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ABSTRACT 

The collision-induced 1st overtone infrared absorption band of 

deuterium was observed at room temperature. The band was studied in the 

pure gas and in binary mixtures with argon and nitrogen at a path length 

of 194.3 em at pressures up to 800 atm. The observed absorption 

profiles of the band do not show any splitting of the Q branch and this 

indicates that the contribution of the short-range overlap forces to 

the intensity of the band is negligible. The enhancement absorption 

profiles of o2-Ar mixtures show only single-transition quadrupolar lines. 

But the enhancement profiles of o2-N2 mixtures, in addition, show the 

double transitions Q2(J) of o2 + s0(J) of I 2, and double vibrational 

transitions Q1(J) of o2 + Q1(J) of N2 which occur on the low frequency 

side of the pure overtone band. Major contribution to the intensity of 

the absorption profiles of pure deuterium con-es from the double 

transitions Q2(J) + s0(J) and Q1(J) + Q1(J) in the colliding pairs of o
2 

molecules. Integrated absorption coefficients were measured and binary 

and ternary absorption coefficients were derived. 

The observed enhancement absorption profiles of o2-Ar and 

D2-N2 were analyzed by a computational procedure into their component 

lines to yield values of the half widths 6s. The analysis of the 

profiles of o2-Ar confirmed the fact that the contribution of the overlap 

forces to the intensity of the band is negligible. From the analysis of 

the pure overtone profiles of o2-N2, the contribution of the double 

transitions, Q2(J) of o2 + s0(J) of N2, to the intensity of the band was 

estimated. The quadrupole rroment of the nitrogen molecule was obtained 



( i v) 

as 1.14 ea6 from the ratio of the binary absorption coefficients of the 

band due to single and double transitions. 

__ _. ........ ______________________________________ __ 
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CHAPTER 1 

INTRODUCTION 

1.1 Collision-Induced Absorption of the Infrared Fundamental Bands of 

Hydrogen and Deuterium 

The collision-induced fundamental infrared absorption band of 

gaseous hydrogen first observed by Welsh, Crawford and Locke (1949) has 

been extensively studied in the pure gas and in binary mixtures with 

foreign gases over a variety of experimental conditions (for references, 

see Varghese and Reddy, 1969). A detailed investigation of the collision­

induced fundamental band of gaseous de uteri urn has been made at room 

temperature by Reddy and Cho (1965) in the pure gas at pressures up to 

250 atm and Pai, Reddy and Cho ( 1966) in o2-He, o2-Ar and o2-N
2 

mixtures 

at pressures up to 1200 atm. The band has been investigated by Watanabe 

and Welsh (1965) in the pure gas at low pressures in the temperature 

range 24°K to 77°K. Sinha ( 1967) made some preliminary studies of the 

band in the pure gas and o2-He and o2-Ne mixtures at low temperatures. 

Russell (1968) made a systematic study of the band in o
2

-He and o
2

-Ne 

mixtures at different temperatures in the range 77°K to 298°K. In most 

of these studies, it was observed that the integrated absorption 

coefficient of the induced fundamental band in the pure gas and the 

enhancement in the integrated absorption coefficient of the band in the 

mixtures are density-dependent. For the pure gas the integrated 

absorption coefficient is given approximately by 
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and for the mixtures the enhancement in the integrated absorption 

coefficient is given ap roximately by 

Here the subscripts a and b refer to the absorbing and perturbing gases 

respectively, ala and alb are binary absorption coefficients resulting 

from binary collisions of types a-a and a-b respectively, and a2a and 

a2b are ternary absorption coefficients resulting from ternary 

collisions of types a-a-a and b-a-b respectively. 

The induced fundamental bands of hydrogen and deuterium consist 

of three types of transitions: Q1(J) transitions (~v = 1, ~J = 0), s1(J) 

transitions (~v = 1, ~J = +2) and o1(J) transitions (~v = 1, ~J = -2). 

Since the forbidden transitions in the infrared absorption of symmetric 

diatomic gases occur as a result of an induction mechanism, it is to be 

expected that these transitions obey the rotational selection rules 

similar to those in Raman spectra. The Q1 branch of these fundamental 

bands has a minimum in the neighborhood of the band origin and two 

broad components QP and QR at lower and higher frequency respectively. 

The separation between the maxima of these components ~v~x increases 

with the density of the mixture. The Q1 branch consists of overlap and 

quadrupolar components denoted as Qoverlap(J) and Qquad(J) respectively. 

According to the theory of Van Kranendonk (1958), the Qoverlap(J) 

components arise due to the short-range electron overlap forces while 
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Q d(J), S(J) and O(J) components occur as a result of the long-range qua 

quadrupol a r induction. In collision-induced spectra, the overlap as 

well as the quadrupolar components are modulated by the translational 

motion of the colliding molecules. The frequency distribution of each 

component is represented as the summation and difference tones vm(J) ± 

vtr where vm(J) is the molecular frequency of the transition and vtr is 

the continuum of frequencies for all possible values of the relative 

translational energy of the colliding pair of molecules. It is known 

both experimentally and theoretically that in the induced fundamental 

band, if the perturbing molecule has no quadrupole morrent, only single 

transitions occur in the spectra and if it has a quadrupole moment, 

single as well as double transitions occur (see Chapters 3 and 4). 

1.2 Collision-Induced ls t Overtone Infrared Absorption Band of Hydrogen 

The quadrupolar first and second overtone infrared absorption 

bands of hydrogen were first observed by Herzberg (1950). The collision­

; nduced ls t overtone infrared absorption band of hydrogen was first 

observed by Welsh, Crawford, MacDonald and Chisholm (1951) and later 

studied by Hare and Welsh (1958) at room temperature, Hunt (1959) at 

85°K, 195°K and 300°K, and Watanabe (1964) at 24°K. This collision­

induced 1st overtone band has been interpreted as a superposition of two 

profiles. One of these profiles is a pure overtone band in which the 

transition ~v = 2 takes place in one of the colliding molecules, and the 

other corresponds to a double vibrational transition in which each 

molecule of the pair performs the fundamental vibrational transition. In 
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these studies, the Q lines of the 1st overtone band show no indication 

of splitting or broadening even at a pressure of 500 atm (Hare and 

Welsh, 1958). In the studies at low temperatures (Hunt, 1959 and 

Watanabe, 1964), single transitions Q2(1), s
2
(o), s

2
(1) and double 

vibrational transitions of the type Q1(J) + Q
1
(J) and double transitions 

of the type Q2(J) + s0 (J) have been observed (the reader is referred to 

section 4.2 for a discussion of single and double transitions in the 1st 

overtone band). 

1.3 A Brief Outline of the Theory of Collision-Induced Absorption fn 

the Fundarrental and 1st Overtone Bands of Symrretric Diatomic Gases 

A detailed summary of the theory of collision-induced infrared 

absorption of the fundarrental and 1st overtone bands is given in 

Appendix A. Collision-induced infrared fundamental absorption band of 

a symrretri c diatomic gas was theoretically treated by Van Kranendonk 

(1957, 1958) who proposed the so-called "exp-4" model for the induced 

dipole moment in a binary collision between a symmetric diatomic molecule 

and a perturbing molecule. In this model, the induced dipole moment 

consists of two additive parts. One of these is the angle-independent 

(isotropic) short-range electron overlap moment which decreases 

exponentially with the intermolecular distance Rand mainly contributes 

to the intensity of the Q branch. The other part is the angle-dependent 

(anisotropic) long-range dipole moment resulting from the polarization 

of one molecule by the quadrupole field of the other and is proportional 

to R-
4

. This part contributes to the intensity of the 0, Q and S 

branches. The quadrupole contribution to the Q branch is referred to as 

the Qquad component. 
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When the exp-4 model and the Lennard-Jones potential are used 

for the induced dipole moment and the intermolecular potential respec­

tively, the binary absorption coefficient due to collisions between 

molecules 1 and 2 can b written as (see Appendix A) 

I I 

2 I + { ( Q 1 a.
4
2 ) 2 + ( a.l Q 2) 2 } J y-ala or alb = A Y 4 

ea ea 

where A
2J y is the overlap part of the binary absorption coefficient and 

the remaining terms on the right-hand side of the equation represent the 

quadrupolar part. Here A is the overlap parameter, characteristic of 

the overlap part of the induced dipole moment, y is a constant, Q is the 

quadrupole moment, a. is the polarizability, single prime represents the 

first derivative with respect to internuclear distance, I and 1 are 

dimensionless definite integrals which depend respectively on the range p 

of the overlap moment and the pair distribution function g, e is the 

electronic charge and a is the Lennard-Jones diameter of the colliding 

pair of molecules. 

The experimental profiles of the 1st overtone band of hydrogen 

obtai ned by earlier researchers and those of the 1st overtone band of 

deuterium obtained in the present work indicate that the overlap 

contribution to the intensity of the band is negligible. Therefore, the 

binary absorption coefficient corresponding to the pure overtone profile 

of the 1st overtone band can be represented by (also see Appendix A) 



- 6 -

where k is a constant and double prirre represents the second derivative* 
1 

with respect to the internuclear distance. 

The binary absorption coefficient corresponding to the profile 

due to double vibrational transitions of the 1st overtone band can be 

written as (also see Appendix A) 

1.4 Collision-Induced 1st Overtone Infrared Absorption Band of De uteri urn 

Prior to the work presented in this thesis, no work has been 

reported on the collision-induced 1st overtone band of deuterium. To 

illustrate possible single transitions between the lower and upper 

rotational states of the 1st overtone absorption band of de uteri urn (i.e. 

v' = 2, J • +- V
11 = 0, J 11

), a schematic energy level diagram is presented 

in Fig. 1. Here the vibrational and rotational term values G
0

(v) and 

Fv(J), respectively, were calculated from the constants of the free 

roolecule (Stoicheff, 1957 and Wilkinson, 1968). However, if the 

perturbing molecule has a quadrupole moment, several double transitions 

will contribute to the intensity of the band, but these were not shown 

in Fig. 1. The relative population of the deuterium molecules in various 

rotational states at a given temperature depends on the Boltzmann 

distribution law, the (2J + 1)-fold degeneracy and the degeneracy due to 

nuclear spin. 

In the present investigation, the collision-induced 1st 

overtone absorption band of deuterium has been observed in the pure gas 

*With harmonic oscillator approximation. 
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and in binary mixtures with argon and nitrogen. The absorption profiles 

of the band were obtained at room temperature using a high pressure 

transmission cell of path length 194.3 em and pressures up to 800 atm. 

The integrated absorption coefficients for the pure gas and the 

enhancerrents of these for the mixtures \'/ere measured. From these, the 

binary and ternary absorption coefficients were derived. The profiles 

obtained for the mixtures were analyzed using a Boltzmann-modified 

dispersion line shape for the individual single transition components. 

