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ABSTRACT 

Newly settled age 0 juvenile cod, Atlantic cod Gadus morhua and Greenland cod 

Gadus ogac, coexist in nearshore areas around Newfoundland, but little is understood on 

the mechanisms affecting their distribution. In young marine fish, predation risk is often 

high yet there is generally an increasing capacity in larger individuals to evade predators. 

It is therefore difficult to distinguish the role of behaviour and differential survival on 

distribution of fish in their early life stages. In a series of field and laboratory 

experiments, I investigate how habitat complexity, predators and conspecific density 

interact to affect survival and behaviour in juvenile cod, and ultimately, their distribution 

in coastal Newfoundland. 

In a bay-scale study ( ~ 10 km2
), I monitored patterns of settlement and distribution 

of G. morhua and G. ogac, following a large-scale alteration of nearshore eelgrass 

(Zostera marina) habitat. Comparisons of bi-weekly sampling between control and 

experimental sites from 1995-2001 indicated a significant increase in cod abundance at 

sites enhanced with simulated eelgrass and a corresponding decrease in cod numbers at 

sites where eelgrass had been removed. These data supported predictions, demonstrating 

that: 1) there was a sufficient supply of juvenile cod within the range of areas that have 

historically been unoccupied (i.e. sand) and 2) both species preferred to settle in complex 

habitats. However, G. ogac responded significantly to the removal of eelgrass in more 

comparisons than G. morhua (70% and 37% respectively), suggesting that G. ogac have a 

higher affinity for complex vegetative habitats than G. morhua at the scale of 

manipulation (ca. 800m2
). Furthermore, despite an overall preference for eelgrass habitat, 

high within-site catch variation indicated that individuals of both species were not 



restricted to any single seine site. Rather, the highly variable data indicate that juvenile 

cod were mobile and occasionally aggregated throughout the study period. My results 

support previously described juvenile cod-eelgrass associations but contradict other 

published accounts of high site-attachment and restricted movement in G. morhua 

following settlement. 

In a second study, fish density, movement and schooling behaviour were 

examined in G. morhua and G. ogac using a combination of field-seines, mark-recapture­

and laboratory experiments. Density estimates from seines (n=427) over five years 

( 1996, 1998-2001) indicated that these species associated with eelgrass but periodically 

were detected in high abundance over sand. Within-site catch variation indicated both 

species aggregated more in sand than eelgrass habitat, and in G. morhua, aggregations 

over sand increased as density in eelgrass increased. Although such patterns in catch data 

could be interpreted as the effects of differential mortality between habitats, a mark­

recapture experiment indicated that both species of cod were not site-attached and moved 

between seine locations. Furthermore, video-analysis from laboratory experiments 

demonstrated that cod formed tighter aggregations over sand compared to eelgrass 

habitats. The results demonstrate that juvenile cod modify their behaviour with changing 

density, possibly as a means of exploiting poor quality habitats when high quality habitats 

are saturated with conspecifics. Consequently, habitat suitability for G. morhua should be 

considered a dynamic rather than fixed variable in density-dependent habitat models. 

In a third study, I measured the effect of predator density and habitat patch size in 

age 0 juvenile cod in a nearshore field experiment. Eelgrass patch size was altered using 

artificial eelgrass mats of five sizes (0.32, 1.1, 5 .5, 11 and 22 m2
) and subsequently 
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deployed in duplicate at each of two sites in Newman Sound in Terra Nova National Park 

during summer-autumn, 1999 and 2000. Predator distribution was determined using a 

combination of weekly underwater transect surveys and biweekly seining. Relative 

predation rates were measured by tethering age 0 cod at the center of each patch and 

recording the incidence of predation (n=1116 tether sets). Predation rates were 

negatively correlated with patch size during both years, suggesting that larger patches 

reduce predator foraging ability. However, high predator densities in the largest eelgrass 

patch resulted in higher than expected rates of predation. Therefore habitat dimension 

affected predation risk in juvenile cod via two opposing mechanisms. The results 

emphasize the importance of considering both habitat areal extent and predator 

distribution when estimating the effects of habitat fragmentation on predation rates. 

In a final, small-scale study ( <2 m2
), I examined the spatial conflict between age 0 

juvenile cod and their predators, shorthomed sculpin (Myoxocephalus scorpinus) and age 

3+ Atlantic cod, in complex and simple habitats. Predators and prey were videotaped 

using a novel method using light and shadow to determine fish position in three­

dimensions. Results indicated that both habitat and predator type interacted to form 

unique patterns of space occupation by predators and prey. Spatial overlap between 

predators and prey was highest in open habitat in the presence of age 3+ cod (a cruising 

predator) but lowest in the presence of sculpin (an ambush predator) in the same habitat. 

In eelgrass, spatial conflicts between predators and prey were resolved along the vertical 

component; age 0 cod remained above eelgrass in the presence of sculpin but used the 

structure in the presence of an age 3+ cod predator. Anti-predator behaviour (i.e., 

predator-prey distance, prey cohesion, angle separation and "freezing") was significantly 
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reduced over eelgrass compared to sand, suggesting eelgrass has lower 'inherent risk' 

than open habitats. However, predation mortality was similar across all treatments. This 

raises the question why age 0 cod relax their anti-predator behaviour in complex habitats. 

I suggest that complex habitats also impair the visual cues needed to perform anti­

predator behaviour (e.g., schooling) and locate predators. Alternatively, the reduced anti­

predator behaviour in complex habitats may reflect the fitness costs (i.e., lost foraging 

opportunities) of using these behaviours in all environments. 

I conclude from these studies that behaviour, ranging in scales from< 1m2 to> 

1 000m2
, plays an important role in shaping distributions of age 0 juvenile cod in the 

nearshore. Behavioural decisions were largely made in response to the predation risk 

associated with predator distribution and refuge characteristics of habitat. Therefore, 

nearshore distributions of age 0 juvenile cod are not simply the result of differential 

mortality between areas of higher and lower risk. Consequently, these results provide 

infonnation on home range, habitat preference and aggregation behaviour that would be 

relevant to future efforts in the conservation of Atlantic cod. 
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Chapter 1: 

General Introduction 

The interactions of fish with predators and habitat are considered to be 

fundamental determinants of fish distribution. These interactions can be magnified 

during early life stages when predator vulnerability is highest and refuge habitat is most 

critical (e.g., Sogard 1997). A firm understanding of interactions between juvenile fish, 

their predators and available habitat therefore has an important bearing on species 

management, exploitation and conservation. 

In the following chapters, I examine the role of predators and habitat on juvenile 

Atlantic cod (Gadus morhua) behaviour and distribution, an important commercial and 

ecological species residing off the coast ofNewfoundland. Unlike other habitat studies 

with juvenile Atlantic cod (e.g., Lough et al.1989, Keats 1990, Gotceitas and Brown 

1993, Methven and Badjik 1994, Tupper and Boutilier 1995ab, Grant and Brown 1998ab, 

Lindholm 1999), I use an experimental approach over a range of scales while also 

considering changes in predator behaviour and distribution. Through an experimental 

approach I hope to resolve some of the discrepancies in habitat use reported in other 

studies (e.g., Tupper and Boutilier 1995ab and Gotceitas et al. 1997) and reveal the 

mechanisms of variable habitat use in this species. I explore these mechanisms at a range 

of scales from 1 x 10·3 m2 to 1 x 106 m2 as the survival and growth associated with a 

particular habitat at one scale may be irrelevant at another (e.g., larval supply, Jenkins et 

al. 1998). I also compare Atlantic cod with Greenland cod Gadus ogac to probe basic 

life-history influences on behaviour and distribution patterns. I do this in four related 

studies. 
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In Chapter 2, I examine variable habitat use at large scales. Previous studies in 

Newfoundland suggest eelgrass is preferred habitat based on small-scale lab studies (e.g., 

Gotceitas et al. 1997, but there is no evidence juvenile cod select habitat at scales greater 

than 4m2
. I examine large-scale habitat selection in age 0 G. morhua and G. ogac by 

removing and adding large sections of eelgrass along nearshore areas of Bonavista bay, 

Newfoundland. I then compare the variable habitat use of habitat by juvenile cod both 

before and after the manipulation over six years of sampling (3 yrs pre-, 3 years post). 

My in situ experimental approach decouples eelgrass from other environmental variables 

(i.e., freshwater inlet, enriched substrate, larval supply), and consequently, I am able to 

determine if eelgrass is responsible for observed settlement and post-settlement 

distribution. 

In Chapter 3, I explore the importance of density-dependence on changes in 

behaviour and ultimately, distribution of age 0 juvenile cod. In Chapter 3, I also 

explicitly measure the mechanisms of variable habitat use that were observed and 

discussed in Chapter 2. I do this by examining a long-tenn data set (6yrs) of juvenile cod 

distribution, a mark-recapture study and behavioural observations in the laboratory. 

Specifically, I examine whether large-scale patterns in habitat use are the result of 

behaviour (i.e., movement and aggregation) or differential mortality. I further discuss the 

importance of considering behavioural flexibility in the context of density-dependent 

models. 

In Chapter 4, I focus my examination of juvenile cod-habitat interactions to 

intermediate scales (0.3 m2 to 22m2
). In Chapter 2, I demonstrated that cod prefer 

eelgrass over unvegetated habitat at large scales (880m2
), but it should be expected that 
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refuge benefits decrease as habitat size decreases as the result of edge effect enhanced 

predation. I examine these mechanisms in situ by measuring consumption rates of 

juvenile cod tethered to varying patch sizes of eelgrass over two experimental years. I 

analyze changes in predation rate as a function of patch size and as a function of localized 

predator distribution. Aquatic studies examining edge effects are rare, and fewer studies 

(terrestrial or aquatic) simultaneously examine variable predator density when measuring 

predation rates. Therefore the experiment is novel both in juvenile cod ecology and 

ecological theory. 

Finally, in Chapter 5, I narrow my examination of juvenile cod-predator-habitat 

relationships further to scales <3m2
. Observations from the preceding chapters indicate 

that predators and prey coexist in eelgrass and unvegetated sand, but it remains unclear 

how predator-prey behaviour is resolved at small scales. In chapter 5, I simultaneously 

examine the behaviour of juvenile cod and their predators over eelgrass and unvegetated 

sand using video and image analysis. Here, I also introduce a novel method of measuring 

fish position in three-dimensions using a single camera and multiple light sources. 

In my conclusion, I summarize the results of my work and discuss the 

implications of juvenile cod behaviour and habitat association on fisheries management, 

survey design and conservation measures. 

For each chapter, I played major role in conceiving, executing, analyzing and 

writing of each chapter. However, I would like to also acknowledge the contributions by 

others that merit authorship in this thesis. They are Dr. Robert Gregory (Chapters 2, 3, 4 

and 5), Dr. Joe Brown (Chapters 2, 3, 4 and 5), Dr. David Schneider (Chapter 3), Chris 

Laurel (Chapter 5) and Janelle Hancock (Chapter 3). 
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CHAPTER2: 

Settlement and distribution of age 0 juvenile cod, Gadus morhua and G. 
ogac, following a large-scale habitat manipulation. 

ABSTRACT: 

Understanding the mechanisms leading to variable habitat use by fish is of 

fundamental importance to both ecologists and fisheries managers. In Bonavista Bay, 

Newfoundland, I monitored patterns of settlement and distribution of two species of 

gadids, Atlantic cod (Gadus morhua) and Greenland cod (G. ogac), following a large-

scale alteration of nearshore eelgrass (Zostera marina) habitat. Comparisons ofbi-week1y 

sampling between control and experimental sites from 1995-2001 indicated a significant 

increase in cod abundance at sites enhanced with simulated eelgrass and a corresponding 

decrease in cod numbers at sites where eelgrass had been removed. These data supported 

predictions, demonstrating that: 1) there was a sufficient supply of juvenile cod within the 

range of areas that have historically been unoccupied (i.e. sand) and 2) both species 

preferred to settle in complex habitats. However, G. ogac responded significantly to the 

removal of eelgrass in more comparisons than G. morhua (70% and 37% respectively), 

suggesting that G. ogac have a higher affinity for complex vegetative habitats than G. 

morhua at the scale of manipulation (ca. 800m2
). Furthermore, despite an overall 

preference for eelgrass habitat, high within-site catch variation indicated that individuals 

of both species were not restricted to a single seine site. Rather, the highly variable data 

indicate that juvenile cod were mobile and occasionally aggregated throughout the study 
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period. My results support previously described juvenile cod-eelgrass associations but 

contradict other published accounts of high site-attachment and restricted movement in 

G. morhua following settlement. 

KEY WORDS: Eelgrass · Habitat selection · Atlantic cod · Greenland cod · Habitat 

enhancement · Unvegetated sand 
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INTRODUCTION: 

The identification of critical nursery habitat has become an important task for the 

management of commercially important fish species (e.g. Schmitten 1996). Although 

habitat use is known to be species-specific, many studies have demonstrated that 

nearshore abundance and diversity of juvenile fish is often higher in eelgrass (Zostera 

spp.) habitats relative to simple, unvegetated mineral substrates (Bell and Pollard 1989, 

Edgar and Shaw 1995, Mattila et al. 1999). Eelgrass has been shown to provide refuge to 

juvenile fish species in laboratory observations (Gotceitas et al. 1995, Gotceitas et al. 

1997), tethering studies (Linehan et al. 2001, Laurel et al. 2003) and predator exclusion 

experiments (Hindell et al. 2000). High food levels (Connolly 1994, Parker et al.200 1 ), 

reduced physical exposure (Bell and Pollard 1989) and increased water quality (Orth 

1984) are other possible benefits of nearshore eelgrass habitat to juvenile fish. 

Regardless of the survival and growth benefits associated with eelgrass, habitat 

quality may not always predict fish distribution. Competitive interactions may prevent 

pelagic juveniles from initially settling in areas of preferred habitat (Sweatman 1985). 

Post-settlement processes (e.g. emigration or mortality) may later reshape distributions of 

juvenile fish settling in poor quality habitat (e.g. Tupper & Boutilier 1995a). Fish-habitat 

relationships can also break down due to large-scale processes such as differential larval 

supply (Bell & Westoby 1986, Caselle & Warner 1996, Jenkins et al.1997a, Jenkins et al. 

1998). Jenkins et al. (1996) found that juvenile whiting abundance decreased in eelgrass 

habitats further from the spawning ground, a result attributed to a diminishing supply of 

pre-settling juveniles. Differential larval supply may also affect overall community 
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structure in eelgrass, including the abundance and diversity of juvenile fish and their prey 

species (Bell et al. 1988). Although these patterns may disappear through eventual 

movement to a habitat of higher quality (Sogard 1987), initial settlement patterns have 

prolonged effects on the distribution of fish if post-settlement movement is limited (Bell 

& Westoby 1986, Tupper & Boutilier 1995a). Therefore, evaluating critical nursery 

habitat for juvenile fish has to be considered from multiple spatial and temporal scales. 

Generally, habitat studies have been conducted as either small-scale experiments 

or as large-scale field observations. Small-scale experiments are typically performed in 

the laboratory to investigate behaviour of an organism when selecting habitat. In such 

experiments, habitat selection is typically detennined by giving a fish a choice between 

two or more habitats of equal area. Predators or food may be introduced to determine 

how fish choose habitats when faced with trade-offs between predator risk and 

opportunities for faster growth (Werner et al. 1983, Schmitt & Holbrook 1985, Holbrook 

& Schmitt 1988). Laboratory studies are useful in isolating small-scale processes, but 

may not always reflect patterns of habitat use at large scales. Alternatively, large-scale 

field studies are unable to detennine mechanisms of habitat use. Although juvenile fish 

distribution can be correlated with large-scale phenomena (e.g. physical processes, 

pelagic larval supply, predator distribution, etc), causality is difficult to determine 

without controlled experiments. Consequently, it is difficult to resolve the contribution 

of small (e.g., behavioural) and large (e.g., oceanographic) scale processes to habitat use 

patterns in fish. 

One solution is to conduct controlled in situ experiments with habitat at large 

scales. Aquatic field experiments are not novel, but seagrass manipulations are typically 
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restricted to less than 4m2 (Sogard 1989; Irlandi 1997; Horinouchi & Sano 1999; Lee et 

al.200 1; Jenkins et al.2002). Larger-scale habitat manipulations are ideal when 

investigating fish-habitat relationships, but spatial replication of these studies is 

logistically difficult. Similarly, removing large areas of potentially critical fish habitat 

may have long-term detrimental consequences to the species being investigated. 

However, recent statistical tools using randomized time replicates in conjunction with 

historical data have reduced statistical requirements for spatial replication (Randomized 

Intervention Analysis- RIA, Carpenter et al.1989). With such tools, it is logistically 

possible to carry out large-scale habitat manipulation experiments. 

We conducted a large-scale habitat manipulation experiment to determine the 

effect of eelgrass (Zostera marina) on the distribution of juveniles of two cod species, 

Atlantic cod (Gadus morhua) and Greenland cod (G. ogac). Age 0 juvenile cod associate 

with a number of high-structured demersal habitats (i.e. reefs, cobble, eelgrass; Lough et 

al. 1989, Tupper & Boutilier 1995ab ). However, juvenile cod distribution in the waters 

off Newfoundland is almost exclusively restricted to eelgrass habitat in nearshore areas 

(Gotceitas et al.1997), where abundance is highly variable among beds of this plant 

(Grant & Brown 1998a). In this study, I added and removed large sections of eelgrass to 

investigate sources of variability of habitat use in juvenile cod. Specifically, I addressed 

the following questions: (1) Is eelgrass a preferred habitat for juvenile cod?; (2) Does the 

association of juvenile cod with habitat occur during or after settlement?; and, (3) Are 

patterns of habitat use similar between two congeneric species? 
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MATERIALS AND METHODS 

Study Species 

Juvenile age 0 G. morhua and G. ogac are found throughout Newfoundland 

nearshore coastal waters from August to late December (Methven & Bajdik 1994, 

Gotceitas et al. 1997, Grant & Brown 1998a). Both species are similar in appearance at 

early life stages ( < 100 mm SL) but can be distinguished in the field using lateral line 

characteristics (Methven & McGowan 1998) and pigment patterns. Age 0 juvenile G. 

ogac tend to be more olive in appearance whereas age 0 G. morhua are more golden 

(Laurel & Gregory, pers. obs.). 

The reproductive life histories differ between the two species. G. ogac spawn 

early (Feb-Mar), have demersal eggs and spawn in the nearshore (Scott & Scott 1988). G. 

ogac are considered demersal and non-schooling residents of the nearshore throughout 

their life (Mikhail & Welch 1989). In contrast, G. morhua spawn later (Mar-Apr), have 

pelagic eggs and spawn in deep water both offshore (Templeman 1979) and inshore 

(Smedbol et al.1998). Eggs, larvae and pre-settling juveniles of G. morhua are 

transported to the nearshore, where they eventually settle from the pelagia. The two 

species co-occur as demersal juveniles. 

Study Area 

Newman Sound is a moderately sized (ca. 45 km2
) protected fjord of Bonavista 

Bay, Newfoundland located adjacent to Terra Nova National Park (TNNP; Fig. 1). Tidal 

amplitude in the sound is relatively low (1-1.5m) and temperatures vary seasonally from 

18.0° C in August to -1.5° C in late December. Eelgrass is the dominant vegetative 
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nearshore habitat, found extensively along the western and southern shores of the sound. 

Unvegetated mineral substrates are found throughout the sound, comprising the majority 

of habitat along the northern shore. 

Experimental Design 

We selected 12 sites- 8 "eelgrass" (eelgrass+mud/silt) and 4 "non-eelgrass" 

(mud/sand) along southern and eastern sections of Newman Sound (Fig. 1). Eelgrass was 

removed at two "eelgrass" sites (Buckley's Cove-BC and Dockside-DS) and artificial 

eelgrass was added to two "non-eelgrass" sites (Canning's Cove-CC and Mt. Stamford­

MS). Remaining umnanipulated "eelgrass" and "non-eelgrass" sites (6 and 2 

respectively) were used as controls. 

Habitat removal was accomplished by scuba divers in mid-July 1999, 

approximately two weeks prior to juvenile cod settlement. Divers marked each site with 

highly visible transect lines at 1 m intervals over a 500 m2 area. Eelgrass was harvested 

between lines by breaking stems away from the rhizome at the base of the substrate. The 

process was repeated until the entire eelgrass canopy was removed in the 500 m2 area at 

each site. 

Artificial eelgrass was constructed for two sites, by attaching green, plastic 

ribbon (W: 0.8 em H: 75.0 em) to galvanized wire fencing. Ribbon densities fell within 

the range of eelgrass naturally occurring in Newman Sound i.e. 600 blades m-2
. A total 

of 80m2 artificial eelgrass was created for each enhancement site, and this was divided 

into a series of smaller patches to mimic the fragmented characteristics of natural 

eelgrass. Two replicates of five patch sizes (0.3, 1.1, 5.5, 11, 22m2
) were deployed at 
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both CC and MS, covering a total area of275 m2 at each site (Fig 2). Patches were 

spaced 2-3m apart and secured to the seafloor with 25 em rebar spikes by divers. Fish 

were allowed to settle on artificial eelgrass patches for a period of two weeks before the 

sampling protocol was initiated. Patches were removed in November 1999 and 

redeployed in July of 2000 to prevent potential ice-scour damage. 

Juvenile cod sampling 

A 25 m demersal seine net with 19 mm stretched mesh size was used to collect 

fish over all sampling sites. The net was deployed from a small boat 50 m from shore 

and retrieved to shore by two individuals standing 16 m apart. The seine sampled 880m2 

of habitat from the substrate to 2m into the water column and has been shown to have a 

capture efficiency of95% (Gotceitas et al. 1997). I made a series ofunderwater 

observations in 1999, using scuba, over all of the substrates, and confinned entire sites 

were sampled and fish in the path of the seine did not escape capture. Fish caught in the 

seine were transferred to holding containers with seawater, identified, measured to the 

nearest mm SL (standard length) and then returned alive to the original site of capture. 

Juveniles were considered "pre-settled" if SL was < 60 mm and "post-settled" if SL was 

;::: 60 mm (Templeman 1966, Fahay 1983, Methven and Bajdik 1994, Tupper and 

Boutilier 1995a, 1995b ). I used the tenn 'pre-settled' to describe a juvenile cod early in 

the transition from pelagic to demersal life (synonymous terms include, 'recently settled' 

- Grunt and Brown 1998ab; and, 'newly settled' -Tupper and Boutilier 1995a). My 

choice of terminology was intentional since juvenile cod do not have a distinct settlement 

point and individuals larger than 60 mm SL may continue to forage on semi-pelagic prey 
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such as calanoid copepods (Grant and Brown 1998a, Lomond et al. 1998). However, the 

seine I used samples the lowermost 2m of the water column (i.e., near the bottom), and 

would capture only those juvenile cod that were likely associated with the demersal 

habitat. All sites were sampled within two hours of low tide during daylight hours on a 

biweekly basis in both pre-manipulated years (1995, 1996, 1998) and post-manipulated 

years (1999 and 2000). Removal sites were also sampled in 2001 to measure long-term 

effects of habitat removal on juvenile cod distribution. 

