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ABSTRACT 

The adult onset spinocerebellar ataxias are a genetically and clinically 

heterogeneous group of neurodegenerative disorders. The relative frequencies of these 

disorders vary within different ethnic groups and geographical locations. We sought to 

identify the relative frequencies of these disorders in the Calgary Movement Disorders 

Clinic, as well as to determine the proportion of patients that have a positive family 

history and to determine the diagnostic utility of genetic testing in individuals with and 

without family members with similar symptoms. 

A retrospective chart review of individuals given a clinical diagnosis of adult 

onset spinocerebellar ataxia in the Calgary Movement Disorders Clinic was carried out. 

Testing for SCA types 1, 2, 3 ,6, 7, and 8 as well as Friedreich's Ataxia and the fragile X 

premutation tremor/ataxia syndrome was performed on at least one member of each 

family. 

A total of 69 patients in 60 families presented with an adult onset progressive 

ataxic disorder. Twenty-one (35.0%) of the families had a pedigree suggestive of an 

autosomal dominant disorder. An apparent autosomal recessive pattern of inheritance 

was present in 3.3%. A positive but undefined family history was noted in 15.0%. 

Sporadic disease appeared to be present in 43.3%. Two patients (3.3%) were adopted. 

The most commonly found mutation in the autosomal dominant families was SCA3 ( 5 

families - 23.8%). This was followed by SCA2 (3 families - 14.3%) and SCA6 (2 

families - 9.5%). The SCAl and SCA8 expansions were only identified in 1 family 
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(4.8%) each. Although the family history was suggestive of a dominant disorder, one 

patient was found to have Friedreich's Ataxia. A patient in one of the two autosomal 

recessive appearing families tested positive for Friedreich' s ataxia. One individual 

(11.1 %) with a positive but undefined family history tested positive for SCA6. A single 

sporadic patient had a positive test which was SCA3. Neither of the two adopted patients 

had a positive test. DRPLA testing was performed on 21 of the families and no positive 

tests were found. No expansions of the fragile X mental retardation gene were found. 

A positive test result was found in 61.9% of autosomal dominant pedigrees, 50% 

of autosomal recessive pedigrees, and 11.1% of patients with positive but undefined 

family histories. Of the sporadic patients only 1 of 26 (3.8%) was found to have a 

positive genetic test. 

SCA3 is the most common mutation found in our clinic patients followed by 

SCA2 and SCA6. A positive test result is uncommon in individuals without any family 

history of a similar disorder. The fragile X tremor/ataxia syndrome was not identified in 

our SCA patient population. 
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CHAPTER I- INTRODUCTION 

1.1 Background of Study 

The spinocerebellar ataxias are a large group of neurological disorders which may 

be hereditary or sporadic. The core clinical features of gait and limb ataxia are 

manifestations of degeneration of the cerebellum and its connections. Other neurological 

systems are variably involved producing features such as extraocular movement 

abnormalities, pyramidal tract dysfunction, sensory loss, bulbar dysfunction, and 

movement disorders such as parkinsonism, dystonia and tremor. 1 

As is the case with most genetic disorders, the relative frequencies of the SCAs 

varies within different populations. Published information regarding the distribution of 

the SCAs in a Canadian population is not currently available. The diagnostic utility of 

genetic testing of SCA patients in Canada has not been described. 

The fragile X premutation tremor/ataxia syndrome is a recently described disorder 

found in some patients carrying premutation range expansions of the fragile X mental 

retardation gene 1 (FMR1).2 The diagnostic utility of testing for this disorder in patients 

presenting with SCA has not yet been established. 



1.2 Purpose of Study 

The main objective of this study was to examine the clinical epidemiology of SCA 

in patients referred to the University of Calgary Movement Disorders and Neurogenetics 

Clinics. The diagnostic utility of genetic testing for the SCAs and the FMRl premutation 

was to be determined. 
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CHAPTER II- LITERATURE REVIEW 

2.1 Autosomal Dominant Spinocerebellar Ataxias 

Prior to the identification of different genotypes for the dominantly inherited 

spinocerebellar ataxias, these disorders were classified according to a scheme suggested 

by Harding.3 In this system, the autosomal dominant cerebellar ataxias (ADCA) were 

separated clinically into 3 types. In addition to cerebellar ataxia, ADCA I patients have 

variable degrees of dementia, supranuclear ophthalmoplegia, optic atrophy, and 

extrapyramidal features. Patients classified as having ADCA Type IT develop pigmentary 

retinal degeneration which may precede the development of the ataxia. Other 

characteristics of ADCA II include supranuclear ophthalmoplegia in 50% as well as 

dementia and extrapyramidal features in some of the affected individuals. ADCA Type 

Ill is a relatively pure cerebellar syndrome. The additional features found in the other 

two types are absent. 

The Human Genome Organisation Gene Nomenclature Committee lists 23 

approved gene names for the autosomal dominant spinocerebellar ataxias (Accessed 

August 8, 2003 at http://www.gene.ucl.ac.uk/nomenclature/). Of these, SCA 9, 15, 19, 

and 22 are listed as reserved although the Online Mendelian Inheritance in Man website 

describes references for SCA15 and SCA19 (Accessed August 8, 2003 at 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM). Recently a locus has been 

described for SCA22.4 No information or reference is provided for SCA23. There is no 
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listing for SCA20. Table 1 giVes a comparison of Harding's classification and the 

currently identified spinocerebellar ataxias. Dentatorubral-pallidoluysian atrophy 1s 

another autosomal dominant disorder that has ataxia as part of its symptomology.5 

Table 1. Genetically Defined SCAs Grouped by Harding's Classification 
ADCAI SCAl, SCA2, SCA3, SCA4, SCA8, SCA12, SCA17, SCA18, SCA19, 

SCA21 
ADCAII SCA7 
ADCAIII SCA5, SCA6, SCAlO, SCAli, SCA14, SCA15, SCA16, SCA22 

In the SCAs where a genetic defect has been identified the abnormality has so far 

always involved expansion of unstable repeat sequences of deoxyribonucleic acid (DNA). 

The most common of the expansions are of triplet CAG (cytosine/adenine/guanine) 

sequences which encode polyglutamine within the protein. This is the case for SCA types 

1, 2, 3, 6, 7, and 17.6
-

11 Unstable nucleotide repeat sequences have been found to be 

responsible for a variety of other degenerative neurological disorders including, in 

chronological order of discovery, fragile X syndrome, myotonic dystrophy, Kennedy 

spinal and bulbar muscular atrophy, and Huntington disease. 12
-
15 

With the exception of SCA6, all of the polyglutamine expansion disorders exhibit 

a feature called anticipation. Anticipation refers to a decrease in the age of onset of 

symptoms that occurs in successive generations. The molecular basis for anticipation is 

that further expansion in the number of trinucleotide repeats may occur during 

transmission from one generation to the next as larger numbers of repeats have some 

correlation with age of onset. 16
-
19 
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The specific mechanism by which the CAG expansions cause disease is not fully 

understood. Studies of animal models and tissue cultures have suggested that the 

expanded polyglutamine tracts result in a toxic gain of function?0
' 

21 

Expansion of trinucleotide repeats in non-encoding regions of a gene may also 

lead to disease. Examples of this include SCA8, SCA12, Friedreich's ataxia, fragile-X 

syndrome, and myotonic dystrophy. 12
' 

15
' 
22

-
24 In the case of SCAl 0 the expansion is of an 

ATTCT (adenine/thymine/thymine/cytosine/thymine) pentanucleotide repeat.25 The 

pathologic repeat numbers in these disorders are generally much larger than those that 

occur because of expansions in the encoding regions. 

Genetic testing is possible for SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCAlO, 

SCA12, SCA17, FA, and DRPLA. Genetic testing for SCA10, SCA12 and SCA17 is not 

currently performed in the Alberta Children's Hospital in Calgary. 

2.1.1 SCA1 

The initial linkage of a spinocerebellar ataxia to the human leukocyte antigen 

(HLA) locus on chromosome 6 was made by Jackson et al in 1977.26 Moller et al. (1978) 

and Nino et al. (1980) confirmed this through the study of other families. 27
' 

28 Morton et 

al (1980) reviewed the linkage of SCA to HLA on chromosome 6 that had been found in 

13 kindreds and proposed the label "SCAl" for families with this linkage. 29 More 

specific localization on chromosome 6 followed but it was not until 1993 that the genetic 
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abnormality was found to be a trinucleotide repeat disorder when Orr and colleagues 

found an expanded number of CAG repeat units in individuals with SCA1. 6 Following 

this finding of the polyglutamine sequence, Banfi et al (1994) then proceeded to identify 

the gene and name it ataxin-1. 30 Servadio et al. (1995) looked at the expression of ataxin-

1 in normal and affected individuals and found that the protein was expressed in the brain 

ofboth groups of individuals including in the nucleus and cytoplasm ofPurkinje cells.31 

The normal function of the protein is currently unknown but the work ofYue et al. (2001) 

suggested that it may be involved in ribonucleic acid (RNA) metabolism.32 

Anticipation has been noted in SCAl families. Chung et al 1993 found that in 

63% of paternal transmissions there was an increase in repeat number, whereas 69% of 

maternal transmissions showed either no change or a decrease in repeat number. 16 In 

addition they noted that 98% ofunexpanded alleles had an interruption in the CAG repeat 

while the repeat was continuous in all of the expanded alleles. This suggested that the 

loss of the interruption may predispose to the expansion. The importance of the 

interruptions was further clarified by Matsuyama et al (1999).33 They reported that the 

presence of CAT (cytosine/adenine/thymine) trinucleotide interruptions resulted in a 

later age of onset. Further information from Zuhlke et al (2002) revealed that the 

presence of a CAT interruption in an intermediate sized allele prevented the development 

of the SCAl phenotype whereas its absence would produce the usual disease state. 34 
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The normal range of CAG repeats is 6 to 36 whereas affected individuals have 44 

to 81 repeats. Alleles in the 36 to 44 range may not result in symptoms if interrupted by a 

CAT sequence. 31
' 

35
' 

36 

The clinical features found in individuals with SCAl are variable with some 

features only appearing late in the disease. Ranum et al (1994) described the clinical 

features found within 9 large SCAl kindreds.37 Gait and limb ataxia, dysarthria, and 

dysfunction of cranial nerves IX, X, and XII were found in all SCAl individuals. Other 

features that were variably present included oculomotor deficits (nystagmus, slow 

saccades, or ophthalmoplegia), motor weakness and amyotrophy, proprioceptive loss, and 

pyramidal tract signs. Late in the disease dystonic posturing and other involuntary 

movements such as chorea may appear. 

The average age of onset of symptoms is around age 30, but SCA1 has been 

described to manifest in childhood. Those that develop symptoms before 13 years of age 

progress very rapidly. Death at 10 to 30 years after symptom onset is the more typical 

course that is seen in adult onset cases. Respiratory failure related to bulbar dysfunction 

is the main cause of death. 38 

7 



2.1.2 SCA 2 

Analysis of a large Cuban family with an autosomal dominant spinocerebellar 

ataxia initially described by Orzoco in 1990 failed to show linkage to chromosome 6p as 

demonstrated with SCA1. 17
' 

39 Further testing enabled assignment of SCA2 to 

chromosome12q23-24.1.40 Trottier et al (1995) used a monoclonal antibody that detected 

polyglutamine expansions and found that a SCA2 patient, but not his normal relative, had 

a protein with an expansion.41 This suggested that SCA2 was also a trinucleotide repeat 

disorder and identification of the causative gene was accomplished in 1996.7
' 
42

' 
43 

The normal range of CAG repeats is 14 to 31 with more than 95% of normals 

having 22 or 23 repeats. Disease causing alleles have 36 to 64 repeats with most falling 

between 37 and 39. An allele size of 32 to 35 may or may not produce the disease 

phenotype.42
'
43 An infant has been described as having an expansion greater than 200.44 

The phenotype of SCA2 is highly variable. The clinical features of the original 

large Cuban kindred as described by Orozco et al in 1990 included gait ataxia, dysarthria, 

dysmetria, and adiadochokinesia. Additional features of cramps, tremor, slowed/limited 

saccadic eye movements, hypotonia, and abnormal reflexes were present in over 50% of 

the patients. The age of onset in this group was between 2 and 65 years with a mean of 

17 31.7 years. 

In the initial clinical descriptions of SCA2 the patients did not have any 

parkinsonian features. 17
' 

45
' 

46 More recent reports have described families in which 
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individuals with levodopa responsive parkinsonism are found to carry the SCA2 

expanded CAG allele. These patients all had family histories suggestive of an autosomal 

dominantly inherited form of parkinsonism.47
-
49 The family described by Furtado et al 

(2002) lacked any physical examination features suggestive of cerebellar involvement. 

