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ABSTRACT 

Precisely arranged signaling events are required to establish the immense 

complexity of the embryonic central nervous system. During gastrulation, as the 

organizing mesendoderm endows neural identity on the overlying ectoderm, it 

concurrently initiates differential specification along the anterior-posterior (AP) neuraxis 

by antagonizing caudalizing signals. Upon completion of the embryonic germ layer 

rearrangements of the late gastrulae, the prospective neural plate shows primitive AP 

identity, which must be extensively rearranged and refmed during neurula and tadpole 

stages by organizing centers occurring in adjacent tissues (mesendoderm and non-neural 

ectoderm) as well as within both the dorsoventral (roof plate and floorplate) and AP 

(anterior neural ridge and isthmic organizer) plane of the neurectoderm. Signals along 

both axes establish a grid-like network of gene expression providing the spatial cues for a 

cell to adopt its precisely choreographed differentiation program. Perturbations to 

components of this network result in severely abnormal phenotypes, thereby providing 

information on their function . I have utilized this approach to determine the requirements 

of both a Xenopus Rel/NF-KB protein (Xrel3) and two novel components of the 

intracellular Wnt/J3-Catenin signal transduction cascade (XPygo-2a/J3) in morphogenesis 

of brain and optic vesicles. Xrel3 specifies both fore-midbrain and ventral identity of the 

nervous system by regulating otx2 and shhlglil gene expression, while both XPygo-2a 

and XPygo-2J3 mediate a late phase of Wnt signaling required to establish retinal and 

telencephalic domains of gene expression within the prospective forebrain. 
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1.1 ABSTRACT 

In Xenopus, the progressive determination of the head is an extremely complex 

process involving the activation and localized antagonism of a number of interdependent 

intracellular signaling pathways including the Wingless/Int-I (Wnt), Bone Morphogenetic 

Protein (BMP) and Nodal-related (Xnr) pathways. The sequence of events that specify the 

head are: dorsal-ventral polarization and head organizer specification in the blastula; 

gastrulation; neural induction; and patterning of the anterior-posterior and dorsal-ventral 

neuraxes. Wnt signaling is required for the specification of the dorsal side initially, but is 

then inhibited within the organizer once it has formed. Similarly, Wnt signaling is 

required along the length of the neural tube, but must be suppressed at its rostral end for 

normal brain development. Nodal signaling is also necessary for induction of the 

mesendoderm, but is subsequently suppressed in its dorsal-anterior extreme to specify 

head organizer. BMP signaling is required for ventral mesoderm and non-neural ectoderm, 

and must also be suppressed in th~ head organizer region and for the differentiation of the 

ventral midline of the neural tube. Thus, development of the head, and indeed the body 

plan in general, requires precisely timed and spatially restricted activation and repression 

of these signaling pathways. 
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1.2 AXIS SPECIFICATION AND ORGANIZER FORMATION 

Understanding how cells adopt specific fates and become coordinated into an 

adult organism requires extensive manipulation of a developing and dynamic system. My 

interest within this broad arena of developmental biology has been inspired by an interest 

in understanding the processes that establish the human brain. However, because of the 

ethical unsuitability of direct studies and manipulations in humans, I have chosen to study 

embryos of the frog, Xenopus laevis, as a viable alternative for identifying the molecular 

events that shape the central nervous system. 

Xenopus laevis, native to Southern Africa, was first popularized as a pregnancy 

test when it was found that these frogs ovulate after exposure to a hormone in human 

pregnancy urine (chorionic gonadotrophin). Their oviparous reproduction and induced 

ovulation made possible both in vitro fertilization and simultaneous culture of large 

numbers of embryos. These attributes, coupled with their large size and rapid 

development, facilitated extensive studies into early embryological events including 

blastula formation, establishment of the main germ layers and patterning of the basic 

vertebrate body plan. A major breakthrough for these studies was the demonstrated ability 

to introduce and express exogenous genetic sequences within early oocytes and embryos 

(Gurdon et al., 1971). This allowed gain and loss of function studies within a system that, 

due to a pseudotetraploidal makeup and long maturation time, made genetic experimental 

manipulations difficult. A further advancement came with the use of antisense technology 

(phosphorothioates and morpholinos) that could prevent maternal or zygotic protein 

expression and enable knockout mutant phenotypes (Weeks er al. 1991; Heasman et al., 

1992; Heasman et al., 1994; Kofron et al., 1997; Heasman et al., 2000). 

page 1-3 
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The highly documented developmental fate maps (Nakamura and K.ishiyam~ 

1971; Keller, 1975; Keller, 1976; Cooke and Webber, 1985; Dale and Slack, 1987; 

Moody, 1987) and numerous studies into the biochemical pathways establishing these 

fates (outlined in upcoming sections), made Xenopus an excellent system to study the 

molecular events underlying anterior nervous system patterning. While early inductive 

events to establish the neural plate have been well characterized, events that proceed to 

elaborate this pattern have remained unclear. It is known, however, that the patterning of 

the ectoderm to form the brain is intimately dependent on events preceding it to form and 

pattern the mesodermal and endodermal germ layers. Therefore, regionalization of the 

brain has its earliest basis in the events that establish the basic body axes. 

1.2.1 Establishment of the Dorsal-Ventral Body Axis 

The head represents the most anterior and dorsal part of the body plan. In Xenopus, 

development of the body axes is dependent on the formation of Spemann's Organizer, 

which is set up by the intersection of two processes before ga~trulation: dorsal-ventral 

polarization and mesendoderm induction (Harland and Gerhart, 1991; Nascone and 

Mercola, 1997; Nishita et al., 2000; Joubin and Stem, 2001). Establishment of dorso­

ventral polarity occurs during the first cell cycle following fertilization, by the 

corticocytoplasmic rotation (Gerhart et al., 1989; Elinson and Holowacz, 1995). The 

rotation causes the displacement of vegetal pole cytoplasm to the dorsal vegetal side of 

the embryo, which activates intracellular Wingless/Int-I (Wnt) signaling and subsequent 

translocation of J3-Catenin in the dorsal vegetal region (Holowacz and Elinson, 1995; 
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Marikawa et al., 1997; Moon and Kimelman, 1998; Brown et al., 2000; Chan and Etkin, 

2001). Thus, an early dorsal-to-ventral gradient of stabilized 13-Catenin is generated 

which specifies the dorsal-ventral axis of the embryo. Stabilized 13-Catenin molecules 

enter the nucleus and bind a transcriptional complex containing the co-regulator XTCF-3 

associated with promoter elements of the target genes (Hamilton et al., 2001). At the 

onset of zygotic transcription at the mid-blastula transition (MBT), these complexes 

activate transcription of dorsal-specific genes such as the homeobox genes siamois and 

twin, both associated with the vegetal organizing Nieuwkoop Center, which in turn 

directly activate genes specific to both head and trunk inducing regions in the overlying 

marginal zone. 

The mesendoderm is induced to form by a signal that emanates from the veg~tal 

pole, which induces endoderm in vegetal cells and mesoderm in the overlying marginal 

zone cells (Kimelman and Griffin, 2000). This signal is initiated by the maternal T-box 

transcription factor, VegT (Zhang and King, 1996), which activates several TGF-13 

superfamily members, including the Xenopus Nodal-related (Xnr) proteins and Derriere 

(Kofron et al., 1999; Xanthos et al., 2001). Transduction of the Xnr-mediated signal to the 

nucleus involves pathways typical of SMAD-dependent TGF-13 superfamily signaling 

(Hill, 2001; Whitman, 2001). In Xenopus, there is a proportional correlation between the 

strength of the SMAD signal with the concentration of stimulating ligand and consequent 

dorsal character of the induced tissue (Green and Smith, 1990; Gurdon and Bourillot, 

2001; Bourillot et al., 2002). Thus, a higher concentration of ligand is associated with 

activation of dorsal-type genes. In the embryo, this requirement is met by the interaction 
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of P-Catenin with Xnr signaling which regulates the onset and possibly stability or 

intensity of the induction signal on the dorsal side (Mao et al., 2001a; Xanthos et al., 

2002; Hashimoto-Partyka et al., 2003). Further, recent evidence demonstrates that the 

initiation of zygotic Xenopus Nodal expression is dependent upon early P-Catenin!fCF 

transcription occurring prior to the MBT (Yang et al., 2002b). The interaction of SMAD­

dependent TGF-P signaling with Wnt signaling illustrates the existence of functional 

cross-talk to establish the Spemann Organizer and subsequently the dorso-ventral axis of 

the embryo. 

1.2.2 Early Specification of the Organizer 

Early studies on the inductive properties of the organizer revealed that it is a non­

homogeneous tissue with distinct head and trunk inducing regions (reviewed in Harland 

and Gerhart, 1997). This was first demonstrated this using heterotopic transplantation of 

dorsal blastopore lips to the ventral flank or blastocoel of host embryos, which led to the 

formation of conjoined twins (Spemann and Mangold, 1924; Spemann, 1927 as cited in 

Hamburger, 1988; Chan and Etkin, 2001). The supernumerary axis had differing anterior 

to posterior character depending on the time after the start of involution, with young lips 

inducing heads and older lips inducing tails. In 1952, Nieuwkoop proposed that differing 

head or trunk inducing regions within the organizer existed based on different 

anterior/posterior distributions of a posteriorizing agent (transformer) that altered the 

positional identity of neuroectoderm established by a general anterior neural inducer 

(activator) (Nieuwkoop, 1952). 
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Regionalization of the organizer has been detected as early as late blastula stages 

with the establishment of the head inducing region in a position vegetal to the trunk 

inducing region by the onset of gastrulation (Zoltewicz and Gerhart, 1997; Figure 1.1). 

This regionalization has its earliest basis in the differential activity of both mesendoderm 

inducing TGF-P superfamily signals and the P-Catenin effector Siamois. Siamois, 

expressed in dorsal vegetal cells (Lemaire et al., 1995) and to a lesser extent in marginal 

and animal cells (Ding et al., 1998), acts within a short temporal window during early 

blastula stages to induce spatial- and concentration-dependent expression of genes of both 

the head and trunk organizers (Kofron et al., 1999). Such heterogeneity subdivides the 

gastrula organizer into three main domains, two of which directly contribute to head 

formation: the anterior (deep) endoderm, fated to form liver and the prechordal endo­

mesoderm, which gives rise to prechordal (head) mesoderm and pharyngeal endoderm. 

The third domain, the chordal mesoderm, induces trunk and is fated to form notochord. 

These domains are now fairly well characterized both morphologically and molecularly, 

with genetic profiles that are indicative of the associated inductive properties as well as 

prospective self-differentiation phenotype (Figures 1.1 and 1.2; reviewed in Harland and 

Gerhart, 1997; Niehrs, 1999; Chan and Etkin, 2001). 

1.2.3 Formation of the Head Organizer Requires Signals That Originate From the 

Anterior Endoderm (AE) 

The AE is derived from deep vegetal cells localized to the floor of the blastocoel 

and is topologically equivalent to the mouse anterior visceral endoderm (AVE), the chick 
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Figure 1.1. Differentiation of head organizer requires pregastrula interaction of the 

presumptive organizer with anterior endoderm. This figure illustrates the 

displacement of prospective anterior endoderm from deep within the vegetal half core to a 

position adjacent to the presumptive organizer by the process of vegetal rotation. It also 

shows the relative positions of anterior endoderm, prechordal mesoderm and 

chordamesoderm and their movement during gastrulation along the dorsal midline. 
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Figure 1.2. Expression patterns of secreted ligands and transcriptional regulators in 

the dorsal mesendoderm. Also indicated are the associated overlying anterior-posterior 

identities specified in the central nervous system of Xenopus. 
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hypoblast and zebrafish dorsal yolk syncytial layer, each with differing contributions to 

head formation (as reviewed in De Souza and Niehrs, 2000). The AE has been implicated 

in head induction after it was found to express the potent head inducer, Cerberus 

(Bouwmeester et al., 1996), as well as the fact that the AVE appears to be required for 

head induction in mouse. However, neither heterotopic transplantation nor ablation of the 

AE following the onset of gastrulation has demonstrated that it has distinct head inducing 

activity (Bouwmeester et al., 1996; Bradley et al., 1996; Schneider and Mercola, 1999), 

nor was it capable of neuralizing narve ectoderm (Bouwmeester et al., 1996; Gamse and 

Sive, 2001 ). Quite possibly, the prospective AE functions prior to gastrulation, at a time 

when surgical manipulation is difficult. Consistent with this is the expression in the 

region, before gastrulation, of genes encoding inhibitors that are implicated in anterior 

specification, such as Cerberus (Cer), Hex, Dickkopf (Dkk-1) and Frizbee-1 (Frzb-1) 

(Figure 1.2, Table 1.1 ). 

How then, does the AE influence head development? Following their 

establishment in centrally located deep endoderm, the Cerberus and Hex expressing 

prospective AE cells move from the central blastocoel floor to the dorsal side (Jones et al., 

1999) via a pre-gastrula morphogenetic event, "vegetal rotation", a rearrangement of the 

vegetal cell mass that leads to expansion of the blastocoel floor and movement of the 

prospective AE in close apposition to the Organizer (Winklbauer and Schfirfeld, 1999), 

where it becomes the AE proper (Figure 1.1 ). BMP antagonists from the organizer 

(Noggin and Chordin, Table 1.1) maintain Cerberus and Hex expression in the AE to 

perpetuate this anterior signal (Zorn et al. , 1999). 
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T bl 11 A t .tiPrtn . E b •ptt a e . . n agoms c a ersm m lryODIC a ernmg 
Extracellular Antagonist Target(s) Reference(s) 
Cerberus BMP4, Xwnt8, Xnr1 Nishita et al., 2000 
Frzb-1 Xwnt8, Xwntl Leyns et al., 1997; Wang et al., 

1997a/b 
Dickkopf-1 Xwnt3a, Xwnt8 Glinka et al., 1998; Kazanskaya 

et al., 2000 
WIF-1 Xwnt8 Hsieh et al., 1999 
Noggin BMP4 Zimmerman et al., 1996 
F ollistatin BMP2,B~4,B~7 Iemura et al., 1998; Fainsod et 

al., 1997 
Chordin BMP4 Piccolo et al., 1996 
Xnr3 BMP4 Hansen et al., 1997 
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Early Nodal-related signaling is required for the establishment of head organizing 

genes within the prechordal endo-mesoderm, but subsequently must be antagonized by 

inhibitors, such as Cerberus, to enable head formation (Piccolo et al., 1999; Lee et al., 

2001; Silva et al., 2003). Thus, the translocated anterior endoderm, through secretion of 

Cerberus, may titrate Nodal signals in prospective head organizer (prechordal 

endomesoderm), which in turn provides BMP inhibitors to maintain the AE. This is likely 

the first complementary antagonistic interaction in the generation of distinct head and 

trunk organizers (Fetka et al., 2000). 

In Xenopus, the AE may be necessary, therefore, not directly for anterior neural 

induction, but for establishment of the head organizer through inhibition of trunk 

inducing activity. Hex, for instance, is expressed in the AE and can achieve this function 

non-autonomously through its ability to induce expression of cerberus in the AE (Jones et 

al., 1999; Zorn et al., 1999) that will act on adjacent prechordal mesendoderm. In addition, 

Hex can act autonomously by repressing trunk organizer markers, such as goosecoid and 

chordin (Brickman et al., 2000). A similar repression activity was described for the zinc 

fmger transcriptional regulator, XBlimp1 (De Souza et al., 1999). 

1.2.4 The Prechordal Endo-mesoderm as Head Organizer 

Nestled between the anterior endoderm and chordamesoderm is the prechordal 

endo-mesoderm, a potent head inducing region (reviewed in Kiecker and Niehrs, 2001a). 

During gastrulation, the prechordal endo-mesoderm moves anteriorly beneath the 

prospective neurectoderm until it lies under the anterior neural plate and forms the 
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prechordal plate (Figure 1.1 ). Heterotypic grafting experiments in 1933 by Otto Mangold 

(as cited in Niehrs, 1999) and later ablation studies (Schneider and Mercola, 1999) 

indicated that the prechordal plate is absolutely required for inducing forebrain and eyes 

in the overlying neural plate. Mediating this role are several potent head inducers 

expressed in the prechordal plate (Figure 1.2) such as Dkk-1 and Frzb-1 (Leyns et al., 

1997; Wang et al., 1997a; Glinka et al., 1998). While the chordamesoderm is primarily a 

trunk organizer, its signals are also required to specify caudal brain structures. Anterior 

chordamesoderm, as part of the head organizer, specifies the mid-hindbrain while 

posterior chordamesoderm, as part of the trunk organizer, specifies spinal cord (Niehrs, 

1999). 

1.2.5 Maintenance of Non-homogeneous Organizer 

The maintenance of distinct head and trunk inducing centres requires a balance of 

Xnr, Wnt and BMP signals and their associated antagonists. As mentioned above, both 

Wnt and Xnr signaling are required early to cooperatively induce the head and trunk 

organizers, but subsequently, in conjunction with BMP signals, their antagonism by 

anterior endoderm is necessary to delimit the head organizer. This antagonism 

distinguishes head and trunk inducing regions and maintains head organizer identity. In 

fact, simultaneous BMP and Wnt inhibition is sufficient to convert mesoderm into 

prechordal plate while the coordinated inhibition of Nodal-related, BMP and Wnt proteins 

is required for complete organization of the head as shown by the trivalent inhibitor 

Cerberus (Glinka et al., 1997; Glinka et al., 1998; Piccolo et al., 1999; Silva et al., 2003). 
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Several Wnt antagonists are expressed within the head organizer itself (Figure 1.2). 

These are necessary for formation of head structures by inhibition of post-MBT ligand­

dependent Wnt signaling, the second phase ofWnt signaling in the embryo (subsequent to 

Wnt signaling that establishes the Nieuwkoop center) which antagonizes organizer 

mesendoderm and posteriorizes the neurectoderm (reviewed in Niehrs, 1999). Thus, when 

Xwnt8 was overexpressed in embryos after the MBT, the embryos lacked heads and 

notochords but had over-represented somitic muscle (Christian and Moon, 1993). 

Inhibition of X wnt8 generated the opposite effect, whereby the embryos had 

enlarged heads and notochords at the expense of somitic muscle (Hoppler et al., 1996). 

The highest concentration of Wnt antagonists lies within the head organizer .where their 

expression originates, indicating that the absence of Wnt signals in this region defines the 

head organizer, while a lower level of antagonism in the chordamesoderm is required to 

specify trunk organizer. In fact, Dkk-1 expression in anterior mesendoderm was found to 

be both necessary and sufficient for specification of the head organizer (Glinka et al., 

1998; Kazanskaya et al., 2000). Wnt antagonism, therefore, is not only vital for 

maintaining a balance between non-organizer and organizer mesoderm, but also for 

maintaining the balance within the organizer between head and trunk inducing 

mesendoderm. 

Recent evidence indicates that ventral BMP signaling, through activation of 

Xmsx1, suppresses the possibility of head structures developing ventrally by direct 

inhibition of Nodal-related induction of Cerberus, Hex and Dkk-1 (Yost, 1998), which are 

normally expressed in the anterior endoderm. BMP signaling also coordinately 

upregulates a pseudoreceptor, Bambi, which negatively regulates not only its own activity, 
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but also that of Nodal and Activin by preventing formation of activated TGF-P 

superfamily receptor complexes (Onichtchouk et al., 1999). Therefore, the ventral to 

dorsal gradient of BMP plays a role in maintaining the dorsal to ventral pattern of Xnr 

induced tissues to define and spatially restrict the Organizer, while antagonism of BMP 

signals by Organizer-derived inhibitors (Figure 1.2) is required to maintain both head (J.Ild 

trunk structures. 

V entralizing BMPs, therefore, help maintain the correct proportions of Organizer 

and non-Organizer mesoderm, while other BMP family members play a role in Organizer 

specification and differentiation. For example, the persistence of distinct, abutting, 

organizing centers involves a BMP family member, ADMP or anti-dorsalizing­

~orphogenic-protein. ADMP is expressed in chordamesoderm and antagonizes 

prechordal markers in that tissue possibly through repression of anti-Wnts (Dosch and 

Niehrs, 2000). Nodals, Wnts and ADMP in the trunk organizer may inhibit head marker 

expression and promote trunk de"Velopment while the head organizer secretes anti-Wnts 

(Cerberus, Dkk-1, Frzb-1, WIF-1, sFRP-1, 2) and anti-Nodal (Cerberus) to inhibit trunk 

while promoting head development (Dosch and Niehrs, 2000). Therefore, the coordinated 

action of BMPs, WNTs, Nodals and their associated antagonists defme distinct head and 

trunk organizer regions by the onset of mesendoderm involution. 
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1.3 NEURAL INDUCTION 

1.3.1 Pre-gastrula Specification 

The majority of the neural plate is induced by signals derived from the organizer, 

except for ventral midline cells, also called the notoplate, which express the winged helix 

transcriptional regulator, Xfd-12' (Fetka et al., 2000). Notoplate cells are specified in the 

dorsal non-involuting marginal zone prior to induction of the prospective neural plate, 

possibly by Nodal-related ligands during mesendoderm induction. During pregastrula 

morphogenesis, at the same time during which the anterior endoderm is moved to the 

dorsal side by vegetal rotation, the animal hemisphere thins and stretches by epiboly, 

driving cells vegetally and translocating the future notoplate cells to the organizer in a 

domain abutting the prospective notochord (Fetka et al., 2000). These notoplate and 

notochord precursors are marked by their expression of Xfd-12' and Xbra, respectively, 

both of which are dependent on FGF signaling (Smith et al., 1991; Isaacs et al., 1994; 

Latinkie et al., 1997; Fetka et al., 2000). These tissues are also required for convergent 

extension movements during gastrulation that are regulated by Wnt signaling (Isaacs et al., 

1994; Schulte-Merker and Smith, 1995; Fetka et al., 2000; Tada and Smith, 2000). At the 

onset of gastrulation, prospective notoplate cells undergo extensive mediolateral 

intercalation to bisect the basal neural plate anlage and position themselves along its 

ventral midline (Keller et al., 1992). 

Induction of the remaining neural plate primordium occurs by vertical organizer­

derived signals as the organizer migrates anteriorly beneath the prospective neural plate 
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during gastrulation. These signals neuralize the ectoderm through inhibition of the default 

epidermal fate by antagonizing extracellular BMP (reviewed in Weinstein and Hemmati­

Brivanlou, 1999). However, ablation of the vertebrate organizer does not result in 

complete extinction of the neural plate (Harland, 2000), consistent with the observation 

that additional non-vertical processes acting through the plane continuous with the 

organizer and neural plate are involved in neural specification and patterning at a time 

prior to gastrulation (Doniach et al., 1992). Since dorsal ectoderm is already specified to 

form anterior neuroectoderm by late blastula stages, before the organizer has completely 

formed or undergone morphogenesis (Sharpe et al., 1987; London et al. , 1988; Dixon and 

Kintner, 1989; Guthrie, 1991), it is possible that the planar signal acts through pregastrula 

suppression ofBMP signaling in dorsal animal cap cells . 

Recent studies have found that pregastrula asymmetry in the ectoderm results 

from dorsally stabilized J3-Catenin established following fertilization. Firstly, ectopic Wnt 

signaling represses transcription of bmp4 and concomitantly induces neural-specific 

markers in Xenopus ectoderm via a mechanism occurring outsid~ the normal induction of 

the Wnt-responsive neuralizers, Xnr3 and Siamois (Baker et al., 1999). Thus, these pre­

MBT Wnt signals actually repress bmp mRNA expression to establish a domain of 

prospective neuroectoderm in the dorsal animal hemisphere, possibly acting to increase 

sensitivity to neuralizing signals from the organizer. Secondly, dorsally localized J3-

Catenin activates early (blastula) expression of extracellular BMP antagonists such as 

Chordin, Noggin, Follistatin and Xnr3 in a "pre-organizer" region spanning the future 

organizer and possibly prospective neuroectoderm, independently of mesendoderm 
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induction (Wessely et al., 2001). This activation is most likely mediated by the early 

activity of Siamois (Kodjabachian and Lemaire, 2001). Thirdly, cleavage stage Wnt 

signaling establishes asymmetry in expression of the anti-neural homeodomain protein 

Dlx3 , which becomes localized to ventral ectoderm while being repressed dorsally by 

early J3-Catenin (Beanan et al., 2000). The exclusion of this anti-neural factor from 

prospective neuroectoderm further adds to the pro-neural bias of pre-gastrula J3-Catenin 

activity, and strengthens the idea that the dorsal ectoderm is predisposed by the 

corticocytoplasmic rotation. 

Therefore, the extracellular inactivation of BMP through planar signaling from the 

pre-organizer, in conjunction with J3-Catenin-dependent intracellular depletion of bmp 

.and dlx3 transcripts, represent the earliest events in neural plate formation. Subsequently, 

Nodal-related signaling required for generation of the mesendoderm maintains expression 

of the BMP antagonists. in the mature organizer. Their vertical secretion from 

mesendoderm to overlying prospective neurectoderm during gastrulation is required for 

maintenance and proper patterning of the pre-specified neural plate. These studies 

underscore the importance of the combined action of planar and vertical signaling from 

the organizer to generate a fully patterned nervous system (Brewster and Dahmane, 1999). 

1.3.2 Neuralization 

By the onset of gastrulation, limited anterior-posterior (AP) character is bestowed 

upon the prospective neuroectoderm (Gamse and Sive, 2001). However, the extensive 

complexity of the vertebrate nervous system is stabilized and organized by signals 
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emanating from underlying mesendoderm as it migrates and extends along the AP axis 

during gastrulation. The non-homogeneous nature of the organizer imparts positional 

character onto cells of the neural plate by establishing longitudinal and lateral domains of 

gene expression, which generate forebrain, midbrain, hindbrain and spinal cord ( Gamse 

and Sive, 2001) (Figure 1.2). 

Contraction of dorsal bottle cells that initiate upper blastopore lip formation 

triggers extensive morphogenetic rearrangement of tissues derived from each of the germ 

layers. AE is driven ahead of these involuting cells (Figure 1.1). In chick, this activity 

directs cell movements in the overlying ectodermal cells of the anterior-most neural plate 

that give rise to forebrain (Foley et al., 2000), physically segregating them from the 

caudalizing influence of the organizer (Foley and Stem, 2001). However, post-blastula 

ablation of Xenopus AE affected heart but not head formation (Schneider and Mercola, 

1999), indicating a possible absence of further involvement of this tissue after organizer 

formation. 

The AE may function alternatively in conjunction with the superficial epithelial 

cells (SBE-suprablastoporal endoderm) directly overlying the dorsal blastoporal lip 

(Smithers and Jones, 2002), which become internalized during gastrulation to form the 

anterior archenteron roof and subsequent epithelial lining of the gut (Keller, 1975; Shih 

and Keller, 1992). The SBE cells were found to transiently express XHex at the onset of 

gastrulation (Jones et al., 1999) and targeted morpholino knockout of XHex in animal 

cells generated severe anterior deletions (Smithers and Jones, 2002). Further, morpholino 

knockdown of Cerberus in the SBE demonstrated its requirement in this tissue for 

induction of anterior neural character when conjugated with dorsal ectodermal explants 
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(Silva et al., 2003). Since the SBE is the earliest group of cells to involute and co-migrate 

with the AE beneath the ectoderm during gastrulation, it may function in combination to 

impart or maintain anterior identity that has been induced or physically segregated from 

more posterior tissues by the AE. A similar function was proposed for the corresponding 

mouse tissue, the anterior definitive endoderm (ADE), whose maintenance properties 

were believed to compliment the inducing properties of the AVE (Acampora et al., 1995~ 

Beddington and Robertson, 1999~ Shawlot et al., 1999~ Martinez-Barbera et al., 2000). 

This cooperative function of these two tissues may explain why extirpation studies failed 

to show any dependence of the AE on head formation. 

Following the AE and SBE, the cells of the presumptive prechordal plate exhibit 

spreading behavior on the ceiling of the blastocoel to occupy a position beneath the future 

forebrain (Figure 1.1). Further posteriorly, the chordamesoderm undergoes extensive 

medio-lateral intercalation which extends the body plan along the AP axis and positions 

its anterior end beneath the mid-hindbrain and its posterior end beneath the spinal cord 

(Figure 1.1) (Keller, 1975~ Keller, 1976~ Keller and Tibbetts, 1989). 

Neural induction results from inhibition ofBMP signaling mediated via BMPs 

-2,-4,-7 and GDF6 within the prospective neurectodenn (Hawley et al., 1995~ Hemmati­

Brivanlou and Thomsen, 1995~ Dale and Jones, 1999). The organizer provides the 

inhibitory signal by secreting B!vfP antagonists as it migrates anteriorly. Thus neural 

induction can be considered a developmental switch of ectoderm from an epidermal fate 

to the default neural fate resulting from active suppression ofB!vfP signaling (reviewed in 

Weinstein and Hemmati-Brivanlou, 1999) and concomitant alteration of the gene 

expression profiles as shown using microarray analysis (Munoz-Sanjuan et al., 2002). The 
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organizer-mediated extracellular sequestration of BMPs is stronger along the ventral 

midline, creating a slight morphogen gradient with the lowest levels of BMP signaling 

medially, higher levels at the lateral most edges of the neural plate and the highest levels 

in flanking epidermis. Intermediate BMP signaling is required to specify tissues found at 

the epidermal-neural border such as the cement gland (Wilson et al., 1997) and neural 

crest (Marchant et al., 1998). 

Inhibition of BMP signaling may not be the only requirement for neural induction. 

The existence of a constitutive low strength FGF signal in ectodermal cells suggests that 

it is required for anterior neural induction following BMP depletion. This pre-condition 

would otherwise be either overcome by high levels of BMP signal for an epidermal fate 

or act in concert with lower BMP levels for cement gland fate (Hongo et al., 1999). 

1.3.3 Establishment of Anterior-Posterior Pattern 

The induction of neuroectoderm is intertwined with its AP patterning such that by 

late gastrula a neural plate is determined with a defined AP axis. This process involves a 

set of events that originate within the late blastula and continues through gastrula stages 

to progressively define and redef'me gene expression patterns that provide positional 

identity. The dorsal ectoderm at the blastula stage is already specified as an anterior 

domain, resulting from planar signaling from the "pre-organizer region" (Gamse and Sive, 

2001 ). Once gastrulation is initiated, two domains of AP character are soon established 

within the presumptive neuroectoderm: an anterior domain expressing the pan-neural 

marker opl and the anterior-specific marker otx2 (forebrain); and a domain that is 
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additionally expressing the more posterior marker fkh5, but not the hindbrain or spinal 

cord marker hoxDJ (Gamse and Sive, 2001). At this stage, however, no stable neural 

determination has occurred, with presumptive neuroectoderm still capable of forming 

epidermis (Jacobson and Rutishauser, 1986~ Jones and Woodland, 1989~ Sive et al., 

1989). 

By mid-gastrula, the prospective neural plate has become determined (Sive et al., 

1989~ Sive et al., 1990~ Saba and Grainger, 1992), and exhibits a more elaborate AP 

pattern of three expression domains: an anterior domain (opl, otx2), a middle domain (opl, 

jkh5) and a posterior domain (opl, fkh5, hoxDJ) (Gamse and Sive, 2001). Additional 

positional markers expressed at these time-points further defme these domains ( Gamse 

and Sive, 2000) and demonstrate the sequential process of AP patterning that occurs 

concomitantly with neuralization. Differential exposure to quantitatively and qualitatively 

different secretory molecules derived from the underlying non-homogeneous organizer 

induces distinct spatial expression patterns of these positional markers while at the same 

time cumulatively inducing general pan-neural markers (Gamse and Sive, 2001). 

