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Abstract

This thesis investigates the effectiveness of model predictions in two important fields
of process operation: process monitoring and process control. Both monitoring and
control are essential for the safe and optimal operation of a chemical process. Process
monitoring is necessary to notify the operator about an undesired condition, whereas
a controller directs a process to desired condition. In Part I of the thesis, a novel
model-based predictive technique is proposed for early warning generation to the op-
crator. In Part II of the thesis, an in-depth simulation-based investigation is carried
out to evaluate the performaiice between two control structures: ‘model predictive
controller (MPC) cascaded to the proportional-integral-derivative (PID) controller’,

and ‘PID-free MPC’.

The proposed early warning generation method uses open-loop process model and dis-
turbance model. Process feedbacks are used to correct prediction bias. This method
exploits the controller limitations in dealing with process time delay and actuator
constraints. An warning in form of alarm is issued if the open-loop predictions ex-
ceed the threshold within the process time-delay. Actuators also plays a major role
in controlling processes. If at any point actuators do not have sufficient capacity,
controller will fail to regulate the process. Using the process gain, measurements, and

constraint information a linear prograinming algorithm is used to check the existence
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of a feasible solution that meets all constraints. An alarm is generated if no feasi-

ble solution can be found (i.e., the actuator does not have suflicient capacity). The
proposed method is applied to a single-input-single-output (SISO) and a multi-input-
multi-output (MIMO) continuous stirred tank heater (CSTH) system. The method
gave early warnings compared to the existing safety systems. Also the method demon-

strated robustness under small disturbance in the process.

The comparative study between the ‘MPC-cascaded to PID" and the ‘PID-free MPC’
structure is carried out on a simulated CSTH system. In the cascaded structure the
flow-loops are regulated by the PID controller. On top of that a dynamic matrix
controller (DMC) manipulates the set-points of the flow-loops to control tank tein-
perature and level. The "PID-free MPC’ structure uses a dynamic matrix controller
(DMC) to manipulate the valve positions directly. The study reveals that the PID-
free MPC structure outperforms the cascade structure in both disturbance rejection
and set-point tracking. However, the PID-free MPC structure demands more control
action and has more computational load. Integrated square error (ISE) is used to

quantify the performance.
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Chapter 1

Introduction

Predicting the future is an important part of the preparation for future events in
our cvery-day life. Instinctively predictive models are used to predict the outcome
of certain phenomena. For example, when someone is going out of the house and
obscrves that, the sky is covered with black cloud, instinctively he would take cither
an umbrella or a rain-coat to negate the effect of a possible shower. This philosophy
of pre-scientific prediction can he converted into a scientific prediction by satisfying
some requirements. The phenomena have to be fully explainable using science, the
outcome of certain phenomena have to be consistent and understandable, and finally
phenomena can be expressed either through numbers or by logic. Satisfying these cri-
teria, a prediction can be made scientific. Such scientific predictions have significant

applications in many branches of science and engineering.

Predictions are also extensively used in the process industry for control purpose. Due
to the extensive use of model predictive controller (MPC), the open-loop dynamic
model of the process is usually known. In this thesis, the predictive power of these

process model is used in two important arcas of process operations: monitoring and



control. In part I of the thesis an alarm system is developed based on open-loop
dynamic predictions. In part II a simulation-based study is carried out to compare
the purely predictive control structure (i.e., MPC manipulating actuator) with the

existing hybrid (i.e, predictive cascaded to feedback) control structure.

Mounitoring is essential for safe and uninterrupted operation of a plant, which is one of
the pritnary goals in any process. On average 1500 process variables are continuously
monitored in a typical process plant. For safe operation, each process variable is re-
quired to be inside certain limit values. If a variable violates these limnits, an alarm
is generated to alert the operator to take corrective actions. Failure of the operator
to take the necessarv actions before a process variable goes over the safety limit may
cause severe consequences to equipment as well as to human aud the environmernt.
Detection of an abnormal situation in time is absolutely critical to avoid both human
injuries and equipment, damage. The state of the art univariate alarm systems gen-
crate alarms based on process measurements. As such, they often lack the ability of
prediction. Advance multivariate monitoring methods use models and exploit corre-
lations between different variables for fault detection and alarm generation. These
methods have more success in issuing early warnings. Howcever, some of these meth-
ods do not use the power of prediction fully and do not consider the impact of the
controller and actuator explicitly on the alarm system. The proposed methodology
considers the above factors and develops a truly predictive alarm generation system
which is able to detect any impending fault at a very carly stage. Using the proposed
methodologyv the information of a possible abnormal situation can be sent to opera-
tors carly on, which provides more time for the opcrators to respond to an abnormal

situation.




The second part of the study deals with the predictive control. The prediction of
variables is already in use in the field of process control in the form of MPC, but in
most cases the existing MPCs are used as a supervisory layer over the base level PID
controller. This structure does not allow the potential benefits of the MPC to be fully
harnessed. This is why a PID-free control structure is proposed in the current study,
where control valves are directly manipulated by the MPC. This structure offers sev-
eral advantages: full use of valve capacity, handling of multiple feed-forwards, etc.
Moreover, as no PID is present, updatiug is not required in MPC for changes in PID
tuning parameters. A simulation-based comparative study is carried out to evaluate
the performance of these alternative comtrol structures. The study confirmed the ad-
vantages ol the PID-free MPC structure over the MPC-cascaded to PID controller

structure.

1.1 Objectives of the Current Study

This research is aimed to investigate and develop predictive methodologies for process
monitoring and process control. In the process monitoring part, a novel model-based
predictive early warning generation technique is proposed through a predictive alarm
system. Proposed predictive alarm system uses open-loop predictions from process
and disturbance models. To make the methodology robust, biases of the predictive
signals are corrected using process measurement and a heuristic rule is used to gener-
ate alerts to the operator. The focus of this study is on generating early warning for

operators and providing more time to respond in abnormal situations.

In order to achieve the objectives, followig specific tasks were set at the begining of



this work.

e Dcvelop a comprehensive theory for application of the open-loop dynamic model

for earlv warning generation.

e Dcvelop the methodology and algorithm for the predictive alarm gencration

system.

e Demonstrate the performance of the proposed methodology using process system

in a simulation environment.

The predictive control study is the second focus of this thesis. The aim of this work
is to perform a comparative study between two competing control structurcs: "MPC
cascaded to PID’ and ‘PID-free MPC'. A two-layer PID structure is initially used to
control a process. The PID controllers of this structure are gradually replaced by
MPC, and the process is made PID-free. Comparative performances of the different
control structures arc studied discussing the advantages and limitations. The specific

tasks for this study are to

e Implement two control structures: MPC-cascaded to a PID controller and PID-

free MPC on a continuous stirred tank heater (CSTH) system.

e Investigate the performance of the alternative control structures for set point

tracking and regulatory control using quantitative measures.

e Investigate actuator demand and the effect of actuator non-linearity on control

performance of these alternative structures.




1.2 Thesis Organization

The first chapter of this thesis briefly describes the motivations for this research and
objectives of the study. The thesis is thematically divided into two parts. Part I deals
with predictive alarm gencrations. Part I consists of Chapter 2, Chapter 3, Chapter
4 and Chapter 5. Part II documents the comparative studv between the ‘MPC cas-
caded to PID™ and ‘PID frce MPC control” structures. Part II consists of Chapter 6,

Chapter 7, Chapter 8 and Chapter 9.

Chapter 2 covers the extensive review of literatures on process monitoring. A hrief

introduction which discusscs alarm management history and standards is also given.

The mathematical formulation of the proposed methodology is discussed in Chapter

3, mentioning the two limiting conditions.

Chapter 4 is devoted to describe two case studies to show the effectiveness of the
proposed methodology. This chapter includes the detailed plant description and simi-

ulation results and discussions.
Chapter 5 documents the contributions of the predictive alarm generation system de-
scribed in part I. Recominendations for more robust techniques arc also provided in

this chapter.

In Chapter 6, motivations to replace PID with MPC are stated. This chapter also

covers the existing works to replace PID and a brief historical review of MPC.

The control algorithm used to design the MPC controller, is discussed in Chapter 7.



Chapter 8 describes the different control structures and gives the plant description.
This chapter provides a detailed comparison of the performances of different control

structures.

The contributions of the comparative studv in part II are discussed in Chapter 9.

Recommendations for future work are also provided in this chapter.



Partl:

Early Warning Generation through

Alarm System



Chapter 2

Literature Review

2.1 Robust Alarm Management

Robustness is one of the main desired properties for alarms. Different surveys have
been performed in process industries to identify the critical requirements needed to
improve an alarm system. The major problems identified, are a lack of prioritization
of the alarm, system rigidity, alarm Hooding, a lack of well-designed alarm limits, and
stress on the operators due to the high number of alarms. [Shahriari et al., 2006]pro-
posed an ideal alarm system which emphasises the proper prioritization of alarms to
make a well-designed systemn and ensure a less stressful work environment for opera-
tion. Theyv also suggest that both the control system and monitoring system should
be dynamic to make the alarm more reliable. However, the discussion remains limited
in building the criteria of an ideal management system, which are the guidelines used

to develop a robust alarm system to overcome the problems found in the survey.

Once the critical criteria for an alarm system is defined, it is recommended that the

alarin system goes through a repeating cycle of analysis, plan and countermeasures.



Productivity Optimization

Evaluation

Analysis

Countermeasure

Plan

Figure 2.1: Spiral Improvement Cycle [Yuki, 2002]

As plant cquipment and control systems changes frequently, the effect of alarm system
improvement might not last long. [Yuki, 2002] recommends a three-step continuous
effort to keep the alarm system optinized over tinte. In the first stage, a plan is formu-
lated based on the analysis found from history. Based on the plan, counter-measures
are developed for the plant. While counter-measures are being developed, evaluation
is perfornied to observe the effectiveness of the counter-measures. Based on the data
from the evaluation and counter-measures, a detailed analysis is performed to provide

a plant for the next cvele.

[Chu et al., 1994] outlines a guideline for abnormal situation management. A frame-
work is proposed that integrates some existing features available in the industry. User
intent recogniser, a causal reasoning diagnosis systein and an advanced graphical user
interface is integrated together to assist the operator in taking the necessary action in

abnormal situations. A detailed methodology for execution is described in this article.

Execution of the abnormal situation handling is performed in thrce stages: orienta-

tion, cvaluation, and cxccution. The orientation stage refers to the task of focusing




on the information relevant to a particular problein, whereas the evaluation stage in-

cludes the diagnosis and assessment of the situation. Finally, in the execution stage,
the operator executes the necessary action based on their knowledge of the plant
and abuormal situations. For successful exccution of all these stages, the framework
suggests different softwares. The user intention recogniser interprets the operator’s
goal based on his actions. It checks the current plant state with the plant history to
provide feedback on whether the operator’s action is consistent with the previous ac-
tions. Causal modelling is a way to identify the process disturbance early and predict
the future effect of the disturbance. An advanced graphical interface is the medium
of luteraction used between the operator and the process plant. The effectiveness of
the integrated framework is illustrated in this article through a case application to a

distillation column.

|[Ruiz et al., 2002] proposed an advanced frainework using data history, the first prin-
ciple plant model, and HAZOP analysis. The scheme used is provided in Figure 2.2.
The fault diagnosis system (FDS) of the scheme is provided in Figure 2.3. Data ini-
tially is pre-processed to make it usable as the input to the FDS. The FDS is designed
using an artificial intelligence system based on a neural network and fuzzy logic sys-

tem.

Data pre-processing consists of various key tasks such as trend generation, principal
component analysis, filtering, and data rceconcialiation. The data is the input to the
FDS which is a combination of a pattern recognition approach based on the neural
network and fuzzy logic. Historical data is used by the neural network for recognition
of the trend. Ou-line data from the system is used as the input for the neural network.

Outputs of the neural network are used to gencrate the residual to diagnose the fault

10
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Figure 2.2: Alarm Scheme [Ruiz ct al., 2002]
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Figurc 2.3: Fault Diagnosis System [Ruiz ct al., 2002]
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Figure 2.4: ROC curve [lzadi et al., 2009b]

using the historical data as reference. Usually abnormal conditions do not occur
too frequentlv in the plant. Therefore, data history may not show a good trend for
the abnormal situation. This is why a plant model is required to generate input
output data for abnormal situations and generate a trend for the abnormal condition.
HAZOP analysis is used to determine the root cause and IF-THEN rules arc used to
direct operators about the state of the plant and the necessary action to take. The

complete methodology is demonstrated using a industrial case study.

An claborate discussion on alarm system analysis and design is provided in [Izadi
et al.. 2009a]. The alarm flooding problem is approached here with different possible
solutions. The key concept of falsc alarm and missed alarm is discussed, which arc
two of the major concerns in the process industry. A missed alarm leads to a severe
conscquence and is a major concern from the safety perspective, whereas a false alarm
causes distraction for the operator and limits the efficiency of the operator’s actions
to clear the alarin. Considering the trade-off between false alarms and missed alarms

an optimized alarm system framework is proposed in [Izadi et al., 2009b]. Three




techniques (e.g. filtering, dead-band, and delay timers) to optimize the process alarm

system are discussed. Alarm optimization is performed considering the probability
of false alarms and missed alarms as optimization parameters. For an illustration of
probability of a false alarm and a missed alarm, a graphical representation receiver
operating characteristics (ROC) curve is discussed. A ROC curve is illustrated in
Figure 2.4. The two axes of the curve represent the probability of false alarm and
probability of missed alarm. Alarm optimization is performed based upon the mini-
nium distance of the operating point of false alarm and missed alarm from the origin
point of the ROC curve. The effectiveness of the ROC-based design is demonstrated
through process data. Filtering is considered to be the second technique that can
be used to reduce the false alarms and missed alarms caused by the process noise.
The moving average and moving variance filter are the recommended methodologies.
The compatibility of these filters in different scenarios is illustrated through process
data. Delay timers and dead-band are also effective methods to reduce false alarms
and missed alarms. The techniques described here can cause a significant reduction in
false alarms and missed alarms. One common shortcoming for all the methods is that
each of them introduces detection delay to the alarin system. These concepts make
the alarm system more reliable, but the process remains vulnerable when the carly
detection of fault is necessary. This is because detection delay was not considered as

an optimization paramcter in these techniques.