Positron emission tomography (PET) scanning of 2 affected family members revealed 

changes which were similar to that found in idiopathic Parkinson's disease as well as in 

inherited parkinsonism.49 Shan et al (2001) had previously reported similar PET findings 

in two patients with familial parkinsonism who tested positive for the SCA2 mutation. 47 

Three categories of presenting features were noted in the family reported by Gwin-Hardy 

et al (2000).48 There were individuals with typical levodopa responsive parkinsonism, 

others had a parkinsonism and ataxic combination, and some appeared to have 

progressive supranuclear palsy. 

2.1.3 SCA 3 

A family originating in the Portuguese Azores was found to have an autosomal 

dominant ataxia by Nakano, Dawson and Spence in 1972. These individuals were the 

descendants of a William Machado. 5° Other families of Azorean descent with dominantly 

inherited neurodegenerative disorders were then described. 51
-
53 Rosenberg referred to this 

disorder as Joseph Disease as the original ancestor was Antonio Jose (Joseph) Bastiana. 53 

After travelling to the Azores, Coutinho and Andrade suggested that all of these 

families shared a common genetic disorder even though there were phenotypic 
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differences. 54 This lead to the naming of the disorder as Machado-Joseph Disease. In 

that paper they divided the disorder into 3 syndromes. Type I comprised 15% of cases 

and patients had pyramidal and extrapyramidal findings, progressive external 

ophthalmoplegia and minor cerebellar deficits. In Type II (38% of cases) there were 

cerebellar and pyramidal deficits, without extrapyramidal signs with or without 

progressive external ophthalmoplegia. Forty-seven percent (47%) of the patients were 

classified as Type III and their findings included distal symmetrical muscle atrophy with 

cerebellar findings with or without progressive external ophthalmoplegia and pyramidal 

s1gns. A fourth type of presentation consisting of parkinsonism and peripheral 

neuropathy has also been described and may be more common in individuals of African 

ancestry. 55
-
57 

Takiyama et al reported in 1993 that Machado-Joseph disease mapped to 14q24.3-

q32. 58 In investigating a dominantly inherited ataxia in France, Stevanin et al discovered 

that the locus mapped to 14q24.3-qter but could not determine at that time if it was the 

same gene that was responsible for Machado-Joseph disease. 59 

A CAG repeat was found to be responsible for the disorder by Kawaguchi et al in 

1994.9 In 1995 Schols et al established that SCA3 and Machado-Joseph Disease shared 

the same genetic etiology when they tested 38 German families with an autosomal 

dominant ataxia for the Machado Joseph CAG repeat.60 
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Normal individuals have 12 to 43 repeats whereas affected individuals have 56 to 

86.9
' 

61
-
64 No intermediate allele lengths have been described. Age of onset has been 

found to correlate with CAG repeat number.63
-
65 

2.1.4 SCA4 

The initial report of an autosomal dominant SCA family of Scandinavian origin 

living in Utah that mapped to chromosome 16 was made by Gardner and colleagues in 

1994 in an abstract at the American Academy of Neurology Meeting.66 Further details 

were later provided in a publication in 1996 with a more specific localization made to 

6 67 1 q22.1. The median age of onset was 39.3 years (range 19 to 59) and anticipation 

seemed to exist. To be deemed affected, an individual had to have gait or limb ataxia. A 

sensory neuropathy was invariably present. Dysarthria was present in half. Babinski 

signs were found in 20%. Oculomotor signs were uncommon with only 15% of the 

patients manifesting this abnormality. 

A second family with an autosomal dominantly inherited ataxia has been mapped 

to chromosome 16q. 68 The clinical features of the 28 affected individuals in this family 

were significantly different from the Utah family. The age of onset was older averaging 

55.9 years (range 45 to 72). Dysarthria was more common (92.6%). The most striking 

difference was that sensory loss was not a feature and reflexes were all normal or near 

normal. 
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Given that anticipation has been reported as a feature of this disorder, SCA4 may 

also turn out to be a trinucleotide repeat disorder and the phenotypic differences between 

the two families may be explained by differing repeat numbers. Alternatively, these 

differences may occur because the two families have separate genetic defects. 

2.1.5 SCA5 

A form of spinocerebellar ataxia found in the descendants of Abraham Lincoln's 

paternal grandparents has been linked to chromosome 11.69 This kindred contained 170 

members over 10 generations with 56 of them being affected. This form of SCA 

appeared to have a more benign course than the previously described ones. The 

symptoms were largely restricted to the cerebellum and progressed slowly over decades. 

Bulbar paralysis was not found in adult onset cases but was seen in two of the juvenile 

onset patients. Disease onset was usually in the third or fourth decade with a range of 10 

to 68 years. Anticipation appeared to be present. 

A second family with similar clinical features and linkage to the SCA5 locus has 

also been described in France. 70 

2.1.6 SCA6 

The discovery of SCA6 did not follow the usual method of linkage analysis 

followed by gene identification that the other SCAs had done. Zuchenko et al (1997) 
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found that a CAG repeat existed within the human alpha lA voltage-dependent calcium 

channel subunit. 10 They then tested ataxia patients and normal controls and found 8 

unrelated patients with a late onset ataxic syndrome. Further analysis of family members 

of these individuals confirmed that an expanded CAG repeat within the alpha lA voltage

dependent calcium channel subunit was associated with ataxia. 

The normal range of repeats is 5 to 20 while affected individuals have 21 to 25 

which is shorter than the expansion found in other CAG repeat disorders. No 

intermediate repeat lengths have been described. 18 

The clinical features of SCA6 consist of a predominantly cerebellar syndrome. 

While Ishikawa et al (1997) did not find non-cerebellar system involvement, Schols et al 

(1998) reported the presence of mild degrees of external ophthalmoplegia, spasticity, and 

peripheral neuropathy, especially if symptoms are present for more than 5 years. Onset of 

symptoms has been found to range from 20 to 71 years. 18
• 

71 

One individual with both SCA6 and retinitis pigmentosa has been described. 72 

Retinal degeneration had only previously been found in association with SCA 7. In this 

case the retinal problem was not thought to be a manifestation of SCA6 as the parents of 

the patient were first cousins and two of his three male cousins, whose parents were also 

first cousins, also had the retinitis pigmentosa but had no evidence of ataxia. 

13 



The specific means by which the expansion of the polyglutamine repeat of the 

alpha lA voltage-dependent calcium channel subunit results in ataxia is not completely 

understood. Ishikawa et al (1999) reported that this gene is most intensely expressed in 

the Purkinje cells of normal individuals.73 When they examined the brains of SCA6 

patients they found that there were many oval or rod-shaped aggregates in the cytoplasm 

of Purkinje cells which were not found elsewhere. This suggested to the authors of this 

paper that the mechanism of neurodegeneration in SCA6 is associated with cytoplasmic 

aggregations of the mutant alpha lA voltage-dependent calcium channel subunit protein. 

Unlike the other SCAs true anticipation has not been found to be a feature of 

SCA6. While repeat number has correlated with age of onset among different families 

and earlier onset has been found in the children of affected individuals, actual expansion 

of the number ofrepeats in subsequent generations has not been demonstrated. 10
• 

18
• 

19
• 

74 

Other types of mutations of the alpha lA voltage-dependent calcium channel 

subunit gene can also produce disease but the phenotype can be quite different. Ophoff et 

al (1996) found missense mutations in people with familial hemiplegic migraine and 

mutations which disrupt the reading frame were found in patients with episodic ataxia 

type 2.75 There has also been some evidence that this gene may be involved in idiopathic 

generalized epilepsy. Chioza et al. (2001) found that a single nucleotide polymorphism 

within the gene showed significant association with the disease.76 
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2.1.7 SCA7 

The only entity that currently falls within Harding's classification of ADCA II is 

SCA 7. The distinguishing feature of this disorder is the presence of a pigmentary retinal 

degeneration, first described by Fromet and colleagues in 193 7. 77 

The median age of onset of the 4 7 patients with SCA 7 studied by Giunti et al 

(1999) was 32 years with a range of 1 to 76. Correlation was found between the age of 

onset and the number of repeats. Two phenotypic categories were observed. For those 

with less than 49 CAG repeats the clinical course consisted of a fairly pure cerebellar 

ataxia for many years with a more benign progression. Patients with 49 or more repeats 

had a cerebellar ataxia with additional neurological signs such as fasciculations and 

extrapyramidal features along with a more rapid progression. Macular degeneration was 

present in 89% of the patients. Other common features included supranuclear 

ophthalmoplegia (69%), increased reflexes (92%), Babinski (31%), dysphagia (55%) and 

dysarthria (100%).78 

Benomar et al (1995) mapped the gene for this disorder to 3p21.1-p12 and Gouw 

et al (1995) and Holmberg et al. (1995) to 3p21.1-pl4.79
-
81 In the Benomar et al paper, 

analysis was performed on four different families from geographically diverse regions 

with all of them mapping to the same chromosomal region. While a specific gene was 

not identified, Trotter et al (1995) demonstrated that SCA 7 appeared to be the result of a 

polyglutamine expansion.41 This was confirmed by Lindblad et al. in 1996.82 The gene 

was finally discovered in 1997 by David et al and named ataxin-7. 8 The normal function 
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of ataxin-7 is not known. No other genetic locus has been found for families with the 

combination of ataxia and pigmentary retinal degeneration. 

Gouw et al (1995) and Holmberg et al. (1995) had previously noted anticipation in 

the families that they studied. 80
' 

81 David et al. (1996) found that anticipation was more 

prominent with paternal rather than maternal transmission and this was confirmed in their 

1997 paper describing the CAG expansion. 83 

The SCA 7 allele was found to be highly unstable with normal repeat numbers 

ranging from 4 to 35 and mutant alleles having anywhere from 38 to around 200 repeats. 8
' 

84 Intermediate repeat numbers ranging from 28 to 35 were reported in families of SCA 7 

patients but were rare in the general population. This intermediate range was not 

associated with symptoms but was prone to expansion in future generations. 78 

2.1.8 SCA8 

Koob et al (1999) reported that a non-coding CTG expansion on chromosome 

13q21 resulted in SCA8.22 Onset of symptoms in this family ranged from 18 to 65 years 

with a mean of 39 years. Common initial symptoms were dysarthria, mild aspiration, and 

gait instability. Other clinical features included nystagmus, limb ataxia, spasticity and 

decreased vibration sense. Stevanin et al. (2000) looked for the CTG repeat expansion in 

188 French controls with no family history of neurologic disorders and 250 European 

index patients with different forms of ataxia. 85 While they found expansions in 8 of 148 
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autosomal dominant cerebellar ataxia families, expansions were also seen in an 

apparently sporadic ataxia patient, in a patient with neuropathologically confirmed Lafora 

disease, in a patient with familial essential tremor, as well as in three control patients aged 

57, 62, and 64 years. 

The findings ofKoob et al (1999) came under further scrutiny as other researchers 

found large sized alleles in apparently normal individuals. Worth et al. (2000) found five 

expanded alleles in their control population as well as a large number of repeats in the 92-

year-old asymptomatic mother of an affected patient.86 Vincent et al. (2000) observed 

that more than 100 repeats could be found in 1.25% of patients with various psychiatric 

disorders and 0.7% of healthy controls but none were present in individuals affected by or 

with a family history of SCA.87 Silveira et al. (2000) failed to find expansions greater 

than 100 in any normal controls. 88 

In contrast to other triplet repeat diseases, expanded alleles found in affected 

SCA8 individuals can have either a pure uninterrupted CTG repeat tract or an allele with 

1 or more CCG, CTA, CTC, CCA, or CTT trinucleotide interruptions. The repeat 

number in sperm may undergo contractions which may underlie the reduced penetrance 

associated with paternal transmission. 89 

In examining the SCA8 expansion in an 81 member SCA8 expansion positive 

family, Day et al (2000) found that all of the 21 affected family members inherited the 
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expansion from their mothers and contraction in sperm was again observed. The CTG 

repeat was consistently longer in affected than in unaffected individuals. 90 

Controversy remains about the role of the SCA8 expansion in producing disease. 

2.1.9 SCAlO 

Grewal et al. (1998) described a Mexican American family which did not carry 

the SCA types 1, 2, 3, 6, or 7 mutations and did not link to the sites described for SCA4 

and SCAS. 91 They later reported linkage of the ataxia to chromosome 22q 13 and labelled 

this as SCA10.92 They noticed the phenomena of anticipation which suggested that this 

might also be a trinucleotide repeat disorder. Instead of the usual trinucleotide repeat, 

Matsuura et al (2000) found a pentanucleotide repeat in an intron of the SCA1 0 gene.93 

Normal individuals were found to have 10 to 22 ATTCT repeats and affected individuals 

had 800 to 4500. 