From the analysis of the profiles of o2-N2 mixtures, it was possible to 

estimate the quadrupole moment of nitrogen. 
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CHAPTER 2 

EXPERIMENTAL TECHNIQUE 

The object of the present work was to obtain reasonably 

accurate values of the binary and ternary absorption coefficients of 

the collision-induced first overtone band of deuterium. An absorption 

cell of long path was required in order to keep the working pressure in 

the experiments at moderate values. A high pressure cell of length 2m 

designed recently for this type of work was used to study the absorption 

in the pure deuterium gas and in o2-N2 and o2-Ar mixtures at room 

temperature. The maximum pressure reached in the experiments was 

12,000 p.s.i. The first overtone band of deuterium lies in the infrared 

spectra 1 region 5100 em - 1 - 6600 em - 1. A Perkin-Elmer Mode 1 112 single­

beam double-pass spectrometer with LiF prism and a Kodak Ektron PbS cell 

of type N was used to record the spectra. The details of the design and 

construction of the absorption cell and of the experimental procedure 

used in the present investigation form the rest of this chapter. 

2.1 Construction Details of the 2m Absorption Cell 

The details of the construction of the 2m transmission-type_ 

absorption cell are shown in Figs. 2 and 3. The body of the cell and 

most of its accessories were made of type-303 stainless steel. The body 

of the cell H is 2m long, 1 in. in wall thickness and 3 in. in outside 

diameter. The central bore of 1 in. with an accuracy of± .010 in. in 

the body of the cell was drilled by Industrial Machining Limited, 

Montreal, Quebec. A light guide G with a rectangular aperture of 
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1 em x .5 em, made in five pieces, was inserted into the central bore of 

the cell. The inner surface of the light guide was polished so that 

reflection, and hence transmission of radiation would be good. The 

entrance and exit windows, W, were polished synthetic sapphire plates, 

1 em in thickness and 1 in. in diameter. These windows were cemented 

onto the window plates, P, with General Electric glyptal. Steel caps, 

c, with teflon washers, T, placed in between the steel caps and the 

windows to prevent chipping, held the windows in position during 

evacuation of the cell. The apertures in the window plates were of the 

same dimensions as the aperture of the light guide. The apertures of 

the assembled cell were designed to allow a f/4 cone of radiation from 

the source and the spectrometer slit to focus onto the entrance and exit 

ends of the cell respectively. Each window plate was provided with a 

side pin which fitted exactly into a matched pin recess in the cell body 

(not shown in Fig. 2). This arrangement prevented non-alignment of the 

apertures in the window plates with that of the light guide. A good 

pressure seal was obtained by using deoxydized copper 0-rings, 0, .075 in. 

thick (Fig. 3), between the window plates and the cell body. Each of the 

end pieces, N, 1.65 in. thick and 3.5 in. in diameter are flat plates 

having a central conical bore of 15° (Fig. 3). These end pieces were 

tightened against the cell body with the help of eight Allenoy steel · 

Allen socket-head cap screws, S, each 3/8 in. in diameter. A 1/4 in. 

dia~reter steel capillary tube, A, served as the gas inlet to the cell 

and was connected by ~reans of an Aminco-fitting (Fig. 2). When the cell 

is assembled, its effective path length (from one window surface to the 

other) is 194.3 em at room temperature. 



G A · F H CT W 0 P N s 

0 

--------------------------
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2.2 Optical Arrangement 

The optical arrangement used in the present investigation is 

shown schematically in Fig. 4. The infrared radiation source, S, was a 

water-cooled tungsten filament lamp which was prepared in our laboratory 

from a standard 750 watt projection bulb planar spiral filament sealed 

into a double-walled glass envelope. A sapphire window 2mm thick and 

1 in. in diameter was sealed onto the opening in this envelope by means 

of Hysol cerrent. During the evacuation of the lamp, a small current 

was passed through the fi 1 arrent to remove impurities that might have 

been present. The lamp was filled with pure nitrogen to a pressure of 

600 mm of Hg. The nitrogen was purified by passing it slowly over hot 

copper turnings to remove traces of oxygen that might have been present 

in the commercial supply. 

The experiments were performed with a Perkin-Elmer Model 112 

single-beam double-pass spectrometer using Li F prism and a PbS detector 

operated at room temperature. The source S was operated at 4.2 amps 

and 50 volts obtained from a stabilized a.c. power supply unit which 

was fed by a Sorenson a.c. regulator, Model ACR-2000. 

Radiation from the source S was focused onto the entrance 

window of the cell, H, by an aluminized spherical concave front surface 

mirror M1 having a radius of curvature of 42 em. Light from the exit 

window of the cell was reflected and focused by a spherical concave 

mirror Mz having the same radius of curvature as M
1 

onto the entrance 

slit S1 of the spectrometer. The slit width of the spectrometer was 

maintained at 50~ which gave a spectral resolution of 11 cm- 1 at 



. H - High Pressure Absorption Cell 
S- Source 
P- Li F Prism 
D- PbS Detector 
M1, M2 , M~,M10- Focusing : Mirrors 

M4 to M9 -Pia ne Mirrors 

Fig. 4. · A schematic diagram of the optical arrangement. 
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5871 cm-1, the origin of the first overtone band of deuterium. Light 

cones of f/4 were used throughout the optical arrangement. The spectral 

region from 5100 cm-1 to 6600 cm-
1 

was calibrated using the known 

frequencies of mercury emission lines (Humphreys, 1953) and absorption 

peaks of polys~ene and 1,2,4,-trichlorobenzene (Plyler, Blaine, and 

Nowak , 19 5 7) • 

2. 3 Experimental Procedure 

The high pressure gas handling system used to introduce the 

gases into the absorption cell, H, is shovm schematically in Fig. 5. 

Prior to the actual experiments, the absorption cell and the appropriate 

parts of the gas handling system were tested for high pressures and for 

good vacuum for several days. In Fig. 5, G1 and G2 are Bourdon pressure 

gauges in the ranges 0- 5000 p.s.i. and 0- 20,000 p.s.i. respectively, 

which were calibrated by an Ashcroft dead weight tester, Cis a mercury­

column gas compressor operated by an Aminco oil pump, v
1 

to v
7 

are 

Aminco high pressure valves, and T 
1 

and T
2 

are liquid nitrogen/oxygen 

traps made of copper tubing, 1/4 in. in outside diameter. Different 

components of the system were connected by stainless steel capillary 

tubing, 1/4 in. in outside diameter. 

Pure De uteri urn Experiments: 

With the absorption cell evacuated, recorder traces of the 

background intensity 1
0 

were taken until they were reproducible. Then 

deuterium gas (C.P. grade) supplied by Matheson of Canada Limited was 

passed slowly through liquid nitrogen traps T
1 

which served to eliminate 
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impurities, if there were any, in the gas, and to develop pressures up 

to 2000 p.s.i. The gas was then compressed in the mercury-column gas 

compressor c and admitted into the absorption cell. After the gas 

reached equilibrium as indicated by the cessation of fluctuations in the 

intensity of radiation transmitted by the cell, absorption traces of 

intensity I were taken until they were reproducible. A pure deuterium 

gas experiment consisted of obtaining absorption traces of its first 

overtone band at different pressures of deuterium. At the end of the 

experiment, the cell was re-evacuated and the background traces were 

taken again. 

For each mixture experiment, deuterium gas was admitted into 

the evacuated absorption cell with valves v2 and v5 closed. The base 

pressure of deuterium was measured by means of the gauge G1. Recorder 

traces of the intensity 11 for a given base pressure of deuterium in 

the absorption cell were recorded. The valves v1 and v6 were then 

closed and the system was re-evacuated. The perturbing gas, nitrogen 

from a commercial cylinder or research grade argon supplied by Matheson 

of Canada Limited, was passed through the traps T2 and compressed in the 

mercury-column gas compressor. The coolant for the traps T2 was liquid 

nitrogen or liquid oxygen when nitrogen gas or argon gas was purified, 

respectively. The perturbing gas was then admitted into the absorption 

cell to the required pressures in sharp pulses by opening and closing 

the valves v6 momentarily three or four times at proper intervals. The 
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pressure reading of the gas mixture in the cell was read on gauge G2 

when the final momentary opening of v6 showed no change in pressure. 

This method of admitting a foreign gas in sharp pulses was to minimize 

the back diffusion of deuterium gas from the cell. As noted by several 

earlier investigators (for example, Chisholm and Welsh, 1954), the 

addition of a foreign gas in sharp pulses caused a peculiar variation in 

the transmission of the mixture. The mixing of the deuterium gas and a 

foreign gas was assumed to be complete when the deflection of the pen of 

the recorder regained its original level in the spectral region, free 

from absorption, i.e. beyond the first overtone band of deuterium. This 

duration of mixing for o2-N2 mixtures was 60 minutes, and it was 40 

minutes for o2-Ar mixtures. While admitting the compressed gas from the 

gas compressor into the absorption cell, the valve v7 was closed in order 

to prevent fluctuation of the mercury level in the gas compressor. For 

each pressure of the mixture, recorder traces of intensity 12 were taken 

until a satisfactory reproduction was obtained. For experiments with 

nitrogen and argon as perturbing gases, several base densities of 

deuterium ranging from 98 to 126 amagat were used. 

2.4 Reduction of Experimental Traces 

For experiments with pure deuterium, the absorption coefficient 

per unit length a.{v) at a given frequency v(cm- 1) is defined by the 

equation, 

( 1) I(v) = I0(v) exp {-a.(v)t} 
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where I 0(v) is the intensity of radiation incident on the evacuated 

absorption cell of optical path i in unit frequency interval at v, and 

I(v) is the intensity transmitted by the cell containing the absorbing 

(pure) gas at a given density Pa· The enhancement in the absorption 

coefficient per unit path length aen(v) due to the addition of a foreign 

gas at density pb into the cell containing the absorbing gas at any 

fixed base density Pa is given by 

(2} 

where I1(v} is the intensity transmitted by the absorbing gas in the 

cell and I2(v) is the intensity transmitted by the binary gas mixture 

in the cell. We have, therefore, from eqs. (1) and (2), 

( 3) a(v) = (2.303/i) log10 U0(v}/I(v)} 

and 

(4) 

A standard frequency calibration chart showing the calibration 

peaks and a scale of wave numbers was prepared for the spectral region 

of the first overtone band of deuterium. The infinite absorption trace 

I (v} was taken with a card inserted between the source and the cell. 
00 

Careful frequency matching of traces was obtained using atmospheric 

water absorption peaks around 5300 cm-l as references. The traces were 

then reduced by measuring log10 (I0/I) for the pure gas experiments and 

log 10(I 1!I2) for the mixture experiments at intervals of 20 cm- 1 across 

the band with the help of a standard logarithmic scale. The profiles of 



- 20 -

absorption were obtained by plotting log 10(I
0
/I) and log

10
(I

1
/I2) 

against v. The integrated absorption coefficient Ja(v)dv or its 
. -2 enhancement faen(v)dv 1n em was derived from the area under the 

absorption profiles. 

