
TOTAL OF HI PAGES ONL'! 
MAY BE XEROXED 

(Withou! Author's Penntssion) 









Design, Modelling and Analysis of 
the Balanced Gamma Multicast 

Switch for Broadband 
Communications 

by 

©Cheng Li, B.Eng., M.Eng. 

A thesis submitted to the School of Graduate 

Studies in conformity with the requirements for the 

Degree of Doctor of Philosophy 

Faculty of Engineering and Applied Science 

Memorial University of Newfoundland 

April 2004 

St. John's Newfoundland Canada 

DEC 0 5 2005 



Abstract 

High-speed networks have become more and more popular worldwide driven by 

the Internet and its applications. Multicast has become a necessary feature for any 

switch designed for future broadband communication networks. In this dissertation, 

a multicast switch architecture called the Balanced Gamma (BG) multicast switch 

is proposed, analyzed and implemented. A comprehensive study of this promising 

multicast switch architecture has demonstrated its superiority in terms of loss perfor­

mance, delay performance, and buffer requirement performance under various uniform 

and nonuniform traffic. At the same time, it is scalable, reliable, and fault-tolerant , 

and its hardware complexity is reasonably low which makes it feasible to build as a 

practical switch. 

The new multicast BG switch fabric is characterized by its space-division architec­

ture in which the control of cell routing is distributed over all switch elements. The 

key characteristic of a multicast switch, the cell replication function, is integrated 

into the routing function of the switch element. Two new algorithms are designed 

to support implicit cell routing and replication, namely the dynamic-length routing 

and replication algorithm and the dynamic-length backpressure algorithm. Topolog­

ical equivalence to the unicast BG switch ensures that the new architecture inherits 

many attractive features such as reliability and fault tolerance from the latter. 

A multicast traffic model is developed for the analysis of the multicast BG switch. 

The performance of the switch is examined under various traffic conditions, random 

and bursty, uniform and nonuniform. Numerous simulation trials are performed to 

obtain the loss, delay, and buffer requirement performance of the switch. An analyti­

cal model is derived under the multicast random traffic model to verify our simulation 

results. The discrepancy between the analytical model and simulation is justified and 



further improvement of the model is suggested. Performance results are also compared 

to that of the ideal multicast switch to demonstrate how close the performance of the 

BG multicast switch is to the optimum result. It is determined through the analysis 

that the multicast BG switch is a high performance switch in handling unicast , mul­

ticast, and mixed traffic . At the same time, it is scalable in terms of architecture, 

performance, and implementation. 

Following the digital IC design methodology recommended by the Canadian Mi­

croelectronics Corporation (CMC) and using the VLSI CAD tools they have provided, 

a 16 x 16 switch fabric has been implemented using 0.18J.Lm CMOS technology and 

the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language 

(VHDL). It is demonstrated that the whole switching fabric module can be easily fit 

into a single IC chip with the current fabrication technology. Finally, the methodology 

of functional verification of the hardware design is presented and hardware complexity 

of larger switches is explored. 
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Chapter 1 

Introduction 

Communication network applications are changing at an enormous speed. As shown 

in Figure 1.1, user traffic on the Internet has been doubling every year for the past 20 

years and the trend is still going up [1]. However, the capacity of switching devices, 

such as switches or routers, grows at a speed that lags behind, and this trend makes 

the deployment of next generation high-speed networks necessary and urgent. 

Packet switching technologies have been intensively investigated over the past 

two decades. As the Internet traffic and applications grow exponentially, there is 

a great need to build switching devices of large capacity and high speed, such as 

Internet Protocol (IP) routers, Asynchronous Transfer Mode (ATM) switches, and 

Multi-Protocol Label Switching (MPLS) switches [2]. 

With recent advances in fiber optics and optical transmission technologies, net­

work operators can deploy huge capacity on transmission links. For example, 128 

OC-192 channels (10 Gigabit/s) can be multiplexed over a single fiber to achieve a 

total link capacity of 1.2 Terabit/s using Dense Wavelength Division Multiplexing 

(DWDM) [2] . At the same time, the advances in Micro-Electro-Mechanical System 

(MEMS) technology, in which an array of hundreds of electrically configured micro­

scopic mirrors is fabricated into a single substrate to direct light, has resulted in the 

deployment of the Optical Cross Connect ( OXC) system which can achieve terabit 
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Figure 1.1: Trend of growth of network traffic and devices (modified from [1], pp. 1) 

switching. 

Although optical switching can achieve very high speed and huge switching ca-

pacity, the limitation in the current optical technology determines that they can only 

work at around the wavelength level, i.e., around 10 to 40 Gigabit/s level. That means 

the granularity of the switching is coarse [2]. As well, optical switching dose not pos­

sess as much intelligence as in the electronic switching. As a result, high-speed and 

large-capacity electronic packet switches/routers are required to provide switching as 

well as aggregating lower-bit-rate traffic to the high-speed Gigabit/s links. 

This dissertation addresses the architecture, design, performance analysis, and 

VLSI implementation of a high-speed, large-capacity, and highly scalable multicast 

switching fabric. The proposed architecture can be used in ATM switches, MPLS 

switches, or high-end IP routers. 
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1.1 Background of ATM and IP 

ATM technology has emerged in recent years as the most promising switching and 

transport technology, which combines the advantages of both circuit-switching and 

packet-switching techniques. It can carry a mixture of traffic including audio, video, 

and data, and can provide network resource, such as bandwidth, on demand [13]. 

ATM networks are based on some important concepts: virtual circuits, fixed-size 

packets, small packet size, statistical multiplexing, and integrated service [14]. 

ATM is a connection-oriented switched-path protocol. A path must be established 

for each connection before the real data transmission. It is fundamentally a point­

to-point protocol. Packets transported over ATM networks are called cells which are 

characterized by their fixed-length. Each cell is comprised of 5 bytes of header and 48 

bytes of payload, which makes a total of 53 bytes. The fixed-size cell structure helps 

to reduce the delay and jitter performance for audio and video traffic, and also helps 

to simplify the design of a switch. Broadcasting or multicasting in ATM networks has 

to be achieved by using point-to-multipoint or multipoint-to-multipoint connections. 

Resource reservation, traffic control and the ability to guarantee the Quality of Service 

( QoS) are emphasized in ATM. The maximum cell rate, maximum cell delay, average 

cell delay, delay jitter and cell loss probability are parameters used to characterize 

QoS. Because of the diverse service classes that ATM is designed to handle and the 

different network domains that ATM will be applied to, complicated congestion and 

flow control are included in ATM technology. 

In ATM, congestion can be reduced or mitigated by either impeding the traffic 

entering the network until the resources become available or by dropping low priority 

traffic and allowing the higher priority traffic to get through. Nine mechanisms are 

used by ATM switches to handle congestion and flow control, and they are: Connec-
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Attribute 
Orientation 
Packet Size 

QoS 
Information 

Path Determination 
Forwarding State 

Forward Based 
Signalling 

IP 
Connectionless 

Variable 
No 

Data 
Per Packet 

All possible networks 
Longest match address prefix 

No 

ATM 
Connection-Oriented 

Fixed (53 bytes) 
Yes 

Data, voice, and video 
Connection setup 

Local active transit connections 
Fixed-length label 

Yes 

Table 1.1: Comparison of fundamental issues of IP and ATM (from [12], pp. 10) 

tion Admission Control (CAC), Usage Parameter Control (UPC), Selective Cell Dis­

carding, Traffic Shaping, Explicit Forward Congestion Indication (EFCI), Resource 

Management using Virtual Paths, Frame Discard, Generic Flow Control (GFC) and 

ABR Flow Control [14, 15] . 

Finally, ATM is flexible because it is not designed for any specific type of physical 

transport media, such as twisted pair, coaxial cable, or fiber optics [13]. 

As a routing protocol, the IP protocol can scale up easily due to the broadcast 

nature. It is initially designed for a broadcast media such as a shared bus, therefore, 

multicasting is a natural part of IP. Along with the growth of the Internet, IP has 

become the dominant protocol in data traffic. The IP packet length is variable, 

varying from 12 bytes to 64k bytes. It is a connectionless datagram protocol in which 

best-effort service is normally considered. IP is normally paired with TCP protocol 

to ensure reliability. Two well-known problems, IP address exhaustion and lack of 

QoS, exist in the Internet Protocol version 4 (IPv4), which is currently used by many 

network routers and applications. A new IP standard, IPv6, has been proposed to 

tackle these problems along with many other enhancements [13]. Table 1.1 points out 

several fundamental differences between IP and ATM [12]. 

Because of the wide existence of IP in data traffic, the effort from ATM proponents 
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is towards integrating the IP routing protocol into ATM switching networks. The 

typical examples include classical IP, LAN emulation (LANE) and Multi-protocol 

over ATM (MPOA) from the Internet Engineering Task Force (IETF), the Internet 

standards organization. At the same time, the improvement effort from IP proponents 

never stalls. In 1996, an revolutionary ideal called IP switching was introduced by 

a small startup company named Ipsilon from California [12]. Its IP switch binds an 

IP router processor with an ATM switch, removes all of the switch's ATM signalling 

and routing protocols, which enables the IP router processor to control the attached 

ATM switch and allows the whole switch to run IP routing protocols and perform 

normal hop-by-hop IP forwarding [12]. This concept was startling in its simplicity 

and elegance. Later on, the crucial influence of ATM leads to the emergence of MPLS, 

which combines the advantages of the ATM network, i.e., short labels and explicit 

routing, and the connectionless datagram of the IP network. A label is attached to 

each IP frame and this label guides the frame through the network. Each intermediate 

node performs both layer 2 and layer 3 switching. Therefore, with MPLS, circuit type 

switching is merged into IP packet forwarding, thus allowing traffic control, service 

segregation and QoS control while retaining the fundamental advantages of IP. The 

MPLS technology was derived in part from Cisco's Tag switching. 

Although there were once heated debates about the pros and cons of IP versus 

ATM as the next-generation networking technology, it is now clear that IP will be 

present in all networks for the foreseeable future (12, 16]. The transport efficiency 

of optical networking has led people to start thinking about running MPLS and 

IP directly over DWDM, instead of first layering over ATM. The success of gigabit 

ethernet switches further makes some people argue that as technology moves on, ATM 

could be left behind ultimately (16]. However, the fact is that the current backbone 

network mainly consists of ATM switches and IP routers, where the ATM cells and 
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IP packets are carried over an optical physical layer network such as the Synchronous 

Optical Network (SONET). In the foreseeable future, ATM based networks will likely 

coexist with other wide area networking (WAN) technologies such as the TCP /IP 

Internet and frame relay bearer services (FRBS) [17]. However, the method of cell 

switching, which was initially introduced by ATM, has been widely accepted and is 

now used in IP routers and switches. 

Low-end and middle-size IP routers use central CPU and shared bus structures 

while high-end routers are normally comprised of route controller, forwarding engine, 

switch fabric, and output port scheduler to achieve the speed and capacity require­

ment [2]. Switching operation is done through the switch fabric. The structure of the 

high-end IP router is very much like that of the ATM switch, which consists of input 

port controllers, switch fabric, and output port controllers. The main difference be­

tween ATM switches and IP routers is in their line cards. Hence, both ATM switches 

and IP routers can be constructed using a common switch fabric with suitable line 

cards [2]. The general switch model will be discussed in the next section. 

To achieve high capacity, cell-based switch fabric, although not necessary the 53-

byte ATM cell, is highly desired because it is easier for arbitration, data transmission, 

and other functions when switching operation is organized in synchronized time slot 

called switching cycle. Hardware implementation and buffer management will be 

simpler as well [2] . Variable-length packets in IP routers, Ethernet switches, and 

frame relay switches can be segmented into cell first at the inputs, switched through 

the fabric and then reassembled back to the original packets at the output [2]. 

It seems that the trend in the networking industry is toward switching rather 

than routing. Being the core of the whole routing process, the architecture design 

and performance of switches will directly or indirectly affect the performance of the 

whole network. 
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Figure 1.2: N x N packet switch reference model 

1.2 Switch Model 

Figure 1.2 provides the general model of an N x N packet switch [13, 18]. This 

reference switch includes three major components: N input port controllers (IPCs), 

N output port controllers (OPCs), and an N x N switch fabric (SF) formed by 

an interconnection network (IN). Hardware implementation for these components is 

normally required to meet the high-speed requirement. Two important blocks that 

are not shown in the figure are connection admission control ( CAC) and system 

management (SM), which are normally implemented in software. 

To allow the transfer of more than one packet from the source to the same desti­

nation within one switching cycle, the destination component should run at a higher 

speed than each of the incoming links and the ratio is called the speed-up. Many SFs 

adopt a multistage arrangement of simple switching element (SE) which provides the 

path for the incoming packets to their requested outputs. Queueing of the switch can 

be realized at the IPC, SF, OPC, or any combination of these. Further, queueing in-
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side SF is normally achieved by buffers in the SEs, which can be at the input, output 

or shared by both input and output. 

Two types of blocking might occur during the switching operation, internal block­

ing and output blocking [18]. The former one occurs when two cells compete for the 

same internal link, whereas the latter takes place when more packets are switched to 

the OPC than it can accommodate. Two schemes can be used to handle the block­

ing situation: backpressure and queue loss [18]. In backpressure, blocked cells will 

be kept at the sender. This might cause the congestion problem in the downstream 

network to spread to upstream network segments. While in the queue loss strategy, 

blocked cells will be simply dropped. It relies on the integrity features in networks to 

retransmit the cell automatically. Retransmissions will inevitably increase network 

traffic, which is not optimal. So switch vendors use large buffers and advise network 

managers to design switch network topologies properly to eliminate the source of the 

problem- congested segments. 

The main functions of the two port controllers (IPC and OPC) include [13, 18]: 

1. Rate matching between the input/output links and switch fabric. 

2. Aligning cells for switching (IPC) and transmission (OPC). 

3. Processing received cells according to the supported protocols. 

4. Attaching (IPC) and stripping ( OPC) internal routing tag to each cell. 

5. For a bufferless SF, IPC stores the packets and probes the availability of an 

internal path through the SF. It also checks the availability of the output 

resource and makes the corresponding decision. 

It is desired that a switch architecture has low complexity, large capacity, high 

throughput, small packet delay and low packet loss. In the real world, it is always a 

balance and tradeoff among these factors for a practical switch design. 
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1.3 Unicast and Multicast 

In group communications, various types of communication methods can be differen­

tiated based on the number of senders and receivers involved. The basic types of 

communications include Unicast (1 : 1), Multicast (1 : n), Concast (m : 1) and Mul­

tipeer/Multipoint (m: n) (19]. Unicast is equivalent to the traditional point-to-point 

communication in which there is exactly one source and one receiver. Bi-directional 

data exchange between two parties is also considered to be unicast. In multicast 

communication, a single source transmits data to a group of receivers. Multicast 

constitutes an extension of unicast and is referred to as a 1 : n communication. Both 

unicast and broadcast can be viewed as an extreme case of multicast. Concast is 

a method that has several sources sending data to a single receiver unidirectionally. 

Multipeer communication takes place when several sources send data to the same set 

of receivers, which corresponds to an m: n communication [19]. 

Multicasting is necessary for applications in which packets need to be sent to more 

than one destination. Multicasting in communications network can be achieved by 

replicating the original message at the source node and sending the same unicast mes­

sage to each of the destinations. However, that is not desired because it will inevitably 

increase the network traffic load. Ideally with multicast, a single packet needs to be 

transmitted to the network and the packet is replicated by intermediate nodes only 

when necessary. In this case, much network bandwidth can be conserved through 

multicast transmission and it is much more efficient for information distribution. 

This efficiency becomes extremely important as multimedia communications gets 

more and more popular. The network control information, such as network signalling, 

needs to be distributed to all network nodes and it happens all the time during the 

normal network operation. Multicast switch would be ideal to handle this kind of data 
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traffic. Also, typical application examples include e-mail services, video on demand 

(VoD), music on demand (MoD), remote diagnostic, and teleconferencing services, 

in which the audio and video signals are captured, compressed and transmitted to a 

group of receivers throughout the network. Another reason for multicast is the flexi­

bility in joining and leaving a group provided by multicast can make the membership 

change much easier to handle at the local switch instead of imposing the management 

task upon the source node (20). 

Multicasting in the Internet is currently handled at a high level. In 1992, a set 

of interconnected networks with routers capable of forwarding multicast packets were 

selected for experiment. This multicast experimental network was called Multicast 

Backbone (MBone), and provided a method of deploying multicast applications. The 

MBone is essentially a virtual network implemented on top of some portions of the 

Internet. In the MBone, islands of multicast-capable networks are connected to each 

other by virtual links called "tunnels". It is through these tunnels that multicast 

messages are forwarded through non-multicast-capable portions of the Internet (20). 

Complicated software functions are required to handle multicast packet forwarding 

through these tunnels, and the packets have to be encapsulated and decapsulated 

as well. It is clear that multicasting support from all network nodes is essential to 

realize network wide point-to-multipoint communication. For high-speed network 

applications, it is much more efficient to implement multicast function at the switch 

level in hardware. Multicast has become a necessary feature for any switch designed 

for future broadband communication networks. 
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1.4 Motivation For The Research 

Service differentiation and dynamic information provisioning require the multicast 

function be incorporated into the current switching networks. Although some multi­

cast switches are proposed, they all more or less suffer from some problems, such as 

the overflow, output link contention, and high hardware complexity problem in the 

dedicated copy network solution [7, 21, 22], or the performance degradation problem 

in the broadcasting tree/bus based solution [4, 5, 23). 

The unicast Balanced Gamma (BG) switch has demonstrated the high-performance, 

high-reliability and high-scalability through the previous research [14, 24, 25, 26, 27). 

Inspired by its high performance, a new switch architecture which supports full im­

plicit multicast cell routing and replication is proposed, analyzed and implemented in 

this dissertation. For consistency, the new switch is named the multicast BG switch. 

Topological equivalence between the two switch architectures ensures that the multi­

cast BG switch inherits most of the important features in reliability, fault tolerance, 

and scalability from the unicast BG switch. 

The multicast BG switch follows the space division architecture in which cell rout­

ing is distributed across all SEs. The key characteristic of a multicast switch, cell 

replication, is integrated into the routing function of each SE. Two algorithms are 

designed to cope with the three-phase switching operation in a multicasting envi­

ronment. A comprehensive study of this multicast switch architecture is carried out 

to investigate the performance of the switch under various multicast traffic condi­

tions, random and bursty, uniform and nonuniform. Numerous simulation trials are 

performed to obtain loss, delay, and buffer requirement performance. To verify our 

simulation results, an analytical model is developed. As well, performance results are 

compared to that of the ideal multicast switch under bursty and nonuniform traffic 
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conditions to demonstrate how close its performance is to the optimum results. 

Throughout the analysis , the BG multicast switch demonstrates high performance 

under various unicast , multicast , and mixed traffic conditions. At the same time, it 

is scalable in terms of architecture and performance. Therefore, research extends to 

the VLSI design to investigate the feasibility of building a practical switch using this 

architecture. The 0.18,um CMOS technology is used. Modularity and implementation 

scalability are emphasized during this stage. A testing method and software are 

developed for functional verification of this complicated switching system. 

1.5 Thesis Organization 

Having described the motivation for the thesis and the main requirements for high­

speed multicast switching, we will present the design, evaluation and implementation 

of the proposed multicast switch in the next four chapters. 

Chapter 2 presents a classification and survey of high-speed switch architectures. 

The many proposed multicast switches are studied and categorized based on the 

method used for multicast cell replication. Typical examples are selected from each 

category to describe the advantage and disadvantage of each design approach. The 

historic background of the BG network and recent developments in switch fabric 

benchmarks are also described. 

Chapter 3 presents the architecture design of the multicast switch. The architec­

ture is justified by design choices to combat blocking and reduce hardware complex­

ity. The self-routing and replication algorithm and the tag encoding scheme, which 

must satisfy a distributed control and high-speed requirement , are described in detail. 

A dynamic-length backpressure algorithm is proposed to cope with the three phase 

switching operation and to achieve an efficient multicast cell acknowledgement. Other 
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design features such as service discipline, fault tolerance, reliability and scalability are 

also investigated. 

Chapter 4 studies the performance of the multicast BG switch. A multicast traffic 

model, which comprises three random processes (arrival, fanout and destination selec­

tion), is studied and used for the performance analysis and simulation. A multicast 

switch simulator is developed to obtain results for loss, delay, and buffer require­

ment performance. An analytical model is developed under the multicast random 

traffic. Simulation results are verified and confirmed by using the analytical results. 

Finally, performance under bursty and non-uniform traffic conditions is investigated 

and compared with that of the ideal multicast switch. 

Chapter 5 describes the VLSI design and implementation of the multicast BG 

switch fabric using 0.18 J-Lm CMOS technology. A general design methodology rec­

ommended by CMC is presented followed by the detailed design of the 16 x 16 BG 

switch fabric. Simplified IPCs and OPCs are used for testing and verification pur­

poses. The design process is focused on the basic building component, the 4 x 4 SE, 

which is the key element to build a large switching fabric. Synopsys CAD tools are 

used for the front-end design process and Cadence CAD tools are used for the back­

end design process. The hardware description language VHDL is used for describing 

the design and the C++ language is used to used to generate test vectors and verify 

functional simulation results. 

Finally, the dissertation is concluded in chapter 6. Possible future research oppor­

tunities are provided as an indicator for continuing work. 
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Chapter 2 

High-Speed Packet Switches and 
Multicast Switching Technology 

In this chapter, the classification of high-speed packet switches is investigated. The 

similarities and differences amongst various architectures are highlighted. Two com­

mon approaches to construct a multicast switch are studied and compared with an 

extensive survey of various proposed multicast switches. The historical background 

of the BG switch is provided for a better understanding of a new multicast BG switch 

architecture. Recent developments in switch fabric benchmarking are introduced with 

a focus on how the benchmark standards are related to this research. 

2.1 High-Speed Switch Architecture Classification 

In the literature, a number of classifications of high-speed packet switches have been 

discussed [2, 3, 14, 28, 29, 30]. Generally speaking, packet switch architectures can 

be classified into two major categories based on the switching techniques used: time­

division packet switches and space-division packet switches. The time-division switch 

architecture can be divided into shared-medium type and shared-memory type. The 

space-division switch architecture can be divided into single-stage network (SN) based 

switch architectures and multistage interconnection network (MIN) based switch ar-

14 



High-Speed Packet Switch 

Time-Division Switch Architecture Space-Division Switch Architecture 

I 
Shared 
Medium 

Bus 
Type 

I 
Ring 
Type 

I 
I 

Shared 
Memory 

I 
Multistage Interconnection 

Network (MIN) 

I 

Single Path Multi-Path 

Crossbar Banyan Augmented 
Banyan 

Fully 
Interconnected 

Multi plane 

Single-Stage 
Network (SN) 

Clos 

Recirculation 

Figure 2.1: Classification of high-speed packet switch architecture (modified from (2), 
pp. 23) 

chitectures. MINs can be further divided into single-path switches and multi-path 

switches. The single-path switches include crossbar based switches, banyan based 

switches, and full-interconnection based switches. The multi-path switches include 

augmented banyan based switches, multiplane based switches, Clos network based 

switches, and recirculation based switches (2, 3, 30). Different switch types present 

different features and attributes. Figure 2.1 depicts the general architecture classifi-

cation of various types of switches. 

2.1.1 Time-Division Switch Architecture 

In a time-division switch architecture, all cells flow through a single source shared by 

all inputs and outputs. This source may be either a common memory or a shared 

medium such as a ring or a bus. The capacity of the entire switch is usually limited 
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by the bandwidth of the shared resource. Thus, in general, switches belong to this 

category do not scale well. However, the architecture is simple and it can be easily 

extended to support multicast and broadcast. 

2.1.1.1 Shared-Medium Type 

In shared-medium type switches, all cells arriving on the input links are synchronously 

multiplexed into a common high-speed medium of bandwidth equal to N times the 

rate of a single link rate, where N is the size of the switch. Each output is connected 

to the bus through an interface that consists of an address filter (AF) and an output 

FIFO buffer [30]. The AF examines a cell header and decides whether to accept it 

or not. Conceptually, this approach is similar to the TDM-based circuit switch. The 

difference is that in a circuit switch, the destination for each slot is predetermined 

during the circuit setup, while in a packet switch, each cell must be processed on the 

fly to determine where it should be switched to. Each output interface must run at 

a maximum aggregate rate of N times a single link rate so that all possible cells to 

the output will be received. 

The most important task in the shared-medium architecture design is how to 

implement the high-speed bus/ring and output buffers, all of which must operate at 

the speed of NV, where V is the link rate and N is the switch size [30]. Considering 

the typical limitations on memory access speed and chip size, parallel organization is 

normally required to implement such switch module. Also, lack of memory sharing 

among the FIFO buffers is another disadvantage. Examples of the shared-medium 

switch include NEC's ATOM (ATM Output Buffer Modular) switch [31] and Fore 

System's ForeRunner ASX-100 switch [2, 32]. 
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2.1.1.2 Shared-Memory Type 

In the shared-memory type architecture, the switch is constructed by using a single 

dual-ported memory shared by all input and output ports. Similar to TDM, cells 

arriving on all input ports are multiplexed into a stream and stored in the shared 

memory. Cells in the memory are organized into separate queues, one for each output 

link. The head-of-line cell of each queue is retrieved and used to form an output 

stream, which is then demultiplexed and transmitted through the output links [30). 

Since the memory is shared by all input/output ports, this switch type has the 

best memory utilization [2). The memory size can be properly adjusted so that the 

cell loss ratio can be controlled below a chosen level. However, there are two main 

constraints for this architecture. First is the processing time required to determine 

where to enqueue the cells and to issue proper control signals. It must be fast enough 

to keep up with the flow of incoming cells. More importantly, the shared memory's 

bandwidth should be sufficiently large to accommodate all input and output traffic 

simultaneously. Given N as the switch size and V as the link speed, the memory 

bandwidth must be at least 2NV [30). Examples of this type of switch are Toshiba's 

8 x 8 single-chip module [2, 33) and Hitachi's 32 x 32 module [2, 34). 

2.1.2 Space-Division Switch Architecture 

In the space-division switch architecture, different concurrent paths can be established 

for all non-conflict input-output pairs, each with the same data rate as an individual 

link [30). The total capacity of the switch is therefore the product of the bandwidth of 

each path and the number of concurrent paths [2). A space-division switch architec­

ture can usually be built using small building blocks, also known as switch elements 

(SEs). Interconnection of these small SEs forms larger switches. High-speed memory 

or bus and centralized switch control are normally not required, hence, scalability is 
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easier to achieve using this architecture. Because all SEs can have the same struc­

ture and function , it eases system design and hardware implementation. Due to all 

these benefits, the space-division switch architecture plays an important role in the 

next-generation high-speed switch/router. Based on the number of stages presented 

in the switch, space-division switches are divided into multistage interconnection net­

works (MIN) and single stage networks [14]. As their names indicate, single stage 

network architectures contain only one stage. A well-known switch example using 

this architecture is the Knockout switch [35]. For an MIN architecture, based on the 

number of available paths between any input/output pair, switches are classified into 

single-path switches, in which only one path exists for any input/output pair, and 

multiple-path switches, where there is more than one path existing [2, 30]. 

2.1.2.1 Single-Path Switches 

Single-path switches include crossbar based switches, fully interconnected based switches, 

and banyan based switches [2]. 

2.1.2.1.1 Crossbar Based Switches 

The crossbar architecture is very popular network architecture. The term 'crossbar' 

derives from a particular design of a single-stage single-path non-blocking switching 

fabric, originally introduced and developed for circuit switching [3]. Figure 2.2 shows 

an N x N crossbar switch, in which horizontal lines represent switch inputs, and 

vertical lines represent the outputs. 

Basically, a crossbar fabric consists of a square array of N 2 crosspoint switches, one 

for each input-output pair. Each crosspoint has two possible states: cross (default) 

and bar. A SE is located at each cross point to make a routing decision. A connection 

from input link i to output link j is established by setting the ( i , j)th crosspoint switch 
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Figure 2.2: An N x N crossbar switch (modified from [3], pp. 1580) 

to bar state while keeping other crosspoints along the connection in cross state. The 

advantages of a crossbar switch are its non-internal-blocking property, simplicity in 

architecture, and modularity. However, it suffers from two major problems: The first 

one is its high hardware complexity, which is O(N2
). This means that the switch 

fabric does not scale efficiently. The arbitration of winner cells in each time slot 

can also become the system bottleneck as the switch size grows [2, 30). The second 

problem is its lack of fairness. Different cells destined to different outputs may traverse 

different numbers of SEs and take different times. The cell with the shortest path 

will always arrive at the output first and thus obtain a higher priority over others. 

These two flaws limit the use of the crossbar switch. Although the crossbar network 

can be used as basic modules and interconnected to build a larger switch, such as the 

method used in the Clos network [36], this only solves the scalability problem but 
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Figure 2.3: An N x N fully interconnected switch (modified from [2], pp. 28) 

cannot remove the problems of the high complexity and lack of fairness. 

2 .1. 2 .1. 2 Fully Interconnected Based Switches 

In a fully interconnected architecture, the complete connectivity between all inputs 

and outputs is usually achieved by broadcasting input cells to all output ports using 

N separate buses [2] , as shown in Figure 2.3. 

The switching operation of the fully interconnected switch is similar to that of 

the shared-medium switch. Cells from several inputs can reach the same output at 

the same time. Therefore, address filters and dedicated buffers, one for each output 

port, are required. However, they are different in that the speedup requirement for 

sequential transmission over the shared medium is now replaced by the N separate 

broadcast buses [2]. This is considered a disadvantage of the switch. An example 

switch using this structure is the knockout switch [35]. 
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Figure 2.4: Different topologies of Banyan based switches (modified from [2], pp. 29) 

2.1.2.1.3 Banyan Switches 

Banyan switches are a family of switches constructed from 2 x 2 SEs with a single 

path between any input-output pair [2]. Figure 2.4 demonstrates four isomorphic 

topologies of the banyan switches, namely the delta, 4-cube, omega, and banyan 

networks [2, 18]. All switches of the family have the same performance due to their 

topological equivalence. 

The banyan switches are suitable for the construction of large switches due to 

the lower hardware complexity of switching elements (O(Nlog2 N)), compared with 

O(N2 ) of the crossbar and fully-interconnected architecture. Self-routing is another 

important feature in which the control mechanism can be fully distributed. The par­

allel structure ensures that cells from different paths can be processed simultaneously. 

The modular and recursive structure provides easier VLSI implementation. However, 
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the biggest disadvantage is their internal blocking, which significantly degrades its 

performance as the switch size grows. 

2.1.2.1.4 Batcher-Banyan Switch 

It has been reported in [37] that banyan switches become nonblocking when permu­

tation traffic is applied and when all active cells are sorted on their destinations. This 

property leads to the Batcher banyan network (BBN), which includes a Batcher sort­

ing network [38], followed by a banyan network, as shown in Figure 2.5 for an 8 x 8 

BBN. The Batcher sorter has Iog2 ;l+l log2 N stages while the banyan network has 

log2 N stages, each with N /2 sorting/switching elements in every stage. Therefore, 

the BBN has a total of r; Cog2;+1 log2 N) sorting elements and r; log2 N SEs, which is 

less in hardware complexity than that of the crossbar network. The BBN has perfect 

performance under permutation traffic, in which the requested destination for every 

active cell is distinct. However, its performance degrades significantly when traffic 

more like real traffic is applied, including the random traffic, which still represents 

an ideal situation. It should be noticed that permutation traffic, which is used as the 

basis to characterize switch blocking properties, dose not represent real network traf­

fic. Therefore, non-blocking architectures defined under permutation traffic do not 

necessarily have higher performance over some blocking switch architectures under 

other traffic conditions. 

2.1.2.2 Multiple-Path Switches 

Multiple-path switches can be further classified as augmented banyan switches, Clos 

switches, multi plane switches, and recirculation switches [2], as shown in Figure 2.6. 

2.1.2.2.1 Augmented Banyan Switches 

In the augmented banyan switch, extra stages are added in addition to the regular 
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Figure 2.6: Multiple-path based switches (modified from (2], pp. 30) 
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banyan network. Hence, more paths are available per input-output pair, and there­

fore, deflected cells are provided more chances to reach their destinations through the 

augmented stages. Cell loss rate is reduced. However, additional stages mean more 

hardware is required and the routing scheme becomes more complicated. For every 

augmented stage, cells must be checked to decide whether they have arrived at the 

requested output ports or not. If so, they will be sent to the OPC directly, otherwise, 

they will be sent to the next augmented stage for examination. Examples of switches 

using such architecture include the Benes interconnection network [30, 39], tandem 

banyan switch [2, 40] and dual shuffle exchange switch [2, 41]. 

2.1.2.2.2 Recirculation Based Switches 

To reduce the cell loss due to output port contention and to improve system through­

put, recirculation switches are designed. For these switches, cells that do not make it 

to their destinations during the current time slot are recirculated back to the input 

ports via the recirculation paths [2]. However, to accommodate input ports for the 

recirculated cells, a larger switch is normally required. Further, the switch might 

also have the out-of-sequence problem. The examples of this type of switches are the 

Starlite switch [4] and the Sunshine switch [23]. 

2.1.2.2.3 Three-Stage Clos Switches 

A general scheme of the three-stage network is given in Figure 2.6( c) for an N x M 

network. At the first stage, N input lines are broken into r 1 groups of n lines, where 

r 1 = N jn. Similarly, at the third stage, theM output lines are divided into r 3 groups 

of m lines, where r 3 = M jm. To interconnect the first and third stage, r 1 x r 3 modules 

are used in the middle stage. Therefore, to construct a N x M switch, r 1 n x r 2 switch 

modules are used in the first stage, r 2 r 1 x r3 switch modules are used in the second 
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stage, and r 3 r 2 x m switch modules are used in the third stage. 

The Clos network is a three-stage network in which r 1 = n and r 3 = m. It has 

been proved by C. Clos (18, 36] that a three-stage network is strict-sense non-blocking 

if and only if r 2 > n + m- 1, which is also known as the Clos theorem (18]. This 

indicates that by increasing the number of outputs from each first-stage module, the 

blocking probability of the switch is reduced. This enlightens us that by introducing 

extra links in the middle stages of the banyan based switches, their performance can 

be improved. 

