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ABSTRACT 

The intrinsic absorption coefficient of the oxygen molecule for 

the fundamental vibrational band has been calculated, assuming an electric 

quadrupole interaction of the molecule with the incident radiation. The 

quadrupole matrix elements are approximated by a cubic equation in 

r = R- Re, where 'R' is the internuclear distance and 'Re' is its 

equilibrium value. The wave function of the ground state of the oxygen 

molecule is written in the Born-Oppenheimer approximation, as a product 

of electronic and nuclear parts. Completely antisymmetrized orthogonalized 

molecular orbital wave functions are taken for the electronic part, while 
of 

the nuclear part of the wave function is written as a product/rotational 

and vibrational wave functions. The simple harmonic wave functions are 
the 

taken for/vibrational part. 

The integrated absorption coefficients for 0, Q and S branches 

and the total integrated absorption coefficient for the whole band, have 

been calculated. The results 

investigation are as follows 

Bishop 

Shapiro 

Present 

due to Bishop, Shapiro and the present 

Integrated absorption coefficient em -2/amagat 

2.3 ± 0.9 X 10-3 

3.o ± o.23 x lo-4 

1.45 x lo-4 

These results are discussed at the end. 



-2-

CHAPTER I 

INTRODUCTION 

While studying the pressure induced fundamental band of 

-1 
molecular oxygen, which extends over the region of 1400 em to 

1800 em - 1 , Bishop (1966) found that there is a contribution to 

the total integrated absorption coefficient which depends on the 

density of the gas linearly. A similar observation was made by 

Shapiro (1965). The value of this absorption coefficient was 

-3 -2 -1 
found by Bishop to be 2.3 x 10 em amagat while Shapiro 

found it to be 3.0 x 10-4 em - 2 amagat -!Bishop attributed this 

to a magnetic dipole interaction while Shapiro attributed it to 

imp •rities such as water vapour, in the gas. The present invest-

igation was undertaken with a view to see if some kind of electro-

magnetic interaction is responsible for this intrinsic absorption 

and to estimate its contribution to the absorption coefficient. 

As absorption was observed in the infrared region, it 

is reasonable to assume that the vibrational transition with 

small ~v, should be taking place and there should be no electronic 

transition. The electronic transitions giving an absorption in 

the infrared region would have been possible if there were low 

lying excited states or if the temperature were so high that the 

excited states were sufficiently populated. In our case, the first 

excited electronic state of the oxygen molecule lies 7918 em -1 

above the ground state.(Herzberg, Spectra of Diatomic Molecules, 

0 
1964, p.560. ) Further, at 298 K almost all the molecules are in 

the ground electronic state. In this case, therefore, we reject the 

possibility of the electronic transition contributing to the 
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absorption in the infrared region. 

Now, being a homonulcear diatomic molecule, there is no possibility 

of an electric dipole interaction in the case of the oxygen molecule, 

unless such a dipole is induced by some external agency such as 

pressure. One should therefore consider magnetic dipole or electric 

quadrupole interactions. The oxygen molecule in the ground state 

has a ~agnetic dipole due to the spin. Its electronic ground state 

is known to be 3r-. 
g 

The magnetic dipole matrix elements for the 

transition des~ribed above will be 

where 

I * * *-¢ w,¢,ll¢ 
t! v j e 

¢ ¢ dr dr dr . 
v j e v J 

~ = magnetic dipole operator 

•1• eiectronic part of the wave function of the molecule 
"'e 

·'· = initial vibrational part of the wave function "'v 

tJ!. = ini'tial rotational part of the wave function, 
J 

and primes denote corresponding wave functions in the final state. 

This seperation of the total wave function into seperate 

electronic, vibrational and rotational wave functions is the Born-

6ppemheimer approximation which is assumed to be a reasonable 

approximation heee. If this approximation is not made, the problem 

becomes far more complex. 

Therefore, the matrix element is proportional to 

I¢ *';; ~ dr J tJ; 7 lJ; dr J ¢3~ ~J,· . dr. e e e v v v J J 

Now, the magnetic dipole is almost independent of the inter-

nuclear distance and so does not depend upon the vibrational state. 

Therefore, the orthoganality of the vibrational wave functions shows 

that the matrix element for the magnetic dipole transition of the type 
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assumed here is zero within the limitations of the Born-Oppenheimer 

approximation. Consequently, the magnetic dipmle interaction is 

not considered further. 

The quadrupole moment of the molecule, however, depends upon 

the internuclear distance and may,therefore, cause a transition in 

which vibrational and rotational states change without any change in 

the electronic state. It is, therefore, reasonable to investigate 

the quadrupole interaction. 

One more suggestion to look in this direction comes from the 

calculations of Karl & Poll (1967) in the case of the hydrogen 

molecule. They calculated the matrix elements j<v'j' jQivj>lof the 

quadrupole moment of the H2 molecule. This was compared with the 

experimental values of the maarix elements. These experimental values 

were found from the observed integrated absorption coefficients of 

various lines in the quadrupole spectrum og H • 
2 

The observations are 

due to Fink et al. (1965). The experimental and calculated values agree 

quite well. Some of their values are given below. 

Line Q - Expt. Q - Calc. % Discrepancy 

S(O) 0.103 0.105 2.0 

s (1) 0.0989 0.0969 2.0 

S(2) 0.0945 0.0886 6.0 

s (3) 0.0833 0.0804 3.5 

Q(1) 0.103 0.118 15. 

Q(2) 0.112 0.119 6.0 

Q(3) 0.111 0.119 6.0 

(Transition is from v 0 to v = 1.) 
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In the present investigation, the quadrupole moment Q(R) of the 

o molecule in the ground electronic state is approximated by a 
2 

cubic expression in r = R - R , where R is the internuclear 
e 

distance and R is its equilibrium value. 
- e 

Then the matrix e~ements 

< vjiQ(R)jv'j'> are evaluated for the special case of v = 0 and 

v' = 1. This assumes that the vibrational transition is from 

v = 0 to v' = 1. This is justified as, at 2980K, the temperature 

we are considering, more than 99% of the molecules are in the 

zeroth vibrational level, as calculated from the vibrational 

partition function. For the evaluation of the above matrix elements, 

simple harmonic oscillator wave functions are assumed for the 

vibrational part of the wave function. The total integrated 

absorption coefficients for the 0, S and Q branches, and for the 

whole band are calculated. The results are discussed in the 

light of the. experimental results of Shapiro and of Bishop. 



Pages 13 and 14 are 

missing from the 
original book 
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CHAPTER II 

CALCULATION OF QUADRUPOLE MATRIX ELEMENTS 

2. 1 FRAMES OF REFERENCE: 

In the following we shall refer to two different frames 

of reference. 

i) The laboratory frame of reference 0-XYZ, is a frame which is 
the 

fixed in/laboratory. Along Z-axis of this frame, a plane wave of 

light is incident. The origin 0 coincides with the centre of the 

molecule. 

ii) The molecular frame 0-xyz is a frame which is fixed w.r.t. 

the molecule. The internuclear axis lies along z-axis of this 

frame. 

The orientation of 0-xyz w.r.t.O-XYZ is specified by 

8uler angles «,e,y~ as shown in Figure-1. 

Three rotations Rz(ac), Ryi (S) and R
2

t'•(Y) in this order, 

' " take 0-XYZ to 0-xyz, o~ · and Oz are new y- andz-axes after first 

and second rotations respectively. The usual notation in which 

R (e) means a rotation about u-axis, of amount a is followedT 
u 

The co-ordinates of a point in 0-*YZ and 0-xyz are 

connected by 

K Co sac -Sin'o: 0 CosS 0 SinS 

y = Sin a: Cos a: 0 0 1 0 

z 0 0 1 -SinS 0 CosS 

tosy -Siny 6 X 

Siny Cosy o· = y 

0 0 1 z •••••••••••••••••• 2. 1 
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-
or~ X = Rx , where 

R = Cos«CosBCosy - Sin«Siny, -Cos«CosBSiny Sin«Cosy, Cos«SinB 

Sin«CosBCosy + Cos«Siny, -Sin«CosBSiny + Cos«Cosy, Sin«SinB 

-SinBCosy SinBSiny CosB 

2.2 

The electronic wave function is a function of x, y~ z. 

It is in fact explicitly a function of ral , rb , e , eb ~ ~l 
1 al 1 

where the meaning of these symbols is given in Figure-2. Among 

these variables, ~and any two of the r , rb , e , eb are 
al 1 al 1 

enough to specify the position of the 1st electron, this being 

true of all the electrons. 

z 

y 

- --
y 

X 

Fig. 1. 
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• 
L 

2 

2.2 PROBABILITY OF ABSORPTION: 

Plane polarized light is assumed to be incident along 

Z-axis. Photons, comprising this, are in an angular momentum state 

( , m) i.e. I ~ (1 + 1) h/2n is the magnitude of their angular 

momentum and mh/2n is the Z-component of angular momentum. We 

assume that this plane wave is split into two circularly polar-

ized components. One component, then, contains photons with m = +1 

and the other contains those with m = -1. Photons with m = 0 are 

absent. Therefore, in multipole moments Q1m, Mim' etc. terms with 

m = +1 or -1, can only appear. 

