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Abstract 

The Miocene to Recent tectonic evolution of the Cilicia Basin near the 

present day mouth of the Goksu River is studied using ~2000 km of high­

resolution 96-channel seismic reflection profiles collected in 2008 using the RV 

Koca Piri Reis of the Institute of Marine Sciences and Technology. Our project is 

intended to provide a history of deposition in one of the ultimate sinks: the eastern 

Mediterranean. We mapped the distribution of sediment deposits and delineated 

the structures that developed in the Cilicia Basin precisely in space and time. The 

focus of this research is on the basin-wide structures that developed near the 

Turkish continental slope and extend through the entire Cilicia Basin. 

Detailed interpretation and mapping of the seismic reflection profiles 

showed that during the Miocene a major south- and southeast-verging fold-thrust 

belt developed across the entire Cilicia Basin. The leading portion of this fold­

thrust belt is well imaged in the Inner Latakia Basin, south east of the present-day 

Misis-Kyrenia Fault Zone. The trailing portion of the fold-thrust belt is believed 

to constitute the thrust panels which form the core of the central Taurus Mountains 

of southern Turkey. A north- and notihwest-verging fold-thrust belt is locally 

mapped in the Outer Cilicia Basin. The belt is overprinted by smaller positive 

flower structures all soling into the primary tlu·ust surface(s), and showing tip 

points extending to the depositional surface. This structural architecture suggests 
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that they are developed within a transpressional regime during the Pliocene­

Quaternary. Seismic stratigraphic correlations with deep offshore exploration 

wells provided the chronology for the seismic data. A thick evaporite succession 

is unconformably deposited over deeper portions of the fold-thrust belt. This 

evaporite succession presently forms numerous salt pillows and salt rollers m 

Inner Cilicia Basin, and salt diapirs and salt walls in the Outer Cilicia Basin. 

Detailed mapping showed that Miocene contraction was followed by 

partitioned contraction and extension that is related to strike-slip fault activity 

along the Kozan Fault Zone, a major splay from the East Anatolian Transform 

Fault. Our results show that Pliocene-Quaternary extension occurs within the 

basin contemporaneously with the contractional or transpressional structures along 

the southern margin of the basin. A specific problem that is addressed in this 

study is to understand the relationship of contemporaneous contractional to 

extensional deformation in the study area. 
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CHAPTER ONE 

INTRODUCTION 

1.0. Background 

The Central Anatolian Plateau contains eastern and central portions of the 

Aegean-Anatolian Microplate and is an orogenic uplift structure which is a young 

example of continental collision (Fig. 1.1, Schildgen et al., 2011; Cosentio et al., 2011, 

Yildirim et al., 2011). The Aegean-Anatolian Microplate is in the early stages of 

collision in between converging African, Arabian and Eurasian plates (Ben-A vraham et 

al., 2006; Dilek and Sandvol, 2009; Robertson et al., 2012). The Cilicia Basin has 

evolved in the forearc region at the southern edge of the Aegean-Anatolian Microplate in 

the eastern Mediterranean Sea (Fig. 1.1; Biju-Duval et al. , 1978; Aksu et al., 1992, 2005; 

Bridge et al., 2005). The basin lies close to the eastern edge of the microplate within 

strands of the East Anatolian Transform Fault which forms the plate boundary with the 

Arabian and African plates (Fig. 1.2). Convergence of African and Arabian plates to the 

north has resulted in subduction of the African Plate along the Cyprus and Hellenic arcs, 

and the collision of the Arabian Microplate with the Aegean-Anatolian Microplate 

(Sengor et al. , 1979; Ben-A vraham et al., 1988, 2006; McClusky et al., 2000). This 

convergence has resulted in the westward tectonic escape of the Aegean-Anatolian 

Microplate (Sengor et al., 1979, McClusky et al., 2000, Ben-Avraham et al., 2006). 

Previous workers established that the Cilicia Basin has active tectonic structures 

resulting in contraction in some areas and extension in others (Evans et al. , 1978; Aksu et 
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Figure 1.1: Physiographic map of the eastern Mediterranean showing simplified tectonic 

elements, Tauride and Pontide Mountains, Central Anatolian Plateau and the mouths of 

major rivers (C- Ceyhan, G- Goksu, K- KlZlhrmak, S- Seyhan, T- Tarsus, andY­

Ye$ihrmak). Large arrows indicate the sense of plate motion relative to a fixed Eurasian 

plate; half arrows indicate transform-strike-slip faults (Hall et al. , 2008). 
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Figure 1.2: Eastern Mediterranean plate tectonics and plate motions relative to a fixed Eurasian plate. 

(Ab=Adana Basin, AF=Amanos Fault, AK=Anamur Kormakiti zone, Anb=Antalya Basin, 

CA=Cyprus Arc, Cb=Cilicia Basin, Cyb=Cyprus Basin, DST=Dead Sea Transform Fault, EA T=East 

Anatolian Transform Fault, EF=Ecemi~ Fault, FR=Florence Rise, HA=Hellenic Arc, IA=Isparta 

Angle, Ib=Iskenderun Basin, KF=Kozan Fault, Lb=Latakia Basin, Mb=Mesaoria Basin, MKF=Misis­

Kyrenia Fault, NA T=North Anatolian Transform Fault, PT=Pliny Trench, ST= Strabo Trench, Aksu et 

al. , 2005) 



al., 1992a, 2005b; Ergin et al., 2004, Bridge et al., 2005, Piercey 2011). The objective of 

this thesis is to map and interpret the active offshore structures in the central portion of 

Cilicia Basin, using multichannel seismic reflection images, so as to explain how the 

different kinds of strain overlap in time in the Pliocene-Quaternary. 

Approximately 2500 km of high-resolution multichannel seismic reflection 

profiles were acquired for this project from the Cilicia Basin in a 30-day cruise in 2008 by 

a research team from the Memorial University of Newfoundland and the Dokuz Eyltil 

University in Turkey. Seismic profiles are positioned as a fan, spreading out from the 

present-day Goksu River mouth, toward the northern Cyprus (Fig. 1.3). The seismic grid 

was tied to two offshore exploration wells: Seyhan-1 (S1) and Karata~-1 (Kl) (Fig. 1.3). 

The data for my research are positioned at the middle of the study area covering 

northeastern Outer Cilicia Basin, and southwestern Inner Cilicia Basin, including the 

transition zone in between (Fig. 1.3). In addition, this project also ties to previous data 

from four major research cruises by the research team from Memorial University of 

Newfoundland and Dokuz Eyli.il University in 1991 , 1992, 2001 and 2007, and seismic 

data from Turkish Petroleum Corporation (Fig. 1.3). 

1.1. Geological Setting 

The eastern Mediterranean Sea is the remnant of a larger Tethys Ocean that 

evolved during the Mesozoic (Robertson, 1998). The present day tectonic processes in 

the region are largely controlled by the continental collision of the Arabian and Eurasian 

plates (Biju-Duval et al. , 1978, McClusky et al. , 2000, Dilek and Sandvol 2009). The 
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Figure 1.3 : Location map showing the available data in the Cilicia Basin. Black lines are 2008 data, orange lines are 1991 data, 
green lines are 1992 data and light blue lines are the industry seismic reflection profiles. Thick red lines are the seismic data 
from the 2008 dataset that is used in this thesis. S 1 and K 1 are the Seyhan-1 and Karata~-1 exploration wells in the Inner Cilicia 
Basin. 



relative northward movement of the African Plate and Arabian Microplate with respect to 

the Eurasian Plate resulted in westwards escape of the small Aegean-Anatolian 

Microplate along the North Anatolian and East Anatolian Transform faults in a counter­

clockwise rotation (Fig. 1.2, Sengor et al., 1985, Dewey et al., 1986). The North 

Anatolian Transform Fault delineates the boundary between the Eurasian Plate and 

Aegean-Anatolian Microplate in a right lateral strike slip movement, where the East 

Anatolian Transform Fault shows a left lateral strike slip motion (Fig 1.2; Sengor et al. , 

1985). Sinistral strike-slip motion on the East Anatolian Transfom Fault is a major 

control on the structural elements of the Cilicia Basin. Two main fault zones 

characterising the Neogene evolution of the basin, Kozan and Misis-Kyrenia fault zones, 

are major splays from the East Anatolian Transform Fault. 

The terminal continental collision of the Arabian Microplate and Eurasian Plate 

that occurred in the Miocene resulted in the development of the the Bitlis-Zagros suture 

zone (Sengor et al., 1979, 1981 ). Continuing convergence of the Arabian Microplate and 

Eurasian Plate resulted in N-S shortening and thickening, associated with rapidly rising 

elevations in the eastern portion of the Aegean-Anatolian Microplate (Sengor et al., 

1981 ). Subsequently, in the late Miocene the westward escape of the Aegean Anatolian 

Microplate initiated along the North and East Anatolian transform faults (Sengor et al. , 

1981 ). The Hellenic Arc and the Pliny-Strabo Trenches delineate the convergent 

boundary between the African Plate and the Aegean-Anatolian Microplate in the west 

where the subduction is still active and the subduction zone is steepening and/or rolling 

back causing the pervasive extension in the back arc region (i.e., the Aegean Sea and 
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western Anatolia; Fig. 1.2; McKenzie and Yllmaz, 1991; Spakman and Wortel, 2004). 

The Florence Rise and Cyprus Arc delineates the boundary between the African Plate and 

the Aegean-Anatolian Microplate in the east where subduction has essentially stopped 

along the Cyprus arc due to initiation of collision of micro-continental blocks on the 

northern edge of the subducting lower portion of the African Plate (Fig. 1.2; Ben­

Avraham et al. , 1988, 1995, Woodside et al., 2002, Sellier et al. , 2011, 2012) 

1.2. Study Area 

There are several large basins on the southeastern edge of the Aegean-Anatolian 

Microplate in the northeast Mediterranean. The Adana and Mesoria basins are the onland 

extensions of the marine Cilicia and Latakia-Iskenderun basins, respectively. The 

Kyrenia Range and its marine extension Misis-Kyrenia fault zone separate the Cilicia­

Adana basin complex from the Latakia-Iskenderun-Mesoria basin complex (Aksu et al., 

1992, 2005; Hall et al., 2005; Calon et al., 2005). Cilicia Basin lies directly between 

Cyprus and Turkey in the eastern Mediterranean Sea, bounded by Taurides Mountains in 

the north, and Kyrenia Range and its marine extension in the south and southeast (Fig. 

1.2). The evolution of the Cilicia-Adana basin complex started in the Oligocene to early 

Miocene in a foredeep setting in front of the Tauride fold-thrust belt (Williams et al., 

1995; Cal on et al., 2005 a; Aksu et al., 2005). Tectonic evolution of this basin complex is 

related with the subduction of the Africa Plate beneath the Eurasia Plate along the Cyprus 

and Hellenic arcs (Biju-Duval et al. , 1978). Subduction changed to collision along the 

Cyprus Arc when the Eratosthenes Seamount collided with the subduction zone; however 

subduction is still active along the Hellenic Arc (Ben-Avraham et al. , 1995; McClusky et 
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al., 2000, Sellier et al., 2012. The present study of the Cilicia Basin provides better 

understanding of tectonic and stratigraphic controls on young collisional systems, 

transition of subduction to collision, and Neogene evolution of a fore-arc basin in this 

transition. 

The Cilicia Basin formed in the mid-to-late Miocene in a fore arc regwn 

associated with the subduction of the African Plate beneath the Aegean-Anatolian 

Microplate along the Cyprus Arc (Biju-Duval et a!., 1978). On its western margin, the 

Cilicia Basin is separated from the Antalya Basin by the N-S trending Anamur-Kormakti 

zone across which the water depth significantly drops westward from ~ 1000 metres to 

~2200 metres (Figs. 1.2, 1.4). In the northeast section of the eastern Mediterranean, the 

morphology of the sea-floor is largely controlled by the major tectonic features and by the 

sediment input from the surrounding rivers which include the Seyhan, Ceyhan, Tarsus 

and Goksu (Aksu eta!., 2005). In the Cilicia Basin, the sea-floor gradually deepens from 

the Turkish shelf; reaching its maximum depth of 1000 metres in the central portion of 

the Outer Cilicia Basin (Fig. 1.4). Towards the south, along northern Cyprus the seafloor 

becomes notably shallower. The sea-floor depth also increases from the Inner to the Outer 

Cilicia Basin (Fig. 1.4). Stratigraphic and structural relationships demonstrate that the 

late Pliocene-Quaternary Cilicia Basin evolved as an asymmetric piggy-back basin on the 

hanging wall of the large, south verging Misis-Kyrenia thrust culmination (Aksu et a!., 

2005). The Cilicia Basin is sub-divided into a NE-SW trending shallower segment 

referred to as the Inner Cilicia Basin and an E-W trending deeper segment known as the 
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Figure 1.4: Bathymetry map of the Cilicia Basin and surroundings (Aksu et al. , 2005b ). 



Outer Cilicia Basin (Fig. 1.4; Aksu et al. , 2005). The study area for this thesis is the 

Outer Cilicia Basin and its transition to the Inner Cilicia Basin. 

1.3. Previous Studies 

Mulder (1973) and Mulder et al. (1975) suggested that the onset of the Neogene 

basins of the Mediterranean region occurred after the major Oligocene orogenic phase of 

the Alpine system. They distinguished several elongated salt basins which are separated 

by narrow thrust belts which were folded and uplifted in the late Miocene-early Pliocene, 

quoting the Kyrenia-Misis tectonic zone as an example. These publications were the first 

to note several kilometres of Pliocene-Quaternary subsidence and pointed to the presence 

of salt structures, including pillows and domes in the up to 1.5 krn-thick upper Miocene 

evaporite succession. 

Evans et al. ( 1978) denoted the asymmetrical infilling of the Cilicia Basin from 

north and northeast, and the flowage of the Messinian evaporites as a result of this 

asymmetrical infilling. They further concluded that the flowage of evaporites resulted in 

east-trending morphologic zones, and compression has not had a big role in this 

tectonism. They supported Woodside (1977) and Smith (1977) concerning the recently 

continuing basin subsidence and sediment deposition from the northeast. Evans et al. 

(1978) further suggested that the bathymetry of the shelf region of the outer Cilicia Basin 

is related to the surficial expressions of extensional faults in the upper portion of the 

Pliocene-Quaternary succession. Aksu et al. (1992) showed that the Pliocene-Quaternary 

depocentres are formed in extensional basins, bounded by splays of the East Anatolian 

Transform Fault. 
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Senger et al. (1985) and Dewey et al. (1986) suggested that the Adana-Cilicia 

basin complex could be a major pull-apart in a left-lateral transform fault or more 

probably developed as the result of a compatibility gap in the evolution of a FFF-type 

triple junction, giving rise to a NNW extension in the region. Senger et al. (1985) further 

proposed that when strike slip faults meet within the continental lithosphere, 

incompatibility problems could arise due to the buoyancy and low shear strength of the 

lithosphere. Their kinematic analysis, which considered the rates and directions of plate 

movements in the area, suggested that oblique, north to northwest directed extension 

should result in the Adana-Cilicia basin complex. 

Robertson and Woodcock (1986) noted the subduction south of Cyprus and an 

extensional fore-arc setting in late Eocene and Miocene time followed by a dramatic 

subsidence and turbidite accumulation from the erosion of Taurides Mountains. They 

also suggested that in the middle Pliocene, large scale southward thrusting and tilting 

occurred in a compressional deformation setting as a result of the uplift and faulting in 

late Miocene. Kelling et al. (1987) noted that besides the collisional overthrusting of the 

Misis complex there is also evidence of sinistral strike slip faulting in the Misis Mountain 

complex. They related this faulting to post-Miocene inception of motion along the East 

Anatolian Transform Fault system. They supported the southward thrust culmination in 

middle Pliocene and believed that it was initiated by an Oligocene-Miocene phase of 

extension that caused intracontinental sagging, forming the Adana and Cilicia basins. 

Karig and Kozlu (1990) emphasized the strong evidence of extensional tectonism in the 

lower Miocene, and supported the idea of strike slip motion dominating the evolution of 
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the region. They further believed that the thrust tectonics component of the region was 

exaggerated in previous studies. 

Aksu et al. (1992 a,b) noted that glacio-eustatic sea level fluctuations and basin 

subsidence are the major controlling factors in the Cilicia and Iskenderun basins. Aksu 

et al. (1992 b) and Kempler and Garfunkel (1994) suggested that the Misis-Kyrenia thrust 

belt may also have acted as a strike slip fault. Kempler and Garfunkel (1994) noted the 

different structural settings in the east and west of the northeastern Mediterranean. They 

interpreted the Misis-Kyrenia fault zone as a large flower structure in the west, and 

Adana-Cilicia and the Iskenderun-Latakia-Mesaoria basins in an extensional origin on its 

flanks in the east. They believed that the subsidence of these basins has occurred since 

mid to late Miocene, and the strike slip motion of the Misis-Kyrenia fault zone has 

occurred in late Eocene to early Oligocene. 

Williams et al. (1995) proposed that the Miocene successions of the onland Adana 

Basin were deposited in an underfilled foreland basin formed in response to load-induced 

flexure resulting from thrusting in the Taurides Mountains in the north. They noted a 

phase of middle to late Miocene extensional faulting, synchronous with the development 

of a positive flower structure along a N-S trending sinistral fault zone west of the Misis 

Mountains followed by a phase of uplift centered on the Misis structural high in the 

Pliocene. 

Yeti~ et al. (1995) noted a phase of uplift in the region following the middle 

Eocene regression, and terrestrial deposition in an intramontane setting during the late 
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Eocene to early Miocene. The later phase of Eocene compression was followed by a 

regional regression marked by shallow marine-fluvial and deltaic deposits during the late 

Serravallian to Tortonian. They indicated that continuing regression resulted with 

significant evaporite deposition in the Messinian. They recognized a phase of Messinian 

uplift in the Misis Mountains, whereas uplift in the Kyrenia Range first occurred in the 

late Pliocene. 

