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Abstract 

This thesis investigates the effectiveness of model predictions in two important fields 

of process operation: process monitoring and process control. Both monitoring and 

control are essential for the safe and optimal operation of a chemical process. P rocess 

monitoring is necessary to notify the operator about an undesired condition, whereas 

a controller directs a process to desired condition. In Part I of the t hesis, a novel 

model-based predictive technique is proposed for early warning generation to t he op­

erator. In Part II of the thesis, an in-depth simulation-based investigation is carried 

out to evaluate t he performance between two control structures: 'model predictive 

controller (MPC) cascaded to the proportional-integral-derivative (PID) controller ' , 

and 'PID-free MPC'. 

The proposed early warning generation method uses open-loop process model and dis­

turbance model. Process feedbacks are used to correct prediction bias . This method 

exploits t he controller limitations in dealing with process time delay and actuator 

constraints. An warning in form of alarm is issued if the open-loop predictions ex­

ceed t he t hret:ihold within the process t ime-delay. Actuators also plays a major role 

in controlling processes. If at any point actuators do not have sufficient capacity, 

controller will fail to regulate t he process . Using t he process gain, measurements, and 

constraint informa tion a linear programming algorithm is used to check t he exist ence 
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of a feasible solution that meets all constraints. An alarm is generated if no feasi­

ble solution can be found (i.e. , the actuator does not have sufficient capacity). The 

proposed method is applied to a single-input-single-output (SISO) and a multi-input­

multi-output (MIMO) continuous stirred tank heater (CSTH) system. The method 

gave early warnings compared to the existing safety systems. Also the method demon­

strated robustness under small disturbance in the process. 

The comparative study between the 'MPC-cascaded to PID ' and the 'PID-free MPC' 

structure is carried out on a simulated CSTH system. In the cascaded structure the 

flow-loops are regulated by the PID controller. On top of that a dynamic matrix 

controller (DMC) manipulates the set-point::; of the flow-loops to control tank tem­

perature and level. The 'PID-free MPC' structure uses a dynamic matrix controller 

(DMC) to manipulate the valve po::;it ion::; directly. The study reveal::; that t he PID­

free MPC structure outperforms the cascade structure in both disturbance rejection 

and ::;et-point tracking. However , the PID-free MPC structure demands more control 

action and has more computational load. Integrated square error (ISE) is used to 

quantify t he performance. 
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Chapter 1 

Introduction 

Predicting the future is an important part of the preparation for future events in 

our every-day life. Instinctively predictive models arc used to predict the outcome 

of certain phenomena. For example, when someone is going out of the house and 

observes that, t he sky is covered with black cloud, instinctively he would take either 

an umbrella or a rain-coat to negate the effect of a possible shower. This philosophy 

of pre-scientific prediction can be converted into a scientific prediction by satisfying 

some requirements. The phenomena have to be fully explainable using science, t he 

outcome of certain phenomena have to be consistent and understandable, and finally 

phenomena can be expressed either through numbers or by logic. Satisfying these cri­

teria, a prediction can be made scientific. Such scient ific predictions have significant 

applications in many branches of science and engineering. 

Predictions a re also extensively used in the process industry for control purpose. Due 

to the extensive usc of model predictive controller (MPC) , t he open-loop dyna mic 

model of the process is usually known. In this thesis, the predictive power of these 

process model is used in two important areas of process operations: monitoring and 
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control. In part I of t he thesis an alarm system is developed based on open-loop 

dynamic predictions. In part II a simulation-based study is carried out to compare 

t he purely predictive control structure (i.e., MPC manipulating actuator) with t he 

existing hybrid (i.e, predictive cascaded to feedback) control structure. 

Monitoring is essential for safe and uninterrupted operation of a plant, which is one of 

t he primary goals in any process. On average 1500 process variables are continuously 

monitored in a typical process plant. For safe operation, each process variable is re­

quired to be inside certain limit values. If a variable violates these limits, an alarm 

is generated to alert the operator to take corrective actions. Failure of the operator 

to take t he neces~ary actions before a process variable goes over the safety limit may 

cause severe consequences to equipment as well as to human and the environment . 

Detection of an abnormal situat ion in t ime is ab~olutely crit ical to avoid both human 

injuries and equipment damage. The sta te of the art univariate alarm systems gen­

erate alarms based on process measurements. As such, they often lack t he ability of 

prediction. Advance mul t ivariate monitoring methods use models and exploit corre­

lations between different variables for fault detection and alarm generation. These 

methods have more success in issuing early warnings. However , some of t hese meth­

ods do not use the power of predict ion fully and do not consider t he impact of t he 

controller and actuator explicitly on the alarm system. The proposed methodology 

consider~ the above factors and develops a truly predictive a larm generation ~ystem 

which is able to detect any impending fault at a very early stage. Using the proposed 

methodology the information of a possible abnormal ~ituation can be ~ent to opera­

tors early on, which provides more t ime for the operators to respond to an abnormal 

sit uation. 
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The second part of the study deals with t he predictive control. The prediction of 

variables is already in use in the field of process control in the form of MPC, but in 

most cases the existing MPCs are used as a supervisory layer over the base level PID 

controller. This structure does not allow the potential benefits of the MPC to be fu lly 

harnessed . T his is why a PID-free control structure is proposed in the current study, 

where control valves are directly manipulated by the MPC. This structure offers sev­

eral advantages: full use of valve capacity, handling of multiple feed-forwards, etc. 

Moreover, as no PID is present, updating is not required in MP C for changes in PID 

tuning parameters . A simulation-based comparative study is carried out to evaluate 

t he performance of these alternative control structures. The study confirmed the ad­

vantages of the PID-free MPC :::;tructure over t he MPC-cascaded to PID controller 

structure. 

1.1 Objectives of the Current Study 

This research is aimed to investigate and develop predictive methodologies for process 

monitoring and process control. In the process monitoring part , a novel model-based 

predictive early warning generation technique is proposed through a predictive alarm 

system. Proposed predict ive alarm system uses open-loop predict ions from process 

and disturbance models. To make the methodology robust, biases of the predictive 

signals are corrected using process measurement and a heuristic rule is used to gener­

ate alerts to the operator. The focus of t his study is on generating early warning for 

operators and providing more t ime to respond in abnormal sit uations. 

In order to achieve t he object ives, followig specific tasks were set at the begining of 
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t his work. 

• Develop a comprehensive theory for application of the open-loop dynamic model 

for early warning generation. 

• Develop t he methodology and algorithm for t he predictive alarm generation 

system. 

• Demonstrate the performance of t he proposed methodology using process system 

in a simulation environment. 

T he predictive control study is t he second focuti of t hiti thesis. The aim of this work 

is to perform a comparative study between two competing control structures: 'MP C 

cascaded to PID' and 'PID-free MPC'. A two-layer PID struct ure is initially used to 

control a process. The PID controllers of this structure arc gradually replaced by 

MPC, and the process is made PID-free. Comparative performances of the different 

control structures arc studied discussing the advantages and limitations. T he specific 

tasks for this study are to 

• Implement two control structures: MPC-cascaded to a PID controller and P ID­

free MPC on a continuous Htirred tank heater (CSTH) system. 

• Investigate t he performance of the alternative control structures for set point 

tracking and regulatory control using quantitative measures. 

• Investigate actuator demand and t he effect of actuator non-linearity on control 

performance of t hese alternative structures. 
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1.2 Thesis Organization 

The first chapter of this thesis briefly describes the motivations for this research and 

objectives of the study. The thesis is thematically divided into two parts. Part I deals 

wit h predictive alarm generations. Part I consists of Chapter 2, Chapter 3, Chapter 

4 and Chapter 5. Part II documents t he comparative study between t he 'MP C cas­

caded to PID' and 'P ID free MP C control ' structures. Pm t II consists of Chapter 6, 

Chapter 7, Chapter 8 and Chapter 9. 

Chapter 2 covers the extensive review of literatures on process monitoring. A brief 

introduction which discusses alarm management history and standards is a lso given. 

The mathematical formulation of the proposed methodology is discussed in Chapter 

3, mentioning the two limiting conditions. 

Chapter 4 is devoted to describe two case studies to show t he effectiveness of t he 

proposed methodology. This chapter includes the detailed plant description and sim­

ulation results and discussions. 

Chapter 5 documents t he contributions of the predictive alarm generation system de­

scribed in part I. Recommendations for more robust techniques arc also provided in 

this chapter. 

In Chapter 6, motivations to replace PID with MPC are stated . T his chapter also 

covers t he existing works to replace PID and a brief historical review of MP C. 

The control a lgorit hm used to design t he MPC controller, is discussed in Chapter 7. 
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Chapter 8 describes the different control structures and gives the plant descript ion. 

This chapter provides a detailed comparison of the performances of different control 

structures. 

The contributions of the comparat ive study in part II are discussed in Chapter 9. 

Recommendations for fut ure work are also provided in this chapter. 
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Part I: 

Early Warning Generation through 

Alarm System 
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Chapter 2 

Literature Review 

2.1 Robust Alarm Management 

Robustness is one of the main desired properties for alarms. Different surveys have 

been performed in process industries to identify the critical requirements needed to 

improve an alarm system. The major problems identified , are a lack of prioritization 

of the alarm, system rigidity, alarm fiooding, a lack of well-designed alarm limits , and 

stress on the operators due to the high number of alarms. [Shahriari et al., 2006]pro­

posed an ideal a larm system which emphasises the proper prioriti:6ation of alarms to 

make a well-designed system and ensure a less stressful work environment for opera­

tion. They also suggest that both the control system and monitoring system should 

be dynamic to make the a larm more reliable. However , the discussion remains limited 

in building the criteria of an ideal management system, which are the guidelines used 

to develop a robust alarm system to overcome t he problems found in the survey. 

Once the critical criteria for an alarm system is defined , it is recommended that t he 

alarm system goes through a repeating cycle of analysis, plan and countermeasures. 
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Figure 2.1: Spiral Improvement Cycle [Yuki , 2002] 

As plant equipment and control systems changes frequently, the effect of alarm system 

improvement might not last long. [Yuki, 2002] recommends a three-step continuous 

effort to keep the alarm system optimi:t:ed over t ime. In the first stage, a plan is formu­

lated based on the analysis found from history. Based on the plan, counter-measures 

are developed for the plant. While counter-measures are being developed, evaluation 

is performed to observe the effectiveness of the counter-mea::;ures. Based on t he data 

from the evaluation and counter-measures, a detailed analysis is performed to provide 

a plant for the next cycle. 

[Chu et al. , 1994] outlines a guideline for abnormal situation management. A frame­

work is proposed that integrates some existing features available in the industry. User 

intent recogniser, a causal reasoning diagnosis system and an advanced graphical user 

interface is integrated together to assist the operator in taking the necessary action in 

abnormal situations. A detailed methodology for execution is d scribed in this article. 

Execution of the abnormal situation handling is performed in three stages: orienta­

tion, evaluation , and execution. The orientation stage refers to the task of focusing 
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on the information relevant to a particular problem, whereas the evaluation stage in­

cludes the diagnosis and assessment of the situation. Finally, in the execution stage, 

t he operator executes the necessary action based on t heir knowledge of the plant 

and abnormal situations. For successful execution of all these stages, the framework 

suggests different softwares. T he user intention recogniser interprets the operator 's 

goal based on his actions. It checks the current plant state with the plant history to 

provide feedback on whether the operator's action is consistent with the previous ac­

tions. Causal modelling is a way to identify the process disturbance early and predict 

t he future effect of t he disturbance. An advanced graphical interface is t he medium 

of interaction used between the operator and the process plant. T he effect iveness of 

the integrated framework is illustrated in t his art icle t hrough a case application to a 

distilla tion column. 

[Ruiz et al. , 2002] proposed an advanced framework using data history, the first prin­

ciple plant model, and HAZOP analysis. The scheme used i:-; provided in Figure 2.2 . 

T he fault diagnosis system (FDS) of the scheme is provided in Figure 2.3. Data ini­

tially is pre-processed to make it usable as the input to the FDS. The FDS is designed 

using an a rtificial in telligence system based on a neural network and fuzzy logic sys­

tem. 

Data pre-processing consists of various key tasks such as t rend generation, principal 

component analysis, fi ltering, and da ta reconcialiation. The data is the input to the 

FDS which is a combination of a pat tern recognition approach based on the neural 

network and fuzzy logic. Historical data is used by the neura l network for recognition 

of the trend. On-line data from the system is used as the input for the neural network. 

