
I CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL BE_ULPAGES ONLY
MAY BE XEROXED

Optimization of Transition State Structures Using
Genetic Algorithms

B.Sc. (Memorial University of Newfouodlaod. St. John's, Canada) 1998

A thesis submitted to the
Sehoai of Grduate Studies
in p a r t i hdflment af the

requhments for the degree of
Master of Science

Departments of Chemistry, Mathematics and Statistics, and Computer Science

Memorial University of Newfoundland

(September, 2000)

Abstract

Geometry optimization has long been an active mearch area in theoretical chem-

istry. Many algorithms e-ntly exist for the optimization of minima (reactants.

intermediates, and products) on a potential energy surfwe. However, determination

of transition state structures (first order saddle points) ha.; been an ongoing pmb-

lem. The computational techniqve of genetic algorithms har recently been applied

to optimization problems in many disciplines. Genetie algorithms are a type of euo-

lutiooary computing in which a population of individuals, whose genes collectively

encode candidate solutions to the pmblern beingsolved. evolve toward a desired objec-

tive. Each generation is biased towards pmdueing individuals which closely resemble

the kn- desired features of the optimum. This thesis contains a discussion of ex-

isting techniques for geometry optimiaation, a description of genetic algorithms, and

an explanation of how the genetic algorithm technique war applied to transition state

optimizatioo and incorporated into the existing ob iniho pa- Mungaus. Re-

sults from optimizing mathematical functions, demonstrating the effectiveness of the

genetic algorithm implemented to optimize fint order saddle points, are presented.

followed by results from the optimization of standard chemical structures used for

the testing of transition state optimization methods. Finally, some idem for future

method modifications to increase the effielency of the genetic algorithm implement*

tion used are discussed.

Admowledgements

I would like to express my gratihlde to the many people that have helped me in

the preparation of this thesis. First I would like t o thank my c-supervisors. Dr. R

A. Poirier and Dr. R Charron for giving me the opportunity to begin this project

and providing constant guidance tbmughaut my research.

I muld also like to thank my o5ce mates, Michelle Shaw. Tammy Gosse. and

James Xidos, for their mistance during my leap into quantum chemistry, a. well a s

many streep relieving arnwmtions.

I w0vld like to express utmost appreciation M Sam Bmmley for constant encaw-

agement, meticulous proofreading, and endless technical help.

I am very gratefd to my parents, who have provided encowagemeet and supported

me in all my decisions along the way.

Many thanks is expressed to the NaturalSeiences and Engineering Research Coun-

cil (NSERC) and Memorial University of Newfonndland for financial support. Ako.

eomputationsi facilitieswere provided by the Departments of Mathematics, and Com-

puting and Communications a t Memorial, for which I am thankful.

To m y grandmother,

Annie Catherine Tiller

Contents

Abstract

Aslmowledgements

List of Tables

List of Figures

1 Optimization Badrgmund
1.1 Introduction .
1.2 Mathematical Representation .
1.3 Existme Methods .
1.4 Methods for ltaositioo State Structu~es

1.4.1 Direct Inversion in the Iterative Subspace (DIIS)
1.4.2 VA - A Least Squares Appmach

1.5 Genetic Algorithm .
1.6 Outline..

iii

viii

2 Genetic Algorithm Background
2.1 Intmduction
2.2 Baric Principles . 22

2.2.1 Encoding . 23
2 2.2 Initid Population . 25
2.2.3 Fitness Function . 26
2.2.4 Selection . 27
2.2.5 Crossowr . 28
2.2.6 Mutation . 29
2.2.7 Incorporating Offspring. 30
2.2.8 Convergence.. 31

2.3 Why Genetic ALgorithmsWork . 31

3 Results From Mathematical Functions
3.1 T h e Sample Problem .

. 3.2 Fitnesr Evaluation
3.3 The Dehmg Paramete= .

. 3.4 Results for Flnt Order Saddle Points
3.4.1 Location of the Initial Guess
3.4.2 Effect of Perturbation and Validation Parameters

. 3.4.3 Effect of Population Size

. 3.4.4 Effect of C~osswer Rate
3.4.5 Effect of Mutation Rate .

. 3.4.6 Effect of the Selection Method
3.4.7 Effect of the Encoding Method
3.4.8 Gray versus binary .
3.4.9 Replacement Stratqiw .

3.5 Objective b c t i o n Gwmetry Considerations
3.6 Results for Minima .

. 3.7 Conclusions and Remmmendations

4 Results From Chemical Structures
. 4.1 Physical Aspects of Transition State Structures

4.2 Unique Features of the Genetic Algorithm
4.3 Renults .
4.4 Fvrther Modifications .

5 Conclusions and EbtureWork
5.1 Cenetie Algorithms in a Nutshell

. 5.2 Genetic Alaorithms and Transition State Structures
5.3 Idea4 For Future Work .

5.3.1 Real Valued Encoding .
5.3.2 Ab mitio versus Molecular Meehaaiw Energies
5.3.3 EBminatbn of Exoens, "e Derivatives
5.3.4 Hybrid Genetic Algorithms
5.3.5 Parallel Implementation .

5.4 Final Words

Bibliography

A Code Documentation
. A.1 Source Code Files

. A.2 Data Structures
. A.3 Input/Output

. A.4 Random Numbers

A.5 Memory Alioeation
. A.6 Initial Population

A.7 Encoding Scheme
A.8 Fitness Evaluation

. A.9 Reproduction
. A.9.1 Selection

A.9.2 Gmsaover
. A.9.3 Mutation

. A.10 Tracking the Optimum
A.11 Replacement of the Popdation
A.12 Central GA Control
A.13 Code Availability

List of Tables

3.1 Location and characteristics of the stationary points for the Chong-Zak
function . 36

3.2 Parameters in the current genetic algorithm implemeetttion 39
3.3 Results obtained by varying the mitial guess 42
3.4 Re4ults obtained for different ~ o ~ u l a t i o n size4 45 . .
3.5 Results obtained for dxfferent cmsmver probabiliti- 47

. 3.6 Results obtained for different parent selection methods 52

4.1 Test cares used far transition state structure optimization 65
. 4.2 b u l t s obtained for the HCN tt HNC rearraneement 68

4 3 !Ir\8rlrr dbtarued fur the HCCII r CCII, rmr~.mccCment G8
I 4 ilcwlw ohrlrned fur the HOCl * HC . . CO rexrlnn 7J
4 5 R o ~ l t s obtnlncd fdr rLr HVC - H. cr I12CNII reactson 1

5.1 CPU t i e required to optimize the chemical struet- shown in Chap
t e r4 . 78

. A.1 Sourcecodefiles 83
A.2 Input file format . 86

List of Figures

A contour plot of s conceptualized potential energy surface and a re-
action coordinate di8gram. 2

Flow chart for a Genetic Algorithm 21
Example of forming a chromosome b m encoded variables. 23
Example of the Gray code eharaeteristle that two successive values
differ by one bit flip. 24
Application of the singlepoint crossover operator on 2, &bit individuals 28
Application of the mutation operator an a&pring produced by crossover 29

Surface plot of the Chong-Zak function.. 35
Contour plot of the Chow-Zak function, showing the location of the
stationary points. 36

3.3 Plot of average and best fitness values for different initial gueses. . . 41
3.4 Plat of best fitness values for different d u e s of M,.;, and M-.A. . . . 43
3.5 TI,^ of size on the behaviour of thegenetif ;igOtithm. 44
3 6 The effect of changing the crossover probability with standard binary

encoding. 46
3.7 Scatter plot of individuals demonstrating premature convergence. . . 48
3.8 Scatter plot of individuals far p- = 0.03. 49
3 9 Scatter plot of individuals foop- ~n 0.08. 50
3 10 A comparison of roulette-wheel and tournament selection. 51
3.11 A eompsnson of multiplicative and i n t d encoding. 53
3.12 Comparison of Gray and standard binary encoding. 54
3.13 Comparison of nbovasverage and all-affipring replacement strategies. 55
3.14 Scatter plot of individuals for the all-o&ptingrepiaeemeot strategy . 56
3.15 Plot of average Etness values each generation for each of 25 rum with

the overall average of these runs. 58
3.16 Cootours of a sample surfaee to demonstrate the effect of the l o 4

geometr~e features of the objective function. 59

3.17 Scatter plot of individual. resulting in convergence to a minimum. . . 60

4.1 Cluster plot of individuals for the HCN ct HNC reaction. 69

Chapter 1

Optimization Background

1.1 Introduction

The most predominant problem in theomtical chemistry has been. for quite some

time. the nonlinear, unmnstrained geometry optimization of molecular structures.

The ever increasing computational power and the ability tocalculate numerical deriua-

tiver gave rise to many methods a d algorithm for o p t i i t . The structures beiog

optimized represent stationary points on a potentral energy rurfaee (PES), and hence

mnsists of minima, maxima, and saddle points of varying order, arhwe energies are

described a9 a function of geometric parameters such as band length. angler, and

dihedral angles (torsions). The stationary points of most interest include minima,

representing reactants, products, and intermediates in a chemieal reaction, ss well

as first-order saddle points corresponding to transition state structures. Higher or-

der saddle points are of no chemical interest. Many irlgorithms currently eest tor

the optimization of minima. The optimization of transition state structures how-

ever, has presented much difficulty. and continues to be a major area of research. A

mmputatianal approach far optimizing such structures is required since they have a

geeting dsteoce experimentally and are di5cult (and sometimes impossible) to

late. 'Itansition state structures are required for understanding reaction meehanisns.

and in turn, activation energies and reaction rates.

Since the actual potential energy surface is not available, let us conceptualize a

potential energy s h e to illustrate the inhibitive factors with respect to trans~tion

state structures.

Figure 1.1: A contour plot of a conceptualized potential energy surface (left) and as
reaction coordinate diagram (right). The reaction path includes polnts A (reactants).
X (transition state structure), and B (products).

A contour plot of a poslhle PES is shoam in Figure 1.1. The reaction coordinate

diagram represents the path taken smss the potential energy surface and is indicative

of the repinion mechanism which takes place along the Lowest energy path connecting

reactants and products. As minima. A and B can be characterized x having a zero

gradient (firs derivative wetor) and a Hessian (second derivative matrix) which is

pwitive definite (all positive eigendue) . Hamew, w a &st-order saddle point, the

transition state structure. X, is a maximum along the reaction path, and a minimum

in all other dict ions. Like A and B. X has a w o gradient, h-W, the Henian

matrix har one, and only one, negative eigenvalue. For the purposes of optimization

problems this p- a great dif6eulty, and there is currently no method which can

guomntee convergence to a tramition state structure.

1.2 Mathematical Representation

Let the PES be given by some uolmawn fuoction, f (3 : En - R where the

components of P are the geometric parameters that characterize a geometry of the

system. Finding minima on this surfaee is equivalent to the optimization problem

Equidently, the objective is to find 5' such that

f (%')<f(@, V~€(i€R",lli-f'll<r) (1.2)

for some r . Given a starting point 6, the direction of maximum decrease of the

objective function, f (Z) , is the negative of the gradient vector, -V/(?O). A porsi-

ble sear& procedure is to we the direction of - V ~ (? O) to define a path towards a

minimum. This leads to the steepest descent method:

Algorithm 1 (Steepest Descent)

Given ?* a7 a point on the surface,

1. compute the direction vector d;, = -Vf(&)

2. determine the positive real number or such that f (Zk + ur&) is minimized.

using a line sear&. The valve of rrr corresponds to the step mze.

3 step: 4+, = 5r + a,&

This method tends to work well when is far removed from a stationary point but

does not behave as it appmaches an as it onen step past the region

of the optimum.

Aitematively, the objmtive hnction can be expanded 8s a Taylor e e r i e about a

point 4 on the surtace,

where &- is the step taken on the surface, is the gradient vector Vf (5) (where

= 9). H is the Herdan matrix Vaf(Z). (where Hid = &), and T is the

standard transpose operation. T h g a quadratic appmximation to the surf- near

a we c a ~ t m c a t e the se"es, to give.

F O ~ a stationary point. Vf(3.) = 6, which gives.

This r-Its in a step,

toward a stationary paint on the potential energy surface. where it is a ~ ~ u m e d that

H k invertible. This in the basis d the well horn optimization technique Newton's

methal which cao be implemented using the following iterative algorithm:

Algorithm 2 (Newton's method)

Given 3 k a point on the surface,

2 solve H . (a3 = -g far A 3

3. step: = C + A 3 or = 4 + o r A L where or is dcuiated such that

I (L + ukA3 is minimized by using a line %arch method.

Tbis algorithm will generate a aerie ofsteps toward a stationary point with quadratic

convergence provided the initid guess, & is within the quadratic region OF the a p

timum. Outede of this region. Newton's method converges very slowly A major

d i s a d ~ a n t y of the method is that both 6-t and second derivatives are required at

each iteration. These calculations can he mmputationally expensiw depending on

the number of variables in the system.

1.3 Existing Methods

Newton's method provides the basis for many existing optimization methods. A

number at optimization methods employ a modification of Newton's method focusing

on approximating the Hesian matrix and vpdating it during each iteration to avoid

the expense of recalculation. T h e e methods are called puorttNewton, or uorroble

metric methods The current gradient and parameter information is used to farm the

approximate Hessian, as in the M-h-Sargent update [I],

or the symmetric Powell update [Z].

., =, + (Ag - H A 3 A l T + ASAJ - H W [(Ag- HAl)'AqAIAiT
alTai (n z T a i) ' ,

(1.8)

7

-here H' is the approximate Hessian. The Broyden family of updates Bven by.

H, = + W _ EXACE + , , (~ ~ H ~ E) G G T (1 9)
AgTAB AZTH&-

includes the Davidon - Fletcher - Powell update [3, 41 (DFP) when v = 0. and the

Brayden - Fletcher - Goldfarh - Shanno update [5. 6,7.8] (BFGS) when n = 1. The

optimally conditioned (OC) method by Davidon [9] chooses 'I such 85 to minimize the

condition number of the Hessian update, that is, the ratio of the largest to smallest

e i g d u e s .