Additional data on juvenile cod habitat use and abundance was collected visually 

by two observers snorkeling over patches. Two 15m transect lines were deployed 

perpendicular to shore within the seine path at two sites of each treatment (addition, 

removal, eelgrass, and sand; 2 x 4 = 8 total sites). Surveys were designed to control for 

the layout and area of artificial eelgrass patches added at experimental sites. The length 

and spacing between patches were marked on each transect while the survey width varied 

to accommodate the changing patch sizes encountered along the transect line. At 

artificial eelgrass sites, snorkelers changed their survey width to match the actual patch 

dimensions. At other sites, snorkelers changed their survey width at various points 

indicated by highly visible tape along the transect. Snorkelers swam with marked poles 

(2.8 m long) both to ensure no overlap of survey areas in the large patches by each 

observer, and to estimate width of"patches" at sites without artificial eelgrass. Pairs of 

snorkelers made a single pass over each transect lines at each site so that only areas 

falling within the delineated transect lines were surveyed (80m2
). Water clarity at sites 

did not restrict my observation ability within these limits. Snorkelers swam directly over 

patches, recording the abundance of juvenile cod within 0.5 m of each patch. Large 
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patches (11 m2 and 22 m2
) exceeded the viewing capability of a single snorkeler, so these 

patches were assessed by both snorkelers swimming in parallel. Location and abundance 

of age 0 cod were recorded on underwater slates. I was often unable to distinguish 

between the smallest G. ogac from G. morhua underwater even when within 1 m. 

Therefore, I pooled the juvenile cod observations from snorkel surveys as Gadus spp. I 

surveyed the sites approximately weekly (n=9) between 10 August and12 October 2000 

(total of 144 transect surveys). 

Data Analysis 

Catch data were analyzed using randomized intervention analysis (RIA) to test 

whether a significant change in fish density occurred after the habitat manipulation. A 

full description of RIA and its utility for detecting treatment effects has been reviewed by 

Carpenter et al. (1989). RIA is based on a before-after-control-impact (BACI) design 

model in which experimental and control sites are compared against each other both 

before and after any experimental intervention. Removal sites (n=2) were compared 

against natural eelgrass sites (n=6); artificial eelgrass sites (n=2) were compared against 

naturally unvegetated sites (n=2). RIA tests were performed on data from individual and 

combined years in all possible experimental-control site comparisons. However, 

combined years (1999-2001) were not included in the analysis of removal sites because 

annual regrowth at each site effectively changed the treatment over time. Catch data 

were transfonned (y=Log 10 (x+ 1 )) prior to RIA to control for high within-site catch 

variability within and between years. Each RIA calculated differences between fish 

abundance at control and manipulated sites during each survey period. The mean of 
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these differences both before (EPrc) and after the experimental manipulation (EPost) was 

used to generate the test statistic Eoif from the equation [E (PRE) - E (POST)]. The test 

statistic was then compared against 5000 random permutations of [E (PRE)- E (POST)] 

using the data of each control-experimental site comparison. The error distribution was 

self-derived from the randomization and therefore data did not have to meet the 

assumptions of normality. 

RESULTS: 

Juvenile age 0 G. morhua settled in two pulses- the first pulse in late August, the 

second approximately 30 days later (Fig. 3). G. ogac settled in a single pulse at the 

beginning of August (Fig. 4). Interannual variation in abundance of G. morhua was high 

between 1999 and 2000 (Fig 3), almost an order of magnitude higher in 1999 (n=6405) 

than in 2000 (n=845). G. ogac abundance varied little between 1999 (n= 8985) and 2000 

(n=6614), but was higher than G. morhua in all years. 

The distribution of pre- and post-settled cod differed between habitat, species and 

year. Pre- and post-settled cod (<60 Imn SL) of both species were present in all habitats 

in 1999, but were not present at sand sites in 2000 (Fig 3; Fig 4). Differences in the 

abundance of post-settled Gadus morhua caught in natural eelgrass and removals sites 

were more apparent in the first year of the removal ( 1999) than in later years. However, 

post-settled Gadus ogac were seldom caught in the removal sites during both years. 

Snorkelers observed juvenile cod within the artificial eelgrass in early August, 

approximately 2 weeks after patches were deployed. Gadus spp. were detected only in 

natural and artificial eelgrass sites at the time of settlement for both the first pulse (Aug 

22 



10-30) and second pulse (Oct 1-12; Fig 5). Lower numbers of cod were observed in the 

removal sites and these fish were often seen along the edge area of the removal. Almost 

no cod were sighted over open sand areas ( < 0.1% of all observations). 

The RIA of catch data indicated a positive change in cod abundance to the 

artificial eelgrass, but the magnitude of the response differed between species and years. 

Differences were attributed to high catch variability at one unvegetated control site, Little 

South Broad Cove (LSB), rather than an absence of cod at the artificial eelgrass sites (Fig 

3; Fig 6). In combined years (1999 and 2000), there was a significant increase in G. ogac 

abundance at artificial eelgrass sites in all comparisons. In contrast, increases of G. 

morhua at the artificial eelgrass sites were significant in comparisons with the 

unvegetated control site Newbridge Cove (NB; Table 1; Fig 6). However, the trends 

were similar between species in individually analyzed years. Seine catches of G. ogac 

and G. morhua were higher at artificial eelgrass sites relative to unvegetated control sites 

in 50% of comparisons in 1999 and 100% in 2000 (Table 1 ). 

G. ogac and G. morhua also responded differently to eelgrass removal, although 

both species showed signs of recovery towards the end of the experiment. Mean 

abundance of cod was lower in nearly all control site comparisons in all years following 

the removal of eelgrass (Table 2). In the first year of removal (1999), 50% and 75% of 

comparisons indicated a significant decline in abundance of G. morhua and G. ogac 

respectively (Table 2; Fig 7; Fig 8). In 2000, 16.7% of G. morhua and 50% of G. ogac 

comparisons were significantly lower than historic levels. However, in the final year 

(200 1 ), with the exception of one G. morhua comparison, fish abundance generally 

recovered to previously observed levels (1995-1998). 
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DISCUSSION: 

Eelgrass benefits juvenile fish by reducing predator risk (Linehan et al.200 1, 

Laurel et al. 2003), increasing food availability (Connolly 1994), improving water quality 

and reducing physical exposure (Orth et al. 1984). However, juvenile fish may be 

distributed independent of habitat quality. Differential planktonic supply (Bell & 

Westoby 1986, Caselle & Warner 1996, Jenkins et al.1997a, Jenkins et al. 1998), 

competitive interactions (e.g. Sweatman 1985) or indiscriminate settlement patterns 

(Tupper & Boutilier 1995a) are known to influence spatial distribution. Therefore, 

proposed mechanisms of habitat use in juvenile cod have been equivocal, despite 

frequent observations of cod-eelgrass associations in the field (Morin et al.1991, 

Gotceitas et al.1997, Grant & Brown 1998ab ). My study experimentally demonstrated 

that differential habitat-use in age 0 juvenile cod is, in part, behaviourally mediated. 

Juvenile cod appeared to differentiate between habitat of varying quality and 

preferentially occupied eelgrass areas where growth and survival were potentially 

highest. 

Prior to the habitat manipulation, settling cod ( <60 mm SL) were restricted to 

areas with natural eelgrass. However, following the deployment of artificial eelgrass, 

pre-settling G. ogac and G. morhua were caught in seines at sites historically unoccupied. 

These data suggest that passive planktonic supply over non-eelgrass areas was not 

lim.iting prior to the deployment of artificial eelgrass, but rather, cod were delaying 

settlement until preferential habitat was encountered. Although active habitat selection 

from the pelagia has been reported in other fish species (e.g. Marliave 1977, Sale 1984, 
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Levin 1991 ), these data contradict other published accounts of settlement in cod. In a 

one-year study, Tupper & Boutilier (1995a) described an indiscriminate settlement 

pattern in G. morhua across habitats of varying complexity. In their study, differences in 

abundance of cod between habitats occurred after settlement. They suggested that this 

was a result of differential predator-induced mortality rather than habitat selection. I 

found no evidence suggesting indiscriminate settlement in five of the six years of the 

catch data (1995, 1996, 1998, 2000 or 2001 ). However, in the year of highest overall 

juvenile cod abundance (1999), pre-settled cod were caught at all sites, supporting the 

observations ofTupper and Boutilier (1995a). Their study also indicated high densities 

of "newly settling" G. morhua (i.e., > 0.5 fish m-2
) at many of their sites. Only in 1999 

were densities of G. morhua similar to those of Tupper and Boutilier (1995a; c. 0.3 fish 

m-2
) observed in the present study. Although comparing densities between studies can be 

problematic, it is possible that settlement patterns in cod were density-dependent (e.g., 

Myers and Cadigan 1993; Fromentin et al. 2001). In high abundance years, apparent 

habitat quality may decrease through saturation effects (e.g., competition for space, prey, 

or resources), leading to settlement in suboptimal habitats. 

The proximal cause of the disappearance of pre-settling fish from unstructured 

and removal sites in the present study is unknown. However in another study (Laurel et 

al. In press, Chapter 3), I have demonstrated that juvenile cod exhibit increased 

aggregation behaviour and increased tendency to move under conditions of high density 

when they occupy unstructured habitat, compared to low density, when they did not 

occupy such habitat. Such behaviour may be a means of compensating for increased 

predator risk associated with life in unstructured habitats. 
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An alternative explanation is that settling cod ( <60 mm) initially settled in natural 

eelgrass sites and shortly thereafter moved to artificial eelgrass sites. However, I suggest 

this was unlikely for a number of reasons. First, at all sites, a migration of> 1 km across 

deep or unvegetated habitats would be required to occupy artificial eelgrass sites from 

natural eelgrass sites. Such a migration would be improbable because risk of predation in 

juvenile cod increases with water depth (Linehan et al. 2001) and with declining 

structural complexity (Gotceitas et al. 1996, Laurel et al. 2003). In addition, the 

susceptibility of juvenile fish to predators is known to be size-dependent (Sogard 1997). 

Therefore the risk of movement among safe habitats at small body sizes would likely be 

prohibitive. Finally, a recent study analyzing patchiness of demersal G. morhua within 

nearshore areas suggests that movement of small pre-settling cod (25-40mm) is less than 

that in larger, post-settled fish (Methven et al. 2003). Therefore, in my study, the 

distribution of small cod(< 60 mm SL) was likely the result of settlement from the 

pelagia rather than movements between demersal habitats. 

Substantial movement more likely occurred in larger, post-settled juvenile cod. 

High within-site variation suggested that post-settled cod were not restricted to the area in 

which they settled. The high catch variation within manipulated sites also suggested that 

post-settled fish move among habitats. Sogard (1989) also demonstrated that many 

settled juvenile fish species move long distances (ca. 4 km) to occupy artificial seagrass 

patches. Neither Sogard (1989) and nor my data support Bell and Westoby's (1986) 

"settle and stay" hypothesis. Bell and Westoby ( 1986) suggested juvenile fish settle 

indiscriminately within a habitat but may move within that habitat for microsite selection. 

However, my observations are neither consistent with "settle and stay" nor do they 
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suggest cod exhibit strong site fidelity. Tupper & Boutilier (1995a, 1995b) have argued 

that juvenile cod are strongly site-attached and shifts in the observed abundance of settled 

fish is exclusively due to mortality. In these two studies, juvenile G. morhua ( 60-100 

mm SL) were observed defending small territories and having limited, size-dependent 

home ranges (<100m2
) for 2-3 months following settlement. My survey methods 

encompassed these reported home-ranges, yet snorkel observations and seine catches 

were highly variable between sampling periods. I do not attribute observed variation to 

mortality alone since density of post-settled individuals often increased within a site 

through the season. Therefore it would appear that both cod species were mobile at scales 

greater than ca. 1000m2
. Whether these movements were unrestricted or fell within an 

established home range could not be detennined. My results were consistent with Sogard 

(1989) and do not support the "settle and stay" hypothesis advocated by others (e.g. Bell 

& Westoby 1986, Tupper & Boutilier 1995a, 1995b) for juvenile cod. 

Both cod species altered their distribution following the habitat manipulation, but 

their habitat use patterns were not identical. G. ogac abundance decreased in more 

removal-eelgrass control comparisons than G. morhua, suggesting that G. ogac is more 

sensitive to alterations in habitat complexity. Yet despite an overall preference for 

eelgrass, G. morhua were periodically caught over sand and removal sites, suggesting 

that habitat use in this species is more flexible at early life stages. These differences may 

reflect different spawning characteristics between the two species. G. ogac spawn 

demersal eggs (Scott & Scott 1988) in close proximity to nursery areas whereas G. 

morhua spawn pelagic eggs, often further offshore (Templeman 1979). Larvae from 

demersally spawned eggs are more likely to be retained in the area spawned relative to 
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pelagic eggs (Bradbury et al. In press). Conversely, pelagic eggs have a greater dispersal 

potential than demersal eggs due to a prolonged planktonic development (Bradbury et al. 

2000). Thus there is greater likelihood that settling G. morhua will have fewer 

opportunities to settle in eelgrass habitat than G. ogac. Consequently, age 0 G. morhua 

may have evolved a greater tolerance for the use of alternative habitats, such as gravel­

cobble (Lough et al.1989) and rocky reefs (Tupper & Boutilier 1995a). 

The RIA measured a relative effect on fish abundance rather than a shift in 

absolute abundance. Largely, this was done to control for individual site-differences (e.g. 

eelgrass biomass, patchiness, planktonic supply) that could contribute to differential 

abundance of cod within a habitat treatment. In addition, the artificial eelgrass may not 

completely mimic natural eelgrass i.e. the additional structure from the wire base, lack of 

natural die-off, etc. However, the logistical constraints of carrying out a large-scale 

habitat manipulation did not permit us to manipulate habitat at an equivalent area to 

natural eelgrass control site. Therefore, absolute comparisons would be inappropriate 

regardless of possible inherent site differences. Therefore, the high abundance of 

juvenile cod, namely G. morhua, at removal sites was not unexpected. Thirty-five percent 

of each removal site still contained undisturbed eelgrass, although this was only in the 

shallow intertidal zone where few juvenile fish are found regardless of habitat 

characteristics (Jenkins et al. 1997b ), including Gadus spp. (Norris et al. in revision). 

Another source of juvenile cod in the removal sites were the edges along the subtidal 

boundary of the removal. I observed schools of juvenile cod along the deeper edge of the 

removal sites where the manipulated area adjoined undisturbed eelgrass, but I rarely 

observed cod over the interior of the removal. Edge areas in eelgrass are known to be 
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profitable foraging areas for fish (Graham et al. 1998) and it is possible that edge­

associated fish contributed substantially to the seine catches. In addition, removal sites 

may have had higher prey levels than sand sites. Although the response of 

macroinvertebrates to alterations in seagrass is species and site-specific (e.g. Edgar & 

Robertson 1992, Connolly & Butler 1996, Lee et al. 2001 ), Connolly (1994) found higher 

overall invertebrate abundance in small removal areas (25 m2
) compared to naturally 

unvegetated areas. In this study, I removed the canopy of eelgrass and left the rhizomes 

intact in the benthos. Potentially, the procedure left a rich benthic invertebrate 

community relative to naturally unvegetated sites. 

In a few instances, the highest numbers of juvenile cod were caught in artificial 

eelgrass sites. This was interesting considering that the eelgrass coverage at artificial 

sites (275m2
) was substantially less than natural sites (880m2

). The visual transect data, 

which controls for habitat area, also confirmed that overall cod abundance was higher in 

the artificial eelgrass. These results may demonstrate an "oasis effect" since artificial 

eelgrass sites were further removed from natural eelgrass patches than natural eelgrass 

sites. Assuming fish seek the most proximate refuge, patches of suitable habitat may be 

colonized at high rates when surrounded by large areas of unsuitable habitat (Virnstein & 

Curran 1986). Other studies have shown that higher densities of fish are found in isolated 

patches of eelgrass (Sogard 1989) and reef habitat (Schroeder 1987) when compared to 

continuous eelgrass meadows. Similar findings have also been reported for cod. Eelgrass 

sites with slight fragmentation supported higher densities of age 0 juvenile cod than 

eelgrass meadows of equivalent area (Wells 2002). My results were consistent with these 

findings. 
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Appreciable regrowth of eelgrass at the removal sites occurred two years 

following its initial removal. This regrowth was reflected in the number of significant 

RIA removal-control site comparisons. In the first year of removal ( 1999), nearly 50% of 

the RIA comparisons indicated a significantly lower juvenile cod abundance in removal 

sites compared to years prior to the removal. By 2001, differences between removal and 

vegetated sites were no longer significant. Eelgrass reproduces both sexually and 

asexually (Orth et al. 1984). The close proximity of undisturbed eelgrass to the removal 

areas also likely facilitated the quick recovery. A larger, more geographically isolated 

removal location or a complete removal of canopy, including rhizomes (which I left 

largely intact) may have had longer-tenn effects on juvenile cod distribution. 

CONCLUSIONS 

Both G. ogac and G. morhua abundance increased at sites enhanced with 

artificial eelgrass and decreased at sites where eelgrass was removed, relative to years 

before I manipulated habitat. Therefore, I reject the hypothesis that broad-scale processes 

(e.g., larval supply and oceanographic hydrodynamics) were responsible for the 

differential use of vegetated and unvegetated habitats. The presence of settling cod over 

sites with artificial eelgrass in years of high and low abundance suggests that these 

species are capable of selecting habitat while still in the pelagia. 

Both species exhibited an overall preference for eelgrass habitat. However, high 

within-site variability indicated that both species are not strongly site-attached. High 

catch variability was especially evident in G. morhua. Significant RIA comparisons were 

fewer in G. morhua relative to G. ogac, suggesting that G. morhua were less site-attached 
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or less dependent on habitat complexity than its sibling species. These data contradict 

Tupper and Boutilier's (1995ab) accounts of cod settling indiscriminately across a range 

of habitats and having high site-fidelity following settlement. 
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FIGURE CAPTIONS: 

Fig. 1: Study area in Newman Sound, Bona vista Bay, Newfoundland showing the 
locations of experimental and reference seine locations. •= eelgrass sites Big Brook 
(BB), Hefferen's Cove (HC), Minchin's Cove (MC), Mistaken Cove (MI), South Broad 
Cove (SB) and White Rock (WR); •= artificial eelgrass sites Canning's Cove (CC) and 
Mt. Stamford (MS); o= unvegetated sites Little South Broad Cove (LSB) and Newbridge 
(NB); o= removal sites Buckley's Cove (BC) and Dockside (DS). 

Fig. 2: Experimental layout of artificial eelgrass patches relative to shore at Mt. Stamford 
and Canning's Cove. 

Fig. 3: Interannual pre- and post-settlement distribution (catch per haul) of age 0 Gadus 
morhua in experimental and reference sites for July-Dec in 1999 and 2000. Values are 
means of seine hauls at replicate sites (n=2-6) ± S.E. 

Fig. 4: Interannual pre- and post-settlement distribution (catch per haul) of age 0 Gadus 
ogac in experimental and reference sites for July-Dec in 1999 and 2000. Values are 
means of seine hauls at replicate sites (n=2-6) ± S.E. 

Fig. 5: Visual observations of age 0 juvenile cod Gadus spp. abundance over a nine week 
period (Aug 12-0ct 12) at eelgrass, removal, unvegetated sand and artificial eelgrass 
sites. Values are means of replicate transect lines (n=4) ± S.E. Points at each week are 
staggered (0.1 weeks) for visual purposes. 

Fig. 6: Relative differences of juvenile cod abundance, (Gadus morhua and G. ogac) at 
artificial eelgrass sites (Canning's Cove-CC and Mount Stamford-MS) and unvegetated 
reference sites (Newbridge-NB and Little South Broad Cove-LSB) during pre- and post­
manipulation years. Values represent annual mean bi-weekly seine catches (n=14-20) ± 
S.E. Points at each year are staggered (0.05 yrs) for visual purposes. 

Fig. 7: Relative differences of juvenile cod abundance Gadus morhua, at experimental 
removal sites (Buckley's Cove-BC and Dockside-DS) and natural eelgrass reference sites 
(Big Brook-BB, Hefferen's Cove-HC, Minchin's Cove-MC, Mistaken Cove-MI, South 
Broad Cove-SB and White Rock-WR) during pre- and post-habitat manipulation years. 
Values represent annual mean bi-weekly seine catches (n=14-20) ± S.E. Points at each 
year are staggered (0.05 yrs) for visual purposes. 

Fig. 8: Relative differences of juvenile cod abundance Gadus ogac, at experimental 
ren10val sites (Buckley's Cove-BC and Dockside-DS) and natural eelgrass reference sites 
(Big Brook-BB, Hefferen's Cove-HC, Minchin's Cove-MC, Mistaken Cove-MI, South 
Broad Cove-SB and White Rock-WR) during pre- and post-habitat manipulation years. 
Values represent annual mean bi-weekly seine catches (n=14-20) ± S.E. Points at each 
year are staggered (0.05 yrs) for visual purposes. 
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Table 1: Probability values from Randomized Intervention Analysis (RIA) of Gadus 
morhua and G. ogac from two artificial eelgrass sites (Canning's Cove-CC and Mount 
Stamford-MS) and two unvegetated reference sites (Newbridge-NB and Little South 
Broad Cove-LSB). (-)or(+) indicates a positive or negative effect from the removal with 
* denoting significance. The components EPrc and EPost for the test statistic Eoif of each 
comparison are plotted in Fig. 6. 

SJ:ecies Year Site NB LSB 
G. morhua 1999-2000 cc (+) 0.001 ** (+) 0.251 

MS (+) 0.001 ** (+) 0.063 
1999 only cc (+) 0.001 ** (+) 0.670 

MS (+) 0.001 ** (+) 0.190 
2000 only cc (+) 0.001 ** (+) 0.002** 

MS (+)0.001** (+) 0.006** 

G. ogac 1999-2000 cc (+)0.001** (+)0.041* 
MS (+) 0.001 ** (+) 0.034* 

1999 only cc (+) 0.002** (+) 0.276 
MS (+)0.001** (+) 0.200 

2000 only cc (+)0.001** (+)0.001** 
MS (+) 0.001 ** (+)0.001** 
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Table 2: Probability values from Randomized Intervention Analysis (RIA) of Gadus 
morhua and G. ogac from two experimental removal sites (Dockside-DS and Buckley's 
Cove-BC) and five natural eelgrass reference sites (Big Brook -BB, Hefferen's Cove­
HC, Minchin's Cove-MC, Mistaken Cove-MI, South Broad Cove-SB and White Rock­
WR). (-)or(+) indicates a positive or negative effect from the removal with* denoting 
significance. The components Errc and Erost for the test statistic Eoif of each comparison 
are plotted in Fig. 7 and 8. 