The advantage of the Clos switch is that the hardware complexity is reduced from 

O(N2 ) in crossbar and fully interconnected switches to O(N~) and the switch can be 

designed to be non-blocking. Furthermore, it is more reliable because multiple paths 

exist for each input-output pair. However, a fast and intelligent mechanism is needed 

to rearrange the connections during every time slot to avoid the internal blocking. 

This would become a system bottleneck for large switches [2]. 

2.1.2.2.4 Multiple-Plane Switches 

Multiple-plane based switches have more than one, usually identical switch planes. 

System throughput and reliability can be significantly improved by distributing traf­

fic into different parallel switch planes. Cell collisions inside each switch plane are 

reduced. However, hardware complexity multiplies with every new plane introduced 

and cell sequencing may be affected unless cells belonging to the same connection 

are transferred through the same plane [2]. Otherwise, mechanisms for re-sequencing 

arrived cells at the output ports should be considered. Typical examples using this 

switch type include the parallel banyan switch and the Sunshine switch (23]. 
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Figure 2.7: Buffering strategies for cell switches (from [2], pp. 34) 

2.2 Buffering Strategies 

Buffering strategy is an extremely important aspect to be addressed during switch 

design. Various buffering strategies are shown in Figure 2.7 [2). In this section, 

various buffer placement strategies are briefly reviewed and evaluated. 

2. 2.1 Internal Buffering 

Using internal buffering strategy, buffers are placed within the SEs. Blocked cells 

can be buffered at the SEs so that cell loss can be reduced. Larger switches can be 
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realized easily by replicating the SEs. However, low throughput and high transfer 

delay are the two major problems of switches following this buffering strategy [2). 

Additional implementation cost will be required to meet QoS requirements. 

2.2.2 Recirculation Buffering 

This buffering strategy is used for recirculation based switches to resolve the output 

port contention problem. When output port contention occurs, cells that have lost 

the contention are stored in the buffer on the recirculation path and switched again 

during the next switching cycle. To deal with the out-of-sequence problem, different 

priority levels are suggested to be associated with each cell. By properly choosing the 

ratio of recirculation ports to input ports or/ and by allowing more than one cell to 

arrive at the output port in each cycle, a desired cell loss rate can be achieved. 

2.2.3 Crosspoint Buffering 

This buffering strategy is used in the crossbar based switches such as the Bus-Matrix 

Switch (BMX) proposed by Fujitsu [42). Each crosspoint has an AF and a buffer. AF 

accepts cells to that output and stores them in the buffer. Then the arbiter decides 

which cell is to be sent to the output port for that switching cycle. However, because 

the buffers are distributed to all crosspoints without being shared, the total buffer 

requirement is high. The chip size is normally limited by the amount of memory 

instead of the number of crosspoints and their control logic [2, 18). 

2.2.4 Pure Input Buffering 

Pure input-buffered switches suffer from the well-known HOL blocking, which limits 

switch throughput to 58.6% under uniform random traffic [30, 3). A windowing 

technique, in which multiple cells from each input link are examined for switching, 

can be used to improve its throughput. However, this increases the implementation 

27 



complexity of the input buffers and arbitration mechanism. 

2.2.5 Pure Output Buffering 

Compared with the pure input buffering strategy, pure output buffering has no HOL 

blocking problem and can achieve 100% throughput. The performance seems opti­

mum. However, to avoid any cell loss, the output buffer needs to accept up to N cells 

in one switching cycle. As the switch size becomes larger and link speed goes higher, 

memory speed normally becomes the system bottleneck. 

2.2.6 Shared-Buffer Strategy 

In this strategy, a common buffer is shared by all input and output ports. During each 

switching cycle, cells from all input ports can be stored in the buffer and retrieved 

by the corresponding output ports. Optimum throughput and delay performance 

and more efficient buffer utilization can be achieved using strategy, which is similar 

to that of the output-buffered switch. However, the switch size is limited by the 

memory read/write access time [2], which must be shorter than 1/2N of one switching 

cycle. As shown in Figure 1.1 , the increase of memory access speed lags far behind the 

growth rate predicted by Moore's law. Also considering the fact that large amounts of 

such high-speed memory will be very costly, the shared-buffer strategy is not suitable 

to build large-scale high-speed switches. 

2.2. 7 Multistage Shared-Buffer Strategy 

It is clear from the previous subsection that the shared-buffer strategy is not suitable 

for a large switch due to the limit of memory access speed. But its high throughput , 

low delay, and high memory utilization make it widely used in small scale switches. 

In the multistage shared-buffer solution, small shared-buffer switch modules are in­

terconnected to form a larger switch. However, internal blocking of the multistage 

28 



network might degrade its performance. Also, buffering at several places and different 

queue lengths for modules used in different stages cause an out-of-sequence problem, 

which is complex and costly to handle [2]. 

2.2.8 Input-Output Buffering 

This buffering strategy combines the advantages of pure input-buffering and output­

buffering strategies. The input buffer runs at the input link speed while the speed of 

the output buffer is L times the output link rate, where 1 < L < N. This means up 

to L cells can be received for each output port during the same switching cycle. If 

more than L cells are destined to the same output port, the excessive cells are stored 

in the input buffer. A large-scale switch can be achieved using this buffering strategy. 

The challenge of a switch using this strategy is to decide which cells (out of the N 

possible HOL cells) can get through and which cells need to be kept in the input 

buffer. A backpressure mechanism can be used for this purpose. 

2.2.9 Virtual Output Queueing Buffering 

To overcome the HOL blocking in purely input-buffered switches, virtual output 

queueing is proposed [43, 44]. Each input buffer is logically divided into N logical 

queues, one for each output port. All these N logical queues of the input buffer share 

the same piece of physical memory [2]. This buffering strategy can improve system 

throughput and reduce cell loss rate. However, because a total of N 2 HOL cells from 

all logical queues in the input buffers need to be arbitrated during each time slot, a 

very fast and intelligent arbitration mechanism is required [2], such as the maximum 

matching algorithm described in [44]. 
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2.3 Multicast Switches and Switching Techniques 

Multicasting in a packet switch means that an incoming cell will be delivered to more 

than one destination. In the study of multicast switches, cell replication is the most 

important operation which needs special attention. In this dissertation, the multicast 

switches using the space-division architecture are studied in depth. 

Generally speaking, the methods to construct a multicast switch can be catego­

rized into two approaches: the dedicated copy network solution (cascade approach) 

and the implicit replication and routing solution (integrated approach). 

2.3.1 Multicast Switches Using the Cascade Approach 

The intuitive approach to make a multicast switch is to employ a copy network 

in tandem with a point-to-point unicast routing network, as shown in Figure 2.8. 

The copy network is a special kind of a functional network which can replicate cells 

according to the fanout number specified in the header. The routing network uses the 

output of the copy network as its input and routes each copy to its destination. In 

this subsection, the most typical multicast switches using this approach are reviewed, 

which include: the Starlite switch [4], which is the first switch architecture dealing 

with multicast traffic; the Knockout switch [5], which is one of the most well-known 

switch architectures; Thrner's broadcast packet switch [21) and Lee's non-blocking 

copy network for multicast switching [7). More recent switches within this category 

are briefly reviewed and summarized as well (6). 

2.3.1.1 Starlite Switch 

The Starlite switch, proposed in 1984, is the earliest architecture which considers mul­

ticast traffic [6). The basic switch architecture is comprised of the crossbar network 

and Batcher-Banyan network. The multicasting is achieved by using a two-stage copy 
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Figure 2.8: Multicast switch architecture using the cascade approach 

network placed above the concentrator of the unicast structure, which is shown in 

Figure 2.9 (a). Multicasting cells are treated as special cells which contain the input 

channel number and the destination port where each copy of a cell should be sent 

to. The sorting network sorts the cells on their channel number and then the copy 

network replicates the copies and sends to the concentrator [4]. During the replication 

process, synchronization of the source and destinations, and an empty packet setup 

procedure are required by the Starlite switch. 

2.3.1.2 Knockout Switch 

There are two possible ways to implement multicasting in the original Knockout 

switch [35] either by adding cell replication function into the multicast modules [5] or 

by adding a fast cell filter. The second solution, in which cell replication is integrated 

into each output module, will be discussed in the next subsection. In the first solution, 

to handle multicast cells, the original Knockout switch is modified by adding M 

multicast modules and M multicast buses, as shown in Figure 2.9 (b). Each multicast 

module has N inputs from the input interface modules and one output which drives 

one of the M multicast buses. Multicast cells selected through the multicast cell 

filters experience the N : L knockout process and the winner cells are stored in the 
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Figure 2.9: Starlite switch (modified from [4], pp. 122) and knockout multicast switch 
(modified from [5], pp. 30) 

FIFO buffer. Each cell is replicated based on the different destination addresses in 

the cell header. The replicated cells are then sent out along the broadcast bus [6]. 

2.3.1.3 Turner's Broadcast Packet Switch 

In [21], Thrner proposed a broadcast switch which utilizes the copy network to repli­

cate a multicast cell, as shown in Figure 2.10. After multicast cells are replicated, 

they are translated by the broadcast and group translator and then routed to their 

destination through the distribution and routing networks. This switch's contribu­

tion is the flexible broadcast capability. However, blocking inside the routing network 

requires that buffers are used for every internal node in the routing network [6]. 
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Figure 2.10: Turner's broadcast packet switch (modified from [6], pp. 105) 

2.3.1.4 Lee's Multicast Switch 

Lee's multicast switch [7] is probably the most important and the foundation of the 

copy network based multicast switch. As shown in Figure 2.11, the most noticeable 

part of Lee's switch is the copy network design, which consists of a running adder 

network, dummy address encoders, a broadcast banyan network and trunk number 

translators. Theoretically, there is no special requirement for the point-to-point rout­

ing network in that any routing network can be used to route cells from output port 

of the copy network to output port of the multicast switch. Cell replication is done in­

side the broadcast banyan network according to a Boolean interval splitting algorithm 

based on the address interval in the new header. The details on how this algorithm 

works can be found in [7, 45]. 

Lee's multicast switch fabric design suffers from two problems. One is overflow, 

i.e., the total requested number of copies can exceed the available number of output 

ports of the copy network. In this situation, any cell whose fanout is larger than 

the remaining free output ports will be dropped [6, 7]. This will eventually decrease 

system performance and throughput. The other is the output port conflict problem in 
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Figure 2.11: Copy network of Lee's multicast switch (modified from (7], pp. 1457) 

the routing network when multiple packets request the same output port concurrently. 

Some modifications have been proposed to improve the design (46, 47], such as adding 

a cyclic running adder network to solve the overflows of the copy network and the input 

fairness problem in the broadcast banyan network. However, those modifications only 

mitigate the situation, while at the same time, they increase the design complexity. 

Besides these two problems, the memory size of the trunk number translation tables 

will increase significantly as the fanout and the switch size increase. Further, the 

internal blocking of the broadcast banyan network will not only degrade the switch 

performance, but also increases the cell loss probability (6]. 

2.3.1.5 Other Multicast Switches 

Following Thrner and Lee's multicast switch design, many multicast switches with a 

copy network design are proposed. These multicast switch architectures include: 

(1) The Shared Concentration and Output Queueing (SCCQ) Multicast Switch 

(48], which is comprised of a sorting network, L switching modules, a copy network, 
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and N input buffers. A recycling technique is used for cell replication when trans­

mitting the multicast and broadcast cells. The cells are sent back through the copy 

network to the switch input through which the copies are made. 

(2) The Multicast Switches based on Link-Grouped MIN (LGMIN switches) con­

sists of multiple shared-buffer copy network modules and small memory switch mod­

ules [49]. Different architectures of the LGMIN switch are presented to deal with 

different traffic situations. Two cell replication mechanisms can be used: replication 

through recycling technique and replication via a broadcast banyan network. 

(3) The self-routing multistage Multinet switch consists of virtual FIFO buffers 

located between stages and in the output ports [50]. There are two ways for the 

Multinet switch to handle multicast traffic, with an explicit copy network, or with­

out. The latter one will be discussed in the next subsection. 

(4) Many other switches can be found in the literature as in [22, 23, 51 , 52, 53, 54, 

55, 56, 57]. They are essentially modified and improved from the architectures that 

have been discussed above. 

2.3.2 Multicast Switches Following the Integrated Approach 

In the integrated approach, there is no dedicated copy network presented in the switch. 

Often in this kind of switch, cell replication is a subfunction in some components 

such as the switch elements. For MIN-based switches, by properly integrating the 

replication function into the routing function, we can benefit most from a MIN design 

and can efficiently turn a high-performance unicast switch into a multicast switch. 

2.3.2.1 Knockout Switch 

Here, the second approach to implement multicasting in the Knockout switch is in­

vestigated [35]. It is based on the use of a fast cell filter. The cell filter quickly 
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decides whether an incoming multicast cell is destined toward its output or not [6]. 

Therefore, the multicast module is similar to that shown in Figure 2.9 (b) except that 

the cell duplicator has been removed. Once the multicast cell becomes the winner 

from the knockout concentrator, it is buffered and broadcast to all output interface 

modules directly. The multicast virtual circuit number in the incoming cell header is 

compared to a list of multicast virtual circuits stored in the bus interface to decide 

whether the cell should be accepted or discarded. The Knockout switch can be imple­

mented in a modular fashion. It is simple to maintain and can be made fault tolerant 

[6]. However, since it is based on the crossbar network, the hardware complexity is 

very high. Also, output memory access time may become a problem as switch size 

gets large and link speed becomes high. 

2.3.2.2 Recursive Multistage Structured Multicast Switch 

The recursive multistage structured multicast switch [58] utilizes self-routing switch­

ing nodes with multicast facility in a buffered N x N MIN with external links con­

necting switch outlets to inlets [6, 58]. A block diagram of the switch is shown in 

Figure 2.12 (a). The switch is able to generate up toM copies of the same cell, where 

M < < N, and transmit through M pre-defined adjacent output ports. M is defined 

as the multiplication factor of the multicast connection network. For multicast cells 

with more than M destination requests, some of the M copies are transmitted in 

the first crossing of the switch, some are fed back to the input and used to generate 

the remaining number of copies. Although the recursive mechanism is simple, the 

function of the switch elements are complex, which makes the hardware complexity 

high. Cell sequencing is another problem for this switch. 
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2.3.2.3 Three-Stage Clos Multicast Switch 

The Three-Stage Clos Multicast Switch [8) is an example of implicit routing and 

replication switch fabric. As shown in Figure 2.12 (b), it is built on the Clos network 

with each SE formed by a small crossbar network. In the example, incoming cells C1 

and C5 , which arrive at the first and the fourth SE of the input stage, are unicast cells 

and should be delivered to the second and first SE of the output stage respectively. 

c2, c3 and c4 are all multicast cells and have multiple output port requests, as shown 

in the figure. Replication work is performed when necessary and is done within the 

switch fabric as the cell is being routed through the switch. [6). 
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(modified from [2), pp. 155) 

2.3.2.4 Multicast Output Buffered ATM Switch (MOBAS) 

MOBAS is an output-buffered multicast switch based on the multicast grouping net­

work (MGN) concept proposed by Chao [59]. The grouping network idea is inspired 

by the Knockout switch in which L is used instead of N as the number of internal 

links toward each output port so that hardware complexity is reduced from O(N2) 

to O(LN), while the performance still maintains an acceptable level. Its architecture 

is shown in Figure 2.13. Cell routing and replication are handled inside the MOBAS 

switch by combining the multicasting tree and broadcast buses [6), i.e. , the routing 

links, which interconnect the MGNs and OPCs, form a multicasting tree, while inside 

each MGN, the cells are sent through broadcast buses. MOBAS has several problems 

such as the internal blocking problems of the routing links which form the multicas­

ting tree and high complexity of the MGNs because of the use of broadcast buses. 
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Figure 2.14: Abacus switch (from [2), pp. 191) 

The delay caused by the Knockout concentrator used in each SE is considered to be 

another problem [6]. 

2.3.2.5 Abacus Switch 

To decrease the possibility of cell loss due to the internal link contention, Chao pro­

posed another switch architecture called the Abacus switch [60]. Figure 2.14 depicts 

its architecture. The Abacus switch is composed of a non-blocking switching fabric 

followed by small switch modules at the output, in which cell replication and cell 

routing are performed simultaneously [6]. Similar to MOBAS, cell replication is per­

formed through the broadcast buses to all routing modules (RMs). Cell copies are 

then routed to the output module via switch elements array (SWE). The enhancement 

in the Abacus switch is that there are K additional lines to pass the acknowledge­

ments back to the IPCs. With that information, it can be determined whether the 

cell should be buffered in IPC or not. Similar to the problems for MOBAS, internal 

routing link blocking, hardware complexity of the switch elements, and delay caused 
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by the Knockout concentrator are also problems for the Abacus switch 

2.3.2.6 Prioritized Services, Internal Nonblocking, Internally Unbuffered 
Multicast Switch (PINIUM Switch) 

From the previous discussion on the MOBAS and Abacus switches, it has been demon-

strated that for networks using broadcast trees for cell replication, the blocking of 

internal links connecting routing modules always exists. In [9], a switch called priori­

tized services, internal nonblocking, internally unbuffered multicast switch (PINIUM 

switch) is proposed to tackle this problem, as shown in Figure 2.15. The PINIUM 

switch is constructed by using multiple routing planes with each plane supporting 

only one broadcast tree [6, 9]. It does eliminate the internal link blocking between 

the routing modules, but unfortunately, the price is high. If there are less than N 

multicast trees within the same switching cycle, it will not fully utilize the switch 

capacity. Besides that, since more than one cell can arrive at the same output port 

within one slot, OPC must have enough capability to handle the output contention. 
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With more cells that each output can receive, more buffering space and high-speed 

buffers are required, which brings up the cost of the entire switch. 

2.3.2. 7 Other Switches Following the Integrated Approach 

Other multicast switches following the integrated approach include: 

(1) Gauss ATM Switching Element [61], which has the same basic structure as the 

Knockout switch but uses different output modules. 

(2) Growable Packet Switch (GPS) [62], which uses a three-stage structure. The 

first stage is used just for cell routing. The second stage replicates cell and sends one 

copy to each necessary third stage module. The third stage replicates cell again if 

needed and sends to the requested output port. 

(3) Multicast BG switch, which will be extensively studied in this dissertation. 

( 4) Other proposed switches belonging to this category include those in [5, 50, 63, 

64, 65]. Again, the architecture and design methodology of those switches are similar 

or modified from the switches that have been discussed above. 

2.3.3 Comparison of the Two Approaches of Constructing 
Multicast Switches 

The cascade approach was popular initially because it requires the least modification 

to an existing router/switch design. Providing the copy network as an add-on module 

will easily convert a unicast switch to support multicast. Theoretically, there is no 

restriction on the types of routing networks that will be used. Hence, it is attractive 

because there is no need to design a brand new switch architecture from scratch. 

Further, it is a quick-to-market solution when the unicast switches and routers are 

dominant and the demand for multicast support is less significant. 

As discussed in Section 2.3.1, many proposed multicast switch architectures follow 

this approach after the foundation work of Lee's multicast switch [7]. However, this 
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family of SF designs suffers from two major problems. One is overflow at the copy 

network, i.e., the total number of copies requested exceeds the available number of 

output ports of the copy network. In this situation, any cell whose fanout is larger 

than the remaining free output ports will be dropped [7, 46]. This problem will even­

tually lead to the degradation of system performance and throughput if not handled 

properly. The other problem is the output port contention in the routing network 

when multiple packets request the same output port simultaneously. A proper mech­

anism must be devised to handle such situation, which will normally complicate the 

control function and generate higher demand for buffering resources. Besides these 

two problems, the memory size of the translation table in between the copy network 

and the routing network will also increase significantly as the fanout and the switch 

size increase. This will increase the hardware complexity for the whole switch. Al­

though some modifications are proposed to improve the design [7, 46], such as adding 

feedback loops from the copy network output port to the switch input for the exces­

sive copies, and adding buffering resources between the copy network and the routing 

networks for cells that lose their output contention, they only mitigate the situation. 

At the same time, they have an increased design complexity. 

The integrated approach combines the routing and multicast cell copy functions 

into a single unified network. The problems encountered by the cascade approach 

no longer exist in the integrated approach. Even though each individual SE must 

be enhanced to handle both functions, which will increase its hardware complexity 

slightly, the overall complexity of the switch fabric is normally less than the sum 

of the copy and routing network because many resources originally required by both 

networks are now shared, such as the memory components which are used to store the 

routing and replication tags. Besides the advantage of reduced hardware complexity, 

the characteristics of reliability, scalability, and fault tolerance in the single unified 
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network solution are also easier to improve. All these benefits make the integrated 

solution attractive for new architectures of the next-generation multicast switches. 

2.4 Historical Background of the BG Network 

In this section, previous research on the BG network is introduced. The evolution 

of the network topology, the corresponding routing algorithm, and some important 

results and features are also presented. 

2.4.1 Topology and Routing Algorithm 

The unicast BG network structure was first proposed in [24]. It follows the multi­

path MIN architecture design. Due to its multi-path property, packets can be routed 

through the network even in the presence of failures of some of theSEs in the network 

[25]. The BG network can offer an outstanding performance compared with other 

well-known networks that have similar or even higher hardware complexity, such as 

the Crossbar network (30], the Batcher-Banyan network [3], and the 2-replicated and 

2-dilated Banyan network [14, 25]. 

2.4.1.1 Topology 

The original BG network has the same structure as the Kappa network [66], except 

that in the last stage, the 4:1 concentrator at each output port of the Kappa network 

is replaced by buffers which can receive up to four cells in one switching cycle [25]. 

AnN x N BG network consists of n + 1 stages, where n = log2 N. The first stage 

has N 1 x 4 SEs and each of the following n - 1 stages will be comprised of N 4 x 4 

SEs. The last stage is the buffer stage as mentioned earlier. Figure 2.16 depicts the 

structure of an 8 x 8 BG switch. 

Let us denote each SE in the BG network as SEi,j (0 < i < N, 0 < j < n), where 
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i represents the position of theSE within a stage and j represents the stage number. 

Each SE has four output links connected to theSEs in the adjacent downstream stage. 

The output links from each SE are numbered from 0 to 3 from top to bottom, and are 

divided into the upper links and lower links. Among them, links 0 and 2 are called 

primary links and links 1 and 3 are called alternative links. For SEi,j, output link 0 

will be connected to one of the inputs of SEi_2j ,j+l, output link 1 will be connected 

to SEi,j+l, output link 2 will be connected to SEH2i ,j+l, and output link 3 will be 

connected to SEi-2Hl,j+l· 

2.4.1.2 Routing Algorithm 

An efficient routing algorithm is a key design task of a network architecture. In the 

original BG network, a distance tag algorithm was used (24, 25]. In the algorithm, the 

IPCs calculate the routing tag by D- S mod N, where Sand D denotes the source 
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and destination number respectively. The SEs interpret the routing tag in a reversed 

order, i.e., the SEs of stage 0 use the least significant bit for their routing decision. If 

the routing bit is 0, the cell is routed to the upper links, otherwise, it will be routed 

to lower links. During the routing process, the primary links are always used first 

before the alternative links are used. However, the routing tag has to be modified for 

cells directed to the alternative links in the algorithm. In any given switching cycle, 

any SE can take up to two cells to either upper links or lower links. If there are more 

than two cells requesting the same output port, the excessive cells will be dropped 

by the SE, thus cause cell blocking. 

2.4.1.3 Modified BG Network Structure 

Another routing algorithm called the reversed destination tag was introduced to re­

duce the complexity of the routing tag generation and modification [14]. In this 

algorithm, the routing tag for a cell from source S to destination D is the binary 

representation of D, i.e., dn_ 1dn_2dn_3 .•• d0 . Each SE interprets the tag in the reverse 

order: SEs in stage 0 switch a cell based on bit d0 , SEs in stage 1 switch a cell based 

on bit d1 , and SEs in stage n -1 make their routing decision based on bit dn-l· Each 

SE is associated with a value a given by the formula a = l2i1 J mod 2 to make the 

routing decision. If dj EB a = 0 for an incoming cell, the SEs route this cell through 

output link 0 or link 2, else it will route the cell to link 1 or link 3. The difference 

between this routing algorithm and the previous one is that there is no need to modify 

the routing tag if the cell is sent to the alternative links. 

In the study of the pipelined architecture using the BG network [14], further 

modification was made to the reverse destination routing algorithm. This modification 

reduced the complexity of making routing decision in the SEs. The SE now checks 

only the routing bit, instead of both the routing bit and parameter a. If the routing 
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Figure 2.17: The modified structure of the 8 x 8 BG switch 

tag bit is 0, output link 0 will be selected. Output link 1 will be used only when link 

0 is occupied. The same approach applies to the down links when the routing bit 

is 1. The network topology was revised accordingly to accommodate this change, as 

shown in Figure 2.17. 

2.4.2 Features of the BG Network 

Previous research on different aspects of the unicast BG switch architecture has been 

reported in (24, 25, 67, 27, 26, 14, 68), which include its hardware complexity, fault 

tolerance property, reliability, scalability, and performance. It has been demonstrated 

that the BG network architecture is single fault-tolerant and robust when multiple 

faults exist. It is highly reliable and scalable. Its performance is very close to that of 

an ideal non-blocking switch, and is better than for other switches which have similar 

or higher hardware complexity. It is a promising MIN candidate to handle unicast 
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traffic in broadband packet switching networks. 

2.5 Switch Fabric Benchmarking :Framework 

The performance comparisons between different architectures are not straightforward 

due to the lack of a common criteria of defining adequate network traffic models. Cur­

rently in industry, switch fabric selection follows complex performance comparisons 

using the data that the switch fabric vendors provide [10]. However, the data are very 

limited and commonly based on idealistic traffic patterns, rather than those of the 

real-world, application-oriented traffic that would stress fabric implementation. To fa­

cilitate the work of evaluating different architectures, the Network Processing Forum 

(NPF) [69] was founded in February 2001 by the merge of the Common Switch In­

terface Consortium (CSIX) and the Common Programming Interface Forum (CPIX). 

Their recent effort is to develop the benchmark framework for switch design, testing 

and comparison. The benchmarks that have been proposed include traffic modelling, 

performance metrics, testing methodology, and test benches. 

2. 5.1 Benchmark Traffic Models 

Modelling data traffic in a real network is extremely difficult because traffic patterns 

vary significantly with network type, topology, time, and other parameters [10]. In 

recent years, some statistical models have been used by academic and industrial 

researchers to analyze traffic patterns [70, 71]. The following aspects are the key 

points that must be properly addressed in a traffic model [10, 69]: 

(1) Traffic load behavior; 

(2) Bursty nature and correlation in traffic arrivals; 

(3) Traffic destination selection distribution; 

(4) The distribution of traffic quality-of-service (QoS) classes; 
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(5) Proportion of unicast and multicast traffic and their characteristics. 

By strictly defining the parameters to the above points, NPF characterizes net­

work traffic using the following processes: 

1. Packet size distribution 

The distribution is used to describe variable-length packet, such as in the case of 

IP traffic in the Internet, or fixed-size packet, such as in the case of ATM. 

2. Packet Arrival Process 

The Bernoulli arrival process is used to define a memoryless random arrival pat­

tern. Bursty arrival is used when packet arrivals are correlated. There are several 

bursty traffic models defined by NPF, which include the constant burst size arrivals, 

the ON-OFF Markov-Modulated arrivals and its modification, and the ON-OFF ar­

rivals model with minimal burst size. 

3. Packet Destination Distribution 

In some applications, traffic may tend to be uniformly distributed among all 

destinations. However, in other applications, traffic destinations may be unevenly 

distributed. In the NPF benchmark, traffic destination distributions range from uni­

form, through to hot spot, and indeed to the special case in which each port has 

traffic requesting only a single destination [69]. The Zipf's law [72] is used for the 

destination distribution in NPF proposal. 

4. Multicast Traffic 

In multicast traffic, the term fanout is defined as the number of destinations to 

which a packet will be replicated. The fanout is a configurable parameter which can 

be a constant but also can vary. 

5. QoS Modelling 

A QoS distribution defines the probability of a generated packet's association with 

a given QoS class. The QoS can be uniformly distributed , or arbitrarily distributed 
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among the classes. The QoS distribution is independent of the arrival process and the 

destination distribution. However, in bursty traffic, packets within the same burst 

belong to the same QoS class. 

2.5.2 Benchmark Performance Metrics and Test Suites 

The initial purpose in creating the benchmark was to determine common criteria 

for testing third party's switch fabrics. For performance metrics, the goal of NPF 

is to establish an unambiguous specification that defines latency and jitter as well 

as to delineate the way vendors measure them. The testing environment follows a 

common switch interface ( CSIX) reference model between a traffic manager and a 

switch fabric for ATM, IP, MPLS, and other data applications, as shown in Figure 

2.18. The traffic models unit generates packets based on the specified traffic type 

and passes them sequentially to the segmentation unit (SAR). In SAR, packets are 

segmented into cell frames, which are then queued into the pseudo traffic manager 

(pTM) unit. From pTM, cell frames are passed onto the device under test (DUT), 

normally a switch fabric, for switching. A number of points shown in the figure are 

used for performance measurements, which include latency, accepted-versus-offered 

bandwidth, and jitter. Latency and jitter have two sets of measurement points, one 

for the fabric (point 2 and 3) and the other for the total system (point 1 and 3). 

The test suites benchmark includes a wide variety of testing scenarios under dif­

ferent traffic conditions. For unicast traffic, it includes the uniform destination dis­

tribution and non-bursty traffic pattern, the uniform destination distribution and 

bursty traffic pattern, the non-uniform destination distribution and non-bursty traf­

fic pattern, the non-uniform destination distribution and bursty traffic pattern, and 

the variable non-uniformity factor port level test. Test scenarios in multicast con­

dition include the test for pure and combined multicast traffic under overload and 
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Figure 2.18: The CSIX reference model (from (10], pp. 109) 

no-overload bursty and non-bursty traffic. Currently, the destination distribution for 

multicast traffic is considered to be uniformly distributed only. 

2.5.3 Relation to this Research 

As stated earlier, the main purpose of the benchmark system is to obtain the perfor-

mance of third-party SFs. Therefore, the SF is treated as a black box in the test and 

what is normally considered is its port-level behavior. However, this is not sufficient 

for study of an architecture because there are other important aspects to be covered. 

Therefore, in this research, besides the performance analysis, which is no doubt the 

most important aspect, other practical concerns such as hardware complexity, fault 

tolerance, scalability, reliability, and implementation feasibility are investigated. 

The traffic models outlined in the benchmark significantly facilitate the process 

of identifying standard traffic, which makes the performance analysis across different 

architectures comparable. Such traffic models are used in this research. For example, 

the uniform model and the ON-OFF bursty model for traffic arrivals, and the uniform 
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and non-uniform models for destination selection. However, for multicast traffic, the 

fanout distribution is not very clearly described in the benchmark framework. There­

fore, the truncated geometric distribution, which is commonly used in the literature 

(9, 60] to model and generate multicast traffic fanout, is used. As well, the multicast 

test scenarios from the benchmark test suites only deal with the uniform destination 

distribution. In the dissertation, it is extended to the non-uniform situation. A model 

modified from the original non-uniform model presented in (73] is used. The fixed-size 

packets, or cells, are considered for switching inside the SF. However, QoS control is 

beyond the scope of this research, hence, QoS modelling and the jitter performance 

of the single switch are not covered. 

2.6 Summary 

In this chapter, we discussed the classification of various architectures that have been 

proposed for high-speed packet switches. The pros and cons of different categories are 

briefly analyzed. It is hard to single out any one among the architectures as the best. 

Multistage Interconnection Networks have attracted more research interest because of 

the desirable properties of the structure, such as self-routing, equal latency, modular­

ity and scalability. As multicasting capability is becoming a general requirement for 

future high-speed networks, the two common approaches of constructing a multicast 

switch fabric are studied with an extensive survey of the existing multicast switches. 

The integrated approach is promising because it inherits the advantages of the MIN 

design. At the same time, it avoids the overflow problem in the copy network solution 

and can be designed to handle output contention efficiently. Also, in this chapter, we 

briefly reviewed the history of the BG switch and present the recent development in 

switch fabric benchmarking. 
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Chapter 3 

Multicast Balanced Gamma (BG) 
Switch 

3.1 Introduction 

The Balanced Gamma network is a fault-tolerant and reliable MIN that was first 

reported in [24) as a broadband switch architecture. The performance, fault toler­

ance and reliability properties of the BG network for unicast traffic have been ex-

tensively studied and it has been shown that the BG network is superior to other 

well-known MINs that have similar hardware complexity, such as the 2-dilated 2-

replicated (2D2R) Banyan network [26), and that it performs much better than the 

crossbar network, which has a higher hardware complexity [14). To support multi-

cast traffic, a new switch architecture has been developed to support efficient implicit 

multicasting, and at the same time, preserving other attractive features of the BG 

network. 

3.2 Switch Architecture 

Unlike the Banyan network, which utilizes a 2 x 2 SE, the BG multicast switch utilizes 

basically the 4 x 4 SE. The basic architecture of an N x N BG multicast switch consists 

of N IPCs, anN x N multistage interconnected SF that supports self-routing, copy 

52 



Stage 0 Stage 1 Stage 2 Output Stage 

Input 0 Output 0 

Input 1 Output 1 

Input 2 Output 2 

Input 3 Output 3 

Input 4 Output 4 

Input 5 Output 5 

Input 6 Output 6 

Input 7 Output 7 

~·························· ... 1+----------------------•1~···························· .... 
Input Port Controllers (IPCs) Switch Fabric (SF) Output Port Controllers (OPCs) 

Figure 3.1: The architecture of an 8 x 8 multicast BG switch. 

replication and delivery acknowledgement, and N OPCs. No dedicated copy network 

is required. Routing and replication are performed in a distributed fashion inside the 

SF. Figure 3.1 shows the architecture of an 8 x 8 multicast BG switch. The difference 

between this architecture and the original BG architecture that has been shown in 

Figure 2.17 is that the alternative links between Stage 0 and Stage 1 are removed. 

However, these links will be discussed again in Section 3.7 to demonstrate how they 

will help to improve the fault tolerance and reliability properties of the switch. 

The IPC terminates the input signals from the network, strips the information 

contained in the cell header, and uses a lookup table to determine the destinations. 