One of the problems m c ~ a t e d with using a quadratic appmimation or the PES.

is the semitivity of convergence to the choice of step she. For example, even if a

calculated direction is correct, the step size used can result in slow convergence or

stepping beyond the region of interest. To circumvent this problem some methods

foeus on mechanisms of step size control. One such method is the Trust Radivs

Method [lo] which restricts the step to be smaller than a defined tmst radius, r.

This yields a step.

where u is adjusted to satisfy the trust radius condition. The value of r can be

changed dymamieally during the optiiizatioo as the local surface changes. Another

such method is the Rational Function Optimization (RFO) method (11. 121 which

minimizes the function appro*mation,

where u is chosen to d e c r e e the objective function while restricting the step to less

than the trust radius r.

Both the trust radius method and the RFO method guarantee a decrease in the

objective function, and will step toward a mhimum regardlm of the initial structure

of the H m h n . In contra%. the direction of the step taken with Newton's method

is dependent on the number of negative eigenvaiues of the Hessian For example.

if the H m m h a one negative eigenvalue the step will be in the direction of a

transition state rather than a minimum. Some of the Hessian updatiog algorithms

can prevent this however. For example, OC. DFP, and BFGS were strictly formulated

to Locate a minimum since the Hessian is forced to remain positive deb i t e during

the optimizat~oo. Since none of the methods mentioned were specifically designed for

locating transition state structurs, aod since many are forced toward minima, the

optimization of transition state structures is a problem that remains open

An alternative technique to quart-Newtan methods b Direct Inversion in the It-

erative subspace (DIIS) [I31 which performs geometry optimization by taking a aep

whieh is a linear combination of B and Zk., svch as t o minimize the norm of an error

vectoc. However, for traosition state s tmctues DIIS presents the problem of being

an interpolation like scheme, which wi l l be mmewhat dependent on the placement

of re's. If the m n t and pmviom geometries are consistently on the same side of

the transition state, interpolation vill result in never converging to a transition state

structure. The current use of DIIS as a transition state method will be discussed in

Section 1.4.1.

1.4 Methods for Transition State Structures

.41though many of the methods already mentioned pire able to find a transition

state structure, mast are not biased toward t h e firsborder saddie point=. Quasi-

Newtao optimization will reqvire that the initial guess lie very close to the final

gwmetry in order to converge on a transition state, and also that the initial Hessian

have the required single negative eigenva1ue. Techniques to move into the region

around the transition state include Liilear Synchmnom Transit (LST), and Quadratic

Synchmnous l t a m i t (QST). LST searches for a maximum dong a line connecting

reactants and products. QST goes a step further by searching for a maximum along

a parabola reactants and products while searching for a minim"", in all

other ~ r t hogond directions. Once the geometry fds ~n the region of the transition

state, the quasi-Newton method8 will give satisfactory convergence.

If one is aware of a geometric parameter whose change dominates the reaction. a

technique Imown as coordinate drivingcan be used to mom toward the transition state

.long this direction while minimizing with respect to all other parameters. Methods

such as eigenvector following or "waking up valleys" 1141 can locate transition state

structures by stepping toward a mrudmum in the direction corresponding to the lowest

eigeovaiue while minimiaing dong all other directions.

Another nay to locate transition state s t rvc~re r is to minimize the gradient norm.

However. this characteristic is not unique to 6mt order saddle points and a gradient

norm approach will not selectively converge to transition state structures. In addition.

points other than mioimq m-ma, and Baddle points can satisfy this criteria

A modification of the trust regian method, trust region image minimization 1151

(TRIM) performs a minimization of an image function formed by reversing the sign

of the 1o-t eigeomode. Hence, the saddle points of the original function are minima

of the image function, and can be obtained via minimization using the trmt region

method.

Various combinations of the previously mentioned Hensisn update formulas have

dm been used to optimize tramition state structures. The Bofill update 1161 is a

combination of Murtagh-Ssrgent m d symmetric Powell updater.

A modification to the BFGS Hessian update formula proposed by Anglada, et al. [17],

was formulated specifically for transition state structures,

(Ad- H k ? [(l - 4)lHlAZ+4(AZTAs3AA
H;S-8*~s + MTIHIAf + [(E T A p - AiTIHIA,+$

[(I - +)lHjAi+ 4(AiTAs7AA(Ad- H A S T
+ A s T l ~ l A s + [(AeTAs-)2 - E T l H l A q 4

AZT(Ag- H A 3 (1.15)
{AiTIHIAl+ [(AlTAf12 - AiTlHla214}2

x [(I - 4)IHlAf + 4 (A ~ T I H 1 ~ s 7 A A

x [(I -4)IHlAf +4(k-TAs7AA'

where IHI is the Hessian matrix made positive definite. This formula is known as the

TS-BFGS update and is based on the standard rank one updating procedure. Investi-

gation into this updating formula revealed that the steps taken rvith the appioximate

Hessian do not lead one to a stationary point. This behaviour ws determined to be

due to an error in the units of the following equation.

used to formulate the HeJsian update, where the two terms have different units and

therefore cannot be added to yield a physically meaningful result.

Two of the commonly used transition state methods that haw been implemented

in Mungauss (181 are DIIS, aod VA. These methods are disc-d further in the

following sections.

1.4.1 Direct Inversion in the Iterative Subspace (DIIS)

Like Newton-Raphsan methods, DIIS wss designed for near quadratic potential

energy surfaces. Denoting the energy surf- ar E(p7 where {is a wetar of molecular

parametea. t&e the find solution B' to be a linear combination of the (-tors from

the m previous iteratiom,

This is analogous to taking each p; as a perturbation from the desired solution.

and requiring that

Following this formulation the error vectors e;, i = 1.. . . . m are unknowo. Assuming

a nearly quadratic enerw surface, we can take.

where the gradient vector & eorrespoods to the parameter vector 6 at iteration i.

and H is ao appnodmate Hessian. Minimization of oE; in the least squares sense

(see Equation 1.19) and satisfying Equation 1.20 produces a system of equations that

can be u p r m e d in matrix form as.

where

B,, Bu .-. B,, 1

B2, 8 2 2

. . .

B", B"." 1

1 1 ... 1 0

l h

. . - . - .

s

. .

4n

-A

0

0

.

0

1

and A is a Lagrange multiplier. Solution of this system gives values for the 4 ' s which

are then used to form an intermediate interpolated parameter vector.

as well as an interpolated gradient -tor.

Convergence is checked at this point and another iteration b started at Equatlan 1.22

with the new parameters added.

An iteration scheme for this method is as follows:

Algorithm 3 (Dm)

1. Starting with an approximate parameter set, 6, and an approximate H;'. per-

form Newtvtoo-Raphson iterations until the quadratic region is reached.

2. Store the parameter vectors at each iteration after this point. Solve Equa-

tion 1.22 with m=2 Stop a t this point if the ermr vector is su5cieetlysmsll.

3. Compute the interpolated parameter vector, step usrng Newtoo-Raphson and

test convergence. If not converged, add the new -tom to the list sod perform

a new iteration. Ifeonver&, stop.

Although DIIS will often optimize transition state structures, problems inherent

in the method cm prevent mnvewee. This inhibition is due to the interpolation

feature of the method, which can caw iterations ~o become "stud? on one side of

the transition state

1.4.2 VA - A Least Squares Approach

The VA method is based on an algorithm developed by Powell [19[. and is a

hybrid method incorporating the methods of steepest descent and Newton's method.

This method work relatively well br transition state structures but is not designed

with transition state optimization as its sole purpose. Beginning with a system of

wations.

the derivative of these equations with respect r, gives the Jambian matrix J;,. The

truncated Taylor expansion giver.

which giver the step

If G(Z) is viewed as the gradient, this step resembles a Newton step, where the

Jacohian is essentially the Hessiao matrix. At this point the objective he t ion is

evalmated at P' to determine whether it aiill decrearie if the current step in taken. If n

decrease occurs this step is taken, otherwise a steepest descent like step is exsmmed.

Defining the s u m of squares.

whl& is to he minimized, the steepest descent direction is given by the negative

gradient of F (Z) . This gives a step.

 he above two approaches are equal only d minimizing the sum of squares resulrs in

a value close to zem.

In VA, these two methods are combined into one step as,

where determining p requires extensive derivation Note that setting p to be small

results in a step more like Newton's method, whereas taldng !A to be Large favours the

steepent descent like step. Since it is knoam that Newton's method requires an initial

guess relatiwly close to the solution and that steepest descent performs best when

well away from the solution, t h w km methods mmpiement each other. Thus it is

apparent that the choice of !A will depend on where an the potential energy surface the

current point is. Hence. the value of p should change dynamically as the optimization

pmeeeds.

1.5 Genetic Algorithms

A method which has recently become popular for optimization pmblems in several

discipanes is Genetic Algorithms (GA's). Genetie algorithms are a robust technique.

in the sense that they have been sueewsfully applied to a bmad r a g e of problems.

including a r e a in which other methods have proved to be difficult or incapable of

finding a solution. With respect to chemistry applications, GA's have been applied

to various problems [20], including geometry minimi%ation of clusters by Mestres and

Seuseria [21], various eonformational ~ea rche~ , and docking studies for drug design.

However, the use of GA's for transition state structure optimization is new, and is

the topic of the remainder of this thesis.

1.6 Outline

From the above discusdon i t is apparent that fur ther research into the optimiza-

tion of transition state structures is required, especially in comparison to optimization

of minima. In the foliowing chapters, the application of genetic algorithms to this

pmbiemwill be discussed. Chapter 2 gives a brief o ~ n i e w ofwhat genetic algorithms

are and h m they are used, followed by the presentation of the resuits obtained from

optimization of a mathematical function with the cvrrent genetic algorithm impic

mentation in Chapter 3. Chapter 4 g i w s w a r d resvlts obtained for various chemical

reactions and compares these results with those *btauned usiw the VA tcchntgue.

Finally, s summary of the research performed, and some i d e s for future w r k are

discussed in Chapter 5.

Chapter 2

Genetic Algorithm Background

-
0"" uonahon, "ow- alight o n d l m n , uhw" .r n w c prom.np $1" * i n on" .r.

s m p o l i r o b r r to on ,na%.Jrd ojon, rpru,. m S r . "linltrly :n."pk nlnyon, to 0th"
.Iantr k n r s eno to mmd nocum. urr t a d to rhc prclc-xon oj lo, mdsmdre(
ond 4 1 pmero.y oc snn-,d hy t U 06vnnp Thr ofapnnp. ,.so ut.l h w hate o
rum rhonrr 01 rrmmng r hate d l u l 04u PnnclPv, b" uh.rh cnrh llcphl >ona,,on
d ueW. u p m m d b; m 01 h'aiuml Sl.rciia zn o d r r ro mart %I, relarim
.o n.n. r pot rr Of ,r1*crron UZ hole r u n ,hat "0" 4 ,e1cri,rn eon r m ~ m , " rrodvrr
,reaL m,r,,3 d m.. oaop, 0lOon.r brmps lo h., an vsrr Ln-vh ,n. ,nmnlar.>n
4 a.,p,., brr UC,"~ ,onoi,onr 9.- ' 0 I.," bp Ih. hond 01 Norum '

2.1 Introduction

Based on population genetics and Darwin's theory of natural selection, genetic

algorithms are a type of evolutionary computing that solves problems by pmbabliliJ-

t i d l y searching the solution sp-. In eontrest to most algorithms which m r k by

succesively impmving a single entiate of the desired optimum via iterations. GA's

work with several mimates at once, which togethv form a population. Ciwn an mi-

tial population of individuds representing p-ible solutions to the problem, genetic

algorithms simulate ewlvtion by allowing the most fit individuals to reproduce to

form subeqaent generations. After several generations, emvergenee to an optimal

solution is often aeeomplished. Determioing the fitness of an mdividual is problem

depeodent and the fitness function usually incorporates n priori bowledge of the

desired optimum. The basic genetic algorithm is improved by using problem specific

knowledge in specihring the various operations required to direct the evolution. A

discussion of the basic components will be given below in Section 2.2, followed by the

incorporation of specific knowledge of first order saddle points in Chapter 3.

Genetie algorithms have been applied to a wry broad range of problems, in par-

ticular, problems associated with searching and optimization. Increming application

complexity often requires larger and larger population sizes to su5cieotiy sample the

search space and achieve a satisraetory solution.

The terminology -ciafed with geoetlc algorithms is analogous to that of bia.

logical systems. A genemtion is defined ss one cycle of fitness evaluation, selection

of parents. and reproduction. See Figure 2.1 for a Sow chart of a genetic algorithm.

which will be described below. Individuals are usually represented by a single ehm-

mosome, given as a string of binary bits. Each bit represents a gene, and a gimn

erpression of that gene (0 or 1) is an allele. The bits of an individual encode the

d u e s for the variables of the problem, where the encoding scheme used is somewhat

problem dependent and chosen by the implementor.

The selection of parents generally inmlves a random choice among the most fit

individ~als of the populat~on, in an attempt to propagate goad traits thmugh the

set F'meteCs

OCRXB~RXB~ Initial
Population 2z

Report Optimum

Individual

Choa~e individuals fornut
(inmrporare previous

Figure 2.1: Flow chart for a Genetic Algorithm

popul&tion. The mart fit individuals in the population tend to produce more off-

spring by being selected for reproduction many t ime. An individual's fitnea value

is determined by the evaluation of a problem dependent fitness function. The chr*

m m m e of an individual represents its genotyp, while the fitness d u e represents its

phenotype. Reproduction is performed by crossing wer the chromosomes of the two

paremts to form offspring, followed by occasiandly mutating some of the b io (0 c 1)

in the ofipring. Reproduction aeeomplishes recombination of the genetic material.

maintaining diversity in the population, thereby ensuring that the solution space is

well sampled. and thus increasing the probability of obtaining an optimd salution.

FmaUy, after reproduction har taken place, a sample of individuals must be chosen

to form the population for the next generation. Alter several generations. thaae

individuals in the population that are most fit will tend to dominate, and, provided the

nlgonthm has been well designed, the average fitnus of the population wiu mcrease.

leading to convergence t o an optimal solution. The various operations in a genetic

algorithm are d i s s e d in more detail in the following section.