Koc;:yigit and Bey han (1998) suggested that the northwestern margin of the Adana­

Cilicia Basin is delineated by strike-slip faults in the eastern portion of the newly 

proposed Central Anatolian fault zone, which in the study area is the reactivation of the 

older Ecemi~ Fault. They noted that the present day structural pattern of this fault zone 

indicates ENE-WSW directed extension with a complementary NNW-SSE directed 

shortening. 

Robertson (1998) suggested that the eastern Mediterranean pre-Messinian marine 

basins, including the Cilicia Basin were formed as a result of extensional faulting. He 

related the subsidence in the Adana and Manavgat Basins in the Middle Miocene to this 

extensional faulting. He indicated that in the Tertiary a single subduction zone occupied 

the northern Neotethyan margin, and that in southeastern Turkey this subduction zone 

remained active until early-middle Eocene. He noted that continental collision began in 

the early Eocene and progressively consumed the remaining oceanic crust until the 

suturing of the Bitlis-Zagros zone in the late Miocene. Robertson ( 1998) further indicated 

that subduction and arc volcanism persisted into the early Miocene along the northern 

margin of the eastern Mediterranean basins, but subduction jumped to the present plate 
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boundary south of Cyprus in the early Miocene. He noted that continued subduction 

caused the Erathosthenes Seamount to collide with the Cyprus margin in the early 

Pliocene, initiating the rapid uplift of Cyprus from late Pliocene to mid-Pleistocene. 

1.4. Strike-slip fault systems 

Many previous studies showed evidence for strike-slip motion in the Cilicia Basin 

(Sengor et al., 1985; Dewey et al., 1986; Kelling et al., 1987; Karig and Kozlu 1990; 

Aksu et al. , 1992b, 2005; Ko9yigit and Bey han 1998). Therefore, it is important to 

understand the kinematics of a strike-slip fault system. Strike-slip fault systems are 

narrow and continuous zones where there is no net addition or subtraction to the crust. A 

typical strike slip system occurs in a triaxial stress field, where intermediate principal 

stress cr2 is vertical, and maximum and minimum principal stresses cr 1 and cr3 are in the 

horizontal plane (Fig. 1.5a). Strike-slip fault zones usually consist of an array of 

subsidiary deformations. Faults parallel to the main vertical strike slip fault are Y -shears 

or PDZ's (principal deformation zone). Strike-slip fault systems often contain many en 

echelon synthetic and antitethic faults that lie at low (~20°) and high angle to the main 

fault, respectively. These are called Riedel shears (R- and R' -shears). P-shears are 

another synthetic subsidiary deformation that lie symmetrically to R-shears with respect 

to the fault plane (Fig. 1.5b ). 

Restraining and releasing bends may develop along the course of continuous 

strike-slip fault systems (Fig. 1.5c, Crowell 1974, Rodgers 1980, Cunningham and Mann, 

2007). Rodgers (1980) defined the two approximately parallel strike- slip faults that 
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delimit the restraining or releasing bends as master faults. Burchfiel and Stewart (1966) 

defined pull-apart basins as zones of depression generated by extension along strike-slip 

faults based on their interpretation of Death Valley Basin occurring at a releasing bend. 

Increase in the offset of the master faults of a sinistral strike-slip system generates "lazy­

S" shaped pull-apart basins (Mann et al., 1983). Mann et al. (1983) further noted that 

pull-aparts most commonly originate on oblique fault segments which represent releasing 

fault bends, and increased extension of the basin generates topographic depression 

between oblique-slip faults defining the edges of the basin. Pull apart basins can be 

observed in any strike slip settings, such as, oblique subduction zones, escape tectonics, 

intracontinental strike-slip activity. 

1.5. Outline of the Problem and Scientific Objectives 

The incipient collision of the Aegean-Anatolian Microplate with the African and 

Eurasian plates offers a unique opportunity to study the switch from subduction to 

collision over a timeframe that is young enough to avoid the overprint of later events. 

The scientific objectives of this project are mainly focused on the structural 

elements that are observed in the Outer Cilicia Basin and its transition to the Inner Cilicia 

Basin. 

• The broad objective of this thesis is to establish the Miocene to Recent 

structural and stratigraphic framework of the study area based on the interpretation of the 

high resolution multichannel seismic reflection data that were acquired for this study, and 

other available data in the study area from the previous studies. 
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• A specific purpose of this research is to focus on the structures that 

developed near the Turkish continental shelf. This study will allow us to have a better 

understanding of the nature and the evolution of these structures and their place in a 

broader regional context in the Central Anatolian Plateau and surroundings. 

• A specific problem that is addressed concerns the relationship of 

seemingly contemporaneous contractional to extensional deformation in the study area. 

Many authors have commented on extensional or transtensional structures along 

the margins of the Cilicia Basin (Evans et al., 1978; Sengor et al. , 1985; Karig and Kozlu 

1990; Aksu et al., 1992a,b; Aksu et al., 2005b ). Pliocene-Quaternary extension certainly 

occurs within the basin (Aksu et al. , 2005). However this extension appears to be 

contemporaneous with the contractional or transpressional structures along the southern 

margin of the basin (the Misis-Kyrenia fold-thrust belt, Aksu et al. , 2005). 

In mapping the Cilicia Basin, a key issue will be to delineate the structures more 

precisely than in previous studies, not only in space, but also in time. The use of growth 

strata and progressive syn-tectonic unconformities, indicatives of the duration of faulting; 

is critical in the evaluation of the timing of the contractional and extensional structures 

that developed in the basin. 
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CHAPTER TWO 

Scientific Methods 

2.0. Data Acquisition 

The data for this project were collected from the Cilicia Basin in a 30-day cruise 

m 2008 in collaboration of the research teams from Memorial University of 

Newfoundland and Dokuz Eyliil University in Turkey. In addition, this project also ties 

to previous data from two of the four major research cruises collected by the research 

team from Memorial University of Newfoundland and Dokuz Eyltil University in 1991, 

1992 and from Turkish Petroleum Corporation (TP AO). Approximately 2500 km of high 

resolution marine seismic reflection data were acquired using the RV Koca Piri Reis of 

the Dokuz Eyliil University during the 2008 cruise. The seismic profiles were positioned 

as a fan, spreading out from the present-day Goksu River mouth, and the seismic grid was 

tied to two offshore exploration wells: Seyhan-1 (S 1) and Karata~-1 (K 1) (Fig. 2. 1 ). 

The equipment of this marine survey consisted of the following components: 

seismic source consisting of an air gun array, receiver consisting of a multichannel 

hydrophone streamer, and digital recording device (Fig. 2.2). The seismic source for this 

survey was an air-gun array consisting of 7 guns with a combined volume of 200 cubic 

inches (3277 cm3
). A set of 4x40 cubic inch (656 cm3

) guns; 1 x20 cubic inch (328 cm3
) 

gun; 2x 10 cubic inch ( 164 cm3
> guns were combined to create the 200 cubic inch (3277 

cm3
) volume. Two of the 40 cubic inch (656 cm3

) guns were placed adjacent to each other 

to imitate an 80 cubic inch (1312 cm3
) gun. The wavelet created by this air gun array 
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Figure 2.2: Schematic view of the survey set-up for 2008 cruise. 



source has a signal bandwidth of 30-200 Hz. Compressed air for the guns was provided 

by a deck-mounted diesel compressor. The source was towed 70 m behind the ship at a 3 

m depth below the sea surface to provide an optimal tuning of the primary pulse and the 

pulse of the reflection from the air-to-sea interface at a source frequency of 120 Hz. The 

trigger pulses were generated from the Global Positioning System (GPS) of the ship. 

Shots were fired at an adjusted time interval of every 10 seconds at the time of recording 

GPS navigation fixes for the shot spacing of 25 m. 

The incoming reflections were detected and recorded usmg Dokuz Eyliil 

University's 96 channel digital hydrophone streamer and an NTRS-2 seismograph. The 

streamer had a total length of 600 m with the channels spaced every 6.25 m (Fig. 2.2). 

The hydrophone streamer was towed at a constant depth which was approximately 3 m 

below the sea surface, and the depth of the streamer was controlled by nine streamer 

depth controllers, also known as streamer birds at 75 m intervals. The offset of the first 

channel from the source was 77 m. 

2.1. Data Processing 

To convert the raw data into interpretable seismic images some processing steps 

were applied. The main objective of the processing was to increase the signal quality by 

eliminating or decreasing the noise from the data, and creating better images for the 

interpretation. The data were processed by using Landmark's Pro Max© software and the 

following processing flow: 

• SEG-Y Data Import 
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• Spherical Divergence Correction 

• Static Correction 

• Geometry and Common Depth Point (CDP) Stacking 

• Velocity Analysis and Normal Move Out (NMO) Correction 

• Predictive Deconvolution (Pre- and Post-Stack) 

• Migration (Stolt and Kirchhoff Time Migration) 

• Display 

• Archive SEG-Y 

• Final Starpak Plotting and Corel Draw Plotting 

2.1.1. SEG-Y Data Import 

The primary step of the data processing was to import the data into the processing 

software and loading the raw data into ProMAX© by using the SEG-Y input function. 

Following the data import, visual inspection took place to check the shots, channels, and 

the noise distribution of the data. For the initial inspection, the data were displayed as a 

single channel or near-trace gathers which use the nearest shot groups. There was only 

one problematic channel within 96 channels which was the l31
h channel. This channel 

was the only noisy channel; however the noise was not a major issue, because an attempt 

to remove the high frequency noise from the data would remove the noise of this channel 

as well. The noise on the channel 13 can be seen in Figure 2.3 which is the raw data 
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showing all channels of the first shot. The figure also illustrates the low and high 

frequency noise, and some random noise. Figure 2.4 is also the raw data in a different 

display that illustrates only one channel of all shots: a near trace gather. This section is 

also very noisy, and the primary energy is not very strong. An automatic gain control 

(AGC) and a bandpass filter were applied for display to bring up the weak signals and 

eliminate some of the noise, respectively, but they were not applied permanently. Effects 

of the AGC and bandpass filter can be seen in Figure 2.5, which shows that the primary 

energy is more visible and most of the noise is eliminated. 

The bandpass filter was applied to the data for better display purposes and it was 

not applied permanently until after the final migration. The filter type and the parameters 

were decided by the inspection of the raw data and also using the frequency spectrum. 

Raw shots and the near-trace gather display the noise which can be both high and low 

frequency (e.g. Fig. 2.4). The signal that our source generates has a bandwidth of 30-200 

Hz, so in theory the frequencies below 30 Hz and above 200 Hz are considered to be 

noise. Eliminating the noise outside the signal bandwidth, the signal to noise ratio is 

significantly increased. For the 2008 data, a minimum phase, time Butterworth filter with 

the parameters of 40-12-240-48 Hz worked almost perfectly. The parameters of 40 and 

240 here are the low and high cut frequencies respectively, while the 12 and 48 are their 

corresponding dB/octave slope. Comparison of the Figures 2.3 and 2.6, or 2.4 and 2.5 

illustrates the effect of the bandpass filter on the data. Figure 2.7 is shows the percent 

power frequency spectrum which is also used to determine the filter parameters. The 

noise in the data that have very high or very low frequency can easily be determined by 

displaying this spectrum. The first panel in this display shows the seismic traces and the 
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Figure 2.4: Raw data showing a single channel of all shots. The section is noisy and 

primary energy is not very strong. 
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Figure 2.5: The same display in Figure 2.4 after an Automatic Gain Control (AGC) 
and bandpass fi lter. The section is less noisy and the primary energy is more visible. 
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Figure 2.6: The same shot in figure 2.3 after true amplitude recovery (TAR) and 
bandpass filter. 
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Figure 2.7: Percent power frequency spectrum (a) before and (b) after a band-pass 

filter. 
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second one shows the frequency distribution in percentage. Before the filter is applied 

the data mostly consists of very low frequency noise (Fig. 2. 7a), and the target frequency 

range is in a low percentage. After a bandpass filter and AGC application the low 

frequencies are eliminated from the data and our target frequency range (30-200 Hz.) has 

a higher percentage in the data (Fig. 2.7b). The improvement in the signal-to-noise ratio 

can also be seen in the seismic traces in the left-hand panels (Fig. 2.7a and b) 

2.1.2. Spherical Divergence Correction 

Spherical divergence correction was applied to the data to compensate the seismic 

wave's geometrical spreading and inelastic attenuation effect on the wavelet. AsP-waves 

travel through the Earth, the amplitude of the wavelet decreases with time due to 

geometrical spreading and inelastic attenuation of the energy (Yilmaz 2001). This effect 

causes an imprecise distribution of amplitudes: high amplitudes in short offsets and low 

travel times, and low amplitudes in long offsets and larger travel times. To correct this 

effect we applied the true amplitude recovery (TAR) function in Pro MAX©. With TAR 

application we aimed to compensate for the spherical divergence of the wave energy. 

Effects of the TAR application can be seen in Figure 2.6 which shows the same shot in 

Figure 2.3 after TAR and bandpass filter. As seen in the figure most of the low and high 

frequency noise is eliminated with bandpass filter, and the amplitudes of the signals are 

improved with TAR (Fig. 2.6). 
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2.1.3. Static Correction 

During the data acquisition in the 2008 survey the shot firing was not exactly 

synchronised with the recorder start and shots were fired 30 ms after the recorder started. 

During the data processing to synchronize the shooting time with the recording time we 

had to deduct 30 ms from the recorded times. Using the hand static option in ProMAX© 

-30 ms delay was applied to the data and signals were carried to 30 ms earlier. 

2.1.4. Geometry Loading and CDP Sorting 

Geometry loading and CDP sorting of traces need to be applied to the data before 

the stacking step. The geometry loading step was applied to the data to load the location 

information of sources and receivers into the trace headers. For my dataset manual 

geometry loading option was used instead of Auto-2D feature in ProMAX©. The 

importance of geometry loading is to determine the offset and CDP by loading the source 

and receiver locations; thus the data can be sorted into CDP ensembles in ProMAX©. A 

CDP is the common depth point which represents a point on a flat reflector. Various 

signals reflect from that point following different ray paths from successive shots (Fig. 

2.8). Summing these traces from that point improves the signal quality by attenuating the 

uncorrelated noise, and enhances the reflectors. 

2.1.5. Velocity Analysis, NMO Correction and Stacking 

Velocity analysis is one of the most important steps in seismic data processing. 

We need precise velocity information for some essential processing steps such as NMO 

corrections, migration, and depth conversion. There are several velocity determining 
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methods from the seismic data. x2 - t2, constant velocity scan, constant velocity stack, and 

velocity spectrum (semblance analysis) methods are some ofthem. 

The reflection travel time curve as a function of offset is a hyperbola because of 

the time difference at different offsets. If we consider a reflection event on a CDP (Fig. 

2.8) the time difference between the zero-offset and a given offset is normal move out 

(NMO). This difference in reflection travel times needs to be corrected prior to stacking 

the traces. The velocity that is used to correct NMO is called NMO velocity, and it is 

determined by the velocity analysis. The NMO correction is applied to the CDP gathers 

before stacking by using the primary velocity function. Velocity analysis defines the 

quality of the NMO correction and stack. 

In this study, velocity spectra in ProMAX© were used to determine the NMO 

velocities. The velocity functions were selected based on three panels: semblance 

contour plots, a panel of constant velocity stacks, and a CDP gather for each location. 

These panels and velocity picks can be seen in Figure 2.9 and 2.1 0, which illustrates the 

data before the NMO correction. The semblance plot displays contours of semblance as a 

function of velocity and time. In practice, CDP supergathers are used for the semblance 

analysis. These supergathers are created by combining several adjacent CDP gathers; 

therefore they include more traces than CDP gathers. The CDP fold of2008 data was 12, 

and 13 CDP gathers were combined to create the supergathers. Supergathers improve the 

quality of the semblance spectra by increasing the signal/noise ratio. The velocity that 

best flattens each event in the NMO corrected gather should be picked as the NMO 

velocity (Fig. 2. 1 0). If the NMO velocities are selected too low, reflections will curve 
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Figure 2.9: Velocity semblance analysis before the NMO correction. 

33 



:::-1 
'/chcl~ {1\/!, } Cl f f x \ ( n) 

(JQ 1.5()0 2000 ,,.,. 30! zoo - 600 c I ' ' I ' ' ' ' I ' ' I I I I ..... 
t~o•§ (1) 

N so•i ........ 
0 UOt -

< 1JOt1 
~ 
0 l £Ut 1 
(') 

....... : 

'-< 1301 -i; 

(/) Hoei (1) 

3 
0"" 150t 

Pl 
160t~ ::I 

(') 
(1) 1/Uti 
Pl 
::I 1801~ 
~ 

'-< t soe ...; 
~-
(/) 2(()0 

(/) 
(') 

2J0t~ ..... 
(1) 
(1) 

££Ut 1 ::I 
Pl no•-; ::P 
(1) 
..... 2..,0.i 
....... 
::::; 
(1) 2!i0ti 
z 260ti 
~ 
0 27011 

(') ?f!Ot ~ 
0 ..... ..... 290ti (1) 
(') 

:::::. 3(.0t1 
0 
::I 

D~ F...,.cLio11• 
1 l. !i 2 2.5 3 3.5 4 4.5 5 '5. 5 6 6 . 5 7 

I • • 1 I I l l 1. . I ttl I j , ,, I I I ,, j ,, I I I t t I I I I II, , I I I II I It I I . I I I I 1 •• I I 

!- tl 
if'j ; 

l tr 
1 t 

' i 

::.t' 
; ~ ·- II 

tr i' r-r 
i 1 li r: :r 

H ' 

lr 
,; 

fl ; l{ u 
': 

i ~ ' rr H :: 
li ! li fT -~ 

H H H :; -~~ 
! 1: :' . I i1 !i 
' li i> n n !! n u ,, 
! li H !! if t1 I: t: 

!i 

.I! 
H p u 

!i t ff n \i 
· p 

H i: n~- !i 
I· I. !1 I; lin !: 

1i ~ n 
I; n~ H HH ls !l 
1:· · n H !i n H l i p 

ri .l ti. li. [l H t( 
[i 1 n IT fi H H H 

[i j f! f1 
fi IT H !! 