Outputs of the neura l network arc used to generate the residual to diagnose the fault 
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Figure 2.2: Alarm Scheme [Ruiz et al. , 2002] 
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Figure 2.3: Fault Diagnosis Syst em [Ruiz et al. , 2002] 
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Figure 2.4: ROC curve [Izadi et al. , 2009b] 

using the historical data as reference. Usually abnormal conditions do not occur 

too frequently in t he plant. Therefore, data history may not show a good trend for 

t he abnormal sit uation. This is why a plant model is required to generate input 

output data for abnormal ~ituatiom; and generate a trend for t he abnormal condition. 

HAZO P analysis is used to determine the root cause and IF-T HEN rules arc used to 

direct operator~ about the state of the plant and the nece~sary act ion to t ake. T he 

complete methodology is demonstra ted using a industrial case study. 

An elaborate discussion on alarm system analysis and design is provided in [Izadi 

et al. , 2009a]. The alarm Hooding problem is approached here with different possible 

solut ions. The key concept of fa lse alarm and missed alarm is discussed , which arc 

two of t he major concerns in the process industry. A missed alarm lead~ to a severe 

consequence and is a major concern from the safety perspective, whereas a false alarm 

causes distraction for the operator and limits the efficiency of the operator 's act ions 

to clear the alarm. Considering the trade-off between false alarms and missed alarms 

an optimized alarm sy~tem framework i~ proposed in [Izadi et al. , 2009b]. Three 
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techniques (e.g. filtering, dead-band, and delay t imers) to opt imize t he process alarm 

system are discussed . Alarm optimization is performed considering the probability 

of false alarms and missed alarms as optimization parameters. For an illustration of 

probability of a false alarm and a missed alarm , a graphical representation receiver 

operating characteristics (ROC) curve is discussed. A ROC curve is illustrated in 

Figure 2.4. The two axes of t he curve represent the probability of false alarm and 

probability of missed a larm. Alarm opt imization is performed based upon the mini­

mum distance of the operating point of false alarm and missed alarm from the origin 

point of the ROC curve. The effectiveness of the ROC-based design is demonstrated 

through process data. F iltering is considered to be the second technique t hat can 

be used to reduce t he false alarms and missed alarms caused by the process noise. 

T he moving average and moving variance filter are the recommended methodologies. 

The compatibility of these filters in different scenario::; is illustrated t hrough process 

data. Delay t imers and dead-band are also effective methods to reduce false alarms 

and missed alarms. T he technique::; described here can cause a significant reduction in 

false alarms and missed alarms. One common shortcoming for all the methods is that 

each of them introduces detection delay to t he alarm system. These concepts make 

t he alarm system more reliable, but the process remains vulnerable when t he early 

detection of fault is necessary. This is because detect ion delay was not considered as 

an opt imization parameter in t hese techniques. 

Detection delay is considered as one of t he opt imization parameters to design t hresh­

old in [Adnan et al. , 2011]. An opt imum t hreshold design is very important in t he 

process industry to opt imize false alarms and missed R.larms. Too high a threshold 

may cause missed alarms, which can lead severe consequences, whereas a low threshold 

increases t he number of nuisance alarms, which can interrupt operators ' attent ion and 
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thus degrades the alarm system 's reliability. In this design procedure, t he threshold 

is optimiJ:~ed with an objective to minimize false alarm, missed a lR.rm and detection 

delay in the alarm system. Markov processes are used to calculate the detection delay 

for those techniques. FR.lse alarm R.nd missed alarm are first optimiL~ed using an ROC 

curve. Then, for different thresholds, false alarm rate (FAR) and missed a larm rate 

(MAR) are plotted with a different number of expected detection delay (EDD). The 

optimized value of a threshold can be detected for a given number of EDDs. The 

design procedure is illustrated using two industrial case studies which show superior 

performance. However one basic limitation of the methodology is t hat, it assumes that 

probability density function of processes for fault free and faulty case are completely 

known. But, in the real process, it i::; hard to define a probability density function for 

fR-ulty cases. For processes t hat changes dynamics rapidly, performance of th is design 

procedure would not be as good as is depicted in case studies. 

[Chang et al. , 2011] discussed a risk-based approach to design warning t o the oper­

R.tor . A standard R.larm response cycle is used to define process safety t ime, as is 

illustrated in Figure 2.5. Process safety t ime was considered to be absolutely crucial 

in designing t he warning system, as an operator must respond to the abnormal situ­

ation within this period. Risk is assessed based on t hree parameters : process safety 

t ime, the probability (P) of the potent ial hazard , and the severity or impact (I) of t he 

consequences. 

Init ially, a voting system is applied to reduce ala rms that arc generated based on 

raw sensor measurements . Hazards of the system are studied and the probability 

and severity of the impact is mapped. Considering the process safety time t , for a 

potentia l hazR-rd risk is calculated Equation 2.1 
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Figure 2.5: A standard alarm response cycle [Chang eta!. , 2011] 

R = P noo(!-t;6o) (2.1) 

where P is the probability of the hazard occurrence, I is the severity of t he impact of 

t hat hazard , t is the process safety t ime, and R is t he final risk. 

A risk threshold for t he process is defined based on the expert knowledge of the system. 

As process safety t ime and impact are considered in the risk equation, hazards ·wit h 

higher importance provide more risk and, thus, t he method is useful for thr proper 

prioritization of an alarm. 

2.2 Univariate Alarm Generation Methods 

Control char t, also known as Shewhart chart is a statistical process monitoring tool 

which gives an indication of t he process state at any instant. Historically, t his has 

been used as an indicator for a trusted alarm management system. Construction and 

detailed statistical aspects of this chart is discussed in [Shewhart, 1931]. 

A control chart is built using the points representing the measurements of a quality 
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Figure 2.6: Control Chart 

characteristics taken from the process at any given t ime. For any part icular variable, 

t he mean and standard deviation are calculat ed from the data points. The centre line 

is drawn using t he mean of t he measurements, whereas st andard deviation is used to 

define the upper and lower control limits . Typically, three-sigma values to both side 

of the mean arc used as upper and lower control limits. As ±3cr covers 99.70 percent 

of the normal distribut ion, when data points lie inside the control band limit, process 

is believed to be in normal stat e. An observation outside the limit value indicates 

t he introduction of a new source of variation and defined as special-cause variation. 

Special-cause variation requires immediate investigation to keep the process at an 

optimized level. 

After detecting a change its cause should be identified and , based on the objective, 

furt her action is taken . In the case of a good change, a detected cause should be 

considered as a new way of working, whereas in the case of a bad change, t he detected 

cause is required to be eliminated. Decision making may appear difficult when t he 

process operating condit ions or set-points vary frequently. In such case the method 

cannot distinguish between normal operational changes and an abnormal condit ion . 
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2.3 Advanced Process Monitoring Techniques 

Though classical univaria te methods are more popular due to their simplicity and 

robustness, t hey are unable to provide an in-depth diagnosis of the fault . Due to the 

availability of large number of sensors, there is a probability t hat the number of alarms 

can be t riggered from a single abnormal cause of the process. [Kresta et al. , 1991] in­

t roduced statistical process control (SP C) charts which arc analogous to conventional 

Shewhart charts. only wit h the additional mult ivariate nature. Mult ivariate methods 

can compress t he information down into lower dimensional spaces retaining significant 

part of the process information. Significant work has been performed in t he field of 

advanced moni toring, result ing in a wide range of methodologies . [Vcnkatasubrama­

nian et a l. , 2003b] describes a good classification on t hese methodologies. On broader 

scale, these methods can be classified into two major classes: model based approach 

and historic data ba::;ed approach . T he model based approach can be further divided 

into two categories based on the nature of t he models used for monitoring: quantita­

t ive and qualitative. Quant itative monitoring relies on accurate quantitative models, 

whereas the other type is based on qualitative models. History based method uses 

historical data to extract features. This extraction of features can be either qualita­

t ive or quant itative. Expert system, and trend modelling arc two common methods of 

qualitative feature extraction. Quantitative extraction methods can be further clas­

sified as non-stat istical (e.g. neural network based), and statistical (e.g. Principal 

component analysis (PCA) / partialleast squares (PLS) based) methods [Venkatasub­

ramanian ct al. , 2003b]. 

Quant itative model based approaches arc suitable for build ing monitoring systems for 

small process units. Models can be built either by using first principles or frequency 

response. T he most important class of models that arc frequently used is input-output 
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or state-space models. Actual system behaviour is checked with t he system model for 

inconsistency which is termed as residual. From t he residual values decisions are made 

whether a system is faulty or not . [Isermann, 2005] describes the advantages of t he 

model based approaches over the classical trend checking fault monitoring. Advanced 

methods provide early detection of fault , good supervision under close loop, and su­

pervision facilit ies under transient state of the process. Advanced process monitoring 

systems consist of two parts. One is fault detection , the other is fault diagnosis. A 

brief int roduction of different fault detection and diagnosis methods is provided in 

t he following sections. T he most frequent ly used model based FDI approaches in­

clude diagnostic observer , parity relation , Kalman filters and parameters estimation. 

[Isermann , 2005] 

[N.Clark, 1979] and [Massoumnia , 1986] are some of the pioneering works on d iagnos­

t ic observers. [Frank, 1990] decoupled the effect of fault and presented a more robust 

fault detection method . T his work also con::oidered a solution for a non-linear ::oystem 

in t he form of a diagnostic observer. A non-linear observer is designed for non-linear 

system in the [Dingli et al. , 1995]. In t he parity relation approach, consistency of 

t he plant model is checked wit h t he sensor out put. In this case, t he plant model is 

formed by rearranging the parity equations . Dynamic parity relation was first intro­

duced by [Willsky, 1976] . It was further extended by [Gert ler et al. , 1990], [Gertler 

et al. , 1995] and [J. Gert ler and Monajemy., 1995] . Some other significant works us­

ing parity relations can be found in [Ben-Haim, 1980], [Ben-Haim, 1983] [Chow and 

W illsky, 1984] . Among model based approaches, Kalman filter based approaches are 

used most frequently. It uses a recursive algorit hm for state estimation and has a 

wide application in t he field of process monitoring. The Kalman filter was first intro­

duced by [Willsky and .Jones, 1976] for fault detection and it was further advanced 
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through the work of [Basseville and Benveniste, 1986] and [Basseville and Nikiforov, 

1993]. [Fathi et a l. , 1993] used an extended Kalman filter (EKF) in designing local 

detection filters . [Chang and Hwang, 1998] proposed a suboptimal EKF to provide 

computational efficiency. 

A model based approach for the handling of abnormal situations during the process 

transition is discussed in [Bhagwat et al. , 2003a]. The motivation for this work is the 

inability of automatic control systems to cope with large changes in process variables 

during t he transit ion . For this reason, transitions are executed manually by operators. 

Thus, a process is more vulnerable to the faults during the transition phase. Fault 

detection and identification (FDI) t;ystems in practice, are Ut;ually designed assuming 

t hat, the process is at steady state, which is not suitable for process monitoring during 

t he transit ion phat;e. A"' such, sudden changes due to discont inuous phase changes are 

detected wrongly as fault . Also, proper diagnosis cannot be done in the case of oper­

ator errors . These issues were addressed in this ar t icle. For the off-line development 

of the model, first standard operating point (SOP) and process knowledge are used 

to break the transition into different phases. Model components are extracted from 

t he process knowledge for different phases. Based on the model components, different 

types of filters are designed. For non-observable components an open-loop observer 

is used, whereas a Kalman fi lter is used for observable linear components. For non­

linear components an extended Kalman filter is det;igned . For on-line implementation , 

a phase is detected based on phase defin it ion and the phase model component is se­

lected initially. Based on the phase model component, a suitable filter is activated 

and residuals arc generated. Residuals a rc t hen passed to a fault detector and, based 

on t he fault definition, fault is detected. After detection, logical analysit; is performed 

using a faul t map before sending a notification to the operator. The main challenge 
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for this method is developing the non-linear model and filter for t he system which is 

often difficult and costly. 

Keeping the main scheme similar, [Bhagwat et al. , 2003b] used a set of linear models 

along the transition trajectory to build the monitoring system for t ransient systems. 