It is assumed that incident wave is approximately mono-

chromatic and contains frequencies between w - dw/2 to w + dw/2, 

where w is the frequency that is absorbed by the molecule in a 

transition from a state 'i' to state 'f'. 
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s(w)dw = No. of photons/emf/sec. with frequency between w - dW/2 

to w + dw/2. Then the probability per second PE(1) that a molecule 

absorbs a photon of angular momentum h/2~ is given by ( Blatt and 

Weiskopf, Theoretical Nuclear physics, 1954,p. 596. ) 

4 
( + 1 ) ( 1 ) k29.-1 

PE(R.}= 
S(w) 8~ 9. 29. + 

[ ( 2t + 1 >II ] 2 h .. ------[ IQ1,1 1

2 

+ Q~ 1 , 

. ............ 2. 3 

where, 

k = 2~8E/h c 

( 2t + 1 >II= ( 2t + 1 ) ( 2R. - 1 ) ( 2t - 3 ) ••••••••••• 5. 3. 1. -· and 

............. 2. 4 

* ' Qtm = - ik 
R.+l 

e h 
n lln ( en,cf>n ) div( Cbf ~nxonCbi)dr 

n 
4~ . M 

n 

In these expressions, 

c 

Y1m = spherical harmonic of order R.,m, 

~i = initial wave function of molecule, 

Cbf = final wave function of molecule, 

............. 2. 5 

en = charge of the nth particle in the molecular system, 

~ = mass of the nth particle in the molecular system, 

c = velo~C:ity of light 

an = spin operator of the nthparticle in the molecular system, 
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~ = magnetic moment of the nth particle in the molecular system, 
n 

the summation is over all the particles and integration implies 

integration over all the space co-ordinates and summation w.r.t. 

all the spin co-ordinates. 

As discussed in Chapter I, we assume that the interaction 

of the light with the molecule is an electric quadrupole interaction. 

Hence R. = 2. 

Therefore, 2.3, 2.4, 2.5, become 

= S(w).32TT v 6 3 [ ' 12 2] Q2,1 + !Q2,-1 + Q~,-1 1 15h 

•••••••••• 2. 6 

where v = k/2TT = frequency in wave numbers. 

Q2m =I 
n 

e 
n I 2 * * r Y2 (e ,~ ) ~f ~. dr n m n n 1. 

ik }: en h J 
~ ' 4TTM c ~n 

n 

••••••••••••••• 2. 7 

•••••••••••••••• 2. 8 

Now, taking the integrals on the right of the express-

' ions for Q2m and Q2m to be of the same order, we see that, 

IQ;mi/IQ2m1 = kh/12TTMc ~ 10-
6

• 

' We, therefore, neglect Q2m in comparison to Q2m. 

As m = ±1 only, 

~6 J 2 * * 
Q21 = -en'i rn Y21 ( 6n'~n ) ~f ~i df 

I J· 2 * * +Be , 'rn Y21 ( 8n'<l>n ) ~f ~i dr 

and 
A,B •••••••••••••••• 2. 7a 

Q2,-1 I f r2 * ( 8n'~n ) ~* dr = -e y21 4>i n f 
n 
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r 

n 

-12-

•••••••••••• 2. 7b 

In these expressions the first term on the right is a 

summation over sixteen electrons and the second term is a sum 

over two nuclei A and B. 

In the Born-Oppenheimer approximation, ~ the wave 

function of a molecule is written as 

~ = ~ . ( R,0,~ ) ~ l 
VJ e ect. 

•••••••••••• 2. 9 

where 

~vj ( R,e,~ ) is the wave function of nuclear motion in which, 

R,0,t are AB and polar angles of AB. 

( This wave function depends on the quantum numbers v , 

j and m. ) 

a ad 

~ is the wave function of electrons assuming that the 
elect. 

nucleii are at rest. 

Further, 

~ . ( R,0,~) = Y. ( 0,~ ). f .(R) / R .............. 2.10 
~ Jm ~ 

where Yjm ( 0,~ ) are the usual spherical harmonics of order 

j. The radial wave functions f .(R) satisfy the equation 
VJ 

[ 81T21JC ( E - V(R) ) /h - j (j+l) /R2 ] f = 0 . 
• • • • • • • • • • • • • 2. 11 

where V(R) is the average potential of the nuclei in the electric 

field of the electrons. 

We now calculate Q
21 

and Q2 ,_1 • First the integration 

over electronic co-ordinates is carried out. This integral 

obviously depends upon the internuclear distance R. This is 
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expressed approximately, as a cubic equation in ( R-Re ), where 

R is the equilibrium internuclear distance. The successive terms 
e 

in the equation decrease satiafactorily as seen in Chapter-ii Sec.5. 

The task of expressing this electronic integral as a cubic is 

straightforward, though quite laborious. After this cubic has 

been obtained we integrate over the nuclear co-ordinates. The 

nuclear radial wave functions are in the first approximation, 

Harmonic Oscillator wave functions and the integration is 

straightforward. In this way, Qz1 and Q2 ,_1 can be found. Their 

determination gives PE(2) and it can be easily correlated with 

the integrated absorption coefficient. The integrated absorption 

coefficients for 0, Q, S branches are then calculated. Their sum 

then gives the total integrated absorption coefficient~ 

The absorption is assumed to be the one in which the 

vibrational quantum number v changes from 0 to 1, rotational 

quantum number j may change by 0 or ±2 and e1ectronic state 

does not change. It remains in the ground electronic state. 

The absorption region, we are interested in,ranges 

-1 -1 
from 1400 em to 1800 em , approximately. Hence, ~v is 

small. Further, more than 99% of the molecules are in the 

0 
vibrational state v=O, at T=298 K. Hence we have assumed that 

v changes from 0 to 1. 

The reason for 8j = 0,±2 is seen explicitly in the 

expression for the matrix elements calculated. ( See page 37 ). 

This also follows from the usual selection rules for angular 

momentum. ( Blatt & Weisskopf, Theoretical Nuclear Physics, 1954, 

p.587. ). The assumption that electronic state does not change in 
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the transition is necessary because spectr6scopic transitions 

between two different electronic states fall usually in the 

visible or ultraviolet region and not in the infrared region that 

we are considering here. 

2.3 ELECTRONIC WAVE FUNCTION: 

Electronic wave function of the o2 molecule is a solution 

of 

H'f = E'f ••••••••••••••• 2. 12 

where 
16 

H = - I 
i=1 [ h2 

81r 2 m 

2 2.. 
v + Be i 

rai 

:z. ] 16 2 
64e

2 
+ Be + I-=--. + 

rbi i>j 
rij R 

•••••••.••.•••• 2. 13 

where 

d . f .th 1 f h .th 1 r .. = 1stance o 1 e ectron rom t e J e ectron. 
1] 

The terms on the right represent, K.E. of electrons, 

attractive potential energy in the field of nucleus A, attractive 

potential enegry in the field of nucleus B, repulsive potential 

enegry of one electron in the field of other electron, and repulsive 

potential energy between nucleii, respectively. 

The eigen functions of this Hamiltonian can be specif-

ied by quantum numbers, 

i) A specifying component of angular momentum along AB, 

ii) I specifying parity, 

iii) ( for A = 0 ) v, specifying the charecter of reflection in 

a plane passing through AB, 

iv) S specifying total spin, 

v) M specifying component of total spin along AB. 
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As exact solution of the eigenvalue problem 2.12, is 

practically impossible, one looks for approximate solutions._ 

The approximate sol~tions are assumed to be characterized by the 

same set of quantum numbers given above. Various approximations 

to the wave function are possible. A great many of them have 

been studied by Kotani et al (1957) and Meckler (1953). We 

consider, however, what is usually refered to as antisymmetrized 

orthogonalized molecular orbital wave function. This is built 

from linear combination of atomic orbitals. This corresponds to 

case 1 in Kotani et al. This wave function gives the major con-

tribution to all other approximations, studied by Kotani et al, 

besides being convenient for numerical calculation. 