; [! !i ~ i I; t! [( 
If di !1 n n n n H 
I' i ll !· ! ' fi IT IT E n tl i ~ ss i 

2131.2: Velocity 1355.1 : '.'elFU"lCCI l.!!l: lr t\'el 0.0 



upwards as a result of over-correction, and high velocities will curve the reflections 

downwards because of the under-correction. 

The velocity functions which were selected for the NMO correction were applied 

to stack the data. The NMO correction has a side effect on the data called NMO 

stretching. This side effect is a frequency distortion which especially occurs at shallow 

events and large offsets. A 30% stretch mute was applied to discard the worst effects of 

the NMO stretching. As seen in Figure 2.11a, which illustrates the stacked data, stacking 

helps to remove a significant amount of noise and some part of the multiple energy which 

is the reverberation of the primary energy within the seafloor and sea surface (compared 

with the near-trace gather, Fig 2.4). 

After the data is sorted to CDP and the offset effect has been removed from travel 

times by applying NMO correction the stacking is applied. The traces on each CDP 

gather are summed together in order to generate a stacked trace at each CDP location, and 

improve the signal-to-noise ratio. The number of traces in a CDP gather defines the fold 

of the data. In our survey, 6.25 meters group interval of 96 channels, 25 meters of shot 

spacing, and 3.125 meters of CDP spacing gave us a 12 fold stack. 

2.1.6. Predictive Deconvolution (Pre- and Post-Stack) 

Removing multiple energy from the seismic data is very important, because 

multiple energy can mask a significant amount of the primary energy which complicates 

geological interpretation of the data. Multiple removal is a great challenge, because it is 

crucial not to disturb the nature of the primary energy during the multiple removal 
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Figure 2.11: Demonstration of a multiple event on a stack section (a) without 

deconvolution and (b) with only pre-stack deconvolution. Seabed multiple is traced 
transparent. 
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process, and in some cases high amplitudes ofthe multiple energy makes it impossible for 

it to be removed completely. The success of multiple removal is not only based on the 

amount of the multiple energy removed from the data, but also related with the amount of 

the primary energy that is protected. 

Some part of the multiple energy can be reduced during stacking, because the 

NMO corrections before stacking is made based on the primary velocity function, and the 

multiples have a larger moveout than primaries. This means that multiples are under­

corrected, and they are attenuated by stacking. However, in most cases multiple energy 

exists even after stacking. 

Deconvolution is applied to the seismic data to increase the resolution and the 

quality of the data by removing or reducing the multiple energy and attenuating 

reverberations. This process can be applied before or after stack. The main concept of 

deconvolution is to compress and restore the wavelet to the original form behaving like an 

inverse filter to reverse the effects of convolution and leave only the Earth's reflectivity in 

the seismic trace (Y Ilmaz 2001 ). Figures 2.11-2.15 demonstrate predictive deconvolution 

applications. Figures 2.11, 2.13, and 2.15 show stack sections and pre-stack predictive 

deconvolution applications. In these three figures it is clearly seen that the multiple 

energy is either removed from the data or weakened, and the primary energy became 

more dominant after the deconvolution. Figures 2.12, 2.14, and 2.16 show the post-stack 

deconvolution of the same sections illustrated in Figures 2.11 , 2.13, and 2.15, 

respectively. After both pre- and post-stack deconvolution were applied multiple energy 

was almost completely removed from the data. 
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Figure 2. 12: The same stack section in Figure 2.11 (a) with pre- and post-stack 
predictive deconvolution (c). Seabed multiple is traced transparent. 
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--~---~~~~~~~~~--------------------------------

Figure 2.13: Demonstration of another multiple event on a stack section (a) without 

deconvolution and (b) with only pre-stack deconvolution. Seabed multiple and peg­
leg multiples take place within the transparent box. 
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Figure 2.14: The same stack section (a) in Figure 2.1 3 with pre- and post-stack 

predictive deconvolution (c). Seabed multiple and peg-leg multiples take place 
within the transparent box. 
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Figure 2. 15: Demonstration of another multiple event on a stack section (a) without 

deconvolution and (b) with only pre-stack deconvolution. Seabed multiple is traced 
transparent. 
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Figure 2. 16: The same stack section (a) in Figure 2.1 5 with pre- and post-stack 

predictive deconvolution (c). Seabed multiple is traced transparent. 
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Predictive deconvolution converts a repeating signal to a signal that is not 

repeating. It predicts and removes the repeating events from the data usmg the 

information from the earlier parts of the seismic record. For the 2008 data predictive 

deconvolution was applied relative water bottom, which makes the seabed the 

information to be used to predict and remove the seabed multiples. Pre- and post-stack 

predictive deconvolution helped us to remove most of the multiple energy from our data; 

however in some cases some additional processes were required such as time varying 

bandpass filter and adaptive deconvolution. 

Predictive deconvolution was applied relative to seabed for an accurate prediction 

distance. The water bottom needed to be picked for this application, and selecting the 

picks above the seabed ensured that water bottom wavelet was included in the prediction 

process. 125 ms operator length and -5 ms prediction distance were selected after many 

iterations. Prediction distance was same for all lines, but there were some slight changes 

of the operator length in some lines. 

Adaptive deconvolution can be used as an additional method to predictive 

deconvolution in some cases. For our data, adaptive deconvolution was not a successful 

method, because it was removing a significant amount of primary energy from the data 

with multiple energy. Although it was efficient on multiples, it was not preferable 

because of the primary energy loss. Figure 2. 17 shows the effect of the adaptive 

deconvolution. In this figure the seabed multiple is removed from the data, but the 

primary energy is also removed with the multiple. 
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Figure 2. 17: Adaptive deconvolution. Red outline is showing the effect of the 
adaptive deconvolution. Most of the primary energy removed from the data along 

with the multiple energy. 
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.----------------------------------------------------- - --·--·-

Time varying bandpass filter can also be used as an additional method to improve 

the effectiveness of the multiple removal process. Primary reflections quite possibly have 

lower frequencies than the multiple energy. We applied an Ormsby bandpass filter with 

10-20-250-275 Hz bandwidth to the shallow part of the section to keep most of the energy 

in this part, and 10-20-150-200 Hz bandwidth to the deeper part to eliminate the higher 

frequencies associated with multiple energy. Figure 2.18 shows the effects of time 

varying bandpass filtering. 

2.1. 7. Migration (Stolt and Kircltltoff Time Variation) 

Migration is the final step of seismic data processing flow. This process increases 

spatial resolution by collapsing diffractions and moving the dipping events to their true 

subsurface locations. Migration is a very important step especially in structurally 

complicated areas with varying seismic velocities. Migration velocities are different than 

stacking velocities, and to estimate accurate migration velocities, different types of 

migrations were applied to the post-stack data. Constant velocity Stolt migration and 

Kirchhoff time migration were used for this study. 

Constant velocity Stolt migration was used to estimate the proper velocities for the 

migration step. We applied F-K Stolt constant velocity migration with the velocity values 

of 1500 m/s, 1700 m/s, 1900 m/s and 2100 m/s; and printed the generated constant 

velocity plots. After inspection of the constant velocity migrations variable-velocity Stolt 

migrations were completed. Working on paper copies made it easier to compare the 

sections and identify the best velocities for the Kirchhoff migration. Stolt migrations are 
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Figure 2.18: Time varying bandpass filter. 
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very quick in practice when compared to the Kirchhoff migration, but the latter is more 

accurate than the Stolt migration. Stolt migration was used as a step to assist the accuracy 

of the Kirchhoff time migration. Kirchhoff migration was applied as a final step after a 

velocity model was created by using the Stolt migration. Figures 2.19 and 2.20 illustrate 

the seismic data before and after Kirchhof migration was applied. After Kirchhoff 

migration reflectors became shorter and narrower, fault planes became more clear, 

dipping events are moved to their correct locations, and bow-ties were eliminated from 

the data. 

2.2. Data Interpretation 

After the processing step seismic reflection profiles were interpreted using both 

conventional hand interpretation and SeisWorks©, a seismic interpretation package. For 

the hand interpretation final images of all seismic lines were printed at the same scale. 

There were several important markers to be interpreted on the seismic sections, such as 

seismic horizons, faults, folds, diapirs and unconformities. As a first step these important 

markers were traced by hand on printed paper copies of original seismic reflection 

profiles. All the prominent structures within the Pliocene-Quaternary and Messinian 

Units including the thrusts, extensional faults, the top and the base of the Messinian 

evaporite unit, the reflectors that delineate the sub-units of the Pliocene-Quaternary 

succession were traced. The interpretations of the seismic reflection profiles later were 

correlated with the stratigraphic information from Seyhan-1 and Karata~-1 wells. Key 

horizons within Pliocene-Quaternary (i.e., the A- and P-markers), as well as the M- and 

N-markers were placed into a chronostratigraphic framework. Correlating the well data 
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Figure 2. 19: A stack section before (a) and after (b) Kirchhoff migration. 
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Figure 2.20: A stack section before (a) and after (b) Kirchhoff migration. 
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with the seismic successions provided a firm chronostratigraphic framework of the study 

area. After the structural interpretation isopach contour maps in two-way travel time 

thicknesses of the Pliocene-Quaternary and the Messinian evaporite deposits and the 

seabed bathymetry map were completed. 

Unconformities and truncations are important parts of the seismic stratigraphic 

interpretation, because they indicate the missing strata in the depositional sequences. 

Truncations are the terminations of the reflectors within the depositional surfaces and 

they are traced in seismic reflection profiles as onlaps, downlaps, toplaps, pinch-outs. 

Several geological events can cause the truncation of reflectors such as erosion, 

deposition or faulting (Mitchum et al., 1977). Onlap is the termination of a reflection 

which laps onto a more steeply dipping surface at the base of a unit (Fig. 2.21 ). Downlap 

is the downwards angular termination of a steeply-dipping reflection onto a less steeply­

dipping reflector (Fig. 2.21 ). Top lap is the reflection termination caused by the 

deposition of a horizontal strong reflector above a succession of downlapped or inclined 

packages of strata. Offlap is the termination of a reflector by the converge of upper and 

lower reflections. 

Distinction of the normal and reverse faults in the seismic reflection profiles is 

another important step of the seismic interpretation. This definition can be made easily if 

the hanging walls and the footwalls of the faults are clearly imaged, and they create cut­

offs on key reflectors. However; that is not always the case, and when the faults are not 

clearly imaged the growth in the sedimentary packages developed around them aids to the 
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Figure 2.21: Schematic demonstration of reflection terminations. 
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interpretation of these faults. Interpretation of these faults requires the geometrical 

analysis of the growth strata wedges or progressive unconformities. Growth strata 

wedges associated with listric normal faults are observed on the hanging wall of the fault 

plane (Fig. 2.22). Thrust faults develop growth strata wedges at the hanging wall where 

the anticlines are not symmetrical. The strata on the limbs of the anticlines thin toward 

the crest of the ramp and thicken toward the troughs of the ramp (Fig. 2.22). Strike-slip 

faulting is commonly observed with clear footwall and hanging wall cut-offs of 

steeply-dipping bi-vergent faults (Fig. 2.22). These faults may be associated with 

negative or positive flower structures. 

There are several examples in the interpretation of the seismic reflection profiles 

where faults are not explicitly visible from abrupt stratal terminations and offsets. This 

also occurs frequently in mapping of geology on land, where faults often occupy erosion 

hollows buried below un-deformed young sediment. On land, such 'hidden' faults are 

identified by extrapolated offset of geological features and by associated secondary 

structures. In this thesis the same rationalization is used in interpreting the seismic 

reflection profiles (Fig. 2.22), in which faults are indicated with explicit evidence of 

offset by full lines, and those shown as dashed lines identify faults where the evidence is 

only from secondary sedimentary structures. For example, in the southeastern segment of 

the Outer Cilicia Basin the fold-thrust structures of the Kyrenia Fault zone are poorly 

imaged in the seismic reflection profiles (see Chapter 4). However, the ramp anticlines 

associated with major thrusts are clearly visible as distinctly asymmetric structures 

defining the position of a blind thrust and a vergence direction (also see Chapter 4 ). 
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Figure 2.22: Schematic demonstration of a variety of reflection offset configurations 
with respect to different faulting motion often seen in reflection profiles. 
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In the following chapters, maps are constructed illustrating the spatial 

distributions of various faults that cut the Miocene successions of Units 3 and 2 and the 

Pliocene-Quaternary succession of Unit 1 (see Chapter 3). The fault maps are compiled 

to show all faults that affected the stratigraphic units involved, therefore invariably show 

the projections of tip points of faults onto the seafloor. The faults that extend to the 

depositional surface are always highlighted in the text. For example, such and such faults 

extend to the depositional surface where they create distinctive steps on the seafloor. 
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CHAPTER THREE 

Seismic Stratigraphy and Chronology 

The stratigraphic framework of the Cilicia Basin can be described usmg the 

principles of seismic stratigraphy, and correlation with well data from the Inner Cilicia 

and Adana Basins. A seismic sequence is defined as 'a stratigraphic unit composed of a 

relatively conformable succession of genetically related strata bounded at its top and base 

by unconformities or their correlative conformities' (Mitchum et al., 1977). Prominent 

reflectors are used to define the unconformities (or their correlative conformities) that 

determine the sequence boundaries. An unconformity is a surface along which there is a 

clear evidence for either erosion or non--deposition. In seismic reflection profiles 

unconformities are identified on the basis of angular discordances of reflectors above 

and/or below the boundary such as onlap, downlap, and toplaps. However, there may not 

be clear evidence of erosion or non--deposition everywhere. Angular unconformities are 

delineated on the seismic reflection profiles by the discordance between the underlying 

truncated reflections and the overlying onlapping or downlapping reflections (Figs. 3.1, 

3.2, 3.3; Mitchum et al., 1977). 

Seismic reflection profiles show the presence of three stratigraphic units in the 

Cilicia Basin: Units 1, 2, and 3. The chronology of these seismic units is established 

through correlations with two exploration wells drilled in the innermost Cilicia Basin by 

the Turkish Petroleum Corporation: Seyhan-1 and Karata~-1 (Fig. 3.4 ). The depths of the 

sedimentary successions observed in the exploration wells are correlated with the two-

55 



NW SE 

Figure 3.1 : Seismic reflection profile from the central Cilicia Basin illustrating an angular unconformity 
(erosional truncation) in the study area (PLATE 1, Fixes 1654-1667). Brown reflectors are layers truncated 
by the base ofUnit 1 and Unit 2; theM- and theN-reflectors, respectively. 



Figure 3.2: Multichannel seismic reflection profile from the shallow part of the study 
area (PLATE 6, Fixes 1383-1400). Circled brown reflectors are showing onlap 
structures above theM-reflector. 
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Figure 3.4: Location map showing all the available data in the Cilicia Basin. Black lines are 2008 data, orange lines are 1991 
data, green lines are 1992 data and light blue lines are the industry seismic reflection profiles. Thick red lines are the seismic 
data from the 2008 dataset that is used in this thesis. S 1-Seyhan 1 and K 1-Karatas 1 are the exploration wells in the Inner Cilicia 
Basin. ADZ 81 and 90 are the Turkish Petroleum lines that are used to corelate wells to seismic sections. 



way-time industry seismic reflection profiles using the velocity information provided by 

the Turkish Petroleum Corporation (Fig. 3 .5). The Seyhan-1 well was drilled in the 

western and shallower portion ( ~40 m water depth) of the Inner Cilicia Basin. It 

recovered ~ 215 8 m of Pliocene-Quaternary deltaic and pro-deltaic successions (Turkish 

Petroleum Corporation, unpublished data, Fig. 3.5). On the basis of lithostratigraphic 

data from the well, the Pliocene-Quaternary succession was further divided into a 453 m­

thick upper subunit (Unit 1 a), a 854 m-thick middle subunit (Unit 1 b) and an 851 m-thick 

lower subunit (Unit 1c) (Fig. 3.3), separated by the A- and P- reflectors. The base ofthe 

Pliocene-Quaternary successions was marked by a major erosional unconformity, which 

is correlated with the regional M-reflector. Below this unconformity an 878 m-thick, 

predominantly evaporite unit is identified consisting of halite, anhydrite, and gypsum 

with frequent interbeds of minor siliciclastic and carbonate debris. This unit is correlated 

with the Messinian evaporite succession (Fig. 3 .5). The base of the evaporitic unit is also 

delineated by another major unconformity (i.e., marked by the N-reflector). The well 

further recovered ~977 m of Tortonian age siliciclastic and carbonate-bearing clastic 

successions and terminated within the upper Miocene at a depth of 4053 m. 

The Karata~-1 well was drilled southeast of the Seyhan-1 well in 7 4 m water depth 

(Fig. 3.4), near the Misis-Kyrenia fold-thrust belt which extends from the Kyrenia 

Mountains of northern Cyprus to the Misis Mountains of southern Turkey (Aksu et al., 

1992a,b ). The well recovered a sequence of sedimentary successions similar to those 

observed in the Seyhan-1 well, including ~2042 m-thick Pliocene-Quaternary 

siliciclastics, 393 m-thick Messinian evaporites, ~ 1633 m-thick Tortonian and middle 
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Figure 3.5: Lithostratigraphy of the Seyhan- 1 and Karata~-1 exploration wells correlated with the seismic reflection profiles 
across the boreholes (Aksu et al. , 2005). Data kindly provided by the Turkish Petroleum Corporation. 



Miocene (?Langhian-Serravallian) successions penetrating a total depth of 4142 meters 

(Fig. 3.5; Turkish Petroleum Corporation, unpublished data). 