Detection dcelay is considered as onc of the optimization paramecters to design thresh-
old in [Adnan et al., 2011]. An optimum threshold design is very important in the
process industry to optimize false alarms and missed alarms. Too high a threshold
may cause missed alarms, which can lead severe consequences, whereas a low threshold

increascs the number of nuisance alarms, which can interrupt operators’ attention and

13



thus degrades the alarm systeimn’s reliability. In this design procedure, the threshold

is optimized with an objective to minimize false alarm, missed alarm and detection
delay in the alarm system. Markov processes are used to calculate the detection delay
for those techniques. False alarm and missed alarm are first optimized using an ROC
curve. Then, for different thresholds, false alarm rate (FAR) and missed alarm rate
(MAR) are plotted with a different number of expected detection delay (EDD). The
optimized value of a threshold can be detected for a given number of EDDs. The
design procedure is illustrated using two industrial case studies which show superior
performance. However onc hasic limitation of the methodology is that, it assumes that
probability density function of processes for fault free and faulty case are completely
known. But, in the real process, it is hard to defiue a probability density function for
faulty cases. For processes that changes dynamics rapidly, performance of this design

procedure would not be as good as is depicted in case studies.

[Chang et al., 2011] discussed a risk-based approach to design warning to the oper-
ator. A standard alarm response cycle is used to define process safety time, as is
illustrated in Figure 2.5. Process safety time was considered to be absolutely crucial
in designing the warning system, as an operator must respond to the abnormal situ-
ation within this period. Risk is assessed based on three parameters: process safety
time, the probability (P) of the potential hazard, and the severity or impact (1) of the
consequences.

Initially, a voting system is applied to reduce alarms that are generated based on
raw sensor measuremnents. Hazards of the system are studied and the probability
and scverity of the impact is mapped. Considering the process safety time ¢, for a

potential hazard risk is calculated Equation 2.1
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Figure 2.5: A standard alarm response cycle [Chang et al., 2011]

R = PI100(-4/60) (2.1)

where P is the probability of the hazard occurrence, I is the severity of the impact of

that hazard, ¢ is the process safety time, and R is the final risk.

A risk threshold for the process is defined based on the expert knowledge of the system.
As process safety time and impact are considered in the risk equation, hazards with
higher importance provide more risk and, thus, the method is useful for thr proper

prioritization of an alarm.

2.2 Univariate Alarm Generation Methods

Control chart, also known as Shewhart chart is a statistical process monitoring tool
which gives an indication of the process state at any instant. Historically, this has
been used as an indicator for a trusted alarm management system. Construction and

detailed statistical aspects of this chart is discussed in [Shewhart, 1931].

A control chart is built using the points representing the measurements of a quality
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Figurc 2.6: Control Chart

characteristics taken from the process at any given time. For any particular variable,
the mean and standard deviation are calculated from the data points. The centre line
is drawn using the mean of the measurements, whercas standard deviation is used to
define the upper and lower control limits. Typically, three-sigma values to both side
of the mean arc usced as upper and lower control limits. As +30 covers 99.70 percent
of the normal distribution, when data points lie inside the coutrol band limit, process
is believed to be in normal state. An observation outside the limit valuce indicates
the introduction of a new source of variation and defined as special-cause variation.
Special-cause variation requires immediate investigation to keep the process at an

optimized level.

After detecting a change its cause should be identified and, based on the objective,
further action is taken. In the casce of a good change, a detected cause should be
cousidered as a new way of working, whereas in the case of a bad change, the detected
causc is required to be climinated. Decision making may appear difficult when the
process operating conditions or set-poiits vary frequently. In such case the method

cannot distinguish between normal opcerational changes and an abnormal condition.

16



2.3 Advanced Process Monitoring Techniques

Though classical univariate methods are more popular due to their simplicity and
robustness, they are unable to provide an in-depth diagnosis of the fault. Due to the
availability of large number of scnsors, there is a probability that the number of alarms
can be triggered from a single abnormal cause of the process. [[(resta et al., 1991] in-
troduced statistical process control (SPC) charts which arc analogous to conventional
Shewhart charts. only with the additional multivariate nature. Multivariate methods
can compress the information down into lower dimensional spaces retaining significant
part of the process information. Sigunificant work has been performed in the field of
advanced monitoring, resulting in a wide range of methodologics. [Venkatasubrama-
nian et al., 2003b] describes a good classification on these methodologies. On broader
scale, these methods can be classified into two major classes: model based approach
and historic data based approach. The model based approach can be further divided
into two catcgories based on the nature of the models used for monitoring: quantita-

tive and qualitative. Quantitative monitoring relies on accurate quantitative models,

whereas the other type is based on qualitative modcels. History based method uscs
historical data to extract features. This extraction of features can be either qualita-
tive or quantitative. Expert system, and trend modeclling are two common methods of
qualitative feature extraction. Quantitative extraction methods can be further clas-
sified as non-statistical (c.g. ncural nctwork based), and statistical (c.g. Principal
component analysis (PCA)/partial least squares (PLS) based) methods [Venkatasub-

ramanian ct al., 2003b].

Quantitative model based approaches arc suitable for building monitoring systems for
small process units. Models can be built either by using first principles or frequency

responsce. The most important class of models that are frequently used is input-output
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or state-space models. Actual system behaviour is checked with the system model for

inconsistency which is terned as residual. From the residual values decisions are made
whether a systemn is faulty or not. [Isermann, 2005] describes the advantages of the
model based approaches over the classical trend checking fault monitoring. Advanced
methods provide early detection of fault, good supervision under close loop, and su-
pervision facilities under transient state of the process. Advanced process monitoring
systems consist of two parts. One is fault detection, the other is fault diagnosis. A
brief introduction of different fault detection and diagnosis methods is provided in
the following scctions. The most frequently used model based FDI approaches in-
clude diagnostic observer, parity relation, Kalmau filters and parameters estimation.

[Isermarn, 2005]

[N.Clark, 1979] and [Massoumnia, 1986] are some of the pioneering works on diagnos-
tic observers. [Frank, 1990] decoupled the effect of fault and presented a more robust
fault detection method. This work also considered a solution for a non-linear system
in the form of a diagnostic observer. A non-linear observer is designed for non-linear
system in the [Dingli et al., 1995]. In the parity relation approach, consistency of
the plant model is checked with the sensor output. In this case, the plant model is
formed by rearranging the parity equations. Dynamic parity relation was first intro-
duced by [Willsky, 1976]. It was further extended by [Gertler ct al., 1990], [Gertler
et al., 1995| and [J. Gertler and Monajemy., 1995]. Some other significant works us-
ing parity rclations can be found in [Ben-Haim, 1980}, [Ben-Haim, 1983] [Chow and
Willsky, 1984]. Among model based approaches, Kalman filter based approaches are
uscd most frequently. It uses a recursive algorithm for state estimation and has a
wide application in the field of process monitoring. The Kalman filter was first intro-

duced by [Willsky and Jones, 1976] for fault detection and it was further advanced
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through the work of [Basseville and Benveniste, 1986] and [Basseville and Nikiforov,

1993]. [Fathi et al., 1993] used an extended Kalman filter (EKF) in designing local
detection filters. [Chang and Hwang, 1998| proposed a suboptimal EKF to provide

computational efficiency.

A model based approach for the handling of abnormal situations during the process
transition is discussed in [Bhagwat et al., 2003a]. The motivation for this work is the
inability of automatic control systems to cope with large changes in process variables
during the transition. For this reason, transitions are executed manually by operators.
Thus, a process is more vulnerable to the faults during the transition phase. Fault
detection and identification (FDI) systems in practice, are usually designed assuming
that, the process is at steady state, which is not suitable for process monitoring during
the transition phase. As such, sudden changes due to discontinuous phase changes are
detected wrongly as fault. Also, proper diagnosis cannot be done in the case of oper-
ator errors. These issues were addressed in this article. For the off-line development
of the model, first standard operating point (SOP) and process knowledge are used
to break the transition into different phases. Model components are extracted from
the process knowledge for different phases. Based on the model components, different
types of filters are designed. For non-observable components an open-loop observer
is used, whercas a Kalman filter is used for observable linear components. For non-
linear components an extended Kalman filter is designed. For on-line implementation,
a phase is detected based on phase definition and the phase modcl component is se-
lected initially. Based on the phase model component, a suitable filter is activated
and residuals are gencrated. Residuals are then passed to a fault detector and, based
on the fault definition, fault is detected. After detection, logical analysis is performed

using a fault map bcfore sending a notification to the operator. The main challenge
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for this method is developing the non-linear model and filter for the system which is

often difficult and costly.

Keeping the main scheme siniilar, [Bhagwat et al., 2003b] used a set of linear models

along the transition trajectory to build the monitoring system for transient systems.

In quantitative models, a priori knowledge of the process is expressed in terms of
mathematical functional relation between input and output. In contrast qualitative
models, understanding of the process knowledge is expressed in terins of qualitative
functions. There are two major strategies used to develop qualitative models: causal
models and abstraction hierarchy. Causal models can be formed using different strate-
gies such as sign directed graph (SDG), fault-tree analysis, and qualitative physics.
Primary requirement for qualitative model is to develop an expert svstem that mimics
the behaviour of a human expert to solve problems. Usually, it is comprised of large
sets of if-then-else rules and an inference engine which makes decisions based on the
process knowledge. [Venkatasubramanian et al., 2003a] provides an excellent review

on qualitative fault diagnosis methods.

The model based approach proved to provide better performance compared to clas-
sical methods. The model based approach is normally limited to processes with a
small number of variables due to difficulties in building models for complex systems.
In the case of handling a large numbcer of variable data based multivariate process
mouitoring techniques are more useful. For the successful execution of a quantitative
modecl based approach, the adaptability of the methods to the physical property of
the process is required. In the case of non-linear process model formation becomes a

bit complicated.
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In contrast to the model based approach, history based methods require only a large

historical data set of the process, and an explicit model of the system is not re-
quired. Features can be extracted using both a qualitative approach and quantitative
approach. Qualitative data extraction uses an if-then-else structure similar to a qual-
itative model based approach. The only difference is that instead of using the input
output functional relationship, an input-output trend formed from historical data is
used. The qualitative approach can be largely divided into two types: expert systems
and qualitative trend analysis. A comprehensive list of the methods can be found in

[Venkatasubramanian et al., 2003b).

Quantitative feature extraction can be largely classified into non-statistical and statis-
tical. Among non-statistical feature extraction approaches, a neural network (NN) is
widely used in the field of fault diagnosis of chemical processes. Both supervised and
unsupervised learning strategies have been used. Back propagation algorithms are
most popularly used for supervised learning strategies. Some earlier work in the field
of fault diagnosis using neural networks are [Venkatasubramanian, 1985], [Watanabe
ct al., 1994b], [Venkatasubramanian and Chan, 1989], [Ungar et al., 1990], [C.Hoskins
et al., 1991]. A more detailed and thorough analysis of NN for fault diagnosis in
steady state is presented in [Venkatasubramanian et al., 1990]. This work was later
extended for a dynamic process in [Vaidyanathan and Venkatasubramanian, 1992].
A hicrarchical ncural network architecture for multiple fault detection was proposed
by [Watanabe et al., 1994a]. Standard back propagation is improved for better per-
formancc by introducing explicit features to NN. [Fan ct al., 1993], [Farcll and Roat,
1994], [Tsai and T.Chang, 1995] presented the idea of the improvement of the back

propagation algorithm. [Leonard and Kramer, 1990] suggested the use of a radial
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basis function network. Some other significant works using neural networks can be

found in [Holcomb and Morari, 1991], [Kavuri and Venkatasubramanian, 1994], [Bak-

shi and Stephanopoulos., 1993].

The second type of quantitative feature extraction methodology includes multivariate
statistical process monitoring which typically uses only a few feature variables to mon-
itor plants’ performance. Since the pioneer paper by [Kresta et al., 1991] PCA and
PLS have been usced extensivelv to monitor chemical processes. Some earlier works
on fault detection and diagnosis using PCA and PLS are [MacGregor et al., 1994]
and [MacGregor and Kourti, 1995]. [Qin and McAvoy, 1992] presented a neural net
PLS approach to deal with non-linearity. [Dong and McAvoy, 1996] utilized a non-
lincar PCA method to handle non-linearity more efficiently. One of the niore recent
techniques are discussed in [Raich and Cinar, 1996] combining PCA and discriminant

analysis techniques.

PLS and PCA can project the information down to lower dimensional space. With the
use of PCA or PLS, the dimensionality of the process is reduced. Highly correlated
large data scts arc reduced to a few latent variables that contain the most process
information. Projections of new process observations over time on low dimeusional
plancs, arc plotted to deteet an abnormal process variation. A square prediction cr-
ror (SPE) is used to detect the major change of the process caused by new events.
The methodology is simple in nature and it can be said as only the extension of the
statistical control chart for a large number of variables. When a larger number of
latent variables is required to capture the process information, it would be difficult to

monitor a process successfully using this method.



The major limitation of PCA based monitoring is that, model is steady state time
invariant. As most of the real tie process is time varying PCA may not be as effec-
tive in dynamic state as it is in steady state. Therefore, the PCA model is required
to be dynamically updated. A recursively updated PCA is proposed in [Li et al.,
2000]. In this work, an adaptive monitoring approach was developed which is ca-
pable of robust monitoring of a dynamic state. Two different algorithms based on
rank-one modification and Lanczos tridiagonalization are proposed. The nuinber of
principle components and the confidence limits for process monitoring are calculated
recursively. A case study on rapid thermal process is presented to demonstrate the

cffectivencss of the methodology.

