Re(tr: l>.=iw) :f. 0, i.e. the transversality condition for Hopf bifurcation is satisfied. 

Suppose>.= >.(rn), then from the characteristic equation P 3 (>., Tn) = 0 we have 
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which gives 

d). _ aP3 
1

aP3 
dTn-- 8Tn 8)... 

From the discuss above, it is easy to see that 

Putting this together with (3.3) gives 

We have 

R (d)./ . ) _ J2.Bw(sin(wTn) + aT8 sin(w(Tn- 7 8 ))) 

e d .X=•w - k2 + k2 ' 
~ 11 ~ 

where k11 and k12 are defined in (3.4). Then it is clear that the transversality condition is 

,Bw(sin(wTn) + CX.T8 sin(w(Tn- 7 8 ))) =/::. 0. (3.5) 

Similarly, considering .6.33 ( iw) = 0, we have the following conditions 

k21 1 + CX.T8 cos(WT8 ) + v"i.BTn cos(wTn) =/::. 0, 

k22 = aT8 sin(wT8 ) + v"i.BTn sin(wTn) =/::. 0, (3.6) 

and the transversality condition is the same as (3.5). 

We summarize the above results in the following theorem: 

Theorem 3.2.1 For fix a, T8 2': 0. and for .8 satisfying .8 = .Bt ( .8 = .Bi) as defined 

by (2.24)((2.29)), the system (1.5) for Case 3 undergoes a Hopf bifurcation atTn = Tfk 

(Tn = Tfk) as defined by (2.25) and (2.26) ((2.30) and (2.31 )) if conditions (3.4) ((3.6)) and 

(3.5) hold. 
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To analyze Hopf bifurcation, generally [24] we can derive the explicit formula to de

termine the properties of the Hopf bifurcation at the critical value of the delay using the 

normal form and the center manifold theory, i.e. we can determine the direction, stability 

and period of these periodic solutions bifurcating from the steady state. 

For¢ E C 1([-h, OJ, 1R3), define 

(} E [-h, 0), 

{ 

d¢(0) 

A(J.L)¢ = (i(J• 

J~h dry((}, J.L)¢(0), (} = 0, 

and 

{ 

0, 
R(J.L)¢ = 

f(p, ¢), 

Then system (1.5) is equivalent to 

where Xt(O) = x(t + 0) for(} E [-h, 0]. 

(} E [-h, 0), 

(} = 0. 

For 1/J E C 1 ([0, h], (1R3)*), define the adjoint operator A* as following: 

s E (0, h], 

s = 0. 

And the bilinear inner product 

< 1/J(s), ¢(0) >= ~(0)¢(0)- 1: i:o ~(~- O)dry(0)¢(0d~, 

where ry(O) = ry(O, 0). 

Then, as usual, we know 

< '1/J, A¢>=< A*'ljJ, ¢ >, 
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where(¢, 'lj;) E D(A) x D(A*), and the normalization condition< q*, q >= 1. 

We know that ±iw are eigenvalues of A(O). Thus, they are also eigenvalues of A*. We 

first need to compute the eigenvector of A(O) and A* associated with ±iw. 

Suppose that q(O) = (1, q1, q2)T eillw is the eigenvector of A(O) corresponding to iw. 

Then A(O)q(O) = iwq(O), i.e. 

1 0 

0 

Thus, we can obtain q(O) easily for each case. 

Similarly, let q*(s) = D(1, q;, q~)eisw be the eigenvector of A*(O) corresponding to 

-iw, then A*(O)q*(s) = -iwq*(s), i.e. 

So for each case we have q*(O) obviously. 

0 

= 0 

0 

In the order to conform < q* ( s), q ( 0) > = 1, we need to assure the appropriate value of 

D. From the definition, we have 

<q*(s), q(O) >=D(1, ii, i2)(1, q1, q2f-{
0 

{

11 
D(1, ii, q2)e-i(e-o)wdry(B)(1, q1, q2f eiewd~ 

-h le=o 

= D { 1 + q1q; + q2q~- 1:
1 

(1, i;, q~)Oeillwdry(B)(1, q1, q2f}. 