In this study the depth in seismic reflection profiles are described in milliseconds 

as it is recorded in two-way travel time. For the time to depth conversions the following 

interval velocities are estimated through velocity anaysis: 1700 m/s in Pliocene­

Quaternary Unit 1, 4000 m/s in Messinian evaporites of Unit 2, and 3000 m/s in pre-

Messinian siliciclastics of Unit 3. Depth conversions showed that all major 

lithostratigraphic markers identified in the exploration wells by the Turkish Petroleum 

Corporation corresponded within ±30 ms with acoustically strong and laterally 

continuous reflections in the seismic reflection profiles except for the P-reflector. For 

example, the top and the base of the Messinian evaporite successions (i.e., Unit 2) 

correlated with strong seismic markers, referred to in the eastern Mediterranean region as 

theM- and N-reflectors, respectively (Ryan, 1969; Aksu et al. , 2005, Figs 3.1, 3.3). 

The chronostratigraphy of the Pliocene-Quaternary successions of the Cilicia 

Basin is studied in detail by Kennedy (2012), who kindly provided these data to the 

author. Because Kennedy (20 12) is not yet published, a summary of the Pliocene­

Quaternary chronostratigraphy is further provided here. Correlations of the Seyhan-1 and 

Karata~-1 wells with the industry seismic reflection profiles suggest that the prominent A­

reflector marks the boundary between the lower Pliocene Aktepe Formation and the upper 

Pliocene Kuran~a Formation (Fig. 3.5). Because the chronostratigraphic charts of the 

Seyhan-1 and Karata~-1 wells indicate that the Aktepe to Kuran~a formation transition 

occurs at the lower-upper Pliocene boundary, the A-reflector is concluded to denote this 
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boundary (Figs. 3.3, 3.5). Geological time tables show that the lower-upper Pliocene 

boundary occurs at 3.6 Ma. Another prominent reflector in Unit 1 is the P-reflector (e.g., 

Figs. 3.2, 3.3). This marker often occurs near the top of prominent delta packages that 

exhibit east-directed clinoform progradation. Unfortunately there is no chronological 

information in the exploration wells above the Aktepe to Kuran~a formation transition, 

thus the age of the P-reflector cannot be extrapolated from the well data. However, the 

age of the P-reflector can be estimated using the assumptions that (i) the rate of 

sedimentation within the deepest portion of the Cilicia Basin during the upper Pliocene­

Quaternary remained constant and (ii) the sediment-water interface represents the 

contemporaneous sedimentation surface. The thicknesses of sediments contained 

between the A- and P-reflectors are determined at several localities. On the basis of the 

above assumptions the age of the P-reflector is interpolated as 1. 7 Ma. This age IS 

slightly younger that the age of the upper Pliocene-Quaternary boundary at 1.8 Ma. 

Correlations with global geological time scale suggest that the M-reflector 

separates the lowermost Pliocene sediments from the uppermost Miocene evaporite 

deposits. Recent studies show that in at least some regions of the Adana Basin, the latest 

Messinian event, also known as "lago-mare event" (5.45-5.33 Ma), extends into the 

lowermost Pliocene (e.g., Cosentino et al. , 2010; Cipollari et al. , 2010). This 

interpretation differs from the previous concept in which the M-reflector is said to occur 

at the Miocene-Pliocene boundary at 5.3 Ma (e.g., Yalc;m and Gortir 1984). The well data 

are mute regarding how much of the Messinian strata are missing, as well as when exactly 

the sedimentation resumed in Cilicia Basin during the early Pliocene following the 
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Messinian Salinity Crisis (e.g., Hsii et al., 1978; Bridge et al., 2005). Because the M­

reflector is a major erosional unconformity and the Turkish Petroleum Corporation well 

data lack the biostratigraphic details about the Messinian evaporite successions, the exact 

ages of the underlying Messinian sediments are not known. However, it is known that 

within the Inner Cilicia Basin the Pliocene-Quaternary Unit 1 unconformably overlies the 

M-reflector and is characterized by a 2-3 seconds-thick delta succession (Figs 3.2, 3.3, 

also see Aksu et al., 2005). Seismic reflection profiles studied in this dissertation show 

no evidence for major interruptions in sedimentation within the Pliocene-Quaternary Unit 

1. Because the post-Messinian refilling of the Mediterranean was rapid and said to have 

occurred at 5.3 Ma, combined with the fact that the deep Cilicia Basin shows a clearly 

conformable succession readily onlapping the M-reflector, the base of Pliocene 

immediately above the M- reflector is assumed to be 5.3 Ma. Please note that the age of 

theM-reflector is broadly taken to correspond with the Pliocene-Miocene boundary at 5.3 

Ma; however this age is probably overestimated on the basis of recent studies showing 

that the lago-mare may extend into the lowermost Pliocene. 

The four strong marker horizons (i.e., the P-, A-, M-, and N- reflectors), are 

correlated across the study area using two key industry seismic reflection profiles, ADZ 

90 and ADZ 81 (Figs 3.4, 3.6 and 3.7). The strongest markers, the M- and the N­

reflectors were easily correlated from line-to-line across the study area. The delineation 

ofthe N-reflector was challenging in regions of thick Unit 1. Although theN- reflector 
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Figure 3.6: Industry multi-channel seismic reflection profile ADZ90 showing the lateral continuity of the A- P- M-and 
N-reflectors (Modified from Kennedy, 2012). This particular profile was also used to correlate these reflectors across 
the study area in the establishment of the chronology. Location is given in Figure 3.4. 
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was not observed well in these regions, the general trend of it was estimated using the 

line-to-line correlations. 

3.1 Central Cilicia Basin Unconformities 

M- and N-reflectors are prominent seismic markers in the eastern Mediterranean 

Sea (Ryan et al., 1973; Aksu et al., 2005; Hall et al., 2005; i~ler et al., 2005). In the 

central Cilicia Basin, the M- reflector is characterised by continuous and high amplitude 

strong reflectivity (Figs. 3.1 , 3.2, 3.3, 3.6, 3.7, 3.8). This basin-wide reflector marks the 

unconformity at the base of Unit 1, a continuous sedimentary package with strong 

reflectivity, across the entire study area. The unit underlying the M- reflector varies 

across the study area. In the deeper regions of the study area, the M reflector marks the 

top of the Messinian evaporites of Unit 2, and separates Messinian successions from the 

Pliocene Quaternary (Fig. 3.8). In the shallower shelf region along the Turkish coast, 

Messinian evaporites of Unit 2 are absent. In this part of the study area the M- reflector 

marks the top of Unit 3, and it separates pre-Messinian Miocene and Pliocene successions 

(Fig. 3.2). 

The N- reflector has a lower reflectivity and notably more discontinuity than the 

M- reflector. It marks the base of the Messinian succession where the Messinian 

evaporites of Unit 2 are present (Figs. 3.1 , 3.3, 3.6, 3.7, 3.8). TheN- reflector is truncated 

by theM- reflector in the shallower part of the study area where the Messinian evaporites 

are absent (Fig. 3.2). TheN- reflector is poorly imaged in some parts of the study area, 

especially where the salt layer is thicker (Fig. 3.9). 
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Figure 3.8 Multichannel seismic reflection profile illustrating the basin-wide M (purple), N (green), A (orange), and P (light green). Location is shown in Figure 3.5. 
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3.2 Central Cilicia Basin Stratigraphic Units 

3.2.1 Unit 1: Pliocene- Quaternary 

Unit 1 is a highly-reflective sedimentary package which represents the youngest 

stratigraphic unit in the central Cilicia Basin. It is characterized by high frequency, strong 

and continuous reflectors. The M-reflector defines the base of this unit (Figs. 3.1, 3.2, 

3.3, 3.6, 3.7, 3.8, 3.9). This unit is easily traced throughout the entire study area. Based 

on the correlations of exploration well data with seismic sections from the study area, this 

unit is determined to be the Pliocene-Quaternary age. Unit 1 is predominantly composed 

of siliciclastic successions mainly fed by major rivers draining into the Cilicia Basin 

(Aksu et al. , 2005). Unit 1 is correlated with the Kuran~a and Handere formations of the 

Adana Basin, and the Erzin and Aktepe formations of the Iskenderun and Latakia Basins 

(Fig. 3.1 0). This unit is also correlated with the Fanglomerate and Nicosia formations of 

the Mesaoria Basin, and the Mirtou Formation of the Kyrenia Mountains, northern 

Cyprus (Aksu et al., 2005). 

Unit 1 reaches its maximum thickness along the central axes of both the Inner and 

the Outer Cilicia Basins, and Latakia-Iskenderun Basins. Seyhan, Ceyhan, Tarsus, Goksu 

and Asi Rivers are considered to be the major sources of the sediments of Unit 1 into the 

Adana, Cilicia, Latakia and Iskenderun Basins (Fig. 3.11). This unit is characterized by a 

prograding wedge of deltaic sediments in the southern Adana and Inner Cilicia Basins, 

and it reaches its maximum thickness of ~2500 ms immediately seaward of the present 
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Figure 3.10: Chronostratigraphy of the northeastern Mediterranean basins showing correlations between seismic stratigraphic 
units and the sedimentary successions on land, compiled using Yal<;:m and Gorilr (1984), Kozlu (1987); Y1lmaz et al (1988) and 
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Figure 3.11 : Isopach map of the Pliocene-Quaternary succession in the broader Cilicia Basin. 

Contours are in milliseconds, and 100 ms is approximately equivalent of 85 meters (Aksu et al. , 

2005). 



day mouths of Seyhan and Tarsus Rivers (Aksu et al., 2005). Unit 1 sharply thins 

towards the Kyrenia Range and the southwestern Turkish coast. 

The thickness of the Pliocene-Quaternary sediments is mapped in the study area 

(Fig. 3 .12). Similarly to the broader isopach map (Fig. 3.11 ), Unit 1 thickens in the 

northeast portion of the study area through the Inner Cilicia and Iskenderun Basins, where 

it reaches a maximum thickness of 1900 ms. The thickness of Unit 1 decreases in the 

northwestern and southern portion of the study area toward the Turkish and Cyprus 

continental margins. This unit thins towards the Kyrenia range of northern Cyprus, and 

southern Turkey. The thinning of Unit 1 towards the continental shelves explains the 

absence of the unit over the Misis-Kyrenia Range of northern Cyprus and Tauride 

Mountains of southern Turkey (Fig.3 .11 ). 

Unit 1 shows several vertically stacked east-prograded clinoform successions that 

define discrete delta wedges in seismic reflection profiles (Fig. 3.2). The sediment load 

reaches its maximum thickness in the river-delta system of the Inner Cilicia Basin 

seaward of Tarsus and Seyhan Rivers (Figure 3.11 ). This unit also includes some stacked 

units of acoustically transparent weak internal reflections. These units are easily 

delineated in the seismic reflection profiles because of the contrast with the surrounding 

strong reflections ofUnit 1 (Figs. 3.2, 3.13). 

Unit 1 is further divided into three sub-units; Units la, 1b, and lc. Unit 1c is early 

Pliocene and Unit 1 b is late Pliocene age. M- and A-reflectors define the borders of Unit 

1c, separating it from Messinian Unit 2, and upper Pliocene Unit 1 b, respectively. Unit 
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Figure 3.12: Isopach map of the Pl iocene-Quaternary succession in the central Cilicia 
Basin. Contours are in milliseconds in two-way travel time. 100 ms is approximately 
equivalent of 85 metres. 
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Figure 3. 13: Multichannel seismic reflection profi le showing the accoustically transparent 
units in the Unit 1 ofthe study area. 

75 



la is predominantly Quaternary age, including mostly Quaternary and a very little portion 

of the uppermost Pliocene sediments. The P-reflector separates Unit 1a from the upper 

Pliocene Unit 1 b. 

3.2.2 Unit 2: Miocene (Messinian) 

Unit 2 is generally characterized by a low reflectivity package with weak and 

often discontinuous reflections (Figs 3.1 , 3.3, 3.8), although in the Outer Cilicia Basin, 

the succession has a stratified appearance delineated by a small number of discrete, 

strong, and continuous reflectors with a corrugated geometry (Figure 3.1, Aksu et al. , 

2005). The top of Unit 2 is distinguished by the M-reflector. The base of this unit is the 

N-reflector which has a lower reflectivity and more discontinuity. Exploration wells in 

the Inner Cilicia Basin show that Unit 2 is predominantly composed of halite alternating 

with lesser quantities of anhydrite and limestone, and is correlated with the Messinian 

evaporites (Fig. 3.1 0). Unit 2 is either very thin or not present near the Misis-Kyrenia 

horst block, the southern flanks of the Kyrenia Range, and the Turkish Margin of the 

basin (Fig. 3.8, Aksu et al., 2005). In the central Cilicia Basin this unit is only present 

below ~ 1250 ms depth. 

In the Outer Cilicia Basin, Unit 2 shows some strong internal reflectors. These 

reflectors are mostly truncated at the M-reflector and discordant with the overlying and 

underlying strata, M- and N-reflectors, respectively (Figs. 3.1, 3.3, 3.8). These strong 

internal reflectors in Unit 2 are suggested to be thin siliciclastic layers between cycles 

from the several cycles of the evaporite history of the Mediterranean Sea (Hsti et al, 1973, 
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1978). Unit 2 reaches its maximum thickness ~900 ms in the transition from the Outer to 

the Inner Cilicia Basin. Also in the southern portion of the study area there are two 

prominent thick packages of Unit 2 (~500-600 ms); however it is absent in the 

southernmost portion of the study area over the Misis-Kyrenia horst block, and the 

northern portion of the study area in the southern Turkish margin (Fig. 3.14, Aksu et al., 

2005). From the center of the study area through the Inner Cilicia Basin, the base of Unit 

2 is poorly imaged due to complexly folded and faulted zone (further discussed in 

Chapter 4). 

3.2.3 Unit 3: Miocene (pre-Messinian) 

Unit 3 underlies the M- reflector where the Messsinian evaporites of Unit 2 is 

absent, and underlies theN- reflector where Unit 2 is present. The seismic character of 

the Unit 3 varies with depth. The upper portion of this unit, immediately below theM- or 

N-reflectors, is characterized by lower frequency rhythmic reflections, showing good 

lateral continuity (Figs 3.1, 3.2, 3.3, 3.7, 3.8). In the lower part of the unit high 

frequency, continuous, and rhythmic reflectors are present. The base of this unit is not 

clearly observed in the seismic reflection profiles in the study area. Data from the 

exploration wells show that Unit 3 is composed of fluvio-deltaic successions of mainly 

Tortonian age (Uffenorde et al. , 1990), and the middle Miocene turbiditic successions of 

Serravallian and Langhian ages. It may include the lower Miocene Burdigalian and 

Aquitanian age successions at its base (Yalr;m and Gortir, 1984). Unit 3 is correlated with 

the Kuzgun, Gtiven<;, Cingoz, and Karaisah (might include at its base) formations of the 

Adana and Inner Cilicia Basins and the Pakhna Formation of the Mesaoria Basin (Yal<;m 
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Figure 3.14: Isopach map ofthe Messinian evaporite Unit 2 in the study area. Thicknesses are in milliseconds two-way time, 
~ where 100 ms represents about 150 metres. 



and Gortir, 1984; Kozlu, 1987; Figure 3.1 0). The unit further correlated with 

Karata~/lsah-Aslanta~ formations of the Misis Mountains (Kelling et al., 1987) and the 

Kythrea Group of the Kyrenia Range (Figure 3.10; Aksu et al., 2005; Robertson and 

Woodcock, 1986; Weiler 1969). 
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CHAPTER FOUR 

Structural Architecture of the Cilicia Basin 

The Cilicia Basin is an ENE-WSW -trending arc-shaped depocentre in the eastern 

Mediterranean Sea, situated between the Island of Cyprus in the south and the central 

Anatolia in the north (Fig. 4.1 ). In the northeast, the basin merges with the onland Adana 

Basin and in the west it is separated from the Antalya Basin by the broadly north-south 

trending Anamur-Kormakiti zone (Fig. 4.1 ). The basin is naturally divided into two 

morphological regions: (i) the NE-SW trending shallow Inner Cilicia Basin, and (ii) the 

broadly E-W trending deeper Outer Cilicia Basin. The study area is situated in the 

eastern segment of the Outer Cilicia Basin, immediately southwest of the transitional 

zone between the Inner and Outer Cilicia Basins (Fig.4.1 ). This region exhibits 

considerable structural complexity as a transition zone between the Outer and Inner 

Cilicia Basins, as discussed below. 

In this chapter the structural framework of the study area is described in detail, 

using major fault architectures, salt-related fold and thrust structures and sedimentary 

growth associated with these structures observed in high-resolution seismic reflection 

profiles. The study area is divided into three main morpho-tectonic domains (Fig. 4.2): 

(i) the southern basin margin, including the Misis-Kyrenia fold-thrust belt, and its re­

activated normal and strike-slip faults and their southwest extension toward the Karpas 

Peninsula of the Island of Cyprus and its northeast extension toward the Misis Mountains 

of southern Turkey, (ii) the central basin floor which includes the complexly faulted­

folded transition zone between the Inner and Outer Cilicia Basins, and (iii) the broadly 
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Figure 4.1: Simplified map of the Cilicia Basin showing the bathymetry and the important tectonic elements in the Cilicia 
Basin. The orange curve is showing the study area. 
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Figure 4.2: Map of the Cilicia Basin showing the three main morpho-tectonic domains in the study area. 



northwest-concave shallow continental margin seaward of the present-day Goksu delta, 

which also includes a 30-40 km wide tectonically complex zone corresponding with the 

marine extension of the Kozan Fault zone. The location of the data used to describe the 

structural architecture of the Outer Cilicia Basin is given in Figure 4.3. 