[Nomikos and MacGregor, 1994] extended the use of multivariate projection method
to batch process by developing multiway-PCA (MPCA). The objectiv of batch process
monitoring the trajectory is to monitor a new batch process with the past good batch
runs. This gives rise to a three dimensional data matrix (i.e., time,batch number,
variable). A methodology was developed to unfold a three dimensional data matrix
to a two dimensional data matrix. Subsequently using PCA new batch trajectory
can he composed with a trajectory band based on past good batches. If a significant

deviation is detected a warning is generated.

In [Cherry and Qin, 2006], a recursive PCA algorithm is combined with a multi-way
PCA for fault detection and diagnosis. The described methodology used a combined
index incorporating the information from the SPE and Hotelling’s T2 for fault detec-
tion. This work facilitates the diagnosis procedure for processes with a large set of

variables.
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In [Misra et al., 2002] a multi-scale PCA based method is proposed which is a combina-

tion of PCA and wavelets simultaneously. Wavelets can capture the autocorrelation of
a sensor, whereas PCA captures correlations across the sensor. These two techniques
are combined together for their complementary strengths and maxinmium information
from multivariate sensor data is extracted. First, each variable is deconiposed using
discrete wavelet transformation. PCA is applied to each of the matrices to extract
the cross correlation across the sensors. SPE can be monitored based on the pro-
cess objective. The moving window approach is used for dynamic monitoring. SPE
is calculated for each level of wavelet decomposition. From the SPE values of each
level, information about fault can be extracted. Multi-scale PCA is widely used for

monitoring rotating equipment, such as colnpressors, puinps etc.

A recently developed technique independent component analysis (ICA) is used in [Lee
et al., 2004] for statistical process monitoring. ICA is used to reveal the hidden fac-
tor that underlies a set of non-Gaussian measurements. Unlike PCA, ICA does not
assune independence of the measurements in the temporal domain. Dynamic [CA
can be used to monitor a process with auto correlated and cross-correlated variables.
The results from case studics show that ICA clearly outperforms conventional PCA

and dvnamic PCA.

However, there are some limitations of ICA based mouitoring. First, it is not easy
to fix the nunber of independent components that are required to be extracted for
building an ICA model. Moreover, the proper order of ICs cannot be determined as
the ICA doces not arrange the IC is any order. A modified ICA algorithm to overcome
these problems is proposed in [Lee et al., 2006]. This methodology works in two steps.

In the first step, the variance of dominant ICs and the direction is detected using PCA.
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In the second step, conventional ICA is performed to update the dominant ICs. The

nmethod also provides information about the location of fault using a contribution plot.

A comparative study for data driven process Monitoring methods is performed in
[Yin et al., 2012]. The literature discusses five basic data-driven algorithms. These
are PCA, PLS, ICA, Fisher discriminant analysis (FDA) and subspace aided approach
(SAP). These methods are implemented on benchmark Tennessee Eastman (TE) pro-
cess and their performances are compared. Standard PCA shows a relatively lower
fault detection rate (FDR) as it cannot handle dynamic data. DPCA shows better
FDR compared to standard PCA. Two variants of PLS provides much improved FDR
compared to lower FDR. in the standard approach. ICA-related methods provide
significantly improved performance compared to standard PCA. However, comnputa-
tional complexity is far greater in the ICA related methods which is a concern. SAP
provides a superior performance for most of the cases. Again, as the practical process
is large in nature there is a low probability that it would follow a Gaussian distribu-
tion. Though ICA provides a solution for this problem, it is physically unexplainable
that non-Gaussian distributed process variables can be described as the linear coni-
bination of the 1Cs. This work recommends SAP to be the method which should be

given more attention due to its higher FDR.

A comparative study between a causal model hased mounitoring system and statistical
multivariate system is presented in [Yoon and MacGregor, 2000] by implementing
the two monitoring methods on a siinulated CSTR system. The fundamental and
practical diffcrences of the two methods are deseribed with their respective strengths
and weaknesses. The parity-relation approach is presented as a representative causal

modcl-based method whercas PLS/PCA is used to build a multivariate statistical
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process control model. This work concludes with the difference of the two methods.

The causal model approaches are generally limited to small, well-defined systems, as
the implicit model of the process is required to be known. On the contrary, MSPC can
handle ill-defined and large processes very easily. Again, the parity equation approach
provides the more direct isolation of known fault through process knowledge, whereas

a statistical approach is much more indirect, having no causal information.

[Yang et al., 2010] discusses an alarm limit design procedure by taking the multivari-
ate nature of the process into account. Correlation maps of process physical variable
and their alarm history are compared to suggest the alarm threshold settings. Infor-
mation on the process connectivity is required for this case. One of the shortcomings

of this work is that, this methodology is not applicable for a large number of states.

2.4 Predictive Alarm Generation

The early detection of alarms is a necessity in the process industry. However, in alarm
system design, typically, more emphasis is put on robustness, as such very rarely pro-
cess plants generate alarms based on prediction signals. Predictive monitoring can be

an efficient tool for the successful forecasting of an abnormal situation.

[Juricek et al., 2001] presented a model based predictive alarm methodology that uses
a state space model of the process. A Kalman filter is used to make dynamic pre-
dictions of the process variable. The analysis begins only on demand. In the first
stage, a pseudo disturbance is estimated to compensate for the plant mismatch and

deterministic disturbance. In the next stage, a Kalman filter is applied to predict the
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future values of the measured variable. Finally, a confidence limit is constructed and

this limit along with 72 statistics, are used to generate early alarm for the systeni.
The design variables for the method are the confidence level, prediction horizon and
the form of the pseudo-disturbance. The method is demonstrated using a simulated

CSTR model.

[Zamanizadeh et al., 2008] used an extended Kalman filter for alarm generation. The
philosophy of prediction and fault detection is similar to that described in [Juricek
et al., 2001]. The only difference is, the prediction is made using an extended Kalman

filter instead of a Kalman filter to tackle nonlinearity in the process.

A supervisory method to predict an abnormal situation is discussed in [Fernandez
et al., 2005]. The method initially identifies the time at which a process variable
reaches a critical value. When a process reaches a critical value, the monitoring sys-
tem starts trending the input and output data using a neural network (NN). Several
dynamic models between the input and output are estimated and the best fit model is
selected. An optimization algorithm is used to estimate the parameters. The focus of
this study was to find the most appropriate model to predict output in the abnormal

situation.

[Varga et al., 2010] introduced a methodology that uses a dynamic model and hazard
analysis to predict safety limits in the alarm system. Onc of the main motivations
of this work was to guide the operator about the consequence of different hazards
initiated at the time of operation. Based upon the conscequences of the prediction,
the operator could take the necessary actions. Early fault detection is enabled which

provides carly diagnosis and suggests a preventive measurce corresponds to the abnor-
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mal situation. The most important function of this alarm systeni is that it helps the

operator in decision-making when more than one variable in the process show abnor-
mal behaviour. This alarm system is particularly necessary for an abnormal system
like a thermal runaway, where the system goes froin stable to unstable in a space of a
very short time, and once an unstable state is initiated, the process cannot be taken
into a stable state with the control action. Using a simulator, the last controllable
point. of the system is detected and the simulator queries in a particular trajectory
on the lookout for a possible uncontrollable state of the system. Lyapunov’s indirect
stability analysis of the state variables, along with simulated trajectories, are used to
detect the boundary of the controllable region of the process. A pictorial algorithm

provided for finding the safety region is shown in Figure 2.7.

An innovative risk-based fault diagnosis methodology and its integration with SIS for
process systerns is proposed in [Bao et al., 2011]. In this methodology, risk concept is
combined with SPC for fault diagnosis in the processes. The proposed methodology
has been validated using a tank filling system and the steam power plant system in
the G2 environment. The method is simple in implementation and does not depend
on any process modcl. Also, its demand for historical data is minimal. The proposed
methodology uses a control chart to distinguish an abnormal situation from a normal
opcration based on the three-sigma rule and lincar trend forecasting. Time series
moving average filters are used to perform real-time prediction and noise reduction
of the signal. Based on the forecasting signal the probability of a fault is calculated.
The consequences of the fault are identified. Risk is defined as the multiplication of
the probability of fault and conscquence. An alarm is generated only when risk of a
fault exceeds the threshold. Since it considers the consequence of a fault, the method

is able to filter out spurious faults from the alarm system and also the operators can
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prioritize their responses based on the quantitative risk. The frame work of this work

is represented in Figure 2.8 .

[Towever, this methodology is based on the univariate technique. Hence, it has less
power to distinguish between a process fault and an operating change. This limita-
tion is addressed by extending the method to a multivariate model based framework
described in [Zadakbar et al., 2011]. In this article, the probability of fault is calcu-
lated from the residual generated from a Kalman filter. As the method requires an
explicit process model, this method is useful for small process systems when a process
model can be easily built. For large process system with complex dynamic, finding
an explicit model is a challenging job. In order to overcome this challenge, [Zadakbar
et al., 2012] proposed a model-free risk based fault detection and diagnosis method.
Instead of using an explicit dynamic model, process data history is used to capture
process knowledge. From the historical data, a PCA model is built which projects
data in the principal components’ direction. Risk is calculated based on the scores of

the principal components instead of the original signal.

From the above literature review the following conclusions can be made:

e Ixtensive work has been done on alarm generation focusing on robustifying the

alarm.
e Most of the cases alarms were generated based on the process measured signals.
e Very little work has been performed on generating alarms on a predictive mode.

e None of the current methodologies consider the effect of the controller and the

actuator limitations explicitly.
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In the present work, early detection of the abnormal situation through model predic-

tion is focused. The open loop predictions are used for generating the alarm. Also,

due considerations were given to the effect of controllers and actuator constraints.



Chapter 3

Theory for Early Alarm Generation

3.1 Early Alarm Generation

In the process industry different types of fault can be triggered. Of the different types
of fault we only dealt with the disturbance type faults, which is common in process
industries. In our current study we focused on design an early warning generation
svstem for this type of disturbance fault that cannot be handled by controllers. In a
process, often the process modecl and the disturbance model are available, particularly
in many plants where model predictive controller (MPC) applications are in use to
control the process. The objective of this work is to use such models for early alarm
generation. These models are open-loop models without any controller knowledge.
As such, there are some limitations in using these models. However there are several
advantages for using open-loop predictions: (i) an open loop model may be already
available from an MPC application; (ii) typically, in a process controller are occasion-
ally retuned in order to meet operational need for faster or slower dynamic response,
as such closed-loop models need to be updated regularly. As open-loop models do not

have any controller information, it remains valid for a longer period. Considering the
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above facts, open-loop predictions for alarm generation is used. However, it is under-

stood that an open-loop prediction may show that a process variable will violate the
threshold, but the controller action may actually keep the process within the normal
operation limit. Therefore, due considerations need to be given to take the effect of

the controller into account.

In this paper, we state two limiting conditions where the controller does not affect
the open-loop prediction. Under these conditions, open-loop predictions can be used

for alarm gencration.

Condition 1 : In a system with time delay, any disturbance entering into the system
will affect the measurements after the time-delay period has elapsed. Given that the
controller has no feed-forward knowledge of the disturbance, a controller will take any
corrective action only after the time delay period. As such, the open-loop predictions

will be the sante as the closed-loop predictions within the time delay period.

Condition 2 : At steady state, the ability of a controller to bring a process variable
within the control limit will depend entirely on the available actuator capacity and
steady state gain of the process.

Based on the above two conditions we develop two carly alarm generation protocols

for the process system.

3.1.1 Dynamic Alarm Generation

If the controller does not have the feed forward information (e.g., an MPC without a
disturbance modcl) or a controller acting only based on feedback (c.g, PID), the con-

troller will take action only after the disturbance effects are measured at the output.
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Condition 1 states that, within the time delay period, the open loop prediction and

the closed-loop predictions are the same. This provides a window where the open-
loop prediction can be used to monitor the process. This is defined as monitoring
horizon. Within the monitoring horizon, an alarm will be generated if an open-loop
prediction exceeds the alarm threshold. The algorithin essentially uses the receding
horizon prediction for the alarm generation. Receding horizon prediction is also the
building block for model predictive controller (MPC). At each instant ¢, using the
output from the controller and disturbance measurable to the process, the models
predict the process output for the entire rmonitoring horizon, t,. As new measure-
ments become available, the predicted values are compared with the measurements; if
a bias is observed, the predicted values will be corrected for the bias. Instead of simple
bias corrections, a Ialman filter can be used to update the predictions. However, for
most practical purposes, a bias correction should be sufficient. The detailed steps of

the methodology are described below.

Let us consider a dynamic system with > input to the system, y*" measured
output, ug®*" disturbances affecting the system, y» number of inputs, » number of
outputs, G(s) process model, D(s) disturbance model, and e is the measurcment

error. System can be represented by the following transfer function equation

y(nxl) _ G(S)(nxm)u(mxl) + D(S)(n.xp)“(([pxl) +e, (3_1)

The first step is to develop a discrete, time-invariant, causal step-response model for
the systein given in Equation 3.2. The open-loop model predicts a process variable
over a monitoring horizon, taking into account the disturbance model of the process.
The monitoring horizon is chosen based on the time delay of the process. For a given

process with time delay ¢4, monitoring horizon ¢, > t,.
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where, /=[1.2,%.....p| and p is the horizon defined based upon the process knowledge.
m is the total number of inputs; r is the total number of disturbances,i—[1,2,3,...,n],
and n is the total number of outputs. Equation 3.2 predicts the i-th output over the
horizon p. Here, m is the total number of input to the system, r is the total number

of measured disturbance to the system and A is the number of history inputs, that

are considered to predict the output.

In step 2, on-line output measurements are used to correct the predicted values. At
every instant, the output is corrected by comparing the current measurement with
the predicted value from the model. The difference in these two values gives the bias

error. The bias error at time ¢ can be calculted using Equation 3.3,

be =y —yr (3.3)

where y; is the one step ahead prediction at time £-1. Based on the calculated error

at time ¢, bias correction is done on all future predictions, as is given in Equation 3.4.