..... ~P.C;:£!.~~ ............ Year Site MC MI S8 WR 88 HC ··--·--···········-·····--·-···-----····--·--··--·······"··-··--·······--··---..................................... ''''''''''wowowwu-uooowuMooMoMooooooMoooooooooooooooo•o•••---··-uw-•••-oouMMMMM-ooo-ooooooooooooooooowoooooo ... , .. ,,, .. , .. ,,, .. ~Uuo>>MOM .. ••ooO•o''"MO•"U-MwuoooUO"M"''''''M'o'u"o .. MoooooMooooooMooo 

G. morhua 1999 DS (-) 0.146 (-) 0.153 (-) 0.029* (-)0.217 (-) 0.025* (-) 0.278 
BC (-) 0.158 (-) 0.027* (-)0.017* (-)0.308 (-) 0.001 * (-) 0.026* 

2000 DS (-)0.484 (-) 0.022* (-) 0.153 (+) 0.079 (-) 0.650 (-) 0.252 
BC (-) 0.220 (-)0.060 (-)0.035* (-) 0.794 (-) 0.373 (-) 0.058 

2001 OS (-) 0.277 (-) 0.667 (-)0.031* (-) 0.560 (-) 0.462 (-) 0.964 
8C (-) 0.175 (-) 0.852 (-) 0.055 (-)0.296 (-)0.099 (-)0.304 

G. ogac 1999 OS (-) 0.024* (-) 0.212 (-) 0.012* (-) 0.234 (-) 0.033* (-) 0.010* 
BC (-) 0.032* (-) 0.032* (-) 0.005* (-) 0.056 (-) 0.001 * (-) 0.033* 

2000 OS (-)0.022* (-) 0.158 (-) 0.002* (-) 0.655 (-) 0.425 (-)0.005* 
BC (-) 0.036* (-) 0.115 (-) 0.015* (-) 0.681 (-) 0.110 (-)0.002* 

2001 OS (-) 0.186 (-) 0.900 (-) 0.289 (-)0.662 (-)0.777 (-) 0.675 
BC (-)0.293 (-)0.424 (-)0.473 (-) 0.741 (-) 0.4116 (-) 0.796 
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CHAPTER3: 

Density-dependent habitat use in juvenile cod (Gadus morhua): 
alternative strategies in high-risk environments 

ABSTRACT: 

Fish behaviour can change to accommodate a variable environment, but changes 

in behaviour have not been considered in the context of density-dependent habitat use. In 

Bonavista Bay, Newfoundland, I measured how fish density, movement and schooling 

behaviour changed with habitat in two gadids, Atlantic cod (Gadus morhua) and 

Greenland cod (Gadus ogac), using a combination of field-seines, mark-recapture- and 

laboratory experiments. Density estimates from seines (n=427) over five years (1996, 

1998-2001) indicated that these species were associated with eelgrass but periodically 

were detected in high abundance over sand. Within-site catch variation indicated both 

species aggregated more in sand than eelgrass habitat, and in Atlantic cod, aggregations 

over sand increased as density in eelgrass increased. Although such patterns in catch data 

could be interpreted as an effect of differential mortality between habitats, a mark-

recapture experiment indicated that both species of cod were not site-attached and moved 

between seine locations. Furthennore, video-analysis from laboratory experiments 

demonstrated that cod formed tighter aggregations over sand compared to eelgrass 

habitats. My results demonstrate that juvenile cod modify their behaviour with changing 

density, possibly as a means of exploiting poor quality habitats when high quality habitats 

are saturated with conspecifics. Consequently, habitat suitability for Atlantic cod should 

be considered a dynamic rather than fixed variable in density-dependent habitat models. 
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INTRODUCTION: 

Predation in aquatic systems can have profound effects on the distribution of 

many species of fish (Sih 1987). Predators can shape prey fish distribution either directly 

through selective mortality (e.g., Tupper and Boutilier 1995a, Steele 1999) or indirectly 

through risk-induced behaviour such as schooling or use of protective habitat (See Godin 

1997 for review). It is likely that both direct and indirect effects of predation on fish 

distribution are magnified during the early life stages of fish when predation risk is 

highest (e.g., Houde 1987, Sogard 1997). 

Complex habitats (e.g., rock, woody debris, coral, submerged vegetation) are 

often used by fish as a means of reducing predation risk (Savino and Stein 1982, 

Gotceitas and Colgan 1989, Gotceitas and Brown 1993). In particular, highly structured 

aquatic vegetation (e.g., eelgrass) has received much attention as a refuge habitat (Orth et 

al. 1984, Gotceitas et al.1997, Linehan et al. 2001, Laurel et al.ln press), likely due to its 

wide distribution and high productivity relative to neighboring unvegetated sites (Orth et 

al. 1984, Bell and Pollard 1989). The likelihood of encountering and capturing prey is 

reduced in eelgrass (Gotceitas et al. 1997), and consequently, predation rates are typically 

lower despite sometimes-higher predator densities in these habitats (Linehan et al.200 1, 

Laurel et al. 2003). It is therefore not surprising that structured habitat is often used as 

nursery habitat by many species of recently settled marine fish (Bell and Pollard 1989, 

Sogard and Able 1991, Levin 1991, Edgar and Shaw 1995, Grant and Brown 1998a, 

Matilla et al. 1999). 
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Despite the benefits of using complex habitats, fish may be forced to use high-risk 

habitats (e.g., sand, bedrock) when preferential habitats are saturated by conspecifics. 

The decline in habitat selection with increasing population abundance was first outlined 

by Fretwell and Lucas ( 1970) and has subsequently fanned the basis for frequency­

dependent modeling i.e., ideal-free distribution. When populations are low, individuals 

should be restricted to habitats offering the highest fitness benefits e.g., high survival and 

growth. As population density increases, individual fitness benefits decrease (via 

competitive interactions) and consequently, poorer quality habitats become more 

attractive. These relationships have been explored and reviewed for many taxa, including 

fish (MacCall 1990, Kramer et al. 1997). 

One shortcoming with density-dependent habitat models is that they assume the 

organism's behaviour is the same across all habitats. Such an assumption is problematic 

because changes in behaviour can modify the fitness benefits associated with a particular 

habitat. Density-dependent habitat models rely on a static measure of habitat suitability, 

equal to the fitness benefits acquired by an organism at zero density. The fitness benefits 

of a habitat cannot be static if the organism has a dynamic behavioural strategy. 

Therefore, density-dependent changes in behaviour should also be considered when 

modeling habitat suitability and predicting distribution. 

Fish adopt different strategies to compensate for increased predation risk 

associated with specific habitats. llmnediate, short-term responses include freezing 

(motionless) (e.g., Brown 1984, Radabaugh 1989), reduced activity (Rahel and Stein 

1988) and increased flight initiation distances (Y denberg and Dill 1986). However, 

employing these tactics can result in reduced mating success (e.g., Hastings 1991) and 
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lost foraging opportunities (e.g., Williams and Brown 1991 ). Alternatively, group tactics 

(e.g., schooling, shoaling) may be more viable long-term solutions when using poorer 

quality habitat. Shoaling has been shown to reduce predation risk through increased 

predator confusion (e.g., Milinski 1979; 1985), dilution (Foster and Treherne 1981; Krebs 

and Davies 1991) and vigilance (Bertram 1978). The cost of group association (e.g., food 

competition, increased conspicuousness) may be ameliorated by increased food searching 

(Pitcher et al. 1982), group defense (Krebs and Davies 1991 ), and increased 

hydrodynamic efficiency (Weihs 1975). However, the use of shoaling as an alternative 

tactic in habitats with low suitability has not been considered in the context of density­

dependent habitat selection. 

Little is known of mechanisms ofvariable habitat use of juvenile Atlantic cod. 

Since the collapse of Atlantic cod populations off Newfoundland, age 0 juvenile cod have 

been largely restricted to the inshore (Dalley and Anderson 1997) where they are 

commonly associated with complex bottom habitat (Gotceitas et al. 1997, Grant and 

Brown 1998a). Field experiments have demonstrated that these fish prefer to settle in 

eelgrass in July-August (Laurel et al. In press, Chapter 2) and remain there until late 

November when they presumably move to deeper waters (Methven and Bajdik 1994). 

Eelgrass has been shown to reduce predation risk for age 0 juvenile cod in both 

laboratory ( Gotceitas et al. 1997) and field (Linehan et al. 2001; Laurel et al. 2003) 

experiments. Despite their preference for eelgrass, however, juvenile cod are 

occasionally observed over less structured habitats such as sand and cobble (Lough et al. 

1989, Tupper and Boutilier 1995ab, Laurel et al. In press, Chapter 2). Juvenile cod are 

believed to move little immediately following settlement (Tupper and Boutilier 1995ab, 
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Grant and Brown 1998a) and consequently, the occupation of less structured habitats is 

taken to be the result of indiscriminate settlement patterns. By implication, temporal 

variation in distribution following settlement is the result of selective predation across 

habitats (Tupper and Boutilier 1995ab). However, Schneider et al.(1999) demonstrated 

that movement prevails over mortality at the scales of Tupper and Boutilier (1995ab ). 

Furthermore, a recent study by Laurel et al. (In press, Chapter 2) suggested that temporal 

variation in distribution is the result of post-settlement movement and habitat mediated 

aggregation. Therefore, the mechanisms of variable habitat use in these fish remains 

unclear. 

In this study I measured movement, fish density and behaviour in laboratory and 

field experiments to determine: 1) the degree of post-settlement movement in juvenile 

cod; 2) if cod behave similarly in open and vegetated habitats; and 3) whether habitat­

dependent behaviour is density-dependent. 

MATERIALS AND METHODS: 

Study location: 

Fieldwork was carried out along shallow coastal areas(< 5m) of Newman Sound, 

Terra Nova Nation Park (TNNP), located within Bonavista Bay Newfoundland (Fig. 1). 

Nearshore substrate varied between complex eelgrass (Zostera marina)lmud habitats to 

non-vegetated sand/gravel habitat. Seasonal temperatures ranged from 20° C in late 

August to -1.0° C in early December. 
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Seine surveys: 

Age 0 juvenile cod abundance was detennined using demersal beach seines in 

1996 and 1998- 2001. Seines were deployed 55 m from shore from a 6 m boat and pulled 

toward shore by two individuals standing 16m apart. The seine sampled 880m2 of 

demersal habitat up to 2 m from the bottom. Seine collections were made only during 

daylight hours and within 2 hrs of low tide. Fish collected in the seine were transferred to 

large containers filled with seawater at ambient temperature. Juvenile cod were counted 

and identified before being returned alive to their site of capture. Scuba observations 

have shown that the seine samples 95% of the fish community within its path (Gotceitas 

et al. 1997). A full description of the seine, mesh size and deployment method is found 

in Schneider et al. (1997). 

In each year of my study, collections were taken once every two weeks over 2-4 

unvegetated sand sites and 4-8 eelgrass sites between mid-July and late November. 

Nearshore studies in Newfoundland have shown that Gadus morhua settle in at least two 

distinctive recruitment pulses. The first pulse occurs in Aug-Sept which is then followed 

by a 2nd pulse occurring approximately 30 days later (Methven and Bajdik 1994; Grant 

and Brown 1998a). In contrast, Gadus ogac settle in a single recruitment pulse in July­

August (Laurel et al. In press, Chapter 2). 

Mark-recapture experiment: 

A murk-recapture experiment was pcrfonned between August 16- September 3 in 

1999 on the western shore of inner Newman Sound in Terra Nova National Park (48 
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35'N, 53 55'W). Fifteen adjacent seine sites (16m wide) were marked with flagging tape 

along 274m of unobstructed shoreline (Fig. 2); the survey area encompassed 13 504m2
. 

We collected 1109 Gadus spp. (47% G. morhua; 53% G. ogac) on August 18 

from site 4 (i.e. location 0 m) and mass-marked with fluorescent grit following the 

procedure described by Phinney et al. ( 1967). The marking apparatus consisted of a 

marking gun (commercial sandblast gun) retrofitted with a 5 mm orifice and attached 

canister holding Saturn Yellow™ fluorescent grit (DayGLO Color Corp.). The marking 

apparatus was attached to a scuba cylinder with a high-pressure hose and regulator that 

reduced air pressure to 550 kPa during marking. Fish (50-250 at a time) were marked in 

a plastic tub (W: 0.5m, H:0.5m, L 1.0 m) with a screen bottom (1 mm mesh). The plastic 

tub was nested in a similar sized tub holding ambient seawater to minimize the time fish 

spent out of water. The marking gun was held c. 40 em from the fish and sprayed for 2-3 

seconds. Fish were then transferred to partially submerged, plastic holding pens at the 

site of capture. Marked individual were released back into the site of capture (Site 4; Fig. 

2) ten hours following the last batch marking. 

A recapture seining series was initiated on day 1 ( 15 hrs after release) and 

repeated on days 2, 6, 9, and 16. Two seining teams sampled simultaneously in opposite 

directions starting from sites 5 and 6 and worked outwards towards sites 1 and 10 

respectively. Captured juvenile cod were transferred to holding containers with seawater 

and examined under ultraviolet light in a dark tent for presence of fluorescent marks. All 

fish were transferred to holding containers and released after seining was completed for 

the day, after which fish were released back into the site of their recapture. 
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Laboratory experiments: 

Fish collection 

Juvenile age 0 Gadus morhua (70-90 mm SL) were caught by beach seine (See 

Laurel et al. 2003 for seine description) from additional sites elsewhere in Newman 

Sound and transferred to the laboratory. Fish were held in 1 x 1 x 0.5 m flow-though 

tanks at ambient water temperature and fed a mixture of chopped herring and commercial 

pelleted food. Fish were allowed to acclimate to laboratory conditions for a period of 

two-weeks prior to initiating experiments. 

Experimental design 

Juvenile cod distribution was digitally videotaped over sand and simulated 

eelgrass in a large flow through tank (2.0 x 1.5 x 0.4 m) maintained at 5-10° C. A digital 

video camera, fixed with a wide-angle lens, was mounted 2.2 m directly above the tank. 

The field of view and focus of the camera were locked to maintain a clear, perpendicular 

view of the entire tank and its inhabitants. The camera could be operated remotely from 

an adjacent room outfitted with a video-screen to start and stop trials. Illumination was 

provided by two 1.8 m high light stands on opposite sides of the tank; each light stand 

was fitted with two 300-W halogen lamps. Lamps were angled at 45° into each side of 

the tank to highlight fish as well as intentionally create a shadow on the tank bottom. 

Bottom habitat was switched repeatedly between trials to either unvegetated sand 

or simulated eelgrass. Sand(< lmm) was washed and placed into the tank to cover the 

entire bottom at a thickness of 10 em. Eelgrass was manufactured by attaching green, 

plastic ribbon (W: 0.8 em H: 20 em) to mats of galvanized wire fencing at a density of 
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400 blades m2
. During placement of eelgrass into the tank, fencing was fully covered by 

a sand layer so that only the ribbon was visible during trials as the. Simulated eelgrass 

emerging from the substrate varied in length between 17-19 em. Field experiments have 

shown that similarly constructed eelgrass attracts (Laurel et al. In press, Chapter 2) and 

reduces predation of juvenile cod (Laurel et al. 2003, Chapter 4). 

Five experimentally nai:ve age 0 juvenile cod (Gadus morhua; 7.8 ± 0.14 em) 

were transferred from holding tanks to the experimental tank using a 2 L transparent glass 

container with ambient seawater. Fish were allowed to acclimate to the temperature of the 

experimental tank by placing the holding container in the center of the tank for 15 min. 

Fish were then released into the tank and filmed for a 1-hr period. All operations to 

manipulate the camera were conducted in a separate room to minimize disturbances 

during a trial. Following each trial, fish were collected by dip net and moved to a 

separate holding tank. A total of ten 1-hr trials in each habitat (eelgrass and sand) were 

recorded over 3 weeks. 

Video analysis 

Digital video recordings were uploaded to a computer with image analysis 

software (Matrox Inspector™) to gather 3-dimensional positioning and orientation data 

for each juvenile cod. Frame grabs of video were insufficient by themselves because fish 

were difficult to distinguish against the heterogeneity of the habitat. Instead, short 1 0-s 

clips of video were captured and looped repeatedly from a reference frame. Fish were 

digitally marked at the reference frame while the video looped to reveal the position of 
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each fish. Reference frames along with 10-s video clips were captured at 3-min intervals 

for 57 minutes during each trial (n=20 reference frames/trial). 

From each reference frame I gathered the orientation and position in space (x,y,z 

coordinates) of each fish. Orientation was acquired by drawing a digital line from head 

to tail of each fish from each reference frame (n=5 angles/frame, 100 angles/trial). The 

software outputs an angle (0-360°) based on the counterclockwise difference between 

digitally marked fish and a 3 o'clock reference line. To calculate fish position, a digital 

point was placed at the anterior end of each cod in each reference frame (n=5 x,y­

coordinates/frame, 100 x,y coordinates/trial). From each digital point, the Cartesian 

coordinate system of the software outputs a fish position in a 2-dimensional plane (x,y) to 

the nearest 0.5 centimeter. The 3rd dimension (i.e., fish height in the water column) was 

calculated from the distance of its x,y position to its cast shadow on the substrate. 

Because the distance of the cast shadow is dependent on the position of the fish in the 

tank, shadow distances were corrected based on the shadow mapping algorithms outlined 

by Laurel et al. (submitted, Chapter 5). In rare instances when the walls of the tank 

obstructed the shadow cast when a fish was adjacent to the tanks walls, the last known 

shadow-body distance for that fish was used. 

Data Analysis: 

Field seines: 

Juvenile cod densities estimated from seines catches were examined using 

quantile-quantile plots of% abundance versus % area to determine the degree of 

aggregation offish in the field i.e., Lorenz curves (Dagum 1985). Plots were constructed 

for eelgrass and sand separately for each year by first calculating the percentage of the 
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total population within a year associated with a single seine haul i from either eelgrass or 

sand sites: 

1) n; = 100(w; +1)/ E 

where w; = number of fish caught in a seine haul and E = mean catch per haul. These 

data were compared against the percentage area associated with each tow (A;= 100 c;) 

where c; was the proportion of the annual catch in a single seine haul i. I sorted seine 

hauls by n; and plotted cumulative percent area against cumulative percent abundance for 

each year, species and habitat. A highly concave curve shows high aggregation whereas 

increased linearity with a slope approaching 1 indicates an even distribution of fish 

among seine hauls. The range in concavity is loosely related to the statistical distribution 

(e.g., nonnal, poisson, negative binomial.) ofthe catch data (Fig. 3). The total area 

underneath each curve (k) was integrated (fk) to detennine the discrepancy from a 

perfectly even distribution i.e., 1:1 line. fk was then plotted against the corresponding 

yearly mean catch to determine if density was related to aggregation as measured by Jk. 

Data were then log transfonned and regressed to determine if fk increased with annual 

abundance. Such a relationship would indicate a density-dependent effect on 

aggregation. 

We also examined within-site aggregation over the course of a season (July­

November). Within-site catch variability for each year and each species was determined 

using coefficients of variation (CV) of bi-weekly catch data (wi + 1). These data were 

regressed against the log transformed total catch within each site for each species within a 
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year (LOG (Wrot +Nrar)). Residuals from regression met the assumptions of normality 

and homogeneity. 

Mark-recapture: 

Movement rate was calculated by regressing the number of recaptures against 

time: 

2) ln (N+ 1) =a+ p (T) 

where N was the number of recaptures of juvenile cod and T was the time in days. A 

constant (N+ 1) was added to the equation to include possible days when 0 fish would be 

recaptured. I determined movement rate from the slope (lOO*P) and expressed it as% 

fish day" 1 leaving the survey area. 

Video data: 

I detennined the degree of aggregation in tank trials by calculating distances 

between all fish in each reference frame. The distances between one fish in space (Ax, 

Ay, Az) and a second fish (Bx, By, Bz) was calculated using the following equation: 

where dx=Ax-Bx, dy = Ay-By and dz = Az-Bz. The total sum of all possible distances 

between fish in each reference frame (n= 10 distances/frame) was then used to calculate 

an aggregation coefficient (n=l!frame, 20/trial). I used one-way ANOVA with repeated 

measures to detennine if mean aggregation coefficients within each trial (n=10 eelgrass, 

10 sand) differed between habitats. Habitat (eelgrass or sand) formed the between group 

62 



factors in the model. Time (min) of observation ( e.g.,O, 3, 6, 9 ... 57) within the trial was 

examined as a within group factor. 

We detennined how groups offish oriented over different habitats (n=lO angle 

differences/ frame, 200 angle difference/ trial) by examining the similarity between 

angles within a reference frame. The minimal sum of the angle difference (Ao) between 

each fish and its neighbors for each reference frame was calculated using the following 

equation: 

4) Ao =min ~~ Ang; - Angi+ll 

where Angi is the orientation (in degrees) of a single fish relative to a 3 o'clock position. 

Angle differences were transformed so that Angi - Angi+ 1 < 180. If Angi - Angi+ 1 > 180, 

angles were adjusted using the equation: 

5) 360- [Angi-Angi+1J. 

I used the minimal sum, which consisted of one reference fish relative to its four other 

neighbors (n=5 angle difference/sum), as the test statistic from which to measure group 

orientation. Lower sum values indicated that fish were oriented in the same direction 

whereas high sums suggested that fish were moving in separate directions. Mean 

minimal angle sums (n=20/trial) were compared between habitat treatments using one­

way ANOVA with repeated measures (n=lO eelgrass, 10 sand). The assumptions for 

computing p-values were checked by examining residuals for normality and 

homogeneity. Habitat (eelgrass or sand) formed the between group factors in the model 

and time (min) of observation within the trial was examined as a within group factor. 
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RESULTS: 

Field catch data: 

There was a significant high interannual variability in late summer and autumnal 

catches of both G. ogac and G. morhua (Fig. 4). This was most pronounced in G. 

morhua with more than an order of magnitude difference in mean catch, ranging from a 

high catch in 1999 (87.3±22.3 fish haur 1;mean±se) to a low catch in 2001 (4.6±0.9 fish 

haur 1
). In contrast, G. ogac ranged from a high catch in 1999 (118.5±56.9 fish haur1

) to 

a low catch in 1996 (19.1±7.0 fish haur'). 