4.1. Southern basin margin: the Misis-Kyrenia fault zone 

The Misis-Kyrenia Fault Zone is defined as an approximately 30 km-wide SE­

convex zone which links the Misis Mountains of southern Turkey to the Kyrenia Range 

of northern Cyprus (Fig. 4.2). The southern basin margin is characterised by two 

prominent structures associated with the Misis-Kyrenia Fault Zone. These structures are 

temporally superimposed on one another and include (i) a NE-SW trending and SE­

verging fold thrust belt which defines the architecture of the Miocene succession of Unit 

3 and (ii) a prominent NE-SW trending and both NW-and SE-dipping extensional fault 

system which defines the architecture of the Pliocene-Quaternary succession of Unit 1 

(Fig. 4.4). The NE-SW trending and SE-verging fold thrust belt defines the trailing 

panels of the Misis-Kyrenia fold-thrust belt, whereas the Pliocene-Quaternary fault 

system with high angle extensional faults creates a well defined horst structure centered 

over the Miocene Misis-Kyrenia fold-thrust belt (Fig. 4.5). In this context, the southern 

basin margin exhibits a duplex structure: a contractional belt and an extensional belt, 

separated by the prominent M-reflector. 
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4.1.1. Misis-Kyreniafold-thrust belt 

Misis-Kyrenia fold-thrust belt links the Kyrenia Range of northern Cyprus to the 

Misis Mountains of the southwestern Turkey where the belt exhibits considerable 

terrestrial relief (e.g., Robertson and Woodcock, 1986; Kelling et al. , 1987). In the 

marine seismic reflection profiles across the northeastern Mediterranean Sea, the fold­

thrust belt is characterized by elevated seafloor morphology which is the expression of 

the erosional remnant of a late Miocene fold-thrust belt, superimposed by the extensional 

faults and the prominent horst block which is developed over the crestal region of the 

fold-thrust belt (Hall et al., 2005, Calon et al. , 2005, Aksu et al. , 2005) 

The Misis-Kyrenia fold-thrust belt consists of 6-7 gently curved, broadly NE-SW 

trending and SE-verging thrusts that delineate the pre-Messinian successions of Unit 3 

(Figs. 4.4, 4.5, 4.6, 4.7). These thrusts are often difficult to identify in the seismic 

reflection profiles, mainly because of the deep incision and decapitation by the overlying 

M-reflector, which eradicated most of the structural morphology. However, these thrusts 

have large ramp anticlines associated with thrust culminations that are centrally located 

across the Misis-Kyrenia fold-thrust belt (Fig. 4.4, 4.6). Although, the thrust trajectory 

cannot be clearly imaged in the seismic reflection profiles, the secondary structures 

associated with thrusting, such as the ramp anticline of the thrust culmination provide a 

clear indication of the location of the thrusts, as well as thrust vergence (see Chapter 2). 

The M-reflector is a prominent erosional unconformity across the crestal regions of these 

prominent thrust culminations across this zone (Figs. 4.5, 4.7). The Pliocene-Quaternary 

succession of Unit 1 dramatically thins toward the Misis-Kyrenia fold-thrust belt, 
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onlapping and eventually overstepping the crest of the structure (Figs. 4.6, 4.7). The 

southeastern edge of the Messinian evaporite Unit 2 is located near the southeastern 

margin of the Central Basin Floor (discussed below). Unit 2 is absent over the horst 

block (Figs. 4.5, 4.6, Aksu et al., 2005, Calon et al., 2005). 

4.1.2. Misis-Kyrenia horst block 

The Misis-Kyrenia horst block is situated over the crest of the Misis-Kyrenia fold­

thrust belt (Fig. 4.4). It is bounded on both the northwestern and southeastern margins by 

relatively steeply (>20°) dipping normal faults that cut most of the Pliocene-Quaternary 

strata (Figs. 4.5, 4.6, Aksu et al. , 1992, 2005). Some of these faults create pronounced 

steps on the sea floor (e.g., Fig. 4.6). This NE-SW trending and NW- and SE-dipping 

extensional fault system delineates the Pliocene-Quaternary structures of the southern 

margins ofthe Inner Cilicia and Outer Cilicia Basins (Fig. 4.4). The system consists of6-

8 extensional faults. The tip points of these faults are located at or near the depositional 

surface, and the faults extend well into the Pliocene Quaternary Unit 1 (Fig.4.6). The 

master fault of this system creates ~ 700 m dip separation on the M reflector, and defines 

one ofthe prominent faults ofthe Misis-Kyrenia horst block (i.e., fault N1; Figs. 4.4, 4.5, 

4.6). 

In the western part of the southern margm an ENE-WSW trending listric 

extensional fault system extends along the northern Cyprus, paralleling the coast with a 

cross-sectional width of 10-15 km (Fig. 4.4). The system can be readily traced toward the 

west where it defines a prominent imbricate fan of extensional fault system within the 
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Pliocene-Quaternary succession (Fig. 4.4; Aksu et al., 2005). Tip points of these faults 

are in the uppermost Pliocene or Quaternary, and they sole in the Messinian evaporite 

Unit 2 (Figs. 4.8). The individual faults of this system create small dip separations on the 

M-reflector, but notably larger separations in the Pliocene-Quaternary reflectors. At first 

glance, this relationship of the younger sediments showing larger stratigraphic offset than 

the older sediments may appear counterintuitive. However, in succession where the older 

sediments is evaporite deposits, including salt, these sediments readily become mobilized 

and may be injected into the footwall as well as the hanging wall of the fault, creating the 

observed stratigraphic relationship. Many such examples from the Outer Cilicia Basin 

are given by Bridge et al. (2005) and Aksu et al. (2005). 

4.2. Central Basin Floor 

The central basin floor is delimited by two extensional fault zones in its 

northwestern and northeastern margins, and a zone of basin-wide thrust faults in its 

southern margin (Fig. 4.4). A set of NE-SW trending extensional fault zone in the 

northwest, a NW -SE trending extensional fault zone in the northeast, and the trailing 

thrust of the Misis-Kyrenia fault zone in the south bound the central basin floor (Fig 4.4). 

The salt-related contractional fold-thrust zone confined to the central and southern 

portions of the central basin floor defines the Pliocene-Quaternary of the Outer Cilicia 

Basin. This zone is juxtaposed to the extensional fault system that characterizes the 

Pliocene-Quaternary structural architecture of the Inner Cilicia Basin (Fig.4.4). 
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Figure 4.8: Multichannel seismic reflection profile illustrating the extensional faults of 
the Southern Basin Margin. 
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4.2.1. Basin Bounding Elements 

The northwestern margin of the central basin floor is delineated by a NE-SW 

trending SE- and NW -dipping extensional fault system which is developed near the base 

of slope across the Outer and Inner Cilicia Basins (Fig. 4.4). Traced toward the west, the 

fault system progressively curves and assumes a broadly E-W trend. The NE-SW 

trending faults interfere with the NE-SW trending salt wall in the transition from the 

Outer to Inner Cilicia Basin (Fig. 4.4). The master fault of this fault zone (N2) is traced 

across the entire basin (Fig. 4.4). In the seismic reflection profiles these faults have clear 

trajectories where they cut the two prominent reflectors of the Pliocene-Quaternary Unit 1 

(i.e., the A- and P-reflectors, Figs. 4.1 0, 4.11 ). The faults create dip separations of 65-450 

ms on the A-reflector, and 0-200 ms on the P-reflector (Figs. 4.9, 4.10, 4.11). These 

faults do not appear to cut the M-reflector in the Outer Cilicia Basin (Figs. 4.9, 4.1 0); 

however, in the transition zone from Outer to the Inner Cilicia Basin they cut the M­

reflector penetrating deeper in Messinian Unit 2 (Figs. 4.11 , 4.12). In the northeastern 

portion of the Outer Cilicia Basin tip points of these faults are located in the upper 

Pliocene succession (Fig. 4.9). The faults descend into the lower Pliocene (Fig. 4.9, 

4.1 0). Tracing the faults toward the northeast into the Inner Cilicia Basin, tip points move 

upwards into the Quaternary succession as the faults cut progressively younger 

successions. Here, they descend into the lowermost Pliocene or the Messinian evaporite 

unit (Figs. 4.11, 4.12). In the Inner Cilicia Basin, the tip points are at the depositional 

surface, and they create distinct graben structures on the sea-floor (Fig. 4.1 2). These 
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Figure 4.9: Seismic reflection profile showing the major structures of the central basin floor. Location is shown in Figure 4.3 
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faults exhibit notable sedimentary growth especially in the upper Pliocene and Quaternary 

successions (Figs. 4.1 0, 4.11 ). 

The northeastern margin of the Central Basin Floor is delineated by a prominent 

broadly NW-SE trending zone of predominantly NE-dipping listric normal faults (Fig. 

4.4, 4.13). The master fault of this fault fan (i.e. N3, Fig. 4.4) defines the southwestern­

most panel of a very large NW -SE trending and predominantly NE-dipping fault fan that 

occurs in Inner Cilicia Basin (Aksu et al., 2005). This master fault (N3) exhibits a 

notably listric fault trajectory, extending from the depositional surface into the underlying 

Messinian evaporite succession of Unit 2 (Fig. 4.13). Deeper penetrating industry 

seismic reflection profiles show that this fault as well as its subsidiary synthetic and 

antithetic faults all sole into Unit 2 (Fig. 4.14). The hanging wall of the master fault 

exhibits considerable throw on the key markers, such as the A- and P-reflectors and syn­

sedimentary growth. This stratigraphic architecture is also seen in many previous studies 

(e.g., Aksu et al., 1992a,b, 2005, Bridge et al., 2005). 

A number of smaller similarly trending and NE- and SW-dipping extensional 

faults also occur in the northeastern portion of the central basin floor immediately 

southwest of the master fault N3 described above (Fig. 4.4 ). These faults have tip points 

at or near the depositional surface, and they sole in the M-reflector, or the Messinian 

evaporite unit (Fig 4.13). 

On the map view, the master fault N3 extends from the NE-SW trending and 

predominantly NW -dipping high angle extensional fault zone which defines the 
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Figure 4.13: Seismic reflection profile showing the structural elements of the central basin floor. Location is shown in Figure 4.3. 
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Figure 4.14: Industry seismic reflection profile showing the NW-SE trending extensional fault system of the Inner Cilicia 
Basin and the master fault of this system (N3). 



northwestern margin of the Misis-Kyrenia horst block in the southeast to the NE-SW 

trending salt wall that occupies the southern fringes of the Goksu delta margin in the 

northwest (Fig. 4.4). There is a clearly orthogonal relationship between the basin 

bounding elements in the southeast and northwest and the master fault and the associated 

extensional fault fan to the northeast. 

The southern margin of the central basin floor is delineated by the trailing thrust 

of the Misis-Kyrenia fault zone that defines the structural architecture of the Miocene 

succession of Unit 3, and an extensional fault system that defines the architecture of the 

Pliocene-Quaternary succession of Unit 1 (Figs. 4.4 ). This portion of the study area was 

described in detail in the southern margin above. 

4.2.2. Central Fold-Thrust Systems 

The structural architecture of the broadly triangular shaped central basin floor 

immediately south of the listric master fault N3 is characterized by thrust faulting and salt 

tectonism delimited by the basin bounding structural elements described above. When 

the structure map of the region is examined, the central basin floor is divided into three 

prominent morpho-tectonic sub-domains: (i) a complicated region of broadly WNW-ESE 

trending and SSW- and NNE-verging centrally located thrust belt, herein referred to as 

fold-thrust belt 1, (ii) a predominantly NW -SE trending and both NE- and SE-verging 

thrust belt in the northeast, herein referred to as fold-thrust belt 2, and (iii) a generally 

NE-SW trending and SE- and NW -verging thrust belt is the south referred as fold-thrust 

belt 3 (Fig. 4.4). 
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The fold thrust structures of fold thrust belt 1 gently curve toward the west in their 

northwestern extensions, whereas they curve toward the northeast in their eastern 

extensions, creating curvi-linear map traces resembling a 'lazy S' pattern. Both fold­

thrust belts 1 and 3 can be readily traced toward the west where they progressively swing 

to assume a more or less E-W trend, paralleling the general shape of the Outer Cilicia 

Basin and its margin (Fig. 4.4). 

4.2.2.1. Fold-thrust belt 1 

The central portion of the Outer Cilicia Basin is dominated by E-W and ENE­

WSW trending salt-related fold-thrust structures which are most readily imaged in the 

Pliocene-Quaternary succession (Figs. 4.4, 4.13, Aksu et al., 2005 ; Piercey, 2011). A 

wide zone of E-W trending fold belt extends across the entire Outer Cilicia Basin. The 

zone is characterized by a corrugated sea-floor morphology in the southwestern portion of 

the Outer Cilicia Basin. Seismic reflection profiles show that this surface morphology is 

the expression of underlying, larger fold structures that are mostly developed in the 

Pliocene-Quaternary succession (Fig. 4.13). Most of these fo lds are cut by thrusts that 

have their tip points in upper portion of the Pliocene succession (Fig. 4.15; Aksu et al., 

2005). 

In the central Cilicia Basin, the ENE-WSW trending salt-cored fold-thrust belt 1 

turns to an ESE-WNW trend and terminates against the trailing edge of Misis-Kyrenia 

fault zone (Fig 4.4 ). In the seismic reflection profiles fold-thrust belt 1 is characterized 

by anticlines and synclines that create ~25-125 ms elevation on the sea-floor between the 
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adjacent crests and troughs (Fig. 4.13). The anticlines ofthe fold structures are cored by 

the Messinian evaporites (Figs. 4.13, 4.15; Aksu et al., 2005). The Pliocene-Quaternary 

Unit 1 thickens through the synclines and thins over the anticlines. Growth strata wedges 

are observed in the upper Pliocene and Quaternary successions, but there is not an 

obvious thickness variation in the lower Pliocene (Figs. 4.15). Progressive syn-tectonic 

unconformities are developed in the upper Pliocene and Quaternary successions over the 

crestal regions of the anticlinal structures (Figs. 4.15, 4.16). Most of the anticlines are 

asymmetrical and broken by thrusts faults that have tip points in the upper Pliocene or 

Quaternary succession (Fig. 4.15). Only one of these thrusts has tip point immediately 

below the depositional surface (T1, Figs. 4.11, 4.13). These thrusts sole in the Messinian 

evaporite Unit 2 or at theN-reflector (Fig 4.17). They create ~10-150 ms dip separations 

on theM-reflector, and 0-80 ms dip separations on the A-reflector (Figs. 4.13, 4.15). All 

of these thrusts penetrate into the Messinian Unit 2 where they are cored by salt in their 

footwalls and hanging walls (Figs. 4.13, 4.15, 4.17). 

4.2.2.2 Fold thrust belt 2 

Fold thrust belt 2 occurs across the transition zone from the Outer to the Inner 

Cilicia Basin and represents the northeastern most structures of the contractional domain. 

This belt consists of several NW-SE trending, and both NE- and SW-verging thrust faults 

occurring immediately south of the master fault (N3) of the northeastern margin. On the 

map view, this belt extends from the NE-SW trending extensional faults that delimit the 

northwestern margin of the central basin floor to the NE-SW trending extensional fault 

zone which defines the southern margin ofthe central basin floor (Fig. 4.4). In the 
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Figure 4. 16: Seismic reflection profile showing the sediment growth and stacked syn­
tectonic progressive unconformities over the anticlines of fold thrust belt 1. Fold thrust 
belt is zoomed from the seismic reflection profile in Figure 4. 13. 
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seismic reflection profiles the thrust faults of the fold thrust belt 2 have their tip points in 

the Pliocene successions, and these faults sole in the M-reflector or Messinian Unit 2 

(Figs. 4.13, 4.15). They create small dip separations on M- (~10-50 ms) and A- (5-30 

ms) reflectors, but they do not cut the P-reflector. They are associated with smaller scale 

fold structures that have minor or no influence in the sea-floor (Figs. 4.13, 4.15). This 

zone represents the last stage of the contraction and is a complexly faulted-folded 

transition zone between Outer and Inner Cilicia Basins. Progressive syn-tectonic 

unconformities occur over the crests of the small anticlines that the thrusts of the fold 

thrust belt 2 creates in the upper Pliocene succession (Figs. 4.13, 4.15). 

4.2.2.3. Fold thrust belt 3 

In the southern portion of the Outer Cilicia Basin a deeply seated NE-SW trending 

and both N- and S-verging fold-thrust belt extends toward the northeast, paralleling the 

northern Cyprus coastline (Fig. 4.4, Piercey, 2011). This belt affects the Miocene 

successions of Units 2 and 3, and characterises the pre-M-reflector structural architecture 

of the sub-domain in the Outer Cilicia Basin (Piercey, 2011). The major thrust of this belt 

extends across the entire Outer Cilicia Basin and it branches into two thrusts in the 

Central Basin Floor (T7, Fig. 4.4). Many smaller thrust faults merge with this NE-SW 

trending and N-verging major thrust (T7). In the seismic reflection profiles thrust T7 has 

tip point in the Messinian evaporite Unit 2, and it creates ~ 125 ms offset on the N­

reflector (Fig. 4.9). The sole of the fault cannot be clearly delineated in the seismic 

reflection profiles, but it penetrates deep in the pre-Messinian succession (Fig. 4.9). 

Thrust T7 is associated with an asymmetrical fold structure in the Pliocene-Quaternary 
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successiOn. In the upper Pliocene and Quaternary, stacked syn-tectonic progressive 

unconformities are observed over the anticline of this fold structure (Fig. 4.9). In this 

region there are many relatively superficial thrusts that sole into the deeply seated thrust 

T7. On the map view these superficial thrusts are NE-SW trending and both N- and S­

verging (Fig. 4.4). In the seismic reflection profiles they have their tip points in the 

Pliocene successions, and they create ~ 100 ms offsets on the M-reflector, and very little 

offsets on the N-reflector (Fig 4.9). They penetrate into the pre-Messinian Unit 3 where 

they sole in the deeply seated thrust T7. Both deeper and superficial faults described 

above terminate at the southeastern Outer Cilicia Basin (Fig. 4.4). There is another deep 

seated thrust (T8) and its associated antithetic thrust (T9, Fig 4.4). This pair occurs where 

the T7 and related superficial faults terminate (Fig. 4.4). Thrusts T8 and T9 have their tip 

points in the Pliocene, and they create ~200-250 ms offsets on theM-reflector (Fig. 4.1 0). 