The two o2 nuclei are denoted by Ar ana B. The atomic 

orbitals of atoms A and B are denoted by suffixes 'a' and 'b' 

respectively. The electronic configuration of the ground state 

. 2 2 4 
of o

2 
atom being (ls) (2s) (2p), atomic orbitals of the type 

1s, 2s, 2p are considered. Thus we have five atomic orbitals 

with suffix 'a' and five with suffix 'b'. They are 

lsa(i) = 

2s (i) 
a = 

2p€a (i) = 

2p1T! (i) = 

2p1T-(i) = 
a 

r a.) 
l.. 

exp(-o 2ra.) Case 
l.. ai 

exp(-o
2 

ra ) Sine exp(i~ ) 
i ai i 

and five more with suffix 'b' instead of 'a'. 

From the atomic orbitals, unnormalized symmetry orbitals 

are constructed. They are, 



( crls )g,u 

( o2s )g,u 

( ozp >g,u 

( 1T:t:Zp) g,u 
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= ls ± lsb a 

= 2sa ± 2sb 
•••••••••••••••••••••• 2. 15 

= 2poa± 2pob 
+ + 

= 2p1T; =t- 2p1Tb 

From linear combinations of these, orthogonalizedm61e-

cular orbitals are constructed, by the Schmidt method ( Merzbacher, 

196l,p.l45 ). These orthogonalized molecular orbitals are, 

alg = all ( Ols )g 

o2g = a21 ( Ols >g + a ( o2s ) 
22 g 

o3g = a31 ( Ols >g + a32 ( o2s )g + a ( <12p ) 
33 g 

+ + 
>g 1Tg = dg ( 1T-2p 

olu = bll ( Ols >u 

cr2u = b21 ( <1ls >u + b22 
( cr2s ) 

u 

o3u = b31 ( Ols >u + b32 ( o2s >u + b33 ( cr2p ) u 

+ + 
>u 1T- = du ( .1T-2p u 

••••••••••••••••••••••• 2. 16 

' ' f In these the coeffic~ents a s, b s, and d s are found 

from the conditions of orthonormality and we have expressed them 

approximately as cubic equations in (R-Re), where R is the~1int:er-

nuclear distance and R is its equilibrium value. The results are 
e 

given in Table I. 

For the calculation of the electronic part we use atomic 

units i.e. unit of energy= me
4

.41T
2
/h2 and unit of length= h 2 /41T 2me

2 

Molecular integrals involving Slater-type atomic orbitals, 

Eqn. 2.14, are usually expressed in terms of « 1 = o1R and a 2 • o
2
R. 

For «1, «2 and we have used the values used by Kotani et. al.(l957). 
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So that a 1 = 17.75~ a 2 = 5.25 andRe= 2.30 a.u. 

The equilibrium internuclear distance of the oxygen mole-

cule in the ground state is known to be 2.282 a.u. So, according 

to Slater's rule( 193~ 61 = 7.70 and 62 = 2.275, approximately. 

Our choice of a 1 , a 2 andRe gives, 61 = 7.7173913~ & 62 = 2.2826087. 

01 and 6
2 

are taken to have eight figures and calculations are 

completed~ results being rounded off to the appropriate significant 

figures at the end. This is done to minimize the truncation error. 

We have chosen ~ 1 , ~2 and Re as above for convenience 

and for the possibility of comparing our results with those of 

Kotani et al (1957), wherever possible. 

A brief explanation of the construction of completely 

antisymmetrized wave functions is given in Appendix No. I. The 

wave function we use, is 

= 
1 I I .,... __ p h 

t' N 1 2r 

U* (P) pw 0 h1 Tn· -s,M,h ...•.••....... 2. 17 

" where, 

.............. 2. 18 

In above N is the number of electrons, which is 16 in 

our case. r is the number of paired orbitals, which is 7 in the 

wave function considered. U(P) are the unitary matrices forming an 

irreducible representation of the permutation group of N electrons 

(Kotani et al. Table of Molecular Integrals,1955). The summation 

~ in Eqn. 2.17 is over all the permutations , P, Of N electrons and 

I 
h 

is the sum over a complete set of spin functions 0 belonging 
s,M,h 
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to eigenvalues S and H of total spin and its z-component. 

2.4 INTEGRATION OVER ELECTRONIC COORDINATES. 

we now carry out the integration, in Q2 , 1 and Q
2

,_
1

• 

16 

J r~ * * Qz 1 = -e L y21( 6n'<Pn) ~f~idr + 
' n=1 

BeL J r~ Y; 1 (60 ,<Pn) 
A,B 

As stated before 

~i = '!'E '¥ = '1'3 - '¥ , 
Ni Eg Ni 

~f = '!'E '¥ = '¥3 - 'YNf Nf Eg 

Hence, 

J 
2 12 * 

Q2,1 = e 115/81T I rn Sin6n Cose exp(-i<Pn ) I '¥3 - '¥ '¥ dr n Eg Nf Ni n 

J r~ 12 * -Be 115/811'" I Sin6 Cos6 exp{-i<P ) I '¥3 - '¥ 'YN_dr n n n Nf A,B 1: 1 g 

Therefore, 

J [Jb 2 

] Q2 1 = e 115/BTT z ( X - iY ) I '¥3 1 dr · ''¥* '¥ dr , n n n 1: E Nf N. N 
1 

N E 
g 

tBJ 
2 * -Be 115/81T rn Sine Cose exp(-i<P ) '¥ 'YN drN 

n n n N 
f i 

N 
•••••••••••• 2. 19 

The symbol J drH denotes integration over nuclear 

N 

co-ordinates while f dfE denotes integratiQn over electronic 

co-ordinates. E 

We will denote the integral over electronic co-ordinates 

in the first term on the right, by Q • Thus 
2l,E 

J 
•••••••••••• 2. 20 

E 
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In this equation, ( X ,Y ,Z ) are the co-Ordinates of 
n n n 

the nth electron with respect to 0-XYZ. We transform ( X,Y,Z ) into 

( x,y,z ) by using Eqn. 2.1. 

viz:-

X R11 R12 R13 X 

y = R21 R22 R23 X y 

z R31 R32 R33 z 

Zn( Xn-iYn ) = ( R31xn + R32Yn + R33zn > [ < Ru-iRzi )xn + 

( Rlz-iR22 )yn + ( Rl3-iR23 )zn] 

= ~ + By~ + cz2 + Fynzn + Gznxn + HxnYn• n 

where 

A = R31( R11-iR21 ) 

B = R32( R12-iR22 ) 

c = R33( R13-iR23 ) 

etc. ............. 2. 21 

Therefore Q21 E becomes , 

Q21,E = AIXX + BIYY + CIZZ + Fiyz + Gizx + Hixy ............. 2. 22 

where 

f ~ 
2 . I 2 I = '1'3 - I dfE XX xn l:g n 

............. 2. 2 3a 

E 

f ~ 2 ·I 
2 

I = '1'3 - I dfE yy 
n 

Yn 
I:g 

••••••••••••• 2.23b 

E 
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I = l L z~ . I zz n 

Iyz = f 1: ynzn 
n 

E 

In a similar manner 

Q - e 115/Sw 2,-1 - f [J ~ 
N E 

-se/15/Sw I 
A,B 

N 

Therefore, 

'¥3 -r 
12 

g 

·I '¥3 r-
g 

dfE 

12 drE 

............ 2. 23c 

•••••••••••• 2.23d 

etc. 

] 
'l'N*f 'l' dr 

Ni N 

............ 2. 24 

•••••••••••• 2. 25 

Now Q2 , 1 ,E is calcuiated as a cubic equation in r = R-Re. 

This is done by calculating Ixx' Iyy etc. as cubics in r. As stated 

before this is done by approximating Ixx, I etc. by cubics in r. yy 

As an illustration, we show below how Ixx is calculated. 

f 'l'~ _ ) X~ .'¥3 _dfE 
Eg f1 Eg 

E 

1 
=--- 1: 1: 

'NI2r 
• 

p p' h 

where, 

The matrices U(P) being unitary, 

* -1 uh1(P) = ulh(P ) • 

'l'~ T P'~0drE. e .e , 
S,M,h S,M,h 

E 



Therefore, 

1 
I = ---

xx Nl2r 
l 
p l' l p h 
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t•ulh•(P•-1> uhl(P) f 
E 

In this,summation over spin variab1es has given ohh'· Hence summ-

' ing over b and h , and changing the variab1es of integration by 

transformation, 

P'x X ' 

,-1 
( 

1 
l l Jp'-lp'I'Q Ixx = u 11 (P P) 

Nl 2r P' p . E 

,-1 
Putting p p = R, 

1 
l l f R"¥* Ixx = u11 (R) T "¥QdrE 

Nl2r p R 
n 

• 
E 

Thus, 

f 
1 

l R"¥* I = ull(R) T '~'ndrE XX 2r . Q 
R 

E 

But, as seen before, see Eqn.2.18, 

where 

Therefore 

1 
I = ---=-

xx 2r+1 l u11 (R) 
R 

1 
"¥n = ---

12 

'~'* = 2 '~'I . 