In the dissertation, a simplified IPC is assumed, in which the destination requests 

contained in the cell header have been translated into a bitmap string, with a bit 

corresponding to each output port. An internal tag generation circuit within the IPC 

uses the bitmap string to generate the self-routing and self-replication tag. The tag 
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is used internally for path reservation inside the SF. Different choices of tag encoding 

schemes will be studied in Section 3.4.3. A fanout splitting scheme [74) is used in 

the BG multicast switch to ensure efficiency when dealing with multicast traffic, i.e., 

copies of a multicast cell may be delivered to output ports over a number of cycles. 

Only those undelivered copies due to output or internal link contention are kept in 

the IPC and contend for the output in the next cycle. 

The SF is the core of the multicast BG switch because most of the routing and 

replication functions are completed inside the SF. An N x N BG switch fabric consists 

of n+ 1 stages, where n = log2 N, with each stage consisting of N SEs numbered from 

0 to N - 1. 1 x 2 SEs are used for stage 0 and 2 x 4 SEs are used for stage 1. Each 

of the following n- 2 stages is comprised of 4 x 4 SEs. The last stage is the output 

buffer stage, which can accept up to 4 cells per output port in one switching cycle 

[24, 75). The output buffers can be considered either as the last stage of the SF or 

as a part of an OPC along with other scheduling hardware. The OPC updates each 

arrived cell, unicast cell or copy of a multicast cell, with a new cell header and sends 

onto the output links. 

Network bandwidth is expanded through the first two stages and then remains the 

same for all subsequent stages. Through internal bandwidth expansion, the multicast 

BG switch can achieve better performance while keeping the hardware complexity 

reasonable. The interconnection pattern between adjacent stages is regular. In the 

middle stages, the outlets of each SE are evenly distributed to theSEs in the following 

stage. Details about the algorithms which specify the interconnection pattern can be 

found in Appendix A for the forward data path and in Appendix B for the backward 

acknowledgement path. 
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3.3 Justification for the Architecture 

Blocking is a problem with which every switch design must deal. Though some non­

blocking switches are proposed, e.g., Batcher-Banyan network and crossbar network, 

they are typically non-blocking only in the unrealistic traffic pattern of permutation 

traffic, where the port requests for all incoming cells are different. When a more 

realistic traffic is applied, many of these switches inevitably become blocking with 

quick degradation of performance. 

The multicast BG switch has slight blocking under permutation traffic. However, 

it keeps its high performance under many other traffic conditions due to the char­

acteristics of the switch architecture design. Blocking occurs either internally when 

cells contend for the same internal link, or at the output port when the number of 

incoming cells exceeds the available queuing space. In the BG switch, cell loss due to 

the effect of blocking is minimized by providing input buffers and by incorporating 

a backpressure mechanism. The backpressure mechanism reports the blocking status 

to the IPC so that the blocked cell is kept at the input buffer. Output blocking is 

also mitigated by choosing a SF architecture that is capable of accepting multiple 

cells at each output line in one switching cycle [24, 75]. The input-buffered switch ar­

chitecture may suffer from HOL blocking, in which the temporarily un-transmissible 

HOL cell impedes the transmission of cells behind it and thus reduces the switch 

throughput. However, due to the very high throughput of the BG switch, most HOL 

cells can be delivered immediately without being buffered and delayed [26]. Hence, 

the HOL blocking does not significantly degrade performance. 

Output buffered switches have been shown to provide the best delay and through­

put performance [60, 76]. It is difficult to achieve a pure output-buffered switch 

because the output buffers have to operate N times the link speed to avoid any cell 
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loss. As link speed becomes higher and for larger switch sizes, output buffer access 

time will eventually become the system bottleneck. With a suitable backpressure 

mechanism, the input-output buffering strategy will reduce the output buffer speed 

constraint and will store the cells that lose contention to internal links or output 

ports using the input buffer. Through this approach, we can not only achieve good 

performance and reduce the speed requirements of the output buffer, but also reduce 

the overall complexity to build a practical switch. With a high throughput SF, only 

small amounts of input buffering will be required. 

An important observation which has enabled the architecture of the BG switch to 

produce near-optimal performance even under realistic traffic conditions is the design 

choice that the output stage of the SF is able to accept up to four cells per output 

line in one switching cycle. Under unicast uniform random traffic at full load, in any 

given switching cycle, the probability that there are i cells arriving at the input lines 

of a switch destined to a particular output line is given by 

( 
N ) ( 1 ) i ( 1 ) N -i Pr( i) = i N 1 - N (3.1) 

The result is plotted in Figure 3.2 for different switch sizes. A similar distribution 

is obtained through simulation for the multicast bursty traffic, as shown in Figure 

3.3, in which an average burst length (L) of 5 and a mean fanout (F) of 2 are used. 

Details of the multicast bursty traffic model will be described in Section 4.2. 

Figure 3.2 and 3.3 clearly demonstrate that there is only approximately a 1% 

probability that more than four cells arriving at the input lines in any given cycle 

would try to reach the same output line for a fully loaded switch. It should be noted 

that this is almost irrespective of the size of the switch. This observation justifies our 

architectural decision of the BG switch accepting up to four cells at each output line 

in one cycle. For the rare cases of more than four cells requesting the same output, 
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Figure 3.2: Output request probability under unicast uniform random traffic at 100% 
load. 

the backpressure scheme would ensure that the excess cells are held in input queues. 

In addition, the BG network has a low probability of internal blocking, hence, input 

buffers should be used to hold the cells that would have otherwise been dropped. In 

Chapter 4, switch performances under nonuniform traffic are also studied and the 

high performance of the multicast BG switch architecture is demonstrated. 

3.4 Dynamic-Length Self-Routing and Self-Replication 
Algorithm 

3.4.1 Switching Operation 

A three-phase switching operation is performed inside the multicast BG switch [18 , 

24, 77, 78]. First is the reservation phase during which the tag of the HOL cell is 

routed through the SF. Multicast cell replication is performed implicitly by the SEs 
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Figure 3.3: Output request probability under multicast bursty traffic at 100% load. 

along with the routing operation only when necessary. Next comes the acknowledge­

ment phase, during which cell delivery information is reported to the IPC by use of 

backpressure mechanism. Based on that information, the IPC decides whether the 

HOL cell should be transmitted or kept in the input buffer for the next cycle, or both 

when in the case of a multicast cell. In the third phase, the payload is transmitted 

via the established path just as in a circuit switch. Because of the memoryless design 

of the SF, a cell will either reach the desired output port(s) or be kept in the input 

buffer. Cell sequence can be easily maintained. Cell loss occurs only when the input 

buffer is full and a new cell arrives. 

3.4.2 Self-Routing and Self-Replication Algorithm 

In the multicast BG switch, there are three types of SEs inside the SF: the 1 x 2 and 

2 x 4 SEs are used for the first two expanding stages while the 4 x 4 SEs are used 

for all subsequent stages. Functionally, the first two types of SEs can be treated as 
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Figure 3.4: Self-routing and cell replication in the 4 x 4 SE. 

a special (simpler) case of the 4 x 4 SE. Therefore, in the following discussion, the 

more general 4 x 4 SE is used, as shown in Figure 3.4. The four output links are 

numbered 0 to 3 from top to bottom. Among the four links, link 0 and link 2 are 

called upper and lower regular links, respectively, while link 1 and link 3 are called 

upper and lower alternate links, respectively. Both the regular link and its alternate 

link have the same capability of reaching the same destination. Upon switching, the 

regular links are always used first. The alternate link is used only when the regular 

link has been assigned to a connection. 

In the multicast environment, tag design becomes more challenging because not 

only the routing information should be carried but also the cell replication informa­

tion, and the tag length should be minimized to minimize the delay in the reservation 

phase. In the multicast BG switch, for each SE to make the right routing and repli-

cation decision, a 2-bit tag is used by each SE for each input link. Four different 

actions can be taken by SE and are summarized in Table 3.1. 
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Bit 1 Bit 0 Routing Action Replication Action 
0 0 Idle (no action) Idle (no action) 
0 1 Lower link No replication 
1 0 Upper link No replication 
1 1 Both links Replication 

Table 3.1: Routing and replication actions based on tag pair information. 

The SE will make its decision in two steps. First, the SE decides the process 

order of incoming cells based on the priority level associated with each cell. For cells 

of the same priority level, they are selected based on the processing order. Priority 

switching is a feature considered in the multicast BG switch with up to 8 priority 

levels currently supported. The priority consideration will be further discussed in 

Section 3.6. Second, incoming cells are switched following the order determined in 

the first step. Cells with higher priority are always processed first until all the sources 

are used up. In that case, remaining low priority cells will be blocked. Pseudo-code 

for the self-routing and self-replication algorithm can be found in Appendix C. 

Figure 3.4 provides an example in which cells are coming in from the top three 

input links. By sorting on the priority tag, the process order is c ---t b ---t a. Following 

the routing and replication table, cell c is a unicast cell which requests an upper 

output link, it is switched to output 0 and similarly cell b is switched to output 2. For 

cell a, tag pair '11' indicates that replication is required. The available outputs are 

checked and cell a is replicated and sent to both upper and lower alternative output 

links, links 1 and 3, respectively. 

3.4.3 Dynamic length Bitmap Tag Encoding Scheme 

To switch a cell from each input to the required destinations, an internal tag must be 

carefully and properly selected. First, it should contain enough information for each 
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Figure 3.5: Decision pair generation in the variable bitmap tag scheme. 

SE to make the routing and replication decision. However, the tag is an overhead to 

the system, thus it should be minimized so as to reduce communication latency and 

save system bandwidth. In [79], the authors studied different multi-address encoding 

schemes for multicast and pointed out that a good encoding scheme should consider 

minimizing the tag length, reducing tag processing time, and supporting cut-through 

switching. 

The dynamic length bitmap tag encoding scheme is similar to the bit string encod­

ing scheme described in [79]. The tag size changes as the cell is switched through the 

switch fabric. In this scheme, the destination requests are represented in the bitmap 

format, with each bit corresponding to an output port. Because fewer output ports 

are associated with each SE in later stages, the tag length is halved after passing 

through each stage. Based on the bitmap received, the SE generates the decision pair 

before sending it to the decoding circuit. The decision pair generation circuit is quite 

simple, the upper half of the destination ports are used to generate the first bit, and 

the lower half will be used for the second bit. As shown in Figure 3.5 for the SEs 

in Stage1 of a 16 x 16 BG multicast switch, a simple ORing operation is sufficient. 
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0010 - .. 01 I0--.10 

Figure 3.6: Dynamic length bitmap tag and self-routing and cell replication algorithm. 

Excluding the priority bits, the sum of the tag length over all links is 

Brag 
N N 

N+ 2 + 4 + ... +4+2 

2n + 2n-l + 2n-2 + ... + 22 + 2 

i=l 

2N-2. (3.2) 

Figure 3.6 shows an example of a multicast cell from input 1 with output requests 

of 1, 4, 6 and 7. Using the dynamic length bitmap tag encoding scheme, the decision 

pair can be extracted from the bitmap string using the circuit depicted in Figure 3.5. 

The SE controller sorts the four input lines on their priority first, then interprets 

and processes the decision pair based on the resulting sequence, i.e., from the highest 

priority to the lowest. The bitmap tag is then divided into two groups, each attached 

with the priority bits, then sent to the next stage. The first group is used as the tag 
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for the cell to be sent to the upper link and second group is used as the tags for a cell 

to be sent to the lower link. In the example, at Stage 0, based on the incoming tag 

11010010, the SE1,0 generates a decision pair of (1,1). Using Table 3.1, theSE knows 

that both routing and replication should be done to this cell. So, one copy of the cell 

is sent to the upper link and the other copy is sent to the lower link. Therefore, the 

tag 11010010 will be split into two groups: 0010 and 1101. Each will be appended 

to the priority bits and then sent to the respective upper and lower links. A similar 

approach will be taken in the SEs of the following stages. In this example, priority 

bits are not shown. In general, when several cells appear at the inputs of an SE, the 

priority bits will be considered first before routing and replication decision are taken. 

The strength of this scheme is its small tag transmission latency and low tag 

buffering requirement. Because fewer overhead bits are transmitted after passing 

each stage, switch throughput and bandwidth are better utilized. 

3.5 Dynamic-length Backpressure Algorithm 

An acknowledgement mechanism to report blocking status is needed so th'at cells 

can be kept in the input buffer when blocking occurs. As long as cells get queued 

in the IPC, they will not be lost, but might be delayed when blocking occurs. The 

backpressure unit in each SE forms a path to pass blocking information to the IPC. 

Compared to that of the unicast BG switch in [14], an efficient backpressure mecha­

nism design in a multicast switch becomes more complex because the IPC should get 

the acknowledgement for all possible copies. 

In the multicast BG switch, a dynamic-length backpressure algorithm is used. In 

the algorithm, blocking status is encoded in a bitmap format, with each bit represent­

ing delivery status to one output port. Each SE only sends the output information 
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that it is associated with to the previous stage. At the output stage (Stage n), the 

only needed information is whether the cell can be placed in the output buffer or not. 

Hence, 1 bit suffices. In the second last stage (Stage n - 1), each SE is connected 

to two output queues in the last stage. Thus, two bits are used as the backpressure 

output. A similar approach applies to all theSEs at different stages. In Stage 0, SE 

receives the acknowledgement from its downstream stages and generates its backpres­

sure information of N bits based on the connection type and the blocking condition. 

The N-bit information is sufficient to decide the blocking status for any cell, unicast 

or multicast. Upon receiving this information, the IPC makes the final decision on 

whether all copies of the multicast cell are successfully received at the output. If 

yes, the IPC removes the HOL cell and tries the next cell during the next switching 

cycle. Otherwise, this cell is retained in the input buffer and retried until all copies 

are delivered. Using a work conserving method as described in (74], for any multicast 

or broadcast cell, only blocked copies will be retransmitted. 

The BG network architecture enables us to achieve an efficient design and an easy 

implementation of the dynamic-length backpressure algorithm. The backpressure 

unit located at each SE decides its backpressure information using two steps: the 

first step is to decide whether the cell is blocked at the current stage or not, and the 

second step is simple concatenation operation. 

If there is no blocking, in the case of a unicast cell, the SE waits for the ac­

knowledgement from the link where the tag is sent out and concatenates it with a 

string of zeros. Where the Os string will be concatenated to the acknowledgement 

stream, i.e., head or tail, depends on whether the upper or lower output link is se­

lected. In the case of a multicast cell, the SE simply waits for the acknowledgement 

string from downstream stages and concatenates that from the upper link with that 

from the lower link. The resulting string will be sent to SE in upstream stage. If 
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blocking occurs, the SE generates a string of ones as the negative acknowledgement 

for the copy/ cell that loses the link contention immediately. Similar concatenation 

operation will be performed, just this time, the acknowledgement string received from 

downstream stages is replaced by the 1s string generated locally at the SE. 

For a multicast cell, if one copy loses contention for one link while the other copy 

wins its contention for the other link, the control becomes more complex. In this 

case, in the backpressure information of this stage, half of the outputs, which are 

associated with the blocked link, are marked as blocked by using the 1's string. For 

the other half that is associated with the copy that got through, theSE waits for the 

downstream backpressure information to come back, and then concatenates them to 

generate the complete backpressure bits and sends to the upstream stage. 

The only thing a SE needs to remember is its stage number so that it can decide 

the length of its acknowledgement information. For SEs at Stage i (0 < i < n-1), the 

incoming backpressure information length is 2n-i-l bits and the outgoing backpressure 

information is 2n-i bits. The detailed design and implementation of the backpressure 

unit inside theSE will be described in Chapter 5. Pseudo-code for the dynamic length 

backpressure algorithm can be found in Appendix D. 

It might seem that more output ports than the real port requests would be marked 

since all output ports related to a SE are marked as blocked when blocking occurs on 

that link. In fact , when the IPC receives the acknowledgement from the SF, an AND­

ing operation is performed to determine which requests are actually blocked. For ex­

ample in a 16x 16 BG switch, assume that the IPC has a HOL cell with port requests 0, 

4, 6, 7, 12 and 15. In IPC, the port request is represented as 1001000011010001. If the 

copy to the port 4 is blocked at stage 2 while other copies reached their destinations, 

then the IPC receives a backpressure string of 0000000000110000. After a logic opera­

tion (1001000011010001 AND 0000000000110000), the result is 0000000000010000. It 
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is then clear that the cell is correctly delivered to all other ports except 4. Therefore , 

the cell will still be kept in the input buffer. However, only the copy to port 4 will be 

retransmitted in the next switching cycle. 

The dynamic-length backpressure algorithm is used in Figure 3.7 to show how 

self-routing, cell replication, acknowledgement and blocking are handled in an 8 x 8 

multicast BG switch. Output requests of incoming cells are given in brackets. 

In this example, blocking occurs at SE2,2 for the unicast cell from input 5 and at 

SE4,2 for a multicast cell from input 4. Cells from other input ports are all successfully 

transferred. Blocking information, as shown on each SE in the diagram, is sent along 

the backward path until it reaches the IPC. The IPC then knows that the unicast 

cell is blocked and the copy of the multicast cell heading towards output 4 is blocked 

as well. Since there is only one copy left for the master cell, in the next switching 

cycle, it becomes a unicast cell. So, it is re-sent along with the unicast cell left over 

in input 5 and new incoming cells in the next switching cycle. 

3.6 Service Discipline and Priority 

3.6.1 Service Discipline 

In a multicast SF, two kinds of service disciplines can be used: the no-fanout splitting 

scheme and the fanout splitting scheme [7 4]. In the no fanout splitting, all copies of a 

cell must be sent in the same switching cycle. If any copy of the cell loses contention 

for an output port , the cell will not be transmitted but will be tried again in the next 

cycle. In the fanout splitting scheme, copies of a multicast cell may be delivered to 

output ports over a number of cycles. Only those copies that are not successfully 

transferred will contend for the output in the next cycle. 

Using the no-fanout splitting scheme, if the traffic load is high and the priority 
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associated with the multicast cell is low, a multicast cell may be blocked at the HOL 

for a long time, and impede successive cells from being switched. The fanout splitting 

scheme is more work conserving and it enables a higher switch throughput. Therefore, 

it is a more realistic solution and it is implemented in the multicast BG switch design. 

The dynamic-length backpressure algorithm fits well with the work conserving service 

discipline. 

3.6.2 Priority Consideration 

Priority bits are used by SEs to decide which cell(s) will be allowed to get through 

when there are more requests than the available resources. In practice, the number 

of priority levels depends on the number of service levels that the network operator 

wants to support. In an integrated services network, at least three priority levels 

are necessary: a high priority level for urgent messages, usually for network control; 

a medium priority level for guaranteed service traffic; and a low priority level for 

best-effort traffic. Considering the many different applications in future broadband 

networks, in the multicast BG switch, a priority hierarchy is designed to support up to 

eight levels, starting from level 0 (La) to level 7 (L7 ). In the analysis and simulation, 

multicast traffic are treated equally to the unicast traffic. It is the operator's decision 

whether to give a higher priority to the multicast traffic or not. 

3. 7 Fault Tolerance and Reliability 

In this section, some possible architectural modifications with the objective to improve 

fault tolerance and reliability of the switch are studied. All architectural improve­

ments are compatible with the original functions and features discussed earlier. 

Fault tolerance and reliability are desired features for any practical switch. A 

fault-tolerant SF is able to send a cell to its destination in the presence of link or 
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SE failures. From Stage 1 and on, each SE has four output links, which are divided 

into two groups with two links in each group. One is used as the regular link and the 

other as the alternate link. When the regular link or the downstream SE connected to 

the link fails, theSE can always re-route the cell to the alternate link, which has the 

same capability of reaching its destination. However, since there is no such alternate 

links in between Stage 0 and Stage 1, failure of an inter-stage link or SE in Stage 

1 would prevent the cell from reaching its destination. To keep a consistent fault­

tolerant property for the whole SF, links between Stage 0 and Stage 1 are replicated 

and rearranged, as shown in Figure 3.8. The modified architecture can be designed to 

tolerate single fault and are robust in the presence of several faults. Only two types 

of SEs exist in the SF: the 1 x 4 SEs are used for Stage 0 and 4 x 4 SEs are used for 

all remaining stages. 
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3.8 Scalability 

The scalability of the multicast BG network are studied from three different aspects, 

namely, the architectural scalability, the implementation scalability and the perfor­

mance scalability. 

3.8.1 Architectural Scalability 

The multicast BG switch has a scalable architecture. A larger switch can be efficiently 

constructed using a smaller switch as the building block. For example, using the single 

fault-tolerant architecture shown in Figure 3.8, to make a 16 x 16 switch, we can simply 

replace Stage 0 of the 8 x 8 switch with 4 x 4 SEs, duplicate the 8 x 8 switch module, 

add one more stage which consists of 1 x 4 SEs in the front and connect them using 

the pattern specified in Appendix A. 

The 1 x 4 SEs in Stage 0 can be replaced by the 4 x 4 SEs so as to achieve even 

better architectural scalability. Only one input link of each SE in Stage 0 will be 

used. Others can be either grounded or can be used as alternative links by the IPC 

to achieve better fault tolerance and reliability. Because only one type of SE is used 

for the whole switch, it makes the switch more scalable and easier to build. Using 

this structure, to achieve a bigger switch, the switch of smaller size is duplicated and 

one stage of 4 x 4 SEs is added in the front, thus the switch size is doubled, as shown 

in Figure 3.9. 

3.8.2 Implementation Scalability 

The main factor considered in the implementation scalability is the overhead length 

associated with the tag transmission from stage to stage. The overhead associated 

with the multicast BG switch is a bit different from that of the unicast BG switch 

despite one thing in common: the tag received by SEs in the first stage is the longest. 
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Figure 3.9: Architectural scalability of the BG multicast switch. 
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For the unicast BG switch, the longest tag is n bits, which is much less than the 

payload. For example, for a 256 x 256 switch, the tag sent to Stage 0 is 8 bits for 

routing plus the priority bits and an active bit (which is used to indicate whether 

it is an active cell or not). Compared to the payload, such as an ATM cell, which 

is 48 x 8 = 384 bits, the overhead can almost be neglected. While in the multicast 

BG switch, more information is carried by the tag. The maximum tag length now 

becomes N bits. As the switch size increases, the tag length grows linearly. Using the 

same example, for a multicast BG switch of 256 x 256, the maximum tag length now 

becomes 256 bits. In our research, we have attempted to improve the situation. The 

explicit active bit, which is required in the unicast switch, has been removed. As well, 

the dynamic-length algorithm has been designed to reduce the tag length by half for 

every stage along the path. For an incoming cell to traverse the whole SF, the sum 

of the tag bits to be passed is 2N- 2. We conjecture that any integrated multicast 

MIN switch that supports implicit cell replication must have a tag of at least O(N). 

3.8.3 Performance Scalability 

The performance scalability describes how the BG performance is maintained as the 

switch size grows. Here, performance scalability is demonstrated in terms of through­

put and average cell delay. Throughput refers to the ratio of the number of delivered 

cells to the total number of incoming cells over a given period of time. As shown 

in Figure 3.10 and Figure 3.11, under a multicast bursty traffic with 80% offered 

load, the multicast BG switch preserves good performance scalability. The detailed 

performance study will be carried out in Chapter 4. 

72 



100.0000% 
Traffic condHion: 

Multicast 
bursty traffic 
Load= 80 % 

99.8000% Mean burst 
length= 5 
Mean fanout 
number= 2 

~ 99.6000% Period= 
Q, 100,000,000 
.r:: cells Cl 

::::1 e 
.r:: 99.4000% 
1-

99.2000% 

99.0000% 

0 50 100 150 200 250 300 

Switch Size 

Figure 3.10: Performance scalability of the BG multicast switch - Throughput. 

>-
"' Cii c 
Cii 
0 
Q) 
C> 
f 

~ 

25 ~~----~--------~-------r------~r--------r------~ r-----------~ 

• 
.:--~ 

20~~~~--~----~----~------+------+----~ 

• 
15 

r 
I 

10 

5 ---~---· --·-·-- ---·-··----- ···----·----·-- --·--·-·----· 

I 
0+--------+--------T--------r------~~------~------~ 

0 50 100 150 

Switch Size 

200 250 300 

Traffic condition: 
Multicast 
bursty traffic 
Load= 80 % 
Mean burst 
length= 5 
Mean fanout 
number= 2 
100,000,000 
cells 

Figure 3.11: Performance scalability of the BG multicast switch- Average cell delay. 

73 



3.9 Summary 

In this chapter, the key design aspects of the multicast BG switch are studied. A 

new modular BG network architecture is proposed to accommodate the multicasting 

operation. Cell routing and replication function is distributed into each SE to fulfill 

the high-speed requirement. The similarity of functionality and structure of all the 

SEs facilitates a modular design and ease of VLSI implementation. A dynamic-length 

backpressure algorithm is devised to report the blocking information. Besides that, 

other attractive features such as priority switching, fault tolerance and scalability, are 

briefly studied. 
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Chapter 4 

Performance Analysis under 
U niforrn and Non-U niforrn 
Multicast 'fraffic 

4.1 Introduction 

In this chapter, the performance of the multicast BG switch is studied under uniform 

and non-uniform traffic. Performance results are obtained under random and bursty 

conditions. Buffers are used at the IPCs and the OPCs of the switch. Performance 

measures are given in terms of cell delay, cell loss ratio, and input and output buffer 

requirements. The performance of the BG switch is compared to that of the ABACUS 

switch (60], which has been described in subsection 2.3.2.5, the PINIUM switch (9], 

which has been introduced in subsection 2.3.2.6, and an ideal purely output-queued 

multicast switch, which is capable of switching all incoming cells, regardless of their 

traffic characteristic, to their destination output buffers in one switching cycle. 

The number of cells used in each simulation is a balance of the simulation time 

and required data accuracy. To achieve more reliable and trustworthy simulation 

results, it is desired that more cells should be switched. However, it is at the cost 

of simulation time. As a rule of thumb, if the target cell loss rate is lo-s, switching 

109 cells through the switch fabric should suffice. In this research, the effort has been 
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taken to maximize this number while keeping the simulation duration reasonable. 

Also, critical simulation cases are repeated multiple times for accuracy. Therefore, 

unless otherwise specified, the simulation results provided are based on simulations 

that have run through a period of switching one billion cells. 

A confidence interval gives an estimated range of values calculated from a given set 

of sample data. In the dissertation, it is not considered. However, instead of repeating 

the same trial multiple times, the duration is extended for one trial. Because the 

magnitude level is the major concern of the research, the confidence range will have 

little impact on the trustworthiness of the simulation results. In fact, the rule of 

thumb, viz., ten times the reciprocal of the desired cell loss ratio, which is one billion 

cells for a cell loss of 10-8 , is used for all simulations. 

The remaining of this chapter is organized as following: firstly, the multicast 

traffic model is introduced. Then, an analytical model for the switch performance 

under multicast random traffic is provided, followed by a comparison with simulation 

results obtained under the same traffic conditions. Subsequently, the performance of 

the switch under various bursty traffic loads using simulation results is investigated. 

Finally, this chapter is concluded by providing the performance results under various 

non-uniform traffic conditions. 

4.2 Multicast Traffic Model 

An important part of any performance analysis is an accurate traffic model. A mul­

ticast traffic model [78] is used to generate traffic for both simulation and analytical 

purposes. The traffic model can be described by three random processes: the desti­

nation selection process, the arrival process and the fanout process. The destination 

selection process describes whether cell destination will be selected uniformly or non-
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uniformly. The arrival process specifies the correlation among the successive cells. 

The fanout process determines whether unicast cell or multicast cell will be gener-

ated. Based on the general choices for the three processes, eight different traffic types 

are obtained, as shown in Figure 4.1. 

The destination selection process describes the distribution of the cell destinations. 

Based on the two general choices, multicast traffic can be categorized into uniform 

traffic and non-uniform traffic. For uniform traffic, each output port has the same 

probability to be selected. While for non-uniform traffic, some output ports will have 

higher probability to be requested over others. 

4.2.1 Uniform Traffic 

4.2.1.1 Arrival Process 

In the case of uniform traffic, two types of arrival patterns are considered: random 

and bursty. For random traffic, the cell arrival is randomly selected based on the 

link load and is independent of cell arrival during the previous switching cycle. For 

bursty traffic, the ON-OFF model is used [9, 10, 26, 69, 78, 80]. The ON-OFF model 

is the least complex and the most widely used model to simulate bursty sources. It 

can describe most of the existing sources with a reasonable accuracy [81]. The source 

generates cells in a bursty manner: one active period (ON period) followed by an 

idle period (OFF period). During the ON period, the traffic source continues sending 

cells in every switching cycle to the same destination. The duration of ON and OFF 

periods are independently evaluated from two geometric distributions with the period 

length L in cells derived from 

r
ln(1- R) l 

L = 1 + ln(1- p) - 1 ' (4.1) 

where R, 0 < R < 1, is the random number generated, and p, 0 < p < 1, is the 

reciprocal of the average period length in cells. The cells arriving at each input line 
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in a burst have the same fanout number and are destined to the same output ports. 

4.2.1.2 Fanout Distribution 

The fanout process in Figure 4.1 describes the fanout of a multicast cell, i.e., the 

distribution of the number of copies of an incoming cell. A multicast cell with a 

fanout of one is a unicast cell. The traffic model provides a mix of unicast and 

multicast traffic with the level determined by the fanout distribution. The truncated 

geometric distribution is used to model the fanout distribution of the multicast cells 

[9, 80]. Given a switch size N, parameter q can be calculated numerically for any 

given mean fanout F following the equation which specifies their relation 

_ N . (1 _ q) X qi-l 
F=l::zx N 

i=l 1- q 1-q 
1 

(4.2) 
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With parameter q, the probability of having a fanout value j, denoted by Pt9 (j), can 

be calculated by using 

P,g(f) = { 

(1-q)xqf- 1 

1-qN 

0 

for 1 < f < N 
(4.3) 

otherwise. 

Under uniform destination selection, all output ports are equally likely to be 

requested, therefore, the input and output load of the switch can be represented by 

the load of each of the input and output links, denoted by Pin and Pout· Given an 

ideal strict-sense non-blocking switch fabric, for unicast traffic, Pout is given by 

Pout= Pin· (4.4) 

However, for multicast traffic, when cell replication occurs inside the SF, the load at 

the input port is different from that at the output port. The offered load Pout can be 

associated with Pin via the mean traffic fanout F by using 

Pout= F X Pin· (4.5) 

The intuitive approach for the performance analysis under multicast traffic is 

to use the same input load Pin to analyze different fanout conditions. From basic 

queuing theory, we know that a queue will become unstable when the data arrival 

rate is greater than the departure rate. For each output queue, the departure rate is 

assumed to be one cell per switching cycle. To avoid overflow, the offered load Pout 

should normally be kept below one. Even though the average load is kept below one, 

due to the statistical nature of the traffic, it is possible that the load momentarily 

exceeds one. To accommodate large fanout situations, for example a fanout of 8, the 

input load must be controlled below 12.5%. Using the approach mentioned above 

and with the same input load, the offered load at switch output would be just around 

25% in the case of a mean fanout of 2, which is not realistic and far too low to be 
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considered. It is obvious that an output load of around 25%, which is the case for a 

mean fanout of 2, would produce much better results in any switch than an output 

load of around 100%, which is the case for a mean fanout of 8. 

To have the performance analyzed under a reasonable traffic condition, the back­

ward approach is used. The offered load to the switch is defined at the switch output. 

The offered load is converted to the input load via the mean fanout F. As long as the 

load used does not cause the output queue to overflow, it is guaranteed that there is 

no overflow problem at the BG switch input. Unless otherwise stated, the traffic load 

reported in the dissertation refers to the offered output load. 

4.2.2 Nonuniform Traffic 

For nonuniform traffic, cell destination selection probability is not evenly distributed 

across all output ports. This will not affect the cell arrival process and the fanout 

process. In the dissertation, a modified form of the model presented in (14, 73] is 

used for nonuniform destination generation. The benefit of using this model is that, 

instead of providing only one or two hot destinations, it gives a substantial number 

of hot spots, which is more realistic when the switch size becomes very large. Details 

of the nonuniform traffic model are discussed in Section 4.6 before the performance 

of the multicast BG switch under the nonuniform multicast traffic is analyzed. 

4.3 Multicast BG Switch Fabric Simulator 

Before presenting the analytical modelling and evaluating the switch performance, we 

first briefly describe the BG switch fabric simulator developed for study. 

Simulation techniques are used to obtain the performance of the switch fabric un­

der various traffic conditions. A comprehensive simulation toolkit has been developed 

for the unicast BG switch by Dr. Venkatesan and his students during the past 10 
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years. In this research, another tool is developed for the new multicast BG switch. A 

multicast traffic generator is developed as well. Unless otherwise stated, simulation 

results are obtained through the simulation of switching one billion cells. 

The multicast SF simulator is written in C/C++ and can be compiled and run 

under Unix, Linux, and Microsoft Windows environments. It follows a modular struc-

ture and object oriented design. The characteristic and operation of the switch are 

abstracted to five major component classes: input queue class (InQueue), packet 

class (Packet), source class (Source), switching element class (SwitchElement), and 

the output queue class (OutQueue). The switching operation is completed through 

the manipulation of those class objects. Program execution mimics the three-phase 

switching operation that occurs inside the SF. Pre-switching is used to load the switch 

with traffic, and it follows exactly the same switching operation except that no perfor-

mance measurement is taken. Figure 4.2 shows the class information and the major 

modules of the simulator. Figure 4.3 provides a screen shot of the simulator user 

input interface. 

The performance of the BG switch is measured using cell loss ratio, average cell de­

lay, average input/output queueing delay, and average/maximum input/output buffer 

requirement. These metrics are calculated as follows: 

C ll L R 
. Number of Lost Copies 

e oss atzo = , 
Number of Generated Copies 

(4.6) 

A C ll D l 
2:: Delay of Each Arrived Copy 

verage e e ay = , 
Number of Arrived Copies 

(4.7) 

Amount of Queue Space Used 
Average Queue Occupancy = S . h s· S . hi C 1 . w1tc 1ze · w1tc ng yc es 

(4.8) 

Note that for multicast traffic, an incoming master cell may contain several copies. 