The age of onset of symptoms ranges from 12 to 48 years. Like the other SCAs a 

progressive ataxia has been the core clinical feature but SCA1 0 patients have also had the 

additional characteristic of seizures in 20% to 100%. Generalized seizures were the most 

common but some individuals developed complex partial seizures. The seizures 

generally began after the onset of ataxia.91
-
94 Mild pyramidal signs, behavioural 

disturbances, and peripheral neuropathy occurred in some patients and systemic disorders 
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such as hepatic failure, anemia, and/or thrombocytopenia have been recorded in one 

family. 94 

Anticipation has been seen in families with SCA10.91
• 
92 

Testing of 123 French families with autosomal dominant cerebellar ataxias failed 

to find any SCA10 mutations.95 A search for the SCAlO mutation in 67 white American, 

40 French-Canadian, 6 Italian, 17 Japanese, and 39 Spanish families with ADCA also 

failed to find a positive test. Testing of 250 sporadic ataxic patients of white American or 

Spanish descent also did not find any patients with the SCAlO mutation.96 As SCAlO has 

not yet been described in non-Mexican populations diagnostic testing is not being 

performed at the University of Calgary Molecular Genetics Laboratory. 

2.1.10 SCA11 

Worth et al (1999) described a family with a pure cerebellar syndrome with 

linkage to 15q14-q21.3.97 The mean age of onset of symptoms was 24.7 years with a 

range of 15 to 43 years. These individuals had a relatively benign disease with a normal 

appearing life expectancy. Extraocular movement abnormalities were limited to jerky 

pursuit and horizontal nystagmus and all individuals had mild hyperreflexia but no other 

neurological exam abnormalities. 
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2.1.11 SCA12 

Holmes et al (1999) described a large German pedigree in which they identified 

an expanded CAG repeat on chromosome 5q31-q33.Z3 The repeat occurred within the 5' 

promoter region for a brain-specific regulatory subunit of the protein phosphatase PP2A. 

Age of onset ranged from 8 to 55 years. The most common presentation was of upper 

extremity tremor in the fourth decade. The disease then progressed slowly to include 

head tremor, gait and limb ataxia, hyperreflexia, paucity of movement, abnormal eye 

movements, and, in the oldest subjects, dementia. Further analysis of this family by 

O'Hearn et al. (200 1) revealed that action tremor of the head and arms distinguished 

SCA12 from the other SCAs.98 Cholfin et al. (2001) failed to find the SCA12 mutation in 

any of the 180 kindreds that they screened. 99 Fujigasaki et al. (200 1) found that only one 

of 145 autosomal dominant SCA families carried the SCA12 mutation. 100 In 77 Indian 

families Srivastava et al. (2001) found five that were SCA12 positive. 101 Hand tremor 

again was the initial presenting symptom in affected individuals. 

2.1.12 SCA13 

A childhood onset autosomal dominant cerebellar ataxia associated with mental 

retardation linked to chromosome 19q 13 .3-q 13.4 was described by Herman-Bert et al 

(2000). 102 SCA13 is not addressed further in this paper as it is a disorder of childhood 

onset and this study involved only patients with adult onset of symptoms. 
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2.1.13 SCA14 

Yamashita et al (2000) reported a three generation Japanese family with a SCA 

that linked to 19ql3.4-qter.103 Mean age of onset was 27.7 years with a range of 12 to 42 

years. All individuals had a cerebellar ataxia but the presenting features differed 

according to age of onset. Those with onset age 39 or greater presented with cerebellar 

ataxia while those with a younger onset (less than 27 years) first showed intermittent axial 

myoclonus which was then followed by the development of ataxia. 

A second SCA family with linkage to 19q13.4-qter was described by Brkanac et 

al. (2002). 104 This family was of English and Dutch descent. This family had a pure 

cerebellar ataxia. The myoclonus noted by Yamashita et al (2000) was not noted in this 

family. 

Identification of the gene responsible for SCA14 has not yet been made. Given 

that there are phenotypic differences and a specific localization has not yet been made, 

the possibility exists that these two families do not share the same genetic defect. 
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2.1.14 SCA15 

Storey et al. (2001) excluded linkage to the previously described SCAs in an 

Australian kindred with a relatively pure cerebellar ataxia. 105 The most distinctive 

clinical feature in this family was an exceptionally slow rate of progression with three of 

the individuals maintaining a very mild degree of gait ataxia despite having symptoms for 

30 or more years. A specific chromosomal locus for this family has not yet been 

described in the literature. 

2.1.15 SCA16 

Linkage analysis of a 4-generation Japanese ADCA family by Miyoshi et al. 

(2001) suggested that the locus was situated on 8q22.1-24.1.106 Mean age of onset was 

39.6 years and the range was 20 to 66 years. The clinical features of the patients included 

a relatively pure cerebellar ataxia with head tremor. 

2.1.16 SCA17 

While screening 118 patients with various forms of neurological disease for 

expansions ofCAG repeats of the TATA box binding protein gene on chromosome 6q27, 

Koide et al. (1999) identified a sporadic patient with the clinical features of ataxia and 

intellectual deterioration who had an expansion of this gene. 11 The TATA box binding 

protein is the DNA-binding subunit of the RNA polymerase II transcription factor D 

which is required for the expression of protein-encoding genes. Zuhlke et al. (2001) used 
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a similar approach in looking for the expansion in 604 sporadic and familial cases with 

various forms of neurological syndromes and found four patients in two families with an 

autosomal dominant ataxia, dystonia, and intellectual decline. 107 Nakamura et al. (200 1) 

identified expanded CAG repeats in the same TATA-binding protein gene in 4 Japanese 

pedigrees. 108 The age of onset ranged from 19 to 48 years, and symptoms included 

ataxia, bradykinesia, and dementia. 

TATA-binding protein is known to be an important general transcription initiation 

factor but the specific mechanism by which the CAG expansion causes disease is not 

known. 109 

2.1.17 SCA18 

Brkanac et al (2002) identified a family with variable degrees of sensory loss, 

ataxia, pyramidal tract signs, and muscle weakness. Linkage was made to 7q22-q32 and 

they referred to this initially as sensory/motor neuropathy with ataxia (SMNA) but it has 

since been reclassified as SCA18. 110 
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2.1.18 SCA19 

Schelhaas et al. (2001) excluded the other known SCA loci in a 4-generation 

Dutch family with a mild ataxia syndrome with cognitive impairment, poor performance 

on the Wisconsin Card Sorting Test, myoclonus, and a postural irregular tremor of low 

frequency. 111 Verbeek et al. (2002) proceeded to map the disorder to chromosome 1 p21-

q21.112 

2.1.19 SCA21 

The SCA21 label has been applied to a family first described by Devos et al 

(200 1 ). 113 The clinical features variably included cerebellar ataxia, limb ataxia and 

akinesia, dysarthria, dysgraphia, hyporeflexia, postural tremor, rigidity, resting tremor, 

cognitive impairment, and cerebellar atrophy. Extraocular movements were generally 

normal. The age of onset ranged from 6 to 30 years. Anticipation appeared to be a 

feature of the disorder. Vuillaume et al. (2002) mapped the locus for the disorder in this 

family to chromosome 7p21.3-p 15.1.114 

2.1.20 SCA22 

The most recently discovered SCA locus was described by Chung et al (2003). 

They found a four generation Chinese family with a dominantly inherited ataxia that 

linked to chromosome 1 p21-q23. Affected members of this family had a cerebellar ataxia 

with associated dysarthria, nystagmus and hyporeflexia. Other neurological systems were 

not involved. The mean age of onset of symptoms was 40.5 years with a range of 35 to 
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46 years. The progression appeared to be very slow. Only 1 ofthe 9 affected individuals 

needed assistance with walking 20 years after onset of symptoms. 4 
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2.1.21 Summary of the ADCAs 

The clinical features of the currently classified autosomal dominant cerebellar 

ataxias are summarized in table 2. 

Table 2. Clinical Features of the Genetically Defined SCAs 
Clinical Features in Addition to Gait and Limb Ataxia 

SCAl Oculomotor defects, muscle weakness, decreased vibration sense, pyramidal 
signs 

SCA2 Slow saccades, hypotonia, Parkinsonism 
SCA3 Type I- pyramidal and extrapyramidal findings, progressive external 

ophthalmoplegia and minor cerebellar defecits 
Type II- cerebellar and pyramidal deficits, without extrapyramidal signs with 
or without progressive external ophthalmoplegia 
Type Ill- distal symmetrical muscle atrophy with cerebellar findings with or 
without progressive external ophthalmoplegia and pyramidal signs 
Type IV - parkinsonism and peripheral neuropathy 

SCA4 2 families - one with sensory neuropathy and the other with dysarthria and no 
sensory neuropathy 

SCA5 Predominantly cerebellar. Very slow progression 
SCA6 Predominantly cerebellar 
SCA7 Pigmentary retinopathy 
SCA8 Spasticity and decreased vibration sense. The role of the SCA8 expansion is 

controversial 
SCA9 No listing 
SCAlO Seizures in 20 to 100% 
SCAll Predominantly cerebellar 
SCA12 Early upper extremity tremor and late dementia 
SCA13 Mental retardation 
SCA14 Predominantly cerebellar but axial myoclonus if younger age of onset 
SCA15 Predominantly cerebellar. Very slow progression 
SCA16 Predominantly cerebellar with head tremor 
SCA17 Intellectual deterioration 
SCA18 Sensory loss, pyramidal tract signs, muscle weakness 
SCA19 Mild ataxia with cognitive impairment, myoclonus, and a low frequency 

postural tremor 
SCA20 No Listing 
SCA21 Hyporeflexia, postural tremor, parkinsonism, cognitive impairment. 

Extraocular movements generally normal 
SCA22 Predominantly cerebellar with hyporeflexia. Slow progression. 

26 



2.1.22 Dentatorubral-pallidoluysian atrophy 

Naito and Oyanagi (1982) reported a syndrome ofmyoclonic epilepsy, dementia, 

ataxia, and choreoathetosis in five Japanese families.5 Onset was usually in the twenties 

with death occurring in the forties. The initial description of this disorder was probably 

made by Smith et al. (1958). 115 Nagafuchi et al. (1994) localized the gene responsible for 

DRPLA to chromosome 12p.115 Koide et al. (1994) was able to demonstrate that a CAG 

repeat expansion was present in 22 individuals with DRPLA.116 They also noted that size 

of the CAG repeat expansion correlated with the age of onset of symptoms. 

Farmer et al. (1989) described a five-generation family, with ancestors born in 

Haw River, North Carolina, that contained individuals who suffered from a progressive 

neurological disorder characterized by the development of ataxia, seizures, choreiform 

movements, and progressive dementia between 15 and 30 years of age with death 

occurring after 15 to 25 years of illness. 117 Burke et al. (1994) later demonstrated that 

affected members of this family had the same trinucleotide repeat expansion found in 

DRPLA.11s, 119 

DRPLA is thought to be uncommon outside of the Japanese population.119· 120 
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2.2 Autosomal Recessive Ataxias 

There are several autosomal recessive disorders that contain ataxia within the 

clinical description but only Friedreich' s ataxia and ataxia with vitamin E deficiency are 

thought to occasionally have onset of symptoms in adulthood and have ataxia as the most 

prominent feature. Examples of autosomal recessive ataxias with onset of symptoms in 

childhood include ataxia telangiectasia, ataxia with oculomotor apraxia, 

abetalipoproteinemia, the autosomal recessive spastic ataxia of Charlevoix-Saguenay, and 

Refsum's disease. 121 

2.2.1 Friedreich's ataxia 

The clinical features of Friedreich's ataxia were outlined in the diagnostic criteria 

proposed by Harding (1981 ). 122 The criteria included progressive ataxia of gait and 

limbs, absent reflexes in the legs, onset before age 25 years, dysarthria, decrease in 

position sense and/or vibration sense in lower limbs, and muscle weakness. Signs that 

were present after five years from onset were dysarthria, areflexia, pyramidal weakness of 

the legs, extensor plantar responses, and distal loss of joint position and vibration sense. 

Other frequent signs were scoliosis, pes cavus, cardiomyopathy of the hypertrophic non

obstructive type, optic atrophy, deafness, and glucose intolerance or diabetes. 

While the clinical definition of Friedreich ataxia required onset earlier than 25 

years of age, with the demonstration of the genetic defect it is now known that older ages 

of onset can occur. 123
-
126 The oldest onset of symptoms published is 51 years. 127 
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Chamberlain et al (1988) mapped the gene of Friedreich ataxia to chromosome 

9. 128 The specific genetic abnormality was discovered by Campuzano et al (1996). 24 

They found that it was caused by an intronic GAA triplet repeat expansion. Ninety-four 

percent (94%) of patients with the classic form of the disease were found to be 

homozygous for this GAA expansion. Some of those that were not homozygous for the 

expansion have been found to be compound heterozygotes, carrying an expansion on one 

allele and a point mutation on the other. 129 

2.2.2 Ataxia with vitamin E deficiency (A VED) 

Harding et al. (1985) described a young woman with no measurable vitamin E 

level who had developed a progressive disorder consisting of ataxia, areflexia and marked 

loss of proprioception at age 13. There was no evidence of fat malabsorption. She 

improved with vitamin E administration. Both of her parents and four brothers had low 

or low-normal serum vitamin E levels which was thought to represent the heterozygous 

. 130 earner state. 

