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Abstract 

In this thesis we study asset pricing models using a dynamical systems ap­

proach. We first review the literature on current dynamical systems models of 

asset pricing. The foundation of these models is the fact that they incorporate 

heterogeneous beliefs among traders. Two main trader groups are discussed, 

fundamental traders and trend-chasing chartists. The theory of discrete dy­

namical systems, or maps, is also explored, and in depth analysis of these 

models is carried out. We modify a model of Chiarella, Dieci and Gardini to 

incorporate a third group of traders called contrarian chartists. The main idea 

surrounding contrarian chartists is that they not only disagree with the ma­

jority of traders, but they choose when to act on the disagreement in order to 

make a profit. A second case of this model is also discussed, where contrarian 

chartists are thought to always disagree with the majority. This case reduces 

to the literature model with one different parameter value. In each case, the 

model consists of a system of two difference equations. The first equation 

represents the logarithm of the asset price at any given time t, and the other 

represents the expectation of price change from one time period to the next. 

This system exhibits complicated behaviour including local behaviour such as 

period-doubling and N eimark-Sacker bifurcations as well as local attractors, 



ii 

global bifurcations and chaos. The results in terms of asset prices are also 

included for these models. The thesis concludes with some limitations and 

suggestions for future research. 
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Chapter 1 

Mathematical Models of Asset 

Pricing 

Asset pricing models are a means by which the abstract states of the world 

are mapped into the prices of financial assets. These prices are assumed to 

be endogenous. This means that they are caused by the state of the world 

as opposed to affecting present and future states of the world. Mathematical 

models have been developed over time to represent the prices of financial assets 

such as stocks and bonds. In this chapter, we review the models in current 

use and the literature on dynamical systems modeling of asset pricing. 

1.1 The CAPM 

The popular Capital Asset Pricing Model, or CAPM (see [2, 27, 34]) states 

that the expected return of the ith security, E(ri), is the sum of the risk free 

rate, R1, and the excess market returns multiplied by the beta coefficient of 

1 



CHAPTER 1. MATHEMATICAL MODELS OF ASSET PRICING 2 

the ith security. More specifically, 

(1.1.1) 

where 
(./. = Cov[ri, M] 
JJt V[M] . (1.1.2) 

The CAPM is contained within the series of theoretical propositions labeled 

Efficient Market Hypothesis (EMH). An efficient market is one where prices 

reflect all available information. Therefore, prices change only when new in­

formation is at hand. 

The CAPM has several basic underlying assumptions. One of these as­

sumptions is that investors have homogeneous expectations regarding future 

prices. In reality however, investors have differing opinions regarding future 

prices. Thus, an optimal market portfolio may not exist. 

The validity of the CAPM has been questioned and tested frequently. Many 

of these tests concentrate on testing the EMH, while others evaluate the his­

torical usefulness of the CAPM. Over 20 years ago, the first empirical tests 

on the CAPM were carried out. These tests, using data from the 1930's to 

the 1960's, were largely supportive of the CAPM as researchers showed that 

the average return on a portfolio of stocks was positively related to the beta 

of the portfolio [33]. This supports the CAPM since the quantity E(M)- R1 

is positive. Later studies have led to results which are both conflicting and 

inconclusive due to the nature of the testing. Fama and French [19] recently 

presented evidence which contradicts the CAPM. A main argument is that the 

CAPM is very weak over certain time frames. Counterarguments have been 

made, and it is unclear if their evidence is sufficient to discard the CAPM. 
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Some people believe it is impossible to accurately test the CAPM since more 

than one variable is being tested at the same time. One such paper (see [32]) 

states that it is impossible to accurately test the CAPM since two things are 

being analyzed simultaneously. The first thing tested is the proposition that 

the market is an efficient portfolio a priori, or prior to (independent of) ex­

perience [20]. The second thing being tested is the actual expression of the 

CAPM. Regressions are performed and certain conditions are checked to see 

if the CAPM is satisfied. 

1. 2 Stochastic Models 

Stochastic processes have become increasingly important tools to describe the 

evolution of financial assets. These processes have great potential in describ­

ing financial uncertainty, and are able to account for the possibility of extreme 

events that occur in real markets. The simplest discrete-time stochastic pro­

cess used to model financial assets is the random walk. This type of model 

predicts that prices follow random paths with price changes that are unpre­

dictable based on past prices. For example, let us assume that the initial price 

of an asset is p0 • At time t = 1, the asset price either increases by !:l.p units 

to a price of PI, or decreases by !:l.p units to a price of p~, where each price 

change is equally likely to occur (i.e., the probability of each price occurring 

is 0.5). Continuing, if the price at t = 1 is PI, then at t = 2 the price can 

either increase or decrease by !:l.p units, each event being equally likely. The 

same is true if the price at t = 1 is p~. This process continues for t = 3 and so 

on. This is a standard random walk. These models are appealing due to their 
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simplicity, however more complicated continuous-time stochastic processes are 

required in order to accurately measure most asset prices. 

Brownian motion is a continuous-time stochastic process. For more infor­

mation on Brownian Motion, see [1]. Let us assume that the price of a risky 

asset follows geometric Brownian motion, that is 

(1.2.1) 

where St is the price of the risky asset at time t and Wt is Brownian. The 

parameter J-l is the drift term and the parameter a is the volatility of the risky 

asset. Now consider a European call option on the risky asset with strike price 

K and maturity timeT. From this, the famous Black-Scholes model can be 

derived. This model is used for European call options on stocks which do not 

pay dividends [3, 30, 35]. The value of the option, V(S, t) at any time from 

t = 0 until maturity is given as 

V(S, t) = SN(x)- KN(x- avT- t)ert, (1.2.2) 

where Vis the value of the option at timet, S is the price of the underlying 

asset at time t, K is the strike price and N(x) is the cumulative normal 

distribution function with 

ln(S/ K) + (r + 1/2a2)(T- t) 
x---~~--~====~~--~ - avT-t . 

The theory of stochastic differential equations, such as the one given in (1.2.1), 

is complicated, and simple trading strategies often outperform these stochastic 

models when they are applied to financial markets [7]. 
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1.3 Dynamical Systems Models 

When doubt was cast on the idea that prices of assets are properly modeled 

as a purely random process, a dynamical systems approach to asset pricing 

was introduced [7]. A dynamical system is a deterministic model where the 

value of some function changes with time according to a rule based on past val­

ues. These models are typically represented by ordinary differential equations 

(continuous dynamical systems) or maps (discrete dynamical systems, differ­

ence equations). The deterministic component of asset pricing arises when 

the interaction of different classes of investors is considered. With increased 

knowledge of the behavior of dynamical systems came the realization that the 

interaction of investor classes can be expressed as discrete dynamical systems. 

Despite their appearance of simplicity, these maps have the capacity to exhibit 

an astonishingly wide range of behavior. 

Investors trade due to differences in risk aversion and beliefs about future 

prices. Traders can be grouped into categories of behavioral types in a num­

ber of ways. In these models usually two dominant classes are considered, 

fundamentalists and chartists. Fundamentalists, or "smart money" traders, 

base their decisions on the belief that, over time, prices tend to return to their 

fundamental value. Chartists use technical trading rules to predict future 

prices. Simple rules, past trends, and extrapolation of data are among some 

of the tools they use to make their predictions. Several models incorporating 

heterogeneity have been formulated. Some of these models consider only fun­

damentalists and "trend chaser" chartists [4, 5, 8, 9, 10, 15, 36] while others 

also include "contrarian" chartists [6, 12, 13, 14, 16]. While trend chasers 

make decisions that agree with prevailing wisdom, contrarians make decisions 
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that often contradict this wisdom. 

Some recently published models will be reviewed here to illustrate the 

dynamical systems approach to asset pricing. The basic assumptions of these 

models is discussed in this section while the behavior and solution techniques 

are left for Chapter 3. 

1.3.1 Westerhoff's Model 

Westerhoff [36] developed an asset pricing model taking into account funda­

mentalists and trend chasing chartists. The price of an asset at time t + 1 is 

dependent upon the excess demand of the speculators in the previous period. 

If there is indeed excess demand then the price increases. 

Let P be the logarithm of the asset price. The change in P at time t + 1 

is proportional to the sum of the orders generated by fundamentalists and 

chartists, obtaining a map 

Pt+l = Pt + N(D{ + Df). (1.3.1) 

Here N quantifies the aggressiveness of speculators. For instance, if the number 

of speculators increases over time, then the parameter N will also increase. If 

the number of speculators decreases, then N will decrease. Note that N must 

realistically take only positive values. 

Expressions can be given for the orders generated by each trader type, 

based on the beliefs of each group. Since fundamentalists trust that prices 

converge to their fundamental value over time, D[ can be expressed as 

(1.3.2) 
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where F is the logarithm of the fundamental value of the asset. This value 

is considered constant and known. Note that the total excess demand for the 

asset by fundamentalists at time t is given as N D[. If the current price of 

the asset is larger than the perceived fundamental value then fundamentalists 

assume that the asset is overpriced, and hence the excess demand for the 

asset decreases. Likewise, if the current price is smaller than the fundamental 

price then fundamentalists assume that the asset is underpriced, and hence the 

demand for the asset increases. If this were the only group of traders present, 

the asset price in the next period would coincide with this increase or decrease 

in demand for the asset. However, there exists another group of traders called 

trend chasing chartists who are also considered in this model. 

The orders generated for the asset by trend chasers at timet, denoted Df, 
is given as 

Df = (Pt- F)vt-1 (1.3.3) 

where 

(1.3.4) 

Note that the total excess demand for the asset by trend-chasers at timet is 

NDf. Trend chasers buy when the price is high and sell when the price is low, 

assuming that prices will continue the upward or downward trend. Thus, if 

the current price is higher than the fundamental price, the excess demand for 

the asset increases and vice-versa. In the above equation, vt-1 represents the 

trading volume at time t- 1. Chartists consider vt;_1 to provide clues about 

how reliable their extrapolations may be. More specifically, a high trading 

volume when current prices exceed the fundamental price causes trend chasers 

to purchase more of the asset, whereas a low trading volume under the same 
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condition would cause chartists to purchase less of the asset. 

With this, the total excess demand for the asset at time t can be written 

as 

Et N(D[ + Df) 

N(F- Pt + vt-I(Pt- F)), (1.3.5) 

and hence the asset price at time t + 1 can be written as 

Pt+1 = Pt + N(F- Pt + vt-1(Pt- F)). (1.3.6) 

Since the deviation from the fundamental value is of importance, and not 

the actual fundamental value of the asset, F can be set to zero without loss of 

generality. Note that since F denotes the logarithm of the fundamental asset 

price, we are setting the fundamental price to one (rather than zero). Thus, 

from the above equations we obtain the recurrence relation 

{ 
Pt+l = Pt (1- N + Nvt-1) 

vt = NIPtl (1 + lvt-11) 

which depends on Pt and vt-1· 

(1.3. 7) 

The model presented in [36] does not contain equation (1.3. 7) and his 

stated final model is in error (private correspondence). However, his analysis 

is entirely based upon the defining conditions (1.3.1 - 1.3.4). 

1.3.2 Chiarella, Gardini, and Dieci's Model 

Chiarella, Gardini, and Dieci [11] developed a more complex model. In ad­

dition to considering fundamental traders and trend-chasers, they also take 
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into account how fundamentalists and chartists adjust to mispricing and past 

trends, respectively. We will introduce the model by defining the excess de­

mand equations for fundamentalists and trend-chasers, and comparing them 

to those given in (1.3.2) and (1.3.3). 

Fundamentalist demand is defined by 

(1.3.8) 

where Pt is the logarithm of the asset price at time t and Wt is the logarithm 

of the fundamental value of the asset at timet. The difference between (1.3.1) 

and (1.3.8) is that the parameter a has been inserted into the above equation. 

This parameter represents the strength at which fundamentalists adjust to 

the difference between the fundamental asset value and the current price. For 

instance, if the current price of the asset is much higher than the fundamental 

price, then fundamentalists may react strongly to this price difference and the 

excess demand for the asset may increase substantially (a > 1). The perceived 

fundamental value is assumed known and constant, and hence Wt can simply 

be denoted W. 

Chartist demand is defined by the following nonlinear function h: 

dt = h('l/Jt,t+l- 9t)· (1.3.9) 

Here, '1/Jt,t+l - 9t is called the return differential as '1/Jt,t+l is the expectation 

of the price change between the current and next period and 9t is the return 

on the riskless asset during the same period. The return on tl;1e riskless asset 

is also assumed constant and can be simply denoted by g. The function h is 

not specific but is rather any function satisfying a set of expected properties 
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for the return differential. These properties, as given in [11], are listed below 

(where x = 1/Jt,t+l- g): 

1. h'(x) > 0 't:/x (the function is increasing everywhere) 

2. h(O) = 0 (the function passes through the origin) 

3. 3 x* such that h"(x) < 0 (> 0) 't:/x > x* ( < x*) (the function is purely 

concave up (down) when xis smaller than (larger than) some value x*) 

4. limx--.±oo h'(x) = 0. (the function is bounded above and below as lxl 

approaches infinity). 

The expectation of the price change between time t and t + 1 is given as 

1/Jt,t+l = 1/Jt-l,t + c (Pt - Pt-1 - 1/Jt-l,t). (1.3.10) 

In other words, the expectation of price change is based on the previous ex­

pectation, and how close this is to the actual price change from time t - 1 to 

timet. 

Note that the above properties allow for an arbitrary value x* =/= 0 (i.e., 

the inflection point in chartist demand can occur at any arbitrary value of the 

return differential). In all examples and simulations in [11] however, x* is set 

to zero. This is since the function being used in this model is 

h(x) =a arctan(x). 

To have x* = 0 means that when the return differential is greater than zero, 

chartists will always buy up more of the risky asset. Similarly, when the return 

differential is less than zero, chartists will always sell some of their shares of 
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the risky asset. Thus, to assume that x* = 0 means that chartists are always 

making decisions which agree with the current trend. When the expectation 

of price change exceeds the return on the riskless asset, a buying signal is 

received, and vice-versa. 