Upon reaching the output queue, due to replication at one or more intermediate 

81 



Source Class Packet Class 

* output: Packet 
* timeTolive: int 
* currentBurstyState: int 
switchSize: int 

getBurstylength(double) :double 
gen_URT_traffic (double) 
gen_Bursty_traffic (double, double, 
double) 
gen_MR_ TGD_traffic(double, 
double, double, int[ ]) 
gen_MB_ TGD_traffic(double, 
double, double, int[ ], double, double) 
gen_MR_ TGD_traffic_NP(double, 
double, double, int[ ]) 
gen_MB_ TGD_traffic_NP(double, 
double, double, int[ ], double, double) 
countlnfo(long &, long &, long &) 
generateSource(int, Packet) 
destroySource() 

SwitchEiement Class 

switchSize: int 
rowNumber: int 
stageNumber: int 
length: int 
totaiStage: int 
startPosition: int 
*input [ ]: lnQueue 
*output [ ]: lnQueue 
processOrder[ ] : int 
tag [ ]: int 

initSwitch(int, int, int, lnQueue*) 
resetSwitch(lnQueue*) 
countMsg() : double 
setOrder() 
generate Tag() 
switch Packet() 

Output 
Interfacing 

Figure 4.2: Class diagram and simulator flow chart 
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bitmap Tag[]: 
activeMsg: 
source: 
priority: 
copyNumber: 
switchSize: 

spaceiQ: 
sizeiQ: 
positionPtriQ: 
switch Size: 
bitmapAck[ ]: 
*addrPtr[ ]: 

boo I 
boo I 
int 
int 
int 
int 

boo I 
int 
int 
int 
int 
boo I 
Packet 

generateiQ(int, int) 
destroyiQ() 
resetiQ(Packet) 
getNewPkt(Packet, int) 
deleteHOLPkt() 
checkDelivery() 

statusOQ: boo I 
spaceOQ: int 
sizeOQ: int 
positionPtrOQ: int 
switchSize: int 
rowNumber: int 

generateOQ(int, int, int) 
resetOQ(Packet) 
getNewPkt(lnQueue *) 
deQueue() 



c ,- C:\User\Byte\User\Research\New BG Simulation\BG_NewProject_v32\BG_HewProject_v32 .... :' 
' 

I Balanced Gamma Multicast Switch Fab~ic Simulation 
W~itten by: Cheng Li, Memo~ial Unive~sity 

Ue~sion 3.2 Dec 29, 2002 

lease ente~ the size of the switch fab~ic: 128 

lease ente~ the t~affic type: 

[01 Unicast Unifo~m Random T~affic . -............................ ente~ 0: 

[11 Unicast Bu~sty T~affic ...................................... ente~ 1: 

[2 1 Random Multicast T~uncated Geomet~ic T~affic .•••••••••••••••• ente~ 2: 

[3 1 Bu~sty Multicast r~uncated Geomet~ic T~affic ................ ente~ 3: 

' [?1 Random Multicast T~uncated Geomet~ic T~affic <no p~io~ity) ••• ente~ ?: 

1 [8 1 Bu~sty Multicast T~uncated Geomet~ic T~affic (no p~io~ity) ••• ente~ 8: 

[101 Hotspot Random Multicast TGD T~affic (no p~io~ity) .......... ente~ 10: 

~ [11 1 Hotspot Bu~sty Multicast TGD T~affic (no p~io~ity) •••••••••• ente~ 11: 
I 
l 

lease ente~ t~affic load (0 - 1): 0.9 

lease ente~ the ave~age bu~st length: 10 

lease ente~ the Mean Fanout Humbe~ fo~ the multicast t~affic <1 - 12?): 2 

lease ente~ the size of the input queue: 50 

lease ente~ the size of the output queue: 1000 

lease ente~ the consumption ~ate fo~ each output po~t: 

lease ente~ the numbe~ of packets to be gene~ated (~ecommended:10 Million): 
000000000 

lease ente~ the name of the fanout lookup table file: table128_2.dat 

lease ente~ the name of the output data file: MB128_2_90_10_1B_p_v32.txt 

ow, p~e-~unning switching ••• 
ime used fo~ P~e-Switching is: 19.188 seconds! 

ow, switching ••• _ 

Figure 4.3: Multicast BG switch fabric simulator user input interface 
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stages, each copy becomes an independent cell. Therefore, the measures for the input 

queue are given on the master cell basis while the measures for the output queue and 

the overall switch performance are measured based on each copy. 

4.4 Performance Analysis under Multicast Ran­
dom Traffic 

4.4.1 Analytical Modelling 

Analytical modelling provides a good method to validate simulation results theoreti­

cally. Even though an exact analytical model is very hard to obtain for a complicated 

system like the BG switch, it is possible to perform an analysis under some loosened 

conditions and preserve enough accuracy. In the literature, many efforts have been 

put forth to model the internal working of switches under uniform and nonuniform, 

and unicast and multicast traffic (60, 9, 75, 76, 80, 82). The analytical model that will 

be introduced is used to study the performance of the multicast BG network under 

uniform random multicast traffic conditions. Because unicast traffic can be seen as a 

special case of multicast traffic, our model can be used for the performance study of 

the switch under both unicast and multicast traffic conditions. 

Generally speaking, the analysis follows the three-phase backpressure switching 

operation. Firstly, the cell blocking probabilities at SEs of different stages are ana-

lyzed. With this information, the cell blocking probability for the whole SF and the 

traffic arrival probability on the four links feeding each output queue are obtained. 

Secondly, the output queue is analyzed using a discrete-time Markov chain. The cell 

blocking probability, queue occupancy and queueing delay can be obtained through 

the output queue analysis. Then, the overall cell blocking probability for the com-

bined SF and output queue is calculated, which is also the probability of cells being 
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kept in the HOL position of the input queue. Finally, input queueing analysis is 

performed to get the cell loss probability and other performance measures. 

The following conditions are assumed for the switch and the traffic: 

1. The input queue, SF, and output queue operate independently. 

2. Incoming cells are multicast cells with a mean fanout of F. 

3. Cell arrival is identically and independently distributed (i.i.d) among all input 

links. 

4. The arrivals of incoming cells follow a Bernoulli distribution with probability p 

on each input link. 

5. Destinations of cells are uniformly distributed to all output ports. 

6. All cells are of the same priority. 

7. The operation of an SE of any stage is independent of any other SEs within 

that stage. 

8. SEs of upstream stages and downstream stages are operated independently. 

9. Cell arrival only occurs at the beginning of each switching cycle. 

10. Cells are served on the first-come-first-served (FCFS) discipline in the input 

and output queues. 

The first assumption breaks the switch into three independent components so that 

performance can be carried out for each of the components. The next five assumptions 

give a multicast random traffic with equal priority. The seventh and eighth assump­

tions provide that any SE located in a particular stage is indistinguishable from the 
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Figure 4.4: The 1 x 2 SE in the first stage (Stage 0). 

other SEs belonging to the same stage. As a result, each stage can be characterized 

by any of its SEs. Finally, under the last two assumptions, the switch operates in 

slots, thus a discrete-time Markov chain can be used to depict the state of both the 

input and output queue. 

4.4.1.1 Analysis of Stage 0 (1 x 2 SEs) 

First, some notation are introduced for the analysis of this stage: 

p = Offered traffic load at the switch input. 

p = Pr{Input link of the 1 x 2 SE carries an active cell}. 

Pa(O) = Pr{Upper output link of the 1 x 2 SE carries an active cell}. 

Pb(O) = Pr{Lower output link of the 1 x 2 SE carries an active cell}. 

k0 = Fanout factor for multicast cells in the first stage (Stage 0). 

Pblko =Pr{ Cell being blocked in the first stage (Stage 0)} . 
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As shown in Figure 4.4, the inputs to the SF are connected directly to the input 

links of SEs in Stage 0. Hence, the load offered to the input link of each 1 x 2 SE is 

equal to the load offered to each input of the SF: 

p=p. (4.9) 

The multicast effect is taken into consideration, as shown in Figure 4.4. It can be 

seen that bandwidth is expanded through this stage. Because of the random traffic 

assumption, both output links have the same probability of being requested by the 

incoming cell. Thus, 

Pa(O) = Pb(O) = p · ko/2. (4.10) 

It is easy to prove that Stage 0 is a non-blocking stage [25]. Therefore, 

Pblko = 0. ( 4.11) 

4.4.1.2 Analysis of Stage 1 {2 x 4 SEs) 

Figure 4.5 shows the 2 x 4 SE used in Stage 1. Similar to the analysis of Stage 0, the 

following notation is defined for the analysis: 

Pa(O) = Pr{Upper input link of the 2 x 4 SE is active}. 

Pb(O) = Pr{Lower input link of the 2 x 4 SE is active}. 

Pa(1) = Pr{Upper regular output link of the 2 x 4 SE is active}. 

Pb(1) = Pr{Upper alternative output link of the 2 x 4 SE is active}. 

Pc(1) = Pr{Lower regular output link of the 2 x 4 SE is active}. 

Pd(1) = Pr{Lower alternative output link of the 2 x 4 SE is active}. 

k1 = Fanout factor for multicast cells in the second stage (Stage 1). 

Pbzk1 =Pr{ Cell being blocked in the second stage (Stage 1)}. 

Due to the random traffic assumption, all links between Stage 0 and Stage 1 have 

the same probability to be active. Therefore, instead of distinguishing the load on 
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Figure 4.5: The 2 x 4 SE in the second stage (Stage 1). 

the two input links to each SE in Stage 1 as Pa(O) and Pb(O), Po is used. The input 

link load of the 2 x 4 SE in Stage 1 is equal to the output link load of the 1 x 2 SE 

in Stage 0 

Po = Pa(O) = Pb(O). (4.12) 

As described in Section 3.4.2, for all 2 x 4 and 4 x 4 SEs, because each regular link 

and its alternative link have the same capability of delivering cells to their destination, 

they are represented using the name "link group". Therefore, the four output links 

are divided into two link groups, the upper link group and the lower link group. The 

regular link in a link group is always used first when there is a cell requesting that 

link group. The alternative link is used only when the regular link is occupied and 

there is another cell request. Because any incoming active cell will not request both 

links within the same link group and the two link groups are equally likely to be 

88 



selected due to the random traffic condition, for the 2 x 4 SE, the regular link will be 

active when one or both of the two input links are active and alternative link will be 

active only when both of the input links are active. Therefore, the probability that 

two regular output links are active is given by 

(4.13) 

As well, the two alternative links Pb(1) and Pd(1) have the same probability to be 

active and the probability is: 

(4.14) 

Again, it is proved that Stage 1 is a non-blocking stage [25]. Therefore, 

(4.15) 

4.4.1.3 Analysis of Stage 2 to Stage n - 1 ( 4 x 4 SEs) 

For all remaining stages, 4 x 4 SEs are used, as shown in Figure 4.6. The following 

notation is used for the analysis when 2 < i < ( n - 1): 

Pir = Pr{Regular input to the 4 x 4 SEat Stage i is active}. 

Pia = Pr{ Alternative input to the 4 x 4 SE at Stage i is active}. 

Pa ( i) = Pr{U pper regular output link of the 4 x 4 SE is active}. 

Pb ( i) = Pr{U pper alternative output link of the 4 x 4 SE is active}. 

Pc(i) = Pr{Lower regular output link of the 4 x 4 SE is active}. 
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Figure 4.6: The 4 x 4 SE for all remaining stages (Stage 2 to Stage n- 1) 

Pd( i) = Pr{Lower alternative output link of the 4 x 4 SE is active}. 

ki = Fanout factor for multicast cells in Stage i. 

Pblki = Pr{Cell being blocked in Stage i}. 

aj = Pr{j incoming cells request the output link group}. 

From the interconnection pattern between stages, it is not difficult to find that 

among the four input links of each 4 x 4 SE, two of them are from the regular output 

links of previous stage and the other two are from the alternative output links. The 

random traffic assumption ensures that the load for both regular links of the same 

stage is the same and that the load for all alternative links of the same stage is also 

the same, i.e., 

Pir = Pa(i- 1) = Pc(i- 1), 

Pia= Pb(i- 1) = Pd(i- 1). 
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Similar to the analysis for the 2 x 4 SEs, the four output links can be divided into 

the upper link group and the lower link group. Under random traffic, the probability 

of the upper link group being requested by a cell is equal to that of the lower link 

group. Therefore, either of those two link groups can be chosen as the targeted link 

group for analysis. The probability that there are i cells requesting the targeted link 

group can be calculated as: 

1. Probability of no cells requesting the targeted link group. 

ao _ ( 1 _ Pia · ki ) . ( 1 _ Pir · ki ) . ( 1 _ Pia · ki ) . ( 1 _ Pir · ki ) 
2 2 2 2 

_ ( 1 _ Pia · ki ) 2 • ( 1 _ Pir · ki ) 2 

2 2 
(4.18) 

2. Probability of one cell requesting the targeted link group. 

(4.19) 

3. Probability of two cells requesting the targeted link group. 

a
2 

_ (Pia · ki ) . ( Pir · ki ) . ( 1 _ Pia · ki ) . ( 1 _ Pir · ki ) 
2 2 2 2 

+ (Pia · ki ) . ( 1 _ Pir · ki ) . (Pia · ki ) . ( 1 _ Pir · ki ) 
2 2 2 2 

+ (Pia· ki) . (1 _ Pir · ki) . (1 _ Pia· ki) . (Pir · ki) 
2 2 2 2 

+ ( 1 _ Pia · ki ) . ( Pir · ki ) . (Pia · ki ) . ( 1 _ Pir · ki ) 
2 2 2 2 

+ ( 1 _ Pia · ki ) . ( Pir · ki ) . ( 1 _ Pia · ki ) . ( Pir · ki ) 
2 2 2 2 
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( 4.20) 

4. Probability of three cells requesting the targeted link group. 

Pia · ki . Pir · ki . Pia · ki .. ( 1 _ Pir · ki ) 
2 2 2 2 

+ Pia · ki . Pir · ki . ( 1 _ Pia · ki ) . Pir · ki 
2 2 2 2 

+ Pia · ki . ( 1 _ Pir · ki ) . Pia · ki . Pir · ki 
2 2 2 2 

+ ( 1 _ Pia · ki ) . Pir · ki . Pia · ki . Pir · ki 
2 2 2 2 

1 2 3 ( Pir · ki ) 4 ·Pia· Pir · ki · 1 - 2 
1 2 3 ( Pia · ki ) + 4 ·Pia · Pir · ki · 1- 2 

(4.21) 

5. Probability of four cells requesting the targeted link group. 

Pia · ki Pir · ki Pia · ki Pir · ki . . . 
2 2 2 2 

1 2 2 4 

16 · Pia · Pir · ki ( 4.22) 

6. Probability of more than four cells requesting the targeted link group. 

for j > 5 ( 4.23) 

Therefore, the probability that any regular output link (upper/lower) carries an 

active cell is given by 

Pa(i) Pc(i) 

- Pr (One or more cells request the targeted output group) 
4 

Laj. 
j=l 
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The probability for the alternative output link is given by: 

- Pr (More than one cell requests the targeted output group) 
4 

l:aJ. 
j=2 

( 4.25) 

Blocking occurs inside the 4 x 4 SEs when there are more than two incoming 

cells requesting the same link group. The cell blocking probability for stage i, where 

2 < i < n - 1, is given as: 

E{N umber of blocked copies} 

E{N umber of copies} 
4 

2::: (j- 2) · aJ 
j=3 

4 
?= j. aJ 

J=1 

( 4.26) 

Therefore, for any unicast cell that is appearing at the IPC, the cell blocking 

probability inside the SF, PblksF, is given as 

n-1 

PblksF = 1 - II (1 - Pblk.)· ( 4.27) 
i=O 

While for a multicast cell at the IPC, the probability that the master cell being blocked 

inside the SF is calculated by considering the number of copies available before each 

stage and the blocking probability for the stage. Let Ni denote the number of copies 

of the multicast cell from an IPC sent to SEs in Stage i, as shown in Figure 4.7. The 

blocking probability, that is, the probability that one or more cell copy is blocked 

inside the SF for a multicast cell is calculated using 

n-1 

1- II (1- pblk.)Ni. 

i=O 

( 4.28) 
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It is not possible to obtain a general expression for Ni as cells arrive at the IPC 

with different fanout values and cell replication and blocking may occur anywhere 

inside the SF. However, by using the two extreme cases, i.e., the unicast case and the 

broadcast case, we form the two bounds correspond to the best and worst performance 

that the switch fabric can achieve. In the unicast case, Ni is fixed to one while in 

the broadcast case, Ni is equal to 2i, where i is the stage number. Besides the two 

bounds, an analytical approximation is calculated for random traffic by using 

i=O 
i > 1, 

(4.29) 

where variable k is the fanout factor for each stage and k equals to \IF. Because 

roundup is used to obtain an integer value for the average copy number between 

stages, the actual traffic would be lighter than this and so the performance result 

should be better than what is predicted by the approximation. 

4.4.1.4 Finite Output Queueing Analysis 

Among the four links coming into each output buffer, two links are from the regular 

output of the SF while the other two are from the alternative output links. Figure 4.8 

shows the traffic toward the OPC under investigation. From the previous analysis, 

all regular links or alternative links that connect the SF and the OPC have the same 

probability of carrying an active cell. Let P(n-l)r and P(n-l)a denote the loads on the 

regular and alternative output link from SEs in the last stage of the SF, respectively. 

The link probabilities Pa and Pc are from the regular output links of the SF and link 

probabilities Pb and Pd are from the alternative output links and they are given by 

Pa = Pc = P(n-l)n 

Pb = Pd = P(n-l)a· 

94 

( 4.30) 

( 4.31) 



IPC Stage 0 Stage 1 Stage 2 Stage 3 OPC 

InputO 

Input 1 

Input 2 

Input 3 

Input 4 

Input 5 

Input 6 

Input 7 

Input 8 
Output 8 

Output9 

Output 10 

Input 11 

Input 12 

Input 13 

Input 14 

Input 15 

pblk(OQ) 

............................ ,...._ _______________________ __.... ........................... ·~ 
Input Port Con!rollers (IPCs) Switch Fabric (SF) 

Output Port Con!rollers (OPCs) 

Figure 4.7: Multicast cell blocking analysis for an 16 x 16 BG multicast switch. 

95 



Figure 4.8: The output queue at the targeted output port controller 

Similar to the approach that has been used in the analysis of the 4 x 4 SE, the 

probability of having i requests to the output queue, where 0 < i < 4, is given as the 

following. 

1. The probability of zero cell arrivals to the output queue: 

- (1 - P(n-l)a) 2 
· (1 - P(n-l)r )2 

2. The probability of one cell arrival to the output queue: 

a1 Pa · (1 - Pb) · (1 - Pc) · (1 - Pd) + (1 - Pa) · Pb · (1 - Pc) · (1 - Pd) 

+ (1 - Pa) · (1 - Pb) · Pc · (1 - Pd) + (1 - Pa) · (1 - Pb) · (1 - Pc) · Pd 

- 2P(n-l)a · (1 - P(n-l)r )2 
· (1 - P(n-l)a) 

+ 2P(n-l)r · (1 - P(n-l)r) · (1 - P(n-l)a) 2 

3. The probability of two cell arrivals to the output queue: 

a2 Pa · Pb · (1 - Pc) · (1- Pd) + Pa · (1- Pb) · Pc · (1- Pd) 

+ Pa · (1 - Pb) · (1 - Pc) · Pd + (1 - Pa) · Pb · Pc · (1 - Pd) 

+ (1 - Pa) · Pb · (1 - Pc) · Pd + (1 - Pa) · (1 - Pb) · Pc · Pd 

- 4P(n-l)a · P(n-l)r · (1 - P(n-l)a) · (1 - P(n-l)r) 

+ P(n-l)a · (1 - P(n-l)r )
2 + (1 - P(n-l)a)

2 
• PCn-l)r 

4. The probability of three cell arrivals to the output queue: 

a3 = Pa · Pb · Pc · (1- Pd) + Pa · Pb · (1 - Pc) · Pd 
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+ Pa · (1- Pb) · Pc · Pd + (1- Pa) · Pb · Pc · Pd 

2p(n-1)a · P(n-1)r · (1 - P(n-1)r) 

+ 2p(n-1)r · P(n-1)a · (1 - P(n-1)a) 

5. The probability of four cell arrivals to the output queue: 

a4 Pa · Pb · Pc · Pd 

2 2 
- P(n-1)a · P(n-1)r 

( 4.35) 

( 4.36) 

6. The probability of more than four cell arrivals to the output queue is zero: 

where j > 5 ( 4.37) 

The sum of the probabilities for all possible cell arrivals is given by: 

( 4.38) 

The output queue analysis follows the approach described in Hluchyj and Karol's 

paper (76]. Let Qm denote the number of cells in the output queue at the end of the 

mth switching cycle, Am denote the number of cell arrivals during the mth switching 

cycle, and Bo denote the output queue size, then the control function of the output 

queue is [76, 83]: 

Qm = min{max{O, Qm-1 +Am- 1}, B 0 }. (4.39) 

When Qm-1 = 0 and Am > 0, one of the arriving cells is immediately transmitted to 

the switch's output link without experiencing any delay. 

Similar to the infinite queue analysis described in [76], for finite queue size B 0 , Qm 

is modelled by a finite-state, discrete-time Markov chain, which is shown in Figure 

97 



( a ) 

(c) 

Figure 4.9: The output queue state transition diagram. 
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4.9. The state transition probabilities PiJ - Prob[Qm = jiQm-l - i] are modified 

and given as: 

PiJ = 

4 

I: ak 
k=j-i+l 

0 

i = 0, j = 0 

1 < i < B 0 , j = i - 1 

( 4.40) 

otherwise 

The queue size can be obtained from the Markov chain balance equation. Let 1ri 

denote the probability of the output queue being in state i, where 0 < i < B 0 , i.e., 

1ri- Prob[Qm = i]. ( 4.41) 

By using the balance equations, that is, the total unconditional rate of leaving any 

state equals the total unconditional rate of entering the state [15], the recursive rela­

tion between the queue state probabilities is obtained: 

( 4.42) 

1- a1 a2 
1r2 = · 1r1 - - · 7ro 

ao ao 
( 4.43) 

1- a1 a2 a3 
1r3 = · 1r2 - - · 1r1 - - • 7ro 

ao ao ao 
( 4.44) 

( 4.45) 
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1 
where 1r0 = ----­

Bo 
1 + I: 7ri/'rro 

i=l 

( 4.46) 

It is very difficult to get an analytical expression for the output queue state prob-

ability for an arbitrary queue size B 0 • Therefore, a numerical analysis approach is 

used. For any given output queue size B 0 , short programs using Maple [84] are devel­

oped to solve the linear equations, and to obtain the state probabilities of the output 

queue. With all state probabilities known, the analysis of the output queue becomes 

straightforward. 

The average number of cells in the output queue noQ can be calculated through the 

sum of the product of all states of the output queue and the corresponding probability. 

That is, 

Bo 

noQ = '2:: i · 7ri· 
i=O 

( 4.47) 

The probability of cells being blocked at the output queue is equal to the overflow 

probability of the output queue; which is: 

4 4 4 

I: ai I: ai I: ai 
i=l i=2 i=3 a4 

7f Bo • -4-- + 7f Bo-1 • -4-- + 7f Bo-2 • -4-- + 7f Bo-3 • -4--

2::::~ I:~ I:~ I:~ 
i=l i=l i=l i=l 

3 4 

I: ( 7f s -• · I: ai) 
i=O 0 j=i+l 

4 

I: ai 
i=l 

( 4.48) 

By applying the well-known Little's formula, the average cell waiting time in the 

output queue, T OQ, is given by: 

- noQ 
ToQ = --------~-----

AoQ · (1 - PblkoQ)' 
( 4.49) 

where the AoQ is the sum of the traffic on all the four incoming links to an output 

queue, which is in the unit of cells per switching cycle. 
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4.4.1.5 Finite Input Queueing Analysis 

By considering the blocking effect inside the SF and at the output queue together, 

the probability of the HOL cell in the queue being retained at the head position is 

obtained. For a unicast cell, the blocking probability is given by 

PblksF&OQ - 1 - (1 - PblksF) · (1 - PblkoQ) 

n-l 

- 1- (1- Pblk
0

Q) · II (1- PblkJ· 
i=O 

( 4.50) 

For a multicast cell, the two bounds and the approximate result for the probability 

of the multicast cell being blocked at SF and OPC are considered. The lower bound 

is corresponding to the unicast case, which is exactly the same as in Equation 4.50. 

The upper bound corresponds to the broadcast case and it is given by 

pblkSF&OQ - 1 - (1 - pblkSF) . (1 - pblkoQ )N 

n-l 

1- (1- PblkoQ )N · II (1- PblkJ
2
'. 

i=O 

The approximate result is given by 

PblksF&OQ = 1 - (1- PblkoQ)F · (1- Pblk0 ) • (1- Pblk1 )fkl · 

(1- pblk
2
)ffklkl ... (1- pblkn-l)ffffklklkl· ··kl, 

(4.51) 

(4.52) 

where F represents the mean fanout for the multicast traffic and k represents the 

fanout factor at different stages. 

Let Psuccess denote the probability that all copies of the master cell are successfully 

switched through the SF and queued in the output queue. Psuccess is given by 

P = 1-R success blksF&OQ · (4.53) 

This is also the probability that the HOL cell will be deleted and the following cell 

in the input queue will become the HOL cell. 
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Figure 4.10: The input queue state transition diagram. 

Let Qm denote the number of cells in the input queue at the end of the mth 

switching cycle, Am denote the number of cell arrivals during the mth switching 

cycle, Dm denote the number of cell departures during the mth switching cycle, and 

Bin denote the input queue size. Both Am and Dm must be 0 or 1. The control 

function of the input queue is given as (76]: 

Qm = min{max(O, Qm-1 +Am- Dm), Bin}· ( 4.54) 

Cell arrivals to all inputs are based on an independently and identically distributed 

(i.i.d) Bernoulli distribution with a load p, which gives the cell arrival probability in 

a switching cycle. The load to the input queue under study is defined asp, where 

p=p. ( 4.55) 

Based on arrival load p and the resulting cell blocking probability q = PblksF&oQ from 

the previous analysis, the input queue can also be modelled using the finite state 

discrete-time Markov chain, as shown in Figure 4.10. Similar to (76], the probability 

of different queue states 1ri, which is defined by Equation 4.41, can be obtained from 

the Markov chain balance equations: 

p·q 
1r1 = · 7ro (1 - p) 0 (1 - q) 

( 4.56) 

p·q 
7r2 - ...,....----,---,-----,- . 7rl 

- (1 - p) . (1 - q) (4.57) 
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p·q 
1ri = . 1ri-1 (1 - p) . (1 - q) 

for 2 < i < Bin - 1 ( 4.58) 

( 4.59) 

and the sum of the probabilities for all states is 

Bin 

2:::: 1ri = 1. ( 4.60) 
i=O 

We define t as: 

p·q 
t = --:-------,--------:------,-

(1 - p) . (1 - qf 
(4.61) 

Substituting all variables in Equation 4.60 with those defined in Equation 4.56 

to 4.59, and by solving the recursive equations, the probability of the input queue 

having zero cells, 1r0 , is given by 

1 
tO + t1 + t2 + ... + tBin _ p . tBin 

1 

1 
1-tBin+l tB · 

1-t - p' m 

1-t 

and the other input queue state probabilities as: 

for 1 < i < Bin - 1 

fori= Bin· 

( 4.62) 

( 4.63) 

Because the blocked cells are backpressured and kept in the HOL position of the 

input queue, there will be no cell loss either inside the SF or at the output queue. 
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Therefore, the overall cell loss probability is given by the overflow probability of the 

input queue, which is: 

( 4.64) 

With the state probability 7ri, where 0 < i < Bin, the average number of cells in 

the input queue can be calculated by: 

Bin 

nin = Li · 1ri· 

i=O 

( 4.65) 

Dividing by the actual incoming traffic load p · (1- ?toss), the average cell delay 

in the input queue, Tin, can be calculated by using Little's formula: 

- nin 
Tin= · 

P · (1 - ?toss) 
( 4.66) 

Assuming delay through the SF is negligible, T, the average cell delay in the switch 

is obtained using: 

( 4.67) 

4.4.1.6 Constraints 

To ensure a stable system for analysis, the system under study is constrained by the 

following conditions: 

1. The mean fanout factor for each stage ki, where 0 < i < n- 1, satisfies 

( 4.68) 

2. The mean fanout of the multicast traffic, F, satisfies 

n-1 

F = IT ki. ( 4.69) 
i=O 
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3. The effective offered output load AoQ in cells per switching cycle should be 

kept below 1 to make a stable output queueing system 

n-1 

AoQ = p · F = p · II ki < 1. ( 4.70) 
i=O 

4.4.2 Performance Comparison 

In this subsection, the analytical model and simulation results of the performance of 

the multicast BG switch under multicast random traffic are compared. Then, simula­

tion results are used for performance comparison between the BG switch and the ideal 

switch. Because the ideal switch is a pure output-buffered switch, its performance 

analysis is only required for the output-queue. 

4.4.2.1 Comparison Between the Analytical Model and Simulation 

For comparison, the loss and delay performance are examined by using both sim-

ulation and analytical results for an 128 x 128 switch. Then, switch performance 

under different switch size, load and fanout conditions are compared and analyzed 

for random traffic. 

4.4.2.1.1 Loss Performance 

Because of the backpressure algorithm, a blocked cell is buffered in the input queue 

for further switching. Cell loss occurs only when the input queue is full and a new 

cell is arriving. In that case, all copies implicitly contained in the new cell will be 

dropped. Therefore, the cell loss performance of the multicast BG switch is tightly 

associated with the size of the input queueing space, measured in cells. During this 

analysis, the output queue is assumed to have enough capacity to receive any cell 

appearing at its input. Therefore, the only reason for the HOL cell to be kept in the 

input queue is the internal blocking of the switch fabric. 
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Figure 4.11: Cell loss performance comparison under 90% load for 128 x 128 BG 
switch under multicast random traffic with mean fanout 2 

Table 4.1 shows the cell loss ratio versus the size of input queue for a 128 x 128 

BG switch under various multicast random traffic loads with a mean fanout of 2. The 

results under 90% load are also plotted in Figure 4.11. It is observed that the input 

buffering requirement for the multicast BG switch is very low. With an input queue 

of six cell spaces, a cell loss ratio of around 10-8 can be achieved even under 90% 

offered load. The lower bound represents a best-case scenario which corresponds to 

the unicast traffic that has the same input load, while the upper bound represents the 

worst-case condition which is from the result of the broadcast traffic. The simulation 

results fit well between the two bounds from the analytical model and is very close 

to but slightly better than the approximate analysis result. As the traffic load gets 

lighter, even smaller queue sizes are sufficient to achieve the desired performance. 

In Appendix E , the loss performance comparison for other switch sizes ranging 
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Effectively Size Cell Loss Probability 
Offered of Analysis Analysis Analysis 
Traffic Input (Upper (Appro- Simulation (Lower 
Load Buffer Bound) ximate) Bound) 

2 1.6513E-01 4.6573E-03 1.2225E-03 1.4880E-04 
3 7.7484E-02 3.2855E-04 7.0212E-05 1.8261E-06 

Load 4 3.8588E-02 2.3227E-05 4.4098E-06 2.2412E-08 
= 90% 5 1.9755E-02 1.6423E-06 2.2102E-07 2.7507E-10 

6 1.0252E-02 1.1612E-07 7.0009E-09 3.3761E-12 
7 5.3575E-03 8.2102E-09 1.0001E-09 4.1436E-14 
8 2.8099E-03 5.8051E-10 < l.OE-09 5.0855E-16 

2 6.0694E-02 1.5840E-03 4.6955E-04 5.0235E-05 
3 1.6686E-02 6.4295E-05 1.6201E-05 3.5731E-07 

Load 4 4.7012E-03 2.6115E-06 6.4702E-07 2.5415E-09 
= 80% 5 1.3336E-03 1.0608E-07 9.0012E-09 1.8078E-11 

6 3.7904E-04 4.3086E-09 < 1.0E-09 1.2859E-13 
7 1.0779E-04 1.7501E-10 < l.OE-09 9.1463E-16 
8 3.0657E-05 7.1087E-12 < l.OE-09 6.5057E-18 

2 1.8654E-02 4.7588E-04 1.5936E-04 1.5072E-05 
3 2.7228E-03 1.0495E-05 3.0695E-06 5.8628E-08 

Load 4 4.0026E-04 2.3149E-07 5.6008E-08 2.2805E-10 
= 70% 5 5.8899E-05 5.1060E-09 2.0004E-09 8.8709E-13 

6 8.6685E-06 1.1262E-10 < l.OE-09 3.4507E-15 
7 1.2758E-06 2.4842E-12 < 1.0E-09 1.3423E-17 
8 1.8778E-07 5.4794E-14 < l.OE-09 5.2212E-20 

2 4.7349E-03 1.2162E-04 4.5596E-05 3.8588E-06 
3 3.3723E-04 1.3486E-06 4.3705E-07 7.5877E-09 

Load 4 2.4056E-05 1.4956E-08 < l.OE-09 1.4920E-11 
= 60% 5 1.7162E-06 1.6585E-10 < l.OE-09 2.9337E-14 

6 1.2243E-07 1.8392E-12 < l.OE-09 5.7687E-17 
7 8.7345E-09 2.0396E-14 < l.OE-09 1.1343E-19 
8 6.2313E-10 2.2618E-16 < l.OE-09 2.2304E-22 

2 9.5199E-04 2.4901E-05 1.0512E-05 7.9253E-07 
3 2.9833E-05 1.2457E-07 6.7008E-08 7.0586E-10 

Load 4 9.3512E-07 6.2319E-10 < l.OE-09 6.2866E-13 
=50% 5 2.9312E-08 3.1176E-12 < l.OE-09 5.5991E-16 

6 9.1879E-10 1.5596E-14 < l.OE-09 4.9868E-19 
7 2.8800E-11 7.8022E-17 < l.OE-09 4.4414E-22 
8 9.0274E-13 3.9032E-19 < l.OE-09 3.9557E-25 

Table 4.1: Cell loss performance comparison between analytical model and simulation 
results for 128 x 128 BG switch 
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from 16 x 16 to 512 x 512 are provided. Multicast random traffic with a mean fanout 

of 2 is used. Traffic loads range from 50% to 90%. All figures demonstrate one thing 

in common: the input buffer requirement to achieve a desired loss performance is 

very low. For almost all cases, 8 cell buffers for each input queue are sufficient to 

achieve a cell loss rate better than 10-8 for all switch sizes. This is the result of the 

low internal blocking of the BG switch fabric: with enough output buffering, very few 

cells will be left behind at the input queue after each switching cycle, thus the input 

buffering requirement is low. For all cases, the simulation results fit well between the 

two bounds and are close to the approximation results derived from the analytical 

modelling. 