2.5 Isothermal Data of Gases 

In the study of the collision-induced spectra, the density of 

a gas expressed in units of amagat is used rather than its pressure 

because the former is more directly related to its number density (i.e. 

nurrber of molecules per unit val ume). Amagat is defined as the ratio of 

the density of a gas at a given temperature and pressure to its density 

at S.T.P. In the present experiments, the density of deuterium was 

obtained from the isothermal data given by Michels, De Graaff, Wassenaar, 

Levelt and Louwerse (1959). The isothermal data of nitrogen and argon 

were obtained from Michels and Botzen (1953) and Michels, Botzen, 

Friedman and Sengers (1956) respectively. 

The partial densities of the component gases in a binary 

mixture with deuterium were determined by the following interpolation 

method (see Reddy and Cho (1965)). The base density of deuterium, Pa' 

was directly obtained from its isothermal data. The partial density, 

pb' of the foreign gas was determined by using the formula 

(5) 

I I 

where 8 1 = pb/Pa is the approximate ratio of densities, pb being the 

approximate density of the foreign gas which is obtained on the 

assumption that the partial pressures of the component gases of the 
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mixture are additive. Here (pa)P and (pb)P are the densities of 

deuterium and the foreign gas, respectively, at the total pressure, P, 

of the mi xture. 

2.6 A Note on the Errors of Observation 

As mentioned earlier, the first overtone band of de uteri urn was 

investigated with a slit width of 50J.l. The accuracy of the frequencies 

of the observed peaks of the band depends upon whether the peaks are 

sharp or broad. In the present investigation, the spectral region was 

carefully calibrated with sharp emission lines from a quartz rrercury 

lamp and with the absorption peaks of 1,2,4-trichloro-benzene and polystyrene 

It was estimated that the accuracy of the frequency rreas urerrents of the 

observed peaks is within ±3 cm- 1. 

In the rreasurement of pressures, the 5000 p.s.i. gauge could 

be read with an accuracy of at least ±20 p.s.i ., which means that the 

fractional error for a reading of 2500 p.s.i. is ±0.8% while it is ±0.4% 

for a reading of 5000 p.s.i. The 20,000 p.s.i. gauge could be read with 

an accuracy of at least ±70 p.s.i. which gives the fractional errors, 

1.2% for a reading of 6000 p.s.i. and 0.6% for a reading of 12,000 p.s.i. 

The errors in the measurements of the integrated absorption coefficients 

may arise from errors in matching the absorption traces with the background 

traces. Such errors in matching can arise from the noise in the traces, 

the instability of the source of radiation, etc. In the present i nves­

tigation, the experiments were carried out under conditions when these 

errors were mini mum. 
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The derived integrated absorption coefficients (or their 

enhancerrents) of the experirrental profiles depend upon the observed 

quantities log10(I0;I) (or log10I 1;I2). The fractional errors of these 

integrated absorption coefficients are, in general, large or small 

depending on whether the total absorption to be measured is small or 

large, respectively. In the present investigation, the absorption to be 

measured for o2-Ar profiles is relatively small compared to those for 

o2-N2 and pure 02 profiles. The estimated fractional errors in the 

integrated absorption coefficients are approximately of the order of 2% 

to 12%. 

The errors of observation in the measurerrent of pressures 

(densities) and integrated absorption coefficients are random in nature 

and may be in general positive or negative. In addition to these random 

errors, there may be a systematic error caused by the inaccuracy in 

establishing the infinite absorption line. The latter was minimized by 

checking the infinite absorption line at several intervals during an 

experirrent. 

It is rather complicated to estimate the absolute error in the 

values of the binary absorption coefficients obtained in the present work. 

However, the maximum probable errors in the values of pressures (densities) 

and integrated absorption coefficients given above are indicative of the 

maximum probable errors in the binary absorption coefficients which are 

derived from the plots of (1/p~)Ja(v)dv or (1/papb)!aen(v)dv against Pa 

or pb' respectively. Unless otherwise stated, the errors quoted in this 

thesis are standard deviations. Inthe derivation of the binary absorption 
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coefficients, the plots (see Figs. 9, 10 and 13) which are obviously 

straight lines were obtained using a large number of experimental points. 



- 24 -

CHAPTER 3 

EXPERIMENTAL RESULTS AND DISCUSSION 

The apparatus described in the previous chapter was used to 

study the collision-induced 1st overtone absorption band of deuterium 

at room temperature (298°K} in D2-Ar and D2-N
2 

mixtures and in the pure 

gas with an absorption path length of 194.3 em. For argon or nitrogen 

as the perturbing gas, three base densities of deuterium in the range 

98.2 to 125.5 amagat were used. Several partial densities of a 

perturbing gas were used with a given base density of deuterium. The 

highest partial densities reached for argon and nitrogen in amagat were 

394 and 319 respectively. For the pure gas, three independent 

experiments were conducted for gas densities up to 455 amagat. 

The profile of the induced absorption of the 1st overtone band 

of de uteri urn is dependent on the nature of the perturbing gas. In this 

chapter, representative sets of the experimental profiles of absorption 

in the pure gas and of the enhancement of absorption in o
2

-Ar and D
2

-N
2 

mixtures are presented, their shapes are discussed and the binary and 

ternary absorption coefficients are derived. 

3.1 Absorption Profiles of the 1st Overtone Band of Deuterium in 

o2-Ar, D2-N2 and Pure o2 

Typical sets of experimental profiles of the induced 1st 

overtone band of deuterium obtained in D2-Ar and o2-N
2 

mixtures and in 

pure D2 at room temperature are presented in Figs. 6, 7 and 8 respectively. 
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For the profiles in Figs. 6 and 7, the base densities of deuterium are 

101.3 amagat and 98.2 amagat respectively. The enhancements in absorption 

(log10I 1/I2) for the mixtures and the absorption (log10r0;r) for the pure 

gas are plotted against frequency (cm-1). The positions of the single 
w~ 

transitions (see below), o2(2), Q2(2), 52(J) jer J = 0 to 5, marked on 

the frequency axes, were calculated from the constants of molecular 

deuterium obtained by 5toicheff (1957) from the high resolution Raman 

spectrum of the low pressure gas and by Wilkinson (1968) from its 

electronic spectrum. 

In the enhancement absorption profiles of o2-Ar mixtures 

(Fig. 6), the n~xima of the strong quadrupolar lines o2(2), 52(0), 52(1) 

and 52(2) closely correspond with the calculated frequencies. Weaker 

quadrupolar peaks corresponding to 52{3), 52(4) and 52(5) lines are also 

seen. Q branch appears as a single line with a maximum at 5855 cm- 1. 

Actually at room temperature the Q branch consists of five quadrupolar 

lines Q2(J) with J = 1 to 5. In general the quadrupolar Q2(o) line does 

not occur because the single transition J 11 (=J)=O+J'=O is forbidden. 

However, when the perturbing gas has a quadrupole moment, Q2(0) occurs 

due to double transitions. As argon is monoatomic, no double transitions 

occur in the enhancement absorption profiles of o2-Ar. 

The enhancement absorption profiles of o2-N2 mixtures (Fig. 7} 

are quite different from those of o2-Ar mixtures. The Q branch is very 

broad, the maxima of the s2(1), 52(2) and 52(4) lines are well-pronounced, 

and the o2(2), s2(o) and s2(3) lines appear as weak components. The Q 
w ;~ 

branch consists of single transitions Q2(J) jer J = 1 to 5 and a very 
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large number of double transitions Q2(J){02} + s0(J){N2 L Because the 

rotational constant of N2 is small (B0 = 1.9897 cm-1, Stoicheff (1954)), 

these double transitions occur in the region of the Q branch. (In 

Chapter 4, the contribution of the double transitions to the total 

intensity of enhancerrent absorption profiles is estimated from an analysis 

of the profiles.) On the low frequency side beyond the region of the 

first overtone band of dueterium, absorption due to double vibrational 

transitions, Q
1
(J){D2} + Q

1
(J){N2 }, is observed (Fig. 7). The calculated 

position of the origin of this absorption is at 5325 cm-
1 

which is the 

sum of the frequencies of Q
1
(o) of o2 (2994 cm-1, Stoicheff, 1957) and 

Q
1
(o) of N

2 
(2331 cm- 1, Herzberg, 1950a). This value closely corresponds 

to the frequency of the observed peak. Vodar (1958) reported a similar 

H
2

-N
2 

transition in a gaseous mixture of hydrogen and nitrogen. 

The features of the absorption p rofi 1 es of the 1st ave rtone 

band of deuterium in the pure gas (Fig. 8) appear quite different from 

those of the enhancement absorption profiles obtained in o2-Ar and o2-N2 

mixtures. Most of the intensity of these profiles occurs in the high 

frequency region of the band. In the region above 5900 cm-
1

, there are 

four strong but broad peaks, none of which corresponds to any of the 

calculated frequencies of the single transitions. Ho..~ever, in the low 

frequency region there is a slight indication of the o2( 3) and o2(2) 

peaks. Actually the profiles of the band in the pure gas can be 

interpreted as a superposition of two profiles. One of these is a pure 

overtone profile in which (i) complete single transitions corresponding 

to ~v=2 and ~J=O, ±2 in one of the colliding molecules alone occur, and 

(ii) double transitions corresponding to ~v=2 and ~J=O in one molecule 
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of the colliding pair and t.J=±2 in the other molecule occur. Here the 

second type of transitions occur in the S branch region at slightly 

higher frequencies than the corresponding single transitions s
2

(J) 

because of the differf~ce in the rotational constants s
0 

and B
1

• The 

other profile is the one which corresponds to double vibrational 

transitions in which each molecule of the pair performs the fundamental 

vibrational transitions t.v=1 and t.J=O. These double transitions 

Q
1
(J){02 } + Q1{J){02 } have somewhat higher frequencies than the single 

transitions Q2{J) because of the mechanical anharmonicity of the 

vibrational potential. 

