OPTIMIZATION OF TRANSITION STATE STRUCTURES
USING GENETIC ALGORITHMS

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OE_10_ PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)

SHARENE D. BUNGAY

Optimization of Transition State Structures Using
Genetic Algorithms

by

(© Sharene D. Bungay

B.Sc. (Mt ial University of d, St. John’s, Canada) 1998

A thesis submitted to the
School of Graduate Studies
in partial fulfilment of the
requirements for the degree of
Master of Science

Dy of Chemistry, Math ics and Statistics, and Computer Science

ial University of Newfoundland

(September, 2000)

St. John’s Newfoundland

Abstract

Geometry optimization has long been an active research area in theoretical chem-
istry. Many algorithms currently exist for the optimization of minima (reactants.
intermediates, and products) on a potential energy surface. However, determination

of transition state structures (first order saddle points) has been an ongoing prob-

lem. The i ique of genetic algorithms has recently been applied
to optimizati in many discipli Genetic are a type of evo-
lutionary ing in which a population of individuals, whose genes

encode candidate solutions to the problem being solved, evolve toward a desired objec-
tive. Each generation is biased towards producing individuals which closely resemble
the known desired features of the optimum. This thesis contains a discussion of ex-
isting techniques for geometry optimization, a description of genetic algorithms, and
an explanation of how the genetic algorithm technique was applied to transition state

optimization and incorporated into the existing ab initio package Mungauss. Re-

sults from optimizi i ing the i of the
genetic algorithm implemented to optimize first order saddle points, are presented,

followed by results from the optimization of standard chemical structures used for

the testing of transition state optimization methods. Finally, some ideas for future
method modifications to increase the efficiency of the genetic algorithm implementa-

tion used are discussed.

iii
Acknowledgements

I would like to express my gratitude to the many people that have helped me in
the preparation of this thesis. First I would like to thank my co-supervisors, Dr. R.
A. Poirier and Dr. R. Charron for giving me the opportunity to begin this project
and providing constant guidance throughout my research.

I would also like to thank my office mates, Michelle Shaw, Tammy Gosse, and
James Xidos, for their assistance during my leap into quantum chemistry, as well as
many stress relieving conversations.

I would like to express utmost appreciation to Sam Bromley for constant encour-
agement, meticulous proofreading, and endless technical help.

I am very grateful to my parents, who have provided encouragement and supported
me in all my decisions along the way.

Many thanks is expressed to the Natural Sciences and Engineering Research Coun-

cil (NSERC) and) ial University of d for financial support. Also.
computational facilities were provided by the Departments of Mathematics, and Com-

puting and Communications at Memorial, for which I am thankful.

To my grandmother,

Annie Catherine Tiller

Contents

Abstract
Acknowledgements
List of Tables

List of Figures

1 Optimization Background
11 Introduction
1.2 Mathematical Representation
1.3 Existing Methods
1.4 Methods for Transition State Structures

141 Direct Inversion in the Iterative Subspace (DIIS)
142 VA - A Least Squares Approach
1.5 Genetic Algorithms
16 Otftlines. o < sivwme s itiviavarss

N

Genetic Algorithm Background
2.1 Introduction
2.2 Basic Principles
221 Encoding . -
222 Initial Population . .
2.2.3 Fitness Function
2.24 Selection
2.2.5 Crossover
2.2.6 Mutation
2.2.7 Incorporating Offspring .
2.2.8 Converge:
2.3 Why Genetic Algorithms Work

3 Results From Mathematical Functions 34
3.1 The Sample Problem . . . 34
3.2 Fitness Evaluation 37

3.3 The Defining Parameters 38

3.4 Results for First Order Saddle Points 40
3.4.1 Location of the Initial Guess 41
3.4.2 Effect of Per ion and Vali 42
3.4.3 Effect of Population Size 44
3.44 Effect of Crossover Rate 45

3.4.5 Effect of Mutation Rate 47
3.4.6 Effect of the Selection Method
3.4.7 Effect of the Encoding Method
3.4.8 Grayversus binary 53

3.4.9 Replacement Strategies 55

3.5 Objective Function Geometry Considerations . . . o sT
3.6 Results for Minima 60
3.7 Cc i and 61

4 Results From Chemical Structures 63
4.1 Physical Aspects of Transition State Structures 64
4.2 Unique Features of the Genetic Algorithm 66
43 Results:owin. 66
4.4 Further Modifications . . 71

5 Conclusions and Future Work 73
5.1 Genetic Algorithms in a Nutshell 73
5.2 Genetic Algorithms and Transition State Structures 74
5.3 Ideas For Future Work 74
5.3.1 Real Valued Encoding 75

5.3.2 Ab initio versus Molecular Mechanics Energies 75

5.3.3 Elimination of Expensive Derivatives . %

5.3.4 Hybrid Genetic Algorithms ks

5.3.5 Parallel Implementation 78

54 Final Words ..o .« o v e oo v osonos 78
Bibliography 80
A Code Documentation 83
A.1 Source Code Files 83
A2 Data Structures . . . 84
A3 Input/Output 85
A4 Random Numbers . . 88

A5 Memory Allocation .
A.6 Initial Population . .
A.7 Encoding Scheme . .
A.8 Fitness Evaluation
A9 Reproduction
A.9.1 Selection . . .
A9.2 Crossover
A93 Mutation
A.10 Tracking the Optimum
A.11 Replacement of the Population
A.12 Central GA Control .
A.13 Code Availability . .

viii

List of Tables

Al
A2

Location and characteristics of the stationary points for the Chong-Zak

function. 36
Parameters in the current genetic algorithm implementation. 39
Results obtained by varying the initial guess. 42
Results obtained for different population sizes. 45
Results obtained for different crossover probabilities. - 47
Results obtained for different parent selection methods. 52
Test cases used for ition state 65
Results obtained for the HON ¢ HNC rearrangement. 68
Results obtained for the HCCH «» CCH, rearrangement. 68
Results obtained for the HOCI «+ HCl + CO reaction. 70
Results obtained for the HNC + H, «» H,CNH reaction. :
CPU time required to optimize the chemical structures shown in Chap-

L 78
Source code files 83
Input file format. 86

List of Figures

11

2.1
22
2.3

2.4
2.5

3.1

3.3
3.4
3.5
3.6

3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15

A contour plot of a conceptualized potential energy surface and a re-
action coordinate diagram. -l

Flow chart for a Genetic Algorithm
Example of forming a chromosome from encoded variables.
Example of the Gray code characteristic that two successive values
differ by one bit fip.l
A ion of the single-point cr er operator on 2, 8-bit individuals
Application of the mutation operator on offspring produced by crossover

Surface plot of the Chong-Zak function.
Contour plot of the Chong-Zak function, showing the location of the
stationary Poinbs. ¢ & v i v e e B et BB AN A e e e e s
Plot of average and best fitness values for different initial guesses.
Plot of best fitness values for different values of M and M,yp.
The effect of ion size on the iour of the genetic

The effect of changing the crossover probability with standard hmary
enCOdING. .+ . . o o e e

Scatter plot of i 5 e
Scatter plot of individuals for p, =0.03.
Scatter plot of individuals for pn, =0.08.
A i of roulette-wheel and selection.
A comparison of multiplicative and interval encoding.
Comparison of Gray and standard binary encoding.
Comparison of above-average and all-offspring replacement strategies.
Scatter plot of individuals for the all-offspring replacement strategy. .
Plot of average fitness values each generation for each of 25 runs with
the overall average of theseruns.
Contours of a sample surface to demonstrate the effect of the local
geometric features of the objective function.

3.17 Scatter plot of indivi resulting in toa

4.1 Cluster plot of individuals for the HCN ¢+ HNC reaction

Chapter 1

Optimization Background

“For the things of this world cannot be made knoun without a knowledge of
mathematics.”

~Roger Bacon

1.1 Introduction
The most i problem in ical chemistry has been, for quite some
time. the nonli ined geometry optimization of structures.

The ever increasing computational power and the ability to calculate numerical deriva-
tives gave rise to many methods and algorithms for optimization. The structures being
optimized represent stationary points on a potential energy surface (PES), and hence
consists of minima, maxima, and saddle points of varying order, whose energies are
described as a function of geometric parameters such as bond lengths, angles, and
dihedral angles (torsions). The stationary points of most interest include minima,

representing reactants, products, and intermediates in a chemical reaction, as well

0

as first-order saddle points corresponding to transition state structures. Higher or-
der saddle points are of no chemical interest. Many algorithms currently exist for
the optimization of minima. The optimization of transition state structures how-
ever, has presented much difficulty, and continues to be a major area of research. A

for optimizing such is required since they have a

fleeting existence experimentally and are difficult (and sometimes impossible) to iso-

late. Transition state structures are required for reaction

and in turn, activation energies and reaction rates.
Since the actual potential energy surface is not available, let us conceptualize a
potential energy surface to illustrate the inhibitive factors with respect to transition

state structures.

)] (® *
@ (\ i N

Contours of a Potential Energy Surface Reaction Coordinate

Energy

Figure 1.1: A contour plot of a conceptualized potential energy surface (left) and its
reaction coordinate diagram (right). The reaction path includes points A (reactants),
ition state), and B (prod

A contour plot of a possible PES is shown in Figure 1.1. The reaction coordinate

diagram represents the path taken across the potential energy surface and is indicative

of the reaction mechanism which takes place along the lowest energy path connecting
reactants and products. As minima, A and B can be characterized as having a zero
gradient (first derivative vector) and a Hessian (second derivative matrix) which is
positive definite (all positive eigenvalues). However, as a first-order saddle point, the

state X, is a maximum along the reaction path, and a minimum

in all other directions. Like A and B, X has a zero gradient, however, the Hessian
matrix has one, and only one, negative eigenvalue. For the purposes of optimization
problems this poses a great difficulty, and there is currently no method which can

guarantee convergence to a transition state structure.

1.2 Math tical Repr ion

Let the PES be given by some unknown function, f(Z) : R* = R, where the

of £ are the i that a geometry of the

system. Finding minima on this surface is equivalent to the optimization problem

min(f(£)), f:R*—R (1.1)

Equivalently, the objective is to find * such that

f@E") < f(@), VEe{feR |Z-Z"|| <€} (1.2)

for some e. Given a starting point Zo, the direction of maximum decrease of the
objective function, f(Z), is the negative of the gradient vector, —V f(Zo). A possi-
ble search procedure is to use the direction of —V f(Zo) to define a path towards a

minimum. This leads to the steepest descent method:

Algorithm 1 (Steepest Descent)

Given % as a point on the surface,

. compute the direction vector dy = —V f(&).

L

determine the positive real number oy, such that f(& + axdy) is minimized,

using a line search. The value of o, corresponds to the step size.

@

. step: Trer = Tk + ordi.
This method tends to work well when Z is far removed from a stationary point but
does not behave well as it approaches an optimum, as it often steps past the region
of the optimum.

Alternatively, the objective function can be expanded as a Taylor series about a
point Zg on the surface,

@+ f(;?u)+g'TAf+%(A5THAi)+~» (1.3)

where AZ is the step taken on the surface, § is the gradient vector Vf(Z) (where

g = #L), H is the Hessian matrix V2f(Z), (where H;; = a%‘;—) and T is the

dard ion. Taking a quadrati imation to the surface near

£, we can truncate the series, to give,
;4
f(Fo + AZ) ~ f(%o) + FTAT + 5(AfTHAf), (1.4)

For a stationary point, V f(Z*) = 0, which gives,

‘This results in a step,

AF=-H"1-§ (1.6)

toward a stationary point on the potential energy surface, where it is assumed that
H is invertible. This is the basis of the well known optimization technique Newton’s

method, which can be implemented using the following iterative algorithm:
Algorithm 2 (Newton’s method)

Given £ as a point on the surface,

compute §(Zi) and H(Zy)

o

solve H- (AZ) = —§ for AF

[

. step: Ti41 = &k + AT or Ty = Tk + axAZ, where oy is calculated such that

f(Zx + axAF) is minimized by using a line search method.

This algorithm will generate a series of steps toward a stationary point with quadratic
convergence provided the initial guess, Zp is within the quadratic region of the op-
timum. Outside of this region, Newton’s method converges very slowly. A major
disadvantage of the method is that both first and second derivatives are required at

each iteration. These it can be i D! on

the number of variables in the system.

1.3 Existing Methods

Newton's method provides the basis for many existing optimization methods. A
number of optimization methods employ a modification of Newton’s method focusing
on approximating the Hessian matrix and updating it during each iteration to avoid
the expense of recalculation. These methods are called guasi-Newton, or variable
metric methods. The current gradient and parameter information is used to form the
approximate Hessian, as in the Murtagh-Sargent update [1],

7 — HAZ)(AZ T
1 4 (A7 — HAZ)(A7 — HAZ)

W= (85— HAZ)'AZ @)

or the symmetric Powell update [2],

gy (AT—HADAZT + ARAG-HAZ)T _ (A7 - HAZ) TAZ|AZAZT

H AZTAZ Bz TAZ)?

(1.8)

where H’ is the approximate Hessian. The Broyden family of updates given by,

AGAGT HAZAZTH

= oo 7, Az THAZ) GG T 1.9
25TAF T AFTHAZ *AFTHAZTD @9

H =H+

where

A HAZ

e 1.10;
AGTAZ AZTHAZ (-10)

b=
includes the Davidon - Fletcher - Powell update [3, 4] (DFP) when 7 = 0. and the
Broyden - Fletcher - Goldfarb - Shanno update [5, 6, 7, 8] (BFGS) when n = 1. The
optimally conditioned (OC) method by Davidon [9] chooses 7 such as to minimize the
condition number of the Hessian update, that is, the ratio of the largest to smallest
eigenvalues.

One of the iated with using a quadratic approximation of the PES,

is the sensitivity of convergence to the choice of step size. For example, even if a
calculated direction is correct, the step size used can result in slow convergence or
stepping beyond the region of interest. To circumvent this problem some methods
focus on mechanisms of step size control. One such method is the Trust Radius
Method [10] which restricts the step to be smaller than a defined trust radius, .