In quantitative models, a priori knowledge of t he process is expressed in terms of 

mathematical functional relation between input and output. In contrast qualitative 

models, understanding of the process knowledge is expressed in t erms of qualita t ive 

functions . There are two major strategies used to develop qualitative models: causal 

models and abstraction hierarchy. Causal models can be formed using different strate­

gies such as sign directed graph (SDG) , fa ult-tree analysis, and qualitative physics. 

Primary requirement for qualitative model is to develop an expert system that mimics 

the behaviour of a human expert to solve problems. Usually, it is comprised of large 

sets of if-then-else rules and an inference engine which makes decisions based on t he 

process knowledge. [Venkatasubramanian et al. , 2003a] provides an excellent review 

on qualitative fault diagnosis methods. 

The model based approach proved to provide better performance compared to clas­

sical methods. The model based approach is normally limited to processes with a 

small number of variables due to difficulties in building models for complex systems. 

In t he case of handling a large number of variable data based mult ivariate process 

monitoring techniques are more useful. For the successful execut ion of a quantitative 

model based approach, the adaptability of the methods to the physical property of 

the process is required. In the case of non-linear proce::;s model formation becomes a 

bit complicated . 
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In contrast to the model based approach, history based methods require only a large 

historical data set of t he process, and an explicit model of the system is not re­

quired. Features can be extracted using both a qualitative approach and quantitative 

approach. Qualitative data extraction uses an if-then-else structure similar to a qual­

itative model based approach. The only difference is that instead of using the input 

output functional relationship, an input-output trend formed from historical data is 

used. The qualitative approach can be largely divided into two types: expert systems 

and qualitative trend analysis. A comprehensive list of the methods can be found in 

[Venkatasubramanian et al. , 2003b]. 

Quantitative feature extraction can be largely classified into non-statistical and statis­

t ical. Among non-statistical feature extraction approaches, a neural network (NN) is 

widely used in the field of fault diagnosis of chemical processes. Both supervised and 

unsupervised learning strategies have been used. Back propagation algorithms are 

most popularly used for supervised learning strategies. Some earlier work in t he field 

of fault diagnosis using neural networks are [Venkatasubramanian, 1985], [Watanabe 

ct a l. , 1994b], [Vcnkatasubramanian and Chan, 1989], [Ungar ct al. , 1990], [C.Hoskins 

et al. , 1991]. A more detailed and thorough analysis of NN for fa ult diagnosis in 

steady state is presented in [Vcnkatasubramanian ct al. , 1990]. This work was later 

extended for a dynamic process in [Vaidyanathan and Venkatasubramanian, 1992]. 

A hierarchical neural network architecture for mult iple fault detection was proposed 

by [Watanabe et al. , 1994a]. Standard back propagation is improved for bett er per­

formance by int roducing explicit features to NN. [Fan ct a!. , 1993], [Farcll and Roat, 

1994], [Tsai and T .Chang, 1995] presented t he idea of the improvement of the back 

propagation algorithm. [Leonard and Kramer, 1990] suggested the usc of a radial 
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basis function network. Some other significant works using neural networks can be 

found in [Holcomb and Morari, 1991], [Kavuri and Venkatasubramanian, 1994], [Bak­

shi and Stephanopoulos., 1993]. 

The second type of quantitative feat ure extract ion methodology includes multivariate 

statistical process monitoring which typically uses only a few feature variables to mon­

itor plants' performance. Since the pioneer paper by [Kresta et al. , 1991] PCA and 

PLS have been used extensively to monitor chemical processes. Some earlier works 

on fa ult detection and diagnosis using PCA and PLS are [MacGregor et al. , 1994] 

and [MacGregor and Kourti , 1995]. [Qin and McAvoy, 1992] presented a neural net 

PLS approach to deal with non-linearity. [Dong and McAvoy, 1996] ut ilized a non­

linear PCA method to handle non-linearity more efficiently. One of the more recent 

techniques are discussed in [Raich and Cinar, 1996] combining P CA and discriminant 

analysis techniques. 

PLS and PCA can project the information down to lower dimensional space. With t he 

use of PCA or PLS, the dimensionality of the process is reduced. Highly correlated 

large data sets arc reduced to a few latent variables that contain the most process 

information. Projections of new process observations over time on low dimensional 

planes, arc plotted to detect an abnormal process variation. A square prediction er­

ror (SPE) is used to detect the major change of the process caused by new events. 

T he methodology is simple in nature and it can be said as only the extension of t he 

::;tatistical control chart for a large number of variables. When a larger number of 

latent variables is required to capture the process information, it would be difficult to 

monitor a process successfully using this method. 
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The major limitation of PCA based monitoring is that, model is steady state time 

invariant. As most of the real time process is time varying PCA may not be as effec­

tive in dynamic state as it is in steady state. Therefore, the PCA model is required 

to be dynamically updated. A recursively updated P CA is proposed in [Li et a l. , 

2000]. In this work, an adaptive monitoring approach was developed which is ca­

pR.ble of robust monitoring of a dynR.mic state. Two different algorithms based on 

rank-one modification and Lanczos tridiagonalization are proposed. The number of 

principle components and the confidence limits for process monitoring are calculated 

recursively. A case study on rapid t hermal process is presented to demonstrate t he 

effectiveness of the methodology. 

[Nomikos and MacGregor, 1994] extended the use of multivR.riate projection method 

to batch process by developing multiway-PCA (MPCA). The objectiv of batch process 

monitoring the trajectory is to monitor a new batch process with the past good batch 

rum;. This gives rise to a three dimensional data matrix (i.e., time,batch number, 

variable) . A methodology wR.s developed to unfold a three dimensional data matrix 

to a two d imensional data matrix . Subsequently using PCA new batch t rajectory 

can be composed wit h a trajectory band based on past good batches. If a significant 

deviation is detected a warning is generated. 

In [Cherry and Qin, 2006], a recursive PCA algorithm is combined with a mult i-way 

P CA for fault detection and diagnosis. The described methodology used a combined 

index incorporating the informR.tion from the SPE and Hotelling's T 2 for fault detec­

tion. T his work facilitates t he diagnosis procedure for processes with a large set of 

variables. 
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In [Misra et a l. , 2002] a multi-scale PCA based method is proposed which is a combina­

t ion of PCA and wavelets simultaneously. ·wavelets can capture the autocorrelation of 

a sensor, whereas PCA captures correlations across the sensor. These two techniques 

are combined together for their complementary strengths and maximum information 

from multivaria te sensor data is extracted. First, each variable is decomposed using 

discrete wavelet transformation. PCA is applied to each of t he matrices to extract 

t he cross correlation across the sensors. SPE can be monitored based on t he pro­

cess objective. The moving window approach is used for dynamic moni toring. SPE 

is calculated for each level of wavelet decomposition. From the SPE values of each 

level, information about fault can be extracted. Mult i-scale P CA is widely used for 

monitoring rota ting equipment, such as compressors, pumps etc. 

A recent ly developed technique independent component analysis (ICA) is used in [Lee 

et al. , 2004] for statistical process monitoring. ICA is used to reveal the hidden fac­

tor that underlies a set of non-Gaussian measurements. Unlike P CA, ICA does not 

assume independence of the measurements in the temporal domain. Dyna mic ICA 

can be used to monitor a process with auto correlated and cross-correlated variables. 

The results from case studies show that ICA clearly outperforms conventional PCA 

and dynamic PCA. 

However , t here are some limitations of ICA based monitoring. First, it is not easy 

to fix the number of independent components that arc required to be extracted for 

building an ICA model. Moreover , the proper order of ICs cannot be determined as 

the ICA docs not arrange the IC is any order. A modified ICA algorithm to overcome 

these problems is proposed in [Lee et al. , 2006]. This methodology works in two steps. 

In t he first step , the variance of dominant ICs and the direction is detected using P CA. 
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In the second st ep , conventional ICA is performed to update the dominant ICs. The 

method also provides information about the location of fault using a contribut ion plot. 

A comparative study for da ta driven process Monitoring methods is performed in 

[Yin et al. , 2012]. The literature discusses five basic data-driven algorithms. T hese 

are PCA, PLS, ICA, Fisher discriminant analysis (FDA) and subspace aided approach 

(SAP). These methods are implemented on benchmark Tennessee East man (TE) pro­

cess and their performances are compared. Standard PCA shows a relatively lower 

fault detection rate (FDR) as it cannot handle dynamic data. DPCA shows bett er 

FDR compared to standard PCA. Two variants of PLS provides much improved FDR 

compared to lower FDR in t he standard approach. ICA-related methods provide 

significantly improved performance compared to standard P CA. However , computa­

t ional complexity is far greater in the ICA relat ed methods which is a concern . SAP 

provides a superior performance for most of the cases. Again, as the practical process 

is large in na ture t here is a low probability that it would follow a Gaussian distribu­

t ion. Though ICA provides a solution for this problem, it is physically unexplainable 

t hat non-Gaussian distributed process variables can be described as the linear com­

bination of t he ICs. This work recommends SAP to be the method which should be 

given more at tention due to its higher FDR. 

A compara tive study between a causal model based monitoring system and statist ical 

mul t ivariate system is presented in [Yoon and MacGregor, 2000] by implementing 

t he two monitoring methods on a simulated CSTR system. The fundamental and 

practical differences of the two methods arc described with their respective st rengths 

and weaknesses. The parity-relation approach is presented as a representative causal 

model-based method whereas PLS/ PCA is used to build a mul t ivariate statistical 
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process control model. This work concludes with the difference of the two methods. 

The causal model approaches are generally limited to small, well-defined systems, as 

the implicit model of the process is required to be known. On t he contrary, MSPC can 

handle ill-defined and large processes very easily. Again, the parity equation approach 

provides the more direct isolation of known fault through process knowledge, whereas 

a statistical approach is much more indirect, having no causal information. 

[Yang et al. , 2010] discusses an alarm limit design procedure by taking the mult ivari­

ate nature of the process into account. Correlation maps of process physical variable 

and t heir a larm history are compared to suggest the alarm threshold set t ings. Infor­

mation on the process connectivity is required for this case. One of the shortcomings 

of this work is tha t , this methodology is not applicable for a large number of states. 

2.4 Predictive Alarm Generation 

The early detection of alarms is a necessity in t he process industry. However , in alarm 

system design, typically, more emphasis is put on robustness, as such very rarely pro­

cess plants generate alarms based on prediction signals. Predictive monitoring can be 

an efficient tool for the successful forecasting of an abnormal sit uation. 

[Juricek et al. , 2001] presented a model based predictive alarm methodology that uses 

a state space model of t he process. A Kalman filter is used to make dynamic pre­

dictions of the process variable. The analysis begins only on demand. In t he first 

stage, a pseudo disturbance is estimated to compensat e for the plant mismatch and 

deterministic disturbance. In the next stage, a Kalman filter is applied to predict the 
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fut ure values of the measured variable. Finally, a confidence limit is constructed and 

t his limit along with T 2 statistics, are used to generate early alarm for the system. 

The design variables for t he method are the confidence level, prediction horizon and 

the form of the pseudo-disturbance. The method is demonstrated using a simulated 

CSTR model. 

[Zamanizadeh et a l. , 2008] used an extended Kalman filter for alarm generation. T he 

philosophy of prediction and fault detection is similar to that described in [Juricek 

et al. , 2001]. T he only difference is, the prediction is made using an extended Kalman 

fil ter instead of a Kalman filter to tackle nonlinearity in the process. 

A supervisory method to predict an abnormal sit uation is discussed in [Fernandez; 

et al. , 2005] . The method init ially identifies the t ime at which a process variable 

reaches a critical value. When a process reaches a crit ical value, t he monitoring sys­

tem starts trending t he input and output data using a neural network (NN). Several 

dynamic models between t he input and output are estimated and t he best tit model is 

selected. An opt imization algorit hm is used to estimate the parameters. T he focus of 

t his study was to find the most appropriate model to predict output in the abnormal 

sit uation . 