Since 

-Cl!T,e-iwr, -a12/3Tne-iWTn -O.t3f3Tne-iWTn 1 

(1,qj,q2) -a2lf3Tne-iwrn -O:Tse-iwr, -a23f3'Tne-iwrn 

-a3lf3'Tne-iwrn -a32f3'Tne-iwrn -O:Tse-iwr, 
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we have 

Thus, we can obtain D as 

1 
D = ---------.,=-

1 + 1]1qi + (hq2- D1 

The 'form' of the center manifold we need here in low dimension is 

where 

and 

4?1 

G 4?2 

4?3 

z = Bz + \li(O)R(<Pz), 

( 

iw 
B= 

0 
0 ) ( z ) ( q*(O) ) . , z = _ , w(o) = _ , 

-~w z q*(O) 

R(<Pz) = F(<Pz) + G(<Pz), 

F(¢) = a[~J"(0)¢2 ( -T8 ) + ~J"'(0)¢3 ( -T8 )], 

,8[~g''(O)(al24?~( -Tn) + a13'P5( -Tn) + ~g"'(O)(a12<p~( -Tn) + a134?H -Tn))] 

,8[~g"(O)(a21<pi( -Tn) + a23<p5( -Tn) + ig'"(O)(a21'PH -Tn) + a23<p~( -Tn))] 

,8[~g''(O)(a31'PI( -Tn) + a32<p~( -Tn) + ~g"'(O)(a31<p~( -Tn) + a32<p~( -Tn))] 

We take Case 3 ,6.32 ( iw) = 0 as an example to do a detailed analysis: 

It is easy to obtain 

<P(O)z = 
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Directly computing we have 

i- 3w j"(O) . . z = iwz + [(2- J2)a--(e-tw'T. z + etW'Ts z) 2 

4(5w2-2w+1) 2 
;;:;- 1 1 . . 2 ;;:;- ! 111 (0) . . 3 

-y L./3( -9"(0) +-9'"(0))(e-tW'Tn z+etW'Tn z) +(2- V 2)a--(e-tW'Ts z+etW'Ts z) 
2 6 6 
;;:;- 1 1 . . 3 

+(4- V L.)/3( -9"(0) + -9111 (0))(e-tw'Tn z + etW'Tn z) ]. 
2 6 

Let z = x + iy, so we can rewrite the system above as 

x = -wy- 3w£, 

y wx + £, 

where 

1 J"(O) E = [(2- h)a--(e-iWTs z + eiwT. z)2 
4 ( 5w2 - 2w + 1) 2 

and 

;;:;- 1 1 . . 2 ;;:;- Jill (0) . . 3 
-y L./3( -911 (0) + -9111 (0))(e-tW'Tn Z + etW'Tn z) + (2- V 2)a--(e-tW'Ts Z + etW'Ts z) 

2 6 6 
;;:;- 1 1 . . 3 

+(4- V L.)/3( -9"(0) + _9m(0))(e-twTn Z + etWTn z) ] 
2 6 

4a(xcos(wT8 ) + ysin(wT8 ))
2 + 4b(xcos(wTn) + ysin(wTn))2 

+8c(xcos(wT8 ) + ysin(wT8 ))
3 + 8d(xcos(wTn) + ysin(w7n)) 3

, 

a (2- v2)a J"(O) 
8(5w2-2w+1) ' 

b -../2/3 ( 1 "( ) 1 Ill( )) 
4(5w2- 2w + 1) 29 0 

+ 69 0 
' 

c (2- J2)a fm(O) 
24(5w2 - Zw + 1) ' 

( 4 - ../2) /3 ( 1 11 ( ) 1 111 ( ) ) 

d = 4(5w2 - 2w + 1) 29 0 + 69 0 · 
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According to [22], we can obtain the Lyapunov coefficient for the Hopf bifurcation: 

N = -24w(ccos3 (wrs) + dcos3 (wrn)) + 8csin3 (wrs) + 8dsin3 (wrn) 

-72w(ccos(wr8 ) sin2 (wr8 ) + dcos(wrs) sin2 (wr8 )) 

+8(ccos2 (wr8 ) sin(wr8 ) + dcos2 (wrn) sin(wrn)) (3.7) 

+(9w2
- 1)(8asin(wr8 ) cos(wrs) + 8bsin(wr8 ) cos(wr8 ))(4a + 4b) 

+3w(4acos2 (wr8 ) + 4bcos2 (wrn))2
- 3w(4asin2 (wr8 ) + 4bsin2 (wrn)f 

So we have the following theorem: 

Theorem 3.2.2 The criticality of the bifurcation for Case 3 is determined by the sign of 

Lyapunov coefficient (3.7). When N > 0, the bifurcation is subcritical and the Hopfbifur

cation yields an unstable limit cycle; while N < 0, the bifurcation is supercritical and the 

Hopf bifurcation yields a stable limit cycle. 

Remark 3.2.1 Using the same method, we can obtain similar results for other cases. 

We take Case 2 as an example to do numerical continuation using DDE-BIFTOOL [12]. 

