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ABSTRACT
The thesis is divided into two parts - I and II.

I Reduction of Offshore Platform Response with a Liquid Vibration

Absorber
The LVA consists of a liquid-filled cylindrical container

mounted near the deck level of the platform. During wave excitation,
the Tiquid in the container swirls into an oscillating motion which
interacts with the platform motion to produce a reduction in the
platform response. The reduction in the platform response is largely
due to energy dissipation through damping of the liquid, and to a
smaller extent the inertia of the liquid. In this investigation, the
effectiveness of the LVA in reducing the dynamic response of the
offshore platform model is studied. The finite element programme for
dynamic analysis of two-dimensional fixed offshore platforms, develop-
ed by Duvall (1), has been extended by Glacel (2) to include damping
effects and a tuned mass damper. This study describes further
modifications of the work with an additional option of replacing the
actual spring mass model by an LVA. The relatively rigid container
wall is discretised by finite beam elements. The work of Housner (3)
is employed to account for the 1iquid sloshing loads on the container
wall, while the liquid damping is based on a semi-empirical formulat-
ion by Stephens et al (4). The structural response of the model is
determined for a digitised wave height spectrum, with and without the
LVA in operation. The platform is analysed to determine the LVA
effectiveness, and the variation of the system response with the LVA

parameters. The various parameters considered are, cylinder radius,
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1iquid height, 1iquid mass, frequency, and damping. Methods of freq-

uency tuning, and damping device mechanisms are discussed.

II Seismic Response of Elevated Liquid Storage Tanks

The structure under consideration consists of a liquid storage
tank mounted on an axisymmetric pedestal. The tank is a thin elastic
cylinder with an axisymmetric dome-top and a conical base which is
relatively rigid. A finite element model is presented for the seismic
analysis of the structure. The shell mass and stiffness matrices are
generated by using the computer code SAMMSOR-II (56). The procedure
of Shaaban and Nash (45) is used to generate the added 1iquid mass
matrix which accounts for the hydrodynamic effect on the tank wall.

A digitised acceleration of an earthquake is provided as the ground
excitation input, and the displacement response of the whole system

determined by mode superposition.
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NOTATION

Part One

cv Rayleigh viscous damping matrix

CH Hysteretic damping matrix

CX Inertial coefficient

Ca Absorber damping

D Diameter of structural member

d Depth of 1liquid in cylindrical container

E Young's modulus

E(n2) Mean square of wave amplitude

f Ratio of absorber frequency to platform frequency
g Gravitational acceleration

g Ratio of wave frequency to platform frequency

H Wave height from tip to trough

Ho Height of mass, MO’ from the cylinder base

Hl Height of mass, Ml' from the cylinder base

h Water depth from ocean floor to still water surface
1(g) Moment of inertia at an arbitrary point along the element
K Stiffness matrix

K6 Geometric stiffness matrix

ka Absorber spring stiffness constant

kij Elements of stiffness matrix, K

kgij Elements of geometric stiffness matrix, KG

M Main mass of a two DOF structural system

M Total 1iquid mass in cylindrical container

M Mass matrix

xiii



0

N(g)

Impulsive mass of fluid in a cylindrical container
Convective mass of fluid in a cylindrical container

Axial force at an arbitrary point along the element due
to the dead loads above that point

Wave load vector

Radius of cylindrical container

Pile radius

Wave spectral density

Depth of baffle below mean free surface level

Time in seconds

Fluid particle velocity

Baffle width

Displacement vector

Static displacement of main mass in a two DOF system
Upward vertical distance from the seabed

Amplitude of sloshing liquid at tank wall

Flexural plate rigidity

Wave length

Variance of wave amplitude

Standard deviation of deck displacement without the LVA
Standard deviation of deck displacement with LVA
Normalised standard deviation of deck displacement, oy/0,
Wave Frequency

Absorber frequency, or frequency of sloshing liquid
Fundamental frequency of offshore platform

Kinematic viscosity

Poisson's ratio



Part Two

A

2,21
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Viscous damping coefficients
Hysteretic damping coefficient
Liquid damping ratio

Damping ratio of absorber
Wave amplitude

Density of liquid

Mass per unit area of membrane
Density of plate material

Mass ratio, pmR2d/M

Tensile force per unit length of membrane

Added mass matrix accounting for hydrodynamic effect
Rayleigh damping coefficients

Damping matrix

Liquid depth

Young's modulus

Foundation force vector

Structural yield stress

Gravitational acceleration

Section modulus

Liquid depth

Overall stiffness matrix for the elevated tank system
Liquid stiffness matrix

Shell stiffness matrix

Critical buckling moment

xv



M Overall mass matrix for the elevated tank system

ﬂf Liquid mass matrix

My Shell mass matrix

Ms'Me'Mse Stress couples

"s'"e'"se Stress resultants

P Liquid pressure

B Liquid element nodal pressure

—Peff Effective force vector

R Cylinder radius

S Coupling force matrix

i Kinetic energy of liquid

t Time in seconds

t Cylinder thickness

u Shell nodal displacement vector

u Shell displacement in meridional direction

v Shell displacement in circumferential direction
Velocity vector of liquid

W Work done on liquid

w Shell displacement in radial direction

X Generalised displacement vector

z Upward vertical distance from the mean free surface level

v Laplacian operator

¢ Velocity potential of liquid

() Mode shape vector

) Liquid density

w Frequency of the liquid-filled elevated tank

{3 Damping ratio of the liquid-filled elevated tank



PART ONE

REDUCTION OF OFFSHORE PLATFORM RESPONSE WITH

A LIQUID VIBRATION ABSORBER



CHAPTER 1
INTRODUCTION

It has become a necessary guideline that the fundamental
frequency of the offshore platform be no less than 0.2 Hz owing to
the fact that waves in the frequency range below this value have the
greatest energy content. To satisfy this condition, more structural
material is required, consequently increasing the cost of the platform.
A possible solution of reducing the offshore platform response with
considerably less cost is to install a tuned mass damper near the
deck level. The tuned mass damper, whose function is to absorb
energy is essentially a spring-mass-dashpot system. When suitably
damped, it can be an effective device in reducing the dynamic response
of the platform. The tuned mass damper has proven to be successful
for tall buildings in reducing the structural response to wind
excitation. The extension of the tuned mass damper concept to an
offshore platform was investigated by Glacel (2); analysis of the
effectiveness of the mass damper indicated a considerable reduction in
the platform response to wave loading. One setback to the use of the
tuned mass damper is that a reduction of the platform response is
achieved at the expense of large deflections and stresses in the
damper spring. More important is the fact that a large free travel
space required by the damper on the overcrowded platform can be
expensive in terms of space. It is suggested that an alternative for
the application of the mass damper concept is the use of a liquid
vibration absorber (LVA). It is expected that the LVA will be less

costly to install and maintain than the actual spring-mass damper.

1



The main advantage of the LVA over the actual spring-mass damper is
that the amplitude of the latter is in the horizontal direction,
while that of the former is in the vertical direction, overcoming

large horizontal space requirements.



CHAPTER 2
LITERATURE REVIEW

The topics reviewed are the wave amplitude spectrum, analysis of
wave forces on structures, response analysis of offshore structures
to ice forces, and the application of the tuned mass damper concept

in civil engineering.

2.1 MWave Force Analysis
Several wave theories have been developed, depending on the sea

conditions. In relatively deep water, Stoke's Fifth Order theory
described by Skjelbreia and Hendrickson (5) is commonly used to
describe steep nonlinear waves. It has been found in deep waters, that
predictions of water particle velocities and acceleration using Airy
Linear theory, but with integration of the forces up to the actual
water surface, Qive results which do not differ greatly from
predictions based on Stoke's Fifth Order theory.

For determination of wave forces, the Morison equation is
sufficient for structural members of relatively small diameter - D/\
< 0.2, provided there is no wave scattering due to the local
influence of neighbouring components. The evaluation of the inertial
force term in the Morison equation requires the inertial coefficient,
CI' for the particular structural component shape and the correspond-
ing direction of the acceleration vector. Values of Cl for various
simple geometrical shapes have been given by Myers et al (6). The
drag force coefficient, C, was recommended as 0.6 by Evans (7) and

Hudspeth (8) for data obtained from the Gulf of Mexico. For slender



structural members in deep waters, the drag force may be omitted

without losing significant accuracy.

2.2 Wave Spectrum

The sea water surface is commonly described as a stationary,
ergodic Gaussian, or normal process with zero mean (9). This process
can be described by representing the sea at any place and time by the
wave spectrum S(w) which has the property

o* = E(n?) = 2 [75(w)du (2.1)

where
S(w) = wave spectrum in m2-s,
o? = variance of wave amplitude,
and
E(n?) = mean square of wave amplitude.
Several empirical derived wave spectra representing the sea conditions
are available. The Pierson-Moskowitz (10), which is the most widely

used, is given by

9%,
S = u:') oBlu)* (2.2)
where
g =9.81 m/s*,
ag = 8.1 x 107,
g = 0.74,
w' = g/u,

and
u = windspeed in m/s.

The P-M spectrum used in this work corresponds to seas generated by



120 km/hr storms.

2.3 Ice Forces on Structures

Although not within the scope of the thesis, an environmental
loading of particular concern to the expanding interests on offshore
011 industry in Newfoundland is that due to moving ice.

Comprehensive studies were carried out during the period 1930 -
60 by Korzhavin (11) and Zubov (12) for the determination of ice
pressures on structures in rivers. Blenkarn and Knapp (13) discussed
the ice conditions and maximum ice forces in the Grand Banks off the
coast of Newfoundland. Kopaigorodski et al (14) made model studies
to determine the mean ice pressures and variation of the values
around the means, and concluded that sheets with small h/d (i.e.
thickness to indentor width) ratios fail by instability while shear
failures occur for sheets with large h/d ratios.

The dynamic response of an offshore monopod at Cook Inlet,
Alaska, subjected to current-driven ice loads for dynamic response
has been studied by Blumberg and Strader (15). Reddy, Cheema and
Swamidas (16) developed response spectra for ice forces and used
these for analysing the response analysis of a framed tower taking
into account the three-dimensionality. Swamidas and Reddy (17) anal-
ysed an offshore monopod tower considering ice-stucture interaction
by the finite element method. A detailed literature review on the

development of ice engineering is well described in Ref. 16.

2.4 Application of the Tuned Mass Damper Concept
Literature on the study of a vibration absorber dates back to

1909, when Fahm advocated the absorber to reduce the dynamic motions



of ships (18). The motion of the main system is reduced when the
inertial force of the absorber interacts with the exciting force. In
addition to reducing the motion of the main mass by its inertial
effects, it also reduces the system response by acting as an energy
dissipating device when provided with adequate damping. Morrow et al
(19) showed that, under a white noise input the absolute displacement
of the mass could be reduced with an absorber of adequate damping.
Gupta and Chandrasekaran (20) studied the use of absorbers to limit
structural response to earthquake excitations. Wirsching and Yao
(21) developed analogue computer simulations of structures with
absorbers, subjected to non-stationary earthquake-like excitations,
and indicated reduction in internal loads for certain multistorey
structures. Crandall and Mark (22) analysed a single-degree-of-
freedom system subjected to a white noise base acceleration.
Wirsching and Campbell (23) generalised their study to a multi-degree
-of-freedom system and optimised the absorber parameters to minimise
the relative motions of the system. McNamara (24) studied the appli-
cation of the tuned mass damper to reduce wind-induced structural
response of buildings for an elastic range, and obtained the response
reductions for various damper parameters. In a study on the TMD
application to offshore platforms, Glacel (2), reported significant
reduction in the platform response, and an increase in fatigue life

of steel-jacketed platforms.



CHAPTER 3
THEORETICAL FORMULATION

3.1 The Offshore Platform

The offshore platform considered in the analysis is an
axisymmetric tower with the base fixed to the ocean bed, and support-
ing a load representing the deck, as shown in Fig. 3.1, The matrix
equation which is used to model the dynamic motions of the platform

in response to wave forces is

MX + [K + Kalx = P (2,xt) (3.1)

where M, K, and KG are the mass, stiffness, and geometric stiffness
matrices, and P represents the vector of wave loads imposed on the
structure. The finite element programme of Ref. 1, which is used to
analyse the dynamic response of the offshore platform described above,

is based on the formulation of two-dimensional beam elements.

3.2 Beam Element

Consider a non-uniform straight beam segment as shown in Fig. 3.2
having two degrees of freedom at each node, horizontal translation
(x1,x3) and rotation (x,,x4). The displacement functions chosen,
satisfying the nodal and internal continuity requirements are the

cubic hermitian polynomials given as:

x = Ya(E)xa + p2(8)xa + ws(E)xs + YulE)xy (3.2)

where
Vi) =i = 3ER S TaEs (3.3a)
v2(E) = 382 - 2837 (3.3b)
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vs(g) = L(g - 262 + &%), (3.3c)
w(E) = L(g° - &%), (3.3d)
and
E = z/L (3.3e)
The elements mij of the mass matrix, M, are determined from
the definition
R i Om(e)vi(e)vj(e)de (3.4)
where m(£) is the mass per unit length at an arbitrary point along
the element. The elements k1j of the stiffness matrix, K, are given
by the definition
S JRCTICHION (3.5
where
E is the Young's modulus,
and
I(g) is the moment of inertia at any point along the element.
The elements kij of the geometric stiffness matrix, KG, are given by
the definition
by = E e (3.6)
where
N(g) is the axial force at an arbitrary point along the element
due to the dead loads above that point.
A five-point scheme of the Gaussian quadrature integration is used to
obtain the terms of Eqs. 3.4, 3.5 and 3.6. Detailed formulation of

the matrices M, K, and K& is given by Ref. 1.



3.3 Damped Equations of Motion
If structural damping is considered, Eq. 3.1 becomes
MR o+ cukis [oH W [k+keldx = B (3.7)
where

= oM + BK (3.8)

cv
Rayleigh Viscous Damping

in which o and B are the viscous damping coefficients, and

CH = i2y[K + k6] (3.9)
Hysteretic Damping

in which y is the hysteretic damping coefficient
Replacing [K + K] by K, Eq. 3.7 becomes

ME + [aM+gKIX + (1+i20)Kx = P (3.10)
3.4 MWave Forces

From Airy's wave theory the fluid particle acceleration, g—:,

is given by

Ao Aagesnikalglat ) (3.11)

where

H = wave height from tip to trough,

k = wave number, k=2m/),

A = wave length,

h = water depth from ocean floor to still water surface,
z = distance from ocean floor upwards,

and

w? = kgtanh(kh).

The Morison equation is used to obtain the loads imposed by ocean



waves on the platform. For deep waters, the drag force term is
omitted, and the horizontal force dP(z) on a differential length of a

single pile, dz, is given by

dP(z) = Cponr Ju 4z (3.12)
where
CI = fdnertial coefficient,
p = density of water,
and
r = pile radius.

The total wave force on the pile between two points 2y and Zy, where

2) <% € 2 npace is given by
P =i e (dp
Z
J0com g ) az (3.13)

3.5 Determination of Platform Response

The displacement vector x of the platform can be defined as
RO IRIELY (3.14)

where

A is a coefficient matrix to be determined,
and

P is the wave load vector, as defined in 3.1.
Observing the nature of Eqs. 3.11 and 3.13, P can be written as
ge“"t, and Eq. 3.10 gives

(w2M + oM + K + 12Y£+1w{3£)£gei“‘t = pelut (3.15)
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and

A = [ -w2M + daM + K + i¥K + dwgk ]! (3.16)
A set of vectors, P(u_]), can be obtained from a set of wave amplitudes
3 H(u)i), which is used to excite the structural model. Consequently,
the corresponding set of displacement vectors, ‘X_(mi) are obtained

from Eq. 3.14.

3.6 Wave Amplitude Spectrum
H(“’i) may be obtained from a condensed spectrum represented by a

finite number of wave frequencies, w This condensed spectrum is

obtained by determining the area bebjleen w=dw and wtdw of the Pierson
-Moskowitz wave energy spectrum (as shown in Fig. 3.3a) around a
specified frequency w, taking the square root of that area, and
assigning that value to the frequency. This is done for all frequen-
cies specified, forming a histogram of frequencies, Wy Versus the
equivalent wave amplitudes, nys as shown in Fig. 3.3b. The variance
of the wave amplitudes can be represented by the sum of the squares

of the discretised wave amplitudes,
N
o = I (nlw;))?, (3.17)
i=1

where N is the total number of discretised wave amplitudes.

3.7 Modelling of the LVA
The method of modelling the sloshing loads of a liquid with a

free surface in an accelerating container, (Fig. 3.4a), developed by
Ref. 3, is used in this study. When a container containing a liquid
of mass M is accelerated in a horizontal direction, a certain

fraction of the liquid is forced to participate in this motion as if
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Fig. 3.3a Pierson-Moskowitz Wave Energy Spectrum
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Fig. 3.3b Discretised Wave Amplitude
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it were a solid mass, Mo» that is rigidly attached to the tank at a
height, HO’ from the bottom of the container as shown in Fig. 3.4b.
This mass is referred to as the impulsive mass. The motion of the
tank also induces oscillations into the 1iquid exerting an oscilla-
ting force on the tank, similar to that exerted by a solid mass, Ml’
oscillating horizontally against a restraining spring as shown in
Fig. 3.4b. This mass is referred to as the convective mass since it
involves the motion of the liquid. A detailed formulation of the
equivalent spring-mass system is given by Ref. 3, and the resulting
terms expressing the mechanism of 1liquid sloshing in an upright

liquid-filled cylinder are

14

My = én (&) (tann(38)) , (3.18)
My = 3d 1+ 3 (B Hamad-1)), (3.18b)
2

w o= i OB/E R amy@ g, (3.180)

Hy = d(1- (cosh(/ZL &) %)/(/ggsinh@%) ), (3.18d)
and

w = g/%?l tanh (/47 &) (3.18¢)
where

w = fundamental sloshing frequency,
and

Mo. Hos Ml‘ Hl' R and d are defined in Fig. 3.4.
These expressions include fluid pressures on the bottom of the
container. Although expressions used by Ref. 3 involved some

approximations, the results given by his theory were shown to be



within 2.5 % of the classical theory, and considered sufficiently

accurate for the present investigation.