Ben Hamida et al. (1993) localized the gene responsible for a Friedreich's ataxia 

like disease with low vitamin E levels to the proximal portion of 8q. 131 Further mapping 

was performed by Doerflinger et al. (1995). 132 Demonstration that ataxia with isolated 

vitamin E deficiency was caused by mutations in the alpha-tocopherol transfer protein 

was accomplished by Ouahchi et al. (1995). 133 
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2.3 The Fragile X Premutation Tremor/ Ataxia Syndrome 

Fragile X syndrome is caused by an expansion of CGG repeats greater than 200 in 

the fragile X mental retardation 1 gene (FMR1 ).134 Repeats falling within the range of 50 

to 200 repeats are considered to be premutations and are at risk of further expansion in 

subsequent generations. The prevalence of the premutation is approximately 1 in 700 

males and 1 in 250 females. 135 

Recently, a syndrome consisting of tremor, cerebellar dysfunction, parkinsonism, 

and cognitive decline associated with the fragile X premutation has been described. The 

initial report consisted of case reports of five men over the age of 57 who were all 

grandfathers of children with fragile X syndrome. 2 Several other reports have been 

published describing clinical, radiological, and pathological findings of other individuals 

with this disorder. Common neuroradiological findings have been found to include 

increased T2 signal intensity in the middle cerebellar peduncles and deep white matter of 

the cerebellum as well as diffuse cerebral and cerebellar atrophy. Neuropathological 

examination has revealed the presence of intranuclear inclusions in the neuronal and 

astrocytic nuclei of the cortexY6
-
140 

There has been one report of two females with the association oftremor and ataxia 

with the FMRl premutation. 141 While females carrying the full mutation have been 

though to have no clinical manifestations, 16% of women with the premutation develop 

premature menopause. 142 
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2.4 Acquired Ataxias 

The hereditary ataxias must be separated from ataxic disorders that have non

genetic/acquired etiologies. Many of these conditions differ from the genetic ataxias by 

their time course. Multiple sclerosis is usually a relapsing remitting disorder and ataxia is 

often only one aspect of the disease. Ataxias caused by vascular insults are sudden and 

non-progressive. Tumours may have a progressive course but the duration of disease is 

usually much shorter than the degenerative disorders. Neuroimaging will often reveal the 

presence of such disorders. Toxic exposure may also produce damage to the cerebellum 

with the most common substance being ethanol which may be combined with a thiamine 

deficiency. Metabolic conditions such as hepatic encephalopathy, pontine and 

extrapontine myelinolysis related to hyponatremia, and hypothyroidism may have an 

associated ataxia. Some infectious conditions such as Acquired Immune Deficiency 

Syndrome and Creutzfeldt-Jakob Disease may have ataxia as part of the disease process 

but there are usually additional clinical features which leads one to suspect one of these 

disorders. 143 

The cerebellum and its connections may also be damaged through immunological 

means. In addition to direct effects via cerebellar tumours, malignancy may also produce 

ataxia as part of a paraneoplastic syndrome. Again this is generally a much faster process 

than would generally be found with a genetic disorder. A number of autoantibodies have 

been described to be associated with a paraneoplastic ataxic disorder. The most common 

antibody found is anti-Yo which is found in association with ovarian, breast or other 

gynecological malignancies. 144 
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Gluten sensitivity has been suggested as a possible cause of sporadic ataxia. The 

presence of ataxia in individuals with adult celiac disease was first noted by Cooke and 

Thomas-Smith in 1966.145 Hadjivassiliou et al (2003) found that there was a significantly 

higher prevalence of antigliadin antibodies in sporadic SCA patients (54/132 (41 %)) than 

in normal controls (149/1200 (12%)) or in those with a familial ataxia (8/59 (14%)). 146 

Anti glutamic acid decarboxylase antibodies (GAD) have a known association 

with stiff person syndrome but they have also been found in individuals with 

spinocerebellar ataxia. 147
-
149 Abele et al (1999) reported a patient with progressive 

cerebellar ataxia, insulin-dependent diabetes mellitus, and GAD antibodies who 

responded to intravenous immunoglobulins. 150 

The acquired ataxias are summarized in Table 3. 
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Table 3. Conditions Associated with Acquired Ataxia 143 

Auto-immune 
Multiple Sclerosis 
Anti -GAD antibodies 
Celiac disease 
Post-infectious cerebellitis- e.g. varicella zoster 

Infectious 
Creutzfeldt-Jakob disease 
Lyme disease 
Mycoplasma pneumoniae 
Legionella pneumoniae 
Toxoplasma gondii 
Tuberculosis 
Human immunodeficiency virus 
Progressive multifocal encephalopathy 

Medications 
Anticonvulsants - Phenytoin, Carbamazepine, Barbiturates 
Piperazine 

Toxic 

5-fluorouracil 
Cytosine arabinoside 
Lithium 

Ethanol 
Carbon tetrachloride 
Toluene 
Methyl mercury 
Thallium 
Ciguatera poisoning 

Nutritional 
Vitamin E deficiency 
Thiamine deficiency 

Metabolic 
Hepatic encephalopathy 
Pontine and extrapontine myelinolysis related to hyponatremia 
Hypothyroidism 

Neoplastic 
Primary tumours 

I Metastatic tumours 

I 
Paraneoplastic 

Vascular 
Cerebellar Infarction 
Cerebellar Hemorrhage 
Superficial Siderosis 
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2.5 Multiple System Atrophy 

Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder manifest 

by variable combinations of parkinsonism, cerebellar ataxia, autonomic insufficiency, and 

pyramidal dysfunction. The median age of onset is 55 years and the male to female ratio 

is 1.3: 1. The course of the disease is quite rapid with 50% becoming disabled or 

wheelchair bound within 5 years. Median survival is 9.3 years from the onset of 

symptoms. Multiple system atrophy can be further subdivided into MSA-P if the 

parkinsonian features predominate and MSA-C if the cerebellar features predominate. 

The diagnostic criteria for MSA is summarized in Appendix 1. The etiology is 

unknown.l51-153 

The term MSA currently encompasses disorders previously known as Shy Drager 

syndrome, striato-nigral degeneration, and olivopontocerebellar atrophy as all three 

disorders have been shown to share the same pathological feature of glial cytoplasmic 

. 1 . 154 
me USIOnS. 

2.6 Distribution of the SCAs varies within different populations 

As with most genetic disorders the prevalence of an abnormal gene differs 

between ethnic groups as well as within geographically separated ethnic groups. 

Moseley et al (1998) looked at the frequencies of SCA types 1, 2, 3, 6, 7, and 

Friedreich's ataxia in 361 families with ataxia. Specific information about the ethnic 
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background was not provided. Recruitment of the patients was performed by the use of 

four of the authors' patients as well as via an announcement in the National Ataxia 

Foundation's publication. Most had an adult onset but an unspecified number had onset 

before age 18. Patients with a clinical diagnosis of Friedreich's ataxia were excluded. A 

dominant inheritance pattern was noted in 49.3%, 12.2% appeared recessive, 37.1% were 

apparently sporadic and 1.4% were unknown. SCA3 was the most common expansion in 

the dominant families accounting for 20.8% of the cases. SCA2 and SCA6 were found in 

15.2% each. SCAl was much less frequent at 5.6% and SCA7 was the least frequent at 

4.5%. Even though patients with a clinical diagnosis of Friedreich's ataxia were 

excluded, a homozygous GAA expansion was found in 11.4% of the recessive families 

and 5.2% of the apparent sporadic patients. In families with an apparent recessive 

inheritance pattern a SCA2 mutation was found in one family (2.3%) and a SCA6 

mutation in two families ( 4.5% ). 155 

The frequencies of SCA 1, 2 ,3 ,6, and 7 in Australia was examined by Storey et al 

(2000). The Australian population is largely of Anglo-Celtic origin. A total of 88 

pedigrees with at least two seemingly affected family members were tested. The 2 most 

common genes involved were SCA6 (17%) and SCA1 (16%). This was followed by 

SCA3 (12%). SCA2 (6%) and SCA7 (2%) were much less common. All tests were 

negative in 47%. 156 

The distribution of SCA types 1, 2, 3, 6, and 7 in the Netherlands was studied by 

van de W arrenburg et al 2002. This was a review of the results of the laboratories in the 

Netherlands rather than a study of a clinically defined population so only relative 
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frequencies are available. SCA3 was the most frequent mutation ( 44.1%) followed by 

SCA6 (23.5%). The remainder was made up by SCA7 (11.7%), SCA2 (11.0%) and 

SCA1 (9.7%). 157 

Given that 90% of the patients in the sample were of Portuguese - Azorean 

descent it is not surprising that 92% (48/52) of families in Southern Brazil with an 

autosomal dominant SCA were found to carry the SCA3 mutation. Testing for SCA1, 2, 

6, 7, and 8 testing only resulted in the discovery of a single family (2%) with the SCA8 

expansion. Six percent (6%) were undiagnosed. 158 A second report involving patients 

from both Brazil and Portugal also found the majority to have SCA3 (63%) with only 3% 

having the SCA2 expansion, SCA8- 2%, SCA6 - 1%, SCA 7 - 1%, and DRPLA- 2%. 159 

A study of 7 4 families in Taiwan with dominantly inherited ataxia revealed SCA3 

(47.3%) was the most common SCA. SCA6 and SCA2 each made up 10.8% followed by 

SCA1 (5.4%), and SCA7 (2.7%). One family (1.4%) was positive for DRPLA. No cases 

of SCA8 were identified. A diagnosis was not made in 21.6% of cases. 160 

Testing for SCA types 1, 2, 3, 6, 7, and DRPLA in 26 patients with positive 

family histories in eastern India resulted in the finding that SCA2 was the most common 

(26.9%). SCAl accounted for 19.2%, SCA3 - 11.5%, and SCA6- 3.8%. No cases of 

SCA7 or DRPLA were found. All tests were negative in 38.5%.161 Another study from 

India also found SCA2 (25.6%) to be the most common mutation among the SCA 
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patients. Seven of these 42 families studied came from eastern India while the rest were 

from northern India. 162 

Two studies done in Japan demonstrate that the proportion of the different SCAs 

can vary significantly even within the same ethnic group because of geographic isolation. 

In the northernmost island of Japan (Hokkaido) the frequency of the SCAs in 117 families 

was as follows: SCA6- 29%, SCA3- 23.9%, SCA1- 9.7%, SCA2 -7.7%, and DRPLA 

- 2.6% All tests were negative in 27.1%. 163 This contrasts with the numbers found in the 

Tohoku District on Honshu Island (117 families) where the most common was SCAl 

(24.8%) followed closely by SCA3 (23.9%). SCA6 made up 10.3% of cases, SCA7 -

1.7%, SCA2- 0.8%, and SCA8- 0.8%. DRPLA accounted for 14.5% and 23.1% tested 

negative for all ofthese disorders. 164 

Cellini et al (2001) described testing of 32 autosomal dominant cerebellar ataxia 

families in central Italy and found that SCA2 was the most common (31%) followed by 

SCA1 (19%) and SCA3 (3%). There were no positive tests for SCA6, SCA7, or 

SCA12. 165 

Eighty-seven umelated families in Spain were tested and SCA2 and SCA3 were 

the most common accounting for 15.3% each. The others types were much lower: SCAl 

- 5.6%, SCA7- 2.8% and SCA6- 1.4%. One family (1.4%) with DRPLA was found 

and 58.3% tested negative for all mutations. 166 
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In 85 Chinese kindreds with autosomal dominant spinocerebellar ataxia, SCA3 

accounted for 48.23% whereas only 4.7% were positive for SCAl and 5.88% for SCA2. 

No families were found to have SCA6, SCA7, or DRPLA. 167 

Information about the distribution of the SCAs in the UK came from a review of 

the results of genetic testing laboratories. No clinical information was available and the 

family history information on the testing request form was not significant enough to 

classify mode of inheritance in 124/146 (84.9%) cases. It is possible that some of the 

patients were related but this could not easily be determined because of the methodology. 

The two most commonly identified mutations were SCA6 (5%) and SCA2 (4%). SCAl 

and DRPLA were each found in 1.4% and SCA3 in 0.7%. 168 

Of 47 kindreds with Harding's ADCA I phenotype followed at the University of 

California, Los Angeles 23% tested positive for the SCA3 allele, 13% for SCA2, and 6% 

for SCA1.45 

In 77 German ataxia families SCA3 accounted for 42%, SCA6 for 22%, SCA2 for 

10%, and SCAl 0 for 9%. The authors included eight families with family histories 

suggestive of sporadic disease in their analysis after discovering these individuals had a 

positive test. Other sporadic patients were not included. 169 
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2. 7 SCA and Friedrich Testing in Sporadic Patients 

The yield of SCA testing in apparently sporadic patients has been addressed in a 

number of reports. 