In Fig. 3.1, there are two Hopfbifurcation points when they-axis ~(max(x1 ) + max(x2 ) + 

max(x3)) = 0. As (3 is increasing, we know from Fig. 3.1 there are two periodic solutions, 

which are asynchronous (x1(t) =!= x2(t) =/= x3(t)). Fig. 3.2(a) shows a standing wave 

(periodic solutions satisfy Un-i(t) = ui(t- ~p), i(mod n), t E 1R) occurring in Fig.3.1 

Ll. Fig. 3.2(b) depicts a mirror-reflecting wave (periodic solutions satisfy ui(t) = Un-i(t), 

i(mod n), t E 1R) which occurs in Fig.3.1 L2. 

57 



3.5r------,------~------~------~------~----~r------. 

3 

2.5 

• r 

L1 

L2 

0.5 

l l 
OL---~~--~--~------~------~------~------~----~ 
0.5 1.5 2 2.5 3 3.5 4 

Figure 3.1: Numerical continuation of periodic solutions emanating from Hopf bifurcation 

with a = -1.5, T 8 = 1, Tn = 1 for Case 2. 
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0.01 r--.---.----r--r--...-----r----r--.---,---, 

0.005 
x1x2x3 

-0.005 

-0.01 '---..I...---1-----L--l---...J.._--l....-----l--.J...._-....L-_ _J 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

T (a) standing wave 

0.01 r----,----r--.----;-----r--.------.-----r--....---, 

x1x2x3 

-0.01 '-----'----'---"'----'-----'---.L._--l-_ ___. __ ...1..-_ _J 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

T 
(b) mirror-reflecting wave 

Figure 3.2: Hopf bifurcations of standing wave and mirror-reflecting wave with a = -1.5, 

Ts = 1, Tn = 1 for Case 2. 
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Chapter 4 

GLOBAL EXISTENCE OF PERIODIC 

SOLUTIONS WHEN Ts 0 

In delay differential equations we can obtain periodic solutions through Hopf bifurcation. 

However, most results are generally local. So it is important to discuss the extendibility of 

the non-constant periodic solution globally. By using a global Hopf bifurcation result due 

to Wu [51] and high-dimensional Bendixson's criterion due to Li and Muldowney [31], we 

can show that the local Hopf bifurcation implies the global Hopf bifurcation for a certain 

critical value of delay. 

For system (1.5) if 7 8 = 0, 7n = 7 we have 

±1(t) -x1(t) + aj(x1(t)) + a12f3g(x2(t- 7)) + a13f3g(x3(t- 7)), 

±2(t) -x2(t) + a21f3g(x1(t- 7)) + aj(x2(t)) + a23f3g(x3(t- 7)), (4.1) 

X3(t) -x3(t) + a31f3g(x1(t- 7)) + a32f3g(x2(t- 7)) + aj(x3(t)), 

and assume 
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(H1) there exists L > 0 such that IJ(x)l ::::; L, lg(x)l ::::; L for x E R; The origin (0, 0, 0) is 

the unique equilibrium. 

The corresponding characteristic equation becomes 

4.1 Stability Analysis 

Let us consider the characteristic equation: 

.6.s(>.) ~ >. + 1 - o: - {3e->.r = 0. (4.2) 

We know that when T = Tj, >. = iw is a root of (4.2) with 

where 

Tj = 
1 

[arccos ( 
1 ~ o:) + jo7r] , 

Jf32- (1- o:)2 p 
(4.3) 

. { 2j + 1, when {3 > 0 (j = 0, 1, ... ) 
Jo = 

2j. when {3 < 0 (j = 0, 1, ... ) 

For the system corresponding to (4.2), we have the following results: 

.r,Vc 

Lemma 4.1.1 

1) If the parameters o: and (3 satisfy o: + l/31 < 1, all the roots in Eq. (4.2) have negative 

real parts. 

2) If o: + {3 > 1, then there exists a solution with a positive real part. 

61 



3) If the parameters a and (3 satisfy 11 - al < -(3, then the equilibrium (0, 0, 0) is 

asymptotically stable when T E [0, To), and unstable when T > To, where To is 

defined in (4.3). Moreover, at T = Tj, (j = 0, 1, ... ), there exists a pair of purely 

imaginary roots in (4.2). Hop/bifurcation occurs near (0, 0, 0). 

The proof is similar to those in Lemma 2.2.1, (2.4.1) and (2.3.1). In order to guarantee 

a Hopf bifurcation, we need not only the existence of pure imaginary eigenvalues, i.e. 

,6.5 ( iw) = 0, but also the transversality condition 8~p) 1>-=iw = 1 + (3Te-iwr # 0, which is 

obvious. 