2.2 Basic Principles

The operations in a genetic algorithm are dependent upon the problem being

solved, and many of the decisions are b-d on a combination of trial and error and

previous experience. Some of the many ways t o implement the various operators,

and their advantages and disadvantages d be discussed. The detailed behaviour of

Figure 2.2: Example of forming a chramosome tmm encoded variables.

these operators, in turn, depend on several parameten, the values of which can lead

to drastically different evolution. Hence, careful choices must be made. Previously

documented experiments can help in maldng these choices. Some of the parameten

involved, dongwithsome issues that may help in ehoosingvalves suited to a particular

problem. are presented helm.

2.2.1 Encoding

The chrom-me string of an individual contains an encoding of that iodiuidual's

solution to the gi- problem. The wlution of most problems consists of a set of

values defining the problem variable% The variables inwlved in optimizing a function

f (r , g , z), for example, are z. y, and r . The values of the pmblem variables are often

separately encoded as. b i n q strings and concatenated to form the chmmmome, a.

shown in Figure 2.2. The encoding scheme, along with the fitness hmctbn, are

the two most important considerations for an efficient GA implementation. The

encoding scheme is important when dealing with red life pmhlems since a particular

Integer Binary Gmy

14 1 1 0 1 1 0 1 1

11 1

16 1 1 1 1

Figure 2.3: Example of the Gray code characteristic that two successive d u e s differ
by one bit Bip.

ehmmosome may represent an invalid solution. An effective genetic algorithm must

take this into consideratioo in same WBY, whether it be within the encoding scheme or

in the reproduction operators. A possible alternative to standard binary encoding is

Gray code. Gray code is similar to binary with the added feature that the Hamming

distance. the number of bits that differ between the bit string representations of tam

adjacent numberr, is constant. In the case of Gray code, two successive integer ~ l u e s

differ by only one bit flip, a9 shown in Figure 2.3. In most problems that require

optimization, the variables involved are in real number space. Hence. the encoding

=heme must also provide a way to store real number data in a binary string. The

most common encoding scheme is interval (or range) encoding. where the domain and

desired precision for the variables are specified initially. and the number of bits aa be

used for each var~abie is given by.

The scaled decimal equident (D) of eaeh variable zi is given by.

where [-., br] is the domain of zr. The binary representation of this value is used as

the encoded variable. The larger the number of bits wed for each variable. t l e finer

the resolution obtained for a given domain.

An alternative to the interval encoding is multiplicative encoding where each real

valued m i a b l e is multiplied by 1 w - v and truncated, where the accuracy i s deter-

mined by the number of accurate decimal places required in the solution. T h e binary

representation of the resulting integer is used as the encoded miable. The encoded

variables used thmvghout the evolution will normally be decoded (by reversing the

encoding ~rneezs) for f i t n m evaluation.

2.2.2 Initial Population

Generation of an initial population of individual8 is oRen performed in astochastic

manner. However, for many applications, several infesible individual8 may resuit. I t

is generally better to generate a population using a p r i m information of the optimum

sought. For geometry optimization such as that being considered in t h l thesis. o

priorrlmowledge of a fhemieal reaction can lead to a rewnabie gues a t the optimum.

Thus, t b k initial gues p r w i d e ~ a good starting point far the algorithm. One critical

factor is the number of lndividualri in the population, the population size, p, which

can range h m just a few I n d i v i d d to several tho-&. The population size is

generally kept constant thmvghout the optimization. A rule of thvmb for choosing

p is 10 times the number of variables but no l e a than 100. A population that

is too small will tend to g i ~ poor sampling and hence paor Solut,ons. generally

repre3enting Local rather than global optima. This concern is more detrimental for

pmblems involving a large or convoluted search space, such &3 the optimization of

proteins, which have complex structure and many conformations. However. them

is urnally a population size abwe which no improvement is seen, regardlees of the

number of generations completed. For the optimization of transition state structures.

the ilutial geometry is mually relatively elme to the optimum sought and hence

the optimization is considered a local semh. However, given the accuracy that is

required in the aptimired geometry (= lo-'), a sufficiently large population wili still

be r e q u i d .

2.2.3 Fitness Function

The f i t n w function is the moat fundamental component of a genetic algorithm.

It is the role mechanism for directing the emlution toward the desired objectiw. An

individual's fitnees value should repment how good of asolution to the given pmblem

it represents. The Gtnees function should take into consideration each variable to be

optimized, and combine them in such a way to pmduce a suitable numuical Etners

valve when applied to an individd. To eanure that the evolution is efficient, that is.

the subseqvent individuals are most likely to be blared toward better fitness values,

the fitness function should contain few extrema, the ideal care being a monotonically

increasing or decreasing funetion with a single &urn or minimum.

2.2.4 Selection

Selection is a means to f m u r the mast fit individuals in the population in order to

propagate good genes thmugh the population. Some of the ways to select parents for

repmduetion are, roulette wheel selection. tovrnament selection. rank selection, sigma

scaling, and Boltzmann selection. Although all methods use randomized processes,

each has an ordering scheme with which to b i a ~ the choice of the most fit individuals.

Roulette wheel selection is equivalent to giving each individual a slice of a elrcle.

with the size of the piece proportional to the individual's Ktness. A point along

the edge of the circle is randomiy generated, and the individual whose slice of the

circle contains this nvmber is selectwl. Roulette wheel selection can cause pmblems

if one individual in the population is m u d more Kt than all of the others. In rhls

case it can dominate the population resulting in pnmofurr canvewence, that is, early

eonvergenee to a suboptma1 solution.

Tournament selection inwives randomly choosing a number of individuals to take

part in a tournament. The individual with the Largest fitness in this tournament pool

is selected for reproduction. A Larger tournament size results in a higher selection

I
emrrpoint

Figwe 2.4: Application of the single-point crossover operator on 2, %bit individuals

presnre. which can be quantitatively viewed as the ratio of madmum to avernge

f i tnes values of the current tournament. Selection pressure can also be increased by

uslng a probabilistic tournament nelection. In this ease, the best fit individual in a

tournament is selected vi th a user defined probability. A larger probability results in

a higher selection pressure, a probability of 0.5 repmen& no selection pressure. Too

high of a selection pressvre leads to f a t convergence to solutions that are mboptimal.

while too low of a selection presure leads to long execution times for convergence.

2.2.5 Crossover

Cressover is used as a m e w to generate better individvals than those that were

present in the population previously. Two individuals are chwen a p a n t s . their

bit StringS are aligned, and a emssover point is ehesen randomly (see Figure 2.4).

The strings are then cmssed by exchanging the bits to the right of the crossover

point, forming two new iodividuh. The crossover just described is called single-point

mssouer Multi-point cmswer can also be u d , and is implemented in a similar

ofhpn'ng I : offspring 2 :

0 ~ 1 0 1 0 1 0 1 0 0 0 1 0 1 I

~uraring Birr t 1 1
0 0 0 0 i 0 1 0

1 . 1 . 1
1 0 1 0 1 1 1 0

Figure 2.5. Application of the mutation operator on offipring produced by cmsowr

way. swapping portions between cm-wr points. Crossover is performed based on

a user defined pmbability, pr, which is usvally set between 0.60 and 1.0. Hence,

some parents pass on their genetic information directly to their o&pring, rvithovt

modification Lw emswer.

2.2.6 Mutation

Mutation is used to maintain diversity in the population. Although it does not

necessarily generate better individuals, mutation prevents stagnation in a population

of Like individuals, which otherarise may mot evolve to an optimum. The genes chosen

for mutation have their state reversed by chansngo's to l's, and 1's to O's, as reqvired

(see Figure 2.5). Mutation is performed with a user defined probability, p,, which is

usually set very low (0.001 - 0.01) to prwent a large disruption of the genes in the

population. A mutation probability of 0.5 results in the generation of offspring in a

manner &in to a random walk. The issue to be addressed when choosing a mutation

rate is to strike a balance b e m e n destroying good genes and wing mutation as a

beneficial search operator. Too high of a mutation rate re4ulte in an undirected search,

wbile too Low of a mutation rate can lead to premature convergence or stagnation.

Gray code can sometimes help moderate mutation effecte in this respect. smce one

bit fiip changes the nvmber by the smallest integer amount, regardless of mhieh bit

is flipped. In contrast. Sipping a more significant bit in standard binary -ults in a

big change in the variable value.

2.2.7 Incorporating Offspring

After reproduction is mmpiete, A o&ting and p - A parents mvst be chosen to

become the population for the next generation. Since some of the offspring may be

less 6t than the parents. most implementatiooa choose a combination of offspring and

parents for the next generation. To bias the evolution toward the desired optimum.

the most 6 t of the two group^ can be chosen, until the required number of individuals

is reached. Hence, the most fit of the otfspring replace the Least fit of rhe parrots.

It is normal for the eingie best individual from the previovs generation to be copied

back into the population for the next generation. This practice is known as elitism.

Lanuampleoftbe effect of Ripping a*@. bit inrtandard binoryvernvgraypnmding is r b m .
-hen the d u e 1.54 is encoded by multiplying by 10'. The originnl binary strings ar -11 the
rerdl Of Ripphg a single bit are show.

Eomding 61% string M"tated Demdedvalue
B i n w 1OO11010 WOllOlO 0.28
Gray 11010110 OlOlOLlO 0.88

Note tbc much 1-r Me- thpt results h m Ripping the maat significant bit of the binary
rnrnded variable r n r n ~ e d to the Gr~yensDded ,mr!Ahi..

Methods for incorporating o e r i n g can become rather sophisticated and vary wtdely.

2.2.8 Convergence

For the purposes of optimization, genetic algorithms are usually terminated when

the solution has converged. Convergence can be determined in several ways. One

common method is to terminate evolution when the qvaiity of the soiutiom have not

improved for a number of generations. Yet another, is to terminate when a given

individual, with a high fitness value, ha9 oemmd a number of tima. In general.

evolution cao also be terminated after a user defined nvmber of generations has

ewived. As the algorithm converges, the average fitness. and the fitnegs of the best

individual increeses. with the average approaching the highest fitn- value as the

optimum is reached. It is likely that some problem specYc variable could be used to

determine convergence.

2.3 Why Genetic Algorithms Work

When considering the qustion of why GA's work one must not forget that genetic

algorithms were modelled after natural biological processes, which have proved their

efficiency as demonstrated by ouv own human evolution.

Following the development of practical application details, the theoretical foundn-

tioas far why genetic algorithms are able to mimic nature sbuld be addressed. The

basis for a formal me- to do this was pmvided by John Hailand [Zq, who introduced

the schema theomm A schemata is dehed as a hit pattern that is represented as a

binary string of 0's. 1's. and r's. where a - is a "don't e m " symbol, and can thus

represent a 0 or a 1. A even ehromwome contains many schema. For example, the

chromosome 1101 contains the schema 11 * *. 1 r 01, etc. Two properties of schema

are: The orderof a schemata. which is the number of static bits, or the number at

moo-* hiu. The defining length of a schemata is the distance between the furthest

static hits.

For eaeh generation, individuals are considered for repmduetion. a i t h higher fit

individuals more likely to pass on their traiu to the next generation. Since selection

is based on fitness, and one assumes that higher fitness dues are a direct result of

good schema. the representation of good schema in the population should increase

exponentially in successive generations. These are the ideas of Holland's schema

theorem. As an implication of this theorem, if one considers the number af schema

compared to the number of individuals, the ratio is very large. According to Holland.

the number of schema pmeessed for each generation is cr p\ where p is the population

size.

In addition to Holland's schema theorem, a well-bown appmach by Goldberg

[231, called the Building Bloeh: Hypothesis. also attempts to explain why GA's work.

Goldberg defines the term building blmk as a "highly fit schemata of low defining

length and low order!' The idea behind the building hlodr hypothesis is that, in a

GA, mavergenee to the optimum occurs hecause of the placement of building blacks.

This hypothesis leads to criteria for &=lent performance of a genetic algo-

rithm. These criteria indude placing related genes close togethu in the chmmmme.

~ n d having little interaction between the genes. If both eriteria are satisfied the ef-

fectiveness of the GA is determined by the schema theorem. However, these criteria

are difficvlt to satisfy In the majority of cases there is some interaction between

genes, that is, the amount that a given gene contributes to the 6tness value depends

on the value of its interactiigene(s). Satisfaction of both criteria is also snagged by

lack of o priori knowledge of interaction between genes, and, in order to 6 l I the first

criterion, the second must be met The best resres is to come as dose as p-ibie to

satisfying Goldberg's encoding criteria.

As part of this thesis, an implementation of genetic algorithms for optimization

of chemical stmctures a r a ~ rvritten in C, interfacing with Fortran 90 in the Mungam

package. Details of this implementation can be found in Appendix A Chapter 3

preneots results and a discmeion on parameter selection.

Chapter 3

Results From Mathematical Functions

In this chapter adiscussion of the resuitsobtalned from Lhe optimization of math-

mat ical functions using genetic algorithms is giwn. The purpose of t h e results u

to demonstrate the effectivenee of the algorithm as well as to analyze its behauiour.

3.1 The Sample Problem

Tw-dimensional mathematical functions provide a good testing medivm since

their surfacer are easily constructed and their stationary points can be visualized

This is unlike chemical reactions, where the surface is not known, and m most eases

neither are the stationary points. As a me- of testing the genetic algorithm code

implemented, the bUowing mathematical function given by Chong and Zak (241 was

Location of Serionary Poinct
l ~ n u n r l m ~ , r M ~ r p d ~ m ~

.-
Figure 3.2: Contour plot of Equation 3.1 showing minima (m), m&ma (M) , and sad-
dle pains (z) (see Table 3.1). The stationary points are labelled for tuture reference.