Schols et al (2000) looked at the incidence of positive test results for SCA types 1, 

2, 3, 6, 7, 8, and 12 and Friedrich's ataxia in 124 patients with an idiopathic sporadic 

ataxia and 20 individuals with a clinical diagnosis of multi-system atrophy. Patients with 

a congenital or non-progressive disease were excluded as well as those with a first or 

second degree relative with an unexplained gait disturbance. Those who had a typical 

Friedrich ataxia phenotype or with a secondary cause of ataxia were also excluded. All 

but 7 of the 124 were of German ancestry. A mutation was found in 23/124 (19%) of 

patients. Ten patients (8%) were homozygous for the GAA repeat expansion in 

Friedrich's ataxia and all had onset of symptoms under age 40. SCA6 was the next most 

common with 9 patients (7%) having positive tests with age of onset all greater than age 

40. Three (2%) were found to have SCA8 and 1 (1 %) was positive for SCA2. 170 A 

second report authored again by Schols described the results of genetic testing in sporadic 

adult-onset ataxia patients. It is not clear how many patients of the above described study 

were included in the second report's sample. In this case an expanded SCA allele was 

found in 13%. The distribution was similar including 4% with FA, 6% with SCA6, 2% 

with SCA3, and 1% with SCA2. 171 
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Futamura et al (1998) tested 85 adult onset Japanese ataxia patients for SCAl, 

SCA2, SCA3, SCA6, and DRPLA and found that 22% had a positive test. Most of these 

individuals carried an expanded SCA6 allele (11119). The sporadic SCA6 patients had a 

smaller CAG repeat and a later age of onset than those with SCA6 who had a positive 

family history. 172 

Testing of sporadic cases by Moseley et al (1998) yielded a positive result for 

SCA2 in two cases (1.5%), SCA3 in one patient (0.7%), SCA6 in two cases (1.5%), and 

SCA7 in one (0.7%) for an overall positive test proportion of9.7%. 155 

Fourteen sporadic cases were tested for SCA1, 2, 3, 6, 7, and 8 in the south Brazil 

population. Only one (7%) was found to have an expansion and this occurred at the 

SCA8 locus. 158 

In the Taiwanese population only 2 of 49 (4.1%) sporadic SCA patients tested 

positive for SCA6. Testing ofthis group ofpatients for SCA types 1, 2, 3, 7, and 8 and 

DRPLA did not result in any positive tests. 160 

In investigating 60 sporadic patients for FA, SCA types 1, 2, 3, 6, and 7, and 

DRPLA, Pujana et al (1999) only found one individual with a positive test. This patient 

developed symptoms at age 30 and was found to be homozygous for the Friedreich's 

ataxia GAA repeat expansion. Also, testing of 15 familial cases without a clear dominant 

pattern of inheritance failed to have any positive results. 166 
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CHAPTER HI- METHODS 

3.1 Study Patient Population 

Patients were identified by a search of the Movement Disorders Clinic patient 

registry for the diagnoses of spinocerebellar ataxia, Friedreich's Ataxia (FA), and multi

system atrophy - olivopontocerebellar atrophy. The Movement Disorders Clinic is 

located at the Foothills Hospital in Calgary, Alberta and is part of the Faculty of 

Medicine, Department of Clinical Neurosciences at the University of Calgary. This 

specialized outpatient clinic was founded in 1984 and approximately 2000 patients are 

followed in the clinic. Four ( 4) neurologists who specialize in movement disorders are 

associated with the clinic (0. Suchowersky, S. Furtado, R. Ranawaya, R. Lee). Patients 

are seen at the clinic after being referred to one of the four movement disorder 

neurologists by general practitioners or other specialists. The geographical patient 

catchment area includes southern Alberta, south-western Saskatchewan, and south-eastern 

British Columbia. The majority of patients seen in the clinic live in the southern Alberta 

area. 

The files of all patients seen in the Movement Disorders Clinic are stored within 

the clinic itself. All Movement Disorder Clinic patient files were perused to identify all 

patients with the diagnoses of interest for this study. All patients with a diagnosis of 

interest seen from January 1, 1996 to December 31, 2002 were included in this study. 

Only those patients with an onset of symptoms at age 18 or greater were included. 

Individuals were excluded if they had a diagnosis of a secondary ataxia from disorders 
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such as multiple sclerosis, brain tumour, paraneoplastic syndrome, stroke, or alcoholism. 

Patients seen for presymptomatic genetic testing were also excluded. 

3.2 Patient Assessments 

As part of routine clinical assessments of patients referred to the clinic, all patients 

had complete medical histories including detailed family histories and physical 

examinations performed by one of the Movement Disorders Clinic neurologists- OS, SF, 

RR, RL. Assessments were not made as part of this study. This information was 

obtained retrospectively from the clinic notes. 

3.3 Data Collection 

A detailed clinical chart review was performed, and the abstracted information 

was recorded on a standardized data collection form. The following variables were 

collected: gender, age of symptom onset, age at last assessment, presenting complaint, 

family history, neuroimaging findings, and the presence or absence of dysarthria, 

nystagmus, saccadic smooth pursuit, hyperreflexia, hyporeflexia, Babinski, spasticity, 

sensory findings, limb ataxia, parkinsonism, dystonia, and autonomic symptoms. The 

aforementioned variables of interest were recorded as present if they were documented in 

the chart. If no information was documented, then the variables were recorded as absent. 

The results of available vitamin E levels, anti-GAD antibodies and anti-endomysia! 

antibodies were also collected. Anti-endomysia! antibody testing was used to screen for 
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celiac disease. All charts were reviewed by one investigator (Scott Kraft), a neurologist 

currently completing fellowship training in movement disorders at the clinic. 

3.4 Genetic Testing 

Genetic testing for SCAl, SCA2, SCA3, SCA6, SCA7, SCA8, the FMRl 

expansion and Friedreich's Ataxia was performed on at least one member of each family. 

All tests were performed in the Molecular Diagnostics Laboratory of the Alberta 

Children's Hospital in Calgary, Alberta using standard testing methods involving 

1 h . . . . 1 bl' h d 6-10 22 24 po ymerase c am reactiOn pnmers as prevwus y pu IS e . ' ' 

DRPLA testing had been performed on some of the families. Testing was 

performed using previously published methods. 116 

3.5 Neuroimaging 

Neuroimaging results were obtained by reviewing the final radiologist report 

included in the chart. The variables of interest that were abstracted from the report 

included the presence of cerebellar, cerebral, or brainstem atrophy. The reports of both 

computed tomography (CT) and magnetic resonance imaging (MRI) were included. For 

patients who had more than one examination all abnormalities mentioned were collected. 

Patient films were not directly examined by the study investigator (SK) during data 

collection. 
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3.6 Assignment of Family History Categories 

Family history was divided into the following categories: autosomal dominant, 

autosomal recessive, positive but unknown, and adopted/unavailable. Autosomal 

dominant inheritance was assigned if at least two generations were affected and there was 

evidence of transmission from one generation to the next. The information about the 

pedigrees was often too limited making it difficult to determine if an X-linked disorder 

could be responsible. Autosomal recessive pedigrees were those that had affected 

siblings without other family history of a similar disorder or if there were other similarly 

affected family members (e.g. cousins) without evidence of parent-child transmission. 

Some pedigrees contained family members who could possibly have had similar 

symptoms but adequate clinical information was not available. Such cases were labelled 

as positive but unknown inheritance. 

3. 7 Multiple System Atrophy Diagnostic Criteria 

The Consensus Criteria for multiple system atrophy was used (See Appendix 
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3.8 Statistical Analysis 

For comparisons of sporadic versus hereditary cases individuals with autosomal 

dominant, autosomal recessive, and positive but unknown pedigrees were grouped 

together and the adopted/unavailable cases were grouped with sporadic. 

Gender, age of onset, mean duration of symptoms at last clinic visit, whether or 

not the presenting complaint was gait related, and the presence of dysarthria, nystagmus, 

saccadic smooth pursuit, hyperreflexia, hyporeflexia, Babinski, spasticity, sensory 

findings, limb ataxia, parkinsonism, dystonia, and autonomic symptoms were compared 

between sporadic and hereditary cases using Chi-square for categorical variables and 

Student's t test for continuous variables. Differences were considered to be statistically 

significant if the two-tailed P values were less than 0.05. 

Age of onset, mean duration of symptoms at last clinic visit, , whether or not the 

presenting complaint was gait related, and the presence of dysarthria, nystagmus, saccadic 

smooth pursuit, hyperreflexia, hyporeflexia, Babinski, spasticity, sensory findings, limb 

ataxia, parkinsonism, dystonia, and autonomic symptoms were compared between male 

and female cases using Chi-square for categorical variables and Student's t test for 

continuous variables. Differences were considered to be statistically significant if the 

two-tailed P values were less than 0.05. 

All statistical analyses were performed using SAS for Windows (release 8.02; 

SAS Institute Inc., Cary, NC, 1999-2001). 
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CHAPTER IV- RESULTS 

4.1 Patient Characteristics 

4.1.1 Overall SCA Patient Characteristics 

A total of 69 patients in 60 families were identified as having an adult onset 

spinocerebellar ataxia (Table 4). Thirty three (47.8%) of the study patients were male and 

36 (52.1 %) were female. The mean age of symptom onset was 46.5 years with a range of 

18 to 85 years. The mean duration of disease symptoms at the last follow-up visit was 

11.7 years with a range of 1 to 44 years. 

Table 4 Characteristics of Study Patients 
Total Number of Patients 69 patients in 60 families 
Male 33 (47.8%) 
Female 36 (52.1%) 
Mean Age of Symptom Onset 46.5 (range= 18-85) ±16.8 SD 
Mean Duration of Symptoms at last visit 11.7 years (range= 1-44) ± 8.9 SD .. 
SD = Standard Devmtwn 
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4.1.2 Age Distribution 

The distribution of the age of onset of symptoms is described in Table 5. 

Table 5. Age of Onset Distribution of Study Patients 
Age of Onset (Years) n (%) 
Less than 20 2 (2.9) 
20 to 29 12 (17.4) 
30 to 39 12 (17.4) 
40 to 49 10 (14.5) 
50 to 59 16 (23.2) 
60 to 69 12 (17.4) 
>=70 5 (7.3) 

4.1.3 Initial Symptom 

The majority of patients (79.7%) described gait dysfunction as the initial symptom 

of their disease. A symptom due to an extraocular movement abnormality was the 

presenting feature in 7.3%, tremor in 4.4%, parkinsonism in 2.9%, dysarthria in 2.9%, 

dystonia in 1.5%, and chorea in 1.5% (Table 6). 

T bl 6 In'f 1 S a e 11a t ymp omo fD' 1sease Am ong St d Patients u J 

Initial Symptom n (%) 
Gait Dysfunction 55 (79.7) I 

Extraocular movement abnormality 5 (7.3) ' 

Tremor 3 (4.4) 
Parkinsonism 2 (2.9) 
Dysarthria 2 (2.9) 
Dystonia 1 (1.5) 
Chorea 1 (1.5) 
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4.1.4 Family History 

A family history suggestive of an autosomal dominant disorder was present in 

35.0% of the families. An apparent autosomal recessive pattern of inheritance was 

present in 3.3%. A positive but undefined family history was noted in 15.0%. Sporadic 

disease appeared to be present in 43.3%. Two patients (3.3%) were adopted and did not 

have family histories available (Table 7). The pedigrees of those with positive family 

histories are found in Appendix 2. 

T bl 7 F '1 H' t C t a e amuy 1s ory a egory Am ong St dy Families u 
Family History n(%) 
Autosomal Dominant 21 (35.0) 
Autosomal Recessive 2 (3.3) 
Sporadic 26 (43.3) 
Positive but Undefined 9 (15.0) 
Adopted 2 (3.3) 
Total 60 (100) 
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4.2 Results of Genetic Testing 

The results of genetic testing by family history classification are summarized in 

Table 8. DRPLA testing had been done on 21 of the families and all results were 

negative. No premutation or pathological range expansions of the FMRl gene were 

found. 