Since the characteristic equation in Case 2-Case 4 can be factored as the multiplication 

of three first-order quasi-polynomials and each factor has the similar construct to ( 4.2). The 

corresponding Tj has the following form: 

T21j = J 1 
[arccos (a ~ 1) + j 0 1r] , 

(32- (1 - a)2 

1 [ cv's-1)(1-a)) ·] T22j = .j arccos 2(3 + Jo7r , 
3+2..;5 (32- (1- a)2 

1 [ cv'5+1)(a-1)) ·] T23j = J arccos 2(3 + Jo7r , 
3-2..;5 (32- (1- a)2 

T31j = arccos · 1r 1 [ ( J2(1- a)) l 
J2(32 - (1 - a)2 2(3 + Jo ' 

T32j 
1 [arccos ( V2(ail- 1)) + j 01r] , 

J2(32- (1- a)2 2 

T41j = T21j, 

742j Tj. 

Rerange the critical value of time delay Tiki in Case i (i = 2, 3, 4) as TiQ < Tit < · · · < 
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7ij < · · · , and the corresponding pure imaginary eigenvalue as I wi (I is the unit of pure 

imaginary root). 

Theorem 4.1.2 

1) If the parameters a, (3 satisfy the corresponding condition in the following table, then 

the equilibrium (0,0,0) is stable for any 7 :2: 0. 

Case Condition 

2 a+ 1+201/31 < 1 

3 a+ v-21/31 < 1 

4 a+ l/31 < 1 

2) If the parameters a, f3 satisfy the corresponding condition in the following table, then 

the equilibrium (0,0,0) is unstable for 7 :2: 0. 

Case Condition 

2 a+ 1+2¥5/3 > 1 or a- f3 > 1 

3 a + V2f3 > 1 or a - )2(3 > 1 or a > 1 

4 a + f3 > 1 or a - f3 > 1 or a > 1 

3) In addition, for Case 2, if the parameters a, (3 satisfy 

(H2) a- 1 < (3 < v%
2
-l(a- 1), 

then the equilibrium (0,0,0) is asymptotically stable when 7 E [0, 7 20 ), and unstable 

when 7 > 720 . Moreover, at 7 = 72j• j = 0, 1, ... , the corresponding system has a 

pair of pure imaginary roots, and undergoes Hopfbifurcation near (0, 0, 0). 
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Therefore, we can determine the stability situation for each case in the parameter ( o:, (3) 

plane. For instance, Fig (4.1) shows the stability region for Case 2: in I, the trivial solution 

is stable; in II, the trivial solution is conditional stable; in part III, the trivial solution is 

unstable. 

-4 

-5 

-4 -3 -2 -1 0 2 

Figure 4.1: Stability region partition in the parameter o:, (3 space for Case 2, where l1 is 

a+ 1+
2
{5(3 = 1, l2 is a- 1+

2
V5 (3 = 1, l3 is a- (3 = 1. 

64 



4.2 Preliminary Results 

To investigate the global existence of multiple periodic solutions for system ( 1.5) with Ts = 

0, we need to combine the global Hopfbifurcation result and high-dimensional Bendixson's 

criterion. 

Firstly we introduce the global Hopf bifurcation result of Wu [51], which we shall 

explain as the following: 

Let X be a Banach space of bounded continuous mappings x: lR--+ lRn with supreme 

norm. Consider the functional differential equation 

x'(t) = F(xt, o:, T), (4.4) 

where F : X x lR x lR+ --+ lRn is completely continuous. Restrict F to a subspace of 

constant function x, we have a mapping P = FIJRn xJRxlR+ : lRn x lR x lR+ --+ lRn. Assume 

(AI) FE C2. 

Let ±0 EX be a constant mapping with value x0 E lRn. The point (±0, o:0, T0 ) is called 

a stationary solution of (4.4) if F(x0 , o:0 , T0 ) = 0. Assume 

(A2) DxF(x, o:, T) bo,ao,To) is an isomorphism at each stationary solution (xo, o:o, To). 

Under the assumptions (Al) and (A2), by the implicit function theorem, for each sta

tionary solution (±0, o:0, T0 ), there exists Eo > 0 and a C1 mapping y : B,0 (o:0, T0 ) --+ lRn 

such that F(y(o:, T), o:, T) = 0, for (o:, T) E B,0 (o:0, To) = (o:o- Eo, o:o +Eo) x (To -

Eo, T0 + E0). Define the characteristic matrix at a stationary solution (x0 , o:0, T0 ) of (4.4), as 

where DcpF(x0 , o:0, T0 ) is the derivative of F(<p, o:, T) with respect to <pat (±0, o:0, T0 ) • 

The zeros of det ~(xo,ao,To) (>.) = 0 are the characteristic roots. Note that (A2) is equivalent 
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to assuming that ). = 0 is not a characteristic root of any stationary solution. Assume 

(A3) F( <p, a, T) is differentiable with respect to <p. The characteristic matrix b..(±o,<>o,To) (.X) 

is continuous in (a, T, .X) E Bf0 (ao, To) x C. 