It is also observed that with small amount of input buffering, such as 2, 3 and 4, the 

trend of the simulation results is smooth and very consistent because larger amounts 

of cell loss samples are collected. With a total number of 109 cells generated during the 

simulation, as the size of input buffers approaches the boundary condition, such as 7 

or 8 in most cases, very few cell losses will occur. One more or one less cell loss makes 

the loss performance vary significantly. That is why in some boundary cases, the 

simulation results divert from the original trend. To obtain a more reliable simulation 

results in these cases, more cells(>> 109
) will be required in the simulation. However, 

it would be at the cost of longer simulation time. 

From the previous discussion, it has been noted that even though the two bounds 

set the best and the worst switch performance, they are either too high or too low to be 

useful when making a design choice in a practical switch. It is also observed that the 

analytical approximation provides a good indication on the switch performance, which 

is close to and consistent with our simulation results for different switch sizes and load 

conditions. Therefore, in the remaining discussion, the analytical approximation will 

be used as the analytical result to compare with the simulation result. In Figures 

108 



0.1 

1E-3 

I I I 
-+-BG512 x51 2 -

! ! ! --- BG 256 x 256 -
~ ~·~. : ! -'f'-BG 128x 128 -
i ~ ·~ r~ i -.A.-BG64x64 

0 1E-5 

·~ 
a: 

1E-7 
(/) 
(/) 

0 
_J 

1E-9 
Q) 
() 

1E-11 

I '-.._""'1 :~ r::::--:: ::::::-~~ I -•-BG32x32 -

I ~ ~ ~ ;:--::t::--. ~-
-l«-BG 16x 16 -

i i ~ ~-........ ........_ r---..: C'--i..---.. ~ ~ : 

! ! i ~ ·-...........r--.-, :---t- =---.[--. ! 

I I 'h.._, , .............. f'--.......... ~ I 
I I !"-..... f....... ~ I 
! f 

' ! ~ ''.....! 1 

i i ; ! ; 
..........., ! ............ ! ' ' 

1E-13 I I I "i-..... I 
I I I I I 

1 E-15 i i i 

2 3 4 5 6 7 8 9 

Size of Input Queue (in Cells) 

(a) Load= 90% 

0.1 

1E-3 

1E-5 

0 

~ 1 E-7 a: 

J -
I .._BG512x512 

I 1:::::,.. --BG 256 x 256 -
~ :::-::::::,.., ! f 

-'f'-BG 128 x 128 -
; _......_BG64x64 

i -..........:: ·~ ~ ;:::::-., : ; i 
-

-•-BG32x32 -
I ---.....; e_-......::: !'--.... .......... ,~ ::--.. -l«-BG 16x 16 -
I ............ ~ ~ "'"-:--r-
! ' : 

........., ............ 
. =----· :-----.. . :::----: ::::-- ...... ! ! 

(/) 
(/) 1E-9 0 
_J 

! i "!.....'1 ~-..., r-....: ,........._ ~: ....... 
i ' """) !'-....... .............. , .............. -..,......-.. ' 

Q) 1E-11 
() 

I ~ .............. ............. -r-. I 
I ~ .............. "'}....... I 

1E-13 ' i ! r....... ~ 
: : i ; i ............ i ~ i 

1E-15 i i i !"'-..... i 
I I 

1E-17 I I 
2 3 4 5 6 7 8 9 

Size of Input Queue (in Cells) 

(b) Load = 80% 

Figure 4.12: Loss performance comparison (analytical) for various switch sizes under 
multicast random traffic with mean fanout 2 
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Figure 4.13: Loss performance comparison (analytical) for various switch sizes under 
multicast random traffic with mean fanout 2 (continued) 
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Figure 4.14: Loss performance comparison (analytical) for various switch sizes under 
multicast random traffic with mean fanout 2 (continued) 

4.12 to 4.14, the analytical approximation for various switch sizes under various loads 

is provided. Multicast random traffic with a mean fanout of 2 is used. 

Fanout is the most important characteristic for multicast traffic. Even under 

the same load, multicast traffic with different fanouts behave differently. Table 4.2 

presents the loss performance comparison for a 128 x 128 BG switch under mean 

fanout values of 2, 4, and 8. The analytical approximation and simulation results are 

plotted in Figure 4.15 for comparison. The heavy load situation, i.e., 90% and 80% 

offered load, can be considered to demonstrate the high performance of the BG switch 

because that will generate larger demand on the resources. Once the performance 

under high load conditions are accepted, with similar or even less buffering resources, 

it is guaranteed that the performance requirements under the low traffic load will 

be satisfied. The simulation and analytical model results are consistent for different 
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Traffic 
Load 

Load 

90% 

Load 

80% 

Mean 
Fanout 

F=2 

F=4 

F=8 

F=2 

F=4 

F=8 

Input Analysis 
Buffer (Upper 

Size bound) 
2 1.6513E-01 
3 7. 7 484E-02 
4 3.8588E-02 
5 1. 9755E-02 
6 1.0252E-02 
7 5.3575E-03 
2 1. 7377E-02 
3 2.4500E-03 
4 3.4717E-04 
5 4. 9229E-05 
6 6.9813E-06 
7 9.9006E-07 
2 2.3357E-03 
3 1.1572E-04 
4 5.7355E-06 
5 2.8427E-07 
6 1.4089E-08 
7 6.9831E-10 

2 6.0694E-02 
3 1.6686E-02 
4 4. 7012E-03 
5 1.3336E-03 
6 3.7904E-04 
7 1.0779E-04 
2 6.1513E-03 
3 5.0221E-04 
4 4.1063E-05 
5 3.3579E-06 
6 2.7460E-07 
7 2.2455E-08 
2 8.3429E-04 
3 2.4455E-05 
4 7.1691E-07 
5 2.1017E-08 
6 6.1611E-10 
7 1.8062E-11 

Cell Loss Probability 
Analysis 
(Appro- Simulation 
ximate) 

4.6573E-03 1.2225E-03 
3.2855E-04 7.0212E-05 
2.3227E-05 4.4098E-06 
1.6423E-06 2.2102E-07 
1.1612E-07 7.0009E-09 
8.2102E-09 1.0001E-09 
4.2648E-04 3.6248E-04 
8.8995E-06 8.1333E-06 
1.8572E-07 1.9530E-07 
3.8759E-09 5.4000E-09 
8.0888E-11 < 1.0E-09 
1.6881E-12 < l.OE-09 
1.1322E-04 1.0235E-04 
1.2112E-06 9.4410E-07 
1.2957E-08 9.0000E-09 
1.3861E-10 < l.OE-09 
1.4828E-12 < 1.0E-09 
1.5863E-14 < l.OE-09 

1.5840E-03 4.6955E-04 
6.4295E-05 1.6201E-05 
2.6115E-06 6.4702E-07 
1.0608E-07 9.0012E-09 
4.3086E-09 < 1.0E-09 
1.7501E-10 < 1.0E-09 
1.5779E-04 1.4481E-04 
1.9946E-06 1.9448E-06 
2.5215E-08 2.4800E-08 
3.1875E-10 < 1.0E-09 
4.0295E-12 < l.OE-09 
5.0939E-14 < l.OE-09 
4.2881E-05 1.4979E-05 
2.8172E-07 2.5760E-07 
1.8509E-09 1.6000E-09 
1.2160E-11 < l.OE-09 
7.9893E-14 < 1.0E-09 
5.2489E-16 < l.OE-09 

Analysis 
(Lower 
bound) 

1.4880E-04 
1.8261E-06 
2.2412E-08 
2.7507E-10 
3.3761E-11 
4.1436E-14 
7.8483E-06 
2.2018E-08 
6.1769E-11 
1.7329E-13 
4.8615E-16 
1.3639E-18 
7.7232E-07 
6.7903E-10 
5.9701E-13 
5.2489E-16 
4.6149E-19 
4.0575E-22 

5.0235E-05 
3.5731E-07 
2.5415E-09 
1.8078E-11 
1.2859E-13 
9.1463E-16 
2.9270E-06 
5.0118E-09 
8.5818E-12 
1.4695E-14 
2.5162E-17 
4.3084E-20 
2.9726E-07 
1.6212E-10 
8.8412E-14 
4.8217E-17 
2.6296E-20 
1.4341E-23 

Table 4.2: Loss performance comparison between analytical model and simulation 
results for 128 x 128 BG switch for different fanout and load 
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load and fanout. The input buffering requirements are very low for different fanouts , 

even under very high traffic load. With the same offered load, the larger the mean 

fanout , the better the loss performance of the BG switch. This is because multicast 

cell replication is done within the switch as late as required, thereby reducing load 

and blocking at the earlier switch stages. 

4.4.2.1.2 Delay Performance 

Because of the bufferless SF design, cells are delayed either at the input queue or 

at the output queue. The delay associated with the overhead transfer during the 

reservation phase, which is a constant value and applies to every cell, is not included. 

At the input queue, only the master cell is stored. Multiple destination requests are 

contained in the cell header. When reaching the output queue, each copy becomes 

an independent cell. Therefore, in delay performance analysis, the input queueing 

delay is measured in terms of the master cell while the output queueing delay and 

total delay are calculated based on an individual copy. Figures 4.16 and 4.17 presents 

delay performance comparison between the analytical approximation and simulation 

for various switch sizes under 90% multicast random traffic with a mean fanout of 

2. Enough buffering resources are provided at both input ports and output ports 

to ensure virtually no cell loss. The trends for different switch sizes are almost the 

same. The input queueing delay is much smaller than the output queueing delay. 

This implies that the input buffering requirement is very small when compared to 

that of the output buffering. 

Table 4.3 presents the comparison of the total delay and its breakdown between 

the analytical model and the simulation results for an 128 x 128 multicast BG switch 

under various load conditions. Enough output buffering is provided so that any cell 

that manages to arrive at the output port is accepted. From the table, it is clear 
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Effectively Input Delay Performance 
Offered Buffer Simulation Analysis 

Load Size Total Input Output Total Input Output 

2 4.4549 0.0970 4.3821 2.41356 0.03056 2.3830 
Load 3 4.5109 0.1019 4.4333 2.41361 0.03061 2.3830 

4 4.5141 0.1023 4.4361 2.41361 0.03061 2.3830 
= 90% 5 4.5186 0.1024 4.4406 2.41361 0.03061 2.3830 

6 4.5193 0.1023 4.4413 2.41361 0.03061 2.3830 

2 2.0103 0.0641 1.9639 1.15523 0.01923 1.1360 
Load 3 2.0164 0.0658 1.9684 1.15524 0.01924 1.1360 

4 2.0181 0.0659 1.9700 1.15524 0.01924 1.1360 
= 80% 5 2.0184 0.0659 1.9703 1.15524 0.01924 1.1360 

6 2.0166 0.0659 1.9695 1.15524 0.01924 1.1360 

2 1.1753 0.0407 1.1470 0.6805 0.01170 0.6688 
Load 3 1.1762 0.0411 1.1474 0.6805 0.01170 0.6688 

4 1.1762 0.0411 1.1474 0.6805 0.01170 0.6688 
= 70% 5 1.1762 0.0412 1.1473 0.6805 0.01170 0.6688 

6 1.1764 0.0412 1.1474 0.6805 0.01170 0.6688 

2 0.7538 0.0243 0.7375 0.4334 0.00680 0.4266 
Load 3 0.7542 0.0245 0.7378 0.4334 0.00680 0.4266 

4 0.7540 0.0245 0.7375 0.4334 0.00680 0.4266 
= 60% 5 0.7541 0.0245 0.7378 0.4334 0.00680 0.4266 

6 0.7541 0.0245 0.7376 0.4334 0.00680 0.4266 

2 0.5009 0.0135 0.4922 0.2837 0.00360 0.2801 
Load 3 0.5011 0.0136 0.4924 0.2837 0.00360 0.2801 

4 0.5010 0.0136 0.4923 0.2837 0.00360 0.2801 
=50% 5 0.5011 0.0136 0.4924 0.2837 0.00360 0.2801 

6 0.5010 0.0136 0.4923 0.2837 0.00360 0.2801 

Table 4.3: Average delay performance comparison for 128 x 128 BG switch under 
multicast random traffic with a mean fanout of 2 
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Probability of Switch load 
Simultaneous 
Cell Arrival 0.5 0.6 0.7 0.8 0.9 

Results a4 0.00002 0.00004 0.00009 0.00021 0.00041 
Based on a3 0.00178 0.00359 0.00646 0.01069 0.01656 

Analytical a2 0.06441 0.09148 0.12209 0.15548 0.19079 
Modelling a1 0.36579 0.40611 0.43603 0.45613 0.46708 

ao 0.56801 0.49878 0.43531 0.37749 0.32515 

Results a4 0.00024 0.00051 0.00094 0.00160 0.00256 
Based on a3 0.00683 0.01147 0.01768 0.02560 0.03531 
Binomial a2 0.07178 0.09754 0.12506 0.15360 0.18244 

Distribution al 0.33496 0.36848 0.39306 0.40960 0.41894 
ao 0.58618 0.52201 0.46325 0.40960 0.36075 

Table 4.4: Simultaneous cell arrival probability to output queue 

that the delay caused by output queueing is the dominant contributor. The increase 

of the size of the input buffer only slightly affects the delay performance. It is also 

noted that there is always a gap on the output queueing delay between the analytical 

model and simulation, which constitutes the main reason for the difference in overall 

average cell delay. This is because when the average loads on the four input links 

feeding each output queue are used for the output queue analysis, the distribution of 

the simultaneous arrival probability is changed. 

To demonstrate this, a 4 x 4 BG switch under unicast uniform random traffic is 

used. The 4 x 4 switch is guaranteed to be non-blocking under any traffic condition. 

Therefore, the possible influence due to switch fabric internal blocking does not exist. 

Using the analytical model, the probabilities of simultaneous cell arrival to the output 

queue can be calculated by using Equations 4.32 to 4.36 and they are provided in 

Table 4.4 for various load conditions. These calculations assume the links feeding the 

output queue have biased loads and that the links are independent. Although the 

regular and alternative link concept results in biased loads, the traffic on the links 
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is not independent. A more realistic view of traffic arrival to the output queue is to 

consider simply the number of arrivals based on the binomial distribution of Equation 

3.1. The simultaneous cell arrival probabilities based on the binomial distribution are 

plotted in the same table for comparison. 

From Table 4.4, for example, under 90% load, the probability of having 4 arrivals 

in a time slot to output queue is expected to be 0.256% based on the random traffic 

assumption at the switch input. But this probability is changed to 0.041% by using 

the analytical model. Similarly, the probability of having 3 arrivals is changed from 

3.53% to 1.66%. The probability of having 2 arrivals remains largely unchanged. 

Even though the probability of having one cell arrival increases, the probability for 

larger simultaneous arrival events, that is, more than 2 cells arriving to the output 

queue in one switching cycle, has the most significant impact on the queue delay 

performance because the output can only consume one cell during each switching 

cycle. Hence, one cell arrival will not cause any queue back up. Therefore, the overall 

impact of simultaneous cell arrivals to the performance of the output queue becomes 

less significant in the analytical model, which makes the delay performance from 

the analytical model appear better than the results from the simulation. The same 

argument also applies to other load conditions and switch sizes. 

From Equation 4.5, it is obvious that with the same offered load at the output 

port, traffic with larger mean fanout will have smaller input traffic load because more 

copies are contained in each master cell. That means fewer incoming cells will arrive 

at switch inputs during each switch cycle. Even though each copy will become an 

individual cell eventually, replication is performed stage by stage. Therefore, before 

coming into the last stage, the chance of cells being blocked is reduced because fewer 

cells are competing for the internal links. With more cells switched to the output 

queue and fewer cells left behind at the input side, it seems that the input delay 
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Mean Input Delay Performance 
Buffer Simulation Analysis 

Fanout Size Total Input Output Total Input Output 

2 4.45491 0.09706 4.38218 2.41362 0.03056 2.38306 
3 4.51090 0.10197 4.43333 2.41367 0.03061 2.38306 

F=2 4 4.51412 0.10239 4.43612 2.41367 0.03061 2.38306 
5 4.51867 0.10245 4.44064 2.41367 0.03061 2.38306 
6 4.51641 0.10239 4.44136 2.41367 0.03061 2.38306 

2 4.47206 0.10143 4.42430 2.51073 0.01371 2.49702 
3 4.49091 0.10251 4.44211 2.51074 0.01372 2.49702 

F=4 4 4.49170 0.10258 4.44283 2.51074 0.01372 2.49702 
5 4.49111 0.10253 4.44227 2.51074 0.01372 2.49702 
6 4.48644 0.10252 4.43762 2.51074 0.01372 2.49702 

2 4.48335 0.11378 4.45069 2.56670 0.00875 2.55795 
3 4.47406 0.11402 4.44117 2.56670 0.00875 2.55795 

F=8 4 4.47128 0.11394 4.43838 2.56670 0.00875 2.55795 
5 4.47722 0.11400 4.44430 2.56670 0.00875 2.55795 
6 4.47058 0.11389 4.43772 2.56670 0.00875 2.55795 

Table 4.5: Delay performance comparison between analytical model and simulation 
results for 128 x 128 BG switch for different fanout under 90% load 

should decrease as traffic fanout becomes larger, as given by the analytical result in 

Table 4.5 for the 128 x 128 BG switch under 90% multicast random traffic. However, 

it is interesting to note that the simulation results indicate an opposite trend. This 

can be explained as follows. The master cell has to stay in the input queue until all 

copies are delivered, and even though the lowered traffic load mitigates the situation, 

the larger fanout counteracts this effect and increases the waiting time. However, the 

correlation for HOL cells between consecutive switching cycles, which is caused by SF 

internal blocking, is not reflected in the analytical model. Therefore, it is observed 

from the simulation results in Table 4.5 that the input delay, which is measured on 

master cell, increases marginally as the fanout becomes larger. 
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4.5 Performance Analysis under Multicast Bursty 
Traffic 

Due to congestion and bottleneck nodes in the network, traffic in high-speed networks 

tends to be bursty. Bursty traffic is a traffic type in which the switch inputs receive 

sudden bursts of packets destined to one output [85]. The bursty traffic model resem-

bles the real traffic nature much better than uniform random traffic. In this section, 

the multicast BG switch performance under multicast bursty traffic is investigated. 

Simulation results are used for this discussion. All performance measures are obtained 

through a simulation period of switching 109 cells across the SF. The ON-OFF model 

[9, 26, 80] is used to describe the traffic arrival behavior. The truncated geometric 

distribution [9, 80] is used for cell fanout. Fanout remains the same throughout a 

burst. Cell destination is selected uniformly. Using this model, a traffic source gener-

ates cells in a bursty manner with alternating ON period and OFF period. During the 

same ON period, all cells from the same input go to the same destination. Therefore, 

traffic is highly correlated. 

Similar to the analysis for the multicast random traffic, the loss performance and 

delay performance are studied. The results are compared to those of the random 

traffic to show the impact of bursty traffic on switch performance. Furthermore, the 

maximum/average input/output buffer requirements under the new traffic condition 

are studied. Performance results are compared to those of an ideal multicast switch, 

which is a purely output-buffered switch and represents the best performance that a 

SF can achieve. As described earlier, it would be too costly to build such a switch in 

terms of hardware complexity, especially when the switch size becomes very large. 
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4.5.1 Loss Performance 

In the loss performance study under multicast bursty traffic, the impact from traffic 

load and switch size is examined first. Then the influence of the traffic fanout and 

burstiness is studied using the 128 x 128 BG switch. The results are compared to 

those of the multicast random traffic in which the burstiness index can be considered 

to have a value of one. In the analysis, adequate output buffering resource is assumed 

so that any cell that manages to reach any output queue will be accepted. Cell loss 

probability is measured over the size of the input queue. Because the ideal multicast 

switch can transfer all incoming cells to their requested outputs during the same 

switching cycle, zero cell loss will always be achieved as long as adequate output 

buffering is provided. Therefore, the loss performance study focus only on the BG 

switch. 

First, the cell loss performance is studied with respect to traffic load and switch 

size. Similar to the observation from the multicast random traffic, given the same 

burst length and fanout, better the loss performance can be achieved under a lighter 

traffic load. The loss performance is only slightly affected by switch size. However, 

burstiness increases traffic correlation. Hence, compared to that of the multicast 

random traffic, the degradation of BG switch loss performance is obvious as incoming 

traffic gets burstier. In the following discussion, multicast bursty traffic with a mean 

fanout of 2 and an average burst length of 5 is used. 

Figure 4.18 plots the cell loss probability versus the size of the input queue for 

an 128 x 128 multicast BG switch under 90% random traffic and bursty traffic. It is 

clear that to achieve negligible cell loss under multicast random traffic, space for 8 

cells for each input queue suffices. However, this number increases to almost 50 when 

the multicast bursty traffic is used. Because of the assumption that the output queue 
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Figure 4.18: Loss performance comparison for the 128 x 128 BG switch under 90% 
multicast random and multicast bursty traffic with average burst length of 5 

has the capability to accept any incoming cell, this difference implies that the switch 

fabric will experience more internal blocking as incoming traffic gets burstier. In the 

following discussion, it will be seen that the input buffer requirement will become 

even larger as traffic burstiness increases further. But no matter how much it grows, 

it is always a very small portion of the size of the required output queue. 

In Figures 4.19 and 4.20, the loss performance under different load conditions 

are plotted for switch sizes ranging from 32 to 256. In all cases, as traffic load 

increases , the loss performance degrades. This implies the necessity to equip more 

input buffering resource to maintain the same level of loss performance. For all 

multicast BG switches in the figure, a cell loss probability better than 10- 8 has been 

achieved with each input queue with space for 30 cells for the 70% bursty traffic. The 

number has to be increased to 45 when traffic load is increased to 90%. 
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Figure 4.20: Loss performance of 128 x 128 and 256 x 256 BG switch under various 
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It is also observed that under the same traffic type and load, the required input 

buffering to achieve a desired loss performance increases only slightly as the switch 

size becomes larger. Figure 4.21 depicts the loss performance versus the switch size 

for 90% and 80% multicast bursty traffic respectively. Different choices of the size of 

the input queue are plotted in the same figure for comparison. 

It is observed that when each input queue is equipped with small amount of 

buffering, such as 10 and 15, the trend across switch sizes is consistent. But when 

more buffers are added, the fluctuation becomes large, such as in the case of a 40-cell 

or 45-cell input queue for the 90% traffic load and 30-cell or 35-cell input queue for the 

80% traffic load. This is because for every simulation experiment, the performance is 

measured over one billion cells which are switched through the SF. When the input 

buffering is small, more lost cells occur. Therefore, one more or one less cell loss will 

little change the result. As more buffers are added, in particular, for the low traffic 

load situation, very few loss cases will be experienced throughout the trial. Hence, 

even the change of one cell loss will affect the result significantly. As stated earlier 

to make the results more reliable, the simulation period should be extended so that 

more cells are generated and switched through the fabric. 

Now, the cell loss performance under different fanout and burstiness conditions are 

studied. The effect of fanout on loss performance in the multicast random traffic has 

been studied: under the same offered load, the larger mean fanout, the better loss 

performance. The same argument is applied to multicast bursty traffic. However, 

in this case, the size of input queue to achieve the same level of loss performance 

increases significantly. Figure 4.22 plots the cell loss probability for an 128 x 128 

BG switch under 90% bursty traffic with a mean fanout of 2, 4, and 8. The trend is 

obvious. For example, with 30-cell input queue, the multicast BG switch achieves a 

cell loss ratio of 6.36 x 10-7 , 4.13 x 10-7 , and 3.06 x 10-7 for the mean fanout of 2, 

126 



0 
·;::; 
ro a: 
en en 
0 

....J 

Q.) 

0 

0 
"-E 
a: 
en en 
0 

....J 

Q.) 

0 

-iK-10=5 
0.1 

I 
-·-10=10 
-A-10 =15 

i I I I 

1 E-3 I i i i 
I I I 

I i 
I I i 

1E-5 ! ~ 
: 
i : 

I ! I I 

1 E-7 I I i i 
I I 

I i i l - i i I 
! l--+-n i 1E-9 

32 

IQ: Input Queue Size 

-y-10 =20 : 
I i i 

I 
---10 =25 

I I _.,._10=30 
I I I 

i j j i 

I I I I I I 
: I : 

i I I I I i 
j : I ! I 

i : : 

I I I I I I 
I l I i l 
I 

i i 1 I I L 
---r- i i 
~i _.j ~-t-r l 
I 

64 

l ! 
I 

128 

Switch Size 

! ! : 

-1-10 =35 
-A-10 E40 
-0-10 =45 

: : : 

I I I 
l I l 
! ! ! 

: 
I I 

! ! ! 
i I i 

~ ~-c 

I I I 
256 512 

(a) 90% Multicast Bursty Traffic (Mean Fanout = 2, Average Burst Length = 5) 

1E-3 

0.1 I ~-10=5 I -,.-10 = 20 I I l-1-10=35 I 
-•-10=10 ---10=25 

I -A-10 = 15 i _.._10=30 l i H l I i i 
! ! l l l I I I ! ! ! ! : : 

i : 

! I I ! I I I I I I I I I 
I I : I I 

I 
I 
i 
I 
! 
I 
i 
! 
I 

I 
I 
I 
1 

I 
1 E-5 I i i i i i l I I I i I l J I I I I I 

I 
j 

1E-7 I ! ! ! 
: : I 

I I I 

! J ! 

1E-9 I I I I 
32 

IQ: Input Queue Size 

! 
! 

! 
1 

64 

i i 
J l I 
! I I 
i ! f 
I I I 
! ! ! 

-
I I i 

128 

Switch Size 

I i i : 

I i i i l 
I 

! ! 
~ ~ ! 

I I t-ri ! ! 

i i l l I 
256 512 

(b) 80% Multicast Bursty Traffic (Mean Fanout= 2, Average Burst Length = 5) 

I 
! 
! 

I 
: 

i 

! 

! 
I 
I 
l 
: 

I 
I 
I 

I 

I 
I 
! 
i 

I 
I 
I 
I 
I 
i 

Figure 4.21: Loss performance vs size of the input queue for various switch sizes under 
90% and 80% mult icast bursty t raffic 

127 



0 1E-3 

~ a: 

0.1 I I I I ! I I I I I : i : : 

I I 
: : : 

i I I -lt(- Mean Fanout = 2 i 
I J~ I I I 

-•-Mean Fanout= 4 

I -A- Mean Fanout= 8 
: 

I ~ ~ 
i 

I I I I I I i 
(/) 
(/) 

0 1E-5 _J 

Q) 

u 

1 E-7 

I I ~~ ~ I I I I ! I : : 

I I i I ~ ~ ~ 
! 

I I i 
! I I I ! ~ ~ ~ I I ! 

: 

i I I I I I , ~ ~~ ~ ~-1 i 
I i I i I i I i !t I l ~ 1 E-9 

0 5 10 15 20 25 30 35 40 45 50 

Size of Input Buffer (in Cells) 

Figure 4_22: Loss performance for 128 x 128 BG switch under different mean fanout 
for 90% multicast bursty traffic 

4, and 8, respectively. 

The reason for traffic with larger mean fanout having a better loss performance 

is that traffic load is defined at the switch output and is converted to input load 

via the mean fanout , as shown in Equation 4.70. With the same offered load, traffic 

with larger mean fanout will have a lower input load. Because cell replication is 

performed inside the SF, the load on the interconnection links increases gradually as 

cells approach the output port. Before reaching the output buffer stage, the average 

traffic load on the link with larger fanout is always less than that from traffic with 

a smaller fanout. This argument is confirmed by the loss performance for different 

switch sizes and fanout under 90% bursty traffic , as shown in Table 4.6. 

Finally, we study how loss performance is related to traffic burstiness. In Figure 

4.18, the loss performance between multicast random traffic and multicast bursty 
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Switch Size of Mean Fanout of Traffic 
Size Input Queue F=2 F=4 F=8 

5 2.2842E-03 1.4551E-03 7.4991E-04 
10 2.7354E-04 1.7094E-04 8.7222E-05 
15 3.7901E-05 2.4005E-05 1.1372E-05 

32 X 32 20 5.7744E-06 3.5379E-06 1.8243E-06 
25 8.4960E-07 5.8410E-07 2.5290E-07 
30 1.5840E-07 7.8300E-08 1.9800E-08 
35 2.4300E-08 1.2600E-08 5.4000E-09 

5 3.0560E-03 2.0688E-03 1.2723E-03 
10 3.9234E-04 2.5935E-04 1.6865E-04 
15 5.7574E-05 3.7400E-05 2.5233E-05 

64 X 64 20 9.4275E-06 6.0561E-06 4.2732E-06 
25 1.8234E-06 9.6570E-07 7.0830E-07 
30 3.6810E-07 2.2050E-07 1.5840E-07 
35 4.2300E-08 2.9900E-08 1.7100E-08 

5 3.7286E-03 2.6336E-03 1.7920E-03 
10 4.9397E-04 3.5038E-04 2.5865E-04 
15 7.7397E-05 5.4653E-05 4.3196E-05 

128 X 128 20 1.3510E-05 8.9784E-06 8.0415E-06 
25 2.6622E-06 1.9053E-06 1.7325E-06 
30 6.3630E-07 4.1310E-07 3.0600E-07 
35 1.3950E-07 9.8100E-08 5.8500E-08 

5 4.3542E-03 3.1324E-03 2.2742E-03 
10 6.1061E-04 4.3498E-04 3.4542E-04 
15 1.0027E-04 7.0484E-05 5.9880E-05 

256 X 256 20 1.8131E-05 1.2938E-05 1.1258E-05 
25 3.6234E-06 2.6631E-06 2.4489E-06 
30 3.3309E-06 5.7780E-07 5.3460E-07 
35 8.9910E-07 1.3500E-07 1.0890E-07 

5 4.9688E-03 3.6248E-03 3.3535E-03 
10 7.2809E-04 5.2532E-04 4.8828E-04 
15 1.2850E-04 8.9722E-05 7.6992E-05 

512 X 512 20 2.4806E-05 1.7014E-05 1.5447E-05 
25 5.1291E-06 3.5001E-06 3.3561E-06 
30 1.2366E-06 7.1550E-07 7.3620E-07 
35 1.9710E-07 2.0430E-07 1.6560E-07 

Table 4.6: Loss performance for various switch sizes and different mean fanout under 
90% multicast bursty traffic with average burst length of 5 
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traffic with an average burst length of 5 has been compared. Random traffic can be 

viewed as a special case of bursty traffic in which the burst length is constant one. 

Table 4. 7 lists the cell loss rate for the 128 x 128 BG switch under 90% multicast 

bursty traffic with the average burst length of 5, 10, and 15. A mean fanout of 2 is 

used. It is clear that as traffic gets burstier, the level of traffic correlation increases, 

and the SF internal blocking becomes larger. As a result, the demand of resource at 

the input queue increases in order to keep the same level of performance. From the 

previous example, only 6 cell spaces for each input queue are required to achieve a 

better than 10-8 loss performance in random traffic. This number increases to 45 and 

over 95 when the burst length becomes 5 and 10, respectively. As the burst length 

gets greater than 15, more than 100 cell space must be equipped in order to keep the 

same cell loss ratio. Similar results can be found under other load conditions, which 

are plotted in Figures 4.23 and 4.24. As the traffic load decreases, the required input 

queueing resource decreases. 

4.5.2 Delay Performance and Buffer Requirement 

In this subsection, the delay performance of the multicast BG switch under multicast 

bursty traffic is studied. The delay performance breakdown for the multicast BG 

switch is first analyzed. Then study will focus on how the delay performance relating 

to various factors, including switch size, traffic load, fanout, and burstiness. Infinite 

input and output buffering are assumed so as to provide zero cell loss. In practice, in 

all simulations, a maximum value of 300 and 3000 are used for the size of input and 

output queue, respectively. To ensure zero cell loss, simulation results are checked 

afterwards to make sure that the maximum queue size is never exceeded. Throughout 

the study, delay performance of the multicast BG switch is compared to that of the 

ideal multicast switch. As stated in Section 4.4.2.1.2, the input queueing delay is 
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Size of Multicast Bursty Traffic (F = 2) 
Input Queue Burst Length Burst Length Burst Length 

(in Cells) =5 = 10 = 15 

5 3.7286E-03 9.6149E-03 1.2852E-02 
10 4.9397E-04 3.4380E-03 6.2278E-03 
15 7.7397E-05 1.3317E-03 3.1927E-03 
20 1.3510E-05 5.4659E-04 1.6774E-03 
25 2.6622E-06 2.3537E-04 9.2090E-04 
30 6.3630E-07 1.0391E-04 5.2218E-04 
35 1.3950E-07 4.6551E-05 2.8922E-04 
40 2.8800E-08 2.2600E-05 1.7302E-04 
45 7.2000E-09 1.1093E-05 9.9399E-05 
50 <l.OOE-09 5.4783E-06 6.1577E-05 
55 <l.OOE-09 2.7990E-06 3.7040E-05 
60 <l.OOE-09 1.4679E-06 2.3268E-05 
65 <1 :00E-09 8.8110E-07 1.5152E-05 
70 <l.OOE-09 3.4290E-07 8.8218E-06 
75 <l.OOE-09 2.1510E-07 5.9238E-06 
80 <l.OOE-09 1.0170E-07 3.5280E-06 
85 <l.OOE-09 2.3400E-08 2.3949E-06 
90 <l.OOE-09 5.4000E-08 1.4247E-06 
95 <l.OOE-09 2.5200E-08 1.1475E-06 

Table 4.7: Loss performance for the 128 x 128 BG switch under 90% multicast bursty 
traffic with average burst length of 5, 10, and 15 
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measured in terms of the master cell while the output queueing delay and total delay 

are calculated based on individual copies. 