Table 3.1: Location and characteMeP of the stationan oaints for the Chona-Zak
funcrron (z . ~) rn the coordrnate locar8nn. f (r . y) la the functron d u e 191 the
gradlenr leuoh A, and A, are the elgenvduer of the Healan matru hole char I5
would be rxrctly 0 nr th? arauonw povrs ~f calculatd edabtlytrcally

no higher order saddle points exist for the current function since f : P ct L

3.2 Fitness Evaluation

Since the vltimate god is to optimize fim order saddle points an a potential

energy ssurface, a fitness fmunctlon was designed M isolate the desired features of such

stationary points. As noted previously, Erst order saddle points can be characterized

by a zero gradient and one negative eigeovalue in the Hessian matrix. With this in

mind. the fouowing fitness fuoction was dweloped.

where f is a vector of the problem variables. 11911 is the la-norm of the gradient vector

diYided by fi where k is the number of problem variables (or grndimt length), n

is the number of negative eigenvalues in the Hessian matrix, and r is a parameter

chosen small2 and used to prevent division by zero as the algorithm converges. Note

that individuals that are close to a first order saddle point (11911 5 0. n = 1) will have

higher fitness values than those further away since their gradient norm and number of

negative e~genvalves wll result in small denominators in the fitnes function. Hence.

the genetic algorithm should be constructed to positively biss those individub wlth

*The parameter r i4 chchchto heomtheorderoftbe desired accuracyin Lhegrsdicntlengzhofthe
conwzed m,uttoo. * valvalval or I x 10-6 $8 us*i since th" Val valvalvalhhi i f f PtPtddd iff f f f fgegege
m chemical s t m c r w optimiratiao.

the highest fitmess values. With this fitness function, an "optimum" w1utian corre-

sponds to a first order saddle point. Note that this fitness f"oction does not bia3 one

saddle point over amther, therefore the algorithm could theoretically find all or any

of the f i s t order saddle points on the surface. For the optimization of minima the

(n - 1) term in Eqvation 3.2 war changed ton such that individuds with all positive

eigenvalues would be fmured. Various rum of the genetic algorithm, performed with

different parameter values, pire &x-ed in the remainder of this chapter to illustrate

the behaviour of the method, and its dependence on these parameters.

3.3 The Defining Parameters

Several parameters characterize and control the operations of the genetiealgorithm

and d c c t the behaviour of the evolution towards an optimum. T h e parameters

are listed in Table 3.2 below. Although many of these parameters were discussed

briefly in Chapter 2, a few require Curther explwation. An initial population of

individuds is generated by taking small random perturbations about an inhtial guess

at the optimum. These perturbations are restricted by the value of MLni, since it

is arsumed that the initial guess is a good one. Furthermore, since the problem

to be solved typically involves data for a physical system, the individuals created

throughovt the evolutioo are restricted to within of the initial gues to avoid

infeanible values. Any individuals that fall ant of this region are foxed back by

changing the invalid variable values to small random perturbations from the initial

Table 3.2: Parameters in the m m t genetic algorithm implementation.
Notation Description

zo.m Initial guess at the optimum.
p Population size.

G,, Maximvm number of generations.
p, Probability of uonwer.
p, Probability of mutation.

Number of bits per ~ r i a b l e .
M,"', Maximum amount to perturb the initial guess to form

the initial population.
M,, Maximum amount any subsequent individuals can devi-

ate from the initiai guen.
S Method used for selecting parents. Posibie dues are '1'

for tournament selection and '7' for roulette-wheel seiec-
tion. For tournament selection, parameters inelude the
size of the tournament, t,;., and the probability of se-
lecting the most fit individual, t,&.

E Type of encoding xheme used. Possible d u e s are 'm'
for multiplicative and 'i' for i n t e d (or range).

B Binary reprerentation used. Possible values are 'g' for
Gray and 'b' for standard binmy

R Type of neplacement strategy used 10 form the population
for the next generation. Possible values are 'a' for above-
average and '0' for all-offspring.

AM The value below which negative eigenvalues must lie to
be counted .w negatiw.

guess, as before. Following the eomplction of each generatho, forming the surviving

population for the next generation can be done in two wap. First, the popvlation

can be formed fmm only the oBpring e-ted in the current generation. Second. the

population can c o d of random selections from among the parents and offspring

that have abwe average fitness values. In the Latter e s e , the best individual from

the previous generation is always copied hack into the new population. The parameter

R specifies which of these methods to use. Pially, Aw is a tolerance that is placed

on the d u e of the negative eigenvalues, below which they must lie to be muoted as

negatiue. This parameter is r e q w became of finite machine precision which can

cause valves that are essentially zem to be very small, and maybe negative. Points

with such negative eigenvalues are of no interest, but nevertheless wonid be considered

favourable by the fitness bction. Far the Chong-Zsk objective function this can

cavse problems at points in the Bat region of the svriace (outside the interesting

regime) where the gradients are small and one of the e igendus is small and negative.

Io this case Atr = -5.0 has pmved to be adequate to concentrate the search in the

interesting region of the surface.

3.4 Results for First Order Saddle Points

The following subsecrianr investigate the effect of each of the parameters in the

dgorithm. Since genetic algorithms are stochastic in nature, each run represents

aoly one out of the totai ensemble. Thus, to obtain statistically significant

resnits data was taken over 25 runs for each parameter set and averaged. For each

of t h e runs a merent random seed was used and recorded. Subsequent data sets

were generated using these same 25 seeds for consistency. For the current analysis

the default parameter values are as folloa*s: z. = y. = 0.0. rr = 100. G,, = 200.

p.=0.75,p,=0.03.na=24, M , ~ i t = M , a = 2 0 , S = ' t . ' t ~ , = 6 , k = 0 . 7 5 .

E = 'm; B = '9,' R = '0,' Au = -5.0, with any merences noted in the captions of

the respective I k r e 4 .

3.4.1 Location of the Initial Guess

Since the initial of individuals is created by perturbing an initial g u w

at the optimal variable values, the exact location of this initial guess can have a

profound effeet on the behaviour of the algorithm. Figure 3.3 shows the effect on the

average and best fitness values m i t i n g fmm changing the initial guess fmm (0.0)

to (-1,-1). with Mcmct = M d = 3.0 such that both eases encompass all of the

interesting reeon of the surface. There is little difference in the overall behamour

Average and Best Fimess Values

m b ' & ' l ' r " IW 110 2W

m"craoon

Figure 3.3: Plot of average and best fitness values for different initial guesses. The
ease with (zo,yo) = (0.0) results in slightly better fitness values.

of the algorithm due to changing the initial guess, since the average and best fitnesr

Table 3.3: Results obtained by varying the initial gum, where G, is the average
number of generations required to hnd the best individual found in the evolution.

Initial Guess Region (2. V) Ildl n Go,
(0.0) z2 (1.148302,0.868561) 3.462192 x 10-e 1 84
(0,O) zJ (1.154115. -0.890394) 1.581266 x lo-' 1 62

(-1.-1) s2 (1.148302.0.868567) 3.462192 x lo-' 1 60

 value^ follow pimiiar trends. However, theease with initialguess (-1, -1) gave higher

fitness values slightly earlier. Furthermore, the two eases report optima in different

regions of the surface shown in the results in Table 3.3. Ioitial g u m (0.0) resulted

in a nearly equal number of optima near z2 and z3 (see Figure 3 2). In addition, one

of the runs far (zo,yo) = (0.0) resulted in premature convergence to a suboptimal

solutioo. Initial guess (-1,-1) resulted in the majority of optima near rs, with a

signficant number of optima also found near zr, in an average generation of 63 In

Bddition to the difference in time required to cluster around a point, the initial guess

can have a direct influence on the loeation of the optimum found, as is to be expected.

3.4.2 Effect of Perturbation and Validation Parameters

For the current genetic algorithm design, the parameters Mtml and M,.a directly

BBect the behaviovr of the algorithm and are closely linked with the loeation of

the initial g u ~ . A plot of the best fitnew d u e each generation for initial g u w

(-1, -1) and different M,"<. and M..a values b shown in Figure 3.4. Again, the

overall behaviour s similar, but with M , c = M,a = 3.0 resulting in a slightly

Best Fimess Values
c m m v 3 ~ n o r a t r ~ ~ m M ~ M ~ M ~ M I I -

' ~ i ' : o ' ~ ' ~ ,m 150 " m
--a

Figvre 3 4: Plot of best fitness values for m e r e n t values of Md, and Mad. The case
wlth MSne =Ms.& = 3.0 gives shghtly better fitness d u e s .

better fitnesr value. However, the three ~ e t s of mns again result in different optima.

Parmeter valueo M,.,I = Ma* = 2.0 resulted in the major,@ otf optima near r, in

an average generation of 63 but with 4 runs converging pmmatursly The set of runs

with M.,, = 2.0. M.., = 3.0 resulted in the majority of o p t m a near r, as well. but

in an aververge generation of 55 and no rvos con-rging prematurely. The set of runs

with Mc,,,, = Mad = 3.0 resulted in the majority of optima near z2 in an average

generation of 60, but dld mot report any optima near r,. I t is important to mote

that with (zo.vo) = (-1.-1) and M,, = M,.r = 2.0, the only saddle point within

the region defined by the Wnr aod M,d canstrainta is rr. Clearly, the optimum

obtained is highly dependent on the value of M,, and Ma.* since smaller values of

these Fametem result in a more local search.

3.4.3 Effect of Population Size

To demonstrate the effect of population size on theoutcome of a genetic algorithm,

t m eases with p = 100 and p = 200 are displayed in Figure 3.5. hits obtained

Average and Best Fimess Values
C O m ~ ~ n o F P o w l l l i o n luczc

Fdrn

Figure 3 5: The effect of population size on the behadour of the genetic algo-
rithm. Doubling the population sire has little effect, but doer result in sllghtly earlier
convergence.

for these sets of runs are s h m in Table 3.4, where the percentage of rvns resulting

Table 3.4: Results obtained for di%erent population sizes, where p = 200 found an
optimum slightly earlier on average than p = 100.

Reeion % of runs G-.

in optima near each saddle point is shorn. Note that both sets of runs resulted in

optima near all three saddle points.

Doubling the populationsize makes very little difference, with the exception that

the larger population gives earlier convergence on average. Thie is likely because the

~arnplingof the sudace is mare thorough with the larger population, and it is therefore

more likely to have individuals with high fitness values early in the evolution.

One v e n important factor in urnsidering the vsefulness of doubling the populat~on

~ i z e is the increze in computational overhead associated with more individuals. It

would seem reasonable to BssBsse that the improvement in behaviour with the doubled

population would not be worth the expense unless the optimum ma found in half the

number of generations. For the current example this is not the ease so doubling the

population slze is not likely to be worthwhile.

3.4.4 Effect of Crossover Rate

The effect of changing the emmover rate is shown in Figure 3.6 where the average

and best fitness values are displayed for p. = 0.60. 0.75, and 0.90. Results obtained

Effect of Crossover Probability
11 *.60.0151)90

for these sets of rum are shown in Table 3.5. Note that all three values ofp, resulted

in optima near all three sdd le points, but somewhat faster convergence is achieved

25-

with p. = 0.75.

" , ! , , , I ,

(... . <

Io addition to the runs performed a b m one sample run of the algorithm with

p. = 0.60 resvlted in premature convergence. A scatter plot of the individuals present

.. . ~= ..- - !x:z: -.--.---v-.--.--.-.-.7

I -- k t I ~ ~ d . 7 5 ,
i

' % ' & ' r ' L C 0 IS0 200

S"'"li"

Figure 3.6: The effect of changing the crossover probability p, with standard b~nary
encoding. A crassaver probability of 0.60 results in higher fitnepi values but g ~ ~ s
slower convergernee.

every 40 generations during thls run is shown in Figure 3.7 where the algorithm f o m

two elusten near M2, ultimatelyfavouring individual. in the cluster near zl, yet never

actually reaching the optimum.

Table 3.5: Renults obtsioed for different cross- probabilities, showing p, = 0.75
reporting an optimum slightly earlier.

Far the Chong-Zak funetioo we eonelude that p, = 0 75 appears to be the best

crossover probability due to faster mnwgence on average.

Region %of rum G-e
1 0.60 0.75 0.90 1 0.60 0.75 0.W

3.4.5 Effect of Mutation Rate

rl
zr

Thus far, mmt runs of the genetic algorithm reported a majority of optima in the

region of the surface near saddle points z2 and n, however there are three saddle

points present. Once a gaod individual is found, all subsequent individuals seem to

move in that direction and duster within small regions? In cares where the initial

guess is a good one this is a desirable behaviour, since the clustering ail1 most likely

o a u r around the optimum sought. This effect can be Been in Figure 3.8 in which

the individuals are displayed evem four generations for the first twenty generations

of a asampie run. To prevent this rapid clustering, in the hope of finding the other

saddle point, the mutation rate can be mueased to ensure mare thomugh sampling

of the surface, Figurr 3 9 is a scatter plot generated by increasing the mutation rate

IThere is a pmrlbillty that such clusunog 8n Mvally lead to pmblerm due ro premature
ronw-rr ~afer amrk by the avrbor a d h d this concern, and n discuabn can be found in

4 4 8
52 56 56

52 52 114
68 60 74

I-

Figme 3.7: Scatter f lot of individual. every 40 generations for p. = 0.60. where
each point repments a Jingle individual in the population. This run demonstrates
prematvre eonvergenee. The location of the two dusters relative to the stationary
points an the surface is shown on the super-imposed contour plot.

fmm 0.03 to 0.08. Note that there is distinct clustering around both saddle points r2

and n (regioas A and B of Figure 3.9 respectively), but with much more dispersion

t h m with p, = 0.03. However, the best individual was still found near zr, with

(z,y) = (1.148302,0.868567), 11911 = 3.462192 x lo-' and n = 1.

Flglre 3 R Scatter plot of ancllvldvsli every 4 generalloor for the fin, 20 generaracns.
w t~h p, .- 0 03 The papclatroo qutckly rlurters amuod raddle pumt rl m iegror. B
The o~rrrnum r~noned uac r = 1 154115.y = -0890194. w1,c.r 3, = 15812% x

lo-' and n = I. E " l ~ r ~ e d views of are- A and B are shown in the graphs on the
right.

3.4.6 Effect of the Selection Method

To compare the various available strategies for homing parent* for repmduetion,

the two implemented methods are compared in Figore 3.10. Two -en using tourna-

ment selection are shown with dSerent selection imposed by hanging the

number of indiiduak taking part in each tournament. Although there is little differ-

Scatter Plot of Individuals
mumtim p m m l i w m

I

E 8 "

I 1 ,.I 1.2 13

Flprr 3 q Scatter plot of 8ndrvmd#r& cvery 4 generattons for the Brat 20 geoerau.ru
wlrh p , = 008 A!rhough the oprtmum rcponed was ru the rectoe o l zl ,U), rhe
ranpl8ng ronlittuer fu clurtcr nround rr (A) as well En'mged \I?- of mpom A and
B are shown in the gaphs on the tight.

ence between the three plots, muiettewheel and tournament selection with t,,. = 6

behaw wy similarly, while tournament selection ai th tr,. = 2 does oat perfam w

well. Examination of the optima abtamed reveals the same mnciurion, ar shown in

Table 3.6. Note that neither S ='t', t--. = 2 nor S = 'r' found z,, and that S = 't',

tn. = 6 gave muits earlier than either of the other two methods. Hence. S = 't'.

tdZe = 6 appean to be the best selection method of the three tested.