A stationary solution (x0 , a 0 , T0 ) is said to be a center, if it has purely imaginary char

acteristic values of the form im~: for certain positive integer m. A center (x0, a 0 , To) is 

isolated if (i) it is the only center in a neighborhood of (x0 , a 0 , T0 ), (ii) it has only finitely 

many purely imaginary characteristic values of the form im~:. Let J(x0 , a0 , T0 ) be the set 

of all such positive integers mat an isolated center (x0 , a 0 , T0 ). Assume that 

(A4) there exists E, fJ E (0, Eo) such that on [ao- fJ, ao + fJ] X 8f2(£,To)• det b.(y(a,T),a,T)(U + 

im 2.;) = Ofor some mE J(x0 , a 0 , T0 ) if and only if a= a 0 , u = 0, T = T0, where 

n(f,To) = {(u, T): 0 < u < E, IT- To I< E}. 

Define 

H;;,(xo,ao,To)(u,T) = detb..(y(ao±c>,T),<>o±c>,T) (u+im:;). (4.5) 

Then (A4) implies that H~(xo, ao, To) =/= 0 on 8f2(e,To)· Thus, the mth crossing number 

'l'm(x0 , a0 , T0 ) of (x0 , a0 , T0 ) can be defined, using topological degree of mappings H~, as 

It is shown in Wu [51] that 'Ym(x0 , a0 , To) =/= 0 implies the existence of a local bifurca

tion of periodic solutions with periods near ~. 

In addition, 

(AS) All centers of(4.4) are isolated and (A4) holds for each center (x0 , a 0 , T0 ) and each 
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mE J(xo, ao, To). 

(A6) For each bounded set W ~ X x lR x lR+, there exists constant L > 0 s.t. IF( <p, a, T)-

F('lj;,a,T) ~ LsupsEIRI<p(s) -'1/J(s)i,Jor(<p,a,T) E W. 

The following is a global Hopf bifurcation result in Wu [51]. 

Theorem 4.2.1 Assume that (AJ)-(A6) hold. Let 

~(F)= Cl{(x, a, T): xis aT- periodic solutions of (4.4)} C X x lR x lR+, 

N(F) = {(x, a, T): F(x, a, T) = 0}. 

Let C(x0 , a 0 , T0 ) be the connected component in ~(F) of an isolated center (x0 , a0 , T0 ). 

Then either 

1) C(x0 , a0 , T0 ) is unbounded, or 

2) C(x0 , a0 , T0 ) is bound, C(x0 , a0 , T0 ) n N(F) is .finite, and 

'Ym(x, a, T) = 0 (4.7) 
(x,a,T)EC(xo,ao,To)nN(F) 

for all m = 1, 2, ... , where 'Ym(x, a, T) is the mth crossing number of (x, a, T) if m E 

J(x, a, T), or it is zero otherwise. 

By the theorem above, to show that C(x0 , a0 , T0 ) is unbounded, it suffices to show that 

the sum in (4.7) is nonzero, for a particular integer m. 

Next, we review the high-dimensional bendixson's criterion ofLi and Muldowney [31]. 

Consider a system of ordinary differential equations 

X= f(x), X E 1Rn, .f E C 1
• (4.8) 
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As shown in [31], to derive a high-dimensional Bendixson criterion, it is sufficient to show 

that the second compound equation 

8j[2] 
z'(t) = ax (x(t, xa))z(t), (4.9) 

with respect to a solution x(t, x0 ) E D (where D E 1Rn is an open connected set) to (4.8) is 

equi-uniformly asymptotically stable, namely, for each x 0 E D, system (4.4) is uniformly 

asymptotically stable, and the exponential decay rate is uniform for x 0 in each compact 

subset of D. Here 8£:J is the second additive compound matrix of the Jacobian matrix ~· 

It is an ( ; ) x ( ; ) matrix, and thus (4.9) is a linear system of dimension ( ; ) . 

For a 3 x 3 matrix 

en c12 C13 

C= c21 c22 C23 

c31 c32 C33 

its second additive compound matrix C[2l is 

en + c22 C23 

c[2J = 
C32 C11 + C33 (4.10) 

If D is simply connected, the equi-uniform asymptotic stability of ( 4.9) precludes the 

existence of any invariant simple closed rectifiable curve in D, including periodic orbits. 