4. 5. 2.1 Delay Performance 

Table 4.8 lists the delay performance breakdown for various switch sizes under mul­

ticast bursty traffic with a mean fanout of 2 and an average burst length of 5. Total 

delay for the ideal switch is also provided in the table for comparison. Because the 

ideal switch fabric can switch any incoming cell to the requested output ports in the 

same switching cycle, its input queueing delay is zero. Because signal propagation 

delay inside the SF is neglected, the output queueing delay for the ideal switch is in 

fact its total delay. 

From the table, it is clear that the output queueing delay is the dominant part 

for the BG switch, and its total delay is always only slightly larger than that of the 

ideal switch. It is not difficult to explain this observation. The high throughput of 

the multicast BG SF ensures that many of the cells are transferred to the output 

queue within one switching cycle, thus resulting in the same delay as that in the 

ideal switch. Only the very few cells that are left behind due to internal blocking 

contribute to the input queueing delay and make the overall cell delay slightly larger 

than in the ideal case. 

It is also observed that as the switch size grows, the total cell delay for the BG 

switch becomes slightly larger. At the same time, the difference between the BG 

switch and the ideal switch in total delay also increases. This is because the first 

two stages of the BG switch are strictly nonblocking, regardless of the traffic applied. 

Therefore, the delay performance of the 4 x 4 BG switch is exactly the same as that of 

the ideal switch. As the switch size grows, more stages are added, hence the chance of 

cells being blocked inside the SF increases. As a result, the total cell delay increases as 
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Switch Traffic Multicast BG Switch Ideal Switch 
Size Load Total Delay Input Delay Output Delay Total Delay 

0.9 45.0546 0.2246 44.7828 44.7995 
16 0.8 20.0893 0.1483 19.9075 19.9968 
X 0.7 11.7416 0.0954 11.6229 11.6920 
16 0.6 7.5635 0.0583 7.4902 7.5381 

0.5 5.0553 0.0329 5.0135 5.0352 

0.9 47.3710 0.3569 46.9396 47.1070 
32 0.8 21.1285 0.2329 20.8423 20.9897 
X 0.7 12.3527 0.1479 12.1688 12.2495 
32 0.6 7.9474 0.0900 7.8344 7.8837 

0.5 5.2947 0.0506 5.2305 5.2688 

0.9 48.7309 0.5015 48.1258 48.4956 
64 0.8 21.6830 0.3225 21.2873 21.4730 
X 0.7 12.6915 0.2038 12.4382 12.5393 
64 0.6 8.1523 0.1229 7.9974 8.0624 

0.5 5.4326 0.0695 5.3443 5.3857 

0.9 49.5026 0.6429 48.7291 48.8855 
128 0.8 22.0096 0.4079 21.5092 21.7178 

X 0.7 12.8768 0.2553 12.5586 12.6785 
128 0.6 8.2584 0.1529 8.0655 8.1589 

0.5 5.5095 0.0862 5.3995 5.4412 

0.9 49.5963 0.7844 48.6546 49.0639 
256 0.8 22.2268 0.4927 21.6228 21.8936 

X 0.7 12.9635 0.3056 12.5824 12.7523 
256 0.6 8.3415 0.1827 8.1107 8.1962 

0.5 5.5472 0.1025 5.4164 5.4626 

Table 4.8: Average delay performance breakdown for various switch sizes under 90% 
multicast burst traffic with mean fanout 2 and average burst length 5 
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the switch size grows and the difference between the BG switch and the ideal switch 

becomes larger. 

In Table 4.9 and 4.10, the delay breakdown is presented for the 128 x 128 BG switch 

under various load, fanout and burstiness conditions. It is obvious that the change 

in average burst length affects the delay performance significantly while the impact 

of traffic mean fanout is trivial. The burst length increase means the correlation 

between successive cells increases because all cells belonging to the same burst go to 

the same destinations. Even though in the long run, destination selection is uniformly 

distributed, on a cycle by cycle basis, the possibility of having more cells come to the 

same output increases with longer bursts. Having more than two arrivals to the 

same output causes output queue buildup. As a result, each cell will experience 

longer output queueing delay. At the same time, traffic correlation will increase the 

chance of internal blocking because more cells are competing for the links toward 

the same output port, which in turn causes more blocked cells to be retained at the 

input queue, and thus increases the input queueing delay. Even though the internal 

blocking becomes worse as the traffic burstiness increases, the switching capability 

of the multicast BG switch ensures that most of the cells manage to reach their 

destinations. Therefore, although the input queueing delay increases along with the 

traffic burst length, it is always a small fraction of the output queueing delay. In 

general, average cell delay in the BG switch is very close to that of the ideal switch. 

With larger mean fanout, each cell will contain more copies. It will take longer 

for all copies contained in the cell header to be delivered, which in turn will make cell 

delay in the input queue longer. But larger mean fanout also means less traffic load 

at the switch input which helps to reduce internal blocking, especially in the early 

stages. Therefore, as traffic mean fanout grows, the input queueing delay increases 

only slightly. 
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Burst Mean BG Switch Ideal Switch 
Length Fanout Total Delay Input Delay Output Delay Total Delay 

2 49.5026 0.6428 48.7291 48.8855 
5 4 49.3910 0.7787 48.3376 48.7632 

8 49.3592 0.9459 48.0373 48.3810 
2 94.1450 1.2324 92.5919 93.0086 

10 4 94.3925 1.5435 92.1378 93.9522 
8 94.6992 1.9188 91.7577 93.6238 
2 139.1580 1.8302 136.8090 137.3470 

15 4 139.3400 2.3427 135.8240 136.8180 
8 138.8480 2.9285 134.1840 137.2500 

Table 4.9: Average delay performance breakdown for 128 x 128 BG and ideal multicast 
switch under 90% multicast burst traffic 

4.5.2.2 Input and Output Buffer Requirement 

In this subsection, the buffer requirements for both BG switch and ideal switch are 

studied under multicast bursty traffic. As discussed earlier, the ideal multicast switch 

can switch any cell to its destination within the same switching cycle. The only space 

required for each input queue is to temporarily hold the incoming cell, which is in any 

case required by any switch. If this factor is excluded, the input buffer requirement 

for the ideal switch is always 0. Therefore, only the output buffer requirement needs 

to be studied for the ideal switch. 

The average buffer requirement represents the mean value of cells in the buffer 

over long term while the maximum buffer requirement represents the largest number 

of cells in the queue at any given time and determines the buffer requirement in 

the extreme situation. Figure 4.25 plots the average and maximum input buffer 

requirement for BG switch, and Figure 4.26 plots the average and maximum output 

buffer requirement for both the BG switch and the ideal multicast switch. Multicast 

bursty traffic with a mean fanout of 2 and an average burst length of 5 is used. Traffic 

load ranges from 90% to 50%. It is noted that both measures, that is, the average and 
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Switch Burst Mean Multicast BG Switch Ideal Switch 
Total Input Output Total 

Load Length Fanout Delay Delay Delay Delay 
2 22.0096 0.4079 21.5092 21.7178 

5 4 22.1655 0.5316 21.4353 21.6526 
8 22.1372 0.6686 21.1899 21.7230 
2 41.9979 0.7755 40.9983 41.5858 

80% 10 4 42.4465 1.0399 40.9027 41.3930 
8 42.6316 1.3319 40.5655 41.6413 
2 62.0604 1.1476 60.5515 61.1801 

15 4 62.5735 1.5590 60.1908 61.0396 
8 63.0393 2.0200 59.7879 61.1228 

2 12.8768 0.2553 12.5586 12.6785 
5 4 12.9386 0.3496 12.4523 12.6681 

8 12.9991 0.4556 12.3470 12.6845 
2 24.5935 0.4827 23.9607 24.1831 

70% 10 4 24.8425 0.6771 23.8280 24.1267 
8 24.9888 0.8959 23.5829 24.2059 
2 36.2734 0.7118 35.3213 35.7773 

15 4 36.5805 1.0117 35.0170 35.8290 
8 36.9483 1.3477 34.7565 35.7772 

2 8.2583 0.1529 8.0654 8.1589 
5 4 8.3346 0.2190 8.0266 8.1725 

8. 8.3591 0.2929 7.9364 8.1523 
2 15.7936 0.2895 15.4089 15.5640 

60% 10 4 15.9215 0.4192 15.2860 15.5689 
8 16.0345 0.5686 15.1384 15.5048 
2 23.3139 0.4267 22.7350 22.9836 

15 4 23.5731 0.6225 22.6040 22.8763 
8 23.7710 0.8533 22.3776 22.9937 

2 5.5094 0.0862 5.3995 5.4412 
5 4 5.5424 0.1273 5.3622 5.4402 

8 5.5826 0.1749 5.3277 5.4457 
2 10.5195 0.1619 10.3015 10.3879 

50% 10 4 10.6214 0.2434 10.2500 10.4054 
8 10.6943 0.3363 10.1584 10.3929 
2 15.5302 0.2387 15.2034 15.3056 

15 4 15.6948 0.3605 15.1284 15.2998 
8 15.7973 0.5013 14.9754 15.3116 

Table 4.10: Average delay performance breakdown for 128 x 128 BG and ideal mul­
ticast switch under various multicast burst traffic load (80% to 50%) 
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maximum buffer requirement, scale well across different switc sizes under all load 

conditions, especially for the output queue. In other words, t he buffer requirement 

to achieve the same level of performance does not increase t ooo much as the switch 

size grows. For the input queue, a large switch needs more sta~es which increases the 

chance of cell being blocked. However, the input buffer requiirement increases only 

slightly. This is a desired feature of the BG switch. With this scalability feature, large 

switches can be easily constructed using smaller switch modul~s without introducing 

much additional hardware cost for the input and output queu~s. 

It is also observed that in all different cases, the input buffen- requirement is always 

a very small portion to that of the output buffer. The reason is the same as what have 

been concluded during the loss and delay performance analysi:es: the high throughput 

of the BG switch fabric ensures that most HOL cells are switch• ed to their destinations 

within one switching cycle. Only very few cells are left behLnd due to the internal 

blocking. Hence, a small amount of buffering resource at the input port is sufficient 

to store the blocked cells. 

Tables 4.11 and 4.12 compares the buffer requirement perfon mance for the 128 x 128 

BG switch and the ideal switch under various multicast bursty;-- traffic scenarios. From 

the table, it is clear that the impact from traffic burstiness is a:rpparent while that from 

traffic fanout is trivial. For example, under 80% traffic load ith a mean fanout of 2, 

as the burst length increases from 5 to 10 to 15, the average i:aJ.put buffer requirement 

changes from 0.16 to 0.31 to 0.47, and the average output buff~r requirement increases 

from 17.21 to 32.79 to 48.42. However, under the same traffic:::: load and burst length, 

as the fanout changes from 2 to 4 to 8, the input buffer reqruirement decreases only 

slightly, i.e., from 0.16 to 0.11 to 0.067, while the output buffer requirement remains 

almost unchanged, that is, from 17.21 to 17.15 to 16.95. This is because traffic load is 

defined at the switch output. No matter how big the mean far:::tout is, as cells reach the 
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Figure 4.26: Average and maximum output buffer requirement for various switch 
sizes and load conditions under multicast bursty traffic (mean fanout = 2, average 
burst length = 5) 
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Traffic Mean Average Multicast BG Switch Ideal Multicast Switch 
Input Buffer Requirement Output Buffer Requirement Output Buffer Requirement 

Load Fanout Burstiness Average Maximum Average Maximum Average Maximum 

5 0.2893 54 43.8591 766 43.9964 733 
2 10 0.5546 92 83.3202 1514 83.6861 1325 

15 0.8236 143 123.0310 1871 123.5960 2009 
90% 5 0.1752 48 43.5036 939 43.8797 798 

4 10 0.3472 93 82.8914 1352 84.6197 1636 
15 0.5271 149 122.2150 2328 123.0440 2252 
5 0.1064 53 43.2200 745 43.5133 777 

8 10 0.2159 99 82.5649 1548 84.3052 1556 
15 0.3293 144 120.4760 2070 120.7540 1902 
5 0.1632 44 17.2059 436 17.3735 389 

2 10 0.3101 88 32.7888 729 33.2716 705 
15 0.4589 llO 48.4151 ll69 48.9358 ll24 
5 0.1063 48 17.1505 468 17.3107 446 

80% 4 10 0.2080 98 32.7348 771 33.1043 771 
15 0.3ll9 124 48.1453 ll90 48.8103 1088 
5 0.0668 42 16.9501 401 17.3833 4ll 

8 10 0.1332 88 32.4439 700 33.3354 892 
15 0.2020 131 47.8576 1081 48.9009 1217 
5 0.0893 34 8.7907 294 8.8727 280 

2 10 0.1689 71 16.7714 556 16.9217 538 
15 0.2491 97 24.7172 771 25.0473 728 
5 0.0612 37 8.7153 313 8.8630 317 

70% 4 10 0.1186 65 16.6851 558 16.8800 576 
15 0.1771 133 24.5063 793 25.0890 747 
5 0.0398 42 8.64ll 318 8.8790 295 

8 10 0.0784 73 16.5168 572 16.9502 541 
15 O.ll79 102 24.3440 746 25.0463 733 

Table 4.11: Average and maximum buffer requirement for the 128 x 128 BG and ideal multicast switch under various 

mu1ticast bursty traffic 



Traffic Mean Average Multicast BG Switch Ideal Multicast Switch 
Input Buffer Requirement Output Buffer Requirement Output Buffer Requirement 

Load Fanout Burstiness Average Maximum Average Maximum Average Maximum 

5 0.0458 37 4.8377 260 4.8955 225 
2 10 0.0868 58 9.2431 372 9.3377 508 

15 0.1279 77 13.6361 608 13.7875 611 
5 0.0328 32 4.8154 221 4.9063 251 

60% 4 10 0.0628 60 9.1686 398 9.3397 392 
15 0.0933 82 13.5590 610 13.7134 549 
5 0.0219 32 4.7596 219 4.8922 224 

8 10 0.0426 63 9.0793 398 9.2925 406 
15 0.0639 114 13.4281 650 13.7886 574 
5 0.0215 25 2.6997 173 2.7203 178 

2 10 0.0404 48 5.1498 324 5.1942 359 
15 0.0597 62 7.6003 551 7.6493 430 
5 0.0159 27 2.6805 163 2.7201 169 

50% 4 10 0.0304 53 5.1282 333 5.2055 330 
15 0.0451 71 7.5651 464 7.6459 512 
5 0.0109 34 2.6648 179 2.7242 189 

8 10 0.0210 49 5.0807 318 5.1987 330 
15 0.0313 81 7.4877 453 7.6556 478 

Table 4.12: Average and maximum buffer requirement for the 128 x 128 BG and ideal multicast switch under various 
multicast bursty traffic (continued) 



output, all copies are replicated. Hence, to the output port, the loads for different 

fanout conditions are very close and this results in the output buffer requirements 

being roughly the same. For the input queue, larger fanout means more copies are 

contained in a single master cell and load on input links becomes less heavy. With 

the same switching capability from the fabric, the input buffer requirement becomes 

less. 

It is also noticed that the average output buffer requirement for the BG switch is 

always slightly less than that for the ideal switch. For example, under 80% load with 

a mean fanout of 2, when traffic burst length is 5, 10, and 15, the average output 

buffer requirement is 17.21 , 32.79, and 48.42, respectively, for the BG switch, and it 

is 17.37, 33.27, and 48.94, respectively, for the ideal switch. This implies the number 

of cells switched by the BG switch is only slightly less than that of the ideal switch. 

From the analysis under multicast bursty traffic, it has been observed that the 

performance of the multicast BG switch is very close to the ideal switch. The point 

is, when switch size becomes large, the ideal switch is too costly to build because 

of the high hardware complexity and cost from the switch fabric and the high-speed 

memory for the output queue. While the BG switch architecture can not only achieve 

a performance close to optimum, but also with a reasonably low demand for hardware 

and memory speed. 

4.6 Performance Analysis under Nonuniform Mul­
ticast Traffic 

For all previous discussion, it has been assumed that all output ports are randomly 

selected by the incoming traffic. However, this is not always the case in the real 

communications networks. Very often, the destinations are selected in a nonuniform 

fashion. In this section, the performance of the multicast BG switch is investigated 
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under nonuniform multicast traffic. A modified form of the model presented in [14, 73] 

is used for nonuniform destination generation. The ON-OFF model and the truncated 

geometric distribution are used for traffic arrival process and multicast cell fanout 

distribution, respectively. 

4.6.1 Nonuniform Traffic Model 

In [73], a nonuniform traffic model is presented for the analysis of a non-blocking 

packet switch under unicast traffic. In this model, the output address at each input 

is assumed to be assigned by a binomial distribution function (except at inputs 0 and 

N- 1). For input i, where 1 < i < N- 2, define 

ti,j - Pr[Cell arriving at the ith input is destined to the fh output] 

( N; 1 
) . ,-!. (1- ri)N-H, 0 < j < N- 1, (4.71) 

where ri is the probability associated with input i. For a binomial distribution, the 

maximum probability always occurs at j = L N · riJ [73]. If the maximum output 

is defined as the one which carries more traffic from input i than any other output, 

given output N- 1 - i to be the maximum output for any input i, ri is given by 

N -1-i 
ri = N-1 . ( 4. 72) 

For input 0 and N- 1, the probability toward output j, where 0 < j < N- 1, is 

given by a normalized Poisson-like distribution at rater as below [14]: 

and 

rN-1-j j(N- 1- j)! 
to,j = L rN-1-j /(N- 1- j)!' 

Vj 
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Figure 4.27: Output selection probability at inputs 10, 35, 63, 80, 117 

The benefit of using this model is that, instead of providing only one or two hot 

destinations, it gives a substantial number of hot spots, which is more realistic when 

the switch size becomes very large. Figure 4.27 shows the distribution function of the 

output for input 10, 35, 63 , 80, and 117 respectively. The traffic from each input goes 

mainly to 20 outputs, except for inputs 0 and 127 [73]. In [14], it has been noticed 

that there are a number of problems with this model: the first and last input was 

dealt with differently through another distribution, the value of ri was different for 

different inputs which results in different distributions, and the input-output paring 

was restricted to a fixed pattern. 

To solve the above problems, the model has been modified in [14]: using a fixed 

value for all ri, the same binomial distribution can be used by all the inputs for their 

output selection. At the beginning of each simulation, the fixed value is determined 

and each input is associated with an output port by permutation. For each input, the 
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associated output is located at the center of the binomial distribution. These modifi­

cations help to solve the above problems and add another advantage of randomizing 

the output selection. 

In this dissertation, the modified model is further extended to multicast environ­

ment: similar to the unicast case, at the beginning of each simulation, all the input 

and output ports are associated by permutation. For each input, the associated out­

put is located at the center of the binomial distribution. For each multicast cell that 

appears at the input port, its fanout is calculated based on the truncated geometric 

distribution, as given by Equations 4.2 and 4.3. Each copy of the multicast cell selects 

its destination based on the binomial distribution for that input port. All destina­

tions belonging to the same multicast cell are distinct from each other. In the case 

of multicast bursty traffic, cells belonging to the same burst will request the same 

outputs. Using this nonuniform multicast traffic model, the requested destinations 

from each multicast cell are more concentrated on a band of output ports instead of 

distributing across all output ports as in the uniform situation. 

4.6.2 Loss Performance 

In this subsection, the loss performance of the multicast BG switch under the above 

nonuniform traffic is examined. Figure 4.28 depicts the cell loss ratio of the 128 x 

128 BG switch under multicast bursty nonuniform traffic with a mean fanout of 

2 and an average burst length of 5. For comparison, the loss performance of the 

traffic's uniform counterparts, which have random and bursty arrivals, are plotted 

in the same figure. A very slight performance enhancement is observed when the 

non-uniform traffic is applied. This result is consistent with the observation made 

in (14), in which the unicast nonuniform traffic is studied. This is because with 

nonuniform traffic, the chances of having multiple input ports requesting one single 
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Figure 4.28: Loss performance comparison between 128 x 128 BG switch under 90% 
multicast traffic 

output port are mitigated since each input port is now targeting a different band of 

output ports. The non-repeated destination request for all copies of a multicast cell 

indicates that cell replication should be performed somewhere inside the SF. Under 

the nonuniform traffic, incoming cells become more concentrated on a band of output 

ports. Therefore, cell replication only needs to be performed in the last few stages 

close to the output port. With fewer cells travelling across the SF, chances of internal 

link contention are lessened. Similar enhancement in loss performance is also observed 

through our simulation for non-bursty and unicast traffic conditions. 

The reasons that account for the enhancement can be explained through the study 

of the two extreme cases of the band of output ports. When the band of the targeted 

output ports for each input port becomes more concentrated, incoming cells are fo-

cused on fewer output ports. In the extreme case, the targeted band narrows down 
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to a single output port, which is the center of the binomial distribution. Because 

each input port is randomly and non-repeatedly associated with an output port, in 

this extreme case, the traffic is moving toward permutation traffic except that the 

input-output match pattern is now fixed. On the other hand, when the output port 

band expands, the targeted output ports for each input port becomes wider. The 

extreme case now becomes that the targeted band from each input port expands to 

all output ports of the switch with equal probability to be addressed. In this case, 

the traffic destination request essentially becomes uniformly distributed. 

Therefore, under the simple unicast and non-bursty traffic, the non-repeated 

input-output port mapping and the nonuniform traffic model make switch perfor­

mance fit in between that of the permutation traffic and the uniform random traffic. 

BG and many other switches perform better under the permutation traffic than un­

der the uniform random traffic, thus performance enhancement is observed when 

nonuniform traffic is applied. 

The performance is also investigated under the nonuniform traffic in which each 

input is randomly mapped to an output at the beginning, which is the center of the 

output band. In this case, it is possible that multiple input ports are associated 

with the same output port. It has been noticed that the chances of buffer overflows 

significantly increases. This is because each input port is now uniformly associated 

with all output ports. The probability that some output ports are more heavily 

associated with two or more input ports increases. Therefore, those output ports are 

likely to receive higher traffic load which leads to higher chances of having output 

buffer overflow. To avoid such situation, the aggregated traffic load for those output 

ports should be controlled below the link consumption rate. Similarly, one may 

consider the two extreme cases. The worst case is when the output band narrows 

down to one port, in which all traffic from one input port will go to just one output 
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Uniform Traffic Condition 
Switch Multicast BG Switch Ideal Switch 

Size Input Delay Output Delay Total Delay Total Delay 
32 X 32 0.3541 46.9875 47.4161 47.1070 
64 X 64 0.4882 48.0422 48.6329 48.4956 

128 X 128 0.6161 48.4850 49.2311 48.8855 
256 X 256 0.7447 48.7435 49.6442 49.0639 
512 X 512 0.9306 48.8573 49.9712 49.2817 

Nonuniform Traffic Condition 
Switch Multicast BG Switch Ideal Switch 

Size Input Delay Output Delay Total Delay Total Delay 
32 X 32 0.1745 42.4560 42.6672 42.4232 
64 X 64 0.2588 44.3934 44.7039 44.5335 

128 X 128 0.3438 45.8080 46.2171 45.9604 
256 X 256 0.3996 4q.8250 47.3025 46.9557 
512 X 512 0.4650 47.2824 47.8384 47.7428 

Table 4.13: Average delay performance breakdown and comparison between BG and 
ideal multicast switch under uniform and nonuniform multicast bursty traffic (mean 
fanout = 2, average burst length = 5) 

port. In this case, the maximum possible load on the output port is equal to the load 

on the input link times the number of input ports that are associated with the output 

port. The best case is when the destination request from each input port is equally 

distributed to all output ports, which makes the traffic resemble uniform. 

4.6.3 Delay and Buffer Requirement Performance 

Table 4.13 compares the average cell delay breakdown between BG and ideal switch 

of various sizes under 90% uniform and nonuniform multicast bursty traffic. In Tables 

4.14 and 4.15, the average and maximum buffer requirement for both switches are 

compared under the same traffic conditions. It is clear that there is an enhancement 

in both delay and buffer requirement when the nonuniform traffic is used. In both 

cases, input queueing delay and buffer requirement of the BG switch is always a 
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Uniform Traffic Condition 
Switch Multicast BG Switch Ideal Switch 

Size Input Buffer Output Buffer Output Buffer 
32 X 32 0.1594 42.2806 42.3830 
64 X 64 0.2197 43.2255 43.6503 

128 X 128 0.2772 43.6264 43.9964 
256 X 256 0.3351 43.8649 44.1490 
512 X 512 0.4188 43.9661 44.3426 

Non uniform Traffic Condition 
Switch Multicast BG Switch Ideal Switch 

Size Input Buffer Output Buffer Output Buffer 
32 X 32 0.0785 38.2053 38.1726 
64 X 64 0.1165 39.9529 40.0753 

128 X 128 0.1547 41.2254 41.3606 
256 X 256 0.1798 42.1434 42.2584 
512 X 512 0.2092 42.5450 42.9655 

Table 4.14: Average buffer requirement comparison between BG and ideal multicast 
switch under uniform and nonuniform multicast bursty traffic (mean fanout = 2, 
average burst length= 5) 

small portion of that from the output queue, which is very close to that from the 

ideal switch. The comparison also demonstrates the performance scalability of the 

multicast BG switch under nonuniform traffic, which is consistent with our previous 

analysis and is a very important advantage of the BG switch fabric design. 

4. 7 Performance Comparison with Other Switches 

In Section 2.3.3, the pros and cons of the two approaches to construct a multicast 

switch have been discussed. In this section, the two approaches are re-visited with 

a focus on performance related issues. Then, the delay and loss performance of the 

multicast BG switch are compared with two high-performance switches published in 

the literature, the Abacus switch [2, 60] and the PINIUM switch [9]. Multicast cell 

replication is handled implicitly by both switches. As described in Sections 2.3.2.5 and 
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Uniform Traffic Condition 
Switch Multicast BG Switch Ideal Switch 

Size Input Buffer Output Buffer Output Buffer 
32 X 32 41 855 780 
64 X 64 45 902 879 

128 X 128 47 822 733 
256 X 256 48 877 777 
512 X 512 57 856 853 

Non uniform Traffic Condition 
Switch Multicast BG Switch Ideal Switch 

Size Input Buffer Output Buffer Output Buffer 
32 X 32 32 693 666 
64 X 64 42 704 721 

128 X 128 43 704 820 
256 X 256 45 779 763 
512 X 512 39 758 735 

Table 4.15: Maximum buffer requirement comparison between BG and ideal multicast 
switch under uniform and nonuniform multicast bursty traffic (mean fanout = 2, 
average burst length= 5) 

2.3.2.6, the Abacus switch is an input-output buffered switch, which is very similar 

to BG switch, while the PINIUM switch is a purely output-buffered switch. 

Through the performance analysis of the BG switch, it has been noticed that 

with the same offered load, when pure unicast traffic is applied, all stages experience 

the same high load. With increasing multicast nature of the traffic, the route-and-

replicate approach gives better performance. However, in the cascade approach, all 

stages of the routing network always face the high load. Apart from this, there is the 

possibility of blocking and performance degradation in the copy network. Therefore, 

from the switch performance point of view, multicast switches using the integrated 

approach are superior to those following the cascade approach. In addition to this, the 

copy network is normally large, expensive, and non-scalable, which make the design 

of a multicast switch more complicated. 
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4.7.1 PINIUM Switch 

The basic architecture of the PINIUM switch consists of a distribution section and 

a concentration section, as shown in Figure 2.15. The distribution section provides 

the routing and multicasting functions and is made up of a stack of multicast radix-r 

trees. The concentration section uses the knockout principle and is made up of a row 

of N-to-L priority concentrating sorters. 

The knockout parameter L, used in the multicast switch to describe the concen­

trators, decides how many cells are accepted by the output buffer in each output line 

in a given cycle. When L = 4, this situation is somewhat similar to the four-cell 

acceptance at each output line of the BG switch. Clearly, if a larger value was used, 

better performance would be obtained, but the hardware complexity of the output 

buffers would also increase correspondingly, and the buffer speed becomes a con­

straint. As the PINIUM switch does not have any input buffers, much larger values 

of L are required. It has been found that L should be above 8 so that cell loss rates 

of better than 1 x 10-6 can be obtained, and a figure of 16 is recommended. As the 

BG switch employs input buffers, the output buffers can be much simpler than those 

in the PINIUM switch. 

Due to the above, as well as to other architectural differences between the PINIUM 

switch and the BG switch, comparing their performances is not straightforward [78]. 

For example, a 64 x 64 PINIUM switch with L = 16 gives a cell loss probability of 

better than 1 x 10-6 under 85% uniform random traffic when 37 output buffers are 

provided. When all other variables remain the same, providing 50 or more output 

buffers virtually eliminates cell loss. The 64 x 64 BG network under 85% uniform 

random traffic requires 39 output buffers as well as 5 input buffers to ensure that 

there is virtually no cell loss. These figures indicate that the two switches have 
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similar performance under random traffic with similar buffer sizes. However, the 

BG switch is less complex. A knockout factor of 16 in the PINIUM switch would 

require output buffers that operate at sixteen times the speed of the link. Given that 

a 64 x 64 PINIUM switch and the 155.52 Mbps OC-3 link are used, the required 

minimum memory speed is 2.48 Gbps. As switch sizes become larger and link speeds 

grow higher, it is not practical to build the output queue for such a switch using the 

current memory storage technologies. 

4.7.2 Abacus Switch 

The Abacus switch is modified from the purely output-buffered MOBAS switch (59]. 

Input buffers are equipped to temporarily store cells that have lost contention inside 

the multicast grouping network (MGN). A total of K feedback lines are added. Each 

feedback line is actually a broadcast bus, which is used to report blocking messages 

to all IPCs. Multicast translation tables (MTTs) are used between the MGN and 

small switch modules (SSMs) to generate the routing and replication tag that will be 

used for switching inside SSMs for cells that managed to depart from the MGN. The 

architecture of the Abacus switch is shown in Figure 2.14. 

In the Abacus switch, cell replication is achieved by broadcasting incoming cells to 

all routing modules (RMs) of the MGN. The group expansion ratio Land the group 

size M can be engineered to meet the performance requirement. In Figure 4.29, the 

average input and output queueing delay is compared for 256 x 256 BG switch and 

Abacus switch under both unicast uniform random traffic and bursty traffic with an 

average burst length of 15. The results for the Abacus switch are from [2, 60]. It has 

been observed that the input queueing delay is almost negligible when compared to 

output queueing delay for both switches. Both switches perform much better under 

random traffic than bursty traffic. The Abacus switch performs only slightly better 
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than the BG switch. For example, under 70% bursty traffic, the output queueing 

delay for Abacus switch is around 35 switching cycles while that for the BG switch 

is around 36. Under 80% bursty traffic, the output queueing delays are 58 and 62 

respectively for the two switches. 

In Figure 4.30, the input queueing delay for unicast, multicast, random, and 

bursty traffic conditions are compared. The trends are consistent for both switches. 

Under the same offered load, both switches perform better under multicast traffic 

than unicast traffic. Again, the Abacus switch performs slightly better than the BG 

switch. For example, under 80% unicast and multicast bursty traffic, the average 

input buffer delays are around 0.6 and 0.5 switching cycles for the Abacus switch, 

while those numbers become 1.7 and 1.4 for the BG switch. 

In Figure 4.31, input buffer overflow probability in terms of input buffer size is 

measured under 90% unicast bursty traffic with an average burst length of 1, 10, and 

15, respectively. Although the amount of input buffering resource required by the 

BG switch is always only a small fraction of the output buffering, it is higher than 

that for Abacus switch. This implies that the internal blocking for the BG switch is 

slightly higher than that for the Abacus switch, especially when highly bursty traffic 

is used. 

Through the above comparison and discussion, it seems that the BG switch is 

inferior to the Abacus switch in performance. However, it has been noticed that there 

is a big difference in hardware to construct the two switches. For the 256 x 256 Abacus 

switch, group size M = 16 and expansion ratio L = 1.25 is used. That means there 

are a total of 16 RMs, MTTs, and SMMs used to construct the switch. Each RM is a 

256 : 20 knockout switch and each SMM is a 20 : 16 knockout switch. The hardware 

complexity is estimated in terms of the number of crosspoints for a switch. Then the 

complexity for the Abacus switch is 16 x 256 x 20 + 16 x 20 x 16 = 87, 040, which is 

155 



140 

120 

~ 100 I 
a; 
() 

c 80 
=-
>. 
ctl 

60 a; 
0 
CD 
0) 40 ctl 
(i) 
> c:x: 20 

0 
0.4 

I 

I 
I 

I 
I 

I 
utput Buffer Oela (13-15) I I 

trput Buff r Delay fl=t5) 
' v 

utput Bu fer Oela (ll=1) 
' ~ / 

pu. oUT er ue ay -J) 

'-..,XI"' 
__..-' '~'~" __. 

,____..... 
~ ~ 

1- ~~""" ~~ 
0.5 0.6 0.7 

Traffic Load 

0.8 0.9 

I 

1.0 

(a) Comparison of .average input buffer delay and average output buffer delay of BG 
Switch under unicast random and bursty traffic 

100 
N = 256 

M = 16 

L = 1.25 

80 
I 

I 

60 I 
I 

A'erage 
Delay 

(TinF' Slot) 
I 

40 I 

output buffer delay (/3 = 15) 
I 

input buffer delay (/3 = 15) 

output buffer delay (/3 = 1) 

20 
input buffer delay (/3 = 1) 

04----.----r---.----r~~r===~===r--~--~~~~ 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8 0.9 1.0 

inout offerr~d load p; 

(b) Comparison of average input buffer delay and average output buffer delay of 
Abacus Switch under unicast random and bursty traffic (taken from [2], pp. 204) 
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BG switch and Abacus switch 
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even higher than the crossbar switch (256 x 256 = 65, 536). The complexity for an 

256x 256 BG switch is given by 1 x 256x 1 x2+1 x256x 2 x4+6 x256x4x4 = 27,136. 

Therefore, the complexity for the BG switch is less than one third of the complexity of 

the Abacus switch. This number does not include the complexity associated with the 

translation tables and the feedback buses, which are required by the Abacus switch 

but not for the BG switch. As the switch size grows larger or when the Abacus switch 

needs to be reconfigured to achieve higher performance, the hardware complexity will 

become even higher. 