3.8 Damping of Sloshing Liquids

Viscous damping of sloshing liquids is associated with the
dissipation of energy during oscillations, resulting in the decrease
in the amplitude of successive oscillations. This decreasing
amplitude can be described by the damping ratio as

¢ - ke ey secilation .19
Viscous damping depends on the container radius, R, liquid depth, d,
and kinematic viscosity, v. Owing to the fact that 1liquid sloshing
is essentially a nonlinear phenomenon, few theories are available
for predicting the damping of 1liquid motion in a cylinder. A semi-
empirical equation for evaluating the damping ratio of a 1iquid in a

cylindrical container was obtained by Ref. 4, and given as

£ = 0.560%2 R-% g™ tann(1.84 f) (1 + 2(1 - Bescn(3.68 9) )
(3.20)
The damping ratios of a few 1iquids based on Eq. 3.20 are given in
Table 3.1. A few liquids have relatively high kinematic viscosities,
giving by (for the same cylinder geometry and liquid depth) as high
as 1 %, but the practicability of using them is not known.

Table 3.1 Damping Ratio of Liquids

Liquid Cyl. Radius Liquid Depth Kin. V|scss1ty Damp. Ratso
R d vat10” C ENRatiln’ e
Water 6m 1.6 m 1 x 10"®m?/s 0.0001

Glycerin 6m 1.6 m 3 x 107%m?/s 0.005
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3.9 The Absorber Cylinder
The cylinder is divided into two finite beam elements with lengths

depending on "0 and Hl as shown in Fig. 3.5a,b. When the liquid-filled
cylinder is mounted on the offshore platform, five additional degrees
of freedom, xj, x3, X3, X4, and Xgs a5 shown in Fig. 3.4b, are added.
The response of the cylinder wall, does not have any significant effect
on the dynamic motion of the platform. Hence, the flexibility of the

cylinder wall need not be considered.

3.10 Relation of Liquid Mass and Frequency with Cylinder Geometry
The sloshing frequency of a liquid in a cylinder depends on the

radius, R, and the ratio, d/R. Fig. 3.6, which is based on Eq. 3.18,
shows two sets of curves, one joining the coordinates ( % yR)
corresponding to the same sloshing frequencies, and the other
corresponding to the same total liquid mass in the cylinder. For the
range of values 0 < g— < 0.9, an increase in the sloshing frequency, wys
is predominantly due to an increase in d/R, while for the range
%) 0.9, the increase is predominantly due to a decrease in the radius,
R. Fig. 3.6 will be used later in the analyses for variation of
absorber parameters.

Fig. 3.7 shows the MO/M and MI/M values for varying d/R values.
It can be seen from the figure that MO/M increases with increasing
d/R, while MIIM decreases. The value Ml/M is of some significance, as
it corresponds to the oscillating mass of the vibration absorber. It
may be advantageous, therefore, to choose a suitable d/R ratio in
order to provide a larger convective (or oscillating) mass Ml' but a

change in d/R ratio can affect other parameters; for example, if the
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Tiquid mass is kept constant and d/R reduced by a certain amount,
three parameters are affected :
a) Increase in convective mass, Ml’
b) Decrease in sloshing frequency of liquid in the cylinder (as
can be inferred from Fig. 3.6),
c) Decrease in the impulsive mass, MO' causing an increase
in the deck mass, and consequently reducing the fundamental

frequency of the platform very slightly.
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CHAPTER 4
APPLICATION OF LVA TO AN OFFSHORE PLATFORM

4,1 Offshore Platform Response without an Absorber
The 366 m offshore platform of Ref. 2 is used as a model in this

analysis, the fundamental frequency of which is 0.2 Hz. For
convenience, the structural data of the platform are shown in Table 4.1.
The model is first excited without the absorber by wave loading obtain-
ed from the discretized Pierson-Moskowitz wave energy spectrum
(correponding to 120 km/hr storm). The output is given as a series of
steady-state displacements, rotation, acceleration at each nodal point,
and strain at the midpoint of each element. Curve A of Fig. 4.1 gives
the deck displacements corresponding to the wave amplitude input, the
displacements being normalised to the standard deviation of the deck
displacements. At some point on the displacement-frequency curve, the
deck amplitude rises sharply reaching a peak at the wave frequency
equalling the fundamental frequency of the offshore platform. This is
the resonant frequency; however at this frequency, the amplitude of
the platform is prevented from becoming infinitely large by structural

damping.

4.2 Offshore Platform Response with an LVA
The model is excited by wave loading, but with an LVA

mounted at the deck level. The container radius and 1iquid height are
chosen from Fig. 3.6 such that the natural frequency of the absorber,
wys is almost equal to the fundamental frequency, wgs of the platform.
The programme is run for three different conditions of 1iquid as shown

in Table 4.2. Curve B of Fig. 4.1 shows the deck displacement for
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Table 4.1 Structural Data for the Offshore Platform

Height of Platform

Water Depth

External Radius
Base,

Internal Radius

External Radius
Platform,

Internal Radius
Deck Mass

Deck Inertia
Total Structural Mass
Modulus of Elasticity

Fundamental Frequency
Viscous Damping,

Hysteretic Damping, Iy

366 m

305 m

33.75 m
33.60 m

9.00 m

8.90 m

4180 Mg
2432760 Mg m?
11213 Mg
2.039 x 107 kN/m?
1.254 rad/s
0.0302
0.0043

0.015




Run 1 (i.e. with water as the absorber 1iquid). The vibration of the
platform deck at the old resonant frequency (0.2 Hz) is reduced to
almost zero, and two new peaks are defined in the vicinity, at 0.185
Hz, and at 0.215 Hz. These two peaks are the new resonant frequencies
of the system. The standard deviation of the deck displacement is
reduced by 9.4 %. The reduction in the standard deviation (SD) or the
root mean square (RMS) value is an indication of the performance of
the absorber system. The procedure for Run 2 is the same, but water
is replaced with glycerin in the LVA. The effect, as shown in Curve C
of Fig. 4.1, is seen to further decrease the vibration around the new
resonant peaks (0.185 Hz, 0.215 Hz). The overall effect on the deck
displacement is to reduce the standard deviation, Oys by 12.6 %. This
greater reduction in oy is due due to a larger damping ratio in the
glycerin than in water. Run 3 is a case where the damping is increased
further to ht 0.05, and the further reduction in the deck displace-
ment response is indicated in Curve D of Fig. 4.1; the reduction in
the standard deviation of the deck response is 19 %. The reduction in

the standard deviation of the top element strain is 26.2 %.

4.3 Mechanism of Vibration Absorption in a Two-Mass System

The subject of forced vibration of a two-mass model as shown in
Fig. 4.2 may be found in a standard text on vibration, and it can be
seen that a similar behaviour can be obtained, as in the case of the
offshore platform. The two new resonant frequencies depend only on the

mass ratio, y (where y = m/M), and are determined by the equations

(ofwa)® = (1 +y/2) +Ju+ui/a (8.1)
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where
w o= mM,
fo= wlug,
w, = frequency of the main mass,
g = Vg »
g = damping ratio of the main spring,
and

Ea = damping ratio of the absorber spring.

Den Hartog (18) showed in his study of the dynamic motion of a two-mass

model, that the displacement of the main mass is given as

p 25" + (@) (4.2)
st/ (26,92 (@-1na)t + (gt - (g2-1) (@)

1%

x

The tuning of the absorber to reduce vibration of the main mass is

obtained from

1
f = T (4.3)

Brock (25) and Den Hartog (18) obtained an expression for optimum

damping for the same model as follows :

t Bl (4.4)
8(1 + u)?

The results of Refs. 2, 18 and 25 will be used later as guidelines

for predicting the optimum absorber parameters required to minimise

the offshore platform response to wave loading.

4.4 Comparison of Response Reductions
To compare the performance of the LVA with that of the tuned mass

damper of Ref. 2, the original programme of Ref. 2 including a tuned
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mass damper is used. The inputs to his programme, as shown in Table 4.3,
are the equivalent spring-mass-dashpot parameters of the LVA used in
4.2. The comparison of the deck displacement response between the two
cases is shown in Fig. 4.3. With the LVA, a larger reduction in the
standard deviation of deck response is noted; Oy for the deck

response with LVA is 2 % smaller than that with a tuned mass damper.
This small difference is likely to be due to the additional overtur-
ning moment caused by the elevations Hl and "0' of the masses M1 and

M0 respectively, increasing the effectiveness of the LVA.
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Table 4.2 Damping Ratio of LVA

Run Cyl. Dimensions Type Liquid Properties Density Damp. Ratio
R d v P (=

1 5.6m 1.6 m Water 1x10"*m?/s 1.00 Mg/m*  0.0001
2 5.6m 1.6 m Glycerin 3x10™°m?/s 1.25 Mg/m*  0.005

Water with =62 3
5 5.6m 1.6 m Damp Device 1x10~°*m?/s 1.00 Mg/m 0.05

Table 4.3 Equivalent Mass Damper Parameters

Cylinder Radius, R 5.5m
Liquid Depth, d 1.6m
LVA

Kin. Viscosity, v 107% m?/s

Liquid Density, p 1 Mg/m?

Damper Mass, Ml 97.8 Mg
Mass Damper Mass, Mo, added to Deck Mass 30.0 Mg
of Ref. 2 Damper Frequency, oy 0.2003 Hz

Damping Ratio, wy 0.0001
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CHAPTER 5

OPTIMISATION OF ABSORBER PARAMETERS

5.1 Parameters Affecting Platform Response
The response of the platform with an LVA depends on the

parameters u, f, 3, and &,

where
s = Mass of Liquid in Tank | pmRid d
Structural Mass of Platform M
i Sloshing Frequency of Absorber 2 wy
i Fundamental Frequency of Platform 7 E 4
i Wave Frequency Q
B Fundamental Frequency of Platform i E i
and

Ea = Damping Ratio of Absorber.

For convenience, u will be referred to as the mass ratio, f the
absorber frequency, g the wave frequency, and wy the absorber

damping ratio. A1l the four parameters are in dimensionless form.

5.2 Response Reduction with an LVA (without Damping Device)

To find the optimum absorber perfomance, the mass ratio, u, and
the absorber frequency, f, are varied by varying the the tank radius,

R, and the depth to radius ratio, d/R.

5.2.1 Liquid Mass Variation
The platform is analysed, with glycerin as the absorber fluid,

the absorber frequency, f, held constant at 1.0, and the mass ratio,
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u, varied. In order to vary p without offsetting the specified value
of f, appropriate values of R and d/R are read from Fig. 3.6. The
deck diplacement responses obtained from the analyses for three
different values of u are shown in Fig. 5.1; the displacements are
normalised to the SD of the deck displacement response without the
absorber. The minimum responses for all the three cases occur at the
wave frequency, § = f. Of the three cases, u = 0.013,0.027 and 0.053,
the smallest SD value of the deck displacement response is obtained
for u = 0.013, for which the two resonant peaks of the displacement-
frequency curve are almost at the same level.

The procedure is repeated for more intermediate values of u.
Fig. 5.2 shows the deck displacement-mass ratio curves, each of which
corresponds to a particular wave frequency, §i‘ The dominant wave
frequencies relevant to the structural model are those in the region
around unity as shown in Fig. 5.2 i.e. § = 0.85 to 1.05. The curves
corresponding to these frequencies are indicated by the broken line
in Fig.i5:2.

The entire series of simulations are repeated with f = 1.08.
Fig. 5.3 presents plots of O, - u curves for the cases f = 1, 1.08,
where o is the SD of deck displacement response normalised to the
SD of deck displacement response without an LVA. The curves indicate
considerable fluctuation of %, with varying u in both cases. This,
as will be shown later, is due to the absence of adequate damping in

the Tliquid.
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5.2.2 Frequency Variation

The absorber frequency, f, is varied, keeping the mass ratio, n,
constant at 0.013, and the fluid viscosity the same as in 5.2.1. The
appropriate absorber dimensions are obtained from Fig. 3.6 in order
to keep p constant while varying f. The deck displacement response
for three different values of f, 0.8, 1.0 and 1.08, are shown in Fig.
5.4. The resonant peaks exhibit shifts as the absorber frequency, f,
is increased or decreased. For f < 1, the right resonant peak is the
dominant one. 'As f tends to unity, the right peak falls while the
left one rises; at f = 1.0, the peaks are at the same level and the
minimum SD for the displacement response is obtained. As f is
increased further, the left peak continues to rise while the right
one falls. Theoretically, as f approaches infinity, the frequency of
the absorber will be too large to affect the response of the
structure and the right resonant peak disappears while the left peak
changes in magnitude, and shifts in position along the wave frequency
axis until it is almost similar to the original resonant frequency
peak (without absorber).

Fig. 5.5 shows plots similar to Fig. 5.2, but for varying values
of f instead of u. The dominant wave frequencies relevant to the
structural model are again shown to be around unity, i.e. 3 = 0.9 to
1.05, and the curves corresponding to these frequencies are indicated
by the broken line in Fig. 5.5. It can be inferred from the minimum
points for the curves (indicated by crosses), that the response of
the platform to each particular wave frequency, §1, is minimum at the
absorber frequency value, f1 = §1; this result can be used to optimise

the effectiveness of the absorber by shifting the absorber frequency
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into the range of dominant wave frequencies relevant to the platform
model, i.e. 0.9 - 1.05. Fig. 5.6 shows the T f curves for the

mass levels u = 0.013, 0,027. Again, considerable fluctuation of %,
is noted as the absorber frequency, f, is varied, owing to inadequate

damping.

5.3 LVA Application with a Damping Device

To increase energy dissipation in the absorber, the damping
ratio is increased from 0.005 to 0.05 by introducing a damping device

in the absorber, as discussed in 5.4,

5.3.1 Mass Variation

The mass ratio, u, is varied, and the absorber frequency, f,
kept constant at 0.8, 1.0, and 1.08. Fig. 5.7 shows curves of
normalised SD of deck displacement response, 0, Versus the mass
ratio, u. Each of the curves indicated decreasing % with increasing
p. For f = 1.0 and p = 0.027, the reduction in the SD value of the
deck displacement response is 22 %. As p is increased, the

percentage of reduction in the SD value becomes smaller.

5.3.2 Frequency Tuning

Now, the absorber frequency, f, is varied, keeping the mass
ratio, M, constant at 0.013, 0.027, and 0.04. Plots of o8 f curves
corresponding to the specified mass ratios are presented in Fig. 5.8.
For each case of y, an optimum absorber frequency, fopt.' is obtained.
Table 5.1 shows the values of fopt.’ and the reduction in the SD of
the deck displacement response for each case of y. The optimum

frequency values, fopt , as seen from Table 5.1, approach unity as
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p tends to zero. This behaviour shows consistency with Eq. 4.3 which
was obtained from the two-mass system formulation of Ref. 18. The
reduction in the SD value of the top element strain in Case 3 is
32.8 %.

Table 5.1 Optimum Frequencies

Case Mass Ratio, u fopt Reduction 'in SD
1 0.013 0.989 18.8 %
2 0.027 0.952 23.5'%
3 0.040 0.940 25.0 %

5.3.3 Optimum Damping

To determine the optimum damping, the damping ratio of the
absorber, Ea' is varied with f = 1.0 and p = 0.013. The W, = Ea
curve is presented in Fig. 5.9. As Ea increases, %, decreases
initially, then reaching a minimum at an optimum damping, Ea(opt'lmum).
and the gradually increases. For f = 1.0 and u = 0.013, the optimum
damping, Ea(opt'lmum) = 0.07.

5.4 Damping Devices

Adequate damping of liquid motion may be provided by using fixed
baffles attached to the cylinder wall as shown in Fig. 5.10. The
baffles may be perforated with the advantage of considerable lightness,
and their position along the vertical axis of the cylinder can be
controlled. The main effect is the change of first-mode sloshing into
a rotary motion. The liquid oscillating in its fundamental mode

produces a wave having its maximum amplitude at the cylinder wall.
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The direction of the 1iquid motion near the wall is almost vertical
and thus normal to the baffle located a small distance, s, beneath the
free surface. Energy dissipation results from the baffle resistance
on the wave motion, which damps the liquid. The damping of the liquid
free surface oscillations in a cylinder by a flat solid ring baffle

has been predicted theoretically by Miles (26) in the following form :
Ea - 2.83 e-4.Gs/R ( ngi_ (§)2 )1.5( 125 )0.5 (5.1)

where R, s, w, and Z are related to the tank geometry as shown in
Fig. 5.10. Figs. 5.11 a,b are based on Eq. 5.1 from which &, is
obtained with the given parameters R, s, w, and Z. Fig. 5.11 shows
that damping decreases exponentially with increasing s/R, indicating
that damping is greatest when the baffle is located at the mean free
surface level. For the given parameters, w/R = 0.1.and Z/R, with the
baffle attached at the mean free surface level, e 0.075. For ring
baffles, a damping ratio as high as 0.2 to 0.3 is possible. The
Towering of sloshing frequencies due to the introduction of a baffle
must be taken into account; nevertheless, an increase in damping in
the absorber with the use of a ring baffle reduces the structural
response, as it increases the rate of energy dissipation in the

structural system.

5.5 Frequency Tuning Devices
The natural frequencies of the sloshing liquid in a cylinder can

be controlled without adjusting the cylinder geometry and liquid
height by using movable devices which are either immersed in the

liquid or just cover the liquid surface. Siekmann and Chang (27) made
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a theoretical study on the control of natural frequencies of a
sloshing Tiquid in an upright cylindrical container. The liquid
domain is divided into two regions, LY and 78 by means of an elastic
mat which is either a membrane or a plate as shown in Fig. 5.12. The
mat is attached to the tank wall at a height h, such that the edge of
the mat, though movable, will remain at this height during sloshing.
For the case where the membrane covers the 1iquid surface, the
fundamental frequency is given by Ref. 27 as

pgk + tk?

w? = sinh(kd) (5.2)
pcosh(kd) + pmk sinh(kd)

p = density of fluid,
g = gravitational acceleration,
T = tensile force per unit length in membrane,
p, = mass per unit area of membrane,
k = constant, k = 1.84/R ,
and

R

cylinder radius.