The parameter c captures how fast chartists update their estimate of the 

trend. In reality, it makes sense that 0 < c < 1. This is since a trend­

chaser cannot adjust their estimate of the trend more often than they receive 

information about price change. 

Instead of incorporating the parameters a and c into [36], Westerhoff chose 

to use only one parameter, namely N, to represent the aggressiveness of all 

speculators, regardless of their beliefs. Equation (1.3.2) can be rewritten such 

that it is identical to (1.3.8) (i.e., include the parameter a) and a similar 

reaction coefficient could have also been incorporated into (1.3.3). 

As in [36], the updated asset price is proportional to the sum of the excess 

demands of fundamentalists and chartists. Thus, the model is as follows: 

{ 
1/Jt,t+l = 1/Jt-1,t + c [(Pt- Pt-1) -1/Jt-1,t] 

Pt+l = Pt + /3p (a (W- Pt) + h('l/Jt,t+l- g)]. 
(1.3.11) 

The parameter /3p captures how fast the asset price adjusts to the excess de­

mand. Again, comparing this to [36], it is interesting to note that the total 

excess demand for the asset at time t, denoted Et, can be written as /3pEt, 

such that the price adjustment speed is incorporated into (1.3. 7). 

The system (1.3.11) appears three-dimensional due to the dependence on 

Pt and Pt-1 by 1/Jt,t+l· However, it can easily be reduced to the two-dimensional 
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system below: 

{ 

'1/Jt,t+l = (1- c)'I/Jt-l,t + cf]p [a(W- Pt) + h('l/Jt-l,t- g)] 

Pt+l = Pt + f]p [a(W- Pt) + h('l/Jt-l,t- g)]. 

1.3.3 Chiarella and He's Model 

(1.3.12) 

Chiarella and He [12] developed a different model taking into account het­

erogenous beliefs, risk and learning. The model builds on the framework of 

[4] by relaxing several of its assumptions. They consider the influence that 

differing risk attitudes of fundamentalists and chartists have on asset price 

dynamics. The model is developed as follows. 

They begin by considering an asset pricing model with one risk-free asset 

and one risky asset. A Walrasian scenario is used to derive the demand equa­

tion, where a hypothetical market maker matches supply and demand in an 

environment of perfect competition (perfect information and no transaction 

costs), and the market finds the price that equates the sum of these demand 

schedules to the supply. They let R denote the return on the risk-free asset, Pt 

denote the price per share of the risky asset at time t, and Yt be the stochastic 

dividend process of the risky asset. Investor wealth at time t + 1 can be ex­

pressed as the sum of the wealth obtained by investing in the risky and riskless 

assets: 

Wt+l - R(Wt- PtZt) + (Pt+l + Yt+l)zt 

RWt + (Pt+l + Yt+l - Rpt)Zt· 

(1.3.13) 

(1.3.14) 

Here, Zt represents the number of shares of the risky asset purchased at time 

t and is required since Pt is the price per share. The term Pt+l + Yt+l - Rpt is 

the excess return at time t + 1 and can simply be denoted Rt+l· 
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At any given time t, information is known about the prices leading up to 

and including this time. They let Ft = {Pt,Pt-l, ... ;yt,Yt-1,···} denote this 

set of information. The conditional expectation and variance at time t of 

investor wealth, given the information set Ft (typically denoted Eht[Wt+IIFt] 

and Vht[Wt+IIFt] in standard statistics texts), can be determined. Since there 

are two (or three) types of investors considered in this model, the authors 

introduce h to represent each trader type. Note that the expectation of a sum 

is the sum of the expectations (i.e, E[aX + b] = aE[X] +b) and V[aX + b] = 

a2V[X]. The same rules apply to conditional expectation and variance. Thus, 

we get that 

Eht[Wt+liFt] 

Vht(Wt+l) 

RWt + ZtEht[Rt+IIFt] 

zJVht[Rt+l] (1.3.15) 

Now, different investors have differing opinions toward risk. These differing 

attitudes can be characterized by a coefficient of risk aversion ah (i.e., a trader 

of type h has a risk aversion ah)· The number of shares of the risky asset 

purchased by trader type h at time t is denoted Zht and is dependant upon 

this coefficient. It satisfies the equation 

(1.3.16) 

An important difference between this model and the other models discussed 

is that the proportion of investors in this case is not fixed. Thus, at time t, a 

certain number of investors of type h will exist. More specifically, a fraction 

of the total investors will be fundamental traders, and the remaining investors 

will be chartists. The fraction of trader type h existing in the market at time 
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t is denoted nht· Certainly, L:h nht = 1. Thus, the equilibrium of supply and 

demand (where supply of outside shares is assumed to be zero in this case) is 

given as 

Lnht-l Eht[Rt+liFt] =O. 
h ' ahVht[Rt+liFt] 

(1.3.17) 

As in previous models, fundamentalists believe that prices eventually re-

turn to some fundamental value. In this model, this price is denoted p;. Let 

Xt represent the difference between the price per share and the fundamental 

price: 

Xt = Pt- p;. 

Following the work of Brock and Hommes [4, 5, 6], two assumptions are made 

about the deviation of the price per share ofthe risky asset at timet (Pt) from 

the fundamental price p;. 

Assumption 1.3.1. Each group of traders predict the expectation of price 

in two components, with everyone agreeing on the first component, and dis­

agreeing on the second component (an "agent specific prediction component"). 

Mathematically, the assumption is the following: 

Eht[Pt+l + Yt+l] = Et[p;+l + Yt+l] + 
fundamental 

fh,t 
~ 

agent specific 

with !h,t = fh(xt-b ... , Xt-L), L being a positive integer. 

(1.3.18) 

Assumption 1.3.2. Each group of agents predict the variance of price in two 

components, a fundamental component ( a2
) which everyone agrees on, and an 

"agent specific prediction component. " Mathematically, the assumption is the 
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following: 

vt[P;+I + Yt+I] + 
fundamental 

vt [p;+l + Yt+l] = a2 

with 9h,t = 9h(Xt-1, ... , Xt-L) {12}. 

9h,t 
~ 

agent specific 

(1.3.19) 

(1.3.20) 

Using these assumptions and 1.3.15 the expected excess return and variance 

are given as 

Eh,t[Rt+I] 

Vht[Rt+I] 2 a + 9h,t, 

(1.3.21) 

(1.3.22) 

repectively. These equations can now be substituted into (1.3.17) to obtain 

R [L nht-1 ] L nht-dht 
h ah(a2 ,+ 9h,t) Xt = h ah(;2 + g~,t) · (1.3.23) 

Rt+1 can be rewritten as follows: 

(1.3.24) 

Here, 8t+1 = p;+I + Yt+I - Et[p;+l + Yt+1] is a Martingale Difference Sequence 

with respect to the information set Ft. A stochastic series (in this case 8) is 

a Martingale Difference Sequence if its expectation with respect to another 

stochastic series (in this case Ft) is zero, (i.e., E[8t+IIFt] = 0 V t). 

Now, each trader type will have a realized profit 7rh,t at timet given by 

(1.3.25) 

The authors consider a weighted average of realized profits at time t, Uht, 

which depends on the weighted average and realized profit in the previous 



CHAPTER 1. MATHEMATICAL MODELS OF ASSET PRICING 16 

period. In addition, the parameter 11 is inserted into the equation, where 11 

represents the memory strength of traders over time. This can be written as 

(1.3.26) 

The weighted average is necessary when formulating an expression for the 

fraction of traders of type h. The fraction of traders of type h at time t are 

decided using discrete choice probability (see [4] for details on this method). 

Basically, traders are making decisions concerning trader groups based on how 

attractive it is to be in a different group at a certain time. Thus, the fraction 

of each trader type, denoted nht is defined by 

(1.3.27) 

In this equation, j3 > 0 represents the intensity of choice, which captures the 

sensitivity of agents to switch from one trading strategy to another. The larger 

j3 becomes, the more agents will choose the strategy with the highest fitness. 

If j3 = 0 then agents are indifferent and hence there is an even split among 

strategies. In similar models [4, 5] this is often considered the most important 

parameter of the model. 

Rearranging equation (1.3.23), the following system is obtained: 

E nh,t-1 
Rxt = h ah(a2 + 9h,t) 

E nh,t-dh,t 
h ah(a2 + 9h,t) 

[ 
j3Uh,t-1 ] 

nht = exp Eh exp[f3Uh,t-1] 

(1.3.28) 

The different risk attitudes and learning schemes of investors has not yet 

been deeply explored. The next step in the development of the model is 
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to consider these aspects when there are both fundamentalists and chartists 

present. It is assumed that beliefs follow a linear return and nonlinear variance 

as shown below [12]: 

(1.3.29) 

1 L 
-2 ~[ - ]2 at = L L...J Xt-i - Xt . 

i=l 

(1.3.30) 

The two assumptions made earlier can be made more concise. The term 

!ht, representing the agent specific component of the mean, can be written as 

(1.3.31) 

where dh is the trend of trader type h. The agent specific component of the 

variance, ght can be written as 

(1.3.32) 

where vh( a 2
) = f.t [ 1 - (

1 
+1a2)~]. f.t and ~ are positive constants, and this 

function is used in order to obtain upper and lower bounds on the variance 

estimate by fundamentalists [12]. 

When dh = 0 the first assumption captures the beliefs on return of the 

fundamentalists. This is due to the consistency in their beliefs. Otherwise, 

the beliefs on return of the chartists are captured. Thus, if we assume that 

Type 1 investors are fundamentalists and Type 2 investors are chartists, we 

can set d2 = d. The value of d is directly proportional to the amount in which 

chartists use trends to predict future prices. 
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The authors let 'TJ = 0, Ot = 0 and C represent the cost incurred by the 

fundamentalists in each period to obtain past information, including market 

equilibrium equations and the fractions of all other traders involved. Finally, 

set a= a2/a1 and mt = nu- n2,t· Thus the system can be reduced to 

A special case of this model occurs when L = 1. Thus, it follows that 

Xt = Xt-l, a-;= 0, and vh(a-i) = 0. The model is then reduced to: 

Xt+l = R a+ 1 +(a- 1)mt Xt I 
d (1- ffit) 

mt+l =tanh [2:a2 (Rxt- Xt+I) ( Rxt + dxt-1: Rxt) - ,B~l· 
(1.3.34) 

This model is much more complicated than [11, 36] since it not only incor­

porates heterogeneous beliefs, but also incorporates risk and learning strate­

gies. It is three dimensional due to dependance on Xt and Xt-l by ffit+ll and is 

hence less mathematically tractable since the theory is not as well known for 

three dimensional maps. The behaviour of all three maps will be discussed in 

Chapter 3. 



Chapter 2 

Dynamical Systems Theory 

In this Chapter, the necessary definitions and theorems for studying maps 

will be reviewed. Analysis of dynamical systems models in general involves 

both bifurcation theory and graphical tools. The object of bifurcation theory 

is to study the changes that maps undergo as parameter values change. For 

more details concerning the basic definitions and theory of maps as dynamical 

systems see standard texts such as [17, 24, 31]. 

2.1 Fixed Points and Stability 
... 

We will first look at some basic notions concerning maps, including the defi­

nition of a fixed point, as well as the stability of a fixed point. In general, a 

map can be expressed as 

x ~ f(x), (2.1.1) 

where x E JR.n is a vector, f JR.n -+ JR.n is a vector valued function, and 

Xn+l = f(Xn) for all n. 

19 
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Definition 2.1.1. An orbit is a sequence of vectors generated by iterating a 

Definition 2.1.2. A point xis said to be a fixed point of (2.1.1) ifx = f(x) 

[24]. In other words, fixed points are those x values which do not change with 

time and hence satisfy Xt+l = Xt for all t. 

Often when analyzing maps, as we will see in Chapters 3 and 4, the fixed 

points corresponding to some iterate of a map is of great importance. Thus, 

we proceed with the definition of a periodic point. 

Definition 2.1.3. A point x is said to be a periodic point of (2.1.1) if x = 

rn(x). Thus a periodic point of 2.1.1 corresponds to a fixed point of the n~h 

iterate map X ~ rn(x). The point X has minimal period n if n is the least 

positive integer such that the above condition is satisfied. The set of all iterates 

of a periodic point is called a periodic orbit [24}. A periodic orbit of minimal 

period n is often called a period--n cycle. 

The concept of stability is the same for a fixed point or a periodic point. 

We will continue by defining what we mean by a stable (or unstable) fixed 

point. 

Definition 2.1.4. A fixed point x is called stable ifV€ > Q, 38 > 0 such that, 

Vx and Vn;?: 0, if I IX.- xll < 8 then llfn(x)- xll < €. A fixed point is called 

asymptotically stable if, in addition to the above condition, 3r > 0 such that 

f 0 (x) ~ x as n ~ ±oo Vx satisfying I IX.- xll < r. A fixed point is unstable 

if it is not stable [24]. 
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In most situations it is not necessary to use Definition 2.1.4 to determine 

the stabilities of fixed points. Instead, we use the convenient theorem which 

is given below. 

Theorem 2.1.1. Let f(x) be a C 1 function with fixed point x and let J(x) 

be the Jacobian matrix, ann x n matrix of partial derivatives where n is the 

dimension of the system, corresponding to {2.1.1). In other words, 

8Jd8x1 8Jd8x2 8JI/8xn 

J(x) = 
8f2/8xl 8!2j8x2 8f2/8xn 

(2.1.2) 

ofn/OXt 8fn/8x2 ofnfoxn 

evaluated at x. 

1. If the eigenvalues, denoted A1, A2 , ••• , An, of the Jacobian matrix have 

moduli less than one, then the fixed point x is asymptotically stable. 