This yields a step,

A% = —(H-vI)'AG, (111)

where v is adjusted to satisfy the trust radius condition. The value of 7 can be

changed dy ically during the optimization as the local surface changes. Another

such method is the Rational Function Optimization (RFO) method [11, 12] which

the function imation,

§TAZ + H(AFTHAZ)

0+ abFTAz) {42

f(Fo + AF) =~ f(Zo) +
where a is chosen to decrease the objective function while restricting the step to less
than the trust radius 7.

Both the trust radius method and the RFO method guarantee a decrease in the
objective function, and will step toward a minimum regardless of the initial structure
of the Hessian. In contrast, the direction of the step taken with Newton's method
is dependent on the number of negative eigenvalues of the Hessian. For example.
if the Hessian has one negative eigenvalue the step will be in the direction of a
transition state rather than a minimum. Some of the Hessian updating algorithms
can prevent this however. For example, OC, DFP, and BFGS were strictly formulated
to locate a minimum since the Hessian is forced to remain positive definite during
the optimization. Since none of the methods mentioned were specifically designed for
locating transition state structures, and since many are forced toward minima, the

of ition state is a problem that remains open.

An ive i to quasi-Newton methods is Direct Inversion in the It-

erative Subspace (DIIS) [13] which performs geometry optimization by taking a step
which is a linear combination of i and F—; such as to minimize the norm of an error

vector. However, for transition state structures DIIS presents the problem of being

on the

an interpolation like scheme, which will be
of z;'s. If the current and previous geometries are consistently on the same side of
the transition state, interpolation will result in never converging to a transition state
structure. The current use of DIIS as a transition state method will be discussed in

Section 1.4.1.

1.4 Methods for Transition State Structures

Although many of the methods already mentioned are able to find a transition
state structure, most are not biased toward these first-order saddle points. Quasi-
Newton optimization will require that the initial guess lie very close to the final
geometry in order to converge on a transition state, and also that the initial Hessian
have the required single negative eigenvalue. Techniques to move into the region
around the transition state include Linear Synchronous Transit (LST), and Quadratic
Synchronous Transit (QST). LST searches for a maximum along a line connecting
reactants and products. QST goes a step further by searching for 2 maximum along
a parabola connecting reactants and products while searching for a minimum in all
other orthogonal directions. Once the geometry falls in the region of the transition

state, the quasi-Newton methods will give satisfactory convergence.

10

If one is aware of a i whose change i the reaction. a

technique known as coordinate driving can be used to move toward the transition state
along this direction while minimizing with respect to all other parameters. Methods

such as eigenvector following or “walking up valleys” [14] can locate transition state

structures by stepping toward a maxi in the direction cor ding to the lowest
i while minimizing along all other
Another way to locate ition state is to minimize the gradient norm.

However, this characteristic is not unique to first order saddle points and a gradient

norm h will not. i converge to ition state . In addition,
points other than minima, maxima, and saddle points can satisfy this criteria.

A modification of the trust region method, trust region image minimization [15]
(TRIM) performs a minimization of an image function formed by reversing the sign
of the lowest eigenmode. Hence, the saddle points of the original function are minima
of the image function, and can be obtained via minimization using the trust region
method.

Various inati of the i ioned Hessian update formulas have

also been used to optimize transition state structures. The Bofill update [16] is a

combination of Murtagh-Sargent and symmetric Powell updates,

H' = H + [$AHgp + (1 — $)AHps] (1.13)

11

where

[AZT(A§ — HAZ)]?

=1~ Az 1A7 - KA 1:14)

A modification to the BFGS Hessian update formula proposed by Anglada, et al. [17],

was formulated specifically for transition state structures,

- _ i (87 HAD(-~ $)HIAT + $(AZTAZAG) T
TSBEGS; AZTHIAZ + [(AZTAG)? — Az TH|AZ]
(A - 9)HIAZ + 6(AZTAG)AG(AG — HAD) T
AZTHAZ + (AZTAG)? — AZT[H[AZS
_ AZT(AF - HAT) (1.15)
[AZTHIAZ + (AZTAG)E — AZ THAZIG)?

x [(1 - $)H|AZ + ¢(AZ T[H|AF)AF)

x (1 - @)|H|AZ + ¢(AZTA7)AG T

where [H] is the Hessian matrix made positive definite. This formula is known as the
TS-BFGS update and is based on the standard rank one updating procedure. Investi-
gation into this updating formula revealed that the steps taken with the approximate
Hessian do not lead one to a stationary point. This behaviour was determined to be

due to an error in the units of the following equation,

M = (1 - ¢)[H| + $AGAGT (1.16)

used to formulate the Hessian update, where the two terms have different units and

therefore cannot be added to yield a physically meaningful result.
‘Two of the commonly used transition state methods that have been implemented
in Mungauss [18] are DIIS, and VA. These methods are discussed further in the

following sections.

1.4.1 Direct Inversion in the Iterative Subspace (DIIS)

Like Newton-Raphson methods, DIIS was designed for near quadratic potential
energy surfaces. Denoting the energy surface as E(q) where 'is a vector of molecular
parameters, take the final solution ¢* to be a linear combination of the § vectors from
the m previous iterations,

> ad (1.17)

=1

This is analogous to taking each g; as a perturbation from the desired solution.
G=q"+é&, (1.18)
and requiring that,

iqa = (1.19)

=

and,

(1.20)

..., m are unknown. Assuming

Following this formulation the error vectors &,i =

a nearly quadratic energy surface, we can take,

(1.21)

where the gradient vector g corresponds to the parameter vector ¢; at iteration i,

and H is an i Hessian. Minimization of 3 c:é; in the least squares sense

(see Equation 1.19) and satisfying Equation 1.20 produces a system of fons that

can be expressed in matrix form as,

By Bi -+ Bim 1| |a 0
By Bxn 1] | e 0

= (1.22)
Bn Bum 1] |cm 0
11 10| |-A 1

where,

By =< &|&; > (1.23)

14

and A is a Lagrange multiplier. Solution of this system gives values for the ¢;’s which

are then used to form an intermediate interpolated parameter vector,

Gm+1

> edi (1.24)
=

as well as an interpolated gradient vector,

Fner =Y cilie (1.25)

=1

Convergence is checked at this point and another iteration is started at Equation 1.22
with the new parameters added.

An iteration scheme for this method is as follows:

Algorithm 3 (DIIS)

1. Starting with an i set, o, and an i Hg*. per-
form Newton-Raphson iterations until the ic region is reached.
2. Store the parameter vectors at each iteration after this point. Solve Equa-

tion 1.22 with m=2. Stop at this point if the error vector is sufficiently small.

@

Compute the interpolated parameter vector, step using Newton-Raphson and
test convergence. If not converged, add the new vectors to the list and perform

a new iteration. If converged, stop.

Although DIIS will often optimize transiticn state structures, problems inherent

15

in the method can prevent convergence. This inhibition is due to the interpolation
feature of the method, which can cause iterations to become ‘“stuck” on one side of

the transition state.

1.4.2 VA - A Least Squares Approach

The VA method is based on an algorithm developed by Powell [19], and is a
hybrid method incorporating the methods of steepest descent and Newton’s method.
This method works relatively well for transition state structures but is not designed
with transition state optimization as its sole purpose. Beginning with a system of

equations,

Gi=g(&) =0,i=0... (1.26)

the derivative of these equations with respect z; gives the Jacobian matrix J;;. The

truncated Taylor expansion gives,

GE")=G(&) +J-(A%) =0 (1.27)

which gives the step,

Afyp=—J7'-G(E). (1.28)

16

If G(%) is viewed as the gradient, this step resembles a Newton step, where the
Jacobian is essentially the Hessian matrix. At this point the objective function is
evaluated at £ * to determine whether it will decrease if the current step is taken. If a
decrease occurs this step is taken, otherwise a steepest descent like step is examined.

Defining the sum of squares,
F(@) = g:(®? (1.29)
=

which is to be minimized, the steepest descent direction is given by the negative

gradient of F/(£). This gives a step,
AZsp=—JT- (1.30)

The above two approaches are equal only if minimizing the sum of squares results in
a value close to zero.

In VA, these two methods are combined into one step as,
AZ = AZng + pAZsp, (1.31)

where determining u requires extensive derivation. Note that setting x4 to be small

17
results in a step more like Newton’s method, whereas taking u to be large favours the
steepest descent like step. Since it is known that Newton's method requires an initial
guess relatively close to the solution and that steepest descent performs best when
well away from the solution, these two methods complement each other. Thus it is
apparent that the choice of x will depend on where on the potential energy surface the
current point is. Hence, the value of u should change dynamically as the optimization

proceeds.

1.5 Genetic Algorithms

A method which has recently become popular for optimization problems in several
disciplines is Genetic Algorithms (GA’s). Genetic algorithms are a robust technique,
in the sense that they have been successfully applied to a broad range of problems,
including areas in which other methods have proved to be difficult or incapable of
finding a solution. With respect to chemistry applications, GA’s have been applied

luding geometry minimization of clusters by Mestres and

to various [20], i

Scuseria [21], various conformational searches, and docking studies for drug design.

However, the use of GA’s for ition state imization is new, and is

the topic of the remainder of this thesis.

1.6 Outline

From the above discussion it is apparent that further research into the optimiza-

tion of transition state structures is required, ially in it to

of minima. In the following chapters, the application of genetic algorithms to this
problem will be discussed. Chapter 2 gives a brief overview of what genetic algorithms
are and how they are used, followed by the presentation of the results obtained from
optimization of a mathematical function with the current genetic algorithm imple-
mentation in Chapter 3. Chapter 4 gives several results obtained for various chemical
reactions and compares these results with those o-btained using the VA technique.
Finally, a summary of the research performed, and some ideas for future work are

discussed in Chapter 5.

Chapter 2

Genetic Algorithm Background

“..any variation, however slight and from whatever cause proceeding, if it be in any de-
gree profitable to an individual of any species, in its infinitely complex relations to other
organic beings and to esternal nature, will tend to the preservation of that individual
and will generally be inherited by its offspring. The offspring, also, will thus have
better chance of surviving...I have called this principle, by which cach slight variation.
if useful, is preserved, by the term of Natural Selection, in order to mark its relation
to man’s power of selection. We have seen that man by selection can certainly produce
great results, and can adapt organic beings to his own uses, through the accumulation
of slight but useful variations, given to him by the hand of Nature.”

~Charles Darwin, The Origin of the Species, Chapter 3.

2.1 Introduction

Based on population genetics and Darwin’s theory of natural selection, genetic

lgorithms are a type of ionary ing that solves by
tically searching the solution space. In contrast to most algorithms which work by
successively improving a single estimate of the desired optimum via iterations, GA’s

work with several estimates at once, which together form a population. Given an ini-

tial ion of indivi ing possible solutions to the problem, genetic

algorithms simulate evolution by allowing the most fit individuals to reproduce to

20

form subsequent generations. After several generations, convergence to an optimal
solution is often accomplished. Determining the fitness of an individual is problem
dependent and the fitness function usually incorporates a priori knowledge of the

desired optimum. The basic genetic algorithm is improved by using problem specific

in specifying the various fons required to direct the evolution. A

of the basic will be given below in Section 2.2, followed by the

incorporation of specific knowledge of first order saddle points in Chapter 3.

Genetic algorithms have been applied to a very broad range of problems, in par-

ticular, iated with ing and optimization. Increasing application
complexity often requires larger and larger population sizes to sufficiently sample the
search space and achieve a satisfactory solution.

The i iated with genetic if is it to that of bio-

logical systems. A generation is defined as one cycle of fitness evaluation, selection

of parents, and reproduction. See Figure 2.1 for a flow chart of a genetic algorithm,

which will be described below. Individuals are usually by a single chro-
mosome, given as a string of binary bits. Each bit represents a gene, and a given
expression of that gene (0 or 1) is an allele. The bits of an individual encode the
values for the variables of the problem, where the encoding scheme used is somewhat
problem dependent and chosen by the implementor.

The selection of parents generally involves a random choice among the most fit

individuals of the population, in an attempt to propagate good traits through the

Set Parameters.

Generate
Population

Evaluate Fitness

Report Optimum
Obtained

Yes

Choose individuals for next
ion (i previous

[¢
best individual)

Enough
Offspring 7

of Offspring

Figure 2.1: Flow chart for a Genetic Algorithm

9
N

The most fit indivi in the ion tend to produce more off-

spring by being selected for reproduction many times. An individual’s fitness value

is ined by the ion of a problem d dent fitness function. The chro-

mosome of an individual represents its genotype, while the fitness value represents its

Reproduction is d by crossing over the chromosomes of the two

parents to form offspring, followed by occasionally mutating some of the bits (0 « 1)

in the offspring. R ducti i ination of the genetic material,

maintaining diversity in the population, thereby ensuring that the solution space is

well sampled, and thus i ing the ility of an optimal solution.

Finally, after reproduction has taken place, a sample of individuals must be chosen

to form the for the next ion. After several generations, those
individuals in the population that are most fit will tend to dominate, and, provided the
algorithm has been well designed, the average fitness of the population will increase.

leading to convergence to an optimal solution. The various operations in a genetic

algorithm are discussed in more detail in the following section.

2.2 Basic Principles

The operations in a genetic algorithm are dependent upon the problem being

solved, and many of the isil are based on a ination of trial and error and

previous experience. Some of the many ways to implement the various operators,

and their ad and di will be di d. The detailed behaviour of

23

x y z

Encoded 4110 0011 1000

Variables

Individual 011000111000
Chromosome

Figure 2.2: Example of forming a chromosome from encoded variables.

these operators, in turn, depend on several parameters, the values of which can lead
to drastically different evolution. Hence, careful choices must be made. Previously
documented experiments can help in making these choices. Some of the parameters
involved, along with some issues that may help in choosing values suited to a particular

problem, are presented below.