Jrat = Yy + br (3.4)

where I— 1,2,... p

The updated predictions show the effect of disturbances carlier than the process mea-

surements, as theyv are based on both process and disturbance models.
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Step 3 is alarm generation. An alarm limit is set for each variable based on process

knowledge. At each instant the predicted values are checked against the limits. If the
prediction exceeds the limit within the monitoring horizon, an alarm will be issued to

alert the operator.

Step 4 improves the robustness of alarm. A single value can sometines exceed the
limit due to measurement noise. In order to make the alarm robust and avoid a
nuisance alarm, a further heuristic rule is applied. If three consecutive predicted
values cross the limit only at that point an alarm will be issued. owever, this rule
can be adjusted depending on the severity of the consequences and risk associated

with the variable.

3.1.2 Steady State Alarm Generation

The steady state alarm generation algorithm is developed based on Condition 2, which
was described earlier. Suppose that a process is at steady state and a disturbance
enters the system; if there is no controller present in the system the steady state of the
svstem will be disturbed and the svstem will become steady at a new state eventually.
However, when a controller is controlling the system, it will take corrective actions
and will try to bring the system back to its original state. Assuming the controller is
perfect or very cfficient, the ability of the controller to bring the system back to the
original state is limited by the available actuator capacity of the system. Therefore,
depending on the available actuator capacity, a controller will cither bring the system
back to the original state or the systemn will attain a new state which may or may
not be within the safety limits. Steady state conditions arc checked to see whether

the variable can be brought back by the controller within the alarm limits using the
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available actuator capacity. If it appears that the actuators do not have sufficient

capacity to bring the process within the safety limit an alarm is generated.

An alarm generation requires a prediction of the open-loop steady state values due
to the disturbance, calculation of the capacity of actuators, and maximuimn possible
control action on variables. The open-loop steady state value of a variable is predicted
by adding the change in process variable due to the disturbances in the present steady
state value. Consider a disturbance size of Au? enters into the system at time . If

there is 110 control action, the final value of the output is given by Equation 3.5,

p

Ul = i — 3 (dip — diger) *x Aufl (3.5)

k=1

where P is the number of the history inputs required to estiinate a variable at steady
state.

The minimun requireinent from a controller is to make changes in the actuators such
that the output reniains within the control limits. Assuming that, the high and low
limits for the i-th output are y; o, and y; pign. respectively, the controller has to satisfy

the following condition

Yidow S ¥+ Ay < Yinigh (3.6)

where Ay?® is the steady state change in the i-th output due to the input changes
made by the controller. At steady state the input and output changes are related by

the process gain as given below :

m

Ay = Z aij(tss) * Au; (3.7)

i=1
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where a;;(t,s) is the step response coefficient at steady state, which is equivalent to

the process gain and m is the total number of input to the system.

aij(tss) = Gi;(0) (3.8)

Equations 3.6 and 3.7 can be combined together to express the desired condition in

terms of the input variable as given in Equation 3.9.

Yilow — yf‘“ < Z (lij(t.s.s) * Auj < Yi Jvigh — y?s (3-9)
=1

The capacity of an actuator is given by the difference between current steady state
value of actuator (i.e. valve) and high and low limits known from the actuator range,

which can be written in the following input constraint Equation.

Uytow — Ujp < Aty < Ujpigh — Uje (3.10)

where 1, and u; 4y, are the low and high limit values of the actuator respectively.

The controller will be able to bring all the process variables within the desired limits
ounly if Equations 3.9 and 3.10 arc satisficd simultancously. Thercfore, Equations
3.9 and 3.10 give the desired coundition for steady state alarm generation. If these
two cquations cannot be satisfied simultancously an alarm will be issued. A lincar
programming (LP) algorithm is used to check the existence of a feasible solution for
the output constraints arising from Equation 3.9 and input constraints arising from
Equation 3.10. For example, for a system with rn inputs and n outputs there will
bc m input constraints and n output constraints. An alarm is issued if there is no

feasible solution that satisfies all (/m + n) constraints.
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Chapter 4

Case Studies

In order to clearly explain the implementation steps, the proposed methodology
is first demonstrated on a single-input-single-output (SISO) system. Subscquently
the methodology is applied to a multiple-input-multiple-output (MIMO) continuous
stirred tank heater (CSTH) system. A schematic diagram to express the alarm gener-
ation process is provided in Figure 4.1. This alarm generation procedure is discussed

for the two casc studics.

4.1 A Simple SISO Example

Consider a simple SISO system with a disturbance input, as described in Equations

41,42 and 4.3.

y=G(s)u+ D(s)u+e (4.1)
e—l4.7s
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Figure 4.1: Schematic diagram of alarm generation process using open-loop model

where, y is a output variable, u is an input to the process and u? is a measured dis-
turbance. The svstem is controlled using a dynamic matrix controller (DMC). DMC
controller is desiguned using the step response model of the simple SISO system. Dif-
ferent design parameters for designing the DMC is stated in 4.1. The controller only
utilizes the process model and does not have any knowledge of the disturbance. This
mimics a feedback controller, which is the most common industrial scenario. There
is a system time delay of 14.7 s. As such, when a disturbance enters the system, the
controller does not take action immediately. After the time delay period (14.7 s) has
clapsed, the disturbance starts affecting the output y. At that point, the controller

takes action to reject the disturbance and to bring the process back to the desired set

point.
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Table 4.1: Design parameters of the DMC controller

Variable Value

Prediction horizon(p) 15
Control horizon {m) 5
Weighting factor (Q) 1

4.1.1 Dynamic Alarm Generation

The purpose of dynamic alarm generation is to monitor the process in the time delay
period or monitoring horizon when the controller does not have any influence on
the svstem. In this case, 16 scc is chosen as the monitoring horizon which is slightly
greater than the system time delay. Using the finite step response models of the sys-
tem and disturbance as given in Equations 4.2 and 4.3, the output over the monitoring
horizon is predicted. The sampling interval for the svstem is 2 sec: thercfore, at each

instant predictions arc made for the next 8 samples.

At time t=200, a disturbance u¢ of step size 5 is applicd to the process. In this case, we
considered the alarm threshold to be at 3. The predictions are shown at different time
instants in Figure 4.2a. At 201 scc the prediction first showed that the output will
exceed tlie threshold at 213 sec; however, in order to have more confidence, the alarm
was issued at 204 scc when three predicted values exceeded the threshold. In Figure
4.2b the closed loop process measurement validates the predicted system response.
The measured output excceded the threshold at 213 sec. If an alarm was generated
solely based on the process measurement, the earliest an alarm can be issued is at
213 scc. The proposed scheme gencrate alarms 9 see carly compared to conventional

alarm generation.
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4.1.2 Steady State Alarm Generation

Given the current steady state conditions, process gain, and the safety limits, the
proposed scheme checks whether the controller has enough capacity to keep the process
within the safety band. At steady state the following relationship exists between the
input and output

Ay* = 1% Au (4.4)

where Ay*® is the change in measured output at steady state, Aw is the maximum
available capacity of the input and steady state gain is 1 for this process. High and
low limit values for output are 2 and -2, respectively, whereas for the input variable
capacity varies from —7 to 7. Thus, inequality constrains for this process can be

rewritten in input space as

-2 — Yiss S Ay S 2 - Yi ss (45)
T —ujy <Au<T—uy, (4.6)

Two different disturbance scenarios were simulated to check the steady state alarm
conditions. In the first scenario a disturbance of step size 10 is introduced to the
system at t= 200. Also given that the steady state values for input and output at
=200 are upo—1 and yopp=1. The steady state value for the process at any instant
can be predicted using Equation 3.5 which gives the open-loop steady state value
for output, y* =11. Substituting these values in Equations 4.5 and 4.6, we get the

following inequality constraints arising from output and input limitations

—13< Au< -9 (4.7)
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There is no common reason to
satisfv all ineaualities

Au>-8 \
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A
Figure 4.3: Constraints inequalities for the first scenario.
—8<Au<6 (4.8)

which are plotted in Figure 4.3. Clearly, it shows that there is no common space
between these two inequalitics (AN B = 0). So a feasible solution does not exist. It
is easy to graphically plot and visualize the feasibility in a simple system; however
for complex systemns, it is not always possible to graphically represent the inequal-
ities. In such a case linear programming (LP) can be used to check the existence
of a feasible solution. For example, in this case the LP algorithm could not find
a feasible solution as well confirming that there is not enough capacity in the actu-

ator to bring the output within the limit. Therefore, an alarin will be issued at t=200.

For the second scenario, a disturbance of step size of -5 is applied to the system at

{=600. Measured output and input at =600 are ygeo= 3, ugoo=1 respectively. The

predicted steady state value y,, = -4. The inequality constraints for output and input
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Figure 4.4: Constraints inequalities for the second scenario.
after cxpressing in the input space are
2<Au<éb (4.9)
—6<Au<6 (4.10)

which are plotted in Figure 4.4, which shows that there is a feasible solution so,

(AN B # 0). Therefore, no alarm will be issued at this instance.

These results are verified in Figures 4.5a and 4.5b, which show the closed loop pro-
cess responses for these two scenarios. Figure 4.5a shows that the output remains
outside the limit at steady state. The measured signal crosses the threshold at 350
sec. Therefore, based on the conventional method an alarm will be issued at 350 sec,

whereas using the predictive approach the alarm will be issued at t=200 sec. Con-

46



versely, Figure 4.5b shows that the method is robust to false alarm; it does 1ot issue

an alarm when the controller is able to wither away the disturbance effect in this case.

4.2 A MIMO Example

The proposed predictive alarm protocol is applied to a continuous stirred tank heater
(CSTH) presented in [Thornhill et al., 2008]. The model is built using dynamic
cquations as well as experimental data of a pilot plant located in the Department
of Chemical and Material Engineering at the University of Alberta. An equivalent
simulink model for the plant is available. Even though it is a simulated model it is
very real life like as it uses sensor noise obtained from real sensors. In this work the
simulink model is used as the process plant considering that, the dynamic behaviour

of the model will be close to the actual process.

Figure 4.6 shows the schematic diagram of the CSTH plant. A steam and hot water
supply is used to heat the cold water in a tank. A continuous flow of water comes
from the cold water supply. The process dvnamics of the plant are discussed in detail
in [Thornhill et al., 2008]. The flow of steam, cold water and hot water can be
manipulated using control valves. System can be represented by following Equation
v| _ |Guls) 0 + Puls) | e (4.11)
Y2 Gn(s) Gals) () Ds(s)
where, y; is the level, y, is the temperature, u; is the cold water valve position, u,
is the steam valve position, and u¢ is the hot water valve position. Standard oper-

ating points for which the simulink model is developed, are stated in Table 4.2. A
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Table 4.2: Operating points of CSTH for predictive monitoring
Variable Op Pt

Level/em 20.50
Temperature/Deg C = 42.50
CW valve/percent 17.64
Steam valve/pereent  9.77
HW valve/percent 7.14

Model Predictive controller is implemented using those step response models. Design
of the coutroller will be discussed in details elsewhere. This study will be limited in
detection of an abnormal situation and early generation of alarm. For this study hot
water valve position is used as disturbance as it is not being connected with any of the
controller outputs. Initially hot water valve is set at standard operating point. For
generating faulty condition different step change in the hot water valve is performed
as disturbaunce input. Disturbance models is also generated using a step change in
hot water vale position. Unit step response modcels for process inputs and outputs
are shown in Figure 4.7 and unit step response for the disturbance input and process
output is shown in Figurc 4.8. Step responses shown here is in mA unit. Using the
calibration curve in the cited literature, it can easily be found the model gain when
the variables are express in their conventional unit (c.g. cm, deg. ¢). Water level of
the tank and water temperature in the tank are two measured outputs of the system.
The DMC manipulates the steam valve and cold water valve to control the water level
and water temperature of the tank. Design parameters of the DMC controllers are

provided in 4.3.
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Table 4.3: Design parameters of the DMC controller
Variable Value

Prediction horizon(p) 15
Control horizon (m) 5
Weighting factor (Q) 1
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Figure 4.7: Step response models between the Process outputs and inputs
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Figure 4.8: Step response models between the Process outputs and disturbance input

4.2.1 Dynamic Alarm Generation

Several disturbance scenarios were simulated by making changes to the hot water
valve position. The monitoring system was used to monitor the process for these

abnormal conditions. Here, we report two such scenarios.

At time t=600 s, the hot water valve is opened from 7 % to 8 %. Both output vari-
ables start to increase from their set-point with the introduction of the disturbance.
Duc to process time delay, the disturbance starts to affect the process measurcments
at t=608 s. Howcever, level and temperature predictions arc continuously monitored
over the monitoring horizon, which, in this case arc the next cight samples at cv-
erv time instant. The prediction model used for the alarm generation contains the
process model as well as the disturbance nrodel relating hot water flow to level and
temperature. The predictions are also corrected for bias at every second based on
actual measurciments. Since the monitoring scheine contains the disturbance model,
as soon as the disturbance entered the system the prediction showed the effect of the

disturbance on the output variables. In this case, we eonsidered the alarm threshold
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to be at 43.2°C. The predictions are shown at different time instants in Figure 4.9a.
At 625 sec the prediction showed that the output will exceed the threshold at 633
sec. However, in order to have more confidence, the alarm was issued at 627 sec

when three predicted values exceeded the threshold. In Figure 4.9b the closed-loop

process measurement shows that the measured output exceeded the threshold at 634

sec. If an alarm was generated solely based on the process measurenment, the earliest

an alarm could be issued is at 634 sec. The proposed scheme gave a 7 sec lead time

to the opcrator. In this case, the proposed alarm system issues the alarm 7 seconds
earlier than an alarm system based on a nieasured signal, which gives the operator

time to react and take corrective action.