[Varga et a l. , 2010] introduced a methodology that uses a dynamic model and hazard 

analysis to predict safety limits in the alarm system. One of t he main motivations 

of this work was to guide t he operator about t he consequence of different hazards 

initiated at the t ime of operation. Based upon t he consequences of the prediction, 

t he operator could take t he necet:isary actiont:i . Early fault detection is enabled which 

provides early diagnosis and suggests a preventive measure corresponds to t he abnor-
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mal situation. The most important function of t his alarm system is t hat it helps t he 

opera tor in decision-making when more than one variable in the process show abnor­

mal behaviour. This alarm system is particularly necessary for an abnormal system 

like a thermal runaway, where the system goes from stable to unstable in a space of a 

very short time, and once an unstable state is initiated , t he process cannot be taken 

into a stable state with the control action . Using a simulator , t he last controllable 

point of t he system is detected and the simulator queries in a part icular trajectory 

on the lookout for a possible uncont rollable state of the system. Lyapunov's indirect 

stability analysis of t he state variables, along wit h simulated t rajectories, are used to 

detect the boundary of t he controllable region of the process. A pictorial algorithm 

provided for finding the safety region is shown in Figure 2.7. 

An innovative risk-based fault diagnosis methodology and its integration with SIS for 

process systems is proposed in [Bao et al. , 2011]. In this met hodology, risk concept is 

combined wit h SP C for fault diagnosis in t he processes. The proposed methodology 

has been validated using a tank filling system and t he st eam power plant system in 

t he G2 environment . T he method is simple in implementation and does not depend 

on any process model. Also, its demand for historical data is minimal. T he proposed 

methodology uses a control chart to distinguish an abnormal situation from a normal 

operation based on the three-sigma rule and linear trend forecasting. T ime series 

moving average filters are used to perform real-time prediction and noise reduction 

of t he signal. Based on t he forecasting signal the probability of a fault is calculated . 

T he consequences of the fault are ident ified. Risk is defined as t he multiplication of 

t he probability of fa ult and consequence. An alarm is generated only when risk of a 

fault exceeds the t hreshold. Since it considers the consequence of a fault, the method 

is able to fil ter out spurious faults from the alarm system and also the operators can 
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Figure 2.7: Detection of the last controllable state of reactor [Varga et al. , 2010] 
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prioritize their responses based on the quantitative risk. The frame work of t his work 

is represented in Figure 2.8 . 

However, this methodology is based on the univariate technique. Hence, it has less 

power to distinguish between a process fault and an operating change. This limita­

t ion is addressed by extending the method to a multivariate model based framework 

described in [Zadakbar et al., 2011]. In this article, the probability of fault is calcu­

lated from the residual generated from a Kalman fil ter. As the method requires an 

explicit process model, this method is useful for small process systems when a process 

model can be easily built. For large process system with complex dynamic, finding 

an explicit model is a challenging job. In order to overcome t his challenge, [Zadakbar 

et al. , 2012] proposed a model-free risk based fa ult detection and diagnosis method. 

lm;tead of using an explicit dynamic model, proce::;s data hi::;tory is used to capture 

process knowledge. From the historical data, a PCA model is built which projects 

data in the principal components' direction. Risk is calculated based on the scores of 

the principal components instead of the original signal. 

From the above literature review the following conclusions can be made: 

• Extensive work has been done on alarm generation focusing on robustifying the 

alarm. 

• Most of the cases alarms were generated based on the process measured signals. 

• Very little work has been performed on generating alarms on a predictive mode. 

• None of t he current methodologies consider the effect of the controller and t he 

actuator limitations explicit ly. 
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Figure 2.8: Framework of the methodology of risk based fault diagnosis and safety 
management for process systems. [Bao et al., 2011] 
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In the present work, early detection of the abnormal situation through model predic­

tion is focused. T he open loop predictions are used for generating the alarm. Also, 

due considerations were given to the effect of controllers and actuator constraints. 
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Chapter 3 

Theory for Early Alarm Generation 

3.1 Early Alarm Generation 

In t he process industry different types of fault can be triggered. Of the different types 

of fault we only dealt with t he disturbance type faults, which is common in process 

industries. In our current study we focused on design an early warning generation 

system for this type of disturbance fault that cannot be handled by controllers. In a 

process, often the process model and the disturbance model are available, part icularly 

in many plants where model predictive controller (MPC) applications are in use to 

control t he process. T he objective of t his work is to use such models for early alarm 

generation. These models are open-loop models without any controller knowledge. 

As such , t here are some limitations in using these models. However there are several 

advantages for using open-loop predictions: (i) an open loop model may be already 

available from an MPC application; (ii) typically, in a process controller are occasion­

ally retuned in order to meet operational need for faster or slower dynamic response, 

as such closed-loop models need to be updated regularly. As open-loop models do not 

have any controller information, it remains valid for a longer period. Considering the 
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above facts, open-loop predictions for alarm generation is used . However , it is under­

stood that an open-loop prediction may show that a process variable will violate t he 

threshold, but the controller action may actually keep the process within t he normal 

operation limit. Therefore, due considerations need to be given to take the effect of 

the controller into account. 

In this paper, we state two limit ing condit ions where t he controller does not affect 

t he open-loop prediction. Under these conditions, open-loop predictions can be used 

for alarm generation. 

Condition 1 : In a system wit h time delay, any dist urbance entering into t he system 

will affect the measurements after the t ime-delay period has elapsed . Given that t he 

controller has no feed-forward knowledge of the disturbance, a controller will take any 

corrective action only after t he t ime delay period. As such, the open-loop predictions 

will be t he same as t he closed-loop predictions within the t ime delay period . 

Condition 2 : At steady state, t he ability of a controller to bring a process variable 

within t he control limit will depend ent irely on the available actuator capacity and 

steady ::;tate gain of the process. 

Based on the above two condit ions we develop two early alarm generation protocols 

for the process system. 

3.1.1 Dynamic Alarm Generation 

If the controller does not have t he feed forward information (e.g., an MPC without a 

disturbance model) or a controller acting only based on feedback (e.g, PID) , t he con­

troller will take action only after the disturbance effects are measured at the output. 
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Condition 1 states that , wit hin t he time delay period, the open loop prediction and 

the closed-loop predictions are t he same. This provides a window where the open­

loop prediction can be used to monitor the process. This is defined as monitoring 

hoTizon. \i\li thin the monitoTing horizon, an alarm will be generated if an open~loop 

prediction exceeds t he alarm t hreshold. The algorithm essentially uses t he receding 

horizon prediction for the alarm generation. Receding horizon prediction is also the 

building block for model predictive cont roller (MPC). At each instant t, using the 

output from the controller and disturbance measurable to the process, the models 

predict the process out put for the entire monitoring horizon, tp · As new measure­

ments become available, the predicted values are compared with the measurements; if 

a bias is observed, the predicted values will be corrected for the bias. lm;tead of simple 

bias corrections, a Kalman filter can be used to update the predictions. However , for 

must practical purposes, a bias correction should be sufficient. The detailed steps of 

the methodology are described below. 

Let us consider a dynamic system with u (mx l ) input to the system, y (n x l ) measured 

output, u d(px l ) disturbances affecting the system, m number of inputs, n number of 

outputs, G(s ) process model, D(s) disturbance model, and e is the measurement 

error. System can be represented by the following transfer function equation 

(3 .1) 

The first step is to develop a discrete, time-invariant , causal step-response model for 

the system given in Equation 3.2. The open-loop model predicts a process variable 

over a monitoring horizon , taking into account t he disturbance model of the process. 

The monitoring horizon is chosen based on the t ime delay of the process. For a given 

process with t ime delay t r1, monitoring horizon tp ~ tc~. 
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m h 

Y.:, t+L = Yi,t - L L ( a;j ,k - a;j,l+k) i'l'Uj ,t - k 
j = l k= l 

T h. 

+ :z::::: :Z:::: (dij,k- dij,L+d6.u1.t-k• 
j = l k= l 

(3.2) 

where, l=[1,2,3, ... ,p] and pis the horizon defined based upon the process knowledge, 

m is the total number of inputs; r is the total number of disturbances,i= [ 1,2,3, ... ,n], 

and n is the total number of outputs. Equation 3.2 predicts the i-th output over the 

horizon p. Here, m is the total number of input to the system, r is the total number 

of measured disturbance to the system and h is the number of history inputs, that 

are considered to predict the output . 

In step 2, on-line output measurements are used to correct the predicted values. At 

every instant, t he output is corrected by comparing the current measurement with 

the predicted value from the model. The difference in these two values gives the bias 

error . T he bias error at time t can be calculted using Equation 3.3, 

b,, = Yt- Y~ (3.3) 

where y7 is t he one step ahead prediction at t ime t-1. Based on the calculated error 

at time t , bias correction is done on all future predictions, as is given in Equation 3.4. 

where l= 1,2, ... p 

~ * b Yt.+l = Yt+l + t (3.4) 

The updated predictions show the effect of disturbances earlier than the process mea-

surement ·, as t hey are based on both process and disturbance models. 
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Step 3 is alarm generation. An alarm limit is set for each variable based on process 

knowledge. At each instant t he predicted values are checked against the limits . If the 

prediction exceeds the limit within the monitoring hori:.wn , an alarm will be issued to 

alert t he operator. 

Step 4 improves t he robustness of alarm. A single value can sometimes exceed t he 

limit due to measurement noise. In order to make the alarm robust and avoid a 

nuisance alarm, a further heuristic rule is applied. If t hree consecut ive predicted 

values cross the limit only at t hat point an alarm will be issued. However , this rule 

can be adjusted depending on t he severity of the consequences and risk associat ed 

with the variable. 

3.1.2 Steady State Alarm Generation 

T he steady state alarm generation algorithm is developed based on Condition 2, which 

was described earlier. Suppose t hat a process is at steady state and a disturbance 

enters the system; if there is no controller present in t he system the steady state of the 

system will be d isturbed and the system will become steady at a new state eventually. 

However, when a controller is controlling the system, it will take corrective actions 

and will try to bring the system back to its original state. Assuming t he controller is 

perfect or very efficient , the ability of the controller to bring t he system back to t he 

original state is limited by t he available actuator capacity of the system. Therefore, 

depending on the available actuator capacity, a controller will either bring t he system 

back to the original state or the system will attain a new state which may or may 

not be within the safety limits. Steady state conditions arc checked to sec whether 

t he variable can be brought back by the controller within the alarm limit s using t he 
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available actuator capacity. If it appears t hat the actuators do not have sufficient 

capacity to bring the process within the safety limit an alarm is generated. 

An alarm generation requires a predict ion of the open-loop steady state values due 

to the disturbance, calculation of t he capacity of actuators, and maximum possible 

control action on variables. The open-loop steady state value of a variable is predicted 

by adding the change in process variable due to t he disturbances in t he present steady 

state value. Consider a disturbance size of 6.ud enters into the system at time t. If 

t here is no control action, the final value of the output is given by Equation 3.5, 

p 

Yt.s = Yi,t - L ( di,k - di.l+k ) * 6.u~-k (3.5) 
k= l 

where Pis the number of the history inputs required to estimate a variable at steady 

state. 

The minimum requirement from a controller is to make changes in the actuators such 

that t he output remains wit hin the control limits. Assuming t hat, t he high and low 

limits for the i-th out put are Y i,low and Y i,high, respectively, the controller has to satisfy 

the following condition 

(3.6) 

where 6.y:S is the steady state change in the i-th output due to t he input changes 

made by the controller. At steady state t he input and output changes arc related by 

the process gain as given below : 

m 

6.yf"' = L aij (t.ss) * 6.uj 
j = l 
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where aij ( tss) is the step response coefficient at steady st ate, which is equivalent to 

t he process gain and ·m is the total number of input to the system. 

(3.8) 

Equations 3.6 and 3.7 can be combined together to express t he desired condition in 

terms of the input variable as given in Equation 3.9. 

m 

Yi,luw - yfs ::::; L aiJ( t 88) * D.. Uj ::::; Yi ,hiyh - yf" 
j = l 

(3.9) 

T he capacity of an actuator is given by the difference between current steady state 

value of actuator (i.e. valve) and high and low limits known from t he actuator range, 

which can be written in the following input constraint Equation. 

(3.10) 

where U j ,Luw and Uj,hiyh are the low and high limit values of t he actuator respectively. 