2.2.1 Encoding

contains an ing of that individual's

The ch string of an i
solution to the given problem. The solution of most problems consists of a set of
values defining the problem variables. The variables involved in optimizing a function

F(2,y, 2), for example, are z, y, and z. The values of the problem variables are often

separately encoded as binary strings and to form the as
shown in Figure 2.2. The encoding scheme, along with the fitness function, are
the two most important considerations for an efficient GA implementation. The

encoding scheme is important when dealing with real life problems since a particular

24

Integer Binary Gray
10 i
0

1000

1 1
'
0 1001
'
16 111t

Figure 2.3: Example of the Gray code characteristic that two successive values differ
by one bit flip.

chromosome may represent an invalid solution. An effective genetic algorithm must
take this into consideration in some way, whether it be within the encoding scheme or

in the ducti A possible ive to standard binary encoding is

Gray code. Gray code is similar to binary with the added feature that the Hamming
distance. the number of bits that differ between the bit string representations of two
adjacent numbers, is constant. In the case of Gray code, two successive integer values
differ by only one bit flip, as shown in Figure 2.3. In most problems that require
optimization, the variables involved are in real number space. Hence, the encoding
scheme must also provide a way to store real number data in a binary string. The
most common encoding scheme is interval (or range) encoding, where the domain and
desired precision for the variables are specified initially, and the number of bits to be
used for each variable is given by,

v, [L0emetn (21)
=082\ precision) g

25

The scaled decimal equivalent (D) of each variable z; is given by,

D=

PG @2)
where [a;, by] is the domain of z;. The binary representation of this value is used as
the encoded variable. The larger the number of bits used for each variable, the finer
the resolution obtained for a given domain.

An alternative to the interval encoding is multiplicative encoding where each real
valued variable is multiplied by 10%°**™*% and truncated, where the accuracy is deter-
mined by the number of accurate decimal places required in the solution. Thes binary
representation of the resulting integer is used as the encoded variable. The encoded
variables used throughout the evolution will normally be decoded (by reversing the

encoding process) for fitness evaluation.

2.2.2 Initial Population

I d

is often in

manner. However, for many icatil several i ible indivi may result. It

is generally better to generate a population using a priori information of the optimum
sought. For geometry optimization such as that being considered in this thesis, a
priori knowledge of a chemical reaction can lead to a reasonable guess at the op timum.

Thus, this initial guess provides a good starting point for the algorithm. One critical

26

factor is the number of individuals in the i the ion size, u, which

id to several thy ds. The ion size is

can range from just a few i
generally kept constant throughout the optimization. A rule of thumb for choosing
1 is 10 times the number of variables but no less than 100. A population that
is too small will tend to give poor sampling and hence poor solutions, generally

representing local rather than global optima. This concern is more detrimental for

ing a large or search space, such as the optimization of

proteins, which have complex structure and many fons. However. there
is usually a population size above which no improvement is seen, regardless of the

number of i For the imization of ition state structures.

the initial geometry is usually ively close to the opti sought and hence

the optimization is considered a local search. However, given the accuracy that is
required in the optimized geometry (= 10~5), a sufficiently large population will still

be required.

2.2.3 Fitness Function

The fitness function is the most of a genetic
It is the sole mechanism for directing the evolution toward the desired objective. An
individual’s fitness value should represent how good of a solution to the given problem

it represents. The fitness function should take into consideration each variable to be

optimized, and combine them in such a way to produce a suitable numerical fitness

27

value when applied to an individual. To ensure that the evolution is efficient, that is.
the subsequent individuals are most likely to be biased toward better fitness values,
the fitness function should contain few extrema, the ideal case being a monotonically

increasing or decreasing function with a single maximum or minimum.

2.2.4 Selection

Selection is a means to favour the most fit individuals in the population in order to
propagate good genes through the population. Some of the ways to select parents for
reproduction are, roulette wheel selection, tournament selection, rank selection, sigma
scaling, and Boltzmann selection. Although all methods use randomized processes,

duals.

each has an ordering scheme with which to bias the choice of the most fit indi
Roulette wheel selection is equivalent to giving each individual a slice of a circle.
with the size of the piece proportional to the individual's fitness. A point along

the edge of the circle is randoml, and the indivi whose slice of the

circle contains this number is selected. Roulette wheel selection can cause problems
if one individual in the population is much more fit than all of the others. In this

case it can dominate the ion resulting in p gence, that is, early

convergence to a suboptimal solution.
‘Tournament selection involves randomly choosing a number of individuals to take
part in a tournament. The individual with the largest fitness in this tournament pool

is selected for A larger size results in a higher selection

28

1 Offspring 1: 011011010
H

Parent | : orto
: — H
Parent2: 10001010 Offspring2: 1000 1}0 1 1
crosspoint

Figure 2.4: Application of the single-point crossover operator on 2, 8-bit individuals

pressure, which can be quantitatively viewed as the ratio of maximum to average
fitness values of the current tournament. Selection pressure can also be increased by
using a probabilistic tournament selection. In this case, the best fit individual in a
tournament is selected with a user defined probability. A larger probability results in

a higher selection pressure, a probability of 0.5 represents no selection pressure. Too

high of a selection pressure leads to fast convergence to ions that are

while too low of a selection pressure leads to long execution times for convergence.

2.2.5 Crossover

Crossover is used as a means to generate better individuals than those that were

present in the 1

Two individuals are chosen as parents, their
bit strings are aligned, and a crossover point is chosen randomly (see Figure 2.4).
The strings are then crossed by exchanging the bits to the right of the crossover
point, forming two new individuals. The crossover just described is called single-point

crossover. Multi-point crossover can also be used, and is implemented in a similar

Offspring 1 : Offspring 2 :

01101010 10001011

Mutating Bits —= l l l l l
00001010 10101110

Figure 2.5: Application of the mutation operator on offspring produced by crossover

way, swapping portions between crossover points. Crossover is performed based on
a user defined probability, p., which is usually set between 0.60 and 1.0. Hence,
some parents pass on their genetic information directly to their offspring, without

modification by crossover.

2.2.6 Mutation

Mutation is used to maintain diversity in the population. Although it does not

necessarily generate better individuals, ion prevents ion in a

of like individuals, which otherwise may not evolve to an optimum. The genes chosen
for mutation have their state reversed by changing 0's to 1's, and 1’s to 0’s, as required
(see Figure 2.5). Mutation is performed with a user defined probability, pm, which is

usually set very low (0.001 - 0.01) to prevent a large distuption of the genes in the

A i ility of 0.5 results in the generation of offspring in a
manner akin to a random walk. The issue to be addressed when choosing a mutation

rate is to strike a balance between destroying good genes and using mutation as a

30

beneficial search operator. Too high of a mutation rate results in an undirected search,

while too low of a mutation rate can lead to convergence or

Gray code can imes help mod ion effects in this respect, since one

bit flip changes the number by the smallest integer amount, regardless of which bit
is flipped. In contrast, flipping a more significant bit in standard binary results in a

big change in the variable value. *

2.2.7 Incorporating Offspring

After reproduction is complete, A offspring and u — A parents must be chosen to

become the ion for the next fon. Since some of the offspring may be

less fit than the parents, most i ions choose a bi of offspring and

parents for the next generation. To bias the evolution toward the desired optimum,
the most fit of the two groups can be chosen, until the required number of individuals
is reached. Hence, the most fit of the offspring replace the least fit of the parents.

It is normal for the single best individual from the previous generation to be copied

back into the ion for the next i This practice is known as elitism.

' An example of the effect of flipping a single bit in standard binary versus gray encoding is shown.
where the value 1.54 is encoded by multiplying by 102 The original binary strings as well as the
result of flipping a single bit are shown.

Encoding _Bit String _Mutated _Decoded Value

Binary 10011010 00011010 0.26
Gray 11010110 01010110 0.86

Note the much larger difference that results from flipping the most significant bit of the binary
encoded variable compared to the Gray encoded variable.

31

Methods for incorporating offspring can become rather sophisticated and vary widely.

2.2.8 Convergence

For the purposes of optimization, genetic i are usually i when

the solution has converged. Convergence can be determined in several ways. One
common method is to terminate evolution when the quality of the solutions have not
improved for a number of generations. Yet another, is to terminate when a given
individual, with a high fitness value, has occurred a number of times. In general.
evolution can also be terminated after a user defined number of generations has
evolved. As the algorithm converges, the average fitness, and the fitness of the best
individual increases, with the average approaching the highest fitness value as the
optimum is reached. It is likely that some problem specific variable could be used to

determine convergence.

2.3 Why Genetic Algorithms Work

When considering the question of why GA’s work one must not forget that genetic
algorithms were modelled after natural biological processes, which have proved their

efficiency as demonstrated by our own human evolution.

llowing the of practical ication details, the th ical founda-
tions for why genetic algorithms are able to mimic nature should be addressed. The

basis for a formal means to do this was provided by John Holland [22], who introduced

32

the schema theorem. A schemata is defined as a bit pattern that is represented as a
binary string of 0’s, 1's, and #’s, where a * is a “don’t care” symbol, and can thus
represent a 0 or a 1. A given chromosome contains many schema. For example, the
chromosome 1101 contains the schema 11 % *, 1 x 01, etc. Two properties of schema
are: The order of a schemata, which is the number of static bits, or the number of
non- bits. The defining length of a schemata is the distance between the furthest
static bits.

For each i indivi are i for i with higher fit

individuals more likely to pass on their traits to the next generation. Since selection
is based on fitness, and one assumes that higher fitness values are a direct result of
good schema, the representation of good schema in the population should increase

in i i These are the ideas of Holland's schema

theorem. As an implication of this theorem, if one considers the number of schema
compared to the number of individuals, the ratio is very large. According to Holland.
the number of schema processed for each generation is oc ;®, where y is the population
size.

In addition to Holland’s schema theorem, a well-known approach by Goldberg
[23], called the Building Block Hypothesis, also attempts to explain why GA’s work.
Go‘!dberg defines the term building block as a “highly fit schemata of low defining
length and low order.” The idea behind the building block hypothesis is that, in a

GA, convergence to the optimum occurs because of the placement of building blocks.

33

This hypothesis leads to encoding criteria for efficient performance of a genetic algo-
rithm. These criteria include placing related genes close together in the chromosome.
and having little interaction between the genes. If both criteria are satisfied the ef-
fectiveness of the GA is determined by the schema theorem. However, these criteria
are difficult to satisfy. In the majority of cases there is some interaction between
genes, that is, the amount that a given gene contributes to the fitness value depends
on the value of its interacting gene(s). Satisfaction of both criteria is also snagged by
lack of a priori knowledge of interaction between genes, and, in order to fill the first
criterion, the second must be met. The best resort is to come as close as possible to
satisfying Goldberg’s encoding criteria.

As part of this thesis, an impl ion of genetic i for

of chemical structures was written in C, interfacing with Fortran 90 in the Mungauss
package. Details of this implementation can be found in Appendix A. Chapter 3

presents results and a discussion on parameter selection.

34

Chapter 3

Results From Mathematical Functions

“In theory, there is no difference between theory and practice. In practice there is.”

~Unknoun

In this chapter a discussion of the results obtained from the optimization of math-
ematical functions using genetic algorithms is given. The purpose of these results is

to d ate the effecti of the i as well as to analyze its behaviour.

3.1 The Sample Problem

Two-di ional h ical ions provide a good testing medium since

their surfaces are easily constructed and their stationary points can be visualized.
This is unlike chemical reactions, where the surface is not known, and in most cases
neither are the stationary points. As a means of testing the genetic algorithm code

implemented, the following mathematical function given by Chong and Zak [24] was

1°6 9qRL, 1 191 STy w1 waArd are [¢ uomenby 10j $uI0d ATRUONRAS 1991100 AT} TIAIMOF
“1Xa) 913 U1 ULAIS wOMIUNY Ay JO Jou ‘woyouny paSeurs ayy Jo syuiod Axenoneis oy Auep! [rz]
JO SIOUINE B ‘DIOULIAYIIN] ‘9IUAIAAI YY) UI PAJRIS SO Y3 0} [EINULP! SI AT PASH UOHIUNY A}
“3ouy sty ondsaqq “[pg] Ut uMOYs AUSHeISTI B0 9Y3 WO JUIIPIP PSS SHOO] ARHNS ST,

Jery 910N “AAroadsar syutod S[ppes I9PI0 §SIY pUe RUIUIM [I0q N0 Yoas 0} A[a3e

-tdoxdde pajonIjsuod alom SUOT)OUNJ SSAUYY OM) UOIIUNJ 9A1323[0 WAAIS 9Y) 104
1°¢ 9[qe], Ut pajsy] axe syutod ATeUOIIRIS 9SAT) JO SOTISLIDJIRIRYD pue

SOT[BA 9JRUIPIOOD], ‘g'¢ 9IS UT Udds 9q Ued S8 ‘sjutod 9[pPpPes 911} puL ‘BUIXEW

9017} ‘PUITUIWI OM} SUTRJUOD UOIUNY SIY, *;['¢ 2SI UI UMOYS ST RIS ASOUM

) 01~ fasny-po-2elz ~ Vg = (B2

‘pasn

7'g uoryenby ur usAls uonouUN] egZ-FuUOYL) AYY Jo soeHNG (T'¢ aanSi]

qe

Location of Stationary Points
2 minima, 3 maxima, 3 first order saddic points

36

¥ parameter

T T

E

x
Fg
L
g T
parameter

Figure 3.2: Contour plot of Equation 3.1 showing minima (m), maxima (M), and sad-
dle points (z) (see Table 3.1). The stationary points are labelled for future reference.

Table 3.1: Location and characteristics of the stationary points for the Chong-Zak
function. (z,) is the coordinate location, f(z,y) is the function value, [|g]| is the
gradient length, A; and), are the eigenvalues of the Hessian matrix. Note that |||
would be exactly 0 at the stationary points if calculated analytically.

label z f(z.y) g1l M d2o

™. -1.431359 0.206945 67838 3.246533 x 100 7.4497 14.3481
m, 0404936 0.166523 -0.930778 1.703883 x 10~° 5.4577 23.8348
M, -0.059953 1.409113 5.425638 3.490810 x 10~° -21.6508 -11.1346
M, 1370701 -0.008093 2.909429 2.018528 x 10~° -14.7846 -5.7225
M; -0.365185 -1.263316 9.276397 4.078678 x 10~° -28.1092 -20.0956
2 -0.364835 0.455781 1.665537 6.698525 x 10~° -20.1040 15.5895
z, 1148302 0.868567 1.897576 3.462192x 10-° -0.9574 6.7342
z3 1154115 -0.890394 1915014 1.581266x 10-5 -9.2596 6.5939

no higher order saddle points exist for the current function since f : R? — R.