The observed and calculated frequencies of the prominent peaks 

of the 1st overtone band in o2-Ar, o2-N2 and pure o2 and their assi gnnents 

are given in Table I. It is well known from the studies of the collision­

induced fundamental bands of hydrogen and deuterium (see, for example, 

Chisholm and Welsh (1954), Reddy and Cho (1965), Pai, Reddy and Cho 

(1966)}, that their profiles show a splitting of the Q
1 

branch {t.v=1, 

t.J=O) into two well-resolved components Qp and QR. The occurrence of 

the dip in the Q1 branch was recently shown to be an inter-collisional 

interference effect due to correlations existing between dipole moments 

in successive short-range collisions (Van Kranendonk, 1968). But the 

profiles of the 1st overtone band of de uteri urn shovm in Figs. 6 to 8 do 

not show any sign of splitting of the Q2 branch {t.v=2, t.J=O). The 

absence of the dip in the Q2 branch suggests that the contribution of 

the electron overlap interaction of the colliding molecules to the 

intensity of the induced 1st overtone bands is not appreciable; in other 

words, the intensity of the induced 1st overtone bands is due almost 
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TABLE I 

Frequencies (in cm-1) of absorption peaks in o
2
-Ar, o

2
-N2 

and o2-o2 

Mixture Assignment Calculated frequency* Observed frequency** 

o2-Ar o2(2) 5692.2 5690 

Q2 ( 3) 5845.9 

Q2(2) 5858.5 5850 

Q2( 1) 5867.0 

s 2(0) 6037.6 6038 

S2(1) 6143.4 6144 

s 2(2) 6243.8 6242 

s 2 ( 3) 6338.4 6340 

s
2 

( 4) 6426 .6 6425 

s
2

(5) 6522.2 6520 

o2-N2 Q 1 ( O) {02 }+Q 1 ( O) {N2} 5325.0 5330 

Q2(2) 5858.5 
5865 

Q2( 1) 5867.0 

s
2

(0) 6037.6 6040 
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TABLE I (Continued) 

t~i xture Assi gnme Ca 1 cul a ted frequency* Observed frequency** 

o2-N2 s 2 ( 1) 6143.4 6 142 

s
2

(2) 6243.8 6245 

s 2 ( 4) 6426.6 6422 

Dz-Dz o2 ( 3) 5845 .9 

Q2(2) 5858.5 5845 

Q1 (1) 5867.0 

Q 1 (l)+Q1 ( 1) 5983.3 

Q 1 ( 0 ) +Q 1 (1) 5985.3 5985 

Q 1 ( 0) +Q 1 ( 0 ) 5987.3 

o2 (2)+s
0 

(1 ) 6157.1 

Oz {l)+So (1) 6164.5 6160 

Q
2

(0)+S
0

( 1) 6168.9 

Q2 (2)+s
0

(2) 6273.2 

o2 (l)+s0 (2) 6281.7 6275 

Q
2

(o)+s
0

(2) 6286.0 

Q2 (3)+s0 (3) 6 371.8 
6375 

Q2 (2)+s
0

(3) 6384.5 

*Calculated from the constants of the free molecule (Stoicheff, 195 7, 
Wilkinson, 1968). 

**Frequency accuracy is believed to be within ±3 cm- 1• 
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entirely to the long-range quadrupolar interaction of the colliding 

molecules. This is confirrred from the analysis of the profiles of the 

1st overtone bands of de.uterium in o2-Ar and o2-N2 mixtures, presented 

in Chapter 4 of this thesis. 

3. 2 Absorption Coefficients of the 1st Overtone Band of De uteri urn 

The enhancements of integrated absorption coefficients per 

unit path length, Jaen(v)dv cm-2 for the o2-Ar and o2-N2 mixtures were 

obtai ned by numeri ca 1 integration of the areas under the expe ri mental 

profiles. For o2-N2 profiles, the area corresponding to the double 

transitions Q1(J){D2} + Q
1
(J){N2 } is not considered. The values of 

these coefficients and the corresponding partial densities of deuterium 

and the perturbing gas argon or nitrogen for the mixture experiments are 

listed in Table II or Table III respectively. The enhancements of the 

integrated absorption coefficients show a dependence on the partial 

densities of deuterium and the perturbing gas which can be represented 

by the relation 

(6) 

where alb and a2b are the binary and ternary absorption coefficients of 

the enhancement respectively. The calculated values of (1/papb)Jaen(v)dv 

were plotted against pb in Fig. 9 for D2-Ar and o2-N2 mixture experiments. 

Both the plots are straight lines, the intercepts giving the binary 

absorption coefficients and the slopes giving the ternary absorption 

coefficients. The values of these coefficients obtained by a least­

square fit of the experimental data are listed in Table V. 
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TABLE II 

Enhancements of the integrated absorption coefficients of the 

1st over one band of o2 in o2-Ar mixtures 

Po 
2 PAr Jaen(v)dv ( 1/ p aPJ!aen ( v) dv 

( amagat) (amaga t) (em -2) ( -5 -2 -2) 10 em amagat 

101. 3* 124.4 0.22 1. 71 
II 176.4 0.27 1.53 
II 

221.9 0.34 1.50 
II 

260.3 0. 39 1.49 
II 293.8 0.44 1.48 
II 

328.4 0.53 1.59 
II 351.0 0.56 1.59 
II 372.4 0.59 1.57 
II 394.0 0.66 1.65 

101. 3* 122.9 0.20 1.61 
II 175.7 0.25 1.38 
II 221.9 0. 32 1.40 
II 260.4 0.37 1.40 
II 293.6 o. 46 1.53 
II 323.0 0.53 1.62 
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TABLE II (Continued) 

Po PAr 
... fcxen(v)dv ( 1/ p aPJ!cxen ( v) dv 

2 

( amagat) (amagat) (em -2) ( -5 -2 -2) 10 em amagat 

120.2 133.7 0.23 1.44 

II 182.5 0. 32 1.45 

II 220.7 0.38 1.44 

II 260.2 0. 46 1.46 

II 288.4 0.54 1.57 

II 318.1 0.58 1.51 

II 338.3 0.60 1.48 

*Equal base densities (101.3 amagat of o2) were used in t\vo separate 
e xperi rrents. 



Po 
2 

(amagat) 

98.2 

II 

II 

II 

II 

II 

II 

II 

II 

101.3 

II 

II 

II 

II 

II 

II 

II 
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TABLE III 

Enhancerrents of the integrated absorption coefficients 

of the 1st ·vertone band of o
2 

in o
2

-N
2 

mixtures 

PN 
2 

Jaen ( v) dv ( 1/papJ!a.en(v)dv 

( amagat) (em -2) ( 10-5 cm-2amagat-2) 

95.8 0.17 1.84 

136.7 0.27 1.98 

173.9 0.34 2.01 

205.5 0.41 2.02 

233.5 0.48 2.08 

258.5 0.55 2.17 

280.8 0.60 2 . 18 

300.4 0.68 2.31 

318.5 0. 70 2.22 

106.2 0.21 2.00 

161.8 0.31 1.87 

187.0 0.39 2.08 

218.1 0.45 2.05 

245.9 0.53 2.12 

270.8 0.58 2.10 

292.6 0.63 2 .12 

312.3 0.66 2.10 



- 37 -

TABLE III (Continued) 

Po 
2 

PN 
2 

/aen(\l)d\1 ( 1/p aPJ!aen ( \)) d\1 

(amagat) ( amagat) (em - 2) ( -5 -2 -2) 10 em amagat 

125.5 61.7 0.14 1.76 

II 104.4 0.29 2.19 

II 144.6 0.39 2.12 

II 188.4 0.51 2.17 

II 209.1 0.60 2.29 

II 235.6 0.67 2.27 

II 259.6 0. 76 2. 34 

II 278.3 0.82 2. 34 
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For the pure gas experirrents, the integrated absorption 

coefficients Ja(v)dv cm
2 

and the densities of the gas for three 

different independent experirrents are listed in Table IV. The dependence 

of the integrated absorption coefficient on the density of de uteri urn can 

be represented by the re 1 ati on 

( 7) ( ) 2 + 3 fa v dv = a1aPa a2aPa 

The values of (lfp~)/a(v)dv are plotted against Pa in Fig. 10. 

The va 1 ues of the binary and ternary absorption coefficients ala and a
2

a 

given by the intercept and the slope respectively, obtained by a least­

square fit of the experimental data, are listed in Table V. As seen 

from Table V, the values of the ternary absorption coefficients are 

sma 11 for the mixtures as we 11 as for the pure gas. 

In order to compare with the theory, the integrated absorption 

coefficients can be more conveniently represented as follows. For the 

pure gas, 

( 8) 

and for the binary mixtures, 

(9) 

where cis the speed of light, a(v) =a(v)/v, and aen(v) = aen(v)/v are 

the coefficients of absorption and its enhancement at a frequency v with 

the frequency factor removed, and n0 = NA/V0 is Loschmidt's number 

(2.687 x 10
19 

cm-
3) . Here NA and v0 are the Avogadro's number and the 

gram-molar volume of an ideal gas at S.T.P., respectively. The new 
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TABLE IV 

Integrated absorption coefficients of the 1st overtone band 

df D2 in the pure gas 

Po Ja.(v)dv ( 1/p~)Ja.( v )dv 
2 

(amagat) (em -2) ( -5 -2 -2) 10 em amagat 

Experiment 1: 

167.3 0.62 2.20 

214.5 0.96 2.10 

259.5 1.38 2.05 

300.8 1.92 2.12 

338.0 2.41 2.11 

361.3 3.11 2. 38 

394.8 3.62 2.32 

425.0 4.21 2.33 

454.5 4.80 2. 32 

Experiment 2: 

122.0 0. 35 2. 34 

173.0 0.68 2.29 

238.2 1.27 2.24 

267.6 1.55 2.16 

312.5 2.06 2.17 

340.0 2 .6 3 2.28 
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TABLE IV (Continued) 

Ja.(v)dv 2 Po (1/p/.O(v)dv 2 

(amagat) (em - 2) ( -5 -2 -2) 10 em amagat 

E xpe ri rre n t 3 : 

112.3 0.29 2.31 

138.2 0.43 2.27 

164.0 0.60 2.22 

183.5 0.72 2.14 

205.0 0.90 2.14 

234.4 1.16 2.12 
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binary absorption coefficients ala and alb represent transition 

probabilities induced in collisions of the types a-a and a-b, respectively; 

and the nevo~ ternary absorption coefficients a
2

a and a
2

b represent the 

transition probabilities induced in collisions of the types a-a-a and 

b-a-b, respectively. The relations between the experirrental absorption 

coefficients (cm-2 amagat-2 ) and the new absorption coefficients (cm6s- 1) 

are represented by 

( 10) 

where \), the centre of the band, is represented by 

or 

The values of v for o2-o2 , o
2

-N
2 

and o
2

-Ar are 6077 cm-1, 

5943 cm-
1, 6060 cm-1, respectively. The values of ala and alb in 

cm
6
sec-l for the 1st overtone band of deuterium are also included in 

Table V. 