For the case of an elastic plate covering the free surface,

Dk® + pkg
= sinh(kd) (5.3)

pPT:k sinh(kd) + pcosh(kd)

where te
EE?

D = flexural plate rigidity, D = — — ,
12(1-v?)

E = Young's modulus,
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v = Poisson's ratio,
p. = density of plate material,
and

t = plate thickness.

Figs. 5.13 a,b, and c are based on Eq. 5.2, giving the sloshing
frequencies for the given parameters o, T, Ps d and R. Given the
parameters, p = 1000 kg/m , d = 1.3 m, and R = 6 m, the natural
sloshing frequency as obtained from Fig. 3.6 is 1.08 rad/s. With
the application of an elastic membrane (t = 30 kN/m , Pp = 20 kg/m )
covering the free surface of the liquid, the new sloshing frequency,
as obtained from Fig. 5.13c, is wy = 1.2 rad/s.

It is of interest to note that the membrane, besides increasing
the frequency of the liquid, also increases the damping in the
Tiquid motion. In this respect, the membrane may prove to be
effective in reducing the response of the structure if the right
damping and frequency can be achieved simultaneously. Another point
to note is that by introducing a membrane or a plate, the sloshing
force tends to be suppressed, and a penalty is involved in that part
of the convective mass, Ml’ that is converted into the impulsive mass.
This has the effect of reducing the effectiveness of the absorber (as

the oscillating 1iquid mass is smaller), and increasing the deck mass.
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CHAPTER 6

CONCLUSIONS AND DISCUSSION

6.1 Conclusion

6.1.1
i)

i)

6.1.2
i)

ii)

i)

Absorber without Damping Device

When the LVA is mounted on the platform model, the platform
response was reduced. The response reduction is dependent on
the liquid mass and frequency, and the damping ratio of the
Tiquid motion (in another sense, dependent on the cylinder
radius, the depth to radius ratio, and the 1iquid viscosity and
density). The reduction of the standard deviation of the deck
displacement response for a 5.5 m - radius cylinder with

glycerin filled to depth 1.6 m is 12.6 %.

The platform response fluctuates in both cases - varying liquid
mass and sloshing frequency; hence the optimum mass and freque-

cy for minimum response cannot be defined.

Absorber with Damping Device

When the absorber fluid is damped with a damping device, the
response reduction is significantly greater. For f (absorber
frequency) = 1.0, and p (mass ratio) = 0.013, the optimum
damping, ga(optimum) = 0.07.

The platform response reduces with an increase in 1liquid mass,
but as the liquid mass is increased further in the subsequent
simulations, the percentage of response reduction is smaller.
An optimum absorber frequency can be obtained for each value of

liquid mass. For the mass ratio, u = 0.04, the optimum absorber
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frequency, f = 0.94; the corresponding reduction in the
standard deviation of the deck displacement response is 25 %.
iv) The reduction in the standard deviation in the top element
strain for u = 0.04, f = 0.94, and Ea = 0,05, is 32.8 %. The
reduction in the strain response increases the fatigue life of

the structure.

6.2 Discussion
The standard deviation (SD or o) of the deck displacement is
indicative of the overall structural response, and the SD of the
element strain indicates the stress response of the member. The
reduction in the SD of member stresses reduces the probability of
exceeding the ultimate stress limit of the member. Moreover, if
fatigue is the mode of failure, the number of cycles to failure is
increased when the SD of member stress levels is reduced (28, 29).
The reduction of the deck acceleration is important from the
consideration of human comfort and instrumentation.
The advantages of the LVA over the tuned mass damper are :
i) It is less costly in installation and maintenance,
ii) As the LVA is cylindrical, it can function in any horizontal
direction,
iii) The horizontal liquid motion is restricted by the cylinder wall,
hence less platform space is required for the absorber operation
and
iv) The liquid mass can be easily controlled by pumping operations

to and from the base of the platform.
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PART TWO

SEISMIC RESPONSE OF ELEVATED LIQUID STORAGE TANKS



CHAPTER 7
INTRODUCTION

Investigations of the seismic behaviour of elevated liquid storage
structures have been motivated by numerous events of earthquake damage
and destruction of elevated water tanks in places of high seismicity.
Housner (3) proposed a method of determining the hydrodynamic pressures
in a rigid fluid container subject to horizontal accelerations.

This enabled the representation of the elevated 1iquid storage tank by
a two-mass system, a method commonly used in succeeding investigations
on the seismic response analysis of elevated water tanks. Although

the two-mass system is a reasonable representation for the elevated
water tank, study of the seismic behaviour appears to be adequate only
for the supporting structure. A report by Hill and Biggs (30)
indicated that although most of the earthquake damage to water towers
occurred in the supporting structure, some were due to the structural
inadequacy of the storage tank itself. Veletsos and Yang (31)
reported that the hydrodynamic effects in flexible tanks may be

larger than those in rigid tanks of the same dimensions. The current
seismic design coefficients for water storage towers are of a
significantly higher order than those for buildings. This possible
conservatism may be a reflection of uncertainties (e.g. those reported
by Refs. 30 and 31) in the stress behaviour induced by hydrodynamic
effects.

The majority of elevated water tanks have been in the 600 m3
class or smaller. More recently, tank sizes up to 12000 m3 (Fig. 7.1e)

have been constructed, most of them in steel or concrete. The
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supporting structure may consist of a frame (Fig. 7.1a), a multicolumn
assembly (Fig. 7.1b), or an axisymmetric pedestal (Figs. 7.1c,d,e).
As many elevated water tanks of today are much larger in dimensions
than those previously constructed, more sophisticated method of
analysis are required to determine their seismic behaviour. The
considerable need for predicting the response of the larger liquid
storage tower structures, incorporating detailed shell behaviour of
the tank, has initiated the studies described in this report. The
work is restricted to the formulation of a procedure for seismic
analysis of axisymmetric water towers, an extension of the work by
Balendra and Nash (32) on the seismic response analysis of ground-
supported liquid storage tanks. Much of the information is presented
without proof, and mathematical details may be followed up through the
quoted references. A study of the soil-structure interaction effect

is beyond the scope of this work.
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CHAPTER 8

LITERATURE REVIEW

8.1 Dynamic Analysis of Ground-Supported Cylindrical Tanks
Early studies of the forced vibration of contained liquids go

back to 1950; significant and theoretical investigations are those of
Jacobsen (33), and Jacobsen and Ayre (34) which dealt with the seismic
behaviour of rigid cylindrical tanks. Ref. 33 calculated the forces
and moments induced by the fluid inside a cylindrical tank subjected
to horizontal acceleration. Ref. 34 conducted experiments on liquid-
filled cylindrical tanks, with damped harmonic excitation of tank
bases. The work was followed by Housner's (3) formulation of
simplified expressions for obtaining the hydrodynamic pressures
developed in rigid ground-supported tanks, subjected to horizontal
acceleration. Satisfactory agreement between the behaviour of
petroleum storage tanks in the 1964 Alaskan earthquake and the
predictions based on the work of Ref. 3, has been demonstrated by
Shepherd (35). During the past decade, there has been a rapid
development in the subject related to the sloshing behaviour of
liquids in fuel tanks of liquid propellant rockets. In the field of
aerospace technology, Lindholm, Kana and Abramson (36), Chu (37), Kana
and Chu (38), DiMaggio and Bleich (39), and Fung, Sechler and Kaplan
(40) made valuable contributions to the response analysis of
pressurized cylinders containing liquids. Luk (41) presented a
development of a finite element model, and some numerical examples for
Tiquid sloshing problems involving both rigid and axisymmetric
containers. Edwards (42) investigated coupled interaction between the
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elastic walls of a cylindrical tank and the contained liquid, and
simulated the 1iquid-filled tank with ground motion by numerical
integration. Bauer and Siekmann (43) analysed the general case of
hydroelastic coupled oscillations of a partially-filled liquid
container with a flexible bottom and an elastic side wall.

More recently, Wu, Mouzakis,Nash and Colonell (44), Shaaban and
Nash (45), and Balendra and Nash (32) made significant contributions
to the advancement on the seismic analysis of ground-supported
Tiquid-filled cylindrical tanks. Ref. 44 presented an analytical
formulation and developed a computer programme for determination of
natural frequencies of free vibration of an elastic circular shell
partially filled with 1iquid. Ref. 45 developed a finite element
computer programme for the time-history analysis of seismic response
of ground supported liquid-filled tank, while Ref. 32 expanded the
work to include an axisymmetric dome top. Recent experimental
investigations by Clough and Clough (46) on the seismic behaviour of
ground-supported 1iquid-filled cylindrical tanks have indicated
significant cross-sectional distortion of elastic tanks caused by
uplifting of the base, and geometric imperfections of the side wall,

which had not been included in theoretical predictions.

8.2 Seismic Response of Elevated Water Tanks
Literature related to the dynamic behaviour of elevated water

tanks dates back to as early as 1936, when Carder (47) tested steel
water tanks, by a series of pull-back tests on the supporting towers,
to study the effects of the foundation conditions and tower motion in

seismic events. Extensive model studies were undertaken by Ruge (48)
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with the object of deriving datd useful for the seismic design of
water tanks. Many of the later investigations used the method of
determining hydrodynamic pressures proposed by Ref. 3. Both Cloud
(49) and Blume (50) have reported reasonable correlation between the
observed behaviour of water tanks and the vibrational parameters
obtained from the method of Ref. 3. Chandrasekaran and Krishna (51)
have reported an analytical investigation of the seismic behaviour of
reinforced concrete water towers. Simplification of the elevated
tank with a two-mass idealization have also been used in the work of
Sonobe and Nishikawa (52), Ifrim and Bratu (53), Garcia (54), and
Shepherd (55). Ref. 55 studied the free vibrations of an axisymmetric
prestressed concrete elevated water tank, and carried out a simple

pull-back test to substantiate the validity of the theoretical model.
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CHAPTER 9
THEORY USED

9.1 Shell Mass and Stiffness Matrices

The mass and stiffness matrices, l_'ls and 55' for the axisymmetric
shell structure are generated by using the finite element computer
code SAMMSOR-II (56). The programme idealises the shell of revolution
by curved ring elements, developed by Stricklin, Navaratna and Pian
(57). The displacements of an element in the meridional, circumferen-
tial, and normal directions, denoted by u, v, and w respectively, are
represented by a Fourier representation in the circumferential

direction as follows :

Zu = uf(zt)cosml, (9.1a)
m
Iv = vm(z,t) sinmo , (9.1b)
m

and
Iwo= wm(x.t) cos me , (9.1¢)
m

where Uns Ve and W, are the generalised displacements for the m'th

circumferential harmonic.

9.2 Equations of Motion of Liquid
Fig. 9.1 shows the coordinate system (r,0, z) adopted in defining

the equations governing the 1iquid motion. For an inviscid,
incompressible 1iquid, the governing equations of motion are the

Laplace equation
V2 p(r,0,2z) = 0 (9.2)

and the Bernoulli Equation
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Fig. 9.1 Coordinate System
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where ¢(r,08,z) is the velocity potential, p the liquid pressure, s
the liquid density, and g the gravitational acceleration.

9.3 Boundary Conditions
At the free surface, the boundary equation may be expressed as

% + g3
at? |z=0 o Bl ol 19:3)

At the elastic cylindrical tank wall, the boundary condition

expressing the 1iquid solid-interaction is given as

ar IR 7 3t IeR (8.5)

At the rigid tank bottom, the boundary condition is written as

%

o2 =0 (9.6)

z=-H

9.4 Coupled Liquid-Tank Interaction

The variational functional for the liquid is given as

x=jt2(r-n-u)dt (9.7)
t

where T, II, and W are the kinetic and potential energies, and the
the work done on the liquid respectively. Hsiung and Weingarten (58)
obtained T by integration over the 1iquid volume V, Il by integration
over the free surface F, and W by integration over the 1iquid-tank

interface I, as follows:
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p.
T = —;Iv Vo . Vo dV , (9.8a)
1
me G eteser s, (9.85)
and
= v
W jz o (2 )p as (9.8¢)

where pe is the liquid density, £ the 1iquid elevation from the mean

free surface level, and V¢ the velocity vector V given by
V = grad¢ (9.9)

It has been shown by Ref. 58 that the functional involving the
governing equations 9.2 and 9.3, together with the boundary equations

9.4, 9.5 and 9.6, can be expressed in the form

gl g P )2 b a%w
1 zfvv,).vpdv %L(M) ds pszpwas
(9.10)
Ref. 32 discretised the 1liquid in the cylindrical tank into annular
elements of rectangular cross-section, and expressed Eq. 9.10 in terms
of element nodal pressure vector, P, and the shell nodal displacement

vector, U, giving the variational functional in matrix form as follows:

A _1- i r l T . b .
U= gelke - zB M B - o RSl (0.11)
‘Where Kes Mc, and S are the 1iquid stiffness, 1iquid mass, and
Pling force matrices respectively. Minimizing the variational
ctional by the Euler-Lagrange procedure gives the following matrix
ation

K,

KR e MR - g S D (9.12)

65

€quations for the dynamic fluid pressure on the shell is given by (59):



" T

Mol + K UEESIPsie 0 (9.13)
By using Eqs. 9.12 and 9.13, and neglecting the free surface pressure
of the liquid, the equations of motion representing the free vibration

of the coupled 1iquid-tank system were obtained by Ref. 32 as follows:

MR+ K= D (9.14)

in which [ Mg+ A ] is the modified mass matrix accounting for the
hydrodynamic effect of the 1iquid. The matrix, A, generated by the
computer code, FLUID, developed by Ref. 32 is given by :

A= sligs (9.15)

9.5 Response Analysis of an Elevated Water Tank
The tower in Fig. 7.1c is the example problem for the analysis.

The mass and stiffness matrices of the elevated liquid-filled tank are
generated based on the theory outlined above, while the mass and
stiffness matrices of the outer shell of the supporting pedestal are
generated separately by the computer code of Ref. 56. The inner tube,
carrying the piping connections, and enclosed by the spiral staircase,
contributes a negligible amount to the stiffness of the supporting
structure, but in view of its concentricity with the outer shell, its
stiffness can be added to the stiffness of the outer shell to obtain
the combined stiffness of the supporting structure. The sloshing due
to the liquid part filling the conical base of the tank is assumed
negligible, and the water in this region is treated as a solid mass.
After assembling the matrices of the tank and supporting
structure to form the overall matrices M and K, and imposing the
boundary conditions at the foundation (fixed in this case), the

frequencies, w, and the mode shapes, ¢, of the structure are obtained
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first by matrix decomposition using Choleski's method, and then solved
by a standard eigenvalue subroutine.

The Rayleigh damping matrix is given by :

G g M # a; kK, (9.16)
where
L) Vwp  w £
= 2.0
o Vw, w, &

The partitioned matrix equation of motion may be written as

L Gy G fue K 0
* o L] L
T T i
L 4 L &I ke Fg)
(9.17)

in which the lower segment of Eq. 9.17 pertains to the base nodal

displacements, and the upper segment to the non-base nodal displacements.
e
nodes. The total displacements, !t’ of the off-base nodes can be

gc, and Ec are the coupling effects between the base and non-base

expressed as the sum of the pseudostatic component, Uss and the dynamic

component, U, as follows :

g ot il (9.18)

The vector, U_, is considered to be developed through rigid body
=

displacements resulting from gg‘ and the relationship is given by
KU i K D (9.19)
This can be rewritten as
U .= 3_99 » (9.20)
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in which R = -K1K_ .

2
The equations for the off-base elements in Eq. 9.17 can be written as
Mi + cl + KU = -MR+ MG - [CR+Cg (9.21)
The terms on the right-hand side are the effective earthquake forces,
and if the velocity dependent term, [C R + Ec]gg , is neglected”, Eq. 9.21
would reduce to
MU + CU + KU = ~TMR+MIU = Poee (9.22)
where Eeff is the effective force vector. Eq. 9.22 can be decoupled by
subst ituting U = ¢ Y, and pre-multiplying the result by ,:r; the individual
equation for the ith mode is obtained as follows :
o o 5 5
V‘ b 42 £y uy Y1 *owg V‘I P'l/Mi (9.23)
X 2
where P; = ¢; Poge , and My = o3 Mg, .
Y(t) for the mode number specified is found by Duhamel integration, from
which U(t) is obtained. By omitting the terms [_C_g +C. R] and
[59 + 5c R] from Eq. 9.17, the reactions at the foundations can be given

as

Egs[ﬂg+gc|_q§g+gcﬂ+gcg+5cg (9.24)
Consequently, the stress resultants, Ns, Ne and Nse' and the stress
couples, Ms‘ Me and Mse , are computed at all the nodes for the specified
circumferential angles 6. The programme of Ref. 32 is modified to
include damping, and generalise its applicability to elevated liquid

storage tanks.

% The damping contribution to the effective earthquake forces is
small, and is usually neglected (60).



CHAPTER 10
NUMERICAL ANALYSIS

10.1 Structural Data

The dimensions and properties of the elevated tank are shown in
Fig. 10.1. The number of elements employed is 35 as shown in Fig.
10.2, and the first eight modes are shown in the main response

analysis.

10.2 Criterion for Selecting Damping Ratio
The damping ratio for Tiquid motion is relatively small, ranging
from 0.0001 to 0.005, while the structural damping ratio is much

larger in value as shown in Table 10.1.

Table 10.1 Damping Ratio of an Empty Elevated Tank

Type of Structural Material Damping Ratio, &
Steel 0.005 to 0.02
Concrete 0.05 to 0.07
Masonry 0.15 to 0.40

At present, there is no definite rule on which to base the

computation of the damping ratios for the whole elevated tank system
containing 1iquid . The damping ratio for the overall system depends
om the amount of influence from the liquid motion, as well as the
motion of the supporting structure. When the tank is either empty or
completely full, no sloshing is involved, and the first and second mode

damping ratios, &; and £y, are both chosen as 0.05 for the structure to
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be analysed. When partially filled with water, the first mode involves
sloshing almost entirely, whereas the second mode essentially involves
the motion of the supporting structure. Hence, it seems reasonable to
use g = 0.001 and g, = 0.05 for partially filled elevated tanks.