It appears that the higher performance of the Abacus switch is actually due to its 

very high hardware complexity inside the fabric. In addition, high-speed memory and 

complicated control are also required by the Abacus switch because the output buffer 

is shared by all the channels within the same group. If the same 256 x 256 switch 

is used as the example, then a group size M = 16 means that the output buffer has 

to run at least 16 times the link speed. There is no doubt that the control function 

has to be fast enough to coordinate and achieve full sharing among the buffers. As 

higher link speed and larger group size are adopted, the buffer control unit will soon 

reach its bottleneck. Even though such sharing can improve buffer utilization, it is 

very costly to build for large switches. Besides this, there is no feedback mechanism 

to report blocking that occurs inside the SSM or due to output buffer overflow. As a 

result, cell loss will happen when such a blocking situation occurs. Therefore, SSM 

and output buffer have to be configured large enough to accommodate any kind of 

incoming traffic, which will result in increased cost. 

Compared with the sophisticated buffer used in the Abacus switch, all building 

blocks used in the BG switch, including the buffer design, are simple and will not 

become bottlenecks for the switch. As well, it has been discovered in the study 

of the pipeline structure of the BG switch [14] that a single-plane BG switch is 
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enough to achieve a satisfactory performance in most traffic conditions. With two­

plane-pipelining, the performance becomes very close to the ideal switch. Therefore, 

using the simple method of replicating the whole switch plane, the BG switch can 

be easily adjusted to much higher performance with less or comparable hardware 

complexity than the Abacus switch. Furthermore, such pipelining could improve the 

fault tolerance, robustness and reliability of the switch. It is clear that the BG switch 

has superior performance in comparison to the Abacus switch in relation to the level 

of hardware complexity. 

4.8 Summary 

In this chapter, the performance of the multicast BG switch is investigated in de­

tail under various uniform and nonuniform multicast traffic conditions. A theoretical 

model is developed to cope with the performance analysis under multicast random 

traffic and is used to verify the simulation results obtained from the BG switch sim­

ulator. Performance results are compared to those of the ideal non-blocking multi­

cast switch as well as to two other switches reported in the literature. Performance 

analysis confirms the architectural feature that the BG switch is a predominantly 

output-buffered switch. The use of very small amounts of input buffering resources 

not only helps to reduce the overall complexity of the switch, which makes it possible 

to build a practical switch based on this architecture, but also helps to achieve a 

close to optimum performance by reducing HOL blocking. It has also been shown 

that under the same offered load, with larger the mean fanout of the traffic, better 

loss performance will be achieved. In general, the performance of the multicast BG 

switch is very close to that of the ideal switch and its scalability and low complexity 

make it a strong candidate for use in high-speed multicast switching networks. 
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Chapter 5 

Design and Implementation of the 
Multicast BG Switch 

5.1 Introduction 

As the size and complexity of digital systems increase, early stage paper-and-pencil 

design methods become no longer suitable. Instead, computer-aided design (CAD) 

tools, which are characterized by their sophisticated design entry, advanced veri­

fication functionality and automatic hardware generation, are introduced into the 

hardware design process (86] . Hardware description languages (HDLs) are used to fa­

cilitate the computer-aided system design process. Among the many HDLs, the Very 

High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) 

and Verilog are the two major languages which are widely used for digital hardware 

design. 

In this chapter, the complete design and implementation process of the multicast 

BG switch is described with an emphasis on the front-end design issues. The general 

methodology of the design process is first reviewed with the focus on the digital IC 

design flow recommended by the Canadian Microelectronics Corporation (CMC) [11]. 

Then, the detailed design process is explored for the multicast BG switch using the 

0.18 f-Lm CMOS technology. The testing methodology is described with respect to the 
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efficient functional verification of the hardware design. Finally, the synthesis results 

of the design are presented with emphasis on timing and area requirements. 

5.2 Digital System Design Flow 

Generally speaking, an initial design idea goes through several transformations before 

the final hardware implementation is obtained. At each step of transformation, the 

designer checks the result of the last transformation, adds more information, and 

passes it through to the next step of the transformation [86]. When all the design and 

verification steps are completed, a stream file to describe the mask layer information 

for the circuit will be created. This is the file which is used for chip fabrication after 

Design Rule Checking (DRC) is completed. 

Figure 5.1 shows the digital system design flow using the Deep Sub-Micron (DSM) 

technology recommended by CMC [11]. The design flow can be divided into two 

stages. The first four steps belong to the front-end design stage, in which VHDL and 

Synopsys tools are used. The remaining five steps comprise the back-end design stage, 

in which Verilog and Cadence tools are used. Simulation and synthesis are the major 

concerns for the front-end design. A design idea is converted to a gate-level netlist 

through this process. In the back-end design, the major interest is on the placement 

and routing of the imported gate-level netlist onto the silicon wafer. Although the 

main design work of the multicast BG switch described in this chapter is on the front­

end design aspect, to provide a complete picture about the DSM design flow, the nine 

steps are briefly reviewed. 

Step one is used for the Register Transfer Level (RTL) code simulation. The objec­

tive is to verify the functionality of the RTL code describing the design. The top-down 

design and the bottom-up implementation are the most important processes. Even 
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though current CAD tools can support synthesis from a high-level description directly 

into hardware, such a synthesis process usually results in too much redundancy and 

therefore the results are not optimal. The situation may become even worse when 

synthesizing a large design, especially when the control logic is quite complicated. 

However, for small and simple designs, it is efficient and trustworthy for the CAD 

tools to achieve an excellent result. Therefore, in our design, instead of trying to 

implement the whole system at once, a divide-and-conquer strategy is followed in the 

top-down design process. The design is recursively partitioned into its components 

until all components become manageable parts. The design of a component is said to 

be manageable if the component is available as part of a library, or it can be imple­

mented by modifying an existing part, or it can be efficient handled by a synthesizer 

or an automatic hardware generator (86]. 

When the top-down design process is completed, a partition tree and hardware 

implementation of the leaf components become available. Then, the bottom-up imple­

mentation process begins. During the process, hardware components corresponding 

to the leaves of the tree are recursively bound to make the complete system (86, 87]. 

The objective of the synthesis step is to import the RTL description of a design 

into a Synopsys database and convert it into gate-level circuits (11]. In this step, 

each leaf component of the partition tree is analyzed and elaborated by the Synopsys 

Design Analyzer. Because of the hierarchical architecture, a high-level component can 

be imported only when all its subcomponents are available in the current database 

or in the active work library. After the complete design is successfully imported, 

it is constrained based on the designer's performance objectives. In most cases , the 

constraints include I/0 pads specification, scan style definition, output load definition, 

clock definition and so on. The constrained design is then synthesized into gate-level 

circuits if all constraints are satisfied. Otherwise, the RTL code needs to be modified, 
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simulated and re-synthesized until all constraint requirements are met. 

The next step is scan insertion based on the standard scan-based Design For 

Testability (DFT) techniques. The Synopsys Test Compiler is used. The purpose is 

to make the design testable. The Test Compiler first substitutes all sequential devices 

with scan equivalents, and connects them together to form a scan chain. Then it 

generates a set of test vectors which can detect "stuck at 1" (SAl) and "stuck at 0" 

(SAO) faults in the chip. Other tasks such as vector compaction, and fault coverage 

estimation will also be performed in this step [11). 

In step four, gate-level simulation is performed. Recall that in step one, the RTL 

code was simulated to ensure the design was functionally correct. Timing was not 

considered because hardware timing information, which is tightly associated with 

the targeted technology library, is not available yet. Through synthesis, the RTL 

description is converted to a gate-level circuit and at this point it is possible to verify 

its functionality with timing information included. Successful gate-level simulation 

completes the front-end design process. 

Step five starts the IC physical design, in which the fioorplanning is performed. 

The objective is create a fioorplan for the design including a default group of cells, I/0 

ring connected by abutment, and defined placement sites for all cells [11). Cadence 

tool Physical Design Planner (PDP or DP) is used for physical placement of a design. 

Qplace sequencer is used in step six for the timing-driven placement of standard 

cells. The objective is to use forward-annotated timing information from Synopsys 

tools to perform core cells placement. 

Step seven is used for clock tree generation. The major objective is to insert clock 

buffer cells and nets to create a balanced clock tree. After the clock tree insertion, 

another gate-level netlist is generated [11). 

In step eight, the new gate-level circuit after clock tree insertion is simulated again 
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for functionality verification. Then, the placed design, including all design libraries 

and constraints needed to route the design, is imported into the Silicon Ensemble 

environment. Using existing timing constraints, routing with antenna and crosstalk 

fixing is performed. The routed design is verified to meet timing goals. 

In the last step, a number of tasks are performed. First, using the Diva Layout-

Versus-Schematic (LVS) tool from the Cadence Design Framework II (DF If) toolbox, 

LVS is performed to verify the placed and routed version of the design with the 

gate-level netlist generated in step seven. Manual edits of the layout is carried out 

to fix minor DRC violations. Further DRC checking is performed to the resulting 

design. The feedback from the DRC checking is imported again into the DF II for 

antenna problems fixing on identified nets. Metal and poly fill are added to meet the 

fabrication requirements. Finally, after the LVS and DRC verification, stream output 

is obtained for chip fabrication, which concludes the digital system design process. 

5.3 Design and Implementation of the Multicast 
BG Switch Fabric 

In this section, the design process of the multicast BG SF is explored. Before starting, 

the switch architecture, which is depicted in Figure 3.1, is briefly reviewed. The basic 

architecture of anN x N multicast BG switch is composed of N IPCs, anN x NSF, 

and N OPCs. TheN x NSF is composed of n + 1 stages, where n = log2 N. For 

the first n stages, 1 x 2 SEs are used for stage 0, 2 x 4 SEs are used for stage 1, and 

4 x 4 SEs are used for all remaining stages. The last stage (stage n) is the output 

buffer stage, which can accept up to 4 cells per output line in one switching cycle. 

Each stage has N SEs numbered from 0 to N - 1. 

As mentioned earlier, the main research interest is the SF design. The design of 

a fully-functioned IPC and OPC is beyond the scope of this research. However, to 
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Figure 5.2: Resulting structure after first level partitioning 

test the SF and to demonstrate the switching operation, simplified IPCs and OPCs, 

which possess basic required functions to interface with the SF, are used. 

Following the divide-and-conquer strategy, the design requirements are analyzed 

and a suitable architecture model is developed. The switch adopts a three-phase 

switching method and follows a single-plane, bufferless, and non-pipelined SF ar­

chitecture. The first-level partitioning is shown in Figure 5.2. Obviously, further 

partitioning for each leaf node is needed. 

5.3.1 Input Port Controller (IPC) 

The functionality of the simplified IPC are summarized as following: 

1. Buffer incoming cell in the input queue if it is not full, otherwise discard. 

2. Generate the internal self-routing and replication tag for HOL cell. 

3. Buffer backpressure stream from the SF into the acknowledgement buffer. 

4. Update HOL cell's tag information. 

5. Remove HOL cell when all copies are delivered. 

Function 1 requires an input queue be incorporated at each IPC. A FIFO queue 

running at external link speed is used. It can be implemented through shift registers 

or memory design. For function 2, tag generation circuitry is needed to generate the 

self-routing and replication tag for the HOL cell. Assuming the destination request 

of incoming cells has been translated to the bitmap format through table lookup 
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Figure 5.3: Resulting structure for IPC after second level partitioning 

and using the bitmap tag encoding scheme, the destination request is directly used 

as the internal tag. Function 3 requires a maximum N -bit buffer space be included 

in each IPC to store acknowledgement information. The tag update circuit, as re-

quired in function 4, uses this information together with the HOL cell's destination 

request to decide whether to remove or retain the HOL cell for the next switching 

cycle. Finally, the IPC controller is required to generate control signals for different 

components, which include it1put queue enable, tag/payload pushout enable, acknowl­

edgement receiving enable, and handshaking signals with the SF. The control logic 

can be implemented as a state machine, which utilizes a sequencer to provide timing 

information. 

Following the above description, a second-level partitioning is performed on the 

IPC and shown in Figure 5.3. There is no need to continue the partitioning to the 

stage because modern synthesis tools, such as the Synopsys Design Analyzer, are 

efficient in generating a hardware circuit from a behavioral or dataflow description of 

the moderate-sized design. Therefore, after the second partitioning, noting that tag 

generation and tag update circuitry is just combinational logic, a dataflow description 

should suffice. The buffer design is quite standard and a behavioral description would 

be enough for that purpose. The IPC controller can be easily realized by using 
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behavioral description for a state machine. The sequencer design will be studied 

in the next section. Hence, all leaf nodes become manageable design modules, as 

represented by the shadowed boxes in the figure. 

5.3.2 Switch Fabric (SF) 

As described earlier, the multicast BG SF utilizes a MIN design. The routing and 

replication functionality is distributed into the functionality of each SE. Following the 

design methodology described in Section 5.2, the second and third level partitioning 

of the SF is carried out and presented in Figure 5.4. The SF is first partitioned 

into n stage components and then each stage component is partitioned into SEs, 

stage controller and sequencer. The sequencer provides timing information for the 

stage controller. The stage controller, basically a state machine, provides the control 

signals for all SEs within the stage. After the above two partitions, a partition tree 

has been obtained, which has three leaf nodes of two types: the sequencers and stage 

controllers are now terminal nodes, while the SEs require further partitioning. 

5.3.2.1 Sequencer 

The sequencer plays an important role in the operation of a single stage, as well as 

the whole SF. The core of the sequencer uses a counter design, which counts on the 

rising edge of the applied clock signal. A reset signal (ReseLin), issued by the stage 

controller on the falling clock edge of the previous switching cycle, initializes the 

sequencer to zero. At the beginning of the current switching cycle, the negative edge 

of the reset signal triggers the sequencer to start counting. The pattern matching 

circuit compares counter output with the desired state. Its output is used by the 

stage controller to decide the next state. The interface of the sequencer is shown in 

Figure 5.5. Sequencer output signals, which represent different states and are used 
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by the stage controllers, are explained in the next subsection. 

The counter size is selected based on the maximum possible range of clock cycles 

to be counted. It is determined by the length of the tag and acknowledgement bits 

exchanged between stages, the process time of the SE, and the payload. In between 

any two stages, including IPC and OPC, besides the tag, there are 3 fixed bits of 

priority to be transmitted. The process time at each SE takes 4 clock cycles to 

complete. To get the total number of cycles to be counted, the following notations 

are used: 

Lpayload: the length of the fixed-size payload, 

Ltag: the accumulated tag bits exchanged in the SF, 

Lmax: the maximum possible number to be counted, in clock cycles, 

and the maximum count can be calculated by 

Lmax - Ltag + Lpayload 

N N 
[ ( N + 3) + ( 2 + 3) + ... + (1 + 3)] + [ N + 2 + ... + 1] + 4n + Lpayload 
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N 
2 ( N + 2 + ... + 1) + 3 ( n + 1) + 4n + Lpayload 

- Lpayload + 2n+2 + 7n + 1. (5.1) 

Therefore, with some margin (, the counter size nc can be selected by using 

(5.2) 

5.3.2.2 Stage Controller 

Stage controller plays the most important role in the switching operation. There are 

two possible ways to implement the control function: centralized and distributed. 

Centralized fabric control is used in the unicast BG switch design [14]. The 

network main controller (NMC) is used to generate all required control signals inside 

the SF. The advantage is that it is easy to implement and has less hardware complexity 

since all stages share the same controller. However, the main disadvantage is that 

it does not scale well as the switch size expands. In the architectural scalability 

discussion in Section 3.8, it has been shown that to double switch size, we only need 

to duplicate the smaller switch module and add one more stage in the front. However, 

using centralized fabric control, the main controller has to be redesigned as the switch 

size grows. This would be a major obstacle for architecture expansion if the complete 

switch is to be implemented on a single chip. 

In our design, a distributed control method is used. The SF control function is 

distributed into n stage controllers, which are shared by all SEs within the same 

stage. A stage controller is basically a state machine that changes its state based 

on sequencer output. Each stage controller has exactly the same number of states. 

The difference between them is only in the number of clock cycles associated with 

different states. The state that a stage controller can be in is given below: 

Wait..I'ag: Wait state, waiting for tags to arrive; 
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Receive_Tag: 

Tag_Load: 

Decision: 

Tag_Pushout: 

WaiLAck: 

Receive...Ack: 

Load...Ack: 

AckYushout: 

Send_Payload: 

Suspend: 

Active state, receive tags from adjacent upstream stage; 

Active state, prepare tags for downstream stage and load 

into tag pushout buffer banks; 

Active state, make self-routing and replication decision 

based on received tags; 

Active state, transmit tags to downstream stage; 

Wait state, waiting for acknowledgement bits from down­

stream stage; 

Active state, receiving acknowledgement from downstream 

stage; 

Active state, prepare output acknowledgement for down-

stream stage and load into ack pushout buffer banks; 

Active state, transmit acknowledgement to upstream stage; 

Active state, payload data transmission from IPC to OPC; 

Idle state, wait for the reset signal from the IPC to start 

the next switching cycle. 

At the beginning of each switching cycle, an active high ResetJn signal from the 

IPC stage controller resets all fabric stage controllers to the initial W ait..I'ag state. 

On the receipt of the ReseLl n signal, each stage controller generates a ReseLOut sig­

nal to reset all its subordinate SEs and sequencer. The negative edge of the ResetJ n 

signal triggers each stage controller to start the sequencer as well as a new round of 

switching operation. The ASM chart of the stage controller is shown in Figure 5.6. 

When switch size expands, the ReseLin to the smaller switch module will be delayed 

the number of clock cycles as required by the new added Stage 0. 

Generally speaking, a stage controller closer to the IPC changes to the Receive_Tag 

state earlier, and changes to Receive...Ack state later. Timing information of different 
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states of the stage controller for an 16 x 16 switch is shown in Table 5.1. The number 

on the top of the arrow line between two blocks indicates the number of bits to be 

transferred between the two stages following the arrow direction. The state changes at 

different stages, their starting time and ending time, and the corresponding durations 

are also given in the table. The unit is in clock cycles. 

5.3.2.3 Switch Element 

As discussed earlier, the 4 x 4 SE is more general and will be used to describe the 

design process in the following discussion. 

Figure 5.7 depicts the architecture of a 4 x 4 SE. To support the three-phase 

switching operation, the internal architecture of each SE is designed to provide two 

channels, forward and backward, and therefore contains three major functional blocks: 

the forward-path control unit (FCU), the admission control unit (ACU) and the 

backward-path control unit (BCU). 

I. Forward-path Control Unit 

The FCU is used for tag and payload transmission, which is comprised of the tag 

receiving buffer bank, tag pushout buffer bank, and source/path select multiplexer 

group: 

1) Tag Receiving Buffer Bank 

The tag receiving buffer bank is used to temporarily hold the tag bits, which are used 

by the ACU to make the routing and replication decision. It is a serial-in-parallel-out 

device and is composed of one queue in the case of 1 x 2 SEs, two queues in the 

case of 2 x 4 SEs, and four queues in the case of 4 x 4 SEs. Each queue is a shift 

register of 2n-i + 3 bits for each SEat the ith stage, where 0 < i < n. The 2n-i bits 

are used to store the bitmap format tag while the 3 bits are used for cell priority. 
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Unless otherwise stated, the length of the buffer banks used in the paper refers to the 

length of each single shift register. As described in the dynamic-length self-routing 

and replication algorithm in Section 3.4.2, to prepare tags for the next stage, current 

bitmap tags are halved and loaded into the pushout buffer bank together with the 

three priority bits, as shown in Figure 5.8 (a) for an example queue at Stage i. 

2) Tag Pushout Buffer Bank 

The tag pushout buffer bank stores the tags ready to be pushed out to the next stage. 

Like the receiving buffer bank, it is also composed of one, two, and four queues in the 

case of 1 x 2, 2 x 4, and 4 x 4 SEs, respectively. However, it is a parallel-in-serial­

out device. Each queue corresponds to a queue in the receiving buffer bank and is 

comprised of two shift registers, each of 2n-i-l + 3 bits. The parallel outputs of the 

receiving buffer bank are simultaneously loaded into the tag pushout buffer bank for 

transmission, as shown in Figure 5.8 (b). 

A minor difference should be mentioned for the pushout buffer bank design in the 

last stage (Stage n- 1). As the output of this stage is connected to the OPC, no 

more routing and replication action will be taken. Therefore, no bitmap tag is sent. 

However, since there are four links towards each OPC, to decide which cell will be 

accepted in the case of not sufficient buffering space at OPC, and to decide the order 

of cells that will be queued in the output queue, the 3-bit cell priority plus an activity 

bit are loaded into the pushout buffer bank. 

3) Source/Path Select Multiplexer Group 

The multiplexer group provides the path for any possible matching between the four 

input ports and four output ports. It also controls whether tag or payload will be 

transmitted to the next stage. During the reservation phase, outputs from the pushout 
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Figure 5.8: Queue example for tag receiving and pushout buffer bank in FCU 

buffer bank are used as the inputs, while during the data transmission phase, the data 

input line is directly fed to the select multiplexer group and the two buffer banks are 

then bypassed. Multiplexer select signals are generated by the ACU based on the tag 

and priority of all active cells. 

II. Backward-path Control Unit 

The BCU is used for acknowledgement transmission. Unlike the FCU, as information 

is traversing from a downstream stage to an upstream stage, the length of acknowl-

edgement is getting longer like a converging tree. Similar to the FCU, there are two 

types of buffer banks used in the BCU. For SEs at Stage i, an ACK receiving buffer 

bank of size 2n-i-l and an ACK pushout buffer bank of size 2n-i are used. Besides 

that, two more circuits are used in the BCU: the blocking information generation 
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circuitry (BIG) and the acknowledgement output generation circuitry (AOG). 

1) Blocking Information Generation 

BIG circuitry is used to generate a negative acknowledgement for a cell that loses its 

output contention. In this case, for a multicast cell, all switch output ports that are 

reachable from this SE's output link are marked as blocked. BIG results are then used 

by the AOG circuitry to generate the final ACK output when the acknowledgement 

for those successfully transferred cells comes back from downstream stages. 

2) Acknowledgement Output Generation 

The AOG circuitry is used to generate the final acknowledgement outputs that are 

passed back to the previous stage. Two scenarios should be considered: a) when a cell 

is successfully transferred, and b) when blocking occurs during switching. In the first 

case, the work for the AOG circuitry is to concatenate the received acknowledgement 

with 2n-i-l Os (when it is a unicast cell) or concatenate the acknowledgement received 

from the upper link to that from the lower link from downstream stages (when it is 

a multicast cell), and form its final ACK output. In the second case, the acknowl­

edgement for the blocked part is generated by the BIG circuitry immediately while 

the acknowledgement for the successfully transferred part comes from downstream 

stages. They are concatenated by using the AOG circuitry and then loaded into the 

2n-i bit pushout buffer bank for transmission. 

III. Admission Control Unit 

The ACU is a purely combinational circuitry which forms the heart of theSE. The 

interface diagram is shown in Figure 5.9. The purposes of all these input/output 

signals are marked on the side of the signal. The most important work the ACU does 

is to make routing and replication decisions based on the received tag information. 
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Figure 5.9: Interface diagram for admission control unit 

Priority routing is a feature considered in the multicast BG switch to resolve link 

contentions. The cell with the highest priority is assigned to the output first and 

then the cell(s) of the next priority level and so on until either all the outputs are 

assigned or all active incoming cells are processed. When all the outputs are assigned, 

the remaining requests are blocked. 

1) Bitonic Sorter 

A bitonic sorter [38) in Figure 5.10 is used inside the ACU to pre-process incoming 

cells based on their priority levels. Let Bx, Tx and Px, which are on the input side 

of the sorter, denote line number, tag and priority of the cell on input link x, where 

x E {0, 1, 2, 3}. After sorting, priority bits become useless and therefore are discarded. 

Line number By and the corresponding tag Ty, where y E {a, b, c, d}, appear on the 
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Figure 5.10: Bitonic sorter for cell priority sorting 

output side of the sorter. 

The ACU then processes the tag following the order Ta ----* Tb ----* Tc ----* Td. Sy, 

where y E {a, b, c, d}, provides the input link number associated with the tag. Output 

resources are assigned during the process till either all incoming requests are processed 

or all output resources are used up. 

For cells of the same priority, in the current design, the cell from smaller input 

line number is given a higher priority over others. Therefore, input 0 of each SE has 

the highest priority, input 1 has a higher priority over input 2 and 3, and so on. To 

achieve a better fairness, a pseudo-random number generator can be used inside each 

sorting element to randomly pick up one cell among the cells of the same priority. 

2) Control Signals Generation 

After incoming tags are sorted on their priority, the ACU starts the routing and 

182 



replication decision making process. It does so through the proper set/clear of various 

control signals. The decision is based on the request type ( unicast or multicast) and 

the remaining available resources. The truth table for all control signals generation 

is provided in Appendix F. 

5.3.3 Output Port Controller 

Because our main research interest is on the SF design and test , the OPC functionality 

is realized by using the VHDL testbench and external data files. The OPC assumes 

that a single output queue is incorporated for each output. The service discipline is 

FIFO. During each switching cycle, up to four cells can be buffered at the output 

queue while only one cell can be dequeued to the external output link. Because the 

output queue accounts for the majority of buffering resources and normally requires 

a large amount of hardware complexity, it would be wise to separate them from the 

SF and put them on separate IC chips. This will also make future expansion easier 

when more buffering resources are required at the output queue. To facilitate such 

an arrangement and make the SF function verification easier, the buffer stage of the 

SF is included in the OPC during implementation. Therefore, each OPC can be 

viewed as an entity which has four input links from the SF, and one output link for 

cell departure to external networks. The interface diagram of the OPC is drawn in 

Figure 5.11. Handshaking signals are reserved control signals which will be later used 

for the failure detection purposes. The functionality of the OPC is summarized as 

follows: 

1. Store incoming cell priority and activity bit to OPC tag buffer. 

2. Sort active output requests based on cell priority level. 

3. Decide to accept or reject cell request based on the available buffering space. 

4. Generate acknowledgement for all input lines. 
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External Output Link 

Control 
Signals 

5. Store payload for successfully switched cells from IPC into its output queue. 

6. Transmit HOL cell in output queue to external output link. 

7. Remove the HOL cell after successful transmission. 

Based on the above required functions, the second-level partitioning of the OPC 

design takes place and the result is shown in Figure 5.12. Each terminal block of the 

partitioning tree is described in the following: 

Priority Tag Buffer Bank 

The priority tag buffer bank, shown in Figure 5.13, performs a serial-to-parallel con­

version function. It is comprised of four parallel 4-bit priority tag buffers, one for 

each input line. For each buffer, one bit is used to indicate the link status and the 

other three bits are for cell priority associated with that link. The content of the 

buffer bank is refreshed at the end of the reservation phase for each switching cycle. 
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Figure 5.12: Resulting structure for OPC after second level partitioning 

Unlike the buffer banks used in IPC and SEs, there is no routing and replication tag 

pair received, and its content need not to be further pushed out. 

Priority Sorter 

All incoming cells are sorted on their priority levels using a 3-bit bitonic sorter, which 

is exactly the same as the sorter used in the ACU in Figure 5.10. The sorter is used 

in the OPC to decide the order of cells in the output queue because there might 

have up to four cells coming into the OPC during the same switching cycle. The 

top sorter output provides the line number which has the highest cell priority while 

the bottom output provides the lowest. Based on the number of active cell requests 

and the remaining output buffer space, the OPC controller decides the cell(s) to be 

accepted. A blocked cell is negatively acknowledged while a succeeding cell's payload 

is then queued directly into the output queue during the data transmission phase. 

Acknowledgement Handler 

At each OPC, the only information to report is the output contention results for the 

four incoming links, that is, whether the cell can be accepted in the output queue 

or not , hence, one bit suffices. An acknowledgement is generated for each incoming 

link by the acknowledgement handler circuitry and is transmitted to the fabric at 

the beginning of the acknowledgement phase. The output of the priority sorter is 
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Figure 5.14: Interfacing diagram for acknowledge handler 

used by the acknowledgement handler. Based on the number of active cell requests 

and the remaining buffering space for the OPC, the handler circuitry decides whether 

to positively acknowledge (ACK) or negatively acknowledge (NAK) the requests for 

each of the lines. An ACK will be issued until all buffering resources are used up. The 

acknowledgement handler interface diagram and its ASM chart is shown in Figure 

5.14 and Figure 5.15, respectively. 

Payload Output Buffer 

The payload output buffer runs four times a single link speed on receiving, although it 

transmits only one cell to the output link during each switching cycle. It is comprised 

of a chain of cell buffers with each cell buffer constructed by a chain of shift registers. 

The output buffer size B 0 , which is given in cells, should be carefully selected based on 

the performance requirement as described in Chapter 4. The OPC controller controls 

the operation of the output queue with the help of the output queue pointer. 

OPC Controller 

The OPC controller is the heart of the OPC and coordinates the work of different 

units. Similar to the controllers used in IPC and SF, it follows a state machine design. 
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Figure 5.15: ASM chart for acknowledge handler 

It uses the output of a sequencer to decide the next state. The ASM chart for the 

OPC controller is shown in Figure 5.16. 

An important component inside the OPC controller is the output queue pointer. 

It points to the next empty location in the output queue which will be used by the 

output queue controller. To calculate the pointer for the next switching cycle, the 

following notations are defined: 

pointer(t): Pointer at the beginning of the current switching cycle, 

arrival(t): Number of cell arrivals during the current switching cycle, 

departure(t): Number of cell departure during the current switching cycle. 

Then, the pointer for the next switching cycle (pointer(t + 1)) is given by: 

pointer(t + 1) = pointer(t) + arrival(t)- departure(t), (5.3) 

where pointer(t) E {0, 1, ... , Ba}, arrival(t) E {0, 1, 2, 3, 4 }, and departure(t) E 
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Figure 5.16: ASM chart for OPC controller 
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{0, 1}. Bois the output queue size at each OPC. 

The pointer circuitry also provides the information about the remaining buffering 

space available for use. The value is given by B 0 - pointer(t) and used by the 

acknowledgement handler to make the proper acknowledgement decision. 

5.3.4 Bottom-up Implementation of the Design 

At the end of the top-down design process, the whole switch design is broken down 

into the design of a number of smaller but manageable terminal components of the 

partition tree. All terminal components are first designed, simulated, and tested 

using VHDL. Then, following a bottom-up implementation approach, the lower level 

components are used to build higher level components until the top entity of the 

design is reached. The complete switch design is shown in Figure 5.17 for an 16 x 16 

multicast BG switch. 

5.4 Hardware Functional Simulation and Testing 

During the hardware design and implementation process, simulation, testing and ver­

ification are carried out at different levels to ensure a correct result. It is important 

that all lower level components are thoroughly tested and proved functionally cor­

rect before moving to higher level components. For small leaf components such as 

flip-flops, multiplexers and shift registers, testing is straightforward. However, for 

large entities such as stage components or the whole SF, it is not straightforward to 

ensure a working function by looking at waveforms because so many input, output, 

and intermediate signals are involved. In this section, the VHDL simulation results 

are presented for SEs at different stages of the 16 x 16 BG SF. Because it is almost 

impossible to verify the correctness of switching through waveform observation, there­

fore, another testing methodology is adopted to test whole SF. The testing method 
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can be easily extended to other switch sizes. 

5.4.1 Hardware Functional Simulation 

SEs at different stages of the implemented 16 x 16 BG switch are simulated to ensure 

the routing and replication function are performed correctly. Figure 5.18 shows the 

simulation results for a 4 x 4 SE in Stage 2. A 5ns clock signal is applied. Signal 

CURRENT gives the current state of theSE. It follows the timing specified in Table 

5.1. In this example, there are three active cells arriving at this SE from input 0, 2 

and 3. Cell tag and priority are marked on the waveform for clarity. The cell from 

input 2 is a multicast cell, but because it has the lowest priority, the destination 

request to the upper link can not be satisfied. The acknowledgement for this cell is 

a concatenation of the received ACK (01) for the successfully delivered copy and the 

blocking information from BIG circuit (11) for the blocked copy, which is 1101 to the 

upstream stage. 

To observe the switching function performed by SEs at different stages in the 

SF, a testing scenario is formed to mimic the interconnection condition so that it 

is possible to observe how a SE performs through waveform observation. As shown 

in Figure 5.19, four 4 x 4 SEs are concatenated back-to-back. Solid lines are used 

to represent intermediate signals for the forward path, while dotted lines are for the 

backward path. Figure 5.20 describes how the tag traverses from the input to the 

output while Figure 5.21 provides the information for the acknowledgement. The four 

CURRENT signals display the status of each SE when the tag and acknowledgement 

signals traverse back and forth and demonstrate how adjacent stages communicate. 

Even though this is not the true case for the real BG switch, however, it helps to 

demonstrate that the switching functions of SEs at different stages are correct. 

192 



0 100 200 300 400 500 600 700 

/TOP/CLK 

/TOP/DATASEL 

/TOP/RESET 

/TOP/INO Tag 1000, Priority 110 

/TOP/IN1 

/TOP/IN2 
Partly 

Tag 1111, Priority 001 Blocked 

/TOP/IN3 Tag 1111, Priority 100 

/TOP/OUTO Tag 10, Priority 110 

/TOP/OUT1 Tag 11 , Priority 100 

/TOP/OUT2 Tag 11, Priority 100 

/TOP/OUT3 Tag 11, Priority 001 

/TOP/ACKINO Ack11 --...., 

""' /TOP/ACKIN1 Ack 10 \ 
/TOP/ACKIN2 Ack 01 

/TOP/ACKIN3 Ack 01 

/TOP/ACKOUTO 

/TOP/ACKOUT1 

/TOP/ACKOUT2 

/TOP/ACKOUT3 

/TOP/UUT/U1 /CURRENT WAITlNG HOLD 

Figure 5.18: Simulation for single SE at Stage0 of 16 x 16 BG multicast switch 

IN0 

Ack0ut
0 

IN, 

AckOut, 

IN
2 

Ack0ut
2 

IN
3 

Ack0ut
3 

IMF. 