4.2.2 Steady State Alarm Generation

The outputs, level (y;) and temperature (y;), and inputs steam valve position (u;)
and cold water valve position (uy), give rise to four constraints. The output con-
straints arise from the safe operational consideration of the process system, and the
input constraints are due to the limited capacities of the valves. In addition to these
constraints there also exists the input-output relationships arising from the steady
state process gain. Equation 4.12 gives the input-output relationship for the CSTH
system at stcady state, which are calculated from the steady state gain of the step

respolse of the transfer functions of the system

Ay}® = 2.766Awuy (4.12a)

Ays® = —0.293Au; + 0.369 A1, (4.12b)
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where Ayj® is the change in level, Ays® is the change in temperature, Awu; is the

change in cold water valve position and Auw, is the change in steam valve position.

The high and low limit values for the level are defined as 25.2 cm and 15.8 cmn,
respectively. For temperature, high and low limits are 43.2°C and 39.2°C respectively.
For both the cold water valve position and steam valve position, high and low liniit
values are selected as 19% and 0% respectively. Using these values, four inequality

constraints for the system, can be written as in Equations 4.13a to 4.13d.

158 — yi" < Ayj® <252 — 4" (4.13a)
39.2 —yp" < Ayy® <432 —yy° (4.13b)
0—wuy < Aup <19.05 — uyy (4.13c¢)
0 —upe < Aup < 19.05 — gy (4.13d)

For the first disturbance scenario the hot water valve position is changed from 7.1%
to 7.6% percent at t= 600 s. This change of hot water valve position causes a rise in
both the level and temperature of the water from their nominal values 20.5 cm and
42.5°C, respectively. The steady state value of the process variables are predicted
using Equation 3.5. For this scenario, the predicted open-loop steady state value of
the process variables are, yi* = 50 cmn, y5* = 42.85°C. Also, the input values at t=600

s are Uy gop = 17.95% up 00 = 9.79%. Substituting these values in Equation 4.13 we
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Figurc 4.10: Constraints inequalitics for the first scenario.

get the following output and input constraints

—34.2 < Ay, < —24.81

—3.65 < Ay, < 0.36

—17.95 < Au; < 1.1

—9.79 < Aug < 9.26

96

(4.14a)
(4.14b)
(4.14¢)

(4.14d)

These inequalities, together with the steady state input output relationships described
in Equations 4.12a and 4.12b, are used to check for feasibility for Au; and Auy. At
every instaut, the LP algorithm checks whether there is a feasible solution for these
constraints. For this disturbance scenario, the LP is able to find a feasible solution,
therefore, no alarm is issued. This is also depicted in Figure 4.10 where the feasible

region that satisfies all four constraints simultaneously is shown by the hatched area.



Therefore, the process will be at no alarm state at ¢t = 600 s despite of the disturbance
being present. This is also supported by the actual closed-loop measurements which
show that both level and temperature do not exceed the alarm limits for the above
disturbauce scenario (Figure 4.11).

The second disturbance scenario is similar to scenario 1, except a bigger step size
was considered. The hot water valve position is changed from 7.1% percent to 9.5%
percent at + — 800. The consequence of the introduction of this disturbance is the
same as the previous scenario with a greater intensity as the disturbance size is larger.
For this scenario, the predicted open-loop steady state values of the process variables
are yi* — 50 cm, y3¥ = 414.21°C. and the input values at 800 s are uygp0 = 17.95%,
Uy oo = 9.79% respectively. Using these values output and input constraints for the

process can be written as

—34.2 < Ay < —24.81 (4.152)
—5.01 < Ay, < —1.01 (4.15b)
~17.95 < Auy, < 1.1 (4.15¢)
~9.79 < Auy < 9.26 (4.15d)

For the given conditions, a feasible solution does not exist that mcets all the con-
straints. This is also depicted in Figure -1.12. which shows there is no feasible region
for the given conditions. Therefore, an alarm is issued at the time the disturbance is
meastred (at (=800 s). Closed-loop process measurements for this particular scenario
are presented in Figure 4.13, which validates that the tank temperature exceeds the

alarm limit at 825 sec.
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Chapter 5

Conclusions of Predictive Early

Warning Generation

The aim of the current study was to develop a methodology to generate an early warn-
ing to the systemn. Predictive power of process open-loop model was used to design
a predictive alarm system, through which the objective was achieved. In proposed
methodology, alarms were generated based on the predictive signals which is capable
of provide an alarm earlier to compared to conventional systems that issue alarm
based on process measurement. The performance of the methodology was validated
using extensive simulation study. The method also proved to be robust and did not
gencrate nuisance alarin when process was at normal operating state. The specific
contributions are listed below:

In this part of the study, the following contributions have been achieved.

e A novel model-based predictive alarm gencration technique is proposed. The
proposed methodology uses an open-loop process and disturbance model to pre-
dict the system responses. The open-loop responses are bias-corrected using

the available measurements. The alarms are generated based on the updated
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5.1

predictions.

Two limiting conditions were postulated, and based on these two conditions,
alarm generation methodologics were developed. The dynamic alarm gencra-
tion procedure looks at the immediate effect of the disturbance and the steady
state alarm generation procedure monitors the process for long term cffect of a

disturbance in a process.

The proposed method provides carly alarm compared to any conventional alarm
generation method. The nethod is relativelv maintenance free, it does not re-

quire frequent updating as it uses open-loop predictions.

The technique is robust as it exploits the fundamental limitations of the con-
troller and actuator for alarm generation. The methodology has been applied
to a SISO system and a more complex MIMO system where technique was used
to monitor the system for different disturbance scenarios. In both examples, the
methods generated alarms in a consistent manner and demonstrated robustness

to the false alarms.

Future Recommendations

Expcrimental validation : The effectiveness of the current study can be further

demonstrated using an cxperimental set up (i.e., experimental CSTH set up).

Use of a quantitative value for alarm generation: In the predictive monitoring
section, an alarm is generated based on a heuristic procedure. When three
or more values lie above the threshold, an alarm is generated. This can be
quantified using the risk value and risk threshold, which provide more scope to

prioritize the response of alarms.
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e Use of multi-linear model: The current study used linear model for a fixed op-
erating points. However, in practice, with the change of the operating point
process dynamics may change drastically. Therefore, effectiveness of the pro-
posed methodology will be compromised in case of a system where operating
points change regularly. Multiple models can be used for different operating

points to deal with this problem.

Simulation studies performed in this study shows a good prospect of proposed alarm
generation method. As our simulation study was based on a Iump model with sensor
noise, plant model mismatch, these results supports to the fact that, this methodology
may be useful for the process industry. The method requires more experimental

validation in pilot plant before it can be implemented in industry.
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Part 1I:
A Comparative Study between
PID-free MPC and Hybrid Control

Structure
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Chapter 6

Predictive Control

6.1 Introduction

Model predictive controllers are typically used as a supervisory layer over the base
level PID controller, especially in large-scale applications. This structure gained ac-
ceptance mainly because it allows the implementation of MPC with minimal changes
to the existing control structure. Also, the PID layer can act as a fall back when the
MPC is turned off for any reason. However, this structure does not allow the potential
benefits of the MPC to be fully harnessed. In practice, it was observed that there are
many incentives in breaking the PID loop and directly manipulating the valve output
using the MPC. One common example is when trying to use the full valve capacity
(e.g., maximize feed, maximizing cooling) it is common practice to break the PID
loop and manipulate the valve directly fromm MPC. Also when multiple feed forward

affects a process variable, it is common to replace the PID loop with MPC.

Recently, a software called ADMC from the original inventors of DMC is being mar-

keted that uses the DMC to directly manipulate the actuator. It is claimed that
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this controller performs better than the hybrid MPC-PID structure. Therefore, an
objective investigation of the performance of these competing control structures is
necessary. In this study, a simulation-based comparative study is carried out between
two control structures: MPC cascaded to PID and MPC directly manipulating the

valve output.

6.2 Literature Review

6.2.1 Current State of PID Controller

PID is a widely used control structure in the industry. Desborough and Miller esti-
mated that 98 percent of the controllers in a median chemical plant are PID controllers
[Desborough and Miller, 2001]. Though it is widcly used for its simplicity of imple-
mentation, it has different limitations. The main limitation of the PID is that it
has no straightforward tuning method. The impact of this fact is cvident from the
result reported by Van Overschee and De Moor [Overschee and Moor, 2001]. They
summarized that 80 percent of industrial PID controllers are poorly tuned; 30 per-
cent of these PID loops operate in manual mode:; and 25 percent of the PID loops in

automatic modc operate under default factory scttings.

[Na, 2001] proposcd a control structurc to overcome the drawbacks of the conven-
tional PID controller with fixed tuning parameters. The proposed control structure
is presented in Figure 6.1. In this arrangement, PID gains arc automatically tuned in
order to keep a predefined cost function to a minimum. MPC is applied to minimize
the cost function using the sccond order lincar model. The proposed methodology
is applied to a linear model for nuclear steam generators. The applied methodology

showed an improved performance compared to that of PID in both set point tracking
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and regulatory control.

A simple but robust technique is described in [Ogunnaike and Mukati, 2006]. In
this work, the simplicity of PID and versatility of MPC are combined together. The
output is predicted over the horizon using a first order plus dead time (FOPDT)
model. Thus, predictive features of MPC are retained. Use of FOPDT cnsures that
prediction requires as few paranieters as the PID controller design required. Though
simpler modeclling approaches have been considered, there always exists a modclling
error. This modelling error is minimized, making a bias correction at each step coni-
paring the predicted output and the actual measurements. Tuning paramcters arc
defined bhased on the key performance indices such as set point tracking, disturbance
rejection, and the robustness and aggressiveness of the controller. The controller
showed better performance in set point tracking and disturbance rejection compared

to an IMC-tuned PID controller in extensive simulation studics.

[Astrom and Hagglund, 2001] describes the potential alternatives for PID in industrial

settings. The proposed alternatives are a discrete-time linear MISO controller, state
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feedback and observers (SFO) and model predictive controller (MPC). I'uzzy control

is also mentioned as a potential alternative. All alternatives provide an improved
performance, especially for systems which are poorly damped. Controllers based on
SFO require a greater modelling afford, as such its use is justified only when mod-
elling efforts are moderate. MPC is typically used as a supervisory layer to the base
layer PID. The use of MPC provides a drastic improvement of set point tracking.
Moreover, computational complexity is minimized in this case, as MPC executes at a
slower rate, regulating the slower dynamics of the system. The PID layer acts with

the fast interactions.

[Paimocchia et al., 2005] proposed an offset-free constrained linear quadratic (CLQ)
controller as a potential candidate to replace PID. CLQ consists of three main mod-
ules based on a state-space model of the system: a state and disturbance estimator,
a constrained target calculation module, and a constrained dynamic optimizer. Each
module is designed to minimize the computational load and, as such, the controller
implementation load is comparable to a PID controller. The CLQ controller out-
performed the PID controller in all the simulated cases reported in the paper. The
controller was limited to SISO systems, however, it may be expendable for MIMO

systems.

{Han, 2009] described active disturbance rejection control (ADRC) as an improved
control scheme to replace PID. ADRC is error driven similar to PID, using a state
observer to utilize the power of non-linear feedback. The major limitations of PID
pointed, are crror computation, noisc degradation in derivative control, oversimplifi-
cation of control law and complications from the integral control. ADRC is aimed at

overcoming these PID limitations. First, a simple differential equation is used to gen-
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Figure 6.2: ADRC control structure [Han, 2009

crate a transient trajectory. A differentiator is capable of noisc-tolerant tracking. A
non-linear control law is used instead of a simple weighted error. An ADRC structure

is shown in the Figure 6.2.

Though various controllers have been proposed as an alternative to PID controllers,
MPC has tprobably the most potential to replace a portion of the PID controllers in
process industry. Tn the following scctions, a historical account of MPC is given and

some ol the articles that compared MPC with PID. are reviewed.

6.2.2 Historical Review of MPC

MPC has been widely used as an advanced control strategy in the process industry
over the last 30 years. The theory of MPC, however, existed long before it was im-
plemented in the process industrv. The modern control concept was first developed
through the work of Ialman in the carly 1960s. In his work, an objective function was
minimized that penalized expected values of squared input and state deviation from
origin. The solution to this probleim was kiown as a lincar quadratic Gaussian (LQG)
controlter. However, LQG had little impact on control technology development in the
process industry. The significant reasons for this failure are cited in [Richalet ct al.,

1976] and [Garcia et al.. 1989).
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The failure of LQG led to the development of a more general model based control
methodology where dynamic optimization problems were solved on-line at each control
execution. Process inputs were computed optimizing [uture process behaviour over a
time interval which is later defined as ‘prediction horizon” Explicit plan models are
used to describe the plant dynamics. Parallel to this development, 1ew identification
methodologies also emerged which helped to propel the technology. The model based
control, together with the industrial process modelling, was relerred as MPC technol-
ogy. MPC technology is first described in [Richalet et al., 1976] and later summarized
in [Richalet et al., 1978]. They sumnmarized their approach as model predictive heuris-

tic control and provided solution software using this approach.

Curtler and Ramaker first described the dynamic matrix control (DMC) algorithm
in [Cutler and Ramaker, 1979] and [Cutler and Ramaker, 1980]. In a companion
work [Prett and Gillette, 1980}, Prett and Gillete described an application of DMC

for an industrial case. with a modified algorithm capable of handling the non-linearity.

During the 1980s both industrial and acadcmic interest in MPC started to grow. The
idea of cost function and optimization is employed with the algorithm. Thus, the
MPC algorithm is further modified based on the cost tfunction and optimization of
the process. According to the different types of cost functions MPC can be clas-
sified into different types; DMC with least squares satisfaction of input constraints
[Prett and Garcia, 1988], DMC with constrained linear programming optimization
[Morshedi ct al., 1985], and Quadratic programming solution of DMC [Garcia and

Morshedi, 1986].
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The understanding of MPC has now reached a new level and a specific framework has

been built for both theoretical and practical purposes.