J 
R('¥* - '¥*) T 

1 2 

E 

T '~'ndrE 

1 

J 
I = l u11(R) XX 

2r+1 R 
E 

[ R'l'zT'¥1 + R'P1T'¥2 - R'l'1T'l'1 - RUJ Ttu J dr T2 T2 E 

Further '¥ "¥ 1 , 2 are invariant under the permutation Q, 

where 
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Q = (3,4)Al(5,6)A2(7,8)A3 •••.•••••••.•••••••• (15,16)A7, 

and A. = 0 or 1. 
1 

Further any permutation R can be written as 

R = R Q , 
u 

Nl 
where u = 0,1,2,3, ••••••••••••••••• ,s-l, and s = ----·--

2r 

Hence 

1 
Ixx = --2-r+-::-:o-1 

1 
=---

2r+1 

I 
R 

u 

I I 
R Q 

u 

~ u11 (RuQ) J [ Ru~ZTVl + RuVlT~z- RuVlTVl- RuVZT~z ]drE 

E 

t Ulk(Ru) Ukl(Q) J [ RuV2T~l + RuV1TV2- Ru~lRVl 
E 

As U(Q) are diagonal matrices and 

1 
I = ----:::-.....-xx r+1 

2 
I 
R 

u 

u11(Q) 

~ ull (Ru) J 
E 

Summation over Q gives, 

1 
I = ----

xx 2 

E 

= +1. (See Appendix No. I ) 

[ RuV2Tv1 + R.,V1Tv2 - RuVlTVl - Ru~ZT~2 JdrE 

••••••••••••••• 2. 26 

Let us now consider the following integrals separately. 

I = I Ru'¥1T'¥1drE 

II = 

J 
Ru'¥2T'¥2drE 

III = J Ru'!'lT~zdrE 
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and 

Consider now I. Note that ~ 1 and ~2 are of the type, 

~ 1 = a(1)b(2)c(3,4)d(5,6)e(7,8)f(9,10)g(11,12)h(13,14)i(15,16) 

~2 = b(1)a(2~d(3,4)c(5,6)e(7,8)f(9,10)g(11,12)h(l3,14)i(l5,16) 

whema, b, c, d ••.•• i • are orthonormalized Schmidt orbitals. 

Case I 

We now consider different cases, 

R = identity permutation. 
u 

I = I 
= J 

a(1)b(2) •••••.••••••• i(15,16) T a(l)b(2) •••••••••• i(l5,16)drE 

2 
b(2)x2b(2)dr 2 ••••••••••.•••••••.•••••.•• 

•···········-······ +I ~(16)x~6 t(l6)dr16 

Case II : R contains exchange (1,2). Here, because of orthogonality 
u 

of orbitals 
I = 0 . 

Case III : R contains exchange (l,s) s ~ 2. Here also all terms u 

vanish and we have, 

I = 0 . 

Same thing happens in, 

Case IV 

and 

Case V 

Thus 

R contains exchange (2,t), t ~ 1. u 

R contains exchange (s,t), s ~ 1, 2; t I 1, 2. u 
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I = JJ 
are sixteen orbitals, which 

are occupied by sixteen electrons. 

Now as ~2 has the same form as ~l 

II = I , 

while III and IV vanish whatever be R • Therefore u 

Ixx = 

where E = indentity permutation. 

Hence, 
I J 

2 
I = ~n xn ~ndrn ........... 2. 27 

XX n 
Similarly 

J Iyy I ~ 
2 

~ dr ........... 2. 28 = Yn n n n n 

1 zz I J 
~ 

2 
~ dr ••••••••.•• 2. 29 = z 

n n n n n 

etc. 

To calculate J ~n 
f x 2 (Product of the symmetry 

x 2 ~ dr etc. the integrals of the type 
n n 

orbitals, Eqn.2.15.)dr have to be 
n 

calculated and to do this integrals of the type (Product of 

Slater type orbitals, Eqn. 2.14)dr 
n 

have to be evaluated first. All 

of these are expressed as cubic equations in r = R - Re. The resu-

lts are given in the next section. Illustrative calculation of 

J ~lg x
2 

cr 1gdr is shown in the Appendix No. II 

It is found that Ixx = Iyy' while I , I , I xy yz zx 
vanish 
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identically. This follows, in fact, from the rotational symmetry 

of the molecule about the internuclear axis. 

Further if e, <I> are the polar angles of AB ie:- of Oz 

w. r. t. laboratory system 0-XYZ, then, in terms of Euler angles, 

e = a and 

With this, A, B, C, in Eqn. No. 2.22, depend upon 0, c), 

y, through their dependence on elements Rij of the rotation matrix 

R as given by Eqn. No. 2.2. A, B, C can be expressed explicitly 

as functions of e, <1>, y and the expressions come out as, 

A = I 81r/1s Cos2y Y2,-1<e,<t>) + i / 81T/3 

B = I 81r/lS s. 2 :Ln Y y2,-1(e,c)) -- i / 81T/3 

c = + / 81T/15 y (8,<1>) 
2,-1 

Hence Q
2 1 

E reduces to , , 
Q = - I 81T/15 2,l,E Y 2 , _ 1 Ixx + I 81r I 15 

Thus, 

Q = I 81r/lS 2,1 ,E 

Consequently, 

Q2 ,-l,E =I 81r/lS 

We shall denote 

I 
zz 

Ixx ) 

I ) 
XX 

Siny Cosy y 1,-1 (e,<t>) 

Siny Cosy Y1 --1(0,<1>) , 

•••••••••••••••••• 2. 30 

................. . 2.3la 

................. . 2.3lb 

The values of the coefficients a
0

, a
1

, a
2

, a
3 

will be 

shown in Table IV. in the next section. 

2.5 TABLES: 

Here we shall give the results of calculation of some 

quantities 6f interest, approximated as cubic ~quations in r. 
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Table I 

SCHMIDT ao al a2 a3 
COEF. 

all 0.70710592 -0.59193671 -2.0335919 4.6222240 

x lo-5 x lo-5 x lo-5 

a21 -0.16451502 6.85261 0.202373 1.1105 

x 1o-3 x 1o-2 

a22 0.64420459 7.0750313 -1.19132 -8.27689 
X 10-2 x lo-2 x lo-3 

a31 1.65628 1.24785 -3.0853 2.0001 
x 10-2 x lo-2 x lo-2 x lo-2 

a32 -0.1565910 -8.988184 -1.561 2.1034 
x lo-2 x lo-2 x lo-2 

a33 0.6372688 8.652464 4.101 -2.574 
x 1o-3 x 10-2 X lo-2 

bll 0.70710764 -0.59194102 2.0336249 -4.6223600 

X 10-5 X 10-5 X 10-5 

b21 -0.18141319 2.43669 1.122 -1.2747 
-3 -2 -2 

X 10 X 10 X 10 

b22 0.85443121 -0.16715561 0.10764575 -4.8173 
-2 

X 10 

b31 -5.2262825 -4.6694203 2.23 2.496 

X 10-2 
X 10-2 10-3 X 10-2 

X 

b32 0.40917139 0.64434128 0.58365 -0.43596 

b33 0.94154012 -0.34037130 0.2798 -0.1892 

dg 0.7630578 -8.62629 6.5628 -3.4307 

X 10-2 X 10-2 X 10-2 

du 0.6618967 5.63018 -2.6103 -1.827 

X 10-2 X 10-2 X 10-3 

Schmidt coefficients are expressed as ao + a 1r + a r 2 
2 + a r 3 

3 and 

ao, a1, a2' a 3 are given in the above table. 



Table II 

ORBITAL 

0.016790448 -1.3945057 X 10-6 2.642989 X 10-6 -5.5082819 x 10-6 

0.514558 -1.983 X 10-3 
-8.7803 -2.0962 

03g 0.525544 3.216 X 10-2 1.493 X 10-2 -2.483 X 10-2 
I 

N 
""'-J 
I 

11'+ 0.53300786 4.1652 X 10-2 -1.4373 X 10-2 5.215 X 10-4 
g 

0.016790190 8.3228532 X 10-7 2.643008 X 10-6 5.5084219 X 10-6 

0.477220 1.492 -3.0531 X 10-3 -2.166 

0.6079670 -1.8588 -6.991 X 10-3 9.4002 

< ~0 1 x2 
I ~n >, where ~n are Schmidt orthonormalized orbitals given by Eqn. No.2.16, are 

2 3 approximated by a0 + a1r + a2r + a3r , and the results are given in tht table. 