Table 8 Results of Genetic Testing- Families (%) 
Genetic AD AR 
Test 
SCA1 1(4.8) 0 
SCA2 3(14.3) 0 
SCA3 5(23.8) 0 
SCA6 2(9.5) 0 
SCA7 0 0 
SCA8 1(4.8) 0 
FA 1(4.8) 1(50) 
DRPLA 0 0 
FMR1 0 0 
All Negative 8(38.1) 1(50) 
Total 21(100) 2(100) 
AD = Autosomal Dominant 
AR = Autosomal Recessive 

Undefined Sporadic 

0 0 
0 0 
0 1(3.8) 
1(11.1) 0 
0 0 
0 0 
0 0 
0 0 
0 0 
8(88.9) 25(96.2) 
9(100) 26(100) 

Adopted 

0 
0 
0 
0 
0 
0 
0 
0 
0 
2(100) 
2(100) 

4.2.1 Genetic Test Results in Autosomal Dominant Families 

Total 

1(1.7) 
3(5.0) 
6(10.0) 
3(5.0) 
0 
1(1.7) 
2(3.3) 
0 
0 
44(73.3) 
60(100) 

The most commonly found mutation in the autosomal dominant families was 

SCA3 (5 families- 23.8%). This was followed by SCA2 (3 families- 14.3%) and SCA6 

(2 families- 9.5%). The SCAl and SCA8 expansions were only identified in 1 family 

(4.8%) each. 
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Although the family history was suggestive of a dominant disorder, one patient 

was found to have Friedreich's Ataxia. This pedigree is summarized in Figure 1. 

Diagnosis = SCA 

Figure 1. Autosomal dominant appearing pedigree of patient diagnosed with Friedreich's 
ataxia. Circles indicate females, squares indicate males, diamonds indicate unknown sex, 
filled symbols represent affected individuals and unfilled symbols indicate unaffected 
individuals. The arrow indicates the index case. 

4.2.2 Genetic Test Results in Autosomal Recessive Families 

A patient in one of the two autosomal recessive appearing families tested positive 

for Friedreich's ataxia. This pedigree is summarized in Figure 2. 
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Ill Diagnosis= FA 

Figure 2. Autosomal recessive appearing pedigree of patient diagnosed with Friedreich's 
ataxia. Circles indicate females, squares indicate males, filled symbols represent affected 
individuals and unfilled symbols indicate unaffected individuals. The arrow indicates the 
index case. 
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4.2.3 Genetic Test Results in Undefined Families 

One individual (11.1 %) with a positive but undefined family history tested 

positive for SCA6. One of his eight sisters were similarly affected by an ataxia and 

another sister may have had balance problems. This patient's mother died at age 89 with 

no gait abnormality and his father died at age 85 and had walked with a cane for a long 

time because of a supposed World War II injury leading to a stroke. If the potential gait 

abnormality of the father is ignored then the pedigree could be interpreted as recessive but 

if it is deemed significant then a dominant inheritance is suggested. This pedigree is 

described in Figure 3. 

Diagnosis= SCA 1•1 Diagnosis= Limp [!] Diagnosis= Possible Balance Problems 

Figure 3. Pedigree of SCA6 patient with uncertain mode of inheritance. Circles indicate 
females, squares indicate males, a slash through the symbol indicates deceased, filled 
symbols represent affected individuals and unfilled symbols indicate unaffected 
individuals. The arrow indicates the index case. 
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4.2.4 Genetic Test Results in Sporadic Patients 

A single sporadic patient had a positive test which was SCA3. 

One patient was found to be heterozygous for the Friedreich's ataxia GAA 

expansion. Additional genetic testing was performed on this individual to assess the 

status of the normal sized allele and no abnormality was detected. 

4.2.5 Genetic Test Results in Adopted Patients 

Neither of the two adopted patients had a positive test. 

4.2.6 Diagnostic Utility of Genetic Testing 

A positive test result was found in 61.9% of autosomal dominant pedigrees, 50% 

of autosomal recessive pedigrees, and 11.1% of patients with positive but undefined 

family histories. Of those patients who lacked a family history of a similar disorder only 

1 (3.8%) was found to have a positive genetic test. Neither of the two adopted patients 

had a positive test (Table 9). 
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Table 9. Yield of Genetic Testing Among Study Patients 
Inheritance Families 

n(%) 
Autosomal Dominant 13/21 (61.9%) 
Autosomal Recessive 1/2 (50%) 
Positive but Undefined 119 (11.1%) 
All patients with a family history 15/32 (46.9%) 
Sporadic 1/26 (3.8%) 
Adopted 0/2 (0%) 
Sporadic + Adopted 1/28 (3.6%) 

Of the people with a positive family history, 46.9% had a positive genetic test 

(sensitivity). Of the people without a family history, 96.4% tested negative (specificity). 

Of those who test positive, the proportion who had a positive family history is 93.8% 

(positive predictive value). Of those who test negative, 61.3% have a negative family 

history (negative predictive value) (Table 10). 

Table 10. Diagnostic Utility of Genetic Testing 

Positive Family History Negative Family History 
Positive Genetic Test 15 1 
Genetic Tests Negative 17 27 
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4.3 Clinical Features 

The clinical features of all the patients separated by diagnosis is summarized in 

table 11. All patients had an ataxic gait. 

T bl 11 Cl' . 1 F tu a e mica ea res o fSt d P f t S u y a 1en s t db D' epara e y IagnOSlS 
SCAl SCA2 SCA3 SCA6 SCA8 FA Other 

n 2 3 7 7 1 2 47 
Male 0 1 5 4 0 0 23 
Female 2 2 2 3 1 2 24 
Mean Age of Onset (Years) 44.5 33.0 36.3 55.9 29 21.5 49.0 
Range of age of Onset 39-50 18-54 22-55 48-64 29 21-22 18-85 
Mean Duration of Symptoms 17 23.3 10.7 7 15 13 11.4 
at Last Visit (Years) 
Range of Symptom Duration 9-25 15-31 4-19 1-12 15 10-16 1-44 
Presenting Complaint Gait 2/2 2/3 7/7 6/7 111 2/2 35/47 
Dysarthria 2/2 2/3 6/7 4/7 111 2/2 35/47 
Nystagmus 2/2 1/3 5/7 6/7 111 2/2 23/47 
Saccadic Smooth Pursuit 2/2 2/3 5/7 6/7 1/1 112 36/47 
H jperreflexia 2/2 1/3 4/7** 1/7 Oil 0/2 30/47 
Hyporeflexia 012 1/3 4/7** 4/7 1/1 2/2 11147 
Babinski 112 0/3 4/7 017 0/1 1/2 9/47 
Spasticity 2/2 0/3 5/7 1/7 0/1 0/2 18/47 
Sensory Findings 2/2 1/3 5/7 1/7 0/1 2/2 21147 
Limb Ataxia 2/2 3/3 517 7/7 1/1 2/2 38/47 
Parkinsonism 0/2 0/3 3/7 017 0/1 0/2 7/47 
Dystonia 112 1/3 3/7 017 1/1 0/2 2/47 
Autonomic Symptoms 0/2 0/3 1/7 017 011 0/2 7/47 
** One patient had a mixture of hyporeflexta and hyperreflexia on the most recent 
physical examination that was documented in the chart. 
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4.4 Radiology Results 

The results of neuroimaging were available for 55 of the patients. Cerebellar 

atrophy was reported in 78% of the reports. Twenty percent were found to have 

brainstem atrophy. Cerebral atrophy was noted in 18.2% of the patients. A normal exam 

was reported in 18.2% of the patients (Table 12). 

Table 12 Neuroimaging Findings for Study Patients (n =55) 
Neuroima2ing Finding Number(%) 
Cerebellar Atrophy 43 (78.2) 
Brainstem Atrophy 11 (20.0) 
Cerebral Atrophy 10 (18.2) 
Normal exam 10 (18.2) 
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4.5 Hereditary vs. Sporadic 

4.5.1 Clinical Features 

The clinical features of patients with a positive family history versus those 

patients that had an apparent sporadic disease are summarized in Table 13. Dysarthria (p 

= 0.027) and hyperreflexia (p = 0.024) were more common in the sporadic group. 

Nystagmus was more common in the hereditary group (p = 0.036). 

Table 13 Clinical Features Sporadic vs Hereditary 
Characteristic Hereditary (n = 41) 
Male 16 (39.0) 
Female 25 (61.0) 
Age of onset 44.6 
Mean Duration of Symptoms 12.0 
at Last Visit (Years) 
Presenting complaint gait 24 (82.9) 
Dysarthria 27 (65.9) 
Nystagmus 28 (68.3) 
Saccadic Smooth Pursuit 31 (75.6) 
Hyperreflexia 18 (43.9) 
Hyporeflexia 16 (39.0) 
Babinski 8 (19.5) 
Spasticity 13 (31.7) 
Sensory Findings 18 (43.9) 
Limb Ataxia 35 (85.4) 
Parkinsonism 6 (14.6) 
Dystonia 6 (14.6) 
Autonomic symptoms 3 (7.3) 
Values represent number(%) unless otherwise indicated 
**Statistically significant at p < 0.05 
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Sporadic (n = 28) 
17 (60.7) 
11 (39.3) 
49.3 
11.11 

21 (75.0) 
25 (89.3) 
12 (42.9) 
22 (31.9) 
20 (71.4) 
7 (25.0) 
7 (25.0) 
13 (46.4) 
14 (50.0) 
23 (82.1) 
4 (14.3) 
2 (7.1) 
5 (17.9) 

p- value 
0.077 
0.077 
0.257 
0.677 

0.42 
0.027** 
0.036** 
0.774 
0.024** 
0.225 
0.587 
0.215 
0.618 
0.720 
0.968 
0.340 
0.179 



4.5.2 Neuroimaging 

A comparison of the neuroimaging findings of patients with and without a family 

history of a similar disorder did not reveal any differences in the presence of reported 

cerebellar, brainstem, or cerebral atrophy (Table 14). 

Table 14. Neuroimaging Findings Hereditary vs. Sporadic 
Neuroimaging Finding Hereditary (n = 28) Sporadic (n = 27) p- value 

n(%) n(%) 
Cerebellar Atrophy 21 (75.0) 22 (81.5) 0.561 
Brainstem Atrophy 6(21.4) 5 (18.5) 0.787 
Cerebral Atrophy 4 (14.3) 6 (22.2) 0.446 
Normal exam 6 (21.4) 4 (14.8) 0.525 
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4.6 Male vs. Female 

4.6.1 Clinical Features 

Of all of the clinical features collected, the only feature that differed significantly 

was hyperreflexia (p = 0.019). This was present in more of the males (69.7%) than the 

females (41.67%) (Table 15). 

Table 15. Clinical Features Male vs. Female 
Characteristic Male (n = 33) Female (n = 36) 
Age of onset (Years) 47.2 45.9 
Mean Duration of Symptoms 9.8 13.3 
at last visit (Years) 
Presenting Complaint Gait 27 (81.8) 28 (77.8) 
Dysarthria 26 (78.8) 26 (72.2) 
Nystagmus 19 (57.6) 21 (58.3) 
Saccadic Smooth Pursuit 28 (84.9) 25 (69.4) 
Hyperreflexia 23 (69.7) 15 (41.7) 
Hyporeflexia 8 (24.2) 15 (41.7) 
Babinski 8 (24.2) 7 (19.4) 
Sensory Findings 16 (48.5) 16 (44.4) 
Spasticity 15 (45.5) 11 (30.6) 
Limb Ataxia 29 (87.9) 29 (80.6) 
Parkinsonism 7 (21.2) 3 (8.3) 
Dystonia 4(12.1) 4 (11.1) 
Autonomic symptoms 5 (15.2) 3 (8.3) 
Values represent number (%) unless otherwise md1cated 
** Statistically significant at p < 0.05 
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p- value 
0.747 
0.108 

0.677 
0.527 
0.949 
0.130 
0.019** 
0.125 
0.629 
0.737 
0.202 
0.407 
0.129 
0.896 
0.377 



4.6.2 Neuroimaging 

A comparison of the neuroimaging findings of all male and female patients did 

not reveal any differences in the presence of reported cerebellar, brainstem, or cerebral 

atrophy (Table 16). 

Table 16. Neuroimaging Findings Male vs. Female 
Neuroimaging Finding Male (n = 28) Female (n= 27) p -value 

n (%) n(%) 
Cerebellar Atrophy 23 (82.1) 20 (74.07) 0.4689 
Brainstem Atrophy 3 (10.7) 8 (29.63) 0.0796 
Cerebral Atrophy 6 (21.4) 4 (14.81) 0.5249 
Normal exam 5 (17.9) 5 (18.52) 0.9493 

4. 7 Patients Meeting Diagnostic Criteria for MSA 

Using the consensus criteria one patient had possible MSA and 5 patients had 

probable MSA (Table 17). All of these patients were in the sporadic group (n = 26) as a 

positive family history excludes the diagnosis ofMSA. 

Table 17. Patients Meeting Diagnostic Criteria for MSA 
Criteria Applied n(%) 
Consensus - Possible 1 (3.8%) 
Consensus -Probable 5 (20.2%) 

60 



4.8 Results of Additional Laboratory Investigations 

Vitamin E levels were available for 33 of the patients and no low levels were 

detected. 

The results of anti-endomysia! antibody testing were available for 24 of the 

patients and none were positive. 