2. If at least one of the eigenvalues has modulus greater than one, then x 
is unstable [24]. 

The eigenvalues of J(x) are found by solving the following equation (called ... 
the characteristic equation) for A: 

8ft (x) _A 
OX! 

8ft (x) 
8x2 

8ft (x) 
8Xn 

8h(x.) 
axl 

8!2 (x) _"' 
8x2 

8h (x) 
OXn =0. (2.1.3) 

ofn(x) 
8xl 

8fn(x) 
8x2 

ofn (x)- A 
8Xn 
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Theorem 2.1.1 is only useful when the eigenvalues of the Jacobian matrix 

do not have a modulus of one. Thus, we may classify fixed points in terms of 

these eigenvalues, which is done in the following definition. 

Definition 2.1.5. A fixed point xis said to be hyperbolic if the Jacobian matrix 

has no eigenvalues with modulus one. If at least one eigenvalue of the Jacobian 

matrix has modulus one, then the fixed point x is said to be nonhyperbolic [24}. 

Note that if a fixed point is nonhyperbolic, its stability cannot be deter­

mined from the eigenvalues of the Jacobian matrix. 

2.2 Bifurcations 

Bifurcations occur in the vicinity of nonhypcrbolic fixed points. In this section, 

the definitions and theorems related to the bifurcations occuring in the models 

derived in the previous Chapter will be reviewed. First, however, a basic 

definition of a bifurcation is given. 

Definition 2.2.1. A bifurcation is a change in the qualitative behavior of a 

system that occurs due to a small change in a parameter value. 

The local bifurcations occuring in the maps discussea in this thesis are 

saddle-node bifurcations, transcritical bifurcations, pitchfo:r:k bifurcations, period­

doubling bifurcations, and Neimark-Sacker bifurcations. They are all exam­

ples of codimension-one bifurcations. These bifurcations will now be described 

in more detail. 

Definition 2.2.2. In a saddle-node bifurcation, a pair of fixed points, one 

which is stable and the other which is unstable, are created. For parameter 
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values less than the bifurcation value, no fixed points exist. As the parameter 

passes through the bifurcation value, two fixed points appear, one being a stable 

fixed point and the other an unstable fixed point. 

Definition 2.2.3. In a transcritical bifurcation, two fixed points meet and 

exchange stability. The stable fixed point becomes unstable, and the unstable 

fixed point becomes stable. 

Definition 2.2.4. A supercritical pitchfork bifurcation is the bifurcation of a 

stable fixed point into two new stable fixed points. The new fixed points occur 

for parameter values where the original fixed point is unstable. A subcritical 

pitchfork bifurcation is the bifurcation of an unstable fixed point into two new 

unstable fixed points. The new fixed points occur for parameter values where 

the original fixed point is stable {24}. 

Definition 2.2.5. A supercritical period-doubling bifurcation is the bifurcation 

of a stable fixed point into a stable periodic orbit with period-2. The new 

period-2 orbit occurs for parameter values where the original fixed point is 

unstable. A supercritical period-doubling cascade occurs when each of the stable 

period-2 orbits undergo period-doubling bifurcations (to obtain a stable periodic 

orbit of period-4) and so on. "' 

Definition 2.2.6. A supercritical Neimark-Sacker bifurcation occurs when 

a stable invariant circle is born as an attracting (stable) fixed point becomes 

repelling (unstable) [17}. The invariant circle appearing in the Neimark-Sacker 

bifurcation is called a limit cycle. 

The saddle-node bifurcation is sometimes referred to as a "fold" or "tan­

gent" bifurcation. The period-doubling bifurcation is sometimes called a "flip" 
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bifurcation. The Neimark-Sacker bifurcation is called "Hop£'' or "Neimark­

Hopf'' bifurcation in some literature. 

The following results can be used to identify the codimension-one bifurca­

tions occuring in the planar maps discussed in this thesis. 

Theorem 2.2.1. 

then generically a saddle-node bifurcation occurs at ).2 = 1. If special 

symmetry occurs in the system, a transcritical bifurcation, or a pitchfork 

bifurcation may occur. 

2. If I >.1! < 1 and >.2 changes from I >.2l < 1 to >.2 < -1 then generically a 

period-doubling bifurcation occurs at >.2 = -1. 

3. If .\1,2 = a± bi and r = Ja2 + b2 changes from r < 1 to r > 1 then 

generically a Neimark-Sacker bifurcation occurs at r = 1. This is only 

true if there are no resonance terms, i.e., >.k(J.to) =/:- 1, where J.to is the 

parameter value correponding tor= 1, fork= 1, 2, 3, 4. 

There are also global bifurcations occuring in the maps discussed in this 

thesis. Global bifurcations are not merely the result of changes in the stability 

of a fixed point. 

Definition 2.2. 7. An attractor is a set of points towards which neighboring 

points approach as a map is iterated. Examples of simple attractors are stable 

fixed points, periodic orbits and limit cycles. More complicated attractors are 

stable quasiperiodic and chaotic sets. 

Definition 2.2.8. The basin of attraction of an attractor is the closure of the 

set of initial conditions which are attracted to that particular attractor {31}. 

The closure of a set A is the smallest set which contains A. 
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Definition 2.2.9. A chaotic map possesses three ingredients: unpredictability 

(due to sensitivity of initial conditions), indecomposability (it cannot be broken 

down into subsystems), and an element of regularity (intermingling of periodic 

and aperiodic trajectories) {17]. 

Definition 2.2.10. A boundary crisis occurs when the basin boundary of a 

chaotic attractor collides with an unstable orbit, causing the destruction of the 

chaotic attractor [22}. 

Definition 2.2.11. An interior crisis occurs when there is a collision between 

an unstable orbit and a chaotic attractor within the basin of attraction, causing 

a sudden change in the size of the attractor (22}. 

The global bifurcations observed in this thesis are generally "contact bi­

furcations" such as these, where the basin boundary of a stable attractor (or 

attractors) collides with an unstable orbit, causing a sudden change in the 

attract or. For example, in the behaviour of the model in Section 3.1, two 

limit cycles intersect simultaneously with an unstable fixed point at the ori­

gin. A "figure-eight" structure is formed at this bifurcation value, followed by 

a merging and overlapping of the limit cycles into a single chaotic attractor as 

the parameter value is increased. The bifurcation can be lab,..eled a "symmetric 

figure-eight homoclinic bifurcation" [26]. 

Bifurcation theory involving maps with dimension higher than two is much 

more complicated, and we rely heavily on graphical tools to investigate the 

behaviour of these systems. The model given in (1.3.34) is three-dimensional, 

and hence these graphical tools are necessary in this case. 

All three models discussed in Chapter 1 can be enriched by being portrayed 

through these special graphing techniques. They allow readers to obtain a 
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clearer image of the behaviour occuring in these systems as parameter values 

change. These graphs are discussed below, and are crucial in Chapters 3 and 

4. 

Definition 2.2.12. An Orbit Diagram is a plot of a parameter (on the x-axis) 

and the iterates, after transients, of a map (on the y-axis). It is simply a record 

of the stable solutions for any choice of parameters {18}. 

Definition 2.2.13. A Bifurcation Diagram is the plot of the location of fixed 

points, along with their stabilities, versus a chosen parameter. Stable fixed 

points are shown as solid curves, and the unstable fixed points are shown as 

dashed curves. 

Although these are the main graphical tools we rely on when analyzing 

(1.3.7), (1.3.12) and (1.3.34), there are other diagrams that aid the analysis. 

Before these are discussed, some important definitions are reviewed. 

Definition 2.2.14. Liapunov'exponents are a measure of how fast, on aver­

age, two neighboring trajectories move away from each other. If the maximal 

Liapunov exponent, denoted w, is negative, then the attract or is a stable fixed 

point or periodic orbit. If w = 0 then the attractor may be a quasiperiodic 

orbit. If w is positive then the attractor is chaotic. ... 

Computer software can easily plot the maximal Liapunov exponent as a 

parameter is varied. From this diagram it can be determined if a system 

is chaotic, and it can also indicate where possible bifurcations occur (when 

w = 0). 

Definition 2.2.15. A basin diagram is a grid of initial conditions, where each 

point on the grid (i.e., each initial condition) is assigned a color based on an 
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algorithm. First, a number of "trial" initial conditions are randomly selected, 

and as their trajectories converge to an attractor (or tend to infinity) points 

are drawn in the limit set on the grid. If more than one attractor exists, the 

basin for each attractor is plotted with a different color. 

Programs written in C, as well as XPPAUT (18] were used in this thesis 

for plotting Liapunov exponents, orbit diagrams and bifurcation diagrams. 

MAPPER (25] and iDMC (29] were used to plot basin diagrams and orbits of 

planar maps (phase-diagrams) and two-parameter bifurcation diagrams. 



Chapter 3 

Analysis of Current Models 

In this chapter, we will use the definitions and theorems from Chapter 2 in 

order to analyze the maps discussed in Chapter 1. The model results are then 

discussed in terms of asset prices. 

3.1 Westerhoff's Model 

Westerhoff's model (1.3. 7) can also be written as the following two-dimensional 

map: 

P f-t P(1 - N + NV) 

v f-t NIPI (1 + V). 

To find the fixed points of the map, we solve the following system: 

P - P(1 - N +NV) 

v - NIPI(1 + V) 

28 

(3.1.1) 

(3.1.2) 
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This map has three fixed points, as indicated below: 

(P,V) - (0, 0) (3.1.3) 

(P,V) - (2~' 1) (3.1.4) 

(P,V) - (~,1). (3.1.5) 

The stability of these fixed points can be determined from the eigenvalues 

of the Jacobian matrix. Since the partial derivatives of (1.3.7) involve absolute 

values, we must consider two cases. The first case is when P > 0. The Jacobian 

matrix corresponding to P > 0 is 

[ 

1-N+NV 
Jl= 

N+NV 

If P < 0, then the Jacobian matrix is 

[ 

1- N +NV 
J2 = 

-N-NV 

NP]. 
NP 

(3.1.9) 

NP ] 
-NP 

(3.1. 7) 

Now we must substitute each fixed point into the proper matrix and find 

the corresponding eigenvalues. In the limit as (P, V) -4 (0, 0), the Jacobian 

corresponding to the fixed point at the origin is 
... 

[1-N OJ J(O, 0) = . 
±N 0 

(3.1.8) 

The eigenvalues are found by solving 

1-N->. 0 
= 0. (3.1.9) 

±N ->. 

Two eigenvalues result, namely >.1 = 0 and >.2 = 1 - N. 
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Stability results can be obtained from these eigenvalues using Theorem 

2.1.1. For instance, the fixed point (0, 0) is asymptotically stable when l..\11 < 1 

and l..\21 < 1. Since ,\ 1 = 0 it is always less than one, we must determine when 

I.A21 < 1. This is equivalent to solving the inequality -1 < 1- N < 1. Thus, 

I.A21 < 1 when 0 < N < 2, and hence (0, 0) is asymptotically stable when 

0 < N < 2 and is unstable when N > 2. 

We now set the absolute value of the eigenvalues equal to one. This is 

since we are interested in nonhyperbolic fixed points, as mentioned in Chapter 

2. The parameter values for which the eigenvalues equal one indicate where 

possible changes in stability occur, and hence give the possible bifurcation 

values of the system. For the fixed point at the origin, the values of N which 

correspond to ,\2 = 1- N = ±1 are N = 0 and N = 2. Thus, we possibly 

have bifurcations occuring at these values. 

Using Theorem 2.2.1 we can identify the bifurcations occuring at these 

parameter values. Since I.A1 1 < 1 and ,\2 changes smoothly from I.A2I < 1 

to ,\2 < -1 as N increases through 2, a period-doubling bifurcation occurs 

at ,\2 = -1. It can be shown that the bifurcation at N = 0 is a transcritical 

bifurcation, however this is insignificant since N is restricted to be non-negative 

in this model. 

A similar process is carried out for the fixed point given. in (3.1.4). Substi­

tuting this value into J1 (since P = 1/2N is positive) yields 

( 1 ) [ 1 1/2] 
Jl 2N' 1 = 2N 1/2 . 

(3.1.10) 
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The eigenvalues are found by solving 

1- A 1/2 

2N 1/2- A 
=0. (3.1.11) 

The eigenvalues are found to be A1,2 = 3/4 ± )1/16 + N. 

Again, the fixed point (1/2N, 1) is asymptotically stable when IA11 < 1 and 

jA2 1 < 1. It can be shown however that A1 > 1 for all N > 0. It can also be 

shown that IA2I > 1 when N > 3, however due to the condition on A1 the fixed 

point (1/2N, 1) is unstable for all positive N. Since no changes in stability 

occur as the parameter N changes, no new bifurcation values result. 

Finally, the fixed point given in (3.1.5) is examined. Substituting this value 

into J2 (since P = -1/2N is negative) yields 

( 
-1 ) [ 1 -1/2 ] 

J2 2N' 1 = . 
-2N 1/2 

(3.1.12) 

The eigenvalues are found by solving 

1- A -1/2 

-2N -1/2- A 
=0. (3.1.13) 

The characteristic equation in this case is identical to the -one obtained using 

(3.1.4). Thus, the same eigenvalues result, and the same ~tability results are 

obtained. No new bifurcation values result due to the instability of this fixed 

point for all values of N. 