From the damping ratios chosen, the appropriate damping coefficients,

ag and a, can be determined.

10.3 Load Input and Simulation

The ground acceleration depends on the level of seismic
resistance sought. For the present example, the digitised S69E
ground acceleration of the 1952 TAFT earthquake with a 0.2g peak
amplitude is provided as the input to the programme. The first
circumferential mode of the structure is excited, giving a series of
displacement-time responses. The stress resultants and couples at the
midpoint of each element, and the foundation reactions are also
obtained. The procedure is repeated for different cases of liquid
depths. The analysis is also carried out for an empty elevated tank,
with weight equal to the weight of the liquid-filled tank to simulate
the no-sloshing case. The four different cases considered in the

analysis of the tower are shown in Table 10.2.

Table 10.2 Cases of Analysis

Case Water Depth, d (3] ) Liquid Condition
! 7.25 m 0.001 0.05 Include Sloshing
11 11.00 m 0.001 0.05 Include Sloshing

111 11.00 m 0.05 0.05 Include Sloshing

Iv 11.00 m 0.05 0.05 Sloshing Suppressed
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10.4 Results and Discussion

The predicted free vibration frequencies, as shown in Table 10.3,
decreased significantly as the water depth is increased. This is due
to the effect of increasing the mass near the top of the structure
as the water depth is increased. It is also noted that the case
including sloshing (III) gives higher frequencies than the no-sloshing
case (IV); this may be due to the considerably larger 'impulsive' mass
(referred to in 3.7 as the liquid mass which moves in unison with the
structure) in the latter.

Displacement plots, Figs. 10.4 a,b,c and d, show that the maximum
radial displacements for all the four cases occur at time t = 3.4 s.
The differences between the responses for the cases considered are small
as the supporting structure is relatively stiff. The displacement
responses obtained for Case II (El = 0.001, &= 0.05) are larger than
those for Case III (51 = 0.05, 52 = 0.05) due to the larger first mode
damping in the latter. This suggests that larger dynamic response of
the water tank can result from possible influence on the first node
motion by the sloshing of 1liquid, which introduces smaller damping
ratios.

The maximum values of the foundation are also obtained at t =
3.4 s and shown in Table 10.4. From Table 10.4, the results show that
for most instances, Case III (sloshing included) gives larger responses
than for Case IV (sloshing not included) at the tank wall, and smaller
responses at the supporting structure, indicating a possible
amplification of the stress response in the tank region caused by
liquid sloshing.

Case I gives larger displacements than Case II at the tank wall,
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suggesting that the larger liquid volume does not necessarily cause
greater response to ground excitation.

The stresses obtained at the tank wall are at their maximum at
time t = 12.1 s. Table 10.5 presents the stress resultants at the
midpoints of Elements 15 and 17 at t = 12.1 s for the cases considered.
The results show that the base of the tower has the largest force
resultants at any instant. As far as the tank wall is concerned, the
bottom of the storage tank is the most stressed region. The total
axial moment at the midpoints of Elements 17 (near tank bottom) and
and 35 (tower base) can be computed by multiplying Mg (axial moment
per unit length) at 6 = 0°, by mR. These can be checked with the
critical buckling moment expression used by Ref. 35,

o) -7
B BIEL { ois :/Ro.omlg/f;/t } uDe1)
where

E = Young's modulus,

I = section modulus,

t = cylinder thickness,

R = cylinder radius,
and

fy = structural yield stress.

The check indicated significant conservatism in the structure for the

present level of seismic resistance sought.
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Table 10.3 Comparison of Frequencies (Hz) of the Water Tower

Mode

Case 1 2 3 4 5 6 7 8

I 0.503 2,99 14,05 20.97 26.30 27.34 30.91 31.88
11 0.440 2,99 14.03 19.82 22.83 27.24 28.93 30.93
111 0.372 2.92 14,03 18.61 22.15 26,04 27.30 30.93
v 0.301 2.04 13.44 15.83 18.45 19.61 21.50 25.25

Table 10.4 Foundation Reactiong, and Radial Displacements at Nodes
15 and 17 for 6 = 0", at t = 3.4 s.

Case Axial Force Tang. Force Rad. Force Axial Moment Node w
kN/m kN/m kN/m kNm/m mm

1 89.1 6.4 20.8 -9.7 e
11 84.9 6.2 19.8 -9.2 1 6.5
111 80.7 5.9 18.9 -8.8 17 5.8
v 76.6 5.8 17.8 -8.3 1 e

Table 10.5 Tank Stresses at Midpoints of Elements 15 and 17 for 8 = 0°,

at t = 12.1s
Case Element Ng Ny Mg Mg
kN/m kN/m kNm/m kNm/m
1 15 5.7 =2.3 0.26 0.08
17 12.6 -40.3 -1.05 -0.35
n 15 5.7 2.7 0.34 0.10
17 12.7 -37.6 =0.97 -0.33
111 15 5.5 2.6 0.32 0.10

17 12.1 -36.0 -0.93 -0.33




CHAPTER 11
CONCLUSION AND DISCUSSION

11.1 Conclusions
The following conclusions are drawn from this study :
i) Free vibration frequencies of the elevated water tank decrease
as the water depth is increased.

ii) Elevated water tank frequencies are higher when sloshing is
permitted.

iii) The 1iquid sloshing effect tends to cause relatively larger
stresses at the tank wall and smaller values at the supporting
structure.

iv) When partially filled with water, the first mode damping ratio
of the elevated tank system may be dominated by the damping
ratio of the liquid motion. This causes a considerable
reduction in the system damping ratio, consequently amplifying

the response of the structure to ground excitation.

11.2 Discussion

Although the theory used in this method is rigorous, the
procedure is straightforward for seismic response analysis of
axisymmetric 1iquid storage structures. However, the discretisation
of the structure into elements requires judgment, particularly where
there are high gradients in the profile. For partially filled
elevated tanks, it may be desirable to use a larger number of mode
shapes. The operating conditions of the tank (e.g. constant head

supply or partially full conditions), and the level of seismic
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resistance sought are necessary pre-analysis specifications.

The effect of the tilting action of the tank base has to be
considered for thin-walled tanks (e.g. steel tanks) for high seismicity.
This can partly be done by generalising the formulation to include
higher circumferential harmonics in the simulation of load excitation.
The work can be extended to include the conical shape of the tank

bottom. Nonlinear effects of liquid sloshing can also be considered.
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COMPUTER DOCUMENTATION

*

This computer program is a modified version of the program originally developed by
Duvall, and later extended by Glacel. The program consists of the dynamic analysis

of an axisymmetric offshore tower carrying a deck mass, subjected to digitised
wave spectral input. The available options are:
Dynamic analysis without vibration absorber
2)  Dynamic analysis with a tuned mass damper
3) Dynamic analysis with a Tiquid vibration absorber

IMPLICIT REAL*8(A=H,0=2)

DOUBLE PRECISION MASS,LENGHT

COMPLEX As8

OIMENSIUN TOWER (20), FREQ (100), MASS(200), STIFF(200)sA(200),
*¥B(50), DIS(5C), VEL(50) 3 ACC(S50) 4R(50),5(50)sHIS50) s PHASE(50)+Q(500)
*P(50)

DIMENS IUN EL(2)

DATA IR 1W/5467

CALL INPUT (IR IWsTOWERNELEMsNFREG,
*HE IGHT 4 ZO s REBsRET 4 RIByRIT, DEPTH,E+RO»DMASS,DINERFREQ,

*Hy PHASE +OT o TIME ¢ NRIGD wKQoKDs KMy ALPHA S BETAV s BET Ak, DK s DMy BETAD s KNWs
*TM s TMO 2 EL sET» THICK yRAD )

CALL ASMBL (NELEM,NEQ,MEW,
KHETGHT yREB S RET yRIBRIT 4 E4 ROy DMASS, DINER, STIFF s MASS oKUs
HNRIGD s IRy IWoDEPTHKDyDM DK sKMyLENGHT s DA» DB s TMe TMULEL 3£ T3 THICK s RAD
NFREQ==NFREG

CALL TFUIWsTUWER JNELEM s HEIGHT » ZO o RET sREH » DEPTH,
ANEQsMBWsSTIFF s MASS Ay Bs FREQ.KQsNRIGD o HyBETAVBETAH, ALPHA,
KD 3 LENGHT DA DB oRIT 43S BETAD DK DMy NEREC, KiNW)

STuR

END

SUBROUTINE INPUT (IRsIW,TOWER ) NELEMsNFREU,
HHE LGHT o Z0 s REDsREToRIBWRIT 2 DEPTH4E +RO2DMASS, DINER S FREQ
*HyPHASE s DT o TIME s NRIGD s KGyK Do KMy ALPHA, BETAV  BETAHDK» UM sBETAD sKNW s
#TMy TMO L ELSETH» THICK,R)

IMPLICIT REAL*B(A=H,0-2)

CUMMON/HT/ZHGL s H1L

DIMENSIOUN EL(2)

DIMENSIGN TUWER(20)sFREG(1)sH(1),PHASE(L)

READ(IRs1) TOWERINELEM, NFREQsNKIGD sKQ»KD s KMy KNW
WRITE(IWs2) TOWER sNELEM, NFREG
IF(KQ.NELO)WRITE(IW.50)

FORMAT (///5X, *EARTHQUAKE ORPTION IN EFFECT*)
IF(KDeGTaD)WRITE(IW,51)

IF(KDJLTDIWRITE(IWs52)

FORMAT (//5Xs *DAMPER OPTION IN EFFECT')
FORMAT(//5X, ' LIQUID SLOSHING DAMPER IN EFFECT *)

READ OVERALL DIMENSIONS

READ(IRs3) HCIGHT4ZOsREBIRETWRIBIRIT 4DEPTH
WRITE(IW,4)HEIGHT,Z0y REBWRET,RIBJRIT,DERPTH
READ MATERIAL PRCPERTIES

READ(IR»3) EsRO



a

#

4l
42

23

1000

30

#n
i

3

WRITE(IWsS)EWRC

88

READ ALPHA,BETAV,BETAH FOR DAMPING, IF NO DAMPING READ IN ZERO VAL

READ (IRs3) ALPHA,BETAV,,3ETAH
WRITE(IW.21)ALPHA,BETAV sBE TAH

READ DECK LCGAD

READ (IRs3) DMASS ,DINER

WRITE(IWs6) DMASS SDINER

IF(KD.EQ.0)GO To 22

IF(KD.LT«D)GD TO 23

READ(IR+41)DM, CMEGA,BETAD

DK=0OMEGA *%2 % DM

WRITE(IWs42) DKsDMsOMEGA, BETAD

FORMAT(3F8.4)

FORMAT (4X, *DAMPING PARAMETERS'/2Xs *SPRING CUNSTANT=
* 'DAMPER MASS =',F8+4 /2X, "DAMPER FREQUENCY(RAD/SEC) =',F8.4/
*2Xy 'PERCENT CRITICAL DAMPING =',F8,4)

GO0 TOo 22

CONTINUE

READ(IRs3)IRsHLsROLsET4 BETADs THICK
WRITE(IWs1000)RyHLsROL$ETs THICK

FORMAT (2X+5E20.8)

CALL SLOSH(RsHLsROL 98100 sTM, TMOs DM s EL+UMEGA )
DK=0OMEGA% %2 *DM

WRITE(IW,30)TMOsDM,DK s HOL sHIL +sOMEGA, BETAD

FORMAT (4Xs *DAMPING PARAMETERS®*/2X,' IMPULSIVE MASS = ',F10. é/ZX'

%' CUNVECTIVE MASS = *,F8,4/2Xs" EQUIVALENT SPRING CONSTANT =

2F10e4/2Xs

¥F10e4/2Xs" HO = *4F10.4/2Xs" Hl ='3F1044/72Xs* DAMPER FR[QUENCV(RMJ

*/SEC) =
CONTINUE
READ FREQUENCIES

IF (NFREQ.GE.0) GO TO 10

READ FREQUENCIES FOR STATIC RESPONSE IN FREQUENCY DUMAIN

N = =NFREQ

READ (IRs3)(FREQ(I)sH(I)sI=1,N)
WRITE(IWs7)(FREG(I)sH(I)sI=14N)

RETURN

READ TIME AND TIME INTERVAL PLUS CONDENSED SPECTRUM PARAME TERS
FOR DYNAMIC ANALYSIS

IF(NFREQLLE.0)GC TO 12

READ(IRs3)DT,TIME

WRITE(IWs8)DTs TIME

DO 11 I=1,NFREQ

READ (IRs3)FREQ(I)sH(I),PHASE(I)

WRITE(IWs9) (FREQ(I)sH(I)sPHASE(I) »I=1,NFREQ)

RETURN

2F10,4/72X, "PERCENT CRITICAL DAMPING = *,F10.4)

FORMAT (20A44+/,714)

FORMAT('"1" 4/ +5X+20A4s//

¥ S5X9I59 'ELEMENTS® +/+s5XsI 5+ FREQUENCIES® +/)

FORMAT (8F1042)

FORMAT(///5Xs "#OVERALL DIMENSIONS*'//

*5Xs *TOWER HEIGHT sF8a2¢ "MN 2

#5Xs 'CAISSON HEIGHT 'e FBe29'Me' / 7

*¥SXs *EXTERNAL RADIUS AT THE BOTTOM TeFT7.2 "M,/



*5Xs "EXTERNAL RADIUS AT THE TOP "9F7e2s 'Me*/
#5Xs *INTERNAL RADIUS AT THE BUTTOM *,F7.2, "Mt/
#5Xy T"INTERNAL RADIUS AT THE TOP "eF7.2s "Mets

*5Xe 'DEPTH OF WATER *4F842s "Me* / )

FORMAT(//7/5Xs **MATERIAL PROPERTIESk'//
*SXs 'E ="y El103/5Xs"R0O ="'y El1Ce3 /)

FORMAT (///5Xs *DECK MASS 'y E12.4 7
* 5Xs *DECK INERTIA', El2.4 /)
FORMAT (/775X
*'WAVE HEIGHT'//(3Xs2F15.4) )
FORMAT (/775X
*¥'DELTA T = ¥

F7.3/75Xs 'TIME = * 4 F7.37 )

CONDENSED SPECTRUM PARAMETERS **

** TIME INTERVAL AND TOTAL TIME *

/773X "

Y/ /5%

FORMAT ( ///5Xs *%* CONDENSED SPECTRUM PARAMETERS *'//1
*'FREQ®* s 8X s *WAVE HEIGHT' , 3X s "PHASE ANGLE®' //(3X,

FOURMAT(//7/75Xs ' % DAMPING COEFFICIENTS *'//5Xs ' ALPHA=
*#'BETAV = *,E10e3 /SX, *BETAH= ', E10.3/7)

END

SUBROUTINE SLOSH(RsHLsROL s Gs TMy TMOsTML EL s OMEGA)

IMPLICIT REAL*8(A=H,0-2)
COMMON/HT /HOL s H1L
DIMENSION EL(2)
TM=3414159*%R¥R¥HLFROL
A=R/HL

B=HL/R

F1=DCOSH(1.732%A)
F2=DSINH(1.732%A)
F3=DCOSH(1.837%B)
F4=DSINH(1,E37%B)
TMO=TM/ (1.732%A)*DSINH( 1.732%A) /DCOSH( 14 732%A)
TM1=0.21%TM%1. 837%A%F4/F3
HOL=0,375%HL*(1,041.33% (1, 732%A%F1/F2-1,0))
HIL=HL*(140=(F3-14534)/(1.837%B%F4))
OMEGA=(G/R) *1 ., 837%F4/F3
OMEGA=DSGRT (OMEGA)
IF(HILWLE«HCL)GO TO 1

EL (1)=HOL

EL(2)=HI1L-HOL

GO To 3

IF(HIL 4EQ.HOL)GO TO 2

EL(1 1

EL(2)=HOL-H1L

Go To 3

EL(1)=HOL

EL(2)=0.1

CONTINUE

RETURN

END

SUBROUTINE ASMBL (NELEM, NEQ

MBW,

*HEIGHT s REBs RETs RIBs RITs Es ROs DMASS, DINERs STIFF,
ANRIGDs IRs IWsDEPTHsKD9sOMsDK o KMy LENGHT s DAy DB TMs TMUS ELsETs THICKR)

IMPLICIT REAL*8(A-H,0-2)
DOUBLE PRECISION MASS,LENGHT,MG
COMMUN/ZHT/HOL s H1 L

89

FREQG® »8X,

3Xs

SF154))
Y 4EL10.3/5X,

MASS s

DIMENSION STIFF(200),MASS(200)sA(15)AMAS(13419)+STIF(19,19)

DIMENSION EL(2)

KQs



2]

)

90
INITALIZE

NEQ= 2% (NELEM + 1)
IF(KQ.NE.O) NEQ=NEQ+2
IF(KDeNEe«O) NEQG=NEG#+1
IF(KDeLT«0)NEQ=NEQ+4
MBW=5

LIM=NEQ*MBW

DO 10 I=
STIFF(I
MASS(1) =0.0

COMPUTE ELEMENT MATRICES AND ASSEMBLE
ON=NELEM

LENGHT = HEIGHT/DN

DA=(RET-REB)/DN

DB=(RIT=-RIB)/DN

Al = REB

Bl1=RIB

EMASS=DMASS

IF(KD.GT,0) EMASS=EMASS + DM
IF(KDeLTeD)IEMASS=EMASS+TM

DO 12 N=1,NELEM

A2 = Al + DA

B2 = B1 + DB

CALL SUBK (EsAl+E1+A2,B82,LENGHT,A)
CALL ADD (NEQsSTIFFsN,A)

CALL SUBM (RO»sAl+B1sA2,B2sLENGHTSEMASS,A )
CALL ADD (NEQsMASSsNsA)

Al = A2

B1 = B2

AL1=R+THICK

Bl1=R

K=0

N1I=NELEM+1

N2=NELEM#+2

DO 201 N=N1sN2

K=K+1

DIs =EL(K)