Anti-GAD antibody testing was performed on 17 of the patients. Two were found 

to have elevated levels. One patient received intravenous immune-globulin therapy with 

no alteration of her clinical condition. The other patient did not appear to receive any 

specific therapy. 
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CHAPTER V- DISCUSSION 

5.1 Distribution of the SCAs 

Information about the distribution of the SCAs in a Canadian population has not 

yet been published. In our clinic population the most common SCA diagnosed by genetic 

testing is SCA3 followed by SCA2 and SCA6. 

As previously discussed the frequency of the different SCAs depends on ethnic 

and geographic factors. The distribution of the spinocerebellar ataxias found in dominant 

pedigrees in other countries is summarized in table 18. Our results are most similar to 

that found in the United States and Germany. The differences between this study and 

those performed in Asian countries can be explained by the fact that the population of the 

city of Calgary largely consists of individuals of European descent. In the 2001 Canadian 

census 17.5% of the population of Calgary consisted of visible minorities 

(wwwl2.statcan.ca/Englishlcensus01/ products/analytic/companion/etoimm/subprovs.cfm 

-Accessed February 6, 2003). Changing patterns of immigration to Canada may result in 

an alteration of the relative frequencies of the SCAs over time. 
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Table 18. Distribution of the SCAs in Different Populations 
Frequency% 

Country #of SCAl SCA2 SCA3 SCA6 SCA7 SCA8 SCA12 DRPLA Unclassified 
Families 

Australia156 88 16 6 12 17 2 - - - 47 
USA0

j 47 11 - 11 - - - - - 78 
USAD:. 178 5.6 15.2 20.8 15.2 4.5 - - - 38.7 
USA4 ), 11 j 53 4 8 14.7 12 - - - 0 61.3 
Germany16

Y 77 9 10 42 22 - - - - 17 
Italylos 32 19 31 3 0 0 0 0 - 47 
Italyl74 73 41 29 0 0 - - - - 30 
Spain100 87 5.6 15.3 15.3 1.4 2.8 - - 1.4 57.3 
Netherlands (Estimated N/A 6.2 7.1 28.2 15.0 7.5 - - - 36.0 
Frequencies)157 

BrazilD11 52 0 0 92 0 2 0 - 0 6 
Portugal11

:. 46 0 4 74 0 - - - - 22 
Taiwan100 74 5.4 10.8 47.3 10.8 2.7 0 - 1.4 21.6 
China101 85 4.7 5.9 48.2 0 0 - - 0 41.2 
Korea110 32 6.3 31.3 28.1 6.3 3.1 - - - 25.0 
J apan-Hokkaido 10

j 155 9.7 7.7 23.9 29.0 0 0 - 2.6 27.1 
Japan-Honshu 104 117 24.8 0.8 23.9 10.3 1.7 0.8 - 14.5 23.1 
Japan-Kinki 111 220 3.5 4.9 24.5 31.5 0 0 0 12.6 23 
India-East161 57 10.5 17.5 7.0 1.8 0 - - 0 73.2 
India-East & North162 39 7.7 25.6 5.1 0 0 0 - 0 61.5 
This Study 60 4.8 14.3 23.8 9.5 0 4.8 - 0 38.1 
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5.2 Diagnostic Utility of Genetic Testing 

Given that the majority of individuals with a positive test have a positive family 

history one should re-evaluate the pedigree carefully if a sporadic patient tests positive. 

Alternatively this type of patient might represent a new mutation. 

5.2.1 Testing of Sporadic Patients 

Testing of apparently sporadic cases only yielded the one positive result of a case 

of SCA3. The details of this patient's family history were well documented in the chart. 

The patient was the youngest of eight children. The age of onset of symptoms in this 

patient was 22 and the expanded allele contained 80 repeats. His mother was 52 years old 

at the time of the onset of his symptoms but his father died of bowel cancer at age 61. 

His father had 6 siblings and none were known to be affected. His mother had 4 siblings 

and none of these individuals were known to have symptoms suggestive of a neurological 

disorder. The patient's mother and siblings were all tested for SCA3 and no expansions 

have been found. 

Several possible explanations exist for the appearance of a positive test result in 

an individual with a negative family history. As anticipation is a feature of most of these 

disorders, a positive family history may not be evident as an affected parent may have 

died before manifesting symptoms of the disorder. This may have been the case with our 

sporadic SCA3 patient. In addition, a large but normal allele or an allele in the 

indeterminate range might expand sufficiently to cause symptoms. The possibility of 
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non-paternity can always cloud pedigree analysis. Vague or subtle symptoms may not be 

noticed or familial contact may not be sufficient to enable the index case to realize 

whether similar problems exist in family members. In the case of autosomal recessive 

disorders such as Friedreich's ataxia, a family history will often not be present. 

While a positive result has been found in as many as 22% of sporadic patients 

tested for the heritable ataxias the single individual testing positive out of 26 tested in this 

study is similar to half of the other studies but significantly lower than some(Table 19). 

Our low yield may be the result of more aggressive determination of the presence of other 

affected family members and fewer patients being labelled as being sporadic. Overall, 

one can see that the testing of apparent sporadic patients results in a small but potentially 

important positive result rate. Testing in these individuals is important as the discovery 

that a patient's disorder is genetic has significant implications for other family members. 

The etiology of sporadic spinocerebellar ataxia has not been established. 

Possibilities include environmental factors such as toxic or infectious agents. Currently 

unknown recessive genetic conditions may exist. Autoimmune factors may play a role. 
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As previously discussed both anti-GAD antibodies and celiac disease have been 

associated with a cerebellar ataxia. Other autoimmune syndromes may be found in the 

future to produce spinocerebellar ataxias. It may be that the interplay of environmental 

and genetic factors will eventually be found to be responsible for this as well as other 

neurodegenerative disorders. 
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Table 19. Yield of Genetic Testing in Sporadic Patients 
r-· 

Frequency% 
Country #of SCAl SCA2 SCA3 SCA6 SCA7 SCA8 SCA12 SCA17 FA DRPLA Over aU 

Patients Yield 
USA1

'
5 134 0 1.5 0.7 1.5 0.7 - - - 5.2 - 9.6 

USA4
'' tn 35 0 0 0 0 - - - - - 0 0 

Gennany110 124 0 1 0 7 0 2 0 - 8 - 18 
Gennany111 112 0 1 2 6 - 0 - 0 4 - 13 
Italy1

()
5 103 0 0 0 0 0 1.9 0 - 0 - 1.9 

Spain1
()() 60 0 0 0 0 0 - - - 1.7 0 1.7 

Brazil 15~ 14 0 0 0 0 0 7.1 - - - 0 7.1 
Japan1n 143 0.5 0.5 1.8 10.0 0 0.5 0 - - 2.3 15.6 
Japan112 85 2 1 4 13 - - - - - 2 22 
Taiwan1

()
0 49 0 0 0 4.1 0 0 - - - 0 4.1 

China1
()

1 37 0 0 0 0 0 - - - - 0 0 
Korea11

() 39 0 2.6 5.1 0 2.6 - - - - - 10.3 
This Study 26 0 0 3.8 0 0 0 - - 0 0 3.8 
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5.2.2 Patients with Unclear but Positive Family Histories 

Often a clinician may find it difficult to accurately classify the patient's family 

history. This may occur because the patient knows few details of family members' 

medical problems. Some individuals may carry a potentially inaccurate diagnosis such as 

multiple sclerosis. Vague complaints may have been attributed correctly or incorrectly to 

another disorder such as back problems or old age. 

In this series, 1 of 9 patients with an unclear yet positive family history was found 

to have an expanded allele at the SCA6 locus. It was not certain that this individual's 

family history represented a dominant disorder as parent to child transmission was not 

clearly apparent. While he did have 2 of 8 older sisters with symptoms, his mother died 

at age 89 with no apparent medical problems and his father died at age 85 and only had 

been noted by the patient to have a bit of a limp. Ignoring the father's symptoms the 

pedigree may have been interpreted as autosomal recessive but if the limp is considered 

significant then one would have to assign an autosomal dominant inheritance. As was the 

case with the sporadic patient who tested positive for SCA3, the tendency for the 

nucleotide repeat disorders to expand in successive generations was likely a significant 

factor in this patient's development of the disorder even though there was not clear 

parental involvement. 

The importance of detailed family histories should be emphasized in cases of 

progressive neurological disorders. It is also important to personally examine other 

family members whenever possible. 
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5.3 The Fragile X Premutation Tremor/ Ataxia Syndrome 

While no FMRl premutations were found in our SCA patient population there has 

been one other study which looked for its presence in a group of patients referred with 

SCA. Macpherson et al tested 59 SCA patients who had tested negative for SCA types 1, 

2, 3, 6, and 7. They found 3 with repeats in the premutation range. One of these patients 

had onset of ataxia at age 10.178 Another group reported testing for the FMRl 

premutation in 9 males and 4 females with the ataxic form of multiple system atrophy. 

While they did not find any repeats greater than 50, they felt that there was an excess of 

repeats greater than 40. 179 The role that this syndrome plays in patients with SCA should 

be investigated in a larger series of patients. 

5.4 Heterozygosity for the Friedreich's Ataxia Expansion 

One patient in the sample was found to be heterozygous for the Friedreich's ataxia 

GAA expans10n. Sequencing of the coding region of the normal sized allele was 

performed in this individual as some patients with Friedreich's ataxia are compound 

heterozygotes with an expansion on one allele and a point mutation on the other. 129 74 

No mutations were found in the normal sized allele of this patient and the finding of the 

single expanded allele in this case was not thought to be significant. Given that the 

carrier frequency for the FA expansion is approximately 1 in 90, the appearance of 1 

heterozygote in a sample of this size is appropriate. 180
' 

181 
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5.5 Parent to Child Transmission in Friedreich.'s Ataxia 

One ofthe two patients found to have Friedreich's ataxia was felt by the assessing 

movement disorders clinic physician to have an autosomal dominant disorder. The 

autosomal dominant inheritance was suggested by the presence of parent to child 

transmission involving the paternal grandfather to a paternal aunt and uncle. All these 

individuals had an ataxia but specific clinical and laboratory information was not 

available. In addition, the patient had a maternal cousin who had a diagnosis of 

Friedreich's Ataxia although again there was no documentation available to support this. 

The patient's parents were described as being normal. 

The appearance of Friedreich's Ataxia in two successive generations has been 

previously described. This occurs as a result of an affected homozygous individual 

having children with a heterozygous carrier. 182
' 

183 

5.6 Friedreich.'s Ataxia Presenting in Adulthood 

While patients with Friedreich's ataxia usually present during childhood, onset of 

symptoms has been described to occur in the adult age group. 123
-
126 The oldest onset of 

symptoms published is 51 years. 127 The paper by Schols et al looked at the incidence of 

positive test results for the SCAs as well as Friedrich's ataxia. Even though the patients 

who had a typical Friedrich ataxia phenotype were excluded, 10 of 124 patients (8%) 

were homozygous for the GAA repeat expansion in Friedrich's ataxia. These patients all 

had onset of symptoms under age 40.170 
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Two patients in the Calgary clinic were found to have Friedreich's ataxia. One 

patient had an apparently autosomal dominant family history while the other had a 

pedigree consistent with an autosomal recessive pattern of inheritance. The ages of onset 

in these two individuals was 21 and 22 years old. This was substantially younger than the 

overall mean age of onset in the clinic's ataxia patients of 46.5 years. Testing for 

Friedreich's ataxia in adult onset patients appears to be appropriate especially ifthe age of 

onset is younger. 

5. 7 Clinical Features of the Genetically Diagnosed SCAs 

The clinical spectrum of the genetically identified SCAs is quite broad. 

Classification using the scheme proposed by Harding (1993) cannot adequately help in 

making a clinical diagnosis of one of the genetic disorders with the exception of ADCA II 

as the only entity currently within that category is SCA 7. 1 When taken as a group, the 

individuals with a specific SCA may appear to have a pattern of findings but, given the 

amount of overlap that exists and the great variability that occurs even within families, 

ordering a broad SCA genetic screen may be the most practical means of evaluating these 

patients. The only circumstance where one can be more focussed is when a family 

member already has a genetically proven diagnosis. 
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The number of patients in this study within each of the different genetically 

confirmed disorders was not significantly large enough to undertake analysis of clinical 

features which may differentiate one disorder from another. 

5.8 Hereditary vs. Sporadic 

Sporadic patients accounted for 37.7% of our sample. When comparisons were 

made between those patients with and without positive family histories a few statistically 

significant differences were observed. While there was no difference in age of onset, 

duration of disease symptoms, or gender, the clinical variables dysarthria, nystagmus, and 

hyperreflexia did differ between sporadic and hereditary patients. These differences are 

not easily explained. This is likely a spurious finding within the study sample and 

probably does not represent a clinically significant difference. Studies with larger sample 

sizes are required to confirm the statistically significant differences observed in the 

present study. Not only is the phenotype of the numerous genetically defined SCAs very 

broad but sporadic cases also did not appear to share a consistent clinical pattern. 