Thrust T8 penetrates deep in the pre-Messinian Unit 3, but the sole of this thrust is not 

clearly imaged in the seismic reflection profiles. Thrusts T8 and T9 are associated with 

an asymmetrical fold structure in the Pliocene-Quaternary succession, and there is a 

significant thinning of the Pliocene-Quaternary successions over the anticline, and 

thickening over the syncline (Fig. 4.10). Thrust T8 merges with the WNW-ESE trending 

and NE-verging thrust T5 of fold thrust belt 1 and terminates together against the trailing 

edge ofMisis-Kyrenia fault zone (Fig. 4.4). 

4.3. Northwest Continental Margin: Goksu Delta Region 

The northwest margin of the Cilicia Basin includes the shelf region immediately 

seaward of the Goksu delta, and the steeper continental slopes that lead into the deeper 
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basinal setting of the northeastern Outer Cilicia Basin (Fig.4.2). The region includes a 

complex fault architecture dominated by three extensional fault zones (i.e., fault zones 1-

3): (i) A zone of NE-SW trending, NW- and SE-dipping normal faults in the northeast 

which progressively swing and merge with a broadly E-W trending, S- and N-dipping 

fault zone (orange faults, Fig. 4.18). This fault zone closely parallels the morphology of 

the continental slope and, to the northeast, links with the onland Kozan Fault Zone 

(discussed later). (ii) A broadly E-W trending and exclusively S- dipping normal fault 

zone which occurs across the continental slope (red faults, Fig.4.18), and (iii) a NW -SE 

trending fault zone of predominantly NE-dipping normal faults with occasional SW­

dipping faults which are confined to the continental slope (green faults, Fig. 4.18). These 

three extensional fault zones create a complicated interference in the continental slope 

region (Fig 4.18, e.g. Aksu et al. , 2005). Locations of the seismic reflection profiles that 

are used to describe the structures of the Northwest Continental Margin are given in 

Figure 4.19. 

4.3.1. Extensional fault zone 1 

The nearshore portion of the Outer Cilicia Basin is characterized by a set of E-W 

trending and broadly N- and S-dipping extensional faults (Figs. 4.18). These faults 

progressively swing to assume a northeast trend near the transition zone between the 

Inner and Outer Cilicia Basins. This fault system has the same orientation as the NE-SW 

trending basin bounding extensional fault set of the Central Basin Floor through the Outer 

Cilicia Basin. Proceeding towards the Inner Cilicia Basin the extensional fault zone 1 
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Figure 4.18: Tectonic map of the Northwest margin of the Cilicia Basin showing the three sets of extensional faults. Ticks 
0 are showing the hanging walls of the faults. 



Figure 4.19: Locations of the seismic reflection profiles collected from the Cilicia Basin. A, B, C, D, and 
E are the profiles used to describe the structures in the northwest margin of the study area. Black lines 
show the seismic data from 2008 data set, and the blue lines are from the previous data sets. 



turns to a NNE-SSW trend, while the other system remains at the NE-SW trend, and 

those two systems are separated. These two fault systems together delimit the 

northwestern margins of both the Inner and Outer Cilicia Basins. The NE-SW trending 

portion of the extensional fault zone 1 consists of narrowly-spaced N- and S-dipping 

high-angle extensional faults which have their main expression along the southern 

Turkish shelf (Fig.4.20). These faults define a 20-25 km wide zone across the Outer 

Cilicia Basin, a 15-20 km wide zone through the central Cilicia Basin, and a 5-10 km 

wide zone in the Inner Cilicia Basin (Fig 4.18). In the Outer Cilicia Basin occasional NE­

trending, and NW -dipping antithetic sets are also observed (Fig. 4.18), where these faults 

create small horst and graben structures (Fig. 4.20). Similar structures are also described 

in central Outer Cilicia Basin (Aksu et al. , 2005; Piercey, 2011 ). In the seismic reflection 

profiles the faults bounding these horst and graben structures are delineated as high-angle 

(25-30°) normal faults (Fig. 4.20). Many of these faults show obvious footwall and 

hanging wall cut-offs where they cut prominent reflectors in Unit 1 (Figs. 4.20, 4.21). In 

the upper slope and shelf regions, these faults also cut the prominent M- reflector and 

show 10-120 ms offsets on the M-reflector, again defining horst and graben structures 

(Fig. 4.20). 

In the shallow portion of the study area near the present-day Turkish continental 

margin, the tip points of the E-W and NE-SW trending faults are situated in the 

uppermost Pliocene or Quaternary succession (Figs. 4.20). But traced toward the deeper 

portions of the Outer and Inner Cilicia Basins, the tip points become progressively deeper 

in the Pliocene successions. The roots ofthese faults are situated in the Miocene 
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successions of Unit 3 (Figs. 4.20, 4.21 , 4.22). In the northeastern shallow portion of the 

Goksu delta margin, the individual faults of this zone progressively converge to assume a 

NNE-SSW orientation (Fig 4.18). 

4.3.2. Extensional fault zone 2 

The second fault zone in the northwest margin of the Cilicia Basin is an E-W 

trending and solely S-dipping imbricate extensional fault fan (Figs. 4.18, 4.21-4.24). This 

set is also identified by Aksu et al. (2005) and prominently occurs in the region between 

the shelf break and the base of slope. The E-W trending fault system intersects with the 

extensional fault zone 1 in a complicated manner in the Outer and Inner Cilicia Basins. 

The extensional fault zone 1 progressively turns to assume a NE-SW trend through the 

central portion of the study area, whereas the extensional fault zone 2 maintains its E-W 

trend. Therefore, in the study area these two extensional fault systems are clearly 

separated (Fig 4.18). 

The individual faults of the extensional fault zone 2 exhibit listric fault trajectories 

which are at very low angles (2-5°) in the Pliocene succession, but progressively steepen 

to ~ 10° in the Quaternary (Figs. 4.20). In the multichannel seismic reflection profiles 

these faults define a set of internally parallel fault traces delineating an imbricate 

extensional fault system (Figs. 4.21, 4.23, 4.24). The faults extend well into the lower 

Pliocene successions and sole either on the M-reflector (e.g., Fig. 4.24) or in bedding­

parallel detachments within various levels of the Pliocene-Quaternary Unit 1 (e.g., Figs. 
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NW SE 

Figure 4.23: High resolution seismic reflection profile D showing the extensional faults 
of the northwest margin. Location is shown in Figure 4.19. orange=Extensional fault 
zone 1, red= Extensional fault zone 2, green= Extensional fault zone 3. 
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Figure 4.24: High resolution seismic reflection profile E showing the extensional faults of the northwest mar~n. 
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4.20, 4.21, 4.23). Along the region near the base of slope, a number of these faults have 

tip points at the depositional surface where they create bench marks on the sea floor (e.g., 

Fig. 4.20-4.23). Further onshore, the majority of the faults have tip points situated within 

the Quaternary successions (Fig. 4.24). Only a few of these faults show tip points in the 

Pliocene successions (Fig. 4.24). Sediment growth is observed in both Pliocene and 

Quaternary units associated with this fault zone (Fig. 4.24). 

4.3.3. Extensional fault zone 3 

The third fault zone observed in the NW margin of the study area is the set 

consisting of NW-SE trending and predominantly NE-dipping (with minor SW-dips) 

extensional faults (Fig. 4.18). These faults interact with the NE-SW and E-W trending 

fault systems in a complex manner, as discussed below (Fig. 4.18, Aksu et al., 2005). 

This fault system is only present in the Inner and the northeastern Outer Cilicia Basins, 

and does not extend into the central portion of the Outer Cilicia Basin. In some seismic 

reflection profiles, especially the profiles from the 1991 and 1992 dataset, these faults 

give the impression that they may be the antithetic faults of the extensional fault zone 2 

(Figs. 4.21, 4.24). However, careful and detailed mapping of these faults in the 2008 data 

clearly shows that this set is a separate extensional fault system (Figs. 4.18, 4.20, 4.22, 

4.23). This fault set is also described as a separate extensional set by Aksu et al. (2005). 

In Figures 4.22 and 4.23 these extensional faults are traced at a very low angle, almost as 

horizontal reflectors. The horizontal nature of these faults is caused by the orientation of 

the seismic profiles. Because the seismic profiles are oriented approximately parallel to 

trend of the extensional fault zone 3, the reflections emanating from the fault planes are 
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imaged as horizontal reflectors (compare Figures 4.18 and 4.19). Careful analysis and 

cross correlations of the vertically and horizontally exaggerated seismic reflection profiles 

reveal that these reflectors are indeed reflections emanating from the planes of the 

extensional faults. 

In dip profiles individual faults of this zone have tip points ranging from 

Quaternary to lower Pliocene successions (Figs. 4.20, 4.21 , 4.24). These faults have 

relatively straight to low-angle listric trajectories which extend into the Pliocene­

Quaternary succession and interact with the faults of the extensional fault zone 2 (e.g., 

Fig. 4.24). These faults demonstrate minor growth strata in the Quaternary and Pliocene 

succession (Fig. 4.24). In the northeastern Outer Cilicia Basin there are several antithetic 

faults associated with the NW -SE trending faults, where the synthetic-antithetic pairs 

create small graben structures (Figs. 4.18, 4.20, 4.21 , 4.24). 

4.4. Fault interactions 

A NE-SW oriented seismic reflection profile provides an exceptional image of the 

complex interactions between the three extensional fault zones (Fig. 4.24). Here, the 

extensional fault zone 1 is imaged as very-low angle traces cutting the M-reflector. The 

extensional fault zones 2 and 3 interact with each other in a complex manner. In the 

majority of this interaction extensional fault zone 3 seems like the antithetic set of 

extensional fault zone 2 although these two systems are independent. However, m 

several occasions the faults of these two systems cut each other. It is not clear in the 

seismic reflection profiles the geometric relationships of the fault displacements. For 
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example, in the southwestern portion of the profile extensional fault labeled as a1 (red) 

clearly cuts and offsets the trajectories of several faults of the extensional fault zone 3 

(Fig. 4.24). However, a fault belonging to the extensional fault zone 3 (i.e., labeled as b1 

in Fig. 4.21) clearly cut and offset a major fault belonging to the extensional fault zone 2. 

This non-systematic and complex faults-cutting-faults relationship indicates that faulting 

was concurrent in extensional zones 2 and 3. It should be noted that the faults within the 

extensional fault zones 2 and 3 are shown on Figure 4.18 as straight and continuous lines, 

despite the fact that these faults clearly cut one another. The simple reason for this is as 

follows: the placement of a fault plane that exhibits listric trajectories that assume 

bedding parallel orientation at depth is not a simple task. Only the seabed projections of 

the tip points are shown on various seismic reflection profiles and these points of 

projections are connected on the map, thus creating straight and continuous lines on fault 

maps. 

Careful examination of the seismic reflection profiles shows that in the shallower 

portion of the study area, the faults of the extensional fault zones 2 and 3 tip mostly 

within the Quaternary succession (Fig. 4.24). If the Quaternary strata are stripped from 

this region, the underlying surface would arise as a heavily corrugated morphology. The 

corrugations are the result of the deformation and sedimentation associated with the tip 

points of the red and green faults. Correlations with the data from the exploration 

boreholes show that this level is coincident with the P-reflector (i.e., 1. 7 Ma). The lack of 

growth in the lower portion of the Pliocene succession and the minor growth in the upper 
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Pliocene successiOn immediately below the P-reflector suggest that the onset of the 

primary phase of faulting barely predates the P-reflector. 
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CHAPTER FIVE 

Discussion 

The maJor structural elements that were described in the prevwus chapter 

contribute significantly to understanding of the Neogene evolution of the Cilicia Basin. 

The timing of various phases of deformation is consolidated in a tectonostratigraphic 

chart (Fig. 5.1). This chapter documents the history of the area, based on details from 

Chapter 4, and described from southeast to northwest in domains: southern basin margin, 

central basin floor, and NW continental margin (Fig. 5.2). The implications of the 

tectonostratigraphic chart are discussed in terms of the regional structural evolution. 

5.1. The southern basin margin 

The southern basin margin is a wide SE-convex zone, bounded by the Kyrenia 

Range of northern Cyprus and its marine extension, the Misis-Kyrenia fault zone (Fig. 

5.2). This fault zone is associated with two prominent structural elements that are 

temporally superimposed on each other. Miocene deformation is defined by a 

contractional belt of NE-SW trending and SE-verging fold thrusts (fault set A, Figs. 5.1 , 

5.2, 5.3, 5.4). The Pliocene-Quaternary deformation is characterised by reactivation of 

fault set A with some additional back thrusting and by a separate extensional zone ofNE­

SW and ENE-WSW trending and both NW-and SE-dipping faults (fault set B, Figs. 5.1 , 

5.2, 5.4). 

5.1.1. Misis-Kyreniafold-thrust belt 

The Misis-Kyrenia fold-thrust belt consists of 6-7 NE-SW trending and SE­

verging thrusts. These thrusts create elevations on the seafloor which are the expression 

ofthe erosional remnant of a late Miocene fold-thrust belt (fault set A, Figs. 5.1, 5.2, 5.4; 
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Figure 5.2: Tectonic map of the study area showing the important structural elements in the Cilicia Basin. Ticks are showing 
the hanging walls of the faults. Green structures are salt walls. Letters with circles are fault sets that are described in Chapter 5. 
Letters with numbers are individual faults of these fault sets. 



Figure 5.3: Location map showing the seismic reflection profiles in the study area . Black lines are 2008 data, brown lines are 
1991 data, and light blue lines are the industry seismic reflection profiles. Thick red lines are the seismic sections that are used 
to describe the structures of the central basin floor and the southern margin. 
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Hall et al., 2005; Calon et al., 2005; Aksu et al., 2005). In the Outer Cilicia Basin these 

thrusts cut through the upper Miocene successions where Messinian salt unit is absent 

(fault set A, Fig 5.4). The Pliocene-Quaternary unit dramatically thins towards the crest 

ofthe fold-thrust belt and deformation is observed on the seafloor morphology (Fig. 5.4). 

This architecture suggests that the fold-thrust belt is active at least since the late Miocene, 

and that thrust activity continued to the present in the Outer Cilicia Basin (fault set A, Fig. 

5.1). The growth strata architectures show that the thrusts are active during the Pliocene­

Quaternary. The overprinting of the thrust stack by faults with normal-sense dip 

separations primarily structuring the Pliocene-Quaternary succession of Unit 1 suggest 

that the Miocene thrusts must have been re-activated in the Pliocene-Quaternary as a 

strike-slip zone. 

Late Miocene contraction was followed by a phase of extension in the southern 

basin margin which created horst-graben structures in the Pliocene-Quaternary (fault set 

B, Figs. 5.1 , 5.4). The Misis-Kyrenia horst block is bordered to the NW by NE-SW 

trending and NW -and SE-dipping extensional faults that developed over the northern 

margin of the fold-thrust belt (Fig. 5.2). The steeply dipping normal faults cut through 

most of the Pliocene-Quaternary unit and create pronounced steps on the seafloor and dip 

separations on the M-reflector (Fig. 5.4). Growth strata and the seabed deformation 

indicate that they were active throughout Pliocene-Quaternary time. Some may represent 

superficial sliding of the Pliocene-Quaternary succession over an underlying mobile 

Messinian evaporite succession (Aksu et al., 2005; Bridge et al. , 2005). 
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5.2. The central basin floor 

The central basin floor is bounded by a NE-SW trending extensional fault zone in 

the northwest (fault set C in Figs. 5.1, 5.2), a NW-SE trending extensional fault zone in 

the northeast (fault set I, Fig. 5.2), and the Misis-Kyrenia fault zone in the southeast. 

Delimited by these three zones, a central fold-thrust system (fault sets D, D' and E) 

extends through the entire Outer Cilicia Basin (Fig. 5.2). 

5.2.1. Central basin boundingfaults 

The northwest margin of the central basin floor is bounded by NE-SW trending, 

SE-and NW -dipping extensional faults which are interpreted as the marine extension of 

the Kozan Fault zone (fault set C, Figs. 5.1, 5.2). The master fault of this fault zone is 

traced through the entire Cilicia Basin (N2, Figs. 5.2, 5.5, 5.6, 5.7). In the Inner Cilicia 

Basin tip points of the NE-SW trending faults are at or near the depositional surface. 

These faults extend across the entire Pliocene-Quaternary succession and cut the M­

reflector, penetrating into the Messinian Unit 2 (Fig. 5.5). These faults are associated 

with seafloor deformation (Fig. 5.5) and sediment growth in the Quaternary and the upper 

Pliocene in the Inner Cilicia Basin (Figs. 5.5, 5.6). There is no clear evidence of growth 

strata in the lower Pliocene (Figs. 5.5, 5.6). Towards the Outer Cilicia Basin these faults 

lose their seafloor expression where they have tip points in the upper Pliocene and 

penetrate deep in the lower Pliocene, but do not cut theM-reflector (N2, Fig. 5.7). There 

is minor sedimentary growth in the upper Pliocene, but not in the Quaternary, suggesting 

that these faults are active in the late Pliocene, but not in the Quaternary. Aksu et al. 

(2005b) suggests that the development of these extensional faults is not compatible with 

the Miocene contraction, and is an expression of the shift in the kinematic framework. 
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Figure 5.5: Seismic reflection profile showing the structural elements of the northwest 
continental margin in the Inner Cilicia Basin.Letters with circles are fault sets that are 
described in Chapter 5, and N2 is the master fault of the fault set C. 