The controller will be able to bring all the process variables within the desired limits 

only if Equations 3.9 and 3.10 arc satisfied simult aneously. Therefore, Equations 

3.9 and 3.10 give the desired condition for steady state alarm generation. If these 

two equations cannot be satisfied simultaneously an alarm will be issued. A linear 

programming (LP) algorithm is used to check the existence of a feasible solution for 

t he output constraints arising from Equation 3.9 and input constraints arising from 

Equation 3.10. For example, for a system with m inputs and n outputs there will 

be m input constraints and n output constraints. An alarm is issued if t here is no 

feasible solution that satisfies all ( m + n) constraints. 
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Chapter 4 

Case Studies 

In order to clear ly explain the implementation ~teps , t he propo~ed methodology 

is first demonstrated on a single-input-single-output (SISO) system. Subsequently 

the methodology i~ applied to a multiple-input-mult iple-output (MIMO) continuous 

st irred tank heater (CSTH) system. A schematic diagram to express the a larm gcncr-

ation proces::; i::; provided in F igure 4.1. This alarm generation procedure is discus::;ed 

for the two case studies. 

4.1 A Simple SISO Example 

Consider a simple SISO system with a d isturbance input, as descr ibed in Equa tions 

4.1, 4.2 and 4.3. 

y = G(s)u + D( )'Ud + e ( 4.1) 

e - 14.7s 

G(s) = 21.3s + 1 ( 4.2) 
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Figure 4.1: Schematic diagram of alarm generat ion process using open-loop model 

D( ) - 1 5 
- 25s + 1 

( 4.3) 

where, y is a output variable, u is an input to the process and ud is a measured dis-

t urbance. The system is controlled using a dynamic matrix controller (DMC). DMC 

controller is designed using the step response model of the simple SISO system. Dif-

ferent design parameters for designing the DMC is st ated in 4.1. T he controller only 

utilizes t he process model and does not have any knowledge of t he disturbance. This 

mimics a feedback controller , which is the most common industrial scenario. There 

is a system t ime delay of 14.7 s. As such , when a disturbance enters the system, t he 

controller does not take action immediately. After t he time delay period (14.7 s) has 

elapsed , the disturbance starts affecting the out put y . At that point, the controller 

takes action to reject the disturbance and to bring the process back to the desired set 

point. 
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Table 4.1: Design parameters of the DMC controller 
Variable Value 

Prediction horizon(p) 15 
Control horizon (m) 5 
Weighting factor ( Q) 1 

4.1.1 Dynamic Alarm Generation 

The purpose of dynamic a larm generation is to monitor the process in the t ime delay 

period or m onitoring hori zon when the controller does not have any influence on 

t he system. In this case, 16 sec is chosen as t he monitoring horizon which is slightly 

greater t han the system t ime delay. Using t he fini te step response models of t he :sys-

tcm and disturbance as given in Equations 4.2 and 4.3, the output over the monitoring 

horizon is predicted . The sampling interval for the system is 2 sec; t herefore, at each 

instant predictions arc made for t he next 8 samples. 

At t ime t=200, a disturbance ud of step size 5 is applied to the process. In this case, we 

con:sidered the a larm threshold to be at 3. T he predictions are shown at different time 

instants in Figure 4.2a. At 201 sec t he prediction first showed that the output will 

exceed the thre:shold at 213 :sec; however , in order to have more confidence, the alarm 

was issued at 204 sec when three predicted values exceeded the t hreshold. In Figure 

4.2b the clo:sed loop proces:s measurement validates the predicted system response. 

T he measured output exceeded the threshold at 213 sec. If an alarm was generated 

:solely based on the process mea:surement, the earliest an alarm can be i:ssued i:s at 

213 sec . T he proposed scheme generat e alarms 9 sec early compared to convent ional 

alarm generation. 
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4.1.2 Steady State Alarm Generation 

Given the current steady state conditions, process gain, and the safety limits, the 

proposed scheme checks whether t he controller has enough capacity to keep the process 

within t he safety band. At steady state the following relationship exists between the 

input and output 

(4.4) 

where 6.;t/' is the change in measured output at steady state, 6.u is the maximum 

available capacity of the input and steady state gain is 1 for this process. High and 

low limit values for output are 2 and -2, respectively, whereas for the input variable 

capacity varies from -7 to 7. Thus, inequality constrains for this process can be 

rewritten in input space as 

- 2 - Yi ,ss S: 6. 'U S: 2 - Y i,ss (4.5) 

- 7 - 'Uj ,t S: 6.u S: 7 - 'Uj, t ( 4.6) 

Two different disturbance scenarios were simulated to check the steady state alarm 

condit ions. In the first scenario a disturbance of step size 10 is introduced to t he 

system at t= 200. Also given that t he steady state values for input and output at 

t= 200 are u2oo= 1 and y200= 1. The steady state value for the process at any instant 

can be predicted using Equation 3.5 which gives the open-loop steady state value 

for output, Y? = 11. Substituting these values in Equations 4.5 and 4.6, we get the 

following inequality constraints arising from output and input limitations 

- 13 s; 6.u s; - 9 (4.7) 
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There is no common reason to 

satisfv all ineaualities 

B 

0 

L'.y<-9 

L'.u<6 

Figure 4.3: Constraints inequalit ies for the first scenario. 

-8 :S !1u :S 6 

L'.u 

( 4.8) 

which are plotted in Figure 4.3. Clearly, it shows that t here is no common space 

between these two inequalities (An B = 0) . So a feasible solution docs not exist. It 

is easy to graphically plot and visualize the feasibility in a simple system; however 

for complex systems, it is not a lways possible to graphically represent t he inequal­

it ies. In such a case linear programming (LP) can be used to check the existence 

of a feasible solut ion. For example, in this case the LP algorithm could not find 

a feasible solution as well confirming that there is not enough capacity in the actu­

ator to bring the output within the limit. T herefore, an alarm will be issued at t= 200. 

For the second scenario, a disturbance of step size of -5 is applied to the system at 

t= 600. Measured output and input at t=600 are y600= 3, u6o0= 1 respectively. The 

predicted steady state value Yss = -4. The inequality constraints for output and input 
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Figure 4.4: Con:straint:s inequa lit ie:-; for the :second :-;cenario. 

after expressing in the input space arc 

-6 :S !:lu :S 6 

t.y<6 

(4.9) 

(4 .10) 

which are plotted in Figure 4.4, which shows that there is a feasible solution so, 

(An B =/= 0). Therefore , no alarm will be i sued at this instance. 

These results are verified in Figures 4.5a and 4.5b, which show the closed loop pro-

cess responses for these two scenarios. Figure 4.5a shows that the output remains 

outside the limit at steady state. The measured signal crosses the threshold at 350 

:sec. Therefore, ba:sed on the conventional method an alarm will be i:ssued at 350 sec, 

whereas using the predictive approach the alarm will be issued at t= 200 sec. Con-
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versely, Figure 4.5b shows t hat the method is robust to false alarm; it does not issue 

an alarm when the controller is able to wither away the disturbance effect in this case. 

4.2 A MIMO Example 

The proposed predictive alarm protocol is applied to a cont inuous stirred tank heater 

(CSTH) presented in [Thornhill et al. , 2008]. The model is built using dynamic 

equations as well as experimental data of a pilot plant located in the Depart ment 

of Chemical and Material Engineering a t the University of Alberta. An equivalent 

simulink model for t he plant is available. Even t hough it is a simulated model it is 

very real life like as it uses sensor noise obtained from real sensors. In this work the 

simulink model is used as t he process plant considering that, t he dynamic behaviour 

of the model will be close to the actual process. 

Figure 4.6 shows t he schematic d iagram of the CSTI-1 plant . A steam and hot water 

supply is used to heat the cold water in a tank. A continuous flow of water comes 

from the cold water supply. The process dynamics of the plant are discussed in detail 

in [T hornhill et a l. , 2008]. T he flow of steam, cold water and hot water can be 

manipulated using cont rol valves. System can be represented by following Equation 

( 4.11) 

where, y1 is the level, y2 is t he temperature, u1 is the cold water valve posit ion, u2 

is the steam valve posit ion, and ud is t he hot water valve posit ion. Standard oper-

a ting points for which the simulink model is developed, arc stated in Table 4.2. A 
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Table 4.2: Operating points of CSTH for predictive monitoring 
Varia ble Op P t 

Level/em 
Temperature/Deg C 
CW valve/ percent 
Steam valve/percent 
HW valve/ percent 

20.50 
42.50 
17.64 
9.77 
7. 14 

Model P redictive controller i:,; implemented using those step response models. Design 

of the controller will be discussed in details elsewhere. T his study will be limited in 

detection of an abnormal sit uation and early generation of a larm. For thi:,; study hot 

water valve position is used as disturbance as it is not being connected with any of t he 

controller out puts. Init ially hot water valve is set at standard operating point . For 

generating fa ulty condit ion different step change in the hot water valve is performed 

as disturbance input. Disturbance models is also generated using a step change in 

hot water vale position. Unit step response models for process inputs and outputs 

are shown in Figure 4.7 and unit step response for the disturbance input and process 

output is shown in Figure 4.8. Step responses shown here is in rnA unit. Using the 

calibration curve in the cited literature, it can easily be found the model gain when 

t he variables arc express in their convent ional unit (e.g. em, dcg. c). Water level of 

the tank and water temperature in the tank are two measured outputs of the system. 

T he DMC manipulates the steam valve and cold water valve to control t he water level 

and water temperature of t he tank. Design parameters of t he DMC controllers are 

provided in 4.3. 
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Table 4.3: Design parameters of the DMC controller 
Variable Value 

Prediction horizon( p) 15 
Control horizon (m) 5 
Weighting factor (Q) 1 
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Figure 4.7: Step response models between t he Process outputs and inputs 
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Figure 4.8: Step response models between t he Process outputs and disturbance input 

4.2.1 Dynamic Alarm Generation 

Several eli turbancc scenarios were simulated by making changes to the hot water 

valve pot; it ion. The monitoring t;ystem wat; Ut;ed to monitor the process for t hese 

abnormal conditions. Here, we report two such scenarios. 

At t ime t= 600 s, the hot water valve is opened from 7 % to %. Both output vari-

ables start to increase from their set-point with the introduct ion of the disturbance. 

Due to process time delay, t he disturbance starts to affect the process measurements 

at t= 608 t; . However, level and temperature predictions Rre continuout;ly monitored 

over t he monitoring horizon, which, in this case arc the next eight samples at cv-

ery time instant. The prediction model used for the alarm generation contains the 

process model as well as the disturbance model relating hot water flow to level and 

temperature. The predictions are ab o corrected for bias at every second based on 

actual measurements. Since t he moni toring scheme conta ins the disturbance model, 

as soon as the disturbance entered the syt;tem the prediction showed the efiect of the 

disturbance on the output variables. In this case, we considered the a larm threshold 
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to be at 43.2°C. The predictions are shown at different time instants in Figure 4.9a. 

At 625 sec the prediction showed that the output will exceed the threshold at 633 

sec. However , in order to have more confidence, the alarm was issued at 627 sec 

when three predicted values exceeded the threshold. In Figure 4.9b the closed-loop 

process measurement shows that the measured output exceeded the threshold at 634 

sec. If an alarm was generated solely based on the process measurement, the earliest 

an alarm could be issued is at 634 sec. The proposed scheme gave a 7 sec lead time 

to the operator. In this case, the proposed alarm system issues the alarm 7 seconds 

earlier t han an alarm system based on a measured signal, which gives the operator 

t ime to react and take corrective action. 

4.2.2 Steady State Alarm Generation 

The outputs, level (yi) and temperature (y2 ), and inputs steam valve position (ui) 

and cold water valve position ( u2), give rise to four constraints. The output con­

straints arise from the safe operational consideration of the process system, and t he 

input constraints are clue to t he limited capacit ies of the valves. In addition to these 

constraints t here also exists the input-output relationsh ips arising from the steady 

state process gain. Equation 4.12 gives the input-output relationship for the CSTH 

system at steady state, which arc calculated h·om the steady state gain of t he step 

respontJe of t he trantJfer functions of the sytJtem 

tly fs = 2. 7666. U1 

tly~s = - 0.293tlul + 0.369tlu2 
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where b.y'r is the change in level, b.y?,.s is the change in temperature, b.u1 is t he 

change in cold wa ter valve position and b.u2 is the change in steam valve position. 

The high and low limit values for the level are defined as 25.2 em and 15.8 em, 

respectively. For t emperature, high and low limits are 43.2°C and 39.2°C respectively. 

For both t he cold water valve position and steam valve position, high and low limit 

values are selected as 19% and 0% respectively. Using t hese values, four inequality 

constraints for the system, can be written as in Equations 4.13a to 4. 13d. 