Both G. ogac and G. morhua aggregated more in sand habitats than eelgrass 

habitats in most years (Fig. 5), but the degree of aggregation was highly variable in sand 

habitats between years for both species. The interannual variability in the degree of G. 

morhua aggregations over sand was significantly related to interannual fluctuations in 

density (n=5, r2=0.93, p = 0.004; Fig 6). However, no relationship was found for G. 

morhua in eelgrass sites (n=5, r2=0.11, p=0.636) or for G. ogac in either sand (n=5, 

r2=0.28, p=0.103) or eelgrass (n=5, r2=0.01, p=0.979). Therefore, only G. morhua 

became more aggregated over sand habitats when abundance in eelgrass habitats was 

higher. 

Within-site temporal variability was correlated with abundance in sand for both 

G. ogac (n=17, r2=0.83, p<0.001) and G. morhua (n=17, r2=0.79, p<0.001) but not in 

eelgrass (G. ogac n=39, r2=0.01, p=0.829; G. morhua n=39, r2=0.02, p=0.444; Fig. 7). 

These data suggest that, for both cod species, high abundance within a sand site is due to 

a few large aggregations of fish. In contrast, individual eelgrass sites were much less 

variable at high abundance, indicating consistent catches over time in this habitat. 
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Mark-recapture experiment: 

There was significant negative relationship (r2=0.84, p=0.0181) of daily recapture 

of juvenile cod (Gadus spp.) with time (Fig. 8a). Fewer fish were caught on day 6 as a 

possible result of sampling during heavy rainfall, causing fish to move into deeper water 

to avoid contact with freshwater run-off. I interpret these trends as cod movement rather 

than mortality since marked individuals were caught progressively further from the area 

of release on successive days (Fig 8b.). Sixty-three percent of fish recaptured were 

caught at either the original site of release or within the two adjacent sites. The 

remaining 27% ofrecapturedjuvenile cod strayed from the release site to occupy fringing 

sites in the survey area. From the regression equation: 

ln (N+ 1) = 2.70- 0.167*T 

we calculated the mixed-species movement rate of juvenile cod as 16.7% d-1 from an area 

of 13 035m2 (237m x 55 m). 

Video trials: 

Video analysis indicated that juvenile cod were more aggregated over sand habitat 

than eelgrass habitat (ANOVA with repeated measures, F 1,18=21.716,p<0.001; Fig 9). 

Within-subject analysis indicated a measurable effect of aggregation over time in sand 

(F 19, 179=4.165, p=0.028) or eelgrass (F 19,179=8.025, p=O.O 11). Fish were highly 

aggregated in both habitats early in the trial as a result of being released from a common 

starting position in the tank. Increases in juvenile cod dispersal in both eelgrass and sand 

appeared to level off after 20 minutes into the trial, but fish in eelgrass treatments were 
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clearly more dispersed at this point (Fig. 9). No aggressive behaviour was noted between 

individuals in either treatment. 

There was weak evidence that propensity to swim in parallel differs between 

habitats. Fish over sand habitat were oriented in a common direction more so than fish in 

eelgrass habitat. However, the analysis showed this to be just outside the statistical alpha 

(ANOVA with repeated measures; Ft,ts=3.36,p =0.087; Fig. 10). Within-subject 

analysis also indicated no measurable change in orientation over time in sand 

(Ft9,179=.165, p=0.828) or eelgrass (Ft9,179=.122, p=0.751). 

DISCUSSION: 

The relation of juvenile cod and habitat have been explored from field 

observations (e.g. Tupper and Boutilier 1995a,b, Gotceitas et al. 1997), lab experiments 

(Gotceitas et al. 1995, Fraser et al. 1996, Lindholm et al. 1999) and field experiments 

Linehan et al. 2001, Laurel et al. 2003, Laurel et al. In press, Chapter 2, 4). However, 

this study provides the first evidence that observed variation in catch of age 0 juvenile 

cod is the result of habitat-induced changes in aggregative behaviour e.g., shoaling or 

schooling. Juvenile cod use of low complexity habitats (i.e., sand) was ephemeral and 

aggregative in nature. More significantly, however, these aggregation patterns for G. 

morhua were magnified over sites with low habitat complexity in high abundance years. 

Therefore, my study provides a clear example of a density-dependent, habitat-related 

change in behaviour of a marine fish. Consequently, habitat suitability for Atlantic cod 

should be considered as a dynamic rather than static function if aggregative behaviour 

modifies fitness in these habitats. 
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The effects of space limitation have been widely explored in marine fish. 

Organisms may use poorer quality habitat (e.g., low food, high risk) when high quality 

habitat (e.g., high food, low risk) becomes saturated (e.g., McCall 1990; Kramer et al. 

1997). Fish settling in poor quality habitat may either die (e.g., Connell and Jones 1991; 

Tupper and Boutilier 1995a) or face poor growth (Sogard 1992). My data from field 

sampling, mark-recapture and video observations all demonstrate that fish settling in poor 

habitat can also switch to another behaviour. This "behaviour switching" hypothesis is 

supported in several lines of evidence. First, G. morhua and G. ogac were caught in 

sand habitats infrequently, and when present, they generally occurred at high densities. 

Second, video observations confirmed that G. morhua aggregated more over sand. 

Finally, mark-recapture data demonstrated that both cod species move extensively 

following settlement. I suggest that this aggregation behaviour in open habitats either 

reduced predator risk or was possibly in response to the unique foraging opportunities 

available there (Savino and Stein 1982; Pitcher 1986). 

Living in groups has a number of anti predator and foraging advantages. 

Increased shoal cohesion has been shown to occur in fish when exposed to increased 

predation risk (Andorfer 1980; Magurran and Pitcher 1987). Possible anti-predator 

benefits include increased predator detection (Bertram 1978), confusion (Milinski 1979; 

1985) and dilution (Foster and Treherne 1981; Krebs and Davies 1991 but see Pitcher 

1986 for alternative view). These mechanisms may offset the cost of increased 

conspicuousness of group living and ultimately reduce predation rates for species living 

in groups (Calvert et al.1979, Foster and Treherne 1981), including fish (e.g., Neill and 

Cullen 1974, Tremblay and Fitzgerald 1979). Foraging benefits include increased search 
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rates and information gathering and sharing (Pitcher et al. 1982). Studies have shown 

that fish in large groups can allocate more time to foraging in open substrates since less 

time need be spent refuging in complex habitats (Magurran and Pitcher 1983). However, 

under certain conditions, habitat specific behaviour can lead to increased mortality. For 

example, gobies increase their activity levels in open habitats, which ultimately leads to 

increased predation rates (Tallmark and Evans 1986). It is therefore difficult to speculate 

on the advantage of juvenile cod shoaling in sand in years of high abundance since I did 

not measure the fitness consequences of such behaviour. Based on the mixed evidence of 

benefits stemming from habitat-specific behaviour, it may be that shoaling over poor 

quality habitat is the result of juvenile cod "making the best of a bad situation" rather 

than a fitness strategy suitable in all years. 

High densities of juvenile cod were found associated with eelgrass in all years, 

suggesting this is a preferred nursery habitat for these two species. Complex habitats 

such as eelgrass generally support a higher number of species and density of fish than 

habitats of low complexity (Orth 1984, Bell and Pollard 1989). Eelgrass often supports 

higher densities of food, namely in the form of pelagic and epiphytic zooplankton. 

Macrophytes also reduce the risk of predation for young fish from larger piscivores (e.g., 

Werner and Gilliam 1984, Mittel bach 1986) including juvenile cod from known predators 

such as older conspecifics (Bogs tad et al. 1994) as well as red hake ( Urophycis tenuis ), 

sculpin Myoxocephalus spp. (Linehan et al. 2001, Laurel et al. 2003, Chapter 4). 

Juvenile cod have also been shown to use the interstitial spaces of less complex mineral 

substrates such as cobble and gravel for predator avoidance (e.g., Lough et al. 1989, 

Gregory and Anderson 1997). However, the substrate particle size at the sand sites was 
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c. < 1 mm, and therefore, unsuitable for cover. Predation risk is higher over substrates 

with particle sizes< 4 mm (i.e., sand; Gotceitas and Brown 1993) and consequently, age 

0 cod are seldom observed over small particulate substrate either inshore (Laurel et al. In 

press, Chapter 2) or offshore (Lough et al. 1989). 

There are conflicting reports on the range and degree of age 0 juvenile cod 

movement following settlement. Age 0 juvenile cod have been observed defending areas 

of habitat in the field (Tupper and Boutilier 1995ab) and the laboratory (Gotceitas and 

Brown 1993). Tupper and Boutilier (1995ab) also document high site fidelity and limited 

within-habitat movement for juvenile cod. However, my data stand in contrast to 

previous discussions of territorial behaviour and limited movement. In both of the above 

studies, variable use of habitat was attributed to differential, predator-induced mortality 

between habitats rather than movement. Grant and Brown (1998a) observed some 

movement in G. morhua in nearshore areas of Newfoundland, but they suggest these 

movements were infrequent and restricted to a few hundred meters. A subsequent study 

(Grant and Brown 1998b) showed a die! inshore-offshore movement of juvenile cod, 

possibly in response to temporal changes in prey availability and predator risk. 

Mark-recapture data from the present study suggest juvenile cod movements are 

spatially and temporally greater than previously reported. Differences in reported 

movement between studies may be linked to unique genetic or phenotypic aspects of the 

populations studied. Little to no mixing occurs between the Scotian shelf (i.e., area of 

Tupper and Boutilier's study) and the northeast coast of Newfoundland (our study; 

Ruzzante et al. 1988). Species of fish can have static and resident components even at 

small spatial scales (Stott 1967; Taylor 1990; Heggenes et al.1991; Freeman 1995). 
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Therefore, variable movement within genetically discrete populations should be 

expected. Moreover, juvenile cod from the two populations grow under differing 

temperature regimes. Growth of juvenile cod in St. Mary's Bay cod can reach 2.27 mm 

d- 1(Tupper and Boutilier 1994b) relative to c. 1.5 1mn d- 1 from cod collected in my study 

(Gregory and Laurel unpub data). Phenotypic variability (e.g., growth, body size, etc) 

often corresponds with a change in behaviour, including strategies of feeding (e.g., Lavin 

and McPhail 1987), predator defense (e.g., Bronmark and Miner 1992), and territoriality 

(e.g., Taylor 1990). These differing strategies may ultimately contribute to differing 

patterns of movement in and among habitats. Lastly, movement rates in fish can also be 

influenced by the degree of habitat heterogeneity. Fish movement may decrease in 

preferred habitats if those habitats are isolated or surrounded by unfavorable habitat i.e., 

'oasis effects' (Virnstein and Curran 1986; Schroeder 1987; Sogard 1989). Grant and 

Brown (1998) report limited movement of juvenile cod between sites following 

settlement in nearshore areas suggesting there were large sections of unfavorable habitat 

between sampling sites. Age 0 juvenile cod are restricted to shallow, nearshore habitat 

such as eelgrass, possibly due to increased predation with depth (Linehan et al. 2001) and 

reduced habitat complexity beyond the littoral zone. Mark-recapture studies conducted 

between areas of varying habitat and depth may therefore misrepresent the capacity of 

movement in juvenile cod. In my study, juvenile cod movement was measured in an 

unobstructed eelgrass meadow, possibly explaining the higher rates of movement rates 

compared to those reported in other studies on juvenile cod. 

Although both cod species used habitat similarly within years, interannual 

differences in habitat use were only linked to density in Atlantic cod. No studies on 
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density and habitat use have been reported for age 0 G. ogac, but differences between the 

congeners may stem from life-history differences. Atlantic cod spawn both inshore 

(Hutchings et al. 1994) and offshore (Templeman 1979), have pelagic eggs (Scott and 

Scott 1989) and often rely on local hydrography (i.e, retention areas) for survival (de 

Young and Rose 1993, Page et al. 1999, Bradbury et al. 1999). Consequently, Atlantic 

cod are subject to high variability in interannual abundance. G. ogac on the other hand, 

have demersal eggs and are spawned inshore within nursery areas (Scott and Scott 1989). 

Demersally spawned eggs are more likely to be retained than pelagic eggs (e.g., Bradbury 

et al. in press) so interannual variation in recruitment in these species may be less 

extreme. My results support this interpretation. G. morhua abundance ranged 20-fold 

from a low catch in 2001 to a high catch in 1999. G. ogac, on the other hand, were 

abundant and less variable between years i.e.,~ 6-fold change. 

G. morhua expand their range during years of higher abundance (Rose and 

Leggett 1991, Swain and Wade 1993, Anderson and Gregory 2000). Although I did not 

measure range expansion directly, it is interesting to note that substantive catches of 

juvenile cod in sand habitat were restricted to high abundance years. Such an observation 

is consistent with the density-dependent spillover effect, but inconsistent with a previous 

study in Newfoundland where no effect of density was found on range contraction in 

juvenile cod (Schneider et al. 1997). Differences between the observations in my study 

and the analysis by Schneider et al. ( 1997) may be an issue of scale. Schneider et al. 

(1997) analysed catch data over a 1500km range of coastline and therefore results could 

have been affected by larval supply due to localized spawning success of several 

populations (Hutchings et al. 1994). For example, sites may never be occupied, even in 
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years of highest abundance, if local hydrography prevents larvae from settling nearby. 

Consequently, there is increased probability of Type II error if such sites 

are included in an analysis on shifts in geographic range due to density. My study was 

restricted to a bay scale (i.e.,< 30 km) and previous work within this bay has shown that 

differential habitat use patterns by juvenile cod are not the result of larval supply (Laurel 

et al. In press, Chapter 2). However, it remains to be determined whether the patterns of 

distribution observed in this study are relevant at larger scales. 

CONCLUSION: 

Field sampling and lab observations show that juvenile cod aggregate more over 

unstructured habitats (i.e., unvegetated sand) compared to structured habitats i.e., 

eelgrass. In every year examined, higher densities ofboth species of juvenile cod were 

found in eelgrass, suggesting unvegetated sand is an unfavorable habitat. It is possible 

that aggregating over sand is a means of offsetting the costs (i.e., high risk and low food) 

associated with using these habitats. Aggregation of Atlantic cod also increased over 

sand sites in years when abundance in eelgrass habitats was high, indicating this 

behaviour is density-dependent. Mark-recapture experiments suggested that juvenile cod 

are not as site-attached as previously reported, and that aggregations are likely the result 

of movement in and out of sites rather than mortality over time. Video analysis also 

demonstrated that juvenile cod fonn more cohesive shoals over sand, consistent with the 

interpretation of field catch data. Together, these data underscore the importance of 

considering density along with behavioural flexibility when evaluating habitat suitability 

in fish. 

72 



ACKNOWLEDGEMENTS: 

This project was supported by NSERC Strategic Projects Grant #202034. I would 

like to also thank Parks Canada (Terra Nova National Park) for providing 

accommodations and access to facilities and for the Department of Fisheries and Oceans 

for boats and motors. I am also indebted to J. Anderson, L. Copeman, D. Cote, P. 

Frampton, D. Gibson, A.-M. Gonnan, D. Ings, M. 0, T. Lander, A. Ogilvie, P. Sargent 

and N. Wells for help with seine surveys and mark-recapture effort. Lastly, I thank Chris 

Laurel for his assistance in the development of equations needed to position fish from 

digital images. 

73 



REFERENCES: 

Anderson JT and Gregory RS (2000) Factors regulating survival of northern cod (NAFO 
2J3KL) during their first 3 years of life. ICES J. Mar. Sci. 57(2) 349-359 

Andorfer K ( 1980) The shoal behaviour of Leucaspius delineatus (Heckel) in relation to 
ambient space and the presence of a pike, Esox lucius, Oecologia 47: 137-40. 

Bell JD and Pollard DA (1989) Ecology of fish assemblages and fisheries associated with 
seagrasses. In: Larkum AWD, McCoomb AJ, Shepherd SA (eds) Biology of 
seagrasses; a treatise on the biology of seagrasses with special reference to the 
Australian region. Elsevier, Amsterdam, p 565-609. 

Bertram BCR ( 1978) Living in groups: predators and prey' in J.R. Krebs and N .B. Davies 
(eds), Behavioural Ecology, 1st edn, Blackwell, Oxford. Chapter 3 pp. 64-96. 

Bogstad B, Lilly GR, Mehl S, Palsson OK, Stefansson G (1994) Cannibalism and year­
class strength in Atlantic cod (Gadus morhua L.) in Arcto-boreal ecosystems 
(Barents Sea, Iceland, and eastern Newfoundland). ICES Mar Sci Symp 198:576-
599 

Bradbury IR, Snelgrove PVR, Pepin P (In press) Causes of patchiness and spatial pattern 
in pelagic marine eggs and larvae: delineating active contributions. Can J Fish 
Aquat Sci 

Bradbury IR, Snelgrove PVR, Fraser S ( 1999) Transport and development of cod eggs 
and larvae in Placentia Bay (3Ps) Newfoundland, 1997-1998. Canadian Stock 
Assessment Research Document 99/71. 

Bronmark C and Miner JG (1992) Predator-induced phenotypical change in body 
morphology in crucian carp. Science 258: 1348-1350. 

Brown JA (1984) Parental care and the ontogeny of predator-avoidance in two species 
ofcentrarchid fish. Anim. Behav. 32: 113-119. 

Calvert WH, Hedrick LE, and Brower LP (1979) Mortality of the monarch butterfly, 
Danaus plexippus: avian predation at five over-wintering sites in Mexico. Science 
204: 847-51. 

Connell SD and Jones GP (1991) The influence of habitat complexity on postrecruitment 
processes in a temperate reef fish population. J Exp Mar Biol Ecol 151: 271-294 

Crow FC (1977) Shadow Algorithms for computer graphics. Proc Siggraph '77, 
Computer Graphics 11(2): 242-248. 

Dalley EL and Anderson JT ( 1997) Age-dependent distribution of demersal juvenile 

74 



Atlantic cod (Gadus morhua) in inshore/offshore Northeast Newfoundland. Can J 
Aquat Sci 54 (Suppl1): 168-176. 

Dagum C (1985) Lorenz curve. In Encyclopedia of statistical sciences. Kolz S and 
Johnson NL (eds). John Wiley & Sons, NewYork. pp. 156-161. 

de Young B and Rose GA ( 1993) On recruitment and distribution of Atlantic cod (Gadus 
morhua) offNewfoundland. Can. J. Fish. Aquat. Sci. 50 (12): 2729-2741 

Edgar GJ and Shaw C (1995) The production and trophic ecology of shallow-water fish 
assemblages in southern Australia III. General relationships between sediments, 
segrasses, invertebrates and fishes. J Exp Mar Biol Ecol 194: 53-81. 

Foster W A and Treherne JE ( 1981) Evidence for the dilution effect in the selfish herd 
from fish predation on a marine insect. Nature 295: 466-7. 

Fraser S, Gotceitas V, Brown JA (1995) Interactions between age-class of Atlantic cod 
and their distribution among bottom substrates. Can J Fish Aquat Sci 53 (2): 305-
314 

Freeman MC (1995) Movements by two small fishes in a large stream. Copeia 1995: 
361-367. 

Fretwell SD and HL Lucas Jr (1970) On territorial behavior and other factors 
influencing habitat distributions in birds. Acta Biotheoretica 19:16-36 

Godin J-G J (1997) Evading predators. In Habitat selection: patterns of spatial 
distribution from behavioural decisions in Behavioural Ecology of Teleost Fishes. 
J-G. Godin (ed) Oxford University Press. 

Grant SM and Brown JA (1998a) Nearshore settlement and localized populations of age 
0 Atlantic Cod (Gadus morhua) in shallow coastal waters ofNewfoundland. Can. 
J. Fish. Aquat. Sci 55: 1317-1327. 

Grant SM, Brown JA ( 1998b) Diel foraging cycles and interactions among juvenile 
Atlantic cod (Gadus morhua) at a nearshore site in Newfoundland. Can J Fish 
Aquat Sci 55:1307-1316 

Gotceitas V, Brown JA (1993) Substrate selection by juvenile Atlantic cod (Gadus 
morhua): Effects of predation risk. Oecologia 93: 31-3 7 

Gotceitas V, Colgan P (1989) Predator foraging success and habitat complexity: 
quantitative test of the threshold hypothesis. Oecologia 80:158-166 

Gotceitas V, Fraser S, and Brown JA (1995) Habitat use by juvenile Atlantic cod (Gadus 

75 



morhua) in the presence of an actively foraging and non-foraging predator. Mar 
Biol123: 421-420. 

Gotceitas V, Fraser S, and Brown JA (1997) Use of eelgrass beds (Zostera marina) by 
juvenile Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 54: 1306-1319. 

Gregory RS, Anderson S (1997) Substrate selection and use of protective cover by 
juvenile Atlantic cod Gadus morhua in inshore waters of Newfoundland. Mar 
Ecol Prog Ser 146: 9-20 

Hastings PA (1991) Flexible responses to predators in a marine fish. Ethol. Ecol. Evol., 
3: 177-184. 

Heggenes J, Northcote TG, and Peter A (1991) Spatial stability of cutthroat trout 
(Oncorhunchus clarki) in a small, coastal stream. Can. J. Fish. Aquat. Sc. 48: 757-
762. 

Houde E (1987) Fish early life dynamics and recuitment variability. Am. Fish. Soc. 
Symp. 2: 17-29. 

Hutchings JA, Myers RA and Lilly GR (1994) Geographic variation in the spawning of 
Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can J Fish Aquat Sci. 50: 
2457-2467. 

Kramer DL, Rangley RW and Chapman LJ (1997) Habitat selection: patterns of spatial 
distribution from behavioural decisions in Behavioural Ecology of Teleost Fishes 
by J-G J. Godin (ed) Oxford University Press pp 37-80. 

Krebs JR and Davies NB, eds (1991) Behavioral Ecology. Boston: Blackwell Scientific. 
3rd ed. 

Laurel BJ, Gregory RS, Brown JA (2003) Predator distribution and habitat patch area 
detennine predation rates on age 0 juvenile cod (Gadus morhua). Mar Ecol Prog 
Ser 251: 245-254 

Laurel BJ, Gregory RS, Brown JA (In press) Settlement and distribution of age 0 juvenile 
cod, Gadus morhua and G. ogac, following a large-scale habitat manipulation. 
Mar Ecol Prog Ser 

Laurel BJ, Laurel CJ, Brown JA, Gregory RS (submitted) A new technique to gather 3-D 
spatial information using a single camera. J. Fish Bioi. 

Lavin P A and McPhail JD ( 1987) Morphological divergence and the organization of 
tropohic characters among lacustrine populations of the threespine stickleback 
(Gasterosteus aculeatus). Can. J. Fish. Aquat. Sci. 44: 1820-1829. 

Levin PS ( 1991) Effects of microhabitat on recruitment variation in a Gulf of Maine reef 

76 



fish Mar. Ecol. Prog. Ser 75: 183-189. 