Figure 3.1 is the orbit diagram corresponding to (1.3.7). From this figure 

it is evident that if 0 < N < 2 then prices converge to their fundamental 

value. If N > 2 then prices switch between two values, one that is lower and 
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Figure 3.1: Orbit Diagram corresponding to Westerhoff's Model 
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another that is higher than the fundamental value. At N ~ 2.8, a Neimark­

Sacker bifurcation occurs for each of the points of the period-2 cycle. Instead 

of prices switching between two points, they now switch between two limit 

cycles. We can prove the existence of these Neimark-Sacker bifurcations using 

the second iterate of the map: 

p H P(1-N+NV)(1-N+N2 IPI(1+V)) 

v H N(IP(1-N+NV)I(l+NIPI(l+V)). (3.1.14) 

These fixed points of the second iterate correspond to fixed points or to com­

ponents of period-2 cycles in the original map. The period-2 fixed points are 

found by solving the following system: 

P f>(1- N + NV)(1- N + N 2 IPI (1 + V)) 

V - N(lf>(1- N +NV) I (1 + N IPI (1 + V)). (3.1.15) 

Now, since solving this system involves absolute values, we must consider 

four cases. The first is the case when P > 0 and 1 - N + NV < 0. Thus, 

rather than solve the above system, we solve the following system: 

P - P(1- N + NV)(1- N + N 2 P(1 + V)) ... 
V - -NP(1- N + NV)(1 + Nf>(1 + V)). (3.1.16) 

In other words, using the first equation in (3.1.16) we get that 

(3.1.17) 

or 
- 2- N +NV- V 
p = -:-:N:7"( 1-+-V"'""=")-:-(1---N---+-N-...,V=-:-)" (3.1.18) 
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We can then put these P values into the second equation in (3.1.16), solve for 

V, and simplify both equations. When P = 0 we get V = 0, i.e., a period-

1 fixed point. When P is the latter of the two expressions, we obtain the 

following period-2 fixed point: 

- - ( N- 2 N- 2) 
( p' V) = 2N ( N - 1) ' N . (3.1.19) 

This period-2 fixed point exists for N ;?:: 2. 

Stability analysis of (3.1.19) is carried out in the usual way. Since the 

derivatives of the the second iterate of the map are more complicated, we rely 

on computer software to compute these derivatives and solve the characteristic 

equation. 

The eigenvalues obtained from the characteristic equation are as follows: 

8N3 - 37N2 + 52N- 24 
,\

1
'
2 = 8(N2 - 2N + 1) ± 

v512 - 2048N + 3248N2 - 2536N3 + 969N4 - 144N5 

8(N2 - 2N + 1) 

When N ;?:: 2, these eigenvalues are complex conjugate. Thus, a Neimark-

Sacker bifurcation will occur if r = v' a2 + b2 passes smoothly through r = 1. 

Solving for N when r = 1 gives us 

N* = 7 + v'I7 ~ 2.78. 
4 

(3.1.20) 

Testing the non-resonance condition~ of the Neimark-Sa~ker bifurcation at 

this value N* yields 

,Xl(N*) ~ -0.257 ± 0.966i 

,X2(N*) ~ -0.868 ± 0.496i 

.X3 (N*) ~ 0.703 ± 0.711i 

,X4(N*) ~ 0.507 ± 0.862i 
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so that >..k(N*) =f. 1, k = 1, 2, 3, 4. Also 

di>..j;*)i ~ 1.35 > 0 

Thus, a Neimark-Sacker bifurcation occurs at N*, which is consistent with 

Figure 1. 

The second case we will look at is when P > 0 and 1- N +NV> 0. To 

find the period-2 fixed points in this case, we solve the following system: 

P - P(1- N + NV)(1- N + N 2P(1 + V)) 

V - NP(1- N + NV)(1 + NP(1 + V)). (3.1.21) 

Using (3.1.17), (3.1.18) and solving for V we obtain three fixed points. The 

first is the period-1 fixed point (P, V) = (1/2N, 1). The other period-2 fixed 

points satisfy 

V = (N _ 2) ± J(N- 1)(N;. 2)(N- 3)' (3.1.22) 

where P can be found by substituting these values of V into (3.1.18). These 

fixed points exist for N ~ 3, and form a period-2 orbit since they map to each 

other. Again, the stabilities of these fixed points are determined by examining 

the eigenvalues of the Jacobian matrix. For all N ~ 3, one of these eigenvalues 

is greater than one. Thus, this period-2 cycle is unstable. 

The third case we will look at is when P < 0 and 1 - N + NV < 0. To 

find the period-2 fixed points in this case, we solve the following system: 

P - P(1- N + NV)(1- N- N 2P(1 + V)) 

V - NP(1- N + NV)(1- NP(1 + V)). (3.1.23) 
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Solving for P in this case we obtain 

(3.1.24) 

or 
- 2-N+NV- V 
p = - -::-:-:--=~---~ 

N(1 + V)(1- N +NV). 
(3.1.25) 

Using (3.1.17), (3.1.18) and solving for V we obtain the following period-2 

fixed point: - - ( 2- N N- 2) 
( P, V) = 2N( N - 1) ' N . (3.1.26) 

This fixed point exists for N ~ 2. The period-2 fixed point (3.1.26) and the 

period-2 fixed point (3.1.19) from Case 1 combine to form a period-2 cycle. 

Thus, a Neimark-Sacker bifurcation occurs at the value of N given in (3.1.20), 

consistent with Figure 1. 

The final case to consider is when P < 0 and 1 - N + NV > 0. To find 

the period-2 fixed points in this case, we solve the following system: 

P - P(1- N + NV)(1- N- N 2P(1 + V)) 

V - -NP(1- N + NV)(1- NP(1 + V)). 
.... 

(3.1.27) 

(3.1.28) 

Using (3.1.24), (3.1.25) and solving for V we obtain three fix~d points. The first 

is the period-1 fixed point (P, V) = ( -1/2N, 1). The other values that result 

have V coordinate the same as those obtained in Case 2, with P coordinate of 

opposite sign to those in Case 2. These period-2 fixed points exist for N ~ 3 

and form a period-2 cycle since they map to each other. Again, the stability of 

these fixed points is determined by examining the eigenvalues of the Jacobian 
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matrix. For all N ~ 3, one of these eigenvalues is greater than one. Thus, as 

with the cycle of Case 2, this period-2 cycle is unstable. 

The limit cycle behavior exists until N = 3.0. At this point a symmetric 

figure-eight homoclinic bifurcation occurs due to the collision of the limit 

cycles formed by the symmetric Neimark-Sacker bifurcations with the unstable 

fixed point at the origin. This is displayed in Figures 3.2 and 3.3. 

As N increases past N = 3.0 the system enters chaos from the break-up 

of the limit cycles. Price dynamics are purely chaotic for 3.0 < N < 3.3. 

Therefore the price of the asset cannot be accurately predicted if N is in this 

region. This is shown in Figure 3.4. The existence of chaos in this region is 

confirmed using Liapunov exponents, illustrated in Figure 3.5. 

Figure 3.5 shows the maximal Liapunov exponent as a function of N. Since 

this exponent is positive when N > 3, it is evident that prices are purely 

chaotic when N is in this region. 

At N ~ 3.4 the system undergoes a boundary crisis. As mentioned in 

Chapter 2, this occurs when the boundary of a chaotic set collides with an 

unstable fixed point or unstable periodic trajectory. This causes the destruc­

tion of the chaotic set. The boundary crisis is illustrated in Figure 3.6 [25], 

as the boundary of the chaotic set (in white) collides with.. the unstable fixed 

points (P, V) = (1/2N, 1) and (P, V) = (-1/2N, 1). This ~iagram, like other 

basin diagrams constructed in this thesis, is a grid of initial conditions. In this 

case however, each point on the grid is assigned a color dependent upon the 

orbit generated by the initial condition. If the orbit tends to an attractor, a 

dark blue dot is plotted. If orbits tend to infinity, increasingly lighter dots are 

plotted, depending on how quickly the orbit tends to infinity. 
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3.2 Chiarella, Dieci and Gardini 

The model presented in (1.3.12) can be re-written as follows: 

P ~---+ P + ,BP [a(W- P) + h('lj!- g)] (3.2.1) 

'1/J ~---+ (1- c)'lj! + c,Bp [a(W- P) + h('lj!- g)] 

To find fixed points we solve the following system: 

P - P + ,Bp [ a(W - P) + h( 1,b - g) J (3.2.2) 

'1/J (1- c)1,b + c,BP [a(W- P) + h(1,b- g)]. 

The map has one fixed point, namely (P, 1,b) = (W + h( -g)ja, 0). Intro­

ducing the price deviation, p = P- (W + h( -g)/a) allows the system to be 

written in such a way that the unique fixed point is at the origin. The new 

map, T, can be written as 

{ 

p ~---+ p- ,Bp [ap- k('l/!)] 
T· 

'1/J ~---+ (1- c)'lj!- c,Bp [ap- k('l/!)] 

where k('l/!) = h('lj!- g)- h(-g). 

(3.2.3) 

To obtain stability results, the Jacobian matrix corresponding to T is 

found. This matrix is given below: 

[ 
1 - a,Bp ,Bpk'('l/!) ] . 

J = -ac,Bp 1- c+ c,Bpk'('l/!) . 
(3.2.4) 

The Jacobian matrix is then evaluated at the unique fixed point (0, 0) so that 

the corresponding eigenvalues can be obtained: 

J ( 0' 0) = p fJp • 

[ 

1 - a(3 ~ k'(O) ] 

-ac,BP 1- c + c,Bpk'(O) 
(3.2.5) 
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As before, the eigenvalues of the Jacobian matrix are obtained from the char­

acteristic equation, det(J(O, 0)- >..I)= 0, i.e., 

1- aj3P- >.. /3pk'(O) 

-acj3p 1 - c + cj3pk'(O) - >.. 
=0. (3.2.6) 

Simplifying gives 

>..2- >..(2- c + cj3Pk'(O)- aj3P) + 1- c + cj3pk'(O)- aj3P + acj3p = 0. (3.2.7) 

The eigenvalues which result from (3.2.7) are quite complicated and are 

given below: 

, 2- aj3P- c + c/3pk'(O) ± ( B) 
"'1,2 = 2 3.2. 

Ja2j3~- 2ac/3p(1 + /3pk'(O)) + c2(1- /3pk'(O) + j3~(k'(0)) 2 ) 
2 

The fixed point (p, '1/J) = (0, 0) is stable when l>..1l < 1 and l>..2l < 1. In (11], 

three criteria are used, which are equivalent to l>..1l < 1 and I>..2J < 1 in planar 

maps. These are: 

1. 1- tr[J(O, 0)] + det(J(O, 0)] > 0 

2. 1 + tr(J(O, 0)] + det(J(O, 0)] > 0 

3. det(J(O, 0)] < 1. 

In a general 2 x 2 matrix given by 

A= [ :: :::] , 
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tr(A) = au + a22 and det(A) = a11a22 - a12a21 . The characteristic equation 

given in (3.2.6) can be expressed as .-\2 - .Xtr[J(O, 0)] + det[J(O, 0)] = 0. Using 

the three conditions given above, the following three inequalities are obtained 

in [11]: 

a/3p(2- c) < 2(2- c))+ 2c/3pk'(O) 

aj3p(1- c) > c[/3pk'(O) - 1]. 

The first inequality is always true since the parameters a, /3p and c are always 

positive. Here we simplify the second and third inequalities to obtain the 

following inequality: 

2(a/3p- 2) aj3P 
--~.:;__~-- < c < ----'---
2/3pk'(O) + aj3P - 2 /3pk'(O) + aj3P- 1 

(3.2.9) 

The fixed point (0, 0) is stable when this inequality is satisfied, and unstable 

otherwise, assuming the denominators are positive. 

The analysis in the original paper is carried out using two-parameter bi­

furcation diagrams where a and c are varied. In this thesis a one-parameter 

orbit diagram is used, and the parameter c is varied. 

The bifurcation values are found by setting the absolute value of the eigen-... 
values equal to one. These values indicate where changes in stability occur, and . 
hence give the possible bifurcation values of the system. At our fixed point 

(fl, 1/j) = (0, 0) , it can be shown that two bifurcation values result. These 

bifurcations (in terms of the parameter c) occur when 

2(aj3P- 2) 
c = --~.:.,_~--

2/3pk'(O) + aj3P- 2 
(3.2.10) 
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and 

(3.2.11) 

Since .-\1 = 0, and .-\2 decreases through .-\2 = -1 as c decreases through 

the value given in (3.2.10), a period-doubling bifurcation takes place at this 

value. As well, since the eigenvalues are complex valued and r passes smoothly 

through unity as c increases through the value in (3.2.11), a Neimark-Sacker 

bifurcation occurs at this value. To study the dynamics, parameter values are 

careful chosen for four of five parameters. Using the function h( x) = a arctan x 

the following parameter values are used in the analysis of the map T: a = 1.8, 

/3p = 1.8, g = 0.5, a = 2.3. 

Figure 3.7 shows the constructed orbit diagram (p vs. c) of this system. 

The subcritical period doubling bifurcation takes place as c increases through 

c* ~ 0.315, consistent with that found when substituting the chosen param­

eters into (3.2.10). This creates a stable fixed point (0, 0) and an unstable 

period-2 cycle when c > c*. Figure 3.8 shows the basin diagram correspond­

ing to c = 0.32. When initial conditions are close to zero, the map tends 

to the fixed point at the origin. The unstable period-2 cycle is shown, with 

coordinates of approximately ( -1.2, -0.5) and (1.3, 0.5). The boundary of the 

basin of attraction for the origin is dependent upon the stltble manifold of the 

unstable period-2 cycle. The period-2 cycle does not appear in Figure 3.7 

since an orbit diagram shows only stable solutions for a range of parameter 

values. 

When c > 0.315, prices tend to their fundamental value. A Neimark­

Sacker bifurcation occurs at c ~ 0.584, which again is consistent with the 

value obtained using the chosen parameter values and (3.2.11), and prices now 
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tend toward values of a limit cycle rather than just two values. 

For values of c greater than approximately 0.6, a complicated series of 

global bifurcations occur involving contact bifurcations between basin bound­

aries of local attractors rather than directly involving changes in the fixed 

points themselves. See [11] for their analysis of these basin structures. The 

parameter values chosen in their analysis and description of contact bifurca­

tions differ from those used in this thesis. In this thesis the basin structures 

will be analyzed using computer software [29]. 

When c reaches c ~ 0.5807, a saddle-node bifurcation in period-4 occurs. 

The result is a locally stable period-4 cycle and an unstable period-4 cycle. 