1.3.4 Wnt Antagonism Imparts Anterior-Posterior Polarity to the Neuraxis 

The transforming signals that provide AP polarity to the neuraxis primarily 

involve Wnt antagonists (Cer, Dkk-1, Frzb-1, sFRP-1, 2, WIF-1), which are expressed at 

high levels in the prechordal plate and anterior chordamesoderm (Figure 1.2) 

(Bouwmeester et al., 1996~ Leyns et al., 1997; Wang et al., 1997a; Glinka et al., 1998; 

Hsieh et al., 1999). Differential exposure to these anterior signals during gastrulation and 
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upon fmal positioning under the neural plate generates a gradient of posteriorizing Wnt/13-

Catenin signals in the overlying neuroectoderm (Kiecker and Niehrs, 200lb). By late 

gastrula the Wnt gradient specifies a rudimentary AP pattern within the neuraxis that 

becomes refmed, possibly through secondary cell-cell interactions, during neurula stages 

(Kiecker and Niehrs, 2001 b). 

An absent or low level of Wnt signaling specifies the forebrain, while increasing 

levels of Wnts are required to specify increasingly posterior character. According to this 

model, the neural plate is innately fated to become anterior forebrain (telencephalon) and 

must be transformed by Wnt signals to posterior forebrain (diencephalon), midbrain, 

hindbrain and spinal cord. This process likely involves the interplay of multiple Wnt 

ligands and their associated antagonists. For instance, paraxial mesoderm derived Wnt8 

(Christian and Moon, 1993; Bang et al., 1999) and chordamesodermal Wnt3a (McGrew et 

al., 1997), both exhibit long range signaling (Kiecker and Niehrs, 2001b) and so may 

diffuse from these sources to generate a gradient within the gastrula neural plate. In 

addition, several Wnts are expressed more widely within the dorsal gastrula ectoderm, 

including Wnt3a (McGrew et al., 1997), Wnt7b (Chang and Hemmati-Brivanlou, 1998) 

and Wnt8b (Cui et al., 1995), which can act as the posteriorizing signal. 

Depletion of the numerous Wnt ligands potentially present in both the head 

organizer and overlying neurectoderm requires antagonists of differing specificities. Dkk-

1, which is both necessary and sufficient for promoting prechordal plate development, 

binds different Wnt ligands than Frzb-1 (Kazanskaya et al., 2000). This differential 

affinity enables Dkk-1 to specify the anterior most endomesoderm, which subsequently 
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patterns the ventral fore-midbrain (Kazanskaya et al., 2000). It is for this reason that Dkk-

1, unlike other Wnt antagonists such as Frzb-1, dnWnt8 and Cerberus, in conjunction 

with BMP inhibitors, induces secondary heads with two eyes rather than one 

(Bouwmeester et al., 1996; Glinka et al., 1997; Glinka et al., 1998). Once gastrulation has 

completed, the prechordal plate lies beneath the fore-midbrain where it specifies ventral 

fate. This is necessary for development of the ventral fore-midbrain cell types and cement 

gland, and the splitting of the eye field (Li et al., 1997). The importance of Dkk-1 in 

formation of ventral forebrain also supports the idea that Wnt signaling is involved not 

only in posteriorization but also dorsalization of the neural tube. Therefore, antagonism of 

Wnt signaling is required in the neuroectoderm to generate anterior ventral cell types, but 

must be preceded by proper specification of anterior endomesoderm endowed with the 

inductive properties of the head organizer. 

While inhibition of canonical Wnt/J3-Catenin signaling is necessary for 

specification of both the anterior neural plate and underlying endomesoderm, proper 

migration and positioning of the prechordal plate or anterior midline cells is also required. 

This involves a balance between non-canonical Wnt signaling (J3-Catenin independent), 

possibly involving the Wnt 11 class of ligands (Wnts 4, Sa, 11) and their antagonists such 

as Crescent (Pera and De Robertis, 2000), also known as Frzb-2 (Bradley et al., 2000). In 

fact, overexpression of Crescent, normally expressed in deep endoderm and prechordal 

endomesoderm, leads to a loss of ventral brain structures and fusion of the eyes due to 

disrupted anterior progression of axial mesendoderm during gastrulation (Bradley et al., 

2000; Pera and De Robertis, 2000). Crescent appears to regulate non-f3-Catenin 
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dependent signaling by Wnts involved in cell morphogenetic events, implicating a role 

for Wnts and their antagonists not only in specification, but also migration of prechordal 

endomesoderm, both of which are necessary to establish a ventro-anterior brain 

phenotype. 

1.3.5 Molecular Characteristics of Wnt Antagonists 

The spatial restriction of the multiple Wnt ligands along the neuraxis involves 

antagonists derived from the anterior endoderm (Cerberus, Dkk:-1), prechordal 

endomesoderm/anterior chordamesoderm (Frzb-1, Dkk:-1, sFRP-1, 2, WIF-1) and paraxial 

presomitic mesoderm (WIF-1) (Bouwmeester et al., 1996; Leyns et al., 1997; Wang et al., 

1997a; Glinka et al., 1998; Hsieh et al., 1999). The three primary head inducers, Cerberus, 

Frzb-1 and Dkk:-1, each are structurally different, with overlapping yet distinct activities. 

Frzb-1 belongs to the frizzled-related protein (sFRP) family of secreted proteins that have 

a cysteine-rich domain (CRD), which is highly homologous to the Frizzled (Wnt-receptor) 

ligand binding domain (Rattner et al., 1997). This permits direct binding and 

sequestration of extracellular Wnt8 and Wnt1 proteins (Leyns et al., 1997; Wang et al., 

1997a; Wang et al., 1997b). Similar binding also occurs with structurally dissimilar 

Cerberus and WIF-1, both shown to directly bind Wnt8 (Hsieh et al., 1999; Piccolo et al., 

1999). 

Dkk:-1 is unique in that it shows a distinct mode of action through inhibitory 

interactions with a Wnt coreceptor, the LDL-receptor related protein (LRP 5/6) (Zorn, 

2001). Activation of the intracellular canonical Wnt/J3-Catenin is considered to involve 

Wnt binding to both the Frizzled receptor and membrane bound LRP 5/6 to form a 
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functional ligand-receptor-coreceptor complex (Pinson et al., 2000; Tarnai et al., 2000; 

Wehrli et al., 2000; Mao et al., 2001a). Dkk proteins bind to the extracellular domain of 

LRP 5/6 with a higher affmity than Frizzled and blocks formation of active trimeric Wnt­

Frizzled-LRP 5/6 complexes (Balfico et al., 2001; Mao et al., 2001b; Semenov et al., 

2001). This unique mode of inhibition may account for the selective specificity of Dkk-1 

for Wnt8 and Wnt3a (Glinka et al., 1998; Kazanskaya et al., 2000), recapitulating the 

importance of the inhibitors having different specificities to cooperatively antagonize 

multiple Wnt ligands. 

1.3.6 Wnt Signaling Patterns the Brain 

While Wnt signaling must be antagonized to allow proper specification of the 

forebrain and eyes, there is emerging evidence that components of this pathway are 

involved in its later patterning (Patapoutian and Reichardt, 2000; Kim et al., 2001). My 

findings, as described in chapter 3 (Lake and Kao, 2003b), show that the novel Wnt 

pathway components Xenopus Pygopus (XPygo )-2a. and -2P, suggested to mediate Wnt 

transcription through chromatin remodeling (Belenkaya et al., 2002; Kramps et al., 2002; 

Parker et al., 2002; Thompson et al., 2002), are differentially expressed within the 

developing brain; Xpygo-2P is expressed within the retinal field and Xpygo-2a is 

expressed throughout the prospective brain and eyes. Antisense morpholino (MO) 

knockdown experiments demonstrated that these differentially expressed Xpygo-2 

isoforms establish unique expression domains of both Wnt-responsive and previously 

believed Wnt-independent patterning genes required for correct AP patterning of the fore-, 
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mid-, and hindbrain. Further, only a subset of Wnt regulated markers were affected by 

antisense knockdown of these isoforms, indicating that not all Wnt-responsive markers 

require XPygo-2 activity. Thus differential expression along the neural tube of multiple 

XPygo isoforms may provide additional means of AP patterning by Wnt signaling in 

addition to variable local Wnt ligand concentrations. This will be discussed further in 

chapter 3. 

1.3.7 Non-Wnt Dependent Anterior-Posterior Neural Patterning 

Wnt signaling is not the only means of posteriorization, as BMPs, FGFs and 

retinoic acid (RA) have been implicated in this process (Sasai and De Robertis, 1997; 

Gamse and Sive, 2000; Altmann and Brivanlou, 2001 ). Low doses of BMPs posteriorize 

neuroectoderm (Dale et al., 1992; Jones et al., 1992), but in a Wnt-dependent manner 

(Kazanskaya et al., 2000). Aside from induction, at low levels, of anterior neural fate 

coincident with BMP antagonism, organizer derived FGF signaling subsequently imparts 

anterior-posterior positional identity to neural tissue through a posteriorizing mechanism 

that is intimately tied to the Wnt/J3-Catenin pathway (McGrew et al., 1997; Holowacz and 

Sokol, 1999; Kazanskaya et al. , 2000; Domingos et al., 2001). 

Independent of Wnt signaling (Kazanskaya et al., 2000), RA provides positional 

identity primarily to hindbrain and spinal cord (Blumberg et al., 1997; Kolm et al. , 1997). 

The availability of bioactive retinoids involves the cooperative action of two enzymes, 

RALDH-2 and CYP26. RALDH-2 is present in the posterior mesoderm of a gastrula 

embryo with a sharp border of expression at the level of the first anterior somite (Chen et 
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al. , 2001) and generates RA from retinaldehyde. On the other hand, CYP26, present in the 

gastrula prechordal mesoderm and overlying prospective anterior neural plate (Hollemann 

et al. , 1998; De Roos et al. , 1999), breaks down RA and may promote its clearance 

(White et al., 1996). Together these enzymes generate the appropriate boundaries of RA 

necessary to establish proper rhombomeric division of the hindbrain. The absence of RA 

in the anterior neural plate is required to promote appropriate development of this tissue 

through a mechanism of unliganded RAR-mediated repression of target genes (Koide et 

al., 2001). 

A recent study has provided a model to tie together the posterior-promoting roles 

of Wnts, FGFs and RA to establish the proper neurectodermal AP pattern (Kudoh et al., 

2002). Both FGFs and Wnts suppress anterior genes otx2 and cyp26 independently ofRA 

and, through restriction of cyp26 expression to rostral structures, promote posterior gene 

expression dependent on RA activity (Kudoh et al., 2002). Therefore, during gastrulation, 

Wnt and FGF signals were proposed to posteriorize neurectoderm through repression of 

the RA-suppressing enzyme (CYP26) and provide, through this anterior suppressing 

mechanism, the correct balance of RA-processing enzymes necessary to establish the AP 

pattern of RA-dependent neural markers. 

1.2.8 Establishment of Dorsal-Ventral Pattern 

Establishment of the Anterior-to-Posterior (AP) and Dorsal-to-Ventral (DV) 

neuraxes are independent events, with AP patterning intertwined with neural induction 

during and preceding gastrulation to establish AP fate at open plate stages. Signaling for 
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DV fate occurs later, after neural tube closure (reviewed in Altmann and Brivanlou, 2001). 

Signals from flanking, non-neural ectoderm and underlying mesendoderm establish dorsal 

to ventral oriented neuronal subtypes along the transversely segmented forebrain, 

midbrain, hindbrain and spinal cord. The epidermal signals, including BMP and Wnt 

ligands, initially induce lateral neural plate to give rise to neural crest and roof plate upon 

neural tube closure, the latter of which acts as a dorsal signaling center to generate a 

ventrally diffusing gradient of BMP signaling that, in conjunction with Wnt and FGF 

signals, specifies dorsal neuronal cell types (Lee and Jessell, 1999; Manzanares and 

Krumlauf, 2000; Altmann and Brivanlou, 2001; Wu et al., 2003). 

The ventralizing signal derived from prechordal plate and notochord involves 

Sonic hedgehog (Shh; Ericson et al., 1995; Hynes et al., 1995; Marti et al., 1995a/b; 

Roelink et al., 1995; Wang et al., 1995; Chiang et al., 1996; Kohtz et al., 1998) and 

Nodal-related ligands (Muller et al., 2000; Rohr et al., 2001; Rastegar et al., 2002; 

Hayhurst and McConnell, 2003) ~at induce the ventral midline or floor plate. The floor 

plate subsequently generates a dorsally diffusing Shh gradient within the neural tube that 

acts as a spatial code for DV homeodomain gene expression needed to specify ventral 

neuronal progenitors (McMahon, 2000; Altmann and Brivanlou, 2001; Semenov et al., 

2001). Work presented in chapter 2 (Lake et al., 2001) suggests that members of the 

Rel/NF-KB family of transcriptional regulators may be involved in ventral midline 

patterning. Ectopic expression of Xrel3 results in epidermal tumours that express ventral 

midline markers shh and glil (Lake et al., 2001) and a dominant negative version of 

Xrel3 caused shh and glil RNA-deficient embryos (chapter 2). 
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While the above paradigm is generally true for DV axial specification along the 

neural tube posterior to and including the midbrain, patterning of the forebrain seems to 

be more complex. BMP signaling dorsalizes the posterior CNS and cooperates with Shh 

to induce ventral fate within the forebrain (Dale et al., 1997). However, Shh retains a 

consistent role in specifying ventral identity, since it is shown in chapter 2 that a loss of 

shh expression by a Rel!NF-KB inhibitor generates ventral midline abnormalities such as 

the inability to split the initially single eye field to form two bilateral eyes (Lake et al., 

2001), consistent with studies in mouse (Chiang et al., 1996; Hayhurst and McConnell, 

2003). 

Since the requirement for BMP signaling in the brain is restricted, its expression 

continues to be suppressed during neurula stages to establish discrete domains of activity 

that may further define expression boundaries of neural identity genes for specific 

populations of neuronal progenitor cells (Hartley et al., 2001). In support of this, several 

inhibitors of bmp transcription (BF1, Xiro, Geminin) are expressed in defmed domains of 

the anterior CNS (Kroll et al., 1998; Mariani and Harland, 1998; Gomez-Skarmeta et al., 

2001). These may restrict the suppressive activity of BMPs to defmed domains that 

ultimately delineates the expression patterns of numerous neural markers. A similar 

process may also be involved for Wnt signaling, since gradients of Wnt receptors and 

antagonists are expressed in the developing mouse telencephalon (Kim et al., 2001) and 

sequential Wnt and FGF signaling has been shown to specify dorsal character in the chick 

telencephalon (Gunhaga et al., 2003). 
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The complexity of the forebrain requires numerous factors to establish its intricate 

pattern of neuronal populations. Consistently, a novel secreted glycoprotein, Tiarin, has 

been identified that is expressed in the non-neural ectoderm surrounding the anterior 

neural plate and acts to dorsalize the neural tube independently of Shh, BMP and Wnt 

signals (Tsuda et al., 2002). Therefore, multiple signaling pathways collide to pattern the 

vertebrate CNS along both the AP and DV neuraxes. 

1.3.9 Secondary Brain Organizers 

As described, early planar and vertical signals from the mesendoderm establish 

the basic AP pattern within the neurectoderm, defining broad territories of the forebrain, 

midbrain and hindbrain. However, as morphogenesis proceeds, the complex 

interconnected spatial and temporal neural proteome establishes transverse subdivisions 

of the forebrain into prosomeres and hindbrain into rhombomeres. In the forebrain, the 

superimposition on the established AP neuraxis of longitudinally aligned domains created 

by medial-lateral (ventral-dorsal) patterning generates a checkerboard or grid-like 

organization of the prosencephalic primordia (Bulfone et al., 1993; Figdor and Stem, 

1993; Puelles and Rubenstein, 1993; Rubenstein et al., 1994; Hauptmann and Gerster, 

2000). Refinement and additional complexity of this fundamental pattern requires planar 

signals from three secondary organizing centers formed at the junctions of specified 

territories . Cooperative cellular interactions at these boundaries are believed to produce 

molecular signals with unique inductive capabilities (Meinhardt, 1983). 
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The three main organizers present within the vertebrate central nervous system are: 

the anterior neural ridge (ANR), the zona limitans intrathalamica (ZLI) and the isthmic 

organizer (IsO). The ANR exists at the junction of the anterior neural plate and non­

neural ectoderm (Couly and Le Douarin, 1988; Eagleson et al., 1995), encompassing the 

first row of neural plate cells in zebraftsh (row 1), and is required for anterolateral gene 

expression within the prospective forebrain (Shimamura and Rubenstein, 1997; Houart et 

al., 1998; Shanmugalingam et al., 2000). The ANR in mice is characterized by its 

expression of FGF8 which initiates the expression of BF1 (Shimamura and Rubenstein, 

1997), a transcriptional regulator required for growth and regional specification of the 

telencephalic and optic vesicles (Xuan et al., 1995). Interestingly, Wnt signaling may also 

play a role in this process since, as shown in chapter 3, Xbfl expression was found to be 

dependent on XPygo-2 within the anterior-neural plate (Lake and Kao, 2003b ). This is 

consistent with recent studies showing coordinated actions of Wnt and FGF signaling in 

specifying dorsal telencephalic ide~tity in the chick (Gunhaga et al., 2003). 

While better characterized in mouse and zebrafish, the ANR recently has been 

found to play a conserved role in patterning and regionalizing the telencephalon and 

anterior-most diencephalon in Xenopus (Eagleson and Dempewolf, 2002), a region, as in 

mouse, encompassing neurectoderm anterior to the ZLI (Shimamura and Rubenstein, 

1997). The ZLI, in mice, is positioned between dorsal (prosomere 2) and ventral 

(prosomere 3) thalamus (Rubenstein et al., 1994). This boundary was postulated to act as 

a morphogenetic barrier to segregate regions of different competence and prevent cell 

lineage mixing (Martinez et al., 1991; Marin and Puelles, 1994; Larsen et al., 2001) while 

also acting as a morphogenetic source since it expresses the secreted protein Shh 
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(Echelard et al., 1993; Puelles and Rubenstein, 1993; Bally-Cuif and Wassef, 1995; Marti 

et al., 1995a). In chapter 2, it is shown that anterior shh expression in Xenopus is 

dependent on the activity of Xrel3 which may localize Shh expression within the ZLI for 

a role in patterning neighboring forebrain tissues (Lake et al., 2001). 

The most well characterized secondary organizer exists at the isthmic constriction 

between the mes- and metencephalon (mid-hindbrain boundary or MHB), with a well 

characterized function established in chick, mouse and zebrafish in patterning the 

midbrain and anterior hindbrain (cerebellum) from the diencephalon/midbrain boundary 

to and including the frrst rhombomere (reviewed in Alvarado-Mallart, 1993; Wassef and 

Joyner, 1997; Martinez, 2001; Rhinn and Brand, 2001 ). As such, transplantation 

experiments demonstrated the ability of the IsO to transform caudal prosencephalon to 

midbrain and rhombencephalon to cerebellum (Gardner and Barald, 1991; Itasaki et al., 

1991; Martinez et al., 1991; Bally-Cuif et al., 1992; Bally-Cuif and Wassef, 1994; Marin 

and Puelles, 1994; Martinez et al., 1995). 

Several genes, across multiple species, have been identified as expressed in and 

required for the development of the IsO (reviewed in Rhinn and Brand, 2001) including 

those encoding transcriptional regulators (En-1, En-2, Pax2, Pax5, Otx1, Otx2, Gbx2) and 

secreted proteins (Wntl and FGF8). Recent studies have also demonstrated the existence 

of similar genetic profiles with the associated interconnected dynamics and inductive 

capabilities in the Xenopus nervous system (Ristoratore et al., 1999; Glavic et al., 2002; 

Tour et al., 2002a; Tour et al., 2002b ). 

The position of the :MHB boundary is established at the intersection of mutually 

repressive Otx2 and Gbx2 homeoprotein expression domains established during primary 
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neural induction (Hidalgo-Sanchez et al., 1999; Irving and Mason, 1999; Martinez et al., 

1999; Katahira et al., 2000; Garda et al., 2001). Independently these proteins are required 

for development of the fore-midbrain and hindbrain, respectively (Acampora et al., 1995; 

Ang et al., 1996; Acampora et al., 1997; Wassarman et al., 1997). However, the 

convergence of their expression domains, starting at the late gastrula stage in Xenopus, 

enables expression of Xfg/8 within the overlapping region (Glavic et al., 2002). In other 

species this is concomitant with or preceded by the independent expression of pax2 and 

wntl in a co-localized transverse band (Lun and Brand, 1998; Reifers et al., 1998). 

Through positive feedback with XGbx2 and negative feedback with XOtx2, XFGF8 

propagates the formation of a sharp and exclusive Xotx2/Xgbx2 boundary (Glavic et al., 

2002) as in other vertebrate systems (Hidalgo-Sanchez et al., 1999; Liu et al., 1999a; 

Martinez et al., 1999; Garda et al., 2001; Liu and Joyner, 2001). This sharp boundary was 

postulated to maintain FGF8 expression and enable its activation and maintenance of IsO 

genes, such aspax2, en-1, en-2, and wntl (Crossley et al., 1996; Liu et al., 1999a; Garda 

et al., 2001). Overexpression of either XOtx2 or XGbx2 generates .a caudal or rostral shift, 

respectively, of the opposing marker's expression domain with the associated alteration of 

MHB-specific markers (Glavic et al., 2002) reminiscent of studies in mouse and zebrafish 

(Broccoli et al., 1999; Millet et al., 1999; Katahira et al., 2000). Further, XOtx2 was 

found to be capable of independently inducing a large component of the MHB network 

with correct spatial positioning along the AP neuraxis dependent on mutually negative 

regulation with XGbx2 occurring at mid- to late gastrula stages (Tour et al., 2002a; Tour 

et al., 2002b). Interestingly, the expression of Xotx2 was also shown in chapter 2 (Lake et 
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al., 2001) to be dependent on Rel!NF -KB, implicating a key role for the latter in not only 

specifying fore- midbrain but also the IsO. 

Establishment of the abutting Xotx2/Xgbx2 expressiOn domains and resultant 

isthmic specification in Xenopus further requires the homeoprotein Xiro (Glavic et al., 

2002). Xiro maintains Xotx2 expression in the prospective midbrain by reciprocal 

activation at the gastrula stage before additionally activating Xgbx2 expression at the late 

gastrula/early neurula stage in the future hindbrain (Glavic et al., 2002). Xiro is also 

necessary for XFGF8 induction at the isthmus and XFGF8 induced expression of Xen-2 

in the Xotx2 expressing territory (Glavic et al., 2002). En-2 expression is required for 

growth and polarization of the mesencephalon for proper retinotectal map formation and 

is regulated by both FGF8 (Lee et al., 1997b; Liu and Joyner, 2001) and Wntl (Danielian 

and McMahon, 1996) mediated by :XPygo-2a in Xenopus (chapter 3; Lake and Kao, 

2003). Like FGF8, En-2 but not Wntl has the ability to ectopically induce the IsO genetic 

complement (Dickinson et al., 1994; Ristoratore et al., 1999). This activity is necessary 

for a later maintenance phase whereby the reciprocal associations between En-2, FGF8, 

Pax2, and Wntl are required for their continued expression (Reifers et al., 1998; Liu et al., 

1999a; Shamim et al., 1999; Liu and Joyner, 2001). 

Once established at the proper position, the IsO not only patterns both the 

midbrain and anterior hindbrain, but also acts as a mitogenic source to control the size 

and shape of the adjacent tissues through secretion of Wntl from the midbrainlotx2 side 

and FGF8 from the hindbrainlgbx2 side (reviewed in Martinez, 2001). Therefore, the 

complex interconnected genetic network required for the initiation and maintenance of 

page 1-35 



Lake,2003 Xenopus Head Development 

the IsO induces the cellular diversity of mid- and anterior hindbrain for development and 

outgrowth of higher order brain structures: the retinotectal map and cerebellum. 

1.3.10 Formation of the Vertebrate Eye 

One of the earliest regions specified from the anterior-most neurectoderm is the 

eye field, which evaginates from the prospective forebrain during folding of the neural 

plate to beconie the optic primordia and subsequently the optic vesicles (reviewed in Jean 

et al., 1998; Lupo et al., 2000; Chow and Lang, 2001). A complex genetic network set up 

during early induction of the neural plate establishes within its anterior-most region a 

continuous crescent shaped area predestined to form the bilayered optic cup (retinal 

pigmented epithelium and retina) laterally and the optic stalk (optic nerve) medially 

(Figure 1.3; Eagleson et al., 1995). Coincident with this is the induction of the lens 

placode by the optic vesicle from overlying ectoderm and its subsequent thickening and 

invagination to form the lens vesicle (Figure 1.3C). Numerous genes in Xenopus , among 

other species, were found to orchestrate this complex growth and morphogenetic process, 

including: Xpax6, Xotx2, Xrxl, Xsix3 and Xoptx2/six6 (reviewed in Lupo et al., 2000). 

pax6, a paired class homeobox gene, was proposed to be the master eye gene expressed at 

late gastrula stages (Hirsch and Harris, 1997; Li et al., 1997) and capable of inducing 

ectopic eyes in Xenopus (Chow et al., 1999; Kenyon et al., 2001). However, mice 

deficient of pax6 only exhibited severe eye abnormalities, with the loss of the lens and the 

formation of a malformed optic cup (Callaerts et al., 1997; Treisman, 1999). These 

studies indicated more of a role in imparting competence to non-neural ectoderm to 

page 1-36 



Figure 1.3. Specification and morphogenesis of the eye. A. Topological map of a 

molecular network specifying the retinal field (light green) of a mid-neurula Xenopus 

embryo as modified from Lupo et al., 2000. Indicated are the expression domains of 

Xrxl!Xpax6 (red), Xbfl!Fgf8 (green), Xotx2 (between concentric blue limits only), and 

X4G (cement gland territory, gray). B. Initiation of shh expression (yellow) within the 

medial neural plate at mid- to late neurula stages will bisect the initially single eye field 

(red- Xpax6/Xrxl; top embryo) into two lateral eye fields (bottom embryo). C. Schematic 

representation of bilateral eye development (as modified from Wittbrodt et al., 2002). 

Signals from the midline which split the eye field (Shh) to specify optic stalk also 

establish proximal-distal identity within retinal primordia to specify territories fated to 

form retinal neurones (dark orange) and pigmented epithelium (gray). Extensive 

proliferation of the optic vesicle and invagination to form the optic cup concurrent with 

invagination of the lens vesicle (light orange) establishes the eye structure, with nerve 

axons projected along the optic stalk to the optic tectum of the midbrain. 
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respond to optic vesicle signals in lens induction than a solitary role in initiating early eye 

development. Therefore, additional genes had to be involved. Both Xsix3 and Xoptx2/six6 

are expressed within the early eye field overlapping that of Xpax6, with Xsix3 expressed 

earlier and both shown in numerous species to be required for and capable of ectopically 

inducing eye formation (Kobayashi et al., 1998; Toy et al., 1998; Andreazzoli et al., 1999; 

Loosli et al. , 1999; Wallis et al., 1999; Zuber et al ., 1999; Bernier et al., 2000). Xotx2 is 

also expressed within the prospective neurectoderm, initiated at earlier gastrula stages 

thanXpax6, and becomes expressed later in the developing retina (Acampora et al., 1995; 

Blitz and Cho, 1995; Matsuo et al., 1995; Kablar et al., 1996; Perron et al., 1998; 

Andreazzoli et al., 1999) with the capacity of inducing retinal fate (Kenyon et al., 2001 ). 

Unlike Xotx2, Xrxl becomes expressed later in gastrulation in a region overlapping 

Xpax6/Xsix3 (Casarosa et al., 1997; Mathers et al., 1997) and actively represses Xotx2 

expression at early neurula stages to create almost completely mutually exclusive or 

complimentary expression domains (Andreazzoli et al., 1999). Like XPax6 and XOtx2, 

overexpression of XRx1 generates ectopic retinal tissue (Mathers et al., 1997; 

Andreazzoli et al., 1999; Kenyon et al., 2001). 

The combined expression of these markers at early neurula stages regionalizes the 

neural plate into retina and diencephalic territories (region expressing Xrxl , Xpax6, Xsix3 

but not Xbfl and Xotx2) and the telencephalic territories (region expressing Xrxl, Xbfl , 

and Xotx2) (Figure 1.3A; Lupo et al. , 2000). Studies in Xenopus have further implicated a 

role for Wnt signaling in early specification of the eye field through regulation of these 

markers, with the Frizzled 3 receptor (XFz3) capable of ectopically inducing Xpax6, Xrxl 

and Xotx2 expression and eye formation (Rasmussen et al., 2001). Alternatively, 
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antagonism of XFz3 activity prevented eye formation (Rasmussen et al., 2001). 

Consistently, shown in chapter 3, the knockdown of an intracellular mediator of Wnt 

signaling, XPygo-2, generated eye-deficient phenotypes with the inhibition of Xpax6 and 

Xrxl expression, but notXotx2 (Lake and Kao, 2003b). 

Following the regional specification of the prospective eye from adjacent 

forebrain territories, subsequent events proceed to split this initially single field into two 

bilateral fields to restrict retinal development to the optic cups (Figure 1.3B; Li et al., 

1997) coincident with proximal-distal patterning (McDonald et al., 1995; 

Hammerschmidt et al., 1996). This phase involves the morphogen Shh, expressed in the 

ventral midline of the neural tube, which regulates expression of paired-homeobox genes 

of the pax, nkx, dbx and irx families to establish DV polarity (McMahon, 2000; Altmann 

and Brivanlou, 2001; Semenov et al., ·2001). Shh activates nkx2.11 nkx2.2 and pax2 

expression to promote ventral forebrain (diencephalon) and proximal eye (optic stalk) 

identity while concomitantly antagonizing pax6 expression (retina, pigmented epithelium 

and lens) (Barth and Wilson, 1995; Ekker et al., 1995; McDonald et al., 1995; Chiang et 

al., 1996; Hammerschmidt et al., 1996; Zhang and Yang, 2001). As such, loss of Shh 

function in humans (Belloni et al., 1996; Roessler et al., 1996; Roessler et al., 1997; 

Nanni et al., 1999; Wallis and Muenke, 2000), mouse (Chiang et al., 1996; Hayhurst and 

McConnell, 2003), chick (Zhang and Yang, 2001) and possibly Xenopus (chapter 2, Lake 

et al., 2001) generates hypoteloric to cyclopic phenotypes characterized by the 

progressive loss of proximal eye structures (optic stalk), extension and possible fusion of 

retinas medially and the absence of ventral brain structures. Therefore, through regulation 

of markers involved in ocular tissue specification and dorsal-ventral patterning, Shh plays 
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a vital role in establishing the correct spatial position of eye and forebrain derivatives. 