In particular, the following result is provided in [31]. 

Theorem 4.2.2 Let D C 1Rn be a simply connected region. Assume that the family of 

linear systems 
8j[2] 

z'(t) = ax (x(t, xa))z(t), Xo ED 
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is equi-uniformly asymptotically stable. Then 

1) D contains no simple closed invariant curves including periodic orbits, homoclinic or-

bits, heteroclinic cycles; 

2) each semi-orbit in D converges to a single equilibrium. 

In particular, if D is positively invariant and contains an unique equilibrium i:, then i: is 

globally asymptotically stable in D. 

The required uniform asymptotic stability of the family of linear systems ( 4.9) can be 

proved by constructing a suitable Lyapunov function. For instance, (4.9) is equi-uniformly 

asymptotically stable if there exists a positive definite function V(z), such that d~~z) 1(4.9) is 

negative definite, where V and d~~z) 1(4.9) are both independent of x0. 

4.3 Nonexistence of Nonconstant Periodic Solution When 

r=O 

Consider the system (4.1) with T = 0, 

Under the following assumption: 

(H3 ) There exists m 1, m2 > 0 s.t. 

f.L(t) = max{f.Ll(t), J1·2(t), f.L3(t)} < 0, 
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where 

/-ll ( t) 

Jl•2(t) 

/-l3 ( t) 

We have 

-2 + oJ'(xi) + aj'(x2) + m1la23,Bg'(x3)l + m1la13,Bg'(x3)1, 
m2 

-2 + aj'(xl) + aj'(x3) + m2la32,Bg'(x2)l + m2la12fig'(x2)l, 
m1 

-2 + aj'(x2) + aj'(x3) + _!_la31,Bg'(x1)1 + _!_la21fig'(xl)l. 
m1 m2 

Theorem 4.3.1 If the Hypotheses (Cl), (H1) and (H3) are satisfied, then the system (4.11) 

has no non-constant periodic solutions. Furthermore, the unique equilibrium (0,0,0) is 

globally asymptotically stable in lR3. 

Proof Firstly we prove that solutions of ( 4.11) are bounded. Let 

3 

V(x1,x2,x3) =LXI. 
i=1 

Then the derivative of V along a solution of ( 4.11) is 

i=l 
3 3 

= 2 Lxi(-xi + af(xi) + L aij,Bg(xj)) 
i=l j=l,jf.i 

3 3 3 3 

-2 LXI+ 2a Lxd(xi) + 2fiL L aijXig(xj) 
i=l i=l i=l j=l,jf.i 

From the assumption (Cl) and (H1), we have 

dV 3 3 3 3 
-t 1(4.11):::; -2 LXI+ 2aL L lxil + 2,BL L L aijlxil· 
d '1 '1 '1'1'..J.' ~= ~= ~= J= ,Jr~ 

There exists M > 1 s.t. V'L-f=1 x{ ~ M which implies 

dV 
dtl(4.11) :::; 0. 
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This shows that the solutions of system ( 4.11) are uniformly ultimately bounded. 

Denote x = (x1,x2,x3f and 

then 

apr2J 

ax 

-x1 + aj(x1) + a12f3g(x2) + a13(3g(x3) 

F(x) = -x2 + a21(3g(xi) + aj(x2) + a23(3g(x3) 

-x3 + a31(3g(x1) + a32f3g(x2) + aj(x3) 

aF 
ax 

a31(3g'(xt) 

a32(3g'(x2) 

-a31(3g'(x1) 

-2 + aj'(x1) + aj'(x3) 

The corresponding second compound system is 

Zt zl 
apr2J 

z2 = Z2 ax 

Z3 Z3 

i.e., 

.Z1 ( -2 + aj'(x1) + aj'(x2))z1 + a23(3g'(x3)z2- a13(3g'(x3)Z3 

z2 a32(3g'(x2)z1 + ( -2 + aj'(xi) + aj'(x3))z2 + a12f3g'(x2)z3. 

z3 -a31f3g'(x1)z1 + a21(3g'(xt)z2 + ( -2 + af'(x2) + aj'(x3))z3 

Let 
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where m 1 , m 2 > 0 are constant. By direct calculation, we have: 

dd+ m1lz11 ::;( -2+af'(xi) +af' (x2)) ·m1lz11 + m1 la23,8g'(x3) l·m2lz2l +m1la13.89' (x3) l·lz31, 
t m2 

dd+ m2lz2l::; m2la32,8g'(x2) l·m1lzll + ( -2 + af' (xi) +af'(x3)) ·m2lz2l +m2la12.8g'(x2) l·lz31, 
t m1 

dd+ lz31::;-
1 

la31fig'(x1) l·m1lzii +-
1 

la21.8g'(x1) l·m2lz2l +( -2+af'(x2) +af'(x3)) lz31, 
t m1 m2 

where d+ /dt denotes the right-hand derivative. From (H3), it is obtained that 

d+ 
dt W(z(t)) ::; p(t)W(z(t)). 