However, one must also consider the slight in- in overhead apsoeisted wrth

Compadsan of Parent Selection Methods

Figure 3.10: A comparison of mdettewheel and tournament selection. Two runs of
tournament seleetlon are shorn with different selection presrure, changed by using 2
individuals in each tournament instead of 6.

increasing f,:. from 2 to 6 s i n e there are 3 times more ca lk to choose random

individual. fmm the popuiatioo, as well a9 3 times more compaimrs of fitness ~ l u e s

to determine the mast fit individuals. Regardless, i t is thought that the improvement

in evolvtion speed is worth the small expens.

'sre Section A9.1

Table 3.6: Rerults obtained for Merent parent selection methods. Note that S = 't'
with t,:. = 6 gave earlier rend& and is the only method that finds saddle point r,.

S Ream %of runs C.,
1, ttii. = 6 r, 8 48.5
t, tn:. = 6 z2 28 56.4
t , t", = 6 ra 64 56.8
t . t., = 2 z2 52 98.9
1. t, = 2 r, 48 97.6

r z2 48 65.5
r r1 52 71.5

3.4.7 Effect of the Encoding Method

The effect dchanging the encoding method kom multiplicative enmding to in-

te-l (or mnge) encoding is shown in Figure 3.11 which plots the average and best

fitness values for both types of encoding. Interval encoding was used with na = 22 for

the intervals r,y E [-2.21 since a precision of 0.000001 is desired (see Equation 2.1).

Therefore, to ensure a fair comparison, multiplicative encoding was vsed with na = 21

since the largest number to be encoded is 2.0. requiring a representation of at most

2 x 10'. For multiplicative encoding only h war found, with gradient lengths on the

order of lo-' in an average generation of 50.1. Whereas for i n t end eneoding d l three

saddle poine were found with gradient lengths on the order of 10-"but slightly i e s

than multiplicative, in an average of zz 55 generations. As s result, intervd enmding

1s coosidered superior to mult~plicative encoding since a slightly more accurate result

w- found with minimal increase io the nvmber of generations and the problem space

was better sampled, since all three saddie points were found.

Comparison of Encoding Schemer
M"llbl,can~Mdlnm* < G r R W l

' ~ I , ' : o ' ' " " lm I S 1W

gerrrnllrn

Figure 3.11: A comparison of multiplicative and interval encoding. The interval
encoding method outperforms the multiplicative method since a slightly higher fitne33
d u e is attained, and all three sdd l e points are found as o p p o ~ d to just z, for
multiplicative encoding.

3.4.8 Gray versus binary

The encoding &erne is also defined by a choice between standard binary or Gray

encoding. A comparison of the ure of Gray encadiig versus standard binary encoding

is shown in Figure 3.12. Note that both sets of data follow the expected trend

of the average fitness appmaching the best fitness as the algorithm evolves. The

Gray eneoding performs much better, reaching an optimum after an average of rc 54

generations The standard binary encoding however, levels off a t a much lower fitness

Comparison of Oray and Standard Binary
A- Md Bca Frnra. "*,"I

3 0 . , . , . , .

I-

" ----,--.--.--.- -.----

IW 250 XO

p-tion

Figvre 3.12: Plots of average and best fitness values for Gray and standard binary
encoding. Gray encoding hr autperforms s tandad binary encoding.

value. In addition. whde t h e optima found in both cases contained one negative

eigenvalue in the Hessian, t h e Gray encoded algorithm resulted in optima all with

gradlent lengths on the order of 10.'. Whereas, the standard binary encoding only

resulted in one run (out of 25) with an optimvm with such accuracy. Clearly, Gray

encoding proved to be the b a t encoding scheme far this example. Thiri resv1t Wa.3

somemhat expected since Gray encoding is leps sensitive to mutation effects, resulting

io a more gradual, and smooth evolution6

%aoe Section 22.1

3.4.9 Replacement Strategies

The final parameter to be investigated is the method used to replace the individ-

uals in the populatioo from one generation to the next. Using only the o&pring to

form the population for the next generation can sometimes cause pmblem if many of

the offspring are less I than the parents. A plot of the average and best fitness values

resulting fmm using the aU-oepring replacement and the abow-average replacement

IS shorn in Figvre 3.13. Note that for R = '0' the average fitness wives remain noisy

Effect of Replacement Smtem
Canwrond a k - - m # r . n d ."-m%Mg

10 1 , . , , , .

Figure 3.13: Plots of average and best In- values for abue-ouemge(R = 'a) and
dl-off3pting (R = .o') replacement stratepipi. The all-offspring strategy muits in
the average fitness values never approaehig the best fitness values.

thmnghout the evolution, never approaching the best Etnea as is expected. This is

due to the stochastic nature of the offspring creation and the renulting lack of bias

when using them as the new population. Examination of the individuals present in

the population show that many individu& far removed fmm any first order saddle

point remain in the population throughout the evolutioa, weighing down the average.

This can be seen in Figure 3.14 lahere the eontoua of the function are snperimposed

Scatter Plot of Individuals

"w=me=x

Figure 3.14: Scatter plot of individuals for all-05vti"g (R = '0 ') . displaying clustec
ing around saddle point z3.

on the graph.

An interesting feature ta mote is that many of the individuals haw the same

z d u e . and many have the same y value. This phenomenon is due to singlepoint

eraasover. since this form of eroJsover chaoges only the -able in which the erohaoghaogver

point oeeun, leaving all others the same. Hene, as the algorithm evolves and favoun

s given stationary point, most of the oEwring fomed wi l l contain changes in only

one of the pmblem variables, henee creating vertical and horizontal lines on a scatter

plot (as men in Figure 3.17) in te rn ing near the optimum. This effect muld be

diminished by increasing the mutation rate, causing many, or all of the variables to

be modified in many of the ofspring produced.

3.5 Objective Ebnction Geometry Considerations

To explore haw each of the runs for a particular set of parameter d u e s contribute

to the overall average obtained, a piot of the average fitnesr d u e of each generation

for each run was plotted along with the overall a w e . This plot is shorn in Fig-

ure 3.15 where the dots are the average fitness values for different mns and the solid

line is the overall average of these average fitness values. Note that three distinct

bands of points occur. Each of these bands corresponds to populations sampling

the a- around different saddle points on the surface. In other words, sampling

the r Q o n surrounding different saddle points can result in a dseient average fitness

value far that sample. This phenomenon is a consequence of the encoding scheme

used and the local geometry of the surf- around the stationary points. The use

of a particular encoding scheme is equivalent to d a n g a grid of discrete d u e s on

Connibutions to the Overall Average
O ~ d l * ~ x e M * u m l c m m c l V l l u u Tor2Smnr

gemurn

Figure 3.15: Plot of average fitness values each generation for each of 25 mns with the
overall average of these rum. Three bands of points correspond to the three saddle
point8 on the surface.

the surface of the objective function from which the miable ~ l u e s can be chosen

to form individuals. To illustrate, consider a aurfaee whose contours are shown in

Figure 3.16. This surface displays two madma of the same height, with maximum A

laying atop a gently sloping hill and maximum B Laying atop a steep slope. The same

grid size, representing possible discrete valves of a sample, is superimpased on both

of these stationan, points. Note that the objective function valves under the grid at

A do not change neariy an much ar the objective function d u e s under the grid at

B. The fitness values will follow this same trend. Thus, a point on the grid a given

A

Figure 3.16: Contours of a sample surface to demonstrate the &ect of the
geometric features of the objective function. The surface around maximum A
more gentle slope than the surface around B v h ~ h is a steep maximum.

, local
has a

small dhtance from the merimam a t A will have a lower gradient thsn a point the

same distance from the maximum a t B. For the fitness function d, this will rnul t

in samples taken near A having a higher fitnes value on average than samples taken

near B, pmvided each has the same number of negative eigenualues. This is refixted

in Figure 3.15. However, tahing the log of the Gtness values (a ~ wss done through-

out this chapter) results in the three bands of points collapsing together around the

overall average llne. C~~wquen t l y . any difference in fitness valves seen on . log plot

are significant. and not due to hnding on different statinnay points

3.6 Results for Minima

To illustrate the robustness of genetic algorithm for optimization probl-, the

fitness fnnction was modfled, while maintaining the same basic structure, to mek the

m i n i of the Chong-Zak function. The behavi00 exhibited was similar to that seen

for saddle points.A scatter plot of individuals for a giwo run is shown in Figuie 3.17.

where the Ent minimum, m, is found at (z.y) = (-1.431359,0.206945),Ilsll =

3.246533 x 10-'.n = 0 in generation 99. The all-06spMg replae~leot method was

used here since it allows one M easily observe the eonwgenee.

Scatter Plot of Individuals

x m e r

Figure 3.17: Scatter plot of individuals for p = 200, B = 'b,' R = '0,' and AM = 0.0,
with the fitnes function chosen to seek a minimum.

In another plot where the population size was deereased to 100. with B = -3'

a d R = 'a' rm happened to be obtained. The optimum found wss a t (z,y) =

(0.404936.0.166523), with f(z, y) = -0.930778, 11911 = 1.703883 x 10Piin generation

59.

3.7 Conclusions and Recommendations

As a result of the abwe testing performed on the Chong-Zak function, the rrc-

~ ~ ~ e ~ d e d parameter vdues for efficient use of this implementation of a genetic al-

gorithm are: p = 100, G,, = 200, p. = 0.75, p, = 0.03, na = 24. S = 't.' tn:. = 6.

t- = 0.75, E = 'i,' B = 'g; R = 'a.' It is concluded that these values gaw the best

results in general and provide a good starting point for the optimization of tranai-

tion state structures7. However, given the large mereme in computational complexiw

in moving fmm 2D mathematicd functions t o chemical structures, it is likely that

c,, = 200 will result in long wait times. his is nor likely to cause problems since

most runs of the algorithm with B = 'g' showed little improvement after G,, = 100.

hence 100 generations wiU be used ss the starting point. Also. MM,, Mms, and A,.,

are problem dependent and would therefore be very dierent for chemical structures.

Note that a convergence criteria should he introduced since the pmsibility of obtain-

ing a more accurate solutioo in subsequent generatiow should be balanced with the

?NO* that th- paremetem are independeot. and same coupling &at hem'-
many or all of the parameten Hence, a mom thorn@ inmtipm of the &cl of the parameter
Miuer on the hebarn- Of the algorithm would I.C,"de many mom rnmhinationr of paaalbk d u e

expew of continuing the mmputation. Thus, for chemical structures the convergence

criteria, 1141 < 6 b intmdud, where 6 is user defined. We will choose 6 = 5 x 10WS

as the default d u e .

Chapter 4

Results From Chemical Structures

The transition irom the optimizatioo of mathematical functions to the optimiza-

tion of chemical structures req- the consideration of several additional concepts.

One consideration is the choice of coordinate system to we. Internal coordinates in

the form of a %matrix ww used as it provides themost intuitiwstrueturedescription.

In %matrix coordinates, one represents the molecule by the bond lengths between

adjxent atoms, and the mgles between adjacent bonds. Other mmmon coordinate

systems include Cartesian where each atom is simply arrigned its position in xlu

space, and natural internal coordinates which represents a structure as combinations

of bond Lengths, bond angles, and torsions. In GA's, reducing the coupling between

variables is preferred since this allows them to evolve independently and leads to

a more efficient algorithm. Based on the amount of coupling between variables. Z-

matrix coordinates are a good choice. In comparison to Cartesian coordinates and

natural internal coordinates. Zmatrix mordinates have less coupling than Cartesian

mordinates, but natural internal coordinates pmvide nearly completely deeoupled

variables. Thus, future work on this project could possibly benefit from the use of

natural internal coordinates.

Semnd, one must decide on the method of energy eaievlation used. The energies.

h t derivatives, and numerical second derivatives were calculated using an ob initio

approach at the Hartree-Foek level, with the 3-21G banis set.

To demonstrate the viability of the genetic algorithm code, various transition state

structures were selected for optimization. These choices were taken fmm a range of

chemical reactions so s~ to sample some of the different ehemleal characteristics that

can arise. The test eases shorn in Table 4.1 were taken from the list provided by Baker

and Chan [25] where a large variety of chemical reactions used in receot literature for

testing transition state structure optimization methods are presented.

4.1 Physical Aspects of Transition State Structures

Recall that the defining characteristics of transition state structures, and thus the

features that should be isolated in a genetic algorithm are; transition state structures

are h t order saddle points on a potential energy surface whose second derivat~w

matrix har one and only one negative eigenvalue, the gradient vector a t these poinm

has a norm of zem. Additionally, the eigenvector comespond~ng to the negative

Table 4.1: Test cases used for transition state structure optimization (Bond lengths
given ~n ang~troms and bond angles in degrees). The starting geometries used for
the current optimization are as shown in the form of a Zmatrix, and are the m e o
those oven in [25j.

1. HCN tt HNC

C1
NZ C l Ll
H3 CZ L2 C1 A1 A1 90.0

2. HCCH x CCH,

C1
C2 C1 L1 L2 1.65694
X3 C1 1.0 C2 90.0 L3 1.06318
H4 C1 L2 C2 A1 X3 180.0 A1 60.3568
H5 C1 L3 X3 A2 C2 180.0 A2 60.3568

3. HOCL x HCL + CO

01
C2 0 1 L1 L2 2.335
C13 C2 L2 0 1 A1
H4 C2 L3 C13 A2 0 1 180.0 A l 90.0

A2 90.0

4 HNC + H, * H,CNH 0

eigendve must be such that the deformation of the molecular structure in that

direction along the surface conoecb the transition state structure to reactanb and

pmduets.