Some excellent reviews on MPC technology can be found in [Muske and Rawlings,

1993],[Bemporad and Morari, 1999] and [Qin and Badgwell, 2003] . In these papers,

a generalized algorithm of the model predictive controller is provided. Moreover, a
historical review of the MPC technology and the algorithms of the MPC at different
stages are also presented. These papers also discuss the strengths, limitations and

evolution of the MPC algorithms in detail.

6.2.3 Comparative Study between MPC and PID

A comparative study hetween standard PID and predictive controller is presented for
a heat exchanger in [Bonivento et al., 2001]. In this work, the modelling of the heat
exchange is performed using the dynamic properties of the heat exchanger. The step
response model for the input-output is identified. Then, using the identified model,
PID controller and Generalized Predictive Control (GPC) are designed. GPC provides
better results compared to standard PID for both set-point tracking and disturbance

rejection.

Another work on MPC implementation in heat exchanger is presented in [Krishna Vinaya

et al., 2012]. For heat exchanger control, PID is a widely used control technique. The
motivation of the work was to optimize and conscrve energy. A hcat exchanger is
highly non-linear process. In this work, the system is divided into different zones and
for cach zonc a modcl is developed. Using these models, a model predictive controller

was designed and used to control the temperature of a fluid stream. A PID controller
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was also designed for the process using the Ziegler Nichols method. Comparative

studies on the two controllers’ performance show that MPC provides better results

based on the rise time, overshoot and settling time.

A comparative study of PID controllers, MPC controllers and model free adaptive
controllers (MFA) is performed in [Lukacova and Borzikova, 2010]. In this work,
MFA is designed using an artificial neural network,and MPC is designed based on
conventional dynamic matrix controller (DMC). The results show that PID is the
fastest of the three controllers but it has overshoot and steady state error. Both MFA
and MPC are steady state error-free. MFA tracks the set point faster than MPC, but
MFA has overshoot. However, advanced control strategies provide superior perfor-

mance compared to PID.

The above literature survey shows, even though there were several studies to evaluate
the performance of MPC against PID controller, there was no effort to compare hybrid

MPC-PID structure with PID-free structure. This study is aimed to fill in this gap.



Chapter 7

Theory of Dynamic Matrix Control

7.1 Dynamic Matrix Control

In the present work, dynamic matrix control (DMC)is used as a representative MPC
algorithm. DMC has been a widely used algorithm iu the industry since its introduc-
tion back in 1980s. The theory of DMC is available in several books and literatures
such as [Ogunnaike and Ray, 1994] and [Seborg et al., 1989]. Discussions in this
chapter will be limited to the representation of the central idea of DNMC algorithm.
Initially, the algorithm is presented for a simple SISO system. Later, the algorithm is

extended to MIMO system.

The DMC algorithm is executed in two stages: prediction and control. In the predic-
tion stage, the process variable is predicted using the receding horizon algorithm. In
the control stage, an objective function is defined and minimized to get the control

actions.
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7.1.1 Prediction

A step response model of the plant is used for prediction in this formulation, while the
disturbance is considered to be constant along the horizon. A step response model

for a SISO system can be written as in Equation 7.1

Y= axAuy_; (7.1)

i=1
where, y, is the model output, q; is the i-th coefficient of the step response, and Au are
the past input changes step. Using the time-shifting property and taking the constant

disturbance into account, a future predicted value can be written as in Equation 7.2

o0
Jerk = )0 * Atyypi + Verk (7.2)

i=1
where, §¢4x is the predicted output at time ¢+ k, v,y is the disturbance at time ¢+ k.
As the disturbance is assumed to be constant over the horizon, it is given by Equation

7.3

Vigk = Uy = Ym(t) — Gt (7.3)

where y,,(t) is the measured output at time ¢. The value of the 144, from 7.3 can be

replaced in Equation 7.2 and can be rewritten in the following form

k 00 00
Gerk = Z a; * Atgp i + Z @i * AUgpp—i + ym(t) — Z a; * Auy_; (7.4)
i=1 i=k+1 i=1

Now, the last three terms of Equation 7.4 actually express the output of the system if
no control action is taken from time ¢ to t+k, and is termed as the frce response of the

system, y;,,. The free response of the system thus can be expressed mathematically
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as follows
o0

ik = Ym(t) + D (anyi — aq) * Auy (7.5)

i=k+1
Now, if the process is asymptotically stable, the step response tend to be a constant
value after NV sampling time. Therefore, finite step response of N samples can be used

instead of infinite step response model as, ax,; — a; >~ 0 for ¢+ > N. Using this finite

step response model, free response of the system can be represented as,

N
yrf+k: = Ym(t) + Z (aryi — ai) * Aug (7.6)

i=k+1

Using the free response of the systemn, Equation 7.7 can be rewritten in the following

form
k

Jerk = Z(li * Aupg—i + Yiop (7.7)
i=1

Equation 7.4 will be used to predict along the prediction horizon (k=1, 2, ..., p) with

m control actions.
17¢+1 = y,*+1 + ay * Au,,
Uiz = Yipo + ag * Auy + ay * Augy

gH‘P = yr*-i-p f Z((Ii * AuH»pfi)

=1

These caleulated predicted values can be expressed in the following matrix form

J=y"+AxAu (7.8)

where, § is a p dimensional vector containing the predicted output over prediction

horizon, y* is also a p dimensional vector which contains the free response of the
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system over the horizon, Awu is an m dimensional vector of control increments. A is

the dvnamic matrix of the svsteni, which is defined in Equation 7.9

[¢51 0 0 0
ay  ap 0 0
A= (7.9)
Ay Am—-1 Am—-2 ... ... aq
tp  Ap-1 Ap—2 oo o Op_my)

Equation 7.8 expresses the relation between the predicted future output with control
increment. As such, this can be used to calculate the action necessary to achieve a

specific system behaviour [Ogunnaike and Ray, 1994] [Scborg ct al., 1989].

7.1.2 Control Algorithm

The objective of the DMC controller is to drive the output close to desired trajectory.
An objective function is defined based on the deviation of desired trajectory and
predicted output and it is minimized by calculating a set of control actions.

Suppose, a p dilensional vector # is known which contains the desired sct-points over
the prediction horizon p. The objective function .J(Aw) is defined in Equation 7.10

that calculates a set of control actions that minimizes the deviation between r and §

J(Au) = (T—Q)T*Q* (r—1%) (7.10)

where @ is the weighting matrix that defines the aggressiveness of the controller.
However, the objective function defined in Equation 7.10 is an unconstrained formu-

lation and may produce undesirable consequences. This is why the control action is
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also penalized along with the deviation of prediction and set-point. Thus, a more

robust objective function can be defined as in Equation 7.11

JAuw) = (r—9)T+«Q+(r—9) + Au" * R+ Au (7.11)

where, R is the weighting matrix to penalize the control action. Control actions can
be calculated by minimizing the objective function described in 7.11. The value of
§ can be replaced from Equation 7.8. Control actions are calculated analytically by
taking the first derivative of the objective function with respect to Aw and equating

it to zero which gives the following explicit expression for Aw.

Au=(ATQA + R TATQ" * (r — y*) (7.12)

More compactly controller can be expressed as, Au = K .*e, where, K, = (ATQAnL
R)'ATQ" and e = (r — y*).

Thus, using DMC a set of control actions are calculated that drive the output close
to the desired set-point over the predicted horizon. However, the total m number
of control actions are calculated, but only the first control action is implemented, as
at the next control interval, the calculation is repeated to get a new set of control

actions.

7.1.3 Extension to Multi-variable Case

The scheme discussed in the previous subsections can be easily extended for a MIMO
systein. Basic equations will remain the same, except for the fact that the size of the

vector and the matrices would be increased and partitioned. Based upon the linear-
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ity of the model, the superposition principle can be used to evaluate the predicted

outputs.

For a multivariable system with s output and A input variables, the predicted output

*
mm’

vector Fmm, free response vector y set-point trajectory vector r,,, aud array of

future control signal A, can be written as [Ogunnaike and Ray, 1994],

141 '.‘/f,t+1 T4+ Aul,t

Iy P 4 "

Y1iep Y1 ity TLitp AUy gan-1
~ - . _ _
Ymm s =1 o Tmm = | AUpm =

el * i .,

Yst+1 Yetel Vs t+1 Aty

. - 1

,l/s,t+p y,gvt+p r*s,t—f—p Auh,H»m—l

Dynanitic matrix for the multivariable system is redefined as

All A]2 Alh
Agr Ass .. .. .. Ay
Aman:
Aij
Ay Ay o Ay

Here, the overall dynamic matrix is constructed using submatrices which contain the
step weights that relate the individual input-output pair. The sub-matrix relating the
i-th output to j-th input can be defined as the same way a dynamic matrix is defined

previously and is given below.
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((li.7'.1 0 0 0
(Lij, 2 @i 0 0
A,‘j =
Uijm  Qijm—1  Qijm-2 - .- Q51
aij,p aij,p—l a‘ij,p—‘z (Lij,p—nH—l

With these definitions, the DMC controller is implemented for a MIMO system.
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Chapter 8

Simulation Results

8.1 Plant Description

Controllers based on the algorithm described in chapter 7, are designed for a contin-
uous stirred tank heater (CSTH) mentioned in earlier chapter. As stated previously,
though the plant is a simulated model, it is very real life like as dynamic equations
along with experimental data, were used to build the simulink model. The available
simulink model is considered as a plant for this study as it is assumed that the dy-

namic behaviour of the real plant will be similar to this simulated model.

In this set up, water is heated using steam and hot water. Cold water enters into the
tank coutinuously from supply. Steam is supplied from a steam generator whereas hot
water is supplied from building utilities. Control valves manipulate the flow of steam,
cold water and hot water. The water level of the tank and the temperature of the
water are the two controlled variables. These variables are controlled by manipulating
the valve positions of the control valves. Standard operating points used to develop

simulink model are stated in Table 8.1.
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Table 8.1: Operating points of CSTH for different control structures

Variable Op Pt

Level/cm 20.50
Temperature/Deg C = 42.50
CW valve/percent 42.67
Steam valve/percent  40.81
HW valve/percent 0

Plant model at the operating point are provided in Figure 8.1. These plant models are
extensively used while designing the MPC block which uses DMC algorithm to design
a controller. The details algorithm of DMC is discussed in the previous chapters. In

the next section different control structures will be discussed.

8.2 Control Structures

In this work, the performance of three different control structures are compared.
These are: a two-layer cascaded PID structure; a hybrid structure with PID in the
base layer and the set-points of the PID manipulated by DMC; a PID-free structure

where the control valve is directly manipulated by DMC.

8.2.1 Two Layer Cascaded PID Structure

The cascaded PID structure is presented in Figure 8.2 using the four measured vari-
ables and two manipulated variables. Cold water flow and stcam flow arc the two
measured variables used as the feedback to the base layer PID. The outputs of the
basc layer PIDs arc used to manipulate the position of the control valves of cold water
and steam. Set-points of the base layer PID controllers are manipulated bv supervi-
sory layer PID. Mecasured variables, tank level and temperature, arc used as feedback

signals to the supervisory layer PID, which compares the measured values with their
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Figurc 8.2: Two layer cascaded PID structure

corresponding desired values and provides control actions accordingly.
Dectails design methodology of the design of two layer PID is discussed in [Thornhill

et al., 2008]. Moreover, an electronic mnodel of the plant controlled with the two layer

PID is available online.
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8.2.2 Hybrid Structure with Base Layer PID Manipulated

by DMC

The hybrid control structure is shown in Figure 8.3. In this structure, the supervisory
layer is a DMC controller. This structure is practised widely and gained aceeptance
mainly because it allows the implementation of MPC with minimal changes to the
existing control structure, and also because the PID layer can act as a fall back when
MPC is turned off for any reason. In this structure, the plant, together with the
PID controller. constitutes the system for the MPC that controls the tank level and
temperature by manipulating the set-points of the base layer PID flow controllers.

MPC block is shown in the block diagram which is a centralized controller, that uscs
the plant model and DMC algorithm to design a controller. In the hvbrid case, as
plant together with PID is used as the process, model would not be same as shown
in the Figure 8.1. An identified FIR filter is used as the process model to design the
DMC. FIR modecl is provided in Equations 8.1 to 8.4. Design parameters of DMC arc

provided in Table 8.2.

—0.000234722

Gu(z) = 8.1

1(2) = 1703521 1 0035257 (8.1)
0.0003297 772

Gia(z) = 8.2

12(2) = T35 1 0.93525 2 (8.2)
—0.06439622 10

Galz) = 8.

21(2) = 77050807 + 0.0000725 2 (8.3)
—0.014916--10

Gn(2) (8.4)

T 1-0.9089="1 + 0.0020722-2
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Figure 8.3: Hybrid control structure

Table 8.2: Design parameters of the DMC controller
Variable Value
Prediction horizon(p) 15

Control horizon (m) 5
Weighting factor (Q) 1
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Table 8.3: Design parameters of the DMC controller
Variable Value

Prediction horizon(p) 15
Control horizon (m) 5
Weighting factor (Q) 1

8.2.3 PID Free MPC Structure

A PID-free control structure is presented in Figure 8.4. In this control structure there
is no PID controller. A DMC controls the tank level and temperature by manipulating
the cold water valve and the steam valve positions directly. So, in this case open loop
model of the process plant provided in Figure 8.1, can be used directly to design MPC.

Different design parameters to design DMC for this structure is provided in Table 8.3.

8.3 Performance Comparison of Different Types of
Structures

The performances of the three different control structures are evaluated based upon
set point tracking and regulatory control. Set point tracking performance describes
how well a controller can rcact to the change of the desired sct point of a process
variable, whereas regulatory control assesses the ability of the controller to nullify the
effect of any disturbance that appears in the system. Apart from these two propertics,
another desired property of a good controller is minimal fluctuations in the actuator.