Table III 

ORBITAL 

<13 
g 

+ 
7Tg 

cr1 
u 

cr2 
u 

1.3392879 

1.5722390 

1.8730306 

1.77851 

1.3392927 

2.26626914 

1.1499698 0.24991820 7.487094 

1.1402989 0.371105 5.2 

1.0621435 0.3158 0.02898 

1.03629 0.26293 1.16 

1.14998534 0.250043 -8.3245633 

0.8927800 0.29344 -2.26 

+ ~u 1.486164 1.187663 0.29576 0.025684 

-2 
X 10 

X 10-5 

-3 
X 10 

< ~ I z2 I ~ >, where ~ are Schmidt orthonormalized orbitals given by Eqn. No. 2.16, are n n n 

. d b 2 3 d 1 1 approx1mate y a0 + a
1
r + a

2
r + a

3
r , an the resu ts are given in this tab e. 

I 
N 
CXl 
I 
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2 3 
Table IV : Ixx and Izz are approximated by a 0 + a 1r + a 2r + a

3
r 

and the coefficients are given in the following table. 

I 
XX 

6.601501 

26.28191 

0.09930 

17.61358 

2.6 INTEGRATION OVER NUCLEAR COORDINATES: 

-0.05053 0.09062 

4.6695 0.01557 

We shall now calculate Q2 , 1 and Q2 ,_ 1 completing the 

integration over nuclear co-ordinates. We have 

J 
* 

Q '¥ 'P dr 2,1,E Nf Ni N 

I J 
2 

Sine Cose exp( -i~ ) 'P* r 'P dr 
A,B n n n n Nf Ni N 

- Bel 15/8n 

N 

Using Eqn. No.2.10, 2.3la, and Table IV 

( a 0 + a
1

r + a r 2 + a r3 ) y 
2 3 2,1 

1 

- Be I f 
A,B 

f (R) Y (e,~)dr 
vj jm N 

r
0

2 
Sine Cose exp( -i~ ) 

n n n 

N 

where 
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~N = fv'j'(R) yj'm'(0,$)/R 
f 

~N = f (R) Y. (0,~)/R 
i vj Jm 

and 

have been used. 

Noting that the spherical polar co-ordinates of B and A are 

( R/2,0,~ ) and ( R/2,~,~ ) respectively, the second term on the right 

simplifies, giving, 

q 2 , 1 = e J ( a 0 + a 1r + a 2r
2 

+ a 3r
3

) Y2 ,_1 f:•j•(R) fvj(R) 

* Y., ,(0,~) Y. (0,~) Sin0d0d~dR 
J m Jm 

- 4e 115/Bw J R2 Sine Cos0 exp( -i~) f:'j'(R) fvj(R) 

Y., ,(0,~) Y. (0,~) Sin0 de d~ dR 
J m Jm 

Thus, 

Q2,1- e J ( a 0 + a 1r + a 2r
2 + a 3r

3
- 4R

2
) f:'j' fvj 

"* Y
2 

_
1 

Y., , Y. Sine de d~ dR 
, J m Jm 

The integration over angular co-ordinates gives, 

= 
[ 

5 (2j + 1) ] 
112 

------ (j,2,0,0ij,2,j' ,0) (j,2,m,-1lj,2,j' ,m') 
47r (2j '+ 1) 

( See Merzbacher, 1961, p.514. ) 

where(j,2,0 1 0 \ j,2,j',O) and (j,2,m,-1lj,2,j' ,m') are usual Clebsch­

Gorda n coefficients as defined in Merzbacher (1961). 

Hence, 



X [ 

5 (2j + 1) 

4n(2j '+ 1) J 
1/2 
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* f ' . ' v J 
f . dR 

VJ 

(j,2,0,0jj,2,j' ,0) (j,2,m,-1lj,2,j' ,m') 

we shall denote the integral on the right by Q2 1 d Therefore, , ra • 

[ 
5 (2j + 1) 

Q2,1 = e Q2,1rad. 4 ( 2j'+ 1 ) ]

1/2 

(j,2,0,0jj,2,j
1 
,0) X 

(j,2,m,-1lj,2,j' ,m'). 

This is then an expression for Q2 , 1 in the transition 

3 -Ig' v, j, m --------+ 3\- ' . ' ' l...g' v , J , m • 

We want I 2 
Q2 , 1 I for the transition 

3,-
l.g' v, j, 3,- ' j' l. , v , • g 

where v = 0 and v' = 1. Therefore summing over all possible values 

of ' m', 

2 
Q2,1 I 2 I 2 = e Q2,1rad. I 

5 (2j + 1) 

41T(2j'+ 1) 

I l(j,2,m,-1jj,2,j',m')j 2 

m 
It can be shown that (See Appendix No. III ) 

I !(j,2,m,-1jj,2,j',m')j 2 
= 

m 

Therefore, 

12 = 
2 

I Q2,1 
e 

4n 

Similarly, 

IQ2,-1 12 = e2 

4n 

(2j' + 1) 

5(2j + 1) 

(j,2,0,0ij,2,j' ,0) 2 

•••••••••••••••••• 2. 32 

2 
(j,2,0,0ij,2,j',O) 

•••••••••••••••••• 2. 33 
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It is also found that 

Therefore, 

2 
I Q2,1 I 

Q2,1rad. = Q2,-1rad. 

2 
+ I Q 12 = _e __ 

2,-1 (j,2,0,0jj,2,j',0)2 I Q2,1rad 12 

•••••••••••••• 2. 34 

We shall calculate Q2 1 d in the next section. , ra • 

2.7 Q2,1RADIAL~ 

We have now to calculate 

Q = 2,1rad. 

f . are in fact the solutions of Eqn. No.2.11. An accurate determ­VJ 

ination of fvj would need an accurate knowledge of V(R), electronic 

potential. Knowing V{R) one could solve the Eqn. No. 2.11, either 

numerically or analytically and get fvj• In the case of H2 molec­

ule numerical approach has been adopted by Karl and Poll (1967)~ 

using the results of Kolos and Wolniewicz (1965). We follow here 

a simple approach and assume simple harmonic functions as an app-

roximation to f .• This approximation is good for small v, which VJ 

is so~in our case. Hence, 

where 

in which 

Further 

= 

r = R- R e 

a = 211' ~ /h , 

~ = reduced mass of nucleii A, B, 

k = force constant of o2 molecule. 
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N = ( a/n )1/4 ( 2v vl )-1/2 

Therefore, 

Q 2,1rad. 
= 

V e 

H = Hermite polynomial. 
v 

The limits of integration should be really form zero to 

infinity. But as the Harmonic oscillator functions decrease rapidly 

beyond the classically allowed region, we can extend the lower 

limit of integration to minus infinity without much error (Paul-

ing and Wilson, 1935, p.269.). 

Substituting 

and 

-t- oo 

N N J 0 1 
-co 

. 
wh~~~ _, 

x = .far 

H0 (x) H1 (x) exp( 

bo = ao 4R
2 

b1 = a1 - BR 

b 2 = a 2 4 

& b3 = a3 

e 

e 

2 
) dx/.fa -x 

Evaluation of this integral is straightforward. One gets 

Q2, 1rad. = ( b1 + 3b3 /2a ) /l2a 

Using a1,a3 from Table No, IV, and Re=2.3a.u. 



-34-

we get, 

3S.9I428 I9.QQS84 X 
-8 

bi = a.u. = IO ems. 

b3 = -0.07SOS a.u. = -I.4I8 X I0
7 

/ems. 

However 

I8 2 
a= 3.7494 x IO /ems. 

9 
Or lcX = I.9363 x IO /em. 

Q2,Irad. = 6.94I x IO-I
7 

( I - 2.98S2 x IO-S ) 

Hence, neglecting the second term and using Eqn.2.34 

I Q
2
,I 1

2
+ I Q2 ,-I 1

2 
= e 2/2n(j ',2,0,0ij,2,j.' ,0)

2 
x 4.82 x Io-

33 

Hence, using Eqn. No. 2.6 

PE(2) = S(w) 
32n7v3 

[ I Q2,I 12 + I Q2,-I 12 ] 
ISh 

I61T6v3e 2 

(j , 2 , o , o 1 j , 2 , j • , o > 2 -33 
= S(w) X 4.8a X IO 

ISh 

•••• •· ••••••• 2. 35 

We now connect PE(2) with integrated absorption 

coefficient per amagat. 

Let I. = intensity of light before absorption. 
1. 

If = intensity after the absorption, in a path length 

/1x. 

Then 

where k.., = absorption coefficient. 

But 
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Ii = S(w)dw 

and If = S(w)dw - PE(2) Nj~xp 

if N = No. of molecules per c.c. at the temperature and 
j 

pressure considered, in the rotational level jJ 

p = density in amagats. 