3.2 Fitness Evaluation

Since the ultimate goal is to optimize first order saddle points on a potential
energy surface, a fitness function was designed to isolate the desired features of such
stationary points. As noted previously, first order saddle points can be characterized
by a zero gradient and one negative eigenvalue in the Hessian matrix. With this in
mind, the following fitness function was developed,

1 1

e G G2

£(

where 7 is a vector of the problem variables, || is the i»-norm of the gradient vector
divided by vk where k is the number of problem variables (or gradient length). n
is the number of negative eigenvalues in the Hessian matrix, and € is a parameter
chosen small? and used to prevent division by zero as the algorithm converges. Note
that individuals that are close to a first order saddle point (||g]| = 0,n = 1) will have
higher fitness values than those further away since their gradient norm and number of
negative eigenvalues will result in small denominators in the fitness function. Hence,

the genetic algorithm should be to positively bias those indivi with

The parameter ¢ is chosen to be on the order of the desired accuracy in the gradient length of the
converged solution. A value of 1 x 10~ is used since this is somewhat of a standard for convergence
in chemical structure optimization.

38

the highest fitness values. With this fitness function, an “optimum™ solution corre-
sponds to a first order saddle point. Note that this fitness function does not bias one
saddle point over another, therefore the algorithm could theoretically find all or any
of the first order saddle points on the surface. For the optimization of minima the
(n—1) term in Equation 3.2 was changed to n such that individuals with all positive
eigenvalues would be favoured. Various runs of the genetic algorithm, performed with

different values, are di: in the of this chapter to illustrate

the behaviour of the method, and its dependence on these parameters.

3.3 The Defining Parameters

Several ize and control the ions of the ticalgorithm

and affect the i of the ion towards an i These

are listed in Table 3.2 below. Although many of these parameters were discussed

briefly in Chapter 2, a few require further ion. An initial lation of
individuals is generated by taking small random perturbations about an initial guess

at the opti These per ions are i by the value of My since it

is assumed that the initial guess is a good one. Furthermore, since the problem

to be solved typically involves data for a physical system, the individuals created

the ion are icted to within M,y of the initial guess to avoid

values. Any individuals that fall out of this region are forced back by

changing the invalid variable values to small random perturbations from the initial

39

Table 3.2: Parameters in the current genetic algorithm implementation.

Notation Description
Zo,yo Initial guess at the optimum.
4 Population size.
Gmez Maximum number of generations.
p. Probability of crossover.
Pm Probability of mutation.
n, Number of bits per variable.

Minie Maximum amount to perturb the initial guess to form
the initial population.
Miuw Maximum amount any subsequent individuals can devi-
ate from the initial guess.
S Method used for selecting parents. Possible values are ‘¢’
for tournament selection and ‘r’ for roulette-wheel selec-
tion. For tournament selection, parameters include the

size of the £yize, and the probability of se-
lecting the most fit individual, tyro-
E Type of encoding scheme used. Possible values are ‘m’

for multiplicative and ‘i’ for interval (or range).
Binary representation used. Possible values are ‘g’ for
Gray and ‘b’ for standard binary.

R Type of replacement strategy used to form the population
for the next generation. Possible values are ‘a’ for above-
average and ‘o’ for all-offspring.

Abot The value below which negative eigenvalues must lie to
be counted as negative.

guess, as before. ing the fon of each ion, forming the surviving

for the next ion can be done in two ways. First, the population

can be formed from only the offspring created in the current generation. Second. the
population can consist of random selections from among the parents and offspring
that have above average fitness values. In the latter case, the best individual from
the previous generation is always copied back into the new population. The parameter

R specifies which of these methods to use. Finally, A is a tolerance that is placed

40

on the value of the negative eigenvalues, below which they must lie to be counted as
negative. This parameter is required because of finite machine precision which can
cause values that are essentially zero to be very small, and maybe negative. Points
with such negative eigenvalues are of no interest, but nevertheless would be considered
favourable by the fitness function. For the Chong-Zak objective function this can
cause problems at points in the flat region of the surface (outside the interesting
regime) where the gradients are small and one of the eigenvalues is small and negative.
In this case A\ = —5.0 has proved to be adequate to concentrate the search in the

interesting region of the surface.

3.4 Results for First Order Saddle Points

The following subsections investigate the effect of each of the parameters in the
algorithm. Since genetic algorithms are stochastic in nature, each run represents
only one sample out of the total ensemble. Thus, to obtain statistically significant
results data was taken over 25 runs for each parameter set and averaged. For each
of these runs a different random seed was used and recorded. Subsequent data sets
were generated using these same 25 seeds for consistency. For the current analysis
the default parameter values are as follows: 7o = yo = 0.0, £ = 100, Gnaz = 200.
Pe = 0.75, p = 0.03, 1 = 24, Minit = Myup = 2.0, S = ‘t," toize = 6, tprop = 0.75,
E='m, B=", R="a A =—5.0, with any differences noted in the captions of

the respective figures.

41

3.4.1 Location of the Initial Guess

Since the initial population of individuals is created by perturbing an initial guess

at the optimal variable values, the exact location of this initial guess can have a

d effect on the b i of the i . Figure 3.3 shows the effect on the
average and best fitness values resulting from changing the initial guess from (0.0)
to (—1,—1), with Mine = My = 3.0 such that both cases encompass all of the
interesting region of the surface. There is little difference in the overall behaviour

Average and Best Fitness Values

Effect of Changing the Initial Guess
T T T

log (fitness value)

T average (xg=y,=0)
— best (x,=Y,=0)
e avETAgE (Xg=Yg==1)
e best (xg=yy=—1.

L 1
50 100 150 2
generation

Figure 3.3: Plot of average and best fitness values for different initial guesses. The
case with (zo, o) = (0, 0) results in slightly better fitness values.

of the algorithm due to changing the initial guess, since the average and best fitness

Table 3.3: Results obtained by varying the initial guess, where Gy, is the average
number of generations required to find the best individual found in the evolution.

Initial Guess Region (z,y) llgll 7 Gau
(0,0 zz (1.148302,0.868567) 3.462192x 10° 1 84

(0,0) z3 (1.154115, —-0.890394) 1.581266 x 10™° 1 62
(=1,—1) T2 (1.148302,0.868567) 3.462192 x 10 1 60

values follow similar trends. However, the case with initial guess (—1, —1) gave higher
fitness values slightly earlier. Furthermore, the two cases report optima in different
regions of the surface as shown in the results in Table 3.3. Initial guess (0, 0) resulted
in a nearly equal number of optima near z; and z; (see Figure 3.2). In addition, one
of the runs for (zo,%0) = (0,0) resulted in premature convergence to a suboptimal
solution. Initial guess (—1,—1) resulted in the majority of optima near z3, with a
significant number of optima also found near z3, in an average generation of 63. In
addition to the difference in time required to cluster around a point, the initial guess

can have a direct influence on the location of the optimum found, as is to be expected.

3.4.2 Effect of Perturbation and Validation Parameters

For the current genetic algorithm design, the parameters Min;: and M,y directly
affect the behaviour of the algorithm and are closely linked with the location of
the initial guess. A plot of the best fitness value each generation for initial guess
(=1,—1) and different Min; and M,y values is shown in Figure 3.4. Again, the

overall behaviour is similar, but with Mini = M. = 3.0 resulting in a slightly

43

Best Fitness Values

Comparison of Different M,,, and M, , Values

T T T

og (best ftness value)

Figure 3.4: Plot of best fitness values for different values of Min:e and M,y,. The case
with Ming = M,u = 3.0 gives slightly better fitness values.

better fitness value. However, the three sets of runs again result in different optima.
Parameter values My = Mius = 2.0 resulted in the majority off optima near z; in
an average generation of 63 but with 4 runs converging prematur-ely. The set of runs
with Minie = 2.0, Myu = 3.0 resulted in the majority of optima mear z; as well, but
in an average generation of 55 and no runs converging prematurely. The set of runs
with Mine = Myus = 3.0 resulted in the majority of optima near z in an average
generation of 60, but did not report any optima near z;. It is important to note

that with (zo,%) = (=1, —1) and Mini = My = 2.0, the only saddle point within

44

the region defined by the Mini and My constraints is z;. Clearly, the optimum
obtained is highly dependent on the value of Min: and My, since smaller values of

these parameters result in a more local search.

3.4.3 Effect of Population Size

Tod the effect of ion size on the outcome of a genetic algorithm,

two cases with u = 100 and u = 200 are displayed in Figure 3.5. Results obtained

Average and Best Fitness Values
Comparison of Population Size
T T T

og (fitness valuc)

— best (u=100)
average (1=200)
best (4=200)
L L L
50 100 150 200
generation

Figure 3.5: The effect of population size on the behaviour of the genetic algo-
rithm. Doubling the population size has little effect, but does result in slightly earlier
convergence.

for these sets of runs are shown in Table 3.4, where the percentage of runs resulting

45

Table 3.4: Results obtained for different population sizes, where p = 200 found an
optimum slightly earlier on average than u = 100.
Region % of runs Gaug

in optima near each saddle point is shown. Note that both sets of runs resulted in
optima near all three saddle points.

Doubling the population size makes very little difference, with the exception that

the larger ion gives earlier convergence on average. This is likely because the
sampling of the surface is more thorough with the larger population, and it is therefore
more likely to have individuals with high fitness values early in the evolution.

One very important factor in considering the usefulness of doubling the population

size is the increase in ional overhead with more indivi It

would seem reasonable to assume that the improvement in behaviour with the doubled
population would not be worth the expense unless the optimum was found in half the
number of generations. For the current example this is not the case so doubling the

population size is not likely to be worthwhile.

3.4.4 Effect of Crossover Rate

The effect of changing the crossover rate is shown in Figure 3.6 where the average

and best fitness values are displayed for p. = 0.60, 0.75, and 0.90. Results obtained

46

Effect of Crossover Probability
p,=0.600.750.90

T T T

" average (p,=0.60)
— best (p.=0.60)
. average (p=0.75),
— best (p,=0.75)
average (p.=0.90)
best (p,=0.90)

Tog (fitness value)

| |
50 100 150 2
generation
Figure 3.6: The effect of changing the crossover probability p. with standard binary
ding. A crossover probability of 0.60 results in higher fitness values but gives
slower convergence.

for these sets of runs are shown in Table 3.5. Note that all three values of p. resulted
in optima near all three saddle points, but somewhat faster convergence is achieved
with p, = 0.75.

In addition to the runs performed above one sample run of the algorithm with
pe = 0.60 resulted in premature convergence. A scatter plot of the individuals present
every 40 generations during this run is shown in Figure 3.7 where the algorithm forms
two clusters near Ma, ultimately favouring individuals in the cluster near z3, yet never

actually reaching the optimum.

Table 3.5: Results obtained for different crossover probabilities, showing p. = 0.75
reporting an optimum slightly earlier.

Region % of runs ‘avg
| 0.60 0.75 0.90 | 0.60 0.75 0.90
T 4 4 8 52 52 114

T2 52 56 56 68 60 74
z3 44 40 36 | 109 100 78

For the Chong-Zak function we conclude that p. = 0.75 appears to be the best

crossover probability due to faster convergence on average.

3.4.5 Effect of Mutation Rate

‘Thus far, most runs of the genetic algorithm reported a majority of optima in the
region of the surface near saddle points z» and z3, however there are three saddle
points present. Once a good individual is found, all subsequent individuals seem to

move in that direction and cluster within small regions®. In cases where the initial

guess is a good one this is a desirabl , since the ing will most likely

occur around the optimum sought. This effect can be seen in Figure 3.8 in which

the indivi are displayed every four ions for the first twenty generations

of a sample run. To prevent this rapid clustering, in the hope of finding the other

saddle point, the mutation rate can be increased to ensure more thorough sampling

of the surface, Figure 3.9 is a scatter plot by i ing the ion rate

3There is a possibility that such clustering can actually lead to problems due to premature
convergence. Later work by the author addressed this concern, and a discussion can be found in
Section 4.4.

Scatter Plot of Individuals
Demonstration of Premature Convergence
03 T T T
r o gen=d0
02 ° -
c e
soo o o @m
o B
g of =
-1 B
02t B
L
13 135 15
x parameter
Figure 3.7: Scatter plot of individuals every 40 generations for p. = 0.60, where
each point a single individual in the i This run

premature convergence. The location of the two clusters relative to the stationary
points on the surface is shown on the super-imposed contour plot.

from 0.03 to 0.08. Note that there is distinct clustering around both saddle points z,
and z; (regions A and B of Figure 3.9 respectively), but with much more dispersion
than with pm = 0.03. However, the best individual was still found near z3, with

(z,y) = (1.148302,0.868567), ||7| = 3.462192 x 10~° and n = 1.

49

Scatter Plot of Individuals
mutation probability=0.03

¥ parameter

x parameter

Figure 3.8: Scatter plot of individuals every 4 generations for the first 20 generations,
with p, = 0.03. The population quickly clusters around saddle point 3 in region B.
The optimum reported was z = 1.154115,y = —0.890394, where [|g]| = 1.581266 x
1076 and n = 1. Enlarged views of areas A and B are shown in the graphs on the
right.

3.4.6 Effect of the Selection Method

To compare the various available strategies for choosing parents for reproduction,

the two i methods are in Figure 3.10. Two cases using tourna-

ment selection are shown with different selection pressures* imposed by changing the
number of individuals taking part in each tournament. Although there i little differ-

4see Section 2.2.4

Scatter Plot of Individuals

‘mutation probability=0.08
2 g T ™
A @ 095
X L . e
1 S <
M ov s %
% R A
5 o E
E o 1 [E5
g T T i
e B
o . * 08
e 3. 5w
13
= —-09
L R TR L I
O B
12 1
x parameter
Figure 3.9: Scatter plot of i Is every 4 i for the first 20

with pr = 0.08. Although the opmmurn reported was in the region of z; (B), the
sampling continues to cluster around z, (A) as well. Enlarged views of regions A and
B are shown in the graphs on the right.

ence between the three plots, roulette-wheel and tournament selection with ty:e = 6
behave very similarly, while tournament selection with ts;.e = 2 does not perform as
well. Examination of the optima obtained reveals the same conclusion, as shown in
Table 3.6. Note that neither S = ‘¢’, tsize = 2 nor § = ‘r’ found z,, and that § =*t’
tsize = 6 gave results earlier than either of the other two methods. Hence, S = ‘t’,
teize = 6 appears to be the best selection method of the three tested.