These cycles are displayed in Figure 3.9. 

When c increases through c ~ 0.5836 a Neimark-Sacker bifurcation occurs, 

as previously discussed and displayed in Figure 3.7. For 0.584 < c < 0.5913 

the limit cycle and stable period-4 cycle co-exist. These attractors and their 

corresponding local basins of attraction are given in Figure 3.10. 

When c ~ 0.5913 a contact bifurcation occurs where the limit cycle collides 

with the unstable period-4 cycle. The unstable period-4 cycle thus forms a 

heteroclinic orbit, and a "heteroclinic bifurcation" is said to take place at this 

value. This causes the annihilation of the limit cycle. Hence, as c increases ... 
past this value, the period-4 cycle remains as the only attractor (except for 

the one at infinity). This is shown in Figure 3.11. 

As is shown in Figure 3.7, the period-4 cycle period doubles to create a 

period-S cycle, and we see a period-doubling cascade to chaos. We will denote 

the resulting chaotic attractor A4 • 

At c ~ 0.6455, a new saddle-node bifurcation occurs, this time in period-3. 
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This creates a locally stable period-3 cycle, and an unstable period-3 cycle. 

The stable period-3 cycle co-exists with the chaotic attractor A4 • The basins 

of attraction for these attractors are shown in Figure 3.12. As c increases, 

the period-3 cycle period doubles to create a period-6 orbit, and eventually a 

period doubling cascade to chaos (A3 ). 

At c ~ 0.6775 a boundary crisis occurs. This time A4 collides with the 

unstable period-3 cycle (shown in Figure 3.13). This collision results in the 

annihilation of A4 • This is shown in Figure 3.7 as A4 being replaced by A3, 

with a corresponding increase in the size of the attractor. 

Depending on initial conditions, for values of c slightly greater than c ~ 

0.6775 an orbit may follow the ghost of A4 before arriving at A3 . We say that 

A4 exists as a transient. 

When c ~ 0.6815 an interior crisis occurs. The unstable period-3 cycle 

now collides. with the basin boundary of A3, causing A3 and A4 to merge into 

a single stable attractor. This is shown in Figure 3.14 and can also be seen in 

Figure 3.7 with the re-emergence of A4. 

Finally, when c ~ 0.8149, the chaotic attractor shown in Figure 3.14 collides 

with the unstable period-2 cycle created from the initial subcritical period­

doubling bifurcation. This boundary crisis, along with the. unstable period-2 

cycle, is shown in Figure 3.15. 

3.3 Chiarella and He 

A similar process is carried out for the three dimensional model constructed 

by Chiarella and He [12]. We substitute y = Xt-l in system (1.3.34) to obtain 
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the following three-dimensional map: 

d (1-m) 
X ~ - ( ) X (3.3.1) 

Ra+1+ a-1m 

m ~ tanh [ 2: a2 ( Rx - ~ (a + 1 ~ (am_ 1 )m) x) ( Rx + dy ~ Rx) - /3~] 
y ~ X. 

To study the dynamics, parameter values are careful chosen for six of seven 

parameters. The following parameter values are used in the analysis of (3.3.1): 

R = 1.1, d = 1.2, /3 = 3.5, C = 1.0, a2 = 1.0, and a1 = 1.0. The fixed points 

of (3.3.1) are those x = (x, m, y) which satisfy 

f(x) = x. 

More specifically, the fixed points are 

1-lla 
m=---

1 + lla 

x, where x satisfies 

(x =1= o), 

h (
7(11a + 1) _2 _ ~) __ 

tan 400a x 4 - m, 

and 

y=x. 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

When x = 0, m = tanh(~7 ) andy= 0. The other fixed.points, (x+,m,y+) 

and (fL, m, Y-) can be found explicitly from (3.3.3)-(3.3.5): To determine the 

stability of these fixed points, the Jacobian matrix is calculated and evaluated 

at each fixed point in order to find the eigenvalues of this matrix. For the fixed 

point (0, tanh(~7 ), 0) the eigenvalues are found to be 

[ 

7 ] 12 1 +tanh-
..\1,2,3 = 0, 0, 11 4 7 . 

a + 1 - (a - 1) tanh '4 
(3.3.6) 
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Since >. 1 and >.2 are both zero (and are hence always less than one in absolute 

value) this fixed point will be stable for l>-31 < 1, and unstable otherwise. 

Consequently, we find it is unstable if 0 < a < 3.01 and is stable if a > 3.01. 

Similarly, the other fixed points are both unstable for 0 < a < 1.17 and stable 

for 1.17 < a < 3.01. 

Figure 3.16 shows the constructed orbit diagram (x vs. a) of this system. It 

is evident from this diagram that bifurcations occur at a= 1.17 and a= 3.01. 

This is consistent with the stability results obtained above. As well, chaotic 

behaviour is probable for a range of values less than a= 1.17. This is confirmed 

using Liapunov exponents. Figure 3.17 shows the maximal Liapunov exponent 

as a is varied. If 0.9 < a < 1.17 the Liapunov exponent is close to zero, 

indicating the limit cycle behaviour. If 0 < a < 0.9, the Liapunov exponent 

is mainly positive, denoting a chaotic regime. However, for several "windows" 

of a values in this range, the maximal Liapunov exponent is negative. As in 

Westerhoff's model, these windows represent stable periodic points. 

Figure 3.18 shows the bifurcation diagram corresponding to the model of 

Chiarella and He. The bifurcation taking place at a = 1.17 is a N eimark­

Sacker bifurcation. Phase diagrams (Figures 3.19 and 3.20), plotting the x 

and m coordinates of a single trajectory, are used to illustrate the behavior of 
... 

the system near the Neimark-Sacker bifurcation. If a> 1.17, the limit cycle 

does not exist and the trajectory approaches a single value (Figure 3.19). If 

a < 1.17, but is close to 1.17, the trajectory converges to the limit cycle (Figure 

3.20). As a continues to decrease the limit cycle dissipates and is replaced by 

chaos. The bifurcation at a = 3.01 is a pitchfork bifurcation. Since the stable 

branches appear around an unstable fixed point at x = 0, the pitchfork is said 
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to be supercritical. 

When a > 3.01, the chartists are much more risk averse than the funda­

mentalists. The market is dominated by fundamentalists and prices converge 

to their fundamental value. When 1.17 < a < 3.01, the chartists are somewhat 

more risk averse, and trajectories converge to a positive fixed point (x, m, y). 

When a < 1 the fundamentalists are more risk averse. The market is dom­

inated by chartists. Prices converge to a limit cycle rather than to a single 

value or, if a < 0.9, it is impossible for prices to be accurately predicted due 

to the chaos in the system. It is expected that a < 1, and hence the latter is 

the likely scenario in real markets. 



CHAPTER 3. ANALYSIS OF CURRENT MODELS 64 

X 

I I I I I I ' ' ' 

1.5382 • a=l.125 
. 

1.53815 . 

1.5381 ~ . 

0 0 0 0 I .... 
1.53805 

1.538 ~ 

· :XIri.;•·· 
•' ... 

• 0 •• 

. . . . . . 

1.53795 ~ . 

1.5379 • . 

1.53785 . 
I I I I I I L • I I I 

-0.85056 -0.85054 -0.85052 -0.8505 -0.85048 -0.85046 -0.85044 -0.85042 -0.8504 -0.85038 
m 

Figure 3.19: Phase diagram before Neimark-Sacker bifurcation (a= 1.125) 



CHAPTER 3. ANALYSIS OF CURRENT MODELS 65 

X 

... ..... ! . I I 

1.65 ~ . 

. · 

1.6 ~ a=1.07 
. 

1.55 . 

1.5 • 

1.45 "· .. . 
·. 

I I 'I. I I I 

-0.88 -0.86 -0.84 -0.82 -0.8 -0.78 
M 

Figure 3.20: Phase diagram illustrating Neimark-Sacker bifurcation (a= 1.07) 



Chapter 4 

New Model 

The models presented in [11] and [36] do not account for those chartists known 

as contrarians. The contrarian approach to investing is quite common in the 

markets, and the rewards for acting contrary to the majority of investors can 

be great. Thus, it is natural to include this group in asset pricing models. In 

this chapter, the contrarian approach to investing is examined, and a new asset 

pricing model which accounts for this group is introduced. The derivation and 

analysis of this model are presented in this chapter. 

4.1 Contrarian Chartists 

Contrarians are those investors who, using trading rules and trends of past 

prices, choose to take a contrary view of future asset prices at certain times. 

Thus, although they often have a similar expectation of the price change be­

tween the present time and one time period in the future, they sometimes 

predict prices to change in the opposite direction of "trend-chasing" chartists. 

66 
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When the price of a stock rises, many investors tend to allocate more of 

their wealth to that stock because they think the price will continue to in­

crease (i.e., they receive a buying signal). Since investors have purchased the 

stock at a high price, there is a great amount of risk involved in investing in 

this stock and there is no guarantee that the price will keep rising. Through­

out history, there are countless situations where acting on buying signals has 

caused investors to lose great deals of money. 

A contrarian considers the opinions of other investors, and when this opin­

ion becomes unreasonable or extreme, they invest against it [21]. For instance, 

they would rather allocate more wealth to a stock when its price is low. The 

initial risk involved in this investment is much less than the case of a trend­

chaser who buys when the price is high. Although this is true, the price of 

the stock may never reach the level anticipated by contrarians, and thus they 

may profit very little, if at all, from this investment. It is often the case, how­

ever, that a major decrease in price occurs, and after a period of time prices 

begin to increase to normal levels, or even exceed these levels. In these cases, 

contrarians can make huge profits. 

4.2 Other Models which Include Gontrarians 
. 

As mentioned in Chapter 1, several dynamical systems models consider con-

trarian chartists. For instance, [12] incorporates contrarian chartists through 

the parameter d. If d is negative, but close to zero, then chartists are weakly 

opposing the current price trends. If d is negative and far from zero then 

chartists are strongly opposing current price trends. 
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When trend-chasers and contrarians co-exist and are risk-takers in the 

markets, asset prices tend to stabilize at the fundamental value. As the level 

of risk taken by contrarians decreases, and trend-chasers continue to be risk 

takers, prices exhibit period-2 behaviour, limit cycle behaviour, and prices 

eventually explode when the risk aversion coefficient for contrarians is low 

enough. 

The approach taken in this thesis allows for all three trader groups to co­

exist and to each satisfy their own unique properties. These properties are 

incorporated into the model by choosing appropriate functions which satisfy 

the entire set of properties for each trader group. 

4.3 The Model 

We begin by introducing the notation used in the development of this model. 

As in [11], let Pt denote the logarithm of the asset price at time t and Dt 

denote excess demand for the asset at time t. This demand is comprised of 

fundamentalist and chartist. demand. We will denote fundamentalist demand 

at time t by D{ and chartist demand at time t by Df. Since fundamentalists 

form beliefs concerning the fundamental value of the asset at time t, the de-

mand for the asset by fundamentalists depends on how close the price at time 

t is to the perceived fundamental value. Thus, we can express this demand as 

D{ = a(Ft- Pt), (4.3.1) 

where Ft is the logarithm of the fundamental value of the asset at time t. As 

in [11], the parameter a illustrates how strongly the fundamentalists react to 

mispricing in the market. Fundamentalists will buy when they believe the 
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market price is below the fundamental value, and will sell when they believe 

the market price is above the fundamental value. The extent of the reaction 

to mispricing affects a fundamentalist's decision to buy or sell, and hence the 

need for such a parameter. In this model, as in [11], the logarithm of the 

fundamental value of the asset is assumed known and constant, and hence we 

can let Ft =F. 

Chartist demand is composed of trend-chasing chartist demand and con-

trarian demand, i.e., 

DC- DC1 + DC2 t - t t . (4.3.2) 

We will let c1 represent trend chasers and c2 represent contrarians. Trend 

chasers base expectations of future prices on previous price changes, patterns, 

and the behaviour of other investors. Their expectation of the price change 

from the current time t to the next period t + 1, denoted 'Yt,t+l is, by definition, 

given as 

'Yt,t+l - Et [ Pt+l - Pt] 

- Et[Pt+l] - Et[Pt] 

- Et[Pt+I]- Pt, 

(4.3.3) 

(4.3.4) 

(4.3.5) 

where Et is the expectation at timet. Et[Pt] = Pt since ... at timet the asset 

price is already known. 

Chartists allocate their wealth between a risky and riskless asset. This 

allocation depends on the expected return differential, 'Yt,t+l -bt, where bt is the 

return on the riskless asset at time t. The riskless asset could be, for example, 

a government bond, which has a negligible amount of risk associated with it. 

The return on this asset, as in [11], is considered constant and hence bt = b. 
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The demand of each chartist type is given as a function of this differential. 

For trend chasing chartists, we write the demand for the risky asset at time 

tas 

Df1 = 91(/t,t+l- b). (4.3.6) 

Strict conditions must be placed on the function 91 so that for each value of 

the return differential a realistic value of the excess demand corresponds. For 

example, if the return differential at time t is positive, more wealth will be 

allocated to the risky asset and hence the excess demand will obtain a positive 

value. In other words, if /t,t+l -b > 0 then chartists receive a buying signal and 

hence they increase the number of shares of the risky asset which they own. 

If the return differential at time t is negative, more wealth will be allocated to 

the riskless asset and hence the excess demand will obtain a negative value. 

In other words, if /t,t+l < 0 then chartists sell some of their shares of the risky 

asset. 

There are several choices when selecting a function which accurately de­

scribes the excess demand of trend-chasers. The choice of a function, 91, is 

not as important as the underlying properties of the function. Similar to the 

properties listed in [11], we reason that the general function 91 should be twice 

differential, and have the following restrictions: (where x ;;;::: /t,t+l - b): 

1. 91 (-x) = -91 ( x) (i.e., the function is odd). An odd function is symmet­

ric with respect to the origin. Thus, an increase in the return differential 

from zero will cause the excess demand to shift by the same amount as 

a corresponding decrease in the return differential from zero. In other 

words, a trend-chasers idea of the trend is the same for increases and 

decreases in the return differential. 
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2. gi(x) > 0 Vx E R Mathematically this means that the function is in­

creasing for all real numbers. Quite simply, the excess demand increases 

as the value of the return differential increases. 