Lindholm JB, Auster PJ, Kaufman LS (1999) Habitat-mediated survivorship of juvenile 
(0-year) Atlantic cod Gadus morhua. Mar Ecol Prog Ser 180: 247-255 

Linehan JE, Gregory RS, Schneider DC (200 1) Predation risk of age 0 cod 
(Gadus morhua) relative to depth and substrate in coastal waters. J Exp Mar Biol 
Ecol263:25-44 

Lough RG, Valentine PC, Potter DC, Auditore PJ, Bolz GR, Neilson JD, Perry RI 
(1989)Ecology and distribution of juvenile cod and haddock in relation to 
sediment type and bottom currents on eastern Georges Bank. Mar Ecol Prog Ser 
56: 1-12 

MacCall AD ( 1990) Dynamic geography of marine fish populations. University of 
Washington Press, Seattle. 

Matilla J, Chaplin G, Eilers MR, Heck KL Jr, O'Neal JP, Valentine JF (1999) Spatial 
and diurnal distribution of invertebrate and fish fauna of a Zostera marina bed 
and nearby unvegetated sediments in Damariscortta River, Maine (USA). J Sea 
Res 41: 321-332. 

Methven DA, Bajdik C (1994) Temporal variation in size and abundance of juvenile 
Atlantic cod (Gadus morhua) at an inshore site off eastern Newfoundland. Can J 
Fish Aquat Sci 51:78-90 

Milinski M (1979) Can an experienced predator overcome the confusion of swarming 
prey more easily? Anim Behav, 27, 1122-6 

Milinski M ( 1985) Risk of predation taken by parasitised sticklebacks under 
competitiaon for food. Behav 93: 203-216. 

Neill SR St. J and Cullen JM (1974) Experiments on whether schooling by their prey 
affects the hunting behaviour of cephalopod and fish predators. J. Zool. 172: 549-
69. 

Magurran AE and Pitcher TJ (1983) Foraging, timidity and shoal size in minnows and 
goldfish. Behav Ecol Soc, 12: 142-152. 

Magurran AE and Pitcher TJ (1987) Provenance, shoal size and the sociobiology of 
predator-evasion behaviour in minnow shoals. Proc. R. Soc. Lond. B. 229: 439-
465. 

Mittelbach, GG (1986) Predator-mediated habitat use: some consequences for species 
interactions. Environ. Biol. Fishes 16: 159-169. 

77 



Neill SR, Cullen JM (1974) Experiments on whether schooling by their prey affects 
the hunting behaviour of cephalopods and fish predators. J Zool 172: 549-567 

Orth RJ, Heck Jr KL, van Montfrans J (1984) Faunal communities in seagrass beds: a 
review of the influence of plant structure and prey characteristics on predator-prey 
relationships. Estuaries 7:339-350 

Page FH, Sinclair M, Nairne CE, Loder JW, Losier RW, Berrien PL, and Lough RG 
(1999) Cod and haddock spawning on Georges Bank in relation to water 
residency times. Fish. Oceanogr. 8: 212-226. 

Phinney DE, Miller DM, Dahlberg ML (1973) Mass-marking young salmonids 
with florescent pigment. Transactions of the Am. Fish. Soc.96: 157-162. 

Pitcher TJ, Magurran AE and Winfield I. (1982) Fish in larger shoals find food faster. 
Behav Ecol Soc 10: 149-51. 

Pitcher TJ (1986) Functions of shoaling behaviour in teleosts. In The behaviour of 
teleost fshes. Ed by TJ Pitcher. Chapman and Hall, London, U.K. pp. 294-337. 

Radabaugh DC (1989) Seasonal colour changes and shifting anti-predator tactics in 
darters. J. Fish Biol 34: 679-685. 

Rabel FJ and Stein RA (1988) Comple predator-prey interactions and predator 
intimidation among crayfish, piscivorous fish and small benthic fish. Oecologia, 
75: 94-98. 

Rose GA and Leggett WC ( 1991) Effects of biomass-range interactions on catchability of 
migratory demersal fish by mobile fisheries: an example of Atlantic cod (Gadus 
morhua). Can. J. Fish. Aquat. Sci. 48: 843-848. 

Ruzzante DE, Taggart CT and Cook D (1998) A nuclear DNA basis for shelf and bank­
scale population structure in NW Atlantic cod (Gadus morhua): Labrador to 
Georges Bank. Mol. Ecol. 7: 1663-1680. 

Savino JF and Stein RA (1982) Predator-prey interactions between largemouth bass and 
bluegills as influenced by simulated submersed vegetation. Trans Amer Fish Soc. 
11: 255-266. 

Schneider DC, Methven DA and Dalley EL (1997) Geographic contraction in 
juvenile fish: a test with northern cod (Gadus morhua) at low abundances. Can. J. 
Fish. Aquat. Sci. 54 (Suppl1):187-199. 

Schneider DC, Bult T, Gregory RS, Methven DA, lngs DW, Gotceitas V (1999) 
Mortality, movement and body size: Critical scales for Atlantic cod Gadus 
morhua in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 46 (Suppl1): 180-187. 

78 



Schroeder RE ( 1987) Effects of patch reef size and isolation on coral reef fish recruitment 
in Hawaii. Bull Mar Sci 41(2):441-451. 

Scott, WB, Scott, MG (1988) Atlantic fishes of Canada. Can Bull Fish A quat 219. 

Sih, A. 1987. Predators and prey lifestyles: an evolutionary and ecological overview. Pgs. 
203-224 in Predation: direct and indirect impacts on aquatic communities, eds., 
W.C. Kerfoot and A. Sih. University Press of New England, Hanover, NH. 

Sogard SM (1989) Colonization of artificial seagrass by fishes and decapod crustaceans: 
importance of proximity to natural eeglgrass. J Exp Mar Biol Ecol 133: 15-37. 

Sogard SM (1992). Variability in growth rates of juvenile fishes in different estuarine 
habitats. Mar. Ecol. Prog. Ser. 85: 35-53. 

Sogard SM ( 1997) Size-selective mortality in the juvenile stage of teleost fishes: a 
review. Bull. Mar. Sci. 60: 1129-1157. 

Sogard SM and Able L W (1991) A comparison of eelgrass, se lettuce macroalgae, and 
marsh creeks as habitats for epibenthic fishes and decapods. Estuar Coast Shelf 
Sci 33: 501-519. 

Steele MA ( 1999) Effects of shelter and predator on reef fishes. J. Exp. Mar. Biol. Ecol. 
233: 65-79. 

Stott B (1967) The movements and population densities of roach (Rutilus rutilus (L.)) and 
gudgeon (Gobio gobio (L.)) in the River Mole. J. Anim. Ecol. 36:407-423. 

Swain DP and Wade EJ (1993) Density-dependent geographic distribution of Atlantic 
cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can J. Fish A quat. 
Sci. 50: 725-733. 

Tallmark Band Evans S (1986) Substrate-related differences in antipredator behaviour 
of two gobiid fish species and the brown shrimp, and their adaptive value. Mar. 
Ecol. Prog. Ser. 29:217-222. 

Taylor E ( 1990) Phenotypic correlates of life-history variation in juvenile Chinook 
salmon, Onchorhynchus tshawytscha. J. Anim. Ecol. 59: 455-468. 

Templeman W (1979) Migration and intenningling of stocks of Atlantic cod, Gadus 
morhua, of the Newfoundland and adjacent areas from tagging in 1962-66. Res 
Bull ICNAF 14: 5-50 

Tremblay D and FitzGerald G (1979) Social organization as an antipredator strategy in 

79 



fish. N aturaliste Canadienne, 105: 411-13. 

Tupper M, Boutilier RG (1995a) Effects of habitat on settlement, growth, and post­
settlement survival of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 
52:1834-1841 

Tupper M, Boutilier RG ( 1995b) Size and priority at settlement detennine growth and 
competitive success of juvenile Atlantic cod. Mar. Ecol. Pro g. Ser. 118:295-300. 

Vimstein RW, Curran MC (1986) Colonization of artificial seagrass versus time and 
distance from source. Mar Ecol Prog Ser 29: 279-288. 

Weihs D ( 197 5) Some hydrodynamical aspects of fish schooling. In, Swimming and 
Flying in Nature, Wu T, Brokaw C, Brennen C, eds. pp 703-718. Plenum Press, 
New York. 

Werner EE and Gilliam JF (1984) The ontongenetic niche and species interactions in 
size-structured populations. Annu. Rev. Ecol. Syst. 15: 393-425. 

Williams PJ and Brown JA (1991) Developmental changes in foraging-predator 
avoidance trade-offs in larvallumpfish Cyclopertus lumpus. Mar Ecol Prog. Ser 
76: 53-60. 

Y denberg RC and Dill LM (1986) The economics of fleeing from predators. Adv. Study 
Behav. 16:229-249. 

80 



FIGURE CAPTIONS: 

Fig. 1: Study area in Newman Sound, Bonavista Bay, Newfoundland showing sand (o) 
and eelgrass (•) seine locations. 

Fig. 2: Illustration of the layout of sites seined to measure movement of G. ogac and G. 
morhua on a 219m section of shoreline in Newman Sound, Bonavista Bay, 
Newfoundland between August 18-September 3, 1999. 

Fig. 3: Quantile-quantile plots for randomly generated data from normal, Poisson and 
negative binomial distributions (k< 1 ). High concavity suggests high aggregation of an 
organism in time or space. 

Fig. 4: Mean seasonal (July-November) catch of G. ogac and G. morhua at sand and 
eelgrass sites from 1996, 1998-2001. Values between 1998-2001 are based on 70-80 
seine hauls± 1 S.E. 1996 values are based on 10-20 seine hauls± 1 S.E 

Fig. 5: Quantile-quantile plots of interannual seine-catches Gadus morhua and Gadus 
ogac (1996, 1998-2001). Each curve comprises the seasonal catch (Jul-Nov) offish in a 
single year. 

Fig. 6: Relationship of yearly aggregation (quantile-quantile plot integration) and yearly 
abundance of G. morhua or G. ogac in either sand (o) or eelgrass (•). High values on the 
y-axis indicate low levels of spatia-temporal aggregation. 

Fig. 7: Plots of the coefficients of variation of Gadus ogac and G. morhua against 
seasonal abundance at seine sites comprised of either a) sand orb) eelgrass. Plotted 
values represent the coefficient of variation (CV) calculated from 8-10 seine hauls within 
a year (1996, 1998-2001) at a single location. 

Fig. 8: Recapture data (fish per haul n) of juvenile cod (Gadus morhua and G. ogac) 
along a 219m section of shoreline in Newman Sound over a) time (1) in days (ln (n+ 1) = 
2.70-0.167*T) and b) *space. 

*Meter 0 in the x-axis represents the point of release of marked individuals. Negative 
and positive values of distance correspond with one or the other alongshore directions. 

Fig. 9: Degree of shoaling (interindividual distance) over time (min) of Gadus morhua in 
experimental tanks with eelgrass (n=10 trials) or sand (n=lO trials). Plotted values 
represent the cumulative distance of each fish to its neighbor from ten trials ± 1 S.E. 

Fig. 10: Degree of orientation (angle separation between individuals) of Gadus morhua in 
experimental tanks outfitted with eelgrass (n=10 trials) or sand (n=10 trials). Low values 
along the y-axis indicate fish are orienting in the same direction. Plotted values 
calculated from angle sums of five individuals from ten trials± 1 S.E. 
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Fig. 5 

Gadus morhua 
100 

-- Eelgrass sites 
--- Sand sites 

80 

60 
/ 

/ 
/ 

"'0 
/ 

40 / 
(]) / 

0.. / 
/ 

E / 
/ ro 20 / 

en / 

ro / 
/ ----(]) 

/ ------"- /----ro 0 -- ----
ro ...... 
0 ...... -0 

Gadus ogac (]) 
(.) 

100 c 
ro 

"'0 
c 
::J 80 ..0 
<( 
';:!2. ,, 0 

60 ,, ,, ,, 
40 

,, ,, ,, ,, 
20 --- ,, -- ,, 

-,.....,.,..- ................ __ / --0 --=---

0 20 40 60 80 100 

% Area sampled 

86 



Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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CHAPTER4: 

Predator distribution and habitat patch area determine predation rates 
on age 0 juvenile cod (Gadus spp ). 

ABSTRACT: 

Eelgrass (Zostera marina) provides refuge to numerous fish species but is 

vulnerable to fragmentation through natural and anthropogenic disturbance. In Bonavista 

Bay, Newfoundland, eelgrass patch size was altered to measure changes in predation risk 

in age 0 juvenile cod (Gadus morhua). Artificial eelgrass mats of five sizes (0.32, 1.1, 

5.5, 11 and 22m2
) were deployed in duplicate at each of two sites in Newman Sound in 

Terra Nova National Park during summer-autumn, 1999 and 2000. Predator distribution 

was detennined using a combination of weekly underwater transect surveys and biweekly 

seining. Relative predation rates were measured by tethering age 0 cod at the center of 

each patch and recording the incidence of predation (n=1116 tether sets). Predation rates 

were negatively correlated with patch size during both years, suggesting that larger 

patches reduce predator foraging ability. However, high predator densities in the largest 

eelgrass patch resulted in higher than expected rates of predation. Therefore habitat 

dimension affected predation risk in juvenile cod via two opposing mechanisms. My 

results emphasize the importance of considering both habitat areal extent and predator 

distribution when estimating the effects of habitat fragmentation on predation rates. 

KEY WORDS: Edge effects · Habitat fragmentation · Atlantic cod · Predator density 

Tethering · Predator risk 
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INTRODUCTION: 

Sea grass beds provide shelter to a variety of juvenile fish species in coastal 

environments across a range of latitudes (e.g. Orth et al. 1984, Sogard and Able 1991, 

Laurel et al.ln press, Chapter 2). Fragmentation of these beds occurs both naturally (e.g., 

seasonal die-off, wave-action and ice scour) and anthropogenically (e.g. inshore boating, 

nitrogen loading-Fonseca 1992). Consequently, seagrass habitats are often patchy, 

ranging from single plants to expansive meadows greater than 1000 m2 (Robbins and Bell 

1994). 

Juvenile fish often use complex habitats to offset the threat of predation (e.g. 

Werner et al.1983ab, Mittelbach 1986). However, increased habitat fragmentation of 

seagrass beds may have negative consequences for young refuge-seeking fish. Predation 

risk is highest during the early life stages of marine fish (Sogard 1997) and complex 

habitat reduces risk by interfering with the visual and swimming capabilities of piscivores 

(Gotceitas and Colgan 1989). However, predators may compensate for reduced foraging 

efficiency by feeding along the edges of complex habitat (Peterson et al.2001). 

Therefore, predation risk may be higher in fragmented habitats with increased edge to 

area ratios (e.g., small patches). Small, fragmented patches may also be riskier because 

their interior is closer to the more dangerous edges. These explanations have been 

invoked to explain increasing predation risk with smaller habitat patches in both 

terrestrial (Levenson 1981) and marine systems (lrlandi 1997). 

There has been considerable variation in the results of edge effects/patch size on 

predation rate (reviewed by Paton 1994). Equivocal results have prompted more studies 

to examine the local abundance of predators and prey (Donovan et al.1997). For 
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example, rates of piscivory in eelgrass habitats can be equal to or higher than 

unstructured sand habitats despite the reduced foraging ability of predators in complex 

habitats (Linehan et al. 2001; Gregory et al. submitted). Differences in predation rate 

were attributed to higher numbers of predators in eelgrass habitats compared to 

unvegetated sand. Therefore, the interactive effects of habitat characteristics (e.g., 

complexity, perimeter to edge ratios) on predator distribution must be considered when 

quantifying predation risk across habitats. 

Atlantic cod (Gadus morhua) is a commercially important demersal species that 

occupies nearshore areas in the Northwest Atlantic Ocean during their first year of life 

(Taggart et al. 1994 ). As juveniles, cod associate with complex habitats such as 

boulders/large rock (Gregory and Anderson 1997), cobble (Tupper and Boutilier 1995), 

macroalgae (Keats 1990) and eelgrass (Gotceitas et al. 1997) for protection from 

predators such as larger conspecifics, piscivorous fish and seabirds. Laboratory 

experiments have shown that complex habitats can reduce predation risk for juvenile cod 

when exposed to actively foraging predators (Gotceitas and Brown 1993; Gotceitas et al. 

1995; Lindholm et al. 1999). However, recent studies have shown that predators of 

juvenile cod also prefer complex habitat (Linehan et al. 2001; Wells 2002) and may 

elevate risk in these habitats. Therefore, the role of habitat characteristics on predation 

risk in juvenile cod remains unclear. 

No studies examining the effects of habitat patch size and local predator 

abundance on predation rates have been conducted in marine systems. Earlier 

investigations considering both habitat characteristics and predator distribution have been 

restricted to a few large-scale avian studies (reviewed by Donovan et al.1997). In this 
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study, I measured the distribution of piscivorous fish and the rate of predation on tethered 

age 0 cod in varying sized seagrass patches. I addressed the following questions: 1) Does 

risk change with increasing eelgrass patch size? 2) How do habitat patch area and 

localized predator distribution interact to affect risk in age 0 juvenile cod? 

MATERIALS AND METHODS: 

Study Area: 

Newman Sound is located within Bonavista Bay off the northeast coast of 

Newfoundland in the vicinity of Terra Nova National Park (TNNP; Fig. 1). The 

nearshore habitat (0-15 m depth) is variable, ranging from eelgrass (Zostera marina), 

macroalgae (e.g. Laminaria digitata and Chondrus crispus) and fine to coarse grain 

mineral habitats. I conducted experiments in two coves within the sound: Canning's 

Cove (CC) and Mt. Stamford Cove (MS). These sites were chosen mainly because they 

lack any complex habitats such as boulders and/or eelgrass, were of similar depth in the 

experimental area (1.5-2.5 m) and were also conducive to hauling a net along the bottom. 

Artificial Eelgrass: 

Artificial eelgrass was manufactured using galvanized screen (2.5 em pore size) 

and green curling ribbon (0.8 em width). Ribbon was tied onto the screen to create 

blades 75 em long at a density 400 blades·m-2
, falling within the range of length and 

density for naturally occurring eelgrass (Orth et al. 1984). Eelgrass mats were cut into 

varying length strips to form approximately square patches 0.32, 1.5, 5.5, 11, and 22m2 

in size. Scuba divers secured replicates of each of these patch sizes to the bottom at each 

site using reinforcing bar (i.e., re-bar) spikes (Fig 2). Eelgrass mats were attached flush 
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against the substrate by staggering spikes at 0.5 m distances along their entirety. This 

reduced possible damage from wave action and also minimized the effect of added 

complexity from the wire mesh frames. Spacing between patches edges was kept 

constant at 3m for both sites. Patches in 1999 were deployed in July, approximately one 

month prior to age 0 juvenile cod settlement in coastal Newfoundland (Methven and 

Bajdik 1994; Grant and Brown 1998a). Artificial blades of eelgrass became fouled with 

epiphytes throughout the season in a similar manner as natural eelgrass. In November 

1999, patches were removed, cleaned of epiphytes and stored dry before being 

redeployed again in July 2000. No significant degradation in the artificial eelgrass (i.e., 

mesh rust, blade loss, etc.) was observed in either of the two years of the experiment. 

Predation Rates: 

Predation within patches was detennined using a tethering technique with age 0 

cod collected by seine from nearby sites. I used two species of cod (58% Atlantic cod G. 

morhua and 42% Greenland cod, G. ogac) for tethering. These two species co-occur in 

the nearshore (Methven et al. 2001) at similar sizes within the first year of life. 

Susceptibility to predation on tether lines is similar for these two species (B. Laurel and 

R. Gregory, unpublished data). 

The tethering apparatus consisted of two sections, a 2-m 11.2-kg test vertical float 

line and a 0.5-m 0.9-kg test horizontal leader line. The float line was kept vertical in the 

water column using a 564 g anchor and a cork float 1 n1. from the bottom. A white float 

at the surface marked the location of the tether line and facilitated retrieval. The 

horizontal leader line was attached to a #7 barrel swivel on the vertical float line 75 em 
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from the bottom substrate. Age 0 cod were tethered to the leader line via a #16 hook 

inserted through the caudal peduncle. The leader line allowed cod prey a 0.5 m radius of 

movement and access to the eelgrass. A full description of the tethering apparatus and 

technique is described in Linehan et al. (2001). 

Each tether line was deployed from a small aluminum boat ( 4.2 m) at mid-day, 

left undisturbed for a period of 15 min and finally retrieved to determine the incidence of 

predation. Water clarity was adequate to insure that tethered fish were not lost while 

being lowered to the bottom. Predation was classified as a "hook loss", "fish loss", 

"caught predator" or "predator attack" upon retrieval of the tether line. The absence of 

predation was recorded if a tethered fish was retrieved alive without any sign of predation 

i.e. fully intact without punctured skin. All predators captured on tether lines were 

identified, measured to the nearest 0.5 em SL and released. 

Our experimental design consisted of setting tethers at the center of each patch 

(0.32, 1.1, 5.5, 11. and 22m2
) and on six neighboring areas ofunvegetated sand about 3 

m from the nearest patch edges. Tethering in patch and unvegetated areas was repeated 

six times during three tethering sessions in each year ([6 unvegetated areas+ (5 artificial 

eelgrass patches x 2 patch replicates)] x 6 rounds x 2 sites x 3 sessions x 2 years), for a 

total of 1152 tether sets. Tethering sessions were conducted at c. 2-wk intervals 

beginning early September of both years and corresponded with concurrent surveys of 

predator abundance. Tethered prey throughout the time period experiment ranged in size 

from 65-106 mm standard length (SL ). The range in size represents growth in the 

available Gadus prey from early September to mid-October of each year. However, 

97 



variation in prey size was substantively less within individual tethering sessions i.e. 

maximum ± 11 mm SL. 

Predator Distribution: 

Predator abundance was estimated at 2-wk intervals using a 25-m Danish bag 

seine (19-mm mesh) deployed 55 m offshore from a boat and hauled to shore by two 

individuals standing 16m apart. The seine sampled 880m2 of bottom habitat up to 2m 

in the water column (for description see Methven and Schneider 1998). Captured fish 

were transferred to holding containers with seawater. Piscivorous fish captured included 

Greenland cod, Atlantic cod, cunner (Tautogolabrus adspersus), sculpin (Myoxocephalus 

spp.), and white hake (Urophycis tenuis). Potential predators were identified and 

measured(± 5 mm SL) and released the same day to their respective sites. 

Small-scale, localized predator distribution was measured via snorkeling. 