Furthermore, it has been proposed in chick and Xenopus that, like in the neural tube, 

ventral Shh and dorsal BMP signals antagonistically regulate outgrowth and DV 

specification of the eye (Crossley et al., 2001; Zhang and Yang, 2001; Ohkubo et al., 

2002; Sasagawa et al., 2002), with Shh expression potentially dependent on Rel!NF-KB 

(chapter 2; Lake et al., 2001) and Shh function potentially dependent on FGF signaling 

(Russell, 2003). 
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1.4 THESIS OVERVIEW 

The Rel!NF-KB and Wnt/J3-Catenin pathways are both intimately associated with 

embryonic development and oncogenesis. Recent studies have shown a direct association 

between these pathways, with antagonistic interactions between NF-KB and J3-Catenin 

(Deng et al., 2002; Masui et al., 2002). The major hypothesis of this thesis is that the 

convergence of the neural patterning functions for both signaling cascades is required to 

establish the complex diversity of the vertebrate central nervous system. These studies 

outline the independent requirements for both pathways for a common developmental 

process, the patterning of the brain, as demonstrated through knockout and 

overexpression studies. Chapter 2 outlines the dependency of Rel!NF-KB target gene 

expression (otx2, shh, gli1 and frzb-1) for anterior neural development. Each of these 

genes have established roles in patterning the brain, specifying both transverse ( otx2, frzb-

1) and longitudinal (shh, glil) neuronal subdivisions. Chapter 3 describes the fundamental 

requirement of two intracellular Wnt pathway components, XPygo-2a. and XPygo-2J3, in 

formation of the fore-, mid-, and hindbrain. These proteins were found to play different 

spatial roles in brain patterning that were consistent with their unique patterns of message 

accumulation. While both proteins clearly mediated, in part, stereotypical Wnt-mediated 

posteriorization, they also appeared to perform additional functions in patterning the 

forebrain that challenged the dogma for Wnt-dependent AP patterning. In chapter 4, the 

analogous expression of hPygo-2 was examined to verify a conserved role in brain 

patterning. Further, hPygo-2 was expressed in a number of tissues requiring Wnt 

signaling for development, as well as tissues exhibiting susceptibility to cancer-causing 
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pathway mutations or deregulation. Finally, in chapter 5, a model for embryonic 

patterning of the central nervous system is proposed incorporating previous work with 

that presented in this thesis. 
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2.1 ABSTRACT 

Several Rel!NF-KB genes have been identified in Xenopus. Only a few, however, 

including Xre/2 (Tannahill and Slack, 1995) and Xre/3 (Yang et. al., 1998) have been 

shown to possess spatially restricted expression patterns. Xre/3 displays a particularly 

interesting expression pattern in the developing embryo (Yang et. al., 1998). Xre/3 

messages are present in cleavage and blastula equatorial cells, but accumulate after 

gastrulation in notochord and prospective brain tissues. These observations suggested that 

Xrel3 plays a role in pre gastrula embryogenic events as well as in the development of the 

brain. As a member of the large Rel!NF-KB family of DNA-binding transcriptional 

regulators, Xrel3 was predicted to activate and/or repress the expression of neural 

patterning genes during morphogenesis of the neural tube. To address this potential 

function, a C-terminal truncated form of Xrel3, called Xrel3~58, was created which 

dimerized with and prev~nted the ability of wild-type Xrel3 to bind DNA. When 

overexpressed in embryos, Xrel3~58 prevented head formation, causing a loss of fore­

midbrain structures and disorganized hindbrain tissue. Further, there was a fusion or loss 

of retinal tissues and the loss of expression of important forebrain (Xotx) and midline (shh , 

glil) neural patterning genes, demonstrating their requirement for normal Rel!NF-KB 

activity in the prospective brain. The dependency for these markers to generate proper 

neural patterning along both the anterior-posterior (Xotx2) and dorsal-ventral (shh , glil) 

axes demonstrated the importance of Rel/NF-KB signaling in establishing the correct 3-

dimensional arrangement of neuronal precursors within the brain. 
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2.2 INTRODUCTION 

2.2.1 The Rei/NF-KB Family 

Rel!NF-KB transcriptional regulators enable rapid intracellular responses to 

physiological stimuli involved in development and differentiation, immunity, apoptosis, 

and oncogenesis (reviewed in Pahl, 1999; Perkins, 2000; Gilmore et al., 2002; Li and 

Verma, 2002; Bell et al., 2003). Their diverse cellular roles are manifested by the ability 

for multiple family members (Table 2.1) to form homo- or heterodimeric associations and 

bind cognate regulatory enhancers or KB elements (Chen and Ghosh, 1999) specific to a 

plethora of tissue-specific target genes (Chen et al., 1999b; Pahl, 1999). 

All Rel/NF-KB family members contain a highly conserved N-terminal rei 

homology (RH) domain that allows them to bind DNA (Coleman et al., 1993; Toledano et 

al., 1993). This is achieved through two N-terminal J3-sheet immunoglobulin folds that 

adopt a butterfly-like conformation and are thought to straddle DNA within its major 

groove (Ghosh et al., 1995; Muller et al., 1995; Cramer et al., 1997; Chen et al., 1998alb). 

Also located at the C-terminus of the RH domain are sequences mediating homo- and 

heterophilic protein-protein interactions (Chen and Ghosh, 1999) that bring DNA binding 

residues from each dimer subunit in close apposition. This assembly of subunits forms a 

single DNA-binding region that confers both binding specificity and directionality of 

heterodimeric complexes for different KB elements (Verma et al., 1995; Ghosh et al., 

1995). 
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Table 2.1. Rei/NF-x:B family members 

Protein Alternative 
Gene Organisms Found 

Nomenclature 

Class 1: 

p50 orp105 
pllO, KEPI, EBP-1 njkbl Human, Mouse 

(NF-KBI) 

p52 or plOO p50 or p97, p49 or 
Human, Mouse, 

(NF-KB2) 
plOO, p55 or p98, njkb2, XpJOO Xenopus 

LytlO, H2TF1, XplOO 

Class II: 

Rei c-Rel rei Human, Mouse, 
Chicken 

v-Rel v-rel Reticuloendotheliosis 
Virus Strain-T 

RelA p65,Xre1A rela, Xre/A Human, Mouse, 
Xenopus 

RelB I-Rei, XrelB relb, Xre/B Mouse, Xenopus 

dorsal dorsal Drosophila 

dorsal-related 
immunity factor 

Dif, Cif cecropia dif Drosophila 
immunoresponsive 

factor 

Xrel2 Xre/2 Xenopus laevis 

Xrel3 Xre/3 Xenopus laevis 

(as per Blanket al., 1992~ Siebenlist et al., 1994) 
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While the KB sequence depicts the type of Rel!NF-KB dimers that bind, there is 

redundancy that enables association with more than one dimer type. A recent study has 

demonstrated, however, that the exchange of dimers composed of different constituents 

and having differing activities at a single enhancer site can modulate the response a cell 

makes to Rel!NF-KB stimulation (Saccani et al., 2003). The differential upstream 

regulation of each dimer provided a means for sustained activation (Saccani et al., 2003). 

Therefore, further complexity than simple DNA binding by a dimer is provided by the 

inherent redundancy within this signaling pathway. 

A distinguishing feature of the Rel/NF-KB family is the regulation of their 

subcellular localization and, as such, their post-translational activity (reviewed in Karin, 

.1999; Ghosh and Karin, 2002). In unstimulated cells, Rel!NF-KB is sequestered and 

maintained inactive in the cytoplasm by IKB inhibitors which bind and shield the nuclear 

localization sequences pres~nt within the RH domains of the dimer subunits. Extracellular 

stimuli trigger the phosphorylation and activation of bcB kinases (IKKs ). These in turn 

phosphorylate IKB marking it for proteosomal degradation which unmasks the NLS and 

enables Rel!NF-KB proteins to migrate to the nucleus (May and Ghosh, 1998; Karin, 

1999; Chen and Ghosh, 1999; Pahl, 1999). 

While the RH domain characterizes the Rel!NF-KB family, individuality is 

determined by the variability of sequences C-terminal to this region. Family members are 

broadly divided on this basis into two classes, those having auto-inhibitory ankyrin 

repeats requiring proteolytic cleavage for activation (Class 1, Table 2.1), or those having 

a highly variable C-terminal trans-activation domain (TAD) (Class 2, Table 2.1). This 
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latter domain is typically a phosphorylation dependent serine-rich acidic region that 

mediates protein-protein interactions required to activate or repress transcription (Schmitz 

et al., 1994; Schmitz et al., 1995; Wang and Baldwin, 1998; Chen et al., 1999a; Fognani 

et al., 2000; Martin and Fresno, 2000; Ashburner et al., 2001; Martinet al., 2001). 

Aside from a key role in modulating stress responses of a cell to environmental 

stimuli (Pahl et al., 1999; Li and Verma, 2002), Rel!NF-KB proteins are also involved in 

early embryonic patterning events. In Drosophila, specification of dorsal-ventral (DV) 

polarity requires the graded nuclear activity of the Dorsal morphogen along the 

prospective DV axis of the early embryo (Govind, 1999). This gradient is established by 

post-translational control over nuclear import of Dorsal by Cactus, a member of the IKB 

protein family. Orthologous upstream regulators of Dorsal can also activate secondary 

dorsal axes in Xenopus (Armstrong et al., 1998), demonstrating their potential 

conservation in DV patterning in vertebrates. However, mouse knockout mutants have, as 

yet, failed to implicate a conserved role for NFKB1, NFKB2, c-Rel, RelA or RelB (Table 

2.1) in early embryonic body axis formation. In these studies NF-KB1, c-Rel and RelB are 

required for development of the immune system and RelA for the liver (reviewed in Attar 

et al., 1997; Gerondakis et al., 1999). 

Several Xenopus Rel!NF-KB genes have been identified to date, including Xre/A 

(Xre/1) (Kao & Hopwood, 1991; Richardson et al., 1994), Xre/B (Suzuki et al., 1995), 

Xre/2 (Tannahill & Wardle, 1995), XpJOO andXp52 (Suzuki et al., 1998), as well as Xre/3 

(Yang et al., 1998). Studies on Xenopus embryos have suggested that Rel/NF-KB proteins 

may play a role in axial patterning of higher vertebrates (Kao and Lockwood, 1996; 
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Armstrong et al., 1998). One potential candidate mediating this is Xre13 (a Class 2 

member, Table 2.1 ), whose messages are present in oocytes and early blastula embryos 

but not during gastrulation (Yang et al., 1998). After gastrulation, new messages 

accumulate in the notochord and anterior neural plate encompassing prospective forebrain, 

mid-hindbrain and otic placode of the early neurula stage embryos and the forebrain, 

dorsal mid-hindbrain and otocysts of later tadpole stage embryos (Yang et al., 1998). This 

expression pattern implicated an additional and later role than axial patterning in the 

development of the anterior nervous system. 

Previous gain-of-function studies found that ectopic expression of Xre/3 in the 

animal pole led to the development of abnormal epidermal growths in early neurula-stage 

embryos (Yang et al., 1998). Cells overexpressing Xre13 appeared undifferentiated and 

became unable to migrate normally or contribute progeny to the epidermis later m 

development (Figure 2.1, K.R.K., unpublished observations). The cells continued to 

divide, forming masses on late gastrulae that remained on the flank of tailbud and early 

tadpole embryos before regressing during later tadpole stages. ~ese tumours expressed 

neural patterning markers such as otx2, shh and glil at the time of their normal 

endogenous expression (Lake et al. , 2001) and closely resembled tumours resulting from 

overexpression of Gli 1 (Dahmane et al. , 1997). 

2.2.2 Otx Family of Homeoproteins 

The Otx proteins comprise a family of homeobox containing transcriptional 

regulators that are homologous to Drosophila orthodenticle (Otd) . These proteins play 
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Figure 2.1. Xre13-expressing cells do not participate in normal ectodermal cell 

differentiation. Animal pole cells were grafted into uninjected embryos from either 

embryos injected with Rhodamine (A,B) or Xre/3 mRNA in conjunction with Fluorescein 

(C,D) (K.R.K., unpublished observations). Xrel3-expressing cells formed a tumourous 

mass and were unable to distribute progeny throughout the epidermis at tadpole stages 

(D, arrow) compared with control cells (B). 
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essential roles in mesendoderm specification and neurectodermal patterning (reviewed in 

Simeone et al., 2002). In Xenopus, otx2 is initially expressed in the head organizer region 

of the mesendoderm where it confers head inducing activity by cooperatively regulating 

cerberus expression (Yamamoto et al., 2003) and repressing posterior identity 

(Andreazzoli et al., 1997) and posterior-type cell migratory behavior (Morgan et al., 

1999). Subsequently, as shown in numerous species, otx2 is expressed in the anterior­

most region of the newly formed . neural plate, where it plays a role in specifying 

prospective fore-midbrain and retinal tissues (Acampora et al., 1995; Matsuo et al., 1995; 

Ang et al., 1996; Gammill and Sive, 2001; Kenyon et al., 2001; Martinez-Morales et al., 

2001; Martinez-Morales et al., 2003; Viczian et al., 2003). The rostral-most boundary of 

otx2 expression also cooperates with intermediate levels of BMP signals at the 

neurectodermal/ectodermal border to induce the cement gland (reviewed in Wardle and 

Sive, 2003). Further, the caudal limit of otx2 expression, as determined by antagonistic 

associations with the hindbrain marker gbx2 during late gastrula and early neurula stages, 

defines the spatial position of the isthmic organizer for patterning of the mid-hindbrain 

(reviewed in chapter 1). 

2.2.3 Shh/Gii Signaling Pathway 

The Shh pathway involves the membrane bound proteins Patched (PTCH) and 

Smoothened (SMO) as well as the zinc-finger transcription factors Gli/Cubitus interruptus 

(reviewed in Ingham and McMahon, 2001; Koebernick and Pieler, 2002). Mutations in 

this pathway have been implicated in sporadic basal cell carcinomas, gliomas and 
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primitive neuroectodermal tumors of the central nervous system including 

medulloblastomas (Wolter et al., 1997; Ming et al., 1998; Taipale and Beachy, 2001; Ruiz 

i Altaba et al., 2002b ). Over-representation of Shh or mutations of human patched is 

consistently associated with Nevoid Basal Cell Carcinoma Syndrome, one of the most 

common forms of human cancer (Hahn et al., 1996; Fan et al., 1997). These gain-of­

function mutations have the common effect of increasing expression of the Shh 

transcriptional effector Gli1, predicted to be the primary oncogenic factor in both 

epidermal and neural tumors (Dahmane et al., 1997; Dahmane et al., 2001). 

Normally, Shh is involved in morphogenesis, growth and patterning of numerous 

tissues, including the CNS, somatic and cardiac muscle and limbs (reviewed in Ingham 

and McMahon, 2001). Within the nervous system, Shh is further required for proliferation 

and survival of neuronal precursors, specification of ventral neurones and 

oligodendrocytes, control of axonal growth and morphogenesis, as well as the growth and 

patterning of the eye (reviewed in Chapter 1; Ingham and McMahon, 2001; Marti and 

Bovolenta, 2002; Ruiz i Altaba et al., 2002a). As such, Shh is expressed within a number 

of organizing centers in the embryo to cooperatively pattern the appropriate tissue fields 

in conjunction with additional secreted signaling factors such as FGFs and Bl\1Ps (Y e et 

al., 1998; Carl and Wittbrodt, 1999; Briscoe et al., 2000; Crossley et al., 2001; Martinez, 

2001; Ohkubo et al., 2002). 
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2.2.4 Xrel3 regulates otx2/shhlglil to pattern the frog brain 

The normal post-gastrula expression pattern of Xre/3 as well as its ability to 

activate the expression of otx2, shh and glil ectopically in non-neural ectoderm suggested 

that it might also activate expression of these markers in the developing neurectoderm. To 

test this hypothesis, I designed an Xrel3 deletion construct (Xrel3il58) which antagonized 

wild-type Xrel3 DNA binding activity in vitro. The purpose for making this construct was 

to create a molecular antagonist that would interfere with the normal developmental 

function of endogenous Xrel3 . Based on my predictions, Xrel3il58 would reduce in 

embryos expression of the markers Xrel3 activated in tumours . Consistently, when 

injected within the prospective nervous system, the inhibitory truncated protein depleted 

otx2, shh and glil messages and caused the associated head abnormalities analogous of 

knockout mutants of each gene seen in other species. Therefore, this chapter presents 

evidence for a required role played by Xenopus Rel/NF-KB proteins in patterning and 

expansion of the central nervous system. 
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2.3 MATERIALS AND METHODS 

2.3.1 Oocytes and Embryos 

Wild-type embryos were obtained and injected as described previously (Kao and 

Lockwood, 1996; Yang et al., 1998) and staged according to Nieuwkoop and Faber 

(1994). Capped, synthetic RNA was derived from the Ribomax Kit (Promega) and as 

described previously (Kreig and Melton, 1987). Embryos were injected with up to 1 ng of 

RNA on either side of the first cleavage plane of 2- or 4-cell stage embryos in either the 

animal pole or marginal zone. To distinguish the dorsal marginal zone, embryos were 

tilted within 40 minutes after fertilization, with sperm entry (ventral) sides facing towards 

gravity as described (Kao and Lockwood, 1996). Following cleavage, embryos were 

injected within the equatorial upward facing region to target dorsal derivatives, or rotated 

180° for ventral derivatives. 

2.3.2 Plasmids 

The full length Xre/3 coding sequence was previously cloned into pCS2+ (Yang et 

al., 1998). For Xrel3RHD and Xrel3~58 constructs the associated coding sequences were 

PCR amplified (for cloning primers see Table 2.2) from pCS2+Xrel3 and ligated into 

either pCS2+ or pCS2+MT (gifts from Dave Turner). For myc-tagged Xrel3, the 

corresponding coding region was digested from pCS2+Xrel3 and ligated in frame into 

pCS2+MT. 
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Table 2.2. RT -PCR and Cloning Primer Seguences 
Primer Forward (5'-3'} Reverse (5'-3'} N* Reference 
otx2 CGGGATGGATTTGTTGCA TTGAACCAGACCTGGACT 25 Pannese et 

al., 1995 
frzb-1 AGTAAGCCTACACATACAG GCAGACTCCTCTTCTGTCAT 25 Wanget 

GTTGG ATACGG al., 1997 
goosecoid GAGCAAAGTGGAGGAGGCA 

G 
CCCACATCGTGGCACTGCTG 25 

liml ACTGACTTCTTCAGGAGATT GTTCCTCGCCTGTTGAGAGC 30 Glinka et 
TGG al., 1997 

blimp] AAGATTATGCAGAAAGGGA GAAAGGAGAAATACAGAGA 30 De Souza 
GGG AGGGG et al., 

1999 
Dkk-1 ACAAGTACCAACCTCTGGAT ACAGGGACACAAATTCCGTT 30 Glinka et 

GC GC al., 1998 
derriere TGGCAGAGTTGTGGCTATCA CTATGGCTGCTATGGTTCCT 25. Sun et al., 

T 1999 
calponin- CACCAATGGACCATTCCACC GGTCGTAATGGCAATGTCGC 25 Morgan et 
H3 c al., 1999 
noggin GCTCTGATGGTCTTCTTGGG CAGCATGAGCATTTGCACTC 25 
hex TTCACCCTGCCTTCACCCAC TTCTGCTCGGCGCTCAAACA 30 De Souza 

cc cc et al., 
1999 

cerberus GCTTGCAAAACCTTGCCCTT CTGATGGAACAGAGATCTTG 25 Heasman 
et al., 
2000 

Xnr3 CGAGTGCAAGAAGGTGGAC ATCTTCATGGGGACACAGG 30 Agius et 
A A al., 2000 

Xre/3 GCTGAGCTGAGGATATGCC GCCTCGAGTTACTGCATCAC 25 
G TTCTGAGGTC 

H4 CGGGATAACATTCAGGGTAT ATCCATGGCGGTAACTGTCT 23 Yang et 
CACT TCCT al., 1998 

Xre/3&8 CGGAATTCCATGGCCGGTTT GCCTCGAGTTACTGGGTGGT 
AAACG AACTAAATGG 

Xrel3RHD CGGAATTCCATGGCCGGTTT GCCTCGAGTTACTGCATCAC 
AAACG TTCTGAGGTC 

*Number of annealing/elongation cycles used 
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2.3.3 Western Blot Analysis 

RNA encoding myc-tagged Xrel3, Xrel3~58 and Xrel3RHD were injected at the 

2-cell stage into animal pole cells. Embryos were subsequently macerated at stages 8, 10 

and 13 in Triton Medium (10 mM Tris pH 7.5; 1% Triton-X 100; 10 mM EDTA; 0.002% 

Na-azide, Methionine, 1 mM phenylmethylsulfonyl fluoride, 10 J..Lg/ml aprotinin, 10 

J..Lg/mlleupeptin, and 50 J..Lg/ml Nor-P-tosyl-L-lysine chloromethyl ketone). To reduce the 

interfering effects of yolk protein, the samples were extracted in 1,1,2-

trichlorotrifluoroethane, acetone precipitated and resuspended in loading buffer (0.125 M 

Tris-HCl, 2% SDS, 5% ~-mercaptoethanol, 20% glycerol). Protein was then run on 7-

10% SDS-PAGE, transferred to nitrocellulose membranes (Hybond-ECLTM; Amersham) 

blotted with the anti-myc antibody (9E10 cell supernatant, purchased from DSHB, Iowa) 

and visualized using the associated enhanced chemiluminescence. Quantity of protein 

loaded was normalized using Biorad assay reagent. 

2.3.4 RT -PCR Analysis 

RNA was extracted from whole embryos (8-1 0 per injection group) using the 

Nucleospin RNA II Kit (Clontech Laboratories, Inc.) and reverse transcribed using 

MML V reverse transcriptase (Promega). Primers used in the analysis are listed in Table 

2.2. The cycling parameters used included: 4 minute denaturation at 94°; 45-60 second 

hybridization at 60° followed by equal duration of elongation at 72° and denaturation at 

94° (total number of cycles varied by primer, see Table 2.2); lastly, a 45-60 second 
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annealing at 60° was proceeded by a 7-10 minute elongation at 72° before completion. 

All PCR products were electrophoresed on 1.5% agarose gels and photographed by a 

Chemiimager. Equal levels of eDNA used within the R T -PCR reactions were achieved by 

normalization to histone (H4) levels. 

2.3.5 In Vitro Translation 

Wild-type and truncated Xrel3 proteins were synthesized in vitro using the SP6 

transcription/translation coupled rabbit reticulocyte lysate system (Promega) . For protein 

used in immunoprecipitation: 17 J.LCi of e5S]-methionine (1200 Cilmmol; Mandel) and 

either 2 J.Lg of pCS2+mtXrel3 alone or 1 J.Lg each of pCS2+mtXre/3 and pCS2+ Xre/3 or 

pCS2+mtXre/3 and pCS2+Xre/3L158 to a total of2 J.Lg was added to the reticulocyte lysate 

to a total volume of 50 Jll and incubated at 30°C for 90 minutes. For EMSAs involving 

cold KB competitive binding, 2 J.Lg of pCS2+Xre/3RHD and pCS2+Xre/3L158 were used 

for translation as above. However, for EMSAs involving competitive inhibition by 

Xrel3~58 of Xrel3 DNA binding, 1 J.Lg of pCS2+ Xre/3 or pCS2+Xre/3L158 was used 

alone and 1 J.Lg ofpCS2+Xre/3 was used in combination with either 0.5 J.Lg, 1 Jlg or 2 Jlg 

of pCS2+Xre/3L158. These latter protein products were examined by SDS-PAGE and 

levels analyzed by spot densitometry (Chemilmagertm4000; Alpha Innotech Corporation). 

Xrel3 protein levels were found to be consistent between individual and cotranslated 

samples while Xrel3~58 levels were approximately 0.6x, 0.9x and 1.3x that of Xrel3 in 
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the cotranslated samples or, adjusting for the proportional decrease in the number of 

methionines after deletion of the last 58 amino acids, 0.7x, l.Ox and 1.5x that ofXre13. 

2.3.6 Electrophoretic Mobility Shift Assays (EMSA) 

Double stranded KB DNA elements (5 pmoles, Table 2.3) were forward labeled 

using T4 polynucleotide kinase (10 units; GibcoBRL) and 1 J..LCiiJ..Ll [y32P]-dATP (Mandel) 

in a total volume of25 J..Ll for 10-30 minutes at 37°C. Between 150,000 and 500,000 cpm 

of KB probe was incubated with 1 J..Ll of in vitro translated protein for 20 minutes at room 

temperature according to Mavrothalassitis et al. (1990). Samples were then 

electrophoresed onto a 5% non-denaturing polyacrylamide mini-protein gel for 50 

minutes (1 OOV) at room temperature. Competition of protein binding to labeled KB 

sequences in testing specificity and affinity involved addition of labeled KB DNA as well 

as 2, 5, 10, 20, 100 or 1000 ng of unlabeled KB sequence to the protein/DNA binding 

mixture and proceeding as described. 

2.3. 7 Immunoprecipitation 

Xrel3 fused with the myc epitope was either translated alone or cotranslated with 

Xrel3 or Xrel3~58. To demonstrate dimeric protein complexes, 10 J..Ll of the in vitro 

translated proteins were covalently linked by incubating with glutaraldehyde, used in 

numerous studies to test for potential oligomerization (Wang and Lemon, 1993; Rossini 

and Camellini, 1994~ Antoshechkin et al., 1997~ Raab-Graham and Vandenberg, 1998; 
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Table 2.3. Rei/NF-K.B enhancer sequences 

KB Site Sequence Binding Specificity 

Xrel3 XreiA 

Consensus* GGGPNNppCC 

KB-pd GCAG GGGAATTCCC CT YES YES 

112 KB-pd GCAG GGGAA CT NO NO 

MIRRBE GCTG CAGAAAGTAC YES NO 

murRRBE GGAT AGGAAAGTAC YES NO 

HIV-KB GCTG GGGACTTTCC AG YES YES 

MIHIV-KB GCTG GGGACTTGCC AG NO NO 

Dorsal GTTTT GGGAAATCCA GAAG YES YES 

Note: P=purine; p=pyrimidine 
*Consensus sequences are in highlighted in bold 
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Morrow et al., 2000; Hayman et al., 2001), in 8 mM potassium phosphate buffer (pH 8) 

for 1 hour at room temperature. Cross-linked protein dimers were then incubated 

overnight at 4°C with 20 J.ll mouse monoclonal anti-myc antibody 9E10 cell supernatant, 

purchased from DSHB (Iowa), in 1 ml triton medium (10 mM Tris pH 7.5; 1% Triton-X 

100; 10 mM EDTA; 0.002% Na-azide) with 20 mM methionine and 5 J..Ll of0.2 M PMSF. 

Antibody-antigen complexes were immunoprecipitated with Protein A-Sepharose beads 

(Pharmacia) then washed 3x with triton medium/20 mM methionine then 2x with 150 

mM NaCI. Immunoprecipitate was boiled for 4 minutes in 0.125 M Tris-HCl, 2% SDS, 

5% J3-mercaptoethanol, 20% glycerol and run on SDS-PAGE along with pre-stained 

molecular weight standards (BioRad). All gels were visualized and recorded using a 

Cyclone (Canberra-Packard) phosphorimager. 
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2.4 RESULTS 

2.4.1 Xre13 Binds KB DNA Enhancer Sequences 

Rel/NF-KB family members bind differentially to cognate enhancer (KB) sites that 

vary in sequence from a perfect palindrome (KB-pd, Table 2.3; Chen and Ghosh, 1999). 

In order to determine the binding characteristics of Xenopus Rei proteins, I performed a 

series of in vitro DNA binding assays (EMSAs). For these analyses, I used DNA binding 

sites that were previously used to analyze the binding properties of Rel/NF-KB proteins 

from other species (Hansen et al., 1994). Like these other family members, the Xenopus 

proteins, Xrel3 and XrelA, bound most efficiently to the idealized KB-pd sequence 

(Figure 2.2), which was blocked by unlabeled sequences (Figure 2.2A). In addition, 

variations or deletions within this primary DNA sequence either abrogated or reduced 

binding of both proteins (Figure 2.2B). While both Xre13 and XrelA bound to the Dorsal 

KB sequence, only Xrel3 bound the murine r.el r.elated protein f2..inding g_lement 

(murRRBE) (Figure 2.2B), present in the urokinase plasminogen activator (uPA) 

promoter (Hansen et al., 1994). Alteration of murRRBE to give mlRRBE resulted in a 

slight reduction in Xrel3 binding (Figure 2.2B). A similar alteration eliminated binding 

ability of mammalian NF-KB (p50/RelA) and c-Rel-RelA complexes (Hansen et al., 

1994 ), suggesting that Xrel3 has less restricted binding specificity than these other 

proteins. 

Both Xrel3 and XrelA formed specific associations with the HIV KB that were 

abrogated by a single base pair alteration (mlHIV KB; Figure 2.2B). Similar binding has 
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Figure 2.2. Xrel3 binds differentially to x:B enhancer sequences. A. Comparative 

EMS As showing Xrel3 and XrelA binding to the perfect palindromic KB sequence ( KB­

pd). Specificity of the protein/DNA interactions was demonstrated through addition of 

unlabeled KB-pd sequences (competitor) to the binding reactions at the concentrations 

indicated (1-1000 ng). Incomplete competition may be representative of either the affinity 

of Xrel3/Xre1A to the DNA or of the existence of low level non-specific associations. B 

and C. EMSAs demonstrating the binding affinities ofXrel3 and Xre~ respectively, to 

half of the KB-pd sequence as well as the Dorsal, mlRRBE (murine rei related binding 

element 1), mutated mlRRBE (murRRBE), H!Vand mutated HIV(mlHIV) KB sequences 

(Hansen et al., 1994). Unbound and labelled probe migrates at the bottom margin of the 

gel. 
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been shown for c-Rel-RelA complexes but not for NF-KB, which retained the ability to 

bind even after the alteration (Hansen et al., 1994). Therefore, consistent with other 

Rel/NF-KB proteins, Xre13 binds with different sequence-dependent affinities to a distinct 

subset of known KB binding sites. These results demonstrate Xrel3' s potential to 

specifically activate or repress transcription of a unique subset of genes during 

embryogenesis. 

2.4.2 Xrel3 DNA-Binding Can be Antagonized by Xrel3A58 

To understand the normal function of Xrel3 in embryonic development, deletion 

mutants were created that either eliminated or truncated the putative C-terminal 

transactivation domain (Figure 2.3). Deletion of the entire TA domain did not affect the 

DNA binding potential (Figure 2.4A), consistent with the demonstrated DNA binding 

activities of similar, naturally existing proteins, p50 and p52 (Table 2.1; Cramer et al., 

1997; Huang et al., 1997; Chen et al., 1998a). However, successive C-terminal deletions 

within the region corresponding to TADs identified in RelA and c-Rel (Bullet al., 1990; 

Schmitz et al., 1994; Schmitz et al., 1995; Martin et al., 2001) indicated that the C­

terminal 58 amino acids are required for Xrel3/KB-pd associations (Figure 2.4A). 