CALL SUBK(ETsAl1,B811,A11+811,D1S,A)
CALL ADDI(NEGySTIFF,NsA)

ADD DECK MASS

I=2 % NELEM

MASS(L+1) = MASS(I+1) + DMASS
MASS(I+2) = MASS(1+2) + DINER
IF(KD.GE.0)GO TO 1

IF(HIL « GE«HOL ) MASS(1+3)=TMC
IF(HIL .LT JHOL )MASS(I+5)=TMO

CONTINUE

Al = REB

B1 = RIB

DO 14 M=1,NELEM
A2 = Al + DA

B2 B1 + o8B



G

7S

100

76
101

i1
30

32

8

CALL SUBKG(RUSREBsRIBsA1+B1+A2+B2,LENGHTSEMASSsM,A)
CALL ADD(NEQsSTIFFsMsA)

Al = A2

Bl s B2

IF (KDeEQeD) GO TO 40
IF(KD.GT.0)GO TC 38

MODIFY MATRICES FOR MASS DAMPER
IF(HIL+LT«HCOL)IGO TG 39

GO TO 38

CONTINUE

I=NEQ-4

NEQ

K=5%NE Q=4

GO TO 41

CONTINUVE

I=NEQ=-2

EQ

K=3 * NEQ - 2

CONTINUE

STIFF(I) = STIFF(1) + DK

MASS(J)=DM

CONTINUE

IF(KM.EQ.0)GO TC 43

PRINT OUT MASS AND STIFFNESS MATRICES
WRITE(IW,29)

FORMAT(//10X, * MASS MATRICES'//)

DO 100 I=1,NEQ
DO 75 J=1,NEQ
AMAS(I3J4)=0.0
CONTINUE
DU 101 I =1.,NEQ
K=1+4
DO 76 J=I+K
1J=(J-1) * NEQ + I
AMAS(I 4 J)=MASS(1J)
CONTINUE
DO 102 1=1,NEQ
K=I+1
L=1+4
DO 77 J=KsL
AMAS(J s 1)=AMAS(I,4J)
CONTINUE
DO 30 I=1,NEQ
WRITE(IWs27 )(AMAS(I+J)+J=1,NEQ)
FORMAT(/1X+15E841)
CONTINUE
WRITE(IW,32)
FORMAT(//10X, *STIFFNESS MATRIX'//)
DO 103 I=1,NEQ
DO 78 J=1,.NEQ
STIF(14J)=0.0
CONTINUE
DO 104 I=1,NEQ
K=1+4

9



)

DO 79 J=1s+K
IJ=(J=-1)*NEG+I
STIF(IsJ)=STIFF(1J)
CONTINUE

DO 105 I=1,NEQ

DO 80 J=KsL

STIF(JSI1)=STIF(1,J)

CONTINUE

DO 28 I=1.NEQ

WRITE(IWS27)(STIF(I1+J) +J=14NEQ)
FORMAT(/11E10,3)

CONT INUVE

RETURN

END

SUBROUTINE SUBK (EsAlsB1sA24sB82sLENGHTSTIFF)
IMPLICIT REAL*8(A-H,0-Z)

DOUBLE PRECISION MASS,LENGHT

DIMENSICN A(S5) sW(5) sF(4),STIFF(15)

DATA AsW/0,0D0+s~0,53846SD0,0,538469D0,-0,906180D0,0,90618000
*0e568889D0, 2%0 +478629D0 42%0,236927D0/

DO 1 I=1,15

5 * (X+1.0)

12.0%X=640

F(3)=-F(1)

F(2)= (=4.0 + 6.0%X) ¥ LENGHT
F(4)= (-2,0 + 6.,0%X) * LENGHT

AA = AL¥(1.0 = X) + A2%X

B B1%(1.0 = X) + B2%X

C = 0.7853981%(AA*%4 - B¥*4)/LENGHT*%3/2,0%W(N)*E
1J=0

D0 2 J=144

DO 2 I=1sJ

1J=1J+1

STIFF(IJ)=STIFF(1J) + C*(I)*F(J)
RETURN

END

SUBROUTINE ADD (NEQsAsN+B)
IMPLICIT REAL¥8(A-H,0-2)
DIMENSION A(1),8(1)

NN=2%{N=1)

KL=KL+1

A(III=A(IJ) + B(KL)

RETURN

END

SUBROUTINE SUBM (ROsAL 481 A2 ,B2,LENGHT, EMASS, MASS )
IMPLICIT REAL*8(A-H,0-2Z)

92



DOUBLE PRECISION MASS4LENGKT

DIMENSION A(S)sW(5S)+sF(4)sMASS(15)

DATA AsW/0+0D03=0+53846S9D050+53846900,5-0.506180D0404906180D0
#0e 56888900, 2%¥0 47862900 ,2%¥0.236927007

X=A(N)

+5¥(X+140)

F(3)= X*X*(3,0 = 2,0%X)

F(1)= 1.0 = F(3)

Fla X ®% X * LENGHT % (X=1.0)

F(2)= X * LENGHT * (1,0 = 2.0%X + X*X)
AA = Al ¥ (140 = X) + A2 * X

B =Bl % (1,0 - X) + B2 * X
C=3.14159265 * (AA * AA - E*B) * RO * LENGHT /2.0 % W(N)
EMASS = EMASS + C

1J=0

DO 2 J=1+4

DO 2 I=1,J

1J=1J+1

MASS(IJ)I=MASS(IJ) + C * F(I1) * F(J)
RETURN

END

SUBROUTINE SUBKG(ROREBRIEsAL+B1lsA2,+B82,LENGHT s EMASSsMsSTIFG)
IMPLICIT REAL*8(A-H,0-Z)

DOUBLE PRECISION MASS,LENGHT

DIMENSION A(S5) +W(S) +sF(4)sSTIFG(15)
DATA AsW/040D05=0+53846SD0+0+538469D0,=04+706160D0,0.906180D0
*0s568889D0,2%0+478629D0 +2%0.23692700/
DM=M-1

DO 1 I=1,415

STIFG(I) .

DO 2 N =145

X=A(N)

X=0,5 * (X+1.0)

X%¥6.0%(X=140)

S(1e0=4,0%X + 3.0%X*¥X) * LENGHT

(3.0%X = 2.0) * LENGHT*X
A3 = (A2-Al) * X + Al

B3 = (B2-B1) * X + Bl

QMASS=RO * 3414159265 * (DM + X) * LENGHT/3.0 * ((REB*REB
*+ A3 ¥ REB + A3 % A3) - (RIB*RIB + B3%RIB + B3%83))
P=9.81%(EMASS = GMASS) / LENGHT*W(N) / 2.0

1J=0

DO 2 J=1+4

DO 2 I=1+J

19 = 1J+1

STIFG(IJI=STIFG(IJ) + P (I1)*F(J)

RETURN

END

SUBROUTINE TF(IWsTOWER »NELEMs HEIGHT s ZO s RET sREBs DEPTH,
#NEQ,MBW,STIFF 3 MASS 4A,8,FREGsKQsNRIGD o Hy BETAV s bETAH»ALPHA >
#KD s LENGHT s DAs DEsRIT 55 BETAD, OKs DMy NFREQoKNW )

IMPLICIT REAL*8(A=H,0-2)

.
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DOUBLE PRECISION MASS,LENGHT

COMPLEX*16 AsBsCeGCeFsTsRsG

DIMENSION TOWER(20) +STIFF(1)sMASS(1)sA(1)+B8(15)4P(4)sS(1)sUS(15)s
*VS(15) sHS(15)+SS(S)+FRECG(1)sH(1)

J=ENELEM+1

DO 100 I=1.J

UsS(1)=0.

DO 99 L=1,NFREGQ
W=6,28318531 * FREQ(L)
w2=wWkwW

FURM COEFFICIENT MATRIX
LIM=NE Q*MBW

D=W*BETAV + 2,0%BETAH
G=DCMPLX(1.0D0,0)
F=DCMPLX(=W2,WXALPHA)

DO 1 I=1sLIM
A(L)=G*STIFF(I) + F%®MASS(I1)

IF(KD,EQ.0)GD TO 15
CO=w*2.0*BETAD*DSGRT(DK)*DSART(DM)
T=DCMPLX(0,0D0+CD=-D*DK )
R=DCMPLX(0+0D0 3=CD+D%DK )

X=D¥*DK+W* ALPHA*DM
G=DCMPLX(0.,0D0,CD-X)
A(NEG=2)=A(NEQ=2)+T
A(NEQ)=A(NEQ)+Q
A(3%NEQ=2)=A(3*%NEG-2) +R

CONTINUE

FORM LOAD VECTOR
DO 2 I=1,NEQ
B(I)=0.

DN=NELEM
LENGHT=HE IGHT/DN
DA=(RET-REB)/DN
Al1=REB

DO 4 N=1,NELEM
A2=A1+DA

CALL SUBP(NsAL 4A2,LENGHT, Z0sDEPTH, W2 ,P)
J=2%(N-1)

DO 3 I=1.4

J=J+1
C=P(I1)*H(L)
B(J)=B(J)+C
Al=A2Z

IMPOSE DISPLACEMENT BUUNDARY CONDITIONS
IF(NRIGD.EQ.0)GO TO 9

DO S I=1+LIM,NEG

A(I)=0.0

9
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B(1)=0.0
B(2)=0,0

SOLVE SYSTEM OF EQUATIONS
CALL SOLVE(OsIWsNEQsMEWs1 +AsBsLINMy NELEMs RET,RITSLENGHT sDAsDBs5)

PRINT OUT STEADY-STATE RESPONSE
GO TO 103

IF(KNWeNED)GO TG 103
REQ=FREQ(L)

WRITE(IW+6) TONERREG

CONTINUE

12=NEQ

IF(KD+EQs0)GO TC 10
HACC==-(CDABS(B(12))*u2)
Y=CDABS( B(12) - B(I2-2) )
USD=USD + Y*%2

HSD = HSD + HACC**2

GO To 101

IF(KNWeNE.0)GO TO 101
WRITE(IW,11)Y,sHACC

FORMAT (13X, E1545s 21Xs E15.5)
CONT INUE

12=12-1

IF(KDeLTo40) I2=12-4

CONTINUE

NNODE=NELEM#+1

DO 7 1=1,NNODE

J=NNODE=1+1

HACC=-(CDABS ( E(I2-1)) * w2)
U=CDABS(B(I2-1) )

V=CDABS(B(12) )

US(J)=US(J) + Ux*2

VS(J)=VS(J) + Va2

HS(J)=HS(J) + HACCH*2
U=U/6.6402

IF (KNWoNE+0)GO TO 102

IFCIEQel IWRITE(IWs8) JoUsVHACC
CONTINUE

12=12-2

FORMAT("1% /5X,20A4//5Xs'#STEADY=STSTE RESPONSE AT ",F8.3, ' CPS%'
*//5X+*NODE® 46Xs *DISPLACEMENT®,10X, *ROTATION®,10X, *ACCELERATION'
*/ )

FORMAT (5X+14s 3(3X,E15.5) )

IF (KNWeNE.O )GO TO 104

WRITE (IWs12)REQ

CONT INUE
FORMAT(////7/5X + " ¥ELEMENT STRAINS AT ',F843, ' CPS**//5X, *ELEMENT',
*E6Xs 'STRAIN®' 7/ )

DD 13 I=1,NELEM

SS(I)=SS(I) + S(I)**2

IF (KNW JNEL0)GO TO 105
WRITE(IWa14)1,S(1)
FORMAT (5Xs 1443X+E15.5)

CONTINUE
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CONTINUE

CONTINUVE

COMPUTE AND PRINT RESPONSE STANDARD DEVIATIONS
WRITE(IWs107)

FORMAT(*1%/5X, *RESPONSE STANDARD DEVIATIONS*//5Xs *NUDE"'»6X,

*YDISPLACEMENT® 310X, *ROTATION® 10Xy * ACCELERATION®

IF(KD«EQe0)GO TO 108
USD=DSQRT(USD)
HSD=DSQRT(HSD)
WRITE(IWs109)USDsHSD
FORMAT (5X4 * DAMPER", 2Xs E15.5 s21X, ELl5.5 )
CONTINUE
J=ENELEM#+1
D0 110 I=1+J
US(I)=DSQRT(US(I) )
VS({1)=DSQRTLVS(1) )
HS(1)=DSQRT(HS(I) )
WRITE(IWsB) I4US(I)sVS(I)sHS(I)
WRITE(IWs111)
FORMAT(///77/5X+*STRAIN STANDARD DEVIATIUONS'//5Xs
*'STRAIN® / )
DO 112 1=1+NELEM
SS(I1)=DSQRT(SS(1) )
WRITE(IWs14) I»SS(1)
RETURN
END
FUNCTION RK(W2+GsDEPTH)
IMPLICIT REAL*8(A-H,0-2Z)
RK=W2/G
IF(W2.,EQ.0.0) RETURN
IF(RK*DEPTHeLT+10.0)G0 TO 8
RK=10,0/DEPTH
RETURN
A2=0.0
DK=(2,0-RK)/10.0
Al=A2
B=RK*DEPTH
A2=W2-RK¥G*DSINH(B) / DCOSH(B)
IF(A2+EQeD«2)RETURN
RK=RK+DK
IF(A1/A2 +GEes 040) GO TO 10
RK=RK=1,5%0K
DK=DK/ 2.0
IF(DK/RK oL Te 1e0E=4)RETURN
B=RK*DEPTH
A3=W2-RK*¥G*CSINH(B)/DCOSH(B)
IF(A3.EQ.0.0)RETURN
DK=DK/ 2.0
IF(A3/7A1 «GTe 0e0) GO TO 14
RK=RK=DK

RK=RK +DK
Al=A3

GO TO 12
END

|

TELEMENTS* 35X,
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FUNCTION DCOSH(A)

IMPLICIT REAL*8(A-H,0-2)

B=DEXP(A)

DCOSH=0.5%(B + 1.0/8

RETURN

END

FUNCTION DSINH(A)

IMPLICIT REAL¥8(A=H,0-2)

B=DEXP(A)

DSINH=0,5%(B-1.0/8)

RETURN

END

SUBROUTINE SUBP(NsAlsA2,LENGHT,Z0sDEPTHsW24P)
IMPLICIT REAL*8(A=H,0-2)

DOUBLE PRECISION MASSsLENGHT 4K

DIMENSION A(S5),W(5).P(4)

DATA AsW/040D0,=0.53846500,0.538469D0,-0,90618000,0.90618000
*0,568889004+2%0 ,47862900,2%0,23€927D00/7

DATA CIsRO+G /2+0004140D055+81D0 /

K=RK (W2s G» DEPTH)

DO 1 I=1,+4

P(I)=0.0

Z1=Z0 + LENGHT * DFLOAT(N-1)

B=K*DEPTH

©=3.1415926 * CI * RO * W2 / DSINH(B )
00 2 I=1,5
(§F)
o5 WA REL UK
RADIUS = Al * (140 = X) + A2 #* X
Z=z1 + LENGHT * X

IF(Z.GT JDEPTH)RETURN
B=K*2Z
F=C* RADIUS *%2 * DCOSH(B ) * W(I) / 2,0%LENGHT
HEX%X*¥ (30240 %X)
P(1)=P(1) + (1.,0-H)*F
P(2) =P(2) + (X * LENGHT % (1,0 = 2,0%X + X*X )) * F
P(3)=P(3) + H%F
P(4)=P(4) + X&X¥LENGHT*(X-1,0)%F
CONTINUE
RETURN
END

SUBROUTINE SOLVE(IOsIWsNEQsMBWsNLS 9AsBsLIMsNELEMsRETsRITSLENGHT,

*DA,DBsS)

IMPLICIT REAL*8(A=H,0-Z)

DOUBLE PRECISION MASSsLENGHT

COMPLEX%16 AsBsCsD

DIMENSION A(1),8(15)

DIMENSION 5(1)

REDUCTION OF A. ORIGINAL ARRAY IS DESTROYED
IF(10+EQe2)G0 TO 20

NRD=NEQ=1

DO 18 I=1sNRD

b=A(I)

IF(CDABS(D) .EQ. 0.,0D0)G0 TO 18
19=1

DO 16 J=2.MBW
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1J=1J+NECG
IF(CDABS(A(IJ)) +EQe 0.0D0)GU TO 16
C=A(1J)/D

IKk=1J

JK=1+J=-1

DO 14 K=J,MBW
ACJKI=A(JIK)=C*xA(IK)
IK=1K+NEQ

JK=JK+NEQ

CONTINUE

CONTINUE
IF(ID.EQe 1 )RETURN

‘# REDUCTION OF 8. ORIGINAL ARRAY IS DESTROYED
NRE=NEQ=-1

D0 26 I=1,NRE

D=A(1)

IF (CDABS(D) «EQe0+0DOIGO TO 26
1J=1

DO 24 J=2,MBw

IJ=1J+NEG
IF(CDABS(A(IJ)).EQ.0,0D0)GC TO 24
C=A(1J)70

IK=1

JK=T+J=1

D0 22 K=1,NLS

BIJKI=B(JIK)-C*B(IK)

IK=IK+NEQ

JK=JK+NEQ

CONTINUE

CONTINUVE

¢# BACKSUBSTITUTION
I=NEQ

) IF (CDABS(A(I))«EQ.0.000)G0 TO 34
IK=1
DO 32 K=1sNLS
BOIK)=BC(IK)/A(I)

2 IK=IK+NEQ

' I=1-1

IF(1.EQ.0)GU TO 40

19=1

DO 38 J=2,MBW

1J=1J+NEQ

IF(CDAES(A(IJ))«EQe 0.000)GO TC 38

IK=1

JK=14J~1

DO 36 K=1,NLS

BOIK)=B(IK) - A(IJ) * B(JK)

IK=1K+NEQ

JK=JK+NEQ

CONTINUE

GO TO 30

¢# SOLVE FOR STRAINS

I=(NELEM + 1)%2

DO 39 K=1sNELEM
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J=NEL
N=K=1

EM - K +1

D=RET#+ (DFLOAT(N)*DA)+(DA/240)~ RIT = (DFLOAT(N)*DBE) =~ (DB/240)
S(J)=CDABS((B(I)=B(I-2)))* D/(2,0%¥LENGHT)

I=1-2
CONTI
RETUR
END

NUE
N

skkkkE SAMPLE DATA *3%ddkk¥

EEL-JACKETED OFFSHORE PLATFORM

4 =31
366.0

390000.0
0.0302
4180,.0
7.2874
0.030
0.07C
Oel110
0.150
Ce.190
0.230C
0.27¢C
0e310

1 0 =1
0.0

1483
00043
2432760,.0
246963
0.830
3.000
1300
0.340
04195
c.110
0,090
0,095

(-]

o
33.75

0.015

305M IN DEPTH

9.0

1002039000040

0.040
G.080
Oe120
0.160
0.200
0,240
0.280
0e320

2.300
2.400
0950
0.295
0e170
0.098
0.095
04095

33.6

0.0500
0,050
0.090
0130
0.170
0.210
0.250
0.290
0330

0e03
4,000
2.000

0,250
0el150
0.090
0098
0095

305.0

0,060
0.100
0.140
0.180
De220
0.260
0.300
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This program is an extension of Program FLUID and FREQMOD of Shaaban and Nash,
and Balendra and Nash, for the free vibration analysis of ground-supported liquid
storage tanks. In this work, the application is extended to elevated liquid
storage tanks.