Finally, for the purpose of comparison, the va 1 ues of the 

binary absorption coefficients of the collision-induced fundamental and 

1st overtone bands of hydrogen and deuterium in the pure gases and their 

binary mixtures with nitrogen and argon at room temperature are 

summarized in Table VI. The ratios of the transition probabilities 
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TABLE V 

Absorption coefficients of the induced 1st overtone band 

of deuterium at 298°K* 

Mixture Binary absorption coefficient Ternary absorption 
coefficient 

( 10-5 cm-2amagat-2) ( 10-37 cm6s -l) ( -2 -3) em amagat 

02-02 ala 2 .10±0 .07 ala 1.43 a2a <10-8 

02-N2 alb 1.81±0 .07 alb 1.26 a2b <10-7 

o2-Ar 1.30±0.05 0.90 <10-8 

*Ranges of error indicated are standard deviations. 
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TABLE VI 

Binary absorption coefficients of the fundarrental and 1st overtone 

bands of hydrog~ and deuterium at room temperature 

Mixture Binary absorption Reference 
coefficient 

(cm-2amagat-2) (cm6s-1) 

Fundamenta 1 bands: 

H2-H2 2.4 xlO -3 2 .27xlo- 35 
Hare & Welsh (1958) 

02-02 1.06xl0-3 1.40xl0-35 
Reddy & Cho (1965) 

H2-N2 5.4 xl0-3 5 .llxl0-35 
Hare & Welsh (1958) 

02-N2 
-3 3.89xlo-35 Reddy & Varghese 2 .82xl0 

(unpublished, 1969) 

H2-Ar 4.1 xlO -3 3.86x10-35 Hare & Welsh ( 1958) 

o2-Ar 2. 7lxl0-3 3.57x10-35 Pai, Reddy & Cho (1966) 

ls t overtone bands: 

H2-H2 
-5 

Welsh, Crawford, 6 .2 xlO 
McOona 1 d, Chisholm 
( 1951) 

02-02 2 .lOxlO -5 1.43xl0-37 This thesis 

02-N2 1.8lxl0 -5 1.26xl0-37 This thesis 

o2-Ar 1. 30xl0 -5 0 .90xl0-37 This thesis 
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(which are directly related to a1a or a1b) of the 1st overtone band of 

deuterium in pure o2, o2-N2, and o2-Ar to the corresponding transition 

probabilities of the fundamental band of deuterium are 1/98, 1/309 and 

l/397, respectively. 
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CHAPTER 4 

ANALYSIS OF THE ENHANCEf~ENT ABSORPTION PROFILES 

4.1 Introduction 

Collision-induced absorption spectra occur as a result of 

dipole moments induced in the molecules during collisions. One of the 

main characteristics of these spectra is their very broad appearance 

which occurs as a result of modulation of the induced dipole moment by 

the relative translational energy of the colliding molecules. This 

modulation causes a line of molecular frequency vm to have a frequency 

distribution consisting of summation and difference tones vm ± vtr' 

where vtr is the continuum of frequencies corresponding to changes, 

hcvtr' in the relative translational energy. At low pressures, the 

induced absorption is mainly due to binary collisions between molecules. 

At high pressures, ternary (and higher order) collisions may contribute 

some amount to the total absorption. At moderate pressures, the 

absorption profiles maintain almost constant shape although the enhance­

ment in the integrated absorption of the band varies as the product of 

the densities of the absorbing and perturbing gases. In the collision­

induced fundamental bands, the separation between the maxima of the 

overlap components Op and QR of the Q1 branch increases with increasing 

density. But no splitting of the Q2 branch of the 1st overtone band of 

deuterium is observed either in the pure gas or in binary mixtures of 

de uteri urn with argon or nitrogen (Chapter 3). 
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One must distinguish the broadening of a line in the collision­

induced spectra from the ordinary pressure-broadening in the allowed 

spectra. Classically, ·ndividual transitions in the induced spectra 

give rise to very broad lines since the absorption process exists only 

for the duration of a collision whereas in the allowed spectra it 

exists unperturbed between the collisions. 

In the last chapter, the frequencies of the observed peaks of 

the 1st overtone band of de uteri urn in o2-Ar, o
2

-N
2 

and pure o
2 

were 

analyzed and the binary and ternary absorption coefficients of the band 

were determined. In addition to these factors, the distribution of the 

intensity over the 1st overtone band is of interest in order to 

determine the parameters of a theoretical model of the induction 

mechanism responsible for the intensity of the band. Because of the 

absence of the dip in the Q branch in this band it was pointed out in 

the last chapter that the contribution of the short-range overlap dipole 

moment to the intensity of the band is negligible. This is confirmed in 

the present chapter by an analysis of the profiles of the band in o
2

-Ar 

and o2-N2 mixtures. The details of the profile analysis and the results 

obtained from these are described in this chapter. 

4.2 The Quadrupole-Induced 1st Overtone Band 

The following three different types of molecular transitions 

contribute to the quadrupole-induced 1st overtone band of a symmetric 

diatomic molecule. 
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1. Single transitions: 

Here molecule 1 of the colliding pair makes the transition 
I 

flv1 = 2, fiJ 1 = 0, ±2 (J = 0 + J 1 = 0), while the internal energy of 

molecule 2 remains unaltered. The binary absorption coefficient of the 
II 2 II 

band due to single transitions is proportional to (Q1a 2) where Q1 is 

the second derivative of the quadrupole morrent of molecule 1 with 

respect to its internuclear distance and a2 is the polarizability of 

molecule 2. The frequencies of all the possible single transitions of 

the 1st overtone band of deuterium, calculated from the constants of the 

free molecule as determined by Stoicheff (1957) and Wilkinson (1968) are 

given in Table VII. 

2. Double transitions (i): 

Here molecule 1 makes a vibrational transition flv1 = 2, fiJ 1 = 0, 

while molecule 2 makes a rotational transition fiJ2 = 0, ±2. For fiJ2 = 0, 

the spectrum consists of double-transiti on-quadrupolar Q2(J 1) lines 

which occur at the single-transition frequencies. For fiJ2 = ±2, the 

spectrum consists of double-transition lines Q2(J1) ± s0(J2) for each 

value of J 1. In the pure gas, the spectrum extends to higher and lower 

frequencies than the single-transition spectrum because the rotational 

constant of the ground vibrational state is larger than that of the 

upper state. If molecule 2 is another symrretric diatomic molecule whose 

rotational constant is much smaller than that of molecule 1 (as in the 

case of o2-N2), the double transitions fall in the spectral region of the 

Q branch. The intensity is proportional to (a~Q2 ) 2 where a~ is the 

second derivative of the polarizability of molecule 1 with respect to its 

internuclear distance and Q2 is the quadrupole moment of molecule 2. 
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TABLE VI I 

Calculated frequencies and relative intensities of the quadrupolar 

single transi ons of the 1st overtone band of o
2 

Transition Frequency Relative intensity 
(cm-1) with respect to s

2
(2) 

02 ( 4) 5443.9 0.1018 

02 ( 3) 5569.5 0.1166 

02(2) 5692.2 0. 3201 

Q2(5) 5812.4 0.0154 

Q2( 4) 5829.2 0.1088 

Q2 ( 3) 5845.9 0.1367 

Q2(2) 5858.5 0.4924 

Q2 ( 1) 5867.0 0. 3650 

(Q2(o))* (5871.2) 0.0000 

s2(o) 6037.6 0.8577 

s2 ( 1) 6143.4 0.6030 

s
2(2) 6243.8 1.0000 

s2 ( 3) 6338.4 0.2778 

s2 (4) 6426.6 0.2220 

s2(s) 6522.2 0.0316 

*Q2(o) does not occur as a single transition. 
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3. Double (vibrational) transitions (ii): 

Here each of the colliding pair of molecules makes the 

vibrational transition ~v = 1, ~J = 0 giving the double-transition lines 

• Q1(J1) + Q1(J2). In the pure gas, the spectrum occurs at slightly higher 

frequencies than the corresponding single-transition spectrum (Q
2
(J)). 

HCMever, if molecule 2 of the colliding pair has a smaller vibrational 

frequency, the spectrum occurs on the 1 ow frequency side of the 1st 

overtone band of molecule 1. The intensity is proportional to 
I I 2 I I 2 

{(Q1a2) + (a1Q2) } where the single-prirred quantities are the first 

derivatives with respect to internuclear axes. 

4.3 Relative Intensities of the Quadrupolqr Single-Transition Components 

The theory of the collision-induced fundamental bands of 

symmetric diatomic molecules has been developed by Van Kranendonk (1957, 

58) using the exp-4 model for the induced dipole moment. In this model, 

the induced dipole morrent giving rise to the absorption is expressed in 

terms of a short-range part (a:exp(-R/p)) due to the distortion of the 

electron charge distribution by the overlap forces, and a long-range part 

(a:1;R
4
) due to molecular quadrupolar induction. Explicit formulae for 

the probabilities of the quadrupolar single and double transitions of the 

1st overtone bands of symmetric molecules have been derived by Shapiro 

(1965) from an expression for the induced dipole moment given by 

Van Kranendonk (1958) in the exp-4 model. 

According to the theory (see Appendix A), the relative 

intensities of the single-transition quadrupolar lines of the induced 

overtone band depend upon the following factors: 
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( 12) a1b{O(J)} 
II 2 

( Q 1 a2) p ( J) Lz ( J' J -2) 

alb{Q{J)} 
II 2 

( Q 1 a2) p ( J) L2 ( J' J ) 

a1b{S(J)} 
II 2 

(Q 1a2) P(J)L
2
(J, J+2) 

In the above expression, P(J) are the normalized Boltzmann factors and 

L2(J, J•) are the Racah coefficients. A recent theoretical calculation 

of Birnbaum and Poll (1969) indicates that matrix elements of the 

quadrupole morrent bet\'1een different vibrational states of deuteri urn 

<vJIQiv+2J•> are sensitive to the values of J and J•. In the present 
II 

analysis, Q1 for different transitions are calculated from the values of 

the matrix elements of deuterium given by Birnbaum and Poll (1969) (also 

see Appendix B). The polarizability (a2) of argon or nitrogen is 

considered to be a constant. The relative intensities of all the single­

transition quadrupolar lines with respect to the intensity of the s
2

(2) 

line are included in Table VII. 

4. 4 Line Shape 

As mentioned in section 4.1 above, a line of molecular 

frequency v in collision-induced spectra consists of summation and m 

difference tones vm ± vtr (vtr being the continuum of frequencies 

corresponding to the relative translational energy of the colliding 

pairs). The ratio of the populations of molecules absorbing frequencies 

vm- vtr and vm + vtr is given by the Boltzmann relation exp (-he vt/kT). 

Therefore, the absorption coefficients a- and a+ (where a =(1/v)a) at the 

frequencies vm- vtr and vm + vtr in the low- and high-frequency sides, 

respectively, should be related by the expression 
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(13) + a = a exp (-he vtr/kT) 

The profiles of the Q branch of the fundarrental vibration-rotation band 

of hydrogen in H2-He xtures at 298°K and in pure hydrogen in the 

temperature range 18°- 77°K have been shown to satisfy the relation (13) 

by Chisholm and Welsh (1954) and Watanabe and Welsh (1967) respectively. 

The pure rotational lines of hydrogen have also been shown to obey this 

relation by Kiss and Welsh (1959). 