When co-translated in vitro, Xre13~58 reduced the ability, in a concentration­

dependent manner, of Xrel3 to bind DNA (Figure 2.4B). Also, in vitro co-translated myc­

tagged Xrel3 and untagged Xrel3~58 (Figure 2.5A) co-precipitated using an anti-myc 

antibody (Figure 2.5B), demonstrating the ability for Xrel3 and Xrel3~58 to form dimers. 
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Figure 2.3. Maps of Xrel3 constructs. Wild-type Xrel3 consists of a rei-homology 

domain (stippled box) and a C-terminal domain (hatched box) with transactivation motifs 

(TA) at the extreme C-terminus. The 58 C-terminal residues are deleted in Xrel3858, 

which includes the putative TA-region. Xrel3 was fused with a human cMyc-epitope by 

subcloning the Xrel3 coding region into pCS2+mt, which encodes six copies of the 

epitope and is recognized by the 9E 10 antibody. 
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Figure 2.4. Xre13A58 competitively inhibits binding by Xrel3 to the KB enhancer 

sequence. (A) Xrel3~58 binds the perfect KB element very weakly in an EMSA reaction 

as compared with the RHD of Xrel3 alone. Binding specificity is shown using increasing 

quantities of unlabeled KB sequence (cold competitor). Much less competitor is required 

to eliminate Xrel3~58 binding (2 ng) as compared with Xrel3RHD (1000 ng). (B) Equal 

amounts of Xrel3 (lanes 2-4) were co-translated with increasing proportions of Xrel3~58 

(0-1.3x) and used in an EMSA with the KB perfect palindrome as a probe. Free probe 

(lane 1) is not retarded in the gel and Xrel3~58 alone (lane 6) binds the palindrome 

weakly. This assay was repeated three times over two independent experiments. 
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Figure 2.5. Xrei3M8 competitive inhibition occurs through dimerization with full 

length Xrel3. (A) Xrel3-myc fusion protein (mt-Xrel3) was co-translated with Xrel3 

(lane 2) or Xrel3~58 (lane 1) and resolved by SDS-PAGE. Arrows indicate full-length 

translation products. (B) mt-Xre13 alone or covalently cross-linked to co-translated Xrel3 

or Xrel3~58 using 0.005%,0.01% and 0.015% glutaraldehyde (left to right), was 

immunoprecipitated, resolved on SDS-PAGE, and visualized by autoradiography. 

Sample in lane on extreme right is myc-tagged Xrel3 co-translated in vitro with 

Xre13~58. The top bands represent covalently linked myc-tagged Xre13 

(mtXrel3/mtXrel3), myc-tagged Xrel3 dimerized with wild-type Xrel3 (mtXrel3/Xrel3) 

or myc-tagged Xre13 dimerized with Xre13~58 (mtXrel3/Xrel3~58). The lower bands 

represent unlinked monomeric subunits (mtXrel3, Xrel3 or Xrel3~58) that co­

immunoprecipitated with mtXrel3. 
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Therefore, I concluded that Xrel3~58 can act in a dominant inhibitory fashion by 

dimerizing with Xrel3 and preventing its ability to bind cognate DNA. 

2.4.3 Xrel3 Is Required For Head Formation 

Based on previous biochemical evidence, I wanted to determine what 

developmental phenotypes, if any, would result from overexpression of a protein that 

could interfere with endogenous, wild-type Xrel3. Embryos were therefore microinjected 

with mRNA encoding Xrel3~58 and examined for their development. Translation of 0.25 

ng of mtXrel3RHD, mtXrel3L158 and mtXre/3 RNA in embryos was assayed by western 

blot analysis (Figure 2.6). Each of the corresponding proteins was expressed up to early 

neurula stages. 

Injection of Xrel3L158 m.RNA into the animal pole of embryos at the two-cell 

stage caused them to develop anterior neural plate abnormalities arising at the late neurula 

stage. These defects manifested into head malformations at the tadpole stage (Figure 

2.7B). The abnormal phenotypes (Table 2.4) ranged from normal (grade I) to reduced 

eyes (grade ll), anopthalmy or synopthlamy and microcephaly (no eyes or fused eyes and 

small head, grades Ill and IV) to acephaly (no heads, grade V). While these defects could 

be partially rescued by co-injection of up to 0.25 ng of wild-type Xre/3 RNA, the rate of 

recovery of normal structures was relatively low: only 57% of the embryos injected with 

0.5 ng Xrel3L158 had head defects and there was only a 30% rescue of the normal 

phenotype by the highest concentration of Xre/3 RNA (Table 2.5, Figure 2.8). 
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Figure 2.6. Xre13 constructs are stably expressed in vivo. Western analysis of whole 

protein lysates from embryos injected with 250 pg mtXre/3, mtXrelRHD and mtXrel3Ll58 

RNA using the 9E10 monoclonal myc antibody. Exogenous protein levels were analysed 

from blastulae (st. 8), gastrulae (st. 11) and neurulae (st. 13). Equal levels of protein 

extracts were loaded as determined by Biorad assays. 
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Figure 2.7. Overexpression of a dominant negative Xrel3 construct causes anterior­

defective embryos. A. Embryos were either injected into the animal pole or, to more 

efficiently target dorsal structures, were tilted within 45 minutes post-fertilization to force 

dorsal-ventral axis formation along the gravitational plane and injected in both dorsal 

blastomeres at the two-cell stage. B. Embryos that were injected at the two-cell stage with 

varying concentrations (0.25 to 1.0 ng) of Xre/3L158 RNA showed varying degrees of 

phenotypic alterations as compared with normal embryos (I) when assessed at the tadpole 

stage. Defects ranged from mildly reduced eyes, forebrain and cement gland (II) to more 

significant reduction or loss of these structures (III), microencephaly, cyclopia (IV) and 

anencephaly (V). Scale bar =0 .5 mm. 
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Table 2.4. Characteristic Xrel3A58 Defects (Figure 2. 7) 
Type I Normal phenotype 
Type II Eyes and cement gland reduced in size 
Type III Anopthalmy (no eyes), significantly reduced cement glands and 

microencephaly(srnallhead) 
Ty_pe IV Synopthlamy (fused eyes or cyclopia) 
TypeV Acephaly (no heads) 
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Table 2.5. Distribution of phenotypes (Table 2.4) caused by Xrei3.A58 overexpression 

Picograms of Number (percentage) of Embryos 
Injected mRNA 

Xrel3 Xre13 N I IT ITI and IV v Total 
~58 (normal) (Cyclopia) (acephaly) 

0 0 10 426(94) 20(4) 2(1) 1(1) 452 
250 0 4 69(67) 28(27) 3(3) 3(3) 103 
500 0 6 77(44) 70(40) 16(10) 11(6) 174 
1000 0 4 29(25) 40(35) 23(20) 23(20) 115 
500 50 3 61(55) 41(37) 6(5) 3(3) Ill 
500 150 3 60(61) 35(35) 3(3) 1(1) 99 
500 250 3 68(69) 30(30) 0(0) 1(1) 99 

500* 0 4 4(6) 21(36) 21(36) 12(21) 58 
500¥ 0 4 31(58) 13(25) 7(13) 2(4) 53 
500* 250* 3 28{652 9{212 4{92 2{52 43 

N=Number of Experiments 
*Dorsal Injection Site 
¥Ventral Injection Site 
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Figure 2.8. The percentages of anterior defective embryos combined from several 

experiments as shown in a histogram. Dead embryos and embryos that failed to 

gastrulate were not included in these analyses. Defects as categorized in Figure 2.6 are 

shown following injection into both the animal and equatorial regions of two-cell stage 

embryos. The bars showing reduction of defects in Xrel3L158 RNA (500 pg) injected 

embryos by co-injection of wild-type Xre/3 RNA (50, 150 or 250 pg) are indicated. 

Numbers at tops of bars indicate total number of embryos scored. Vn= ventral injection, 

Do=dorsal injection. 
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The frequency of abnormalities was increased to 94% when I injected 0.5 ng 

Xrel3Ll58 RNA into the dorsal marginal zone (Figure 2.7 ~ Figure 2.8, Table 2.5), a 

region approximately mapped to the prospective neural plate (Keller, 197 5; Lane and 

Sheets, 2000). Only 40% of the embryos injected on the opposite, ventral side developed 

anterior abnormalities and the majority of these scored as low grade (II) (Figure 2.8, 

Table 2.5). Rescue of dorsally targeted Xrel3~58 defects was also more pronounced, with 

0.25 ng of Xre/3 RNA resulting in a significant reduction of the number and severity of 

the defects (35% of predominantly grade II) (Figure 2.8; Table 2.5). Therefore, the 

injection of a dominant inhibitory Xre/3 message on the dorsal side of the embryo more 

effectively targeted the head to generate severe and specific anterior depletions. 

To address the types of tissue disrupted in these mutants, histological sections of 

the more severe phenotypes were analyzed (Figure 2.9A-F). The embryos had normal 

appearing notochords and spinal cords (Figures 2.9E,F). However, rhombencephalic 

(hindbrain) development, while disorganized, was over represented (Figure 2.9E). The 

mutant embryos exhibited differing severity of anterior truncations (Figure 2.9I-K) with 

reduced mesencephala (midbrains) and severely disorganized or absent diencephalic, eye 

and prosencephalic (forebrain) structures (Figure 2.9D). If present, the eyes were deeply 

embedded and cyclopic. Also, the ventral-anterior most derivative of the neurectoderm, 

the cement gland, was partially or completely deleted. Unlike the optic vesicles and 

cement gland, the otocysts appeared unaffected (Figure 2 .9E), but were shifted anteriorly 

with progressive anterior deficiencies (Figure 2.9I-K). 

page 2-31 



Figure 2.9. Histological analysis of head-defective embryos. Control (~B,C) and 

Xre/3£158 RNA injected embryos (D,E,F) with clear head-defective phenotypes were 

serially sectioned and examined at comparable levels as determined by anatomical 

landmarks. Embryo sections are through the mesencephalon (mes) or midbrain (~D), 

rhombencephalon (Rh) or hindbrain (B,E), and trunk (C,F). fg, foregut; Ot, Otocyst; Nt, 

neural tube; No, notochord. Dorsal views of control (G) and Xrel3L\58 (H) embryos are 

shown before sectioning with level of section indicated by yellow bars. Letters next to 

yellow bars correspond to histological sections in A to F. (1-K) Early tadpole embryos 

processed for whole mount RNA in situ hybridization using nrp-1 as a neural marker. An 

unaffected embryo (I) has a full complement of brain, eyes, otocysts and spinal cord 

while there is progressive loss of anterior structure and organization in type II (J) and V 

(K) embryo. Scale bars for A-F=O.l mm, G and H=0.5 mm and I-K = 0.25 mm. 
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The apparent over-representation of the hindbrain, with coincident anterior 

depletion, suggests the expansion of the former at the expense of the latter, indicating that 

the anterior most neural tissue within these embryos failed to develop into neural 

elements rostral to the hindbrain. 

2.4.4 Xrel3 Patterns the Brain 

To more fmely analyze the effect of Xrel3~58 on development, mRNA expression 

of a variety of neural specific molecular markers was determined using whole mount in 

situ hybridization. For instance, the expression of the general pan-neural marker nrp-1 

(Figure 2.1 OA) was reduced and disorganized in the anterior most neural plate at mid­

neurula stages (Figure 2.1 OB) resulting in a rostral shift of caudal structures. This finding 

confirms initial histological analysis as observed at the tadpole stage (Figure 2.9J,K). 

The rostral neural transformation and ventral midline (cyclopia) defects resulting 

from overexpression of dominant inhibitory Xrel3~58 were similar to those observed in 

mice following knockout of Otx2 or Shh function (Acampora et al., 1995; Matsuo et al., 

1995; Ang et al., 1996; Chiang et al., 1996). Since both of these markers were 

upregulated in Xrel3 induced tumours (Lake et al., 2001 ), their expression was also 

analyzed in Xrel3L158-injected embryos (Figure 2.10). 

At the mid-neurula stage, Xotx2 is expressed primarily within the midbrain and 

anterior neural ridge (Figure 2.10C; Eagleson and Dempewolf, 2002). However, in 

Xrel3A58-expressing embryos, there is a loss of its expression in both these territories 

(Figure 2.10D) . Since the cement gland is derived from the ANR region, it is not 
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Figure 2.10. Anterior-defective embryos have disrupted expression patterns of 

neural patterning markers in neurulae but normal expression of mesodermal 

markers at gastrulation. Control (A,C,E,G,I,K) embryos are compared against 

Xre/3.158 (B,D,F,H,J,L) injected embryos. Stage 15 embryos were stained for nrp-1 

(A,B), otx-2 (C,D), shh (E,F) and glil (G,H). Stage 10-10.5 embryos were stained for 

chordin (I,J) and Xbra (K,L) and viewed from the vegetal pole. Blue arrowheads in E and 

F indicate specific expression (dark blue-black stain) of shh in floor-plate and white 

arrows indicate expression of shh in prospective brain. Similarly, green arrowheads in G 

and H indicate expression in prospective brain of glil. White letters indicate perspective 

views of embryos: L, lateral; D, dorsal; A; anterior. Embryos in A-D are shown at 

anterior end. Ar= archenteron and No= notochord. Scale bars=0.5 mm. 
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surprising that Xrel3~58 embryos have deficiencies in this glandular tissue at later stages 

(Figure 2.7B). 

Expression of shh within the ventral midline along the entire length of the neural 

plate is required to establish ventral identity (Figure 2.10E; Marti et al., 1995b; Ekker et 

al., 1995; Lee et al., 1997a). However, this expression was significantly reduced in 

Xrel3~58 embryos, with anterior expression being more significantly affected than 

posterior expression (Figure 2.1 OF) . . While the loss of anterior expression is consistent 

with the head abnormalities observed (Figure 2.7B), the reduced posterior expression did 

not translate into visible posterior neural or axial abnormalities (Figure 2.7B, Figure 2.9F). 

Therefore, the reduction of shh expression posteriorly was not significant enough to cause 

permanent patterning defects, perhaps due to recovered expression at later stages. 

However, it is possible that slight defec"ts exist that are not apparently obvious at the 

stages in which I examined the embryos. The absence of any posterior abnormalities 

could be defmitively proven using assays that identify specific ventral neuronal subtypes. 

Like shh, glil is normally expressed ventrally along the length of the neural tube 

(Figure 2.10G). Its role is to mediate the Shh response (Lee et al., 1997a) and in 

Xrel3L158-injected embryos (Figure 2.10H) its expression was significantly reduced, 

especially within the brain. 

Therefore, overexpression studies (Lake et al., 2001) in conjunction with these 

observed dominant inhibitory effects demonstrate the dependency of otx2, shh and glil 

expression on Xenopus Rel!NF-KB activity. 
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2.4.5 Xrel3.A58 Does Not Block Organizer Formation 

While the defects observed were consistent with Otx2 and Shh knockouts in other 

species, they also might be interpreted as abnormalities associated with incomplete 

specification of the inducing mesendoderm (Fredieu et al., 1997; Li et al., 1997). My 

evidence has suggested that shh depletion in the floorplate of the prospective brain may 

originate from disruption in the anterior mesendoderm or as a secondary event resulting 

from an earlier disruption in the proper formation of the organizer. It seems unlikely 

Xrel3~58 disrupted dorsoventral axial patterning or mesendoderm induction, since the 

embryos gastrulated normally with complete blastopore closure. However, Xrel3~58 

could nonetheless have modified these events. Therefore a more extensive ·analysis of 

organizer marker expression at the onset of gastrulation was undertaken. 

In situ analysis of organizer markers showed relatively normal expression of the 

trunk-inducing marker chordin, expressed in the dorsal lip of gastrulae (Figure 2.10I,J; 

Sasai et al., 1994), and the pan-mesodermal marker Xbra (Figure 2.1 OK,L; Smith et al., 

1991). To further analyze the potential effect of Xrel3~58 overexpression, I also 

examined the expression of a variety of mesendoderm-specific markers (shown in Figure 

1.2) using RT-PCR analysis of Xrel3A58-injected gastrulae (Figure 2.11). These assays 

indicated normal expression of the BMP antagonist noggin (Smith and Harland, 1992), 

which is expressed in the trunk organizer; the ventroposterior mesodermal marker 

derriere (Sun et al., 1999); and the head organizer markers goosecoid (Cho et al., 1991), 

lim-1 (Taira et al., 1992), blimp-] (de Souza et al., 1999), dkk-1 (Glinka et al., 1998), hex 

(Jones et al., 1999), cerberus (Bouwmeester et al., 1996), and Xnr3 (Smith et al., 1995), 
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Figure 2.11. Xrel3A58 does not antagonize organizer formation. Embryos were tilted 

following fertilization and injected with 1000 pg Xrel3L158 RNA within the two dorsal or 

ventral blastomeres at the two-cell stage or withXrel3RHD RNA (1000 pg) dorsally. 

RNA was extracted from gastrula stage embryos (st. 10-10.5) and assayed through RT­

PCR analysis for any reduction in organizer marker expression. Only otx2 and frzb-1 

expression was found to decrease following Xrel3A58 expression. This experiment was 

repeated twice to confrrm reproducibility of results, and embryos from each experiment 

were allowed to develop to tadpole stages to ensure effectiveness of Xrel3L158 RNA 

injections. As such, Xrel3RHD was found to have no effect on embryo development. 

Levels of eDNA used were standardized using histone (H4) levels . -RT: negative control, 

uninjected without reverse transcriptase. 
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some of which are also expressed within the anterior endoderm (Figure 1.2). However, 

the head organizing Wnt antagonist Frzb-1 (Leyns et al., 1997; Wang et al., 1997a) was 

reduced at the RNA level by Xrel3~58 (Figure 2.11), indicating that this contributed to 

the anterior defective phenotype. However, because of its highly localized expression, it 

is unlikely that reduction in frzb-1 expression generated the global reduction of shh and 

glil found in Xrel3L1.58-injected embryos. Therefore, these results further verify that shh 

and glil are downstream targets ofXrel3. 

The expression of otx2 was reduced in Xrel3L1.58-injected gastrula (Figure 2.11), 

indicating a possible reduction of expression in the mesendoderm prior to the observed 

later reduction in neurectoderm (Figure 2.10D). It is unlikely, however, that Xrel3~58 

generated deficiencies of otx2 in the mesendoderm since its downstream targets within 

this tissue, cerberus (Yamamoto et al., 2003) and calponin H3 (Morgan et al., 1999), 

were unaffected (Figure 2.11). Therefore, Xrel3 mediated activation of otx2 may be 

specific to ectodermal derivatives coincident with the earliest onset of otx2 expression 

within the prospective brain. This conclusion is predicted based on several observations, 

including the severe disruption of otx2 expression by Xrel3~58 in the anterior 

neurectoderm (Figure 2.1 0) with associated head abnormalities, as well as the absence of 

any significant effect on mesendodermal derivatives or direct gene targets within this 

tissue. Further examination of the spatial distribution of otx2 messages at the gastrula 

stage is required for definitive conclusions on the tissue-specificity ofXrel3~58 actions in 

this regard. 
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My results suggest that Xrel3~58 generated head abnormalities specifically by 

targeting the expression of neurectodermal patterning genes (Xotx2, glil, shh) and certain 

underlying inducing genes (shh,frzb-1) . These latter markers were found to be reduced in 

the absence of any global or non-specific disruption of early organizer specification. 

Increased accuracy in the analysis of gene expression levels could be obtained by using 

more quantitative RT-PCR techniques (e.g. measurement of incorporated radiolabeled 

nucleotides). However, irrespective of this, these experiments demonstrate that Xrel3 

establishes spatial identity within the anterior nervous system by regulating the 

expression of key patterning genes within both the neurectoderm and mesendoderm. 
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2.5 DISCUSSION 

2.5.1 Rei!NF-KB in Neural Patterning 

Emerging evidence has implicated complex roles for vertebrate NF-KB proteins in 

regulating neural development, swvival and dysfunction in neurodegenerative disorders 

such as Alzheimer's and Parkinson's disease (reviewed in Denk et al., 2000). However, 

the knockout of individual family members has provided limited information for the 

definitive role these proteins play in embryonic CNS development (reviewed in Attar et 

al., 1997; Gerondakis et al., 1999), due perhaps to functional redundancy between the 

numerous Rel!NF-KB proteins. The results of this study demonstrate a requirement for 

Xenopus Rel!NF-KB protein activity in patterning the anterior-most neural tissue by 

regulated expression of markers that not only specify spatial identity, but also 

consequently generate secondary organizing centers that further refine the pre-established 

AP and DV neuraxes. 

Previous expression studies (Yang et al., 1998) in conjunction with the present 

functional study allowed me to develop a spatiotemporal model for the involvement of 

Xrel3 in early embryonic development. Xrel3 is expressed within the pregastrula marginal 

zone, placing it in the correct location for possible initiation of frzb-1 expression in the 

head organizer and otx2 expression in the anterior neurectoderm (Figures 2.10 and 2.11). 

The incomplete knockdown of these markers, however, may be reflected in the 

inefficiency of Xrel3~58 to target maternally derived Xrel3. Maternal Xrel3 messages 

(Yang et al., 1998) are likely translated and associated into dimeric complexes before 

exogenous Xrel3 L158 RNA is introduced. Therefore, the pre-gastrula requirement for 
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Xrel3 may be more efficiently analyzed using antisense technologies in oocytes (Weeks 

et al. 1991; Heasman et al., 1992; Heasman et al., 1994; Kofron et al., 1997). 

Xre/3 message levels decline by gastrula stages and new zygotic messages 

accumulate in neurulae in the anterior-most neurectoderm fated to form the primary brain 

vesicles that give rise to the fore-, mid- and hindbrain (Figure 2.12; Yang et al., 1998). 

Analysis of Xrel3 protein levels would be required to determine more accurately the 

actual Xrel3 expression pattern. However, based on this distribution of Xre/3 transcripts it 

seems that otx2 expression must be initiated by Xrel3 established mainly from maternal 

stores and maintained later in the future fore- midbrain by zygotic Xrel3. 

The window during late gastrula/early neurula stages in which Xre/3 IS not 

expressed suggests that there is likely an alternative mode for regulating otx2 expression 

active during this period. Indeed, the initially broad expression pattern of otx2 is 

gradually restricted more anteriorly at this time by Gbx2 to specify the isthmic organizer 

(Glavic et al., 2002). The obse~ed drop in Xre/3 expression may be an essential 

component of this process. Xrel3 expressed at later neurula stages would then be expected 

to reinforce repositioned otx2 expression in the fore-midbrain region (Figure 2.12). 

Further analysis of the temporal requirement for Xrel3 in Otx2 expression (and possible 

Gbx2 repression) is required to confirm this hypothesis. 

Xre/3 is also expressed in the notochord (Yang et al., 1998) where it may initiate 

expression of shh at mid-neurula stages (Figure 2.10; Ekker et al., 1995). Shh from the 

mesendoderm diffuses to the overlying neurectoderm to induce its own expression within 

the floor plate where it acts as a morphogenetic source to pattern ventral neuronal 
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Figure 2.12. Model of Xrei3A58 inhibitory activity in Xenopus embryos. Xrel3 

expressed in the chordamesoderm and anterior-most neurectoderm fated to form fore-, 

mid- and hindbrain establishes the correct spatial expression of otx-2, shh and glil 

expression within the nervous system. This may further require Xrel3-dependent 

expression of XFrzb-1 to antagonise Wnt activity in the anterior neurectoderm. Targeted 

expression ofXrel3A58 to the head region of developing embryos enables its 

dimerization with and antagonism of endogenous Xrel3 proteins within this region. The 

resultant inability of Xrel3 to bind DNA and regulate target promoter activity either 

directly or indirectly prevents proper expression of otx-2, shh, glil andXfrzb-1 and the 

loss of tissues normally specified by these genes. 
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populations (Ericson et al., 1995; Hynes et al., 1995; Marti et al., 1995alb; Roelink et al., 

1995; Wang et al., 1995; Chiang et al., 1996; Kohtz et al., 1998), in part through 

induction of its effector Gli1 (Lee et al., 1997a). The more significant loss of shh/glil 

expression in the brain following Xre/3.158 injection may result from a greater 

dependency of this tissue on Xrel3 activity. 

Alternatively, it is possible that the anterior-posterior differences in loss of shh/gli 

expression may simply be a reflection of differential amounts of injected Xre/3.158 in the 

dorso-anterior region. In fact, injection on either side of the dorsal meridian at the two- to 

four-cell stage targets chordamesodermal/neurectodermal cells that, through convergent 

extension movements during gastrulation, arise more anteriorly within the 

notochord/neural plate. Cells derived more laterally would receive less Xre/3.158 RNA 

and become incorporated into more posterior positions of the prospective 

notochord/neural field (Lane and Sheets, 2000). As such, due to the nature of the 

localized dorsal injections, more anterior derivatives would inherit the highest 

concentrations of antagonizing Xrel3~58 activity, and would be expected to show the 

greatest reduction in target gene expression. If this were correct, I would expect ventral or 

lateral injections to generate more posterior than anterior depletions, a possibility that has 

yet to be tested. 

Irrespective of the derivative tissue, Xrel3 appears to be required upstream of Shh 

expression in the floorplate where anteriorly, in other species, it is normally required for 

specification of ventral neural identity in the fore- and midbrain (Ericson et al., 1995; 

Hynes et al., 1995; Wang et al., 1995; Chiang et al., 1996; Kohtz et al., 1998). Indeed, 

double heterozygous knockouts of otx2 and hnf-3 p in mice (Jin et al., 2001) developed 
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compound defects of anterior ventral structures and holoprosencephaly, due to a loss of 

Shh signaling from the ventral telencephalon (Jin et al., 2001). These findings suggested 

that regulated expression of Shh was dependent on overlapping Otx2 and HNF-3(3 

expression domains initially in the ventral midline of forebrain and midbrain and 

subsequently only within ventral midbrain (Jin et al., 2001). In fact, HNF-3(3, while 

typically downstream of Shh signaling (Sasaki et al., 1997), regulates Shh expression 

(Echelard et al., 1993; Sasaki and Hogan, 1994; Chang et al., 1997) and forms direct 

associations with Otx2 (Nakano et al., 2000). Further examination into a potential role for 

Xrel3 in regulating hnf-3 f3 expression is required to determine whether this is a possible 

intermediate step in activating shh expression in the brain. 

Following the initial specification of fore-midbrain identity and potential 

induction of Shh expression within this region, Otx2 was found to further provide AP and 

DV spatial identity by limiting FGF8 expression to the IsO and Shh expression to the 

ventral floor-plate region of the midbrain (Puelles et al., 2003). However, Shh does 

become expressed more dorsally within the forebrain as part of the ZLI (Echelard et al., 

1993; Puelles and Rubenstein, 1993; Bally-Cuif and Wassef, 1995; Marti et al., 1995a), 

possibly though Rel!NF-KB dependent activity, since all anterior staining for shh is lost in 

Xrel3.6.58 expressing embryos. Therefore, regulation of these markers by Xrel3 is more 

complex than simple direct transcription, with different temporal and spatial requirements 

coupled with the potential for initially agonistic then antagonistic feedback between Otx2 

and Shh expression in the brain. 
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2.5.2. Dominant Interference 

Confirmation of the proposed model ofXrel3 regulation (Figure 2.12) comes from 

embryos exhibiting interference of this activity. By dimerizing with and antagonizing 

wildtype Xrel3, I postulated that Xrel3~58, when expressed in embryos, inhibited 

endogenous Xrel3 activity within both head mesendoderm and neurectoderm. The 

underlying mechanism of this interference, with disrupted DNA binding by a C­

terminally truncated Xrel3 protein, is unsurprising for two reasons: 

1. Rel!NF-KB protein activity is regulated at multiple levels that only in part include 

the IKB kinase network. DNA binding to regulate transcription is also dependent on the 

phosphorylation status of the protein, variations in the protein's primary sequence that 

-determine which KB sites are bound, interacting proteins (including dimer composition) 

and tertiary conformational changes (reviewed in Chen and Ghosh, 1999). Therefore, 

alterations in the pnmary. sequence may influence any number of these regulatory 

functions. 

2. Direct regulatory associations between the RH and T A domains have been 

demonstrated for numerous Rel!NF-KB proteins. For instance, intramolecular interactions 

of RelA termini mask TAD sites that associate with the transcriptional ~o-activator 

CBP/p300 (Zhong et al., 1998). The Dorsal morphogen was also found to naturally 

regulate its own transcriptional activation and repression functions through inhibitory 

associations between its RH and T A domains~ specific mutations within the RH domain 

were capable of enhancing these associations and completely eliminated all 

transcriptional regulatory activity (Jia et al., 2002). Furthermore, alteration of the 
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phosphorylation status of the C-terminal TAD of c-Rel by mutation resulting in 

conversion of specific serine residues to alanine was capable of generating dominant 

negative versions that blocked Rel!NF-KB reporter activity (Martinet al., 2001). 

Therefore, based on these studies, the tertiary structural conformation of Xrel3 

likely allows intramolecular C-terminal and N-terminal interactions that are required for 

its normal activity. According to this, DNA binding by the RH domain would be 

influenced and possibly regulated by residues present within the T A domain. 

However, the potential for Xrel3 proteins to associate with other family members 

to regulate transcription from different enhancer sequences complicates inferences made 

about the target specificity of Xrel3~58. The possibility remains that Xrel3~58 may 

dimerize not only with endogenous Xrel3 but also with XrelA, an association predicted to 

exist in vitro (B.B.L., unpublished observations), or other identified Rel!NF-KB family 

members (Table 2.1). In fact, XrelA and Xp100 were both found to be expressed in dorsal 

structures, including the central nervous system of neurula and tadpole embryos (Kao and 

Hopwood, 1991; Bearer, 1994; Suzuki et al., 1998). In addition, while the efficiency of 

Xrel3~58 to antagonize Xrel3 DNA binding was clearly demonstrated in vitro, it has yet 

to be shown in vivo. Protein isolated from early embryos binds the KB-pd sequence in a 

temporal pattern resembling Xrel3 RNA expression (Figure 2.13, K.R.K, unpublished 

observations), so injection of Xrel3L158 would be predicted to abrogate, primarily, the 

post-gastrula phase of this binding activity. Alternatively, it would be interesting to 

identify the proteins bound and antagonized by Xrel3~58 using, for instance, Yeast 2-
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Figure 2.13. Perfect 1CB palindromic binding pattern during early Xenopus 

development. Nuclear extracts from various embryonic stages (N&F: Nieuwkoop and 

Faber, 1994) were used within an EMSA using the KB-pd (K.R .K, unpublished 

observations). Bandshift occurred prior to and following gastrulation, with re-emergence 

occurring at mid neurula stages. This closely resembles the pattern of Xre/3 message 

accumulation (Yang et al., 1998). 



XRelhcB-pd ~ 

Free Probe 

1 6 8 1 0 15 19 27 23 30 33 
Developmental Stage (N&F) 



Lake,2003 Xenopus re/3 

hybrid assays, or by mass spectrometric analysis of immunoprecipitated complexes. 

Therefore, further analyses could definitively identify the target ofXrel3~58 and, as such, 

the required Re1/NF-K.B complex that patterns the embryonic brain. 

Another more direct way to identify the normal endogenous role of Xrel3 alone 

could be achieved through morpholino knockdown studies as employed in chapter 3 

against XPygo-2 (Lake and Kao, 2003b). This would allow specific targeted depletion of 

Xrel3 protein to validate the results obtained by Xrel3~58 and identify individual 

contributions to the patterning of the embryonic nervous system. 

2.5.3 Regulation of Neural Patterning by Xrel3-mediated Expression of shh and otx2 

The graded ventromedial brain defects in Xre/3..158-injected Xenopus embryos are 

reminiscent of those exhibited by shh mutations in mouse (Chiang et al., 1996; Hayhurst 

and McConnell, 2003) and holoprosencephaly in humans (Belloni et al., 1996; Roessler et 

al., 1996; Roessler et al., 1997; Nanni et al., 1999; Wallis and Muenke, 2000). Shh 

depleted chick mutants also exhibited an overall reduction in head size similar to that 

observed in Xre/3..158-injected Xenopus embryos, due largely to the death of migratory 

craniofacial neural crest cells (Ahlgren and Bronner-Fraser, 1999; Britto et al., 2002). 