However, one must also consider the slight increase in overhead associated with

51

Comparison of Parent Selection Methods
Roulette-wheel and Tournament
T

T T
g
E i
- L S=t.1,,6.1,,=0 4
St =2.1=075
S=r
! iz L
) 100 150 %
generation
Figure 3.10: A i of roulette-wheel and tor election. Two runs of

tournament selection are shown with different selection pressure, changed by using 2
individuals in each tournament instead of 6.

increasing ¢, from 2 to 6 since there are 3 times more calls to choose random

individuals from the population, as well as 3 times more comparisons of fitness values

to determine the most fit individual®. it is thought that the improvement
in evolution speed is worth the small expense.

Ssee Section A.9.1

Table 3.6: Results obtained for different parent selection methods. Note that § = ¢
6 gave earlier results and is the only method that finds saddle point z,.
Region % of runs Gy,

8

t, EN
¢ z 28 56.4
t. 3 64 56.8
t, 2 52 98.9
t, z3 48 97.6
EX 48 65.5

r z3 52 715

3.4.7 Effect of the Encoding Method

The effect of changing the encoding method from multiplicative encoding to in-
terval (or range) encoding is shown in Figure 3.11 which plots the average and best
fitness values for both types of encoding. Interval encoding was used with n, = 22 for
the intervals z,y € [—2, 2] since a precision of 0.000001 is desired (see Equation 2.1).

Therefore, to ensure a fair i Itiplicati ding was used with n, = 21

since the largest number to be encoded is 2.0, requiring a representation of at most
2 x 10°. For multiplicative encoding only z; was found, with gradient lengths on the
order of 10~% in an average generation of 50.1. Whereas for interval encoding all three
saddle points were found with gradient lengths on the order of 10~% but slightly less
than multiplicative, in an average of ~ 55 generations. As a result, interval encoding

is idered superior to iplicative encoding since a slightly more accurate result

was found with minimal increase in the number of generations and the problem space

was better sampled, since all three saddle points were found.

Comparison of Encoding Schemes
Multiplicative and Interval (o Range)
T T T

log (fitness value)

~average (B=m) -
— best (B=m)
average (E=i)
= best (E=)

L L
50 100 150 200

generation

Figure 3.11: A comparison of multiplicative and interval encoding. The interval
encoding method outperforms the multiplicative method since a slightly higher fitness
value is attained, and all three saddle points are found as opposed to just z, for
multiplicative encoding.

3.4.8 Gray versus binary

The encoding scheme is also defined by a choice between standard binary or Gray
encoding. A comparison of the use of Gray encoding versus standard binary encoding
is shown in Figure 3.12. Note that both sets of data follow the expected trend
of the average fitness approaching the best fitness as the algorithm evolves. The
Gray encoding performs much better, reaching an optimum after an average of & 54

generations. The standard binary encoding however, levels off at a much lower fitness

54

Comprarison of Gray and Standard Binary
Average and Best Fitness Values
T T T

log (finess valuc)

~ average (B=g)|

L
50 100 150 x
generation

Figure 3.12: Plots of average and best fitness values for Gray and standard binary
encoding. Gray encoding far outperforms standard binary encoding.

value. In addition, while thwe optima found in both cases contained one negative
eigenvalue in the Hessian, thae Gray encoded algorithm resulted in optima all with
gradient lengths on the orderr of 10~6. Whereas, the standard binary encoding only
resulted in one run (out of 235) with an optimum with such accuracy. Clearly, Gray
encoding proved to be the best encoding scheme for this example. This result was
somewhat expected since Gray encoding is less sensitive to mutation effects, resulting
in a more gradual, and smooth evolution®.

Ssee Section 2.2.6

55

3.4.9 Replacement Strategies

The final parameter to be investigated is the method used to replace the individ-

uals in the population from one generation to the next. Using only the offspring to

form the ion for the next ion can it cause if many of

the offspring are less fit than the parents. A plot of the average and best fitness values

resulting from using the all-offspring repl and the abi age

is shown in Figure 3.13. Note that for R = ‘o’ the average fitness values remain noisy

Effect of Replacement Strategy
Comparison of above-average and ali-offspring
T T T

H
g
—= average (R=a)] —
— best(R=a)
- average (R=0)
= _best (R=0)
L g I
50 100 150 2

generation
Figure 3.13: Plots of average and best fitness values for above-average(R = "a’) and
all-offspring (R = ‘0’) replacement strategies. The all-offspring strategy results in
the average fitness values never approaching the best fitness values.

56

h the lution, never hing the best fitness as is expected. This is

due to the stochastic nature of the offspring creation and the resulting lack of bias

Examination of the ind Is present in

when using them as the new
the population show that many individuals far removed from any first order saddle

lution, weighing down the average.

point remain in the i the

This can be seen in Figure 3.14 where the contours of the function are superimposed

Scatter Plot of Individuals

¥ parameter

x parameter

Figure 3.14: Scatter plot of individuals for all-offspring (R = ‘0’), displaying cluster-
ing around saddle point zs.

on the graph.

An interesting feature to note is that many of the individuals have the same

57

z value, and many have the same y value. This is due to single-poi;

crossover, since this form of crossover changes only the variable in which the crossover
point occurs, leaving all others the same. Hence, as the algorithm evolves and favours
a given stationary point, most of the offspring formed will contain changes in only
one of the problem variables, hence creating vertical and horizontal lines on a scatter
plot (as seen in Figure 3.17) intersecting near the optimum. This effect would be

diminished by i ing the ion rate, causing many, or all of the variables to

be modified in many of the offspring produced.

3.5 Objective Function Geometry Considerations

To explore how each of the runs for a i set of values

to the overall average obtained, a plot of the average fitness value of each generation
for each run was plotted along with the overall average. This plot is shown in Fig-
ure 3.15 where the dots are the average fitness values for different runs and the solid
line is the overall average of these average fitness values. Note that three distinct

bands of points occur. Each of these bands to

the areas around different saddle points on the surface. In other words, sampling
the region surrounding different saddle points can result in a different average fitness

k is a of the ding scheme

value for that sample. This
used and the local geometry of the surface around the stationary points. The use

of a particular encoding scheme is equivalent to defining a grid of discrete values on

58

Contributions to the Overall Average
Overall Average and Average Fitness Values for 25 runs
dell T T

Je+ll|—

2evllf—

fitness value

le+l1f~

L L
50 100 150 2

generation

Figure 3.15: Plot of average fitness values each generation for each of 25 runs with the
overall average of these runs. Three bands of points correspond to the three saddle
points on the surface.

the surface of the objective function from which the variable values can be chosen
to form individuals. To illustrate, consider a surface whose contours are shown in
Figure 3.16. This surface displays two maxima of the same height, with maximum A
laying atop a gently sloping hill and maximum B laying atop a steep slope. The same
grid size, representing possible discrete values of a sample, is superimposed on both
of these stationary points. Note that the objective function values under the grid at
A do not change nearly as much as the objective function values under the grid at

B. The fitness values will follow this same trend. Thus, a point on the grid a given

7171
{
N

A

Figure 3.16: Contours of a sample surface to demonstrate the effect of the local
features of the objective function. The surface around maximum A has a
more gentle slope than the surface around B which is a steep maximum.

small distance from the maximum at A will have a lower gradient than a point the
same distance from the maximum at B. For the fitness function used, this will result
in samples taken near A having a higher fitness value on average than samples taken
near B, provided each has the same number of negative eigenvalues. This is reflected
in Figure 3.15. However, taking the log of the fitness values (as was done through-
out this chapter) results in the three bands of points collapsing together around the
overall average line. Consequently, any difference in fitness values seen on a log plot

are significant, and not due to landing on different stationary points.

60
3.6 Results for Minima

To illustrate the robustness of genetic algorithms for optimization problems, the
fitess function was modified, while maintaining the same basic structure, to seek the
minima of the Chong-Zak function. The behaviour exhibited was similar to that seen
for saddle points.” A scatter plot of individuals for a given run is shown in Figure 3.17,
where the first minimum, m, is found at (z,y) = (—1.431359,0.206945), ||l =
3.246533 x 10~5,n = 0 in generation 9. The all-offspring replacement method was

used here since it allows one to easily observe the convergence.

Scatter Plot of Individuals

¥ parameter

x parameter

Figure 3.17: Scatter plot of individuals for = 200, B='0," R = ‘0, and A = 0.0,

with the fitness function chosen to seek a minimum.

In another plot where the population size was decreased to 100, with B =
and R = ‘a’ m, happened to be obtained. The optimum found was at (z,y) =
(0.404936,0.166523), with f(z,y) = —0.930778, |3l = 1.703883 x 10~° in generation

59.

3.7 Conclusions and Recommendations

As a result of the above testing performed on the Chong-Zak function, the rec-
ommended parameter values for efficient use of this implementation of a genetic al-
gorithm are: g = 100, Gz = 200, p = 0.75, pm = 0.03, ny = 24, § = °t," tysee =6.

' R =‘a.’ It is comcluded that these values gave the best

tpros = 0.75, E="i, B=
results in general and provide a good starting point for the optimization of transi-

tion state structures’. However, given the large increase in computational complexity

in moving from 2D i fons to chemical structures, it is likely that
Gimae = 200 will result in long wait times. This is not likely to cause problems since
most runs of the algorithm with B = ‘g’ showed little improvement after Gmaz = 100,
hence 100 generations will be used as the starting point. Also, Minit, Myup, and Aot
are problem dependent and would therefore be very different for chemical structures.
Note that a convergence criteria should be introduced since the possibility of obtain-
ing a more accurate solution in subsequent gemerations should be balanced with the

"Note that these are not. i and some coupling exist between
many or all of the parameters. Hence, a more thorough investigation of the effect of the parameter
values on the behaviour of the algorithm would include many more combinations of possible values.

62

expense of continuing the computation. Thus, for chemical structures the convergence
criteria, [|]] < ¢ is introduced, where & is user defined. We will choose § = 5 x 10~

as the default value.

63

Chapter 4

Results From Chemical Structures

“No amount of ezperimentation can ever prove me right; a single ezperiment can prove
me wrong.”

-Albert Einstein

The ition from the imization of h ical fi i to the optimiza-

tion of chemical structures requires the id of several 1 concept:

One consideration is the choice of coordinate system to use. Internal coordinates in
the form of a Z-matrix was used as it provides the most intuitive structure description.
In Z-matrix coordinates, one represents the molecule by the bond lengths between
adjacent atoms, and the angles between adjacent bonds. Other common coordinate
systems include Cartesian where each atom is simply assigned its position in xyz-

space, and natural internal i which a structure as

of bond lengths, bond angles, and torsions. In GA’s, reducing the coupling between
variables is preferred since this allows them to evolve independently and leads to

a more efficient algorithm. Based on the amount of coupling between variables, Z-

64

matrix coordinates are a good choice. In ison to Cartesian and

natural internal coordinates, Z-matrix coordinates have less coupling than Cartesian
coordinates, but natural internal coordinates provide nearly completely decoupled
variables. Thus, future work on this project could possibly benefit from the use of
natural internal coordinates.

Second, one must decide on the method of energy calculation used. The energies.
first derivatives, and numerical second derivatives were calculated using an ab initio
approach at the Hartree-Fock level, with the 3-21G basis set.

‘To demonstrate the viability of the genetic algorithm code, various transition state
structures were selected for optimization. These choices were taken from a range of
chemical reactions so as to sample some of the different chemical characteristics that
can arise. The test cases shown in Table 4.1 were taken from the list provided by Baker

and Chan [25] where a large variety of chemical reactions used in recent literature for

testing transition state structure imization methods are

4.1 Physical Aspects of Transition State Structures

Recall that the defining characteristics of transition state structures, and thus the

features that should be isolated in a genetic i are; ition state
are first order saddle points on a potential energy surface whose second derivative
matrix has one and only one negative eigenvalue, the gradient vector at these points

has a norm of zero. Additionally, the ei or: ding to the negative

Table 4.1: Test cases used for transition state structure optimization (Bond lengths
given in angstroms and bond angles in degrees). The starting geometries used for
the current optimization are as shown in the form of a Z-matrix, and are the same as
those given in [25].

1. HCN « HNC

cL L1 114838 “f
N2 C1 L1 L2 158536
H3 C2 L2 C1 Al Al 90.0 .

2. HCCH « CCH,

C1 L1 1.24054
C2C1L1 L2 165694
X3 C1 1.0 C290.0 L3 1.06318
H4 C1 L2 C2 A1 X3180.0 Al 60.3568
H5 C1 L3 X3 A2 C2180.0 A2 60.3568

3. HOCI « HCI + CO
o1 L1 117
C201L1 L2 2335
Cl3 C2 L2 O1 Al L3 1127
H4 C2 L3 CI3 A2 01 180.0 Al 90.0
A2 90.0
4. HNC + H < H,CNH
H1 L1 1.0
N2 H1 L1 L2 12
C3 N2 L2 H1 Al L3 10
H4 C3 L3 N2 A2 H1 D1 L4 12
H5 H4 L4 C3 A3 N2 D2 Al 120.0
A2 150.0
A3 90.0
D1 170.0

66

eigenvalue must be such that the deformation of the molecular structure in that

direction along the surface connects the ition state to and

products.

4.2 Unique Features of the Genetic Algorithm

Unlike other ition state optimizati i the genetic i ap-

proach is not sensitive to the structure of the initial Hessian. The algorithm promotes
the production of individuals with one negative eigenvalue, favouring the correct Hes-
sian eigenvalue structure.