3. gnx) > 0 Vx < 0 and g~(x) < 0 Vx > 0. Mathematically this means 

that the function is concave down if x > 0 and the function is concave 

up if x < 0 (i.e., the origin is an inflection point). Although the function 

increases as x increases, the rate at which the excess demand increases 

actually decreases as the return differential increases from zero. Likewise, 

the rate at which the excess demand decreases actually decreases as the 

return differential decreases from zero. 

4. limx-+±oo gi ( x) = 0. As the absolute value of the return differential 

gets large, wealth is either allocated completely in the riskless asset or 

completely in the risky asset. The excess demand for either asset cannot 

realistically tend to infinity, so this condition bounds the excess demand 

from above and below. 

While these properties are similar to those outlined in (11], one of their 

properties (g(O) = 0) is omitted from those outlined above since it is redundant 

(an odd function necessarily passes through the origin). Also, the X
0 discussed ... 

in their model (the point of inflection on the graph) is the origin in our case. 

Due to the above properties, the choices for the demand function are re­

stricted. A common choice for such a function is 

91 bt,t+l - b) = a arctan( 'Yt,t+l - b), a > 0, (4.3.7) 

which is consistent with the function chosen in (11]. 

We have that 
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1. 91(-x) = aarctan(-x) = -aarctan(x) = -91(x) 

d a 
2. dx (aarctanx) = 1 +x2 > 0 Vx E lR 

3· ! ( 1 : x2) (1-::~)2 · ~ 
Thus, dx2 (aarctanx) > 0 Vx < 0 and 

d2 
dx 2 (a arctanx) < 0 Vx > 0. 

4. limx-+oo 
1 

a 
2 

= 0 and limx-+-oo a 
2 

= 0. 
+x 1+x 

The properties of 91 are thus satisfied by our chosen function, and this 

will be the function used throughout the analysis of the model. However, the 

analytical results will depend on the properties of 91 and not the function 

itself. 

The expectation of price change between t and t + 1 depends on the amount 

of success that trend-chasers have at accurately measuring the price change 

in the past. Thus, as in [11] we can further write 'Yt,t+l as 

'Yt,t+1 = 'Yt-1,t + c[Pt- H-1- 'Yt-l,t]· (4.3.8) 

Thus, the difference between the actual change in price from t - 1 to t and the 

expected change in price during the same period is examined. If this value is 

negative (i.e., the expected price change in the previous p~riod was too high), 

then the expectation of the price change between t and t + 1 will be less than 

the expectation of price change between t - 1 and t. Similarly, if this value 

is positive, then the expectation of price change between t and t + 1 will be 

greater than the expected change between t- 1 and t. Trend-chasing chartists 

must constantly adjust their estimates of the changes in future prices. The 

rate at which they make these changes about current trends is a key factor 
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when forming expectations of price changes. Thus, as in [11] the parameter 

c has been inserted into the above equation. This parameter represents the 

rate at which they update their current estimate of the trend of future price 

changes, and will realistically take values between 0 and 1. 

For contrarian chartists, we write the demand for the asset at time t as 

(4.3.9) 

Since contrarian chartists may react in different ways, there are several pos­

sible options when choosing a demand function for this group. This function 

depends on the attitude of the investor. Let us consider two possibilities. 

4.3.1 Case 1: Pure contrarians 

The first case deals with pure contrarians. A pure contrarian always goes 

against the trend of past price changes. If the majority is buying then they 

are selling, and if the majority is selling then they are buying. Thus, if the 

expectation of price change increases from one period to the next then the 

excess demand for the asset will decrease, and vice-versa. 

The demand function for such a group can be characterized by the following 

properties: 

1. g2 (-x) = -g2 (x). As in the case of trend-chasers, the function is sym­

metric with respect to the origin so that deviations of the return dif­

ferential from zero shift the excess demand by the same amount in the 

proper direction. 

2. g~(x) < 0 V x E ~. Contrary to the function chosen for trend-chasing 
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chartists, this function is decreasing. If the return differential increases 

from one period to the next then the excess demand decreases. 

3. 9~(x) < 0 Vx < 0 and 9~(x) > 0 Vx > 0. Again, the function has a point 

of inflection at the origin, however in this case the function is concave 

up when x > 0 and concave down when x < 0. 

4. limx-+±= 9~(x) = 0. As the absolute value of the return differential 

gets large, wealth is either allocated completely in the riskless asset or 

completely in the risky asset. The excess demand for either asset cannot 

realistically tend to infinity, so this condition prevents this from occuring, 

as in the case for trend-chasers. 

An appropriate demand function for such a contrarian could take the form 

92bt,t+l- b) = f,L arctanbt,t+l- b), f,L < 0. (4.3.10) 

We have that 

1. 92 (-x) = f,Larctan(-x) = -f,Larctan(x) = -92 (x) 

d 1-L 
2 - (''·arctanx)- < 0 Vx (since 11. < 0) · dx r - 1 +x2 ~"" 

3 .!!:_ ( 1-L ) = -
2

1-LX Thus, ddx
2

2 (M arctan x) < 0 Vx < 0 and 
· dx 1 + x 2 (1 + x 2 )2 · 
~ 

dx2 (!-L arctan x) > 0 Vx > 0. 

4. limx-+-= 1-L 2 = 0 and limx-+= 1-L 2 = 0 
1+x 1+x 

The properties of 92 are thus satisfied by our chosen function, and this will be 

the function used when analyzing this case of the model. 

The model will be analyzed and discussed in Section 4.4. 
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4.3.2 Case 2: Another Interpretation of Contrarians 

Many experts believe that to succeed as a contrarian investor, one must not 

only disagree with the majority but they must also know when to act on the 

disagreement. When the right time to buy and sell arises, a contrarian takes 

action and then waits for the majority to share the same point of view. If 

this occurs, then a contrarian and a trend chaser are in agreement while the 

stock price rises or falls, as only a majority can push prices enough to make 

the initial buy or sell worthwhile to the contrarian. 

This second case deals with those contrarians who do just this. They closely 

monitor the markets and decide when it is a good time to act contrary to pre­

vailing wisdom. For instance, if the price of a certain asset drops substantially 

over a period of time, the majority of investors may decide to sell their shares 

of the asset. These contrarians assess the situation carefully, and if they be­

lieve that investors have overreacted, they may decide to purchase shares of 

the asset at the current lower price. They then wait to see if their assessment 

was correct. If the majority of investors have overreacted, then eventually the 

trend chasers will change their view, and will side with the contrarian traders. 

Hence, it is only when the asset price has been beaten down that the two 

groups differ: when trend-chasers are getting rid of their shares, contrarians 

are buying them. If an overreaction has occured, the trend-chasers eventually 

come around, and the two trader types are in total agreement while the asset 

price rises. 

Similarly, when contrarians feel that the price of the asset has peaked and 

cannot be pushed any further, they may decide to sell, even if the asset price 

has shown no decrease and other investors are still buying. They think it 
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is unlikely to continue to profit from owning shares the asset, and that the 

current price exceeds the actual worth of the asset. Thus, they sell their 

shares at a much higher price than which they bought them and hence profit 

from the investment. If the price of the asset has not actually been pushed to 

the limit, and the price continues to rise, then contrarians may miss out on 

further profits [21]. 

In terms of the model, contrarians are buying when the return differential 

is close to zero, hoping that prices will begin to increase. If this is the case, 

then trend chasers will see this as an investment opportunity and will also buy. 

Contrarians are selling when the return differential is far from zero under the 

impression that prices have peaked and will not continue their upward trend. 

1. 92( -x) = -g2(x). Again, the function is symmetric with respect to the 

origin so that deviations of the return differential from zero shift the 

demand by the same amount in the proper direction. 

2. :3! X
0 > 0 such that g~(x) < 0 \;/ 0 < x < X

0 and g~(x) > 0 Vx > X
0

• The 

value of X
0 in this case is different from that of trend-chasing chartists 

(for whom X
0 = 0). This is since, when the return differential is small, 

contrarians behave similar to trend-chasing chartists. However, for a cer­

tain (absolute) value of the return differential, contrarian chartists take 

a contrary view of future price changes, and hence the excess demand 

begins to shift in the opposite direction. 

3. limx->±oo g~(x) = 0. As the absolute value of the return differential tends 

to infinity, investor wealth is all in the riskless asset or all in the risky 

asset. As this absolute value increases, the rate at which the demand for 
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the risky asset changes approaches zero so that demand does not reach 

unrealistic values. 

Due to the above properties, the choices for the demand function are again 

restricted. One such function which satisfies the above properties is 

( _ b) = m("Yt,t+l - b) - bt,t+l - b )
3 

c > 0 Q2 l't,t+l . f( b)6 2 ' . v /'t,t+l- + m 
(4.3.11) 

A graph displaying the general shape of such a function is given in Figure 4.1 

The total excess demand for the asset at time t is the sum of the fundamen-

talist demand, the trend chasing chartist demand and the contrarian chartist 

demand: 

(4.3.12) 

More specifically, 

(4.3.13) 

From this equation, the asset price can be determined. The price at time 

t + 1 is given as 

(4.3.14) 

where /3p > 0 represents the speed at which the price adjusts to the excess 

demand. This is consistent with [11]. The following system can be used to 

model the expectation of price change between two consecutive time periods 

as well as the actual price at the end of the same period: 

{ 

Pt+l = Pt + /3p[a(F- Pt) + Ql("Yt,t+l- b)+ Q2("Yt,t+l- b)] 

/'t,t+l = l't-l,t + c[Pt - Pt-1 - l't-I,t] 

(4.3.15) 
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Figure 4.1: Contrarian Demand Function 
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4.4 Analysis 

In this section, the dynamics of both cases will be explored. The results will 

then be compared to those obtained from the other dynamical systems models 

discussed in this thesis. 

In either case, equation ( 4.3.15) can be written as the following: 

P f--+ P + /3p [a(F- P) + g1("!- b)+ g2('Y- b)] (4.4.1) 

'Y f--+ (1- c)'Y + c(3P [a(F- P) + g1('Y- b)+ g2('y- b)]. 

Fixed points are found by solving the following system: 

p P + /3p [a(F- P) + g1(t- b)+ g2(t- b)] (4.4.2) 

One fixed point results from solving this system, namely 

(P,;:y) = (F+ g1(-b) :g2(-b),O). 

As in [11], we introduce the price deviation, p, such that 

p=P- (F+gl(-b):g2(-b))· 

Hence, the new map T1 (in terms of p and 'Y), given by 

{ 

p f--+ p- /3p (ap- [kl('Y) + k2('Y)]) 

T
1

: 'Y f--+ (1- c)'Y- c(3p (ap- [k1('Y) + k2('y)]) ' 
(4.4.3) 

where ki('y) = gi ( 'Y - b) - gi (-b), has a unique fixed point at the origin. 

To obtain stability results, the eigenvalues of the Jacobian matrix corre­

sponding to (4.4.3) are found. The Jacobian matrix is as follows: 

[ 

1- a(3P (3p [k~('y) + k~('Y)] ] 

J = -ac(3P 1- c + c(3P [k~ ("!) + k~('y)] . 
( 4.4.4) 
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The Jacobian matrix is then evaluated at (0, 0) so that the corresponding 

eigenvalues can be obtained: 

J(O, O) = [ 1 - af3v f3v [k~ (0) + k~(O)] ] 

-acj3P 1 - c + cf3v [ki (0) + k~(O)] 
( 4.4.5) 

We now find the eigenvalues using the characteristic equation, given as 

det( J(O, 0) - >.I) = 0. More precisely, 

1 - aj3P-).. (3p [ki (0) + k~(O)] 
-acj3P 1 - c + cf3v [k~ (0) + k~(O)] -).. 

=0. ( 4.4.6) 

Simplifying gives 

)..
2 ->.(2-c+cf3p[k~ (0) +k~(O)]-af3P) + 1-c+cf3p[k~ (0) +k~(O)]-af3p+acj3P = 0. 

( 4.4. 7) 

The eigenvalues resulting from the above equation are as follows: 

)..
12 

= 2- aj3P- c + cf3v[ki (0) + k~(O)] ± 
' 

a2j3~- 2ac/3p(1 + f3v[k~(O) + k~(O)]) + c2(1- f3v[k~(O) + k~(O)] + f3~[kUO) + k~(O)J2) 
2 

The unique fixed point (p, '!') = (0, 0) is stable when 1>.1,21 < 1. This occurs 

when 

2(aj3P- 2) aj3P ___ __;__.:...__--'----- < c < ------=----
2f3v[ki (0) + k~(O)] + aj3P- 2 /3p[ki (0) + k~(O)] + aj3P- 1' 

assuming that no division by a negative number has occured when simplifying 

the inequality. If either denominator is negative, that particular inequality is 

reversed in sign. For all other ranges of the parameter c the fixed point (0, 0) 

is unstable. 
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Bifurcations are found to occur at the following values of the parameter c: 

2(aj3P- 2) 
c = ---::--.....,--,.--'----=--,.......,....,.-'------

2/3p[ki (0) + k~(O)] + aj3P- 2 
(4.4.8) 

and 

(4.4.9) 

We will now look at these bifurcation values for each case of the new model. 

The results (obtained using orbit diagrams) will be given, and compared to 

results previously given. Global bifurcations occuring in the system will also 

be analyzed. This will be carried out in the same manner as in Chapter 3. 

4.5 Case 1 

In (4.4.3) we have that 

k1 ( "!) 91("/- b)- 91( -b) (4.5.1) 

a( arctan("( - b) - arctan( -b)) 

and 

k2( "!) 92("/- b) - 92( -b) (4.5.2) 

- tt(arctan('Y- b)- arctan( -b)). 