DIMENSIUN FS( 5000),SC(25+50) s SCT(S0425) »ADM(50,45C )
DIMENS TON NHARMC(10)
DATA MMD/25/.NDFSD/S0/ 4 LINLAR/ 5000/
CARD 1
READ 701 4NNoMM
NN=NU. UF FLUID ELEMENTS ALONG THE RADIUS
MM=NO. OF FLUYDEELEMENTS ALONG THE GENERATOR
701 FORMAT(215)
CARD 2
READ 7024DENFsRyWH
702 FORMAT (3F10.4) o
CARD 3 "
READ 602, NHC
€N2 FURMAT(S15)
CARD 4
READ 602, (NHARMC(I)s1=14NHC)
PRINT 200 4NNy MM
200 FURMAT (/45X 4"NC. CF ELEMENTS IN THE RACIAL DIRLCTIUN='4154/45X,
5'NU UF ELEMENTS IN THE AXIAL DIRECTION=',15)
PRINT 100, DENF 4Ry WH
100 FORMAT (/45X,*OENSITY OF FLUID: E10.44 /45X, "RADIUS OF CYLINUER=',
BELN 443 /435Xs *HEIGHT OF FLUID=',E10.4)
DENF=DENF/38440
REWIND 10
DO 60 IHC=1,NHC
NHR=NHARMC( 1THC )
INDEX=1 CURRESPUNDS TO ASYSYMMETRIC DEFORMATION THAT IS NHR=1+3:5
INDEX=1
KRES=NHR=(NHR/2) %2
=2 CORRESPONDS TO SYMMETRIC DEFOKMATIUN THAT 15 NHR=C,2,4
IF(RES «EGe Os) INDEX=2
TBAND=MM +2
NDF S=MM#2
LFCINDEX JEQ. 1) NOFF=(NN)*MM
IF (INDEX oEGe 2) NDFF=(NN+1)%MM
PRINT 1111
111 FURMAT (1H1)
PRINT 3004 IBANC s NDF S, NDFF
300 FORMAT (5X4* TOAN 155X, * NDF S
XM=FLOAT(NHK)
CALL FLGLN(DENF o RoWHy XM o NNy MM g NDF S o THAND » MMD 4 NOFSDy LINEAR,
Q FS,5Cs INDEX)
DO 19 1=1,MM
DO 10 J=1,NDFS
1N SCT(Ja1)=5C(1sJ)
CALL BINV(FSsSCoNDFF e TBAND s NDFS s MMoNDFSD o MMD )
NOW SC=FS INV *%SC
PRINT 1
SCT % FS INV #5C =ADM

INCE

IS5,5X *NDFF=%415+7)
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D0 27 K
ADM(14J)=ADM(T+J)+SCT(I+K)*SC(KsJ)
PRINT 1
FORMAT (25 (2H#*% ) )
WRITE(10) NHR
WRITE(10) NDFS
WRITE(10) ((ADM(I4J) +J=14NDFS) 4 I=14NDFS)
PRINT 17, NHR
FORMAT (30X, *ADDED MASS MATRIX FOR CIRCUMFERENTIAL WAVE=',14)
PRINT 11s((ADM(I+J)sJ=14NDFS)sI=1sNDFS)
FORMAT (10 (2X4E10e4))
CONTINUE
REWIND 10
CALL FREMGD
sToP
END
SUBROUTINE FLGEN(DENF sRsWHs XMy NNy MM 4NDFS s IBAND s MMDy NDFSDs L INEAK,
Q FSsSCs INDEX)
DIMENSION FS(LINEAR)s SC(MMD s NDFSD)
DIMENSION FK(444)sFF(244)4N(4)
OX=R/FLOAT (NN)

S

e

3

o -
o -

DY=WH/FLUAT (MM)
A=DX*0 ,5
B=DY*0 .5

DO 10 I=1,LINEAR
10 FS(1)=0,0
TRANSFORMATION FROM A SQUARE MATRIX TO A BANDED MATRIX
(Ksl) = (KsJ) s J=L=K#+1
TRANSFORMATION FROM A BAND TO A LINEAR ARRAY
LFS=(K=1) %I BAND +J
NN1=NN=1
MM1=MM=1
IF(INDEX +EQ. 1) NNX=NN-1
IF(INDEX «EQe 2) NNX=NN
DO 1000 I=1,NNX
IF(INDEX +EQ. 1) XO=FLOAT(I)*DX+A
IF(INDEX «EGe 2) XO=FLOAT(I=1)*DX+A
CALL FSTIF(AsB+X0sFKyXM,DENF)
DO 1000 J=1,MM1
NCL)=(T=1)%MM+J
N(2)=1%*MM+J
N(3)=N(2) +1
NC4I=N(L)+1
D0 55 II=1.4
K=N(IL)
IPAST=K#*1BAND-1BAND
D0 51 JJ=1.4
IF(N(JJ) «LTe N(II) ) GO TC 51
L=N(JJ)=K+1
LFS=IPAST+L
FS (LFS)=FS (LFS)+FK(II,JJ)
51 CONTINUE
55 CONTINUE



000

61
65
010

T
7S
o020

76

4

o

205
ooce
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CONTINUE

DO 1010 I=1,NNX

IF(INDEX «EGe 1) XU=FLOAT(I)*DX+A
IFCINDEX .EG. 2) XO=FLOAT(I=-1)*%DX+A
CALL FSTIF(AsBsX0sFKeXM4DENF)
NC1)=1%MM

N(2)=(1+1)*MM
DO 65 II=1+2
K=N(II)

IPAST=K*IBAND= 1 BAND

DO 61 JJ=1,2

IF(N(JI) LT, NCII) ) GO TO 61
LEN(JI) =K+l
LFS=IPAST+L
FSILFS)=FS(LFS)+FK(I11,JJ)
CONTINUE

CONTINVE
CONTINUE

IFCINDEX .EG. 2) GO TO 76

X0=A
CALL FSTIF (AsBsXUsFKeXMDENF)
DO 1020 J=1,MM1
N(2)=J
N(3)=J+1

D0 7S 11=2,3

K=N(IT)

IPAST=18AND*K= IBAND
00 71 JJ=2,3

IF(N(JJ) «LT. N(II) ) GO TO 71
L=EN(JJ ) =K+1
LFS=TIPAST +L
FS(LFS)=FS(LFS)+FK(11,JJ)
CONTINVE
CONTINUE
CONT INVE

J=MM

IPAST=J%IBAND~IBAND
LFS=IPAST+1
FSILFS)=FS(LFS ) 4FK(242)

DO 40 » MMD
Do 40 +» NDFSD
SC(1sJ)=0.0

CALL FFORCE(R+BsFF)

DO 3000 J=1.,MM1

NI=(J=-1)*2

DO 205 JJ=1.4

L=NI+JJ

SC(Jsl)= SCIIHLL)I+FF(1,4J9)
SC(J+1al)= SCI+1sLI+FF(2,JJ)
CONTINVE

NI=(MM=1)*2
SCIMMyNI+1)=SCIMMINI+1)+FF(1,1)
SCAMMyNI+2)=SCI(MM,NI+2)+FF (1,+2)
RETURN

END

SUBROUTINE BINV(AsBsNNsNSsNEQsMMsNEQDs MMD)
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=)
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o

S

20

o

'S

3

o

30
)0

DIMENSION A(1J,B(MMD,NEGD)C(35),D(1000)
ND=NN=MM

N=0

N=N+1

NL=(N=1)%NB
IF(ABSC(A(NL+1))oLT. 1.0E=10) A(NL#1)=1.0
IF(N «LEe ND) GO TO 16
NCON=N=ND

00 15 18=1,NEQ

BINCONS IB)=B(NCON,IB) /AINL+1)
CONT INUE

IF(N «EQe NN) GC TO 45

DO 10 K=2,N8B

CIK)=A(NL#+K)

ACNLHAK)=AINL+K) /A(NL+1)

DO 30 L=2,N8

T=N+L-1

IF(NN .LT. I) GO TO 30

J=0

IL=(I=1)%NB

DO 20 K=LoNB

J=J+1
ACIL#J)=ACIL+#J)=C(L)*A(NL+K)
IF(N LE. ND) GG TO 26
1CON=1~-ND

D0 25 IB=1,NEQ
BOICON,IB)=B(ICON, IB)~C (L) *B(NCON, I8)
CONTINUE

CONTINUE

GO TO 5

N= NO. OF EQU.

L= NO. OF UNKNCWN

K= SEQUENTIAL NG. OF UNKNOWN IN THE BAND
NL4+K=LFS ... LINEAR SEQUENCE
DD 100 IB=1.,NEG

DO 70 II=1,MM
O(II+ND)=B(11,18B)

DO 75 I1=14ND

D(11)=0.0

N=NN

N=N-1

NL=(N=-1)*NB

IF( N +EQs 0) GO TO 60

DO 50 K=2,NB

L=N#+K=1

IF( NNeLTe L) GO TO SO
DIN)=D(N)=A(NL+K)*D(L)
CONTINUE

GO TO 40

CONT INUE

DO 80 I1=1,MM
BII1,1B)=D(1I#ND)

CONT INUE

RETURN

END

SUBROUTINE FFORCE(ReBsFF)
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DIMENSION FF(2,4)
PI=3.14159

DO 10 I=1,2

DO 10 J=1.4
FF(1,J0=0.0

V=PI ¥R*B

BV=V*8
FF(1s1)=047%V

«3%V
«0%¥3V/15.0

SUBROUTINE FSTIF(AsBsX0sFKsXM,DENF)
DIMENSION AL(434)3A2(444) 3A3(444)4FK(4,4)
DO 12 I=1+4

V1I=XO*B/A/6.
AL(ls1)=2e%V1
AlL(2,2)=2.%V1

2.0%V1

2.0%v1
Al(1,3)==1.0%V1
Al(3,1) 1.0%v1
Al(2,4)==1.0%V1
Al(442) lLeO%V1
Al(2+3)=V1
Al(3,2) 1

Al(4s1)=V1

V2=X0*A/B/6.

A2(1,1) =(2.-A/X0) *V2
A2(4s4)=(24=A/X0) %V2

A2(193)==Vv2

vz

ve

va

A2(2,2) S(2.+A/X0) %V2
A2(3+3)=(2.+A/X0) *V2

A2(1s4) (2.=A/X0)*v2
A2(4s1) (2.=A/X0)%V2
A2(243) (2.+A/X0)%vV2

(2.+A/X0)*V2

A2(1+2)
A2(2s1)=vV2
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A2(3,4)=V2

A2(4,3)=v2

V3=B/A/ZA/12.

IF(A <EQe XO) XO=XG+e001

E1=((A+XD ) #{ A+ X0) *ALOG((XO+A )/ (XU=A) ) =2 4 %A% (2, ¥A+X0) ) ¥V3
(A=XD)*(A=X0)¥ALOG((XO+A)/(XO=A) ) +2.%¥A%( 2+ %A= XO0) ) *V3
E3=((A-X0)*(A+X0) *ALOG((XO+A)/ (XO=A) ) +2 . ¥A%X0 ) *V3

IF(A .EQ. XO) XO=X0-,001

A3(1,41)=2.%E1

A3(4+4)=2,%E1

A3(2,2)=2,%E2

A3(3+3)=2.%E2

A3(1+2)=2,%E3

A3(241)=2+%E3

A3(3,4)=2.%E3
A3(4+3)=2.%E3
A3(1+3)=E3
A3(3,1)=E3

A3(4,2)=E3

A3(1.4) =E1l
A3(4,1)=E1
A3(2,3) =E2

A3(3,2)=E2

AR

s

AR

AR

AR

~

SUBROUTINE FREMOD

COMMON/CONST/NHs NELEMS » NNODES»NSIZE, NEQ
COMMON/ADD/FLUTDH s NHC

COMMON/BC/NBC

COMMON/WE/LOWEST

DIMENSION  FNUL(50),FNU2(S50)4EL1(50) 4E2(50)+G(50)sT(50)sSINE(SL )
SCUSINE(51)sSINM(S0)+COSMIS0)sR(50) sPHIS0) s PHP(50) s ARCL(S0)
DIMENSIUN AL(167)s CHECK(B848)sRO(S51)4+Z(51)4CUMENT(20),JUNK(20)
DIMENSION D(144,145),GA( 920) s IHARM(S)

INTEGER CLFRsCLCLsCLSM

DATA CLFR,CLCLoCLSM/*CLFR® 3*CLCLY, *CLSM*/
o1

READ SsNT4NMODE

FORMAT (515)
o2

READ 6sFLUIDH, NHC s NHARM ,LOWEST

FORMAT(F10.4+15,15,15)

o3

READ So¢(IHARM(I) 41=1,NHARM)

D 4

READ 74NBC

FORMAT (A4)

REWIND NT

READ(NT) NCARDS s JUNK

IF(NCARDS.EQ.0.0) GO TO120

DO110 K=1,NCARDS



40

w2
04

150 READ(NT) RCI)sPH(L)sPHP(I)sARCL(I)+»SINE(I)sCOSINE(I)sSINE(I+1),
$ COSINE(I+1)

160

179

172

175
176

1890

READ(NT) (COMENT(J) yJ=1,29)

PRINT 401, (COMENT(J)sJ=1,20)

FORMAT (2X,20A4)

READ(NT) NHP3NELEMS JUNK

00140 II=1.,NELEMS

READ(NT) ((CHECK(T+J)s1=1+48)9J=138)s(AL(1)+1=1,166)
CONTINUE

NNODES=NELEMS +1

NEQ=4%NNODE S

106

READ(NT ) (FNUL(I)sI=1sNELEMS), (FNU2(I )sI=1,NELEMS)+(EL1(I)sI=14NELEM

$S) 9 (E2(1) o I=1s NELEMS) s (G(I )9 I=1 s NELEMS )y (TUI)sI=1,NELEMS)

DO 404 I=1,NELEMS

PRINT 4023FNUL(IDsFNU2(I)sEL(IDSE2(I)+sG(I)sT(I)
FORMAT(2F8.3,3E12.3+,E13.4)

CONTINVE

DO160 I=1,NELEMS

IF(1.EQ.NELEMS) GO TO1S50

READINT) ROIDsPH(I)sPHP(1)4ARCL(I)sSINE(I)+COSINE(ID)

GO TO160

CONT INVE

READ(NT) (ROCI)sI=1,NNODES)s (Z(1)sI=14NNODES)
DO170 I=1,NELEMS

COSM(I )=COS(PH(I))
SINM(II=SIN(PH(I))

CONTINUE

NSIZE=104+26*%NELEMS

DO 180 IH=1sNHP

DO 172 JH=1.NHARM

IF(IH=1+EQe IHARM(JH)) GO TO 175
CONTINUE

READINT) (GA(I)sI=14NSIZE)
READ(NT)(GA(I) +I=14NSIZE)

GO TO 180

PRINT 176 » IHARM(JH)

FURMAT (/42X *CIRCUMFERENTIAL WAVE
NH=IHARM(JH )

CALL AMSMAT (DyNT)

FORMAT (1X512(1XsE942))

NO=NEQ=4

CALL EIGEN(DsNUs»NMCDE)

CONTINUE

RETURN

END

SUBROUTINE AMSMAT(DWNT)
COMMON/CONST/NHs NELEMS s NNODESsNSIZEs NEG
COMMON/ZADD/FLLU IDH 4 NHC

DIMENSION D(144,145),B8SX(920),BMX(%20)
READ(NT) (BSX(I)sI=1sNSIZE)
READ(NT ) (BMX(IL)sI=1,NSI2E)

DO 1 I=1,NEQ

DO 1 J=1,NEQ

D(I+J)=0,0

CALL ADDMASS(D,BMX)

NEQ1=NEQ+1
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DO 6 I=1,NEQ
T11=1+1

DO 2 I=1+8

00 2 J=1.1

M=M+1

D(JsI+1)=BSX(M)

CONTINUE

L=5

K=0

DO 3 I=9,NEC

DO 4 J=La1

M=M+1

D(Js1+1)=85X(M)

CONTINUE

K=K+1

IF(K.NE.4) GO TO 3

L=L+4

K=0

CONT INUE

IF(MeNEJNSIZE) STOP

RETURN

END

SUBROUTINE ADDMASS(DsBMX)
COMMON/CONST/NH o NELEMS  NNODES s NSIZE» NEQ
COMMONZ ADD/ FLU 1DHa NHC
COMMON/WE/LOWEST

DIMENSION D(144,145)+ADM(504+50) » BMX(S20)
IF(FLUIDH.EQ.0 .0) GO TG 80

REWIND 10

DO 50 I=1,NHC

READ(10) NHR

READ(10) NDFS

READ(10)( (ACM(KsJ)sJ=1+NDFS)sK=1sNOFS)
IF(NHR.EQ.NH) GO TO 80

CONTINUE

PRINT 60sNH

FORMAT (2X, ' ADDED MASS MATRIX FOR CIRCUMFERENTLAL WAVE=',
$ FOUND®)