Therefore, 

Ii - If = PE(2)Nj ~'1- ·f' 

= S(w) f(w).N.~x.p 
J 

where we have put 

PE(2) = f(w) S(w) 

Therefore 

J k dv = J f(~)Njdv/dw.p \1 

But 

gives, 

I. = integrated absorption coefficient =J 
1.nt. 

Therefore 

I /p = J f(ril)N.dv/dw 
int. J 

= I f(w)Nj/2Trc 

Therefore 
Iint./p = I 

This comes out to be 

kvdv 
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I. t /p 
:Ln • 

-24 2 =I 3.44 X 10 Nj (j,2,0,0ij,2,j~,~) 

• ••••••••••• 2. 35 

) i The coefficient (j ,2,0,0ij ,2.,j' ,0) vanishes 

except when j' = j-2, j or j+2. This gives absorption coefficients 

for 0, Q and S branches. 

We shall calculate the Iint./p for various 'j' values 

for three branches, in the next section. Their sum gives the 

total integrated absorption coefficient. 
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CHAPTER III 

TOTAL INTEGRATED ABSORPTION COEFFICIENT 

3 • 1 1 int. I P : 

In this section we shall calculate Iint.IP by using 

Eqn. 2.35 

The coefficient (j,2,0,0ij,2,j',O) has non-zero 

values for j' = j-2, j, j+2 and their squares are given by 

j' = j-2 (j,2,0,0ij,2,j' ,o) 2 

j ' = j (j,2,0,0ij,2,j' ,0)
2 

j ' = j+2 (j , 2 , o , o 1 j , 2 , j • , o) 2 

Nj is given by 

Nj = (2j+l) Nexp · [-B ej(j+l)hc/kTJ ~ Z 

0 
T is taken to be 298 K 

and 

Z = J: exp [ -Bej (j+l)hc/kT J (2j+l). 

Further 

-3 = 6.978 X 10 • 

= 3j ( j-1 )12(2j-1)(2j+1) 

= j( j+1 ) I< 2j-1 ) (2j+3) 

= 3(j+l)(j+2)12(2j+1)(2j+3) 

As this is small, the sum in Z is replaced by integral from zero 

to infinity and therefore 

Z = kTihcBe 
2 = 1.433 x 10 approximately. 

1 
Z =--X 

2 

But as even-j levels are missing in o2 molecule, we take 

1.433 X 102 

Hence, we have 

-3 [ -3 J Nj = 13.956 X 10 X N (2j+l) exp -j(j+1). 6.9782x 10 
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0 
At T = 298 K. it is sufficient to consider j = 27 as the 

greatest value of j. This is so because 99.9% of the population of 

molecules is seen to exist in the levels for which 'j' is less 

than or equal to 27. Following table gives values of Iint/p for 

various values of 'j' 7 for 0, Q, S branches. 

Total integrated absorption coefficient is then found 

as the sum of all such absorption coefficients for various branches. 

The values of I. t /p are given in Table No. Von the next page. 
1n • 
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Table V -2 -1 10-5 

I. t I pin ems. amagat X 
10 • 

j 0-Branch Q-Branch S-Branch 

1 0 1.528 0.4585 

3 0.2138 0.2217 0.7919 

5 0.3492 0.2955 1.015 

7 0.4234 0.3321 1.110 

9 0.4379 0.3301 1.083 

11 0.4040 0.2973 0.9624 

13 0.3395 0.2458 0.7879 

15 0.2628 0.1881 0.5983 

17 0.1888 0.1339 0.4233 

19 0.1263 0.08896 0.2799 

21 0.0790 0.05534 0.1734 

23 0.04626 0.03227 0.1008 

25 0.02542 0.01766 0.05499 

27 0.01307 0.009052 0.02811 

TOTAL 2.9092 3.7761 7.8680 

GRAND TOTAL 
14.5 
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CHAPTER IV 

DISCUSSION OF RESULTS 

The following table gives the values of total intrinsic 

absorption coefficients as found by Bishop (1966)~ Shapiro (1965) 

and the present investigation. 

Bishop 

Shapiro 

Present 

-2 -1 
Ii /p ·ems. amagat 

nt. 

2.3 ± 0.9 X 10-
3 

-4 
3.0 ± 0.23 X 10 

1.45 X 10-4 

Our value is about half of Shapiro's~ while Bishop's 

value is greater than that of Shapiro's by about a factor of 10. 

Bishop and Shapiro have followed similar metho~s in finding the 

Iint./p. Bishop's experi~ent~ were performed with a density of 

25 to 80 amagats. The values of Iint./p against were plotted and 

the best straight line found by the least-square method. This 

-3 
intersected p = 0 axis at 2.3 x 10 • Thus the value of Iint./p 

at p = 0 is found by an extrapolation from the observations 

made in the region p = 25 amagats1 to p = 80 amagats. The error 

bound is the computed standard deviation. The percentage error 

bound is about 39%. In principle~ Shapiro's experiments were 

conducted along the same lines. The observations were made, 

however, in the range of p = 5.9 amagats to p =12 amagats. The 

straight line of Iint./p against p was obtained by the method 

of least-squares as in Bishop's experiments. The value 3.0 x 10-4 

-2 -1 
ems. amagat was found by extrapolation to p = 0. The error 
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bound was about 7%. Comparison of error bounds in two cases~ and 

shorter extrapolation in Shapiro's case indicate that Shapiro's 

results are more trustworthy than Bishop's results. Shapiro has 

attributed this small I. t /p to the presence of water vapour~ 
l.n • 

which is very difficult to remove. Our calculation,which gives a 

result about half that of Shapiro's, shows that at least half of 

the effect is due to electric quadrupole interaction~ while 

about half may bedue to impurity such as water vapour. 

Bishop attributed the intrinsic absorption to the mag-

netic dipole interaction. Now, p2 molecule in the ground state 

has a sp·in 1 and in fact has a magnetic dipole in its ground 

state. But as this magnetic dipole is independent of the inter-

nuclear distance, it cannot cause a transition, which we have 

considered. Such a transition is ruled out by the ortogonality 

of vibrational states with v = 0 and v = 1. The present calcula-

tion, however, shows that most of the value of Ii /p at p = 0 
nt. 

found by Bishop appears to be due to impurity or experimental 

error, such as large extrapolation. 

We have neglected higher multipole interactions. To 

consider its effect 

Ql,m L e J R, * * = r Y 4> f!l> df i,m i 

R, 
approximately. = e r 

t 

where 

r = linear dimensions of molecule 

et = total electronic charge. 
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-8 
= r = 10 

2 -16 
Thus, the octopole absorption probability is k .10 

-6 
times smaller than that in thE quadrupole case i.e. at least 10 

times smaller. Hence, neglecting higher multipoles would not cause 

-4 3 an error greater than 10 %. We have also neglected the term in r 

in the calculation of Q d • We have seen that this introduces 
2,1ra • 

an error of about 3 x 10-
5 

x Q2 1 d in Q2 1 d • Therefore, in , ra • , ra • 

the Iint.IP it introduces an error of about 6 x 10-5.1. t /p i.e. 1n • 

6 x 10-3% approximately. Both of these errors being quite small, 

the improvement in our calculation does not appear to be in the 

direction of higher multipole interactions or allowing terms 

higher than r 3 in our expansion of Q2 , 1Elec. We must, therefore, 

take a better electronic function for the ground state. Kotani et 

al(1957) have studied various approximations to the ground state 

electronic wave function of o2 molecule. Their best wave function 

lowers the energy by about 10%. It is hoped that, that will 

similarl~ improve derivative of Q. We can qualitatively see it 

this way. Lowering of energy implies greater overlap of electron 

clouds, round A and B. This will increase charge density in the 

overlap region, which in turn may increase Q'. 

In our calculation, we have calculated < x 2 > and< z 2 
> 

in the g~ound electronic state. We have calculated these quantities 

by expressing all the molecular integrals involved, approximately, 

as cubic equations in r. Throughout the caculation, we have 



-43-

retained eight figures and have rounded off to three figures, at 

the end. This is done to minimize the truncation error. Kotani et 

al (1957) have also calculated these quantities at equilibrium 

internuclear distance. If we put r = 0 in the expression for <x2> 

and < z 2 > we get the values for the equilibrium internuclear 

distance. Our values of < x 2 
> and < z 2 

> are higher than Kotani's 

values by about 8% and 3% respectively. This maybe due to some 

kind of truncation effect in Kotani's calculations. We do not 

know the numerical details of their calculation. Our o1 is greater 

than their's by 0.004% and o2 is greater by 0.01%. To see if 

2 2 
this causes a great perturbation, we calculated < x > and < z > 

at r = 0 taking Kotani's o
1 

and o
2 

and carrying over 8 figures 

throughout. This changed the values of < x 2 
> and < z 2 > at r = 0 

by only 0.02%. 