Furthermore, genetic algorithms are known for their ability to efficiently sample
a search space to locate a global optimum. Although this is not the intention in the

current implementation it is worth noting that transition state

is less of a local search than the optimization of minima; for transition states. it is
very unlikely that an initial guess can be made as close to the desired optima as is

possible for minima.

4.3 Results

For the optimization of chemical the following values were

used: p = 100, Gmaz = 100, pe = 0.75, pm = 0.05, ny = 31, S = ¢, E =
B ='g’, R = ‘a’, A = 0.0. Some of these values differ from the starting values

proposed in Chapter 3, which reflects the problem dependency of genetic algorithms.

67

The i ility was i from 0.03 to 0.05 since the former did not

sufficiently sample the search space. The number of bits used for each variable, n,
was increased to 31! since, for interval encoding, the accuracy increases with more
bits. Since the negative eigenvalues for chemical structures are usually very small

d to those for ical i Ator was changed to 0.0. Thus any

negative eigenvalues, regardless of the size, are counted as negative.

Furth the ion of the initial ion was modified for interval

are d within the intervals specified for the

variables, with the initial guess added to the population without modification. This
eliminates the need for the Min;; and M, variables since all n;-bit integers can be
mapped into their corresponding intervals, and thus any subsequent individuals are
guaranteed to be within the respective intervals.

The structures given in Table 4.1 were optimized with the VA method discussed
in Chapter 1, and the results are compared to those obtained from optimizing with
the genetic algorithm. Reaction 1 (see Table 4.1) is an HON ¢ HNC rearrangement
and the results obtained are shown in Table 4.2. The bond lengths are reported in
angstroms and the bond angles in degrees. The optimized structures obtained from
both methods are very similar and both have a Hessian matrix with one negative
cigenvalue and a gradient length on the order of 10~5. The total energy, E is reported
T 1This is the maximum number of bits that can be used for each variable since a single unsigned in-

teger is used, corresponding to 32 bits, and a single bit is reserved for the sign bit, as in multiplicative
encoding, despite the fact that it is not used in interval encoding.

Table 4.2: Results obtained for the HCN « HNC rearrangement showing the initial
geometry and the optimized geometries from the GA and VA methods. The Hessian
has one negative eigenvalue (n) for all three structures, but the genetic algorithm
structure has a slightly lower gradient length ([|3])-

Variable _Initial GA VA
1 1.14838 T.18265 1.18269
L2 1.58536 1.40780 1.40741
Al 90.0 55.0267 55.0541
E, -92.20273 -92.24604 -92.24604
llgl 753x 1072 5.72x 1075 7.30 x 10~°
n 1 1 1

Table 4.3: Results obtained for the HCCH ¢» CCHj rearrangement showing the initial
geometry and the optimized geometries from the GA and VA methods. The Hessian
has one negative eigenvalue (n) for all three structures, but the genetic algorithm
structure has a slightly lower gradient length (/|g]]).

Variable Initial GA VA

L1 1.24054 124658 1.24645
L2 1.65694 1.42802 1.42920
L3 1.06318 1.05552 1.05565
Al 60.3568 54.1655 54,1117
A2 60.3568 86.6367 86.6471
E, -76.265417 -76.20343 -76.29343
I3l 2.68x107% 1.50 x 10~% 2.64 x 10~*
n 1 1 1

in Hartrees and the initial and final values match those reported in [25]. This reaction

provides a good visual example since it only has three variables so a cluster plot can
therefore be produced. An example of such a cluster plot of individuals every 40
generations is shown in Figure 4.1. Note that the individuals cluster in a smaller and
smaller region as the population evolves to the optimum.

Results for Reaction 2 are shown in Table 4.3. The two optimized geometries are

69

1.184

Figure 4.1: Cluster plot of individuals every 40 generations for the HCN « HNC
reaction. The clustering of individuals gets tighter as the population evolves.

70

Teble 4.4: Results obtained for the HOCI & HCI + O reaction showing the initial
geometry and the opti ies from GA and VA. The two optimized ge-
ometries are similar with comparable gradient lengths, with the VA gradient length
slightly lower.

Variable TInitial GA VA

1 117 111608 T.11607
L2 2.335 255176 2.55180
L3 1.127 1.10407 1.10418
Al 90.0 126.6372 126.6381
A2 90.0 47.6255 47.5872
E, -560.87865 -569.89752 -569.89752
llgl 458x1071 4.73x 1075 6.67 x 10~°
n 1 1 1

again very similar, both having gradient lengths on the order of 10~*. Again, the
energies match those reported by Baker and Chan. Results obtained for Reaction 3
are shown in Table 4.4. There are only slight differences between the two optimized
geometries and both converged with gradient lengths on the order of 10-5. All three
geometries have a single negative eigenvalue, and the energies listed agree with those
in the original paper.

Results obtained for Reaction 4 are shown in Table 4.5. Again, both optimized

geometries are similar. However, note that the initial geometry has two negative

but both optimized ies have just one. The energy of the optimized
structures differ in the fifth decimal place, with the VA energy matching that reported

by Baker and Chan.

Table 4.5: Results obtained for the HNC + Hj ++ HoCNH reaction showing the initial
geometry and the optimized geometries from GA and VA.

Variable Initial GA VA
L1 1.0 1.01305 1.01184
L2 12 1.21603 1.21292
L3 1.0 1.11342 1.11201
L4 12 1.14220 1.15952
Al 120.0 117.6791 118.7790
A2 150.0 152.2407 152.7408
A3 90.0 93.1678 93.9809
D1 170.0 181.1704 180.0548
D2 10.0 -1.2450 -0.0829

E -93.30097 -93.31110 -93.31114
llgl 297x107! 5.21x10"* 2.55x 10~*
n 2 1 1

4.4 Further Modifications

The current version of the genetic algorithm code requires an extremely long run
time when compared to traditional methods such as VA. Many possibilities exist for
improving the computational expense and will be discussed in Chapter 5.

Also, for other than the optimization of first order saddle points, the

above-average replacement strategy will likely require modification. In the current
implementation, the pool from which individuals are chosen is formed from all of the
parents and offspring whose fitness values are above the average fitness value of the
offspring population. In the case where this elite pool comes from a small percentage
of the population, as when a few exceptionally high fitness values bias the average

fitness upward, this can lead to very fast convergence. However, care must be taken to

avoid cases of convergence. Additis in the cases where this elite pool

72

number less than the size required to form a new population, selecting individuals only
from this pool will cause duplication, limiting the gene pool and hence the effective
sample size. In more practical terms, this duplication also causes wasted CPU time
to be used on re-evaluating the energies and derivatives of duplicate individuals. A
proposed modification for the case of very small elite pool sizes involves placing all of

the above average individuals in the population and filling in the remainder (up to the

size p) with indivi created by ing elite-pool indivi The
case where the pool is sufficiently large to form a new population is not modified.
Although the rapid clustering suits our problem, problems such as conformational
searches will probably require a modification such as that proposed above to prevent

clustering to a single small region of the surface.

73

Chapter 5

Conclusions and Future Work

“It is good to have an end to journey towards; but it is the journey that matters in the
end.”

~Ursula K. LeGuin

5.1 Genetic Algorithms in a Nutshell

Genetic algorithms mani a ion of potential solutions to a problem in

parallel, rather than successively improving a single estimate of the optimum as is

done in traditional methods. The i works with the encoded form of these

potential solutions rather than the solution values themselves, and operates on these

encoded values with of a genetic algorithm is

problem dependent and each piece of software is sufficiently detailed to restrict it to
solving only the type of problems for which it was written. Such algorithms which
have been highly adapted for a specific problem are often more efficient at solving

that problem, at the expense of generality.

74

A growing number of texts have been written in the area of genetic algorithms.

many of an introductory nature with various applications. Some such texts used by
the author include [26, 27, 28, 29, 30].

5.2 Genetic Algorithms and Transition State Structures

The work presented in this thesis has laid the foundation for ongoing research in

the area of chemical imization using genetic i . O

of the Chong-Zak function with varying d d the behaviour of

the method, providing a good testing medium, as well as a basis for optimizing
chemical structures. The code written was able to find all three saddle points of the
function, which illustrates the effectiveness of the fitness function used. Furthermore,

the two minima of the Chong-Zak function were also found, which demonstrates the

of the genetic

Applying the impl ion to the optimization of chemical structures proved

that it was able to efficiently sample the regions given and effectively find a transi-

tion state structure. Transition state structures for several chemical reactions were

d ined, in with other

5.3 Ideas For Future Work

Throughout this research, various ideas for decreasing the run time of the genetic

algorithm as well as improving its convergence were discussed. Some of these ideas

75

that are not yet i are di d in the foll

5.3.1 Real Valued Encoding

It has been proposed that the best encoding scheme for a genetic algorithm is
the representation that most closely reflects the normal representation of the data in
solution space. For the current problem this would be the floating point representa-
tion of the real-valued variables. The direct use of real values as opposed to encoding
via standard binary has been discussed by several authors. If the real-valued repre-
sentations are used several components of the algorithm would have to be modified.
and alternate forms of the genetic operators would have to be developed. for which
several possibilities already exist. In the real-valued encoding scheme, the operators
no longer rely on direct manipulation of bits, but rather on such things as random
perturbations and variable swapping. Despite the research conducted in real-valued
encoding, the genetic algorithm community has yet to warm up to the idea, and the
majority of implementations still rely on some form of binary encoding. Although it
is not clear that real-valued encoding would improve the performance of the current

implementation, further inquiry may be a worthwhile venture.

5.3.2 Ab initio versus Molecular Mechanics Energies

The majority of the computational time required to run the genetic algorithm

is taken up by the ab initio routines used to compute the energy, gradients. and

76

Hessians for each geometry. Since the use of molecular mechanics force fields is
much less computationally intensive than ab initio methods, it is believed that using
this method for energy, and derivative calculations would be beneficial. However. if
molecular mechanics were to be used, the fitness evaluation of an individual would
essentially be reduced to just a few simple function evaluations. One difficulty in this

h is the lack of available force fields for ition state

to those available for minima.

5.3.3 Elimination of Expensive Derivatives

One way to elimi pensi ivatives is to use ics instead

of ab initio i as ioned above. In

derivatives are
just simple function evaluations and are therefore computationally cheap. Another
approach involves a type of interpolation strategy to avoid full calculation of the
derivatives for a portion of the population. In this case, first and second derivatives

would be calculated for a number of individuals and interpolation would be used to

assign derivative values to those indivi lying near the indivi whose deriva-
tives have been determined. Although this is an approximation strategy, it would

likely provide sufficient bias toward the correct region of the potential energy surface.

However, after a certain point, all derivatives must be to 1 the

evolution to the optimum.

m

5.3.4 Hybrid Genetic Algorithms

Genetic algorithms were designed as global optimization techniques, that is, given
a surface, find any (or all) of the optima, regardless of the features of the surface.
This cannot be achieved with traditional methods since a single approximation of the
optimum is used and such methods will often miss, or get stuck, in a local optimum.
More often than not, this behaviour is not desired. Furthermore, most traditional
methods will require an initial guess that is in the region near the optimum (with the
correct Hessian structure) in order to converge. Satisfying this requirement is often
very difficult. Thus, genetic algorithms provide benefits in these areas.

However, for the problem examined in this thesis, global search behaviour can
cause problems with long run times. If one is able to provide a very good starting
geometry or if the genetic algorithm can generate a good geometry within a rea-
sonable number of generations, traditional methods may be able to help. Thus, it
is proposed that a hybrid genetic algorithm would be a feasible approach. By first
evolving a population for a number of generations such that the gradient length of the
best individual is sufficiently decreased and the Hessian has one negative eigenvalue,
one can use this best individual as the starting geometry for one of the traditional
methods, such as Newton-Raphson. Since the initial guess is then in the region near
the optimum, traditional methods should be able to converge to a transition state

ina number of i

78

Table 5.1: CPU time (in hours, minutes and seconds) required to optimize the chem-
ical structures shown in Chapter 4 on a 600MHz Pentium III. These run times do not
compare to the time required to optimize the same structures with the VA method.
for which the run times were less than 5 minutes.

Reaction # of Variables # of G i Time (hh.mm.ss)
HCN < HNC 3 100 19.04.05
HCCH « CCH, 5 100 30.57.33
HOCI « HCl + CO 5 73 88.55.04
HNC + H; <+ H.CNH 9 100 75.09.45

5.3.5 Parallel Implementation

The genetic algorithm code lends itself well to parallel implementation, as is the
case with most genetic algorithms. In the case of chemical structures, parallelizing the
fitness evaluation would significantly decrease the wait time required for optimization.
since the fitness evaluation is the most expensive component of the algorithm for this
problem. Parallelization, in the present case, could be accomplished with minimal

effort and would make good use of modern computing architecture.

5.4 Final Words

One i i ion in i i is the run time required.

Typical examples of such times for the chemical structures optimized using the ge-

netic algorithm are shown in Table 5.1. Although the genetic algorithm code written

requires very long run times when to

optimizing the code and using some of the ideas presented in this chapter, will help

79

to decrease this run time. Furthermore, the genetic algorithm was implemented with

the idea of optimizi: ition state that proved difficult (or impossible)

to optimize with traditional methods, as well as to allow the flexibility of providing
an initial guess far removed from the saddle point and still achieve convergence. The

results of this thesis indicate that this is indeed possible.

80

Bibliography

[1] B. Murtagh and R. Sargent, Comput. J. 13, 185 (1972).

[2] Nonlinear Programming, edited by K. Ritter (Academic Press, New York. 1970).

pp. 31-65.
[3] W. Davidon, AEC Res. and Dev. Report ANL-5990 (revised) (1959).
[4] R. Fletcher and M. Powell, Comp. J. 6, 163 (1963).
(5] C. Broyden, J. Inst. Maths. Appls. 6, 222 (1970).
[6] R. Fletcher, Comp. J. 13, 317 (1970).
[7] D. Goldfarb, Math. Comp. 24, 23 (1970).
[8] D. Shanno, Math. Comp. 24, €47 (1970).
(9] W. Davidon, Math. Prog. 9, 1 (1975).