SE 
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NW Fold-Thrust Belt 1 SE 

Figure 5.6: Seismic reflection profile showing the structural elements of the central basin floor. Location is shown in Figure 
5.3. Letters with circles are fault sets that are described in Chapter 5. Letters with numbers are individual faults of these 
fault sets. 
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Figure 5.7: Seismic reflection profile showing the major structures of the central basin floor. Letters with circles are fault sets that 
are described in Chapter 5, and letters with numbers are the individual faults of these fault sets. 



They further noted that the onset of the extensional fault activity in the Kozan Fault 

system is the latest Miocene (Messinian). Burton-Ferguson et al. (2005) also noted that 

Messinian deposition in the onland Adana Basin was probably controlled by the 

development of the Kozan Fault zone. The sedimentary growth indicates that these 

basement rooted faults are reactivated in an extensional setting in the late Pliocene, and 

are also active in the Quaternary. These faults are active until recent times in the Inner 

Cilicia Basin, but fault activity died earlier towards the Outer Cilicia Basin. 

The northeastern margin of the central basin floor is delineated by the 

southwestern-most panel of a very large NW -SE-trending and predominantly NE-dipping 

listric normal fault fan that occurs in the Inner Cilicia Basin (fault set I, Fig. 5.2, Aksu et 

al., 2005). This fault fan has an orthogonal relationship with major basin bounding faults 

on the northwest and southeast ends (Fig. 5.2). The master fault of this fault set (N3, Fig. 

5.2) demonstrates a notably listric fault trajectory, extending from the depositional 

surface to the Messinian salt unit (N3, see Chapter 4, section 4.2.1 ). These faults are 

associated with large sedimentary growth especially in upper Pliocene and Quaternary, 

suggesting that these faults are active in the late Pliocene, and Quaternary. 

5.2.2. Fold-thrust belt 1 

Fold-thrust belt 1 is a set ofE-W and ENE-WSW trending, and broadly N-and S­

verging salt related folds and thrusts that are observed in the Pliocene-Quaternary (fault 

set D, Figs. 5.1, 5.2, 5.8). These thrusts created a corrugated seafloor morphology and 

growth strata wedges in upper Pliocene and Quaternary (Fig. 5.8). Quaternary sediment 

fill is thicker within the synclines, but thins over the anticlines created by these thrusts 

(Fig. 5.8). Progressive syn-tectonic unconformities are also observed in the Quaternary 
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sediments over the crestal regions of the anticlinal structures (see Fig. 4.16, Chapter 4). 

There is minor or no variation in the thickness of the lower Pliocene sediments. 

Salt-related fold-thrust belt 1 characterises the architecture of the Pliocene­

Quaternary succession in the central basin floor (fault set D, Fig. 5.1). The growth strata 

wedges and the progressive syn-tectonic unconformities indicate that these salt related 

thrusts were active through the Pliocene-Quaternary (fault set D, Fig. 5.1). Messinian salt 

deposits reach their maximum thickness in the central basin floor, and pinch out towards 

the southeast in the southern margin (Fig. 5.1). 

5.2.3. Fold-thrust belt 2 

Fold-thrust belt 2 consists of several NW-SE trending and both SW-and NE­

verging salt-related thrusts that show progressive syn-tectonic unconformities over the 

crests of the anticlines in the upper Pliocene (fault set D', Figs. 5.2, see previous chapter 

Fig. 4.13). These thrusts create smaller anticlines and synclines in the upper Pliocene 

(Fig. 5 .8). This thrust belt is interpreted as the continuation of the fold-thrust belt 1 in the 

transition zone from Outer to Inner Cilicia Basin where thrust activity loses its seafloor 

expression. There is no evidence for the fault activity in the Quaternary indicating that 

salt related fold-thrust activity ceased in the Quaternary towards the Inner Cilicia Basin. 

5.2.4. Fold-thrust belt 3 

Fold-thrust belt 3 is a deeply seated NE-SW trending, both N-and S-verging thrust 

system that affects the Pliocene-Quaternary and possibly the upper Miocene successions 

(fault set E, thrusts T7, T8, T9, Figs. 5.1 , 5.2, 5.7, 5.9). The major structure of this belt is 

aN-verging thrust that affects the Miocene structures, and characterises pre-M reflector 
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~ Figure 5.9: Seismic reflection profile showing the structural elements of the central basin floor. Location is shown in Figure 5.3 . 
Letters with circles are fault sets that are described in Chapter 5, and letters with number are the individual faults of these fault sets. 



structural architecture (T7, Figs. 5.2, 5.7). Some relatively superficial thrusts that affect 

the Pliocene-Quaternary sucession merge with the major thrust fault T7 (Fig. 5.7). This 

structural architecture suggests that there is a major crustal-scale N-verging thrust which 

controls the tectonic framework of the southern margin of the Outer Cilicia Basin. This 

thrust belt is also mapped by Aksu et al. (2005) who suggested that the fold-thrust belt 

defines shallow-rooted structures. However, recent work by Piercey (20 11) unequirocally 

showed that the belt is a deeply rooted structure. There is evidence for the variation in the 

sediment thickness associated with thrust activity in the lower Pliocene sediments (faults 

T8 and T9, Fig 5.9), and stacked syn-tectonic progressive unconformities are observed in 

the upper Pliocene and Quaternary sediments associated with this fold-thrust belt (Figs. 

5.7, and 5.9). These structures clearly demonstrate that some of these deeply-rooted 

thrusts are active in the Pliocene-Quaternary. The thickness variation in the Messinian 

associated with this fold-thrust set may suggest that these thrusts are active in the latest 

Miocene (fault set E, Fig. 5.1 ). These deeply seated thrusts show fault activity in the late 

Pliocene and Quaternary that may be the evidence for reactivation of these thrusts. The 

thrusts of the central basin floor were mapped by Bridge et al. (2005); however the 

existence of the new data set allowed us to map this system in more detail. 

5.3. The Northwest continental margin 

Northwest continental margin is bounded by two distinct strike-slip faults zones: 

the late Eocene Ecemi~ Fault zone (Yeti~ 1978; Jaffey and Robertson, 2001) separates the 

northwest continental margin from the Central Taurides, and the Kozan Fault zone 

defines the border with the central basin floor. The northwest continental margin is a 
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complexly faulted extensional zone that consists of three extensional fault systems that 

have a complex interaction with each other (fault sets F, G, H, Figs. 5.1 , 5.10). 

5.3.1. Extensional fault zone 1 

Extensional fault zone 1 defines the northern and northwestern margins of the 

entire Cilicia Basin (fault set F, orange faults, Fig. 5.1 0). In the Outer Cilicia Basin 

individual faults of this set have tip points in the Quaternary, and create small dip 

separations in the Quaternary reflectors (Fig 5.11 ). In the Inner Cilicia Basin these faults 

lose their Quaternary expression where their tip points are in the lower Pliocene (Fig. 

5.5). There is a little evidence of growth strata related to these faults in the lower 

Pliocene sediments in the Inner Cilicia Basin, but no evidence in the upper Pliocene or 

Quaternary sediments (Fig. 5.5). This suggests that in the Inner Cilicia Basin these faults 

were last active in the early Pliocene, but in the Outer Cilicia Basin they are active in the 

Quaternary. The faults of this set create small dip separations on the M-reflector and 

define the Miocene successions in the northwest continental margin where Messinian 

Unit 2 is absent (Figs. 5.5, 5.11). In the southwestern portion ofthe northwest continental 

margin there is no evaporite deposition observed. Proceeding from northwest to 

southeast there is a serious thickening in the Messinian deposits (Fig 5.1 ). 

5.3.2. Extensional fault zone 2 

Extensional fault zone 2 is an E-W trending and S-dipping imbricate extensional 

fault fan (fault set G, Figs. 5.1 , 5.10). This zone consists of several low angle listric faults 

that extend from or near the depositional surface to well into lower portion of the 

Pliocene (fault set G, red faults, Figs. 5.10, 5.11). These faults show clear listric 

trajectories that are associated with sedimentary growth in the Pliocene-Quaternary (Figs. 
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Figure 5.10: Tectonic map ofthe Northwest margin ofthe Cilicia Basin showing the three sets of extensional faults . Ticks are 
showing the hanging walls of the faults. Letters in circles are fault sets that are described in Chapter 5. 



~~ 
~. @ .., 

Vl 
~ 
(1) ~ 

"' 
~ .. 

l>l 
@ g::, 
~(JQ 
c: :T _ .., 
.... (1) 

"' "' (1) 0 .... -
"' c: g. p, 
l>l 0 
.... ::l 

e; "' ~ . 
(1) 

"' P-3 
(1) - · 

"' (") 
(") 
:l . @ 
r::r:!l 
(1) (1) 
0..(") ;;· g. 
(j ::l 

:T"' 
l>l .., 

"0 0 
(t~ .., (1) 

Vl{ll 
:T 
0 s. 
::l 

(JQ 

g. 
(1) 

(1) 

>< .... 
(1) 
::l 
fe , 
0 
::l 
~ 

;> 
c: 
;::;:' 

"' 0 ...., 
g. 
(1) 

::l 
0 

9-
~ 
(1) 

"' .... 
3 
l>l 

@. 
::l 0 

0 0 

t" 
0 
(") 
l>l 
P . 
0 
::l 

"' 
"' :T 
0 
~ 
::l 

::l 
'Tj 

~· .., 
(1) 

Vl 

w 

t" ....lo. (1) 
:::; 

(/) (J) (1) .., 
"' m 



5.11, 5 .12). Some of these faults have tip points at the depositional surface where they 

create benches on the sea floor (Fig. 5.11). There is no clear evidence for growth in the 

lower Pliocene sediments (Figs. 5.11, 5.12). Fault architecture and growth strata 

evidence indicate that these faults are active from the late Pliocene to Quaternary and 

recent (fault set G, Fig. 5.1). 

5.3.3. Extensional fault zone 3 

Extensional fault zone 3 is a NW -SE trending and predominantly NE-dipping 

extensional fault set that interacts with the extensional fault zone 2 in a complex manner 

(fault setH, green faults, Figs. 5.1, 5.10). These faults are confined to the northeastern 

part of the Outer Cilicia Basin and the Inner Cilicia Basin. Tip points of these low angle 

listric faults vary from Quaternary to lower Pliocene. These faults show minor 

sedimentary growth in the Pliocene and Quaternary (Fig. 5.12). This indicates that these 

faults are also active in the Pliocene and Quaternary, and they overlap in time with the 

extensional fault zone 2 (fault set G, red faults). 

These three fault zones of the Northwest Continental Margin were schematically 

mapped in the previous study of the Cilicia Basin by Aksu et a!., (2005). The new high 

resolution seismic data allowed us to better understand the nature of this area by mapping 

these extensional faults in great detail also supported the schematic trends of the previous 

study. 

5.4. Fault Sets X, and Y 

Fault set X (Fig. 5.1) is an E-W trending and N-verging fold-thrust set that was 

observed in the Outer Cilicia Basin and documented in the previous studies (Aksu et al. , 

2005b, Calon et al. , 2005a.b). These thrusts are truncated by theM-reflector (Aksu et al., 
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Figure 5.12: High resolution seismic reflection profile E showing the extensional faults of the northwest mar~n. Letters with circles are fault sets ilia! are described in Chapter 5. 
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2005b ). Aksu et a!. (2005b) interpreted these thrusts as surficial gravity driven slide 

structures that developed in the late Miocene, and related them to the tilting of the late 

Miocene piggy back basin fill on the trailing flank of the rising Kyrenia culmination. 

Ecemi~ Fault zone (fault set Y, Fig 5.1) is a NE-SW trending extensional fault 

zone that is confined to onland Turkey, and does not have a marine extension. This is a 

sinistral strike slip fault zone that was interpreted as a major splay from the East 

Anatolian Transform Fault (Ozer et al., 1974). Sengor and Ytlmaz (1981) suggested that 

Eocene onset of this strike slip fault zone was developed as a trench-trench transform that 

separates extensional and contractional segments in the subduction zones. Jaffey and 

Robertson (200 1) related this sinistral strike-slip activity to the internal deformation in the 

Aegean-Anatolian Microplate. They further suggested that Ecemi~ fault is older than both 

East and North Anatolian Transform faults. 

Fig. 5.1 clearly demonstrates that several kinds of deformation occur at the same 

time in the different parts of the Cilicia Basin. Some of this deformation is explicable as 

superficial deformation on a mobile substratum-the Messinian evaporites. Thus, thrust 

set A causes uplift of the Misis-Kyrenia Fault zone and normal fault set B may be the 

corresponding slumping of the Pliocene-Quaternary on the tilted Messinian of the 

southern basin margin. Also, normal faults I represent the downslope collapse of the Inner 

Cilicia Basin delta, complemented by the fold-thrust belts D, and D' of the Outer Cilicia 

Basin. 

Other elements of the deformation are more probably basement controlled and are 

discussed in more detail in the following synthesis. 
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5.5. The Evolution of the Cilicia Basin 

5.5.1. Early Tertiary to Miocene Development 

The evolution of the Cilicia-Adana basin complex started in the Oligocene to early 

Miocene in a foredeep setting in front of the Tauride fold-thrust belt (Williams et al., 

1995; Cal on et al., 2005 a; Aksu et al., 2005). Williams et al. ( 1995) suggested that the 

early Miocene extension in the Adana Basin was caused by load-induced flexure resulting 

from renewed thrusting in the Taurides, whereas Sengor et al. (1985) related the 

extension to differential slip rates on three major faults that meet at a triple plate junction 

northeast of the area. 

In the late Miocene the area was exposed to a phase of regional compression that 

caused the formation of an arcuate fold-thrust belt extending from the Taurides in the 

west, to the Troodos complex, and to the western fringe of the Arabian platform in the 

east (Kelling et al., 1987; Robertson and Woodcock, 1986; Aksu et al., 2005). This 

compressional phase resulted with the development of a major thrust culmination in two 

segments. The northeast trending Misis Mountains defines the eastern segment, whereas 

the Kyrenia Range represents the southern segment. The development of the Misis­

Kyrenia culmination in the late Miocene separated the foredeep basin into two large 

piggyback basins: the Cilicia-Adana basin complex and the Iskenderun-Latakia-Mesaoria 

basins. The Cilicia Basin has evolved on the backlimb of this thrust culmination since the 

late Miocene (Aksu et al., 2005b; Hallet al., 2005; Calon et al., 2005a,b). The existence 

of the late Miocene fluvio-deltaic fill over the Misis Mountains showed that the Adana-
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Cilicia basin complex became emergent and exposed to erosion along the northern fringes 

ofthe Misis-Kyrenia culmination (Kelling et al., 1987, Williams et al., 1995). 

During the Messinian the entire Mediterranean Sea desiccated, and this event 

resulted in an immense evaporite deposit (Hsti. et al., 1973, 1978). Mulder et al. (1975) 

noted that the occurrence of the Misis-Kyrenia paleohigh in the Messinian separated the 

evaporite depocenters of the Adana-Cilicia and lskenderun-Latakia basins. The 

Messinian evaporites reach a thickness of 500-800 ms in these basins (Bridge et al., 

2005). In the Cilicia Basin the relatively stratified character of the Messinian evaporite 

succession is evidence of possible interbedded deposition of siliciclastic and carbonate 

debris (Aksu et al., 2005b ). The Messinian salinity crisis was ended by the Pliocene 

flooding, and the evaporites were confined to isolated subbasins (Hsli et al. , 1978; Bridge 

et al., 2005). 

5.5.2. End of Miocene to Quaternary Development 

5.5.2.1. Southern basin margin 

Continued contraction across the Misis-Kyrenia fold-thrust belt caused 

northwestward tilting of the basin in the post Messinian suggesting that southerly-verging 

listric thrusts dominate the contraction. The prominent occurrence of east-northeast -

west-southwest striking and north-northwest and south-southeast verging thrusts along 

the northern margin of the Kyrenia segment of the Misis-Kyrenia Fault zone (i.e., thrust 

set E in Fig. 5.2), and the geometry of these thrusts in the seismic reflection profiles 

delineating positive flower structures that originate from a large single stem collectively 
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suggest that the Kozan-Fault zone must have been re-activated in the Pliocene-Quaternary 

as a strike-slip system. The southern Kyrenia segment of this fault zone acted as 

transpressional zone whereas studies from the southern Adana Basin showed that 

northeastern segment of the fault zone was largely transtensional (e.g., Burton-Ferguson 

et al., 2005). Superficial extensional faulting along the southern basin margin is related to 

the gravity-driven slumping of Pliocene-Quaternary deposition on a mobile underlying 

Messinian evaporite unit. 

5.5.2.2. Central basinjloor 

The northeastern portion of the Outer Cilicia Basin is characterized by active salt 

tectonism where the structural architecture is nearly orthogonal to the strike of the basin­

bounding faults (Bridge et al., 2005). The zone has a cross-sectional length and width of 

150 x 50 km in the Cilicia and Adana Basins. Based on the structural style of the 

Pliocene-Quaternary and Messinian successions and kinematic criteria each the 

northeastern portion of the Outer Cilicia Basin extending into the Inner Cilicia Basin can 

be evaluated as (i) an invariably extensional region in the Inner Cilicia Basin which is 

characterized by salt rollers and pillows developed on the footwalls and hanging walls of 

listric normal faults and (ii) a predominantly contractional region in the Outer Cilicia 

Basin which is characterized by active diapirs and salt-cored growth folds commonly 

associated with thrust faults, where salt forms intrusions into the footwalls and hanging 

walls of thrusts (Bridge et al., 2005). The boundary between the two regions lies at the 

edge of the continental slope in Cilicia Basin and is delineated by the master fault N3 and 

the presence of very large and irregular salt wall (Fig 5.2). The structures in both the 
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extensional and contractional regions are totally detached at a level that lies either within 

the salt or at the base of the salt (e.g., Bridge et al., 2005). Many previous studies 

documented that the pre-Messinian strata are not affected by the overlying extensional 

and contractional deformation (Hall et al., 2005; Aksu et al., 2005a), suggesting that the 

regions must be linked across the salt wall via the regional salt detachment (e.g., Bridge et 

al., 2005). The linked extensional-contractional systems are well understood both in the 

field studies as well as in analogue modelling of the effects of thin-skinned extension and 

sediment progradation (e.g. Vendeville and Jackson, 1992 a,b; Jackson et al. , 1994; Ge et 

al. , 1997). 