Though still lower density experiments on the line of 

Shapiro's work, which would reduce the error due to extrapolation 

still more, would give a better experimental result for compari-

son, the comparison of the order of magnitude of Shapiro's and 

our values of Ii /p, shows that, part of the effect is surely 
nt. 

due to electric quadrupole interaction. 
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APPENDIX I 

ELECTRONIC WAVE FUNCTION 

A 1.1 SPIN FUNCTIONS OF SINGLE ELECTRON: 

Spin functions e(a) of the z-component of spin 

measured in units of h/2nbelong to eigenvalues +1/2 & -1/2. Thus 

a = +1/2 or -1/2. 

As a takes on two value$, there are two: linearly 

independent spin functions a and S such that, 

a(1/2) = 1 

a(-1/2) = 0 

These satisfy, 

I 2 I J 6(o) 
2 

I a(a) Ida = jda = 

I * a(a) S(a)da = 0 

Further, if 

s+ = sx + isy 

s_ = s - isy X 

where sx, sy are x- and y- components 

s+a = 0 s a - = s 

s+S = a s_S = 0 

1 ' 

of the 

S(1/2) = 0 

S(-1/2)= 1. 

................. Al. 1 

spin s, then 

1 
sza = --a 

2 
1 

szS = - '-- -S 
2 

.............•... . Al. 2 

From these relations one can show that, 

s2e = s(s+1)e 

and a = a or s. 

where s = 
1 

2 
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A 1.2 SPIN FUNCTIONS OF 'N' ELECTRONS 

In the space of spin functions of 'N' electrons, we have 

2N linearly independent spin functions, 

where 

ei = a or s 

i = 1, 2, 3, ••.•••••••..•••••. • N. 

We will denote eigenfunctions of s2 and Sz by eS,M" 

Here s2 denotes the square of the total spin operator and S is z 

its z-component. 

-viz.: s = s 1 + s 2 + s 3 + .............. + sN 

and •••.•..•••.••.. + 

The suffixes 'S' and 'M' of e are quantum numbers of total S,M 

spin and its z-component. 

e.g.: a·a•a•a·. • · · • · · · • · · · • • = 
0
N/2,N/2 

Now GN/
2

,M forM= N/2- 1, N/2- 2, ; ••••••••••••••• ,- N/2. 

can be obtained from ~/2,N/2 by a r ,epeated application of s_, 

using usual result, 

S_GS,M = f(S + M)(S- M + 1) eS,M- 1 • 

. . . . . . . . . . . . . . . . Al. 3 

Now the subspace for which M = N/2 - 1, is N dimensional. 

In this subspace one of the functions is eN/ 2 ,N/2_ 1 ,. Hence there 

still exist (N - 1) more linearly independent functions. These fu-

nctions must belong to S = N/2 - 1. We can choose any set of (N - 1) 

orthonormal functions 0N/2 _ 1,N/2 _ l;k ( k = 1, 2, ••••••• N-1.) 

which are orthogonal to eN/ 2 ,N/ 2 _ 1 , as basis of (N - 1) dimensional 

subspace of functions for which S = N/2 - 1, M = N/2 - 1. 
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Similarly, in N(N-1)/2 dimensional subspace of M = 

(N/2 - 2)we have already N functions 

e 
N/2,N/2 - 2 _. 

e 
N/2- 1,N/2 - 2,k 

There can still be 

N(N - 1)/2 - N = N(N - 3)/2 

functions 

~/2 - 2,N/2 - 2,k k = 1,2,3, •••••••••• N(N- 3)/2 

which are mutually orthogonal and are also orthogonal ~o N functions 

e 
N/2,N/2 - 2 ' 

I 

e 
N/2 -1, N/2 - 2,k 

k = 1,2,3, •••••••• N- 1. 

N 
Continuing this way, we can construct 2 linearly 

independent functions, which span the space of N electrons. 

2 
Further, each of these is an eigenfunction of S and Sz 

belonging 

belonging 

to the eigen values S(S + 1) and M respectively. 

If 
N 

l.i. 
2 

there are fS,M eigenfunctions of S and Sz 

to eigen values S (S +1) and M, then 

fN = difference in dimensions of spin-function spaces s 
for which M = S and M = S + 1. 

Therefore, 
N N (2S + 1) Nl 

CN/2 + S - CN/2 + S + 1 = --------------------------­
(N/2 + s + 1) I {N/2 - S)l 

••••••••.•••• A 1.4 

A 1.3.• PERMUTATIONS AND REPRESENTATION MATRICES: 

Consider any permutation P of N electrons. There can be 

Nl different permutations, which form a group called symmetric . 
group. We shall denote this by GN. In this connection we have the 
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following theorem. 

Theorem: 

We can express PGS,M,k linearly in terms of f~ functions eS,M,h 

N 
h = 1,2,3 ••••.•••••••. fs· 

viz. Pes M k , , = L vhk(P)es M h , ' h 
•••••••••••• A 1. 5 

Proof: 

2 
We note that P commutes with S and Sz. Therefore, P8S,M,k is an 

eigenfunction of s
2 

and Sz belonging to the eigen values S(S +- 1) 

N I 
and M, respectively. So, PGS,M,k belongs to the fs dimensional 

spin-space ~£ N electrons, in which e
5 

M h are basis functions. , , 
Hence, Pe must be expressible as linear combination of basis 

S,M,k 

functions. 

Hence the theorem. 

Vhk(P) form a matrix, which is a representation of 

permutation group ~~this representation is irreducible. 

A 1.4 EXPANSION OF ANTISYMMETRIC WAVEFUNCTION: 

Consider~( r 1 ,a 1 ,r2,a 2 , ••••••••••• rN,aN) to be an 

eigenfunction of Hamiltonian H~of N electron system. This function 

must be antisymmetric w.r.t. simultaneous permutations of posi-

tion and spin varibles of electrons. 

2 
We assume that H is spin-free. Therefore, H, S and Sz 

commute with each other. Hence ~S,M can be chosen so that, 

But 

s_~s,M = I (s + M) (s - M + 1) ~s,M _ 1 
N 

e k S ,M, k = 1,2,3 .•••••••••••••..•• fs 

M = s, s- 1, •••••••.•••. -s 

S = N/2,N/2- 1 .•••••••••• -N/2 
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form a complete set in the spin-space of N electrons. Hence, any 

antisymmetric function can be expressed in terms of e's linearly 

Therefore, 

- -
tS,M( r1,cr1,r2,cr2 ••••••••. ) 

1 
= 

I fN 
s 

................ Al. 6 

The coefficients ~S k are the same for (2S + 1) functions , 
~ ( M = S,S- 1,S- 2 ••••••••• -S ) because ~S and e 

S,M ,M S,M,k 

must undergo the same transformation by iperation s_ • Thus, if 

= + 1 if p = even permutation 

= - 1 if P = odd permutation, 

then, 
1 

ep ~s M = 2 p~ . Pe , I N ) k S,k S,M,k 
f • 
s 

................ . Al. 7 

A 1.5 Using equation 
ep 

~S,M = /N:--­ ? p~S,k I v (P)e 
h hk S,M,h 

f s ' k 

Comparing this with A 1.6, we get 

~ = ep ) V (P)P ~ 
S,h k hk S,k 

-1 
Multiplying this by vkh (P. ) and 

p ~S,k = e I V (P- 1) p 
h 

kh -

we now put 

................. Al. 8 

summing over h gives, 

......•......... . Al. 9 
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where, 

t denotes transposition of a matrix. 

Thus, 
P 'l' = I uhk (P) 'l' 

S,k h S,h 

.........•.. Al. 10 

The matrices U(P) also form an irreducible representation 

of GN • Eqn. Al.lO is the condition that '!'
8 

,k have to satisfy so 

that when multiplied by spia functions and summing they give an 

antisymmetrized function ~ 
S,M 

N 
We shall denote representation V(P) by DS and represen-

-N 
tation U(P) by U .Note that in Eqn. Al.6 if~ is totally anti­

S 

symmetrized, then, 'l'S ,k and e form bases of representations Ds 
S,M 

and D respectively. 
s 

A 1.5 CONSTRUCTION OF BASES OF DS: 

In constructing completely antisymmetrized wavefunction 

of N electrons, we generally start with a " primitive function " 
0 

'l' < rl,r2,~ ••••••••• rN) 
.......... Al. ll 

This function is not yet symmetrized. In individual electron 

approximation, one takes 

'l'o = 

where 

In the case we have considered 

'l' (~ ,f )'l' ( (f ,f ) •••••••••• etc. 
a 1 2 b 3 4 

'l'a <~l'r2) = 'l'a(-r2,fl) 

......... . Al. 12 

... ........ Al.13 

Now, by applying all permutations to '1'
0 we obtain N ~ 

functions P'¥
0

• These functions maybe linearly dependent or inde-
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pendent, depending upon the symmetry properties of function • In 

the case described by Eqn. A1.11, P~0 are linearly independent. In 

the case of Eqn. A 1.13, this is not so. We shall first consider 

the case wherein P~0 are linearly independent. 