Snorkeling surveys were always conducted 3-4 days before or after seining activity to 

minimize the effects of net disturbance. Snorkelers swam directly over patches, recording 

the abundance and type of fish predators within 0.5 m of each patch. Large patches (11 

m2 and 22 m2
) exceeded the viewing capability of a single snorkeler, so these patches 

were assessed by two snorkelers swimming in parallel. Snorkelers swam with delineated 

poles (2.82 m each) to minimize overlap of survey areas of the large patches. Water 

clarity throughout the survey was sufficiently greater (i.e., 5-6 m) than the maximum area 

censused by a single snorkeler i.e. 2.82 m. Experimental sites were visually censused in 

this fashion between August 10-0ctober 12, 2000 for a total of nine surveys. The survey 

was not performed in 1999 for logistical reasons. 
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Additional control snorkeling surveys were conducted at two natural eelgrass 

meadows of similar depth during the same time period (n=9). Eelgrass at the control sites 

was continuous (i.e., non-patchy) over the range of the survey area, but only plot areas 

similar to those at experimental sites were surveyed. This was accomplished by 

deploying 15-m transect lines perpendicular to shore at each control site. The vertical 

dimension and spacing of patches was marked on each transect line with pink surveyor's 

tape while the horizontal dimension of patches was estimated by snorkelers swimming 

with delineated plastic poles over the transect lines. Snorkelers swam in parallel once 

over both transect lines at each site so that only areas falling within the delineated 

transect lines were surveyed (80m2
). 

Previous studies of juvenile cod indicate that predators greater than 2x the prey 

size have the potential of capturing and consuming prey items (Bogstad et al. 1994; Grant 

and Brown 1998b; Linehan et al. 2001). Because of the difficulty in estimating fish size 

under water, potential predators within patches were size-corrected by integrating seine 

and snorkel census data using the following equation: 

where P101 is the total potential predators in the patch, Nsn is the total predators identified 

from snorkel surveys and lse is the percentage of predators caught in the seine greater than 

2x the mean tethered prey size (mm SL). 

Data Analysis: 

Tethering data were analyzed using the generalized linear model assuming a 

binomial error structure on logistically transformed data (log link; proc GENMOD; SAS 

Release 6.03). 'Year', 'sampling period', 'site' and 'patch size' were used as explanatory 
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variables. Significant interactions were found between year and site variables, so patches 

were analyzed separately in 1999 and 2000 within sites. The model assumed a uniform 

predator distribution; therefore, only patches with similar mean predator density (i.e. ± 2 

S.E.) were analyzed. In this way, the effects of habitat structure on predation rates were 

measured independently of the predator distribution. 

RESULTS: 

A total of 1152 tethering sets were conducted in both years at two sites. Thirty­

six sets were omitted from the analysis because lines were either tangled or fish were 

dead upon retrieval. The remaining 1116 tether sets were considered successful, of 

which 12% (138 incidences) resulted in some form of predation. Predation events 

included "caught predator" ( 48% ), "hook gone" ( 6% ), "fish gone" (22%) and "predator 

attack" (24%). Predators species retrieved on tether lines included Greenland cod (18. 7 ± 

3.9 em SL; x ± sd ), Atlantic cod (23.6 ± 4.7 em SL; x ± sd), cunner (15.8 ± 5.9 em SL; 

x ± sd), sculpin (17.0 ± 5.8 em SL; x ± sd) and hake (12.6 ± 0.5 em SL; x ± sd). Higher 

overall predation was observed at MS (16%) than CC (9%). 

Predator abundance increased with increasing patch size at both sites as expected 

(Fig. 3). However, the estimated composition of predators differed between sites as well 

as by census methods (Fig. 4). For example, cunners were found in greater abundance at 

CC whereas hake were more numerous at MS. Snorkel and seine surveys indicated that 

total predator abundance was higher at MS compared to CC. Census discrepancies 

included Atlantic cod and sculpins. Both were rarely seen over patches during snorkeling 

surveys but were often caught in seines and on tether lines. In contrast, cunners were 

often observed in artificial eelgrass patches yet comprised a smaller portion of total seine 
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catch. However, seine, snorkel and tether data all indicated that G. ogac was an abundant 

predator at both sites (Fig. 4). 

Distribution of predators among patches was similar among sites (Fig. 5). At 

MS, patch sizes 0.3-11m2 supported similar predator densities (0.037 pred·m-2 ±0.006). In 

contrast, predator density in the largest patch (22 m2
) was 2.3 times higher (0.086 pred·m-

2 ±0.0 11) than in the smaller patches. A similar distribution was observed in patches at 

CC; predators densities in small patch sizes were nearly half (0.030 pred·m-2 ± 0.005) of 

those in the largest patch size (0.059 pred·m-2 ±0.08). Therefore, predator density was 

similar in all patches except the largest (22 m2
) during snorkeling surveys. Differences in 

1 +year old Greenland cod abundance were responsible for this trend (Fig. 6). Although, 

Greenland cod were evenly distributed within natural eelgrass meadows, they were 

unevenly distributed among artificial eelgrass patches. Cunners and hake did not deviate 

consistently from expected trends at either eelgrass meadow or patch sites. 

Predation rates increased with diminishing patch size at both sites during each 

year (Table 1; Fig 7) when patches had similar predator density. Data collected from the 

largest patches (22 m2
) were not included in the analysis because the model assumes 

uniform predator distribution among patches; only patch sizes 1-4 could meet these 

assumptions. In 2000, there was a significant effect of sampling date on predation rates at 

both sites, but no interaction was detected between sampling date and patch (Table 1). 

Highest predation occurred outside the patches at rates similar to those found over the 

smallest patches (Fig 7). Lowest predation was observed in the largest patches analyzed 

i.e.11 m2
. 
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DISCUSSION: 

Structural complexity provides refuge to juvenile fish in freshwater (e.g. Crowder 

and Cooper 1982, Savino and Stein 1982, Werner et al. 1983ab, Gotceitas and Colgan 

1989) and marine (e.g., Sale 1991) systems over a wide range of latitudes (Heck and 

Wilson 1987). Numerous studies have shown that juvenile Atlantic cod use complex 

habitats to reduce predation (e.g. Gotceitas and Brown 1993; Gotceitas et al.1995; 

Gotceitas et al.1997; Gregory and Anderson 1997; Lindholm et al.1999; Linehan et al. 

2001). Structurally complex habitats impair the visual and swimming capabilities of 

predators (Savino and Stein 1982) which in turn can reduce the effectiveness of 

encountering, attacking and capturing prey (Tallmark and Evans 1986). My results were 

consistent with these findings. Predation rates of juvenile cod were highest over areas 

without structural complexity i.e. unvegetated sand. However, I also show that the areal 

extent of surrounding refuge habitat, along with predator density, also influence the 

predation risk of small fish. 

Age 0 juvenile cod were subjected to highest predation risk in smallest patches 

when predator density was uniform across all patch sizes. Fragmented habitat patches are 

considered risky because: 1) they have high perimeter to area ratios and 2) the interior 

habitat is close to the edge and therefore, accessible to hunting piscivores. While these 

mechanisms have been explored in terrestrial systems (Brittingham and Temple 1983; 

Andren et al.1985; Andren 1992; Donovan et al.1997), marine examples have been 

restricted to a number of invertebrate species (Irlandi 1997; Bologna and Heck 1999; 

Peterson et al. 2001). My results show that predation risk increases for fish in 

fragmented environments. The analysis controlled for differential predator density, 
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suggesting that the patch characteristics are directly responsible for the trend observed. I 

believe that risk was higher in small patches because of the associated changes in a 

predator's foraging ability, and not simply predator abundance. 

Predator density was not uniform among all habitat patches. The largest seagrass 

patches (22m2
) attracted higher densities ofpiscivorous fish. Consequently, predation 

risk was higher in these patches than could have been predicted from habitat 

characteristics alone i.e. patch size. Predator density and predation rates are positively 

correlated in studies of juvenile cod (Linehan et al. 2001; Gregory et al. submitted). 

However, the non-linear relationship of predator density with habitat area observed in the 

present study was unexpected. The higher predator densities in the large patches were 

due to increased abundance of age 1 + Greenland cod, a species common in nearshore 

areas around Newfoundland (Methven et al. 2001) and a known predator of age 0 cod 

(Linehan et al. 2001 ). The distribution of Greenland cod at the control sites (eelgrass 

meadows) was linear, indicating that this result was not due to overall patch layout, small 

changes in depth, distance from shore or area surveyed. Rather, it appears that changes in 

Greenland cod density were a function of eelgrass patch size. 

Nonlinear associations between habitat and organisms are not unique to my study, 

but the causal mechanisms are uncertain. Species-area curves typically increase with 

patch size (MacArthur and Wilson 1967) and density for some species has been related to 

habitat area. For example, European jays (Garrulus glandarius L.) and ravens (Corvus 

corax L.) are commonly found in large wooded areas, yet are entirely absent from smaller 

forest fragments (Andren 1992). Similar findings have been reported for other bird 

species (Stoufer and Bierregaard 1995) and many species of invertebrates (Kareiva 1985; 
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Margules et al. 1994; Ingham and Samways 1996; Golden and Crist 1999), including 

infaunal macroinvertebrate assemblages in eelgrass (Bowden et al. 2001). Small, 

fragmented patches may not have suitable food or niche space (Galli et al.1976; Martin 

1981) or refuge characteristics (Martin 1988) that large patches offer. Eelgrass is known 

to both concentrate prey (Connolly 1997) and provide shelter to piscivorous fish from 

predators (Orth et al. 1984). Therefore, predatory Greenland cod may use large patches 

of eelgrass to balance feeding success with their risk of being eaten. My results suggest 

that predation risk changes with patch size for small cod (<10 em), but whether such an 

explanation applies to the distribution of larger fish (e.g., Greenland cod) is unknown. 

I detected no interaction between date and patch size (Table 1 ), suggesting that 

trends in predator distribution and risk were maintained within the temporal scale of the 

study. However, diel, monthly, seasonal and annual changes in piscivorous predators are 

variable in nearshore areas around Newfoundland (Clark and Green 1990; Linehan et al. 

2001; Methven et al. 2001 ). Therefore, observed trends of predator distribution in my 

study may not exist at finer (e.g., diel) or broader (e.g., seasonal) temporal scales. 

Furthermore, such trends will not necessarily result in predictable changes in predation 

risk for juvenile cod. For example, Linehan et al.(2001) demonstrated a decrease in 

predation risk at night on age 0 juvenile cod despite increased density of larger 

conspecifics. Similarly, seasonal differences in temperature can affect the metabolic 

demands ofpiscivorous fish and, consequently, risk to their prey species. Overwintering 

predation in many aquatic systems is therefore considered negligible (e.g. Keast 1978). I 

restricted my study to August-October, a time ofyear when juvenile cod predation risk is 
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high (Linehan et al. 2001; Gregory et al. submitted) and effects of predator distribution 

on the risk of juvenile cod to predation would be highest. 

Inconsistencies in predator density estimates between the seine, snorkeling and 

tethering techniques are likely methodological artifacts. I suspect that seining more 

accurately samples predators than visual census. Previous work has demonstrated that 

demersal fish are caught by the seine technique with 95% efficiency (Gotceitas et 

al.1997) whereas visual methods can underestimate density due to diver avoidance and 

fish crypsis (Keats 1990). I estimated density within individual eelgrass patches visually 

because the seine was not suited to sampling at small spatial scales (c. 1-25m2
). The 

visual census more closely matched seine estimates for site-attached piscivores (e.g., 

Greenland cod, hake, cunners) that remained associated with eelgrass patches when 

approached. However, some fish did not associate with patches at these small scales. For 

example, I routinely observed age 1 + Atlantic cod within close proximity to patches, but I 

did not include these fish in the abundance estimates as they were "outside" the patch 

area. Consequently, Atlantic cod were underestimated in snorkel surveys relative to seine 

catches. Some piscivores may have also been underestimated by the tethering technique 

due to differential foraging capabilities. For example, cunners were rarely caught on 

tether lines at either site, yet they were relatively abundant in the areas. Cunners are 

considered to be omnivorous, feeding preferentially on mollusks and amphipods rather 

than fish (Scott and Scott 1988). Prey selection is known to be gape-limited (e.g. Schmitt 

and Holbrook 1984), and cunners, with their small mouths, may have been restricted in 

their ability to handle the tethered prey in an equal manner to other similar-sized 
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predators e.g. Greenland cod or sculpins. However, I have observed in situ foraging 

attempts of large cunners (c. 25 em+) on age 0 cod in Newman Sound. 

There are limitations of the tethering technique as a means of measuring predation 

risk in the field. Tethering studies are numerous, including a wide variety of marine and 

freshwater organism such as decapod crustacea (Heck and Wilson 1987; Wilson et al. 

1990; Eggleston et al. 1990), bivalves (e.g. Arsenault and Himmelman 1996), freshwater 

fish (Gregory and Levings 1998; Post et al. 1998) and marine fish (Curran and Able 

1998; Linehan et al. 2001 ). The technique has its detractors (e.g., Halpin 2000; Kneib 

and Scheele 2000; Peterson and Black 1994) who have suggested that artifacts confound 

estimates of predation risk. As a technique to measure relative predation risk between 

similar habitats, such artifacts are unlikely to confound my interpretations (see Linehan et 

al. 2001). 

In summary, my study is the first to measure the effects of habitat patch size on 

predation rates in a marine fish species. Eelgrass afforded greater protection to juvenile 

cod than unvegetated habitat, but both habitat patch size and predator distribution also 

contributed to differential rates of predation. Small eelgrass patches were riskier to 

juvenile cod than large patches when predators were evenly distributed, but risk often 

increased in large patches due to higher predator densities. These results stress the 

importance of considering both habitat patch dimension as well as predator distribution 

and abundance when evaluating habitat quality for small fish. 
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FIGURE CAPTIONS: 

Fig. 1; Study area in Newman Sound, Bonavista Bay, Newfoundland showing the 
locations of artificial eelgrass patches (•; CC-Canning's Cove and MS-Mt. Stamford) 
and natural eelgrass locations (o; WR-White Rock and MC-Mistaken Cove). 

Fig. 2; Experimental layout of artificial eelgrass patches relative to shore at Canning's 
Cove -CC and Mt. Stamford-MS (modified from Laurel et al. In press). Tethers set at the 
center of each patch and six locations outside ofpatches (indicated by an 'X'). 

Fig. 3; Mean abundance of predators (Gadus ogac, Gadus morhua, Tautogolabrus 
adspersus, Myoxocephalus spp. and Urophycis tenuis) censused via snorkeling at 
Canning's Cove (CC) and Mt. Stamford (MS) on various sized patches of simulated 
eelgrass. Each point represents a mean of 9 snorkel surveys of two replicate patches ± 1 
SE. 

Fig. 4; Proportion of age 0 cod predators (Greenland cod Gadus ogac, Gc; Atlantic cod 
Gadus morhua, Ac; Cunners Tautogolabrus adspersus, Cu; Sculpin Myoxocephalus spp, 
Sc; and white hake Urophycis tenuis, Wh) determined by snorkeling, seining and 
tethering at Canning's Cove (CC) and Mt. Stamford (MS) in 2000. Proportions are based 
on four beach seine hauls, 288 tether sets and 9 snorkel surveys per site. 

Fig.5; Total density ofpiscivorous predators (Greenland cod Gadus ogac, Atlantic cod 
Gadus morhua, cunners Tautogolabrus adspersus, Myoxocephalus spp. and white hake 
Urophycis tenuis) in various sized patches of simulated eelgrass at Canning's Cove (CC) 
and Mt. Stamford (MS). Values represent a mean of9 snorkel surveys of two replicate 
patches ± 1 SE. 

Fig. 6; Proportion of common piscivorous predators (Greenland cod Gadus ogac, cunners 
Tautogolabrus adspersus and white hake Urophycis tenuis) distributed over a range of 
artificial eelgrass patch sizes and equivalent areas at natural eelgrass meadows. Expected 
lines are calculated assuming a linear distribution of fish with area. Actual distributions 
are plotted with a best-fit quadratic equation to illustrate trends deviating from the 
expected linear distribution. 

Fig. 7; Percent predation of juvenile cod (Gadus spp.) tethered in unvegetated areas (0 
m2

) and artificial eelgrass patches (0.32, 1.1, 5.5, 11,22 m2
) at Canning's Cove (CC) and 

Mt. Stamford (MS) between 1999 and 2000. Values consist of 12-36 tether sets and are 
staggered± 0.1 m to avoid overlap 
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Table 1: GENMOD analysis ofpredation rates oftethered Gadus spp. on varying 
sampling dates and artificial eelgrass patches as a function of year ( 1999 or 2000) and 
sampling location (Mt. Stamford-MS or Canning's Cove-CC). 

Site Year Source of df Deviance Chi- p 
Variation ....... §q~.~~~···-····-······-················-· ............. ,_ ........ ............................................... ,_ ...................................... ,, __________ ,,, ......... ... .,. ............................ . ......... ,,,_,,, ............................................................. 

MS 1999 Date 2 35.82 1.24 0.5379 
Patch 1 8.06 27.76 <0.0001 
Patch*Date 2 7.34 0.72 0.6990 
Intercept 207 37.06 

2000 Date 2 30.63 11.98 0.0025 
Patch 1 21.04 9.59 0.0020 
Patch*Date 2 16.20 4.84 0.0890 
Intercept 276 42.61 

cc 1999 Date 2 30.90 5.95 0.0510 
Patch 1 24.08 14.82 0.0090 
Patch*Date 2 9.70 4.38 0.0810 
Intercept 238 36.85 

2000 Date 2 42.95 15.27 0.0005 
Patch 1 15.51 27.44 <0.0001 
Patch*Date 2 14.37 1.13 0.5681 
Intercept 278 58.22 
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CHAPTERS: 

Influence of predators and habitat complexity on behaviour and three­
dimensional spatial patterns in age 0 juvenile cod Gadus morhua 

ABSTRACT: 

There is a spatial conflict between prey and their predators yet both often coexist 

at high densities within the same habitat. It is uncertain how such close proximity is 

maintained, but it is assumed that these predator-prey conflicts are resolved at scales 

smaller than the sampling method used to measure the spatial pattern. For fish prey and 

predators, measuring spatial pattern is further complicated by a fish's ability to alter both 

its horizontal and vertical position in the water column. I used a novel method of 

measuring 3-dimensional positions of fish and their behaviour in the laboratory to 

detennine how predators and prey coexist in the same habitat at small scales (<2m). The 

spatial patterns and behaviour of age 0 juvenile Atlantic cod Gadus morhua and two of 

their known predators, age 3+ cod and short-hom sculpin Myoxocephalus scorpinus, 

were examined in two habitats (i.e., sand and eelgrass). Both habitat and predator type 

interacted to form unique patterns of space occupation by predators and prey. Spatial 

overlap between predators and prey was highest in open habitat in the presence of age 3+ 

cod (a cruising predator) but lowest in the presence of sculpin (an ambush predator) in 

the same habitat. In eelgrass, spatial conflicts between predators and prey were resolved 

along the vertical component; age 0 cod remained above eelgrass in the presence of 

sculpin but used the structure in the presence of an age 3+ cod predator. Anti-predator 

behaviour (i.e., predator-prey distance, prey cohesion, angle separation and freezing) was 

123 



significantly reduced over eelgrass compared to sand, suggesting eelgrass has lower 

'inherent risk' than open habitats. However, predation mortality was similar across all 

treatments. This raises the question why age 0 cod relax their anti-predator behaviour in 

complex habitats. I suggest that complex habitats also impair the visual cues needed to 

perform anti-predator behaviour (e.g., schooling) and locate predators. Alternatively, the 

reduced anti-predator behaviour in complex habitats may reflect the fitness costs (i.e., 

lost foraging opportunities) of using these behaviours in all environments. 

KEY WORDS: Predator-prey dynamics· Spatial pattern· Coherence· Atlantic cod· 

Video analysis · Habitat use 
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INTRODUCTION: 

The interaction between habitat and predators is thought to be the principal 

detenninant of fish distribution (e.g., Savino and Stein 1989a, b, Helfman 1986). 

Complex habitats (e.g. macrophytes, boulders, coral etc) reduce predation risk by 

interfering with the ability of predators to encounter (Hershey 1985, Laurel et al. 2003, 

Chapter 4) and capture prey (Savino and Stein 1982, Werner et al. 1983). The refuge of 

complex habitats is particularly important to juvenile fish as it is during the early life­

history when predation risk is highest (Sogard 1992). Consequently, structured habitats 

generally support higher densities of juvenile fish than less structured habitats (e.g, Edgar 

and Shaw 1995, Mattila et al. 1999; Laurel et al. In press (a), Chapter 2), either by effects 

of predation directly (i.e. mortality) or indirectly (i.e. habitat selection). While both 

behaviour and direct mortality contribute to spatial pattern, it is behaviour that is often 

considered to be most influential in shaping fish distributions (e.g., Werner et al. 1984, 

Hugie and Dill 1994). 

Predator behaviour (e.g. movement and foraging) is also influenced by habitat as 

well as the distribution of prey. Generally, predators will shift their effort to areas of high 

prey concentration, and as a result, predator densities, like their prey, are typically higher 

in complex habitats e.g., macrophytes (Linehan et al.2001; Laurel et al.2003) and 

submerged trees (Eklov 1995). Although the physical structure of habitat can impair 

foraging, certain predators are able to forage with similar success between complex and 

open habitats (Savino and Stein 1982; 1989a). Within certain stem densities, habitat 

structure can actually facilitate a foraging predator's ability to capture prey (Savino and 
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Stein 1989b; Eklov and Diehl1994). We should therefore expect a range of predator-prey 

spatial patterns among varying habitats. 

Video analysis has aided our understanding of how predators and prey resolve 

their conflicting habitat use objectives because we can simultaneously examine the 

behaviour of both predator and prey. Coupled with image analysis software, researchers 

have been able to move beyond categorical description of behaviour (e.g. schooling, on 

bottom, etc) to quantitative approaches, which permit robust statistical analysis. Aspects 

of predator-prey dynamics that have been quantified include reaction latency (Domenici 

and Batty 1994), interindividual distance (e.g., Sogard and Olla 1997), reactive distance 

(e.g., Higgs and Fuiman 1998), attack distance (e.g., Krause et al.1998b ), activity levels 

(e.g, swim speed; Ryer and Olla 1998) and angle separation (e.g., Masuda and 

Tsukamoto 1998). 