4.2 Unique Features of the Genetic Algorithm

Unlike other transition state optimization techniques, the genetic algorithm a p

pmach is not sensitive to the structure of the initial Hessian. The algorithm promotes

the production of individuals with one negative exgemvalue, favouring the correct Hes-

sian eigendue structure.

Furthermore, genetic algorithm are knoam for their ability to eaieientiy sample

a search space to locate a global optimum. Although this is not the intention in the

current implementation it ia worth notmg that transition state structure optimization

is less of a local search than the optimization of minima; for transition states. ~t is

very unlikely that ao initial guess can be made a9 dose to the desired optima a is

possible far minima.

4.3 Results

For the optimization of chemical structures, the following paameter valves were

used: = 100, G,, = 100, PC = 0.75, p,,, = 0.05, na = 31, S = 't', E = ' 5 ' .

B = 'g'. R = 'a'. A , = 0.0. Same of these d u e s di&r fmm the starting values

proposed in Chapter 3, which refleets the problem dependency of genetic algorithms.

The mutation probability was increaned fmm 0.03 to 0.05 since the former did not

sufficiently sample the search space. The number of bits used for each variable. n+

wzs increased to 31' since, for interval encoding, the accuracy increases with more

bits. Since the negative eigenvalues for chemical structures are usually very small

compared to those for mathematical fuoctians. AM was changed to 0.0. Thus any

oegative eigenvalues, regardlesr of the size, are m u t e d an negative.

Furthermore. the generation of the initial population wan modified for intern1

enmding. Iodividvals are generated randomly within the intervals specified for the

variables, with the initial gues added to the population without modificatioo. Thts

e l imina t~ the need for the MW and Mma variables since ail ns-bit integers can be

mapped into their corresponding intervals, and thm any subsequent individuals are

guaranteed to be withim the respecti* i n t e d .

The structures given in Table 4.1 were optimized rvith the VA method discussed

lo Chapter 1, and the results are compared to those obtained from optimizing rvlth

the genetie algorithm. Reaction 1 (see Table 4.1) is an HCN ct HNC rearmgemeat

and the results obtained are shown in Table 4.2. The bond lengths are reported in

angstroms and the bond angles in d e p w . The optimized structures obtained from

both methods are very similar and both have a Hessian matrix with one negative

eigenvalue and a gradient length on the order of The total energy, E, is reported

LThb is the maximum number of bitr that can be d f a r each Mdabierince aringleunrigned h-
tqer rr used. o-pondingtO.32 biu, and ddhgle hit is iesinedfm t h e w h i av inmdtiplicativr
encoding, despite the fM that it is not used h intend enmding.

Table 4.2: R d t s obtained for the HCN ct HNC re-gement showing the initial
geometry and the optimized geometric. fmm the GA and VA methods. The Hessian
has one negative eigenvalve (n) for dl three structures, but the genetic algorithm
strveture has a slightly lower gradient length (Ilfll).

Variable Initial GA VA
L1 1.14838 1.18265 1.18269

Table 4.3 Results obtained for the HCCH ct CCH. rearrangement showing the ln~tial
geometry and the optimized geometries f ~ o m the GA and VA methods. The Hessian
has one negative eipeipeipelue (n) for all three structures, but the genetic algorithm
*truetore har a slightly lower gradlent length (Ildl).

Variable Initial GA VA
L1 1.24054 1.24658 1.24645
L2 1.65694 1.42802 1.42920
L3 1.06318 1.05552 1.05565

io Hartiees and the initialand Bnalvalue. match those reported in [25]. Thu reaction

provides a good visual example since it only has three variables so a cluster plot can

therefore be produced. An example of such a cluster plot of individuals every 40

generarioos is shown in Figure 4.1. Note that the individuals cluster in a smaller and

smaller region as the population evolves to the optimum.

Results for Reaction 2 are s h a m in Table 4.3. The two optimized geometries are

F i y r e 4.1: Cluster plot of individuals even 40 generations for the HCN ++ HNC
reaction. The clustering of individuals gets tighter ap the population evolves.

Table 4.4: Resvlts obtained for the HOCL ++ KC1 + CO reaction showing the initial
geometry and the optimized geometries fmm GA and VA. The two optimized ge-
ometnes are similar with comparable gradient lengths, with the VA gradient length
rliahtly lower.

again very similar, both having grdient lengths on the order of 10.'. Again, the

energies match those reported by Baker and man. Results obtained far Reaction 3

are shown in Table 4.4. There are only slight differences between the two optimized

geometdes and both converged with gradient lengths an the order of lo-'. All three

geometries haw a single negative eigenvalue, and the energies listed agree with those

in the original paper.

k d t s obtained for Reaction 4 are shown in Table 4.5. Again, both optimized

geometries are simiiar. However, note that the initial geometry has two negative

eigenvalues but both opt~mized geometries haw just one. The energy of the optimized

strueturn differ in the fifth decimal place, with the VA energy matching that reported

by Baker and Chan.

Table 4.5
geometry

: Results obtained for the HNC + H2 u HzCNH reaction showing the initial
and the optimized geometries from GA and VA.

Variable Initial GA VA
L1 1.0 1.01305 1.01184
L2 1.2 1.21603 1.21292
W 1.0 1.11342 1.11201

4.4 Further Modiflcations

The evrrent version of the genetic algorithm code requires an extremely long run

time when compared to traditional methods sucb as VA. Many possibilities exist for

improving the eompvtatiooal expense snd will be discussed in Chapter 5.

Also. for problems other than the optimization of h t order saddle points, the

abavcaverage replacement strategy will likely require modification. In the current

Implementation, the pool fmm whieh individuals are then is farmed from all of the

parents and offipring whose fitness values are above the average fitness value of the

offspring population. In the cme where this elite pool comes fmm a small percentage

of the population, as when a few exceptionally high fitness value$ bias the average

fitnear upward, this can lead to very f& eonvergenee. Howver, care must be taken to

avoid eases of premature convergence. Additionally, in the eases where this elite pool

number len than the size required to form a new population, selecting individuals only

fmm this pool will cause duplication, Limiting the gene pooi and hence the effective

sample size. In more practical term, this duplication also causes wasted CPU time

to be used on re-evaluating the energier and derivative3 of duplicate individuals. A

proposed modification for the csse of very small elite pooi sizes involves placing all of

the above average individuals in the population and m m g in the remainder (up to the

population size pJ with individuak created by mutating elite-pool individuals. The

case -here the pool is sdiciently Large to form a new population is not modified

Although the rapid clustering suits our problem, problems such as canfarm&tional

searches will probably reqvire a modification such as that proposed abwe to prevent

clustering to a single small region of the surface.

Chapter 5

Conclusions and Future Work

5.1 Genetic Algorithms in a Nutshell

Genetic algorithms manipulate a collection of potential solutions to a problem in

p~a l l e l , rather than successively improving a single estimate of the optimum as is

done in traditional methods. The algorithm m r h with the encoded form of these

potential solutions rather than the solution values themeel-, and operates on there

encoded value. with stochastic operators. Implementation of a genetic algorithm is

problem dependent and each piece of mftm.re is sdcient ly detailed to restrict it to

mlving only the type of problems for which it was mitten. Such algorithms which

have been highly adapted for a specific problem am often more efficient at solving

that problem, a t the expense of generality.

A -wing nvmber of texts haw been written in the area of genetic aigorilhms.

many of an introdnetow oatvre with various applications. Some such texts used by

the author inelude [26. 27. 28. 29, 301.

5.2 Genetic Algorithms and Transition State Structures

The work presented in this thesis has laid the foundation for ongoing research in

the arra of chemicai structure optimization using genetic algorithms. Optimization

of the Chong-Zak function with varying parameters demonstrated the behaviour of

the method, pmviding a good testing medium, as well as a basis for optimizing

chemical structure. The code written was able to 6nd all three saddle points of the

finetion, which illustrates the effectiveness of the 6tness function used. Furthermore.

the two minima of the Chong-Zak function were also fouod, which demonstrates the

robustness of the genetic algorithm technique.

Applying the implementation to the optimization of chemieal structures

that it uas able to efficiently ample the regions given and e f f e c t i ~ l ~ 6nd a trans-

tion state structure. 'Itansition state structures for s w e a i chemical reactions were

determined, in agreement with other optimization techniques.

5.3 Ideas For Future Work

Throughout this research, various ideas for decreasing the run time of the genetie

as well as improving its convergence were discussed. Some of these ideas

ahat are mot yet implemented are discussed in the following subseetiom.

5.3.1 Real Valued Encoding

It has been proposed that the best encoding scheme for a genetic algorithm is

the representation that most clmely reflects the normal representation of the data in

s~lut ion space. For the cumnt problem this would be the floating point representa-

clon of the red-valued variables. The direct use of real values as o p p d to encoding

via standard binary has been discussed by several authors. If the real-valued repre-

sentations are used several components of the algorithm would have to be modified.

and alternate forms of the genetic operators would have to be developed. for which

several possib~lities already exist. In the real-valued encoding scheme, the operators

oo longer rely an direct manipulation of bits, but rather on svch t h inp as candam

perturhatioas and variable mapping. Despite the research conducted in real-valued

encoding, the genetic algorithm community has yet to warm up to the Idea, and the

majority of implementations still rely on some form of binary eneoding. Although it

is not clear that real-valued eocoding would imp- the performance of the current

implementation, further inquiry may be a worthwhile venture.

5.3.2 Ab initio versus Molecular Mechanics Energies

The majority of the computatiaoal time required to run the genetic algorithm

is taken up by the ab intho routines wed to compute the energy, gradients. and

Hessians for each geometry Since the use of molecular mechanics force fieids is

mvch less computationally intensive than ab initio methods, it is believed that using

this method for energy, and derivative eslculations would be beneficial. However. if

molecular mechania were to be used, the fitness eduat ion of an individual would

essentially be reduced to just a few simple function waluations. One difficulty in thk

approach is the lack of available force fields for transition state structure. compared

to those available for minima.

5.3.3 Elimination of Expensive Derivatives

Ooe way to eliminate expensive derivatives is to use molecular mechanics instead

of ob inttio calculations, as mentioned abwe. In molecular meehsnies, derivative are

just simple function d u a t i o n s and are therefore computationally cheap. Another

approach invalves a type of interpolation strategy to avoid full cslculstion af the

derivatives for a portion of the population. In this ease. first and second derivatives

would be calculated for a number of individuals and interpolation wovid be used to

assign derivative d u e . to those individuals lying near the individuds whme deriva-

tives have been determined. Althovgh this is an approximation strategy, It would

likely provide sufficient bias toward the correct region of the potential energy surface

However, after a certain paint, all denmtives must be calculated to complete the

e ~ i u t i o n to the optimum.

5.3.4 Hybrid Genetic Algorithms

Genetic algorithms were dsipned as global optimisation techniques, that is, given

a surface. 6nd any (or all) of the optima, regardless of the feature of the surf-.

This c-ot be achieved with traditional methods since a single approximation of the

optimum is wed and svch methods will often mi=, or get stuck, m a local optimum

More often than not, this behaviour is not desired. Furthermore, most traditiooal

methods d l require an initial guess that is in the region near the optimum (with the

c o r r ~ t Hessian structure) in order to converge. Satisfying this requirement is often

wry difficult. Thm, genetic algorithms provide benefits in these areas.

Howwer, for the problem examined in this the*, global search behaviovr can

came problems with long run timer. If one is able to provide a very good starting

geometry or if the genetic algorithm can generate a good geometry within a rea-

sonable number of generations, traditional methods ma7 be able to help. Thus. it

is pmpmed that a hybrid genetic dgotithm would be a feasible approach. By first

evolving a population for a number af generations such that the gradient length of the

best individual is sufficiently deereared and the Hessian has one negative eigeovalue,

one can use this best individual ar the starting geometry for one of the traditional

methods, such aJ Newton-Raphson. Since the initial guess is then in the region near

the apt~mum, traditional methods should be able to converge to a transitioo srate

structure in a reasonable number of iterations.

Table 5 I. CPU rune (m hours, mrnuces and semnds) r-ulred ro oplrmrze the chem.
tea. structure rhown lo Chapter I om a 600,UHz Penrtum 111 T b n r run rrnres do tuut
romnsr~ to rhe rlmp reo~rrred cu unrrmlre thr same struerunt w lh !he VA mrthod
for which the run times were Lesr than 5 minutes.

Reaction # of Variables # of Generations Time (hh.mm.s)
HCN ct HNC 3 100 19.04 05
HCCH ct CCH, 5 100 30.57.33
HOC1 ct HCl + CO 5 73 88.55.04
HNC + HZ ++ HzCNH 9 100 75.09.45

5.3.5 Parallel Implementation

The genetic algorithm mde lends itself well to parallel implementation, as is the

case with mast genetic algorithms. In the case of chemical structurs. parallelizing the

fitness evaluation would significantly decrease the wait time required for optimization,

slnee the fitness e"a1uation is the mmt expeosive component of the algorithm for this

problem. Paralielieation, in the present ease, could be aeeomphshed with minimal

effort and would make good use of modern eompvting architecture.

5.4 Final Words

One important consideration in computationalalgorithms is the run time required.

Typical examples of such times for the chemical s t m e t u r s optimized using the g e

netic algorithm are shown in Table 5.1. Although the genetic algorithm mde mit ten

requires wry long run times when mmpared to traditional optimization techniques,

optimizing the code and using some of the i d e s presented in this chapter, will help

to decrease this run time. Furthermore, the genetic algorithm was implemented with

the idea of optimizing tansition state structures that prwed difficult (or impossible)

to aptimiae with traditional methods, as well as to allow the flexibility of providing

an initial gvess far removed fmm the saddle point and still achieve mnwergenee The

reru1ts of this thesis indicate that this ir indeed ponible.

Bibliography

[I] B. Mvrtagh and R. Sargent, Comput. J. 13. 185 (1972).

[2] Nonlinear Pmgmmming, edited by K. Ritter (Academic Pms. New York 1970).

pp. 3145.

[3] W. Davidon. AEC Res. and Dev. Report ANL-5990 (revised) (1959).

[4] R. Fletcher and M. Powell, Comp. J. 8. 163 (1963)

[5] C. Broyden, J. Imt. Mathr. Appls. 6. 222 (1970).