Therefore, the collapse of the Adana-Inner Cilicia basin delta results in 

development of normal fault set I in the Inner Cilicia Basin. This extension in the central 

part of the Inner Cilicia Basin is complemented by the development of fold-thrust belts D 

and D' in the central part of the deeper-water Outer Cilicia Basin. 

Fold-thrust set E is driven by a prominent strike slip system that developed over 

the remnants of the Misi-Kyrenia fold-thrust belt. This new system was also basement­

controlled where the thrusts associated with the positive flower structures along the 

northern margin of the Kyrenia Range linked with deeply rooted primarily N-verging 

back-thrusts (Piercey 2011). The growth strata architecture observed in the thrusts 

suggested that the Miocene thrusts developed pop-up structures during the Pliocene­

Quaternary (fault set E, also see Domain M1, Piercey 2011). Piercey (2011) related the 

arcuate basin morphology of the Cilicia-Adana basin complex to the development of the 

northerly verging fold thrust belt. She further related the development of these structures 
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to the collision and eventual suturing of the Hecataeus Ridge with the Island of Cyprus 

during the late Miocene. 

5.5.2.3. The northwest continental margin 

The focus of this study and its biggest contribution to the eastern Mediterranean 

project is the detailed mapping of the four extensional fault sets in the northwest 

continental margin (Fault sets C, F, G, and H, Fig. 5.10). The Neogene history of the 

Cilicia Basin in the northwest continental margin is mainly characterised by transtension 

in the Pliocene-Quaternary by strike-slip faults that are reactivations of the Miocene 

contraction (Fig. 5.1) and extensional faults that are confined to the northwest continental 

margin with fault activity in the Pliocene-Quaternary. 

5.5.2.3.1. Fault Sets C and F 

The Kozan Fault zone is one of the maJor splays emergmg from the East 

Anatolian Transform Fault. The precise timing of the transtensional fault activity in the 

Kozan Fault system is latest Miocene to Pliocene (Aksu et al. , 2005b). The marine 

extension of this zone (fault set C, Figs. 5.5, 5.10) is characterized by extensional 

separations incompatible with the Miocene contraction (Aksu et al. , 2005b ). In the 

previous chapter high-angle extensional faults of extensional fault zone 1 (fault set F, 

orange faults) and NE-SW trending basin-bounding extensional faults of the central basin 

floor (fault set C, purple faults) were described as two different fault sets (Fig. 5.1 0). 

This discrimination was based on the fact that in the map view these two fault sets are 

separated in the Inner Cilicia Basin, where they tend to merge in the Outer Cilicia Basin. 
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However the seismic characters of two systems are quite similar. In the cross sections 

both sets consist of high angle faults with some extensional separations that occupy 

narrow zones of 5-10 km width (Figs. 5.5, 5.11). The high-angle extensional faults of 

these two systems delineate the northern margin of the Cilicia Basin and extend towards 

the onland Adana Basin where they merge with the prominent Kozan Fault zone. Careful 

analysis of the individual faults of these two fault sets showed that they vary in age. In 

the Inner Cilicia Basin, fault set C is active in the late Pliocene, Quaternary, and Recent. 

In the Outer Cilicia Basin, fault activity is last observed in the late Pliocene. These 

Messinian-rooted faults have remained active until the Recent in the Inner Cilicia Basin, 

but the fault activity died out earlier in the late Pliocene towards the Outer Cilicia Basin. 

For the fault set F, the opposite occurs. In the Inner Cilicia Basin the fault activity is last 

observed in the early Pliocene, but in the Outer Cilicia Basin faults are active in the 

Quaternary. In the Inner Cilicia Basin, strain in the Pliocene-Quaternary is mainly on the 

fault set C, but in the Outer Cilicia Basin fault set F seems to take over the strain in that 

area where the fault activity on the fault set C ceases or is less prominent. 

Until now, the faults within the northwestern margin of the Inner and Outer Cilicia 

Basins are described as extensional faults, which are probably associated with the Kozan 

Fault Zone (e.g., Aksu et al., 2005). The absence of an unequivocally clear "piercing 

point" in seismic reflection profiles precludes the use of seismic data in the confirmation 

of the strike slip motion along the Kozan Fault Zone. However, the strong geographic 

correspondence of the fault sets C and F (i.e., the orange and purple faults in various 

figures and maps) with the orientation of the marine extension of the Kozan Fault Zone as 

149 



well as the basin-bounding nature of the purple faults, collectively suggest that the 

extensional faults C and F must define the marine extension of the Kozan Fault zone. 

Therefore, these faults must also possess an undetermined amount of strike slip, and must 

be classified as structures showing normal-sense stratigraphic separations. The faults 

mapped as C and F are herein linked with the Kozan Fault Zone. Although the fault 

activity seems to terminate in the late Pliocene towards the southwest on the Kozan Fault 

zone, sinistral strike-slip motion seems to continue in the southwest along the fault set F. 

Fault set F can either be part of the same system that is reactivated in the early Pliocene in 

the Outer Cilicia Basin, or a subsidiary set generated from the main fault set C. However 

both of these two fault systems are likely to be the Pliocene-Quaternary reactivation of 

the Miocene faults but in a different stress system. 

5.5.2.3.2. Kinematics of Fault Sets C and F 

In a regional context the kinematics of the fault set F can be explained with 

respect to the fault set C. Individual faults of both sets are likely transtensional features 

that are the marine extension of deep splays coming from the major sinistral strike-slip 

Kozan Fault zone. Aksu et al. (2005a) noted a southwestward increase in extensional 

separation and shift in the timing of the fault activity on the individual faults of the fault 

set C, and related it to a scissor type motion. 

Westward escape of the Aegean-Anatolian Microplate along the East and North 

Anatolian Transform faults represents a well-known tectonic escape zone along two 

major strike-slip fault systems. Sengor (1981) noted several pull-aparts along the North 
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and East Anatolian Transform faults. Following that idea, the deep roots of fault sets C 

and F are interpreted as master faults in a releasing bend (see Chapterl, Fig. 1.5) along 

the Kozan Fault splay from the East Anatolian Transform Fault. If fault set C is the 

principal deformation zone, then fault set F can either be Y-shears running parallel to the 

principal deformation zone, or R- shears that are usually the primary subsidiary 

deformation and lie at a small angle to the principal deformation zone (Figs. 5.1 0, also see 

Chapterl, Fig. 1.5b ). However fault set F might also be master faults because they are 

still major basin bounding faults that have subsidence and collapse on them. These two 

approximately parallel fault sets, C and F, seem to bound a narrow zone that merges into 

the Kozan Fault zone to the north. Possibly the faults in each set converge at depth on 

two faults or narrow fault zones which are branches of the Kozan Fault zone. Fault sets C 

and F thus create a ' lazy S' shaped deformation that can be explained as the bounding 

faults of a pull-apart basin at a releasing bend (Fig. 5.13). The Kozan Fault zone would 

then be a transtensional zone with sinistral strike-slip motion and extension. 

5.5.2.3.3. Fault Sets G and H 

Extensional fault sets G and H initially seemed to be a conjugate set on seismic 

sections (Fig. 5.12); however, the map patterns showed that those two sets cannot be a 

conjugate set based on the different strike of the fault traces. According to Anderson' s 

classification (Anderson, 1942), to have a conjugate set of high angle dip slip faults the 

strikes of the two fault sets need to be parallel to each other. In terms of stress orientation 

cr 1 needs to be vertical and cr2 would be parallel to the line of intersection for extensional 
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faults (Figs. 5.10, also see Chapter 1, Fig. 1.5b). For extensional faults these two sets are 

separate generations of fault structures, but appear to be active over similar time intervals. 

The relative dating of these sets cannot be simply identified, because they 

demonstrate multiple cutting and offset relationships. In many cases faults H terminate 

against the faults G, or faults G are offsetting faults H, but there are a few occasions that 

individual faults of the fault set H offset the faults G (see Chapter 4 section 4.4). The 

fault set G may have originated slightly earlier, but the two sets overlap in time. The two 

fault systems must be active at the same time. Faults G show evidence of growth strata in 

the Pliocene and Quaternary, and some of them create steps on the sea floor, suggesting 

that the faults are active in the present (Fig.5.12). Faults H also demonstrate minor 

growth strata in the Pliocene and Quaternary. The growth strata on these two fault 

systems seem to terminate their activity about at the same seismic stratigraphic level 

(Figs. 5.1, 5.12). They both are associated with growth strata successions within the same 

package, therefore there is basically synchronous activity on both of the fault systems. 

These shallow faults of both sets are very low angle listric faults that affect almost 

the entire Pliocene-Quaternary succession (Figs. 5.11, 5 .12). In an ideal dip slip system 

their strike should be parallel, and they are distinctly not. They are low angle extensional 

detachments. They do not demonstrate a truly negative flower behavior either; so they 

are not typical transtensional type of structures. 

These two fault sets are contained between the two transtensional fault sets, C and 

F, described above and interpreted as major bounding faults of a pull-apart basin at a 
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releasing bend of the sinistral Kozan Fault zone. But the extensional stress system 

responsible is incompatible with the concurrent contractional deformation in the central 

basin floor. The ' lazy S' shaped transtensional strike-slip regime that observed in this 

part of the study area is expected to be complemented by a set of extensional faults 

bounded by these master faults of fault sets C and F. However the extension along the 

fault sets G and H cannot easily be explained in this setting because of the fault 

orientations. Extensional faults in the lazy-S pull-apart basins generally lie at an angle of 

30-50° to the master faults (Mann et al., 1983). The faults Hare nearly orthogonal to the 

fault set C, and faults G lie at a much larger angle to the master faults (Fig. 5.13). 

In over-pressured wet shales as in Cilicia Basin sediments the main deformation 

may occur on R' and possibly P' (see Chapter 1, Fig. 1.5). In that concept fault setH can 

be explained as P' shears, but the fault set G still does not fit in this picture (Fig. 5.13). 

Because fault sets G and H are contained between fault sets C and F, a genetic 

relationship is likely. If C and F define a pull-apart basin at a releasing bend in the Kozan 

Fault zone, then G and Hare symptomatic of extension within the pull-apart basin. That 

this orientation is quite different from that expected may indicate inheritance from earlier 

structures with those trends. It remains to be explained how the extension observed along 

the northwest continental margin relate to the concurrent contraction to the south. The 

conventional trends of pull-apart basins do not apply to the basin extension here in the 

northwest continental margin. Therefore the kinematics of these extensional faults may 

be related with something else. 
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Figure 5.1 3: Schematic display of the fault systems in the northwest continental margin. 



5.5.2.4. Possible Scenarios 

For the Kozan Fault zone (i.e., fault sets C and F) the intermediate stress cr2 would 

be vertical and maximum and minimum stresses cr 1 and cr3 would be horizontal with cr 1 

oriented approximately north-south and cr3 oriented east-west, respectively, given the 

transtensional nature of the principle deformation zone (Fig. 5.13). Within this system en 

echelon synthetic and antithetic parasitic faults such as R, R', P and P' shears should be 

vertical or have very steep dips and oriented at specific angles to theY shears (Fig. 5.13). 

The predominantly extensional nature of the fault sets G and H as well as their relatively 

low dip angles preclude that these faults are genetically related to the strike slip 

deformation associated with the Kozan Fault zone. If the fault sets G and H are pure 

normal-sense dip-slip faults, they must represent two different extensional fault systems 

related to differently oriented stress fields. Despite the fact that the two systems have an 

overall north and south dipping polarities they cannot define contemporaneous conjugate 

fault sets because of the significant differences in their strike directions. The observed 

interactivity between the fault sets G and H and the demonstrable growth associated with 

each of these fault sets indicate that these faults are two independent systems in which 

one system overprints and reactivates the other in relation to the rotation of the principal 

tensile stress direction for these faults. The overall architecture of these two fault 

systems, notably their shallow dips, their prominent normal-sense dip separations with 

associated growth strata wedges and their listric fault plane geometries with associated 

bedding-parallel detachments collectively indicate that they might be part of a 

gravitationally-driven zone of widely distributed deformation. 
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Recent evolution of the eastern Mediterranean regiOn is mainly controlled by 

relative motions of Eurasian and African plates, and Arabian Microplate. These relative 

motions are defined by subduction of the African Plate beneath the Eurasian Plate 

towards the Hellenic and Cyprus arcs, collision of Arabian and Eurasian plates across 

Bitlis-Zagros suture zone, and westward escape of the Aegean-Anatolian microplate 

along the North and East Anatolian Transform faults. Collision of the African and 

Eurasian plates with the Aegean-Anatolian Microplate and subduction of the African 

Plate along the Hellenic and Cyprus arcs create a N-S compression, but subducting roll­

back drag is pulling the Aegean-Anatolian Microplate away from the Arabian Microplate. 

The Miocene history of the study area is explained in this N-S contractional setting. 

McClusky et al., (2000) suggested that the convergence between Africa and Eurasia 

plates is higher across the Hellenic Arc, and lower in the Cyprus Arc. They related the 

decrease in the convergence rates towards the Cyprus Arc to the subduction of the 

Eratosthenes Seamount beneath Cyprus. Dilek and Sandvol (2009) marked the existence 

of two distinct high velocity regions beneath the Aegean-Anatolian Microplate that might 

be evidence for two different slab break-off events caused by continuing convergence of 

the lithospheric mantle. They further stated that besides these break-off events the 

subduction was almost continuous. In case of a slab break-off or a slab detachment in the 

subducting African Plate there will be a change in the regional stress field. The gap 

between the attached and detached slabs will cause a relief in the stress field. The 

Aegean-Anatolian Microplate will not be forced westward by the collision anymore, and 

this will generate an areal extension observed in the Aegean back arc basin but possibly 

extension further east. A slab break in the subducting African Plate could basically cause 
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a rebound in the stress field, and the N-S compression will tum to a N-S extension, and 

this could explain the E-W trending normal faulting. 

Another possible scenario is, if the convergence of the African Plate with the 

Aegean-Anatolian Microplate is continuing but now slowing due to collision of 

microcontinental blocks such as Eratosthenes Seamount below Cyprus, then compression 

(excluding the contractional features associated with gravitational sliding of the Pliocene­

Quaternary sediments above the salt) may still characterise the southern part of the Cilicia 

Basin. However, slab detachment may induce extensional stress above which trajectory 

with continuing contraction to south may explain the duality of contraction and extension 

in this area. 
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CHAPTER6 

Conclusions 

The processing and interpretation of ~ 850 km of high-resolution multi-channel 

seismic reflection data resulted in detailed mapping of a NW -SE transect across the 

middle of the Cilicia Basin. Age relationships of the specific events that occur in the area 

have been summarised with a special focus on the northwest continental margin. The 

following are the geological conclusions of this study. 

• The Cilicia-Adana basin complex evolved in a foredeep setting in the Miocene. 

Tauride and Misis-Kyrenia fold-thrust belts are the major controls in this foredeep 

basin. During the Messinian salinity crisis, the study area became emergent and 

this event resulted in deposition of a thick evaporite succession in the Cilicia 

Basin. 

• Seismic reflection profiles showed the co-occurrence of contractional, extensional 

and strike-slip deformation within the Cilicia Basin, all occurring during the 

Pliocene-Quaternary. The uplift of the Misis-Kyrenia Fault zone resulted in the 

tilting of the southern basin margin. The rapid deposition of deltaic sediments 

from the north caused the mobilization of the salt and resulted in a series of 

extensional faults in the Pliocene-Quaternary successiOn. The gravitational 

collapse of the Inner Cilicia Basin delta successions is complemented by the 

development of a contractional fold-thrust belt in the Outer Cilicia Basin. 

• The northwest continental margin is mainly characterised by transtension in the 

Pliocene-Quaternary involving strike-slip faults, that are a reactivation of faults 
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related to Miocene transpression, and extensional faults that are confined to the 

northwest continental margin with fault activity in the Pliocene-Quaternary. 

• The Kazan Fault zone appears to split in the Pliocene-Quaternary into two main 

strands that define the boundaries of a pull-apart basin at a ' lazy S' shaped 

releasing bend. Extensional faults within the pull-apart feature do not have 

orientations compatible with those expected and their trends may be inherited. 

• The Quaternary and Recent fault activity on the Kazan Fault zone takes place 

along two different strands of the system which diverge in the Inner Cilicia Basin 

and converge again in the Outer Cilicia Basin. In late Quaternary time, the SE­

strand dominates in the Inner Cilicia Basin, and the NW -strand dominates in the 

Outer Cilicia Basin. The late deformation thus appears to transfer from the one 

strand to the other along the Basin. This may be due to the stress system 

favouring particular orientations as the directions of the strands swing. 

• Rebound from a slab break in the subducting African plate can explain the 

transtensional stress system in the northwest continental margin, while at the same 

time the collision of microcontinental blocks such as Eratosthenes Seamount 

below Cyprus, explains the contraction in the southern part of the Cilicia Basin. 

6.2. Future Work 

The existing data allowed us to delineate some of the main features in the study 

area, and answer some important questions about the Neogene evolution of the Cilicia 

Basin, however there are still questions to be answered that requires additional data 

acquisition. 
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A 3D seismic survey in the northwest continental margin could provide a better 

mapping of the extensional and transtensional features here with greater confidence, and 

help to answer some questions about the relative dating, slip rates of these features, and 

give a better idea about the primary and subsidiary deformations and the stress systems in 

the area. 

A deeper penetrating seismic reflection survey in the central basin floor would 

also help to clarify the orientations and give a better image of the deeper geological 

features that may control shallow structures in the salt and overlying sediments. 
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