Thus, 

k~ ( "() = 1 + ( ~- b )2 (4.5.3) 

and 

k~('Y) = 1 + (;- b)2' (4.5.4) 
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In this case 91 and 92 are the same underlying function, and hence 

k' (0) + k' (0) = (a+ J.L) 
1 2 1+b2' (4.5.5) 

Thus, ( 4.4.3) reduces to (3.2.3) in Chapter 3, with the parameter a now being 

replaced by a+ J.l, where J.l is known to be negative. 

4.5.1 J.-l=-1.0 

Using the following parameter values, the numerical values of the bifurcations 

(in terms of c) can be obtained: a = 1.8, (3p = 1.8, b = 0.5, a = 2.3, J.l = 

-1.0. To do this we use (4.4.8) and (4.4.9). Figure 4.2 is the orbit diagram 

corresponding to Case 1 of the new model using the above parameter values. 

As c increases through c* ~ 0.498, a period doubling bifurcation occurs. 

As in (1.3.12), this creates an unstable period-2 cycle when c > c*. When 

0.498 < c < 0. 788, prices converge to their fundamental value. 

As in (1.3.12), there are a series of local bifurcations occuring in this model. 

For instance, when c ~ 0. 7249, a saddle-node bifurcation in period-3 occurs, 

creating a locally stable period-3 cycle and an unstable period-3 cycle. This is 

shown in Figure 4.3. For 0. 7249 < c < 0. 772, the fixed point at the origin and 

the period-3 cycle co-exist as local attractors. Thus, for most initial conditions 

prices will approach their fundamental value, but for some initial conditions 

prices will tend toward switching between the values in the period-3 cycle. 

This is similar to the situation in Chapter 3.2, where a saddle-node bifurcation 

in period-4 occured, and the locally stable period-4 cycle co-existed with the 

limit cycle for a range of c values. At c ~ 0.772, the period-3 cycles start a 

period-doubling cascade, eventually forming a local chaotic attractor (A3 ). 
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Figure 4.2: Orbit Diagram - Case 1 when J.t = -1 
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Figure 4.3: Saddle Node bifurcation in Period-3 (c = 0.7249) 
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At c ~ 0. 788 a Neimark-Sacker bifurcation occurs, and prices are now 

switching between values of a limit cycle. When c ~ 0.81813, a contact bifur­

cation, or "heteroclinic" bifurcation occurs where the unstable period-3 cycle 

collides with the stable limit cycle. This causes the annihilation of the limit 

cycle, and the previously local attractor A3 to emerge as a globally stable 

attractor, as seen in Figure 4.2. This collision can be seen in Figure 4.4. A 

similar contact bifurcation occured in our analysis of [11] in Chapter 3.2, at 

the value c ~ 0.5913. 

When c ~ 0.91562 a boundary crisis occurs where the boundary of the 

chaotic attractor collides with the unstable period-2 cycle created from the 

period-doubling bifurcation. This is shown in Figure 4.5. 

The global behaviour shown in this model is very similar to that of (1.3.12). 

This is not surprising, since this case can be reduced to (1.3.12) with a replaced 

by a+ It· 

4.5.2 JL = -1.5 

Figure 4.6 shows a similar orbit diagram, this time when It = -1.5. Similar 

behaviour is shown, however the period-doubling bifurcation now occurs when 

c ~ 0.6998 and the Neimark-Sacker bifurcation now occurs when c ~ 0.9552. 

Thus, when contrarians consistently disagree with the majority of investors, 

and the degree to which they act on this disagreement is large enough, their 

actions stabilize asset prices. 

When 0.6998 < c < 0.95, prices typically tend to their fundamental value. 

At c ~ 0.9362, a saddle-node bifurcation in period-3 occurs. This creates 

a locally stable period-3 cycle and an unstable period-3 cycle. This cycle 
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Figure 4.6: Orbit Diagram - Case 1 when J-l = -1.5 
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Figure 4.7: Period-3 Cycle (c = 0.9362) 
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Figure 4.8: Limit Cycle Behaviour 
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is shown in Figure 4.7. The stable fixed point at the origin and the stable 

period-3 cycle co-exist as local attractors when 0.9362 < c < 0.95667. 

When 0.9552 < c < 0.95667, the stable period-3 cycle co-exists with the 

limit cycle as local attractors. The amplitude of the limit cycle is very small, 

so for initial conditions which tend toward this cycle, prices are hovering very 

close to the fundamental price. The limit cycle is shown in Figure 4.8. 

When c ::::::: 0.95667 a contact bifurcation ( "heteroclinic" bifurcation") oc­

curs where the stable limit cycle collides with the unstable period-3 cycle. A 

similar situation occurred in the case when M = -1 at c ::::::: 0.81813. This 

causes the limit cycle to disappear and the stable period-3 cycle to remain as 

the only attractor (except infinity). When c > 0.95667 prices tend to switch 

between the values of the period-3 cycle. It is unrealistic to go beyond c > 1, 

since chartists cannot update their estimate of the trend more often than they 

receive information. 

4.6 Case 2 

In ( 4.4.3) we have that 

k1 (!') - 91 (!' - b) - 91 (-b) 

and 

a( arctan( 'Y - b) - arctan( -b)) 

92(/'- b) - 92( -b) 
m("y- b)-(!'- b)3 

Jh- b)6 + m2 

(4.6.1) 

(4.6.2) 
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Thus, 

(4.6.3) 

and 

k' _ m- 3("Y- b)2 + 3("Y- b) 5 [("Y- b) 3
- m("Y- b)] 

2("Y)- J("Y- b)6 + m2 [("Y- b)6 + m2j3/2 (4.6.4) 

In this case, ki (0) + k~(O) is much more complicated: 

k' (O) k' (O) = _a_ (m- 3b
2
)(b

6 + m2
) + 3b

5
(b3

- bm) 
1 + 2 1 + b2 + (b6 + m2)3/2 (4.6.5) 

4.6.1 a= 1.8, j3 = 1.8 

Using the following parameter values, the numerical values of the bifurcations 

(in terms of c) can be obtained: a= 1.8, {3p = 1.8, b = 0.5, a= 2.3, m = 2.3. 

With the given parameter values inserted into the above equations, ( 4.4.8) 

reduces to c :::::::: 0.24 and ( 4.4.9) reduces to c :::::::: 0.48. The orbit diagram 

displaying these bifurcations is given in Figure 4.9. 

As c increases through c* :::::::: 0.24 a period-doubling bifurcation takes place. 

As in the analysis of (1.3.12) and (4.4.3), this bifurcation creates an unstable 

period-2 cycle when c > c*. This cycle is shown in Figure 4.10, when c = 0.45. 

This Figure shows the basin of attraction for the origin (in blue) and the basin 

for infinity (in black). The unstable period-2 cycle is given in white. As in 

the analysis of the basin structures for (1.3.12), the unstable period-2 cycle 

determines the size of the basin of attraction for the origin. 

When 0.24 < c < 0.48, prices typically converge to their fundamental 

value. This range of values is less than the range of values for which p tends 

to zero in (1.3.12). Thus, the impact of fundamental traders on asset prices 

decreases when trend chasers and contrarian traders both exist in the markets. 
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Figure 4.9: Orbit Diagram- Case 2 
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When 0.24 < c < 0.48, various saddle-node bifurcations in several periods 

occur. For instance, at c ~ 0.413, a saddle-node bifurcation in period-3 

occurs, in period-4 at c ~ 0.477, in period-5 at c ~ 0.465, etc. Each of 

these saddle-node bifurcations creates a locally stable cycle and an unstable 

cycle, and each typically undergoes a period-doubling cascade to chaos. Each 

of these generates an attractor (An) which is stable for a small set of initial 

conditions located far from the origin. 

As c increases through c ~ 0.48 a Neimark-Sacker bifurcation occurs. This 

bifurcation occurs earlier than in (1.3.12). Although the orbit diagram corre­

sponding to this case of the model appears less complicated than that of 1.3.12, 

some of the behaviour is similar, while some new behaviour is also observed. 

When 0.48 < c < 0.5151, prices are mainly switching between values of a 

limit cycle. The limit cycle corresponding to c = 0.485 is given in Figure 4.11. 

When c :;::::j 0.5151, a saddle-node bifurcation in period-9 occurs. This 

creates a locally stable period-9 cycle and an unstable period-9 cycle. The 

limit cycle becomes a "transient" where its stability is replaced by that of the 

stable period-9 cycle. A close-up of this region of the orbit diagram is given 

in Figure 4.12. 

For 0.5151 < c < 0.5172 prices are tending to these nine values. When 

c ~ 0.5172, a Neimark-Sacker bifurcation in period-9 occurs. Thus, prices 

are tending toward values of nine limit cycles, with a single orbit visiting all 

nine of the limit cycle "islands." These limit cycles are shown in Figure 4.13. 

Since the amplitudes of the limit cycles are small, price movement will appear 

similar to that of a period-9 cycle. 

When c :;::::j 0.5182 a saddle-node in period-36 occurs on the period-9 limit 
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Figure 4.11: Trajectory (c = 0.485) 
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Figure 4.12: Orbit Diagram (0.515 < c < 0.52) 
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Figure 4.13: Trajectory - Neimark-Sacker bifurcations in Period-9 (c 

0.5175) 
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cycle, creating a locally stable period-36 cycle and an unstable period-36 

cycle. This bifurcation is evident from Figure 4.12. Thus, prices are now 

tending toward values in the period-36 cycle, causing the period-9 limit cycle 

to become a transient. The locally stable period-36 cycle period doubles, and 

a period-doubling cascade to chaos is observed (Figure 4.12). This chaotic 

attractor is labelled A36 • 

As c increases through c ~ 0.5187 an interior crisis occurs where the unsta­

ble period-36 cycle collides with the chaotic attractor A36 causing A36 and the 

previous limit cycle attractors to merge into a single chaotic attractor. This 

attractor is shown in Figure 4.14. 

Finally, when c ~ 0.5203, a boundary crisis occurs where the chaotic at­

tractor shown in Figure 4.14 collides with the unstable period-2 cycle created 

from the initial subcritical period-doubling bifurcation. This is shown in Fig­

ure 4.15. 

4.6.2 a = 1.5, f3 = 1.5 

A final version of Case 2 is discussed with the following parameter values: 

a = 1.5, f3 = 1.5, m = 2.3, a = 2.3. From Figure 4.16 it is obvious that 

the behaviour occuring when this particular parameter set is used is quite 

complicated, however the types of bifurcation sequence occuring in this version 

of the model are similar to those encountered in Chapters 3 and 4. We will 

focus on a small range of c values, when c < 0.520, and discuss the behaviour 

occuring in this region. The orbit diagram corresponding to 0.445 < c < 0.520 

is given in Figure 4.17. 

A subcritical period-doubling bifurcation occurs at c ~ 0.065. This can 
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Figure 4.16: Orbit Diagram (a= 1.5, j3 = 1.5) 
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Figure 4.17: Orbit Diagram (0.445 < c < 0.520) 
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be shown using ( 4.4.8) or by looking at Figure 4.9. This creates a stable fixed 

point at the origin, and an unstable period-2 cycle. As in the other examples, 

when initial conditions are close to the origin, orbits will tend to the origin. 

Orbits from initial conditions far from the origin will tend to infinity. 

When c ~ 0.449, a Neimark Sacker bifurcation occurs and prices tend to 

values in a limit cycle. This behaviour occurs for a range of c values, namely 

when 0.449 < c < 0.496. When c ~ 0.492, a saddle-node bifurcation in 

period-4 occurs. This creates a locally stable period-4 cycle, and an unstable 

period-4 cycle. Hence, when 0.492 < c < 0.496, the period-4 cycle co-exists 

with the limit cycle. This can be seen in Figure 4.18 when c = 0.495. 

When c ~ 0.496, a saddle-node bifurcation in period-6 occurs on the 

limit cycle, creating a stable period-6 cycle and an unstable period-6 cycle, 

and a "window" in the limit cycle at tractor. This can be seen in Figure 

4.17. Similar to Section 4.6.1, the limit cycle becomes a transient, where its 

stability is replaced by that of the stable period-6 cycle. The stable period-6 

cycle period-doubles and undergoes a period-doubling cascade to chaos. This 

chaotic attractor is denoted A6 . At c ~ 0.50640 a saddle period-doubling 

bifurcation of the unstable period-6 cycle occurs from the previous saddle­

node bifurcation, creating an unstable period-12 cycle and an unstable period-

6 cycle. 

When c ~ 0.51484, the chaotic attractor A6 collides with the unstable 

period-12 cycle which was created from the saddle period-doubling bifurca­

tion. This causes an interior crisis, where the chaotic attractor and the previous 

limit cycle attractor merge into a single larger chaotic attractor. This is shown 

in Figure 4.17. Figure 4.19 is a basin diagram showing the emergent chaotic 
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attractor when c = 0.516, along with the local period-4 attractor which is still 

present. 
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Chapter 5 

Discussion 

In this chapter, some of the main results and ideas of this thesis will be re­

viewed, and some final conclusions and future research plans will be given. 

5.1 Summary and Conclusions 

In this thesis, several dynamical systems models of asset pricing were discussed. 

These models consider heterogeneous beliefs among traders, and are much 

different from the CAPM and stochastic calculus based models in current use. 

Two basic trader groups are considered, fundamental traders and chartists. 

The main focus was to create a different asset pricing model which consid­

ered fundamental traders and two types of chartists. The first type of chartist, 

called trend-chasing chartists, use trends of past price changes to predict fu­

ture prices. The second type, called contrarian chartists, use the same ideas 

to go against the actions of trend-chasers. The model, which is an extension 

of [11], considers two cases. The first case deals with "pure" contrarians, or 

108 
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those contrarians who always choose to go against the actions of trend-chasing 

chartists. When the majority of traders are buying, these contrarians are sell­

ing, and when the majority of traders are selling, they are buying. The second 

case deals with contrarians who, having access to the same information as all 

other traders, not only decide to go against the majority, but they also attempt 

to determine when to act on the disagreement in order to make a profit. Thus, 

they are not simply disagreeing, but rather are waiting for an opportunity to 

disagree when they believe prices are about to increase rapidly, or have been 

pushed to their maximum value. 