15.8 - y;• ::::: b.yi' ::::: 25 .2 - y;• 
39.2- y~.s :S: b.y~s :S: 43.2 - y~s 

0 - U J,t :S: b.u1 :S: 19.05- ·u l, t 

0 - u2,t :S: b.u2 :S: 19.05- u2,t 

( 4.13a) 

(4. 13b) 

( 4.13c) 

( 4. 13d) 

For the first disturbance scenario the hot water valve position is changed from 7.1% 

to 7.6% percent at t= 600 s . T his change of hot water valve position causes a rise in 

both the level and temperature of the water from their nominal values 20.5 em and 

42 .5°C, respectively. T he steady state value of the process variables are predicted 

using Equation 3.5. For this scenario, the predicted open-loop steady state value of 

the process variables are, yf8 = 50 em, y?,s = 42.85°C. Also, t he input values at t = 600 

s are u1,6uo = 17.95% u2,600 = 9.79%. Substituting these values in Equation 4.13 we 
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L'.yt>-34.2 

Feasible region that satisfies 

all ineaualities 

Figure 4.10: Constraints inequalities for the first scenario. 

get the following output and input constraints 

-34.2 ::::; t::..yl ::::; -24.81 

-3.65 ::::; 6.y2 ::::; 0 .36 

- 17.95::::; 6.u1 ::::; 1.1 

- 9.79 ::::; t::..n2 ::::; 9.26 

( 4. 14a ) 

(4.14b) 

( 4.14c) 

( 4.14d) 

T hese inequalities, together with t he steady state input output relationships described 

in Equations 4.12a and 4.12b, are used to check for feasibility for t::..u1 and 6.u2. At 

every instant, t he LP algorit hm checks whether there is a feasible solut ion for these 

constraints . For this disturbance scenario, the LP is able to find a feasible solut ion, 

therefore, no alarm is issued. This is also depicted in Figure 4.10 where the feasible 

region that satisfies all four constraints simultaneously is shown by the hatched area. 
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Therefore, the process will be at no alarm state at t = 600 s despite of the disturbance 

being present. This is also supported by the actual closed-loop measurements which 

show that both level and temperature do not exceed the alarm limits for the above 

disturbance scenario (Figure 4.11). 

The second disturbance scenario is similar to scenario 1, except a bigger step size 

was con ·idered. T he hot wa ter valve position is changed from 7.1% percent to 9.5% 

percent at t = 800. The consequence of the introduction of this disturbance is the 

same as the previous scenario with a greater intensity as the disturbance size is larger. 

For this scenario, the predicted open-loop steady state values of the process variables 

are y;-' = 50 em, y2"' = 44.21 oc, and the input values at 800 s are ·u1,800 = 17.95%, 

u2,800 = 9.79% re::;pectively. U::;ing t he ·e value::; output and input constraint::; for the 

process can be written as 

-34.2 ~ 6.yl ~ -24.81 

-5.01 ~ 6.y2 ~ - 1.01 

-17.95 :=:; 6.·u1 ~ 1.1 

-9.79 ~ 6.u2 ~ 9.26 

(4.15a) 

(4.15b) 

(4.15c) 

(4. 15d) 

For the given conditions, a feasible solut ion does not exist t hat meets all t he con­

straints. This is also depicted in Figur 4.12, which shows there is no feasible region 

for the given conditions. Therefore, an alarm is issued at the time the disturbance is 

measured (at t=800 s). Closed-loop process measurements for this particular scenario 

are presented in Figure 4. 13, which validates that the tank temperature exceeds t he 

alarm limit at 825 sec. 
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Figure 4.11 : Simula ted results of level and tempera ture measurement with limit value 
for Scenario 1 

58 



There is no feasible region that 

satisfies all the inequalities 

Figure 4.12: Con~traints inequalit ies for t he ~econd ~cenario. 
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Chapter 5 

Conclusions of Predictive Early 

Warning Generation 

The aim of the current study was to develop a methodology to generate an early warn­

ing to t he system. Predictive power of process open-loop model was used to design 

a predictive alarm system, through which the objective was achieved. In proposed 

methodology, a larms were generated based on the predictive signals which is capable 

of provide an alarm earlier to compared to convent ional systems t hat issue a larm 

based on process measurement. The performance of the methodology was validated 

using extensive simulation study. The method also proved to be robust and did not 

generate nuisance alarm when process was at normal operating state. T he specific 

contributions are listed below: 

In this part of the study, the following contribut ions have been achieved. 

• A novel model-based predictive alarm generation t echnique is proposed. The 

proposed methodology uses an open-loop process and disturbance model to pre­

dict the system responses. The open-loop responses arc bias-corrected using 

the available measurements. The alarms are generated based on the updated 
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predictions. 

• Two limit ing condit ions were postulated, and based on these two conditions, 

a larm generation methodologies were developed. T he dynamic alarm genera­

tion procedure looks at t he immediate effect of the disturbance and the st eady 

state alarm generation procedure monitors the process for long term effect of a 

disturbance in a process. 

• The proposed method provides early alarm compared to a ny convent ional alarm 

generation method. The nethod is relatively maintenance free, it doe::; not re­

quire frequent updating as it uses open-loop predictions. 

• The technique is robust as it exploits the fundamental limitation::; of t he con­

troller and actuator for alarm generation . The methodology has been applied 

to a SISO sy::;tem and a more complex MIMO system where technique was u::;ed 

to monitor the system for different disturbance scenarios. In both examples, the 

methods generated alarms in a consistent manner and demonstrated robustness 

to the false alarms. 

5.1 Future Recommendations 

• Experimental validation : T he effectiveness of t he current study can be further 

demon::;trated using an experimental set up (i.e., experimental CSTH ::;et up) . 

• Use of a quantitative value for alarm generation: In t he predictive monitoring 

section, an alarm is generated based on a heuristic procedure. When three 

or more values lie above the threshold , an alarm is generated. This can be 

quantified using the risk value and ri::;k t hreshold, which provide more scope to 

prioriti:ze the response of alarms. 
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• Use of multi-linear model: The current study used linear model for a fixed op­

erating points. However, in practice, with the change of the operating point 

process dynamics may change drastically. T herefore, effectiveness of t he pro­

posed methodology will be compromised in case of a system where operating 

points change regularly. Mult iple models can be used for different operating 

points to deal with this problem. 

Simulation studies performed in t his study shows a good prospect of proposed alarm 

generation method. As our simulation study was based on a lump model wit h sensor 

noise, plant model mismatch, these results supports to the fact that, this methodology 

may be useful for t he process industry. The method requires more experimental 

validation in pilot plant before it can be implemented in industry. 
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Part II: 

A Comparative Study between 

PID-free MPC and Hybrid Control 

Structure 
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Chapter 6 

Predictive Control 

6.1 Introduction 

Model predictive controllers arc typically used as a supervisory layer over t he base 

level P ID controller , especially in large-scale applications. This structure gained ac­

ceptance mainly because it allows t he implementation of MPC with minimal changes 

to the existing control structure. Also, the PID layer can act as a fall back when t he 

MPC is turned off for any reason. However, this structure does not allow the potent ial 

benefits of the MPC to be fully harnessed . In practice, it was observed that there are 

many incent ives in breaking the P ID loop and direct ly manipulating the valve output 

using the MPC. One common example is when trying to use the full valve capacity 

(e.g., maximize feed , maximizing cooling) it is common practice t o break t he P ID 

loop and manipulate the valve directly from MPC. Also when multiple feed forward 

affects a process variable, it is common to replace t he PID loop wit h MPC. 

Recently, a software called ADMC from the original inventors of DMC is being mar­

keted that uses the DMC to direct ly manipulate the actuator. It is claimed that 
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t his controller performs better than the hybrid MPC-PID structure. Therefore, an 

objective investigation of the performance of t hese competing control structures is 

necessary. In this study, a simulation-based comparative study is carried out between 

two control structures: MPC cascaded to PID and MPC directly manipulat ing the 

valve output. 

6.2 Literature Review 

6.2.1 Current State of PID Controller 

PID is a widely used control structure in the industry. Desborough and Miller esti­

mated that 98 percent of the controllers in a median chemical plant are PID controllers 

[Dcsborough and Miller , 2001]. Though it is widely used for its simplicity of imple­

mentation, it has different limitations. T he main limitat ion of the PID is that it 

has no straightforward tuning method . T he impact of this fact is evident from the 

result reported by Van Overschee and De Moor [Overschee and Moor, 2001] . They 

summarized that 80 percent of industrial PID controllers arc poorly tuned ; 30 per­

cent of these PID loops operate in manual mode; and 25 percent of the PID loops in 

automatic mode operate under default factory settings. 

[Na, 2001] proposed a control structure to overcome t he drawbacks of the conven­

t ional P ID cont roller with fixed t uning parameters. The proposed control structure 

is presented in F igure 6.1. In t his arrangement, PID gains arc automat ically tuned in 

order to keep a predefined cost function to a minimum. MPC is applied to minimize 

t he cost function using the second order linear model. The proposed methodology 

is applied to a linear model for nuclear steam generators. The applied methodology 

showed an improved performance compared to that of PID in both set point tracking 

66 



water level 

set-point 

steam 

flowrate 

Feedforward 

Term 

Controlled Process 

Auto-tuned PID 

controller 

water level 

y(t) 

+ 

Figure 6.1: Structure of MPC based auto-tuned PID [Na, 2001] 

and regulatory control. 

A simple but robust technique is described in [Ogunnaike and Mukati, 2006] . In 

this work, the simplicity of PID and versatility of MPC arc combined together. The 

output is predicted over the horizon using a first order plus dead time (FOPDT) 

model. Thus, predictive features of MPC arc retained. Usc of FOPDT ensures that 

prediction requires as few parameters as the PID controller design required. Though 

simpler modelling approaches have been considered, there a lways exists a modelling 

error. This modelling error is minimized , making a bias correction a t each step com-

paring the predicted output and the actual measurements. Tuning parameters arc 

defined based on t he key performance indices such as set point tracking, disturbance 

rejection, and the robustness and aggressiveness of the controller. T he controller 

showed better performance in set point tracking and disturbance rejection compared 

to an IMC-tuncd PID controller in extensive simulation studies. 

[Astrom and Hagglund, 2001] describes the potent ia l alternatives for PID in industrial 

settings. The proposed alternat ives are a discrete-t ime linear MISO controller, state 
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feedback and observers (SFO) and model predictive controller (MPC). Fuzzy control 

is also mentioned as a potential a lternative. All alternatives provide an improved 

performance, especially for systems which are poorly damped. Controllers based on 

SFO require a greater modelling afford, as such its use is justified only when mod­

elling efforts are moderate. MPC is typically used as a supervisory layer to t he base 

layer PID. The use of MPC provides a drastic improvement of set point tracking. 

Moreover, computational complexity is minimized in this case, as MPC executes at a 

slower rate, regula ting the slower dynamics of the system. The PID layer acts with 

the fast interactions. 

[Pannocchia et al. , 2005] proposed an offset-free constrained linear quadratic (CLQ) 

controller as a potent ial candidate to replace PID. CLQ consists of three main mod­

ules based on a state-t->pace model of the system : a state and disturbance et->timator, 

a constrained target calculation module, and a constrained dynamic opt imizer. Each 

module is designed to minimize the computational load and , as such, the controller 

implementation load is comparable to a PID controller. T he CLQ controller out­

performed the PID controller in all the simulated cases reported in t he paper. The 

controller was limited to SISO systems, however, it may be expendable for MIMO 

systems. 

[Han, 2009] described active disturbance rejection control (ADRC) as an improved 

control scheme to replace PID. ADRC is error driven similar to PID, using a state 

observer to utilize the power of non-linear feedback. The major limitations of PID 

pointed, arc error computation , noise degradation in derivative control, oversimplifi­

cation of control law and complications from t he integral control. ADRC is aimed at 

overcoming t hese PID limitations. First, a simple d ifferential equation is used to gcn-
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Figure 6.2: ADRC control ~tructure [Han, 2009] 

crate a transient trajectory. A difFcrcntia tor is capable of noise-tolerant tracking. A 

non-linear control law is used in~tead of a simple weighted error . An ADRC structure 

is shown in the Figure 6.2. 

T hough various controllers have been proposed as an alternative to PID controllers, 

MPC ha~ tprobably the most potential to replace a portion of the PID cont rollers in 

process industry. In the following sections, a historical account of MP C is given and 

some of the art icles that compared MP C with PID, are reviewed . 