5.9 Male vs. Female 

Analysis looking for differences in the clinical features of male versus female 

patients failed to reveal any clear sex effects. While there was a statistically significant 

difference of an increased proportion of males with hyperreflexia the clinical relevance of 

this finding is not apparent. 
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5.10 MSA 

Of our sporadic patients, 6/26 (23.1%) met criteria for probable ~20.2%) or 

possible (3.8%) MSA. This is similar to the findings of Abele et al (2002) who found that 

29% of their sporadic patients met criteria for MSA using the Consensus criteria.171 

By definition MSA is a sporadic disorder. None of our patients meeting criteria 

for MSA were found to carry any of the SCA expansions. Schols et al tested 20 MSA 

patients for SCA types 1, 2, 3, 6, 7, 8, and 12 and did not find any positive tests. 170 

Bandmann et al did not find the SCA1 or SCA3 mutations in 80 patients with MSA. 184 

Our findings are consistent with these. 

5.11 Alternate presentations of SCA2 

Not included in the above analysis are 2 individuals from the family described by 

Furtado et al.49 These individuals presented with a levodopa responsive parkinsonian 

syndrome rather than an ataxia. Other reports of similar SCA2 phenotypes exist.47
• 

48 

Given that there may be a small but significant number of patients who carry the SCA2 

expansion who manifest their illness with parkinsonism or other non-ataxic problems, the 

specific prevalence of SCA2 in the population may be higher than this study and other 

studies have suggested. 
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5.12 Limitations 

This study was subspecialty clinic based rather than population based. Comments 

about the prevalence of these disorders in a geographically defined population cannot be 

made. It is likely that not all patients with a spinocerebellar ataxia are referred to the 

University of Calgary Movement Disorders Clinic. Some may be misdiagnosed with 

another disorder and not referred to our clinic. One must also consider the possibility that 

those patients who are not sent may differ in terms of clinical characteristics. They may 

have milder symptoms which may be mislabelled as being part of the normal aging 

process. This might occur more commonly in individuals without clear family histories 

of a similar disorder. 

One may be able to get an indirect measure of the relative frequencies of the 

trinucleotide repeat diseases in a population by looking at the distribution of allele size for 

the different genes. There is some evidence that the frequency of the CAG expansion 

diseases in different populations is related to the frequencies of alleles that are large but 

still in the normal range. Takano et al (1998) found that the relative prevalence of SCA3, 

SCA6, and DRPLA was higher in Japanese than in Caucasian pedigrees. This correlated 

with their finding that the frequency of large normal alleles for these disorders were also 

much higher in the Japanese than in Caucasian populations. 185 

Retrospective studies have inherent limitations which are unavoidable. During 

data collection a clinical characteristic was only described as present if it was mentioned 

in the clinic note. This may underestimate the presence of certain features. As the period 
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of follow-up of these patients lengthens, the possibility exists that subsequent physical 

examinations may be less complete than the initial one and a new finding may be missed, 

especially if the patient denied any new symptoms. Ideally, in a prospective study, there 

would be a standard means of documenting the physical examination. A rating scale for 

patients with spinocerebellar ataxias does exist although it has not yet been validated. 186 

The age of onset of symptoms is a variable which is prone to error. For many of 

the patients the symptoms had been present for a number of years before their appearance 

in our clinic and patient recall may not have been accurate. Additionally the true onset of 

symptoms may not have been clearly noted by the patient or their families. Physical 

examination may reveal that an individual is more significantly affected than they believe 

and the diagnosis of a possible hereditary disorder in a family member might result in an 

individual to seek medical attention earlier than he/she otherwise would have. 

Ideally, information regarding ethnic background would have been collected but 

this information was often not clear from the clinic notes that served as the basis for data 

collection. 

The neuroimaging should have been examined directly rather than relying solely 

on the official radiologist report. A consistent assessment by a radiologist with expertise 

in neuroradiology may have revealed additional abnormalities or interpreted more of the 

examinations as being within normal limits. 
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Overall, the sample size was very small, making comparisons between groups 

difficult. In addition, this study included only a single Canadian centre and results might 

differ significantly in other parts of this country . 

5.13 Future Possibilities 

Since the prevalence of these disorders is quite low further research IS best 

undertaken through prospective collaboration with other centres. 

A number of autosomal dominant pedigrees that lack a specific genetic diagnosis 

have been identified. One could search for linkage to the other numbered SCAs for 

which we have not been able to test. This could provide further clinical information and 

might assist in defining the specific genetic defect. Alternatively yet another SCA locus 

might be identified. 

A population of patients has been identified in our clinic in which clinical trials 

may be performed to attempt to alter the course of the illness. At present no therapy 

exists which is known to alter the course of the disorder. Management currently consists 

of measures directed at specific symptoms such as dysphagia and spasticity as well as the 

provision of mobility aids such as walkers and wheelchairs. 

It is now clear that some potentially important laboratory investigations may have 

not been performed in all patients. Vitamin E and anti-endomysial test results were only 
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available for 33 and 24 patients respectively. Only 17 patients had anti-GAD antibodies 

analyzed. Since both celiac disease and ataxia with vitamin E deficiency are potentially 

treatable, testing, especially of the sporadic cases, may be warranted. In terms of genetic 

testing, DRPLA testing could be performed on the remainder of the group to ensure that 

no cases exist. Now that these missing tests have been conveniently identified it is 

relatively simple to go back and order these investigations as appropriate. Although the 

tests are not available at the Molecular Genetics Laboratory at the Alberta Children's 

Hospital in Calgary, testing is commercially available for SCAlO, SCA12, and SCA17. 
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CHAPTER VI CONCLUSION 

In the Calgary Movement Disorders Clinic the most commonly diagnosed 

autosomal dominant spinocerebellar ataxia is SCA3. Nearly 70% of autosomal dominant 

ataxia pedigrees can be given a specific genetic diagnosis using currently available testing 

methods. A patient with an unclear but positive family history may also obtain a positive 

test result. The yield of testing sporadic patients is low but may provide useful 

information for the patient and his or her family. Neither DRPLA nor the fragile X 

tremor/ataxia syndrome was identified in our SCA patient population. 
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CHAPTER VIII- Appendicies 

Appendix 1 - MSA Consensus c.riteria151 

Table 1 Clinical domains, features, and criteria used in the diagnosis of multiple system 
atrophy (MSA) (a feature [A) is a characteristic ofthe disease and a criterion [B] is a 
defining feature or composite of features required for diagnosis) 

I. Autonomic and urinary dysfunction 
A. Autonomic and urinary features 

1. Orthostatic hypotension (by 20 mm Hg systolic and 10 mm Hg diastolic) 
2. Urinary incontinence or incomplete bladder emptying 

B. Criterion for autonomic failure or urinary dysfunction in MSA 
Orthostatic fall in blood pressure (by 30 mm Hg systolic or 15 mm Hg 
diastolic) or urinary incontinence (persistent, involuntary partial or total 
bladder emptying, accompanied by erectile dysfunction in men) or both 

II. Parkinsonism 
A. Parkinsonian features 

1. Bradykinesia (slowness ofvoluntarymovement with progressive 
reduction in speed and amplitude during repetitive actions) 
2. Rigidity 
3. Postural instability (not caused by primary visual, vestibular, cerebellar, 
or proprioceptive dysfunction) 
4. Tremor (postural, resting or both) 

B. Criterion for parkinsonism in MSA 
Bradykinesia plus at least one of items 2 to 4 

III. Cerebellar dysfunction 
A. Cerebellar features 

1. Gait ataxia (wide-based stance with steps of irregular length and 
direction) 
2. Ataxic dysarthria 
3. Limb ataxia 
4. Sustained gaze-evoked nystagmus 

B. Criterion for cerebellar dysfunction in MSA 
Gait ataxia plus at least one of items 2 to 4 

IV. Corticospinal tract dysfunction 
A. Corticospinal tract features 

1. Extensor plantar responses with hyperreflexia 
B. Corticospinal tract dysfunction in MSA: no corticospinal tract features are used 
in defining the diagnosis ofMSA 
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Table 2 Diagnostic category ofMSA (the features and criteria for each clinical domain 
are shown in table 1) 

I. Possible MSA: one criterion plus two features from separate other domains. When the 
criterion is parkinsonism, a poor levodopa response qualifies as one feature (hence only 
one additional feature is required). 

ll. Probable MSA: criterion for autonomic failure/urinary dysfunction plus poorly 
levodopa responsive parkinsonism or cerebellar dysfunction. 

ill. Definite MSA: pathologically confirmed by the presence of high-density glial 
cytoplasmic inclusions in association with a combination of degenerative changes in the 
nigrostriatal and olivopontocerebellarpathways. 

Table 3 Exclusion criteria for the diagnosis ofMSA 

I. History 
Symptomatic onset under 30 years of age 
Family history of a similar disorder 
Systemic disease or other identifiable causes for features listed in table 1 
Hallucinations unrelated to medication 

ll. Physical examination 
DSM criteria for dementia 
Prominent slowing of vertical saccades or vertical supranuclear gaze palsy 
Evidence of focal cortical dysfunction such as aphasia, alien limb syndrome, and 
parietal dysfunction 

ill. Laboratory investigation 
Metabolic, molecular, genetic, and imaging evidence of an alternative cause of 
features listed in table 1 
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Appendix 2 - Pedigrees 

Autosomal Dominant Families 

SCAl -Pedigree A 

Diagnosis = SCA 

SCA2 - Pedigree A 

Diagnosis = SCA 
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SCA2 - Pedigree B 

0 

Diagnosis= SCA ~ Diagnosis= Tremor 

SCA2 - Pedigree C 

c 

Diagnosis = SCA 
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SCA3 - Pedigree A 

Diagnosis = SCA 

SCA3 - Pedigree B 

Diagnosis = SCA 
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SCA3 - Pedigree C 

.. 

Diagnosis = SCA 

SCA3 - Pedigree D 

• Diagnosis = SCA 
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SCA3 - Pedigree E 

Diagnosis = SCA 

SCA6 - Pedigree A 

Diagnosis = SCA 
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SCA6 - Pedigree B 

• Diagnosis = SCA 

SCA8 - Pedigree A 

Diagnosis= SCA 
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Pseudo-dominant Friedreich's Ataxia Family 

Diagnosis = SCA 
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Autosomal Dominant Tests Negative- Pedigree A 

Diagnosis = SCA 

Autosomal Dominant Tests Negative- Pedigree B 

Diagnosis = SCA 
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Autosomal Dominant Tests Negative- Pedigree C 

Diagnosis = SCA 

Autosomal Dominant Tests Negative- PedigreeD 

Diagnosis = SCA Diagnosis = Dizziness 
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Autosomal Dominant Tests Negative- Pedigree E 

Diagnosis = SCA [I Diagnosis = Parkinson's Disease 

Autosomal Dominant Tests Negative- Pedigree F 

Diagnosis= SCA ~ Diagnosis= Multiple Sclerosis 

109 



Autosomal Dominant Tests Negative- Pedigree G 

Ill Diagnosis = SCA 

Autosomal Dominant Tests Negative- Pedigree H 

Ill Diagnosis = SCA 
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Autosomal Recessive Pedigrees 

Autosomal Recessive Friedreich' s Ataxia- Pedigree A 

-- Diagnosis = FA 

Autosomal Recessive Tests Negative- Pedigree A 

Diagnosis = SCA 
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Positive But Undefined Family Histories 

Positive But Undefined Family Histories- SCA6 Pedigree A 

Diagnosis = SCA 1•1 Diagnosis = Limp [!] Diagnosis = Possible Balance Problems 
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Positive But Undefined Family Histories- Tests Negative- Pedigree A 

Diagnosis = SCA ~ Diagnosis = Tremor 

Positive But Undefined Family Histories- Tests Negative- Pedigree B 

? 

Diagnosis = SCA [1J Diagnosis = Possible Balance Problems 
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Positive But Undefined Family Histories- Tests Negative- Pedigree C 

? 

Diagnosis= SCA [] Diagnosis= Dementia [!] Diagnosis =Possible Balance Problems 

Positive But Undefined Family Histories- Tests Negative- PedigreeD 

? 

Diagnosis = SCA [!] Diagnosis = Balance Problems 
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Positive But Undefined Family Histories- Tests Negative- Pedigree E 

~ Ill Diagnosis= SCA [2] Diagnosis= Balance Problems ~ Diagnosis= Multiple Sclerosis Ill] Diagnosis= Charcot-Marie-Tooth 

Positive But Undefined Family Histories- Tests Negative- Pedigree F 

4 3 

Diagnosis= SCA [I Diagnosis= Parkinson's Disease ~ Diagnosis= Tremor 
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Positive But Undefined Family Histories- Tests Negative- Pedigree G 

Diagnosis = SCA IJ Diagnosis = Dementia 

Positive But Undefined Family Histories- Tests Negative- Pedigree H 

Diagnosis= SCA ~ Diagnosis = Multiple Sclerosis ~ Diagnosis =Tremor 
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