I. o. 
SE 

1, o, 
at 

-~~~- 12 0 2 

IMF7 
Stage2 

-'~~- 13 03 

Figure 5.19: Single SE concatenate testing environment 

193 

Out3 

-- Ackln 3 

800 9 

Ack 1100 

Ack1111 

Ack 1101 

Ack 1001 

SUSPEND 



/TOP/CLK 

/TOP/DATASEL 

/TOP/RESET 

/TOP/I NO 

/TOP/IN1 

/TOPIIN2 

/TOP/IN3 

/TOP/UUTIIMFO 

/TOP/UUTIIMF1 

/TOP/UUT/IMF2 

/TOP/UUT/IMF3 

/TOP/UUT/IMF4 

/TOP/UUTIIMF5 

/TOP/UUTIIMF6 

/TOP/UUT/IMF7 

/TOP/UUT/IMF8 

/TOP/UUTIIMF9 

/TOP/UUTIIMF10 

/TOP/UUTIIMF 11 

/TOP/OUTO 

/TOP/OUT1 

/TOP/OUT2 

/TOP/OUT3 

/TOP IT AG_ACTIVEO 

ITO PIT AG_ACTIVE 1 

ITO PIT AG_ACTIVE2 

/TOP IT AG_ACTIVE3 

ITOP/UUT/UO/U1/CURRENT SUSPEND 

/TOP/UUT/U1/U1/CURRENT r~~~==:!!:~~~~~~~~~~~f==~~~~==i 
/TOP/UUT/U2/U 1/CURRENT 

F===============~~~~*=~=======r======~ 
/TOP/UUT/U3/U 1/CURRENT 

~------------~-~~=~~~~~~~~~~~~-~=~~~~========~ 

/TOP/CLK 

Figure 5.20: Tag transmission in single SE concatenate testing environment 

194 



ffOP/CLK 

ffOP/ACKINO 

ffOP/ACKIN1 

ffOP/ACKIN2 

ffOP/ACKIN3 

ffOP/UUT/IMB8 

ffOP/UUTIIMB9 

ffOPIUUTIIMB1 0 

ff0P/UUTIIMB11 

ffOP/UUT/IMB4 

ffOP/UUTIIMB5 

ffOP/UUT/IMB6 

ffOP/UUTIIMB7 

ffOP/UUT/IMBO 

ff0P/UUT/IMB1 

ffOP/UUT/IMB2 

ffOP/UUT/IMB3 

ffOP/ACKOUTO 

ffOP/ACKOUT1 

ffOP/ACKOUT2 

ffOP/ACKOUT3 

ffOP/DATA_ACTIVEO 

ff0P/DATA_ACTIVE1 

ffOP/DATA_ACTIVE2 

ffOP/DATA_ACTIVE3 

ffOP/UUT/UO/U1/CURRENT HOLD SUSPEND 

ffOP/UUT/U1/U 1/CURRENT r=~~~~~~~~~F~~~~~~~==~SU~S~P~E~N~D~=4 
ffOP/UUT/U2/U1 /CURRENT SUSPEND 

F=============~~~~~~~========~======~ 
ffOP/UUT/U3/U 1 /CURRENT 

~==================~~~~~==========~========~ 
ffOP/CLK 

Figure 5.21: Waveform of acknowledgement signal transmission in single SE concate­
nate testing environment 

195 



5.4.2 Testing Environment 

For the complete 16 x 16 multicast BG switch, it is too complex and difficult to 

conclude correct switching operation through waveform observation. Alternative and 

automatic verification method should be considered. Since the main interest is on the 

functional testing of the SF, a combined high-level language and hardware description 

language test method is used. The testing environment is configured as following: 

1. Basic functions which are used to interface the SF are implemented in the 

simplified IPC. The IPC at each input link only provides a buffering capacity for the 

HOL cell. The input queue is emulated through data fetching from an external data 

file by the testbench program. Other functions include acknowledgement receiving 

and processing, and routing and replication tag loading and updating. 

2. Two major functions for the simplified OPC are buffering and acknowl­

edgement. A buffer of one cell size is used to receive the payload. When the complete 

cell is received, it is then stored in the output queue, which is emulated by an output 

data file. Note that there are four output lines connected to each OPC. Therefore, the 

buffer is constructed to be able to accept up to four cells simultaneously in a single 

switching cycle. The acknowledgement signal is issued by the testbench program at 

the end of reservation phase depending the remaining output queue space. 

3. Testing is made on an 16 x 16 multicast BG switch. The bitmap tag 

encoding scheme is used. An ATM cell size of 384 bits is used as the payload length. 

5.4.3 Testing Methodology 

A C /C++ program has been developed to generate cells to be switched by the fabric. 

The generated data is stored in a data file which emulates the input queue, one for 

each input port. During each switching cycle, the testbench program checks the 

acknowledgement output from the IPC. If it is a NAK, that means there is a cell 
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retained at the HOL position which will be switched again during the next cycle. 

Otherwise, the testbench will read a new cell from the data file until either all data 

in the file is read out or the testing time is reached. 

To verify the correctness of switching by the hardware, data at three different 

places are recorded into different output files by the VHDL testbench program. Data 

recording is performed on a switching cycle basis. The first file, called payloadOutput, 

stores data that appears at each output line of the SF. Note that there are four lines 

destined to the same OPC. Therefore, for a 16 x 16 switch, there are 4 x 16 = 64 

blocks of data, each includes a 1-bit activity field, 3-bit priority field, and 384-bit 

payload field, to be recorded during each switching cycle. The content of the output 

queue is a subset of this data file. The second data file is called payloadHOL. It is 

used to record the 384-bit payload at the HOL position for every input line during 

each switching cycle. The third file is used a keep a record the HOL cell's destination 

request at the beginning of each switching cycle and is named as tagHOL. 

When simulation is completed, the three data files are collected and sent to a 

C/C++ program for analysis and verification. In this program, each input link uses 

an array called tagArray to trace copy delivery status of the HOL cell, where each 

array element represents an output port. During each switching cycle, all tagArrays 

are initialized to zero and the delivered cell in the payloadOutput file is read out. 

If it is an active cell, then the payload is used to compare with the HOL payloads 

at different input lines of the same cycle, which is recorded in the payloadH 0 L file. 

When they are matched, the tagArray of that input line is updated for the delivered 

cell. This process continues until all the output lines are checked, in the case of the 

16 x 16 SF, there are 64 rounds of output matching for each switching cycle. 

Since the payload is randomly generated, there exists a possibility that two or 

more HOL cells have the same payload so that the matching results may not be 
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correct. However, the probability that 16 such 384-bit number are exactly the same 

is negligible. And for the rare case that might occur, the software will simply choose 

a different payload value because our purpose is to test the switching function of the 

fabric, the content of the payload does not help. 

Once the output matching is completed, each tagArray is updated with the de­

livered cell(s) sent from its input line. For each tagArray, it is ANDed with the 

corresponding HOL cell tag recorded in the tagHOL file. If the resulting array el­

ements are all zero, the next cell from the input queue file is read out and used as 

the HOL cell for the next switching cycle, hence the next data tag from the tagHOL 

file for this input should be the same as the tag for the next cell. Otherwise, if the 

resulting tagArray elements are not all zero, the HOL cell should be retained and 

switched again, therefore, the next data in the tagHOL file for the input should the 

same the resulting tag array. Whenever there is an mismatching, an error indication 

will be generated by the C/0++ program. 

This process repeats for every switching cycle until all the data is processed. In 

our testing, a total of 100 cells were generated for each input queue file. So, the switch 

is loaded with 100% input load at least for the first 100 switching cycles. Because the 

fanout for each HOL cell is randomly generated, the switch is significantly overloaded. 

It takes much longer time than 100 switching cycles to transfer all the cells. However, 

this case could occur when the switch is momentarily overloaded. The experiment 

proves that the hardware design of the SF is correct. 

5.5 Hardware Complexity and Timing 

Hardware complexity and timing are the two most important measures to evalu­

ate a hardware design. The results are collected from the Synopsys synthesis tool 
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DesignAnalyzer, using the library targeting at 0.18 J-Lm CMOS technology. Table 

5.2 presents the hardware complexity of the 4 x 4 SEat different stages as well as it 

subcomponents. The synthesized circuit, which is in square microns (J-Lm2), is con­

verted to gate count for comparison. The two-input nand gate, which is widely used 

in the literature [87], is used as a reference for the conversion. 

To estimate the complexity of larger switches, the three types of SEs used for 

different stages are first designed and synthesized. The results are provided in Table 

5.3, Table 5.4 and Table 5.5 for 1 x 2 SE, 2 x 4 SE, and 4 x 4 SE, respectively. 

The same type of SE which is used for switches of different sizes will have different 

complexity. This is because the buffering space for tag and acknowledgement for 

different switch sizes are different. The hardware complexity of the stage controller 

is roughly the same for different stages because they have the same number of states. 

The synthesized result is shown in Table 5.6. 

Based on the hardware complexity of SEs and stage controller at various stages, 

the overall complexity of the SF can be estimated. Table 5.7 and Table 5.8 sum­

marizes the complexity for different stage components, as well as the whole SF of 

various switch sizes. There will be a minor difference between the estimation and 

real results. However, because the glue circuit, i.e., some combinational logic circuit 

which connects the SEs, stage controller and stage component, is quite small, the 

estimated result should be quite close to the actual implementation. 

To demonstrate this, for the 16 x 16 BG switch, the whole SF is synthesized with 

Design_Analyzer using a clock of 5 ns, and compared to the above estimation. The 

results for the whole SF directly from the synthesis tool is 112,413 gates, while the 

estimation is 110,400 gates. 

With the 5ns clock, the 16 x 16 SF can run at the speed of 200 Mbps. For 

other switch sizes, SE and stage controller at different stages are synthesized using a 
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tV 
0 
0 

Stage 

and 

SE 

Type 

Stage0 

1 X 2 SE 
Stage1 

2 X 4 SE 
Stage2 

4 X 4 SE 
Stage3 

4 X 4 SE 

Forward-path Control Unit Backward-path Control Unit Admission Control Unit Overall 

Tag Receiving Tag Pushout Source/Path Ack Receiving BIG Circuitry Ack Pushout Bitonic Control SE 
Buffer Bank Buffer Bank Select MUXs Buffer Bank + AOG Circuitry Buffer Bank Sorter Signals Complexity 

Comb. Seq. Comb. Seq. Comb. Seq. Comb. Seq. Comb. Seq. Comb. Seq. Comb. Seq. Comb. Seq. Comb. Seq. 

5.7 141.7 44.7 161.3 19.3 0.0 1.3 117.3 91.0 0.0 43 117.3 288.7 0.0 344.3 0.0 838.0 537.7 

9.0 166.0 33.3 0.0 56.0 205.3 2.7 117.3 168.7 0.0 42.7 117.3 404.7 0.0 452.3 0.0 1169.3 606.0 

17.3 206.7 74.7 0.0 80.0 293.3 2.7 58.7 104.3 0.0 44.0 117.3 434.0 0.0 530.0 0.0 1287.0 671.0 

24.7 143.3 106.7 0.0 64.0 234.7 2.7 29.3 57.7 0.0 22.7 58.7 455.0 0.0 480.0 0.0 1213.3 466.0 

Table 5.2: Hardware complexity of the various SE type and its subcomponents for 16 x 16 BG switch 



Switch Number of Combinational Sequential Total 
size stages part part gates 
4x4 2 727.0 184.3 911 
8x8 3 743.3 303.0 1046 

16 X 16 4 838.0 537.7 1376 
32 X 32 5 1065.3 1007.0 2072 
64 X 64 6 1524.3 1946.3 3471 

128 X 128 7 2339.3 3818.9 6158 
256 X 256 8 3657.0 7577.5 11235 
512 X 512 9 6060.6 15086.7 21147 

1024 X 1024 10 11274.9 30104.4 41379 

Table 5.3: Hardware complexity of 1 x 2 SE of initial stage for various switch sizes 

Switch Number of Combinational Sequential Total 
size stages part part gates 
8x8 3 966.0 367.3 1333 

16 X 16 4 1169.3 606.0 1775 
32 X 32 5 1407.6 1074.6 2482 
64 X 64 6 1980.3 2014.0 3994 

128 X 128 7 3235.0 3885.9 7121 
256 X 256 8 6295.9 7649.9 13946 
512 X 512 9 10307.5 15155.1 25463 

1024 X 1024 10 19700.0 30199.1 49899 
2048 X 2048 11 17778.8 60209.5 77988 

Table 5.4: Hardware complexity of 2 x 4 SEat second front stage for various switch 
sizes 
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Switch Number of Combinational Sequential Total 
size stages part part gates 
8x8 3 1213.3 466.0 1679 

16 X 16 4 1287.0 671.0 1958 
32 X 32 5 1599.6 1090.3 2690 
64 X 64 6 2064.3 1911.3 3976 

128 X 128 7 2701.0 3556.6 6258 
256 X 256 8 5611.6 6843.9 12456 
512 X 512 9 10664.8 13428.8 24094 

1024 X 1024 10 27367.6 27583.3 54951 
2048 X 2048 11 43575.0 53239.7 96815 
4096 X 4096 12 94263.6 107150.8 201415 

Table 5.5: Hardware complexity of 4 x 4 SEat different stages for various switch sizes 

Switch Number of Combinational Sequential Total 
size stages part part gates 
2 X 2 1 282.0 171.3 453 
4x4 2 292.0 172.7 465 
8x8 3 232.7 182.0 415 

16 X 16 4 284.7 171.3 456 
32 X 32 5 300.3 193.0 493 
64 X 64 6 224.0 196.0 420 

128 X 128 7 256.3 190.3 447 
256 X 256 8 283.3 203.3 487 
512 X 512 9 270.7 193.0 464 

1024 X 1024 10 214.6 188.3 503 

Table 5.6: Hardware complexity of different stage controller for various switch sizes 
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Switch 
Switch Fabric Stage 9 Stage 8 Stage 7 Stage 6 Stage 5 

Switch 
8x8 - - - - -

16 X 16 - - - - -
32 X 32 - - - - -
64 X 64 - - - - 222539.0 

128 X 128 - - - 788699.4 911893.0 
256 X 256 - - 2876515.2 3570562.6 3189018.5 
512 X 512 - 10827890.1 13037323.9 12336366.6 6377617.0 

1024 X 1024 42372921.1 51097193.7 56270124.1 24672286.6 12754814.0 

Switch 
Fabric Stage 4 Stage 3 Stage 2 Stage 1 Stage 0 

Size 
8x8 - - 8785.2 11131.1 13887.8 

16 X 16 - 22466.3 28819.5 31792.1 27322.2 
32 X 32 66806.9 79889.3 86493.2 63119.6 54191.1 
64 X 64 256126.3 254894.3 172571.7 125774.6 107928.8 

128 X 128 801461.3 509332.7 344728.8 251084.4 215404.3 
256 X 256 1602429.4 1018209.4 689042.2 501704.2 430355.3 
512 X 512 3204365.1 2035962.8 1377671.0 1002943.8 860257.2 

1024 X 1024 6408236.9 4071469.5 2754927.4 2005422.9 1720061.1 

Table 5. 7: Hardware complexity for stage components of various switch sizes 

Switch Estimated 
Fabric Hardware 

Size Complexity 
8x8 33804.1 

16 X 16 110400.1 
32 X 32 283693.2 
64 X 64 661169.4 

128 X 128 1320550.2 
256 X 256 2639311.7 
512 X 512 5276834.8 

1024 X 1024 10551881.0 

Table 5.8: Estimated hardware complexity for switch fabric of various switch sizes 
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clock of 5 ns. With this clock rate, it has been observed that no positive slack has 

been generated from the report file. Therefore, the SF can comfortably run at 200 

Mbps link speed, which is enough for the targeted OC-3 links. With more advanced 

technologies, such as the 0.13J1m and 0.09J1m CMOS technology, the speed that the 

design can support will be even higher. 

5.6 Summary 

In this chapter, the digital system design methodology and the digital IC design flow 

recommended by CMC are studied. The complete design process is explored for the 

multicast BG switch using the 0.18 11m CMOS technology. Testing methods are 

discussed and verification software is provided for large designs such as the complete 

switch fabric. Synthesis results are provided for switches of different sizes as well as 

for the each subcomponent inside the switch element. The implementation results 

indicate that the core of a 16 x 16 multicast BG switch fabric can be easily fabricated 

into a single IC chip and can comfortably run at OC-3 link speed, which yields a 

switching capacity of closing to 3 Gbps for the overall switch. 
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Chapter 6 

Conclusion and Future Work 

This dissertation has described the design of a new multicast switch architecture, ana­

lyzed its performance through analytical modelling and simulation, and demonstrated 

results from the hardware implementation of the switch fabric module. 

6.1 Summary of Thesis 

The main contributions of this research are summarized as follows: 

• New Multicast Switch Fabric Architecture 

A new multicast Balanced Gamma switch architecture is proposed. The switch 

fabric adopts a MIN structure. Instead of using a dedicated copy network, mul­

ticast cell replication, which is the key characteristic of a multicast switch, is 

handled implicitly through each switch element along with the routing function. 

The architecture design is described in detail in Chapter 3 in which the dis­

tributed control and modular structure are highlighted. The priority switching 

capability provides the switch with the flexibility in handling traffic with differ­

ent quality of service requirements. It is also demonstrated that the proposed 

switch architecture is scalable and can be made fault-tolerant when equipped 

with proper fault detection mechanisms. 
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• Two Important Algorithms 

The concept of self-routing is widely utilized in switches using a MIN structure, 

in which the control of switching operation is distributed over the switch ele­

ments and handled in a parallel fashion. To handle cell mulitcasting inside the 

switch fabric , dynamic-length routing and replication algorithm is developed to 

combine self-routing with self-replication. Using this algorithm, multicast cell 

replication decisions can be made on the fly based on the routing tag pair along 

with routing decisions. To be efficient, the tag is halved before being passed to 

the next stage. That is where the term "dynamic-length" tag comes from. 

Collecting the acknowledgement information in the multicast environment is 

challenging because cell replication can take place at any stage, and cell blocking 

can occur at any time as well. The acknowledgement information should reflect 

the delivery status of all copies of the multicast cell. To obtain such information 

properly and effectively, a dynamic-length backpressure algorithm is designed. 

The algorithm works like a converging tree in which only a simple concatenate 

operation is required. Therefore, the information can be processed on the fly. 

• Multicast Traffic Model 

An important part of the performance analysis is the study and development of 

a multicast traffic model. The traffic model can be described using three random 

processes: arrival, fanout distribution and destination selection. Combination 

of different choices for these three processes produces different traffic types, as 

shown in Figure 4.1. Unicast and broadcast traffic can be properly represented 

using this model as special cases of multicast traffic where the average fanout is 

one or switch size N, respectively. The nonuniform destination selection model 

provides a substantial number of hot spots, which better resembles traffic in 
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real networks, especially when the switch size is large. 

• Analytical Modelling 

The most significant theoretical contribution of this research is the performance 

analytical model of the BG switch under non-bursty multicast random traffic. 

The analysis follows the three-phase switching operation. The cell blocking 

probability at SEs of different stages is analyzed first. With this information, 

the cell blocking probability for the whole switch fabric and traffic arrival proba­

bility toward each output queue are obtained. In the next step, the output queue 

is analyzed based on the resulting traffic arrival condition using the discrete­

time Markov chain. The cell blocking probability, average number of cells in the 

queue and average queueing delay for the output queue can be obtained. Then, 

the overall cell blocking probability for the combined switch fabric and output 

queue is calculated, which provides the probability of cells being kept in the 

HOL position of the input queue. Finally, the input queueing analysis is per­

formed to get the loss performance, delay performance, and buffer requirement 

performance of the input queue as well as the whole switch. 

• High Performance of the Multicast BG Switch 

A comprehensive study is conducted in Chapter 4 to evaluate the performance 

of the BG switch. The analysis has demonstrated that the multicast BG switch 

is an outstanding switch architecture under a wide range of traffic loads and 

various types of multicast random, bursty, and nonuniform traffic. The analyt­

ical model is used to verify simulation results under multicast random traffic. 

For bursty and nonuniform traffic conditions, simulation is used to obtain the 

performance measures. The results are compared to that of a hypothetical ideal 

multicast switch, which has the best possible performance, as well as two other 
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multicast switches. It has been observed that in all the above traffic types and 

conditions, the performance of the multicast BG switch is very close to that of 

the ideal multicast switch and its performance scales very well along with the 

switch size. This is important because we not only want a switch architecture 

that has a performance close to ideal, but also has a scalable architecture so that 

larger switches can be realized easily using small switches as construction mod­

ules. Modular structure and architecture scalability will become meaningless if 

the performance deteriorates too much as the size scales. 

Throughout the analysis, the impact of various factors on switch performance 

are studied, including traffic load, switch size, traffic fanout, burstiness, and 

destination request distribution. In particular, performance analysis focuses on 

traffic fanout and burstiness to demonstrate how switch performance is affected 

in multicast environments. Average burstiness indicates the level of traffic cor­

relation. As traffic gets more correlated, the internal blocking becomes more 

severe. Switch performances such as cell loss ratio, cell delay, input and output 

buffer requirement will be significantly affected. Larger mean fanout means 

that more copies will be indicated in cell headers, which implies that the traffic 

load at the switch input is reduced. Since replication is performed internally as 

cells traverse the switch fabric, less blocking will be encountered. Therefore, the 

output queueing delay and buffer requirement of the BG switch are very close 

to those of the ideal switch. At the switch input, a larger fanout means that a 

cell takes a longer time to be dequeued, which counteracts the effect of a lighter 

load, resulting in the input queue performance being little changed. As was 

concluded in Chapter 4, . the reason for the high performance of the multicast 

BG switch is the design choice of accepting up to four cells in one switching 
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cycle at the output queue. 

• Realizable and Scalable Switch Architecture 

Besides all the attractive features that have been concluded above, in the re­

search, I demonstrate the feasibility of realizing the proposed switch using the 

existing CMOS technology. A comprehensive study of the front-end design of 

multicast BG switch has been performed in Chapter 5. The modular design 

and the implementation scalability of the BG switch has enabled us to focus 

on the basic building blocks, i.e., the switch elements, and then interconnect 

them to construct higher switch fabric module in the design hierarchy. A gen­

eral testing method is proposed to facilitate automatic function verification for 

the complete switch fabric. The implementation results based on the 0.18J.Lm 

CMOS technology indicate that the core of a 16 x 16 multicast BG switch fabric 

can be easily fabricated into a single IC chip and can comfortably run at OC-3 

link speed, which yields a switching capacity of closing to 3 Gbps for the overall 

switch. 

6.2 Future Research 

Even though a comprehensive study of the multicast BG switch has been completed 

in this dissertation, there are still several areas to be further explored. 

Firstly, in the dissertation, an analytical model has been developed to obtain the 

performance measures of the multicast BG switch under multicast random traffic. In 

addition to an effective practice in the switch architecture study, the analytical model 

has provided a good method to verify the simulation results and predict the switch 

performance. Even though the two bounds from the analytical model can provide 

strict sense boundaries for any traffic condition, the range is too wide and it does 
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not reflect the performance change for traffic fanout. It is highly desired that a more 

precise model to be developed so that switch performance for different random traffic 

conditions can be better predicted. 

Secondly, as traffic in real high-speed networks behaves differently from random 

traffic, the limitation of the proposed analytical model is obvious. Therefore, it is 

worthwhile to extend the modelling work to the bursty traffic condition, especially 

when a nonuniform destination selection distribution is considered. Moreover, it is 

desired that the analytical model reflect the dynamic information exchange inside the 

switch fabric along with the long term effect. 

Hardware implementation has become a general requirement for high-speed switches 

and routers. However, inflexibility is normally a problem associated with hardware 

design. As what has been shown from the analysis , performance of the BG switch 

and the demands of resources under different applications and traffic conditions vary 

significantly. Therefore, a high performance switch which incorporates a dynamically 

reconfigurable architecture will possess a noticeable advantage as the network traf­

fic and applications continuously drive hardware performance requirements to higher 

levels. The reconfigurable architecture can also be used together with the scheduling 

mechanism in the port controllers to provide a dynamic buffering resource allocation. 

Priority routing is an important feature for the multicast BG switch. By asso­

ciating different priority levels with different traffic sources or network applications, 

different QoS requirements can be fulfilled. Priority routing can be considered as a 

type of scheduling mechanism used inside the SF. In the performance analysis, cell 

priority is not considered. But up to 8 priority levels have been designed to be sup­

ported in the switch hardware and this number can be easily expanded with slight 

modifications in the SE. It would be interesting to investigate how switch performance 

will be affected when cell priority is considered. It would be another interesting topic 
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to study how priority routing can cope with the scheduling mechanism located at the 

port controllers to improve the scheduling capability of the switch. 

Buffer sharing is a well-known approach to reduce the buffering requirement and 

improve switch performance. However, it is at the cost of incorporating a complex 

control mechanism and higher buffer speed requirement as the level of sharing in­

creases. From performance comparison with the Abacus switch in Chapter 4, it has 

been observed that a main reason for its high performance is that the output buffering 

resources are fully shared by all M output ports belonging to the same group; the 

value of M used in the example is 16. Since the multicast BG switch is mainly an 

output-buffered switch, it is worthwhile to investigate how its performance and per­

output-link buffer requirement will be affected as the level of output buffer sharing 

increases, and identify the most cost-effective approach when both performance and 

implementation issues need to be addressed. 

Finally, since the multicast BG switch is a strong candidate for use in the future 

high-speed networks, it is worthwhile to prototype the multicast BG switch and test 

its performance by using the traffic specified in the switch fabric benchmark frame­

work. It would be a significant step toward in the research to integrate a working 

switch fabric with two fully-functioning port controllers, and thus amplify the present 

research effort by a study of a working switching system. 
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Appendix A 

Balanced Gamma Network 
Topology (Data Path) 

The notation used in the algorithm: 

S Ei,j: Switch Element at the ithposition in the jthstage; 

Queuei: Queue at the iCth)position in the last stage; 

n: Total number of stages of the switch fabric; 

N: The size of the switch fabric; 

%: Modular operation; 

LJ : Floor operation. 

I Li: input link i. 

OLi: output link i. 

Algorithm pseudo code: 

For all middle stages: 

for (j = 0; j < n- 1 ; }++) 

for ( i = 0; i < N; i++) 

I I j is the stage index 

I I i is the row index 

k = i % 4, l = l2ni-l J' a = UJ + l X ~' f3 = 2{'i2 

if (2 > k > 0) 
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connect OLo of SEi,j to ILk of SEa,J+1· 

connect OL1 of SEi,j to ILk of SEa+f3,J+1· 

connect OL2 of SEi,j to ILk of SEa+2{3,J+1· 

connect OL3 of SEi,j to ILk of SEa+3{3,J+1· 

else if ( 4 > k > 3) 

connect OL1 of SEi,j to ILk of SEa,J+1· 

connect OLo of SEi,j to ILk of SEa+f3,J+1· 

connect OL3 of SEi,j to ILk of SEa+2{3,J+1· 

connect 0£2 of SEi,j to ILk of SEa+3f3,J+1· 

For last stage j = n- 1: 

for ( i = 0; i < N ; i++) 

if(i%2=0) 

I I i is the stage index 

connect 0 L 0 of S Ei,J to I L0 of Queuei. 

connect 0£1 of S Ei,J to I L1 of Queuei. 

connect 0 L2 of S Ei,j to I Lo of Queuei+ 1· 

connect OL3 of SEi,J to I L 1 of Queuei+1· 

if (i % 2 = 1) 

connect OL0 of SEi,J to IL2 of Queuei-1· 

connect 0 L 1 of S Ei,J to I L3 of Queuei-1· 

connect 0 L2 of S Ei,J to I L2 of Queuei. 

connect OL3 of SEi,J to IL3 of Queuei. 
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Appendix B 

Balanced Gamma Network 
Topology (Acknowledgement Path) 

The notation used in the algorithm: 

S Ei,j: Switch Element at the ithposition in the lhstage; 

Queuei: Queue at the i(th)position in the last stage; 

n: Total number of stages of the switch fabric; 

N: The size of the switch fabric; 

%: Modular operation; 

LJ : Floor operation. 

I Li: input link i. 

OLi: output link i. 

Algorithm pseudo code: 

For all middle stages: 

for (j = n - 2; j > 0 ; j - ) 

for ( i = 0; i < N; i++) 

if (,8 = 0) 

I I j is the stage index 

I I i is the row index 

225 



connect acknowledgement OLo of SEi,j+l to ILk of SEa+f3,j+l· 

connect acknowledgement OL1 of SEi,j+l to ILk of SEa+f3+l,j+l· 

connect acknowledgement OL2 of SEi,j+l to I Lk+l of SEa+f3+2,j+l· 

connect acknowledgement OL3 of SEi,j+l to I Lk+l of SEa+f3+3,j+l· 

else if (/3 = 1) 

connect acknowledgement OL0 of SEi,j+l to ILk of SEa+f3,j+l· 

connect acknowledgement OL1 of SEi,j+l to ILk of SEa+f3+1,j+l· 

connect acknowledgement OL2 of SEi,j+l to ILk-l of SEa+f3+2,j+l· 

connect acknowledgement OL3 of SEi,j+l to I Lk-l of SEa+f3+3,j+l· 

For last stage j = n- 1: 

for (i = 0; i < N; i++) 

if (i % 2 = 0) 

I I i is the stage index 

connect acknowledgement 0 L 0 of Queuei to I L 0 of S Ei,j. 

connect acknowledgement OL1 of Queuei to I L 1 of SEi,j· 

connect acknowledgement OL2 of Queuei to I L 0 of SEi+l,j· 

connect acknowledgement OL3 of Queuei to IL1 of SEi+l,j· 

else if ( i % 2 = 1) 

connect acknowledgement OL0 of Queuei to I L2 of SEi-l,j· 

connect acknowledgement OL1 of Queuei to IL3 of SEi-l,j· 

connect acknowledgement 0 L 2 of Queuei to I L 2 of S Ei,j. 

connect acknowledgement 0 L3 of Queuei to I L3 of S Ei,j. 
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Appendix C 

Self Routing and Replication 
Algorithm 

The notation used in the algorithm: 

priority[i]: An array of size 4, used to hold the input port number according to their 

priority level. The input associated with the highest cell priority is arranged to the 

first element. The lowest priority input will be arranged to the last element. 

input[i]: An array of size 4, used to hold the packet from the input port. 

A lgorithm pseudo co de: 

Initialize ports and parameters; 

Sort inputs based on the priority; 

for ( i = 0; i < 4 ; i++) 

if (input[priority[i]] = multicast cell) 

if (there is an available upper output link) 

Switch the cell to the upper output link; 

Modify tag to the next stage; 

Decrease the number of available upper output link by one. 
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Else 

Generate upper blocking information for the cell; 

if (there is an available lower output link) 

Switch the cell to the lower output link; 

Modify tag to the next stage; 

Decrease the number of available lower output link by one. 

Else 

Generate lower blocking information for the cell; 

if (input[priority[i]] = unicast cell to the upper output link) 

if (there is an available upper output link) 

Switch the cell to the upper output link; 

Modify tag to the next stage; 

Decrease the number of available upper output link by one. 

Else 

Generate upper blocking information for the cell; 

if (input[priority[i]] = unicast cell to the lower output link) 

if (there is an available lower output link) 

Switch the cell to the lower output link; 

Modify tag to the next stage; 

Decrease the number of available lower output link by one. 

Else 

Generate lower blocking information for the cell; 
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Appendix D 

Dynainic Length Backpressure 
Algorithin 

The notation used in the algorithm: 

input[i]: An array of size 4, used to hold the packet from the input port. 

Algorithm pseudo code: 

Initialize ports and parameters; 

for ( i = 0; i < 4 ; i++) 

if (input[i] has an active cell) 

if ( input[i] is a unicast cell) 

Check blocking information and fanout correctness 

if (this unicast cell is blocked) 

Use blocking information generated at this switch element 

else 

Form blocking information from downstream stages 

else if ( input[i] is a multicast cell) 

Check blocking information and fanout correctness 
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if (both links are blocked) 

Use blocking information generated at this switch element 

else if (upper link is blocked while lower link gets through) 

concatenate the generated upper link blocking information with the 

generated lower link blocking information from downstream stages 

else if (upper link gets through while lower link is blocked) 

concatenate the received upper link blocking information from 

downstream stages with the generated lower link blocking information 

else if (both links get through) 

concatenate the received blocking information from both following 

downstream stages 
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Appendix E 

Loss Performance Comparison 
Between the Analytical Modelling 
and Simulation Results Under 
Multicast Random Traffic 
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Figure E.5: Loss performance comparison between analytical modelling and simula­
tion results under various loads for 256 x 256 BG switch 
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Appendix F 

Control Signals Generation for 
Admission Control Unit (ACU) in 
SEs 
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Tag Bits Line Output Line Status Forward Path Backward Path 
Tag1 Tago S1 So STo ST1 ST2 ST3 ao a1 bo b1 co Cl do d1 Ctrlo Ctrl1 Ctrl2 Ctrl3 Actrlo Actrh Actrl2 Actrl3 Actrl4 Actrls Actrl5 Actrl7 Bao Bbo Ba1 Bb1 Ba2 Bb2 Ba3 Bb3 

0 0 X X X X X X 00000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 X X 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 X X 000000 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 1 X X 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 X X 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 1 1 0 X X 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 1 1 1 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Upper 1 0 0 0 X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Link 1 0 1 0 X X 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 

Request 1 0 1 1 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Only 1 1 0 0 X X 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 1 1 0 X X 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
1 1 1 1 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 X X 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 X X 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 X X 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 X X 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lower 1 0 X X 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Link 1 0 X X 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

Request 1 0 X X 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Only 1 1 X X 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

1 1 X X 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
1 1 X X 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table F.l: Truth Table for Control Signals Generation in SE ACU, Part I 



Tag Bits Line Output Line Status Forward Path Backward Path 
Tag1 Tago S1 So STo ST1 ST2 STa ao a1 bo b1 co c1 do d1 Ctrlo Ctrl1 Ctrl2 Ctrla Actrlo Actrh Actrl2 Actrla Actrl4 Actrls Actrls Actrl7 Bao Bbo Ba1 Bb1 Ba2 Bb2 Baa Bba 

0 0 0 0 0 0 00000000 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 1 0 0 0 00000000 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 1 1 0 0 000000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 
0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 
0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Request 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Both 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 
Links 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 
1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 
1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 
1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 
1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table F.2: Truth Table for Control Signals Generation in SE ACU, Part II 
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