The high frequency side of the quadrupolar pure rotational 

lines of hydrogen (Kiss and Welsh, 1959) and the high frequency side of 

the Q branch of the fundarrental band of hydrogen (excluding the imrrediate 

region near the dip) (Hunt and Welsh, 1964) have been represented by the 

dispersion (or Lorentzian) form: 

( 14) 
\) > v ' m 

where a
0 

is the peak absorption intensity (or a fictitious peak absorption 

at the band origin v0 (=vm) of the Q branch) and o is half of the width 

of line (toward high frequency side) at half intensity. 

A line whose intensities in the low- and high-frequency sides 

are represented by eqs. (13) and (14), respectively, is said to have a 

Boltzmann-modified dispersion line shape. It s hould be noted that the 

pure rotational spectrum of hydrogen shows deviations from the dispersion 

line shape at frequencies in the region of the tail far away from the 

central maximum (Bosorrworth and Gush, 1965, ~1actaggart and Hunt, 1969). 

Similar deviations have been found in the Q branch of the fundarrental 

band of hydrogen in H2-He mixtures by Watanabe and Welsh (1967). In the 
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present analysis, all the quadrupolar components of the 1st overtone 

band of deuterium are assurred to have a simple Boltzmann-modified 

dispersion shape given lly eqs. (13) and (14) discussed above. It will 

be seen that such a line shape gives a good representation of single­

transition profiles of the band in o2-Ar and o2-N2 mixtures. 

4.5 Analysis of the Profiles of the 1st Overtone Band in o2-Ar and 

The analysis of the enhancerrent profiles of the 1st overtone 

band of deuterium in o2-Ar and o2-N2 mixtures was carried out by rreans 

of a program written for the IBM 360 computer. All the single-transition 

quadrupolar components were assurred to have Boltzmann-modified dispersion 

line shapes \'Jith the sane half-width<\· The peak intensities of these 

components were expressed in terms of the peak intensity of the most 

intense quadrupolar line s2(2) (see Table VII). No perturbation of the 

energy levels was assumed in the induced 1st overtone band. In the 

computer program, the value of the half-width was left as an adjustable 

pararreter. The program was written such that a series of computations 

was carried out for different values of os until the best fit of the 

calculated profile with the experirrental profile in a desired spectral 

region was obtained. The criterion for the best fit was that the sum of the 

squares for the differences between the ca 1 cul a ted and observed 

intensities at 10 cm-1 intervals over the desired region of the band be 

a minimum. When the best fit was obtained, the program enabled the 

computer to print out the data for the individual single-transition 

components of the band. 
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For the enhancerrent profiles of o2-Ar mixtures, the fitting was 

first carried out in the region 6200 - 6500 cm- 1 where S lines only 

contribute to the int nsity of the band. When the best fit was obtained 

in that region, it was found that the entire region of the 1st overtone 

band could be fitted with no change of pararreters in the program. An 

example of the results of the analysis for o2-Ar contours is shown in 

Fig. 11, in which log10 (I 1 JI 2 )(=~/2.303)vaen(v)) is plotted against the 

frequency. The partial densities of deuterium and argon for the profile 

given in Fig. 11 are 101.3 and 221.9 amagat, respectively. The 14 single­

transition components of the band are shown separated out for the profile 

of the band. A satisfactory agreement* between the calculated and 

experirrental profiles over the entire region of band except a slight 

difference in the shoulder of the Q branch indicates that the single 

transitions account for almost all the intensity of the band. The 

important conclusion which can be drawn from the analysis of the enhance­

trent profiles of o2-Ar is that the contribution of the overlap forces to 

the intensity of the first overtone band is negligible. In contrast, it 

may be noted here that the overlap forces contribute as high as 75% to 

the total intensity of the induced fundarrental band of deuterium in 

o
2

-Ar mixtures at room temperature (Pai, Reddy and Cho, 1966). 

On the basis of the conclusion drawn above for the profiles in 

o2-Ar mixtures, it is assumed that the contribution of the overlap 

forces to the profiles of the band in o2-N2 mixtures is negligible. 

Since the perturbing nitrogen gas has a quadrupole moment, double 

transitions Q2(J1) {02l + s0 (J2) {N2 l also contribute to the intensity 

*The low frequency wing of the experimental profile (from 5400 cm-1 to 
5600 cm-1) is interfered with the water vapor absorption. 
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of the band in o
2

-N
2 

mixtures . Since the rotational constant of the 

nitrogen molecule is much smaller than that of deuterium, the intensity 

due to these double transitions is confined to the Q branch region. For 

o
2

-N
2 

mixtures, the quadrupolar single-transition profile is obtained by 

fitting the calculated profile to the high frequency wing of the experimen­

tal profile of the band in the region 6240-6540 cm- 1, which is free from 

the double transitions. The double-transition profile was obtained by 

subtracting the single-transition profile from the experimental profile. 

An example of the results of such an analysis for o2-N2 profiles is shown 

in Fig. 12. * 

4.6 Discussion 

( i) Half-width: 

The average values of dispersion half-widths os obtained from 

the analysis are summarized in Table VIII. It is interesting to note 

that the average values of os for o2-Ar and o2-N2 are the same. 

TABLE VII I 

Values~os for the single-transition components of the 1st 
ot 

overtone band of o2 at 298°K 

Mixture No. of profiles analyzed os(cm- 1) 

o2-Ar 6 56 ± 2 

D2-N2 8 56 ± 2 

*See footnote on page 55. 
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(ii) The integrated intensity of the double-transition profiles 

The areas und~ the double-transition profiles obtained from 

the analysis of the experimental profiles of o2-N2 mixtures (for example, 

see Fig. 12) can be expressed as 

( 15) 

where af~uble and a~~uble are the binary and ternary absorption coefficients. 

The integrated absorption coefficients !a~~uble(v)dv and the values of Pa 

and pb are given in Table IX. 

TABLE I X 

Pa pb f double( )d aen v v _1 ___ fadouble(v)dv 
PaPb en 

(amagat) ( amagat) (em -2) ( 10-5 -2 -2) em amagat 

98.2 130.3 0.079 0.620 

II 226.0 0.140 0.631 

II 264.5 0.184 0. 709 

II 296.8 0.207 0. 712 

II 324.2 0.237 0.743 

II 348.3 0.266 0. 778 

II 371.0 0.298 0.818 

II 390.3 0. 312 0.815 
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The intercept and the slope of the straight line plot between 

( 1/ ) daub 1 e ) . PaPb Jaen (v dv aga1nst pb (Fig. 13) give the values of the binary 

and ternary coefficients a1~uble and a~~uble, respectively. The values 

of these, obtained by a least-square fit, are 

daub le ) -5 -2 -2 alb = (0.48 ± 0.03 x 10 em amagat 

daub le -7 -2 -3 a2b = (0.84 ± 0.10) x 10 em amagat 

The binary coefficient a~~uble in units of cm6s-1 is 0.34 x 10-37 

( _double ( 2) double- - · 5900 -1) Th b. b · alb = c;n0 alb /v, v be1ng em . e 1nary a sorpt1on 

. . single (- double) coefficient due to single trans1t1ons, alb - alb - alb is 

1.33 x 10-5 cm-2amagat-2 The corresponding value of a~~ngle is 

0.90 x 10-37 cm6s-l (here v being 6060 cm- 1). 

(iii) Evaluation of the quadrupole moment of the nitrogen molecule 

The ratio of the binary absorption coefficients of the double 

to single transitions of the 1st overtone band of o2 in o2- N2 mixtures 

can be expressed as 

( lb) 

_daub le 
alb 
_single 
alb 

where a
1 

and Q
1 

are respectively the quadrupole moment and polarizability 

of the de uteri urn molecule, the double prime indicates the second 

derivative with respect to the internuclear distance of the molecule, 

and Q
2 

and a
2 

are respectively the quadrupole moment and the polarizability 
II 

of the nitrogen molecule. The value of a 1 obtained from the matrix 
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element of the polarizability <vlalv+2> (Poll, private communication, 
II 

1970) is 1.735 a
0

. The value of Q1 obtained from the matrix element 

<v1Qiv+2> (Birnbaum and Po~·l, 1969) is -0.272e. The polarizability of 

the nitrogen molecule, a
2

, is 11.936 a6 (Bridge and Buckingham, 1964). 

The value of the quadrupole moment of nitrogen, Q2 , as calculated from 

eq. (16), is 1.14 ± 0.05 ea~. This value is in good agreement with the 

value 1.1 ea~ obtained previously by Poll (1963), and Reddy and Cho 

(1965a). The reasonable value obtained for the quadrupole moment of 

nitrogen in the present work implies that the assumption, namely the 

contribution of the overlap forces to the intensity of the band in o2-N2 

mixtures is negligible, is valid. 
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APPEND! X A 

THE THEORY OF COLLISION-INDUCED INFRARED ABSORPTION 

In this appendix we first revie\'1 briefly the theory of the 

collision-induced infrared absorption of the fundarrental bands of 

symrretric diatomic molecules and then give an account of the theory of 

the induced absorption of the 1st overtone bands of these molecules. We 

follow this procedure because the form of the expressions for the long­

range quadrupolar induction responsible for the 1st overtone infrared 

absorption is similar to that for the long-range induction for the 

fundarrental infrared absorption. 

Fundamental band: 

The binary absorption coefficient of a definite rotational 

branch of the 1+0 vibrational band is expressed as 

( A-1) 

by Van Kranendonk (1957, 58). Here the suffixes 1 and 2 denote the 

colliding molecules, K = n/3mov0 , ITb being the reduced mass of the 

absorbing molecule, v0 being the frequency of the band origin, P1 and P2 

are the normalized Boltzmann factors for the initial states of molecules 1 

and 2, respectively, R12 is the line joining the centres of the mass of 

the two colliding molecules, and g
0

(R12 ) is the pair distribution 

function. The quantity M1 (: < (~~) 0 >)can be expanded as (Van Kranendonk, 

1958) 
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(A-2) 

where w1 = (e1, <t> 1) and w2 = (e2 , <t>2) are the polar angles of the inter­

nuclear axes of the molecules 1 and 2, relative to a coordinate frarre XYZ 

in which the vector R12 lies along the Z-axis, ll1 and ll2 are the quantum 

nurroers of the projection, along an axis perpendicular to R12 , of the 

morrenta A1 (of quantum number >-1) and A2 (of quantum number >-2), and Y~(w) 

are the spherical harmonic functions (see Appendix D). The expansion 

coefficients D have the components D in the same coordinate frarre which 
ll 

are characteristic of the pair of colliding molecules. For the possible 

values 1, 0, -1 for ll, their coefficients are given by 

(A-3) D +1 = ~ ( D ± i D ) ; 00 = Dz - ff X y 

For homonuclear diatomic molecules, there is no permanent dipole morrent, 

the coefficients D are then different from zero only for even values of 
ll 

>-1 and >-2 . In the exp-4 model for the induced electronic dipole morrent, 

components D of (A-3) are assurred to have the following values: 
ll 

(A-4) 00(0000) = E;. e xp ( - R/ p ) , 

o0(2ooo) = ( 3/ 1'5} 
I 4 

Qla2/R single trans i ti ons 

0±1 (2±100) = ( 3/ II5) 
I 4 

Q1a2/R 
II II 

o0(oo2o) -( 3/ 15) 
I 4 

daub le transitions = a1Q2/R 

0±1 (002±1) = -( 3//15) 
I 4 

a1Q2/R 
II II 
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I aQ 1 I 

Here Q1 = ( ar
1
)0 and a 1 = 

()a 

( 3 r~) 0 , r 1 being the internuclear distance in 

molecule 1; Q1 and a 1 are the quadrupolar moment and average polarizability 

of molecule 1, respectively, while Q2 and a2 are the corresponding 

quantities of molecule 2. 