D(1+J)=BMX(K)
K=K+1
CONTINUE
L=5

M=0
DO 100 I=9,NEQ
DO 110 J=L.1
DU1,J)=BMX(K)
K=K+1
M=M+1
IF(M.NE.4) GO TO 100

107

IS,"1S NOT



L=L+4
M=0

30 CONTINUE
IF(FLUIDHeNESD 40 ) GC TO 25
DO 24 I=1,.NEQ
DO 24 J=1,1

264 DOJLI)I=0D(1,J)
IF(NHJNE. 1) RETURN
REWIND 11
WRITECLL)((D(I+J)»J=1sNEQ) +I=1,NEQ)
REWIND 13
WRITE(13)((D(I+sJ)sJ=1sNEQ)sI=14NEQ)
REWIND 13
RETURN

DUING THE ADM MATRIX WITH SHELL MAS5S MATRIX AUXe
NWET=LOWEST +1

L=NWET
Li=L+1
DO 6 1=14NDFS,2
12=4%L~1
N=1

DO S J=1s1s2
J2=(L1=N)*4-1
121=12+1
J21 2+1
TEMP=12
TEMPJ=J2
IF(124GTeJ2) GO TO 11
12=92
J2=TEMP
11 D(I2+sJ2)=D(12,J2)+ADM(I,J)

TEMP=121

TEMPJ=J2

IF(121+GT«J2) GO TO 12
Iz21=92

J2=TEMP

12 D(I21+J2)0=D(1214J2)+ADM(I+1,4J)

121=TEMP

J2=TEMPJ

TEMP=121

TEMPJ=J21
IF(121+GTeJ21) GC TO 13

13 D(I215J21)=D(121,J21)+ADM(I+1,J+1)
121=TEMP
J21=TEMPJ
IF(J.EQ.1) GU TO 1S5
TEMP=12
TEMPJ=J21
IF(12.,6T.J21) GO TO 14
12=J21
J2 EMP
14 D(12+,J21)=D(12+J21)+ADM(I,J+1)

108
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12=TEMP
J21=TEMPY
15 N=N+1
S CONTINUE
L=L-1
CONTINUE
DO 16 I=1,NEQ
DO 16 J=1,1
16 D(J»1)=D(I,4J)
1IF 1T 1S DESIRED TU DETERMINE THE RESPONSE OF THE FLUID SOLID SYSTEM
DUE TO BASE EXCITATION THEN MATRIX AUX FOR NAR=1 MUST BE SAVED IN TAPE
IF(NHR.NE.1) GO TO 120
REWIND 11
WRITE(11) ((D(I4J)sJ=1,NEQ) 1=1,NEQ)
REWIND 11
REWIND 13
WRITE(13)((D(1,J),J=1,NEG) +1=1,NEQ)
REWIND 13
120 CONTINUE
RETURN
END
SUBRUUTINE EIGEN(DsND,NMODE)
COMMON/BC/NBC
DIMENSION D(144+145),V1(144)sV2(144)
$+X(140,10) ,OMEGA(10)
INTEGER CLFRoCLCLsCLSM
DATA CLFRsCLCL+CLSM/*CLFR' 3 *CLCL ", *CLSM*/
PRE-EIGENVALUE CHOLESKY REDUCTIONS
INA=1

o

DO 76
DO 76

7S IF(MA=MASH) 77,77.78
78 GASH=GASH=D(MASH,MAl ) #D(MASH, MAS1)
GISH=GISH=D(MA,MASH) *D(MAS,MASH)
MASH=MASH+1
GO TO 79
77 IF(MAS=-MA) 81,81.4119
81 IF(GISH) 118,82,82
118 GISH=0.
82 IF(GASH) 83,844+84
83 GASH=0.
84 DIAG1=SQRT(GASH)
DIAG2=SQRT(GISH)
IF(DIAG1 +EQeNe) GO TO 85
119 D(MA,MASL )=GASH/DIAGL
85 IF(DIAG2.,EQ.0.) GU TO 86
D(MAS s MA)=GISH/DIAG2
86 CONTINUE
76 CONTINVE
FORM U/UL
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DU 87 MA=1,ND
DU 87 MAS=MA,ND

MASH=MASH#+1

IF(MAS=MASH) 88,89,89
GASH=GASH=D{MA ,MASH) *D(MASH=-1,MAS1 )

GG TO 91

DI(MAsMAS1 )=GASH/D(MAS 4MASL)

CONTINUE

MULTIPLICATION TO GET (U*ULE-1%ULTE=1%UT)
DO 92 MA=1,ND

DU 93 MASH=MAS1,ND1
GASH=GASH+U(MAs MASH) ¥D(MAS,MASH)

3 CONT INUE
D(MA,MAS1 )=GASH
2 CONTINUE

MODE=NMODE
PU 1.0 IN VI FROM 1 TC ND AND ITERATIVE
S DU 94 I=1,ND
4 Vi(I)=1.
NUMIT=1
1 ALAM2=0,
DU 95 I=1,ND
11=1+1
GASH=0,
DO 96 J=
GASH=GASH+V1(J)*D(Js11)
6 CONTINUE
IF(I-ND) 97,98,98
7 DO 99 J=I1,ND
GASH=GASH+V1 (J)*D(1,J+1)
S CONTINUE
8  V2(1)=GASH
ALAMZ=ALAMZ2+GASH*GASH
5 CONTINUE
ALAMB=SQRT (ALAM2 )

SIGSQ=0.
DO 101 I=1,ND
GASH=V2(1)/ALAME

1(I)=-GASH
IGSG+GAS*GAS
V1(I)=GASH
: 2 CONTINUVE
ZT=1e/10%%12
NUMIT=NUMIT#+1
IF(SIGSG=ZT)102,102,103
B IF(NUMIT-200) 121,102,102
2 CONT INVE
PRINT 11
PRINT 104.NUMIT
4 FORMAT(* NO OF ITERATIONS=',13+/)
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TO MULTIPLY (UE=1)*(U%X)
I=ND
GASH=V1(1)
J=ND
IF(J=-I) 105,105,106
GASH=GASH=-VZ(J)*D(J,1)
J=J=1
GU TO 107
V2(I1)=GASH/D(1,1)
I=1-1
IF(I) 108,108,109
PRINT 995, INA
OMEGA IN CYCLE/SEC

OMEGA(INA)=SQRT(1./ALAMB)/2./3.1415927

PRINT 112 ,OMEGA(INA)
RES=0.0

PRINT 12

FORMAT (4E1443)
INODE=1

DO 300 I=1sNDs4

PRINT 1114INODEsV2C(I)sV2(I+1)sV2(1+2),V2(1I+3)

INODE=INUDE+1
CONTINUE

FORMAT(2XsI5s5XsE16.8+5XsE16.895X+E16.895X+E16.8)

DO 210 I=1,ND
X(Is INAD=V2(I1)
CONTINVE

PRINT 111, INODEsRESsRESsRESsRES

D(1sJ1)=D(I,J1)-ALAMB*VL(I)*V1(J)

INASINA+1
MODE=MODE~-1
CHANGING TO NEXT MODE
IF(MODE) 114,114,115
REWIND 14
IF (NBC+EQe CLCLIND=ND+4
IF(NBC.EQs CLSMIND=ND+3
WRITE(14)NMODE
DO 116 K=14NMODE
WRITE(14) K,OMEGA(K)
DO 116 J=1sNDs 4

WRITE(L14) X(JaK) o X(J+1aK)aX(J#24K) oX (J+3,K)

CONT INVE
REWIND 14
RETURN

FORMAT (7/4+10Xs "MUDE NO.=*,13)

FURMAT (/7 420X 425(2H==))

11

12 FORMAT(30Xs *MODE SHAPE® o/ 92X s "NODE* s15Xs U 320X s "V* 320Xs " W' 420X+*0D

112
2

50 FTIOF001 DD UNIT=SYSDAs SPACE=(CYLs(1s1))
50.FTLIFA201 DD UNIT=SYSDA, SPACE:

sw/DZ*)
FORMAT(//5 10X+ *NATURAL FREQUENCY=

FORMAT (BE16.8)
END

2E20.10,*IN CYCLES/SEC.*)
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GOLFTI2FCC1 DO DSN=FIO0L1609.DATSA? JUNIT=01 Sk
VCL=5ER=MUNCA3,01SP=0LD
GOWFTI3FCNL DD DSN=FINL1600,DATMTG4UNI
VOL=SER=MUNCO 3, D1SP=(NEW s KEEP )y LALE
SPACE=(TRK (20410 )4 RLSE)
GULFTI4F001 UD OSN=F3M116070 DATFR4UNIT=015K,
VOL=SER=MUNAN 3, DISP=(NEW,KEEP )y LABEL=KETPD=300,
SPACE=(TRK +(204510) 4kLSE)
GU SYSIN DD *

DT 5K

21PDp=300,

6 3
035885 280.C 150.,0
2
1
12 8
150,0 1 1 16 p
1
iR

This program is an extension of Program RESPONSE of Shaaban and Nash, and Balendra
and Nash, for the response analysis of cylindrical ground-supported liquid storage
tanks subject to earthquake excitation. In this work damping effects of the
structural system is included.

COMMUN /GEUM/ZFNUL(50) s FNUZ( 50 ) sEL(50) sE2(50) 4G (50) 4 T(S0) s SINE(SL ) »
BCOSINE (513 SINM(S0),COSMIS0) oK(50) 4PH(S0)s PHP(50) s ARCLL50)
COMMON ZCHALS/AL(167) s CHECK(846)

CUMMUNZ THE TAS/THETA (20 ) JNTHETA

CUMMUN/ZHARM/NHP s THARM (5 )

COMMON/RZ/RUCS1) »2(51)

COMMONZ CONST/NH, KELEMS s NNUDES oNS12E4 NEQ

COMMON/ZUS/ZU(204)

DIMENSTUN D(1444185)33STF(140,4) 45TBB(444) s 3MASS(14744) 4BBM(444)
BXOLAD 4 16) s UME(SN ) 4GM(10410)

FoBACC(4) s EFFM140,4)0GP(50) PEF(140) dPIN(S7) sSUML(S ) 4 SUMZ (50)
B2UDD(144) s ALSD) 4 ADDI(SO ) s BDIS(A) s FRLI4) 4 FE2(4) o FB3(4) sFL(4)
B9GA(2001 ) ZCOMENT(20) s JUNK(2C )

DIMENS TUN ADC10)2UD(144) 4 RCRD(1€)sFB4(4) ,3DMP(140,4) yOMED(10)
DIMENSTUN FREQ(242) JENVRSE (2420 CULE (2

DIMENSTUN SUM(10)

ARD L
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READ 10.NT,RADIUS
NT IS THE TAPE IN WHICH THE STIFFNESS AND MASS MATRICES UF THE SHELL
ARE STORED BY SAMMSOR
10 FORMAT(15,F1044)
ARD 2
READ 20,ND1sND24sND3
20 FORMAT(SIS)
ARD 3
READ 30,NTHETA
30 FORMAT(15)
CARD 4
READ 404, (THETA(I),1=1,NTHETA)
40 FORMAT{(8F10.4)
CARD 5
READ 50 4NHy (IHARM(I),1=1,NH)
50 FORMAT (215)
CARD &
READ 60+PEAKs TTOTALSDT
60 FORMAT (3F10.44)
CARD 7
READ 70,TSTART, TENDsTDT
70 FORMAT (3F10.4)
REWIND NT
READ(NT) NCARDS,JUNK
IF(NCARDS.EQe0 «0) GU TO120
DUL10 K=1sNCARDS
110 READ(NT) (COMENT(J),J=1,20)
PRINT 115, (COMENT(J),J=1,20)
115 FORMAT (2X,20A4)
120 READ(NT) NHPJNELEMS,JUNK
PI=3,14159
RAD=P1/180 .0
DO130 1=1,NTHETA
THETA(I)=THETA (I )*RAD
CONTINUE
DO140 11=1,NELEMS
READ(NT ) ( (CHECK(I+J)s1=1+48)sJ=1+8)+s(AL(I)+I=1416€)
140 CONTINUE
NNODES=NELEMS+1
NE Q=4%*NNODES
READ(NT)(FNUL(I) 4I=1,NELEMS) s (FNU2(I )sI=14NELEMS),(E1(I),I=1,NELEM
$S) 9 (E2(I1) 9 I=1s NELEMS) s (G(I ) s I1=1sNELEMS)» (T(I)sI=1,NELEMS)
DO160 1=1,NELEMS
IF(I.EQ.NELEMS) GO TO150
READ(NT) RCI)sPH(I)4PHP(I),ARCL(I)sSINE(I),COSINE(CL)
GU TO160
150 READ(NT) RCI)sPH(I)sPHP(I) sARCL(I) +sSINE(I)sCOSINE(I)sSINE(I+1),
$ COSINE(I+1)
160 CONTINUE
READ(NT) (RO(I)sI=1,NNODES)s(Z(I)sI=1,NNODES)
D0170 I=1sNELEMS
COSM(I)=COS(PH(I))
SINM(I)=SIN(PH(I))
170 CONTINUE
NSIZE=10+26%NELEMS
SINCE ONLY HAR=1 WILL BE EXCITED MUST SKIP K $ M MATRICES OUF HAR=0

13

)




READ(NT) (GA(I)4I=1,NSIZE)
READANT ) (GA(I )+ I=1,NSIZE)
CALL EXTR CT(DsNEGsNT)
READ(13) N3sN4sNFREE
READING THE FREQUENCIES $ MODES FOR HARMONIC=1 FROM TEPE 14
REWIND 14
READ(14) NEV
DO 180 I=1,NEV
READ(14) K,OME(I)
CCNVERTING THE FREGUENCIES INTO RAD/SECe
OME(I)=0OME(1)%2.0%P1
DO 180 J=1sN4s4
READ(14)  X(JsI)sXCJI#1oTD s X(J425T1)sX(J#3,1)
180 CONTINUE
REWIND 14
READ(13)((D(I4J)sJ=1sN4)s1=1,N4)
NOW D IS THE K MATRIX OF NON BASE NODES
<B IS DENOTED AS BSTF
READ(13) ((BSTF(I,J)sJ=1,4)s1=1+N4)
<BB IS DENOTED AS STEB
READ(13) ((STBE(I4J)sJ=1,4),1=1,4)
READ(13)((D(IsJ)sJ=1sN4)sl=1sN4)
NOW D IS THE M MATRIX OF NON BASE NODES
vB IS DENOTED AS BMASS
READ(13) ((BMASS(IsJ)sJ=1s4)s1=1,N4&)
MBB IS DENOTED AS EBM
READ(13) ((BBM(IsJ)sJ=1+4)9+1=1+4)
REWIND 13
READ 24 (RCRD(I),I=1,NEV)
FORMAT (10F8.4)
DO 77 J=1.NEV
7 OMED(J)=U0ME(J) *SGRT(1,0=-RCRD(J)*RCRD(J))
FREQ(151)=1.0/0ME(1)
FREG(1,2)=0ME(1)
FREQ(2+1)=1,0/0ME(2)
FREQ(2+2)=0ME(2)
DET=FREG(1+1)*FREQ(2+2)-FREQ(2+1)*FREQ(1+2)
ENVRSE(1,1)=FREQ(2,2)/DET
ENVRSE(1+2)=-FREQ(1,2)/0ET
ENVRSE(2+2 REQ(1,1)/7DET
ENVRSE(2+1)=-FREQ(2,1)/DET
COEF(1)=2.0 % (ENVRSE(1+1)*RCRD(1) + ENVRSE(1,2)*RCRD(2) )
COEF(2)=2+0 * (ENVRSE(2,1)*RCRD(1) + ENVRSE(2,2)*RCRD(2) )
DO 3110 I=1,N4
D0 3110 J=1,4
110 BOMP(I1,J)=COEF (1)%BMASS(1+J)+CUEF(2)*BSTF(14J)
PRINT 3,COEF(1),COEF(2)
FORMAT (1Xs2F20,.,10)
CALL MODAN(DsX sGMy N4y NEV)
DO 200 I=1.,4
DO 190 K=1sN4,4
BBM(1,1)=BBM(1,1)+BMASS(K,1)
BEM(1,2)=BBM(1,2)+BMASS(K+1,1)
BBM(1,3)=BBM(1+3)+BMASS(K+2,1)
BBM(1s4)=BBM(I,4)+BMASS(K+3,1)
190 CONTINUE

114
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00 CONTINUE
CALL EFFM SS(D+BMASS,N4,EFFM)
NTIME=TTOTAL/DT+1.0001

EAK IS G=384.0 IN/SEC/SEC

CCELERATIONS ARE NORMALIZED BY G

HE ACCELERATION RECORD GENERATED BY PSEQGN IS STOURED IN TAPE 20
REWIND 9
READ(S)(GA(I) s I=1,NTIME)

1 FORMAT(8F9.6)
REWIND 9

0S FORMAT(10E1044)
PRINT 210, TTOTAL

10 FORMAT(/3s10Xs* TANK IS EXCITED BY AN ARTIFICIAL EARTH QUAKE APPLIED
BFOR®4F 10,44 *'SEC."4/)
PRINT 21S,PEAK

15 FORMAT(//+10Xs*MAXeGROUND ACCELERATION
BACC(1)=0.0
BACC(2
BACC(3
BACC(4
DO220 I=1sN4
PEF(1)=0,0
D0220 J=1+4

'20 PEF(I)=PEF(I1)+EFFM(I,J)*BACC(J)
D0230 19 NEV

2F10e4,4 " ING/SEC/SEC* /)