This will also be evaluated in this study.
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8.3.1 Set-point Tracking

For assessing the controllers’ response to a change in set point, the same scenario was
set for the three different structures. The set points of both level and temperature are
changed and the change of measured variables and actuator due to control action are
observed. Measured outputs and manipulated variables for the three controllers are
shown in Figures 8.5 to 8.7. The set point of the level is changed from 20.5 to 22.85
cm and the temperature set point is changed from 42.5 to 48.73°C. From the figures,
it is evident that a PID-free MPC structure can react to a change of set point quicker
than the other two structures; however, it demands more movements in the actua-
tors. Counsidering valve movemnent, a hybrid structure proved to be better. However,
it is much slower to react to the set point change. Both cascaded PID and hybrid
structures have some overshoot which is mnuch lower in the case of PID-free MPC.
Ixecution frequency is another concern while designing DMC. In hybrid structure,
DMC execution frequency is 15s, while for PID free structure execution frequency is
1s in order to reject any local disturbaices. Hence, a PID-free structure has signifi-

cantly more computational load compared to the hybrid PID.

In order to quantify the control performance of the three structures, theyv are compared
using the integrated squared error (ISE) values for set-point tracking. ISE value is an
integrated value of the deviation between the desired set-point and measured output
over a certain period. In this case, an integral interval is considered to be the time
that is required to achieve a steady state value after a set-point is changed. The ISE
values for level and temperature are shown in Figures 8.8 and 8.9. From the figurcs,
it can also be seen that the PID free structure shows superior performance compared
to other structurcs. The hyvbrid control structure gives a larger ISE value due to

steady state error. To suin up, having a large computational load PID-free structure
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Figurc 8.8: Comparison of the ISE valuc of different control structures for level control

Table 8.4: Settling time of level for different structures

Structure Settling time(level)
Two layer cascaded PID 100 sce

Hybrid structure 420 sec

PID free structure 50 sec

is bit difficult to implement but it clearly outperforms the other structurcs in terms
of control performances.

Comparison of the controller performance can also be made based on the scttling
time. Settling time of both level and temperature for each structure are shown in
Table 8.4 and 8.5, Values of the scttling time also suggest that, PID free structure
clearly outperforms the other two structures in terms of stability having significantly

lower scttling time.



Figure 8.9: Comparison of the ISE value of different control structures for temperature

control
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Table 8.5: Settling tiine of temperature for different structures

Structure Settling time(temperature)
Two layer cascaded PID 200 scc
Hybrid structure 220 sec
PID free structure 170 sec
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8.3.2 Regulatory Control

Regulatory control assesses a controller’s ability to nullify a disturbance when it en-
ters in to the system. In this study, hot water is considered to be the disturbance.
Thus, a change in hot water valve position means that a disturbance has appeared
in the svstem. For the nominal operation condition, the hot water valve is kept fully
closed. In order to observe the regulatory control action of the controller, the hot
water valve position is changed from 0 percent to 4.76 percent. Thus, hot water acts
as a disturbance to the systent and causes a rise of both measured variables, level and
temperature, from their defined set poiut. The controllers took action to bring back

the measured variable to the initial set point.

Figures 8.10 through 8.12 show the measured outputs and actuator movements after
a disturbance is introduced into the systerm. From these results it is clear that all the
controllers are capable of bringing the process to its initial state. A cascaded PID
controller gives the fastest disturbance rejection with an undershoot and it has sig-
nificant large swing in the actuator, which is not desirable. Both hybrid and PID-free
structures reject disturbance without any undershoot. In the case of the actuator
movement hybrid structure has less variation. However, the hybrid structure is signif-
icantly slower than the PID-free structure in disturbance rejection and allows a bigger
rise of the measured output compared to the PID-free structure. The performance
of hybrid structure may be improved by increasing the execution frequency of the

supervisory DMC.
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8.4 Effect of Execution Frequencies in PID-free

MPC Performance

Performance comparison in the previous section convincingly demonstrates that PID-
free MPC structurc has a supcerior performance over PID or hybrid structure. How-
ever, the main concern for the PID-free MPC is that it has significantly more com-
putational load, as DMC has to provide a control action at cvery second. Decreasing
the execution frequency would help to decrease the computational load. Moreover,
PID-frcce MPC has more fluctuation in the valve position, which can be reduced by
increasing sampling time, hence decreasing exccution frequency. In this section, PID-
frce MPC is implemented at two different frequencies and their performances are
evaluated. The first one is the controller described in the previous section with a
sampling time of 1s, while for the other, a sampling time of 10s is chosen. Set point
tracking performances of the PID-free MPC at these two execution frequencies are
obscrved. The set point of level is changed from 20.5 to 22.85 cm at t= 800s and the
set point of the temperature is changed from 42.5°C to 48.73°C at t= 500s.

Figure 8.13 shows the mcasured outputs and actuator movements at different execu-
tion frequencies. Comparing the results, we see that, for the lower execution frequency,
a steady state crror exists between the set-point and the response for a prolonged pe-
riod. However, the valve movement is significantly reduced for the lower execution
frequency. All these phenomena should be taken into account while choosing an exe-

cution frequeucy of a DMC controller.
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Chapter 9

Conclusions of the Predictive

Control

A comprehensive simulation-based study was carried out to compare the performances
of the two control structures: ‘MPC cascaded to PID’ and a ‘PID-frecc MPC’, where
MPC is directlv manipulating the actuators. DMC is used as the representative
MPC algorithm. The simulation study was carried out on a CSTH system. The
performance of the controllers for set point tracking and disturbance rejection were
monitored. [SE is used as the control performance indicator which clearly suggests
PID-free MPC structure is the superior one. However, PID-free MPC needs to be

excecuted at a high frequency which increases the computational load.

The findings and contributions arc summarized below:

e A hybrid control structure where a DMC cascaded to a PID controller and a
PID-free control structure where DMC directly manipulates the actuator are
designed for a CSTH system.These two design of control were implemented in

Matlab Simulink.
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9.1

The performance of the above control structures are evaluated for both set-point
change and disturbance rejection. More aggressive control can be achieved by
the PID-free DMC structure. Some overshoot in the response is observed for

the PID-free DMC structure.

Quantitatively, the performance of these competing control structures arc cotn-
pared by calculating ISE. This also shows that the PID-free DMC structure
outperforms the hybrid DMC-PID structurc. In fact, the performance of the

hybrid structure is inferior to the cascaded PID structure to some extent.

The computational load and the movements of an actuator for the PID-free
DMC structure is more than that of a hybrid structure. Computational load

can be managed by optimiziug the execution frequency.

Future Recommendations

Experimental validation: The cffectivencess of the methodologics are discussed
in this study based on the simulation results. This can be further validated

using an experimental study.

The effect of valve non-linearity on the perforinance of the PID-free MPC struc-
turc was not studied. This is an important question which can be studied using

an experimental set up.

Simulation results showed that direct use of MPC rather than an MPC in supervisory

layer and base layer PID may allow achieving better control performances. This

advantage comes with additional computational load. Experimental studies should

be carried out to validate the above simulation findings.

101




Bibliography

|[Adnan et al., 2011] Adnan, N. A, Izadi, 1., and Chen, T. (2011). On expected detec-
tion delays for alarm systems with deadbands and delay-timers. Journal of Process

Control, 21(9):1318 - 1331.

[Astrom and Hagglund, 2001] Astrom, K. and Hagglund, T. (2001). The future of

pid control. Control Engineering Practice, 9(11):1163 — 1175.

[Bakshi and Stephanopoulos., 1993] Bakshi, B. R. and Stephanopoulos., G. (1993).
Wave-niet: a multiresolution, hierarchical neural network with localized learning.

American Institute of Chemical Engineers Journal, 39 (1):57-81.

[Bao et al., 2011] Bao, H., Khan, F.| Igbal, T., and Chang, Y. (2011). Risk-based
fault diagnosis and satety management for process systeins. Process Safety Progress,

30(1):6-17.
[Basseville and Benveniste, 1986] Basseville, M. and Benveniste, A. (1986). Detection

of abrupt changes in signals and dynamic systems. Berlin: Springer-Verlag.

[Basseville and Nikiforov, 1993] Basseville, M. and Nikiforov, I. V. (1993). Detection
of abrupt changes-theory and application (Information and System Sciences Series).

Prentice Hall. Prentice Hall.



[Bemporad and Morari, 1999] Bemporad, A. and Morari, M. (1999). Robust model
predictive control: A survey. In Garulli, A. and Tesi, A., editors, Robustness in
identification and control, volume 245 of Lecture Notes in Control and Information

Sciences, pages 207-226. Springer London.

[Ben-Haim, 1980] Ben-Haim, Y. (1980). An algorithm for failurc location in a complex

network. Nuclear Science and Engineering, 75:191-199.

[Ben-1laim, 1983 Ben-Haim, Y. (1983). Malfunction location in linear stochastic
gystems-application to nuclear power plants.  Nuclear Science and FEngineering,

85:156 166.

[Bhagwat et al., 2003a] Bhagwat, A., Srinivasan, R., and Krishnaswamy, P. (2003a).
Fault detection during process transitions: a model-based approach. Chemiecal

Engineering Science, 58(2):309 — 325.

(Bhagwat et al., 2003b] Bhagwat, A., Srinivasan, R., and Krishnaswamy, P. R.
{(2003b). Multi-linear model-based fault detection during process trausitions. Chem-

ical Engineering Science, 58(9):1649 — 1670.

[Bonivento et al., 2001] Bonivento, C., Castaldi, P., and Mirotta, D. (2001). Predic-
tive control vs pid control of an industrial heat exchanger. In Proceedings of the

9th Mediterranean Conference on Control and Automation.

[Chang and Hwang, 1998] Chang, C. T. and Hwang, J. I. (1998). Simplification tech-
niques for ckf computations in fault diagnosis - suboptimal gains. Chemical Engi-

neering Science., 53 (22):3853-3862.

|Chang et al., 2011] Chang, Y., Khan, F., and Ahmed, S. (2011). A risk-based ap-
proach to design warning system for processing facilities. Process Safety and Envi-

ronmental Protection, 89(5):310 — 316.

103



[Cherry and Qin, 2006] Cherry, G. and Qin, S. (2006). Multiblock principal compo-
nent analysis based on a combined index for semiconductor fault detection and

diagnosis. Semiconductor Manufacturing, IEEE Transactions on, 19(2):159 - 172.

[C.Hoskins et al., 1991] C.Hoskins, J., Kaliyur, K. M., and Himmelblau, D. (1991).
Fault diagnosis in complex chemical plants using artificial ncural networks. Amer-

ican Institute of Chemical Engineers Journal, 37 (1):137-141.

[Chow and Willsky. 1984] Chow, E. Y. and Willsky, A. S. (1984). Analytical re-
dundancy and the design of robust failure detection systeins. ieee transactions on.

Automatic Control, 29 (7):603-614.

[Chu et al., 1994] Chu, R., Bullemer, P., Harp, S., Ramanathan, P., and Spoor, D.
(1994). Qualitative uscr aiding for alarm management (qualm): an integrated
demonstration of emerging technologies for aiding process control operators. In
Systems, Man, and Cybernetics, 1994. 'Humans, Information and Technology’,

1994 IEEE International Conference on, volume 1, pages 735 —740 vol.1.

[Cutler and Ramaker, 1979] Cutler, C. R. and Ramaker, B. L. (1979). Dynamic ma-
trix control - a computer control algorithm. In AICHE national meeting, Houston,

TX, April.

[Cutler and Ramaker, 1980] Cutler, C. R. and Ramaker, B. L. (1980). Dynamic ma-
trix control - a computer control algorithm. In Proceedings of the joint automatic

control conference.

|Desborough and Miller, 2001] Desborough, L. and Miller, R. (2001). Increasing cus-

tomer value of industrial control performance monitoring - honeywell’s experience.

104



[Dingli et al., 1995] Dingli, Y., Gomm, J. B, and. D. Williams, D. N. S., and Disdell,

K. (1995). Fault diagnosis for a gas-fired furnace using bilinear observer method.

In Proceedings of the American control conference , Seattle, Washington.

[Dong and McAvoy, 1996] Dong, D. and McAvoy, T. J. (1996). Batch tracking via
nonlinear principal component analysis. American Institute of Chemical Engineers

Journal, 42 (8):2199-2208.

[Fan ct al., 1993] Fan, I. Y., Nikolaou, M., and White, R. E. (1993). An approach
to fault diagnosis of chemnical processes via neural networks. American Institute of

Chemical Engineers Journal, 39 (1}:83-88.

[Farell and Roat, 1994] Farell, A. E. and Roat, S. D. (1994). Framework for enhancing
fault diagnosis capabilitics of artificial ncural networks. Computers and Chemical

Engineering, 18 (7):613-635.

[Fathi et al., 1993] Fathi, Z., Ramirez, W. F., and Korbiez, J. (1993). Analytical
and knowledge-hased redundancy for fault diagnosis in process plants. AIChE .J.,

39:42-56.

[Fernanudez et al., 2005] Fernandez, L., Pogrebnyak, O., and Marquez, C. (2005).
Neural network and trend prediction for technological processes monitoring. In Gel-
bukh, A., de Albornoz Alvaro, and Terashima-MarAn, H., editors, MICAI 2005:
Advances in Artificial Intelligence, volume 3789 of Lecture Notes in Computer Sci-

ence, pages 731-740. Springer Berlin / Heidelberg.

[Frank. 1990] Frank, P. M. (1990). Fault diagnosis in dynamic systems using analyti-
cal and knowledge-based redundancy*/a survey and some new results. Automatica,

26:459--474.

105




~

. e B e O i T e
o e T x

|Garcia and Morshedi, 1986] Garcia, C. E. and Morshedi, A. (1986). Quadratic pro-
gramming solution of dynamic matrix control(qdme). Chemical Engineering Com-

munications, 46:73-87.

|Garcia et al., 1989] Garcia, C. E., Prett, D. M., and Morari, M. (1989). Model

predictive control: Theory and practice - a survey. Automatica, 25 (3):335-348.

|Gertler et al., 1995] Gertler, J., Costin, M., Fang, X., Kowalczuk, Z., Kunwer, M.,
and Monajemy, R. (1995). Model based diagnosis for automative engines - algorithm
development and testing on a production vehicle. IEEE Transactions on Control

Systems Technology, 3:61-69.