Substituting (A-2) into (A-1), the resulting expression for the 

binary absorption coefficient of a definite rotational branch B can be 

written in the form: 

(A-5) 

where 

( A-6) 

and 

(A-7) 
2 

1o<>-1>-2) = 1 E ID(>-1~1>-2~2; R12)1 9o(R12)dR12 
~1~2 

L:(B) is a sum over all the rotational quantum numbers J 1, J2, J~, J~ 
I I 

for which the rotational transitions (J 1 J2 + J 1 J2) contribute to the 

branch B, and P(J) (see Appendix C) is the Boltzmann factor for the 

rotational states normalized in such a way that 

(A-8) ~ (2J+l)P(J) = 1 

I 

and L (J, J ) are the Racah coefficients (see Appendix D) defined by 

(A-9) _!._E < J ml>- ~J 1 m1 > < >- 1 ~~ J 1 m1 1J m> 41T mm 1 
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which must satisfy the condition 

(A-10) 

whe re 

But 

Substitution of (A-4) into (A-7) gives the non-vanishing integrals, 

(A-ll) K r0(oo) = A2 I y 

K r0(20) = 2 J -lll y 

K r0(o2) = 2 J -l-12 y " 

'the dirrensionless paraneters A., lll and l-12 are defined as 

( A-12) 

where o is the intermolecular distance R for which the intermolecular 

potential is zero, and e is the absolute value of the electronic charge. 

The significance of A. is that t..e is the amplitude of the oscillating 

overlap dipole morrent when the molecules are a distance o apart, and ll1e and J.l2e 

have similar rreanings, :y is defined by 

(A-13) 
2 3 

1re o 
:y = 3movo 



< 
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where nt and v0 are the reduced mass and the frequency of oscillation 

( . -1) ( ) 1n s , respectively, of the absorbing molecule 1 • The quantities 

of I and 1 are the dirrensionless radial distribution integrals defined by 

( A-14) 

and 

( A-15) 1 "" -8 ( ) 2 = 12TI J O X gQ X X d X 

where x = R/a and g0{x) is the low density limit of the pair distribution 

function expressed as g0(x) = exp (-V(x)/kT). Here V(x) is taken as the 

Lennard-Janes intermolecular potential (V(x) = 4dx- 12 - x-6)). 

On substituting (A-11), the expression (A-5) becorres 

(A-16) 

Finally, using the relations (A-6), (A-10) and (A-16), the binary 

absorption coefficient a1 (:: E(B)a1(B)) of the total 1 + 0 can be written a-s 

( A-17) a 1 = "2 I Y + ( ~ i + ~~ ) J Y • 

Here the first term t.
2 I y represents the contribution due to the short­

range overlap electron induction and the remaining term represents the 

contribution due to the 1 on g-range quadrupol ar induction. 

The 1st overtone band: 

In genera 1 the matrix e lerrent Rnm of the induced dipole morrent 

in a binary collision between molecules 1 and 2 can be represented as 
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( A-18) 

I I I I 

= < v1 v2 J1 J2 I M I v1 v2 J1 J2 > 

For the fundanental band 

(A-19) 

where Rnm is the matrix element of the dipole moment corresponding to all 

possible single and double transitions. The corresponding matrix elenent 

for the 1st overtone band is 

(A-20) 

I I 

+ < 0 0 J 1 J2 I M2 I 1 1 J 1 J2 > 

For the pure gas, the second term in the above expression corresponds to 

vibrational transitions in which each of the colliding molecules makes 

one fundamental transition. However, for mixtures (example, o2-N2), the 

second term gives rise to an absorption band at a frequency different 

from the band arising from the first term because of the difference in 

the vibrational frequencies of the colliding molecules. If the induced 

dipole monent due to quadrupolar induction is expanded as a Taylor's 

series in terms of the internuclear distances r
1 

and r2 and the 

vibrational and rotational wave functions of molecule 1 are separated, 

the matrix element can be written appro xi mate ly as 

( A-21) 1 2 2M 
Rn m = 2 < 0 I ( r 1 - r 0) I 2 > < 0 J 1 I :r21 0 J 1 > 

1 
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1 2 2 
=- < 0 l(rl- ro) I 2 > < (lli) > 

2 a 2 o 
rl 

1 2 iM 
=- < (-2)o > 

/[ 1 ar1 

kl i~1 
=- k < (-z)o > 

/21 ar1 

2 h 
where k

1 
= (h/81T "bv0) \ "b and v0 being the reduced mass and frequency 

(s- 1), respectively, of molecule 1. In this expression, the matrix 

e lerrent corresponds to a 11 single transitions in molecule 1 and daub le 

transitions in which molecule 1 makes the vibrational transition only and 

molecule 2 makes the rotational transition only. On comparing the 

nm (arq) expression {A-21) with the one for the fundarrental band, R = k1 < ar O >, 

we see that Rnm for the 1st overtone band contains an extra factor of 

k
1
/12. We no.'l define the expansion coefficients E(t. 1J.l 1t.2J.l2 ; R12 ) for 

aM 

1 

< (ar;)o > (= Mz(w1w2 ; R12)) of the 1st overtone band, in analogy to the 

theory of the fundamental band (also see Shapiro, 1965) by 

(A-22) 

where the coefficients are assurred to have the following form 

(A-2 3) 
II -4 

E
0

(2000) = +(3//5)(k 1/12) Q1a2R single transitions 

E±( 2±100) = +( 3/ II5) ( k 1!12)Q ~a2 R-4 II II 

II 4 
E
0

(0020) = -(3//5)(k/12)a1Q2R- doub 1 e transitions 

E±l(002±1) = -(3//I5)(k 1/12)a~Q2 R-4 II II 
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where Q
1 

and a.
1 

are the quadrupolar morrent and polarizabi lity of 

molecule 1, respectively, and Q2 and a.2 are the corresponding quantities 

of molecule 2. Here the ouble prirre represents the second derivative 

with respect to the internuclear axis. In analogy to (A-16) of the 

fundamental band, the binary absorption coefficient due to the quadrupolar 

induction alone for the 1st overtone band can be written as 

(A-24) 

II II 

Qla.2 a.1Q2 
If --r = e

1 
(say), and --""4 = e2 (say), the induced transitions of the 

eo eo 
0, Q and S branches for the 1st overtone band of the pure gas are given by 

(A-25) a
1
a{O(J)} = (k~/2){e~ + e~}.P(J).L2 (J,J-2).J y 

a
1
a{Q(J)} = (k;/2){e;.P(J).L2(J,J) + e~.P(J) 

. La ( J , J ) f.P < J I ) • Lz < J I , J I ) } • r y 

a
1
a {S(J)} = (k;/2){e; + e~}.P(J) .L2(J,J+2) .J y 

and for a binary mixture, we have the expressions 

( A-26) alb{O(J)} = (k;/2) e;.P(J).L2(J,J-2). J y 

a
1
b{Q(J)} = (k;/2){e~.P(J).L2 (J,J) + e~.P(J).L0 (J,J)LJ y 

a
1
b{S(J)} = (k;/2) e;.P(J).L2(J,J+2). J y 

By adding the three equations in (A-25) or in (A-26) after summation 

over J, the binary absorption coefficient for the 1st overtone band can 

be represented as 
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(A-27) 

For the double vibration transitions, 

( A-28) 

for the pure gas, 

= klk2 for the mi xtures . 

(In the mixtures, k
1 

and k
2 

are different; for example, for the double 

vibrational band of o
2

-N2") For the case of the pure gas, factor k1 

again appears in the expansion coefficients. Again, in analogy to the 

theory of the fundarrental band, the expansion coefficients F(A.111 1A.2112 ; R12 ) 

for< (lM/ar
1
ar

2
)
0 

> (:: M
12

(w
1
w

2
; R12)) can be vJritten in the following 

way 

( A-20) 

where 

(A-30) 
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The binary absorption coefficient for the double-vibration-transition band 

is 
I I I I 

(A-31) 
2 Qlal 2 a Q a~ouble = kl {(-4-) + ( \2)2} J Y 

eo eo 

= k~ {~~ + ~~) J y 
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APPEND! X B 

f~ATRI X ELEMENTS OF THE QUADRUPOLE MOMENT FOR THE TRANSITIONS 

IN THE 11ST OVERTONE BAND OF DEUTERIUM 

The quadrupole morrent of a molecule like H
2 

for the fixed 

nuclei, referred to a coordinate system with the Z-axis along the inter­

nuclear axis of the molecule, is given in units of ea6 by 

(B-1) Q ( r) = lr2 - < 3Z2 - / > 2 1 1 

where r is the internuclear distance of the molecule and z
1 

and r
1 

are 

the Z-coordi nate and radius vector of one of the electrons in the ground 

electronic state. The matrix elerrents of the quadrupole morrent, referred 

to the fi xed frarre of the mo 1 ec u 1 e, between two norma 1 i zed states of 

nuclear motion lJ!vJ and lJ!v•J. of the ground electronic state are 

(B-2) 

The adiabatic values of the matrix elements in (B-2) have been evaluated 

recently for the more intense transitions of the Q and S branches of the 

1-0, 2-0, 3-0, 4-0 and 5-0 bands of H2 , HD and o2 by Karl and Poll (1967) 

and Birnbaum and Poll ( 1969). These authors have determined the 

functions lJ!vJ(r) in (B-2) in the adiabatic approximation (i.e. by using 

the adiabatic potential for the ground electronic state neglecting the 

influence of the excited electronic states) by solving the Schrodinger 

equation numerically 

(B-3) _i_lJ!"""v_J + ~7TJlC {E- U(r)}- J(J+1)] 
dr2 [11 r2 lJ!vJ = 0 
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In this expression, the above authors have used the values of the 

effective potential U(R) of H
2 

from the work of Kolos and ~Jolniev.Jicz 

(1964, 1965, 1968). Also 'n (B-2), they have used the values ofQ(r) 

of H
2 

from the work of Kolos and Wolniewicz {1965). It must be noted 

here that the function Q(r) is approximately the same for isotopic 

molecules H
2

, HO and o
2

, but the differences between their corresponding 

matrix elements of the quadrupolar morrent < v J I Q I V
1 

J
1 

>are due to 

their differences in their nuclear masses. 