6.2.2 Historical Review of MPC 

MPC ha~ been widely used as an advanced control strategy in the proce~s indu~try 

over t he last 30 years. T he theory of MPC, however , existed long before it was im-

plemented in the process industry. The modern control concept was first developed 

t hrough t he work of Ka lman in the early 1960s. In his work, an objective funct ion wa 

minimized t hat penalized expected values of squared input and state deviation from 

origin. T he ·olut ion to this problem wa · known as a linear quadratic Gaussian (LQG) 

controller. However, LQG had little impact on control technology development in t he 

process industry. The significant reasons for this failure arc cited in [Richalct ct a!. , 

1976] and [Garcia eta!. , 1989]. 
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The failure of LQG led to the development of a more general model based control 

methodology where dynamic optimization problems were solved on-line at each control 

execution. Process inputs were computed opt imizing fut ure process behaviour over a 

t ime interval which is later defined as 'prediction horizon '. Explicit plan models are 

used to describe the plant dynamics. Parallel to this development, new identification 

methodologies also emerged which helped to propel t he technology. The model based 

control, together with the industrial process modelling, was referred as MPC technol­

ogy. MP C technology is fi rst described in [Richalet et al. , 1976] and later summarized 

in [Richalet et a l. , 1978]. T hey summarized their approach as model predictive heuris­

tic control and provided solution software using this approach. 

Curt ler and Ramaker first described t he dynamic matrix control (DMC) algorithm 

in [Cut ler and Ramaker, 1979] and [Cutler and Ramaker , 1980]. In a companion 

work [Prett and Gillette, 1980], P rett and Gillete described an application of DMC 

for an industrial case. wit h a modified algorithm capable of handling the non-linearity. 

During the 1980s both industrial and academic int erest in MPC started to grow. The 

idea of cost function and optimizat ion is employed with the algorithm. Thus, t he 

MPC algorit hm is furt her modified based on t he cost function and optimization of 

the process. According to the different types of cost functions MPC can be clas­

sified into different types; DMC with least squares satisfaction of input constraints 

[Prett and Garcia, 1988], DMC wit h constrained linear programming optimization 

[Morshecli et a!. , 1985], and Quadratic programming solut ion of DMC [Garcia and 

Morshedi, 1986]. 
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The understanding of MPC has now reached a new level and a specific framework has 

been built for both theoretical and practical purposes. 

Some excellent reviews on MPC technology can be found in [Muske and Rawlings, 

1993J,[Bemporad and Morari, 1999] and [Qin and Badgwell, 2003] . In these papers, 

a generalit:ed algorithm of the model predictive controller is provided. Moreover, a 

historical review of the MPC technology and the algorithms of the MPC at different 

stages are also presented. These papers also discuss the strengths, limitations and 

evolution of the MPC algorithms in detail. 

6.2.3 Comparative Study between MPC and PID 

A comparative study between standard PID and predictive controller is presented for 

a heat exchanger in [Bonivento et al. , 2001]. In this work, the modelling of t he heat 

exchange is performed using the dynamic properties of the heat exchanger. The step 

response model for t he input-output is identified. Then, using the identified model, 

PID controller and Generalized Predictive Control (GPC) are designed. GPC provides 

better results compared to standard PID for both set-point tracking and disturbance 

rejection. 

Another work on MPC implementation in heat exchanger is presented in [Krishna Vinaya 

et al. , 2012]. For heat exchanger control, PID is a widely used control technique. The 

motivation of the work was to optimize and conserve energy. A heat exchanger is 

highly non-linear process. In this work, the system is divided into different zones and 

for each zone a model is developed. Using these models, a model predictive controller 

was designed and used to control the temperature of a fiuid stream. A PID controller 
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was also designed for the process using the Ziegler Nichols method. Comparat ive 

studies on the two controllers ' performance show that MPC provides better results 

based on t he rise time, overshoot and settling time. 

A comparative study of PID controllers, MPC controllers and model free adaptive 

controllers (MFA) is performed in [Lukacova and Borz:ikova, 2010]. In this work, 

MFA is designed using an artificial neural network,and MPC is designed based on 

conventional dynamic matrix controller (DMC). The results show that PID is the 

fastest of t he three controllers but it has overshoot and steady state error. Both MFA 

and MPC are steady state error-free. MFA tracks the set point faster than MPC, but 

MFA ha::; over::;hoot. However, advanced control ::;trategie::; provide ::;uperior perfor­

mance compared to PID. 

The above literature survey shows, even though there were several studies to evaluate 

the performance of MPC against PID controller , t here was no effort to compare hybrid 

MPC-PID structure with PID-free structure. This study is aimed to fill in t his gap. 
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Chapter 7 

Theory of Dynamic Matrix Control 

7.1 Dynamic Matrix Control 

In the present work, dynamic matrix control (DMC)is used as a representative MPC 

algorithm. DMC has been a widely used algorithm in the industry since its introduc­

tion back in 1980s. The t heory of DMC is available in several books and literatures 

such as [Ogunnaike and Ray, 1994] and [Seborg et al. , 1989] . Discussions in this 

chapter will be limited to the representation of the central idea of DMC algorithm. 

Init ially, the algorithm is presented for a simple SISO system. Later, the algorithm is 

extended to MIMO system. 

The DMC algorithm is executed in two stages: prediction and cont rol. In the predic­

tion stage, the process variable is predicted using the receding horizon algorithm. In 

the control stage, an objective function is defined and minimized to get the control 

actions. 
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7 .1.1 P rediction 

A step response model of the plant is used for prediction in this formulation, while the 

disturbance is considered to be constant along the horizon. A step response model 

for a SISO system can be written as in Equation 7.1 

Yt = L ai * 6.ut-i 
i=l 

(7.1) 

where, Yt is the model output, ai is the i-th coefficient of the step response, and 6.u are 

the past input changes step. Using the t ime-shifting property and taking the constant 

disturbance into account, a future predicted value can be written as in Equation 7.2 

Yt+k = L a; * 6. Ut+k-i + llt+k 
i = l 

(7.2) 

where, Yt+k is the predicted output at t imet+ k, llt+k is the disturbance at timet + k. 

As the disturbance is assum d to be constant over the horizon, it is given by Equation 

7.3 

(7.3) 

where :Ym(t) is the measured output at timet. The value of the llt+k from 7.3 can be 

replaced in Equation 7.2 and can be rewritten in the following form 

k 00 

Yt+k = L a;* 6.ut+k- i + L a;* 6.ut+k- i + Ym(t)- L a;* 6.ut- i (7.4) 
i= l i=k+l i=l 

Now, the last three terms of Equation 7.4 actually express the output of the system if 

no control action is taken from time t to t + k, and is termed as the free response of the 

system, Y7+k· The free response of the system thus can be expressed mathemat ically 
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as follows 
00 

y;+k = Ym(t) + L (ak+i- ai) * fl u t-i 
i=k+ l 

(7.5) 

Now, if the process is asymptotically stable, t he step response tend to be a constant 

value after N sampling time. Therefore, finite step response of N samples can be used 

instead of infinite step response model as, ak+i - a; '::::' 0 for i > N. Using this fini te 

step response model, free response of the system can be represented as, 

N 

y;+k = Ym(t) + L (ak+i - ai) * tlut-i 
·i= k+l 

(7.6) 

Using the free response of the system, Equation 7.7 can be rewritten in the following 

form 
k 

Yt+k = L ai * fl ut+k-i + y;+k 
i = l 

(7.7) 

Equation 7.4 will be used to predict a long the pred iction horizon (k= 1, 2, .. . , p) with 

m control actions . 

m 

Yt+p = u:w + 2:(ai * tlut+p- i) 
i = l 

T hese calculated predicted values can be expressed in t he following matrix form 

fJ = y* + A * ~u (7.8) 

where, fJ is a p dimensional vector containing the predicted output over prediction 

horizon, y* is also a p dimensional vector which contains the free response of the 
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system over t he horizon, ~u is an m dimensional vector of control increments. A is 

the dynamic matrix of the system, which is defined in Equation 7.9 

0 

A = 

0 

0 

0 

0 

ap- m+l 

(7.9) 

Equation 7.8 expresses the relation between the predicted fut ure output with control 

increment. As such, this can be used to calculate the action necessary to achieve a 

specific system behaviour [Ogunnaike and Ray, 1994] [Seborg et a l. , 1989]. 

7 .1. 2 Control Algorithm 

The objective of the DMC controller is to drive the output close to desired trajectory. 

An objective function is defined based on the deviation of desired trajectory and 

predicted output and it is minimized by calculating a set of control actions . 

Suppose, a p dimensional vector r is known which contains t he desired set-points over 

the prediction horizon p . The object ive function .J(6.u) is defined in Equation 7.10 

that calculates a set of control actions that minimizes the deviation between r and f) 

J(~u) = (r- f) f * Q * (r- f) ) (7.10) 

where Q is t he weighting matrix t hat defines the aggressiveness of t he controller. 

However , t he objective function defined in Equation 7.10 is an unconstrained formu­

lation and may produce undesirable consequences. This is why the control action is 
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also penalized along with t he deviation of prediction and set-point. Thus, a more 

robust object ive function can be defined as in Equation 7.11 

.J(au) = (r - y )T * Q * (r - y) + auT * R * au (7.11) 

where, R is t he weighting matrix to penalize the control action. Control act ions can 

be calculated by minimizing t he objective function described in 7 .11. T he value of 

y can be replaced from Equation 7.8. Control actiontl are calculated analytically by 

t aking t he first derivative of the objective function with respect to au and equating 

it to zero which givetl the following explicit expression for au. 

(7. 12) 

More compactly controller can be expressed as, au = K c* e , where, K c = (ATQA+ 

Rt 1A r Qr , and e = (r- y*). 

T hus, using DMC a set of control actions are calcula ted that drive the output close 

to t he desired set-point over the predicted horizon. However, t he total m number 

of control actions are calculated , but only the first control action is implemented , as 

at t he next control interval, the calculation is repeated to get a new set of control 

actions. 

7.1.3 Extension to Multi-variable Case 

The scheme discussed in t he previous subsections can be easily extended for a MIMO 

syst em. Basic equations will remain the same, except for the fact t hat the size of the 

vector and the matrices would be increased and partitioned . Based upon the linear-
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ity of t he model, the superposition principle can be used to evaluate the predicted 

outputs. 

For a mult ivariable system with s output and h input variables, t he predicted output 

vector Yrnrn , free response vector y;.,n , set-point trajectory vector T mm and array of 

future control signal ~Urnrn can be written as [Ogunnaike and Ray, 1994], 

fh .t+p 

Yrnrn = ' y :r,rn = 

:9s.t+l 

v* . l.t+p 

Y .;,t+1 

Y* s,t+p 

Tl ,t+ l 

r 1,t+p 

, T rnrn = , ~Urnrn = 

Ts, t+l 

Dynamic matrix for the multivariable system is redefined as 

All, 

A ·· 1] 

~1./,l,t+m- 1 

~1./,h , t 

Here, the overall dynamic matrix is constructed using submatrices which contain t he 

step weights that relate the individual input-output pair. The sub-matrix relating the 

i-th output to j -t h input can be defined as the same way a dynamic matrix is defined 

previously and is given below. 
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a i.i, 1 0 0 0 

a ij, 2 a;j , l 0 0 

Aij = 
aij,rn aij ,rn- 1 a ij,rn-2 aij ,l 

CLi j ,p-rn+ l 

With these definit ions, the DMC controller is implemented for a MIMO system . 
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Chapter 8 

Simulation Results 

8.1 Plant Description 

Controllers based on the algorithm described in chapter 7, arc designed for a cont in­

uous st irred tank heater (CSTH) mentioned in earlier chapter. As stated previously, 

t hough t he plant is a simulated model, it is very real life like as dynamic equations 

along with experimental data, were used to build the simulink model. The available 

simulink model is considered as a plant for this study as it is assumed that the dy­

namic behaviour of the real plant will be similar to this simulated model. 