In either case, the model is given in (4.4.3). However, the contrarian de­

mand functions differ. In Case 1 of the model we have the trend-chaser demand 

function, 

g1 ( "Yt,t+l - b) = o: arctan( "Yt,t+l - b), 

and the contrarian demand function, 

g2("Yt,t+l- b)= JLarctan("Yt,t+l- b). 

The following parameter values were used to analyze this case of the model: 

a = 1.8, /3p = 1.8, b = 0.5 and o: = 2.3, J.l = -1.0. With the given parameter 

set, the following conclusions regarding asset prices can be made: 

1. When cis small, prices converge to their fundamental value. 

2. As c increases, prices tend toward the values in a period-3 cycle for a 

small range of initial conditions. Due to period-doubling bifurcations 

prices tend toward values of a period-6 cycle, followed by a period-12 

cycle, and so on, as c increases. Again, this is only true for a small range 
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of initial conditions. Otherwise, prices still converge to their fundamental 

value. 

3. When 0. 788 < c < 0.81813 prices switch between values of a limit cycle 

from most initial conditions. The amplitude of the limit cycle starts 

out small so, although prices are tending toward values of a limit cycle, 

prices are hovering around the fundamental value. As c increases, a 

corresponding increase in the amplitude of the limit cycle occurs, and 

prices are tending away from the fundamental price. 

4. As c continues to increase, the limit cycle behaviour disappears and 

prices now become chaotic. There is still a distinct range of possible 

price values. However, there is no determined pattern describing how 

prices jump from one value to another. 

A second parameter set in case 1 is also examined. The parameter J-L is 

set to J-L = -1.5. The results, in terms of asset prices, can be summarized as 

follows: 

1. As before, prices tend to their fundamental value when c is small. As 

c increases, prices tend toward values in a period-3 cycle from certain 

initial conditions, and tend to the fundamental value from other initial 

conditions. The location of the period-3 cycle begins close to the origin, 

so prices are still hovering around the fundamental value, but moves 

away from the fundamental value as c increases. 

2. Prices tend to the period-3 cycle from many initial conditions and to the 

values of a limit cycle when initial conditions are chosen to be near the 
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origin, as c continues to increase. The amplitude of the limit cycle is al­

ways extremely small, so prices are still hovering around the fundamental 

value when they are not tending to the period-3 cycle. 

3. Prices eventually tend only toward the period-3 cycle as c increases to 

c = 1. Prices do not become chaotic as c increases, and generally stay 

close to the fundamental price, unlike other cases of the model. Thus, 

when pure contrarians are highly active in the market, prices typically 

stay close to their fundamental value, and price dynamics are much less 

complex. It appears in this case that fundamental traders may be most 

successful at predicting future prices. 

In Case 2 of the model, we have that 

91 ( '/'t,t+l - b) = a arctan('/'t,t+l - b) 

and 

( b) _ m('/'t,t+l -b)- bt,t+l - b) 3 

92 '/'t,t+l - - . I( b)6 2 v '/'t,t+l - + m 

The parameter set used in this case is a = 1.8, {3 = 1.8, a = 2.3, m = 2.3, 

b = 0.5. 

1. Prices tend to the fundamental value for small c values. As c increases, 

many cycles of varying periods occur, and hence prices are tending to 

these cycles from certain initial conditions, while still tending to the 

fundamental value from most initial conditions. 

2. As c continues to increase, prices tend to the values in a limit cycle from 

many initial conditions, while they can still tend to these cycles from 
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other initial values. As before, the amplitude of the limit cycle starts 

out small, and as c increases, prices begin to drift from the fundamental 

value. 

3. Prices no longer tend toward values of a limit cycle as c continues to 

increase, and instead prices switch between values of a period-9 cycle. 

As c increases slightly, the period-9 cycle dominates and prices are only 

switching between values of this cycle. These nine values change to nine 

limit cycles as c continues to increase. The amplitude of these limit 

cycles is small, so prices are still hovering around the period-9 cycle. 

4. Eventually, prices tend toward values of a period-36 cycle, and ulti­

mately, prices become chaotic through period-doubling bifurcations. Prices 

continue to experience chaos, but with a larger range of values, with the 

re-emergence of the previous limit cycle behaviour, combined with the 

chaotic attractor which is already present. 

To summarize, two-parameter bifurcation diagrams have been created, 

shown in Figures 5.1, 5.2 and 5.3. The parameters which are varied in these 

diagrams are c (on the x-axis) and (3 (on the y-axis). From this diagram, 

we can give the location of the important local behaviour (period-doubling 

and Neimark Sacker bifurcations) occuring in (4.4.3), as well as the boundary 

crisis which is common to all cases of the model when c gets large. In these 

diagrams, the parameter a has been kept constant at a = 1.8. The black region 

denotes all of those orbits which go to infinity, the red region denotes those 

regions where local fixed point behaviour is occuring, and the white region 

is where the global bifurations and chaos occur. The boundary of the black 
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and red regions is where the subcritical period-doubling bifurcation occurs for 

any f3 and c value in the given ranges. The boundary of the red and white 

regions is where the Neimark-Sacker bifurcation occurs for any choice of f3 and 

c. Finally, the boundary of the white and black regions is where the bound­

ary crisis, caused by the collision of the chaotic attractor with the unstable 

period-2 cycle, occurs for a choice of f3 and c values. 

5.2 Future Research 

There are certain aspects of this modelling approach that were not covered in 

this thesis. For instance, these models were not tested against actual data. 

Thus, although they have the capacity to describe complex markets, no tests 

have been performed to determine their accuracy. In the future, we plan to 

look at testing several of these models to determine if they accurately describe 

certain markets. To do this, in depth research on the numerical values for the 

parameters used in these models must be carried out. Once we are confident 

that our parameter values are reliable, the behaviour of the models with this 

certain parameter set can be explored and tested against real markets. 

A second future research topic we will consider is if this modelling approach 

is suitable for derivative assets. Several stochastic models are currently being 

used to model such assets. The Black-Scholes option pricing model, for in­

stance, is one of the most popular tools for pricing derivative assets, such as 

European and American call options. We will take a closer look at derivative 

assets and the possibly of using a dynamical systems approach to determine 

the value of a derivative asset from time t = 0 to maturity. 
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Finally, another goal for the future is to expand on ( 4.4.3) to incorporate 

even more trader groups. In real markets, traders have many different schemes 

for estimating future asset prices. In this thesis, the contrarian approach to as­

set pricing was studied, and this group was included in an asset pricing model 

which already acocunted for fundamental traders and trend-chasers. With 

more study, other trader behaviours could also be incorporated into dynam­

ical systems models, such as the one given in (1.3.12) or ( 4.4.3). As well, in 

[12], the fraction of each trader group existing in the markets at a particular 

timet was investigated. This is very important in accurately describing mar­

ket behaviour. However including this into (4.4.3) may make the model less 

mathematically tractable, and it will also introduce new parameters into the 

model. Numerical estimates for these new parameters will also have to found. 

A closer look at trader groups, and the fraction of each trader group existing 

in the market over time, is indeed an area of interest for future research. 



Bibliography 

[1] Bjork, T. S. (2004). Arbitrage Theory in Continuous Time (2nd edn.). 

Oxford University Press, New York. 

[2] Black, F. (1972). Capital market equilibrium with restricted borrowing. 

Journal of Business, 45, 444-455. 

[3] Black, F., and Scholes, M. (1973). The pricing of options and corporate 

liabilities. Journal of Political Economy, 81, 637-654. 

[4] Brock, W. A. and Hommes, C. H. (1998). Heterogeneous beliefs and routes 

to chaos in a simple asset pricing model. Journal of Economic Dynamics 

and Control, 22, 1235-1274. 

[5] Brock, W. A. and Hommes, C. H. (1997). A Rational Route to Random­

ness, Econometrica 65, 1059-1095. 

[6] Brock, W. A. and Hommes, C. H. and Wagener, F. (2005). Evolutionary 

dynamics in markets with many trader types. Journal of Mathematical 

Economics, 41, 7-42. 

118 



BIBLIOGRAPHY 119 

[7] Chiarella, C. (1992). Developments in Nonlinear Economic Dynamics: 

Past, Present and Future. In: Die Zukunft der Okonomischen Wis­

senschaft (Hanusch, H.), Verlag Wirtschaft und Finanzen. 

[8] Chiarella, C., Dieci, R. and Gardini, L. (2003). A Dynamic Analysis of 

Speculation Across Two Markets. Research Paper Series 89, Quantitative 

Finance Research Centre, University of Technology, Sydney. 

[9] Chiarella, C., Dieci, R. and Gardini, L. (2002). Price Dynamics and Diver­

sification Under Heterogeneous Expectations. Computing in Economics 

and Finance 88, Society for Computational Economics. 

[10] Chiarella, C., Dieci, R. and Gardini, L. (2002). Speculative behaviour 

and complex asset price dynamics. Journal of Economic Behaviour and 

Organization, 49(1), 173-197. 

[11] Chiarella, C., Dieci, R. and Gardini, L. (2001). Asset Price Dynamics in a 

Financial Market with Fundamentalists and Chartists. Discrete Dynamics 

in Nature and Society, 6, 69-99. 

[12] Chiarella, C., He, H. Z. (2002). Heterogeneous Beliefs, Risk, and Learning 

in a Simple Asset Pricing Model. Computational Economics, 19, 95-132. 

[13] Chiarella, C. and He, H. Z. (2003). Heterogeneous Beliefs, Risk, and 

Learning in a Simple Asset Pricing Model with a Market Maker. Macroe­

conomic Dynamics, 7(4), 503-536. 

[14] Chiarella, C. and He, H. Z. (2002). An Adaptive Model on Asset Pric­

ing and Wealth Dynamics with Heterogeneous Trading Strategies. Re-



BIBLIOGRAPHY 120 

search Paper Series 84, Quantitative Finance Research Centre, University 

of Technology, Sydney, Australia. 

[15] Chiarella, C., Gallegati, M., Leombruni, R. and Palestrini, A. (2002). 

Asset Price Dynamics among Heterogeneous Interacting Agents. Compu­

tational Economics, 22, 213-223. 

[16] Chiarella, C. and He, H. Z. (2001). Asset price and wealth dynamics under 

heterogeneous expectations. Quantitative Finance, 1, 509-526. 

[17] Devaney, R. L. (1989). An Introduction to Chaotic Dynamical Systems 

(2nd edn.). Addison Wesley, Redwood City, California. 

[18] Ermentrout, B., (2002). Simulating, Analyzing, and Animating Dynamical 

Systems: A Guide To XPPA UT for Researchers and Students. Society for 

Industrial and Applied Mathematics. 

[19] Fama, E. F. and French, K. R. (1992). The Cross-Section of Expected 

Stock Returns. Journal of Finance, 47(2), 427-465. 

[20] Fernandez, P. (2002). Valuation Methods and Shareholder Value Creation. 

Academic Press, Amsterdam. 

[21] Gallea, A. M. and Patalon, W. (1998). Contrarian Investing. New York 

Institute of Finance, New York. 

[22] Grebogi, C., Ott, E., Yorke, and J. A. (1983). Crises, Sudden Changes in 

Chaotic Attractors, and Transient Chaos. Physica D, 181-200. 

[23] Griffiths, D. F., Higham, D.J. (1997). Learning LaTeX. Society for Indus­

trial and Applied Mathematics, Philadelphia. 



BIBLIOGRAPHY 121 

[24] Hale, J. and Ko<;ak, H. (1991). Dynamics and Bifurcations. Springer­

Verlag, New York. 

[25] Harold, J.B., (1993). Chaotic Mapper: User's Manual. American Institute 

of Physics, New York. 

[26] Kuznetsov, Y. A. (1995). Elements of Applied Bifurcation Theory. 

Springer-Verlag, New York. 

[27] Lintner, J. (1965). The valuation of risky assets and the selection of risky 

investments in stock portfolios and capital budgets. Review of Economics 

and Statistics, 47, 13-37. 

[28] Markellos, R. N. and Mills, T. C. (2003). Asset Pricing Dynamics. The 

European Journal of Finance, 9, 533-556. 

[29] Medio, A. and Lines, M. (2001). Nonlinear Dynamics: A Primer. Cam­

bridge University Press, Cambridge, U.K. 

[30] Meyer, M. (2001). Continuous Stochastic Calculus with Applications to 

Finance. Chapman & Hall/CRC, Florida. 

[31] Ott, E. (2002). Chaos in Dynamical Systems (2nd edn.). Cambridge Uni­

versity Press, Cambridge. 

[32] Roll, R., (1977). A critique of the Asset Pricing Theory's Tests: Part 1: On 

past and Potential Testability of Theory. Journal of Financial Economics, 

4, 129-176. 

[33] Ross, S. A., Westerfield, R. W., Jaffe, J. F., Roberts and G. S. (2003). 

Corporate Finance (3rd Canadian edn.). McGraw-Hill Ryerson, Toronto. 



BIBLIOGRAPHY 122 

[34] Sharpe, W.F. (1964). Capital asset prices: A theory of market equilibrium 

under conditions of risk. Journal of Finance, 19, 425-442. 

[35] Sydsaeter, K., Strom, A. and Berek, P. (1999). Economists' Mathematical 

Manual (3rd edn.). Springer-Verlag, Berlin. 

[36] Westerhoff, F. H. (2005). Heterogeneous Traders, Price-Volume Signals, 

and Complex Asset Price Dynamics. Discrete Dynamics in Nature and 

Society, 2005, 19-29. 