[10] R. Fletcher, Practical Methods of Optimization, Volume I {John Wiley & Sons,

Ltd., New York, 1980).

81
[11] J. Baker, J. Comp. Chem. 7, 385 (1986).
[12] A. Banerjee, N. Adams, and J. Simmons, J. Phys. Chem. 89, 52 (1985).
(13] P. Csaszar and P. Pulay, J. Mol. Struct. 114, 31 (1984).
[14] C. Cerjan and W. Miller, J. Chem. Phys 75, 2800 (1981).
[15] T. Helgaker, Chem. Phys. Lett. 182, 503 (1991).
[16] J. Bofill, J. Comp. Chem. 15, 1 (1994).
[17] J. M. Anglada and J. M. Bofill, J. Comp. Chem. 19, 349 (1998).

[18] R. Poirier, Y. Wang, and C. Pye, Chemistry Dept., Memorial University of

Newfoundland, St. John's, NF (1996).
[19] M. Powell, AERE Subroutine Library, Harwell, Didcot, Berkshire, UK .
[20] R. Judson, Reviews in Computational Chemistry 10, 1 (1997).
[21] J. Mestres and G. E. Scuseria, J. Comp. Chem. 16, 729 (1995).

[22] J. Holland, Adaptation In Natural and Artificial Systems: An Introductory Anal-
ysis With Applications to Biology, Control, and Artificial Intelligence (University

of Michigan Press, Ann Arbor, Michigan, 1975).

23] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning (Addison-Wesley, Reading, Massachusetts, 1989).

82

(24] E. Chong and S. Zak, An I[ntroduction To Optimization (John Wiley & Sons.

Ltd., New York, 1996).
[25] J. Baker and F. Chan, J. Comp. Chem. 17, 888 (1996).

[26] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers

(World Scientific Publishing Co. Pte. Ltd., Si 1999).

[27] A. M. S. Zalzala and P. J. Fleming, Genetic Algorithms in Engineering Systems

(The Institution of Electrical Engineers, London, UK, 1997).

[28] K. F. Man, K. S. Tang, and S. Kwong, Genetic Algorithms (Springer-Verlag

London Limited, Great Britain, 1999).

[20] Genetic Algorithms and Simulated Annealing, edited by L. Davis (Morgan Kauf-

mann Publishers, London, 1987).

[30] Foundations of Genetic Algorithms, edited by G. J. E. Rawlins (Morgan Kauf-

mann Publishers, California, 1991).

[31] O. Lendl, http://random.mat.sbg.ac.at (1997).

83

Appendix A

Code Documentation

The following is a discussion of the programming details for the genetic algorithm
code written to optimize first order saddle points. A list of source code files is given,

as well as a description of the various functions with some sample code.

A.1 Source Code Files

The source code files for the i ion of the genetic i are as follows:

Table A.1: Source code files

File name Description

mun_ga _globals.h Contains all global variables.

mun_ga.data_structs.h Contains the structure definition for an Individ-
ual, and various pointers to functions.

mun_ga_params.h Contains the static parameters used.

mun_ga.c (-h) Main file which controls the flow of the algorithm.

mun_gaIO.c (h) Utilities for input and output.

mun_ga breed.c (h)

mun_ga_encode.c (-h)

mun_ga fitness.c (-h)

mun_ga_generate.c (.h)

mun_ga_memory.c (-h)
mun_ga select.c (.h)

mun_ga_setup.c (.h)

mun_ga.utils.c (-h)

A.2 Data Structures

Contains the main reproduction function, func-
tions for crossover and mutation, as well as func-
tions for finding the best Individual in a group

and validating Individuals.
Contains i for ding and decoding real
valued data using multiplicative or interval encod-

ing. Also, functions for Gray encoding and decod-
ing.

Contains functions for computing the fitness val-
ues of the initial population and the offspring pro-
duced, as well as utility functions to calculate the
norm of a vector and to normalize the fitness val-
ues of a group of Individuals.

Contains functions for the generation of the initial
population, and for choosing Individuals to form
the population for the next generation.

Contains ions for and deall

memory.
Contains functions for roulette-wheel and tourna-

ment selection.
Contains functions for initializing various function

pointers, and functions for parsing the input file
containing parameter values.

Contains a function for copying all of the contents
of an individual, as well as a function to flip a
biased coin with a specified probability.

84

An Individual, representing a possible set of variable values is stored as a struc-

ture with definition,

struct individual{

Chromosome *chrom; /* bit string of encoded variables */

double fitness; /x fitness value */

double normfit; /# normalized fitmess value */

double *grad; /* gradient vector */

double func_value; /* function value */

double grdlth; /* norm of the gradient vector */

int negeig; /* number of negative eigenvalues */

int gemeration; /* used only for the “best" individual */
} Individual;

located in mun_ga_data structs.h, where a Chromosome is an unsigned integer. The
chrom array stores the bit string, fitness is the value assigned to the Individual
by the defined fitness function, and normfit is the value after the fitness has been
normalized with respect to the current population. The gradient, grad, the function
value, func_value, the norm of the gradient vector, grdlth, and the number of
negative eigenvalues in the Hessian, negeig, associated with the given variable values
are used to calculate the fitness value. The generation variable is used to monitor
when the most fit Individual was formed.

A population of Individuals is stored as an array of Individual structures.
In addition, an instance of the Individual structure is used to store the most fit

Individual found in the evolution, this instance is referred to as best.

A.3 Input/Output

The parameter values used in the routine are read in from a file called gadat.
This file has a specific arrangement assumed by the functions used to parse it. This

assumed format is shown in Table A.2.

Table A.2: Input file format.

Variable Type Description
N/A a comment

point_type char Type of point sought, m ~ minimum, s - first order
saddle point

popsize int Number of Individuals

maxgen int Maximum number of generations

crossprob double Probability of crossover

mutprob double Probability of mutation

bits_per.var int Number of bits used per variable

le double i per ion of an Individual in the

initial population from the initial guess.

valid double Maximum perturbation of an offspring from the
initial guess.

selectmethod char Which selection method to use: r — roulette
wheel, t ~ tournament. If tournament selection is
used, the following two additional parameters are
needed: toursize (int) ~ number of Individuals
in each tournament, and tourprob (double) —
probability of selecting the most fit Individual.

encode method char ~ Which encoding scheme to use: m — multiplicative
encoding, i - interval encoding. If interval encod-
ing is used, the following additional parameters
are needed: 1b; (double) - lower bound of inter-
val, and ub; (double) — upper bound of interval,
for ¢ = 0...numvar where numvar is the number
of variables.

bin_rep char Binary representation used, g — Gray encoding, b
— standard binary.

choosenewpop char Method used to choose Individuals for the next
generation, a — selection from above average, o —
all offspring.

tol double Value below which negative eigenvalues must lie
to be counted as negative.

epsilon double Parameter used in fitness function.

gen_inc int Interval for writing xy_gen_x data files.

87

The functions used for parsing the input file are:

void file_format()
void corrupt_file(char *filename, int line, char *str)
int read_parameters(char *filename)

which are located in mun_ga_setup.c and are used to print the file format to standard
out, interrupt execution in the event that file filename has the incorrect format
(reporting the line line, where the error occurred, and the string str that was read).
and read in the parameters from filename, respectively.

The output is written to files stats, and history. The former contains the av-

erage, i ini and best-so-far fitness values. The latter contains infor-

mation that allows one to trace through the execution history of the code, including
Individual fitness information for each generation. The history file is printed only
if SAVEHTST is defined. In addition, data files of variable values for each Individual
are written out periodically. The file name format of these files is xy_gen_+, where *
is the generation number at the time of printing. The values for * include 0, maxgen.
and all multiplies of gen_inc in between. Functions used for writing out various data

include,
void print_stats()
void print_ind(Individual ind)
void print_chrom(FILE *fp,Chromosome *chrom,int chromlength)
void print_params(FILE* £p)
which are located in mungalO.c. These functions print the components of the

stats file, print the values of the components in the Individual ind to the history

file, print the chromosome, chrom (with length chromlength) bitwise to FILE *fp,

88

and print the values of the variables for each Individual in oldpop to FILE *fp,

respectively.

A.4 Random Numbers

Genetic i code relies i on the ion of random numbers.

Software which generates pseudo-random numbers, prng-2.2, developed by Otmar
Lendl [31] was used. This program provides various choices for the algorithm used
to generate the random numbers, each of which has several parameters. The ezplicit
inversion congruential generator was chosen for the current project. In addition. a
function,

int flip(double prob)

located in mun_ga_utils.c, was implemented to flip a biased coin, returning 1 with a

probability prob, otherwise returning 0.

A.5 Memory Allocation

Memory allocation is done in the following functions:

unsigned int* alloc_uintarr(int num)
doublex alloc_doublearr(int num)
doublex* alloc_2Ddoublearr(int n, int m)
struct individual* alloc_pop(int num)
void alloc_memory()

void free_memory()

89

which are located in mun_ga_memory.c. The first two functions allocate arrays of nun
unsigned integers and doubles respectively. The third allocates a two dimensional,
n x m array of doubles, and the fourth allocates an array of num Individual’s to
form a population. Finally, alloc_memory controls all memory allocation, calling the
previous functions in turn. All memory is returned to the operating system with the

free_memory function.

A.6 Initial Population

The initial population of possible solutions are created by either randomly per-
turbing the initial guess, parset (for multiplicative encoding), or by choosing ran-
dom numbers within the intervals specified (for interval encoding). The following
function, located in mun_ga_generate.c, creates the initial population and places the

Individuals in the oldpop array.

void generate_population(double *parset){
int i,j;
double perturbation;
double *temp;

temp = (doublex)calloc(numvar,sizeof (double));

/% copy parset to first individual in oldpop */
encode (parset,oldpop[0] . chrom) ;

/* initialize all popsize individuals */
if (encode_method=="'m’){
for(i=1;i<popsize;i++){
for(j=0; j<numvar; j++){
/* get random number by which to scale initial parameters
* to create new individual restrict random number between

90

* -paramscale and paramscale */
perturbation=paramscale*(2*prng_get_next(g)-1.0);
temp[j] = parset[j]+perturbation;

}

/* encode individual created by random perturbations */

encode (temp,oldpop[i] .chrom) ;

;i<popsize;i++) {

for (j=0;j<numvar;j++) {
oldpop[i].chrom[jl=(unsigned) (prng_get_next(g)*

((1<<bits_per_var)-1));

b
}
free(temp);
return;

The size of the perturbation is scaled to between ~paramscale and paramscale since
the initial guess is usually close to the optimum. Following the addition of a small per-

to the initial the resulting Individual is encoded as discussed

in the following section.

A.7 Encoding Scheme

Various possibilities for encoding schemes are available, and can be found in
mun_ga_encode.c. For representation of real valued data the encoding functions in-

clude,

void mult_encode(double *real, unsigned *int_rep)
void interval encode(double *real, unsigned int_rep)

91

with corr ding decoding ions for ion of the real valued data, real

from the integer representation, int_rep.

For iplicati ing a ined required precision of 1.0 x 10~° was
set in mun_ga_params.h,

#define SHIFTAMT (1.0E6)
and is used to encode each Individual by multiplying each variable by this amount,
giving an unsigned integer. This scale factor is removed by decoding during fitness
evaluation and before reporting results. The number of bits required per variable is
user defined by the bits_per._var parameter. Negative numbers are accounted for
by setting the (bits_per_var)®™ bit to 1. Each variable is represented by a single
unsigned integer, of which the lower bits_per_var data bits + 1 sign bit are used.

The following function encodes an Individual using multiplicative encoding.

void mult_encode(double *real, unsigned *int_rep){
int index;
unsigned temp;

for (index=0; index<numvar; index++){
temp = (unsigned) (fabs(real[index])*SHIFTAMT);
/* if the value is negative, set the bits_per_var bit to 1 */
if (real[index]<0){
temp = temp | (1<<bits_per_var);

int_rep[index] = temp;
b

return;

Decoding of each Individual for the purposes of fitness evaluation reverses the above

process, converting the previously encoded integers back to the original floating point

92

numbers by determining the integer value of the extracted lower bits_per_var bits.
dividing by SHIFTAMT, and adding a negative sign if the (bits_per_var)®® bit is set.
Interval encoding uses a simple mapping between real values in the corresponding

domain and integer values.

void interval_encode(double *real, unsigned *int_rep){
int i;
for(i=0;i<numvar;i++){
/* add 0.5 to temp to ensure rounding up */
int_rep[i]l = (unsigned) ((real[i]-domains[2*i])*
((1<<bits_per_var)-1)/(domains [2+i+1]-domains[2%i])+0.5) ;
X

return;

Note that special consideration for negative numbers is not required for the interval
encoding scheme.

In addition to the integer representation of real numbers, Gray encoding is pro-
vided as an alternative to standard binary. For this case, the real numbers are encoded
using one of the above functions, after which they are converted to Gray code using

the following function which was derived from [26].

void gray_encode(Chromosome *bin){
int 1,3;
unsigned mask;
unsigned *gray;
gray = (unsigned)calloc(numvar,sizeof (unsigned));

for(i=0;i<numvar;i++){
mask = (1<<(bits_per_var-1));
gray[i]l = bin[i] & mask;
for(j=0; j<bits_per_var;j++){
if (((bin[i] & mask)>>1) == (bin[il] & (mask>>1))){
mask = mask >> 1; /* leave gray bit as 0 */

93

¥
else{
mask = mask >> 1;
grayli] |= mask; /* set gray bit to 1 */

/* set the sign bit */
if (bin[i]&(1<<bits_per_var))
gray[il=gray[i] | (1<<bits_per_var);
T
/% copy the contents of gray to the individual passed in */

for(<numvar; i++){
bin[i] = gray[il;

+

free(gray);

return;

with a corresponding decoding function.

The overall encoding and decodi are lled by the fu

void encode(double *data, Chromosome* ind)
void decode(Chromosome *ind, double *decoded)

which call the correct encoding and decoding functions using the function pointers

to_int and to_float respectively which are set in the function,

void set_encode()

located in mun_ga setup.c, based on the input parameter encode_method. Further-
more, the main encode and decode functions call the Gray encode and decode func-

tions if the input parameter bin_rep is set to ‘g.’