SUM(I)=0.0
GP(I1)=0.0
DO230 J=1sN4

30 GP(I)=GP(I1)+X(Js1)*PEF (J)
NSTART=TSTART/DT + 1,0001
NEND=TEND/DT+1.0001
NOT=TDT/DT
DPLM X1=0,0

REWIND 9
REWIND 10
WRITE(8) TOT
WRITE(S)TOT
WRITE(10)TDT
DO 320 IT=NSTART,NEND,NOT
ITIME=IT=1
TIME=FLOAT(ITIME)*DT
CALL DUHAML(GASGPsTIME+ITIME sDT o NEV s UME sUMED s RCRD 4 PINsADs GM» SUM,
*ISTART)
ISTART=IT
\ 15 THE DISPLACEMENT IN MODAL COORDINATES
) IS THE NODAL DISPLACEMENTS
\DC IS THE ACC. IN MODAL COURDINATES
DD IS THE ACC OF THE NON BASE NOCES
D0270 I=1sNEV
ACI)=PINCI)/Z(GM(I,1)*0OMED(I) )
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c 291

C 2%2

C

agn

2%2

263
283
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ADD(I)=GP(I)*GA(IT)/GM( T, I)=OME(I)*OME(II*A(I)=2+0%OME(T)*¥RCRD(I)*

1AD(I)

DO 275 I=1,NEQ
utI=n.
un(i)=0

ubD (1 «0
CONTINUE

D0280 I=1sN4
DU280 J=1,NEV

UI)=UCT)+X(1sJ)*A(J)
UDCI)=UD(I) + X(I,J)%AD(J)
UDD(1)=UDD(I)+X(1+J)*ALD(J)
CONT INUVE

IF(ABS(DPLM X1)+GT+ABS(U(NDBL1))) GO TO 291

DPLM X1=U(NDI1)
TMEM X1=TIME
WRITE(8) U(ND1)
CONT INUE

IF(ABS(DPLM X2)«GT+ABS(U(ND2)))GO TU 292

DPLM X2=U(ND2)
TMEM X2=TIME
WRITE(S) U(ND2)
CONT INUE

IF(ABS(DPLM X3)eGT+ABS(U(ND3)))IGO TU 293

WRITEC10)U(ND3)
CONTINUE

C EASE REACTIONS

nooo

<

.0
PEAK*GA(IT)
EAK¥GA(IT)
.0

MBB4+MBT*1 ) *BACC

Bl1+#FE24FB3 IS THE BASE REACTION

I=1,4

DO 300 J=1,N4

FB1(I)=FB1(1)+BMASS(J,1)*UDD(J)
FB4(1) + BOMP(J,1)%*UD(J)

FB4(1
IF(J.GT.4)GO TO 300
JK=NG=4+J

FB2(1

300 CONTINUE

308

FB(I)=( FBL(L)+FB2(1)+FB3(1)+FBA(I)

310 CONTINUVE

CALL PRINT(TIME,UsFBsN4,NEG)
CALL STRESS

320 CONTINUE

REWIND 8

=FB2(1)+BSTF(JK, 1 )*U(JK)
FB3(I1)=FB3(1)+BBM(I+J)*BACC(J)

) 7 (PI%RADIUS)
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REWIND 9
REWIND 10
PRINT 510,ND1sDPLM X1,TMEM X1
PRINT 510,ND2,DPLM X2, TMEM X2
PRINT 510,ND34DPLM X3, TMEM X3
510 FORMAT (//,2Xs*'THE MAXIMUM VALUE OF THE DEGREE OF FREEDOM',14
$SEL12444 YOCCURES AT',F1044,%SEC*)
RETURN
END
SUBROUTINE EXTR CT(DsNEG,NT)
DIMENSION D(144,145)
NFREE=NEQ
N4=NFREE=-4
N3=NFREE-3
REWIND 13
WRITE(13) N3sN4,NFREE
CALL READ RY(DsNT)
PARTIONING THE STIFFNESS MATRIX
WRITING K MATRIX IN TAPE1S
WRITE(13) ((D(15J)sJ=1sN&)sI=1,N4)

WRITE KB
WRITEC13) ((D(14J)sJ=N3 s NFREE) 2 1=15N4)

WRITE KBB
WRITE(13) ((D(I4J)sJ=N3, NFREE) s 1=N3,NFREE)
REWIND NT

READING THE MODIFIED MASS MATRIX (M+ADM)
REWIND 11
READ(11)((D(I4J)sJ=14NEQ), I=1,NEG)

WRITE M
WRITE(13)((0(I+J)sJ=14N4)s1=1,N4)

WRITE MB
WRITE(13)((D(1+J)sJ=N3,NFREE) s I=14N4)

WRITE MBB
WRITE(13)((D(1sJ)sJ=N3sNFREE) +1=N3,NFREE)
REWIND 13
RETURN
END
SUBROUTINE REAC RY(DsNT)

READING THE STIFFNESS MATRIX STOURED IN TAPE NT
COMMON/CONST/NHs NELEMS s NNODES s NSIZEs NEQ
DIMENSION D(1444145),8X(920)

NFREE=NEQ

DO 1 I=1,NFREE

DO 1 J=1,NFREE
1 D(IsJ)=0.0

READS AN ARRAY INTC A SQUARE MATRIX
READ(NT) (BX(1)sI=14NSIZE)

n

DO 3 I=9+NFREE
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DO 4 J=Lo1
M=M+1
D(I,J)=BX(M)

IF(KeNEe4) GO TO 3
L=L+4

k=0

CONTINUE

IF(MeNEJNSI ZE) STOP

RETURN

END

SUBROUTINE MODAN(D4sXsGMaN& sNEV)

DIMENSION D(1444145)sX(140510)sXM{1404510)2GM(10,10)
D0 10 I=1,N4

DO 10 J=1sNEV

XM(IsJ)=040

DO 10 K=1,N4

XMOLsJ)=XMCTsJ ) +DCI4K)*X(KyJ)

10 CONTINUE
B=XT#A%X
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DO 20 I=1,NEV

DO 20 J=1,NEV

GM(1,J)=0,0

DO 20 K=1,N&

GM(TsJ)=GMITsJ) +X(Ksl)¥XM(KsJ)
CONTINUE

RETURN

END

SUBROUTINE EFFM SS(DsBMASS sN4 s EFFM)
DIMENSION D(144,145),EFFM(14044) ,BMASS(140+4)
THE MASS MATRIX OF NON BASE NODES
FURM MI MATRIX

DO 10 I=1,N4

DO 10 J=1.4

EFFM(1,J)=0.0

D0 20 I=1.N4

DO 20 K=14N&s4

EFFM(1,1)=EFFM(I,1)+D(1K)
EFFM(142)=EFFM(1,2)4D(1,K+1)
EFFM(T,3)=EFFM(1,3)4D(1,K+2)
EFFM(144)=EFFM(1,4)4D(1,K+23)
CUNTINUE

DO 30 I=1sN4

DO 30 J=1.4

EFFM(T s J)==(EFFM(1+J)+ENASS(1,J))

COUNTINUE

RETURN

END

SUBRUUTINE DUHAML(GAsGPsTIMEsNT, DT My OME 3OMEDsRCRDsPINsADyGMySUMs
*ISTART)

DIMENSIUN GA(2001 )+GP(10)0ME(10) +RCRD(10) +PIN(10)+AD(10)
*9GM(10,10),0MED(10)

DIMENSION SUM(10)

DIMENSION SINE(10),EXPO(10)

DO 15 J=1.M



245

239

240

250

400

£00
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DO 10 IT=ISTART,NT

TA=FLOAT(IT)#DT

SINE(J)=SIN( OMED(J)* (TIME-TA))

EXPU(J)=EXP ( =-RCRD(J) * OME(J) * (TIME=TA))

SUM(JI=SUM(J) + GACIT) * EXPO(J) * SINE(J)

IF(ITLEQ.NT)AD(J)=GA(IT)*EXPO(JI)*SINE(J)*¥GP(J)/(GM(J»J)*OMED(JI) )

CONT INUE

PIN(JI=SUM(J)I*GP(J)*DT

RETURN

END

SUBROUTINE PRINT(T,U+FBsN& NEQ)

DIMENSION U(204).FB(4)

PRINT 100,T

FORMAT (20X 425(2H==)4/415Xs *TIME="3F10.44+/)

PRINT 200

FORMAT (/42X 4 *NODE* 10X+ *U* 418X+ *V* 18X+ "W, 14X, 90W/DZ" )

RES=0,0

JK=1

DO 240 I=1,NEGs+4

IF(JK.NE.15)60 TO 239

IF(JKeEQe1S)IWRITE(74+245)U(1+2)

FORMAT (E20.5)

PRINT 2503 JKsU(T)oU(I+1)3U(I#+2),U(1I+3)

CONTINUE

IF(JK.NEL.17)G0 TO 240

PRINT 2503 JKsUCI)sUCI#+1)sU(I42),U(1+3)

JK=JK+1

FORMAT (3Xs [345XsE12e455XsEL24435XsEL244,5X3E1244)

PRINT 400

FORMAT (/425Xs 'REACTION AT THE BASE'./)

PRINT S00,FB(1)+FB(2),FB(3).,FB(4)

FORMAT (10X, * AXIAL FORCE(NS)=*,E12.4, 'POUND/INCH® 5/ 34X "TANGENTIAL
SFORCE(NST) E12444 *POUND/ INCH® 4 /5 9X 4 "RADIAL FORCE(NR)='4E1244,'PO
SUND/INCH® 3/ 39X o * AXTAL MOMENT(MS)=',E1244, *POUND INCH/INCH?®)

RETURN

END

SUBROUTINE STRESS

COMMUN/EES/ES(S)sET(5) +EST(5) 4E13(5) sE23(5)

COMMUN/CONST/NH + NELEMS o NNODES + NS 1ZE 4 NEQ

COMMON/THETAS/THETA(20 ) sNTHETA

COMMON/HARM/NHP s THARM( S )

COMMON /GEOM/FNUL (S0) s FNU2 (50 ) s E1(50) sE2(50)+G(S0)sT(50 ) SINE(S1),
SCOSINE(51) s SINM(50)+COSM(50)»R(S0) 4PHIS0), PHP(50) sARCL(50)

COMMON /GCD/CC1 4 CC24001 +DD2+6615GG2

COMMON/US/U(204)

PRINT 100

DO 200 I1=14NELENS

CALL STRAIN(IL)

00 400 I=1,NTHETA

ESU=0.0

0
CHIT=0,0
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CHIST=04.0
CTHI
CTHI
CTHIST
XIH1=THARMCIH)
CS=COS(XIHI*THETA(I))
SN=SIN(XIHLI*THETA(I))
K=4%(11-1)+NEQ*(IH=-1)
CALCULATION OF LINEAR STRAIN
ESU=ESU+ES(IH) *CS
ETU=ETU+ET( IH) #CS
ESTU=ESTU+EST (IH)*SN
E13U=E13U+E13(1H)*CS
E23U=E23U+E23(IH)*SN
CALCULATION OF CHANGE OF CURVATURE
UB3==U(K+1 ) *SINE(I1)+U(K+3)*COSINE(L1)
UB7==U(K+5) #¥SINE (1141 )+U(K+7)*COSINE(I1+1)
CHIS1=(U(K#4)=U(K+8))ZARCL(I1)
CHIS=CHIS+CHIS1%CS
CHIT1=(=XIH1*E23(IH)=SINM(I1)*E13C(IH))/R(11)
CHIT=CHIT+CHIT1%CS
CHISTI=(XIHI*E13(IH)+SINMI I1)*E23(IH)=XIHL*SINM(I1)%(UB3+UBT7)/
$(2.%R(11))+XIH1*(UB7-UB3)/ARCL(I11) +(U(K+6)=U(K+2))*COSMIIL )/ARCL(I
$1)=(UIK+6) +U(K+2) ) *¥SINM(T1)%(COSMII1)/(2.%R(I1)I+PHP(11) /240 ) /R (11
$)
CHIST=CHIST+CHIST1%SN
CTHI THIS#XIH1*CHIS1 *(~SN)
CTHI THIT+XIH1%CHIT1%(=SN)
CTHIST=CTHIST +XIH1*CHIST1%CS
S00 CONTINUE
CALCULATION OF MID SURFACE STRAINS
EPS=ESU
EPT=ETU
EPST=ESTU
CALCULATION UF STRESS $ MMOMENT RESULTANTS
CCL*EPS+FNUL(11)*CC1*EPT
FNU2(11)*CC2%EPS +CC2*EPT
GGL*EPST
STRMS=DD1%*CHIS+FNU1 (11 )#DD1%CHIT
STRMT=FNU2(11) #D02%CHIS+DD2%CHIT
GG2*CHIST
THETAL=THETA(1)%180+/3414159
IF(11sNE«15)G0 TO 399
IF(I1.EQ.15)WRITE(7,300)STRMS
00 FORMAT(E20.5)
PRINT 700411, THETAL1 +STRNSs STRNT2STRNST 4STRMS,STRMTsSTRMST
99  CONTINUE
IF(11.NE.17)GO TO 400
PRINT 700+ 11+THETAL+STRNSs STRNToSTRNST o STRMS, STRMT,STRMST
400 CONTINUE
200 CONTINUE
100 FORMAT (//+25X s *FORCE RESUL TANTS®,26X s *MOMENT RESULTANTS®
5 /el 9Xe"N(S)* 410X N(T)* 48 Xe'NISTI* 410Xs*M(S)®y BXs *MIT)?,10Xs"
SMIST)*+//s1Xs "ELEM THETA®+/41Xs*NO®,4X," (DEG)"')
700 FORMAT(144F844,6(1XsE1244))
SO0 FORMAT(144F8.448(1X,E12.4))




RETURN
END
SUBROUTINE STRAIN(IL)
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COMMON/CONST/NH 4 NELEMS s NNODESsNSIZE, NEQ

COMMON/HARM/NHP 3 THARM( 5 )

CUMMONZEES/ES(S5)sET(S) +EST(S5)sE13(5) »E23(5)
CUMMUN/GEOM/FNUL (S0 ) s FNUZ2(S0)+EL(S0)+E2(50)+G(50)sT(SO D) SINE(SL),
$SCOSINE(S1)sSINM(S0) 4COUSMIS0) sR(S0) +sPH(S50) s PHP(50) s ARCL(S0)

COMMON/RZ/RO(51),2(51)
COMMON/US/U(204)

COMMUN/GCD/ CC1+CC24DD14DD2+G61+GG2
DIMENSION E23Q1(S5S)s,E23G3(5)+E23Q5(5)+E23Q7(5)+ESTQL(S)ESTA3(5),
$ ESTQS5(S),ESTA7(5)+ETQ2(5) +ETQE(S5)

COMPUTES STRAINS FOR AN ELEMENT

WRITEN FUR ANY HARMONIC ASSUMING THE DISPLACEMENTS ARE ARRANGED IN A S
RCW FROM HARMONIC=0 TU HARMON IC=NH

IN PROGRAM RESP ONLY HARMONIC=1
HARMONIC=1 ONLY
FN=1+=FNU1 (11)*FNU2(I1)
CC1=EL(I1)*T(I1)/FN
CC2=E2(11)*T(I11)/FN
GG1=G(I1)*T(11)
GG2=G(IL)*T(11)**3,/12.0
OD1=EL(TL)*T(I11)#%34/(12.%FN)
DD2=E2(11)*T(11)%%3./(12.%FN)
Ji=11
Ji1=11+1
DRO=RO(J11)=RO(J1)
DZ=Z(J11)=-2(J1)
ARL=SQRT(DROU*DRO+DZ*DZ)

RM=(RO(J1)+RO(J11)) /2.0
R21=1,0/(2.0%RM)

=ARCLI*SIPH
=ARCLI*COPH
ARCL I*SIPH
ARCLI*COPH
SIPH*R2I-ARCLI
SIPH*R2I+ARCLI

S02R=S IPH¥R21
DO 300 IH=1NH
K=IHARM(IH)
XK=K

IS EXCITED THUS THE ARRAY U HAS DISP



E23Q1(1H)=S02R* XK
E2303(IH)==CO2R*XK
E23Q5( IH)=SL2R*XK
E23Q7(IH)==CL2R*XK
ESTQ1(IH)=E23Q3(IH)
ESTQ3(IH)=-E23Q1(1H)
ESTGS(IH)=E23Q7(IH)
ESTQ7(IH)==E23G5(1H)
ETQ2(IH)=R21%XK
ETGE(IH)=ETQ2(IH)
COMPUTE ET,ES,EST,E13, E23
KK=NEQ*(IH=1)+4%(11=1)
KK1=KK+1
KK2=KK+2
KK3=KK +3
KK5=KK+5
KKE6=KK+6
KK7=KK+7
ET(IH)I=ETQ2 (IH)*U(KK2) +ETQ3%U(KK3) +ETQ6 (IH) ¥U(KKE) +ETA7*U(KKT )
SQLAU(KK1) +ESQ3*U(KK3) +ESQS* U(KKS) +ESQ7HU(KKT)
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EST(IH)=ESTQL( IH)*U(KK1)+ESTQ2%U(KK2)+ESTQ3(IH)*¥U(KK3) +ESTAS5(IHI*U

S(KKS)+ESTQO*U(KKE) +ESTQ7(IH) *U(KK7)
E13(IH)=E13Q1*%U(KK1)+E13Q3*%U(KK3)+EL13Q5*%U(KKS)+EL13Q7*U(KK7)

E23(IH)=E23G1 (IH)*U(KK1)+E2302%U(KK2)+E23Q3(IH)*U(KK3) +E23QS(IH)*U

$(KKS ) +E23Q6%U(KKE) +E23Q7(1H) *U(KK7)
300 CONTINUE
RETURN
END
/GO FTO9FOC1 DD DSN=F3011600INPT3UNIT=DISK,
'/ VOL=SER=MUNO04,DISP=0LD
'/GOFT12F001 DD DSN=F3011600.DATSA2+UNIT=DISK,
'/ VOL=SER=MUNCO3,DISP=0LD
/GO FTLLFOO1 DD DSN=F3011600,DATMTS,UNIT=DISK,
'/ VCOL=SER=MUNOO3,DISP=0LD
'/GOLFT13F001 DD UNIT=SYSDA, SPACE=(CYLs(1s1))
‘/GOFT14F001 DD DSN=F3011600DATFRSsUNIT=DISK,
'/ VOL=SER=MUNOO3,DISP=0LD
/GO LSYSIN DD *
e 2804000
(13 63 127
3

0.0000
1 1
384.00000 12,5000 0,01
041000 12.5000 Ce.1000
0.0001 0,05

'/
%
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