Video analysis has been a useful tool in understanding predator-prey dynamics in 

fish, but it suffers a number of shortcomings. Fish are not restricted to a single plane and, 

as a consequence, determining spatial information is problematic. One solution is to 

ignore the third dimension component, but this generally restricts research to small 

aquaria studies with limited water depth to rule out the vertical component of distance 

estimation (e.g., Gregory and Northcote 1993; Clark and Stephenson 1999). A second 

solution is to use multiple cameras, but analysis from such arrays can be cumbersome 

(e.g., Boisclair 1992, Hughes and Kelly 1996). Furthennore, multiple camera approaches 

relying on side-view line-of-sight arc not capable of filming through structured habitat 

(e.g., Hughes and Kelly 1996). 
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In the present study, I use a novel, single-camera technique to gather 3-

dimensional spatial data on age 0 juvenile Atlantic cod (Gadus morhua) and two of their 

known predators, age 3+ Atlantic cod (a cruising predator) and short-horned sculpin 

Myoxocephalus scorpinus (an ambush predator). Juvenile cod associate with highly 

structured habitats such as eelgrass in coastal Newfoundland (Laurel et al. In press (a), 

Chapter 2), but will also use unstructured habitat (i.e., sand) in years of high density 

(Laurel et al. In Press (b), Chapter 3). Field sampling (i.e., beach seines; 880m2
) 

indicates that juvenile cod and piscivorous predators co-occur in both eelgrass and sand 

(Linehan et al. 2001; Laurel et al. 2003 ), but the spatial dynamics of predators and prey 

have not been explored at finer scales in these species. Specifically, I examine how, and 

at what scales, age 0 juvenile cod begin to disassociate with their predators over 

structured (i.e., eelgrass) and unstructured (i.e., sand) habitats. I then test whether 

changes in spatial pattern and behaviour between predators and prey correspond with 

changes in predation risk between habitats. 

MATERIALS AND METHODS: 

Fish collections: 

Approximately eight hundred age 0 Atlantic cod were collected by beach seine 

from nearshore areas in Trinity Bay, Newfoundland. Eighty predators ( 40 age Atlantic 

cod (24.1±4.2 em; x ± sd), 40 shorthorn sculpin (22.3 ±4.8 em; x ± sd)) were also 

collected from beach seines in the same location. Fish were transferred to the laboratory 

and placed in separate 1 x 1 x 0.5 m holding tanks maintained at ambient temperature (4-
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8° C). Age 0 cod were fed a combination of chopped herring and pelleted food every 

second day and predators were fed ad libitum on chopped, frozen herring twice weekly. 

Experimental design: 

Spatial distribution and behaviour of age 0 juvenile cod and their predators were 

digitally videotaped over sand and simulated eelgrass in a large flow through tank (2.0 x 

1.5 x 0.4 m) maintained at 5-10° C. Digital video was obtained by a camera, fixed with a 

wide-angle lens, mounted 2.2 m directly above the tank. The field of view and focus of 

the camera were locked to maintain a clear, perpendicular view of the entire tank and the 

test fish. An observer in an adjacent room outfitted with a video-screen was able to 

remotely start and stop trials. Two light stands (1.8m) each fixed with 600-W halogen 

light sources were placed on opposite sides of the tank. Lamps were angled downward 

into the tank to illuminate the tank as well as cast a shadow of each fish onto the 

substrate. 

An experimentally nai"ve predator was introduced to the experimental arena via a 

trapdoor connected to a holding chamber (0.5 x 1.0 x 0.4 m). Predators were held in 

chambers and not fed for 24 hrs before use in any trial. Before the onset of a trial, the 

trapdoor was lifted and the predator was free to swim into the experimental arena. 

Because the predator was not trained, the time a predator took to enter the arena was 

variable c. 1-15 min. Once in the arena, predators were allowed to acclimate a further 15 

min before the onset of a trial. Immediately after the predator entered the arena, five age 

0 juvenile cod (Gadus morhua; 7.8 ± 0.14 em) were transferred from their holding tank 

and placed into a 2 L transparent starting chamber. Age 0 juveniles were held in the 
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chamber for 15 min prior to being released into the arena and onset of filming. 

Following each trial, both predators and prey were collected by dip net and moved to a 

separate holding tank. 

Bottom habitat was rotated between trials to either unvegetated sand or simulated 

eelgrass. Sand ( < 1 mm) was washed and placed into the tank to cover the entire bottom 

with a 10 em layer. Mats of simulated eelgrass were placed on top of the sand at a 

density of 400 blades m2
. Eelgrass was manufactured by attaching green, plastic ribbon 

(W: 0.8 em H: 15 em) to galvanized wire fencing. The wire of the eelgrass mats was 

buried 1-2 em in the sand so that only the simulated eelgrass was visible above the sand 

layer. Total height of blades of eelgrass above the sand varied between 15-16 em. 

Ribbon densities fell within the range of eelgrass naturally occurring in coastal 

Newfoundland areas. Field experiments have demonstrated that similarly constructed 

eelgrass is selected at settlement (Laurel et al. In press (a), Chapter 2) and serves as a 

refuge from predators (Laurel et al. 2003, Chapter 4) for age 0 juvenile cod. 

Experimental trials consisted of filming age 0 cod (i.e. prey) in the presence of an 

age 3+ Atlantic cod (28± 3.1 em SL) or a short-homed sculpin (23± 2.8 em SL) over each 

habitat for a 1-hr period (n= 1 0; 40 total trials). An additional set of control trials were 

filmed of prey, sculpin and age 3+ cod separately over each habitat (n=lO; 60 total trials). 

Video analysis: 

Predator-prey spatial data and behaviour was gathered from video using image 

analysis software (Matrox Inspector™). Video was analyzed at 3-min intervals during 

each trial (n=20 reference frames/trial) starting at time 0 min. Because it was difficult to 
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distinguish the fish against the heterogeneity of the habitat, short 1 0-s clips of video were 

examined instead of single video frames. Fish were digitally marked at a reference frame 

while the video looped to reveal the position of each fish. 

Each reference frame was calibrated such that the lower left of the arena image (x, 

y coordinates) was 0, 0 (em) and the upper right was 200, 150 em. Horizontal spatial 

data was gathered by placing a digital point at the anterior end of each prey and predator 

in the reference frame. From each digital point, the Cartesian coordinate system of the 

software outputs a fish position in a 2-dimensional plane (x,y) to the nearest 0.5 

centimeter. The vertical component in space (i.e., fish height in the water column) was 

calculated from the distance of its x,y position to its cast shadow on the substrate. 

Because the distance of cast shadow is dependent on the position relative to the light 

source, shadow distances were corrected based on a shadow mapping vector model (see 

below). In rare instances, the walls of the tank obstructed the shadow cast by the fish. In 

such cases, I used the vertical position of the same fish just prior to or after being 

adjacent to the wall. In almost all cases this time was within 3 sec of the reference frame. 

In addition to spatial data, I measured the orientation of prey within each 

reference frame to determine the degree of schooling. Orientation was acquired by 

drawing a digital line from head to tail of each prey fish in each reference frame (n=5 

angles/frame, 100 angles/trial). The software outputs an angle (0-360°) based on the 

counterclockwise difference between digitally marked fish and a 3 o'clock reference line. 

We determined the degree of cohesion between prey groups using an adapted 

nearest neighbor approach (Clark and Evans 1954). Within a single reference frame, the 
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interindividual distances between one prey in space (Ax, Ay, Az) and a second prey (Bx, 

By, Bz) was calculated using the following equation: 

where t..x=Ax-Bx, t..y = Ay-By and t..z = Az-Bz. The mean distances between fish in each 

reference frame (n= 10 distances/frame) was then used to give a measure of group 

cohesion between prey (n=llframe, 20/trial). 

I determined how groups offish oriented over different habitats (n=10 angle 

differences/ frame, 200 angle difference/ trial) by examining angle differences between 

each prey (A0 ). The minimal mean (m) ofthe angle (Ang) difference between each fish 

and its neighbors for each reference frame was calculated using the following equation: 

where Angle differences were transfonned so that Angi- Angi+t < 180. If Angi- Angi+t 

> 180, angles were adjusted using the equation: 

Values of Ao varied depending on the reference fish used to calculate angle differences, 

so I used the minimal value of five possible values. Lower Ao indicated that fish were 
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oriented in the same direction whereas A0 suggested that fish were moving in separate 

directions. 

Activity levels of predators and prey were also determined from digital video. 

Prey activity was noted as either immobile (0) or active (1) at each reference frame in 

video clips. A proportion of activity based on the five age 0 cod was then assigned to 

each reference frame (n=20) within each trial. Predator activity was measured over the 

entire video as the total time spent swimming. 

Spatial corrections: 

Spatial positions of predators and prey in the tank are only measured in two 

dimensions (x, y) using image analyses. It is necessary to both determine the third 

dimension (z) as well as correct for perspective changes between light source and camera. 

The distance between the measured fish position and its shadow solves for both issues. 

To begin, it is known that the two measured coordinates of the fish position (x, y) are 

correct only if the fish is actually sitting on the bottom of the tank i.e., z = 0. Otherwise 

the fish is at some other point (F) along a line between the camera and another point (x y 

0) on the bottom of the tank. Let R be the point (x y 0). Because shadows are cast in 

straight lines, given a light source at point Land the fish's shadow positionS, it is known 

that F must lie along a line between LandS. The intersection is the only point which is 

on both the line CR and the line Is. Thus finding the actual position of the fish is a 

matter of finding the intersection betweenCR and the light-to-shadow lineLS. 

The first computational step involves taking advantage of the fact that any two 

intersecting lines lie on the same plane. It is known that the light-to-shadow and camera-
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to-fish lines both pass through the fish position. Therefore, it is necessary to determine 

the plane that contains C, L, F and S. Both F and S are unknowns but they are known to 

be on the same plane as fish positions taken from image analysis (R). The nonnal for this 

plane is found by taking the cross product: 

4) N = (R- C) x (L- C) 

The shadow lies on the ground plane at a pointS at the shadow distance (d) from R, the 

measured fish position on the ground plane. The number of possible values for Sis two, 

as it must lie in the plane with normal N. The projection of N onto the ground plane 

becomes N xN Jl 0 where Nx , Ny and No are the corresponding vector components of 

plane N. Sis a distanced from R in a direction perpendicular to the projected plane 

normal. Let M be the normalized perpendicular: 

5) 

Then S is derived from M: 

6) S =R±Md 

The two shadow positions will give different results for the fish position, but the one that 

places the fish below the ground plane can be eliminated. 
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It is now possible to compute the position of the fish as the intersection between 

the camera-to-fish line CR and the light-to-shadow line LS. Calculating the intersection 

is made simpler by transfonning LS into an orthonormal coordinate system with an 

origin at C, x-axis CR, and z-axis N. The first step in calculating the intersection 

involves nonnalizing the axis vectors Z and X: 

7) z = N !INI 

8) X= (R- C)ljCRj 

Using Z and X, it becomes possible to define the rotation transformation T: 

Next, the light-to-shadow line (SL) is parameterized as: 

10) SL =L+Ut 

where U is the normalized direction from L to S: 

11) U=(S-L)IjsLj 

The parametric equation is transformed into the coordinate system with origin C and axes 

T: 
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12) L'= T(L- C) 

13) U'= TU 

The intersection with the x-axis finally becomes: 

Lastly, xis used to determine the fish position, which lies along the eye-fish line CR at a 

distance x from the camera. Plugging x into the parametric equation for the eye-fish line 

gives the final result: 

15) F=C+(R-C)/CRx 

or substituting in X gives: 

16) F =C+Xx 

Error in spatial data: 

The accuracy of the experimental set-up and corresponding mathematical 

corrections was determined by estimating positions of plastic poles ( 1 x25 em) placed in 

the arena. Digital positions were taken at the tops of the poles throughout the tank and 

compared against known positions (n=54). Error was low along both the x-axis (1.40 

em± 0.62 SD) andy-axis (1.11 em± 0.41 SD). Estimations of height from shadow 

lengths and corrected x,y coordinates were also similarly accurate (1.36 em± 0.66 SD). 

These methods of finding error do not detect inaccuracies in calibrating the image to a 
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coordinate set, but rather give an indication of the precision of the experimental apparatus 

(e.g., light positions, camera accuracy) and the ability of an observer to digitize points 

from images. Highest error appeared to occur at the corners of the image (i.e., 

"pincushion effects"), but such distortion is typical of most camera lenses. Hughes and 

Kelly (1996) discuss methods of correcting radial distortion from camera images prior to 

image analysis, but the low amount of error from the apparatus did not deem this 

necessary. 

Data analysis: 

Horizontal spatial overlap of predators and prey was further examined using a 

binning technique. Distance between predator and prey in x,y space were first calculated 

(n=1000) and these values were plotted on an x-y axis so that 0,0 (x,y em) indicated 

complete overlap and 150, 200 or -150, -200 indicated maximum avoidance by predators 

and prey. I then passed an imaginary 15 em wide transect through the origin of the 

scatterplot along the y-axis. The frequency of points along the transect were tallied every 

15 em along the entire axis from -150 to + 150. Frequency values were collected and 

plotted against distance from predator to indicate the degree of co-occurrence of 

predators and prey at increasing scales. Plots were constructed for each habitat-predator 

combination. 

Predation mortality (presence/absence) was examined using a generalized linear 

model incorporating a binomial error structure (log link; proc GENMOD; SAS Release 

6.03). Predator (cod or sculpin) and habitat (eelgrass or sand) were used as explanatory 

variables. 
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Prey behaviour (i.e., activity, distance to predator, group cohesiveness, AD and 

height) were analyzed with two-way repeated measures ANOV A. Habitat (eelgrass or 

sand) and predator (sculpin, cod and no predator) formed the between group factors in the 

model. Time (min) of observation (e.g., 3, 6, 9 ... 60) within the trial was examined as a 

within group factor. Time '0' was dropped from the model since all age 0 cod had a 

similar starting, clumped position from the initial release from the 2 L container. Data 

were examined with one-way repeated measures ANOV As if significant interactions 

were detected. Paired t-tests were performed post hoc to examine differences between 

predators in each of the dependent variables. An alpha of 0.01 was used to detennine 

significance for the multiple post hoc tests to account for increased risk of Type I error. 

Predator behaviour (i.e., activity and height) was examined using three-way 

ANOVA with model tenns habitat, predator type and presence of prey. A repeated 

measures design was applied to the model when examining changes in predator height 

across treatments. Between group factors within the model included habitat (eelgrass or 

sand), predator (sculpin or cod) and prey (present or absent). Time of observation within 

the trial was used as the within group factor. Dependent variables were examined with 

one-way repeated measures ANOV As if significant interactions between independent 

variables were discovered. Residuals were examined to determine if they met the 

assumptions of homogeneity. 

RESULTS: 

Mortality: 

Despite multiple predation attempts (i.e., attacks and chases) observed throughout 

the experiment, capture success by predators was very low throughout the entire 
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experiment (11 successful captures total). There was no significant interaction between 

predator and habitat type on predation mortality (x2 = 0.29, p = 0.920, df= 2) nor was 

there any effect of either predator~= 0.83, p = 0.811, df= 1) or habitat type (x2 = 0.71, 

p = 0.770, df= 1). 

Predator height: 

Differences in predator height in the water column largely reflected the foraging 

strategies of each predator. Sculpin seldom came off the bottom whereas cod predators 

generally foraged in mid-water (Fig. 1 and 2). Three-way ANOV A with repeated 

measures indicated significant interactions between predator and habitat (F 1 ,68=21.4 77, 

p<0.001) but no interactions between prey and these variables (predator*prey, 

F 1,68=0.813, p=0.370; habitat*prey, Fl,68=0.829, p=0.366; predator*habitat*prey, 

F 1,68=0.002, p=0.968). Therefore, I used one-way ANOVAs with repeated measures to 

examine the effects of habitat and predator independently; 'prey' was dropped from the 

model. Within habitat analysis indicated a significant effect of predator type in sand 

(repeated measures one-way ANOVA Fl,38 =33.756, p<O.OOl) and eelgrass (FI,38 

=291.547, p<0.001). In both sand and eelgrass, cod predators maintained a higher 

position in the water column than sculpin predators. Within-subject analysis indicated 

these patterns in predator height did not change over time within a trial for sand 

(F 18,684=1.029, p=0.424) and eelgrass (Fis,6s4=1.219, p=0.132). Within predator analysis 

also indicated a significant effect ofhabitat for cod (F 1,38 =14.501, p<O.OOI) and sculpin 

(F 1,38 =9.356, p<0.004). Within-subject analysis indicated these patterns in predator 
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height did not change over time within sculpin treatment trials (F 18,684=1.425, p=O.ll2) or 

cod trials (Fis,6s4=1.428, p=O.lll). 

Prey height: 

Age 0 cod adjusted their height in the water column in response to predator and 

habitat type. Generally, age 0 cod were found higher (>8 em) in the water column in the 

presence of eelgrass or sculpin compared to cod predators and sand (<5 em; Fig. 1 and 2). 

These trends were also statistically significant. Prey height was examined by predator 

and habitat independently due to significant interactions between these independent 

variables (2-way repeated measures ANOVA, F2,s4=18.676, p<O.OOl). One-way 

ANOVA with repeated measures indicated that age 0 cod remained closer to the bottom 

in sand compared to eelgrass treatments in the presence of each predator type (sculpin, 

Fl,l7=95.087, p<O.OOl; cod, Fl,l7=26.990, p< 0.001; no predator, Fl,l7=255.798, p<0.001). 

Prey did not alter their height over the course of a 1-hr trial in any of the treatments 

(repeated measures AN OVA sculpin, F ls,324=1.001, p=0.421; cod, F 18,324=0.640, p=0.891; 

no predator, Fl8,324=0.778, p=0.782). Significant effects ofprey height were also found 

between habitat types. Prey altered their position in water column differently between 

predators within sand (F2,27=16.513, p<O.OOl) and eelgrass (F2,27=29.387, p<O.OOl; Fig 3) 

habitat. Specifically, in sand habitat, prey were closest to the bottom when exposed to a 

cod predator (x=6.5±2.9) or sculpin predator (x=7.9±1.9), compared with "no predator" 

(x=13.2±1.1). Post hoc tests indicated these differences were significant between sculpin 

and non-predator treatments (t = 3.643, p=0.001, df= 9) but just outside the statistical 

alpha (0.01) in the cod-no predator comparison (t=2.52, p= 0.042, df=9). In eelgrass, 
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prey were closest to the bottom with cod predators (x=8.9±2.6), followed by sculpin 

(x=15.4±2.3) and no predator (x=l8.3±3.1). Post hoc tests indicated these differences 

were significant in cod-sculpin (t = 4.603, p=0.001, df= 9) and cod-no predator 

comparisons (t = 3.808, p=0.001, df= 9). These patterns were consistent across time in 

each trial as no significant within-subject effects were detected in any comparison 

(repeated measures AN OVA eelgrass, F 18,486=1.121, p=0.330; sand, FJ8.486=0.529, p = 

0.945). 

Predator-prey distance: 

Direct contact between predators and prey was rare. When it occurred, contact 

events were usually the result of a predator attacking a prey, but close contact also 

occurred when prey inspected predators. Inspections generally involved one or more age 

0 cod approaching a predator from behind, which would on occasion result in direct 

physical contact. This behaviour was infrequent and was entirely restricted to inactive 

sculpin. Overall, however, age 0 cod generally avoided predators by at least two body 

lengths (c. 15 em) in the horizontal and vertical plane. Analysis indicated a significant 

interaction in predator-prey distances between habitat and predator type (2-way repeated 

measures ANOVA, F2,54=25.152, p<0.001). Habitat and predator type were therefore 

examined independently using one-way ANOV As with repeated measures. There was a 

significant effect of habitat on distance between predator and prey for sculpin 

(F 1, 17=39.418, p<O.OOl) and for cod (F 1, 17=37.67, p<O.OOl). However, this was an 

opposite response. Specifically, prey avoided sculpin more in sand habitat than eelgrass 

whereas prey avoided cod predators more in eelgrass than sand habitats. This avoidance 

140 



pattern was especially evident in the horizontal plane with sculpin predators (Fig 3 and 

4). Within-subject analysis indicated no measurable effect of predator-prey distance over 

time for cod (Fis,324=1.165, p=0.286) or sculpin (FIS,324=1.025, p=0.431). Predator-prey 

distance also varied with predator in sand ( 1-way repeated measures ANOV A 

Fl,1 7=33.868, p<0.001) but not eelgrass (FI,I7=1.016, p=0.327). In sand, age 0 cod 

maintained a greater distance to sculpin than cod (Fig 3 and 5). Within-subject analysis 

indicated these predator-prey distances did not change throughout the trial for either sand 

(F 18,324= 1.223, p=O .236) or eelgrass (F 18,324= 1.361, p=O .143) trials. 

Predator and prey activity: 

Age 0 cod activity changed as a function of habitat (repeated measures 2-way 

ANOVA F1,54=4.665, p = 0.035) and predator (repeated measures 2-way ANOVA 

F2,54=5.893, p = 0.005) without a significant interaction (F2,54=l.886, p= 0.162). Age 0 

cod activity was lower in the presence of cod predators compared to sculpin and non­

predator treatments (p<0.001). Cod predators would routinely approach prey rapidly and 

cause prey to periodically "freeze" (i.e., remain motionless) either at the substrate or air­

water interface. However, "freeze" behaviour was not commonly observed in the 

presence of eelgrass. In eelgrass, prey would react to approaching predators but would 

maintain activity following predator encounters. There was a slight tendency for prey 

activity to diminish through each trial but not significantly so despite the large sample 

size (repeated measures ANOVA. F 18,972=1.4, p = 0.079). 

Predator activity was analyzed by 3-way ANOVA as a function of habitat, 

presence of prey and predator type. Overall, predator activity increased in all treatments 
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in the presence of prey (F l,n=27. 726, p<O.OO 1 ). However, significant interactions were 

found between predator and habitat (FI.n=4.220, p=0.044) so these model terms were 

examined separately by one-way ANOV A. Habitat did not influence the activity of cod 

predators (FI,3s=0.652, p=0.424) but sculpin predators reduced activity in the presence of 

eelgrass (F1,38=13.115, p=O.OOl). Overall, however, cod predators were much more 

active in both habitats (eelgrass-F 1,3s=4432.112, p<0.001; sand-F 1,3s=l998.313, p<0.001) 

compared to sculpin (Fig 6). 

Group cohesion: 

Group cohesion was dynamic in all habitat-predator treatments (Fig 7ab) but an 

increase in aggregation could be seen in all predator treatments compared with controls 

(Fig 7cd). Aggregations formed and dispersed as individuals joined and left the group 

throughout the 1-hr trials. Groups would often be disrupted immediately following a 

predator attack, but would generally regroup by the next observation period i.e., 3-min 

later. Group cohesion of age 0 juvenile cod varied with both predator (repeated measures 

2-way ANOV A F 2,54=54.098, p=0.022) and habitat (F 1,54=18.645, p<O.OO 1) without 

significant interaction (F254=0.038, p=0.963). Prey fonned more cohesive groups in the 

presence of sand (40.4 cm±3.2) and cod (43.lcm±2.6) than sculpin (52cm±2.1) and 

eelgrass (62.1cm±3.1) treatments. Prey groups also became less cohesive through time 

as indicated by a significant within-subject effect (F 18,972=6.815,p<O.OO 1 ). Within 

treatment changes were confined to the first 20-min of any given trial (Fig 7), during 

which time prey seemed to become increasingly dispersed. 