[Gertler et al., 1990] Gertler, J.. Fang, X., and Luo, Q. (1990). Detection and di-
agnosis of plant failurcs: the orthogonal parity cquation approach. Control and

Dynamic Systemns, 37:159-216.

[Han, 2009] Han, J. (2009). From pid to active disturbance rejection control. Indus-

trial Electronics, IEEE Transactions on, 56(3):900 -906.

[Holcomb and Morari, 1991] Holcomb, T. and Morari, M. (1991). Local training of
radial basis function networks: towards solving the hidden unit problem. In Amer-

ican control conference.

[Iscrinann, 2005] Isermann, R. (2005). Model-based fault-detection and diagnosis -

status and applications. Annual Reviews in Control, 29(1):71 — 85.

[Izadi ct al., 2009a] Izadi, I., Shah, S. L., Shook, D. S., and Chen, T. (2009a). An
introduction to alarm analysis and design fault detection, supervision and safety of
technical processes. In 7th IFAC Symposium on Fault Detection, Supervision and

Safety of Technical Processes.

106



(Izadi et al., 2009b] Izadi, 1., Shah, S. L., Shook, D. S., Kondaveeti, S. R., and Chen,
T. (2009b). A framework for optimal design of alarm systems. In 7th [FAC Symn-

posium on Fault Detection, Supervision and Safety of Technical Processes.

[J. Gertler and Monajemy., 1995] J. Gertler, J. and Monajemy., R. (1995). Generat-

ing dircctional residuals with dynamic parity relations. Automnatica, 31:627-635.

[Juricck et al., 2001] Juricck, B. C., Scborg, D. E., and Larimore, W. E. (2001). Pre-
dictive monitoring for abnormal situation management. Journal of Process Control,

11(2):111 - 128.

Kavuri and Venkatasubramanian, 1994] Kavuri, S. N. and Venkatasubramanian, V.
(1994). Neural network decomposition strategies for large scale tault diagnosis.

International Journal of Control, 59 (3):767-792.

[Kresta et al., 1991] Kresta, J. V., Macgregor, J. F., and Marlin, T. E. (1991). Mul-
tivariate statistical monitoring of process opcrating performance. The Canadian

Journal of Chemical Engineering, 69(1):35-47.

[Krishna Vinaya et al., 2012] Krishna Vinaya, V., Ramkumar, K., and Alagesan, V.
(2012). Control of heat exchangers using model predictive controller. In Advances in
Engineering, Science and Management (ICAESM), 2012 International Conference
on, pages 212 -246.

[Lee et al., 2006] Lee, J.-M., Qin, S. J., and Lee, 1.-B. (2006). Fault detection and

diagnosis based on modified independent component analysis.  AICRE Journal,

52(10):3501-3514.

[Lee et al., 2004] Lee, J.-M., Yoo, C., and Lee, I.-B. (2004). Statistical monitoring of
dynamic processes based on dynamic independent component analysis. Chemical

Engineering Science, 59(14):2995 — 3006.

107



[Leonard and Kramer. 1990] Leonard, J. A. and Kramer, M. A. (1990). Limitations
of backpropagation approach to fault diagnosis and improvements with radial basis

functions. In AIChE annual meeting , Chicago.

[Li et al., 2000] Li, W., Yue, H., Valle-Cervantes, S., and Qin, S. (2000). Recursive

pea for adaptive process monitoring. Journal of Process Control, 10(5):471 — 486.

[Lukacova and Borzikova, 2010] Lukacova, 1. and Borzikova, J. (2010). Comparison
of advanced control methods with classical pid control for using in heating process
control based on outdoor temperature compensation. Journal of applied science in

the thermodynamaics and fluid mechanics, 4.

[MacGregor et al., 1994] MacGregor, J. F., Jacckle, C., Kiparissides, C., and Kou-
tondi, M. (1994). Proccss monitoring and diagnosis by multiblock pls methods.

American Institute of Chemical Engineers Journal, 40 (5):826-838.

MacGregor and Kourti, 1995] MacGregor, J. F. and Kourti, T. (1995). Statistical

process control of nultivariate processes. Control Engineering Practice, 3:403-414.

|Massoumnia, 1986] Massoumnia, M. A. (1986). A geometric approach to the synthe-

sis of failure detection filters. [EEE Transactions on Automatic Control, 31:839-846.

[Misra et al., 2002] Misra, M., Yue, H., Qin, S., and Ling, C. (2002). Multivariate pro-
cess monitoring and fault diagnosis by multi-scale pea. Computers &amp; Chemical

Engineering, 26(9):1281 —- 1293.

[Morshedi ct al., 1985] Morshedi, A. M., Cutler, C. R., and Skrovanck, T. A. (1985).
Optimal solution of dynamic matrix control with linear programing techniques

(Idmc),. In American Control Conference (199-2080.

108



[Muske and Rawlings, 1993] Muske, I{. R. and Rawlings, J. B. (1993). Model predic-

tive control with linear models. AIChE Journal, 39(2):262-287.

[Na, 2001] Na, M. G. (2001). Auto-tunced pid controller using a model predictive
control method for the steam generator water level. Nuclear Science, IEEE Trans-

actions on, 48(5):1664 —-1671.

IN.Clark, 1979] N.Clark, R. (1979). The dedicated observer approach to instrument
fault detection. In Proceedings of the 15th IEEE-CDC.

[Nomikos and MacGregor, 1994] Nomikos, P. and MacGregor, J. F. (1994). Monitor-
ing batch processes using multiway principal component analysis. AICRE Journal,

40(8):1361-1375.

[Ogunnaike and Mukati, 2006] Ogunnaike, B. A. and Mukati, K. (2006). An alterna-
tive structure for next generation regulatory controllers: Part i: Basic theory for
design, development and implementation. Journal of Process Control, 16(5):499 —

509.

|Ogunnaike and Ray, 1994] Ogunnaike, B. A. and Ray, W. (1994). Process Dynamics,
Modeling, and Control. Oxford.

'Overschee and Moor, 2001] Overschee, P. V. and Moor, B. D. (2001). The end of
heuristic pid tuning, in preprints of the ifac workshop on digital control: past,

present and future of pid control cbs.

[Pannocchia ct al., 2005] Pannocchia, G., Laachi, N., and Rawlings, J. B. (2005).
A candidate to replace pid control: Siso-constrained lq control. AIChE Journal,

51(4):1178-1189.

109




[Prett and Garcia, 1988] Prett, D. M. and Garcia, C. E. (1988). Fundamental Process

Control. Butterworths-Heinemann, Boston, MA.

[Prett and Gillette, 1980] Prett, D. M. and Gillette, R. D. (1980). Optimization and
constrained multivariable control of a catalytic cracking unit. in. In Proceedings of

the joint automatic control conference.

|Qin and Badgwell, 2003] Qin, S. and Badgwell, T. A. (2003). A survey of industrial

model predictive control technology. Control Engineering Practice, 11(7):733 - 764.

[Qin and McAvoy, 1992] Qin, S. J. and McAvoy, T. J. (1992). Nonlinear pls modeling

using neural networks. Computers and Chemical Engineering, 16 (4):379-391.

|Raich and Cinar, 1996] Raich, A. and Cinar, A. (1996). Statistical process moni-
toring and disturbarice diagnosis in multivariable continuous processes. American

Institute of Chemical Engineers, 42 (4):995-1009.

[Richalet et al., 1978] Richalet, J., Rault, A., L.Testud, J., and Papon, J. (1978).
Model predictive heuristic control: Applications to industrial processes. Automat-

ica, 14:413-428.

[Richalct ¢t al., 1976] Richalet, J., Rault, A., Testud, J. L., and Papon, J. (1976). Al-
gorithmic control of industrial processes. In Proceedings of the {th IFAC symposium

on identification and system parameter estimation.

[Rothenberg, 2009] Rothenberg, D. H. (2009). Alarm Management for Process Con-

trol. Momentum Proess.

[Ruiz et al., 2002] Ruiz, D., Benglilou, C., Nougués, J. M., Puigjaner, L., and Ruiz,

C. (2002). Proposal to spced up the implementation of an abnormal situation

110




managenlent in the chemical process industry. Industrial & Engineering Chemistry

Reseurch, 41(4):817-824.

'Schorg ct al., 1989] Scborg, D. E., Edgar, T., and Mecllichamp, D. (1989). Process

Dynamics and Control. Wiley.

[Shahriari ct al., 2006] Shahriari, M., Shee, A., and Ortengren, R. (2006). The de-
velopment of critical criteria to improve the alarm system in the process industry.
Human Factors and Ergonomics in Manufacturing & Service Industries, 16(3):321—

337.

[Shewhart, 1931] Shewhart, W. A. (1931). Economic Control of Quality Manufactured
Product. Oxford, England.

[Thornhill et al., 2008] Thornhill, N. F., Patwardhan, S. C., and Shah, S. L. (2008).
A continuous stirred tank heater sinmilation model with applications. Journal of

Process Control, 18(3-4):347 — 360.

[Tsai and T.Chang, 1995] Tsai, C. S. and T.Chang, C. (1995). Dynamic process diag-
nosis via integrated neural networks. Computers and Chemical Engineering, 19:747—

75H2.

[Ungar et al., 1990] Ungar, L. H., Powell, B. A., and Kamens, S. N. (1990). Adap-
tive networks for fault diagnosis and process control. Computers and Chemical

Engineering, 14 (4-5):561-572.

[Vaidyanathan and Venkatasubramanian, 1992] Vaidyanathan, R. and Venkatasub-
ramanian, V. (1992). Representing and diagnosing dynamic process data using

neural networks. Engineering Applications of Artificial Intelligence, 5 (1):11-21.

111



[Varga et al., 2010] Varga, T., Szeifert, F., and Abonyi, J. (2010). Detection of safe

operating regions: A novel dvnanic process siimulator based predictive alarm man-

agement approach. Industrial & Engineering Chemistry Research, 49(2):658-668.

[Venkatasubramanian, 1985] Venkatasubramanian, V. (1985). Inexact reasoning in
cxpert systems: a stochastic parallel network approach. In Proceedings of the second

conference on artificial intelligence applications.

[Venkatasubramanian and Chan, 1989] Venkatasubramanian, V. and Chan, K.
(1989). A neural network methodology for process fault diagnosis. American Insti-

tute of Chermical Engineers Journal, 35 (12):1993-2002.

[Venkatasubramanian et al., 2003a] Venkatasubramanian, V., Rengaswamy, R., and
Kavuri, S. N. (2003a). A review of process fault detection and diagnosis: Part
ii: Qualitative models and search strategies. Computers & Chemical Engineering,

27(3):313 - 326.

[Venkatasubramanian et al., 2003b] Venkatasubramanian, V., Rengaswamy, R,
Kavuri, S. N., and Yin, K. (2003b). A review of process fault detection and diagno-
sis: Part iii: Process history based methods. Computers & Chemical Engineering,

27(3):327 - 316.

[Venkatasubramanian et al., 1990] Venkatasubramanian, V., Vaidyanathan, R., and
Yamamoto, Y. (1990). Process fault detection and diagnosis using neural networks

i: steady state processes. Computers and Chemical Engineering, 14 (7):699-712.

|Watanabe et al., 1994a] Watanabe, K., Hirota, S., Iloa, L., and Himmetblau, D. M.
(1994a). Diagnosis of multiple simultancous fault via hicrarchical artificial neural

networks. American Institute of Chemical Engineers Journal, 40 (5):839-848.

112



[Watanabe et al., 1994b] Watanabe, K., Hirota, S., lloa, L., and Himmelblau, D. M.

(1994b). Diagnosis of multiple simultaneous fault via hierarchical artificial neural

networks. american institute of chemical engineers journal. 40 (5):839-848.

[Willsky, 1976] Willsky, A. S. (1976). A survey of design methods for failure detection

in dynamic systems. Automatica, 12:601-611.

|Willsky and Jones, 1976] Willsky, A. S. and Jones, H. L. (1976). A generlized like-
lihood ratio approach to the detection and estimation of jumps in lincar systems.

IEEE Transactions on Automatic Control, 21:108-112.

[Yang ct al., 2010} Yang, F., Shah, S., and Xiao, D. (2010). Corrclation analysis of
alarm data and alarmn limnit design for industrial processes. In American Control

Conference (ACC), 2010, pages 5850 -5855.

[Yin et al., 2012] Yin, S., Ding, S. X., Haghani, A., Hao, H., and Zhang, P. (2012).
A comparison study of basic data-driven fault diagnosis and process monitoring
methods on the benchmark tennessee eastman process. Journal of Process Control,

92(9):1567 — 1581.

[Yoon and MacGregor, 2000] Yoon, S. and MacGregor, J. F. (2000). Statistical and
causal model-based approaches to fault detection and isolation. AIChE Journal,

46(9):1813-1824.

[Yuki, 2002] Yuki, Y. (2002). Alarm system optimization for increasing operations

productivity. ISA Transactions, 41(3):383 — 387.

[Zadakbar et al., 2012] Zadakbar, O., Imtiaz, S., and Khan, F. (2012). Dynamic risk
assessment and fault detection using principal component analysis. Industrial &

Engineering Chemistry Research, 0(0):null.

113



[Zadakbar et al., 2011} Zadakbar, O., Imtiaz, S. A., and Khan, F. (2011). Dynamic
risk assessment and fanlt detection using multivariate technique. In AIChE J sub-

mitted.

[Zamanizadeh et al., 2008] Zamanizadeh, E., Salahshoor, K., and Manjili, Y. (2008).

Prediction of abnorinal situation in nonlincar systems using ckf. In Networking,
Sensing and Control, 2008, ICNSC 2008. IEEFE International Conference on, pages
681 —686.
