94

A.8 Fitness Evaluation

Following the ion and ding of the Individuals in the initial popula-
tion a numerical fitness value is calculated for each Individual. The fitness function

used depends on the type of critical point sought and is set using the function,

void set_fitness()

located in mun_ga_setup.c, which uses the value of the point_type input parameter

to set a pointer to one of the following,

void ts_evaluate(Individual *ind,int numneg)
void min_evaluate(Individual *ind,int numneg).

which are located in mun_ga fitness.c. Each Individual ind, in the population
is then decoded, the function value, gradient, and number of negative eigenvalues
(numneg) is calculated, and a fitness value is assigned. This procedure is done in the
function,

void init_fitness()
which calls the appropriate evaluation function. The gradient length is calculated
using the function,

double calc_norm(double *vec, int n)
where n is the dimension of the vector vec for which the length is to be calculated.
Following reproduction, the fitness of the offspring created is calculated in the func-

tion,

void offspring fit()

95

which behaves similar to the fitness evaluation for the initial population. Finally, a

function,

void normalize(Individual *pop)

leulates the maxi ini and average fitness values in a population pop.

as well as normalizes the fitness values between 0 and 1 if roulette-wheel selection is

used, since this is the only function that makes use of normalized values.

A.9 Reproduction

The reproduction operators are controlled by the function,

void breed(double* initial)

which calls the selection, crossover, and i i to the popula-

tion, as well as the validate function (in the case of multiplicative encoding),

void validate(Individual* test, double* initial)
int i=0,j=0;
int changed=0;
double perturbation;
double *temp;
temp = (doublex)calloc(numvar,sizeof (double));

for (i=0;i<popsize;i++){
decode(test[i].chrom, temp) ;
for(j=0; j<numvar; j++){
if (fabs(temp[j]-initial(j])>valid){
i aramscale*(2.0%prng_get_next(g)-1.0);
temp[j] = initial[jl + perturbation;

/* re-encode individuals that had parameters changed */

if (changed) {
encode (temp, test [i] .chrom) ;
changed=0;

free(temp) ;
return;

to ensure that the offspring produced (test), is within valid of the initial guess.
initial. The functions that perform the reproduction operations are discussed in

the following sections.

A.9.1 Selection

The two possible methods for selecting parents include roulette-wheel and tour-
nament selection. The method used is user defined by the select_method input

parameter, and the function,

void set_select()

sets the function pointer to the correct selection function. The function that performs

roulette wheel selection is,

int roulette_select(){
int i;
double r;
double sum;
double totalfit=0.0;

/% sum up the total fitmess...*/
for(i=0;i<popsize;i++){

totalfit += oldpop[il.normfit;
¥

97

r = prng_get_next(g);
sum = 0;
if (totalfit != 0){
for(i=0;i<popsize;i++){
sum += oldpop[i] .normfit / totalfit;
if (sum > 1) break;

3
¥

else{ /* just pick a random parent if totalfit=0 */
i = (int)(prng_get_next_int(g) % popsize);
b

return i;

which, as noted before, makes use of the normalized fitness values. The function that

performs tournament selection is,

int tour_select(){
int i;
int *parent;
int tour_best;
int winner;
double r;
parent = (int#)calloc(toursize,sizeof(int));

for(i=0;i<toursize;i++){
parent[i] = (int) (prng_get_next_int(g) Y% popsize);

/+ find best individual in current tournament */
tour_best = parent[0];
for(i=1;i<toursize;i++){
if (oldpop[parent[il].fitness > oldpop[tour_best].fitness){
tour_best = parent[il;

b

/* get random number for comparison to tourprob */

T = prng_get_next(g);

if (tourprob > r){
/* choose the best individual in the tournament */
winner = tour_best;

98

else{ /* choose a random individual in the tournament */
winner = parent[(int) (prng_get_next_int(g) % toursize)];

return winner;

which uses user defined values for toursize and tourprob to bias the selection pro-

cess. After two parents are selected for crossover is

A.9.2 Crossover

The crossover operation is performed by the following function,

void crossover(Chromosome *parentl, Chromosome *parent2,

cl *offspringl, Cl ing2){
/* This function is derived from SGA-C: A C-language
Implementation of a Simple Genetic Algorithm, Robert
E. Smith, David E. Goldberg, and Jeff A. Earickson,
TCGA Report No. 91002, 1994. */

* % x

int i,j;
unsigned mask;
unsigned temp=1;
int crosspoint;

/* determine whether or not to perform crossover */
if (flip(crossprob)){
crosspoint = (int) (prng_get_next_int(g) % chromlength);
for(i=0;i<numvar;i++)
if (crosspoint >= ((i+1)*UNSIGNEDSIZE)){
/* crosspoint not reached yet, so swap these ints */
offspringl[i] = parenti[il;
offspring2[i] = parent2(il;

b4

else if((crosspoint<((i+1)*UNSIGNEDSIZE)) &&
(crosspoint> (i*UNSIGNEDSIZE))) {
mask = 1;
for(j=0; j<(crosspoint+1-i*UNSIGNEDSIZE) ; j++){

mask = mask <<1;
mask = mask | temp;

}
offspringili] = (parenti[i] & mask) |
(parent2[i] & (“mask));
offspring2[i] = (parent1[il & (“mask)) |
(parent2[i] & mask);
¥
else{

offspringi[i] = parent2[il;
offspring2[i] = parent1[il;

b
¥

else{ /* do not crossover, just copy parents to offspring */
for (i=0;i<numvar;i++){

offspringi[i] = parent1[il;
offspring2[i] = parent2[il;

which crosses over the bit strings of parent1 and parent2, at crosspoint to produce
offspringi and offspring2, with user input probability crossprob. Note the use
of the UNSIGNEDSIZE parameter, set in mun_ga_params.h as,

#define UNSIGNEDSIZE (8xsizeof(unsigned int))

which is equal to the number of bits in an unsigned integer. Following crossover. the

offspring duced are to

A.9.3 Mutation

The chromosome string of an Individual is mutated using the following function,

void mutate(Chromosome *c){

100

e L353
unsigned mask=
unsigned temp

1;
for (i=0;i<numvar;i++){
mask = 0;
for (j=0; j<bits_per_var;j++){
if (£1ip(mutprob)){
mask = mask | (temp<<j);
¥
b
clil = c[il mask;

return;

which uses the XOR logical operator to flip the state of a bit with a user input

probability mutprob.

A.10 Tracking the Optimum

At the start of the algorithm, the best Individual is set to the initial guess for

comparison purposes, and after the ion of the initial ion, the following

function is called to determine the most fit Individual.

void find_best(Individual *current_pop){
int 43
int bfi=-1; /* index of individual with best fit */
double tmpfit;

tmpfit=best.fitness;
for (i=0;i<popsize;i++){
if (current_pop[il.fitness > tmpfit) {
bfi=i;
tmpfit=current_pop[bfil.fitness;

101

g

if (bfi==-1) {
/* no better fitness was found in this population! */
return;

/* update best individual structure */
copy_ind (&(current_pop[bfil) ,&best) ;
best.generation = generation;

return;

The Individual with the highest fitness is copied into best using the function,
void copy_ind(Individual *ind_source, Individual *ind_dest)
located in mun_ga_utils.c, which copies each component of Individual, ind_source
to the corresponding component of ind_dest.
If an Individual with a higher fitness than that found previously is not present
then the best Individual remains unchanged. Therefore, best always contains the
Individual with the highest fitness throughout the evolution and is reported as the

when the i is

A.11 Replacement of the Population

Upon completion of reproduction, a portion of the parents and offspring can be
chosen for the next generation in one of two ways. The first method is implemented

in the following function,

void all_offspring(){
int i
for(i=0;i<popsize;i++){
copy_ind (&(offspring[il) ,&(newpop[il));

return;

located in mun_ga.generate.c, which copies all of the offspring created in the current

into the ion for the next i none of the parents continue

on. The second method is shown in the function,

void above_average(){
int i,r;
int numol
int numne
int *subpop;
subpop = (int*)calloc(2#popsize,sizeof(int));

/* create pool of individuals from oldpop and offspring
* consisting of those individuals whose fitness values are
* greater than the average from the previous generation */
for(i=0;i<popsize;i++){
if (oldpop[il.fitness > avg){
subpop [numo1d] = ij;
numold++;
¥
3
for(i=0;i<popsize;i++){
if (offspring[i] .fitness > avg){
subpop [numold+numnew] = i;
numnew++;
by
X
/% subpop complete...add best individual from previous
* generation to new population */
copy_ind(&(best) ,&(newpop01)) ;

/* choose random individuals from subpop to occur in the
* next gemeration, start at 1 since best individual is in 0 */
for(i=1;i<popsize;i++){
r = (int) (prng_get_next_int(g) % (numold+numnew));
if (r < numold){
/* chosen individual came from previous generation */

103

copy_ind (&(oldpop [subpop(r]1) ,&(newpop[il));

if(r >=numold){
copy_ind (& (offspring[subpop[r]1]),&(newpoplil));

}
free (subpop) ;
return;

also located in mun_ga_generate.c, which fills the surviving population with a random
selection from among those parents and offspring with fitness values above the average
fitness of the offspring. Which of the above functions is used is dependent on the user
defined select newpop parameter which is used in,

void set_choose_newpop()
located in mun_ga setup.c, to set a function pointer to the correct population replace-

ment function.

A.12 Central GA Control

The flow of the genetic algorithm is controlled by a main function,
void ga_(double parset[], double pargrd[1, int noptpr,
double grdlth, double func_value)
which is called from a Fortran subroutine within Mungauss. The core Mungauss

are used to calculate the objective function value, gradient, and Hessian for

the Individuals. The genetic algorithm code calls the appropriate Fortran functions

within Mungauss to obtain this information when it is required.

104
A.13 Code Availability

Information about the above source code can be obtained by contacting one of

the following:

Dr. R. A. Poirier - rpoirier@mun.ca
Sharene Bungay - sharene@math.mun.ca

	0001_Cover.jpg
	0002_Inside Cover .jpg
	0003_Blank Page.jpg
	0004_Blank Page.jpg
	0005_Title Page.jpg
	0006_Abstract .jpg
	0007_Acknowledgements .jpg
	0008_Dedication.jpg
	0009_Table of Contents.jpg
	0010_Table of Contents vi.jpg
	0011_Table of Contents vii.jpg
	0012_List of Tables viii.jpg
	0013_List of Figures ix.jpg
	0014_List of Figures x.jpg
	0015_Chapter 1 - Page 1.jpg
	0016_Page 2.jpg
	0017_Page 3.jpg
	0018_Page 4.jpg
	0019_Page 5.jpg
	0020_Page 6.jpg
	0021_Page 7.jpg
	0022_Page 8.jpg
	0023_Page 9.jpg
	0024_Page 10.jpg
	0025_Page 11.jpg
	0026_Page 12.jpg
	0027_Page 13.jpg
	0028_Page 14.jpg
	0029_Page 15.jpg
	0030_Page 16.jpg
	0031_Page 17.jpg
	0032_Page 18.jpg
	0033_Chapter 2 - Page 19.jpg
	0034_Page 20.jpg
	0035_Page 21.jpg
	0036_Page 22.jpg
	0037_Page 23.jpg
	0038_Page 24.jpg
	0039_Page 25.jpg
	0040_Page 26.jpg
	0041_Page 27.jpg
	0042_Page 28.jpg
	0043_Page 29.jpg
	0044_Page 30.jpg
	0045_Page 31.jpg
	0046_Page 32.jpg
	0047_Page 33.jpg
	0048_Chapter 3 - Page 34.jpg
	0049_Page 35.jpg
	0050_Page 36.jpg
	0051_Page 37.jpg
	0052_Page 38.jpg
	0053_Page 39.jpg
	0054_Page 40.jpg
	0055_Page 41.jpg
	0056_Page 42.jpg
	0057_Page 43.jpg
	0058_Page 44.jpg
	0059_Page 45.jpg
	0060_Page 46.jpg
	0061_Page 47.jpg
	0062_Page 48.jpg
	0063_Page 49.jpg
	0064_Page 50.jpg
	0065_Page 51.jpg
	0066_Page 52.jpg
	0067_Page 53.jpg
	0068_Page 54.jpg
	0069_Page 55.jpg
	0070_Page 56.jpg
	0071_Page 57.jpg
	0072_Page 58.jpg
	0073_Page 59.jpg
	0074_Page 60.jpg
	0075_Page 61.jpg
	0076_Page 62.jpg
	0077_Chapter 4 - Page 63.jpg
	0078_Page 64.jpg
	0079_Page 65.jpg
	0080_Page 66.jpg
	0081_Page 67.jpg
	0082_Page 68.jpg
	0083_Page 69.jpg
	0084_Page 70.jpg
	0085_Page 71.jpg
	0086_Page 72.jpg
	0087_Chapter 5 - Page 73.jpg
	0088_Page 74.jpg
	0089_Page 75.jpg
	0090_Page 76.jpg
	0091_Page 77.jpg
	0092_Page 78.jpg
	0093_Page 79.jpg
	0094_Bibliography.jpg
	0095_Page 81.jpg
	0096_Page 82.jpg
	0097_Appendix A.jpg
	0098_Page 84.jpg
	0099_Page 85.jpg
	0100_Page 86.jpg
	0101_Page 87.jpg
	0102_Page 88.jpg
	0103_Page 89.jpg
	0104_Page 90.jpg
	0105_Page 91.jpg
	0106_Page 92.jpg
	0107_Page 93.jpg
	0108_Page 94.jpg
	0109_Page 95.jpg
	0110_Page 96.jpg
	0111_Page 97.jpg
	0112_Page 98.jpg
	0113_Page 99.jpg
	0114_Page 100.jpg
	0115_Page 101.jpg
	0116_Page 102.jpg
	0117_Page 103.jpg
	0118_Page 104.jpg
	0119_Blank Page.jpg
	0120_Blank Page.jpg
	0121_Inside Back Cover.jpg
	0122_Back Cover.jpg