This experimental result might imply that Xre13 in frogs plays a role in neural crest 

development. In fact, the neural crest marker twist was upregulated by ectopic Xrel3 

expression (Lake et al., 2001) predicting that its reduction would be found in Xre/3..158-

injected embryos. 
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The ventral hindbrain of Xrel3~58 embryos was also expanded, with an enlarged 

brain vesicle creating a gap visible from the dorsal anterior view of the head (Figure 2.9E, 

H). This observation is consistent with the recently identified role of Shh in expansion of 

dorsal neuroepithelium, with Shh depletion resulting in abnormal folding and overall 

collapse of the brain vesicles due to reduced proliferation dorsally and increased cell 

death (Dahmane and Ruiz I Altaba, 1999; Dahmane et al., 2001; Britto et al., 2002; 

Ishibashi and McMahon, 2002; Lai et al., 2003). 

Xrel3L158-injected embryos also developed anterior to posterior transformations 

characteristic of otx2 homo- or heterozygote knockout mice (Acampora et al., 1995; 

Matsuo et al., 1995; Ang et al., 1996). Xenopus defects additionally included loss of 

cement gland tissue, which is dependent on Otx2 activity (Gammill and Sive, 2001). This 

suggests that Xrel3 may be involved ·in cement gland formation by regulating Otx.2 

expression. Xrel3~58 embryos also exhibited a more severe phenotype having either 

absent eyes or a deeply set single eye and the absence of the majority of head structures. 

All of these phenotypic alterations were also observed following otx2 ablation in mice 

(Matsuo et al., 1995; Hide et al., 2002), consistent with studies demonstrating that Otx2 is 

expressed within the cephalic mesenchyme and neural crest cells and correspondingly 

plays a critical role in craniofacial development (Kimura et al., 1997). Further, Otx2 is 

initially expressed in the retinal field and was shown to be required for retinal 

development (Acampora et al., 1995; Blitz and Cho, 1995; Matsuo et al., 1995; Kablar et 

al., 1996; Perron et al., 1998; Andreazzoli et al., 1999; Kenyon et al., 2001). 
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These observations are further consistent with the model by which the Otx2 

transcriptional regulator and the Shh pathway exist, possibly in an interdependent fashion, 

downstream of Rel!NF -KB in patterning the brain. Xrel3 both induces their expression 

ectopically in non-neural ectoderm (Lake et al., 2001) and is required for their 

endogenous expression in the developing nervous system (Figure 2.10). It is possible that 

Xrel3 induces and maintains their expression initially and through association with other 

regulatory molecules, their expression domains become refmed. Since ectopically 

induced expression of these markers by Xrel3 only occurs at their normal time of 

endogenous expression (Lake et al., 2001 ), the correct temporal and spatial patterns of 

expression are further restricted by additional factors that regulate ectodermal competence 

to respond to Xrel3. Therefore, I suggest that both restricted competence and downstream 

regulatory networks enable broadly expressed Xrel3 to induce the more spatially 

restricted expression of its downstream targets. 

2.5.4 Congenital Birth Defects and Mitogenesis 

While Rel!NF-KB has yet to be linked with defects associated with aberrant 

encephalospinal development, this study demonstrates the important roles these proteins 

play in regulating known embryologically relevant genes. One possibility for the failure 

to form a link to congenital defects in mouse knockout studies may be the redundancy of 

function and extensive dimerization exhibited by Rel!NF-KB proteins. This may reflect an 

evolutionary adaptation to counteract potentially disastrous single mutations which occur 

in other systems, such as the frog. The ability to generate embryos exhibiting 

Holoprosencephaly provides a novel system to study the potential molecular components 
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of a disease found in 1116000 live births and highly associated with prenatal mortality in 

humans, being identified as the cause of 1/250 aborted conceptuses (Cohen, 1989; 

Muenke et al., 1994). 

The activation of shh and glil expression in Xrel3 induced tumors (Lake et al., 

2001) also indicates a possible mitogenic role for Rel!NF-KB by activating the Shh 

pathway and subsequent enhanced Gli1 expression (Dahmane et al., 1997). Rel!NF-KB 

pathway components, associated with normal epidermal development and differentiation, 

become deregulated in skin pathologies involving proliferation that range from psoriasis 

to carcinogenesis (Bell et al., 2003). Several studies have implicated Shh and its 

downstream affecter Gli1 in basal cell carcinomas of the skin (Hahn et al., 1996; Fan et 

al., 1997; Wolter et al., 1997; Taipale and Beachy, 2001; Ruiz i Altaba et al., 2002b) and 

in non-neural ectodermal tumors in Xenopus embryos (Lake et al., 2001; Dahmane et al., 

1997). My studies provide a link between Rel!NF-KB and the Shh pathway, and therefore 

implicate their potential interconnected role in skin malignancy. Furthermore, since 

Rel!NF-KB activation is an intracellular response for skin cells to mutagenizing 

environmental factors (e.g UV; Bell et al., 2003); it remains possible that epidermal 

damage can progress into a malignant state through Rel!NF-KB induction of Shh/Gli1 

overexpresston. 

The Shh pathway is not only involved in cell proliferation of skin cell progenitors, 

but also other types of epithelial stem cells including those of the developing nervous 

system, from invertebrates (Shyamala and Bhat, 2002) to vertebrates (Hynes et al., 1997; 

Jensen and Wallace, 1997; Parisi and Lin, 1998; Ahlgren and Bronner-Fraser, 1999; Fan 

and K.havari, 1999; Matise and Joyner, 1999; Wallace, 1999; Weschler-Reya and Scott, 

1999; Britto et al., 2000; Dahmane et al., 2001; Britto et al., 2002). Following an initial 

requirement in patterning the dorsal-ventral axes of the brain, Shh becomes expressed in 
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dorsal CNS cortical structures, including the cerebral cortex (forebrain), optic tectum 

(midbrain) and cerebellar cortex (hindbrain) (Traiffort et al., 1999) where it is required 

for proliferation of dorsal neuronal progenitors (Dahmane and Ruiz i Altaba, 1999; 

Wallace, 1999; Wechlser-Reya and Scott, 1999; Dahmane et al., 2001; Britto et al., 2002). 

A similar role has been proposed for the mouse retina (Jensen and Wallace, 1997). As 

such, the overexpression of Gli1 in the developing frog CNS caused increased 

proliferation and hyperplasia (Dahmane et al., 2001). Therefore, my studies demonstrate 

the potential for Rel/NF-KB to regulate cellular proliferation within the embryonic 

nervous system by activation of Shh/Gli1. Correspondingly, abnormal activation in adult 

cells ofReliNF-KB might be an instigating factor in certain neurectodermal malignancies 

that are associated with aberrant Shh/Gli 1 activity, a possibility that requires further 

investigation. 

My results indicate that Rel/NF-KB signaling, either directly or indirectly in 

Xenopus is required for both the specification and expansion of central nervous system 

neuronal populations for proper formation of the head. A perturbation of this activity, and 

consequent downstream gene expression, as I have shown, results in the loss and 

disorganization of head structures (Figure 2.12). 
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3.1 ABSTRACT 

This chapter outlines the identification of two Xenopus mRNAs that encode 

proteins homologous to a component of the Wnt/J3-Catenin transcriptional machinery 

known as Pygopus. The predicted proteins encoded by both mRNAs (XPygo-2a and 

XPygo-2J3) share the same structural properties with human Pygo-2, but with XPygo-2J3 

lacking 21 N-terminal residues. Xpygo-2a messages accumulate in the prospective 

anterior neural plate after gastrulation and then are localized to the nervous system, rostral 

to and including the hindbrain. Xpygo-2/] mRNA is expressed in oocytes and early 

embryos but declines in level before and during gastrulation. In late neurula, Xpygo-2/] 

mRNA is restricted to the retinal field, including eye primordia and prospective forebrain. 

A C-terminal truncated mutant of XPygo-2 containing the N-terminal Homology Domain 

(NHD) caused both axis duplication when injected at the 2-cell stage and inhibition of 

anterior neural development when injected in the prospective head, mimicking the 

previously described effects of Wnt-signaling activators. Inhibition of XPygo-2a and 

XPygo-2J3 by injection of gene-specific antisense morpholino oligonucleotides into 

prospective anterior neurectoderm caused brain defects that were prevented by co­

injection of Xpygo-2 mRNA. Both XPygo-2a and XPygo-2J3 morpholinos reduced the 

eye and forebrain markers Xrxl, Xpax6 and Xbfl, while the XPygo-2a morpholino also 

eliminated expression of the mid-hindbrain marker En-2. The differential expression and 

regulatory activities of XPygo-2aJJ3 in rostral neural tissue indicate that they represent 

essential components of a novel mechanism for Wnt signaling in regionalization of the 

brain. 
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3.2 INTRODUCTION 

The Wnt proteins belong to a large family of secreted glycoproteins that derive 

their name from the Drosophila morphogen Wingless (W g, Cabrera et al., 1987; 

Rijsewijk et al., 1987) and the mouse oncogene int-I (known as wnt-1) (Nusse and 

Varmus, 1982; van Ooyen and Nusse, 1984). Members of this multigene family 

(currently about 19 in human and mouse, 16 in Xenopus) are involved in myriad 

processes including limb development, CNS patterning, somitogenesis, lymphopoiesis 

and establishment of the primary body axis (Cadigan and Nusse, 1997; Moon et al., 1997; 

Gradl et al., 1999; Moon et al., 2002; van de Wetering et al., 2002; Lake and Kao, 2003a). 

This critical role in growth and differentiation enables activating mutations within this 

pathway to contribute to cancer (Huelsken et al., 2001; Taipale and Beachy, 2001). 

Wnt control of cell fate involves multiple signaling pathways, the best 

characterized of which is that of the canonical Wnt-1/Wg class, in which ligand­

dependent subcellular localization and stability of the transcriptional co-activator, P­

Catenin, is regulated by an elaborate network of transducers (Martinez Arias et al., 1999; 

Sharpe et al., 2001). Wnt ligands bind the frizzled family of receptors (Bhanot et al., 1996; 

Yang-Snyder et al., 1996; He et al., 1997) with concomitant binding of the LRP5/6 

transmembrane proteins (Pinson et al., 2000; Tarnai et al., 2000; Wehrli et al., 2000; Mao 

et al., 2001). These ligand-receptor-coreceptor complexes activate intracellular 

Dishevelled (Yanagawa et al ., 1995) which inhibits a cytoplasmic P-Catenin destruction 

complex (N oordermeer et al., 1994; Kishida et al., 1999; Lee et al., 1999; Peters et al., 

1999; Smalley et al., 1999; Itoh et al., 2000), composed of the scaffolding proteins Axin 
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and Adenomatous Polyposis Coli (APC) and the serine/threonine kinase, Glycogen 

Synthase Kinase-3(3 (GSK-3(3). The deregulation of cytoplasmic f3-Catenin destruction 

allows it to accumulate in the nucleus where it interacts with TCF ILEF transcription 

factors (Behrens et al., 1996; Molenaar et al., 1996; van Noort and Clevers, 2002) to 

activate Wnt responsive genes (Brannon et al., 1997; Brunner et al., 1997; McKendry et 

al., 1997; Riese et al., 1997; van de Wetering et al., 1997). Conversely, the absence of 

pathway stimulation results in cytosolic (3-Catenin destruction, allowing TCF/LEF 

interaction with co-repressors to inhibit Wnt target gene transcription (Cavallo et al. , 1998; 

Roose et al., 1998; Brannon et al., 1999). 

Localization of f3-Catenin to dorsal nuclei of Xenopus cleavage stage embryos, 

establishes the dorsal organizing centre required for body axis formation (Schneider et al. , 

1996; Moon and Kimelman, 1998; Brown et al., 2000; Chan and Etkin, 2001). As such, 

ventral activation by ectopically expressed activators of Wnt signaling generates body 

axis duplications (McMahon and Moon, 1989; Moon, 1993; Cui et al., 1995; Dominguez 

et al., 1995; Guger and Gumbiner, 1995; He et al., 1995; Pierce and Kimelman, 1995; 

Sokol et al., 1995; Yang-Snyder et al., 1996; Vleminckx et al., 1997; Yost et al., 1998; 

Liu et al., 1999b ), providing a useful bioassay to identify novel pathway components and 

to establish their place within the signaling hierarchy (reviewed in Moon and Kimelman, 

1998; Gradl et al., 1999). 

Following dorsal ax1s formation, a second phase of ligand-dependent Wnt 

signaling occurs whereby Wnts promote ventral-type mesoderm while antagonizing 

Spemann Organizer mesoderm (reviewed in Niehrs, 1999). Thus, extracellular Wnt 
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ligand inactivation is required to differentiate head from trunk Organizer (Glinka et al., 

1997; Glinka et al., 1998; Piccolo et al., 1999). The non-homogeneous Organizer 

establishes longitudinal and lateral domains of gene expression in the overlying neural 

plate, which generate forebrain, midbrain, hindbrain and spinal cord (Gamse and Sive, 

2001 ). Low levels of Wnt signaling in anterior neural plate, by exposure to Wnt 

antagonists expressed at high levels in the prechordal- and anterior chordamesoderm, 

specify the forebrain, while increasing levels of Wnts specify increasingly posterior 

character (Kiecker and Niehrs, 2001). 

While Wnt inhibition during gastrulation is required for early brain development, 

recent evidence suggests that they are, interestingly, also required for a later phase of 

brain patterning (Patapoutian and Reichard, 2000; Kim et al., 2001; Gunhaga et al., 2003). 

For instance, (3-Catenin antisense morpholinos or Xgsk-3p RNA injected into prospective 

neurectoderm caused eye and brain malformations (Itoh et al., 1995; Pierce and 

Kimelman, 1996; Heasman et . al., 2000). Wntl also has an established role in 

specification and function of the isthmic organizer (reviewed in Lake and Kao 2003a; 

Chapter 1) and as such the development of the midbrain and cerebellum (McMahon and 

Bradley, 1990; Thomas and Capecchi, 1990). This is accomplished, in part, through 

regulating the expression of En-1/En-2 in the MHB region (Hemmati-Brivanlou and 

Harland, 1989; McMahon and Bradley, 1990; McMahon et al., 1992; McGrew et al., 

1999). 

In addition, multiple components of the canonical Wnt pathway are expressed in 

the forebrain includingXwnts- 2B, -3A, -BB (Wolda and Moon, 1992; Wolda et al., 1993; 
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Cui et al., 1995; Landesman and Sokol, 1997), Xfts -2, -3, -5, -7 (Shi et al., 1998; 

Deardorff and Klein, 1999; Wheeler and Hoppler, 1999; Sumanas and Ekker, 2001)Xtcf-

3, /ef-1, and Xtcf-4 (Molenaar et al., 1998; Konig et al., 2000). Also, the XFz3 receptor 

promotes ectopic eye formation and its inhibition suppresses normal eye development 

(Rasmussen et al., 2001). Wnt signaling is also required for eye development in 

Drosophila, where it establishes the equatoriaVpolar axis of the retinal epithelium (Wehrli 

and Tomlinson, 1998). 

This chapter describes the identification of two components of the Xenopus Wnt 

signaling pathway, XPygo-2a and XPygo-2(3, which are orthologues of human Pygopus-

2 (Kramps et al., 2002; Thompson et al., 2002). pygopus was frrst discovered in a screen 

for suppressors of an eye phenotype in Drosophila as a segment polarity gene necessary 

for transmission of the Wg signal (Kramps et al., 2002). Mutations within this gene 

generated an additional legless phenotype, inspiring its name (a pygopus is a legless 

lizard) (Kramps et al., 2002). Pygopus' role in Wnt signaling is to associate in the nucleus 

with J3-Cateninl Armadillo, through the adaptor legless/BCL9, as a necessary step for 

TCF/LEF-1 mediated transcription (Kramps et al., 2002; Parker et al., 2002; Thompson et 

al., 2002; Townsley et al., 2003). XPygo-2 has been recently identified by Belenkaya et al. 

(2002) as an important component of the dorsalizing Wnt signal in Xenopus axis 

formation by maternal m.RNA depletion. My work furthers these studies to report the 

existence of two isoforms of Xpygo-2 that exhibit distinct embryonic expression patterns 

and functions consistent with an additional role in anterior neural patterning. These 
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results support my hypothesis that XPygo-2a and XPygo-2J3 cooperatively pattern the 

frog brain as part of a late, post-gastrula, phase of Wnt signaling. 
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3.3 MATERIALS AND METHODS 

3.3.1 Library Screening 

Screening of a Xenopus stage 10 lambda uniZap II eDNA library (gift from 

Michael King) was performed using randomly labeled PCR fragments (Prime-a-Gene®, 

Promega) constituting the 964-1227 bp region of full length Xpygo-2a (Figure 3.1). 

Hybridization of nitrocellulose membranes (Protran TM, Schleicher and Schuell) was 

carried out at 42°C in a formaldehyde (50%) based buffer. Membranes were washed 

under low stringency (2X SSPE, 0.5% SDS at 45°C). Positive plaques were eluted andre­

screened twice under the above conditions. eDNA sequences from individual cross­

hybridizing clones were recovered in pBluescript using R408 helper phage (Stratagene ). 

The two isolated clones, Xpygo-2a (NCBI Accession number AY141128) and Xpygo-2/] 

(NCBI Accession number AY141129) were completely sequenced twice (Hospital for 

Sick Children, Toronto). 

3.3.2 Oocytes and Embryos 

Wild-type embryos were obtained and injected as described previously (Kao and 

Lockwood, 1996; Yang et al., 1998) and staged according to Nieuwkoop and Faber 

(1994) . Oocytes were surgically dissected from the ovaries and manually defolliculated in 

Ca2+/Mg2+ free OR (Opresko, 1991). Dorsal and ventral blastomeres were distinguished 

based on pigmentation differences and asymmetric cleavage at the 4-cell stage. Both 

blastomeres (ventral or dorsal; vegetal or animal) on either side of the first cleavage plane 
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Figure 3.1. Comparison of Xpygo-2a and Xpygo-2P complete eDNA sequences. 

Sequence identity between the two isoforms is represented in bold-face and the region 

corresponding to the hpygo-2 probe used in the library screening for these two Xenopus 

orthologues is underlined. Start and stop of translation occurs at beginning and end of 

bold-face region, respectively. Aside from an additional63 base pairs of coding sequence 

for Xpygo-2a, the coding sequences show very little deviation. 
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tggaatatacaggggtgtaggggcagatattgggcatatacagggcagcag 

ttttgggcattagctacaggggtgtacctggcagttaggggcttaaagtgagtgtgttattgggctcccagctgagggggtatctgacag 

-------gaataatgctgttatttgatgacgttaaacccagcacgcggttttagccacaaacccaccgtccagtactgaccacaggcggt 
ttagtggggcagcaaagtgcagggccgtgacataaggggctttgggtcatgactggtgtgtgagctccggcccccgagcagctgagtctg 

---------------------------------------------------------------atgcaaatqaagagccccgagaagaaa 
ATGGCTGCAGATCAGGACAAGTTGGATGGACTGACCGTTCCGGGCCGCAGAGCCAAGACTGGTATGCAAATGAAGAGCCCCGAGAAGAaA 

cggcgcaaa tcaaacactcagggccccgcatactcccatctttctgaatttgcc ccacct cccaccccaatggtcgaccacctggtggcg 
CGGCGCAAGTCAAACACTCAGGGCCCCGCATACTCCCATCTTTCTGAATTTGCACCACCACCCACCCCAATGGTCGACCACCTGGTGGCG 

tccaacccttttgaaqatgactttggggctccgaaagtcaac gcgggcccctcccccttcc tgaa caacccggtgccctttgqaaat tac 
TCCAACCCTTTTGAAGATGACTTTGGAGCTCCGAAAGTCAATGCTGGCCCCTCCCCCTTCATGAGCAACCCGGTGCCCTTTGGAAACTAC 

cgcatgccggqtgccatgccccatcaqatgacccccggctatcctggtqgcccacagcccat gagaagqcaggcacccccttttcctccc 
CGCATGCCGGGTGCCATGCCCCATCAGATGACCCCCGGCTATCCTGGTGGCCCACAGCCCACGAGAAGGCAGGCACCCCCTTTTCCTCCT 

aatcagatgggccctggttttqgaatgtcccaaaacccaaactaccaccagcctggaaacatgaacttccccaatqccccctttaatcaa 
AATCAGATGGGCCCTGGATTTGGAATGTCCCAAAACCCAAACTACCACCAGCCTGGGAACATGAACTTCCCCAATGCCCCCTTTAATCAA 

gccatgggc cagggcttcagcccccctgctgggcaaatgatgcaaggaccagtaqgagga tttgggccaatgatgtcaccaaacatgqgt 
GCCATGGGTCAGGGCTTCAGCCCCCCTGCTGGGCAAATGATGCAAGGACCAGTAGGAGGGTTTGGCCCAATGATGTCACCAAACATGGGT 

cagccccctagagqagaqatgqqccctggtcctgtattgaac tctcctggtggccctccatttactcaaaggtttggcccatcagggcac 
CAGCCCCCTAGAGGAGAGATGGGCCCTGGTCCTGTATTGAATTCTCCTGGTGGCCCTCCATTTACTCAAAGGTTTGGCCCATCAGGGCAC 

ccg tttggacagcccccaqtgccacgagccagcctc ccaccaaacac cagtccgtttgcaqqggccgaccaaagcttt cccccgggggtt 
CCATTTGGACAGCCCCCAGTGCCACGAGCCAGCCTACCACCAAACAACAGTCCGTTTGCAGGGGCCGACCAAAGCTTCCCCCCAGGGGTT 

gaagaacacggcaagaacat caaccctcccaqcaacacgtttaatcaagaccaqcatgttqggtcqccttctqcc qtcaatgggaaccaa 
GAAGAACAC~aGAACACCAACCCTCCCAGCAACACGTTTAATCAAGACCAGCATGTTGGGTCGCCTTCTGCTGTCAATGGGAACCAA 

ccaaacttcactcccaacaactccacgoqggqcaacagcaqcaccccegaaqtcaacAaeatccctcccccgagcaagcccact qgcaac 
CCAAACTTCACTCCCAACAACTCCACGCGTGGCAACAGCAGCACCCCCGAAGTCAACAACATCCCTCCCCCGAGCAAACCCACCGGCAAC 

tctgggcaccagccgccccct qgacttatttacccctgtqgcccctgcqagcgggaagtcaatgatgaccaggacgccatcttgtgtgaq 
TCTGGGCACCAGCCGCCCCCCGGACTTATTTACCCCTGTGGGGCCTGCGAGCGGGAAGTCAATGATGACCAAGACGCCATCTTGTGTGAG 

gcatcgtgccagaag tggttccacagagagtgcacggggatgactgagagtgcctacagcttgctcaccagagaggtctcggccgtgtgg 
GCA'l'CGTGCCAGAAATGGTTCCACAGAGAGTGCACAGGGATGACTGAGAGTGCCTACAGCTTGCTCACCAGAGAGGTCTCGGCCGTGTGG 

gcttgtgactactgcctgaaaaccaaggat atccagtccgtctacatccggggggccatgggccagctt gtggct gccaacgatggttga 
GCTTGTGACTACTGCCTGAAAACCAAGGAAATCCAGTCCGTCTACATCCGGGGGGCCATGGGCCAGCTGGTGGCAGCCAACGATGGTTGA 

atgtggcagagagttgggtgtcatggttactcacagctttaagaagccgtctctttggggtgcaaagactttcccagtatgagggatccc 
atgtggcaaagagttgggtgtcatggttactcacagctttaagaagccgtctttttggggtggagaggctttcccagtatgagggatccc 
tggcggaaaatattcctcacacattcttctgatctgactcctcctctaacttggattttggggtgtaaggcagcctgtcggcctcccctt 
tggcggaaaatcttctacaaacacattcgtctgatctgactccgcctctgttttggattttggggtgtaaggcaacctcttggcctcccc 
cagtcatagagtcggatgatcattggatagttgggaaacgttcacactccatttattttgtacagagcaaagacaagcccctccccctct 
ttcactcatagagctggatgatcatgggaagcattcggaatcatgggatagttgtgaacgttcacactccgtttattttgtacagaacag 
atgtatttttgataatgtataagtcgtgtctgcatttctaaccctccattgtggcctcactaattgggaggagaatgatccttgtgctga 
aaacaagcccctcccccctctatgtatatttttgataatgtgttcaagtcttgtctgcatttctgaccctccattgtggcctcactaatt 
cgcatttcactccattgtgacgttgttacttgccgatttagtctgcagttctatcacagattggtgcagttttataatggatttgtttct 
gggagtataatgatccttgtgctggcgcatttcactctattgtgacgtttacttgcttcccaatgggagatggaaggattgagtctggag 
aaccatgttggggcaattgtgtgggccgctgactcctcccctggggcccagtctctctgatccccgtcccctcagtctgtccctcttatt 
ttactgattggtgcagttttataatggattcatttctagctgtgttgtggggggcactgactcctctcttgggccccaatcagtctgcaa 
gcacttattggtctcttactcttcctggcaggagaaggtgcacgtgggttgtggcttctctaactcaaaagttatttattttctcatgtc 
gtaactgaaccgccaaaatgtgtccctcttattgcacttattgatctcttggcaggagaaggtgcggtgcacatgggataattgtgggaa 
tccatggaaacagtatcattaacgttgatgatttaactaatgaggtttctcccgtgtctctgtgtaagtgaaaggcttgagcagagcatt 
caaactattaactaaaaagttatttatttccttgtctctacggaaacaatgtcattaatgattgatttaattaatgagtgttcccttgtg 
gtgagagcgcgagagagaaatgttcttatagggaattttattgttgcattcaaatccttgtgggtggagacatagcagcagtacgtaact 
tctccgccccctgcctgtaaggaaaggtaaaggcttgggtagggaagggaaaatgcctctcctcatgggtggagacaggggcagcccatt 
cctcccatgaggagcaaagtaattgggtggtaatggttacacacccctttgtggcaagagaccttcatagctgctctgtgcagtcaatgc 
actcctcccttgaggagcaaactaagcagagaattgggtattgtagctgggcaccccctagtggcaggaagagttcatagctgctcagtg 
atatggttccctgtatgtgggggagaggcactttgtggggtgctttgcaagcaataatctccctgtttatttcccctttaatgtttgcat 
cagtcaatacatagggttccctgtattggggagaggcactttgtgtggaatgctgcactggggggtgtgggagaccattgcaagcaataa 
tctacctcatcccaacccaatgcaaaccatggctggatcatcatccgcttgccctgggaaccccaatagatgtacttacctgaaccccat 
tctgtgtttatttcccctggaacgtttgcattctacctcattataacccaatgcaaaccatggctgaatcctaagagaccccacattgac 
cactcacattactgtgacacactatgctccccacatttcttttcttcctgccatttcccgttttatcccgtctcctagcaacagctcttc 
tgtacttacctgaacctatatcccccgtaccccaaatttatttttctcctgccatttcctgtttgatcctgtctccaagcgaccgctctt 
cctgtcctgtaaatgtactaactggttccacagcagactggtccagtagccctgacttccctcttcttcccgggagttgccctttaatta 
acctgtccaataaatgtacaaacgggctctgcagccaacgggtccagtagctctgacttcccttcccctcggctttctgggagctgccct 
atggaatcttagtgcagggagtttactggcggagctgccatactgagttctctgaaagctctggcacccctttactgaggctgaataaag 
taataataataataataataatggaatctcggctcagggcggttactggtgaaactgccatactgcactctctgaaggcactgacactgg 
aggcacaaatagacgtattgtgactagcggttcaatcattcctctatcaatctgtatatttcactgctacgactgtaagtgtattgtgac 
ggctaaaccagacacaaatggacgtattatgacccagcgggtgcaatcattcctttattaatctgcattttcactgctagggctgtaagt 
ccccgtgcagccatattgtcccccacagtgagaattgtgatgcttattctttccatctccttataaagatttgtgagaaaatcccaaaaa 
gtattgtgagccccaagcagccatattgtcccctacagtgagaattgtgatgcgtttcctttcatctccttataaagatttctgagagaa 
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were injected at the 8-cell stage with either 9.2 nl or 4.6 nl to give 10 ng total of synthetic 

capped mRNA per embryo or up to 40 ng total of either XPygo-2a or XPygo-2P 

morpholinos (with or without 1 ng each of Xpygo-2a and Xpygo-2f3 or 2 ng Xpygo-2f3 

NHD RNA). Defects were analysed at tadpole stages (st. 33-35) with disruptions to eye 

development assessed by abnormalities in quantity and morphology of the retina 

pigmented epithelium-derived black pigmentation. 

UV ventralized embryos were generated by exposure of de-jellied embryos 

approximately 30 minutes post-fertilization to varying degrees of UV radiation (30-45 

seconds) to generate extremely axis deficient embryos (Kao and Danilchik, 1991). For 

axis rescue experiments, embryos were subsequently injected at the 1-2 cell stage with 10 

ng of synthetic mRNA within the vegetal marginal zone. 

For animal cap experiments, embryos were injected at the 2-cell stage with or 

without noggin RNA (125 pg) and XPygo-2a MO (40 ng) or control MO (40 ng). For 

rescue of marker expression, Xpygo-2a RNA (2 ng) was also injected. Animal caps were 

dissected at stage 8 in normal amphibian medium (NAM; Slack, 1984) and cultured 

overnight in half-strength NAM supplemented with BSA until stage 20-25. RNA was 

then obtained as described below for RT-PCR analysis . 

3.3.3 Plasmids 

Xpygo-2a and Xpygo-2f3 expression constructs were made by PCR amplification 

of coding sequences (see Table 3.1 for primer sequences) from full length eDNA and 

ligation into pCS2+ or pCS2+NLS (gifts from Dave Turner) to generate pCS2+Xpygo-2a 
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Table 3.1. Primer and Morpholino (MO) sequences. 
Primer Forward Sequence (5' to 3') Reverse Sequence (5'to 3') N* 

Xpygo-2alf3 GAACAACCCGGTGCCCT GGAGGGATGTTGTTGAC 25 
TTGG TTCGG 

Xpygo-2a CCCTCGAGGGTGTCCCTC AAGGCCTTGGAGATGAA 30 
TTATTGCAC AGGAAACGC 

Xpygo-2/3 GTCCAGTACTGACCACA CGGGGGAGGGATGTTGT 30 
GGCGG TGA 

X~l GAACACCTCAAGGGTCC CTGAAATGAGCCCAGGA 30 
TC CGC 

Xpax6 CCGGAACTCATGCAGAA CCGCTCGAGTTACTGTAA 30 
CAGTCACAGCGGTG TCTTGGCCAGTACTG 

Xsnai/-1 GCACATCCGGAGCCACA CGTCGGAATGGGTCTGC 30 
CG AG 

Xchordin AACTGCCAGGACTGGAT GGCAGGATTTAGAGTTG 25 

Morpholino 
XPygo-2a 

XPygo-2P 

Control 

GGT CTTC 

Antisense Sequence (5'to 3') 
AGCCATCAGACTCAGCT 
GCTCGGG 
CCGCCTGTGGTCAGTACT 
GGACGGT 
CCTCTTACCTCAGTTACA 
ATTTATA 

*Number of annealing/elongation cycles 
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and pCS2+Xpygo-2p. The Xpygo-2 PHD plasmid was created by cloning an EcoRI 

(internal) !Xhol (vector) restriction fragment of pCS2+Xpygo-2a into pCS2+NLS. The 

Xpygo-2a NHD construct was generated by sub-cloning theN-terminal EcoRI fragment 

of Xpygo-2a into pCS2+. pCS2+Xpygo-2P NHD was constructed by deleting a Smal 

(intemal)!Xhol (vector) restriction fragment from pCS2+Xpygo-2p . A pCS2+noggin 

expression construct was generated by cloning a Hindlll/EcoRI restriction fragment from 

full-length eDNA (noggin pGEM5 a3; gift ofW. C. Smith) into the pCS2+ vector. 