From the boundedness of solution to (4.11), there exists a 6 > 0 s.t. p(t) ::; -6 < 0. So 

we have 

W(z(t))::; W(z(s))e-a(t-s), t 2: s > 0. 

This shows the equi-uniform asymptotic stability of the second compound system ( 4.13). 

So from Theorem 4.2.2 we get the conclusion of Theorem 4.3.1. D 

Remark 4.3.1 We understand that the assumption (H3 ) is difficult to verify since no ex-

plicit expressions of solutions are available in general. While for some simple models, 

there are some efficient conditions for the differential equation independent of time delay. 

Since we focus on the delay differential equation in this thesis, we do not consider it further. 

4.4 Global Existence of Periodic Solutions 

In this subsection, we will show that the local Hopf branches of ( 4.1) obtained in Theorem 

4.1.2(2) can be extended for large values of the delay r in Case 2. 

72 



Consider the Fuller space 

~ = {(x, T, T)}: xis aT- periodic solution of (4.1)} c X x 1R x 1R+· 

Obviously (4.1) does not depend explicitly on T. We will verify assumptions (Al)-(A6) in 

Theorem 4.2.1 for system (4.1) as following: 

From assumption (C1) and (H1), (Al) and (A6) are obviously satisfied. Since (0, 0, 0) 

is the only equilibrium, thus all stationary solution are of the form (0, T, T). ). = 0 is not 

a characteristic root of the equilibrium (0, 0, 0), thus (A2) is satisfied. The characteristic 

equation q(>.) is continuous in ( T, T, >.) E 1R+ x 1R+ x C, which verifies (A3). 

A stationary solution (0, T, T) is a center if (0, 0, 0) has purely imaginary eigenvalues of 

form I m 2:;. By Theorem 4.1.2(2) we know that this occurs if and only if m = 1, T = T 2k 

and T = 2
71", and >.( T2k) = I w2 . Therefore, the set of centers is given by 

W2 

{ ( 6, 72k, ~:) ; k = 0, 1, 2, ... }' 

and all centers are isolated. For fixed k, there exists E > 0, 6 > 0 and a smooth curve 

). : (72k- 6, T2k + 6)-+ C s.t. q(A(T)) = 0, 1>.(7)- Iw2l < E for all T E (72k- 6, T2k + 6), 

and >.(72k) = Iw2. 

Let 

(4.13) 

Clearly, if IT- 72kl < 6 and (v, T) E an€ satisfy q(v + I2:j!) = 0, then T = T2k· IJ = 0 and 

T = 2
71". This verifies (A4) and (AS). Moreover, if 

W2 

H~ ( 6, T2k, ~:) (v, T) = Ll(o,r2k±o,T) (v + Im ~) , 
then, at rn = 1, 
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Thus the connected component C(O, T2k, ~:) through (0, r 2kl ~:) in 2: is nonempty. Since 

the first crossing number of each center is always -1, by Theorem 4.2.1, we conclude that: 

Lemma 4.4.1 C(O, r 2k, ~:)is unbounded for each center (0, r 2k, :,:). 

Moreover, we can obtain that 

Lemma 4.4.2 Periodic solutions of (4.1) are uniformly bounded. 

Proof Let M = max{1, L(a + ,62::~=1 I:~=l,#i aij)} and r(t) = JI:~=l xT(t). Dif

ferentiating r(t) along a solution of (4.1) we have 

r(t) 
1 3 

= r(t) ~ xi(t)ii(t) 

1 3 3 3 3 

r(t) [- ~x~(t) +a ~xi(t)f(xi(t)) + ,6 ~ i=~#i aijXi(t)g(xj(t- r))] 

1 3 3 3 3 

< r(t) [- ?=x7(t) + aL ?= lxi(t)i + ,6L ?=. ~ . aijlxi(t)i] 
z=l z=l z=l J=l,J#z 

If there exists t 0 > 0 s.t. r(t0 ) =A :2:: M, then we have 

1 3 3 

r(t0 ) S A [-A2 + AaL + A,6L L L aii] 
i=l j=l,j;ii 

3 3 

= -A + aL + ,6L L L aii < 0. 
i=l j=l,#i 

It follows that if x(t) = (x1 (t), x2(t), x3(t) )Tis a periodic solution of system (4.1), then 

r(t) < M for all t. This shows that the periodic solutions of (4.1) are uniformly bounded. 