[6] R. Fletcher, Comp. J. 13. 317 (1970).

[7] D. Goldfarb, Math. Comp. 24, 23 (1970).

[a] D. Shaono, Math. Comp. 24, €47 (1970).

[9] W. Davidon, Math. Prog. 9, 1 (1975).

[lo] R. Fletcher, Pmchcol Methods o j Optimirotion, Volume 1 (John Wiley & Sons,

Ltd., New York, 1980).

[I11 J. Baker. J. Comp. Chem. 7, 385 (1986).

[I21 A. Banerjee. N. Ad-. and J. Simmrm~, J. Php. Chem. 89. 52 (1985).

[13] P. Gssszar and P. Pulay, J. Mol. Struct. 114. 31 (1984).

[la] C. Cerjm and W. Miller. J. Chem. Phys 75. 2800 (1981)

[IS] T. Helgaker, Chem. Php . Lett. 182, 503 (1991).

[I61 J. BOW, J. Comp. Chem. 15, I(1994).

[I71 J. M. Anglbda and J. M. Bofdl. .I. Comp. Chem. 19, 349 (1998).

[I81 R Poirier, Y. Wang, and C. Pye, Chemistry Dept.. Memorial University of

Nerufoundland, St. Jobn's, NF (1996).

[I91 M. P o d l . AERE Submutine Library, Hamell, Dideot. Berkshire. UK .

[201 R. Judson, Reviews in Computational Chemistry 10, 1 (1997).

[21] J. Mestrea and G. E. Senseria. J. Comp. Chem. 16. 729 (1995).

[22] J. Holland, Adoptation In Notviol and Altijiciol Systems: An Introdvctory Anol-

ysis With Applicnhons to Biology, Conhol, and Artifidol Intelligence (University

of Michigan Press, Ann Arbor. Michigan, 1975).

[231 D. E. Goldberg, Genetic Algorithms in Seanh, Optimeatlan, and Machine

Leorning (Addison-Wesley, Reading, Massachusetts, 1989).

[24] E. Choog and S. Zak, An Intmduction To Optimbetirm (John Wiley & Som.

Ltd., New York, 1996).

[25] J. Baker and F. Chan, J. Comp. Chem. 17, 888 (1996).

[26] D. A. Coley, An Intmduction to Genetic Algorithms for Seienhsta and Engtneers

(World Scientific Publishing Co. Pte. Ltd.. Singapore, 1999).

[27l A. M. S. Zalzalaand P J. Fleming, Genehc Algorithms in Engineering Systems

(The Institution of Electrical Engineers. London. UK. 1997).

[28] K. F. M a , K. S. Tang, and S. Kwong, Genetic Algomthms (Springer-Verlag

London Limited. Great Britain. 1999).

[291 G~netic Algorithms and Simulated Annmling, edited by L. Davis (Morgan Kauf-

mann Publishers. London. 1987).

[SO] Fonndotions of Cenehe Algorithms, edited by G. J. E. Rawlins (Morgan Kauf-

mann Publishers, California, 1991).

[3l] 0 Lendl, http://random.mat.sbg.~e.at (1997).

Appendix A

Code Documentation

The foU0wing is a discussion of the programming details for the genetic algorithm

code written to optimize first order saddle points. A List of source eode Eles is given,

as well as a description of the varlovs functions with some sample code

A.l Source Code Files

The source eode Eler for the implementation of the genetic algorithm are as follows:

Table A.1: Source code Bieh

File name Description
mun.ga.globa1s.h Contains all global variables.
rnun4adatastructs.h Contains the structure deEnition for an Indluid-

ual, and various painters to functions.
mun.ghparams.h Contains the static parameters used.

mun4a.e (.h) Main 6le which controls the flow of the algorithm.

mun.gal0.c (.h) Utilities for input and output.

Contains the main reproduction function, func-
tions for erospwer and mutation. as well as fmnc-
tions for &ding the bert Individual in a group
and validating Individuals.
Contains fnnctions for encoding and decoding real
valued data "sing multiplicative or intend encod-
ing. Also, functions for Gray encoding and deeod-

A.2 Data Structures

ing.
Contai~l~ functions far mmputing the fitness val-
uer of the initial population and the offspring pro-

duced, as well a9 utility functions to calculate the
norm of a vector and to normalize the fitness *I-
uer of a gmvp of Individuals.
COntains functions for the generation of the initial
population, and for choosing Individuals to form
the population for the next generation.
Contains functions for allocating and dealloeating
memory.
Contains functions for roulette-wheel and taurna-
ment selection.
Contain. functions for initializingvariaus function
pointers, and functlom for parsing the input file
containing parameter valuer.
Contains a function for copying all of the contents
of an individual, as well ar a function to Bip a

biased min with a specified probability.

An Individual, representing a possible set of variable values b stored as a struc-

ture with d d t i o n ,

stroct indi.ridvalC

Table A2: hpu t file format.
Vanable Type Description

a comment

:int ype 2: b/,Ae of point sought, m - minimum, s f i r s t order
saddle mint

int Number of Individvsls
int Maximum number of generations

double Probability af cmsrover
double Pmbability of mutation

int Number of bits used per variabie
double Maximum perturbation of an Individual in the

initial population from the initial gu-.
double Madmum perturbation of an offspring Born the

initial guess.
char Which selection method to use: r - mulette

whoel, t - tournament. If tournament selection is
used, the following two additional parameters are
needed: t av r s i r e (int) -number of Indir iduals
in ehch tournament, and t0urprOb (double) -
pmbabitity of selecting the most fit Indiv~dual .

char Which encoding scheme to use: m - muitiplieatiw
encoding, i in t e rva l encoding. If interval encod-
ing is used, the following additional parameters
are needed: lbi (double) - Lower bound of inter-
val, and ub, (double) - upper bound of m t e d ,
for i = 0 . . .numu- where nuvar b the nvmber
of variables.

char Binary representationused. g - Gray encoding. b
-standard binary.

char Method used to choose Individuals for the next
generation, a - selection B0m above awage, o -
all offspring.

double Value below which negative eigenvalues must Lie
to be counted u newtiye.

epsi lon double Parameter used in fitness function.
gen-ins int Interval for writingxy_gen.* data files.

The functions used for parsing the inpvt file are:

m i d file-formatO
m i d ~ ~ n u p t _ f i l ~ (~ h ~ *filename. int l i ne , char *st=)
i n t re¶mesers(char *f=lename)

which are iocated in muoGsetup.e and are used to print the 6ie format to standard

out, intempt execution in the event that Kie filename has the i n c o m t format

(reporting the line l ine, ahere the ermr oecumd, and the string str that was red).

and read in the parameter. fmm filename, respectively.

The output is written M dles stat%, and history. The farmer contaius the av-

erage, maximum, minimum, and best-so-far Ktness values The Latter contains infor-

mation that allows one U, trace thmugh the execution history of the code. including

Ind iv~dua l fitners infomation for each generation. The history file is printed aoly

if SAVMIST is deKned. In addition, data Kies of variable values for each Individual

are written out perladlcally The Kle name format of t h e files is xygen-*, where r

is the generation number at the time of printing. The values far r include 0. maxgen.

u d all multiplies of geninc in between. Functions used for writing out various data

~ h i e h an Located in rnungelO.c. These functions print the mmponcots of the

stats file, print the values of the components in the Individual ind to the history

file, prlnt the chromasome, chrom ('4th length cmomlength) bitwise to FILE *fp,

aod print the d u e s of the variables for each Individval in aldpop to FILE *fp.

respectively.

A.4 Random Numbers

Genetic algorithm code relies extensively on the generation of random numbern.

Software which generates pseuda-randam numben, pmn-a.2, developed by otmar

Lend1 (311 w a ~ used. This program provides various choicer for the algorithm used

to generate the random numben, eaeh of which has several parameten. The ezplicit

invemim congruentfa1 genemtm was chmen for the current project. In additma. a

function,

in t flip(d0uble prob)

located in muna.a~tils.e, was implemented to Rip a biased coin, returning 1 with a

probability prob, otherwise returning 0.

A.5 Memory Allocation

Memory allocat~an is done in the following functions.

vnaigned in t* alloc.uintarr(int nun)
double* alloc.doublearr(int nun)
double** alloc.Wdoublearr(int n, i n t o)
strust individual* allot-popcint num)
void uloc-memory0
void free_memoryO

which are located in mnq-emory.~. The h s t tam functioos allocate arrays o fnm

unsigned integers and doubles respectively. The third allocates a taro dimensional,

n x m array of doubles, and the fourth allocates an anay of num I n d i v i d d ' s to

form a population. Finally, alloelnemory controls all memory allocation, calling the

previous functions in turn. All memory is returned to the operating system with the

freememory [unction.

A.6 Initial Population

The initial population of possible solutio~l~ are created by either randomly per-

tvrbing the initial guess, parset (for multiplicative encoding). or by choming ran-

dom numben within the intervals specified (for i in ted encoding). The following

function, located in muo4agenerate.c. creates the initial population and places the

Individuals in the aldpop array.

void generate-population(dovb1e *parset)<
i n t i . j ;
double perturbation;
doable *temp;

temp = (double*lcall~c(numvar,srreof(double)):

I* copy parsat t o f i r s t individval i n oldpap */
encode(parset .oldpapCol .chrom) ;

I* in i t i a l i ze al l popsine indiuidmaln *I
if(encode.method=='m')<

fo r (i= l ; i<pops ize ;~ t+) I
for(j-o;j<numvar;j++l~
/* get random number by which to scale i n i t i a l parameters

t o create new individual r e s t r i c t random number between

* -paramscale and paramscale *I
perturbation=paramsc~~*(2*~~~~~et.nt~~(~)-l.O);
tampgl = paraetCjl+perturbatlon;

>
I* encode i n d i r i d u created by random perturbations *I
encode(teop,oldpopCil .&om) ;

>
e l se<

f o r (i=l;i<popsire:i++) <
t o r (j=o;j<nm.,%r;j.+, r

oldpopCil . chromCjl=(unsigned) (pq -ge t -nex t (g)*
((l<<bits.per_var)-l)):

>
>

The size of the pertvrbatian is scaled to between -paranscale and paramscale since

the initial gu- is usually dose to the optimum. Following the addition of s small per-

turbation to the initial parameters, the resvlting Indlvidval is encoded as discussed

in the following section.

A.7 Encoding Scheme

Various pwibiiities for encoding Behem- are available, and can be found in

munx-nc0de.c. For reprerentation of real valued data the encoding iunctiom in-

dude.

void nult.encade(dauble *real , unsigned riot-rep)
void interval.ensode(dauble *real, unsigned r im-rep)

with corresponding decoding Cunctians for restoration of the real valued data. real

Gom the integer representation, in t rap .

For multiplicative encoding a predetermined required p d i o n of 1.0 x 10-"wacl

set in muo~qar- .h.

Xdefine SAIFT1IM (1.OE6)

and is used to encode each Individual by multiplying each variable by this amount.

giving an unsigned integer. This scde factor is remwed by decoding dvring fitness

euaiuation and before reporting results. The number of bits required per variable is

usez defined by the bits-per-var parameter. Negative numbers are aemvnted for

by setting the (bits-per-var)" bit to 1. Each ~ r i a b l e is represented by a single

w i p e d integer, of which the Lower bits-per-var data bits + 1 sign bit are wed.

The foilow~ng function encodes an I n d i v i d d using multiplicative encoding

void mult.encode(double .real, unsigned *in%-rep)<
i n t index;
=signed temp;

for(index=O:index<numvar;index++)<
temp = <=signed) (fabs(real[indexl I rSKIF'rAMT) ;
I* i f the value i s negative, see rhe bicr_per.rar b r t fo 1 -/
i f (realcindexl < o x

temp = temp I (t<<bits.per-var) :

Decoding of each IndiTidual for the purposes of f i t n ~ s evaluation reverses the above

pmeerr, converting the previously encoded integers badi to the original Boating point

nambers by determining the integer d u e of the extracted lower bits.per.vsr bits.

dividing by S H I F I m , and adding a negative sign if the (bits.p=.var)" bit is set.

Interval encoding uses a simple mapping between real values in the corresponding

domain and integer values.

m i d interva.encode(daubIs e e a l , unsigned *int_rep)<
i n t i :
f0r(i=O:i<numrrar;iu)I

I' add 0.5 to temp t o ennure rovnding up *I
int-repCil = (unsrgned) ((reacil-domainmainCz*il)*

((l<<bits_per.rrar)-l)l(domain8 CZ*i+ll -do&= CZ*iI) *o .5) ;
>

Note that specla1 consideration for negative numbers is not required for the interval

enmding scheme.

In addition to the integer representation of real numbers. Gray encoding is pro-

vided as an alternative to standard binary. For this case, the zeal numbers are encoded

using one of the above functions, after which they are converted to Gray code using

the following function which was derived from [26].

void gray.encode(Chromosoe *bin)<
i n t i ,] ;
unsigned mask:
unsigned .gray;
gray = (unsigned*)c~loc(numvar,siiiif(iiigned));

for(i=O;i(n(n.,ar;i++){
mask = (l<<(brts.per.var-1));
gray[il - binCil t mask;
for(j=o;j<bits-per~sar;j++)€

if(((binCi1 k mark)>>l) = (binCil t (mask>>%))){
mask =mask >> 1; I* leave gray b i t as 0 r/

>
e l s e€

mask = mask >> 1;
gr2yCil I= mask; I* set gray b i t to 1 *I

>
>
I* set the sign b i t *I
i f (binCilt(l<<bits-pee-e~))

gr.%y[il=grayCil l (l<<bit=_per_var) ;
>
1- Copy the sontelltn o f p y t o the individual passed in r l
for(i=o;i<n"mar:i++)<

binCil = gXayci1; ,

with a corresponding decoding funetion.

The overall encoding and decoding processes are controlled by the functions

void encode(d0uble *data, Cbramasome* ind)
m i d decode(Chrom0sorne rind, dovble *decoded)

-hi& call the c o m t encoding and decoding function. using the function pointen

to-iat and t o l l o a t respeetiwly which are set in the function.

void ret.ensode0

located in muneJetup.e, based on the input parameter encodenethod. Further-

more, the main encode and decode functions call the Gray encode and decode func-

tiom if the input parameter bi-ep f set to 'g.'