In order to calculate the relative strengths of the quadrupolar 

lines of the 1st overtone band of o2 at room temperature, the values of 

the matrix elerrents < 0 J I Q I 2 J 1 >for J = 0 to 5 in the Q and S 

branches and J = 2 to 5 in the 0 branch are required. Birnbaum and Poll 

(1969) have given the values of the matrix elerrents for J = 0, 1, 2 only 

in the Q and S branches. We describe below the method of calculation of 

the matrix elerrents of the remaining lines of the 1st overtone band of o2 • 

Karl and Poll ( 1967) expanded the radial ~tJave functions 1JivJ 

with J :f 0 in terms of the 11 Unperturbed 11 functions 1Jiva· They represented 

the correction, llQ < v J I V 1 J 1 >,to the matrix elerrents due to 

rotation-vibration interaction by the relation 

(B-4) < v J I Q I v I J I > = < v 0 I Q I vI 0 > + llQ < v J I vI J I > . 

From the first order perturbation theory 

I < V1 0 I Q I v1 0 > < v1 0 I V I v 0 > 
llQ < v J I v 1 J 1 > = - v 1:tv -------=------=-------­

Ev1o - Eva 
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L < v 0 I Q I v2 0 > < v2 0 I V 1 I v 1 0 > 
v ~V

1 

-----------~------~-------------2 

Here the perturbations and V1 are given by 

For appro xi mate ca 1 culati ons of the matrix e lerrents, the wave functions 

1/Jvo are approximated by harmonic oscillator wave functions. This 

) -2 procedure is justified whenever the matrix elerrents of Q(r and r in 

the harmonic oscillator approximation are close to the actual values 

(for example, when tJ.v = 0 and tJ.v = 1). When 11v is large, the contribution 

of anharmonic terms to the matrix elerrents is no longer negligible. 

However, in the present calculations, harmonic-oscillator approximation 

is assurred to be valid for the case of the 1st overtone band of o2 . For 

the purpose of this approximate calculation, Q(r) and V(r) are now 

expanded in terms of (r- re) up to the second order. 

2 Q(r) = Q0 + Q1(r- re) + Q2(r- re) 

V(r) = BJ(J+l) ~- {2(r- re)/re} + {3(r- re) 2/r;8 

where B = 1i2!2llr2, r is internuclear distance at equilibrium position. e e 
The relevant matrix elerrents in the harmonic-oscillator approximation are 

< v Q 

< v Q 
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and 

< v v .k .k 
v+1 > = - 2BJ(J+1)(B/w) 2

( v + 1) 2 

< v v .k .k 
v+2 > = 3BJ(J + 1)(B/w)(v + 1) 2(v + 2) 2 

The constants Q0 , Q 1 and Q2 are obtai ned by neans of a polynomi a 1 fit of 

Q(r) versus r using the data for H2 from the work of Kolos and Wolniewicz 

(1965). From (B-4), we have 

(B-5) E 
< 2 0 I Q I v1 0 > < v

1 
0 1 v I o o > 

~Q < o J 1 2 J' > = - VffV 
E - E v

1
o oo 

vE"fv' 
< o o I Q I v2 0 > < v

2 
0 I V' 1 2 o > 

2 
E - E v2o 20 

= - < 2 0 Q 10><10 v 0 0 > 

E10 - EOO 

< 2 0 g 20><20 v 0 0 > 

E2o - Eoo 

< 0 0 g 0 0 > < 0 0 V' 2 0 > 

Eoo - E2o 

< 0 0 Q 1 0 > < 1 0 V' 2 0 > 

ElO - E20 
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For the o2 molecule, s0 = 30.459 cm-1, w = 2993.548 cm-1, re = 0.74143 ~ = 
1.4010 a0 (Stoicheff, 1957). The matrix elements< 0 J 1 Q 1 2 J 1 >for 

the Q, S and 0 branches of the 1st overtone band of deuterium obtained 

with the use of (B-4) and (B-5) are listed in Table B-1. The values 

obtained by Birnbaum and Poll (1969) are also listed in the same table. 

TABLE B-1 

J Q branch S branch 0 branch 

< o J I Q I 2 J > < o J I q I 2 J+2 > < o J+2 I q I 2 J > 

0 - 0 .00767* - 0 .00794* 

1 - 0 .00769* - 0.00808* 

2 - 0.00771 * - 0.00818* - 0.00743 

3 - 0.00773 - 0.00825 - 0.00727 

4 - 0.00775 - 0.00837 - 0.00715 

5 - 0.00777 - 0.00850 - 0.00709 

*Values listed by Birnbaum & Poll (1969). 
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APPEND! X C 

NORMALIZED BOLTZMANN FACTORS OF THE ROTATIONAL LEVELS OF 

THE GR UNO VI BRATI ON AL STATE OF D2 

In thermal equilibrium, t he number of molecules [ J in any 

rotational state J of a symrretric diatomic gas depends on the following 

three factors: 

(i) the Boltzmann distribution: 

exp (- EJ/kT) a exp (- B0J(J+l)hc/kT} 

(ii) the (2J+l)-fold degeneracy (g), 

(iii) the degeneracy (gT) due to nuclear spin. 

The last factor for molecular deuterium is calculated as follows. The 

nuclear spin I of a deuteri urn atom is 1. The nuclear spin T of a 

deuterium molecule has 21+1 values: 2(parallel spins), !(inclined spins) 

and O(antiparallel spins). Even and odd T values are possible for 

symrretric and antisymrretric rotational levels, respectively. For o2 

whose ground electronic state is a 1 r:~~ the even rotational levels (J = 0, 

2, 4, ... )are symrretric and the odd rotational levels (J = 1, 3, 5, ... ) 

are antisymrretric. The statistical weights 2T+l for the even and odd J 

levels of o
2 

are 6 {5 (forT= 2) + 1 (forT= O)} and 3 (forT= 1), 

respectively. The total number of molecules N are given by 

( C-1) 
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« { L 6(2J+1) exp (- B0J(J+1)hc/kT) 
even J 

+ L 3(2J+1) exp (- B0J(J+1)hc/kT)} 
odd J 

We shall now define the normalized Boltzmann factor P(J) for an initial 

rotational state J such that the following normalization condition is 

satisfied: 

( C-2) L (2J+1) P(J) = 1 
J 

P( J) is then represented by 

( C-3) P(J) 

One must realize that the above normalization condition is valid if the 

Racah coefficients are used in the calculation of relative strengths of 

the individual lines in a band. However, if the Clebsch-Gordan 

coefficients are used, P(J) is normalized in a different way. Then 

P(J) has an additional factor gJ in the nurrerator of expression (C-3). 

The calculated values of P(J) for deuterium gas at room 

temperature (298°K) are listed in the following table. (Note: 

-1 ) s0 of o2 = 30.459 em • 
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TABLE C-1 

J 
-B0J(J+1)hc 

re 1 ati ve P(J) (2J+1)P(J) gJ 9r exp( ) 
kT NJ 

0 1 6 1.000 6.000 0.1823 0.1823 

1 3 3 0.7507 6.756 0.0684 0.2052 

2 5 6 0. 4230 12.690 0.0771 0. 3855 

3 7 3 0.1789 3.757 0.0163 0. 1141 

4 9 6 0.05 68 3.068 0.0111 0.0999 

5 11 3 0.0135 0.446 0.0012 0.0132 

6 13 6 0.0024 0.187 0.0004 0.0052 

7 15 3 0.0003 0.015 0.00003 0.0005 

---------------------------------------------------------------------
E (2J + 1)P(J) = 1.0059 
J 

"' 1 

-



-
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APPENDIX D 

RACAH COEFFICIENTS OF DIFFERENT BRANCHES IN THE INDUCED 

VI RATION-ROTATION SPECTRA 

The induced infrared absorption bands consist of the three 

branches 0, Q and S corresponding to the selection rule ~J = -2, 0 and 2. 

The Racah coefficients LA(J, J 1
) are defined by (see for example, 

Van Kranendonk, 1958) 

( D-1) 

= 4rr }"; 
mm• 

Rose (1957) showed that 

( D-2) 

where the first Clebsch-Gordan coefficient C contains the angular momenta 

selection rule and the second coefficient C contains the parity selection 

rule. Therefore 

( D-3) }"; 

mm• 

k 

li2J 1+1}{2).+1D 2 C(J I 

L 4rr{ 2J+ 1) J A J, m• ~ m) 
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• C(J 1 A J, 000) • ~2JI+ 1 )( 2 A+lD~ L 41T( 2J+ 1) J 
• C ( J 1 A J , m 1 

J.l m) * C ( J 1 A J , 0 0 0) * 

= I: ( 2J 
1

+1)(2 A+ 1) C(J 1 A J, m1 J.l m) 2 C(J 1 A J, 0 0 0) 2 • 
mm 1 (2J+1) 

Using the symmetry relation of Clebsch-Gordan coefficients, 

we have 

(D-4) LA{J,J 1
) = I: {2J 1 +1)C{J 1 J A, m1 -m-J.I) 2C(J 1 A J, 0 0 0) 2 

mm 1 

= (2J 1+1)C(J 1 A J, 0 0 0) 2 

= (2J+l)C(J A J 1
, 0 0 0)2 

Condon and Shortley (1953) showed that when A= 2, the Clebsch-Gordan 

coefficients for the 0, Q and S branches are given respectively by 

( 0 = 5) C(J 2 J-2, 0 0 0) = 

c ( J 2 J , 0 0 0) = ___ -_J_,_( J_+_1,__) -­
/(2J-1) (2J+3) J ( J+ 1) 

C(J 2 J+2, 0 0 0) - J 3 (J+1)(J+2) 
2 ( 2 J+ 1) { 2 J+ 3) 
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When we substitute these relations in (D-4), the resulting Racah 

coefficients are 

( D-6) 2) = l J(J-1) 
2 (2J-1) 

L ( J, J) = J ( J+ 1) ( 2 J+ 1) 
2 (2J-1)(2J+3) 

L (J, J+2) = l (J+1)(J+2) 
2 2 (2J+3) 

The values of the Racah coefficients for different transitions correspond-

ing to the initial rotational states J = 0 to 5 are listed in Table D-1. 

TABLE D-1 

J 0 Branch: Q Branch: S Branch: 

L
2 

( J, J-2) L2 ( J, J) L2 ( J, J+2) 

0 0.000 1.000 

1 1.200 1.800 

2 1.000 1.429 2.571 

3 1.800 1.867 3.333 

4 2.571 2.338 4.091 

5 3.333 2.821 4.846 
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