D 

Lemma 4.4.3 The periods in the periodic solution of(4.1) are uniformly bounded. 
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Proof Note that if x(t) is a 7-periodic solution of system (4.1), then x(t) is 7-periodic 

solution of the ordinary differential equation ( 4.11 ). Applying Theorem 4.2.2, we know that 

under Hypothesis (H3), the system (4.11) has no non-constant periodic solutions. There-

fore, system (4.1) has no non-constant 7-periodic solutions. 

By the definition of 72k, we know that 

and hence 

W272k > 211", k = 1, 2, ... 

211" 
- < 72k, k = 1, 2, ... 
w2 

From Theorem 4.1.2(2), we know that 720 > 0. Hence for 7 > 72k. there exists an 

·integer m s.t. .L < 2
,. < 7. Since system (4.1) has no non-constant 7-periodic solution, it 

m W2 

has no ~-periodic solution for any integer n. This implies that the period T of a periodic 

solution on the connected component C(O, 72k, ~:) satisfies ;;; < T < 7. So we know 

that the period of the periodic solutions of the system (4.1) on C(O, 72k, ~:) are uniformly 

bounded. 0 

Based on the above discussion, we present our main result as: 

Theorem 4.4.4 Suppose the Hypotheses (Cl) and (HI) - (H3 ) are satisfied. Then system 

( 4.1) for Case 2 has at least k + 1 non-constant periodic solutions when 7 > 7 2k, k ~ 1. 

Proof: By Lemma 4.4.1, it is obvious that C(O, 72k, ~:) is nonempty and unbounded. By 

Lemmas (4.4.2) and (4.4.3), the projection of C(O, 72k, ~:)onto the x-space is bounded. 

For Case 2, we prove w2720 > ~with (H2 ). 

In fact, let ). = iw be the imaginary root of P 21 ().) = ). + 1 - a + (3e->..r, P22 ().) = 

>. + 1- a- l+t'5f3e->..r and P32 (>.) =). + 1- a- 1-
2
.f5(3e->..r respectively, then separate 
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it into real and imaginary parts we have: 

{ 
1-vs 

1-a= -
2
-/3 cos(w231"23o) 

1-vs . 
w23 = --

2
-/3 sm(w231"23o) 

Without loss of generality, let f3 > 0. From (H2 ), we have a < 1. So 

So we have w2r30 > ~. i.e. ~: < 4r30 ~ 4r3k, k 2: 0. Thus, the projection of 

C(O,r2kl ~:)onto T-space is bounded. This implies that the projection of C(O,r2k, :::) 

onto the r-space must be unbounded. 

Applying Theorem 4.2.2, we know that system ( 4.1) has no non-constant periodic so

lutions when T = 0. Thus, the projection of C(O, r2k, ~:) onto the r-space must be an 

interval [r, oo) with 0 < T ~ r 2k. This shows, for each T > r 2k 2: r 21 the system (4.1) has 

at least k periodic solutions. This completes the proof of Theorem 4.4.4. 0 

Therefore, under the Hypotheses (C1) (Ht) and (H3), the unique equilibrium (0, 0, 0) 

of system (4.1) with r = 0 is globally asymptotically stable in IR3. However, under the Hy

potheses (C1) and (H1) - (H3), system (4.1) has at least k non-constant periodic solutions 

when r > r 2k ( k 2: 1). This demonstrates how time delays affect the dynamics of system 

(4.1). 

Remark 4.4.1 Using the same procedure, we can get the similar result for the system with 

1"n = 0 but 1"8 =/: 0. 
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4.5 Numerical Simulation 

In order to demonstrate the global Hopf bifurcation results in Theorem 4.4.4, we use Xp-

pAuto to carry out the numerical simulations. In Fig. (4.2), we show that there exists a 

periodic solution when f(x) = g(x) = tanh(x), T = 5, a = -0.5, f3 = -1, where Tis 

between the two Hopf bifurcation values r 20 = 4.55 and r 21 = 14.90. Fig. (4.3) shows 

that there exists a critical value of Tc. When T < Tc the equilibrium of the system is stable. 

When T > Tc there exists at least a periodic solution. 

x123 
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Figure 4.2: A periodic solution on x 1,2,3 - t spaces with T = 5, a = -0.5, f3 = -1 and 

initial data x1 = 0.8, x2 = 0.3, x3 = 0.5 in Case 2 
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Figure 4.3: Numerical solution on x1 - t space forT 
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