A.8 Fitness Evaluation

Following the generation and encoding of the Indiridvals in the initial popula-

tion a numerical fitness d u e is calculated for each Indiuidual. The fitness function

used depends on the type of critical point sought and is set using the function,

void se t - f i tness0

locaced in munga;*etup.c. which us- the d u e of the pointrype input parameter

to set a pointer to one of the following.

raid ts.evaluare(Indiuiduarl *ind.int numneg)
void min_eraluate(Indiridual *ind.int numneg)

which are located in mune3ttness.c. Eaeh I n d i v i d w ind, in the population

is then daoded, the function d u e , gradient, and nvmber d negative eigen~iues

(numneg) is calculated, and a fitness value is assigned. This procedure is done in the

function.

void ini t-f i tness 0

which calls the appropriate evaluation function. The gradient length is calculated

using the function,

double calc_norm(do"bla *vet, in t n)

where n is the dimension of the vector vec for which the length is to be calculated.

Following reproduction, the fitness of the offspring created is calculated in the func-

tion,

void offspring-fit 0

which behaws similar to the fitness eulluatim for the initial population. Finally, a

function.

void normalire(Indiridua1 rpop)

calculates the maximum, minimum, and awrage fitness values in a population pop.

as well as normalizes the 6tnw d u e s between 0 and 1 if roulette-wheel selection is

wed. since this is the only function that mmak we of normalized values

A.9 Reproduction

The reproduction operators are controlled by the function.

void breed(dauble* in i t i a l)

which cdls the selection. crossover, aod mutation functions to reproduce the popula-

tion, a3 well as the validate function (in the ease of multiplieatiw encoding).

void railidate(1ndividualr test, double* i n i t i a l)
i n t i-0,j.o;
i n t changed=O:
double Derturbation;
doable *temp:
temp = (double*)calloc(numvar.sireof(double)l:

for(j=o; j<numuar; j++)<
i f (fabs(tempCj1 -init ialCjl)>valid) C

perturbation=param85ale*(2.O'p'~g-get~ttXt(g)-l.o1;
tempCj1 = mitialCj1 + perturbation;
changed-1;

1
1
/* re-encode individnals that had parameters changed rl

to ensure that the a&pring produced (test), is within valid of the initial guess.

i n i t i a l . The functions that perform the reproduction operations are discussed in

the following sections.

A.9.1 Selection

The two possible methods for selecting parents include roulettewheel and tour-

nament selection. The method vsed is user defined by the selectxethod input

parameter, and the function,

void set.selectO

sets the function pointer to the carrect selection function. The function that performs

roulette wheel selection is.

i n t roulet te_selectOC
i n t i ;
double r;
double sum;
double t o t l f i t=o .O:

I* sum up the t o t a l fitness...*/
fo r< i -a : i<pops i r e ; i~)c

r o t a l f i t += oldpopril .normfit:
>

r = prq-get-next(g);
sum = 0:
if(t0talfit != O)f

far(i.O;i'popsi.e:i+*)~
sum r- aldpopCi1 .normfit / totalfit;
if (sum . r) brea;

>
>
else< I* just pick a random parent if totalfit-0 */

i = (int) (pmg-getsext-int(g) 7. popaize) :
T

which, aF noted before, makes use of the normalized fitness values. The fnnction that

performs tournament selection is.

int tour.aalecrOf
in* i;
int +parent;
int tour-best;
int winner:
dovble r:
parent = (inr*)calac(toursize,sirsof(int)):

for(le;i<toursire;i++)<
parenr [il = (int) (prng.get.next_int(g) 7. popsire) ;

>
r e find best individual tomanent r/

tour-best - parentC01;
for(i=l:i<toursize;i*)<

if(oldpopCpar8ntCill .fitness > oldpop[tour.bestl .fitness)<
tour.benf = parentcil;

>
7

/* get randandand nvmber far comparison to tourprob *I
r - pmg_get.next(g):
if(t0urprob > r)(

I* choose the best iadividval in the tovrnament r l
sinner = tour-best:

>

else€ I. choose a random inmidual in the tovrnamenf */
winner = parent Ccint) (pmg_gettteettint (g) % toursire)l;

>
re- winner;

>

which us- user defined values for towsire and tavrprob to b i a the selection p n

eess. After t m parents are selected for reproduction, crossover is performed

A.9.2 Crossover

The crossover operation is performed by the following function.

void crossover(Cbromasome *parentl. Chromosome rparenr2,
Chromosome *offspringl, Chromosome *offspnng2)<

I* This function is derived from SGA-C: A C-language
* Implementation of a Simple Genetic Algorithm, Robert
r E. Smith. David E. Goldberg, and Jeff A . Wickson.
r TCGA Report NO. 91002. 1994. *I

int i.j;
"nsigned mask;
unsigned Temp-1;
inf crosspoint;

I* determine whether or not to perform crossover */
if(ilip(crassprob))<

crosspoint = (int)(pw.get.next.int(g) % shromlength);
for(i=o:i<numvar:i*+)(

if(crossp0int >= ((i+l)*rnSIGNEDSIZE))€
I* crosspoint not reached yet. so rvap these ints *I
offspringlCi1 = parentl[il ;
offspring2c11 = parent2C11 ;

>
else if((crosapoinf~((i+l)~OLISIGNUISIZE)) M

(crosspeint>(i*mSIGNEDSIZE~))C
mask = 1;
for(j=o;j<(srosspoi~1ttt-i*~SIG~DSIzE;j~)~

mask =mask <<I;
mask = mask I temp;

>
offapringi[i l = (parentiCi1 k mask) I

(parent2Cil k (-mask) 1 ;
offspringZ[il = (parentlCi1 k (-mask)) I

(parent2Cil & mask);
>
else<

o f f r p r q l [il = parenrl[i l ;
Offspringzril = parent1r i1;

>
>

>
e l s e< I* do not crossover, just copy parents t o offspr ing */

far(i=O:i<nwar: i++)<
offspring1 CII = parent1 [il :
offspringZ[il = parent2Cil;

>

which crosses wer the bit strings of parent1 and parent2, a t crosspoint ta produce

offspr ing1 and offspr ingl , with user input probability crassprob. Note the use

of the UNSIGNEDSIZE parameter, set in rnuoe.params.h as,

adefine ONSIGNEDSIZE (8*sireof(unnigned in=))

which is qua1 to the number of b3s in an unsigned integer. Following cmssover. the

o&pring produced are subjected to mutation.

A.9.3 Mutation

The chromosome string of ao Individual is mutated wing the following function.

void musate(Chromo$ome *c)(

int i , , ;
unsigned mask=O:
unsigned temp = 1:

for(i=O;i<oumvar;i**)<
mask = 0:
for(j=O:j<bits-per-- j + +) i

i f (flip(murprob)) i
mask = mask I (temp<<j);

>
>
sCil = s[il-mask;

>

which uses the XOR logical operator to Bip the state of a bit with a user input

probability mutprob.

A.10 'Itacking the Optimum

At the start of the algorithm, the best Individual is set to the initial guess for

comparison purposer, and after the generation of the initial population, the following

function is called to determine the most fit Individual

void find_best(Indiuidual .current.pop)C
i n t i;
i n t bfin-1; I* index of individual with best f i t */
double tmpfi t ;

>
i f (bfi=-1) i

I* no better f i t ne s s was found in t h i s population! * I
rot-;

>
I* vpdate best individual structure *I
copy_ind(R(-ent.popCbfil),Rbest);
best.generation = @nerarion;
r e t m ;

>

The Individual with the highest fitness is copied into best using the function.

void ~opy.ind(Indiuidual tind-source. Indrvidual rind-dest)

located in mun~g=.utils.e, which copies each component of Individual, ind-source

to the corresponding component of ind-desr.

Ifan Individual with a higher fitness than that found previously is not present

then the best Indiuidual remains anchanged. Therefore, best always contams the

Individual with the highest fitnes thmughout the evolution and is reported a;- the

optimum when the algorithm is complete

A.ll Replacement of the Population

Upon completion of repmduetion, a portion of the parems and o6spring can be

chosen for the next generation in one of tm wap. The first method is implemented

in the foilowing function,

void all.offspringO€
i n t I;
for(i=O:i<papsire;~*)<

copy.indtk(offsprinpIi1) .R(nevpopCil)) ;

located in mun-gagenerate.~, which copier all of the offspring created in the current

generation into the population for the next generation, none of the parents continue

on. The second method is s h m in the function,

void abave.averageO<
1nt I,=;
int numald=O;
int numne~0:
m t raubpop;
subpop = (inf*)calloc(2*popsire,aireof(int));

/* create pool of individuals from oldpop and offspring
r consisting of those individvillb whose fitness values are
r greater than cha average from the previous generation *I
for(i=O:i<popsire;i~)<

if (aldppCil .fitness > argX
subpp[numala = 1;
numold++;

>

/* subpop complete ... add best individual from preriooe
* generation to new population *I
sopy.mnd(&(bent) .~(neyp~~pCOl)) :

/r choose random indirridvals from subpap to occur in the
r next generation, start at 1 since best individual is in 0 *I
for(i=l;i<poprire;i*)<

r = (int)(pmg&gef.aext_int(g) % (numold+numneu));
if(= < numold)<

/+ shoaen individual came from previous generation *I

&0 Located in mun<axenerate.e, which 611s the surviving population with a random

selection fmm among those parents and oEspiing with Pness values abow the average

fitnew of the o&ring. Which of the above functions is used is dependent on the wer

defined relectserpop parameter which is used in,

void set.choose.neupopO

located in mun@setup.e, to set a fvnetion pointer to the correct population replace

ment fmnution.

A.12 Central GA Control

The Bow of the genetle algorithm is controlled by a main function.

void gh(daub1e parset[I , double pargrdC I , int noptpr.
double grdlth, dovble fun=-value)

which is called fmm a Fortran subroutine within Mungauss. The mre Mungauss

operations are used to calculate the objective function d u e , gradient, and Hesrian for

the Individuals. The genetic algorithm code d l s the appropriate Fortran fnnctions

within Munauss to obtain this information when it is required.

A.13 Code Availability

Information about the above source code can be obtained by eontanins one of

the foU0wing:

	0001_Cover.jpg
	0002_Inside Cover .jpg
	0003_Blank Page.jpg
	0004_Blank Page.jpg
	0005_Title Page.jpg
	0006_Abstract .jpg
	0007_Acknowledgements .jpg
	0008_Dedication.jpg
	0009_Table of Contents.jpg
	0010_Table of Contents vi.jpg
	0011_Table of Contents vii.jpg
	0012_List of Tables viii.jpg
	0013_List of Figures ix.jpg
	0014_List of Figures x.jpg
	0015_Chapter 1 - Page 1.jpg
	0016_Page 2.jpg
	0017_Page 3.jpg
	0018_Page 4.jpg
	0019_Page 5.jpg
	0020_Page 6.jpg
	0021_Page 7.jpg
	0022_Page 8.jpg
	0023_Page 9.jpg
	0024_Page 10.jpg
	0025_Page 11.jpg
	0026_Page 12.jpg
	0027_Page 13.jpg
	0028_Page 14.jpg
	0029_Page 15.jpg
	0030_Page 16.jpg
	0031_Page 17.jpg
	0032_Page 18.jpg
	0033_Chapter 2 - Page 19.jpg
	0034_Page 20.jpg
	0035_Page 21.jpg
	0036_Page 22.jpg
	0037_Page 23.jpg
	0038_Page 24.jpg
	0039_Page 25.jpg
	0040_Page 26.jpg
	0041_Page 27.jpg
	0042_Page 28.jpg
	0043_Page 29.jpg
	0044_Page 30.jpg
	0045_Page 31.jpg
	0046_Page 32.jpg
	0047_Page 33.jpg
	0048_Chapter 3 - Page 34.jpg
	0049_Page 35.jpg
	0050_Page 36.jpg
	0051_Page 37.jpg
	0052_Page 38.jpg
	0053_Page 39.jpg
	0054_Page 40.jpg
	0055_Page 41.jpg
	0056_Page 42.jpg
	0057_Page 43.jpg
	0058_Page 44.jpg
	0059_Page 45.jpg
	0060_Page 46.jpg
	0061_Page 47.jpg
	0062_Page 48.jpg
	0063_Page 49.jpg
	0064_Page 50.jpg
	0065_Page 51.jpg
	0066_Page 52.jpg
	0067_Page 53.jpg
	0068_Page 54.jpg
	0069_Page 55.jpg
	0070_Page 56.jpg
	0071_Page 57.jpg
	0072_Page 58.jpg
	0073_Page 59.jpg
	0074_Page 60.jpg
	0075_Page 61.jpg
	0076_Page 62.jpg
	0077_Chapter 4 - Page 63.jpg
	0078_Page 64.jpg
	0079_Page 65.jpg
	0080_Page 66.jpg
	0081_Page 67.jpg
	0082_Page 68.jpg
	0083_Page 69.jpg
	0084_Page 70.jpg
	0085_Page 71.jpg
	0086_Page 72.jpg
	0087_Chapter 5 - Page 73.jpg
	0088_Page 74.jpg
	0089_Page 75.jpg
	0090_Page 76.jpg
	0091_Page 77.jpg
	0092_Page 78.jpg
	0093_Page 79.jpg
	0094_Bibliography.jpg
	0095_Page 81.jpg
	0096_Page 82.jpg
	0097_Appendix A.jpg
	0098_Page 84.jpg
	0099_Page 85.jpg
	0100_Page 86.jpg
	0101_Page 87.jpg
	0102_Page 88.jpg
	0103_Page 89.jpg
	0104_Page 90.jpg
	0105_Page 91.jpg
	0106_Page 92.jpg
	0107_Page 93.jpg
	0108_Page 94.jpg
	0109_Page 95.jpg
	0110_Page 96.jpg
	0111_Page 97.jpg
	0112_Page 98.jpg
	0113_Page 99.jpg
	0114_Page 100.jpg
	0115_Page 101.jpg
	0116_Page 102.jpg
	0117_Page 103.jpg
	0118_Page 104.jpg
	0119_Blank Page.jpg
	0120_Blank Page.jpg
	0121_Inside Back Cover.jpg
	0122_Back Cover.jpg