3.3.4 RNA Synthesis 

Synthetic RNA was made using Notl linearized templates (for CS2+ plasmids) 

and transcription with Sp6 RNA polymerase (Krieg and Melton, 1987). GSK-3 p and R85 

constructs (gifts from Isabel Dominguez) were linearized with Sacl and transcribed with 

T7 polymerase (Krieg and Melton, 1987). Axis duplication activity using RNA encoding 

the R85 construct of Glycogen Synthase Kinase-3J3, which has a lysine to arginine 

substitution at position 85, was previously described (Dominguez et al., 1995; Kao and 

Lockwood, 1996). All synthetic mRNAs were found to translate efficiently in vitro using 

a cell-free rabbit reticulocyte system (Promega). 

3.3.5 RT-PCR Analysis 

Embryos (n=8) or animal caps (n=15-20) injected with variousXpygo-2 constructs 

or morpholinos were obtained at either stage 10 or stage 20 and RNA was extracted using 
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the Nucleospin RNA II Kit (Clontech Laboratories, Inc.). Reverse transcribed RNA was 

subsequently amplified as described (Lake et al., 2001), using oligonucleotide primers 

previously reported for engrailed-2 (en-2; 30 cycles; Hemmati-Brivanlou et al., 1991 ), 

Xbfl (25 cycles; Bourguignon et al., 1998), Xotx-2 (25 cycles; Pannese et al., 1995), XAG 

(25 cycles; Sive and Bradley, 1996), krox-20 (25 cycles; Hemmati-Brivanlou et al., 1994) 

hoxB9 (30 cycles; Sharpe et al., 1987), H4 (23 cycles; Yang et al. , 1998), siamois (30 

cycles; Lemaire et al. , 1995) and listed in Table 3.1. 

For temporal expression analysis of Xpygo-2al/], RNA was prepared as described 

for Northern analysis below. Spatial distribution of messages was determined through 

dissection of stage 8, 9 or 10 embryos (n=24) into animal, vegetal and equatorial sections. 

Stage 10 embryos (n=24) were also dissected into dorsal and ventral sections using the 

blastopore lip for orientation. RNA was processed for RT-PCR as described above. 

3.3.6 Northern Analysis 

Total RNA from oocytes and embryos (n=16) was extracted using the Nucleospin 

RNA II Kit (Clontech Laboratories, Inc.) and processed for Northern analysis as 

described (Kao and Hopwood, 1991). Equal levels ofRNA were run onto a formaldehyde 

gel, transferred to Gene Screen ™ hybridization membrane (DUPONT) and UV 

crosslinked. A random primed (Prime-a-Gene®, Promega) PCR fragment (537-1173 bp) 

of Xpygo-2a was hybridized at 65°C using ExpressHyb (Clontech Laboratories, Inc.) and 

blots washed at high stringency (0.5X SSC and 0.5% SDS at 55°C). Blots were re-probed 

(45-55°C) using Xenopus histone H4 (Gift from Kim Mowry) . 
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3.3. 7 Whole Mount in situ Hybridization 

Templates for probes were made by subcloning PCR -amplified sequences 

common to both Xpygo-2a (nucleotides 964-1227 and 295-1309) and Xpygo-2/] 

(nucleotides 749-1011 and 80-1094) into pBluescript (Stratagene). A Xpygo-2/] specific 

template was amplified from the 5' non-coding region of Xpygo-2/] (nucleotides 1-87). 

Templates were linearized with Xbal and transcribed with T7 polymerase. Albino 

embryos were fixed in MEMF A (Harland, 1992) and hybridized with digoxigenin- and 

fluorescein- linked sense and antisense probes and stained by NBT/BCIP as described 

(Harland, 1991, modified by Sagerstrom et al., 1996). To reduce background staining due 

to GC-rich content of Xpygo-2, hybridization was done at 65°C and all washes were at 

65-68°C. Embryos were dehydrated in ethanol and cleared in Murray's solution (1 :2 

benzyl alcohol and benzyl benzoate). 

3.3.8 Whole Mount Immunohistochemistry 

Embryos were fixed in MEMF A, washed in maleic i!Cid huffer (MAB; pH 7 .5), 

incubated in 0.1 M K2Cr201 in 5% acetic acid for 30', followed by three 5' washes in 

MAB and bleached in 5% H2021MAB under white light. After rinsing in MAB, embryos 

were blocked for 60' in 2% blocking reagent!MAB (Roche) and incubated overnight at 

4°C in the appropriate primary antibody diluted as follows: 1:1000 for 12-101 (developed 

by J. Brockes) and 1:500 for 4D9 (Patel et al., 1989, developed by C. Goodman) both 

from Developmental Studies Hybridoma Bank, U. of Iowa, and 1:5 for 2G9 (gift of E. A. 

page 3-14 



Lake, 2003 Xenopus Pygopus 

Jones). Embryos were washed for five hours in MAB and incubated at 4 oc overnight in a 

1:1000 dilution of alkaline phosphatase conjugated goat anti-mouse IgG in MAB (Cedar 

Lane Laboratories Ltd.). Embryos were washed in MAB for 24 hrs with multiple buffer 

changes then twice for 5 min in alkaline phosphatase buffer (AP: 0.1 M Tris HCL ph 9.5, 

0.1 M NaCI. 50 mM MgCL2). Staining was performed in AP buffer containing NBT and 

BCIP and stopped in MEMF A. Embryos were then destained in methanol for 

approximately 12 hrs before being cleared in Murray's solution. 

3.3.9 Antisense Morpholinos 

Antisense morpholino oligonucleotides (MO, Genetools, LLC) were designed to 

complement the 5' noncoding regions of Xpygo-2a and Xpygo-2f3 (Table 3.1). For 

visualization within the embryos, the XPygo-2a MO was linked to fluorescein (green 

fluorescence) and XPygo-2J3 MO to lissamine (red fluorescence) . The control MO (Table 

3 .I), linked with fluorescein (green fluorescence), was a random sequence (designed by 

Genetools, LLC) of equal length to the anti-Pygo MO's, used to ensure specificity of 

XPygo-2 MO interactions. Translation inhibition efficiency as well as target specificity 

were tested in vitro using the transcription/translation coupled cell-free system (Promega) 

using as templates full-length Xpygo-2a and Xpygo-2/3 eDNA sequences (in pBluescript) 

or an equivalent quantity of synthetic mRNA lacking complimentary sequences to the 

morpholinos, as used in rescue experiments. 
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3.4RESULTS 

3.4.1 Isolation of the Xenopus Orthologues of Human pygopus-2 

An assay for sequences differentially regulated by Xrel3 (Lake et al., 2001) 

provided PCR fragments with homology to human (h)pygo-2, which were used to screen 

a Xenopus stage 10 eDNA library to obtain the corresponding full-length orthologues. 

Two clones were isolated, Xpygo-2a and Xpygo-2{J, both of which shared coding 

sequences, but with variable untranslated regions (Figure 3.1). In addition, Xpygo-2a had 

an extra 63 bp of 5' coding sequence when compared to Xpygo-2fJ . In a comparison of 

the predicted translation products with the Pygopus proteins encoded by the human 

genome, both exhibited the highest overall sequence identity (68%) with hPygo-2 as 

compared with hPygo-1 (36%) (Figure 3.2). Therefore, these Xenopus proteins most 

likely represent true orthologues ofhPygo-2 and not hPygo-1 . 

All Pygopus proteins share two common domains, a 50 amino acid stretch within 

theN-terminus referred to as theN-terminal homology gomain (NHD) or N box and the 

C-terminal giant homeogomain (PHD) (Kramps et al., 2002; Thompson et al., 2002). The 

PHD is a zinc fmger-like domain with a Cys4-His-Cys3 consensus present within certain 

chromatin remodeling-type transcriptional regulators (Aasland et al. , 1995). Both the 

NHD and PHD domains are present within XPygo-2a and -213 (Figure 3.2), as well as the 

conserved N-terminal putative nuclear localization sequence in all Pygopus proteins 

(Figure 3.2; Kramps et al., 2002; Thompson et al., 2002). The hpygo-2 gene (1q23 .1) is 

organized into three exons capable of generating alternative splice variants that resemble 
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Figure 3.2. Comparison of predicted XPygo-2aJ~ protein sequences with hPygo-2 

(NCBI Accession number: AAL91371). Sequence identity between the three proteins is 

in bold-face. The conserved putative nuclear localization sequence, (KKRRK) is double­

underlined, while the C-terminal PHD is single-underlined and the NHD or N-Box is 

indicated by broken underline. 



hPygo-2 
Xpygo- 2a 
Xpygo- 2P 

hPygo-2 
Xpygo- 2a 
Xpygo- 2P 

MAASAPPPPDKLEGGGGPAPPPAPPSTGRKQG~~kQ~§~~KKRRK~~!Q~~~X. 

MAA---------------DQDKDGLTVPGRRAKT§~~§~~KKRRK~~!~r.hX. 

-- ---- -----------------------------MnMVSPEKKRRKSNT~PAY ... w~::-:;....... • ....... ,..;':: ...... .. 

~~~~~E~~f.!f.~~~Y.~~~f.~QRFGAPKVNAGPSPFMSNPVPFGNYRMPGAMPHQMT 

~~~~~f.~~f.!f.~~~Y.~~N~~QQFGAPKVNAGPSPFLNNPVPFGNYRMPGAMPHQMT 

55 
40 
20 

115 
100 
80 

hPygo-2 PGYSTGGGGGPQPLRRQPPPFPPNPMGPAFNMPPQGPGYPPPGNMNFPSQPFNQPLGQNF 175 
Xpygo-2a PGYP----GGPQPTRRQAPPFPPNQMGP--GMS-QNPNYHQPGNMNFPNAPFNQAMGQGF 153 
Xpygo-2 p PGYP----GGPQPMRRQAPPFPPNQMGPGFGMS-QNPNYHQPGNMNFPNAPFNQAMGQGF 135 

hPygo-2 SPPSGQMMPGPVGGFGPMISPT.MGQPPRAELGPPSLSQRFAQPGAP--FGPS--PL-QRP 
Xpygo-2a SPPAGQMMQGPVGGFGPMMSPNMGQPPRGEMGPGPVLNSPGGPPFTQRFGPSGHPFGQPP 
Xpygo- 2p SPPAGQMMQGPVGGFGPMMSPNMGQPPRGEMGPGPVLNSPGGPPFTQRFGPSGHPFGQPP 

hPygo-2 GQGLPSLPPNTSPFPGPDPGFPGPGGEDGGKPLNPPAS-TAFPQEPHSGSPAAAVNGNQP 
Xpygo-2a - VPRASLPPNNSPFAGADQSFP-PGVEEHGKNTNPP-SNT-FNQDQHVGSPS-AVNGNQP 
Xpygo-2 p - VPRASLPPNTSPFAGADQSFP-PGVEEHGKNI NPP-SNT-FNQDQHVGSPS-AVNGNQP 

hPygo-2 SFPPNSSGRGGG-TPDANSLAPPGKAGGGSGPQPPPGLVYPCGACRSEVNDDQDAILCEA 
Xpygo-2a NFTPNNSTRGNSSTPEVNNIPPPSKPTGNSGHQPPPGLI YPCGACEREVNDDQDAILCEA 
Xpygo- 2p NFTPNNSTRGNSSTPEVNNIPPPSKPTGNSGHQPPPGLI YPCGPCEREVNDDQDAILCEA 

hPygo-2 SCQKWFHRECTGMTESAYSLLTREBSAVWACDYCLKTKEIQSVYIRGAMGQLVAANDG* 
Xpygo-2a SCQKWFHRECTGMTESAYGLLTTEASAVWACDLCLKTKEIQSVYIR-EMGQLVAANDG* 
Xpygo-2 p SCQKWFHRECTGMTESAYSLLTREVSAVWACDYCLKTKDIQSVYIRGAMGQLVAANDG* 

231 

213 
195 

291 

275 
250 

350 
335 
310 

406 

389 
368 



Lake,2003 Xenopus Pygopus 

the two Xpygo-2alf3 clones. Because of the high sequence identity between Xpygo-2a and 

-2/3 coding regions, it is possible that, like hpygo-2, the Xenopus cDNAs represent two 

different splice variants of the same Xpygo-2 gene. 

3.4.2 Xenopus pygopus-2 Isoforms are Differentially Expressed During Early 

Development 

Whether the two Xpygo-2 mRNA isoforms represent true spliced alternatives or 

whether they are derived from separate alloalleles, their differential patterns of expression 

suggest that they have distinct roles in development. To determine the temporal pattern of 

Xpygo-2 message accumulation during early Xenopus embryogenesis, semi-quantitative 

RT-PCR was performed on total RNA extracted from staged oocytes and embryos 

(Figure 3.3A and B) using oligonucleotide primers that were specific to either Xpygo-2a 

or Xpygo-2/)transcripts. Xpygo-2a-specific primers amplified sequences in oocytes but at 

reduced levels after fertilization and in all stages of pregastrula and gastrula development. 

The levels increased steadily during neurulation (stage 12) and in subsequent stages 

(Figure 3.3A). Unlike Xpygo-2a, specific amplification of Xpygo-2/) sequences indicated 

that Xpygo-2/) transcripts were only present at high levels maternally in both oocytes and 

cleavage stage embryos, but rapidly diminished at late blastula stages just prior to 

gastrulation and remained at low levels thereafter (Figure 3.3A). Parallel results were 

obtained using a probe which hybridized to both transcripts resolved by Northern analysis 

(Figure 3.3B). Thus Xpygo-2a and -2/3 exhibit distinctly different temporal patterns of 

mRNA expression in development. 
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Figure 3.3. Xpygo-2a!P exhibit distinct expression patterns during Xenopus 

development. (A) RNA from 16 oocytes or embryos were analyzed by R T -PCR using 

primers specific to both messages (Xpygo-2ai/J) and either Xpygo-2aor Xpygo-2/3. (B) 

Northern blot of staged embryo RNA probed for both Xpygo-2 isoforms (top arrow, -2 a; 

bottom arrow, -2/J). The 28S and 18S ribosomal RNAs as well as an RNA ladder are 

indicated. (C). Whole Embryos (W) as well as animal (A), vegetal (V), equatorial (E), 

ventral (Vn) and dorsal (Do) sections were analysed by RT-PCR using primers specific to 

Xpygo-2a or Xpygo-2/3 at stages 8, 9 and 10. Stages of development are indicated at the 

top of each figure (Nieuwkoop and Faber, 1994 ). Levels of eDNA used or RNA loaded 

were standardized using histone (H4) levels. -RT: negative control, without reverse 

transcriptase. 
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To determine the spatial location of Xpygo-2 messages during pre-gastrula stages, 

embryos were dissected into animal, vegetal and equatorial sections at stages 8, 9 and 10 

or ventral and dorsal sections at stage 10. Primers specific for Xpygo-2a or Xpygo-2P 

demonstrated ubiquitous expression for both, but with low levels of Xpygo-2 a for all 

stages examined and a high level of Xpygo-2P in early blastulae that globally declined 

prior to gastrulation (Figure 3 .3C). 

3.4.3 Xpygo-2a and Xpygo-2P m.RNAs have Distinct Patterns of Expression in the 

Developing Brain and Eyes 

Whole mount in situ hybridization was used to determine the spatial distribution 

of Xpygo-2 messages. Transcript accumulation in embryos was detected by staining of 

hybridized probes. Staining for bothXpygo-2a and -2Pwas observed at early open neural 

plate stages predominantly within the anterior neurectoderm (Figure 3.4A) and by late 

neurula stages within the anterior-most neural tube fated to form the brain (Figure 3.4C). 

This trend for anterior-most message accumulation was observed through to tailbud 

(Figure 3.4E) and tadpole (Figure 3.4G) stages, with messages becoming restricted to the 

fore-, mid- and hindbrain, as well as the optic cup. 

An in situ probe specific to the 5' untranslated region of Xpygo-2P was used to 

determine if this isoform was differentially expressed. Staining for Xpygo-2P transcripts 

was even throughout the embryos at the late blastula stage (Figure 3.41) but became 

localized to a band of anterior neural tissue encompassing the prospective retinal field 

(Figure 3.4K), which gives rise to eyes and forebrain (Eagleson and Harris, 1990; 
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Figure 3.4. Xpygo-2aiP are differentially expressed within the brain. Whole mount in 

situ hybridization analysis of staged embryos using probes complementary to both 

transcripts (A-H) or specific to Xpygo-2PmRNA (I-0), or sense probes, where indicated 

(B,D,F,H,J,M,O). Specific hybridization is indicated by purple staining reaction. All 

embryos are shown with anterior to the left. Xpygo-2 mRNA is found early (St 13) in the 

anterior neural plate (A, dorsal view). By stage 20 and at least until stage 25, messages 

localized within the anterior neural tube, including prospective brain and eyes (C and E, 

lateral views) and in the tadpole, in the mid-hindbrain, forebrain and eyes (G, lateral 

view). Xpygo-2fitranscripts are present throughout blastulae (I, animal pole view), but 

are restricted to the retinal field at stage 20 (K, dorsal view) and in derivatives of this 

region (forebrain and eyes) at stage 25 (L, lateral view) and stage 30 (N, lateral view). 
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Eagleson et al., 1995; Li et al., 1997). Structures arising from this region continued to 

stain for Xpygo-2/3 in subsequent tailbud (Figure 3.4L) and tadpole (Figure 3.4N) 

embryos, predominantly restricted to the eyes. These results demonstrate that both Xpygo-

2 a and Xpygo-2 f3 are expressed in the brain, but the domain of Xpygo-2 f3 is restricted 

more anteriorly to the forebrain, eyes and possibly midbrain. 

3.4.4 The XPygo-2 NHD Can Mediate the Dorsalizing Wnt Signal 

Activation of the canonical Wnt pathway ventrally in early embryos using many 

different components of the signal transduction cascade induces an ectopic secondary axis 

(Moon and Kimelman, 1998). Conversely, its antagonism dorsally through depletion of J3-

Catenin or expression of dominant negative TCF, inhibits dorso-anterior structures 

leading to a ventralized fate (Molenaar et al., 1996; Wylie et al., 1996; Heasman et al., 

2000). On the other hand, ectopic activation of the Wnt pathway within dorsal vegetal 

cells results in the loss of signals required for inducing anterior neural plate derivatives, 

since formation of the head organizer is dependent on the antagonism of Wnt signaling 

(Christian and Moon, 1993; Fredieu et al., 1997; Glinka et al., 1997, Glinka et al., 1998; 

Piccolo et al., 1999). 

To determine the function of XPygo-2 in dorsal-ventral axis formation, RNA 

encoding wild-type and mutant versions of XPygo-2a/J3 (Figure 3.5A) was injected into 

different regions of early cleavage stage embryos (Figure 3.5B). Unfortunately, neither 

overexpression of XPygo-2a nor XPygo-2J3 had any affect on Xenopus development. 
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Figure 3.5. Targeted overexpression of various XPygo-2 constructs. (A) The 

constructs used for subsequent injection experiments encoded wild-type XPygo-2a. and -

2J3, XPygo-2a. NHD (amino acids 1-194), XPygo-2J3 NHD (amino acids 1-216), and 

XPygo-2a. PHD (amino acids 194-389) fused to a strong nuclear localization sequence 

(NLS). (B) Injection experiments were performed at the 8-cell stage. For targeted 

expression within ventral mesendodermal derivatives, synthetic RNA was injected into 

both ventral vegetal blastomeres (VV). To target neural plate and epidermis, RNA or 

morpholinos were injected into either dorsal (DA) or ventral (VA) animal blastomeres, 

respectively. 
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This is not unexpected as Pygopus is believed to act within a complex with f3-Catenin, 

and as such, its activation of Wnt target gene expression would be limited by nuclear P­

Catenin levels (Kramps et al., 2002; Thompson et al., 2002). Therefore, the effect of 

overexpressing theN- and C-terminal functional domains was examined, since they may 

interfere with or modify the normal function of endogenous XPygo-2 or may have 

activity on their own. As such two mutant variants were generated to encode either theN­

terminal half of XPygo-2a containing the NHD domain or the C-terminal half containing 

the PHD domain (Figure 3 .5A). To ensure that the PHD domain could gain access to the 

nucleus it was cloned within the expression vector (pCS2+ NLS) downstream and within 

frame of a strong nuclear localization signal (NLS). 

To target the prospective dorsal organizing center, I injected mRNA into dorsal 

vegetal blastomeres at the 8-cell stage (Figure 3.5B). Injection of 10 ng of Xpygo-2a 

PHD RNA, like that enc~ding wild-type protein, had no effect on axial patterning in 

Xenopus embryos (Figure 3.6; Table 3.2). However, dorsal vegetal injection of Xpygo-2a 

NHD RNA resulted in progressive loss of dorsal anterior-most structures (Figure 3.6; 

Table 3.1 ). The phenotypes ranged from slightly disrupted and ventrally displaced eyes 

(Type IT) to fusion of eyes ventrally (cyclopia, Type Ill), microencephaly (Type IV) and 

loss of all head structures (anencephaly, Type V). These defects resembled those 

associated with ventral midline abnormalities resultant from disruption or loss of head 

organizing prechordal mesendoderm (Li et al., 1997) and are consistent with those 

observed following misexpression of XWnt-8 or exposure to lithium ions (Fredieu et al., 

1997). Therefore, the XPygo-2a NHD mutant appears to activate Wnt signaling. 
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Figure 3.6. XPygo-2a NHD overexpression in dorsal mesoderm generated head 

truncations resembling ectopic Wnt activation. (A). Injection ofXpygo-2aNHD RNA 

(1 0 ng) within the dorsal vegetal blastomeres at the 8-cell stage generated anterior­

defective embryos having progressive abnormalities that ranged from normal (Type I) to 

slightly disrupted and ventrally displaced eyes (Type IT) to fused eyes or cyclopia (Type 

Ill, top embryo- lateral view, bottom embryo- ventral view), microencephaly (Type IV) 

and anencephaly (Type V). (B). The percentage of each type of head malformation 

shown in (A) over 5 experiments is shown in a histogram. Numbers at the tops of the bars 

indicate total number of embryos scored, while numbers at the bottom represent site of 

injection (Figure 3.5B). Embryos that failed to gastrulate properly (17-uninjected; 25-

aNHD DV; 19-aNHD VV; 19-PHD VV; 18-aWT DV) were excluded from this 

analysis. 
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Table 3.2. Distribution of phenotypes caused by XPygo-2a/f3 activator mutants and 
Morpholino knockout 

Number {Eercentage} of Phenotypes (Fig. 3.6} 
Treatment Injection 

Site I 
{Fig.3.5} 

Uninjected 276(98.9) 
Xpygo-2 a NHD * DV 30(41.7) 
Xpygo-2 a NHD * vv 74(94.9) 
Xpygo-2 PHD• DV 77(95.1) 
Xpygo-2a* DV 78(95.1) 

Normal 
Uninjected 276(98.9) 
Xpygo-2aNHD* DA 20(18.5) 
Xpygo-2 f3 NHD • DA 18(20.9) 
Xpygo-2 a NHD • VA 63(95.5) 
Xpygo-2 PHD• DA 67(100) 
Xpygo-2a· DA 55(96.5) 

Normal 
Uninjected 111(99.1) 
Control Mo·· DA 57(90.5) 

•• a Mo DA 2(3.7) 
J3 Mo·· DA 6(10.9) 
a /f3 Mo·· DA 1(1.4) 
a /f3 Mo·· + alf3T DA 26(53.1) 
a /f3 Mo •• + NHDT DA 1(2.9) 
Injected a total of 10 ng per embryo. 

··Injected a total of 40 ng per embryo. 

IT ill IV v 

1(0.4) 0 1(0.4) 1(0.4) 
25(34.7) 6(8.3) 5(6.9) 6(8.3) 

4(5.1) 0 0 0 
4(4.9) 0 0 0 
4(4.9) 0 0 0 

E:ye Defects {Fig. 3.8} 
3(1.1) 

88(81.5) 
68(79.1) 

3(4.5) 
0 

2(3.5) 

E:ye Defects {Fig. 3 .11} 
Bilateral Unilateral Total 

1(0.9) 0 1(0.9) 
0 6(9.5) 6(9.5) 

21(38.9) 31(57.4) 52(96.3) 
31(56.4) 18(32.7) 49(89.1) 
37(51.4) 34(47.2) 71(98.6) 

4(8.2) 19(38.8) 23(46.9) 
14(41.2) 19(55.9) 33(97.1) 

2: 

279 
72 
78 
81 
82 

'L 
279 
108 
86 
66 
67 
57 

112 
63 
54 
55 
72 
49 
34 

Tlnjected a total of2 ng of rescuing RNA (1 ng each of Xpygo-2a andXpygo-2/3 or 2 ng 
Xpygo-2/)NHD). 
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Overexpression of XPygo-2a NHD within the ventral vegetal region did not affect 

normal axial development, but did induce partial secondary axes in approximately 15% 

(12/78) of the embryos injected (Figure 3.7B), coincident with a slight increase in 

expression of the dorsal markers siamois (Lemaire et al. , 1995) and chordin (Sasai et al., 

1994) on the ventral side (Figure 3.7E). Also, injection of Xpygo-2a NHD RNA rescued 

the formation of partial axes in UV irradiated embryos, with an increase in the proportion 

of embryos containing head structures (DAI 3-4) from 1170 (Xpygo-2 PHD injected; 

Figure 3.7C) to 17/65 (Xpygo-2aNHD injected; Figure 3.7D), coincident with an average 

DAI (dorsoanterior index, Kao and Elinson, 1988) shift from 0.66 to 1.46, respectively. 

These observations were consistent with maternal XPygo-2 depletion studies using 

antisense phosphorothioate oligonucleotides (Belenkaya et al., 2002), suggesting that the 

NHD had weak Wnt-activation properties. Increasing or decreasing the size of the NHD 

domain failed to increase the truncation mutant' s potency (data not shown). 

3.4.5 The XPygo-2 NHD Can Mediate the Anterior Neural-Suppressing Wnt Signal 

Wnt signaling plays a vital role in establishing the proper AP character of the 

neuraxis by its ability to posteriorize neurectoderm (reviewed in Niehrs, 1999). As such, 

extracellular Wnt ligands must be antagonized for specification of the anterior most 

neural plate fated to form forebrain and eyes (Glinka et al. , 1997; Glinka et al., 1998; 

Piccolo et al. , 1999). Ectopic activation of Wnt signaling within prospective anterior 

neurectodermal cells generates anterior malformations, ranging from mild disruption to 
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Figure 3.7. XPygo-2 NHD induces partial secondary axes when expressed ventrally 

and rescues dorsal axial structures in UV ventralized embryos. While XPygo-2a. 

PHD had no effect on axis formation, injection of Xpygo-2 a NHD RNA within ventral 

vegetal (VV) blastomeres at the 8-cell stage generated partial axial duplications (B, 

arrows). UV treated embryos were classified according to the dorsoanterior index (Kao 

and Elinson, 1988) where a DAI of(5) is normal and a DAI of(O) is devoid of all dorsal 

structures. Dorsal axial perturbations could be partially rescued by XPygo-2a. NHD (D) 

but not XPygo-2a. PHD (C), with a shift in the number of embryos having head structures 

(DAI 3-4) from 1170 (Xpygo-2aPHD injected) to 17/65 (Xpygo-2aNHD injected), 

coincident with an average DAI shift from 0.66 to 1.46, respectively. Representative 

phenotypes are shown (C-D). Scale bar: 1 mm. (E) Embryos that had been injected with 

10 ng of either Xpygo-2aPHD or Xpygo-2aNHD RNA into ventral vegetal (VV) 

blastomeres at the 8-cell stage were dissected into dorsal (Do) and ventral (Vn) halves at 

stage 10. RT-PCR analysis showed increased levels of siamois and chordin ventrally in 

Xpygo-2aNHD containing cells as compared toXpygo-2aPHD containing cells. 

Amounts of eDNA used were normalized to histone (H4) levels. -RT: negative control, 

without reverse transcriptase . 
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complete loss of forebrain and eyes (Yamaguchi and Shinagawa, 1989; Christian and 

Moon, 1993; Fredieu et al., 1997; Darken and Wilson, 2001). 

The axis-promoting activity of the NHD, when overexpressed in early ventral 

vegetal cells, suggested that the XPygo-2a. NHD might mimic the effects ofWnt pathway 

activators when expressed within the anterior neural plate. To target these cells, Xpygo-

2a NHD RNA was injected into dorsal animal cells at the 8-cell stage (Figure 3.5B). The 

majority of injected embryos (81.5%) had defects in one or both eyes ranging from 

ventral defects to reduced or almost complete loss of pigmented epithelium (Table 3 .2, 

Figure 3.8). While Xpygo-2a PHD and wild-type Xpygo-2a RNA had no effect on 

normal development (Table 3.2, Figure 3.8), Xpygo-2a NHD RNA caused similar defects 

to those caused by expression of the GSK-3P dominant mutant Wnt activator, R85 

(Dominguez et al., 1995), both through phenotypic alterations of the head and eyes 

(Figure 3.8A) and the brain.(Figure 3.9) as shown by immunostaining with the pan-neural 

antibody 2G9 (Jones and Woodland, 1989). 

Both the Xpygo-2a NHD RNA-injected and R85 RNA-injected embryos showed 

disrupted forebrain tissues (Figure 3.9E, F, I, J, arrows). In contrast, embryos injected 

with gsk-3{3 RNA (Wnt pathway inhibitor), while exhibiting similar eye defects (Figure 

3.9A), showed relatively normal, if not expanded, staining of the anterior-most neural 

tissue, with more significant disorganization of the diencephalon-midbrain region (Figure 

3.9M, N, arrow). All embryos showed normal staining of skeletal muscle with the 12/101 

antibody (Figure 3 .9C, G, K, 0), demonstrating the specificity of the defects to anterior 
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Figure 3.8. XPygo-2a/[3 NHD overexpression in dorsal ectoderm generates anterior 

defects similar to aberrant Wnt signaling. (A) 10 ng of Xpygo-2a!PNHD RNA 

injected within the dorsal animal blastomeres at the 8-cell stage caused eye defects of 

differing degrees characterized by loss of ventral structures and reduced size. Top panels 

represent embryos having normal morphology, and lower panels represent increasing 

degrees of eye abnormalities. These defects were compared to those caused by 

overexpression, within the same region, of a dominant activating mutant GSK-3P (R85) 

and wild-type GSK-3p. Scale bar: 1 mm. (B) The percentage of Xpygo-2 NHD injected 

embryos having eye defects shown in (A) was compiled over 4-5 experiments and shown 

in a histogram. Numbers at the tops of the bars indicate total number of embryos scored, 

while numbers at the bottom refer to injection site (as shown in Figure 3.5B). Embryos 

that failed to gastrulate properly (17-uninjected; 22-aNHD DA; 0-aNHD VA; 0-PHD 

DA; 1-aWT DA) were excluded from this analysis. 
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Figure 3.9. XPygo-2 NHD acts as a Wnt pathway activator to suppress anterior 

neurectodenn. Embryos were injected in dorsal animal blastomeres (DA) with 10 ng of 

Xpygo-2aPHD RNA (control) (A-D),Xpygo-2a!pNHDRNA (E-H), dominant Wnt 

activator R85 (I-L) or gsk-3 P (M-P). Embryos were processed at stage 35 using pan­

neural (2G9~ A, E, I, M, lateral view~ B, F, J, N, dorsal view), skeletal muscle (12/101~ 

top, lateral view~ bottom, dorsal view) and Engrailed-2 (4D9, dorsal view) antibodies. 