142 



Angle separation (Ao): 

Angle separation (Ao) differed among habitats (repeated measures 2-way ANOV A 

h,s4=7.913, p=0.007) and predators (F2,s4=74.602,p<O.OOI) without any significant 

interaction (F2,s4=1.401, p=0.255). LowestAo values (fish most similarly oriented) were 

observed among prey in the presence of cod predators 3 7 .5± 1.1 o (mean±SE) compared to 

sculpin 42.7±1.7° and no predators 58.0 ±1.8°. Paired t-tests indicated significant 

differences between all predators (p< 0.01 in all cases). Between habitats, age 0 cod were 

more randomly oriented in eelgrass 61.4±1.3° than in sand 56.0±1.1°. However, angle 

separation for all treatments combinations was less than 90° (the value expected if all fish 

were oriented randomly; Fig 8). 

DISCUSSION: 

Predator-prey interactions across habitats of varying complexity have been shown 

to have considerable effects on the behaviour and spatial patterns of fish (Savino and 

Stein 1982, 1989a, b, Angermeir 1992, Eklov 1995, Linehan et al. 2001, Laurel et al. 

2003, Chapter 4). In my study, age 0 cod altered their behaviour in response to changes 

in habitat and predator type, and similarly, both cod and sculpin predators changed their 

behaviour in response to the presence of prey species and habitat structure. My study 

demonstrated an interaction between habitat complexity, predator type and prey, resulting 

in behaviour and spatial patterns unique to each treatment combination. Some of the 

changes in spatial pattem were subtle (e.g., <10 em), and could have been n1.issed using 

simpler two-dimensional mapping techniques. Other behavioural patterns were more 

apparent (i.e., schooling and aggregation), and consequently have important bearing on 
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methods of estimating abundance across habitats. Surprisingly, no differences in age 0 

mortality were observed between treatments. These results are discussed in turn. 

Predator-prey spatial overlap: 

Predators and prey influence each other's distribution and behaviour, making it 

difficult to consider both in same theoretical framework. Consequently most predator­

prey studies are from a single perspective, and can be categorized as foraging studies 

(predator perspective) or predator risk studies (prey perspective) (see Gregory and 

Northcote 1993 for exceptions). It has been hypothesized that predator-prey 

distributions should overlap when the predator response (i.e., mobility) dominates and 

diverge when the prey response dominates (Sih 1984). In other words, more mobile 

predators will tend to overlap to a greater extent with prey than less mobile predators. 

Activity levels reflected these differences in mobility between cod and sculpin predators. 

Sculpin were actively mobile only 15% of the time throughout trials. In contrast, cod 

predators were swimming 83% of the time. I observed overlapping spatial distribution in 

the horizontal component (x,y) of trials over sand; spatial overlap between predators and 

prey was highest in the presence of the cruising predator but lowest in the presence of 

sculpin. In eelgrass, spatial conflicts between predators and prey were resolved in the 

vertical component; age 0 cod remained above eelgrass in the presence of sculpin but 

used the structure by moving further toward the substrate in the presence of a cod 

predator. 

While many studies have examined spatial overlap of predators and prey (e.g., Sih 

1984, Fairweather 1988), my study is novel in its three-dimensional examination of 
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predator-prey interaction. To my knowledge, no laboratory study on predator-prey 

behaviour has quantified distribution beyond two dimensions, likely due to the difficulty 

in acquiring three-dimensional information from two-dimensional images. However, the 

results clearly show the third-dimensional pattern (height in water column) of habitat use 

is important in both predator foraging and predator avoidance by prey. These changes in 

height were often subtle (c. 5 em) between treatments and may have been missed by 

categorically assigning vertical position as in some studies (e.g, 'top' vs 'bottom'; Savino 

and Stein 1989b). 

The use of three-dimensional spatial analysis was useful in calculating prey group 

cohesion and predator-prey distances. Focusing on only two dimensions when 

calculating these distances can potentially overstate proximity because fish can appear 

clumped (overlapped) in two dimensions when in actuality they are dispersed in three 

dimensions. In shallow water depths this is of less concern, but overlapping error 

becomes more problematic as the maximum z-axis (e.g., water depth) approaches the x­

axis (e.g., tank width) andy-axis (e.g., tank length) dimension. 

In my study, prey were seldom observed among the blades of eelgrass in the 

absence of the predator. However, they used the eelgrass depending on the presence of a 

sit-and-wait predator or a cruising predator. Prey moved into the blades of eelgrass in the 

presence of both predators, but this was pronounced in the presence of a cod predator. 

Prey may have restricted their use of eelgrass habitat in the presence of sculpin because 

sculpin waited in ambush amongst the plant stems. Alternatively, prey may have refuged 

more within eelgrass habitat in the presence of a cod predator if risk was perceived higher 

among cod predators than sculpin predators. 
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Predator-prey activity: 

Both predators and prey adjusted their behaviour to their environment. Not 

surprisingly, the activity of both sculpin and age 3+ cod increased in the presence of prey. 

Heightened activity in response to the presence of prey is typical of most species as they 

switch from a search to hunting strategy (Gerking 1994). However, only sculpin 

adjusted their activity level to habitat type. Prey exhibited an increased avoidance 

response to sculpin in the sand habitat, suggesting sculpin were more visible to age 0 cod 

in sand than eelgrass. Perhaps as a consequence, sculpin switched from a low-activity 

ambush strategy in eelgrass to a 'stalking' -type strategy ( Gerking 1994) in sand. Cod 

predators remained equally active in both habitats, swimming ~95% of the time within a 

trial. 

Freezing behaviour by prey was recorded occasionally, usually when fish got 

separated from the shoal as a result of an attack by the predator. The shoal became 

dispersed for a short period and occasionally separated individuals would adopt a 

freezing behaviour either on the substrate or at the air-water interface. Such freezing 

behaviour is consistent with other observations for other species after they become 

separated from schools (e.g., Magurran and Pitcher 1987). 

On occasion, prey were observed approaching predators but this behaviour was 

restricted to sculpin in sand habitat. Inspection behaviour has been observed among 

some prey (Smith 1997) and is suggested to be a means of gathering infonnation on a 

predator's state and intention (Magurran and Pitcher 1987). The cues fish use to assess 

risk may be visual (e.g., Murphy and Pitcher 1991) or chemical (e.g., Chivers and Smith 

1993). The specific cues that age 0 cod use was beyond the scope of my study. 
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Schooling behaviour ofjuvenile cod: 

Pitcher (1983) made a distinction between shoaling and schooling behaviour. 

Both tenns describe fish aggregation, but schooling suggests fish are oriented in a similar 

direction whereas shoaling fish are merely aggregating in a common location. Many 

studies have explored the fitness benefits resulting from shoaling, primarily from the 

perspective of predator risk (e.g., Magurran et al. 1992). Fish often school in the 

presence of a predator or following an attack by a predator (Sogard and Olla 1997, Ryer 

and Olla 1996, Magurran and Pitcher 1987). Large aggregations of prey can reduce 

predation risk by either lessening the probability of predator success (e.g., 'confusion 

effect'; Landeau and Terborgh 1986, Laurel et al. 2001) or diluting risk over a group 

(e.g., Pitcher and Parrish 1993). Assuming changes in schooling behaviour reflects 

predator risk, my results suggest that open habitat (i.e., sand) posed a greater risk to age 0 

cod than eelgrass. Schooling over open habitats has also been described for other fish 

species (e.g. Pitcher 1986, Hosn and Downing 1994, Rangeley and Kramer 1998) as well 

as other taxa (Bertram 1978, Hobson 1978). In my study, I observed an increase in 

schooling activity in sand, evidenced by decreased angle separation (Ao) and inter prey 

distance (D1). Although schooling behaviour is commonly reported in adult cod, my 

study is the first to provide behavioural evidence of schooling behaviour in age 0 juvenile 

cod (SL 80 mm). However, such a finding is not atypical. The onset of schooling 

behaviour can occur at even smaller sizes (e.g., 12mm) in marine fish (Masuda and 

Tsukamoto 1998, Magurran 1986) and is sometimes more con1.monly observed in 

younger than older fish (Sogard and Olla 1997). 
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It is interesting that juvenile cod also increased schooling behaviour in the 

presence of cod compared to sculpin. I suggest that increased schooling behaviour of age 

0 cod in the presence of predator cod was a consequence of mobility differences between 

predators. That is, the alternative strategy to schooling (i.e, avoidance) was more 

difficult for prey when faced with a highly mobile predator. The capability of prey to 

avoid predators is indicated in the predator-prey distance data of each predator type. The 

distances maintained between prey and a cod predator was significantly lower than 

distances maintained between prey and sculpin. The proximity of cod to prey suggests 

that age 0 cod switch from an avoidance strategy to a schooling strategy when predator 

mobility is greater. 

Fish which are capable of both exhibiting solitary and gregarious behaviour are 

able to assess and exploit resources in a varying environment (e.g., Ryer and Olla 1995). 

The costs associated with group living have also been suggested. These costs include 

increased visual cues to predators (Clifton and Robertson 1993) or increased competition 

for resources such as food, mates or shelter (Pitcher and Parrish 1993). Researchers 

have attempted to resolve these conflicts by estimating a theoretically optimal group size. 

For example, largest group size occurs when the average benefits that individuals accrue 

from a school just exceed the benefits of a lone fish in the same environment (Giraldeau 

1988). Empirical studies demonstrate that group sizes tend to be smaller in structured 

habitat (Eklov 1995). Presumably group benefits (i.e., foraging and reduction of predator 

risk) are lower in these habitats than in more open habitats. 
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Predation mortality: 

An interesting result from this study was the similar mortality across all habitat­

predator treatments. Although mortality events were infrequent, they were found almost 

equally between complex (n=5) and open habitats (n=6). This was surprising considering 

the many laboratory studies demonstrating effects of reduced fish mortality in complex 

habitats (e.g., Savino and Stein 1989a, b), including studies on juvenile cod (e.g., 

Gotceitas and Brown 1993, Lindholm et al. 1999). Although other studies have not 

demonstrated differential mortality between habitats of varying complexity (e.g., 

Angenneier 1992; Tomcko et al.1984), the number of studies demonstrating refuge 

benefits of complex habitats has been overwhelming. I am confident the simulated 

eelgrass in my study provided adequate cover since it closely mimics natural eelgrass and 

its effectiveness as refuge has been demonstrated in the field (Laurel et al. 2003, Chapter 

4). It is possible the contrasting findings in this study are the result of a shorter trial 

period relative to other studies. Where trials in the present study lasted 1 hr, other 

predation studies with juvenile cod lasted much longer (2 day, Gotceitas and Brown 

1993; 4 days, Fraser et al. 1996; 2 days, Gotceitas et al. 1997; 1.5 days, Lindholm et al. 

1999). In certain cases, differential mortality has not emerged at these larger time scales. 

For example, Fraser et al. ( 1996) found no differences in mortality of age 0 juvenile cod 

between habitats of varying complexity. However, latency to capture was significantly 

higher in complex habitats (Fraser et al. 1996). Over longer time periods, differences in 

predation-induced mortality begin to emerge, presumably as the costs associated with 

anti-predator behaviour (e.g., reduced foraging; Lima and Dill1990) begin to have 
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physiological consequence. These behavioural costs may not have been manifested in 

age 0 cod during the 1-hr trial period in my study. 

Still, it is interesting that even over the 1 hr trial periods, some predation was 

occurring, and this predation did not differ between habitats. I am uncertain why anti­

predator behaviour (i.e., schooling, distance to predator) was relaxed in eelgrass habitat 

compared to sand habitat. Presumably age 0 cod could reduce predation risk further by 

employing anti-predator tactics in complex habitats. I offer two hypotheses as to why 

age 0 cod relaxed anti-predator behaviour in eelgrass: 1) a 'behavioural impairment' 

hypothesis where anti-predator behaviour (i.e., schooling and predator avoidance) is 

constrained by complex habitat or 2) a 'baseline acceptable risk hypothesis' in which 

predation risk is managed against the potential of lost opportunity. 

The 'impairment hypotheses' is supported from several sources. Schooling 

requires visual cues between group members (e.g., Masuda and Tsukamoto 1998) that 

could become obstructed in complex habitat such as eelgrass. It has been shown that 

small, visual feeding fish (5.5-7.0 em), comparable in size to fish in my study, are less 

efficient at feeding in eelgrass habitat compared to more open habitats. Similarly, the 

same visual cues needed to school and forage may also be impaired when tracking the 

location of predators in complex habitats. Therefore predator avoidance (high predator­

prey distance) may be more difficult in eelgrass when the predator is not always visible. 

Sculpin predators appeared to take advantage of this visual impairment by adopting a sit-

and-wait strategy in eelgrass compared to more mobile strategy in sand. Similar 

behaviour has also been reported in other piscivores. Savino and Stein (1989a) observed 

largemouth bass shift from searching to ambushing in more complex vegetated habitats. 
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As a result, bass were able to capture fish equally across all ranges of habitat complexity, 

yet prey fish still preferred structured habitat to open habitat. Similar switches in 

foraging behaviour have also reported in perch Perea jluviatilus (Eklov and Diehl 1994, 

Eklov and Persson 1995). 

It is also possible that age 0 cod manage their daily activity (i.e., foraging and 

predator avoidance) around a baseline acceptable risk (sensu Walters and Juanes 1993). 

Although I did not measure trade-offs between anti-predator behaviour and potential 

missed opportunity (e.g., feeding) in the present experiment, these trade-offs have been 

quantified in other studies. For example, aggregating fish suffer increased competition 

when resources are not dispersed (Morgan 1988, Ryer and Olla 1995). "Freezing" and 

refuging behaviour reduces predator risk but also reduces foraging rates (e.g. Person et 

al.1997). Therefore, the likelihood of an organism using any anti-predator tactic should 

be inversely related to 1) predator vulnerability and 2) the potential of missed 

opportunities (e.g., foraging and mates), while using that tactic. Altering the state of the 

organism (i.e, hunger or energy budget) can generate a range of outcomes by changing 

the cost of potential lost opportunities (e.g., Caraco et al.1980; Gotceitas and Godin 

1991). These principals form the basis of decision-making in organisms (e.g., ~g. 

Werner et al. 1983; Sih 1992). Therefore, similar predation rates could be expected 

across habitats if the potential of lost opportunities were perceived to be higher in 

eelgrass than in sand. Measurements of such trade-offs was beyond the scope of my 

study. Therefore, I speculate on the opportunities for higher growth among different 

habitats. 

151 



CONCLUSION: 

Prey managed their predation risk at small spatial scales (meters) by adjusting 

their behaviour and avoiding predators at smaller scales (centimeters). In open habitats, 

predator-prey spatial pattern varied largely along the x- andy-axis (i.e. horizontal space). 

In structured habitat, predator-prey spatial pattern varied along the z-axis i.e. vertical 

space. Prey also used additional anti-predator behaviour (i.e., schooling, "freezing") in 

open habitats and in the presence of a cruising predator. Age 0 juvenile cod may use 

such anti-predator behaviour when alternative tactics such as avoidance and refuging are 

impossible. Such a strategy resulted in similar predator risk in all predator-habitat 

treatments, suggesting age 0 cod manage risk around an acceptable baseline rather than a 

theoretical minimum. It is uncertain why age 0 cod did not minimize risk further in 

structured habitat. Proximately, such a strategy may stem from an inability of age 0 cod 

to use anti-predator tactics in all habitats e.g., visual impairment. Ultimately, there may 

have been fitness costs associated with anti-predator behaviour (e.g., lost opportunity for 

growth) that were unmeasured in the study. Regardless, the study suggests that small­

scale prey behaviour within a habitat may be just as effective in reducing predator risk as 

a prey's choice of using one habitat over another. 
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FIGURE CAPTIONS: 

Fig. 1: Predator height off the bottom in sand habitat of shorthorned sculpin 
Myoxocephalus scorpius and age 3+ Atlantic cod Gadus morhua in the presence of age 0 
juvenile Atlantic cod prey during 1-hr time trial. Each point represents a mean height 
from ten trials ± 1 SE. 

Fig. 2: : Predator height changes over eelgrass habitat of shorthorned sculpin 
Myoxocephalus scorpius and age 3+ Atlantic cod Gadus morhua in the presence of age 0 
juvenile Atlantic cod prey during 1-hr time trial. The dashed lined represents the height 
of the eelgrass canopy in the experimental tank. Each point represents a mean height 
from ten trials ± 1 SE. 

Fig. 3: Three-dimensional spatial plots of age 0 juvenile Atlantic cod Gadus morhua 
relative to a predator (shorthorned sculpin Myoxocephalus scorpius or an age 3+ Atlantic 
cod) in sand and eelgrass habitats. Point around the centroid 0,0,0 (i.e., location of the 
predator) indicate the predator-prey distance (n=968-1000 per plot). The horizontal 
predator-prey distance is indicated along the x- andy-axis and vertical distance is 
indicated along the z-axis. Values along the z-axis also indicate the relative vertical 
position of predators and prey; positive values indicate a predator below the prey whereas 
negative values indicate a predator above the prey. 

Fig. 4: Spatial coherence of predators (Shorthorned sculpin Myoxocephalus scorpius or 
an age 3+ Atlantic cod Gadus morhua) and their prey, age 0 juvenile Atlantic cod, in 
sand and eelgrass habitat. Coherence represents a proportion of prey associated with a 
predator at a particular distance along the y-axis of spatial data. High values at 0 on the 
x-axis indicate high overlap between predator and prey at small scales. Data represent 
horizontal positions (x,y) in space only. 

Fig. 5: Distance maintained between predators (shorthorned sculpin Myoxocephalus 
scorpius or an age 3+ Atlantic cod) and their prey, age 0 juvenile Atlantic cod, in sand 
and eelgrass. Values are plotted over time (min) in an experimental trial. Distances (em) 
are derived from three-dimensional spatial data of predators and prey from image 
analysis. Values represent mean predator-prey distances from ten trials± 1 SE. 

Fig. 6: Activity (time spent swimming) of age 3+ Atlantic cod Gadus morhua and 
shorthorned sculpin Myoxocephalus scorpius in sand and eelgrass in the presence or 
absence of age 0 juvenile Atlantic cod. Values represent mean swim time of predators 
from ten trials ± 1 SE. 

Fig. 7: Group cohesion between five age 0 juvenile Atlantic cod Gadus morhua exposed 
to an age 3+ Atlantic cod predator or shorthorned sculpin Myoxocephalus scorpius 
predator over a) sand and b) eelgrass over a 1-hr time trial. Plots to the right of a) and b) 
are the relative differences between control and predator treatments in either c) sand or d) 
eelgrass. Lower values along the y-axis indicate aggregation and high values indicate 
dispersion. Values represent mean distance of juvenile cod from ten trials± 1 SE. 
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Fig. 8: Angle separations (Ao) of age 0 juvenile Atlantic cod Gadus morhua exposed to 
an age 3+ Atlantic cod predator or shorthorned sculpin Myoxocephalus scorpius predator 
over a) sand and b) eelgrass over a 1-hr time trial. Dotted lines represent Ao values if 
fish were randomly oriented i.e. 90°. Values represent mean Ao of juvenile cod from ten 
trials ± 1 SE. 
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Fig. 5 
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Fig. 6 
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Fig. 8 
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CHAPTER 6: Thesis Conclusions 

Chapter 2 provided the first evidence that age 0 juvenile cod prefer eelgrass 

habitat at large scales i.e., c. 8 km. The experimental design of the study also decoupled 

eelgrass from other environmental covariates, demonstrating that habitat complexity was 

correlated with juvenile cod density in the field. Differential habitat use was established 

during settlement rather than after settlement. The results suggested that settlement 

might have been delayed until pre-settled forms encounter preferential habitat. Together, 

these results suggest cod actively influence their distribution at an earlier age than has 

previously been reported. 

Chapter 3 supported two implicit findings of chapter 2: 1) juvenile cod are 

capable of moving extensively following settlement and 2) juvenile cod aggregate over 

unvegetated sand in high abundance years. These results indicate juvenile cod are not 

strongly site-attached, as reported in previous studies. Juvenile cod altered their 

behaviour to compensate for the use of poor habitat quality when favorable habitat was 

limiting (i.e., in high-density years). These results have important consequences for 

estimating abundance and mortality using traditional seining methods. Sampling of 

juvenile cod should be conducted over multiple habitats and be designed to account for 

aggregation effects in sand habitat by either sampling large volumes of water or 

increasing replicate samples. Mortality estimates should be based on mark-recapture 

since age 0 cod are not site-restricted at scales <1000m2
. 

Chapter 4 demonstrated that the fitness benefits of eelgrass, as indicated in 

chapters 2 and 3, were variable. I demonstrated that refuge benefits decreased as a non­

linear function of decreasing habitat size patch size. Consequently, the results serve as a 
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rare example of the effects of habitat fragmentation in aquatic systems. I attribute this 

relationship to enhanced predation at habitat edges and localized predator distribution. 

Elevated predator density in large patch sizes resulted in higher predation rates compared 

to smaller patches. Predator distribution must therefore be considered when examining 

refuge characteristics of habitat, even at small scales i.e., <22m2
. 

Finally, chapter 5 demonstrated a change ofbehaviour of juvenile cod and their 

predators in varying habitats. The three-dimensional spatial analysis of fish positions 

revealed subtle, dynamic uses of space between predator and prey. Conflicts in predator 

and prey motives were resolved at very small temporal (1-hr) and spatial (I .2m3
) scales. 

These results prompt a further study in examining distributions of predators and prey at 

larger scales. For example, chapter 4 results suggest predator density corresponds with 

increasing predator encounter rates, but it is uncertain how these predators affect prey 

distribution in and among patches. 

It is evident that behaviour, ranging in scales from< 1 m2 to> 1000 m2
, plays a 

significant ecological role in shaping distribution among age 0 juvenile cod in the 

nearshore environment. Behaviour was shown to be responsible for the distributions 

exhibited by age 0 juvenile cod, not simply differential mortality between habitat types. 

Consequently, these results have important bearing on conservation measures for Atlantic 

cod. Specifically, habitat protection measures and the design of marine protected areas 

(MP As) both require knowledge of home range, habitat preference, variability of habitat 

use and fish behaviour (e.g., shoaling). Eelgrass habitat seems like a logical start, but 

several other considerations should also be taken into consideration. Results from my 

thesis indicate Atlantic cod are prone to habitat fragmentation through increased edge-
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effect predation. At the same time, juvenile cod are not site attached and demonstrate 

high rates of movement. Therefore, protecting large tracts of intact eelgrass beds may be 

most effective in juvenile cod conservation than setting aside multiple, smaller beds. 
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