In t his set up, water is heated using steam and hot water. Cold water enters into the 

tank cont inuously from supply. Steam is supplied from a steam generator whereas hot 

water is supplied from building ut ilities. Control valves manipulate the flow of steam, 

cold water and hot water. T he water level of the tank and t he temperature of t he 

water are the two controlled variables. T hese variables are controlled by manipulating 

t he valve posit ions of the control valves. Standard operating points used to develop 

simulink model are stated in Table 8.1. 
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Table 8.1: Operating points of CSTH for different control structures 
Variable Op P t 

Level/ em 20.50 
Temperature/ Deg C 42.50 
CW valve/ percent 42.67 
Steam valve/percent 40.81 
HW valve/ percent 0 

Plant model at the operating point are provided in Figure 8.1. These plant models are 

extensively used while designing t he MPC block which uses DMC algorithm to design 

a controller. The details algorithm of DMC is discussed in t he previous chapters. In 

the next section different control st ructures will be discussed . 

8.2 Control Structures 

In this work, t he performance of three different control structures are compared. 

These are: a two-layer cascaded PID structure; a hybrid structure with PID in the 

base layer and t he set-points of the PID manipulated by DMC; a P ID-free structure 

where the control valve is directly manipulated by DMC. 

8.2.1 Two Layer Cascaded PID Structure 

The cascaded P ID st ructure is presented in Figure 8.2 using the four measured vari-

abies and two manipulated variables. Cold water flow and steam flow arc the two 

measured variables used as the feedback to t he base layer PID. The outputs of t he 

base layer PIDs arc used to manipulate the position of the control valves of cold water 

and steam. Set-points of the base layer P ID controllers are manipulated by supervi-

sory layer P ID. Measured variables, tank level and temperature, arc used as feedback 

signals to the supervisory layer PID, which compares the measured values with their 
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Figure 8.2: Two layer cascaded PID structure 

corresponding desired values and provides control actions accordingly. 

Details design met hodology of the design of two layer PID is discussed in [Thornhill 

et a l. , 2008]. Moreover , an electronic model of the plant controlled with t he two layer 

PID is available online. 
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8.2.2 Hybrid Structure with Base Layer PID Manipulated 

by DMC 

The hybrid control ~tructure is ~hown in Figure 8.3. In thi~ ~tructure, the ~upervi~ory 

layer is a DMC controller. This structure is practised widely and gained acceptance 

mainly becau~e it allow~ the implementation of MPC with minimal changes to the 

existing control structure, and also because the PID layer can act as a fall back when 

MPC i~ turned off for any rea~on. In this ~tructure , the plant, together with the 

PID controller, constit utes t he system for the MP C that controls t he tank level and 

temperature by manipulating the ~et-points of the ba~e layer PID flow controllers. 

MPC block is shown in the block diagram which is a centralized controller, that uses 

the plant model and DMC algorithm to design a controller. In the hybrid case, as 

plant together with PID is used as t he process, model would not be same as shown 

in the Figure 8.1. An identified FIR filter is used a~ the process model to design t he 

DMC. FIR model is provided in Equations 8.1 to 8.4. Design parameters of DMC arc 

provided in Table 8.2. 

G ( -0.0002347z- 2 

11 z) = 1 - 1.935z-1 + 0.9352z-2 
(8.1 ) 

G 0.0003297 z-2 

12 (z) = 1- 1.935z-1 + 0.9352z- 2 (8.2) 

G (.,. _ -0.0643962z- 10 

21 ~) - 1 - 0.9089z-1 + 0.002072z-2 (8.3) 

G 
7 

_ - 0.014916z-10 

21 (~) - 1 - 0.9089z-1 + 0.002072z-2 (8.4) 
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Figure 8.3: Hybrid control f::>tructure 

Table 8.2: Design parameters of the DMC controller 
Variable Value 

Prediction horizon(p) 15 
Control horizon (m) 5 
Weighting factor (Q) 1 
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Table 8.3: Design parameters of the DMC controller 
Variable Value 

Prediction horizon (p) 15 
Control horizon (m) 5 
Weighting factor (Q) 1 

8.2.3 PID Free MPC Structure 

A P ID-frcc control structure is presented in Figure 8.4. In this control structure there 

is no PID controller. A DMC controls t he tank level and temperature by manipulating 

t he cold water valve and t he steam valve positions directly. So, in t his case open loop 

model of t he proce::;t; plant provided in Figure 8.1, can be used directly to de::;ign MPC. 

Different de ign parameters to design DMC for this structure is provided in Table 8.3. 

8.3 Performance Comparison of Different Types of 

Structures 

The performances of the three d ifferent control structures arc evaluated based upon 

set point tracking and regulatory control. Set point t racking performance de::;cribet-i 

how well a controller can react to the change of the desired set point of a process 

varia ble, wherea::; regulatory control at;::;es::;et; the ability of the controller to nullify t he 

effect of any disturba nce t hat appears in the system. Apart from these two properties, 

another det-iired property of a good controller is minimal Huctuation::; in the actuator. 

T his will a lso be evaluated in this study. 
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Figure 8.4: PID free control structure stru ture 
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8.3.1 Se t-point Tracking 

For assessing the controllers' response to a change in set point, the same scenario was 

set for the three different structures. T he set points of both level and temperature are 

changed and the change of measured variables and actuator due to control action are 

observed . Measured outputs and manipulated variables for the three controllers are 

shown in Figures 8.5 to 8.7. T he set point of the level is changed from 20.5 to 22.85 

em and the temperature set point is changed from 42.5 to 48.73°C. From the figures, 

it is evident t hat a P ID-free MPC structure can react to a change of set point quicker 

t han the other two structures; however , it demands more movements in the actua­

tors. Considering valve movement, a hybrid structure proved to be better. However, 

it is much slower to react to the set point change. Both cascaded PID and hybrid 

structures have some overshoot which is much lower in t he case of P ID-free MPC. 

Execution frequency is another concern while designing DMC. In hybrid structure, 

DMC execut ion frequency is 15s, while for PID free structure execution frequency is 

l s in order to reject any local disturbances. Hence, a PID-free struct ure has signifi­

cantly more computational load compared to the hybrid P ID. 

In order to quantify t he control performance of the t hree structures, t hey are compared 

using the integrated squared error (ISE) values for set-point tracking. ISE value is an 

integrated value of t he deviation between the det:>ired set-point and measured output 

over a certain period . In this case, an integral interval is considered to be t he time 

t hat is required to achieve a steady state value after a set-point is changed. T he ISE 

values for level and temperature arc shown in Figures 8.8 and 8.9. From the figures, 

it can also be seen t hat the PID free structure shows superior performance compared 

to other structures. The hybrid control structure gives a larger ISE value due to 

steady state error. To sum up, having a large computational load PID-free structure 
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111 Level 

Two layer PID Hybrid PID PID Free 

Figure 8.8: Comparison of the ISE value of different control structures for level control 

Table 8.4: Settling time of level for different structures 
Structure Set t ling time(level) 

Two layer cascaded PID 100 sec 
Hybrid structure 420 sec 
P ID free structure 50 sec 

is bit difficul t to implement but it clearly outperforms the other structures in terms 

of control performances. 

Comparison of the controller performance can also be made based on the settling 

t ime. Settling time of both level and temperature for each structure are shown in 

Table 8.4 and 8.5. Values of the settling time also suggest that, PID free structure 

clearly outperforms t he other two structures in terms of stability having significant ly 

lower settling t ime. 
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Figure 8.9: Comparison of the ISE value of different control structures for temperature 
control 

Table 8.5: Settling time of temperature for different struct ure::; 
Structure Settling time( temperature) 

Two layer cascaded PID 
Hybrid structure 
PID free structure 

200 sec 
220 sec 
170 sec 
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8.3.2 Regulatory Control 

Regulatory cont rol assesses a controller's ability to nullify a disturbance when it en­

ters in to the system. In this study, hot water is considered to be the disturbance. 

Thus, a change in hot water valve position means that a disturbance has appeared 

in t he system. For the nominal operation condition, the hot water valve is kept fully 

closed. In order to observe the regulatory control action of the controller , the hot 

water valve position is changed from 0 percent to 4.76 percent. Thus, hot water acts 

as a disturbance to the system and causes a rise of both measured variables, level and 

temperature, from their defined set point. The controllers took action to bring back 

t he measured variable to the init ial set point. 

Figures 8.10 through 8.12 show the measured outputs and actuator movements after 

a disturbance is introduced into the system. From these results it is clear that all the 

controllers are capable of bringing the process to its initial state. A cascaded PID 

controller gives the fastest disturbance rejection wit h an undershoot and it has sig­

nificant large t>wing in t he actuator, which it> not det>irable. Both hybrid and P ID-free 

structures reject disturbance without any undershoot. In the case of the actuator 

movement hybrid structure has less variation. However, t he hybrid structure it> signif­

icantly slower t han the PID-free structure in disturbance rejection and allows a bigger 

rise of t he measured output compared to t he PID-free structure. T he performance 

of hybrid structure may be improved by increasing the execution frequency of the 

supervisory DMC. 
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Figure 8.12: Regulatory control of level and temperature using PID-free DMC con­
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8.4 Effect of Execution Frequencies in PID-free 

MPC Performance 

Performance comparison in the previous section convincingly demonstrates that PID­

frcc MPC structure has a superior performance over PID or hybrid structure. How­

ever , the main concern for the PID-free MPC is that it has significantly more com­

putational load, as DMC has to provide a control action at every second. Decreasing 

the execution frequency would help to decrease the computational load . Moreover, 

PID-frcc MPC has more fluctuation in the valve position , which can be reduced by 

increasing sampling t ime, hence decreasing execution frequency. In this section, PID­

frcc MPC is implemented at two different frequencies and their performances arc 

evaluated. The first one is the controller described in the previous section with a 

sampling t ime of ls, while for the other, a sampling t ime of lOs is chosen. Set point 

tracking performances of the PID-free MPC at these two execution frequencies are 

observed. The set point of level is changed from 20.5 to 22 .85 em at t= 800s and t he 

set point of the temperature is changed from 42.5°C to 48.73°C at t= 500s. 

Figure 8.13 shows the measured outputs and actuator movements at different execu­

t ion frequencies. Comparing the results, we see that , for the lower execution frequency, 

a steady state error exists between the set-point and the response for a prolonged pe­

riod. However, the valve movement is significantly reduced for the lower execut ion 

frequency. All these phenomena should be taken into account while choosing an exe­

cution frequency of a DMC controller. 
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Chapter 9 

Conclusions of the Predictive 

Control 

A comprehensive simulation-based study was carried out to compare the performances 

of t he two cont rol structures: 'MPC cascaded to PID' and a 'PID-frcc MPC', where 

MPC is directly manipulating the actuators. DMC is used as the representative 

MPC algorithm. The simulation study was carried out on a CSTH system. The 

performance of the controllers for set point tracking and disturbance rejection were 

monitored. ISE is used as t he cont rol performance indicator which clearly suggests 

PID-free MPC structure is the superior one. However , PID-free MPC needs to be 

executed at a high frequency which increases the computational load. 

The findings and contributions arc summarized below: 

• A hybrid control structure where a DMC cascaded to a PID controller and a 

PID-free control structure where DMC direct ly manipulates the actuator are 

designed for a CSTH syst.em.T hese two design of control were implemented in 

Matlab Simulink. 
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• The performance of the above control struct ures are evaluated for both set-point 

change and disturbance rejection. More aggressive control can be achieved by 

the PID-free DMC structure. Some overshoot in the response is observed for 

the PID-free DMC structure. 

• Quantitatively, the performance of these competing cont rol structures arc com­

pared by calculating ISE. This also shows that the PID-free DMC structure 

outperforms the hybrid DMC-PID structure. In fact , the performance of t he 

hybrid structure is inferior to the cascaded PID structure to some extent. 

• The computational load and the movements of an actuator for the P ID-frcc 

DMC structure is more than that of a hybrid ::;tructure. Computational load 

can be managed by optimizing the execution frequency. 

9.1 Future Recommendations 

• Experimental valida tion: The effectiveness of the methodologies arc discussed 

in thi::; study ba::;ed on t he ::;imulation result:;. This can be further validated 

using an experimental study. 

• The effect of valve non-linearity on the performance of t he PID-free MPC struc­

ture was not studied. This is an important question which can be studied using 

an experimental set up. 

Simulation results showed that direct use of MPC rather than an MPC in supervisory 

layer and base layer P ID may a llow achieving better control performances. This 

advantage comes wit h addit ional computational load. Experimental studies should 

be carried out to validate the above simulation findings. 
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