2G9 stained the anterior forebrain (f), the boundary between forebrain and midbrain (m), 

hindbrain (h) and spinal cord. The eye (e) was not stained at this stage. The NHD (E, F) 

and R85 (I, J), unlike GSK (M, N), disrupted anterior most staining of the forebrain 

(arrows). GSK disrupted or depleted midbrain staining (N, arrow). 12/101 staining 

indicated that all embryos developed normal somitic muscle (C, G, K, 0). 4D9 staining 

showed normal or expanded Engrailed-2 localization in embryos injected with NHD (H) 

and R85 (L) as compared to PHD (D) controls. GSK injection however, reduced 

expression ofEn-2 (P, arrow). Scale bars: 1mm (A, B, and C) ~ 0.1 mm (D). 
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nervous system, consistent with that shown by others (Itoh et al., 1995; Friedieu et al., 

1997). 

Expression of the Wnt-responsive mid-hindbrain marker Engrailed-2 (En-2, 

Hemmati-Brivanlou and Harland, 1989; McMahon and Bradley, 1990; McGrew et al., 

1999) detected using the 4D9 antibody (Patel et al., 1989) was slightly expanded in both 

Xpygo-2a NHD and R85-injected embryos (Figure 3.9H and L) when compared to 

Xpygo-2a PHD-injected embryos (Figure 3.9D). gsk-3fl-injected embryos had little or no 

staining, with some embryos lacking En-2 completely and others showing loss of 

localized En-2 protein (Figure 3.9P, arrow) only on the side of the embryo that had the 

defective eye and diencephalon-midbrain region (Figure 3.9N, arrow). Therefore, like 

R85, XPygo-2a NHD acts as a Wnt signaling activator to suppress anterior neurectoderm. 

This behaviour of NHD is consistent with the demonstrated role for Pygopus as a 

transcriptional activator (Belenkaya et al., 2002) and implies that this activity lies within 

its NHD-containing half of XPygo-2. 

3.4.6 XPygo-2a and XPygo2-J3 are Required for Correct Brain Patterning 

Ectopic activation of the posteriorizing Wnt response by XPygo-2 NHD within 

the anterior neurectoderm helps place XPygo-2 within the Wnt signaling hierarchy. To 

specifically address the requirement for XPygo-2, we designed fluorescent antisense 

morpholino oligonucleotides (MO) that were specific to the 5' -noncoding regions of 

either Xpygo-2a or Xpygo-2{3. Both of the XPygo-2a and -2J3 MOs efficiently inhibited 

translation of their corresponding messages in vitro, but were unable to block translation 
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of mRNA synthesized from templates of Xpygo-2 coding regions lacking sequences 

complementary to the MOs (Figure 3.10). Neither MO blocked translation of the other 

isoform, further confirming their target specificities (Figure 3.10). 

Each MO was injected either alone or in combination into two dorsal blastomeres 

at the 8-cell stage (Figure 3.11). Injection of 40 ng of the XPygo-2a MO generated severe 

anterior head and eye defects (52/54; Table 3.2; Figure 3.11M and N), while 40 ng of the 

XPygo-2P MO generated only eye defects ranging from ventral disruption to almost 

complete loss of pigmented epithelium (49/55; Table 3.2; Figure 3.110 and P). However, 

combining 20 ng of each morpholino generated eye deficits and anterior deletions (71/72; 

Table 3.2; Figure 3.11A-I ) with greater severity than for either MO alone (P mo- 8/13 

normal; a Mo- 6/13 normal). Injection of up to 40 ng of control MO had no effect on 

normal development with only slight abnormalities in a minority of embryos (57/63 

normal; Table 3 .2; Figure 3.11 Q-T). These experiments indicate that the additive 

depletion of both isoforms results in more severe anterior-defective phenotypes than with 

either alone. The effects of the MOs were highly specific since co-injection of as little as 

1 ng each of synthetic Xpygo-2a and Xpygo-2/] RNA rescued the double MO-injected 

embryos (Table 3.2; Figure 3.11J-L), with a 47.6% drop in the percentage of embryos 

displaying the abnormal phenotype. 

Embryos immunostained for neural tissue (2G9) had disorganized to severe 

deletion of anterior neural tissues rostral to and including the hindbrain as a result of 

combined XPygo-2a and -2P MOs (Figure 3.12A and B, arrows), all of which was 

rescued with synthetic Xpygo-2 RNA (Figure 3.12D, E). To dissect the individual roles of 
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Figure 3.10. Xpygo-2a and Xpygo-2Ji morpholinos (MO) specifically block 

translation of their target messages. In vitro translation of Xpygo-2 a or -2/3 full length 

eDNA constructs was blocked in a graded fashion (200-600 nM MO) by the 

corresponding MO sequence, but not by the highest concentration of Control MO 

(600nM). In addition, neither MO could block translation from synthetic mRNA used in 

rescue experiments that lacked corresponding complimentary sequences (*). The 

additional translation product from Xpygo-2 a mRNA of similar molecular weight to 

XPygo-2P most likely represents the alternative start of translation site provided by the 

Xpygo-2/3 start codon, an in vitro artifact. 
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Figure 3.11. XPygo-2a and XPygo-213 antisense morpholinos (MO) cause severe 

head abnormalities. (A,D,G,J) Head-defective embryos resulting from injection at the 8-

cell stage (DA) with a mixture of20 ng each of both XPygo-2 MOs and their 

corresponding fluorescence views optimized for Lissamine (red fluorescence, B,E,H,K) 

to reveal the -2a MO, and fluorescein (yellow-green fluorescence, C,F,I,L) to reveal the-

2J3 MO. Note the association of-MO fluorescence with the head defects seen in the dorsal 

view (D-F). The co-injection of 1 ng each o~ Xpygo-2alfJRNA not targeted by the MOs 

(J,K,L) rescued head structures even in the presence of both morpholinos (K,L). XPygo-

2a MO alone (M,N) caused severe head abnormalities including reduced or absent eye 

pigmented epithelium and displaced or expanded cement glands (M, arrow). XPygo-2J3 

MO ( 40 ng per embryo; O,P) generated only eye deficits that ranged from reduction and 

ventral deficits to an almost complete loss. Control MO (green fluorescence; 40 ng per 

embryo; Q R, lateral view; S, T, dorsal view) did not affect development. Scale bars: 1 

mm. 





Figure 3.12. XPygo-2aiJ3 MOs inhibit brain development. Immunostaining of tadpoles 

(st. 43) co-injected with XPygo-2a MO and XPygo-2(3 MO (20 ng each) using the pan­

neural antibody 2G9 (A, dorsal view; B, lateral view) indicated anterior neural 

truncations with loss of retinal tissue as well as fore-, mid- and hindbrain defects 

(arrows). These structures were rescued by co-injection ofXpygo-2ai,BRNA (1 ng each; 

D, dorsal view; E, lateral view). XPygo-2a MO alone ( 40 ng) generated severe neural 

deficits rostral to and including the hindbrain (F, dorsal view; G, lateral view; arrows), 

while XPygo-2(3 MO alone ( 40 ng) primarily disrupted and reduced neural tissue rostral 

to and including the midbrain (I, dorsal view; J, lateral view; arrows). Control MO ( 40 

ng) injected embryos showed normal2G9 immunostaining of the eyes (e), forebrain (f), 

midbrain (m), hindbrain (h) and spinal cord. Undisrupted 12/101 staining indicated that 

all embryos developed normal muscle (C, H, K and N; top, lateral; bottom, dorsal) . Scale 

bars: 1 mm. 
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XPygo-2a and XPygo-2p, embryos injected individually with 40 ng of each MO were 

analyzed for the types of neural tissue disrupted in comparison with 40 ng of Control MO 

(Figure 3.12L and M). XPygo-2a MO caused severe disruptions to the fore-, mid- and 

hindbrain regions in addition to severe reduction to loss of eye tissue (Figure 3.12F and G, 

arrows), while the XPygo-2P MO primarily caused fore- to midbrain and eye reductions 

(Figure 3.121, J). Both MO effects were restricted to anterior neural structures and were 

not extended to muscle tissues as shown by 12/101 immunostaining (Figure 3.12C, H, K 

andN). 

Further examination of neural marker expression using RT-PCR analysis of 

embryo mRNA at the tailbud stage (st. 23) demonstrated the specific effect of each MO to 

anterior brain tissues (Figure 3.13A). Neither the posterior neural marker hoxB9 (Sharpe 

et al., 1987) nor the neural crest marker Xsnail-1 (Smith et al., 1992) showed reduction in 

level of expression as a result of injection of both MOs in combination or individually, 

even though the MOs were present along the entire anterior-posterior neuraxis (Figure 

3.11). Also unaffected was the hindbrain marker krox-20 (Bradley et al., 1993), indicating 

that while the MOs generated severe hindbrain defects, this hindbrain patterning gene is 

not regulated by XPygo-2. Thus, there must be other essential untested hindbrain 

patterning genes with XPygo-2-dependent activities. 

The XPygo-2a MO and to a lesser extent the XPygo-2P MO, each at 40 ng caused 

significant reduction in En-2 expression (Figure 3.11). However, combining 20 ng of 

each MO eliminated En-2 expression, indicating that En-2 is most likely dependent on 
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Figure 3.13. XPygo-2a/f3 MOs reversibly reduce RNA expression of a subset of 

brain markers. RT-PCR analysis oftailbud (st. 22-23) embryos (A) or noggin (125 pg) 

injected animal caps (B) co-injected with Control MO ( 40 ng), XPygo-2a MO ( 40 ng), 

XPygo-2f3 MO ( 40 ng) or combined XPygo-2a MOIXPygo-2f3 MO (20 ng each) with or 

without 2 ng of rescuing RNA (1 ng each Xpygo-2 a/Xpygo-2 {3, 2 ng Xpygo-2 fJ NHD, or 2 

ng Xpygo-2a) . This experiment (A) was repeated four times to confirm reproducibility of 

results. Levels of eDNA used were standardized using histone (H4) levels. -RT: negative 

control, without reverse transcriptase. 
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both isoforms of XPygo-2, but with a greater dependence on XPygo-2a.. This is 

consistent with the severe observed loss of midbrain tissues at the tadpole stage caused by 

injection of both the XPygo-2a. and the XPygo-2{3 MO together or the XPygo-2a. MO 

alone (Figure 3.12, 3.14A), and only a slight disruption by XPygo-2{3 MO alone (Figure 

3.12). These results further implicate that the caudal limit of Xpygo-2P messages likely 

exists at the MHB junction. 

The retinal field markers Xrxl (Casarosa et al., 1997; Mathers et al., 1997) and 

Xpax6 (Hirsch and Harris, 1997; Li et al., 1997) as well as the forebrain marker Xbfl 

(Bourguignon et al., 1998), but not the fore-midbrain marker Xotx2 (Blitz and Cho, 1995; 

Kablar et al., 1996; Perron et al., 1998; Andreazzoli et al., 1999) were all reduced by MO 

injection (Figure 3.13A). Further, full induction of XbjJ and Xpax6 were prevented by 

XPygo-2a. MO in neural-induced animal caps (Figure 3.13B), demonstrating the 

specificity of the defects to the neural and not inducing tissue. While the disruption of 

anterior-most neural tissue (Figure 3.12) may represent a reprogramming of anterior to 

posterior tissue, it appears in fact to reflect the loss of cells normally constituting the eye­

forebrain field. This likely results from the loss of XRx 1 which was previously found to 

generate deletions of the telencephalon, eye vesicles and ventral diencephalon not only as 

a result of the loss of its functions in anterior specification and proliferation, but also the 

loss of a role in cell survival, since anterior-most neural plate cells actually underwent 

apoptosis (Andreazzoli et al., 1999; Andreazzoli et al., 2003). A similar role in 

mitogenesis of the telencephalic and optic territories has been demonstrated for XBF1 

(Bourguignon et al., 1998). 

page 3-39 



Figure 3.14. XPygo-2a/f3 MOs reversibly eliminated En-2 protein expression. 

Embryos injected with XPygo-2a. MO/XPygo-2(3 Mo (20 ng each) with or without 

rescuing RNA (2 ng) were fixed (st. 35) and immunostained for En-2 using the 4D9 

monoclonal antibody (A, Band C~ right- dorsal view, left -lateral view) . Normal En-2 

staining can be seen at the mid-hindbrain junction of Control MO (40 ng) injected 

embryos (D, arrows), but is lost in XPygo-2a. MOIXPygo-2(3 MO injected embryos (A). 

Co-injection of Xpygo-2a!PRNA rescues limited expression (B, arrows), while co­

injection of Xpygo-2PNHD RNA rescues full expression (C, arrows) ofEn-2. Scale bar: 

0.1 mm. 
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The level of expression of the cement gland marker X4G (Sive et al., 1989; Sive 

and Bradley, 1996) was unaffected by the XPygo-2 MOs, even though X4G is normally 

negatively regulated by Wnt signaling, since (3-Catenin MOs greatly expanded its 

expression and associated cement gland territory (Heasman et al., 2000). While the lack 

of enhancement of XAG expression levels is consistent with normal appearing cement 

glands at this stage, by tadpole stages there does appear to be some expansion of cement 

glands in XPygo-2a MO injected embryos only (Figure 3.11M, arrow), with the embryos 

typically having darkly pigmented cells resembling those of the cement gland diffusely 

overlying the reduced or absent eye regions. 

Co-injection of the MO's with full-length Xpygo-2a and -2/J mRNA rescued the 

normal expression of retina and forebrain markers Xrxl and Xbfl but not of Xpax6 or the 

Wnt-responsive en-2 at this stage (st. 23). There was, however, limited recovery of En-2 

protein by full-length Xpygo-2 mRNA at later tadpole stages as shown by 4D9 

immunostaining (Figure 3.14B). This discrepancy is most likely due to delayed onset, or 

reduced level of induction of these markers. This inability to fully recover the proper 

expression of all the anterior neural markers by Xpygo-2 RNA accounts for the observed 

incomplete rescue (Table 3.2). More significantly, however, co-injection of 2 ng Xpygo-

2/J NHD RNA restored en-2 RNA expression at the tailbud (Figure 3.13A), and tadpole 

(Figure 3.14C) stages with En-2 protein expressed at levels comparable to those of 

Control MO injected embryos (Figure 3.14D). These results further confirm the XPygo-2 

NliD domain as a Wnt activator, and demonstrate the requirement for both isoforms of 

XPygo-2 in brain patterning. 
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3.5 DISCUSSION 

3.5.1 XPygo-2a/J3 Are Components of the Xenopus Wnt Signal Transduction 

Pathway 

Wnt proteins control numerous cell fate decisions by assembling 13-

Catenin/TCF/LEF-1 complexes in the nucleus to activate Wnt target gene transcription. 

Upon activation, 13-Catenin binds nuclear TCF and may recruit the basal transcriptional 

complex to the promoter possibly via the TATA binding protein TBP (Hecht et al., 1999) 

or the TBP associating protein TIP49 (Bauer et al., 1998). It may also recruit co­

activators such as p300/CBP (Hecht et al., 2000; Takemaru and Moon, 2000) or Brg-1 

(Barker et al., 2001). Further dissection of these complexes will be necessary to fully 

understand the nuclear aspect ofWnt/13-c;atenin signaling. 

Since Pygopus is required for 13-Catenin-dependent transcription (Belenkaya et al ., 

2002; Kramps et al., 2002; Parker et al., 2002; Thompson et al., 2002) and PIID­

containing proteins are associated with chromatin-remodeling activity (Aasland et al., 

1995; Jacobson and Pillus, 1999), Pygopus was postulated to mediate access ofTCF or 13-

Catenin/Arm to chromatin (Thompson et al., 2002). However, the demonstration that 

Pygopus can activate transcription when fused to the Gal4 DNA-binding domain suggests 

it does more than simply facilitate access to chromatin (Belenkaya et al., 2002). In my 

study, the XPygo-2a NliD promoted partial dorsal axis development when expressed 

within the ventral vegetal region or in UV ventralized embryos and prevented anterior­

most neurectoderm formation when injected in the dorsal animal region, consistent with 

other studies on Wnt pathway activation (Yamaguchi and Shinagawa, 1989; Christian and 

page 3-42 



Lake,2003 Xenopus Pygopus 

Moon, 1993; Fredieu et al., 1997; Moon and Kimelman, 1998; Darken and Wilson, 2001). 

These results suggest an additional level of Wnt pathway activation that can be achieved 

by Pygopus via the NHD domain. 

XPygo-2 NHD proteins were also able to induce the Wnt-responsive mid­

hindbrain marker En-2 more strongly in XPygo-2a/J3 depleted embryos than in normal 

embryos, requiring significantly less injected RNA to generate a profound increase in En-

2 expression. Thus, in order to have a hyperactivation effect in normal embryos, XPygo-2 

NHD proteins may need to overcome already associated endogenous canonical Wnt 

transcription complexes. This would explain the low potency of the NHD as an activator 

in the absence of XPygo-2 MOs, with secondary axes induced of small size and in a low 

proportion of embryos. Additionally, there was only a slight coincident increase of 

siamois and chordin expression observed on the ventral side following Xpygo-2 NHD 

RNA injection. As such, it would be expected that the XPygo-2 NHD would have a more 

significant effect in maternally depleted embryos. However, neither morpholino was able 

to knock down maternal XPygo-2a/J3 protein levels as evidenced by reporter assays and 

phenotypic analyses (not shown). 

The mechanism by which the NHD mutants activate Wnt responses poses an 

interesting question: how can the loss of the J3-Catenin-associating domain (PHD) allow 

for possible chromatin-mediated target gene transcription? This would imply that the 

model by which TCF -bound J3-Catenin recruits Pygopus to the promoter is not so simple. 

In the absence of Wnt signaling, XPygo may already be assembled within a chromatin 

associated transcriptional complex, but negatively regulated by its PHD domain either 
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directly or through additional PHD interacting proteins. The binding by P-Catenin would 

then be required to either displace these regulatory proteins or alter Pygopus protein 

conformation. In these experiments, overexpression of the NHD was effectively 

equivalent to deletion of the PHD, allowing deregulation of the protein and activation of 

target genes (Figure 3 .15). 

3.5.2 XPygo-2a and XPygo-2f3 Cooperatively Pattern the Xenopus Embryonic Brain 

While the experiments on the effect of NHD overexpression on dorsal axis 

induction and anterior neural reduction placed XPygo-2a/f3 within the Wnt signaling 

cascade, they could not definitively demonstrate the normal function of Xpygo-2 in 

Xenopus embryogenesis . Antisense MOs were designed, therefore, to block Xpygo-2-

specific translation. The combined expression studies and MO depletions provided a more 

complete picture of the types of Wnt inductive or patterning events that are mediated by 

XPygo-2 proteins. 

Multidimensional Wnt signaling cames out multiple functions for patterning 

events within clonal populations of cells at different times in development. Not 

unexpectedly, both Xpygo-2a and -2/3 are widely spatio-temporally expressed in early 

Xenopus embryogenesis. The early expression of Xpygo-2P (and even Xpygo-2a) coupled 

with the dorsal-axis inducing properties of XPygo-2 NHD and the ventralizing capability 

of antisense XPygo-2 phosphorothioated oligonucleotides (Belenkaya et al. , 2002) 

confrrm that XPygo is required for early axial patterning and organizer formation. 
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Figure 3.15. Summary figure. XPygo proteins are differentially expressed along the 

neural plate to mediate multiple Wnt patterning events. Within the prospective forebrain 

XPygo-2aJf3 expression represents the onset of a Wnt-dependent phase to regulate, 

directly or indirectly, the transcription ofXrxl,Xpax6, andXbfl. Within the mid­

hindbrain XPygo-2a mediates the caudalizing Wnt signal for specification of the isthmic 

organizer. Both XPygo-2a and XPygo-2f3 potentially relay the canonical Wnt signal 

through associations with some downstream protein(s) (Y). Deletion of the PHD domain 

may permit deregulated associations of the NHD with (Y) independent of f3-catenin to 

activate transcription of target genes. However, the full complement ofWnt/f3-catenin 

regulated transcription requires additional XPygo protein(s), such as any putative hPygo-

1 orthologues. These likely associate with different downstream effectors (Z) to regulate 

transcription from a different subset of promoter elements (krox-20, hoxB9). 
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Subsequently, during gastrula stages, a morphogen gradient of active Wnt 

signaling establishes A-P patterning in the neuraxis (Niehrs, 1999; Kiecker and Niehrs, 

2001). However, the expression patterns I observed fail to implicate XPygo-2 in neural 

posteriorization since both isoforms showed reduced expression at this time. Xpygo-2a 

RNA started accumulating at neural plate stages more predominantly in the anterior 

neurectoderm, consistent with an anteriorizing and not a posteriorizing role. Furthermore, 

MO depletion of XPygo-2 failed to alter phenotypes or marker expression of posterior 

neural tissues including spinal cord and neural crest, even though the MOs were found 

throughout the central nervous system. 

The initiation of zygotic Xpygo-2 a expression in the anterior neural plate is 

concomitant with the earliest specification of the eye or retinal field (Saba and Grainger, 

1992; Perron and Harris, 1999). By late neurula stages, Xpygo-2a messages continue to 

accumulate within the retinal field, overlapping the first detectable zygotic Xpygo-2{3 

messages. This observation demonstrates that specification of this anterior-most neural 

tissue requires XPygo-2a. and XPygo-2(3 activity, which was confirmed by the rescue of 

expression of certain retinal field genes in XPygo-2 morpholino-injected embryos. 

XPygo-2a/J3 morpholinos did not, however, affect Xotx2 expression which is 

normally within the fore- and midbrain and developing retina (Blitz and Cho, 1995; 

Kablar et al., 1996; Perron et al., 1998; Andreazzoli et al., 1999). While Xotx2 expression 

was expanded by a J3-Catenin morpholino (Heasman et al., 2000), suggesting that it is 

regulated by J3-Catenin, it is not surprising that it was not affected by XPygo-2 

morpholinos since Xotx2 is expressed during gastrulation, a time when Xpygo-2 is not. 
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These observations, therefore, indicate that XPygo-2 proteins regulate the expression of a 

subset of retinal and forebrain patterning genes and that J3-Catenin regulates some genes 

independently ofXPygo-2 . 

Unlike Xpygo-2/3, Xpygo-2a messages are not restricted to the eye field, but 

extend posteriorly to encompass the entire brain. This places it within the proper spatial 

location to mediate the posteriorizing role of Wnt/J3-Catenin within the mid-hindbrain for 

induction of en-2 and krox-20 expression (Hemmati-Brivanlou and Harland, 1989; 

McMahon and Bradley, 1990; Bradley et al., 1993; McGrew et al., 1999; Kiecker and 

Niehrs, 2001). Partial regulatory effects of XPygo-2J3 on En-2, however, imply that its 

expression domain extends into midbrain territories to cooperate with XPygo-2a in 

expression of this marker. While the -2a morpholino disrupted neural tissues extending as 

far posteriorly as the hindbrain (Figure 3.9), only en-2 but not krox-20 expression was 

eliminated. Since krox-20 expression ·has been shown to be dependent on Wnt signaling 

(Kiecker and Niehrs, 2001), these results suggest that additional Xenopus Pygopus 

proteins may be involved to mediate its expression. Therefore, a gradient of Wnt/J3-

Catenin signaling is not the only mechanism involved in anteroposterior neuraxial 

patterning. Differential spatial distributions of the XPygo transcriptional mediators may 

also alter the cellular competency to the same activated Wnt/J3-Catenin pathway. 

Precedence for differential spatio-temporal requirements of XPygo comes from 

evidence that both the pre-MBT axial specification and post-MBT mesodermal and 

ectodermal patterning involves the same canonical pathway with activation of 13-

Catenin/XTCF-3 (Fredieu et al. , 1997; McGrew et al. , 1999; Heasman et al., 2000; 
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Darken and Wilson, 2001) . As such, there is a stage-specific change in cellular 

competence that occurs within the nucleus, at the level of the target gene promoter and 

possibly the XTCF-3 protein (Darken and Wilson, 2001; Hamilton et al., 2001). 

Work presented in this chapter demonstrates that differentially localized XPygo 

proteins may provide a novel mechanism by which cells acquire different spatial or 

temporal competencies to the same intracellular Wnt signaling cascade during 

development. I postulate that the response a cell makes to canonical Wnt stimuli, 

including target genes activated, depends on the type of Pygopus protein present within 

the (3-Catenin/TCF complex. While both XPygo-2a. and XPygo-2(3 morpholinos reduced 

the same forebrain and retinal markers, they did diverge in their ability to regulate 

posterior markers. However, I cannot rule out the possibility that this could be due simply 

to their differential expression patterns rather than unique transcriptional activation 

abilities. It is possible that XPygo-2(3 may further uniquely regulate markers not analyzed, 

or may simply act through its restricted expression pattern to enhance a general XPygo-2 

signal within certain tissues. This latter model would allow different marker expression 

patterns based upon the local concentration ofXPygo-2 proteins. 

3.5.3 Model for Xpygo-Dependent Patterning of the Central Nervous System 

The ability of XPygo-2 knockdown to eliminate both mid-hindbrain (en-2) and 

forebrain (e.g. Xbfl , Xrxl , Xpax6) gene expression, leads to the proposal of a potential 

role for wild-type XPygo-2 in mediating a Wnt-dependent genetic network controlling 

fore-midbrain patterning. This is consistent with recent studies in chick showing a change 
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in competence of the neural plate to Wnt signals, from an early phase necessitating the 

absence of Wnts for specification of the forebrain to a later phase requiring Wnts in order 

to establish dorsoventral identity within the telencephalon (Gunhaga et al., 2003). 

Therefore, XPygo-dependent transcription may pattern the central nervous system by 

establishing not only different spatial (Figure 3.15), but also different temporal 

competencies to Wnt signals. 

Within the prospective forebrain during gastrula stages, Wnt antagonists from the 

prechordal endomesoderm generate a Wnt free zone preventing nuclear accumulation of 

J3-Catenin (reviewed in Chapter 1; Lake and Kao, 2003a). Increasing Wnt activity along 

the AP neuraxis during this period specifies progressively more posterior identity. The 

absence of Xpygo-2 expression indicates that this occurs through associations of 13-

Catenin with an alternative XPygo protein, potentially an hPygo-1 orthologue (Figure 

3.15). 

At the end of gastrulation (stage -12), XPygo-2 becomes expressed as a necessary 

step in establishing telencephalic and retinal genetic networks. Therefore, I propose that 

XPygo-2a. renders the anterior neural plate competent to express Xrxl , Xpax6 and Xbfl in 

response to Wnt signals from adjacent non-neural ectoderm (Figure 3.15). Maintenance 

of these expression domains may further require XPygo-213 expressed at later neurula 

stages. More posteriorly, XPygo-2a. (and XPygo-2J3) will also enable expression of En-2 

in response to Wntl signals from the IsO for specification of midbrain identity (Figure 

3.15; Hemmati-Brivanlou and Harland, 1989; McMahon and Bradley, 1990; Danielian 

and McMahon, 1996; McGrew et al., 1999). 
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The NHD-specific downstream regulatory proteins (Y and Z, Figure 3.15) are 

fundamental components of my model. In the brain, XPygo-2a/J3 likely regulates 

expression through bridging the canonical Wnt machinery to the protein or protein 

complex {Y), possibly involved in chromatin remodeling. Deletion of the PHD domain 

would permit deregulated associations of the NHD domain with (Y). Since the marker 

showing the greatest sensitivity to XPygo-2 disruption was En-2, it is not surprising that 

this marker was upregulated to a greater extent. This activation of posterior neural 

identity would result in the expected rostral transformation to more caudal identity 

(Yamaguchi and Shinagawa, 1989; Christian and Moon, 1993; Fredieu et al., 1997; 

Darken and Wilson, 2001), thereby suppressing any induction of telencephalic or retinal 

markers and generating the observed forebrain malformations (Figures 3.8 and 3.9). In 

fact, this effect can be mimicked by overexpression of En-2 alone (Ristoratore et al., 

1999), indicating that any ectopic activation of more anterior markers by the NHD would 

likely have been overpowered by this caudalizing signal. The fmding that NHD 

constructs from both XPygo-2a. and -2(3 could interchangeably generate this effect 

(Figure 3.8, Table 3.2) further corrfrrms their joint requirement, at some level, for En-2 

expression. 

Further analyses must be undertaken to identify potential hindbrain targets of 

XPygo-2 dependent Wnt signaling. In addition, since the XPygo-2a. MO did not generate 

a complete loss of Wnt regulated posterior neural markers, hPygo-1 orthologues likely 

exist to mediate transcription at these promoters, possibly by bridging associations with 

an alternative set of downstream proteins (Z; Figure 3.15). Alternatively, the observed 
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disruption of hindbrain structure may have been, in part, a secondary consequence of 

disrupting Wnt dependent I sO specification or function, loss of which generates hindbrain 

abnormalities (McMahon and Bradley, 1990; Thomas and Capecchi, 1990). 

According to my model, the type of Pygo protein available at a promoter 

determines the cell's competency to respond to Wnt/P-Catenin signals. In addition, the 

type of promoter regulated is ultimately dependent on the type of NHD-specific 

downstream effector (Y or Z) involved. Extensive experimental analyses must be 

undertaken to test this hypothesis, including the cloning and functional analysis of 

XPygo-1, identification of theY, Z proteins/complexes and the empirical demonstration 

ofWnt-induced forebrain marker expression. 
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4.1 ABSTRACT 

Pygopus proteins represent newly discovered components of the Wnt/J3-Catenin 

signaling cascade, with putative functions in bridging P-Catenin transcriptional 

complexes to chromatin remodeling machinery for transcription from target promoters. 

My studies presented in chapter 3 demonstrated the different spatial requirements of 

XPygo proteins during embryonic development of the frog. In this chapter, human tissues 

were screened to determine if this differential expression pattern is conserved and to 

verify a primarily neural requirement for Pygo-2 orthologues. Consistent with the 

expression studies in Xenopus, hpygo-2 encoded messages and proteins were found to 

accumulate within brain structures previously shown to involve Wnt signaling during 

development, maintenance or oncogenesis. 
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4.2 INTRODUCTION 

Wnt/P-Catenin signaling is intrinsically associated with cell fate decisions in 

regulating growth and differentiation events, with a prominent role in the expansion of 

predefmed cells (reviewed in Clevers, 2002). As such, pathway constituent mutations 

have been linked to a number of human cancers derived from colorectal, breast, ovarian, 

and neuroectodermal tissues (reviewed in Polakis, 2000; Brown, 2001; Taipale and 

Beachy, 2001; Lustig and Behrens, 2003). 