By forming linear combinations of Nl functions PV0 
, . 

we want to find a set of functions, which are bases of fi8 • This 

can be done in the following manner. 

th 
Let Ukh(P) be (k,h) element of matrix for the permu-

tation P in the irreducible representation o8 of GN • Then, we 

have usual ortogonality relation 

........ ... Al.l4 

(Kotani et al,Table of Molecular Integrals,1955) 

This shows that Nl dimensional matrix . 
I Tkm p I = , 

whose rows are numbered by (km} and whose columns are numbered 

by permutation P, is unitary. 

Consider now transform of N! functions PV 0 by matrix 

T. 

i. e. v = lfs/N! l uk.m* (P)Pv0 
km p ......... . Al. 15 

As this is a unitary transformation, Vkm are linearly 

independent if PV
0 

are. 

p ~km = lf8 /N! l u:m(R)PR~0 
R 

* 
= lf8 /N! r U (P--1R) R~0 

R km 

/fg/Nt l l * -1 * 0 = U (P }Uh (R)R~ . 
R h kh m 
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= ~ uhk(P) lfhm 

Thus 'l'km do form a basis for the representation n8 • 

Now, if the representation 58 is dual to n
8 

for a definite value 

of S, then 

'l'km = 'l'S,km k = 
N 

1,2,3,4 ••••••••••• f 8 

have the desired transformation property Eqn. A1.10. Form= 1,2, 

3 ••••••••••• f~ we have f~ independent sets of such functions. 

Hence, we have the same number of antisymmetric functions. 

~in 1/1£
8 r m 

= '¥ e 
S,M k S,k S,M,k 

= 1/IN! L I u* (P)P'¥0 • e 
S,M,k p k . km 

.•....... . A1.16 

Let us consider the case, in which 'l'~r 1 ,r2 , r
3 
••••••••• 

••• rN) is symmetric w.r.t. the exchanges of two electrons in r 

pairs (1,2) (3,4) •••••••••••• (2r- 1~ 2r). This is the case of our 

interest. 

r Let h be the subgroup of GN, consisting of 2 elements 
A 1 A2 Ar 

Q = (1,2) (3,4) ••••••••• (2r- 1,2r) 
......... . Al.l7 

Ai = 0 or +1 

i = 1,2,3 ••••••••••••• r. 

Then 

0 = 'I' for any Q belonging to h. 

Let us select s = N!/2r elements Po,P1,P2 ••••••••••• Ps-1 

out of factorial Ntelements of GN in such 
-1 

a manner that Pi Pj 

does not belong to h for any pair Pi,Pj . Then, any element P of 

GN can be uniquely expressed as 
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p = p Q 
u 
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Hence we have, at the most, 's' linearly independent functions 

among N! functions P~0 • We assume that these 's' functions 

u = 0,1,2 •••••••••••••• s- 1 

are linearly independent. 

2 Now, Q's are commutative and Q = E. Hence·,., all the 

irreducible representations of h are one dimensional and the 

matrices of representation are either +1 or -1. We can take matri-

ces of representation Dg in such a manner that matrices of elements 

of h appear in the reduced form. With this, 

ukh(Q) = ±okh for all Q in h. 

Further, we number the rows and columns of these 

matrices in such a way that the first • g' diagonal elements are 

+1 for all 
r 

2 matrices U{Q): 

1.:5 k !S g,Q in h. 

while other diagonal elements Ukk(Q) take value -1 for atleast 
I 

one of the elements Q. With this choice of U'(Q)'s one can prove 

m 
that the first 'g' members of $S,k (m = 1,2,3 ••••••••• ) are 

linearly indepeLdent, while the rest of them vanish identically 

(Kotani, Table of Molecular Integrals, 1955). 

0 0 0 Further, if s functions Po~ ,P1~ ••••••••••• Ps _ 1~ 

are orthogonal, then g functions 

* $m = 1/~ I I U {P)P~0 
• 0 

p k km S,M,k 

m=1,2 .............• a. 
•.... ..... A1.18 
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are orthonormal. Thus these functions form an orthonormal set and 

each of them is antisymmetrized. 

A 1.6 SPIN FUNCTIONS 8S M h , , 
If ~0 is invariant under the exchanges belonging to h 

then es M fo~ m 5 g must change sign under the same exchange. 
' ,m 

Hence, the spin functions of the first 'g' members must be of the 

form, 

~ a2t-182t- 82t-1a2t ' es M h(2r + 1,2r + 2 ••••••• N) 
' ' t=1 12 

h = 1,2,3 ••••••••••••• g. 

The first 'r' factors contribute nothing to the total spin. Thus, 

s = S' = s2r+1 + 82r+2 + •••••••••••••• + SN 

Hence e' must be an eigenfunction of S' 2 and S~ • 

For the case, which we have considered in the calcula-

tion 

1/12 a(l)a(2) [ a(3) S(4) - S(3) a(4) ] 

A 1.7 CONSTRUCTION OF WAVEFUNCTIONS OF PROPER SYMMETRY: 

e' = 

The symmetric character of the wavefunctions is speci-

fied, in our solution, by quantum numbers A,I,v,S and M (See pg. 

14). The set A,I,v shall be abbreviated by n. 

We have constructed ten Schmidt orbitals Eqn. No. 2.16. 

We select all the possible sets of sixteen orbitals, whose products 

have the given symmetry (A,I), considering that each orbital can 

accomodate at the most two electrons. For a particular set , then, 

we make a product function of these sixteen orbitals. As 16 

electrons are assigned t~ 10 Schmidt orbitals, each of which can 
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accomodate at the most two electrons~ the number of orbitals 

which contain only one electron is at the most four~ . Thus, 

there will be few paired orbitals and two or four unpaired ones. 

In writing the product~ we have written first, unpaired and then, 

paired orbitals. We then multiply the product function by a spin 

function of desired symmetry S,M and antisymmetrize. the result 

to get the wavefunction of proper symmetry, A,I,S,M. 

For A = 0, the required wavefunction is found by taking 
+ 

the real part for l and imaginary part for l , of the product 

function and doing the same thing as before, we get the wavefunction 

of proper symmetry n,s,M. This can be done for each set. 
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APPENDIX II 

< al !x2 !al > AN ILLUSTRATATIVE CALCULATION 
g g 

We show here how < al lx2 lal >is approximated by a cubic g g 

equation in 'r'. 

< crlglx
2

icrlg > = J (crlg)
2 

x
2
dr 

2 

J 
2 2 = all (alsg) x dr 

2 

J 
(lsa + 

2 2 
d = all lsb) X 

2 [ I (lsa)
2 

x
2 

df + J (lsa) (lsb) x
2 

df J = 2all 

2 [ 2 3 2 6A2 + A0 )/120 ] = 2all l/o 1 + a 1 R ( 5A4 -

•••••••••••••••• A2. 1 

where 00 

An= An(a1) = J exp(-a~) ~nd~ 
Now 1 

•••••••••••••••• A2. 2 

Further, 

where 
and 
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hence using Taylor's expansion 

neglecting x 4 etc. 

In this pr~es denote the differentiation w.r.t. x. 

But 

A (a) 
n 

d/. 

Hence differentiating w.r.t. a 

Therefore 
x2 x3 

= A (x ) - x A (x ) + -- A (x ) - -- A (x ) 
n 0 n+l 0 2 n+2 0 6 n+3 0 

approximately. 
Or 

A -
n+2 

••••••••••••••••• A2. 3 

In this equation A 's are functions of o
1

R • n e 

Using Eqn. No. A2.1, A2.2, and A2.3 one can easily app­

roximate< -crlglx
2

lcrlg >by a cubic equation in 'r'. 
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APPENDIX III 

DERIVATION OF A RESULT 

The coefficients satisfy the orthogonality relation 

L(jl,j2,ml,m21jl,j2,j,m) (jl,j~,ml,m~lj1,j~,j,m) = 

m1,m 

( See A.S. Devydov,1965,p.147 ) 
Hence, 

2 2j' + 1 
L (j,2,m,-1lj,2,j' ,m') = ----------

m' ,m 5 
But 

m' = m- 1. 

2j + 1 

2j~ + 1 

Therefore summation over m' is the same as summation over m. Hence 

\ \ (j 2 1 . 2 . ' ' ) 2 
L L , ,m,- J' ,J ,m = 
mm 

Let 

2j' + 1 

5 

f:(j,2,m,-1 j,2,j',m') =f. 
m 

Then 'f' does not depend upon 'm'. Thus, 

Or 
f 

Hence, 

2j' + 1 
l:f=----
m 5 

2j' + 1 
(2j + 1) = 

5 

f:(j,2,m,-1lj,2,j' ,m')
2 2j' + 1 

= 
m 5(2j + 1) 
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