Stereotypical Wnt signaling ultimately relies on the intracellular shuffling of P­

Catenin between the cytosol and nucleus. This is regulated by Wnt ligand-receptor 

interactions that balance P-Catenin's association with either a cytoplasmic destruction 

complex or nuclear transcriptional regulators of the TCF/LEF-1 family (reviewed in 

Lustig and Behrens, 2003; Chapter 3). Ill the absence of extracellular stimulation of Wnt 

receptors or Frizzleds, P-Catenin remains bound and phosphorylated by the Axin-APC­

GSK-3P-CK1 containing multiprotein complex, triggering ubiquitination by P-TrCP for 

proteosomal degradation. Binding of the Wnt glycoproteins to both Frizzled receptors and 

LRP 5/6 co-receptors enables cytosolic Dishevelled to release P-Catenin from its 

antagonistic protein interactions. With renewed stability, P-Catenin migrates to the 

nucleus and associates with HMG-box containing TCF proteins, while displacing co­

repressors that actively prevented target gene expression in Wnt inactive cells. As 

mentioned in chapter 3, P-Catenin!TCF nuclear complexes activate transcription through 

an association, mediated by the adaptor Legless/BCL9, with Pygopus proteins. 
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Wnt signaling plays a pivotal role in the establishment and organization of the 

embryonic central nervous system, with roles in proliferation of neural precursors 

(Dickinson et al., 1994; Ikeya et al., 1997; Megason and McMahon, 2002), establishment 

of defmed cell adhesion molecule expression domains (Shimamura et al., 1994), 

synaptogenesis (reviewed in Salinas, 2003) and possible suppression of apoptosis (Zhang 

et al., 2001; Zhang et al., 1998). As such, transduction cascade dysfunctions are 

associated with developmental anomalies including schizophrenia (Beasley et al., 2002; 

Kozlovsky et al., 2002) and neurodegenerative disorders such as Alzheimer's disease 

(Zhang et al., 1998). In addition, activating P-Catenin mutations are associated with 

oncogenic dysfunctions putatively due to aberrant activation of normal cell expansion 

programs. For instance, such mutations are associated with pituitary adenomas (Semba et 

al., 2001; Howng et al., 2002), potentially by upregulating Pitx2 (Kioussi et al., 2002) and 

neural crest-derived melanomas (Rubinfeld et al., 1997), by upregulating 

Microphthalmia-associated Transcription Factor (MITF, Widlund et al., 2002). 

The most comprehensive characterization of early embryonic Wnt function comes 

from studies in the frog, where Wnt signaling establishes the neural organizing tissue, 

segregates it into head and trunk inducing divisions, pre-specifies neurectoderm through 

BMP antagonism and defines both the AP and DV neuraxes through graded intracellular 

signaling (reviewed in Lake and Kao, 2003a). These processes appear to be conserved to 

some extent in mammals (Yamaguchi, 2001), with Wnt8c overexpression generating 

posterior axis duplications and fore-, midbrain deletions in transgenic mouse embryos 

(Popperl et al., 1997). 
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Wnts additionally have a conserved requirement in late patterning events in the 

mammalian nervous system to establish dorsal posterior neural identity along the spinal 

cord (Muroyama et al., 2002). As in Xenopus (chapter 3) and chick (Gunhaga et al., 2003), 

this late patterning also appears to encompass the brain, including the forebrain. wnts3a, -

5a and -2b are expressed within the embryonic cerebral cortex at the boundary between 

the hippocampus and choroid plexus known as the cortical hem (Grove et al., 1998), and 

wnt8B in human and mouse embryos is expressed within the developing hippocampus, 

the dorsal thalamus and the mammillary and retromammillary regions of the posterior 

hypothalamus (Lako et al., 1998). The importance of Wnt signaling in development of 

these forebrain tissues requires fine spatial regulation of intracellular activity of the 

pathway, as indicated by the existence of gradients of Wnt receptors and Wnt antagonists 

within the developing mouse telencephalon (Augustine et al., 2001~ Kim et al., 2001). 

The fundamental role for Wnt signaling in CNS development ultimately is derived 

from mutant phenotypes. Disruption of Wntl in mouse generates deletions of the 

midbrain and cerebellum (McMahon and Bradley, 1990~ Thomas and Capecchi, 1990). 

Wnt3a mutant mice exhibit hippocampal deletions (Lee et al., 2000), due to reduction in 

proliferation of hippocampal cell precursors normally directed through (3-Catenin!TCF 

dependent transcription (Galceran et al., 2000). Both wntl and wnt3a are expressed along 

the dorsal midline of the neural tube with redundant functions demonstrated in double 

mutant mice which exhibit, compared with single mutants, a further reduction of the 

posterior diencephalon, anterior hindbrain, spinal ganglia and neural crest derivatives 

(lkeya et al., 1997). wnts -7a, -7b and -3a are expressed in the hindbrain in a region of the 
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developing postnatal cerebellum (Salinas et al., 1994; Lucas and Salinas, 1997). Here 

they play a role in axonal remodeling and synaptic differentiation, as demonstrated for 

Wnt7a (Hall et al., 2000), as well as maintaining subsequent cerebellar viability and 

integrity through the Frizzled-4 receptor (Wang et al., 2001). 

This chapter outlines the novel expression analysis of hPygo-2 in normal adult 

human tissues through both dot blot and Western blot analysis. I propose that Pygo-2 

proteins mediate a number of the above mentioned Wnt functions in the brain. 

Consistently, hpygo-2 encoded messages and protein accumulated within regions wherein 

Wnt signaling is implicated in precursor proliferation, patterning, synaptogenesis and 

maintenance, including the hippocampus, pituitary and cerebellum. These results confirm 

a conserved requirement for Pygo-2 proteins in the anterior nervous system from the early 

embryo to the adult. 
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4.3 MATERIALS AND METHODS 

4.3.1 Dot Blot Analysis 

I.M.A.G.E. Consortium (LLNL) eDNA clones of human pygo-2 (CloneiDs: 

41570072 and 3627860) were obtained (Incyte Genomics Inc.). Probe templates were 

generated against 3 'untranslated sequences (Bglii!Sali) or 5'untranslated sequences (F: 

CTGGGCTGCCCCTGACACCC; R: CCGGCCTTGCCCTGCTTCC ) and random 

primed (Promega). Radiolabeled probes were used to screen a human multiple tissue 

expression (MTE™) array (Clontech) with hybridization occurring at 65°C in ExpressHyb 

(Clontech). Densitometric analysis of the associated blots gave relative expression levels 

of tissues examined. These semi-quantitative values were converted into a scale from 1 to 

4, with values falling below half points being rounded down and values at or higher than 

half points being rounded up (e.g. <1.5 = 1; ~1.5 = 2). 

4.3.2 Western Blot Analysis 

Protein Medleys TM (BD. Biosciences) from human tissue samples were obtained 

with known concentrations. For western analysis, 25-50J..lg of protein was run on 10% 

SDS-PAGE, transferred to nitrocellulose membranes (Hybond-ECL™; Amersham) and 

visualized using the associated enhanced chemiluminescence. Relative protein levels for 

most tissues (except heart) was shown using a monoclonal anti-j3-actin antibody (Sigma), 

with equivalent levels loaded confirmed using Red Ponceau staining of western 

membranes (Sigma). 
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Primary antibodies used for immunoblotting included: hPygo-2 rabbit polyclonal 

(created and characterized by P. Andrews, unpublished observations), J3-Catenin goat 

polyclonal (Santa Cruz), anti-phospho-GSK-3a/f3 (Cell Signaling Technology). 
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4.4RESULTS 

4.4.1 hpygo-2 mRNA is Expressed in Multiple Tissues With Highest Levels in the 

Human Brain 

The normal expression of hpygo-2 was analyzed in multiple human tissues (Figure 

4.1) using probes against non-coding sequences. Messages were expressed in most of the 

tissues tested, with a low level of background non-specific binding as indicated by the 

human and prokaryotic DNA controls. This non-specificity likely results from short 

repeat sequences present within the probes used, as well as the high GC content of the 

genetic sequence. However, semi-quantitative comparison (Table 4.1) showed higher 

levels in brain tissues, reproductive tissues (prostate) and glandular tissues (adrenal gland 

and thyroid gland). 

The spatial distribution of messages in brain tissues paralleled what I found in 

Xenopus laevis embryos (Lake and Kao, 2003b ), with higher expression levels in brain 

structures and lower levels in the spinal cord. This observation indicates a continued 

function of Pygo-2 proteins in the brain following their earlier role in development and 

specification (Lake and Kao, 2003b ). hpygo-2 messages were detected within the 

telencephalon at high levels in the parietal and temporal lobes of the cerebral cortex, the 

paracentral gyrus, corpus callosum, caudate nucleus and the putamen. However, medial 

levels were detected in frontal and occipital lobes, as well as the hippocampus and low 

levels of messages accumulated in the amygdala. Message distribution within the 

diencephalon was low in the thalamus but high in the pituitary gland. hpygo-2 transcripts 

were also detected at moderate levels in the mesencephalon (midbrain) in the substantia 
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Figure 4.1. hpygo-2 mRNA expression analysis. A. Dot Blot showing the levels of 

hpygo-2 messages on a human multiple tissue expression (MTE™) array (Clonetech) with 

the identity of the tissues assayed shown in B. 
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Table 4.1. hpygo-2 mRNA Levels By Dot Blot Analysis 
Central Nervous S~stem Re~roductive S~stem 

Whole Brain ++ Placenta ++ 
Cerebral Cortex ++ Uterus + 
Frontal Lobe ++ Prostate +++ 
Parietal Lobe +++ Testis ++ 
OcciEital Lobe ++ Ov~ + 
TemEoral Lobe +++ Glandular Tissue 
Paracentral Gyrus of Cerebral Cortex +++ Liver ++ 
Pituitary Gland ++++ Pancreas + 
Pons ++ Adrenal Gland +++-
Cerebellum, Left +++ Thyroid Gland +++-
Cerebellum, Right ++++ Salivary Gland + 
Corpus Callosum +++ Mammary Gland + 
Amygdala + Cell Lines 
Caudate Nucleus +++ Leukemia lll..-60 + 
Hippocampus ++ HeLaS3 + 
Medulla Oblongata ++ Leukemia, K-562 + 
Putamen +++ Leukemia, MOLT -4 + 
Substantia Nigra ++ Burkitt's Lymphoma, Raji + 
Accumbens Nucleus + Burkitt's L~Ehoma, Daudi + 
Thalamus + Colorectal Adenocarcinoma, SW480 + 
SEinal Cord ++ Lung Carcinoma, A549 + 

Cardiac Tissues Immune Sl:stem 
Heart + SEleen ++ 
Aorta + Th~us ++ 
Atrium, Left + PeriEheral Blood Leukocyte + 
Atrium, Right + LymEhNode ++ 
Ventricle, Left + Bone Marrow + 
Ventricle, Right + Other 
Interventricular Septum + Kidney ++ 
AEex ofHeart + Skeletal Muscle + 
EsoEhagus + Trachea ++-

Gastro-Intestinal Sl:stem Lun8 + 
Stomach + Bladder + 
Duodenum + Controls 
Jejunum + Yeast Total RNA 
Ileum ++ YeasttRNA 
Ilocecum ++ E. coli rRNA 
AQEendix ++ E. coli DNA + 
Colon, Ascending + Poly r(A} 
Colon, Transverse + Human Cot-1 DNA 
Colon, Descending + Human DNA IOOng 
Rectum + Human DNA 500 ng + 

page 4-11 



Lake,2003 hPygo-2 

nigra. High levels were found in the metencephalon (anterior hindbrain) in the cerebellum, 

however this demarked the posterior-most boundary of hpygo-2 messages in the brain, 

with low levels detected in the pons and fewer in the medulla oblongata of the 

myelencephalon or brainstem (posterior hindbrain). 

4.4.2 hPygo-2 protein is expressed in neural structures anterior to the spinal cord 

To determine if the m.RNA levels accurately predict protein expression within the 

anterior neural structures, total protein from a subset of the tissues analyzed was screened 

with a rabbit polyclonal antibody directed against hPygo-2 (Figure 4.2). hPygo-2 protein 

levels were high within all brain tissues examined except the hypothalamus and thalamus 

of the diencephalon and the brainstem, all of which showed lower levels of expression as 

demonstrated with dot blot analysis. Also consistent with message levels was the lack of 

protein expressed in the spinal cord, mammary gland or heart. Comparison of hPygo-2 

protein levels with that of P-Catenin showed an overlap in the majority of the tissues 

examined, but with little to no expression of P-Catenin in tissues having reduced hPygo-2 

expression (hypothalamus, thalamus, brainstem) and a high level of P-Catenin expression 

within the heart, which did not express hPygo-2 (Figure 4.2). 

The state of Wnt pathway activity was analyzed by detection of phosphorylated 

GSK-3a/P (active state). Within the brain, the co-expression of P-Catenin and hPygo-2 

was associated with active Wnt signaling in all tissues except the frontal lobe, which 
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Figure 4.2. hPygo-2 protein expression analysis. Protein extracts from various different 

human tissues (BD Biosciences) were screened on a western blot using a poly clonal 

rabbit anti-hPygo-2 antibody. For comparison, blots were probed with anti-J3-Catenin 

goat polyclonal and anti-phosphorylated GSK-3a/f3 (P-GSK) antibodies. Loading of 

relatively even levels of protein was verified both by Red Ponceau staining and blotting 

with an anti-J3-Actin antibody. 



hpygo-2 

f3-Catenin 

P-GSK 

Actin 



Lake,2003 hPygo-2 

showed little to no detection of either phosphorylated GSK-3 isoform (Figure 4.2). 

Outside of the brain, however, co-expression of (3-Catenin and hPygo-2 was not reflected 

in the phosphorylation state of GSK, since neither was expressed within the mammary 

gland and only (3-Catenin was expressed in the heart. These tissues demonstrate the 

diversity of the pathway, with activity in the mammary gland possibly reflecting non­

canonical signal transduction and activity in the heart likely reflecting the utilization of 

additional hPygo proteins (hPygo-1) by (3-Catenin to mediate the canonical Wnt signal. 

page 4-14 



Lake,2003 hPygo-2 

4.5 DISCUSSION 

The diversity of Wnt pathway constituents in promoting cellular events from 

growth and differentiation to adhesion increases the need to identify isolated components 

suitable as therapeutic targets for individual cellular programs, such as proliferation. This 

demand was potentially met with the recent discovery of the Pygopus family of proteins 

(Kramps et al., 2002; Thompson et al., 2002; Lake and K.ao, 2003b), currently 

representing the lowest identified point in the pathway. Indeed, my current expression 

studies indicate that hPygo-2 activity is not ubiquitous and may be required for only a 

limited set of tissue-specific processes, consistent with orthologous isoforms in Xenopus 

laevis (chapter 3; Lake and Kao, 2003b). 

Both messenger RNA and protein levels of hpygo-2 are differentially expressed in 

adult human tissues, with a high level localized to fore-, mid- and hindbrain structures, 

reproductive tissues (prostate) and glandular tissues (adrenal and thyroid). Interestingly, 

tissues expressing hpygo-2 at relatively higher levels were also associated with 

malignancies involving activating Wnt pathway mutations, including the cerebellum 

(Dahmen et al., 2001; Howng et al., 2002; Baeza et al., 2003), pituitary (Semba et al., 

2001; Howng et al., 2002), thyroid (Garcia-Rostan et al., 2001; Ishigaki et al., 2002) and 

prostate (Chesire et al., 2000; Chesire et al., 2002; Sharma et al., 2002; Yang et al., 2002a; 

de la Taille et al., 2003). Wnt signaling has further been implicated in the embryonic 

development of these same structures, including regions of the cortex such as the 

hippocampus (Galceran et al., 2000; Lee et al., 2000) and major axonal tracts such as 

thalamocortical, corticothalamic and nigrostriatal tracts, the anterior commissure and 

corpus callosum (Wang et al., 2002). Wnt signaling is also involved in cerebellar 
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(McMahon and Bradley, 1990; Thomas and Capecchi, 1990; Hallet al., 2000; Brault et 

al., 2001; Wang et al., 2001), pituitary (Douglas et al., 2001; Kioussi et al., 2002), adrenal 

gland (Eberhart and Argani, 2001; Heikkila et al., 2002; Gummow et al., 2003) and 

prostate (Truica et al., 2000; Chesire et al., 2002) development. Low levels of hpygo-2 

mRNA were also observed in kidney, placenta and thymus; tissues developmen~lly 

dependent on Wnt signaling (Eberhart and Argani, 2001, Staal and Clevers, 2003), 

implying possible involvement in their embryonic patterning or later maintenance. 

Therefore, while correlative, my observations indicate that hPygo-2 may be 

involved in Wnt/J3-Catenin associated normal and/or abnormal molecular processes of the 

brain (including corte~ cerebellum and pituitary), prostate, thyroid and adrenal gland. In 

_addition, these findings may identify tissues expressing hPygo-2 that may have a potential 

susceptibility to activating Wnt mutations for oncogenesis through J3-CateninlhPygo-2. 

Alternatively, tissues known to have susceptibility to oncogenic canonical Wnt signals 

that do not express hPygo-2 may require hPygo-1. However, this requires further 

investigation, including characterization of both normal and abnormal hPygo-1/hPygo-2 

expression. In addition, any developmental significance of either hPygo protein requires 

extensive analysis of embryonic expression patterns. 
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5.1 MULTIPLE SIGNALS PATTERN THE CNS 

Throughout embryogenesis, multifaceted developmental programs that regulate 

growth and differentiation of histogenically distinct structures tend to utilize common 

molecular components. Among these are the ReVNF-KB, Shh, BMP, FGF and Wnt 

signaling cascades, each having potent effects on cellular behavior in multiple contexts to 

regulate the expansion and organization of cellular precursors. As reviewed in chapter 1, 

these growth factors are extensively involved throughout neurectodermal morphogenesis 

to establish both the DV and AP neuraxes. 

The accumulated evidence from both my studies and from other laboratories 

indicate that specification of the numerous neuronal constituents of the CNS requires the 

generation of a grid-like expression pattern of genetic factors. The induction of this 

pattern is coordinated by multiple signaling centers that specify the primary subdivisions 

of the brain. This provides the framework for the extensive expansion and morphogenesis 

required to convert a sheet of neurectoderm into the complex 3-dimensional brain vesicles. 

Basic medial-lateral identity has its earliest basis in neur~l plate formation during 

gastrulation. Ectodermal cells overlying the organizer and expressing Xfd-12 ' undergo 

extensive medial-lateral convergence extension which bisects the field of more anteriorly 

positioned cells (Keller et al., 1992; Fetka et al., 2000). As such, based on proximity to 

the organizer within the prospective neural field prior to gastrulation, more proximal 

(posterior) cells (notoplate) will populate the floorplate, and progressively more distant 

(anterior) cells will compose concentrically arranged ventral (basal) and dorsal (alar) 

fated rings by open neural plate stages. Differential expression of markers along these 
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longitudinal domains generate the medial-lateral or ventral-dorsal divisions of the CNS. 

Such longitudinal identity is derived from signals emanating first from mesendoderm 

(anti-BMPs, Nodals, Shh) and the adjacent non-neural ectoderm (Wnts, BMPs) at open 

neural plate stages. 

Later, following neurulation, the mesendoderm (Nodals, Shh, anti-BMPs) in 

conjunction with both a dorsal signaling centre or roof plate (BMPs, Wnts) and ventral 

signaling centre or floorplate (Shh, _Nodals) in the neural tube continue to define and 

refine the DV pattern of neuronal precursors (reviewed in chapter 1; Lake and Kao, 

2003a). The non-homogeneous nature of the organizer also endows differential anterior­

posterior character onto the neuraxis, enabling transversely bisecting organizers to form at 

the juxtaposition of distinctly specified domains. As such the ANR (which expresses 

FGF8) at the anterior-most limit of the -neurectoderm and the IsO (FGF8, Wntl) at the 

mid-hindbrain junction (the boundary of Otx2/Gbx2 expression) form and pattern 

adjacent forebrain and mid-hindbrain tissues, respectively (reviewed in chapter 1; Lake 

and Kao, 2003a). 

The means by which these signaling centers are established and by which they 

direct the growth and differentiation of the brain to generate its immensely complex 

structure remains poorly understood. This thesis provides insight into the processes by 

which key neural patterning genes are choreographed during embryonic brain 

development (summarized in Figure 5.1). Xenopus Rel!NF-KB is necessary for the 

expression of otx2 within the anterior neurectoderm as a prerequisite of retinal and fore­

midbrain specification and positioning of the IsO (reviewed in chapter 1; Lake and Kao, 
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Figure 5.1. Model of the genetic networks subdividing the neural plate. A. 

Progressive molecular maps to generate a mid-neurula Xenopus embryo (around stage 15) 

as modified from Lupo et al., 2000. Areas within the coloured lines represent regions of 

expression. Xotx2 (blue) becomes expressed first encompassing the fore-midbrain. Then 

concomitant with Xpygo-2 (Xpygo-2alf3- yellow; Xpygo-2a alone- pink) expression, 

Xrxl andXpax6 (red) become expressed. XRxl repressesXotx2 expression to exclude it 

from the retinal field. At the same time Xbfl/Fg/8 (green) becomes expressed. Finally, a 

little later en-2 (spots) becomes expressed. The fates of the resulting subdivisions at the 

mid-neurula stage are indicated with the anterior most limit of the neural plate marked by 

the cement gland (gray). Note that the ventral diencephalon becomes specified from the 

region indicated only following Shh-dependent repression of Xpax6/Xrx 1 expression 

during subsequent stages. B. An overview of the interconnected network of events 

required to specify the tissues indicated in A. See text for further discussion and 

references. 



A 

B 

... · ..... En2 

• Xrx1 /Xpax6 

BF1/FGF8 

Xotx2 

/ Tel~ncephalon 

Cement Gland 

Xpygo-2a/J3 

Xpygo-2a 

Dorsal Diencephalon 
Midbrain 

Hindbrain 

Ventral Diencephalon 

Wnt(Xpygo-2) Engrailed-2 

Dorsal \ 
Telencephalon Diencephalon Midbrain 

BF-1/ "'/ ~ 
Rx-1 
Pax-6 

Retina 

~: -
Otx-2 

1. 
Shh 

' Ventral Diencephalon/ 
Optic Stalk 



Lake,2003 Summary 

2003a). While otx2 expression is not required for proper specification of the ANR, it is 

required to respond to signals from this organizer to specify the telencephalon and permit 

FGF8 induced expression of bfl at the end of gastrulation (stage 12) (Eagleson and 

Dempewolf, 2002~ Tian et al., 2002). However, components of the Wnt signaling cascade, 

XPygo-2a/p, that also become expressed at this same time, are required for bfl 

expression. These findings indicate that the combined action ofReVNF-KB, FGF and Wnt 

signals are required for induction of telencephalic gene expression. 

Concomitant with bfl expression is the expression of Xpax6 and Xrxl (Casarosa et 

al., 1997~ Hirsch and Harris, 1997~ Li et al., 1997; Mathers et al., 1997), both dependent 

on XPygo-2 (Figure 3.13). Xrx1 normally represses otx2 expression in the prospective 

eye field to delimit otx2 to telencephalic primordia (Andreazzoli et al., 1999~ Lupo et al., 

2000; Eagleson and Dempewolf, 2002). Subsequently, specification of the ventral 

diencephalon and splitting of the eye field (Xpax6/Xrxl expression) involves induction 

(requiring Xrel3) of shh expression in the ventral midline or floorplate, as initiated, 

presumably, by underlying Shh-expressing mesendoderm cells, at mid-neurula stages 

(stage 15~ Figure 2.10E~ Marti et al., 1995b~ Ekker et al., 1995~ Lee et al., 1997a). By late 

neurula (stage 18) the Xpax61Xrxl expressing retinal field is segregated into two 

bilaterally displaced retinal vesicles (Figure 1.3 ~ Li et al., 1997). While initiation of shh 

expression may initially involve Otx2 (Jin et al., 2001), it subsequently becomes 

negatively regulated by Otx2 and restricted ventrally frrst within the fore-midbrain then 

later in the midbrain only (Puelles et al. , 2003). Anterior-lateral cells expressing otx2, in 
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the absence of FGF8 and presumably Shh, are fated for dorsal diencephalic character 

(Eagleson and Dempewolf, 2002). 

At the posterior limit of otx2 expressiOn, antagonistic feedback with Gbx2 

generates a sharp boundary at which Wntl and FGF8 become expressed (Glavic et al., 

2002; Tour et al., 2002alb ). Wntl acts within the Otx2 expressing cells rostral to the IsO 

to induce En-2 expression (stages 13-15; Glavic et al., 2002), mediated by XPygo-2 

(chapter 3) and found to be dependent on FGF8 (Danielian and McMahon, 1996; Lee et 

al., 1997b; Liu and Joyner, 2001; Glavic et al., 2002). The region of overlapping otx2 and 

en-2 expression will form the midbrain which becomes organized by FGF8 signals from 

the IsO (Lee et al., 1997b; Liu and Joyner, 2001; Eagleson and Dempewolf, 2002). It is 

interesting to note that both forebrain (BF1) and midbrain (En-2) markers that are 

activated by FGF8 require XPygo-2 protein activity in Xenopus, implying a dependency 

on both FGF and Wnt signaling to pattern these tissues. 

5.2 DEVELOPMENT OF TELENCEPHALIC AND OPTIC PRIMORDIA 

5.2.1. Wnt-Dependent Patterning Events 

Localized expansion of the brain is required to generate its ultimate overall 

structure and complexity. The telencephalic fields are derived from a relatively small 

domain encompassing the anterior-most concentric ring of neurectoderm at neural plate 

stages that becomes the antero-marginal neural folds (Couly and Le Douarin, 1988; 

Eagleson and Harris, 1990; Eagleson et al., 1995). Therefore, extensive cellular 

proliferation and morphogenesis is required to generate the enlarged telencephalic vesicle 
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derivatives (cerebral cortex and basal ganglia), a process that occurs at later stages than 

eye vesicle evagination (Figure 1.3). 

While antagonism of Wnt signaling is a necessary step m telencephalon 

specification during neural plate stages (Kiecker and Niehrs, 2001b; Nordstrom et al., 

2002; Houart et al., 2002), chapter 3 demonstrates that components of this pathway, 

XPygo-2a and XPygo-2~, are required for the expression of Xenopus bfl. These 

components must therefore promot~ both proliferation at high concentrations of bfl 

expression and neurogenesis at low concentrations (Bourguignon et al., 1998) for growth 

and differentiation of the telencephalic and optic vesicles. Wnts also play roles in 

mitogenesis and dorsal specification of the telencephalon later in development in part 

through direct activation, in conjunction with BMPs, of emx2 expression (Theil et al., 

2002). 

To account for this apparent contradictory role of Wnts in forebrain patterning, 

recent studies in chick have proposed a switch in competence after the early Wnt­

independent phase of specification of prospective telencephali to a phase requiring Wnt 

signals to block ventral and induce dorsal identity (Gunhaga et al., 2003). Consistent with 

this scenario, several Wnts become expressed within the forebrain of mice (Patapoutian 

and Reichard, 2000; Kim et al., 2001; Coyle-Rink et al., 2002), chicks (Holly day et al., 

1995) and frogs (Wolda and Moon, 1992; Wolda et al., 1993; Cui et al., 1995; Landesman 

and Sokol, 1997). 

It has been proposed (Gunhaga et al., 2003) that prospective telencephalic cells at 

the open neural plate stage are intrinsically ventral in identity by exposure to 
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mesendodermal signals such as provided by Shh (Gunhaga et al., 2000). However, at 

neural fold stages the lateral and prospective dorsal cells are exposed to Wnt (Wntl and 

Wnt4) and BMP signals from adjacent non-neural ectoderm, while medial or prospective 

ventral telencephalic cells are exposed to ANR derived FGF8. Wnt blocks the potential 

ventral telencephalic fate and through induction of markers such as Pax6, specifies dorsal 

telencephalic cells. Following neural tube closure, Wnt8b becomes expressed in the 

dorsal telencephalic cells and FGF8 expands into the dorsal midline for coordinated roles 

with Wnt and BMP signals in regulating dorsal telencephalic and midline fate (Gunhaga 

et al., 2003). 

Results in Xenopus (chapter 3), showing the loss of both Xpax6 and )(bjl in the 

neural tube following depletion of XPygo-2 suggest that the process described above may 

be conserved in frog forebrain morphogenesis. These results also further strengthen the 

existence of a biphasic requirement for Wnt signaling in specification of this tissue, with 

the later phase occurring at the end of gastrulation (stage ~12) dependent on the 

expression of XPygo-2a/13 isoforms. The early phase of Wnt-induced caudalization likely 

reflects a role in regulating retinoic acid dependent neural posteriorization through 

CYP26 restriction anteriorly (Kudoh et al., 2002). Therefore, expression of XPygo-2 in 

the anterior neurectoderm can be considered the molecular switch in cellular competence 

to Wnt signals that enables the transition between these two phases. 
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5.2.2. Forebrain Patterning by a Conserved Mechanism Involved in the Developing 

Limb 

To understand the extensive molecular processes involved in outgrowth of 

telencephalic and optic primordia in mouse and chick, recent studies have drawn 

comparisons between genetic networks involved in the morphogenesis of the limb and 

prosencephalon (Crossley et al., 2001; Ohkubo et al., 2002). FGF8 is initially expressed 

within the ANR which overlaps the rostral prosencephalon fated to form the rostromedial 

telencephalon and later becomes expressed in the optic vesicles (Crossley et al., 1996; 

Shanmugalingam et al., 2000; Xu et al., 2000; Crossley et al., 2001), likely due to an 

influx of migrating ANR cells into this region as shown in Xenopus (Eagleson et al., 

1995). These expression domains become juxtaposed with that of Shh and BMP in the 

ventral and dorsal domains, respectively, of the telencephalon and optic stalk (Crossley et 

al., 2001; Ohkubo et al., 2002). 

This tripartite signaling center resembles that in the limb bud, with FGF 

expression in the apical ectodermal ridge (AER), BMP expression in the mesenchyme 

and Shh in the zone of polarizing activity (ZP A), regulating the pattern and expansion of 

a population of mesenchymal cells known as the progress zone (reviewed in Capdevila 

and lzpisua Belmonte, 2001; Niswander, 2002; Wolpert, 2002; Panman and Zeller, 2003). 

The activity of this center requires interdependent regulation of each signaling molecule's 

expression. This involves negative regulation between Shh and BMP in addition to 

maintainance of Fgf8 expression by Shh and repression by BMP (Buckland et al., 1998; 

Pizette and Niswander, 1999; Zuniga et al., 1999; Sun et al., 2000; Krauss et al., 2001). 
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These interdynamics are also found in the telencephalon (Golden et al., 1999~ Anderson 

et al., 2002~ Ohkubo et al., 2002). 

Consistent with a conservation of mitogenic and morphogenetic activities between 

the limb and forebrain, Wnt signals were found to be required at multiple levels of limb 

development including a role in dorsoventral patterning (Kawakami et al., 2000~ 

Kawakami et al., 2001; Chen and Johnson, 2002; Church and Francis-West, 2002; 

Barrow et al., 2003~ Soshnikova et al., 2003) reminiscent of that found in the 

prosencephalon (Theil et al., 2002; Gunhaga et al., 2003~ Lake and Kao, 2003b). 

Similarly, Rel/NF-KB, when antagonized, causes aberrant development and reduced Shh 

expression in the limb (Bushdid et al., 1998; Kanegae et al., 1998) and, as I have shown, 

in the brain (Chapter 2). Therefore, the results presented in my thesis imply the 

conservation of Rel/NF -KB regulated expression of Shh between these two developmental 

paradigms. They further support the hypothesis that coordinated behavior of numerous 

signaling pathways generates distinct structures based on the temporal and spatial 

differences of their combined activities. 
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